Powered by Deep Web Technologies
Note: This page contains sample records for the topic "wind turbine towers" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


1

Hydrogen Storage in Wind Turbine Towers: Cost Analysis and Conceptual...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

in Wind Turbine Towers: Cost Analysis and Conceptual Design Hydrogen Storage in Wind Turbine Towers: Cost Analysis and Conceptual Design Preprint 34851.pdf More Documents &...

2

Wind Turbine Towers Establish New Height Standards and Reduce...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Wind Turbine Towers Establish New Height Standards and Reduce Cost of Wind Energy Wind Turbine Towers Establish New Height Standards and Reduce Cost of Wind Energy Case study that...

3

Lifting system and apparatus for constructing wind turbine towers  

DOE Patents [OSTI]

The disclosed invention is utilized for mounting a wind turbine and blade assembly on the upper end of a wind turbine tower. The invention generally includes a frame or truss that is pivotally secured to the top bay assembly of the tower. A transverse beam is connected to the frame or truss and extends fore of the tower when the frame or truss is in a first position and generally above the tower when in a second position. When in the first position, a wind turbine or blade assembly can be hoisted to the top of the tower. The wind turbine or blade assembly is then moved into position for mounting to the tower as the frame or truss is pivoted to a second position. When the turbine and blade assembly are secured to the tower, the frame or truss is disconnected from the tower and lowered to the ground.

Livingston, Tracy; Schrader, Terry; Goldhardt, James; Lott, James

2011-02-01T23:59:59.000Z

4

Wind turbine tower for storing hydrogen and energy  

DOE Patents [OSTI]

A wind turbine tower assembly for storing compressed gas such as hydrogen. The tower assembly includes a wind turbine having a rotor, a generator driven by the rotor, and a nacelle housing the generator. The tower assembly includes a foundation and a tubular tower with one end mounted to the foundation and another end attached to the nacelle. The tower includes an in-tower storage configured for storing a pressurized gas and defined at least in part by inner surfaces of the tower wall. In one embodiment, the tower wall is steel and has a circular cross section. The in-tower storage may be defined by first and second end caps welded to the inner surface of the tower wall or by an end cap near the top of the tower and by a sealing element attached to the tower wall adjacent the foundation, with the sealing element abutting the foundation.

Fingersh, Lee Jay (Westminster, CO)

2008-12-30T23:59:59.000Z

5

The Use of Tall Tower Field Data for Estimating Wind Turbine Power Performance , J. Chapman1  

E-Print Network [OSTI]

The Use of Tall Tower Field Data for Estimating Wind Turbine Power Performance A. Swift1 , J wind speed measurements on the TTU WISE 200m and 78m towers. A hypothetical wind turbine is shown. At potential wind turbine sites, it is uncommon to have wind measurements available at multiple heights. Then

Manuel, Lance

6

LQG control of horizontal wind turbines for blades and tower loads alleviation  

E-Print Network [OSTI]

LQG control of horizontal wind turbines for blades and tower loads alleviation A. Pintea*, N of power produced by two bladed horizontal variable speed wind turbines. The proposed controller ensures oscillations and with the tower bending tendency. Keywords: LQG control, Wind turbines, Multi-objective control

Paris-Sud XI, Université de

7

SHM BASED SYSTEM DESIGN OFA WIND TURBINE TOWER USING A MODAL SENSITIVITY BASED BAYES DETECTOR  

E-Print Network [OSTI]

SHM BASED SYSTEM DESIGN OFA WIND TURBINE TOWER USING A MODAL SENSITIVITY BASED BAYES DETECTOR Mads@ramboll.com ABSTRACT It is investigated if material based structural safety can be replaced with safety obtained from of the NREL 5MW wind turbine tower subjected to bending fatigue and horizontal circumferential cracking

Boyer, Edmond

8

Improvement of risk estimate on wind turbine tower buckled by hurricane  

E-Print Network [OSTI]

Wind is one of the important reasonable resources. However, wind turbine towers are sure to be threatened by hurricanes. In this paper, method to estimate the number of wind turbine towers that would be buckled by hurricanes is discussed. Monte Carlo simulations show that our method is much better than the previous one. Since in our method, the probability density function of the buckling probability of a single turbine tower in a single hurricane is obtained accurately but not from one approximated expression. The result in this paper may be useful to the design and maintenance of wind farms.

Li, Jingwei

2013-01-01T23:59:59.000Z

9

An experimental and numerical study of wind turbine seismic behavior  

E-Print Network [OSTI]

a steel 1-MW wind turbine tower. ” Engineering Structures,testing of a steel wind turbine tower. ” Proceedings of theanalysis of steel wind turbine towers in the canadian

Prowell, I.

2011-01-01T23:59:59.000Z

10

Low Wind Speed Technology Phase I: Evaluation of Design and Construction Approaches for Economical Hybrid Steel/Concrete Wind Turbine Towers; BERGER/ABAM Engineers Inc.  

SciTech Connect (OSTI)

This fact sheet describes a subcontract with BERGER/ABAM Engineers Inc. to study the economic feasibility of concrete and hybrid concrete/steel wind turbine towers.

Not Available

2006-03-01T23:59:59.000Z

11

Wind tower service lift  

DOE Patents [OSTI]

An apparatus used for maintaining a wind tower structure wherein the wind tower structure may have a plurality of legs and may be configured to support a wind turbine above the ground in a better position to interface with winds. The lift structure may be configured for carrying objects and have a guide system and drive system for mechanically communicating with a primary cable, rail or other first elongate member attached to the wind tower structure. The drive system and guide system may transmit forces that move the lift relative to the cable and thereby relative to the wind tower structure. A control interface may be included for controlling the amount and direction of the power into the guide system and drive system thereby causing the guide system and drive system to move the lift relative to said first elongate member such that said lift moves relative to said wind tower structure.

Oliphant, David; Quilter, Jared; Andersen, Todd; Conroy, Thomas

2011-09-13T23:59:59.000Z

12

Wind shear for large wind turbine generators at selected tall tower sites  

SciTech Connect (OSTI)

The objective of the study described in this report is to examine the nature of wind shear profiles and their variability over the height of large horizontal-axis wind turbines and to provide information on wind shear relevant to the design and opertion of large wind turbines. Wind turbine fatigue life and power quality are related through the forcing functions on the blade to the shapes of the wind shear profiles and their fluctuations over the disk of rotation.

Elliott, D.L.

1984-04-01T23:59:59.000Z

13

Wind turbine  

SciTech Connect (OSTI)

The improvement in a wind turbine comprises providing a tower with a freely liftable mount and adapting a nacelle which is fitted with a propeller windwheel consisting of a plurality of rotor blades and provided therein with means for conversion of wind energy to be shifted onto said mount attached to the tower. In case of a violent wind storm, the nacelle can be lowered down to the ground to protect the rotor blades from breakage due to the force of the wind. Required maintenance and inspection of the nacelle and replacement of rotor blades can be safely carried out on the ground.

Abe, M.

1982-01-19T23:59:59.000Z

14

Dynamic response analysis of a 900 kW wind turbine subject to ground excitation  

E-Print Network [OSTI]

response analysis of wind turbine towers including soil-were attached to the wind turbine tower at 7 locations alongload demands on the wind turbine tower structure. Additional

Caudillo, Adrian Felix

2012-01-01T23:59:59.000Z

15

Direct drive wind turbine  

DOE Patents [OSTI]

A wind turbine is provided that minimizes the size of the drive train and nacelle while maintaining the power electronics and transformer at the top of the tower. The turbine includes a direct drive generator having an integrated disk brake positioned radially inside the stator while minimizing the potential for contamination. The turbine further includes a means for mounting a transformer below the nacelle within the tower.

Bywaters, Garrett; Danforth, William; Bevington, Christopher; Jesse, Stowell; Costin, Daniel

2006-10-10T23:59:59.000Z

16

Direct drive wind turbine  

DOE Patents [OSTI]

A wind turbine is provided that minimizes the size of the drive train and nacelle while maintaining the power electronics and transformer at the top of the tower. The turbine includes a direct drive generator having an integrated disk brake positioned radially inside the stator while minimizing the potential for contamination. The turbine further includes a means for mounting a transformer below the nacelle within the tower.

Bywaters, Garrett; Danforth, William; Bevington, Christopher; Stowell, Jesse; Costin, Daniel

2006-07-11T23:59:59.000Z

17

Direct drive wind turbine  

DOE Patents [OSTI]

A wind turbine is provided that minimizes the size of the drive train and nacelle while maintaining the power electronics and transformer at the top of the tower. The turbine includes a direct drive generator having an integrated disk brake positioned radially inside the stator while minimizing the potential for contamination. The turbine further includes a means for mounting a transformer below the nacelle within the tower.

Bywaters, Garrett Lee; Danforth, William; Bevington, Christopher; Stowell, Jesse; Costin, Daniel

2006-09-19T23:59:59.000Z

18

Direct drive wind turbine  

DOE Patents [OSTI]

A wind turbine is provided that minimizes the size of the drive train and nacelle while maintaining the power electronics and transformer at the top of the tower. The turbine includes a direct drive generator having an integrated disk brake positioned radially inside the stator while minimizing the potential for contamination. The turbine further includes a means for mounting a transformer below the nacelle within the tower.

Bywaters, Garrett; Danforth, William; Bevington, Christopher; Jesse, Stowell; Costin, Daniel

2007-02-27T23:59:59.000Z

19

Dynamic analysis of a 5 megawatt offshore floating wind turbine  

E-Print Network [OSTI]

wind turbine. Rating Control Rotor Radius Rated Wind Speed Towerwind turbine is used in this design, however there are slight modifications of the tower.of the tower. Figure 2.3: NREL 5 MW Reference Wind Turbine [

Harriger, Evan Michael

2011-01-01T23:59:59.000Z

20

2010 Wind Technologies Market Report  

E-Print Network [OSTI]

wind turbine components (specifically, generators, bladeschangers. ” Wind turbine components such as blades, towers,17%). Wind turbine component exports (towers, blades,

Wiser, Ryan

2012-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "wind turbine towers" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


21

2011 Wind Technologies Market Report  

E-Print Network [OSTI]

that includes wind turbine towers. 2011 Wind TechnologiesSets Other Wind Turbine Components Towers Wind-Poweredselected wind turbine components includes towers as well as

Bolinger, Mark

2013-01-01T23:59:59.000Z

22

2010 Wind Technologies Market Report  

E-Print Network [OSTI]

that includes wind turbine towers. 2010 Wind TechnologiesImports : Other Wind Turbine Components Towers Wind-Poweredselected wind turbine components includes towers as well as

Wiser, Ryan

2012-01-01T23:59:59.000Z

23

Wind Turbine Towers Establish New Height Standards and Reduce Cost of Wind Energy  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious RankCombustion |Energy Usage »of| Department ofDepartment ofAnnouncementAugust 30,PowerJuneenabled Wind

24

Wind Turbine Towers Establish New Height Standards and Reduce Cost of Wind  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE:YearRound-Up from theDepartment of Dept.| WEATHERIZATION5 |and Analysis |3 WindEnergy

25

Tornado type wind turbines  

DOE Patents [OSTI]

A tornado type wind turbine has a vertically disposed wind collecting tower with spaced apart inner and outer walls and a central bore. The upper end of the tower is open while the lower end of the structure is in communication with a wind intake chamber. An opening in the wind chamber is positioned over a turbine which is in driving communication with an electrical generator. An opening between the inner and outer walls at the lower end of the tower permits radially flowing air to enter the space between the inner and outer walls while a vertically disposed opening in the wind collecting tower permits tangentially flowing air to enter the central bore. A porous portion of the inner wall permits the radially flowing air to interact with the tangentially flowing air so as to create an intensified vortex flow which exits out of the top opening of the tower so as to create a low pressure core and thus draw air through the opening of the wind intake chamber so as to drive the turbine.

Hsu, Cheng-Ting (Ames, IA)

1984-01-01T23:59:59.000Z

26

Understanding Trends in Wind Turbine Prices Over the Past Decade  

E-Print Network [OSTI]

Wind turbines are material-intensive. Each individual tower,and “towers and lattice masts,” and assume that 100% of the former and 95% of the latter are attributable to wind turbines.

Bolinger, Mark

2012-01-01T23:59:59.000Z

27

Flexible dynamics of floating wind turbines  

E-Print Network [OSTI]

This work presents Tower Flex, a structural dynamics model for a coupled analysis of offshore floating wind turbines consisting of a tower, a floating platform and a mooring system. In this multi-body, linear frequency-domain ...

Luypaert, Thomas (Thomas J.)

2012-01-01T23:59:59.000Z

28

Wind turbine spoiler  

DOE Patents [OSTI]

An aerodynamic spoiler system for a vertical axis wind turbine includes spoilers on the blades initially stored near the rotor axis to minimize drag. A solenoid latch adjacent the central support tower releases the spoilers and centrifugal force causes the spoilers to move up the turbine blades away from the rotor axis, thereby producing a braking effect and actual slowing of the associated wind turbine, if desired. The spoiler system can also be used as an infinitely variable power control by regulated movement of the spoilers on the blades over the range between the undeployed and fully deployed positions. This is done by the use of a suitable powered reel and cable located at the rotor tower to move the spoilers.

Sullivan, William N. (Albuquerque, NM)

1985-01-01T23:59:59.000Z

29

Wind turbine  

DOE Patents [OSTI]

A wind turbine of the type having an airfoil blade (15) mounted on a flexible beam (20) and a pitch governor (55) which selectively, torsionally twists the flexible beam in response to wind turbine speed thereby setting blade pitch, is provided with a limiter (85) which restricts unwanted pitch change at operating speeds due to torsional creep of the flexible beam. The limiter allows twisting of the beam by the governor under excessive wind velocity conditions to orient the blades in stall pitch positions, thereby preventing overspeed operation of the turbine. In the preferred embodiment, the pitch governor comprises a pendulum (65,70) which responds to changing rotor speed by pivotal movement, the limiter comprising a resilient member (90) which engages an end of the pendulum to restrict further movement thereof, and in turn restrict beam creep and unwanted blade pitch misadjustment.

Cheney, Jr., Marvin C. (Glastonbury, CT)

1982-01-01T23:59:59.000Z

30

Energy 101: Wind Turbines  

SciTech Connect (OSTI)

See how wind turbines generate clean electricity from the power of the wind. Highlighted are the various parts and mechanisms of a modern wind turbine.

None

2011-01-01T23:59:59.000Z

31

Energy 101: Wind Turbines  

ScienceCinema (OSTI)

See how wind turbines generate clean electricity from the power of the wind. Highlighted are the various parts and mechanisms of a modern wind turbine.

None

2013-05-29T23:59:59.000Z

32

Gone with the Wind - The Potential Tragedy of the Common Wind  

E-Print Network [OSTI]

or erection of wind turbine towers, relay stations, and/orof Wind Turbine Generator Operation Using Tower Shadowbetween wind turbines and cell phone towers). 152. Guzek,

Lifshitz-Goldberg, Yaei

2010-01-01T23:59:59.000Z

33

Understanding Wind Turbine Price Trends in the U.S. Over the Past Decade  

E-Print Network [OSTI]

a wind turbine’s price is assumed to cover the tower,Wind turbines are material-intensive. Each individual tower,and “towers and lattice masts,” and assume that 100% of the former and 95% of the latter are attributable to wind turbines.

Bolinger, Mark

2013-01-01T23:59:59.000Z

34

Dynamic response analysis of a 900 kW wind turbine subject to ground excitation  

E-Print Network [OSTI]

geometry of the blades on a wind turbine has, in the past,of the tower and blades of a 900 kW wind turbine (source:per blade). For this portion of the study, the wind turbine

Caudillo, Adrian Felix

2012-01-01T23:59:59.000Z

35

2011 Wind Technologies Market Report  

E-Print Network [OSTI]

wind turbine components (specifically, generators, bladeschangers. ” Wind turbine components such as blades, towers,Canada (8%). Wind turbine component exports (towers, blades,

Bolinger, Mark

2013-01-01T23:59:59.000Z

36

Quantifying the hurricane risk to offshore wind turbines  

E-Print Network [OSTI]

Quantifying the hurricane risk to offshore wind turbines Stephen Rosea , Paulina Jaramilloa,1. Turbine tower buckling has been observed in typhoons, but no offshore wind turbines have yet been built be destroyed by hurricanes in an offshore wind farm. We apply this model to estimate the risk to offshore wind

Jaramillo, Paulina

37

Aerodynamic interference between two Darrieus wind turbines  

SciTech Connect (OSTI)

The effect of aerodynamic interference on the performance of two curved bladed Darrieus-type vertical axis wind turbines has been calculated using a vortex/lifting line aerodynamic model. The turbines have a tower-to-tower separation distance of 1.5 turbine diameters, with the line of turbine centers varying with respect to the ambient wind direction. The effects of freestream turbulence were neglected. For the cases examined, the calculations showed that the downwind turbine power decrement (1) was significant only when the line of turbine centers was coincident with the ambient wind direction, (2) increased with increasing tipspeed ratio, and (3) is due more to induced flow angularities downstream than to speed deficits near the downstream turbine.

Schatzle, P.R.; Klimas, P.C.; Spahr, H.R.

1981-04-01T23:59:59.000Z

38

the risk issue of wind measurement for wind turbine operation  

E-Print Network [OSTI]

Sciences, National Taiwan University #12;outline · Wind measurement in meteorology and wind farm design-related issues on wind turbine operation 3/31/2011 2 #12;WIND MEASUREMENT IN METEOROLOGY & WIND FARM DESIGN 3.brainybetty.com 11 wind farm at ChangHwa Coastal Industrial Park 70m wind tower 70m 50m 30m 10m #12;1 2 3 4 5 1 (70M

Leu, Tzong-Shyng "Jeremy"

39

Vertical axis wind turbine  

SciTech Connect (OSTI)

Wind turbines are largely divided into vertical axis wind turbines and propeller (Horizontal axis) wind turbines. The present invention discloses a vertical axis high speed wind turbine provided with rotational speed control systems. This vertical axis wind turbine is formed by having blades of a proper airfoil fitted to respective supporting arms provided radially from a vertical rotating shaft by keeping the blade span-wise direction in parallel with the shaft and being provided with aerodynamic control elements operating manually or automatically to control the rotational speed of the turbine.

Kato, Y.; Seki, K.; Shimizu, Y.

1981-01-27T23:59:59.000Z

40

Offshore Wind Turbine Transportation & Installation Analyses Planning Optimal Marine Operations for Offshore Wind Projects.  

E-Print Network [OSTI]

?? Transportation and installation of offshore wind turbines (Tower, Nacelle and Rotor) is a complete process conducted over several phases, usually in sequence. There are… (more)

Uraz, Emre

2011-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "wind turbine towers" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


41

Vertical axis wind turbine  

SciTech Connect (OSTI)

Wind turbines are largely divided into vertical axis wind turbines and propeller (Horizontal axis) wind turbines. The present invention discloses a vertical axis high speed wind turbine provided with a starting and braking control system. This vertical axis wind turbine is formed by having blades of a proper airfoil fitted to respective supporting arms provided radially from a vertical rotary axis by keeping the blade span-wise direction in parallel with the axis and being provided with a low speed control windmill in which the radial position of each operating piece varies with a centrifugal force produced by the rotation of the vertical rotary axis.

Kato, Y.; Seki, K.; Shimizu, Y.

1981-01-27T23:59:59.000Z

42

Wind Turbines Benefit Crops  

ScienceCinema (OSTI)

Ames Laboratory associate scientist Gene Takle talks about research into the effect of wind turbines on nearby crops. Preliminary results show the turbines may have a positive effect by cooling and drying the crops and assisting with carbon dioxide uptake.

Takle, Gene

2013-03-01T23:59:59.000Z

43

A multi-scale approach to statistical and model-based structural health monitoring with application to embedded sensing for wind energy  

E-Print Network [OSTI]

a tripod- supported wind turbine tower. White, et al. [35,load input to a wind turbine tower. This chapter develops

Taylor, Stuart Glynn

2013-01-01T23:59:59.000Z

44

IEEE TRANSACTIONS ON ENERGY CONVERSION, VOL. 21, NO. 3, SEPTEMBER 2006 717 Simulation Model of Wind Turbine 3p Torque  

E-Print Network [OSTI]

quality issues, the dynamic torque generated by the blades of a wind turbine must be represented tower shadow describes the redirection of wind due to the tower structure. In three-bladed turbines Turbine 3p Torque Oscillations due to Wind Shear and Tower Shadow Dale S. L. Dolan, Student Member, IEEE

Lehn, Peter W.

45

Barstow Wind Turbine Project  

Broader source: Energy.gov [DOE]

Presentation covers the Barstow Wind Turbine project for the Federal Utility Partnership Working Group (FUPWG) meeting, held on November 18-19, 2009.

46

Simulation of large-amplitude motion of floating wind turbines using conservation of momentum  

E-Print Network [OSTI]

of a floating wind turbine support structure capable of maintaining a near-vertical tower requires buoyancy far. The compliant floating wind turbine system can be considered as a multi-body system including tower, rotorSimulation of large-amplitude motion of floating wind turbines using conservation of momentum Lei

Sweetman, Bert

47

3-D Time-Accurate CFD Simulations of Wind Turbine Rotor Flow Fields  

E-Print Network [OSTI]

problems such as helicopter rotors and propellers. In particular, wind turbine blades can experience large from the tower support on downwind, horizontal axis wind turbines. These blade/inflow/tower wake in large scale wind turbines, because the blade passage frequency is well below the audible range

48

Wind Turbine Safety and Function Test Report for the Gaia-Wind 11-kW Wind Turbine  

SciTech Connect (OSTI)

This test was conducted as part of the U.S. Department of Energy's (DOE) Independent Testing project. This project was established to help reduce the barriers to wind energy expansion by providing independent testing results for small wind turbines (SWT). In total, four turbines were tested at the National Wind Technology Center (NWTC) as a part of this project. Safety and function testing is one of up to five tests performed on the turbines, including power performance, duration, noise, and power-quality tests. The results of the testing provide the manufacturers with reports that can be used for small wind turbine certification. The test equipment includes a Gaia-Wind 11-kW wind turbine mounted on an 18-m monopole tower. Gaia-Wind Ltd. manufactured the turbine in Denmark. The system was installed by the NWTC site operations group with guidance and assistance from Gaia-Wind.

Huskey, A.; Bowen, A.; Jager, D.

2010-01-01T23:59:59.000Z

49

Wind Turbine Safety and Function Test Report for the Mariah Windspire Wind Turbine  

SciTech Connect (OSTI)

This test was conducted as part of the U.S. Department of Energy's (DOE) Independent Testing project. This project was established to help reduce the barriers to wind energy expansion by providing independent testing results for small wind turbines (SWT). In total, five turbines were tested at the National Wind Technology Center (NWTC) as a part of this project. Safety and function testing is one of up to five tests performed on the turbines, including power performance, duration, noise, and power-quality tests. NWTC testing results provide manufacturers with reports that may be used to meet part of small wind turbine certification requirements. The test equipment includes a Mariah Windspire wind turbine mounted on a monopole tower. L&E Machine manufactured the turbine in the United States. The inverter was manufactured separately by Technology Driven Products in the United States. The system was installed by the NWTC site operations group with guidance and assistance from Mariah Power.

Huskey, A.; Bowen, A.; Jager, D.

2010-07-01T23:59:59.000Z

50

Coupled Dynamic Analysis of Multiple Unit Floating Offshore Wind Turbine  

E-Print Network [OSTI]

In the present study, a numerical simulation tool has been developed for the rotor-floater-tether coupled dynamic analysis of Multiple Unit Floating Offshore Wind Turbine (MUFOWT) in the time domain including aero-blade-tower dynamics and control...

Bae, Yoon Hyeok

2013-04-23T23:59:59.000Z

51

Vertical axis wind turbines  

DOE Patents [OSTI]

A vertical axis wind turbine is described. The wind turbine can include a top ring, a middle ring and a lower ring, wherein a plurality of vertical airfoils are disposed between the rings. For example, three vertical airfoils can be attached between the upper ring and the middle ring. In addition, three more vertical airfoils can be attached between the lower ring and the middle ring. When wind contacts the vertically arranged airfoils the rings begin to spin. By connecting the rings to a center pole which spins an alternator, electricity can be generated from wind.

Krivcov, Vladimir (Miass, RU); Krivospitski, Vladimir (Miass, RU); Maksimov, Vasili (Miass, RU); Halstead, Richard (Rohnert Park, CA); Grahov, Jurij (Miass, RU)

2011-03-08T23:59:59.000Z

52

Wind Turbine Acoustic Noise A white paper  

E-Print Network [OSTI]

Wind Turbine Acoustic Noise A white paper Prepared by the Renewable Energy Research Laboratory...................................................................... 8 Sound from Wind Turbines .............................................................................................. 10 Sources of Wind Turbine Sound

Massachusetts at Amherst, University of

53

2009 Wind Technologies Market Report  

E-Print Network [OSTI]

selected wind turbine components that include towers (tradeWind turbine transactions differ in the services offered (e.g. , whether towers

Wiser, Ryan

2010-01-01T23:59:59.000Z

54

2008 WIND TECHNOLOGIES MARKET REPORT  

E-Print Network [OSTI]

wind turbine manufacturers: Vestas (nacelles, blades, and towersWind turbine transactions differ in the services offered (e.g. , whether towers

Bolinger, Mark

2010-01-01T23:59:59.000Z

55

Wind Turbine Blockset General Overview  

E-Print Network [OSTI]

Wind Turbine Blockset in Saber General Overview and Description of the Models Florin Iov, Adrian Turbine Blockset in Saber Abstract. This report presents a new developed Saber Toolbox for wind turbine, optimize and design wind turbines". The report provides a quick overview of the Saber and then explains

56

Optimization of Wind Turbine Operation  

E-Print Network [OSTI]

Optimization of Wind Turbine Operation by Use of Spinner Anemometer TF Pedersen, NN Sørensen, L Title: Optimization of Wind Turbine Operation by Use of Spinner Anemometer Department: Wind Energy prototype wind turbine. Statistics of the yaw error showed an average of about 10°. The average flow

57

PowerJet Wind Turbine Project  

SciTech Connect (OSTI)

PROJECT OBJECTIVE The PowerJet wind turbine overcomes problems characteristic of the small wind turbines that are on the market today by providing reliable output at a wide range of wind speeds, durability, silent operation at all wind speeds, and bird-safe operation. Prime Energy�s objective for this project was to design and integrate a generator with an electrical controller and mechanical controls to maximize the generation of electricity by its wind turbine. The scope of this project was to design, construct and test a mechanical back plate to control rotational speed in high winds, and an electronic controller to maximize power output and to assist the base plate in controlling rotational speed in high winds. The test model will continue to operate beyond the time frame of the project, with the ultimate goal of manufacturing and marketing the PowerJet worldwide. Increased Understanding of Electronic & Mechanical Controls Integrated With Electricity Generator The PowerJet back plate begins to open as wind speed exceeds 13.5 mps. The pressure inside the turbine and the turbine rotational speed are held constant. Once the back plate has fully opened at approximately 29 mps, the controller begins pulsing back to the generator to limit the rotational speed of the turbine. At a wind speed in excess of 29 mps, the controller shorts the generator and brings the turbine to a complete stop. As the wind speed subsides, the controller releases the turbine and it resumes producing electricity. Data collection and instrumentation problems prevented identification of the exact speeds at which these events occur. However, the turbine, controller and generator survived winds in excess of 36 mps, confirming that the two over-speed controls accomplished their purpose. Technical Effectiveness & Economic Feasibility Maximum Electrical Output The output of electricity is maximized by the integration of an electronic controller and mechanical over-speed controls designed and tested during the course of this project. The output exceeds that of the PowerJet�s 3-bladed counterparts (see Appendix). Durability All components of the PowerJet turbine assembly�including the electronic and mechanical controls designed, manufactured and field tested during the course of this project�proved to be durable through severe weather conditions, with constant operation and no interruption in energy production. Low Cost Materials for the turbine, generator, tower, charge controllers and ancillary parts are available at reasonable prices. Fabrication of these parts is also readily available worldwide. The cost of assembling and installing the turbine is reduced because it has fewer parts and requires less labor to manufacture and assemble, making it competitively priced compared with turbines of similar output manufactured in the U.S. and Europe. The electronic controller is the unique part to be included in the turbine package. The controllers can be manufactured in reasonably-sized production runs to keep the cost below $250 each. The data logger and 24 sensors are for research only and will be unnecessary for the commercial product. Benefit To Public The PowerJet wind-electric system is designed for distributed wind generation in 3 and 4 class winds. This wind turbine meets DOE�s requirements for a quiet, durable, bird-safe turbine that eventually can be deployed as a grid-connected generator in urban and suburban settings. Results As described more fully below and illustrated in the Appendices, the goals and objectives outlined in 2060 SOPO were fully met. Electronic and mechanical controls were successfully designed, manufactured and integrated with the generator. The turbine, tower, controllers and generators operated without incident throughout the test period, surviving severe winter and summer weather conditions such as extreme temperatures, ice and sustained high winds. The electronic controls were contained in weather-proof electrical boxes and the elec

Bartlett, Raymond J

2008-11-30T23:59:59.000Z

58

Model Predictive Control Wind Turbines  

E-Print Network [OSTI]

Model Predictive Control of Wind Turbines Martin Klauco Kongens Lyngby 2012 IMM-MSc-2012-65 #12;Summary Wind turbines are the biggest part of the green energy industry. Increasing interest control strategies. Control strategy has a significant impact on the wind turbine operation on many levels

59

Airborne Wind Turbine  

SciTech Connect (OSTI)

Broad Funding Opportunity Announcement Project: Makani Power is developing an Airborne Wind Turbine (AWT) that eliminates 90% of the mass of a conventional wind turbine and accesses a stronger, more consistent wind at altitudes of near 1,000 feet. At these altitudes, 85% of the country can offer viable wind resources compared to only 15% accessible with current technology. Additionally, the Makani Power wing can be economically deployed in deep offshore waters, opening up a resource which is 4 times greater than the entire U.S. electrical generation capacity. Makani Power has demonstrated the core technology, including autonomous launch, land, and power generation with an 8 meter wingspan, 20 kW prototype. At commercial scale, Makani Power aims to develop a 600 kW, 28 meter wingspan product capable of delivering energy at an unsubsidized cost competitive with coal, the current benchmark for low-cost power.

None

2010-09-01T23:59:59.000Z

60

Value Capture in the Global Wind Energy Industry  

E-Print Network [OSTI]

a large scale wind turbine are the tower, blades, and gearcost of large wind turbine (REpower MM92) Tower Rotor bladesa utility-scale wind turbine. Towers run from 40-100 meters,

Dedrick, Jason; Kraemer, Kenneth L.

2011-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "wind turbine towers" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


61

Floating Offshore Wind Turbine Dynamics: Large-Angle Motions in Euler-Space  

E-Print Network [OSTI]

-angle rigid body rotations of a floating wind turbine in the time domain. The tower and rotor-nacelle assemblyFloating Offshore Wind Turbine Dynamics: Large-Angle Motions in Euler-Space Bert Sweetman Texas A wind turbines in deep water, where environmental forcing could subject the rotor to meaningful angular

Sweetman, Bert

62

A feasibility study of wind turbine blade surface crack detection using an optical inspection method  

E-Print Network [OSTI]

A feasibility study of wind turbine blade surface crack detection using an optical inspection technique was investigated to assess its ability to detect surface flaws on an on-tower wind turbine blade and investors. Rotor blades are one of the largest mechanical components of a wind turbine and cannot

McCalley, James D.

63

VARIABLE SPEED WIND TURBINE  

E-Print Network [OSTI]

Wind energy is currently the fastest-growing renewable source of energy in India; India is a key market for the wind industry, presenting substantial opportunities for both the international and domestic players. In India the research is carried out on wind energy utilization on big ways.There are still many unsolved challenges in expanding wind power, and there are numerous problems of interest to systems and control researchers. In this paper we study the pitch control mechanism of wind turbine. The pitch control system is one of the most widely used control techniques to regulate the output power of a wind turbine generator. The pitch angle is controlled to keep the generator power at rated power by reducing the angle of the blades. By regulating, the angle of stalling, fast torque changes from the wind will be reutilized. It also describes the design of the pitch controller and discusses the response of the pitch-controlled system to wind velocity variations. The pitch control system is found to have a large output power variation and a large settling time.

Chatinderpal Singh

64

Wind shear climatology for large wind turbine generators  

SciTech Connect (OSTI)

Climatological wind shear analyses relevant to the design and operation of multimegawatt wind turbines are provided. Insight is provided for relating the wind experienced by a rotating blade in a shear flow to the analysis results. A simple analysis of the wind experienced by a rotating blade for three types of wind shear profiles under steady-state conditions is presented in graphical form. Comparisons of the magnitude and frequency of the variations in 1) the wind sensed by a single blade element, 2) the sum, and 3) the difference of the winds sensed by opposite blade elements show strong sensitivity to profile shape. These three items represent forcing functions that can be related to 1) flatwise bending moment, 2) torque on the shaft, and 3) teeter angle. A computer model was constructed to simulate rotational sampling of 10-s sampled winds from a tall tower for three different types of large wind turbines. Time series produced by the model indicated that the forcing functions on a rotating blade vary according to the shear profile encountered during each revolution as opposed to a profile derived from average wind conditions, e.g., hourly average winds. An analysis scheme was developed to establish a climatology of wind shear profiles derived from 10-s sampled winds and hourly average winds measured over a one-year period at several levels on a tall tower. Because of the sensitivity of the forcing function variability to profile shape, the analyses performed and presented are in the form of joint frequency distributions of velocity differences of the the top-to-hub versus the hub-to-bottom portion of disks of rotation for the three turbine configurations.

Elliott, D.L.; Wendell, L.L.; Heflick, S.K.

1982-10-01T23:59:59.000Z

65

Subhourly wind forecasting techniques for wind turbine operations  

SciTech Connect (OSTI)

Three models for making automated forecasts of subhourly wind and wind power fluctuations were examined to determine the models' appropriateness, accuracy, and reliability in wind forecasting for wind turbine operation. Such automated forecasts appear to have value not only in wind turbine control and operating strategies, but also in improving individual wind turbine control and operating strategies, but also in improving individual wind turbine operating strategies (such as determining when to attempt startup). A simple persistence model, an autoregressive model, and a generalized equivalent Markhov (GEM) model were developed and tested using spring season data from the WKY television tower located near Oklahoma City, Oklahoma. The three models represent a pure measurement approach, a pure statistical method and a statistical-dynamical model, respectively. Forecasting models of wind speed means and measures of deviations about the mean were developed and tested for all three forecasting techniques for the 45-meter level and for the 10-, 30- and 60-minute time intervals. The results of this exploratory study indicate that a persistence-based approach, using onsite measurements, will probably be superior in the 10-minute time frame. The GEM model appears to have the most potential in 30-minute and longer time frames, particularly when forecasting wind speed fluctuations. However, several improvements to the GEM model are suggested. In comparison to the other models, the autoregressive model performed poorly at all time frames; but, it is recommended that this model be upgraded to an autoregressive moving average (ARMA or ARIMA) model. The primary constraint in adapting the forecasting models to the production of wind turbine cluster power output forecasts is the lack of either actual data, or suitable models, for simulating wind turbine cluster performance.

Wegley, H.L.; Kosorok, M.R.; Formica, W.J.

1984-08-01T23:59:59.000Z

66

Wind turbine having a direct-drive drivetrain  

DOE Patents [OSTI]

A wind turbine comprising an electrical generator that includes a rotor assembly. A wind rotor that includes a wind rotor hub is directly coupled to the rotor assembly via a simplified connection. The wind rotor and generator rotor assembly are rotatably mounted on a central spindle via a bearing assembly. The wind rotor hub includes an opening having a diameter larger than the outside diameter of the central spindle adjacent the bearing assembly so as to allow access to the bearing assembly from a cavity inside the wind rotor hub. The spindle is attached to a turret supported by a tower. Each of the spindle, turret and tower has an interior cavity that permits personnel to traverse therethrough to the cavity of the wind rotor hub. The wind turbine further includes a frictional braking system for slowing, stopping or keeping stopped the rotation of the wind rotor and rotor assembly.

Bevington, Christopher M.; Bywaters, Garrett L.; Coleman, Clint C.; Costin, Daniel P.; Danforth, William L.; Lynch, Jonathan A.; Rolland, Robert H.

2011-02-22T23:59:59.000Z

67

Optimum propeller wind turbines  

SciTech Connect (OSTI)

The Prandtl-Betz-Theodorsen theory of heavily loaded airscrews has been adapted to the design of propeller windmills which are to be optimized for maximum power coefficient. It is shown that the simpler, light-loading, constant-area wake assumption can generate significantly different ''optimum'' performance and geometry, and that it is therefore not appropriate to the design of propeller wind turbines when operating in their normal range of high-tip-speed-to-wind-speed ratio. Design curves for optimum power coefficient are presented and an example of the design of a typical two-blade optimum rotor is given.

Sanderson, R.J.; Archer, R.D.

1983-11-01T23:59:59.000Z

68

Airfoils for wind turbine  

DOE Patents [OSTI]

Airfoils are disclosed for the blade of a wind turbine wherein each airfoil is characterized by a thickness in a range from 16%-24% and a maximum lift coefficient designed to be largely insensitive to roughness effects. The airfoils include a family of airfoils for a blade 15 to 25 meters in length, a family of airfoils for a blade 1 to 5 meters in length, and a family of airfoils for a blade 5 to 10 meters in length. 10 figs.

Tangler, J.L.; Somers, D.M.

1996-10-08T23:59:59.000Z

69

Airfoils for wind turbine  

DOE Patents [OSTI]

Airfoils for the blade of a wind turbine wherein each airfoil is characterized by a thickness in a range from 16%-24% and a maximum lift coefficient designed to be largely insensitive to roughness effects. The airfoils include a family of airfoils for a blade 15 to 25 meters in length, a family of airfoils for a blade 1 to 5 meters in length, and a family of airfoils for a blade 5 to 10 meters in length.

Tangler, James L. (Boulder, CO); Somers, Dan M. (State College, PA)

1996-01-01T23:59:59.000Z

70

An experimental and numerical study of wind turbine seismic behavior  

E-Print Network [OSTI]

and Scope Wind energy is growing and turbines are regularlyfor Design of Wind Turbines. Wind Energy Department of Risøloads on wind turbines. ” European Wind Energy Conference

Prowell, I.

2011-01-01T23:59:59.000Z

71

INTRODUCTION Currently, wind turbines can incur unforeseen damage up to five times a year.  

E-Print Network [OSTI]

1 1 INTRODUCTION Currently, wind turbines can incur unforeseen damage up to five times a year. Particularly during bad weather, wind turbines located offshore are difficult to access for visual inspection functional modules that track changes in the global dynamic behaviour of both the turbine tower and blade

Lynch, Jerome P.

72

Turbine Inflow Characterization at the National Wind Technology Center: Preprint  

SciTech Connect (OSTI)

Utility-scale wind turbines operate in dynamic flows that can vary significantly over timescales from less than a second to several years. To better understand the inflow to utility-scale turbines, two inflow towers were installed and commissioned at the National Renewable Energy Laboratory's (NREL) National Wind Technology Center near Boulder, Colorado, in 2011. These towers are 135 m tall and instrumented with a combination of sonic anemometers, cup anemometers, wind vanes, and temperature measurements to characterize the inflow wind speed and direction, turbulence, stability and thermal stratification to two utility-scale turbines. Herein, we present variations in mean and turbulent wind parameters with height, atmospheric stability, and as a function of wind direction that could be important for turbine operation as well as persistence of turbine wakes. Wind speed, turbulence intensity, and dissipation are all factors that affect turbine performance. Our results shown that these all vary with height across the rotor disk, demonstrating the importance of measuring atmospheric conditions that influence wind turbine performance at multiple heights in the rotor disk, rather than relying on extrapolation from lower levels.

Clifton, A.; Schreck, S.; Scott, G.; Kelley, N.; Lundquist, J.

2012-01-01T23:59:59.000Z

73

Turbine Inflow Characterization at the National Wind Technology Center  

SciTech Connect (OSTI)

Utility-scale wind turbines operate in dynamic flows that can vary significantly over timescales from less than a second to several years. To better understand the inflow to utility-scale turbines, two inflow towers were installed and commissioned at the National Renewable Energy Laboratory's (NREL) National Wind Technology Center near Boulder, Colorado, in 2011. These towers are 135 m tall and instrumented with a combination of sonic anemometers, cup anemometers, wind vanes, and temperature measurements to characterize the inflow wind speed and direction, turbulence, stability and thermal stratification to two utility-scale turbines. Herein, we present variations in mean and turbulent wind parameters with height, atmospheric stability, and as a function of wind direction that could be important for turbine operation as well as persistence of turbine wakes. Wind speed, turbulence intensity, and dissipation are all factors that affect turbine performance. Our results show that these all vary with height across the rotor disk, demonstrating the importance of measuring atmospheric conditions that influence wind turbine performance at multiple heights in the rotor disk, rather than relying on extrapolation from lower levels.

Clifton, A.; Schreck, S.; Scott, G.; Kelley, N.; Lundquist, J. K.

2012-01-01T23:59:59.000Z

74

Computational Aerodynamics and Aeroacoustics for Wind Turbines  

E-Print Network [OSTI]

Computational Aerodynamics and Aeroacoustics for Wind Turbines #12;#12;Computational Aerodynamics and Aeroacoustics for Wind Turbines Wen Zhong Shen Fluid Mechanics Department of Mechanical Engineering TECHNICAL Shen, Wen Zhong Computational Aerodynamics and Aeroacoustics for Wind Turbines Doctor Thesis Technical

75

Value Capture in the Global Wind Energy Industry  

E-Print Network [OSTI]

a large scale wind turbine are the tower, blades, and gearof large wind turbine (REpower MM92) Tower Rotor blades Gearwind turbine. Towers run from 40-100 meters, while blades

Dedrick, Jason; Kraemer, Kenneth L.

2011-01-01T23:59:59.000Z

76

Duration Test Report for the Ventera VT10 Wind Turbine  

SciTech Connect (OSTI)

This project was established to help reduce the barriers of wind energy expansion by providing independent testing results for small wind turbines. Five turbines were tested at the National Wind Technology Center (NWTC) at the National Renewable Energy Laboratory (NREL) as a part of round one of this project. Duration testing is one of up to five tests that may be performed on the turbines, including power performance, safety and function, noise, and power quality. Test results will provide manufacturers with reports that can be used to fulfill part of the requirements for small wind turbine certification. The test equipment included a grid-connected Ventera Energy Corporation VT10 wind turbine mounted on an 18.3-m (60-ft) self-supporting lattice tower manufactured by Rohn.

Smith, J.; Huskey, A.; Jager, D.; Hur, J.

2013-06-01T23:59:59.000Z

77

Vertical axis wind turbine acoustics  

E-Print Network [OSTI]

Vertical Axis Wind Turbine Acoustics Charlie Pearson Corpus Christi College Cambridge University Engineering Department A thesis submitted for the degree of Doctor of Philosophy September 2013 Declaration Described in this dissertation is work... quickly to changing wind conditions, small- scale vertical axis wind turbines (VAWTs) have been proposed as an efficient solution for deployment in built up areas, where the wind is more gusty in nature. If VAWTs are erected in built up areas...

Pearson, Charlie

2014-04-08T23:59:59.000Z

78

Addressing Wind Turbine Tribological Challenges with Surface...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Addressing Wind Turbine Tribological Challenges with Surface Engineering Presented by Gary Doll of the University of Akron at the Wind Turbine Tribology Seminar 2014. Addressing...

79

Characterizing Inflow Conditions Across the Rotor Disk of a Utility-Scale Wind Turbine (Poster)  

SciTech Connect (OSTI)

Multi-megawatt utility-scale wind turbines operate in a turbulent, thermally-driven atmosphere where wind speed and air temperature vary with height. Turbines convert the wind's momentum into electrical power, and so changes in the atmosphere across the rotor disk influence the power produced by the turbine. To characterize the inflow into utility scale turbines at the National Wind Technology Center (NWTC) near Boulder, Colorado, NREL recently built two 135-meter inflow monitoring towers. This poster introduces the towers and the measurements that are made, showing some of the data obtained in the first few months of operation in 2011.

Clifton, A.; Lundquist, J. K.; Kelley, N.; Scott, G.; Jager, D.; Schreck, S.

2012-01-01T23:59:59.000Z

80

Resonances of a Forced Mathieu Equation with Reference to Wind Turbine Blades  

E-Print Network [OSTI]

Resonances of a Forced Mathieu Equation with Reference to Wind Turbine Blades Venkatanarayanan Engineering Michigan State University East Lansing, Michigan 48824 Abstract A horizontal axis wind turbine blade in steady rotation endures cyclic transverse loading due to wind shear, tower shadowing

Feeny, Brian

Note: This page contains sample records for the topic "wind turbine towers" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


81

Wind Turbine Generator System Duration Test Report for the Gaia-Wind 11 kW Wind Turbine  

SciTech Connect (OSTI)

This test was conducted as part of the U.S. Department of Energy's (DOE) Independent Testing project. This project was established to help reduce the barriers of wind energy expansion by providing independent testing results for small turbines. In total, five turbines are being tested at the National Renewable Energy Laboratory's (NRELs) National Wind Technology Center (NWTC) as a part of this project. Duration testing is one of up to five tests that may be performed on the turbines, including power performance, safety and function, noise, and power quality tests. The results of the testing will provide the manufacturers with reports that may be used for small wind turbine certification. The test equipment includes a Gaia-Wind 11 kW wind turbine mounted on an 18 m monopole tower. Gaia-Wind Ltd. manufactured the turbine in Denmark, although the company is based in Scotland. The system was installed by the NWTC Site Operations group with guidance and assistance from Gaia-Wind.

Huskey, A.; Bowen, A.; Jager, D.

2010-09-01T23:59:59.000Z

82

The Inside of a Wind Turbine  

Broader source: Energy.gov [DOE]

Wind turbines harness the power of the wind and use it to generate electricity. Simply stated, a wind turbine works the opposite of a fan. Instead of using electricity to make wind, like a fan,...

83

Estimation of Wind Speed in Connection to a Wind Turbine  

E-Print Network [OSTI]

Estimation of Wind Speed in Connection to a Wind Turbine X. Ma #3; , N. K. Poulsen #3; , H. Bindner y December 20, 1995 Abstract The wind speed varies over the rotor plane of wind turbine making the wind speed on the rotor plane will be estimated by using a wind turbine as a wind measuring device

84

Installing Small Wind Turbines Seminar and Workshop  

E-Print Network [OSTI]

Seminar and Workshop Installing Small Wind Turbines Seminar and Workshop Location: Murdoch January 2011 Details for Registration and Payment: Mr Daniel Jones, National Small Wind Turbine Test: The National Small Wind Turbine Centre at Murdoch University is holding a Small Wind Turbine short training

85

Wind turbine rotor aileron  

DOE Patents [OSTI]

A wind turbine has a rotor with at least one blade which has an aileron which is adjusted by an actuator. A hinge has two portions, one for mounting a stationary hinge arm to the blade, the other for coupling to the aileron actuator. Several types of hinges can be used, along with different actuators. The aileron is designed so that it has a constant chord with a number of identical sub-assemblies. The leading edge of the aileron has at least one curved portion so that the aileron does not vent over a certain range of angles, but vents if the position is outside the range. A cyclic actuator can be mounted to the aileron to adjust the position periodically. Generally, the aileron will be adjusted over a range related to the rotational position of the blade. A method for operating the cyclic assembly is also described.

Coleman, Clint (Warren, VT); Kurth, William T. (Warren, VT)

1994-06-14T23:59:59.000Z

86

SERI advanced wind turbine blades  

SciTech Connect (OSTI)

The primary goal of the Solar Energy Research Institute`s (SERI) advanced wind turbine blades is to convert the kinetic energy in the wind into mechanical energy in an inexpensive and efficient manner. To accomplish this goal, advanced wind turbine blades have been developed by SERI that utilize unique airfoil technology. Performance characteristics of the advanced blades were verified through atmospheric testing on fixed-pitch, stall-regulated horizontal-axis wind turbines (HAWTs). Of the various wind turbine configurations, the stall-regulated HAWT dominates the market because of its simplicity and low cost. Results of the atmospheric tests show that the SERI advanced blades produce 10% to 30% more energy than conventional blades. 6 refs.

Tangler, J.; Smith, B.; Jager, D.

1992-02-01T23:59:59.000Z

87

SERI advanced wind turbine blades  

SciTech Connect (OSTI)

The primary goal of the Solar Energy Research Institute's (SERI) advanced wind turbine blades is to convert the kinetic energy in the wind into mechanical energy in an inexpensive and efficient manner. To accomplish this goal, advanced wind turbine blades have been developed by SERI that utilize unique airfoil technology. Performance characteristics of the advanced blades were verified through atmospheric testing on fixed-pitch, stall-regulated horizontal-axis wind turbines (HAWTs). Of the various wind turbine configurations, the stall-regulated HAWT dominates the market because of its simplicity and low cost. Results of the atmospheric tests show that the SERI advanced blades produce 10% to 30% more energy than conventional blades. 6 refs.

Tangler, J.; Smith, B.; Jager, D.

1992-02-01T23:59:59.000Z

88

Analysis of wind turbine vibrations based on SCADA data  

E-Print Network [OSTI]

Vibrations of a wind turbine have a negative impact on its performance. Mitigating this undesirable impact requires knowledge of the relationship between the vibrations and other wind turbine parameters that could be potentially modified. Three approaches for ranking the impact importance of measurable turbine parameters on the vibrations of the drive train and the tower are discussed. They include the predictor importance analysis, the global sensitivity analysis, and the correlation coefficient analysis versed in data mining and statistics. To decouple the impact of wind speed on the vibrations of the drive train and the tower, the analysis is performed on data sets with narrow speed ranges. Wavelet analysis is applied to filter noisy accelerometer data. To exclude the impact malfunctions on the vibration analysis, the data are analyzed in a frequency domain. Data-mining algorithms are used to build models with turbine parameters of interest as inputs, and the vibrations of drive train and tower as outputs. The performance of each model is thoroughly evaluated based on metrics widely used in the wind industry. The neural network algorithm outperforms other classifiers and is considered to be the most promising approach to study wind turbine vibrations. ?DOI: 10.1115/1.4001461?

Andrew Kusiak; Zijun Zhang

2010-01-01T23:59:59.000Z

89

Small-scale wind turbines in cities and suburbs S Tullis, K Aly, R Bravo, A Fiedler, S Kooiman, K McLaren S Ziada  

E-Print Network [OSTI]

Small-scale wind turbines in cities and suburbs S Tullis, K Aly, R Bravo, A Fiedler, S Kooiman, K wind turbines in the urban environment: Current Research at McMaster University Nominal performance #12;Horizontal axis small wind turbines Numerous suppliers of turbines for tower/field installation

Tullis, Stephen

90

Parametric design of floating wind turbines  

E-Print Network [OSTI]

As the price of energy increases and wind turbine technology matures, it is evident that cost effective designs for floating wind turbines are needed. The next frontier for wind power is the ocean, yet development in near ...

Tracy, Christopher (Christopher Henry)

2007-01-01T23:59:59.000Z

91

Diffuser Augmented Wind Turbine Analysis Code  

E-Print Network [OSTI]

, it is necessary to develop innovative wind capturing devices that can produce energy in the locations where large conventional horizontal axis wind turbines (HAWTs) are too impractical to install and operate. A diffuser augmented wind turbine (DAWT) is one...

Carroll, Jonathan

2014-05-31T23:59:59.000Z

92

An experimental and numerical study of wind turbine seismic behavior  

E-Print Network [OSTI]

3.2.1 Description of Test Wind Turbine . . . . . .Figure 1.2: Components of a modern wind turbine . . . . . .D.3: D.4: Wind turbine parameters . . . . . . . . . . . .

Prowell, I.

2011-01-01T23:59:59.000Z

93

5th International Meeting Wind Turbine Noise  

E-Print Network [OSTI]

1 5th International Meeting on Wind Turbine Noise Denver 28 ­ 30 August 2013 Wind Turbine Noise Broadband noise generated aerodynamically is the dominant noise source for a modern wind turbine(Brooks et turbines . First, a wall pressure spectral model proposed recently by Rozenberg, Robert and Moreau

Paris-Sud XI, Université de

94

Wind Shear Characteristics at Central Plains Tall Towers: Preprint  

SciTech Connect (OSTI)

Conference paper for WindPower 2006 held June 4-7, 2006, in Pittsburgh, PA, describing the wind shear characteristics at tall tower sites in the Central Plains of the United States.

Schwartz, M.; Elliott, D.

2006-06-01T23:59:59.000Z

95

Airfoils for wind turbine  

DOE Patents [OSTI]

Airfoils for the tip and mid-span regions of a wind turbine blade have upper surface and lower surface shapes and contours between a leading edge and a trailing edge that minimize roughness effects of the airfoil and provide maximum lift coefficients that are largely insensitive to roughness effects. The airfoil in one embodiment is shaped and contoured to have a thickness in a range of about fourteen to seventeen percent, a Reynolds number in a range of about 1,500,000 to 2,000,000, and a maximum lift coefficient in a range of about 1.4 to 1.5. In another embodiment, the airfoil is shaped and contoured to have a thickness in a range of about fourteen percent to sixteen percent, a Reynolds number in a range of about 1,500,000 to 3,000,000, and a maximum lift coefficient in a range of about 0.7 to 1.5. Another embodiment of the airfoil is shaped and contoured to have a Reynolds in a range of about 1,500,000 to 4,000,000, and a maximum lift coefficient in a range of about 1.0 to 1.5.

Tangler, James L. (Boulder, CO); Somers, Dan M. (State College, PA)

2000-01-01T23:59:59.000Z

96

MEASURING IMPACTS TO BIRDS CAUSED BY WIND TURBINES MEASURING IMPACTS TO BIRDS CAUSED BY WIND TURBINES  

E-Print Network [OSTI]

APPENDIX A MEASURING IMPACTS TO BIRDS CAUSED BY WIND TURBINES #12;A-1 APPENDIX A MEASURING IMPACTS TO BIRDS CAUSED BY WIND TURBINES 1.0 INTRODUCTION Differential composition of wind turbines at wind energy used is the number of fatalities per wind turbine per year (Anderson et al. 1999). This metric has

97

Wind Turbines Electrical and Mechanical Engineering  

E-Print Network [OSTI]

Wind Turbines Electrical and Mechanical Engineering Objective · Introduce students to the concept of alternative energy. · Explain the math and scientific principles behind engineering wind turbines. Standards and how it applies to wind energy · About how surface area and shape effects wind turbine efficiency

Provancher, William

98

A Fatigue Approach to Wind Turbine Control  

E-Print Network [OSTI]

A Fatigue Approach to Wind Turbine Control Keld Hammerum Kongens Lyngby 2006 #12;Technical to the turbulent nature of wind, the structural components of a wind turbine are exposed to highly varying loads. Therefore, fatigue damage is a major consideration when designing wind turbines. The control scheme applied

99

Sandia Wind Turbine Loads Database  

DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

The Sandia Wind Turbine Loads Database is divided into six files, each corresponding to approximately 16 years of simulation. The files are text files with data in columnar format. The 424MB zipped file containing six data files can be downloaded by the public. The files simulate 10-minute maximum loads for the NREL 5MW wind turbine. The details of the loads simulations can be found in the paper: “Decades of Wind Turbine Loads Simulations”, M. Barone, J. Paquette, B. Resor, and L. Manuel, AIAA2012-1288 (3.69MB PDF). Note that the site-average wind speed is 10 m/s (class I-B), not the 8.5 m/s reported in the paper.

100

Energy 101: Wind Turbines - 2014 Update  

ScienceCinema (OSTI)

See how wind turbines generate clean electricity from the power of wind. The video highlights the basic principles at work in wind turbines, and illustrates how the various components work to capture and convert wind energy to electricity. This updated version also includes information on the Energy Department's efforts to advance offshore wind power. Offshore wind energy footage courtesy of Vestas.

None

2014-06-05T23:59:59.000Z

Note: This page contains sample records for the topic "wind turbine towers" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


101

Energy 101: Wind Turbines - 2014 Update  

SciTech Connect (OSTI)

See how wind turbines generate clean electricity from the power of wind. The video highlights the basic principles at work in wind turbines, and illustrates how the various components work to capture and convert wind energy to electricity. This updated version also includes information on the Energy Department's efforts to advance offshore wind power. Offshore wind energy footage courtesy of Vestas.

None

2014-05-06T23:59:59.000Z

102

Wind turbine generator with improved operating subassemblies  

DOE Patents [OSTI]

A wind turbine includes a yaw spring return assembly to return the nacelle from a position to which it has been rotated by yawing forces, thus preventing excessive twisting of the power cables and control cables. It also includes negative coning restrainers to limit the bending of the flexible arms of the rotor towards the tower, and stop means on the rotor shaft to orient the blades in a vertical position during periods when the unit is upwind when the wind commences. A pendulum pitch control mechanism is improved by orienting the pivot axis for the pendulum arm at an angle to the longitudinal axis of its support arm, and excessive creep is of the synthetic resin flexible beam support for the blades is prevented by a restraining cable which limits the extent of pivoting of the pendulum during normal operation but which will permit further pivoting under abnormal conditions to cause the rotor to stall.

Cheney, Jr., Marvin C. (24 Stonepost Rd., Glastonbury, CT 06033)

1985-01-01T23:59:59.000Z

103

Midwest Consortium for Wind Turbine Reliability and Optimization  

SciTech Connect (OSTI)

This report provides an overview of the efforts aimed to establish a student focused laboratory apparatus that will enhance Purdue's ability to recruit and train students in topics related to the dynamics, operations and economics of wind turbines. The project also aims to facilitate outreach to students at Purdue and in grades K-12 in the State of Indiana by sharing wind turbine operational data. For this project, a portable wind turbine test apparatus was developed and fabricated utilizing an AirX 400W wind energy converter. This turbine and test apparatus was outfitted with an array of sensors used to monitor wind speed, turbine rotor speed, power output and the tower structural dynamics. A major portion of this project included the development of a data logging program used to display real-time sensor data and the recording and creation of output files for data post-processing. The apparatus was tested in an open field to subject the turbine to typical operating conditions and the data acquisition system was adjusted to obtain desired functionality to facilitate use for student projects in existing courses offered at Purdue University and Indiana University. Data collected using the data logging program is analyzed and presented to demonstrate the usefulness of the test apparatus related to wind turbine dynamics and operations.

Scott R. Dana; Douglas E. Adams; Noah J. Myrent

2012-05-11T23:59:59.000Z

104

An experimental and numerical study of wind turbine seismic behavior  

E-Print Network [OSTI]

of Seismic and Wind Load Combinations 8.5.2 Extremeextrapolation for wind turbine extreme loads. ” Wind Energy,extrapolation for wind turbine extreme loads. ” 46th AIAA

Prowell, I.

2011-01-01T23:59:59.000Z

105

Vertical axis wind turbine airfoil  

DOE Patents [OSTI]

A vertical axis wind turbine airfoil is described. The wind turbine airfoil can include a leading edge, a trailing edge, an upper curved surface, a lower curved surface, and a centerline running between the upper surface and the lower surface and from the leading edge to the trailing edge. The airfoil can be configured so that the distance between the centerline and the upper surface is the same as the distance between the centerline and the lower surface at all points along the length of the airfoil. A plurality of such airfoils can be included in a vertical axis wind turbine. These airfoils can be vertically disposed and can rotate about a vertical axis.

Krivcov, Vladimir; Krivospitski, Vladimir; Maksimov, Vasili; Halstead, Richard; Grahov, Jurij Vasiljevich

2012-12-18T23:59:59.000Z

106

Building the Basic PVC Wind Turbine  

Broader source: Energy.gov (indexed) [DOE]

Energy Smart CD- Building PVC Turbine 8 Some Blade Building Tips KidWind model wind turbines are designed for use in science classes, or as a hobby or science fair project....

107

66 IEEE TRANSACTIONS ON SUSTAINABLE ENERGY, VOL. 1, NO. 2, JULY 2010 Optimization of Wind Turbine Performance With  

E-Print Network [OSTI]

66 IEEE TRANSACTIONS ON SUSTAINABLE ENERGY, VOL. 1, NO. 2, JULY 2010 Optimization of Wind Turbine, torque, tower acceleration, wind turbine vibrations. I. INTRODUCTION I NTEREST in renewable energy has to carbon taxation has become a catalyst in the quest for clean energy. Wind energy has been most

Kusiak, Andrew

108

Prototype bucket foundation for wind turbines  

E-Print Network [OSTI]

Prototype bucket foundation for wind turbines -natural frequency estimation Lars Bo Ibsen Morten bucket foundation for wind turbines -natural frequency estimation by Lars Bo Ibsen Morten Liingaard foundation for wind turbines--natural frequency estimation" is divided into four numbered sections

109

An experimental and numerical study of wind turbine seismic behavior  

E-Print Network [OSTI]

assumes linear material response of the turbine tower evennon-linear material behavior in conjunction with turbinefor design of a turbine. When non-linear material behavior

Prowell, I.

2011-01-01T23:59:59.000Z

110

axis wind turbine: Topics by E-print Network  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

to note that these views Firestone, Jeremy 65 WIND TURBINE SITING IN AN URBAN ENVIRONMENT: THE HULL, MA 660 KW TURBINE Renewable Energy Websites Summary: 1 WIND TURBINE...

111

Wind turbine having a direct-drive drivetrain  

DOE Patents [OSTI]

A wind turbine (100) comprising an electrical generator (108) that includes a rotor assembly (112). A wind rotor (104) that includes a wind rotor hub (124) is directly coupled to the rotor assembly via a simplified connection. The wind rotor and generator rotor assembly are rotatably mounted on a central spindle (160) via a bearing assembly (180). The wind rotor hub includes an opening (244) having a diameter larger than the outside diameter of the central spindle adjacent the bearing assembly so as to allow access to the bearing assembly from a cavity (380) inside the wind rotor hub. The spindle is attached to a turret (140) supported by a tower (136). Each of the spindle, turret and tower has an interior cavity (172, 176, 368) that permits personnel to traverse therethrough to the cavity of the wind rotor hub. The wind turbine further includes a frictional braking system (276) for slowing, stopping or keeping stopped the rotation of the wind rotor and rotor assembly.

Bevington, Christopher M.; Bywaters, Garrett L.; Coleman, Clint C.; Costin, Daniel P.; Danforth, William L.; Lynch, Jonathan A.; Rolland, Robert H.

2008-10-07T23:59:59.000Z

112

An experimental and numerical study of wind turbine seismic behavior  

E-Print Network [OSTI]

studied were vertical axis wind turbines, which are nottesting of vertical axis wind turbines (VAWT). For example,vertical axis turbines (VAWTs). Gradually, as the industry matured, most design concepts standardized on horizontal axis wind turbines (

Prowell, I.

2011-01-01T23:59:59.000Z

113

Upcoming Funding Opportunity for Tower Manufacturing and Installation...  

Office of Environmental Management (EM)

systems with hub heights of at least 120 meters. Scaling to taller towers allows wind turbines to capture less turbulent and often stronger wind resources, thereby increasing...

114

Upcoming Funding Opportunity for Tower Manufacturing and Installation...  

Broader source: Energy.gov (indexed) [DOE]

and logistics constraints affecting the deployment of taller utility-scale wind turbine systems with hub heights of at least 120 meters. Scaling to taller towers allows wind...

115

2009 Wind Technologies Market Report  

E-Print Network [OSTI]

generating sets. Wind turbine blades, hubs, generators,wind turbine components that include towers (trade category is “towers and lattice masts”), generators (“AC generators from 750 to 10,000 kVA”), blades

Wiser, Ryan

2010-01-01T23:59:59.000Z

116

Advanced controls for floating wind turbines  

E-Print Network [OSTI]

Floating Offshore Wind Turbines (FOWT) is a technology that stands to spearhead the rapid growth of the offshore wind energy sector and allow the exploration of vast high quality wind resources over coastal and offshore ...

Casanovas, Carlos (Casanovas Bermejo)

2014-01-01T23:59:59.000Z

117

Wind Turbine Blockset in Matlab/Simulink  

E-Print Network [OSTI]

Wind Turbine Blockset in Matlab/Simulink General Overview and Description of the Models Florin Iov, Anca Daniela Hansen, Poul Sørensen, Frede Blaabjerg Aalborg University March 2004 #12;22 Wind Turbine turbine applications. This toolbox has been developed during the research project "Simulation Platform

118

Computational Analysis of Shrouded Wind Turbine Configurations  

E-Print Network [OSTI]

Computational Analysis of Shrouded Wind Turbine Configurations Aniket C. Aranake Vinod K. Lakshminarayan Karthik Duraisamy Computational analysis of diuser-augmented turbines is performed using high-dimensional simulations of shrouded wind turbines are performed for selected shroud geometries. The results are compared

Alonso, Juan J.

119

Fast Wind Turbine Design via Geometric Programming  

E-Print Network [OSTI]

Fast Wind Turbine Design via Geometric Programming Warren Hoburg and Pieter Abbeel UC Berkeley turbine aerodynamics have an underlying convex mathematical structure that these new methods can exploit the application of GP to large wind turbine design problems a promising approach. Nomenclature (·)a, (·)t axial

Abbeel, Pieter

120

Dynamic analysis of a 5 megawatt offshore floating wind turbine  

E-Print Network [OSTI]

Why offshore wind energy? Offshore wind turbines have theturbine will also uncover potential problems that exist with offshore wind energy.

Harriger, Evan Michael

2011-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "wind turbine towers" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


121

On the Fatigue Analysis of Wind Turbines  

SciTech Connect (OSTI)

Modern wind turbines are fatigue critical machines that are typically used to produce electrical power from the wind. Operational experiences with these large rotating machines indicated that their components (primarily blades and blade joints) were failing at unexpectedly high rates, which led the wind turbine community to develop fatigue analysis capabilities for wind turbines. Our ability to analyze the fatigue behavior of wind turbine components has matured to the point that the prediction of service lifetime is becoming an essential part of the design process. In this review paper, I summarize the technology and describe the ''best practices'' for the fatigue analysis of a wind turbine component. The paper focuses on U.S. technology, but cites European references that provide important insights into the fatigue analysis of wind turbines.

Sutherland, Herbert J.

1999-06-01T23:59:59.000Z

122

Wind Turbine Generator System Acoustic Noise Test Report for the Gaia Wind 11-kW Wind Turbine  

SciTech Connect (OSTI)

This report details the acoustic noise test conducted on the Gaia-Wind 11-kW wind turbine at the National Wind Technology Center. The test turbine is a two- bladed, downwind wind turbine with a rated power of 11 kW. The test turbine was tested in accordance with the International Electrotechnical Commission standard, IEC 61400-11 Ed 2.1 2006-11 Wind Turbine Generator Systems -- Part 11 Acoustic Noise Measurement Techniques.

Huskey, A.

2011-11-01T23:59:59.000Z

123

Wind Turbine Manufacturing Process Monitoring  

SciTech Connect (OSTI)

To develop a practical inline inspection that could be used in combination with automated composite material placement equipment to economically manufacture high performance and reliable carbon composite wind turbine blade spar caps. The approach technical feasibility and cost benefit will be assessed to provide a solid basis for further development and implementation in the wind turbine industry. The program is focused on the following technology development: (1) Develop in-line monitoring methods, using optical metrology and ultrasound inspection, and perform a demonstration in the lab. This includes development of the approach and performing appropriate demonstration in the lab; (2) Develop methods to predict composite strength reduction due to defects; and (3) Develop process models to predict defects from leading indicators found in the uncured composites.

Waseem Faidi; Chris Nafis; Shatil Sinha; Chandra Yerramalli; Anthony Waas; Suresh Advani; John Gangloff; Pavel Simacek

2012-04-26T23:59:59.000Z

124

Performance of propeller wind turbines  

SciTech Connect (OSTI)

Presented herein is a parametric study of the performance of propeller wind turbines with realistic drag/lift ratios. Calculations were made using the complete Glauert vortex blade element theory in annular streamtube elements with the complete turbine performance being the sum of the elemental results up to a specified tip speed ratio. The objective here is to exhibit a new computational technique which yields performance directly when tangential speed ratio and section aerodynamic characteristics are specified. It was found that for a tip speed ratio of 4, turbines with drag/lift ratios of 0.00 and 0.01 had power coefficients of 0.575 and 0.55, respectively. The off-design performance of the finite drag/lift was far better than that of their zero drag counterparts, except in a + or - 20% region about the design conditions. Tolerance to off-design operation increased with decreasing tip speed ratios so that the annual energy capture for tip speed ratios between 2 and 4 was about 87% of the ideal turbine value. The results are intended to provide a basis for re-evaluation of the power range classes of fixed pitch turbines and design tip speed ratios.

Wortman, A.

1983-11-01T23:59:59.000Z

125

Coupled Dynamic Modeling of Floating Wind Turbine Systems: Preprint  

SciTech Connect (OSTI)

This article presents a collaborative research program that the Massachusetts Institute of Technology (MIT) and the National Renewable Energy Laboratory (NREL) have undertaken to develop innovative and cost-effective floating and mooring systems for offshore wind turbines in water depths of 10-200 m. Methods for the coupled structural, hydrodynamic, and aerodynamic analysis of floating wind turbine systems are presented in the frequency domain. This analysis was conducted by coupling the aerodynamics and structural dynamics code FAST [4] developed at NREL with the wave load and response simulation code WAMIT (Wave Analysis at MIT) [15] developed at MIT. Analysis tools were developed to consider coupled interactions between the wind turbine and the floating system. These include the gyroscopic loads of the wind turbine rotor on the tower and floater, the aerodynamic damping introduced by the wind turbine rotor, the hydrodynamic damping introduced by wave-body interactions, and the hydrodynamic forces caused by wave excitation. Analyses were conducted for two floater concepts coupled with the NREL 5-MW Offshore Baseline wind turbine in water depths of 10-200 m: the MIT/NREL Shallow Drafted Barge (SDB) and the MIT/NREL Tension Leg Platform (TLP). These concepts were chosen to represent two different methods of achieving stability to identify differences in performance and cost of the different stability methods. The static and dynamic analyses of these structures evaluate the systems' responses to wave excitation at a range of frequencies, the systems' natural frequencies, and the standard deviations of the systems' motions in each degree of freedom in various wind and wave environments. This article in various wind and wave environments. This article explores the effects of coupling the wind turbine with the floating platform, the effects of water depth, and the effects of wind speed on the systems' performance. An economic feasibility analysis of the two concepts was also performed. Key cost components included the material and construction costs of the buoy; material and installation costs of the tethers, mooring lines, and anchor technologies; costs of transporting and installing the system at the chosen site; and the cost of mounting the wind turbine to the platform. The two systems were evaluated based on their static and dynamic performance and the total system installed cost. Both systems demonstrated acceptable motions, and have estimated costs of $1.4-$1.8 million, not including the cost of the wind turbine, the power electronics, or the electrical transmission.

Wayman, E. N.; Sclavounos, P. D.; Butterfield, S.; Jonkman, J.; Musial, W.

2006-03-01T23:59:59.000Z

126

Automatically controlled wind propeller and tower shadow eliminator  

SciTech Connect (OSTI)

A propeller hub carries pivotally-mounted blades that are linked to a spring-loaded collar on the propeller shaft for automatic coning and feathering under predetermined high velocity movement along the propeller shaft to change the blade pitch angle during low wind velocity conditions. An airfoil support mounts a propeller shaft and turns therewith to reduce tower shadow effects. This is called a ''down-wind system'' meaning the propeller is behind the tower and causes the assembly to rotate into the wind without a tail vane.

Randolph, A.J.

1982-01-12T23:59:59.000Z

127

Dynamic response analysis of a 900 kW wind turbine subject to ground excitation  

E-Print Network [OSTI]

powered by wind energy, wind turbines themselves stillWind Energy and Earthquake Activity Wind Turbines areTurbines. Det Norsk Veritas, Copen- hagen and Wind Energy

Caudillo, Adrian Felix

2012-01-01T23:59:59.000Z

128

NREL National Wind Technology Center (NWTC): M2 Tower; Boulder, Colorado (Data)  

DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

The National Wind Technology Center (NWTC), located at the foot of the Rocky Mountains near Boulder, Colorado, is a world-class research facility managed by NREL for the U.S. Department of Energy. NWTC researchers work with members of the wind energy industry to advance wind power technologies that lower the cost of wind energy through research and development of state-of-the-art wind turbine designs. NREL's Measurement and Instrument Data Center provides data from NWTC's M2 tower which are derived from instruments mounted on or near an 82 meter (270 foot) meteorological tower located at the western edge of the NWTC site and about 11 km (7 miles) west of Broomfield, and approximately 8 km (5 miles) south of Boulder, Colorado. The data represent the mean value of readings taken every two seconds and averaged over one minute. The wind speed and direction are measured at six heights on the tower and air temperature is measured at three heights. The dew point temperature, relative humidity, barometric pressure, totalized liquid precipitation, and global solar radiation are also available.

Jager, D.; Andreas, A.

129

Offshore Wind Turbines Estimated Noise from Offshore Wind Turbine, Monhegan Island, Maine Addendum 2  

SciTech Connect (OSTI)

Additional modeling for offshore wind turbines, for proposed floating wind platforms to be deployed by University of Maine/DeepCwind.

Aker, Pamela M.; Jones, Anthony M.; Copping, Andrea E.

2011-03-01T23:59:59.000Z

130

Small Wind Research Turbine: Final Report  

SciTech Connect (OSTI)

The Small Wind Research Turbine (SWRT) project was initiated to provide reliable test data for model validation of furling wind turbines and to help understand small wind turbine loads. This report will familiarize the user with the scope of the SWRT test and support the use of these data. In addition to describing all the testing details and results, the report presents an analysis of the test data and compares the SWRT test data to simulation results from the FAST aeroelastic simulation model.

Corbus, D.; Meadors, M.

2005-10-01T23:59:59.000Z

131

Improving Wind Turbine Gearbox Reliability: Preprint  

SciTech Connect (OSTI)

This paper describes a new research and development initiative to improve gearbox reliability in wind turbines begun at the National Renewable Energy Laboratory (NREL) in Golden, Colorado, USA.

Musial, W.; Butterfield, S.; McNiff, B.

2007-06-01T23:59:59.000Z

132

Structural reliability of offshore wind turbines.  

E-Print Network [OSTI]

??Statistical extrapolation is required to predict extreme loads, associated with a target return period, for offshore wind turbines. In statistical extrapolation, “short-term" distributions of the… (more)

Agarwal, Puneet, 1977-

2012-01-01T23:59:59.000Z

133

Wind Turbine Generator System Safety and Function Test Report for the Entegrity EW50 Wind Turbine  

SciTech Connect (OSTI)

This report summarizes the results of a safety and function test that NREL conducted on the Entegrity EW50 wind turbine. This test was conducted in accordance with the International Electrotechnical Commissions' (IEC) standard, Wind Turbine Generator System Part 2: Design requirements for small wind turbines, IEC 61400-2 Ed.2.0, 2006-03.

Smith, J.; Huskey, A.; Jager, D.; Hur, J.

2012-11-01T23:59:59.000Z

134

Wind Turbine Generator System Safety and Function Test Report for the Ventera VT10 Wind Turbine  

SciTech Connect (OSTI)

This report summarizes the results of a safety and function test that NREL conducted on the Ventera VT10 wind turbine. This test was conducted in accordance with the International Electrotechnical Commissions' (IEC) standard, Wind Turbine Generator System Part 2: Design requirements for small wind turbines, IEC 61400-2 Ed.2.0, 2006-03.

Smith, J.; Huskey, A.; Jager, D.; Hur, J.

2012-11-01T23:59:59.000Z

135

Dynamic analysis of a 5 megawatt offshore floating wind turbine  

E-Print Network [OSTI]

1985. 23. Hau, E. Wind Turbines: Fundamentals, Technologies,for Floating Offshore Wind Turbines. Tech. no. NREL/CP-500-Full-scale Floating Wind Turbine." Statoil, 14 Oct. 2009.

Harriger, Evan Michael

2011-01-01T23:59:59.000Z

136

Impacts of Wind Turbine Proximity on Property Values in Massachusetts  

E-Print Network [OSTI]

of Industrial Wind Turbine Noise on Sleep and Health.Waye, K. P. (2007) Wind Turbine Noise, Annoyance and Self-and Annoyance of Wind Turbine Noise. Acta Acus- tica United

Atkinson-Palombo, Carol

2014-01-01T23:59:59.000Z

137

Sandia National Laboratories: New Wind Turbine Blade Design  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

ClimateECEnergyNew Wind Turbine Blade Design New Wind Turbine Blade Design More Energy with Less Weight ATLAS II Data Acquisition System New Wind Turbine Blade Design On May 18,...

138

An experimental and numerical study of wind turbine seismic behavior  

E-Print Network [OSTI]

Y. (1984). “Response of a wind turbine blade to seismic andM. (2006). “Swept wind turbine blade aeroelastic modelingto fatigue for wind turbine blades than earthquake loads. In

Prowell, I.

2011-01-01T23:59:59.000Z

139

How Does a Wind Turbine Work?  

Broader source: Energy.gov [DOE]

Wind turbines operate on a simple principle. The energy in the wind turns two or three propeller-like blades around a rotor. The rotor is connected to the main shaft, which spins a generator to...

140

Washington University Can the Sound Generated by Modern Wind Turbines  

E-Print Network [OSTI]

Washington University Can the Sound Generated by Modern Wind Turbines Affect the Health of Those turbines haveWind turbines have been getting biggerbeen getting bigger and bigger....and bigger.... Lars Needs Wind turbines are "green" and areWind turbines are "green" and are contributing to our energy

Salt, Alec N.

Note: This page contains sample records for the topic "wind turbine towers" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


141

Mixer-Ejector Wind Turbine: Breakthrough High Efficiency Shrouded Wind Turbine  

SciTech Connect (OSTI)

Broad Funding Opportunity Announcement Project: FloDesign Wind Turbine’s innovative wind turbine, inspired by the design of jet engines, could deliver 300% more power than existing wind turbines of the same rotor diameter by extracting more energy over a larger area. FloDesign Wind Turbine’s unique shrouded design expands the wind capture area, and the mixing vortex downstream allows more energy to flow through the rotor without stalling the turbine. The unique rotor and shrouded design also provide significant opportunity for mass production and simplified assembly, enabling mid-scale turbines (approximately 100 kW) to produce power at a cost that is comparable to larger-scale conventional turbines.

None

2010-02-22T23:59:59.000Z

142

EA-2004: Seneca Nation of Indians Wind Turbine Project, Cattaraugus...  

Energy Savers [EERE]

EA-2004: Seneca Nation of Indians Wind Turbine Project, Cattaraugus Territory, New York EA-2004: Seneca Nation of Indians Wind Turbine Project, Cattaraugus Territory, New York...

143

GE, Sandia National Lab Improve Wind Turbines | GE Global Research  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

GE, Sandia National Lab Discover Pathway to Quieter, More Productive Wind Turbines GE, Sandia National Lab Discover Pathway to Quieter, More Productive Wind Turbines Use of...

144

Wind Turbine Interactions with Birds, Bats, and their Habitats...  

Energy Savers [EERE]

Wind Turbine Interactions with Birds, Bats, and their Habitats: A Summary of Research Results and Priority Questions Wind Turbine Interactions with Birds, Bats, and their Habitats:...

145

Use of SCADA Data for Failure Detection in Wind Turbines  

SciTech Connect (OSTI)

This paper discusses the use of existing wind turbine SCADA data for development of fault detection and diagnostic techniques for wind turbines.

Kim, K.; Parthasarathy, G.; Uluyol, O.; Foslien, W.; Sheng, S.; Fleming, P.

2011-10-01T23:59:59.000Z

146

Argonne Researchers Shine "Light" on Origins of Wind Turbine...  

Broader source: Energy.gov (indexed) [DOE]

Argonne Researchers Shine "Light" on Origins of Wind Turbine Bearing Failures Argonne Researchers Shine "Light" on Origins of Wind Turbine Bearing Failures September 12, 2014 -...

147

SMART Wind Turbine Rotor: Design and Field Test | Department...  

Broader source: Energy.gov (indexed) [DOE]

Design and Field Test SMART Wind Turbine Rotor: Design and Field Test This report documents the design, fabrication, and testing of the SMART Wind Turbine Rotor. This work...

148

EA-2004: Seneca Nation of Indians Wind Turbine Project, Cattaraugus...  

Office of Environmental Management (EM)

of Indians Wind Turbine Project, Cattaraugus Territory, Chautauqua County, Irving, New York EA-2004: Seneca Nation of Indians Wind Turbine Project, Cattaraugus Territory,...

149

Advanced Control Design and Testing for Wind Turbines at the...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Control Design and Testing for Wind Turbines at the National Renewable Energy Laboratory: Preprint Advanced Control Design and Testing for Wind Turbines at the National Renewable...

150

Offshore Wind Turbines: Some Technical Challenges  

E-Print Network [OSTI]

1 Offshore Wind Turbines: Some Technical Challenges Prof. Guy Houlsby FREng Oxford University House engineers concerned with installation of offshore wind turbines. The author is Professor of Civil of foundations for offshore structures. He also has a strong interest in the development of the fundamental

Houlsby, Guy T.

151

Lightning protection system for a wind turbine  

DOE Patents [OSTI]

In a wind turbine (104, 500, 704) having a plurality of blades (132, 404, 516, 744) and a blade rotor hub (120, 712), a lightning protection system (100, 504, 700) for conducting lightning strikes to any one of the blades and the region surrounding the blade hub along a path around the blade hub and critical components of the wind turbine, such as the generator (112, 716), gearbox (708) and main turbine bearings (176, 724).

Costin, Daniel P. (Chelsea, VT); Petter, Jeffrey K. (Williston, VT)

2008-05-27T23:59:59.000Z

152

Responses of floating wind turbines to wind and wave excitation  

E-Print Network [OSTI]

The use of wind power has recently emerged as a promising alternative to conventional electricity generation. However, space requirements and public pressure to place unsightly wind turbines out of visual range make it ...

Lee, Kwang Hyun

2005-01-01T23:59:59.000Z

153

Variability of wind power near Oklahoma City and implications for siting of wind turbines  

SciTech Connect (OSTI)

Data from five sites near Oklahoma City were examined to assess wind power availability. Wind turbines of identical manufacture were operated at three of the sites, one of which was also equipped with anemometers on a 100-ft tower. Comprehensive anemometric data were available from the other two sites. The study indicates that the average wind speed varies substantially over Oklahoma's rolling plains, which have often been nominally regarded as flat for purposes of wind power generation. Average wind differences may be as much as 5 mph at 20 ft above ground level, and 7 mph at 100 ft above ground level for elevation differences of about 200 ft above mean sea level, even in the absence of substantial features of local terrain. Local altitude above mean sea level seems to be as influential as the shape of local terrain in determining the average wind speed. The wind turbine used at a meteorologically instrumented site in the study produced the power expected from it for the wind regime in which it was situated. The observed variations of local wind imply variations in annual kWh of as much as a factor of four between identical turbines located at similar heights above ground level in shallow valleys and on hilltops or elevated extended flat areas. 17 refs., 39 figs., 11 tabs.

Kessler, E.; Eyster, R.

1987-09-01T23:59:59.000Z

154

A Stochastic DEVS Wind Turbine Component Model for Wind Farm Simulation  

E-Print Network [OSTI]

A Stochastic DEVS Wind Turbine Component Model for Wind Farm Simulation Eduardo P´erez, Lewis, wind turbine, DEVS, STDEVS Abstract Wind farms use several wind turbines to generate electricity variations in wind speed and direction, wind turbines experience stochastic loading that of- ten lead

Ding, Yu

155

1Design limits and solutions for very large wind turbines Design limits and solutions for very large wind turbines  

E-Print Network [OSTI]

#12;#12;1Design limits and solutions for very large wind turbines UpWind Design limits and solutions for very large wind turbines A 20 MW turbine is feasible March 2011 Supported by: #12;March 20112 Photo:Nordex #12;3Design limits and solutions for very large wind turbines Contents 1. UpWind: Summary

Leu, Tzong-Shyng "Jeremy"

156

Impact of Wind Shear and Tower Shadow Effects on Power System with Large Scale Wind Power  

E-Print Network [OSTI]

@et.aau.dk, csu@et.aau.dk, zch@et.aau.dk Abstract ­ Grid connected wind turbines are fluctuating power sources due on the power system small signal stability of wind turbines based on fixed-speed induction generators, doubly two interconnected power systems [9]. The wind power fluctuations produced by grid connected variable

Hu, Weihao

157

Meteorological aspects of siting large wind turbines  

SciTech Connect (OSTI)

This report, which focuses on the meteorological aspects of siting large wind turbines (turbines with a rated output exceeding 100 kW), has four main goals. The first is to outline the elements of a siting strategy that will identify the most favorable wind energy sites in a region and that will provide sufficient wind data to make responsible economic evaluations of the site wind resource possible. The second is to critique and summarize siting techniques that were studied in the Department of Energy (DOE) Wind Energy Program. The third goal is to educate utility technical personnel, engineering consultants, and meteorological consultants (who may have not yet undertaken wind energy consulting) on meteorological phenomena relevant to wind turbine siting in order to enhance dialogues between these groups. The fourth goal is to minimize the chances of failure of early siting programs due to insufficient understanding of wind behavior.

Hiester, T.R.; Pennell, W.T.

1981-01-01T23:59:59.000Z

158

Structural responses and power output of a wind turbine are strongly affected by the wind field acting on the wind turbine. Knowledge about the wind field and its  

E-Print Network [OSTI]

ABSTRACT Structural responses and power output of a wind turbine are strongly affected by the wind field acting on the wind turbine. Knowledge about the wind field and its variations is essential not only for designing, but also for cost-efficiently managing wind turbines. Wind field monitoring

Stanford University

159

Influence of refraction on wind turbine noise  

E-Print Network [OSTI]

A semi-empirical method is applied to calculate the time-average sound level of wind turbine noise generation and propagation. Both are affected by wind shear refraction. Under upwind conditions the partially ensonified zone separates the fully ensonified zone (close to the turbine) and the shadow zone (far away from the turbine). Refraction is described in terms of the wind speed linear profile fitted to the power law profile. The rotating blades are treated as a two-dimensional circular source in the vertical plane. Inside the partially ensonified zone the effective A-weighted sound power decreases to zero when the receiver moves from the turbine toward the shadow zone. The presented results would be useful in practical applications to give a quick estimate of the effect of refraction on wind turbine noise.

Makarewicz, Rufin

2013-01-01T23:59:59.000Z

160

Development of Fully Coupled Aeroelastic and Hydrodynamic Models for Offshore Wind Turbines: Preprint  

SciTech Connect (OSTI)

Aeroelastic simulation tools are routinely used to design and analyze onshore wind turbines, in order to obtain cost effective machines that achieve favorable performance while maintaining structural integrity. These tools employ sophisticated models of wind-inflow; aerodynamic, gravitational, and inertial loading of the rotor, nacelle, and tower; elastic effects within and between components; and mechanical actuation and electrical responses of the generator and of control and protection systems. For offshore wind turbines, additional models of the hydrodynamic loading in regular and irregular seas, the dynamic coupling between the support platform motions and wind turbine motions, and the dynamic characterization of mooring systems for compliant floating platforms are also important. Hydrodynamic loading includes contributions from hydrostatics, wave radiation, and wave scattering, including free surface memory effects. The integration of all of these models into comprehensive simulation tools, capable of modeling the fully coupled aeroelastic and hydrodynamic responses of floating offshore wind turbines, is presented.

Jonkman, J. M.; Sclavounos, P. D.

2006-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "wind turbine towers" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


161

Understanding Trends in Wind Turbine Prices Over the Past Decade  

E-Print Network [OSTI]

embodied in wind turbine materials (6.37 GJ/kW) from the3.5-3.7). Wind turbines are material-intensive. Eachmanufacturing these materials into turbine components may

Bolinger, Mark

2012-01-01T23:59:59.000Z

162

Advanced Wind Turbine Controls Reduce Loads (Fact Sheet)  

SciTech Connect (OSTI)

NREL's National Wind Technology Center provides the world's only dedicated turbine controls testing platforms.

Not Available

2012-03-01T23:59:59.000Z

163

A low order model for vertical axis wind turbines  

E-Print Network [OSTI]

A new computational model for initial sizing and performance prediction of vertical axis wind turbines

Drela, Mark

164

Wind Turbines and Health A Rapid Review of the Evidence  

E-Print Network [OSTI]

1 Wind Turbines and Health A Rapid Review of the Evidence July 2010 #12;2 Wind Turbines and Health of the evidence from current literature on the issue of wind turbines and potential impacts on human health regarding wind turbines and their potential effect on human health. It is important to note that these views

Firestone, Jeremy

165

Doctoral Position Aeroelastic Analysis of Large Wind Turbines  

E-Print Network [OSTI]

Doctoral Position Aeroelastic Analysis of Large Wind Turbines In the research project "Aeroelastic Analysis Horizontal-axis wind turbine and numerical model. of Large Wind Turbines" funded by the Ger- man involving the in-house Finite-Element CFD code XNS to enable the simulation of wind turbines. The ability

166

Loads Analysis of Several Offshore Floating Wind Turbine Concepts  

SciTech Connect (OSTI)

This paper presents a comprehensive dynamic-response analysis of six offshore floating wind turbine concepts.

Robertson, A. N.; Jonkman, J. M.

2011-10-01T23:59:59.000Z

167

Active load control techniques for wind turbines.  

SciTech Connect (OSTI)

This report provides an overview on the current state of wind turbine control and introduces a number of active techniques that could be potentially used for control of wind turbine blades. The focus is on research regarding active flow control (AFC) as it applies to wind turbine performance and loads. The techniques and concepts described here are often described as 'smart structures' or 'smart rotor control'. This field is rapidly growing and there are numerous concepts currently being investigated around the world; some concepts already are focused on the wind energy industry and others are intended for use in other fields, but have the potential for wind turbine control. An AFC system can be broken into three categories: controls and sensors, actuators and devices, and the flow phenomena. This report focuses on the research involved with the actuators and devices and the generated flow phenomena caused by each device.

van Dam, C.P. (University of California, Davis, CA); Berg, Dale E.; Johnson, Scott J. (University of California, Davis, CA)

2008-07-01T23:59:59.000Z

168

Dynamic analysis of a 5 megawatt offshore floating wind turbine  

E-Print Network [OSTI]

Enabling New Markets for Offshore Wind Energy." Proc. ofand Laura Parsons. Offshore Wind Energy. Washingto, DC:Challenges for Floating Offshore Wind Turbines. Tech. no.

Harriger, Evan Michael

2011-01-01T23:59:59.000Z

169

Dual-speed wind turbine generation  

SciTech Connect (OSTI)

Induction generator has been used since the early development of utility-scale wind turbine generation. An induction generator is the generator of choice because of its ruggedness and low cost. With an induction generator, the operating speed of the wind turbine is limited to a narrow range (almost constant speed). Dual- speed operation can be accomplished by using an induction generator with two different sets of winding configurations or by using a dual output drive train to drive two induction generators with two different rated speeds. With single-speed operation, the wind turbine operates at different power coefficients (Cp) as the wind speed varies. Operation at maximum Cp can occur only at a single wind speed. However, if the wind speed.varies across a wider range, the operating Cp will vary significantly. Dual-speed operation has the advantage of enabling the wind turbine to operate at near maximum Cp over a wider range of wind speeds. Thus, annual energy production can be increased. The dual-speed mode may generate less energy than a variable-speed mode; nevertheless, it offers an alternative which captures more energy than single-speed operation. In this paper, dual-speed operation of a wind turbine is investigated. Annual energy production is compared between single-speed and dual-speed operation. One type of control algorithm for dual-speed operation is proposed. Some results from a dynamic simulation will be presented to show how the control algorithm works as the wind turbine is exposed to varying wind speeds.

Muljadi, E.; Butterfield, C.P. [National Renewable Energy Lab., Golden, CO (United States)] [National Renewable Energy Lab., Golden, CO (United States); Handman, D. [Flowind Corp., San Rafael, CA (United States)] [Flowind Corp., San Rafael, CA (United States)

1996-10-01T23:59:59.000Z

170

Riso-M-2546 g Wind Turbine Test  

E-Print Network [OSTI]

Riso-M-2546 g Wind Turbine Test Wind Matic WM 17S Troels Friis Pedersen The Test Station for Windmills Riso National Laboratory, DK-4000 Roskilde Denmark April 1986 #12;#12;RIS0-M-2546 WIND TURBINE describes standard measurements performed on a Wind-Matic WM 17S, 75 kW wind turbine. The measurements

171

Diffuser for augmenting a wind turbine  

DOE Patents [OSTI]

A diffuser for augmenting a wind turbine having means for energizing the boundary layer at several locations along the diffuser walls is improved by the addition of a short collar extending radially outward from the outlet of the diffuser.

Foreman, Kenneth M. (North Bellmore, NY); Gilbert, Barry L. (Westbury, NY)

1984-01-01T23:59:59.000Z

172

Vertical Axis Wind Turbine Foundation parameter study  

SciTech Connect (OSTI)

The dynamic failure criterion governing the dimensions of prototype Vertical Axis Wind Turbine Foundations is treated as a variable parameter. The resulting change in foundation dimensions and costs is examined.

Lodde, P.F.

1980-07-01T23:59:59.000Z

173

Wind Turbine Drivetrain Condition Monitoring - An Overview  

SciTech Connect (OSTI)

This paper provides an overview of wind turbine drivetrain condition monitoring based on presentations from a condition monitoring workshop organized by the National Renewable Energy Laboratory in 2009 and on additional references.

Sheng, S; Veers, P.

2011-10-01T23:59:59.000Z

174

Probabilistic extreme response analysis of large wind turbines to natural winds.  

E-Print Network [OSTI]

??With increases in size and flexibility of modern wind turbines, especially for offshore applications, an improved understanding and assessment of turbine performance under various wind… (more)

Gong, Kuangmin

2014-01-01T23:59:59.000Z

175

Data Analytics Methods in Wind Turbine Design and Operations  

E-Print Network [OSTI]

This dissertation develops sophisticated data analytic methods to analyze structural loads on, and power generation of, wind turbines. Wind turbines, which convert the kinetic energy in wind into electrical power, are operated within stochastic...

Lee, Giwhyun

2013-05-22T23:59:59.000Z

176

Wind turbine/generator set having a stator cooling system located between stator frame and active coils  

DOE Patents [OSTI]

A wind turbine comprising an electrical generator that includes a rotor assembly. A wind rotor that includes a wind rotor hub is directly coupled to the rotor assembly via a simplified connection. The wind rotor and generator rotor assembly are rotatably mounted on a central spindle via a bearing assembly. The wind rotor hub includes an opening having a diameter larger than the outside diameter of the central spindle adjacent the bearing assembly so as to allow access to the bearing assembly from a cavity inside the wind rotor hub. The spindle is attached to a turret supported by a tower. Each of the spindle, turret and tower has an interior cavity that permits personnel to traverse therethrough to the cavity of the wind rotor hub. The wind turbine further includes a frictional braking system for slowing, stopping or keeping stopped the rotation of the wind rotor and rotor assembly.

Bevington, Christopher M.; Bywaters, Garrett L.; Coleman, Clint C.; Costin, Daniel P.; Danforth, William L.; Lynch, Jonathan A.; Rolland, Robert H.

2012-11-13T23:59:59.000Z

177

Collegiate Wind Competition Turbines go Blade-to-Blade in Wind...  

Broader source: Energy.gov (indexed) [DOE]

This wind tunnel constructed by NREL engineers will test the small wind turbines designed by 10 university teams competing in DOE's Collegiate Wind Competition. This wind tunnel...

178

Passively cooled direct drive wind turbine  

DOE Patents [OSTI]

A wind turbine is provided that passively cools an electrical generator. The wind turbine includes a plurality of fins arranged peripherally around a generator house. Each of the fins being oriented at an angle greater than zero degrees to allow parallel flow of air over the fin. The fin is further tapered to allow a constant portion of the fin to extend beyond the air stream boundary layer. Turbulence initiators on the nose cone further enhance heat transfer at the fins.

Costin, Daniel P. (Chelsea, VT)

2008-03-18T23:59:59.000Z

179

Baseline Design of a Hurricane-Resilient Wind Turbine (Poster)  

SciTech Connect (OSTI)

Under U.S. Department of Energy-sponsored research FOA 415, the National Renewable Energy Laboratory led a team of research groups to produce a complete design of a large wind turbine system to be deployable in the western Gulf of Mexico region. As such, the turbine and its support structure would be subjected to hurricane-loading conditions. Among the goals of this research was the exploration of advanced and innovative configurations that would help decrease the levelized cost of energy (LCOE) of the design, and the expansion of the basic IEC design load cases (DLCs) to include hurricane environmental conditions. The wind turbine chosen was a three-bladed, downwind, direct-drive, 10-MW rated machine. The rotor blade was optimized based on an IEC load suite analysis. The drivetrain and nacelle components were scaled up from a smaller sized turbine using industry best practices. The tubular steel tower was sized using ultimate load values derived from the rotor optimization analysis. The substructure is an innovative battered and raked jacket structure. The innovative turbine has also been modeled within an aero-servo-hydro-elastic tool, and future papers will discuss results of the dynamic response analysis for select DLCs. Although multiple design iterations could not be performed because of limited resources in this study, and are left to future research, the obtained data will offer a good indication of the expected LCOE for large offshore wind turbines to be deployed in subtropical U.S. waters, and the impact design innovations can have on this value.

Damiani, R.; Robertson, A.; Schreck, S.; Maples, B.; Anderson, M.; Finucane, Z.; Raina, A.

2014-10-01T23:59:59.000Z

180

Economic Impacts of Wind Turbine Development in U.S. Counties  

E-Print Network [OSTI]

15 percent)). Cumulative wind turbine capacity installed inper capita income of wind turbine development (measured inour sample, cumulative wind turbine capacity on a per person

J., Brown

2012-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "wind turbine towers" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


181

Wind Turbine Generator System Power Performance Test Report for the Entegrity EW50 Wind Turbine  

SciTech Connect (OSTI)

Report on the results of the power performance test that the National Renewable Energy Laboratory (NREL) conducted on Entegrity Wind System Inc.'s EW50 small wind turbine.

Smith, J.; Huskey, A.; Jager, D.; Hur, J.

2011-05-01T23:59:59.000Z

182

NREL Small Wind Turbine Test Project: Mariah Power's Windspire Wind Turbine Test Chronology  

SciTech Connect (OSTI)

This report presents a chronology of tests conducted at NREL's National Wind Technology Center on Mariah Power's Windspire 1.2-kW wind turbine and a letter of response from Mariah Power.

Huskey, A.; Forsyth, T.

2009-06-01T23:59:59.000Z

183

Effects of increasing tip velocity on wind turbine rotor design.  

SciTech Connect (OSTI)

A reduction in cost of energy from wind is anticipated when maximum allowable tip velocity is allowed to increase. Rotor torque decreases as tip velocity increases and rotor size and power rating are held constant. Reduction in rotor torque yields a lighter weight gearbox, a decrease in the turbine cost, and an increase in the capacity for the turbine to deliver cost competitive electricity. The high speed rotor incurs costs attributable to rotor aero-acoustics and system loads. The increased loads of high speed rotors drive the sizing and cost of other components in the system. Rotor, drivetrain, and tower designs at 80 m/s maximum tip velocity and 100 m/s maximum tip velocity are created to quantify these effects. Component costs, annualized energy production, and cost of energy are computed for each design to quantify the change in overall cost of energy resulting from the increase in turbine tip velocity. High fidelity physics based models rather than cost and scaling models are used to perform the work. Results provide a quantitative assessment of anticipated costs and benefits for high speed rotors. Finally, important lessons regarding full system optimization of wind turbines are documented.

Resor, Brian Ray; Maniaci, David Charles; Berg, Jonathan Charles; Richards, Phillip William

2014-05-01T23:59:59.000Z

184

Jet spoiler arrangement for wind turbine  

DOE Patents [OSTI]

An air jet spoiler arrangement is provided for a Darrieus-type vertical axis wind-powered turbine. Air is drawn into hollow turbine blades through air inlets at the ends thereof and is ejected in the form of air jets through small holes or openings provided along the lengths of the blades. The air jets create flow separation at the surfaces of the turbine blades, thereby inducing stall conditions and reducing the output power. A feedback control unit senses the power output of the turbine and controls the amount of air drawn into the air inlets accordingly.

Cyrus, Jack D. (Corrales, NM); Kadlec, Emil G. (Albuquerque, NM); Klimas, Paul C. (Albuquerque, NM)

1985-01-01T23:59:59.000Z

185

Jet spoiler arrangement for wind turbine  

DOE Patents [OSTI]

An air jet spoiler arrangement is provided for a Darrieus-type vertical axis wind-powered turbine. Air is drawn into hollow turbine blades through air inlets at the end thereof and is ejected in the form of air jets through small holes or openings provided along the lengths of the blades. The air jets create flow separation at the surfaces of the turbine blades, thereby including stall conditions and reducing the output power. A feedback control unit senses the power output of the turbine and controls the amount of air drawn into the air inlets accordingly.

Cyrus, J.D.; Kadlec, E.G.; Klimas, P.C.

1983-09-15T23:59:59.000Z

186

Xi an Nordex Wind Turbine Co Ltd aka Xi an Weide Wind Power Equipment...  

Open Energy Info (EERE)

Wind Turbine Co Ltd aka Xi an Weide Wind Power Equipment Co Ltd Jump to: navigation, search Name: Xi'an Nordex Wind Turbine Co Ltd (aka Xi'an Weide Wind Power Equipment Co Ltd)...

187

Talbot County- Wind Ordinance  

Broader source: Energy.gov [DOE]

This ordinance amends the Talbot County Code, Chapter 190, Zoning, Subdivision and Land Development, to permit small wind turbine systems with wind turbine towers not to exceed 160 feet in total...

188

Dynamic analysis of a 5 megawatt offshore floating wind turbine  

E-Print Network [OSTI]

Offshore wind turbines have the potential to generateuncover potential problems that exist with offshore windwind turbines in operation, this technology has the potential

Harriger, Evan Michael

2011-01-01T23:59:59.000Z

189

Vertical axis wind turbine control strategy  

SciTech Connect (OSTI)

Early expensive in automatic operation of the Sandia 17-m vertical axis research wind turbine (VAWT) has demonstrated the need for a systematic study of control algorithms. To this end, a computer model has been developed that uses actual wind time series and turbine performance data to calculate the power produced by the Sandia 17-m VAWT operating in automatic control. The model has been used to investigate the influence of starting algorithms on annual energy production. The results indicate that, depending on turbine and local wind characteristics, a bad choice of a control algorithm can significantly reduce overall energy production. The model can be used to select control algorithms and threshold parameters that maximize long-term energy production. An attempt has been made to generalize these results from local site and turbine characteristics to obtain general guidelines for control algorithm design.

McNerney, G.M.

1981-08-01T23:59:59.000Z

190

Designing and Testing Controls to Mitigate Tower Dynamic Loads in the Controls Advanced Research Turbine: Preprint  

SciTech Connect (OSTI)

This report describes NREL's efforts to design, implement, and test advanced controls for maximizing energy extraction and reducing structural dynamic loads in wind turbines.

Wright, A. D.; Fingersh, L. J.; Stol, K. A.

2007-01-01T23:59:59.000Z

191

Pitch-controlled variable-speed wind turbine generation  

SciTech Connect (OSTI)

Wind energy is a viable option to complement other types of pollution-free generation. In the early development of wind energy, the majority of wind turbines were operated at constant speed. Recently, the number of variable-speed wind turbines installed in wind farms has increased and more wind turbine manufacturers are making variable-speed wind turbines. This paper covers the operation of variable-speed wind turbines with pitch control. The system the authors considered is controlled to generate maximum energy while minimizing loads. The maximization of energy was only carried out on a static basis and only drive train loads were considered as a constraint. In medium wind speeds, the generator and power converter control the wind turbine to capture maximum energy from the wind. In the high wind speed region, the wind turbine is controlled to maintain the aerodynamic power produced by the wind turbine. Two methods to adjust the aerodynamic power were investigated: pitch control and generator load control, both of which are employed to control the operation of the wind turbine. The analysis and simulation shows that the wind turbine can be operated at its optimum energy capture while minimizing the load on the wind turbine for a wide range of wind speeds.

Muljadi, E.; Butterfield, C.P.

2000-03-01T23:59:59.000Z

192

Variable diameter wind turbine rotor blades  

DOE Patents [OSTI]

A system and method for changing wind turbine rotor diameters to meet changing wind speeds and control system loads is disclosed. The rotor blades on the wind turbine are able to adjust length by extensions nested within or containing the base blade. The blades can have more than one extension in a variety of configurations. A cable winching system, a hydraulic system, a pneumatic system, inflatable or elastic extensions, and a spring-loaded jack knife deployment are some of the methods of adjustment. The extension is also protected from lightning by a grounding system.

Jamieson, Peter McKeich; Hornzee-Jones, Chris; Moroz, Emilian M.; Blakemore, Ralph W.

2005-12-06T23:59:59.000Z

193

Dynamic Simulation of DFIG Wind Turbines on FPGA Boards  

E-Print Network [OSTI]

Dynamic Simulation of DFIG Wind Turbines on FPGA Boards Hao Chen, Student Member, IEEE, Song Sun is a friction coefficient. The wind turbine model is based on the relation between the upstream wind speed V w + 1 where p is the air density; Rw is the wind turbine radius; cp (A, (3) is the performance

Zambreno, Joseph A.

194

innovati nNREL Computer Models Integrate Wind Turbines with  

E-Print Network [OSTI]

innovati nNREL Computer Models Integrate Wind Turbines with Floating Platforms Far off the shores for today's seabed-mounted offshore wind turbines. For the United States to tap into these vast offshore wind energy resources, wind turbines must be mounted on floating platforms to be cost effective

195

Wind Turbine Test \\^ind Matic WM 15S  

E-Print Network [OSTI]

00 ·2 V. v/ RisoM-2481 Wind Turbine Test \\^ind Matic WM 15S Troels Friis Pedersent The Test Station for Windmills Riso National Laboratory, DK-4000 Roskilde, Denmark July 1986 #12;#12;RIS0-M-2481 WIND TURBINE describes standard measurements performed on a Wind-Matic WM 15S, 55 kW wind turbine. The measurements

196

Cambridge Danehy Park Wind Turbine Preliminary Project Assessment  

E-Print Network [OSTI]

Cambridge Danehy Park Wind Turbine Preliminary Project Assessment Overview MIT Wind Energy Projects 4 / 25 2.5 / 25 Rated Wind Speed (m/s) 13 10 14.5 ~15 12 The above turbines were chosen to provide, several recent studies examining birds and wind turbines have observed that most birds usually avoid

197

Ris-R-1111(EN) Ultimate Loading of Wind Turbines  

E-Print Network [OSTI]

Risø-R-1111(EN) Ultimate Loading of Wind Turbines Gunner Chr. Larsen, Knut Ronold, Hans E analysis as well as a wind turbine reliability study. In the wind climate analysis, the distribution to analyse wind turbine components with respect to failure in ultimate loading, and in addition to establish

198

Ris-PhD-Report Wind Turbines: Unsteady Aerodynamics and  

E-Print Network [OSTI]

Risø-PhD-Report Wind Turbines: Unsteady Aerodynamics and Inflow Noise Brian Riget Broe Risø-PhD-47 Title: Wind Turbines: Unsteady Aerodynamics and Inflow Noise Division: Wind Energy Division Risø-PhD-47(EN) December 2009 Abstract (max. 2000 char.): Aerodynamical noise from wind turbines due

199

TECHNICALADVANCES IN EPOXY TECHNOLOGY FOR WIND TURBINE BLADE COMPOSITE FABRICATION  

E-Print Network [OSTI]

TECHNICALADVANCES IN EPOXY TECHNOLOGY FOR WIND TURBINE BLADE COMPOSITE FABRICATION George C. Jacob reliability in many demanding applications including components for aerospace and wind turbine blades. While in operation, wind turbine blades are subjected to significant stresses from their movement, wind and other

200

Power control of a wind farm with active stall wind turbines and AC grid connection  

E-Print Network [OSTI]

Power control of a wind farm with active stall wind turbines and AC grid connection Anca D. Hansen1 controller for a wind farm made-up exclusively of active stall wind turbines with AC grid connection wind farm control involves both the control on wind turbine level as well as the central control

Note: This page contains sample records for the topic "wind turbine towers" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


201

Wind Turbine Micropitting Workshop: A Recap  

SciTech Connect (OSTI)

Micropitting is a Hertzian fatigue phenomenon that affects many wind turbine gearboxes, and it affects the reliability of the machines. With the major growth and increasing dependency on renewable energy, mechanical reliability is an extremely important issue. The U.S. Department of Energy has made a commitment to improving wind turbine reliability and the National Renewable Energy Laboratory (NREL) has started a gearbox reliability project. Micropitting as an issue that needed attention came to light through this effort. To understand the background of work that had already been accomplished, and to consolidate some level of collective understanding of the issue by acknowledged experts, NREL hosted a wind turbine micropitting workshop, which was held at the National Wind Technology Center in Boulder, Colorado, on April 15 and 16, 2009.

Sheng, S.

2010-02-01T23:59:59.000Z

202

Load attenuating passively adaptive wind turbine blade  

DOE Patents [OSTI]

A method and apparatus for improving wind turbine performance by alleviating loads and controlling the rotor. The invention employs the use of a passively adaptive blade that senses the wind velocity or rotational speed, and accordingly modifies its aerodynamic configuration. The invention exploits the load mitigation prospects of a blade that twists toward feather as it bends. The invention includes passively adaptive wind turbine rotors or blades with currently preferred power control features. The apparatus is a composite fiber horizontal axis wind-turbine blade, in which a substantial majority of fibers in the blade skin are inclined at angles of between 15 and 30 degrees to the axis of the blade, to produces passive adaptive aeroelastic tailoring (bend-twist coupling) to alleviate loading without unduly jeopardizing performance.

Veers, Paul S. (Albuquerque, NM); Lobitz, Donald W. (Albuquerque, NM)

2003-01-01T23:59:59.000Z

203

Load attenuating passively adaptive wind turbine blade  

DOE Patents [OSTI]

A method and apparatus for improving wind turbine performance by alleviating loads and controlling the rotor. The invention employs the use of a passively adaptive blade that senses the wind velocity or rotational speed, and accordingly modifies its aerodynamic configuration. The invention exploits the load mitigation prospects of a blade that twists toward feather as it bends. The invention includes passively adaptive wind turbine rotors or blades with currently preferred power control features. The apparatus is a composite fiber horizontal axis wind-turbine blade, in which a substantial majority of fibers in the blade skin are inclined at angles of between 15 and 30 degrees to the axis of the blade, to produces passive adaptive aeroelastic tailoring (bend-twist coupling) to alleviate loading without unduly jeopardizing performance.

Veers, Paul S.; Lobitz, Donald W.

2003-01-07T23:59:59.000Z

204

2014 Sandia Wind Turbine Blade Workshop  

Broader source: Energy.gov [DOE]

The U.S. Energy Department's Sandia National Laboratories will host its 2014 Sandia Wind Turbine Blade Workshop at the Marriott Pyramid North in Albuquerque, New Mexico. The workshop provides a unique, blade focused collaborative forum that will bring together wind energy leaders from industry, academia, and government. Stay tuned for updates. Information regarding past Wind Workshops can be found at: http://windworkshops.sandia.gov/.

205

Hard Bottom Substrate Monitoring Horns Rev Offshore Wind Farm  

E-Print Network [OSTI]

protection and at the wind turbine towers at six turbine sites. Video recordings were planned at different of the scour protection close to the turbine tower. Samples of fouling communities were collected at six turbine sites at the Horns Rev Wind Farm by SCUBA divers. The co-ordinates of the six turbine positions

206

SUBSPACE-BASED DETECTION OF FATIGUE DAMAGE ON JACKET SUPPORT STRUCTURES OF OFFSHORE WIND TURBINES  

E-Print Network [OSTI]

SUBSPACE-BASED DETECTION OF FATIGUE DAMAGE ON JACKET SUPPORT STRUCTURES OF OFFSHORE WIND TURBINES damage in real size structural components of offshore wind turbines. KEYWORDS : Damage detection, Offshore wind turbines, Numerical response simulation. INTRODUCTION Offshore wind turbines are exposed

Paris-Sud XI, Université de

207

Testing and Modeling of a 3-MW Wind Turbine Using Fully Coupled Simulation Codes (Poster)  

SciTech Connect (OSTI)

This poster describes the NREL/Alstom Wind testing and model verification of the Alstom 3-MW wind turbine located at NREL's National Wind Technology Center. NREL,in collaboration with ALSTOM Wind, is studying a 3-MW wind turbine installed at the National Wind Technology Center(NWTC). The project analyzes the turbine design using a state-of-the-art simulation code validated with detailed test data. This poster describes the testing and the model validation effort, and provides conclusions about the performance of the unique drive train configuration used in this wind turbine. The 3-MW machine has been operating at the NWTC since March 2011, and drive train measurements will be collected through the spring of 2012. The NWTC testing site has particularly turbulent wind patterns that allow for the measurement of large transient loads and the resulting turbine response. This poster describes the 3-MW turbine test project, the instrumentation installed, and the load cases captured. The design of a reliable wind turbine drive train increasingly relies on the use of advanced simulation to predict structural responses in a varying wind field. This poster presents a fully coupled, aero-elastic and dynamic model of the wind turbine. It also shows the methodology used to validate the model, including the use of measured tower modes, model-to-model comparisons of the power curve, and mainshaft bending predictions for various load cases. The drivetrain is designed to only transmit torque to the gearbox, eliminating non-torque moments that are known to cause gear misalignment. Preliminary results show that the drivetrain is able to divert bending loads in extreme loading cases, and that a significantly smaller bending moment is induced on the mainshaft compared to a three-point mounting design.

LaCava, W.; Guo, Y.; Van Dam, J.; Bergua, R.; Casanovas, C.; Cugat, C.

2012-06-01T23:59:59.000Z

208

Comparing Single and Multiple Turbine Representations in a Wind Farm Simulation: Preprint  

SciTech Connect (OSTI)

This paper compares single turbine representation versus multiple turbine representation in a wind farm simulation.

Muljadi, E.; Parsons, B.

2006-03-01T23:59:59.000Z

209

E-Print Network 3.0 - axis wind turbines Sample Search Results  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

turbines Search Powered by Explorit Topic List Advanced Search Sample search results for: axis wind turbines...

210

Methods and apparatus for reducing peak wind turbine loads  

DOE Patents [OSTI]

A method for reducing peak loads of wind turbines in a changing wind environment includes measuring or estimating an instantaneous wind speed and direction at the wind turbine and determining a yaw error of the wind turbine relative to the measured instantaneous wind direction. The method further includes comparing the yaw error to a yaw error trigger that has different values at different wind speeds and shutting down the wind turbine when the yaw error exceeds the yaw error trigger corresponding to the measured or estimated instantaneous wind speed.

Moroz, Emilian Mieczyslaw

2007-02-13T23:59:59.000Z

211

2009 WIND TURBINE IMPACT STUDY APPRAISAL GROUP ONE 9/9/2009 WIND TURBINE IMPACT STUDY  

E-Print Network [OSTI]

This is a study of the impact that wind turbines have on residential property value. The wind turbines that are the focus of this study are the larger turbines being approximately 389ft tall and producing 1.0+ megawatts each, similar to the one pictured to the right. The study has been broken into three component parts, each looking at the value impact of the wind turbines from a different perspective. The three parts are: (1) a literature study, which reviews and summarizes what has been published on this matter found in the general media; (2) an opinion survey, which was given to area Realtors to learn their opinions on the impact of wind turbines in

Fond Du; Lac Counties Wisconsin

2009-01-01T23:59:59.000Z

212

Methods of making wind turbine rotor blades  

DOE Patents [OSTI]

A method of manufacturing a root portion of a wind turbine blade includes, in an exemplary embodiment, providing an outer layer of reinforcing fibers including at least two woven mats of reinforcing fibers, providing an inner layer of reinforcing fibers including at least two woven mats of reinforcing fibers, and positioning at least two bands of reinforcing fibers between the inner and outer layers, with each band of reinforcing fibers including at least two woven mats of reinforcing fibers. The method further includes positioning a mat of randomly arranged reinforcing fibers between each pair of adjacent bands of reinforcing fibers, introducing a polymeric resin into the root potion of the wind turbine blade, infusing the resin through the outer layer, the inner layer, each band of reinforcing fibers, and each mat of random reinforcing fibers, and curing the resin to form the root portion of the wind turbine blade.

Livingston, Jamie T. (Pensacola, FL); Burke, Arthur H. E. (Gulf Breeze, FL); Bakhuis, Jan Willem (Nijverdal, NL); Van Breugel, Sjef (Enschede, NL); Billen, Andrew (Daarlerveen, NL)

2008-04-01T23:59:59.000Z

213

Distributed Wind Market Report: Small Turbines Lead to Big Growth...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Growth in Exports August 18, 2014 - 12:13pm Addthis 1 of 11 Three 100 kilowatt (kW) wind turbines in Bisaccia, Italy. Last year, U.S. small wind turbines were exported to more than...

214

Timken Producing Parts for Wind Turbines | Department of Energy  

Energy Savers [EERE]

Timken Producing Parts for Wind Turbines Timken Producing Parts for Wind Turbines June 28, 2010 - 3:38pm Addthis Some of Timkens bearings are so large that a small car could...

215

Multi-hazard Reliability Assessment of Offshore Wind Turbines  

E-Print Network [OSTI]

A probabilistic framework is developed to assess the structural reliability of offshore wind turbines. Probabilistic models are developed to predict the deformation, shear force and bending moment demands on the support structure of wind turbines...

Mardfekri Rastehkenari, Maryam 1981-

2012-12-04T23:59:59.000Z

216

A doubly-fed permanent magnet generator for wind turbines  

E-Print Network [OSTI]

Optimum extraction of energy from a wind turbine requires that turbine speed vary with wind speed. Existing solutions to produce constant-frequency electrical output under windspeed variations are undesirable due to ...

Thomas, Andrew J. (Andrew Joseph), 1981-

2004-01-01T23:59:59.000Z

217

Field Examples of Axial Cracked Bearings in Wind Turbine Gearboxes...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Field Examples of Axial Cracked Bearings in Wind Turbine Gearboxes Presented by Paul John Baker of FrontierPro Services at the Wind Turbine Tribology Seminar 2014. 141030 Axial...

218

Reduced Order Structural Modeling of Wind Turbine Blades  

E-Print Network [OSTI]

Conventional three dimensional structural analysis methods prove to be expensive for the preliminary design of wind turbine blades. However, wind turbine blades are large slender members with complex cross sections. They can be accurately modeled...

Jonnalagadda, Yellavenkatasunil

2011-10-21T23:59:59.000Z

219

State of the Art in Floating Wind Turbine Design Tools  

SciTech Connect (OSTI)

This paper presents an overview of the simulation codes available to the offshore wind industry that are capable of performing integrated dynamic calculations for floating offshore wind turbines.

Cordle, A.; Jonkman, J.

2011-10-01T23:59:59.000Z

220

SciTech Connect: Improved Wind Turbine Drivetrain Reliability...  

Office of Scientific and Technical Information (OSTI)

and Renewable Energy Country of Publication: United States Language: English Subject: 17 WIND ENERGY; 97 MATHEMATICS AND COMPUTING NONTORQUE LOADS; WIND TURBINE DRIVETRAIN;...

Note: This page contains sample records for the topic "wind turbine towers" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


221

Titan propels GE wind turbine research into new territory | ornl...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Titan propels GE wind turbine research into new territory January 17, 2014 The amount of global electricity supplied by wind, the world's fastest growing energy source, is expected...

222

Sandia National Laboratories: Sandia Vertical-Axis Wind-Turbine...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

ClimateECEnergyComputational Modeling & SimulationSandia Vertical-Axis Wind-Turbine Research Presented at Science of Making Torque from Wind Conference Sandia Vertical-Axis...

223

Design of PM generator for avertical axis wind turbine.  

E-Print Network [OSTI]

?? The task in this project is to design a generator for a vertical axis wind turbine withpower rated to 20kW at a wind speed… (more)

Rynkiewicz, Mateusz

2012-01-01T23:59:59.000Z

224

The Impact of Wind Power Projects on Residential Property Values in the United States: A Multi-Site Hedonic Analysis  

E-Print Network [OSTI]

towers are not visible (Des-Rosiers, 2002) and, similarly, decreases in annoyance with wind facility sounds if turbines

Hoen, Ben

2010-01-01T23:59:59.000Z

225

Establishment of Small Wind Turbine Regional Test Centers (Presentation)  

SciTech Connect (OSTI)

This presentation offers an overview of the Regional Test Centers project for Small Wind Turbine testing and certification.

Sinclair, K.

2011-09-16T23:59:59.000Z

226

Modal Dynamics of Large Wind Turbines with Different Support Structures  

SciTech Connect (OSTI)

This paper presents modal dynamics of floating-platform-supported and monopile-supported offshore wind turbines.

Bir, G.; Jonkman, J.

2008-07-01T23:59:59.000Z

227

Methods and apparatus for rotor load control in wind turbines  

DOE Patents [OSTI]

A wind turbine having a rotor, at least one rotor blade, and a plurality of generators, of which a first generator is configured to provide power to an electric grid and a second generator is configured to provide power to the wind turbine during times of grid loss. The wind turbine is configured to utilize power provided by the second generator to reduce loads on the wind turbine during times of grid loss.

Moroz, Emilian Mieczyslaw

2006-08-22T23:59:59.000Z

228

The Effect of Wind Speed and Electric Rates On Wind Turbine Economics  

E-Print Network [OSTI]

The Effect of Wind Speed and Electric Rates On Wind Turbine Economics Economics of wind power depends mainly on the wind speeds and the turbine make and model. Definition: Simple Payback The "Simple period of a small wind power project. All the figures are per turbine, so it can be used for a one, two

Massachusetts at Amherst, University of

229

Dynamic stall on wind turbine blades  

SciTech Connect (OSTI)

Dynamic loads must be predicted accurately in order to estimate the fatigue life of wind turbines operating in turbulent environments. Dynamic stall contributes to increased dynamic loads during normal operation of all types of horizontal-axis wind turbine (HAWTs). This report illustrates how dynamic stall varies throughout the blade span of a 10 m HAWT during yawed and unyawed operating conditions. Lift, drag, and pitching moment coefficients during dynamics stall are discussed. Resulting dynamic loads are presented, and the effects of dynamic stall on yaw loads are demonstrated using a yaw loads dynamic analysis (YAWDYN). 12 refs., 22 figs., 1 tab.

Butterfield, C.P.; Simms, D.; Scott, G. [National Renewable Energy Lab., Golden, CO (United States)] [National Renewable Energy Lab., Golden, CO (United States); Hansen, A.C. [Utah Univ., Salt Lake City, UT (United States)] [Utah Univ., Salt Lake City, UT (United States)

1991-12-01T23:59:59.000Z

230

Amplitude modulation of wind turbine noise  

E-Print Network [OSTI]

Due to swish and thump amplitude modulation, the noise of wind turbines cause more annoyance than other environmental noise of the same average level. The wind shear accounts for the thump modulation (van den Berg effect). Making use of the wind speed measurements at the hub height, as well as at the top and the bottom of the rotor disc (Fig.1), the non-standard wind profile is applied. It causes variations in the A-weighted sound pressure level, LpA. The difference between the maximum and minimum of LpA characterizes thump modulation (Fig.2).

Makarewicz, Rufin

2013-01-01T23:59:59.000Z

231

Ris-R-1093(EN) European Wind Turbine Testing  

E-Print Network [OSTI]

Risø-R-1093(EN) European Wind Turbine Testing Procedure Developments Task 2: Power Quality Poul #12;Contents Preface 5 1 Introduction 6 2 Standards and measurement procedures 6 3 Wind turbines 7 3 The present report describes the work done in the power quality subtask of the European Wind Turbine Testing

232

Ris-R-1352(EN) Models for Wind Turbines  

E-Print Network [OSTI]

Risø-R-1352(EN) Models for Wind Turbines ­ a Collection Andreas Baumgart Gunner C. Larsen, Morten H is to supply new approaches to stability investigations of wind turbines. The author's opinion #12;Contents 1 Preface 5 2 Author's Notes 7 3 Theory of Rods applied to Wind Turbine Blades 9 3

233

Wave Models for Offshore Wind Turbines Puneet Agarwal  

E-Print Network [OSTI]

Wave Models for Offshore Wind Turbines Puneet Agarwal§ and Lance Manuely Department of Civil for estimating loads on the support structure (monopile) of an offshore wind turbine. We use a 5MW utility-scale wind turbine model for the simulations. Using, first, the sim- pler linear irregular wave modeling

Manuel, Lance

234

Detection of aeroacoustic sound sources on aircraft and wind turbines  

E-Print Network [OSTI]

Detection of aeroacoustic sound sources on aircraft and wind turbines Stefan Oerlemans #12;Detection of aeroacoustic sound sources on aircraft and wind turbines S. Oerlemans Thesis University;DETECTION OF AEROACOUSTIC SOUND SOURCES ON AIRCRAFT AND WIND TURBINES PROEFSCHRIFT ter verkrijging van de

Twente, Universiteit

235

Control of Wind Turbines for Power Regulation and  

E-Print Network [OSTI]

Control of Wind Turbines for Power Regulation and Load Reduction Juan Jose Garcia Quirante Kongens regulation and load reduction and their ensemble in a variable-speed wind turbine. The power regulation aspects of mathematical modelling of wind turbines, and especially the control methods suited for power

236

AIAA-2004-1184 AN AEROACOUSTIC ANALYSIS OF WIND TURBINES*  

E-Print Network [OSTI]

AIAA-2004-1184 1 AN AEROACOUSTIC ANALYSIS OF WIND TURBINES* Philip J. Morris, Lyle N. Long computational aeroacoustic methods that are being applied to predict the noise radiated by wind turbines. Since the wind turbine noise problem is very challenging, only some of the important noise sources and mechanisms

237

RELIABILITY COMPARISON MODELS FOR OFFSHORE WIND TURBINES (OWT)  

E-Print Network [OSTI]

RELIABILITY COMPARISON MODELS FOR OFFSHORE WIND TURBINES (OWT) Yizhou Lu, T. M. Delorm, A. Christou of the reliability of these 5 Types Surrogate failure rate data Onshore wind turbines (OT) 1-1.5MW CONCLUSIONS., Faulstich, S. & van Bussel G. J. W. Reliability & availability of wind turbine electrical & electronic

Bernstein, Joseph B.

238

A Simplified Morphing Blade for Horizontal Axis Wind Turbines  

E-Print Network [OSTI]

A Simplified Morphing Blade for Horizontal Axis Wind Turbines Weijun WANG , St´ephane CARO, Fouad salinas@hotmail.com The aim of designing wind turbine blades is to improve the power capture ability by adjusting the twist of the blade's root and tip. To evaluate the performance of wind turbine blades

Recanati, Catherine

239

Taming Hurricanes With Arrays of Offshore Wind Turbines  

E-Print Network [OSTI]

Taming Hurricanes With Arrays of Offshore Wind Turbines Mark Z. Jacobson Cristina Archer, Willet #12;Representation of a vertically-resolved wind turbine in model Lines are model layers) or 50 m/s (destruction) speed. Can Walls of Offshore Wind Turbines Dissipate Hurricanes? #12;Katrina

Firestone, Jeremy

240

Condition Monitoring of Wind Turbines Based on Amplitude Demodulation  

E-Print Network [OSTI]

Condition Monitoring of Wind Turbines Based on Amplitude Demodulation Yassine Amirat University. In order to make wind turbine reliable and competitive, it is important to reduce the operational-stationary behavior. Index Terms--Wind turbine, Fault Detection, Bearings, Signal Processing, Amplitude Modulation I

Paris-Sud XI, Université de

Note: This page contains sample records for the topic "wind turbine towers" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


241

Potential Flow Modelling for Wind Turbines Shane Cline  

E-Print Network [OSTI]

Potential Flow Modelling for Wind Turbines by Shane Cline B.Sc., University of Toledo, 2003 M means, without the permission of the author. #12;ii Potential Flow Modelling for Wind Turbines by Shane potential flow methods are a promising alternative to mainstream wind turbine aerodynamics tools

Victoria, University of

242

Development of Wind Turbines Prototyping Software Under Matlab/Simulink  

E-Print Network [OSTI]

204 1 Development of Wind Turbines Prototyping Software Under Matlab/Simulink® Through present the development of a wind turbine prototyping software under Matlab/Simulink® through and the end of 1999, around 75% of all new grid-connected wind turbines worldwide were installed in Europe [3

Paris-Sud XI, Université de

243

LIGHTNING EXPOSURE OF WIND TURBINES University of Toronto  

E-Print Network [OSTI]

LIGHTNING EXPOSURE OF WIND TURBINES Dale Dolan University of Toronto e-mail: dale@ecf.utoronto.ca Abstract This paper applies the electrogeometric model of lightning exposure to a wind turbine to compute. For a typical 45 m wind turbine, the probability of being struck by a downward negative flash, as predicted

Lehn, Peter W.

244

Duration Test Report for the Entegrity EW50 Wind Turbine  

SciTech Connect (OSTI)

This report summarizes the results of a duration test that NREL conducted on the Entegrity EW50 wind turbine. This test was conducted in accordance with the International Electrotechnical Commissions' (IEC) standard, Wind Turbine Generator System Part 2: Design requirements for small wind turbines, IEC 61400-2 Ed.2.0, 2006-03.

Smith, J.; Huskey, A.; Jager, D.; Hur, J.

2012-12-01T23:59:59.000Z

245

Stochastic Analysis of Wind Turbine Power Curves Edgar Anahua  

E-Print Network [OSTI]

of the wind turbine to its desired power production; and ii) the stochastic force (noise), whichStochastic Analysis of Wind Turbine Power Curves Edgar Anahua Oldenburg 2007 Zur Homepage der Dissertation #12;#12;Stochastic Analysis of Wind Turbine Power Curves Edgar Anahua Von der Fakult¨at f

Peinke, Joachim

246

EFFECTS OF FIBER WAVINESS ON COMPOSITES FOR WIND TURBINE BLADES  

E-Print Network [OSTI]

EFFECTS OF FIBER WAVINESS ON COMPOSITES FOR WIND TURBINE BLADES J.F. Mandell D.D. Samborsky and L Composite materials of interest for wind turbine blades use relatively low cost fibers, resins and processes WORDS: Composite Materials, Fiber Waviness, Compressive Strength #12;1. INTRODUCTION Wind turbine blades

247

Ris-R-1209(EN) European Wind Turbine Testing  

E-Print Network [OSTI]

Risø-R-1209(EN) European Wind Turbine Testing Procedure Developments Task 1: Measurement Method to Verify Wind Turbine Performance Character- istics Raymond Hunter RES Task coordinator Troels Friis assessment and wind turbine power performance testing. A standards maintenance team is revising the current

248

innovati nWind Turbine Design Innovations Drive Industry Transformation  

E-Print Network [OSTI]

innovati nWind Turbine Design Innovations Drive Industry Transformation For more than 20 years. Tackling Turbine Blade Inefficiencies In 1984, NREL researchers began investigating problems with wind turbine blade designs. Inefficiency was a significant barrier to lowering the cost of wind energy

249

Vortex Lattice Modelling of Winglets on Wind Turbine Blades  

E-Print Network [OSTI]

Vortex Lattice Modelling of Winglets on Wind Turbine Blades Mads Døssing Risø-R-1621(EN) Risø Title: Vortex Lattice Modelling of Winglets on Wind Turbine Blades Departments: Wind Energy Department turbines can be increased by the use of winglets without increasing the swept area. This makes them

250

SOUND COMPLIANCE MONITORING FOR THE GAMESA WIND TURBINE  

E-Print Network [OSTI]

SOUND COMPLIANCE MONITORING FOR THE GAMESA WIND TURBINE UD - LEWES, DELAWARE January 2011 ` #12;SOUND COMPLIANCE MONITORING FOR THE GAMESA WIND TURBINE AT THE UNIVERSITY OF DELAWARE LEWES, DELAWARE A Gamesa G90 2.0-MW wind turbine operates at the University of Delaware (UD), Lewes campus on a parcel

Firestone, Jeremy

251

IMPLEMENTATION OF WIND TURBINE CONTROLLERS W.E.Leithead  

E-Print Network [OSTI]

IMPLEMENTATION OF WIND TURBINE CONTROLLERS D.J.Leith W.E.Leithead Department of Electronic-speed wind turbines are considered, namely, (1) accommodation of the strongly nonlinear rotor aerodynamics derived and extended to cater for all wind turbine configurations. A rigorous stability analysis

Duffy, Ken

252

Disturbance Control of the Hydraulic Brake in a Wind Turbine  

E-Print Network [OSTI]

Disturbance Control of the Hydraulic Brake in a Wind Turbine Frank Jepsen, Anders Søborg brake in a wind turbine. Brake torque is determined by friction coefficient and clamp force; the latter brake is one1 of the two independent brake systems in a wind turbine. As a consequence of the gearing

Yang, Zhenyu

253

ACOUSTIC STUDY OF THE UD / GAMESA WIND TURBINE PROJECT  

E-Print Network [OSTI]

ACOUSTIC STUDY OF THE UD / GAMESA WIND TURBINE PROJECT LEWES, DELAWARE January 2009 #12;ACOUSTIC STUDY OF THE UNIVERSITY OF DELAWARE / GAMESA WIND TURBINE PROJECT LEWES, DELAWARE Prepared for SUMMARY The University of Delaware (UD), Lewes proposes to locate a Gamesa G90 2.0MW wind turbine

Firestone, Jeremy

254

Mechanisms of amplitude modulation in wind turbine , A. J. Bullmoreb  

E-Print Network [OSTI]

Mechanisms of amplitude modulation in wind turbine noise M. Smitha , A. J. Bullmoreb , M. M. Candb produced by wind turbines is inherently time varying. This amplitude modulation is normally due The environmental noise impact of wind turbine generators has to be assessed when planning new installations

Paris-Sud XI, Université de

255

Dynamic wind turbine models in power system simulation tool  

E-Print Network [OSTI]

Dynamic wind turbine models in power system simulation tool DIgSILENT Anca D. Hansen, Florin Iov Iov, Poul Sørensen, Nicolaos Cutululis, Clemens Jauch, Frede Blaabjerg Title: Dynamic wind turbine system simulation tool PowerFactory DIgSILENT for different wind turbine concepts. It is the second

256

Dynamics and Fatigue Damage of Wind Turbine Rotors  

E-Print Network [OSTI]

6 3 RiS0-Rr512 Dynamics and Fatigue Damage of Wind Turbine Rotors during Steady Operation Peter OF WIND TURBINE ROTORS DURING STEADY OPERATION Peter Hauge Madsen, Sten Frandsen, William E. Holley-carrying capacity of a wind turbine rotor with respect to short-term strength and material fatigue are presented

257

Fast Verification of Wind Turbine Power Summary of Project Results  

E-Print Network [OSTI]

Fast Verification of Wind Turbine Power Curves: Summary of Project Results by: Cameron Brown ­ s equation on high frequency wind turbine measurement data sampled at one sample per second or more. The aim's Nordtank wind turbine at the Risø site, the practical application of this new method was tested

258

Designing Micro Wind Turbines for Portable Power Generation Francois Hogan  

E-Print Network [OSTI]

to the design of a wind turbine rotor. Number of blades The number of blades does not have a significant impact on the efficiency of a wind turbine. We have chosen a two blade design because of ease of fabrication in order) (2) · This two blade micro wind turbine meets the optimal specifications to ensure good efficiency

Barthelat, Francois

259

AIAA980057 RELATING TURBULENCE TO WIND TURBINE BLADE LOADS  

E-Print Network [OSTI]

AIAA­98­0057 RELATING TURBULENCE TO WIND TURBINE BLADE LOADS: PARAMETRIC STUDY WITH MULTIPLE that is most useful in estimating fatigue loads on wind turbine blades. The histograms of rainflow counted turbulence measures---can be used to estimate fatigue loads on wind turbine blades. We first de­ scribe

Sweetman, Bert

260

Load Alleviation on Wind Turbine Blades using Variable Airfoil Geometry  

E-Print Network [OSTI]

Load Alleviation on Wind Turbine Blades using Variable Airfoil Geometry Peter Bjørn Andersen, Mac Loads, Trailing Edge Flaps, PID control, Signal Noise. 1 Introduction Wind turbine blades are subject to 40% when signal noise is added to the control. Keywords: Wind Turbine, Load Alleviation, Fatigue

Note: This page contains sample records for the topic "wind turbine towers" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


261

Sparkr Blade Test Centre Modal Analysis of Wind Turbine Blades  

E-Print Network [OSTI]

Sparkær Blade Test Centre Modal Analysis of Wind Turbine Blades Modal analysis is the process the modes constitute a complete dynamic description of the wind turbine blade. The modes of vibration represent the inherent dynamic properties of the wind turbine blade. The range of applications for modal

262

Ultimate strength of a large wind turbine blade  

E-Print Network [OSTI]

Ultimate strength of a large wind turbine blade Find Mølholt Jensen Risø-PhD-34(EN) ISBN 978 2008 #12;#12;Author: Find Mølholt Jensen Title: Ultimate strength of a large wind turbine blade contains a study of the structural static strength of wind turbine blades loaded in flap-wise direction

263

Low frequency noise from MW wind turbines --mechanisms of generation  

E-Print Network [OSTI]

Low frequency noise from MW wind turbines -- mechanisms of generation and its modeling Helge MW wind turbines -- mechanisms of generation and its modeling Department: Department of Wind Energy turbine has been simulated with a noise prediction model from NASA in US. Running the model

264

2/16/2014 Can You Charge Your Mobile With Wind Turbine? -TechTxr http://www.techtxr.com/can-charge-mobile-wind-turbine/ 1/7  

E-Print Network [OSTI]

maximum functionality. Home Wind Generators comparestores.net Looking for Wind Turbines? Compare Latest Turbine? | February 9, 2014 Wind Energy Wind Mill Wind Power Wind Mobile About Wind Power Wind Generator Mobile Generator Mobile Building #12;2/16/2014 Can You Charge Your Mobile With Wind Turbine

Chiao, Jung-Chih

265

Optimizing wind turbine control system parameters  

SciTech Connect (OSTI)

The impending expiration of the levelized period in the Interim Standard Offer Number 4 (ISO4) utility contracts for purchasing wind-generated power in California mandates, more than ever, that windplants be operated in a cost-effective manner. Operating plans and approaches are needed that maximize the net revenue from wind parks--after accounting for operation and maintenance costs. This paper describes a design tool that makes it possible to tailor a control system of a wind turbine (WT) to maximize energy production while minimizing the financial consequences of fatigue damage to key structural components. Plans for code enhancements to include expert systems and fuzzy logic are discussed, and typical results are presented in which the code is applied to study the controls of a generic Danish 15-m horizontal axis wind turbine (HAWT).

Schluter, L.L. [Sandia National Labs., Albuquerque, NM (United States); Vachon, W.A. [Vachon (W.A.) and Associates, Inc., Manchester, MA (United States)

1993-08-01T23:59:59.000Z

266

Structural effects of unsteady aerodynamic forces on horizontal-axis wind turbines  

SciTech Connect (OSTI)

Due to its renewable nature and abundant resources, wind energy has the potential to fulfill a large portion of this nation`s energy needs. The simplest means of utilizing wind energy is through the use of downwind, horizontal-axis wind turbines (HAWT) with fixed-pitch rotors. This configuration regulates the peak power by allowing the rotor blade to aerodynamically stall. The stall point, the point of maximum coefficient of lift, is currently predicted using data obtained from wind tunnel tests. Unfortunately, these tests do not accurately simulate conditions encountered in the field. Flow around the tower and nacelle coupled with inflow turbulence and rotation of the turbine blades create unpredicted aerodynamic forces. Dynamic stall is hypothesized to occur. Such aerodynamic loads are transmitted into the rotor and tower causing structural resonance that drastically reduces the design lifetime of the wind turbine. The current method of alleviating this problem is to structurally reinforce the tower and blades. However, this adds unneeded mass and, therefore, cost to the turbines. A better understanding of the aerodynamic forces and the manner in which they affect the structure would allow for the design of more cost effective and durable wind turbines. Data compiled by the National Renewable Energy Laboratory (NREL) for a downwind HAWT with constant chord, untwisted, fixed-pitch rotors is analyzed. From these data, the actual aerodynamic characteristics of the rotor are being portrayed and the potential effects upon the structure can for the first time be fully analyzed. Based upon their understanding, solutions to the problem of structural resonance are emerging.

Miller, M.S.; Shipley, D.E. [Univ. of Colorado, Boulder, CO (United States). BioServe Space Technologies

1994-08-01T23:59:59.000Z

267

WIND TURBINE SITING IN AN URBAN ENVIRONMENT: THE HULL, MA 660 KW TURBINE  

E-Print Network [OSTI]

1 WIND TURBINE SITING IN AN URBAN ENVIRONMENT: THE HULL, MA 660 KW TURBINE J. F. Manwell, J. G. Mc turbine at Windmill Point in Hull, Massachusetts represents a high point in the long history of wind, through the installation of a 40 kW Enertech machine in the 1980's to the installation of the new turbine

Massachusetts at Amherst, University of

268

Wind, Thermal, and Earthquake Monitoring of the Watts Towers  

E-Print Network [OSTI]

C Solar heating will introduce stresses into the tower’sTower. The LACMA weather station records additional variables such as humidity and solar

English, Jackson

2013-01-01T23:59:59.000Z

269

Built-Environment Wind Turbine Roadmap  

SciTech Connect (OSTI)

Although only a small contributor to total electricity production needs, built-environment wind turbines (BWTs) nonetheless have the potential to influence the public's consideration of renewable energy, and wind energy in particular. Higher population concentrations in urban environments offer greater opportunities for project visibility and an opportunity to acquaint large numbers of people to the advantages of wind projects on a larger scale. However, turbine failures will be equally visible and could have a negative effect on public perception of wind technology. This roadmap provides a framework for achieving the vision set forth by the attendees of the Built-Environment Wind Turbine Workshop on August 11 - 12, 2010, at the U.S. Department of Energy's National Renewable Energy Laboratory. The BWT roadmap outlines the stakeholder actions that could be taken to overcome the barriers identified. The actions are categorized as near-term (0 - 3 years), medium-term (4 - 7 years), and both near- and medium-term (requiring immediate to medium-term effort). To accomplish these actions, a strategic approach was developed that identifies two focus areas: understanding the built-environment wind resource and developing testing and design standards. The authors summarize the expertise and resources required in these areas.

Smith, J.; Forsyth, T.; Sinclair, K.; Oteri, F.

2012-11-01T23:59:59.000Z

270

Final Technical Report Recovery Act: Online Nonintrusive Condition Monitoring and Fault Detection for Wind Turbines  

SciTech Connect (OSTI)

The penetration of wind power has increased greatly over the last decade in the United States and across the world. The U.S. wind power industry installed 1,118 MW of new capacity in the first quarter of 2011 alone and entered the second quarter with another 5,600 MW under construction. By 2030, wind energy is expected to provide 20% of the U.S. electricity needs. As the number of wind turbines continues to grow, the need for effective condition monitoring and fault detection (CMFD) systems becomes increasingly important [3]. Online CMFD is an effective means of not only improving the reliability, capacity factor, and lifetime, but it also reduces the downtime, energy loss, and operation and maintenance (O&M) of wind turbines. The goal of this project is to develop novel online nonintrusive CMFD technologies for wind turbines. The proposed technologies use only the current measurements that have been used by the control and protection system of a wind turbine generator (WTG); no additional sensors or data acquisition devices are needed. Current signals are reliable and easily accessible from the ground without intruding on the wind turbine generators (WTGs) that are situated on high towers and installed in remote areas. Therefore, current-based CMFD techniques have great economic benefits and the potential to be adopted by the wind energy industry. Specifically, the following objectives and results have been achieved in this project: (1) Analyzed the effects of faults in a WTG on the generator currents of the WTG operating at variable rotating speed conditions from the perspective of amplitude and frequency modulations of the current measurements; (2) Developed effective amplitude and frequency demodulation methods for appropriate signal conditioning of the current measurements to improve the accuracy and reliability of wind turbine CMFD; (3) Developed a 1P-invariant power spectrum density (PSD) method for effective signature extraction of wind turbine faults with characteristic frequencies in the current or current demodulated signals, where 1P stands for the shaft rotating frequency of a WTG; (4) Developed a wavelet filter for effective signature extraction of wind turbine faults without characteristic frequencies in the current or current demodulated signals; (5) Developed an effective adaptive noise cancellation method as an alternative to the wavelet filter method for signature extraction of wind turbine faults without characteristic frequencies in the current or current demodulated signals; (6) Developed a statistical analysis-based impulse detection method for effective fault signature extraction and evaluation of WTGs based on the 1P-invariant PSD of the current or current demodulated signals; (7) Validated the proposed current-based wind turbine CMFD technologies through extensive computer simulations and experiments for small direct-drive WTGs without gearboxes; and (8) Showed, through extensive experiments for small direct-drive WTGs, that the performance of the proposed current-based wind turbine CMFD technologies is comparable to traditional vibration-based methods. The proposed technologies have been successfully applied for detection of major failures in blades, shafts, bearings, and generators of small direct-drive WTGs. The proposed technologies can be easily integrated into existing wind turbine control, protection, and monitoring systems and can be implemented remotely from the wind turbines being monitored. The proposed technologies provide an alternative to vibration-sensor-based CMFD. This will reduce the cost and hardware complexity of wind turbine CMFD systems. The proposed technologies can also be combined with vibration-sensor-based methods to improve the accuracy and reliability of wind turbine CMFD systems. When there are problems with sensors, the proposed technologies will ensure proper CMFD for the wind turbines, including their sensing systems. In conclusion, the proposed technologies offer an effective means to achieve condition-based smart maintenance for wind turbines and have a gre

Wei Qiao

2012-05-29T23:59:59.000Z

271

Advanced Wind Energy Projects Test Facility Moving to Texas Tech...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

The Lubbock site will include an initial installation of two 225-kilowatt wind turbines and three anemometer towers, with the potential to expand to nine or more wind...

272

Wind turbine reliability :understanding and minimizing wind turbine operation and maintenance costs.  

SciTech Connect (OSTI)

Wind turbine system reliability is a critical factor in the success of a wind energy project. Poor reliability directly affects both the project's revenue stream through increased operation and maintenance (O&M) costs and reduced availability to generate power due to turbine downtime. Indirectly, the acceptance of wind-generated power by the financial and developer communities as a viable enterprise is influenced by the risk associated with the capital equipment reliability; increased risk, or at least the perception of increased risk, is generally accompanied by increased financing fees or interest rates. This paper outlines the issues relevant to wind turbine reliability for wind turbine power generation projects. The first sections describe the current state of the industry, identify the cost elements associated with wind farm O&M and availability and discuss the causes of uncertainty in estimating wind turbine component reliability. The latter sections discuss the means for reducing O&M costs and propose O&M related research and development efforts that could be pursued by the wind energy research community to reduce cost of energy.

Walford, Christopher A. (Global Energy Concepts. Kirkland, WA)

2006-03-01T23:59:59.000Z

273

Wooden wind turbine blade manufacturing process  

DOE Patents [OSTI]

A wooden wind turbine blade is formed by laminating wood veneer in a compression mold having the exact curvature needed for one side of the blade, following which the other side of the blade is ground flat along its length but twisted with respect to the blade axis.

Coleman, Clint (Warren, VT)

1986-01-01T23:59:59.000Z

274

Root region airfoil for wind turbine  

DOE Patents [OSTI]

A thick airfoil for the root region of the blade of a wind turbine. The airfoil has a thickness in a range from 24%-26% and a Reynolds number in a range from 1,000,000 to 1,800,000. The airfoil has a maximum lift coefficient of 1.4-1.6 that has minimum sensitivity to roughness effects.

Tangler, James L. (Boulder, CO); Somers, Dan M. (State College, PA)

1995-01-01T23:59:59.000Z

275

Redesign of a wind turbine hub  

E-Print Network [OSTI]

The current designs of wind turbine hubs contain many faults. The slew ring bearing that connects the blade to the hub takes on a large bending moment that in many cases causes the joints to fail and the blade to break ...

Hunter-Jones, Bridget I

2014-01-01T23:59:59.000Z

276

Wind Turbine Tribology Seminar - A Recap  

SciTech Connect (OSTI)

Tribology is the science and engineering of interacting surfaces in relative motion. It includes the study and application of the principles of friction, lubrication, and wear. It is an important phenomenon that not only impacts the design and operation of wind turbine gearboxes, but also their subsequent maintenance requirements and overall reliability. With the major growth and increasing dependency on renewable energy, mechanical reliability is an extremely important issue. The Wind Turbine Tribology Seminar was convened to explore the state-of-the-art in wind turbine tribology and lubricant technologies, raise industry awareness of a very complex topic, present the science behind each technology, and identify possible R&D areas. To understand the background of work that had already been accomplished, and to consolidate some level of collective understanding of tribology by acknowledged experts, the National Renewable Energy Laboratory (NREL), Argonne National Laboratory (ANL), and the U.S. Department of Energy (DOE) hosted a wind turbine tribology seminar. It was held at the Renaissance Boulder Flatiron Hotel in Broomfield, Colorado on November 15-17, 2011. This report is a summary of the content and conclusions. The presentations given at the meeting can be downloaded. Interested readers who were not at the meeting may wish to consult the detailed publications listed in the bibliography section, obtain the cited articles in the public domain, or contact the authors directly.

Errichello, R.; Sheng, S.; Keller, J.; Greco, A.

2012-02-01T23:59:59.000Z

277

AWEA Small Wind Turbine Global Market Study  

E-Print Network [OSTI]

Displaced Carbon Dioxide 17 Building-Mounted Turbines 17 Manufacturing 18 The Global Market 21 Solar Summary Table 1 #12;4 | AMERICAn WInD EnERGy ASSOCIATIOn Based on a 2010 AWEA survey of manufacturers and standardized interconnection regulations, and the appropriation and allocation of federal research

Leu, Tzong-Shyng "Jeremy"

278

Computer Simulation of Cooling Effect of Wind Tower on Passively Ventilated Building  

E-Print Network [OSTI]

Computer Simulation of Cooling Effect of Wind Tower on Passively Ventilated Building John Seryak Kelly Kissock Project Engineer Associate Professor Department of Mechanical and Aerospace Engineering... University of Dayton Dayton, Ohio ABSTRACT Traditional buildings are cooled and ventilated by mechanically induced drafts. Natural ventilation aspires to cool and ventilate a building by natural means, such as cross ventilation or wind towers...

Seryak, J.; Kissock, J. K.

2002-01-01T23:59:59.000Z

279

Power Performance Test Report for the SWIFT Wind Turbine  

SciTech Connect (OSTI)

This report summarizes the results of a power performance test that NREL conducted on the SWIFT wind turbine. This test was conducted in accordance with the International Electrotechnical Commission's (IEC) standard, Wind Turbine Generator Systems Part 12: Power Performance Measurements of Electricity Producing Wind Turbines, IEC 61400-12-1 Ed.1.0, 2005-12. However, because the SWIFT is a small turbine as defined by IEC, NREL also followed Annex H that applies to small wind turbines. In these summary results, wind speed is normalized to sea-level air density.

Mendoza, I.; Hur, J.

2012-12-01T23:59:59.000Z

280

The impact of wind turbines on birds in upstate New York  

SciTech Connect (OSTI)

During spring and fall 1995, ABR, Inc., an environmental research firm, used radar and visual techniques to study bird migration near proposed and existing wind-turbine sites in upstate New York for Niagara Mohawk Power Corporation. The primary goal of the study was to evaluate the possible impacts of wind turbines and meteorological towers on local and migratory birds during the spring and fall migration periods. Here we primarily report on data collected from the existing wind-turbine site at Copenhagen. In addition to visual observations of diurnal movements of birds, two radars were used for observations of migrating birds at night. The surveillance radar provided information on nocturnal migration rates, flight directions, and flight behavior. The vertical radar provided information on flight altitudes.

Cooper, B.A. [ABR, Inc., Forest Grove, OR (United States); Johnson, C.B. [ABR, Inc., Fairbanks, AK (United States)

1995-12-31T23:59:59.000Z

Note: This page contains sample records for the topic "wind turbine towers" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


281

Estimation of Seismic Load Demand for a Wind Turbine in the Time Domain: Preprint  

SciTech Connect (OSTI)

Turbines installed in seismically active regions such as the Pacific Rim or the Mediterranean must consider loads induced by base shaking from an earthquake. To account for this earthquake risk, current International Electrotechnical Commission (IEC) certification requirements provide a simplified method for calculating seismic loads which is intended to be conservative. Through the addition of capabilities, it is now possible to simulate earthquake loading of a wind turbine in conjunction other load sources such as wind and control system behavior using the FAST code. This paper presents a comparison of three earthquake loading scenarios of the National Renewable Energy Laboratory (NREL) offshore 5-MW baseline wind turbine: idling; continued operation through an earthquake; and an emergency shutdown initiated by an earthquake. Using a set of 22 earthquake records, simulations are conducted for each load case. A summary of the resulting tower moment demand is presented to assess the influence of operational state on the resulting structural demand.

Prowell, I.; Elgamal, A.; Uang, C.; Jonkman, J.

2010-03-01T23:59:59.000Z

282

Sandia National Laboratories: Wind Turbine Blade Design  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmosphericNuclear Security Administration the1development Sandia, NREL Release Wave EnergyLinks WaterWindSandia WindWind Turbine

283

Guidelines for reducing dynamic loads in two-bladed teetering-hub downwind wind turbines  

SciTech Connect (OSTI)

A major goal of the federal Wind Energy Program is the rapid development and validation of structural models to determine loads and response for a wide variety of different wind turbine configurations operating under extreme conditions. Such codes are crucial to the successful design of future advanced wind turbines. In previous papers the authors described steps they took to develop a model of a two-bladed teetering-hub downwind wind turbine using ADAMS{reg_sign} (Automatic Dynamic Analysis of Mechanical Systems), as well as comparison of model predictions to test data. In this paper they show the use of this analytical model to study the influence of various turbine parameters on predicted system loads. They concentrate their study on turbine response in the frequency range of six to ten times the rotor rotational frequency (6P to 10P). Their goal is to identify the most important parameters which influence the response of this type of machine in this frequency range and give turbine designers some general design guidelines for designing two-bladed teetering-hub machines to be less susceptible to vibration. They study the effects of such parameters as blade edgewise and flapwise stiffness, tower top stiffness, blade tip-brake mass, low-speed shaft stiffness, nacelle mass momenta of inertia, and rotor speed. They show which parameters can be varied in order to make the turbine less responsive to such atmospheric inputs as wind shear and tower shadow. They then give designers a set of design guidelines in order to show how these machines can be designed to be less responsive to these inputs.

Wright, A.D.; Bir, G.S.; Butterfield, C.D.

1995-06-01T23:59:59.000Z

284

Duration Test Report for the Viryd CS8 Wind Turbine  

SciTech Connect (OSTI)

This report summarizes the results of a duration noise test that the National Renewable Energy Laboratory (NREL) conducted on the Viryd CS8 wind turbine. This test was conducted in accordance with Clause 9.4 of the International Electrotechnical Commission's (IEC) standard, Wind turbines - Part 2: Design requirements for small wind turbines, IEC 61400-2 Ed. 2.0:2006-03. NREL researchers evaluated the turbine based on structural integrity and material degradation, quality of environmental protection, and dynamic behavior.

Roadman, J.; Murphy, M.; van Dam, J.

2013-06-01T23:59:59.000Z

285

WIND-TUNNEL STUDY ON AERODYNAMIC PERFORMANCE OF SMALL VERTICAL-AXIS WIND TURBINES  

E-Print Network [OSTI]

1 WIND-TUNNEL STUDY ON AERODYNAMIC PERFORMANCE OF SMALL VERTICAL-AXIS WIND TURBINES J. J. Miau*1 were carried out to study the aerodynamic performance of three vertical axis wind turbines (VAWTs. On the other hand, the characteristics of unsteady flow around the helical wind turbine were studied with a hot

Leu, Tzong-Shyng "Jeremy"

286

Response of a Vertical Axis Wind Turbine to Time Varying Wind Conditions found within the Urban  

E-Print Network [OSTI]

Response of a Vertical Axis Wind Turbine to Time Varying Wind Conditions found within the Urban, 2010 PP 389­401 389 ABSTRACT Experimental testing of a vertical axis wind turbine within the urban of the turbine. Temporal variation of the wind with respect to the direction and velocity fluctuations

Tullis, Stephen

287

Effects of Changing Atmospheric Conditions on Wind Turbine Performance (Poster)  

SciTech Connect (OSTI)

Multi-megawatt, utility-scale wind turbines operate in turbulent and dynamic winds that impact turbine performance in ways that are gradually becoming better understood. This poster presents a study made using a turbulent flow field simulator (TurbSim) and a Turbine aeroelastic simulator (FAST) of the response of a generic 1.5 MW wind turbine to changing inflow. The turbine power output is found to be most sensitive to wind speed and turbulence intensity, but the relationship depends on the wind speed with respect to the turbine's rated wind speed. Shear is found to be poorly correlated to power. A machine learning method called 'regression trees' is used to create a simple model of turbine performance that could be used as part of the wind resource assessment process. This study has used simple flow fields and should be extended to more complex flows, and validated with field observations.

Clifton, A.

2012-12-01T23:59:59.000Z

288

Probabilistic fatigue methodology and wind turbine reliability  

SciTech Connect (OSTI)

Wind turbines subjected to highly irregular loadings due to wind, gravity, and gyroscopic effects are especially vulnerable to fatigue damage. The objective of this study is to develop and illustrate methods for the probabilistic analysis and design of fatigue-sensitive wind turbine components. A computer program (CYCLES) that estimates fatigue reliability of structural and mechanical components has been developed. A FORM/SORM analysis is used to compute failure probabilities and importance factors of the random variables. The limit state equation includes uncertainty in environmental loading, gross structural response, and local fatigue properties. Several techniques are shown to better study fatigue loads data. Common one-parameter models, such as the Rayleigh and exponential models are shown to produce dramatically different estimates of load distributions and fatigue damage. Improved fits may be achieved with the two-parameter Weibull model. High b values require better modeling of relatively large stress ranges; this is effectively done by matching at least two moments (Weibull) and better by matching still higher moments. For this purpose, a new, four-moment {open_quotes}generalized Weibull{close_quotes} model is introduced. Load and resistance factor design (LRFD) methodology for design against fatigue is proposed and demonstrated using data from two horizontal-axis wind turbines. To estimate fatigue damage, wind turbine blade loads have been represented by their first three statistical moments across a range of wind conditions. Based on the moments {mu}{sub 1}{hor_ellipsis}{mu}{sub 3}, new {open_quotes}quadratic Weibull{close_quotes} load distribution models are introduced. The fatigue reliability is found to be notably affected by the choice of load distribution model.

Lange, C.H. [Stanford Univ., CA (United States)

1996-05-01T23:59:59.000Z

289

Dynamic Models for Wind Turbines and Wind Power Plants  

SciTech Connect (OSTI)

The primary objective of this report was to develop universal manufacturer-independent wind turbine and wind power plant models that can be shared, used, and improved without any restrictions by project developers, manufacturers, and engineers. Manufacturer-specific models of wind turbines are favored for use in wind power interconnection studies. While they are detailed and accurate, their usages are limited to the terms of the non-disclosure agreement, thus stifling model sharing. The primary objective of the work proposed is to develop universal manufacturer-independent wind power plant models that can be shared, used, and improved without any restrictions by project developers, manufacturers, and engineers. Each of these models includes representations of general turbine aerodynamics, the mechanical drive-train, and the electrical characteristics of the generator and converter, as well as the control systems typically used. To determine how realistic model performance is, the performance of one of the models (doubly-fed induction generator model) has been validated using real-world wind power plant data. This work also documents selected applications of these models.

Singh, M.; Santoso, S.

2011-10-01T23:59:59.000Z

290

Earthquake Response Modeling for a Parked and Operating Megawatt-Scale Wind Turbine  

SciTech Connect (OSTI)

Demand parameters for turbines, such as tower moment demand, are primarily driven by wind excitation and dynamics associated with operation. For that purpose, computational simulation platforms have been developed, such as FAST, maintained by the National Renewable Energy Laboratory (NREL). For seismically active regions, building codes also require the consideration of earthquake loading. Historically, it has been common to use simple building code approaches to estimate the structural demand from earthquake shaking, as an independent loading scenario. Currently, International Electrotechnical Commission (IEC) design requirements include the consideration of earthquake shaking while the turbine is operating. Numerical and analytical tools used to consider earthquake loads for buildings and other static civil structures are not well suited for modeling simultaneous wind and earthquake excitation in conjunction with operational dynamics. Through the addition of seismic loading capabilities to FAST, it is possible to simulate earthquake shaking in the time domain, which allows consideration of non-linear effects such as structural nonlinearities, aerodynamic hysteresis, control system influence, and transients. This paper presents a FAST model of a modern 900-kW wind turbine, which is calibrated based on field vibration measurements. With this calibrated model, both coupled and uncoupled simulations are conducted looking at the structural demand for the turbine tower. Response is compared under the conditions of normal operation and potential emergency shutdown due the earthquake induced vibrations. The results highlight the availability of a numerical tool for conducting such studies, and provide insights into the combined wind-earthquake loading mechanism.

Prowell, I.; Elgamal, A.; Romanowitz, H.; Duggan, J. E.; Jonkman, J.

2010-10-01T23:59:59.000Z

291

Wind turbine reliability : understanding and minimizing wind turbine operation and maintenance costs.  

SciTech Connect (OSTI)

Wind turbine system reliability is a critical factor in the success of a wind energy project. Poor reliability directly affects both the project's revenue stream through increased operation and maintenance (O&M) costs and reduced availability to generate power due to turbine downtime. Indirectly, the acceptance of wind-generated power by the financial and developer communities as a viable enterprise is influenced by the risk associated with the capital equipment reliability; increased risk, or at least the perception of increased risk, is generally accompanied by increased financing fees or interest rates. Cost of energy (COE) is a key project evaluation metric, both in commercial applications and in the U.S. federal wind energy program. To reflect this commercial reality, the wind energy research community has adopted COE as a decision-making and technology evaluation metric. The COE metric accounts for the effects of reliability through levelized replacement cost and unscheduled maintenance cost parameters. However, unlike the other cost contributors, such as initial capital investment and scheduled maintenance and operating expenses, costs associated with component failures are necessarily speculative. They are based on assumptions about the reliability of components that in many cases have not been operated for a complete life cycle. Due to the logistical and practical difficulty of replacing major components in a wind turbine, unanticipated failures (especially serial failures) can have a large impact on the economics of a project. The uncertainty associated with long-term component reliability has direct bearing on the confidence level associated with COE projections. In addition, wind turbine technology is evolving. New materials and designs are being incorporated in contemporary wind turbines with the ultimate goal of reducing weight, controlling loads, and improving energy capture. While the goal of these innovations is reduction in the COE, there is a potential impact on reliability whenever new technologies are introduced. While some of these innovations may ultimately improve reliability, in the short term, the technology risks and the perception of risk will increase. The COE metric used by researchers to evaluate technologies does not address this issue. This paper outlines the issues relevant to wind turbine reliability for wind turbine power generation projects. The first sections describe the current state of the industry, identify the cost elements associated with wind farm O&M and availability and discuss the causes of uncertainty in estimating wind turbine component reliability. The latter sections discuss the means for reducing O&M costs and propose O&M related research and development efforts that could be pursued by the wind energy research community to reduce COE.

Not Available

2004-11-01T23:59:59.000Z

292

Understanding Trends in Wind Turbine Prices Over the Past Decade  

E-Print Network [OSTI]

Innovation and the price of wind energy in the US. ” Energythe impact of energy price changes on wind turbine prices.Costs 3.6 Energy Prices Life-cycle analyses of wind projects

Bolinger, Mark

2012-01-01T23:59:59.000Z

293

NREL Releases RFP for Distributed Wind Turbine Competitiveness Improvement Projects  

Broader source: Energy.gov [DOE]

In support of DOE's efforts to further develop distributed wind technology, NREL's National Wind Technology Center has released a Request for Proposal for the following Distributed Wind Turbine Competitiveness Improvement Projects on the Federal Business

294

Understanding Wind Turbine Price Trends in the U.S. Over the Past Decade  

E-Print Network [OSTI]

consequent impacts on wind turbine and wind energy pricing.Bloomberg NEF”). 2011c. Wind Turbine Price Index, Issue V.Understanding Trends in Wind Turbine Prices Over the Past

Bolinger, Mark

2013-01-01T23:59:59.000Z

295

Understanding Wind Turbine Price Trends in the U.S. Over the Past Decade  

E-Print Network [OSTI]

impacts on wind turbine and wind energy pricing. ReferencesProduction from a V112 Turbine Wind Plant. Prepared forBloomberg NEF”). 2011c. Wind Turbine Price Index, Issue V.

Bolinger, Mark

2013-01-01T23:59:59.000Z

296

Danehy Park Wind Turbine Project Preliminary Assessment Report  

E-Print Network [OSTI]

Danehy Park Wind Turbine Project Preliminary Assessment Report Danehy Park Project Group Wind turbine. Katherine Dykes and Sungho Lee for their leadership, guidance, and feedback. #12;1 Introduction sensors were mounted is marked with a yellow star. #12;2 Turbine Evaluation Set This report evaluates

297

Ris R1024EN Design of the Wind Turbine  

E-Print Network [OSTI]

Ris R1024EN Design of the Wind Turbine Airfoil Family RIS AXX Kristian S. Dahl, Peter Fuglsang Ris National Laboratory, Roskilde, Denmark December 1998 #12;Abstract A method for design of wind turbine turbine. The airfoils are designed to have maximum lift-drag ratio until just below stall, a design lift

298

Design Loads for Wind Turbines using the Environmental Contour Method  

E-Print Network [OSTI]

Design Loads for Wind Turbines using the Environmental Contour Method Korn Saranyasoontorn, TX 78712 When interest is in establishing ultimate design loads for wind turbines such that a service). The parametric conditional load distri- butions require extensive turbine response simulations over the entire

Manuel, Lance

299

NREL: Wind Research - Small Wind Turbine Development  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmosphericNuclear Security Administration the Contributions andData andFleet Test andField VerificationPossibleResearchSmall Wind

300

Wind Scanner: A full-scale Laser Facility for Wind and Turbulence Measurements around large Wind Turbines  

E-Print Network [OSTI]

measurements of the wind fields engulfing today's huge wind turbines. Our aim is to measure in real- time 3D velocity field, ,within the volumes that fully surround the huge wind turbines of today and tomorrow atmospheric flow that surrounds the giant wind turbines. This new knowledge we envision will accelerate

Note: This page contains sample records for the topic "wind turbine towers" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


301

66 APRIL | 2010 The FuTure oF Wind Turbine  

E-Print Network [OSTI]

66 APRIL | 2010 The FuTure oF Wind Turbine diagnosTics Wind energy is undergoing expansion in the form of large-scale wind farms, wind energy cooperatives, wind turbines owned by indi- vidual investors of wind turbines, operation and maintenance (O&M) costs remain high due to failures of wind turbine

Kusiak, Andrew

302

Wear Analysis of Wind Turbine Gearbox Bearings  

SciTech Connect (OSTI)

The objective of this effort was to investigate and characterize the nature of surface damage and wear to wind turbine gearbox bearings returned from service in the field. Bearings were supplied for examination by S. Butterfield and J. Johnson of the National Wind Technology Center (NREL), Boulder, Colorado. Studies consisted of visual examination, optical and electron microscopy, dimensional measurements of wear-induced macro-scale and micro-scale features, measurements of macro- and micro-scale hardness, 3D imaging of surface damage, studies of elemental distributions on fracture surfaces, and examinations of polished cross-sections of surfaces under various etched and non-etched conditions.

Blau, Peter Julian [ORNL; Walker, Larry R [ORNL; Xu, Hanbing [ORNL; Parten, Randy J [ORNL; Qu, Jun [ORNL; Geer, Tom [ORNL

2010-04-01T23:59:59.000Z

303

Pioneer Asia Wind Turbines | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Office of Inspector GeneralDepartmentAUDIT REPORTOpenWende New Energy CoFirstNovosPatriot Wind IncAsia Wind Turbines

304

Root region airfoil for wind turbine  

DOE Patents [OSTI]

A thick airfoil is described for the root region of the blade of a wind turbine. The airfoil has a thickness in a range from 24%--26% and a Reynolds number in a range from 1,000,000 to 1,800,000. The airfoil has a maximum lift coefficient of 1.4--1.6 that has minimum sensitivity to roughness effects. 3 Figs.

Tangler, J.L.; Somers, D.M.

1995-05-23T23:59:59.000Z

305

The Federal Advanced Wind Turbine Program  

SciTech Connect (OSTI)

The development of technologically advanced, higher efficiency wind turbines has been identified as a high priority activity by the US wind industry. The Department of Energy`s Wind Energy Program has begun a multi-year development program aimed at assisting the wind industry with the design, development, and testing of advanced wind turbine systems that can compete with conventional electric generation for $0.05/kWh at 13 mph sites by the mid-1990s and with fossil-fuel-based generators for $0.04/kWh at 13 mph sites by the year 2000. The development plan consists of four phases: (1) Conceptual Design Studies; (2) Near-Term Product Development; (3) Next Generation Technology Integration and Design, and (4) Next- Generation Technology Development and Testing. The Conceptual Design Studies were begun in late 1990, and are scheduled for completion in the Spring of 1992. Preliminary results from these analyses are very promising and indicate that the goals stated above are technically feasible. This paper includes a brief summary of the Conceptual Design Studies and presents initial plans for the follow-on activities. 3 refs., 4 figs.

Hock, S.M.; Thresher, R.W. [National Renewable Energy Lab., Golden, CO (United States); Goldman, P.R. [USDOE, Washington, DC (United States)

1991-12-01T23:59:59.000Z

306

The Federal Advanced Wind Turbine Program  

SciTech Connect (OSTI)

The development of technologically advanced, higher efficiency wind turbines has been identified as a high priority activity by the US wind industry. The Department of Energy's Wind Energy Program has begun a multi-year development program aimed at assisting the wind industry with the design, development, and testing of advanced wind turbine systems that can compete with conventional electric generation for $0.05/kWh at 13 mph sites by the mid-1990s and with fossil-fuel-based generators for $0.04/kWh at 13 mph sites by the year 2000. The development plan consists of four phases: (1) Conceptual Design Studies; (2) Near-Term Product Development; (3) Next Generation Technology Integration and Design, and (4) Next- Generation Technology Development and Testing. The Conceptual Design Studies were begun in late 1990, and are scheduled for completion in the Spring of 1992. Preliminary results from these analyses are very promising and indicate that the goals stated above are technically feasible. This paper includes a brief summary of the Conceptual Design Studies and presents initial plans for the follow-on activities. 3 refs., 4 figs.

Hock, S M; Thresher, R W [National Renewable Energy Lab., Golden, CO (United States); Goldman, P R [USDOE, Washington, DC (United States)

1991-12-01T23:59:59.000Z

307

DOE Seeking Proposals to Advance Distributed Wind Turbine Technology...  

Energy Savers [EERE]

Project (CIP). The CIP aims to help U.S. manufacturers of small and mid-sized wind turbines with rotor swept areas up to 1,000 square meters improve their turbine designs and...

308

Structural Monitoring of Wind Turbines using Wireless Sensor Networks  

E-Print Network [OSTI]

on traditional fossil fuel technologies. Conditional monitoring of wind turbines can help to avert unplanned). Technological improvements (e.g. larger, more powerful generation turbines) and federal tax subsidies have

Sweetman, Bert

309

The determination of stochastic loads on horizontal axis wind turbine blades  

SciTech Connect (OSTI)

The FAST Code which is capable of determining structural loads of a flexible, teetering, horizontal axis wind turbine is described and comparisons of calculated loads with test data are given at two wind speeds for the ESI-80. The FAST Code models a two-bladed HAWT with degrees-of-freedom for blade bending, teeter, drive train flexibility, yaw, and windwise and crosswind tower motion. The code allows blade dimensions, stiffnesses, and weights to differ and the code models tower shadow, wind shear, and turbulence. Additionally, dynamic stall is included as are delta-3 and an underslung rotor. Load comparisons are made with ESI-80 test data in the form of power spectral density, rainflow counting occurrence histograms, and azimuth averaged bin plots. It is concluded that agreement between the FAST Code and test results is good.

Freeman, L.N.; Wilson, R.E. [Oregon State Univ., Corvallis, OR (United States). Dept. of Mechanical Engineering

1998-05-01T23:59:59.000Z

310

Voltage grid support of DFIG wind turbines during grid faults Anca D. Hansen1  

E-Print Network [OSTI]

Voltage grid support of DFIG wind turbines during grid faults Anca D. Hansen1 , Gabriele Michalke2) wind turbines address primarily the design of DFIG wind turbine control with special focus on power strategy for DFIG wind turbines, which enhances the fault ride-through capability of DFIG wind turbines

311

36 SEPTEMBER | 2012 WiNd TURbiNE CAPACiTY  

E-Print Network [OSTI]

36 SEPTEMBER | 2012 WiNd TURbiNE CAPACiTY FRONTiER FROM SCAdA ThE WORld hAS SEEN A significant contributor to this growth. The wind turbine generated energy depends on the wind potential and the turbine of wind turbines. Supervi- sory control and data acquisition (SCADA) systems record wind turbine

Kusiak, Andrew

312

Siting guidelines for utility application of wind turbines. Final report  

SciTech Connect (OSTI)

Utility-oriented guidelines are described for identifying viable sites for wind turbines. Topics and procedures are also discussed that are important in carrying out a wind turbine siting program. These topics include: a description of the Department of Energy wind resource atlases; procedures for predicting wind turbine performance at potential sites; methods for analyzing wind turbine economics; procedures for estimating installation and maintenance costs; methods for anlayzing the distribution of wind resources over an area; and instrumentation for documenting wind behavior at potential sites. The procedure described is applicable to small and large utilities. Although the procedure was developed as a site-selection tool, it can also be used by a utility who wishes to estimate the potential for wind turbine penetration into its future generation mix.

Pennell, W.T.

1983-01-01T23:59:59.000Z

313

Offshore Series Wind Turbine Variable Hub heights & rotor diameters  

E-Print Network [OSTI]

3.6MW Offshore Series Wind Turbine GE Energy #12;Feature Variable Hub heights & rotor diameters-savings feature, considering the rigors of offshore power generation. The 3.6 MW offshore wind turbine also, for both on and offshore use. Special features include... As the world's first commercially available wind

Firestone, Jeremy

314

Trailing Edge Noise Model Applied to Wind Turbine Airfoils  

E-Print Network [OSTI]

flows, as well as the acoustic waves, using Computational Fluid Dynamics have become affordable thanksTrailing Edge Noise Model Applied to Wind Turbine Airfoils Franck Bertagnolio Risø-R-1633(EN) Risø Bertagnolio Title: Trailing Edge Noise Model Applied to Wind Turbine Airfoils Department: Wind Energy

315

Wind Turbine Pitch Angle Controllers for Grid Frequency Stabilisation  

E-Print Network [OSTI]

Wind Turbine Pitch Angle Controllers for Grid Frequency Stabilisation Clemens Jauch Risø National Laboratory Wind Energy Department P.O. Box 49 DK-4000 Roskilde, Denmark clemens.jauch@risoe.dk Abstract: In this paper it is investigated how active-stall wind turbines can contribute to the stabilisation of the power

316

Extreme Loads for an Offshore Wind Turbine using Statistical  

E-Print Network [OSTI]

Extreme Loads for an Offshore Wind Turbine using Statistical Extrapolation from Limited Field Data,itiscommontoeithercarry out extensive simulation studies or undertake a field measurement campaign. At the Blyth offshore wind here is to estimate extreme loads for an offshore wind turbine for which the environmental and load

Manuel, Lance

317

AIAA-2001-0047 PARAMETRIC MODELS FOR ESTIMATING WIND TURBINE  

E-Print Network [OSTI]

. INTRODUCTION Design constraints for wind turbine structures fall into either extreme load or fatigue categoriesAIAA-2001-0047 1 PARAMETRIC MODELS FOR ESTIMATING WIND TURBINE FATIGUE LOADS FOR DESIGN Lance at Austin, Austin, TX 78712 2 Sandia National Laboratories, Wind Energy Technology Department, Albuquerque

Sweetman, Bert

318

PARAMETRIC MODELS FOR ESTIMATING WIND TURBINE FATIGUE LOADS FOR DESIGN  

E-Print Network [OSTI]

loads. #12;2 INTRODUCTION Design constraints for wind turbine structures fall into either extreme load1 PARAMETRIC MODELS FOR ESTIMATING WIND TURBINE FATIGUE LOADS FOR DESIGN Lance Manuel1 Paul S, TX 78712 2 Sandia National Laboratories, Wind Energy Technology Department, Albuquerque, NM 87185

Sweetman, Bert

319

Radar-cross-section reduction of wind turbines. part 1.  

SciTech Connect (OSTI)

In recent years, increasing deployment of large wind-turbine farms has become an issue of growing concern for the radar community. The large radar cross section (RCS) presented by wind turbines interferes with radar operation, and the Doppler shift caused by blade rotation causes problems identifying and tracking moving targets. Each new wind-turbine farm installation must be carefully evaluated for potential disruption of radar operation for air defense, air traffic control, weather sensing, and other applications. Several approaches currently exist to minimize conflict between wind-turbine farms and radar installations, including procedural adjustments, radar upgrades, and proper choice of low-impact wind-farm sites, but each has problems with limited effectiveness or prohibitive cost. An alternative approach, heretofore not technically feasible, is to reduce the RCS of wind turbines to the extent that they can be installed near existing radar installations. This report summarizes efforts to reduce wind-turbine RCS, with a particular emphasis on the blades. The report begins with a survey of the wind-turbine RCS-reduction literature to establish a baseline for comparison. The following topics are then addressed: electromagnetic model development and validation, novel material development, integration into wind-turbine fabrication processes, integrated-absorber design, and wind-turbine RCS modeling. Related topics of interest, including alternative mitigation techniques (procedural, at-the-radar, etc.), an introduction to RCS and electromagnetic scattering, and RCS-reduction modeling techniques, can be found in a previous report.

Brock, Billy C.; Loui, Hung; McDonald, Jacob J.; Paquette, Joshua A.; Calkins, David A.; Miller, William K.; Allen, Steven E.; Clem, Paul Gilbert; Patitz, Ward E.

2012-03-05T23:59:59.000Z

320

A comparison of predicted wind turbine blade loads to test measurements  

SciTech Connect (OSTI)

The accurate prediction of wind turbine blade loads and response is important in predicting the fatigue life of wind machines. At the SERI Wind Energy Research Center, a rotor code called FLAP (Force and Loads Analysis Program) is currently being validated by comparing predicted results to machine measurements. The FLAP code has been modified to allow the teetering degrees of freedom. This paper describes these modifications and comparisons of predicted blade bending moments to test measurements. Wind tunnel data for a 1/20th scale model will be used to compare FLAP predictions for the cyclic flap-bending moments at the 33% spanwise station for three different wind speeds. The comparisons will be made for both rigid and teetering hubs. Currently, the FLAP code accounts for deterministic excitations such as wind shear, tower shadow, gravity, and prescribed yawing motions. Conclusions will be made regarding the code's accuracy in predicting the cyclic bending moments.

Wright, A.D.; Thresher, R.W.

1987-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "wind turbine towers" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


321

Wind turbine | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home5b9fcbce19 NoPublic Utilities Address: 160 East 300 South Place:ReferenceEdit JumpWill County, Illinois:4 SectorWind forturbine:

322

Superconductivity for Large Scale Wind Turbines  

SciTech Connect (OSTI)

A conceptual design has been completed for a 10MW superconducting direct drive wind turbine generator employing low temperature superconductors for the field winding. Key technology building blocks from the GE Wind and GE Healthcare businesses have been transferred across to the design of this concept machine. Wherever possible, conventional technology and production techniques have been used in order to support the case for commercialization of such a machine. Appendices A and B provide further details of the layout of the machine and the complete specification table for the concept design. Phase 1 of the program has allowed us to understand the trade-offs between the various sub-systems of such a generator and its integration with a wind turbine. A Failure Modes and Effects Analysis (FMEA) and a Technology Readiness Level (TRL) analysis have been completed resulting in the identification of high risk components within the design. The design has been analyzed from a commercial and economic point of view and Cost of Energy (COE) calculations have been carried out with the potential to reduce COE by up to 18% when compared with a permanent magnet direct drive 5MW baseline machine, resulting in a potential COE of 0.075 $/kWh. Finally, a top-level commercialization plan has been proposed to enable this technology to be transitioned to full volume production. The main body of this report will present the design processes employed and the main findings and conclusions.

R. Fair; W. Stautner; M. Douglass; R. Rajput-Ghoshal; M. Moscinski; P. Riley; D. Wagner; J. Kim; S. Hou; F. Lopez; K. Haran; J. Bray; T. Laskaris; J. Rochford; R. Duckworth

2012-10-12T23:59:59.000Z

323

US Department of Energy wind turbine candidate site program: the regulatory process  

SciTech Connect (OSTI)

Sites selected in 1979 as tentative sites for installation of a demonstration MOD-2 turbine are emphasized. Selection as a candidate site in this program meant that the US Department of Energy (DOE) designated the site as eligible for a DOE-purchased and installed meteorological tower. The regulatory procedures involved in the siting and installation of these meteorological towers at the majority of the candidate sites are examined. An attempt is also made, in a preliminary fashion, to identify the legal and regulatory procedures that would be required to put up a turbine at each of these candidate sites. The information provided on each of these sites comes primarily from utility representatives, supplemented by conversations with state and local officials. The major findings are summarized on the following: federal requirements, state requirements, local requirements, land ownership, wind rights, and public attitudes.

Greene, M.R.; York, K.R.

1982-06-01T23:59:59.000Z

324

SciTech Connect: Improved Wind Turbine Drivetrain Reliability...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Improved Wind Turbine Drivetrain Reliability using a Combined Experimental, Computational, and Analytical Approach (Presentation) Citation Details In-Document Search Title:...

325

NREL: News - NREL Study: Active Power Control of Wind Turbines...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

414 NREL Study: Active Power Control of Wind Turbines Can Improve Power Grid Reliability January 20, 2014 The Energy Department's National Renewable Energy Laboratory (NREL), along...

326

WINDExchange Webinar: Small and Distributed Wind Turbine Update  

Broader source: Energy.gov [DOE]

Save the date for this free webinar presenting an overview of recent news and updates pertaining to small and distributed wind turbines.

327

WINDExchange Webinar: Small and Distributed Wind Turbine Update...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

an overview of recent news and updates pertaining to small and distributed wind turbines. Bret Barker, U.S. Department of Energy, will present a DOE program overview,...

328

Sandia National Laboratories: Siting: Wind Turbine/Radar Interference...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

and MIT Lincoln Laboratory). The goal is to overcome interference caused by wind turbines on civilian and military radar systems by developing site planning tools,...

329

INTERAGENCY FIELD TEST & EVALUATION OF WIND TURBINE - RADAR INTERFEREN...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

the tests and 2) summaries of three field tests designed to measure the impact of wind turbines on current air surveillance radars and the effectiveness of private sector...

330

Wind Turbine Inspection Technology Reaches New Heights | GE Global...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

week, we announced our advancement in technology that will make the inspection of wind turbines faster and more reliable for our customers. Currently, an inspector examines the...

331

Improved Wind Turbine Drivetrain Reliability using a Combined...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

IMPROVED WIND TURBINE DRIVETRAIN RELIABILITY USING A COMBINED EXPERIMENTAL, COMPUTATIONAL, AND ANALYTICAL APPROACH Yi Guo 1,* , Roger Bergua 2 , Jeroen van Dam 1 , Jordi Jove 2 ,...

332

Lessons Learned: Milwaukees Wind Turbine Project  

Energy Savers [EERE]

City of Milwaukee: Wind Turbine Project Matt Howard, Environmental Sustainability Director Project Best Practices * Transparency and information * Find the most appropriate site -...

333

Barr Engineering Statement of Methodology Rosemount Wind Turbine...  

Office of Environmental Management (EM)

Barr Engineering Statement of Methodology Rosemount Wind Turbine Simulations by Truescape Visual Reality, DOEEA-1791 (May 2010) Barr Engineering Statement of Methodology Rosemount...

334

Titan Propels GE Wind Turbine Research into New Territory | ornl...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

corporation that runs the gamut of industrial, energy, aviation, and consumer products-wind turbines represent a lot of potential in a market that could attract almost 100...

335

Wind Turbine Pitch Optimization Benjamin Biegel Morten Juelsgaard Matt Kraning Stephen Boyd Jakob Stoustrup  

E-Print Network [OSTI]

Wind Turbine Pitch Optimization Benjamin Biegel Morten Juelsgaard Matt Kraning Stephen Boyd Jakob-controlled wind tur- bine. When placed in a wind field, the turbine experiences several mechanical loads, which measurements, with no knowledge of the wind field or wind turbine model. I. INTRODUCTION Wind turbines

336

IntroductionIntroduction The use of small scale vertical axis wind turbinesThe use of small scale vertical axis wind turbines  

E-Print Network [OSTI]

IntroductionIntroduction The use of small scale vertical axis wind turbinesThe use of small scale vertical axis wind turbines (VAWT) is being studied at McMaster University using(VAWT) is being studied at McMaster University using a prototype wind turbine provided bya prototype wind turbine provided

Tullis, Stephen

337

A conservative control strategy for variable-speed stall-regulated wind turbines  

SciTech Connect (OSTI)

Simulation models of a variable-speed, fixed-pitch wind turbine were investigated to evaluate the feasibility of constraining rotor speed and power output without the benefit of active aerodynamic control devices. A strategy was postulated to control rotational speed by specifying the demanded generator torque. By controlling rotor speed in relation to wind speed, the aerodynamic power extracted by the blades from the wind was manipulated. Specifically, the blades were caused to stall in high winds. In low and moderate winds, the demanded generator torque and the resulting rotor speed were controlled to cause the wind turbine to operate near maximum efficiency. Using the developed models, simulations were conducted of operation in turbulent winds. Results indicated that rotor speed and power output were well regulated. Preliminary investigations of system dynamics showed that, compared to fixed-speed operation, variable-speed operation caused cyclic loading amplitude to be reduced for the turbine blades and low-speed shaft and slightly increased for the tower loads. This result suggests a favorable impact on fatigue life from implementation of the proposed control strategy.

Muljadi, E.; Pierce, K.; Migliore, P.

2000-02-08T23:59:59.000Z

338

Rotationally sampled wind characteristics and correlations with MOD-OA wind turbine response  

SciTech Connect (OSTI)

This report presents results of a comprehensive wind and wind turbine measurement program: the Clayton, New Mexico, vertical plane array/MOD-OA project. In this experiment, the turbulent wind was measured for a large array of fixed anemometers located two blade diameters upwind of a 200-kW horizontal-axis wind turbine (HAWT). Simultaneously, key wind turbine response parameters were also measured. The first of two major objectives of this experiment was to determine the turbulent wind, rotationally sampled to emulate the motion of the wind turbine blade, for the range of different wind speeds and stability classes actually experienced by the wind turbine. The second major objective was to correlate this rotationally sampled wind with the wind turbine blade stress and power, in order to assess the usefulness of the wind measurements for wind turbine loads testing a prediction. Time series of rotationally sampled winds and wind turbine blade bending moments and power were converted to frequency spectra using Fourier transform techniques. These spectra were used as the basis for both qualitative and quantitative comparisons among the various cases. A quantitative comparison between the rotationally sampled wind input and blade bending response was made, using the Fourier spectra to estimate the blade transfer function. These transfer functions were then used to calculate an approximate damping coefficient for the MOD-OA fiberglass blade.

George, R.L.; Connell, J.R.

1984-09-01T23:59:59.000Z

339

Property Tax Assessment for Commercial Wind Farms  

Broader source: Energy.gov [DOE]

Pennsylvania enacted legislation in November 2006 providing that wind turbines and related equipment (including towers and foundations) may not be counted by tax assessors when setting property...

340

Effect of Surface Roughness on Wind Turbine Performance  

E-Print Network [OSTI]

Wind farm operators observe production deficits as machines age. Quantifying deterioration on individual components is difficult, but one potential explanation is accumulation of blade surface roughness. Historically, wind turbine airfoils were...

Ehrmann, Robert Schaefer

2014-06-25T23:59:59.000Z

Note: This page contains sample records for the topic "wind turbine towers" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


341

Lessons Learned: Milwaukee’s Wind Turbine Project  

Office of Energy Efficiency and Renewable Energy (EERE)

U.S. Department of Energy Community and Renewable Energy Success Stories webinar series titled Wind Energy in Urban Environments. This presentation describes a mid-size wind turbine installation near downtown Milwaukee, Wisconsin.

342

NREL Software Aids Offshore Wind Turbine Designs (Fact Sheet)  

SciTech Connect (OSTI)

NREL researchers are supporting offshore wind power development with computer models that allow detailed analyses of both fixed and floating offshore wind turbines. While existing computer-aided engineering (CAE) models can simulate the conditions and stresses that a land-based wind turbine experiences over its lifetime, offshore turbines require the additional considerations of variations in water depth, soil type, and wind and wave severity, which also necessitate the use of a variety of support-structure types. NREL's core wind CAE tool, FAST, models the additional effects of incident waves, sea currents, and the foundation dynamics of the support structures.

Not Available

2013-10-01T23:59:59.000Z

343

Wind Turbine Drivetrain Condition Monitoring - An Overview (Presentation)  

SciTech Connect (OSTI)

High operation and maintenance costs still hamper the development of the wind industry despite its quick growth worldwide. To reduce unscheduled downtime and avoid catastrophic failures of wind turbines and their components have been and will be crucial to further raise the competitiveness of wind power. Condition monitoring is one of the key tools for achieving such a goal. To enhance the research and development of advanced condition monitoring techniques dedicated to wind turbines, we present an overview of wind turbine condition monitoring, discuss current practices, point out existing challenges, and suggest possible solutions.

Sheng, S.; Yang, W.

2013-07-01T23:59:59.000Z

344

Multi-piece wind turbine rotor blades and wind turbines incorporating same  

DOE Patents [OSTI]

A multisection blade for a wind turbine includes a hub extender having a pitch bearing at one end, a skirt or fairing having a hole therethrough and configured to mount over the hub extender, and an outboard section configured to couple to the pitch bearing.

Moroz; Emilian Mieczyslaw (San Diego, CA) [San Diego, CA

2008-06-03T23:59:59.000Z

345

Assessing the Impacts of Reduced Noise Operations of Wind Turbines on Neighbor Annoyance: A Preliminary Analysis in Vinalhaven, Maine  

E-Print Network [OSTI]

Noise Operations of Wind Turbines on Neighbor Annoyance: ANoise Operations of Wind Turbines on Neighbor Annoyance: A

Hoen, Ben

2010-01-01T23:59:59.000Z

346

Development and Validation of WECC Variable Speed Wind Turbine Dynamic Models for Grid Integration Studies  

SciTech Connect (OSTI)

This paper describes reduced-order, simplified wind turbine models for analyzing the stability impact of large arrays of wind turbines with a single point of network interconnection.

Behnke, M.; Ellis, A.; Kazachkov, Y.; McCoy, T.; Muljadi, E.; Price, W.; Sanchez-Gasca, J.

2007-09-01T23:59:59.000Z

347

Wind Turbine Blade Flow Fields and Prospects for Active Aerodynamic Control: Preprint  

SciTech Connect (OSTI)

This paper describes wind turbine flow fields that can cause adverse aerodynamic loading and can impact active aerodynamic control methodologies currently contemplated for wind turbine applications.

Schreck, S.; Robinson, M.

2007-08-01T23:59:59.000Z

348

Wind turbine ring/shroud drive system  

DOE Patents [OSTI]

A wind turbine capable of driving multiple electric generators having a ring or shroud structure for reducing blade root bending moments, hub loads, blade fastener loads and pitch bearing loads. The shroud may further incorporate a ring gear for driving an electric generator. In one embodiment, the electric generator may be cantilevered from the nacelle such that the gear on the generator drive shaft is contacted by the ring gear of the shroud. The shroud also provides protection for the gearing and aids in preventing gear lubricant contamination.

Blakemore, Ralph W.

2005-10-04T23:59:59.000Z

349

Maglev Wind Turbine Technologies | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Office of Inspector GeneralDepartmentAUDIT REPORTOpenWende New Energy Co Ltd JumpLightSourceRMaglev Wind Turbine

350

Portsmouth Wind Turbine | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home5b9fcbce19 No revision hasInformation Earth'sOklahoma/GeothermalOrangePeru:Job Corp JumpWind Turbine Jump to: navigation,

351

Collegiate Wind Competition Turbines go Blade-to-Blade in Wind...  

Office of Environmental Management (EM)

- 5:11pm Addthis This wind tunnel constructed by NREL engineers will test the small wind turbines designed by 10 university teams competing in DOE's Collegiate Wind Competition....

352

Dynamic simulation of dual-speed wind turbine generation  

SciTech Connect (OSTI)

Induction generators have been used since the early development of utility-scale wind turbine generation. An induction generator is the generator of choice because of its ruggedness, and low cost. With an induction generator, the operating speed of the wind turbine is limited to a narrow range (almost constant speed). Dual- speed operation can be accomplished by using an induction generator with two different sets of winding configurations or by using two induction generators with two different rated speeds. With single- speed operation, the wind turbine operates at different power coefficients (Cp) as the wind speed varies. The operation at maximum Cp can occur only at a single wind speed. However, if the wind speed varies across a wider range, the operating Cp will vary significantly. Dual-speed operation has the advantage of enabling the wind turbine to operate at near maximum Cp over a wider range of wind-speeds. Thus, annual energy production can be increased. The dual-speed mode may generate less energy than a variable-speed mode; nevertheless, it offers an alternative to capture more energy than single-speed operation. In this paper, dual-speed operation of a wind turbine will be investigated. One type of control algorithm for dual- speed operation is proposed. Results from a dynamic simulation will be presented to show how the control algorithm works and how power, current and torque of the system vary as the wind turbine is exposed to varying wind speeds.

Muljadi, E.; Butterfield, C.P.

1996-10-01T23:59:59.000Z

353

Understanding Wind Turbine Price Trends in the U.S. Over the Past Decade  

E-Print Network [OSTI]

A. Zervos. 2011a. “Wind Energy. ” In IPCC Special Report onconsequent impacts on wind turbine and wind energy pricing.References American Wind Energy Association (AWEA). 2011.

Bolinger, Mark

2013-01-01T23:59:59.000Z

354

(Construction of a wind turbine). Final report  

SciTech Connect (OSTI)

A wind powered electrical generator was built by industrial arts students working in electricity, woodworking, and metal technology facilities. The blades were originally aluminum frames covered with sailcloth. These were replaced with hand-carved laminated basswood blades. Original plans called for a bullet and downwind propeller, but this was replaced with an upwind propeller and an aft-mounted tailfin. A V-belt and pulley drive transmits power from the turbine and a motorcycle brake stops the machine during high winds and/or for safe servicing. The original 13 volt, 105 amp alternator was replaced by a 12 volt, 100 amp dc generator. Publicity and dissemination events are listed as well as expenditures. (LEW)

Devine, L.E.

1982-03-22T23:59:59.000Z

355

Assessing Novel Foundation Options for Offshore Wind Turbines  

E-Print Network [OSTI]

Assessing Novel Foundation Options for Offshore Wind Turbines B.W. Byrne, BE(Hons), BCom, MA, DPhil G.T. Houlsby, MA, DSc, FREng, FICE Oxford University, UK SYNOPSIS Offshore wind farms of these being the foundations for the offshore turbines. We review here the results of a recent research

Byrne, Byron

356

Scour around an offshore wind turbine W.F. Louwersheimer  

E-Print Network [OSTI]

Scour around an offshore wind turbine MSc Thesis W.F. Louwersheimer January, 2007 Delft University of Technology Ballast Nedam Faculty of Civil Engineering Egmond Offshore Energy Section of Hydraulic Engineering #12;Scour around an offshore wind turbine Delft University of Technology Ballast Nedam - Egmond

Langendoen, Koen

357

DOE/NREL Advanced Wind Turbine Development Program  

SciTech Connect (OSTI)

The development of technologically advanced, high-efficiency wind turbines continues to be a high-priority activity of the US wind industry. The National Renewable Energy Laboratory (formerly the Solar Energy Research Institute), sponsored by the US Department of Energy (DOE), has initiated the Advanced Wind Turbine Program to assist the wind industry in the development of a new class of advanced wind turbines. The initial phase of the program focused on developing conceptual designs for near-term and advanced turbines. The goal of the second phase of this program is to use the experience gained over the last decade of turbine design and operation combined with the latest existing design tools to develop a turbine that will produce energy at $0.05 per kilowatt-hour (kWh) in a 5.8-m/s (13-mph) wind site. Three contracts have been awarded, and two more are under negotiation in the second phase. The third phase of the program will use new innovations and state-of-the-art wind turbine design technology to produce a turbine that will generate energy at $0.04/kWh in a 5.8-m/s wind site. Details of the third phase will be announced in early 1993.

Butterfield, C.P.; Smith, B.; Laxson, A.; Thresher, B. [National Renewable Energy Lab., Golden, CO (United States)] [National Renewable Energy Lab., Golden, CO (United States); Goldman, P. [USDOE Assistant Secretary for Conservation and Renewable Energy, Washington, DC (United States). Wind/Hydro/Ocean Technologies Div.] [USDOE Assistant Secretary for Conservation and Renewable Energy, Washington, DC (United States). Wind/Hydro/Ocean Technologies Div.

1993-05-01T23:59:59.000Z

358

Can Wind Turbines be Bad for You? Alec N. Salt, Ph.D.  

E-Print Network [OSTI]

Can Wind Turbines be Bad for You? Alec N. Salt, Ph.D. Department of Otolaryngology there happens to be a castle nearby). #12;Wind turbines haveWind turbines have been getting biggerbeen getting MegaWatts(MW) Total Installed Change by year 3% of US Energy Needs Wind turbines are "green" and areWind

Salt, Alec N.

359

Infrasound, the Ear and Wind Turbines Alec N. Salt, Ph.D.  

E-Print Network [OSTI]

Infrasound, the Ear and Wind Turbines Alec N. Salt, Ph.D. Department of Otolaryngology there happens to be a castle nearby). #12;Wind turbines haveWind turbines have been getting biggerbeen getting MegaWatts(MW) Total Installed Change by year 3% of US Energy Needs Wind turbines are "green" and areWind

Salt, Alec N.

360

Inverse Load Calculation of Wind Turbine Support Structures - A Numerical Verification Using the Comprehensive Simulation Code FAST: Preprint (Revised)  

SciTech Connect (OSTI)

Physically measuring the dynamic responses of wind turbine support structures enables the calculation of the applied loads using an inverse procedure. In this process, inverse means deriving the inputs/forces from the outputs/responses. This paper presents results of a numerical verification of such an inverse load calculation. For this verification, the comprehensive simulation code FAST is used. FAST accounts for the coupled dynamics of wind inflow, aerodynamics, elasticity and turbine controls. Simulations are run using a 5-MW onshore wind turbine model with a tubular tower. Both the applied loads due to the instantaneous wind field and the resulting system responses are known from the simulations. Using the system responses as inputs to the inverse calculation, the applied loads are calculated, which in this case are the rotor thrust forces. These forces are compared to the rotor thrust forces known from the FAST simulations. The results of these comparisons are presented to assess the accuracy of the inverse calculation. To study the influences of turbine controls, load cases in normal operation between cut-in and rated wind speed, near rated wind speed and between rated and cut-out wind speed are chosen. The presented study shows that the inverse load calculation is capable of computing very good estimates of the rotor thrust. The accuracy of the inverse calculation does not depend on the control activity of the wind turbine.

Pahn, T.; Jonkman, J.; Rolges, R.; Robertson, A.

2012-11-01T23:59:59.000Z

Note: This page contains sample records for the topic "wind turbine towers" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


361

Influence of wind characteristics on turbine performance Ioannis Antoniou (1)  

E-Print Network [OSTI]

(2) , Peder Enevoldsen (2) , Leo Thesbjerg (3) (1): Wind Energy Department, Risø of measuring the power curve is by using the wind speed at hub height. The assumption behind this is that the wind speed is representative of the wind over the whole turbine rotor. While this assumption

362

CgWind: A high-order accurate simulation tool for wind turbines and wind farms  

SciTech Connect (OSTI)

CgWind is a high-fidelity large eddy simulation (LES) tool designed to meet the modeling needs of wind turbine and wind park engineers. This tool combines several advanced computational technologies in order to model accurately the complex and dynamic nature of wind energy applications. The composite grid approach provides high-quality structured grids for the efficient implementation of high-order accurate discretizations of the incompressible Navier-Stokes equations. Composite grids also provide a natural mechanism for modeling bodies in relative motion and complex geometry. Advanced algorithms such as matrix-free multigrid, compact discretizations and approximate factorization will allow CgWind to perform highly resolved calculations efficiently on a wide class of computing resources. Also in development are nonlinear LES subgrid-scale models required to simulate the many interacting scales present in large wind turbine applications. This paper outlines our approach, the current status of CgWind and future development plans.

Chand, K K; Henshaw, W D; Lundquist, K A; Singer, M A

2010-02-22T23:59:59.000Z

363

Understanding Trends in Wind Turbine Prices Over the Past Decade  

SciTech Connect (OSTI)

Taking a bottom-up approach, this report examines seven primary drivers of wind turbine prices in the United States, with the goal of estimating the degree to which each contributed to the doubling in turbine prices from 2002 through 2008, as well as the subsequent decline in prices through 2010 (our analysis does not extend into 2011 because several of these drivers are best gauged on a full-year basis due to seasonality issues). The first four of these drivers can be considered, at least to some degree, endogenous influences – i.e., those that are largely within the control of the wind industry – and include changes in: 1) Labor costs, which have historically risen during times of tight turbine supply; 2) Warranty provisions, which reflect technology performance and reliability, and are most often capitalized in turbine prices; 3) Turbine manufacturer profitability, which can impact turbine prices independently of costs; and 4) Turbine design, which for the purpose of this analysis is principally manifested through increased turbine size. The other three drivers analyzed in this study can be considered exogenous influences, in that they can impact wind turbine costs but fall mostly outside of the direct control of the wind industry. These exogenous drivers include changes in: 5) Raw materials prices, which affect the cost of inputs to the manufacturing process; 6) Energy prices, which impact the cost of manufacturing and transporting turbines; and 7) Foreign exchange rates, which can impact the dollar amount paid for turbines and components imported into the United States.

Bolinger, Mark; Wiser, Ryan

2011-10-26T23:59:59.000Z

364

ERCOT's Dynamic Model of Wind Turbine Generators: Preprint  

SciTech Connect (OSTI)

By the end of 2003, the total installed wind farm capacity in the Electric Reliability Council of Texas (ERCOT) system was approximately 1 gigawatt (GW) and the total in the United States was about 5 GW. As the number of wind turbines installed throughout the United States increases, there is a greater need for dynamic wind turbine generator models that can properly model entire power systems for different types of analysis. This paper describes the ERCOT dynamic models and simulations of a simple network with different types of wind turbine models currently available.

Muljadi, E.; Butterfield, C. P.; Conto, J.; Donoho, K.

2005-08-01T23:59:59.000Z

365

Wind turbine reliability : a database and analysis approach.  

SciTech Connect (OSTI)

The US wind Industry has experienced remarkable growth since the turn of the century. At the same time, the physical size and electrical generation capabilities of wind turbines has also experienced remarkable growth. As the market continues to expand, and as wind generation continues to gain a significant share of the generation portfolio, the reliability of wind turbine technology becomes increasingly important. This report addresses how operations and maintenance costs are related to unreliability - that is the failures experienced by systems and components. Reliability tools are demonstrated, data needed to understand and catalog failure events is described, and practical wind turbine reliability models are illustrated, including preliminary results. This report also presents a continuing process of how to proceed with controlling industry requirements, needs, and expectations related to Reliability, Availability, Maintainability, and Safety. A simply stated goal of this process is to better understand and to improve the operable reliability of wind turbine installations.

Linsday, James (ARES Corporation); Briand, Daniel; Hill, Roger Ray; Stinebaugh, Jennifer A.; Benjamin, Allan S. (ARES Corporation)

2008-02-01T23:59:59.000Z

366

Investigation of a FAST-OrcaFlex Coupling Module for Integrating Turbine and Mooring Dynamics of Offshore Floating Wind Turbines: Preprint  

SciTech Connect (OSTI)

To enable offshore floating wind turbine design, the following are required: accurate modeling of the wind turbine structural dynamics, aerodynamics, platform hydrodynamics, a mooring system, and control algorithms. Mooring and anchor design can appreciably affect the dynamic response of offshore wind platforms that are subject to environmental loads. From an engineering perspective, system behavior and line loads must be studied well to ensure the overall design is fit for the intended purpose. FAST (Fatigue, Aerodynamics, Structures and Turbulence) is a comprehensive simulation tool used for modeling land-based and offshore wind turbines. In the case of a floating turbine, continuous cable theory is used to emulate mooring line dynamics. Higher modeling fidelity can be gained through the use of finite element mooring theory. This can be achieved through the FASTlink coupling module, which couples FAST with OrcaFlex, a commercial simulation tool used for modeling mooring line dynamics. In this application, FAST is responsible for capturing the aerodynamic loads and flexure of the wind turbine and its tower, and OrcaFlex models the mooring line and hydrodynamic effects below the water surface. This paper investigates the accuracy and stability of the FAST/OrcaFlex coupling operation.

Masciola, M.; Robertson, A.; Jonkman, J.; Driscoll, F.

2011-10-01T23:59:59.000Z

367

The EPRI/DOE Utility Wind Turbine Performance Verification Program  

SciTech Connect (OSTI)

In 1992, the Electric Power Research Institute (EPRI) and the US Department of Energy (DOE) initiated the Utility Wind Turbine Performance Verification Program (TVP). This paper provides an overview of the TVP, its purpose and goals, and the participating utility projects. Improved technology has significantly reduced the cost of energy from wind turbines since the early 1980s. In 1992, turbines were producing electricity for about $0.07--$0.09/kilowatt-hour (kWh) (at 7 m/s [16 mph sites]), compared with more than $0.30/kWh in 1980. Further technology improvements were expected to lower the cost of energy from wind turbines to $0.05/kWh. More than 17,000 wind turbines, totaling more than 1,500 MW capacity, were installed in the US, primarily in California and Hawaii. The better wind plants had availabilities above 95%, capacity factors exceeding 30%, and operation and maintenance costs of $0.01/kWh. However, despite improving technology, EPRI and DOE recognized that utility use of wind turbines was still largely limited to turbines installed in California and Hawaii during the 1980s. Wind resource assessments showed that other regions of the US, particularly the Midwest, had abundant wind resources. EPRI and DOE sought to provide a bridge from utility-grade turbine development programs under way to commercial purchases of the wind turbines. The TVP was developed to allow utilities to build and operate enough candidate turbines to gain statistically significant operating and maintenance data.

Calvert, S.; Goldman, P. [Department of Energy, Washington, DC (United States); DeMeo, E.; McGowin, C. [Electric Power Research Inst., Palo Alto, CA (United States); Smith, B.; Tromly, K. [National Renewable Energy Lab., Golden, CO (United States)

1997-01-01T23:59:59.000Z

368

PHYSICAL REVIEW E 88, 042146 (2013) Uncovering wind turbine properties through two-dimensional stochastic modeling of wind dynamics  

E-Print Network [OSTI]

PHYSICAL REVIEW E 88, 042146 (2013) Uncovering wind turbine properties through two, such as the rated speed of the wind turbine or the descriptive wind speed statistics, can be related to the equations describing the evolution of power production and wind speed at single wind turbines. DOI: 10

Peinke, Joachim

369

Safety and Function Test Report for the SWIFT Wind Turbine  

SciTech Connect (OSTI)

This test was conducted as part of the U.S. Department of Energy's (DOE) Independent Testing project. This project was established to help reduce the barriers of wind energy expansion by providing independent testing results for small turbines. Three turbines where selected for testing at the National Wind Technology Center (NWTC) as a part of round two of the Small Wind Turbine Independent Testing project. Safety and Function testing is one of up to 5 tests that may be performed on the turbines. Other tests include power performance, duration, noise, and power quality. The results of the testing will provide the manufacturers with reports that may be used for small wind turbine certification.

Mendoza, I.; Hur, J.

2013-01-01T23:59:59.000Z

370

Duration Test Report for the SWIFT Wind Turbine  

SciTech Connect (OSTI)

This test was conducted as part of the U.S. Department of Energy's (DOE) Independent Testing project. This project was established to help reduce the barriers of wind energy expansion by providing independent testing results for small turbines. Three turbines where selected for testing at the National Wind Technology Center (NWTC) as a part of round two of the Small Wind Turbine Independent Testing project. Duration testing is one of up to 5 tests that may be performed on the turbines. Other tests include power performance, safety and function, noise, and power quality. The results of the testing will provide the manufacturers with reports that may be used for small wind turbine certification.

Mendoza, I.; Hur, J.

2013-01-01T23:59:59.000Z

371

WIND TURBINE DRIVETRAIN TEST FACILITY DATA ACQUISITION SYSTEM  

SciTech Connect (OSTI)

The Wind Turbine Drivetrain Test Facility (WTDTF) is a state-of-the-art industrial facility used for testing wind turbine drivetrains and generators. Large power output wind turbines are primarily installed for off-shore wind power generation. The facility includes two test bays: one to accommodate turbine nacelles up to 7.5 MW and one for nacelles up to 15 MW. For each test bay, an independent data acquisition system (DAS) records signals from various sensors required for turbine testing. These signals include resistance temperature devices, current and voltage sensors, bridge/strain gauge transducers, charge amplifiers, and accelerometers. Each WTDTF DAS also interfaces with the drivetrain load applicator control system, electrical grid monitoring system and vibration analysis system.

Mcintosh, J.

2012-01-03T23:59:59.000Z

372

A simple method of estimating wind turbine blade fatigue at potential wind turbine sites  

SciTech Connect (OSTI)

This paper presents a technique of estimating blade fatigue damage at potential wind turbine sites. The cornerstone of this technique is a simple model for the blade`s root flap bending moment. The model requires as input a simple set of wind measurements which may be obtained as part of a routine site characterization study. By using the model to simulate a time series of the root flap bending moment, fatigue damage rates may be estimated. The technique is evaluated by comparing these estimates with damage estimates derived from actual bending moment data; the agreement between the two is quite good. The simple connection between wind measurements and fatigue provided by the model now allows one to readily discriminate between damaging and more benign wind environments.

Barnard, J.C.; Wendell, L.L.

1995-06-01T23:59:59.000Z

373

DAMAGE DETECTION METHODS ON WIND TURBINE BLADE TESTING WITH WIRED AND WIRELESS ACCELEROMETER SENSORS  

E-Print Network [OSTI]

DAMAGE DETECTION METHODS ON WIND TURBINE BLADE TESTING WITH WIRED AND WIRELESS ACCELEROMETER turbine blade. We compare the data collected from the wireless sensors against wired sensors for nonstationary blade excitations. KEYWORDS : Structural Health Monitoring, Damage Detection, Wind Turbine

Paris-Sud XI, Université de

374

Understanding Wind Turbine Price Trends in the U.S. Over the Past Decade  

E-Print Network [OSTI]

embodied in wind turbine materials (6.37 GJ/kW) from theMaterials Prices Wind turbines are material-intensive. Eachprofitability, turbine scaling, raw materials prices, energy

Bolinger, Mark

2013-01-01T23:59:59.000Z

375

LiDAR observations of offshore winds at future wind turbine operating heights  

E-Print Network [OSTI]

LiDAR observations of offshore winds at future wind turbine operating heights Alfredo Peña1 , Sven at the Horns Rev offshore wind farm. The influence of atmospheric stability on the surface layer wind shear: Charnock, LiDAR, Marine boundary layer, Offshore, Surface layer, Wind profile. 1 Introduction There is

376

RESEARCH ARTICLE Dynamic wind loads and wake characteristics of a wind turbine  

E-Print Network [OSTI]

installed in onshore or/and offshore wind farms in order to meet the 20% electricity generation goal. WindRESEARCH ARTICLE Dynamic wind loads and wake characteristics of a wind turbine model in an atmospheric boundary layer wind Hui Hu · Zifeng Yang · Partha Sarkar Received: 16 August 2011 / Revised: 1

Hu, Hui

377

St h ti d i l i fStochastic dynamic analysis of offshore wind turbines  

E-Print Network [OSTI]

1 St h ti d i l i fStochastic dynamic analysis of offshore wind turbines ­ with emphasis on fatigue analysis of offshore bottom-fixed wind turbines · Modelling and dynamic analysis of floating wind turbines ­ Stochastic dynamic analysis of offshore wind turbines; mooring system for wave energy converters · 2010 8

Nørvåg, Kjetil

378

A High-Order Sliding Mode Observer for Sensorless Control ofDFIG-Based Wind Turbines  

E-Print Network [OSTI]

A High-Order Sliding Mode Observer for Sensorless Control ofDFIG-Based Wind Turbines Mohamed control of a doubly-fed induction generator (DFIG) based wind turbine. The sensorless control scheme (generator and turbine). Simulations using the wind turbine simulator FAST on a 1.5- MW three-blade wind

Boyer, Edmond

379

SHORT TERM PREDICTIONS FOR THE POWER OUTPUT OF ENSEMBLES OF WIND TURBINES AND PV-GENERATORS  

E-Print Network [OSTI]

SHORT TERM PREDICTIONS FOR THE POWER OUTPUT OF ENSEMBLES OF WIND TURBINES AND PV-GENERATORS Hans. For the conventional power park, the power production of the wind turbines presents a fluctuating 'negative load PRODUCTION OF WIND TURBINES For the forecast of the power production of wind turbines two approaches may

Heinemann, Detlev

380

MODAL PARAMETER ESTIMATION FOR OPERATIONAL WIND TURBINES Emilio Di Lorenzo1, 2  

E-Print Network [OSTI]

MODAL PARAMETER ESTIMATION FOR OPERATIONAL WIND TURBINES Emilio Di Lorenzo1, 2 , Simone Manzato1 Claudio 21, 80125 Naples, Italy emilio.dilorenzo@lmsintl.com ABSTRACT Wind turbines are time. This assumption holds in the case of parked wind turbines, but not in the case of operating wind turbines

Boyer, Edmond

Note: This page contains sample records for the topic "wind turbine towers" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


381

58:164 Fundamentals of Wind Turbines (ME:4164:0001)  

E-Print Network [OSTI]

58:164 ­ Fundamentals of Wind Turbines (ME:4164:0001) Syllabus P. Barry Butler 111 Jessup Hall The University of Iowa Iowa City, IA January, 2012 #12;2 Spring 2012 58:164 ­ Fundamentals of Wind Turbines mechanics and mechanical systems to wind turbine engineering. Fundamentals of horizontal-axis wind turbines

Kusiak, Andrew

382

The Potential Health Impact of Wind Turbines Chief Medical Officer of Health (CMOH) Report  

E-Print Network [OSTI]

The Potential Health Impact of Wind Turbines Chief Medical Officer of Health (CMOH) Report May 2010) of Ontario in response to public health concerns about wind turbines, particularly related to noise. Assisted by wind turbines. The review concludes that while some people living near wind turbines report symptoms

Firestone, Jeremy

383

Design, Analysis, and Learning Control of a Fully Actuated Micro Wind Turbine  

E-Print Network [OSTI]

Design, Analysis, and Learning Control of a Fully Actuated Micro Wind Turbine J. Zico Kolter of renewable energy, and improvements to wind turbine design and control can have a significant impact a actuated micro wind turbine intended for research purposes. While most academic work on wind turbine

Tedrake, Russ

384

www.cesos.ntnu.no Author Centre for Ships and Ocean Structures Offshore Wind Turbine Operation  

E-Print Network [OSTI]

1 www.cesos.ntnu.no Author ­ Centre for Ships and Ocean Structures Offshore Wind Turbine Operation Structures Outline · Introduction · Wind Turbine Operational Conditions · Wind Turbine Operation under Atmospheric Icing · Wind Turbine Operation under Fault Condition · Conclusions www.cesos.ntnu.no M. Etemaddar

Nørvåg, Kjetil

385

An overview of DOE`s wind turbine development programs  

SciTech Connect (OSTI)

The development of technologically advanced, higher efficiency wind turbines continues to be a high priority activity of the US wind industry. The United States Department of Energy (DOE) is conducting and sponsoring a range of programs aimed at assisting the wind industry with system design, development, and testing. The overall goal is to develop systems that can compete with conventional electric generation for $.05/kWh at 5.8 m/s (13 mph sites) by the mid-1990s and with fossil-fuel-based generators for $.04/kWh at 5.8 m/s sites by the year 2000. These goals will be achieved through several programs. The Value Engineered Turbine Program will promote the rapid development of US capability to manufacture wind turbines with known and well documented records of performance, cost, and reliability, to take advantage of near-term market opportunities. The Advanced Wind Turbine Program will assist US industry to develop and integrate innovative technologies into utility-grade wind turbines for the near-term (mid 1990s) and to develop a new generation of turbines for the year 2000. The collaborative Electric Power Research Institute (EPRI)/DOE Utility Wind Turbine Performance Verification Program will deploy and evaluate commercial-prototype wind turbines in typical utility operating environments, to provide a bridge between development programs currently underway and commercial purchases of utility-grade wind turbines. A number of collaborative efforts also will help develop a range of small systems optimized to work in a diesel hybrid environment to provide electricity for smaller non-grid-connected applications.

Laxson, A; Dodge, D; Flowers, L [National Renewable Energy Lab., Golden, CO (United States); Loose, R; Goldman, P [Dept. of Energy, Washington, DC (United States)

1993-09-01T23:59:59.000Z

386

Wind turbine rotor hub and teeter joint  

DOE Patents [OSTI]

A rotor hub is provided for coupling a wind turbine rotor blade and a shaft. The hub has a yoke with a body which is connected to the shaft, and extension portions which are connected to teeter bearing blocks, each of which has an aperture. The blocks are connected to a saddle which envelops the rotor blade by one or two shafts which pass through the apertures in the bearing blocks. The saddle and blade are separated by a rubber interface which provides for distribution of stress over a larger portion of the blade. Two teeter control mechanisms, which may include hydraulic pistons and springs, are connected to the rotor blade and to the yoke at extension portions. These control mechanisms provide end-of-stroke damping, braking, and stiffness based on the teeter angle and speed of the blade.

Coleman, Clint (Warren, VT); Kurth, William T. (Warren, VT); Jankowski, Joseph (Stowe, VT)

1994-10-11T23:59:59.000Z

387

Convection towers  

DOE Patents [OSTI]

Convection towers which are capable of cleaning the pollution from large quantities of air, of generating electricity, and of producing fresh water utilize the evaporation of water sprayed into the towers to create strong airflows and to remove pollution from the air. Turbines in tunnels at the skirt section of the towers generate electricity, and condensers produce fresh water. 6 figs.

Prueitt, M.L.

1996-01-16T23:59:59.000Z

388

Convection towers  

DOE Patents [OSTI]

Convection towers which are capable of cleaning the pollution from large quantities of air and of generating electricity utilize the evaporation of water sprayed into the towers to create strong airflows and to remove pollution from the air. Turbines in tunnels at the skirt section of the towers generate electricity. Other embodiments may also provide fresh water, and operate in an updraft mode.

Prueitt, Melvin L. (Los Alamos, NM)

1994-01-01T23:59:59.000Z

389

Convection towers  

DOE Patents [OSTI]

Convection towers which are capable of cleaning the pollution from large quantities of air, of generating electricity, and of producing fresh water utilize the evaporation of water sprayed into the towers to create strong airflows and to remove pollution from the air. Turbines in tunnels at the skirt section of the towers generate electricity, and condensers produce fresh water.

Prueitt, Melvin L. (Los Alamos, NM)

1996-01-01T23:59:59.000Z

390

Convection towers  

DOE Patents [OSTI]

Convection towers which are capable of cleaning the pollution from large quantities of air, of generating electricity, and of producing fresh water utilize the evaporation of water sprayed into the towers to create strong airflows and to remove pollution from the air. Turbines in tunnels at the skirt section of the towers generate electricity, and condensers produce fresh water.

Prueitt, Melvin L. (Los Alamos, NM)

1995-01-01T23:59:59.000Z

391

DEVELOPMENT OF MODIFIED WIND TURBINE: A PAST REVIEW  

E-Print Network [OSTI]

Wind energy represents a viable alternative, as it is a virtually endless resource. Through the next several decades, renewable energy technologies, thanks to their continually improving performance and cost, and growing recognition of their Environmental, economic and social values, will grow increasingly competitive with Traditional energy technologies, so that by the middle of the 21 st century, renewable Energy, in its various forms, should be supplying half of the world’s energy needs. In this paper various types of wind turbine are reviewed to understand and the development and modification of horizontal axis wind turbine and how more power can be generated compared to bare turbine of the same rotor blade diameter.

Rob Res; N R Deshmukh; S J Deshmukh; N R Deshmukh; S J Deshmukh

392

Comparison of Design Loads for Turbines in Wake Torben J. Larsen, Helge Aa. Madsen, Gunner Larsen  

E-Print Network [OSTI]

DWM model Wind turbine wake velocity deficit wake meandering aeroelastic simulations wake added #12;Influence from wind direction: Driving torque #12;Influence from wind direction: Tower bottom tilt the turbine never experiences free flow direction at 3D spacing. · Tower loads increase with increased row

393

WindTurbineGenerator Introduction of the Renewable Micro-Grid Test-Bed  

E-Print Network [OSTI]

Simulator Wind Turbine: PMSM, 3kW, 8.3A Wind Generator: PMSM, 3kW, 8.3A 3 AC/DC Converter & DC/AC Inverter Wind Turbine: Torque or Speed Control Wind Generator: PQ Control Cubicle #4: Energy Storage Generator #1 3kW, 8.3A Wind Turbine #1 3kW, 8.3A Wind Turbine #2 3kW Wind Generator #2 3kW RS232

Johnson, Eric E.

394

Wind Tunnel Blockage Corrections: An Application to Vertical-Axis Wind Turbines.  

E-Print Network [OSTI]

?? An investigation into wake and solid blockage effects of Vertical-Axis Wind Turbines (VAWTs) in closed test-section wind tunnel testing is described. Static wall pressures… (more)

Ross, Ian Jonathan

2010-01-01T23:59:59.000Z

395

Yaw dynamics of horizontal axis wind turbines  

SciTech Connect (OSTI)

Designers of a horizontal axis wind turbine yaw mechanism are faced with a difficult decision. They know that if they elect to use a yaw- controlled rotor then the system will suffer increased initial cost and increased inherent maintenance and reliability problems. On the other hand, if they elect to allow the rotor to freely yaw they known they will have to account for unknown and random, though bounded, yaw rates. They will have a higher-risk design to trade-off against the potential for cost savings and reliability improvement. The risk of a yaw-free system could be minimized if methods were available for analyzing and understanding yaw behavior. The complexity of yaw behavior has, until recently, discouraged engineers from developing a complete yaw analysis method. The objectives of this work are to (1) provide a fundamental understanding of free-yaw mechanics and the design concepts most effective at eliminating yaw problems, and (2) provide tested design tools and guidelines for use by free-yaw wind systems manufacturers. The emphasis is on developing practical and sufficiently accurate design methods.

Hansen, A.C. (Utah Univ., Salt Lake City, UT (United States))

1992-05-01T23:59:59.000Z

396

Design of a wind turbine-generator system considering the conformability to wind velocity fluctuations  

SciTech Connect (OSTI)

The conformability of the rated power output of the wind turbine-generator system and of the wind turbine type to wind velocity fluctuations are investigated with a simulation model. The authors examine three types of wind turbines: the Darrieus-Savonius hybrid, the Darrieus proper and the Propeller. These systems are mainly operated at a constant tip speed ratio, which refers to a maximum power coefficient points. As a computed result of the net extracting power, the Darrieus turbine proper has little conformability to wind velocity fluctuations because of its output characteristics. As for the other turbines, large-scale systems do not always have an advantage over small-scale systems as the effect of its dynamic characteristics. Furthermore, it is confirmed that the net extracting power of the Propeller turbine, under wind direction fluctuation, is much reduced when compared with the hybrid wind turbine. Thus, the authors conclude that the appropriate rated power output of the system exists with relation to the wind turbine type for each wind condition.

Wakui, Tetsuya; Hashizume, Takumi; Outa, Eisuke

1999-07-01T23:59:59.000Z

397

Investigation of Various Wind Turbine Drivetrain Condition Monitoring Techniques (Presentation)  

SciTech Connect (OSTI)

This presentation was given at the 2011 Wind Turbine Reliability Workshop sponsored by Sandia National Laboratories in Albuquerque, NM on August 2-3, 2011. It discusses work for the Gearbox Reliability Collaborative including downtime caused by turbine subsystems, annual failure frequency of turbine subsystems, cost benefits of condition monitoring (CM), the Gearbox Reliability Collaborative's condition monitoring approach and rationale, test setup, and results and observations.

Sheng, S.

2011-08-01T23:59:59.000Z

398

Aeroelastic stability analysis of a Darrieus wind turbine  

SciTech Connect (OSTI)

An aeroelastic stability analysis has been developed for predicting flutter instabilities on vertical axis wind turbines. The analytical model and mathematical formulation of the problem are described as well as the physical mechanism that creates flutter in Darrieus turbines. Theoretical results are compared with measured experimental data from flutter tests of the Sandia 2 Meter turbine. Based on this comparison, the analysis appears to be an adequate design evaluation tool.

Popelka, D.

1982-02-01T23:59:59.000Z

399

Impact of DFIG wind turbines on transient stability of power systems a review  

E-Print Network [OSTI]

Impact of DFIG wind turbines on transient stability of power systems ­ a review Authors Na Abstract of wind farms are using variable speed wind turbines equipped with doubly-fed induction generators (DFIG) due to their advantages over other wind turbine generators. Therefore, the analysis of wind power

Pota, Himanshu Roy

400

Basic Integrative Models for Offshore Wind Turbine Systems  

E-Print Network [OSTI]

This research study developed basic dynamic models that can be used to accurately predict the response behavior of a near-shore wind turbine structure with monopile, suction caisson, or gravity-based foundation systems. The marine soil conditions...

Aljeeran, Fares

2012-07-16T23:59:59.000Z

Note: This page contains sample records for the topic "wind turbine towers" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


401

Characteristics of Wind Turbines Under Normal and Fault Conditions: Preprint  

SciTech Connect (OSTI)

This paper investigates the characteristics of a variable-speed wind turbine connected to a stiff or weak grid under normal and fault conditions and the role of reactive power compensation.

Muljadi, E.; Butterfield, C. P.; Parsons, B.; Ellis, A.

2007-02-01T23:59:59.000Z

402

United States Launches First Grid-Connected Offshore Wind Turbine...  

Energy Savers [EERE]

partners conducted extensive design, engineering, and testing of floating offshore wind turbines, then constructed and deployed its 65-foot-tall VolturnUS prototype. At a scale of...

403

Design of wind turbines with Ultra-High Performance Concrete  

E-Print Network [OSTI]

Ultra-High Performance Concrete (UHPC) has proven an asset for bridge design as it significantly reduces costs. However, UHPC has not been applied yet to wind turbine technology. Design codes do not propose any recommendations ...

Jammes, François-Xavier

2009-01-01T23:59:59.000Z

404

Tax Credit for Manufacturers of Small Wind Turbines  

Broader source: Energy.gov [DOE]

'''''Note: After a 2 year moratorium on all state tax credits, this credit may be claimed for tax year 2012 and subsequent tax years, for small wind turbines manufactured on or after July 1, 2012.'...

405

Aeroelastic Instabilities of Large Offshore and Onshore Wind Turbines: Preprint  

SciTech Connect (OSTI)

This paper examines the aeroelastic stability of a 5-MW conceptual wind turbine mounted on a floating barge and presents results for onshore and offshore configurations for various conditions.

Bir, G.; Jonkman, J.

2007-08-01T23:59:59.000Z

406

Superconducting generators for large off shore wind turbines   

E-Print Network [OSTI]

This thesis describes four novel superconducting machine concepts, in the pursuit of finding a suitable design for large offshore wind turbines. The designs should be reliable, modular and light-weight. The main novelty ...

Keysan, Ozan

2014-06-30T23:59:59.000Z

407

Intimate Emptiness: The Flint Hills Wind Turbine Controversy  

E-Print Network [OSTI]

ABSTRACT Howard Graham, Master of Arts American Studies, July 2008 University of Kansas This study examines the political and social controversy surrounding the proposed introduction of industrial scale wind turbines, roughly, those over 120 feet...

Graham, Howard Russell

2008-07-28T23:59:59.000Z

408

Vertical axis wind turbine with continuous blade angle adjustment  

E-Print Network [OSTI]

The author presents a concept for a vertical axis wind turbine that utilizes each blade's entire rotational cycle for power generation. Each blade has its own vertical axis of rotation and is constrained to rotate at the ...

Weiss, Samuel Bruce

2010-01-01T23:59:59.000Z

409

Wind Turbine Transportation in Toyland | GE Global Research  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Wind Turbine Transportation in Toyland Click to email this to a friend (Opens in new window) Share on Facebook (Opens in new window) Click to share (Opens in new window) Click to...

410

Performance Study and Optimization of the Zephergy Wind Turbine  

E-Print Network [OSTI]

There are many problems associated with small wind turbines, such as small Reynolds number and poor starting performance, that make them much more expensive than the large ones per unit power. New technologies are needed to improve the quality...

Soodavi, Moein

2013-12-04T23:59:59.000Z

411

"Design of Offshore Wind Turbines for Hurricane Resilience" Graduate Seminar  

E-Print Network [OSTI]

"Design of Offshore Wind Turbines for Hurricane Resilience" Graduate Seminar Thursday, December 5 Extremes: The Science, Impacts, and Policy Relevance" Graduate Seminar Thursday, March 28, 2013, 12pm ­ 1pm

Connor, Ed

412

Hydrogen Storage in Wind Turbine Towers: Cost Analysis and Conceptual  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE:YearRound-UpHeatMulti-Dimensional Subject:GroundtoProduction TechnicalSensor

413

Operational behavior of a double-fed permanent magnet generator for wind turbines  

E-Print Network [OSTI]

Greater efficiency in wind turbine systems is achieved by allowing the rotor to change its rate of rotation as the wind speed changes. The wind turbine system is decoupled from the utility grid and a variable speed operation ...

Reddy, Sivananda Kumjula

2005-01-01T23:59:59.000Z

414

Comparison of Wind-Turbine Aeroelastic Codes Used for Certification: Preprint  

SciTech Connect (OSTI)

NREL created aeroelastic simulators for horizontal-axis wind turbines accepted by Germanischer Lloyd (GL) WindEnergie GmbH for manufacturers to use for on-shore wind turbine certification.

Buhl, M. L., Jr.; Manjock, A.

2006-01-01T23:59:59.000Z

415

Identification of airfoil characteristics for optimum wind turbine performance / b  

E-Print Network [OSTI]

IDENTIFICATION OF AIRFOIL CHARACTERISTICS FOR OPTIMUM WIND TURBINE PERFORMANCE A Thesis by LEONARD SCOTT MILLER Submitted to the Graduate College of Texas ASM University in partial fulfillment of the requirement for the degree of MASTER... OF SCIENCE December 1983 Major Subject: Aerospace Engineering IDENTIFICATION OF AIRFOIL CHARACTERISTICS FOR OPTIMUM WIND TURBINE PERFORMANCE A Thesis by LEONARD SCOTT MILLER Approved as to Style and Content by: Dr. S. J. Miley (Chairm of Committee...

Miller, Leonard Scott

1983-01-01T23:59:59.000Z

416

Dual-Axis Resonance Testing of Wind Turbine Blades  

Energy Innovation Portal (Marketing Summaries) [EERE]

Wind turbine blades must undergo strength and fatigue testing in order to be rated and marketed appropriately. Presently, wind turbine blades are fatigue-tested in the flapwise direction and in the edgewise direction independently. This testing involves placing the blades through 1 to 10 million or more load or fatigue cycles, which may take 3 to 12 months or more to complete for each tested direction. There is a need for blade testing techniques that are less expensive to use and require...

2014-07-28T23:59:59.000Z

417

DOE/SNL-TTU scaled wind farm technology facility : research opportunities for study of turbine-turbine interaction.  

SciTech Connect (OSTI)

The proposed DOE/Sandia Scaled Wind Farm Technology Facility (SWiFT) hosted by Texas Tech University at Reese Technology Center in Lubbock, TX, will provide a facility for experimental study of turbine-turbine interaction and complex wind farm aerodynamics. This document surveys the current status of wind turbine wake and turbine-turbine interaction research, identifying knowledge and data gaps that the proposed test site can potentially fill. A number of turbine layouts is proposed, allowing for up to ten turbines at the site.

Barone, Matthew Franklin; White, Jonathan

2011-09-01T23:59:59.000Z

418

20% Wind Energy by 2030 - Chapter 2: Wind Turbine Technology...  

Office of Environmental Management (EM)

20% Wind Energy by 2030: Increasing Wind Energy's Contribution to U.S. Electricity Supply U.S. Offshore Wind Manufacturing and Supply Chain Development Wind Program Accomplishments...

419

The WEI6K, a 6-kW 7-m Small Wind Turbine: Final Technical Report  

SciTech Connect (OSTI)

This project was selected by the U.S. Department of Energy under a DOE solicitation “Low Wind Speed Technology for Small Turbine Development.” The objective of this project has been to design a new small wind turbine with improved cost, reliability and performance in grid-connected residential and small business applications, in order to achieve the overall DOE goal of cost effectiveness in Class 3 wind resources that can now be achieved in Class 5 resources. The scope of work for this project has been to complete the preliminary design of an improved small wind turbine, including preliminary loads and strength analyses; analysis and design of all major components; systems integration and structural dynamic analysis; estimation of life-cycle cost of energy; and design documentation and review. The project did not entail hardware fabrication or testing. The WEI6K Turbine resulting from this project is an upwind horizontal-axis wind turbine rated at 6 kW. It features a 3-blade 7-m diameter rotor. The generator is a direct-drive permanent magnet synchronous machine generating 3-phase power at 240 VAC. The turbine is maintained oriented in to the wind via active yaw control using electromechanical servos. Power is regulated with active blade pitch control. The turbine is presently designed to be placed on a 100-foot (30m) tower. The turbine is predicted to generate electricity at a levelized cost of energy (COE) between 7.3 and 8.9 ¢/kWh at an IEC Class II site, with an average wind speed of 8.5 m/s at hub height, depending upon whether the customer uses a guyed truss tower (the lower figure) or a monopole tower. For the NREL Reference Site, with a mean wind speed of 5.35 m/s at 10 m height, the turbine would generate at a levelized cost of energy of between 9.7 and 11.9 ¢/kWh. The lowest of these numbers is presently competitive with retail electricity rates in most of the country. The 8.9 ¢/kWh is still competitive with retail rates in many regions of the country with high electricity costs. The study further concludes that several design changes could shave 10-14% from the cost of energy determined in the preliminary design. These changes include a new tower design that offers tilt-up capability without guy wires and takes better advantage of the lowered loads produced by pitch control; design a family of airfoils more appropriate for pitch regulation on a turbine of this size; tune the pitch controller properly to minimize shedding of power during turbulent operation in the transition from Region 2 to 3; value engineer the pitch system to shave costs, including consideration of a collective pitch system; and refine the design of the hub and main frame castings to minimize weight and cost. We are generally encouraged by the results. These preliminary numbers show that we can produce a turbine that is competitive with retail electric rates at relatively windy IEC Class II sites. With further improvements in the design, we believe the turbine could be competitive at sites with lesser wind resource.

Wetzel, Kyle K.; McCleer, Patrick J.; Hahlbeck, Edwin C.; DOE Project Office - Keith Bennett

2006-07-21T23:59:59.000Z

420

SAR-BASED WIND CLIMATOLOGY FOR WIND TURBINES Merete Bruun Christiansen(1)  

E-Print Network [OSTI]

SAR-BASED WIND CLIMATOLOGY FOR WIND TURBINES Merete Bruun Christiansen(1) , Charlotte Bay Hasager(1) , Donald Thompson(2) , Lars Boye Hansen(3) (1) Wind Energy Department, Risø National Laboratory, Technical, Denmark ABSTRACT Wind fields extracted from synthetic aperture radar (SAR) imagery are used to analyze

Note: This page contains sample records for the topic "wind turbine towers" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


421

Method and apparatus for wind turbine air gap control  

DOE Patents [OSTI]

Methods and apparatus for assembling a wind turbine generator are provided. The wind turbine generator includes a core and a plurality of stator windings circumferentially spaced about a generator longitudinal axis, a rotor rotatable about the generator longitudinal axis wherein the rotor includes a plurality of magnetic elements coupled to a radially outer periphery of the rotor such that an airgap is defined between the stator windings and the magnetic elements and the plurality of magnetic elements including a radially inner periphery having a first diameter. The wind turbine generator also includes a bearing including a first member in rotatable engagement with a radially inner second member, the first member including a radially outer periphery, a diameter of the radially outer periphery of the first member being substantially equal to the first diameter, the rotor coupled to the stator through the bearing such that a substantially uniform airgap is maintained.

Grant, James Jonathan; Bagepalli, Bharat Sampathkumaran; Jansen, Patrick Lee; DiMascio, Paul Stephen; Gadre, Aniruddha Dattatraya; Qu, Ronghai

2007-02-20T23:59:59.000Z

422

Acoustic noise associated with the MOD-1 wind turbine: its source, impact, and control  

SciTech Connect (OSTI)

This report summarizes extensive research by staff of the Solar Energy Research Institute and its subcontractors conducted to establish the origin and possible amelioration of acoustic disturbances associated with the operation of the DOE/NASA MOD-1 wind turbine installed in 1979 near Boone, North Carolina. Results have shown that the source of this acoustic annoyance was the transient, unsteady aerodynamic lift imparted to the turbine blades as they passed through the lee wakes of the large, cylindrical tower supports. Nearby residents were annoyed by the low-frequency, acoustic impulses propagated into the structures in which the complainants lived. The situation was aggravated further by a complex sound propagation process controlled by terrain and atmospheric focusing. Several techniques for reducing the abrupt, unsteady blade load transients were researched and are discussed in the report.

Kelley, N.D.; McKenna, H.E.; Hemphill, R.R.; Etter, C.L.; Garrelts, R.L.; Linn, N.C.

1985-02-01T23:59:59.000Z

423

Modelling and Analysis of Variable Speed Wind Turbines with Induction Generator during Grid  

E-Print Network [OSTI]

Modelling and Analysis of Variable Speed Wind Turbines with Induction Generator during Grid Fault Wind Turbines with Induction Generator during Grid Fault by Sigrid M. Bolik Institute of Energy turbine technology has undergone rapid developments. Growth in size and the optimization of wind turbines

Hansen, René Rydhof

424

Does the infrasound from wind turbines affect the inner ear? Alec N. Salt1  

E-Print Network [OSTI]

Does the infrasound from wind turbines affect the inner ear? Alec N. Salt1 1 Washington University turbines adversely affects human health. The unweighted spectrum of wind turbine noise slowly rises (needing over 120 dB SPL to detect 2 Hz) it is claimed that infrasound generated by wind turbines is below

Salt, Alec N.

425

M. Bahrami ENSC 283 (S 11) Wind Turbine Project 1 ENSC 283 Project  

E-Print Network [OSTI]

and the vertical-axis wind turbine (VAWT) in Figure 2-b. The designation simply depends on the axis of rotationM. Bahrami ENSC 283 (S 11) Wind Turbine Project 1 ENSC 283 Project Assigned date: Feb. 23, 2011 family), but also important are those which extract energy form the fluid such as turbines. Wind turbines

Bahrami, Majid

426

RIS0-M-2242 ANALYSIS OF DATA FROM THE GEDSER WIND TURBINE 1977-1979  

E-Print Network [OSTI]

RIS0-M-2242 ANALYSIS OF DATA FROM THE GEDSER WIND TURBINE 1977-1979 P. Lundsager, S. Frandsen, C on the data from the Gedser wind turbine measurements, made during 1977 to 1979. The report contains chap turbine with modern Danish, Swedish and American experimental wind turbines, based on published data. UDC

427

Real-Time Wind Turbine Emulator Suitable for Power Quality and Dynamic Control Studies  

E-Print Network [OSTI]

1 Real-Time Wind Turbine Emulator Suitable for Power Quality and Dynamic Control Studies Dale S. L. Dolan, Student Member, IEEE, P. W. Lehn, Member IEEE Abstract-- Wind turbines are increasingly becoming-time Wind Turbine Emulator, which emulates the dynamic torque produced by an actual turbine has been

Lehn, Peter W.

428

Energy Based Methods in Wind Turbine Control CeSOS Highlights and AMOS Visions  

E-Print Network [OSTI]

Energy Based Methods in Wind Turbine Control CeSOS Highlights and AMOS Visions Morten D. Pedersen 1 / 26 #12;This talk 1 Background 2 Understanding the Wind Turbine 3 Nonlinear Turbine Modeling 4;Background The Problem Previously stable wind turbine systems began exhibiting resonant behavior when put

Nørvåg, Kjetil

429

EEMD-based wind turbine bearing failure detection using the generator stator current homopolar component  

E-Print Network [OSTI]

EEMD-based wind turbine bearing failure detection using the generator stator current homopolar turbine generators for stationary and non stationary cases. Keyword: Wind turbine, induction generator on the installed equipment because they are hardly accessible or even inaccessible [1]. 1.1. Wind turbine failure

Boyer, Edmond

430

Sparkr Blade Test Centre Wind turbines with a rotor diameter exceed-  

E-Print Network [OSTI]

Sparkær Blade Test Centre Wind turbines with a rotor diameter exceed- ing 2 metres must have a type of a wind turbine. Failure of a rotor blade in service often involves damage of the entire turbine operating type cer- tification systems for wind turbines. Reg. no. 427 The Sparkær Blade Test Centre became

431

How hard can it be to pitch a wind turbine blade? Moment of inertia approximately  

E-Print Network [OSTI]

How hard can it be to pitch a wind turbine blade? Moment of inertia approximately as a small car (1 a wind turbine blade? Hydraulic pitch actuator for the virtual NREL 5 MW turbine · Motivation · Actuator a wind turbine blade? Motivation · How to model a hydraulic pitch actuator? · Second order system

432

Advanced Wind Turbine Program Next Generation Turbine Development Project: June 17, 1997--April 30, 2005  

SciTech Connect (OSTI)

This document reports the technical results of the Next Generation Turbine Development Project conducted by GE Wind Energy LLC. This project is jointly funded by GE and the U.S. Department of Energy's National Renewable Energy Laboratory.The goal of this project is for DOE to assist the U.S. wind industry in exploring new concepts and applications of cutting-edge technology in pursuit of the specific objective of developing a wind turbine that can generate electricity at a levelized cost of energy of $0.025/kWh at sites with an average wind speed of 15 mph (at 10 m height).

GE Wind Energy, LLC

2006-05-01T23:59:59.000Z

433

Advanced wind turbine design studies: Advanced conceptual study. Final report  

SciTech Connect (OSTI)

In conjunction with the US Department of Energy and the National Renewable Energy Laboratory`s Advanced Wind Turbine Program, the Atlantic Orient Corporation developed preliminary designs for the next generation of wind turbines. These 50 kW and 350 kW turbines are based upon the concept of simplicity. By adhering to a design philosophy that emphasizes simplicity, we project that these turbines will produce energy at extremely competitive rates which will unlock the potential of wind energy domestically and internationally. The program consisted of three distinct phases. First, we evaluated the operational history of the Enertech 44 series wind turbines. As a result of this evaluation, we developed, in the second phase, a preliminary design for a new 50 kW turbine for the near-term market. In the third phase, we took a clean-sheet-of-paper approach to designing a 350 kW turbine focused on the mid-1990s utility market that incorporated past experience and advanced technology.

Hughes, P.; Sherwin, R. [Atlantic Orient Corp., Norwich, VT (United States)] [Atlantic Orient Corp., Norwich, VT (United States)

1994-08-01T23:59:59.000Z

434

EFFECTS OF TOUGHENED MATRIX RESINS ON COMPOSITE MATERIALS FOR WIND TURBINE BLADES  

E-Print Network [OSTI]

EFFECTS OF TOUGHENED MATRIX RESINS ON COMPOSITE MATERIALS FOR WIND TURBINE BLADES by Ricardo Orozco turbine energy project. #12;v TABLE OF CONTENTS LIST OF TABLES

435

EVALUATION OF HAND LAY-UP AND RESIN TRANSFER MOLDING IN COMPOSITE WIND TURBINE BLADE MANUFACTURING  

E-Print Network [OSTI]

EVALUATION OF HAND LAY-UP AND RESIN TRANSFER MOLDING IN COMPOSITE WIND TURBINE BLADE MANUFACTURING..........................................................................................................1 Hand Lay-up in Turbine Blade Fabrication

436

Vibration and Structural Response of Hybrid Wind Turbine Blades  

E-Print Network [OSTI]

sources. Wind energy is capable of providing 72 TW (TW = 10^12 W) of electric power, which is approximately four and half times the world energy consumption of 15.8 TW as reported in 2006. Since power output extracted from wind turbines is proportional...

Nanami, Norimichi

2011-02-22T23:59:59.000Z

437

Review of Wind Turbine Wake Models and Future Directions (Presentation)  

SciTech Connect (OSTI)

This presentation gives a brief overview to wind turbine wake modeling, ranging from models used in the 1980s up to the present. The presentation shows the strengths and weaknesses of various models and discusses the needs of the wind energy industry and research sectors. Both power production and loads analysis are discussed.

Churchfield, M. J.

2013-08-01T23:59:59.000Z

438

Sparkr Blade Test Centre Fatigue tests of wind turbine blades  

E-Print Network [OSTI]

Sparkær Blade Test Centre Fatigue tests of wind turbine blades Flapwise fatigue tests of 3 blades wind load. By turning and oscillating the blade in the horzontal direction, an R-ratio of ­1 running at the Sparkær Centre Blade Test Facilities. Fatigue blade tests are performed in order

439

Sparkr Blade Test Centre Static tests of wind turbine blades  

E-Print Network [OSTI]

Sparkær Blade Test Centre Static tests of wind turbine blades Static blade tests are performed-4000 Roskilde Denmark www.risoe.dk Wind Energy Department Sparkær Blade test Centre vea@risoe.dk Tel in order to determine the structural properties of a blade including stiffness data and strain distribution

440

Virtual Models for Prediction of Wind Turbine Parameters  

E-Print Network [OSTI]

Abstract—In this paper, a data-driven methodology for the development of virtual models of a wind turbine is presented. To demonstrate the proposed methodology, two parameters of the wind turbine have been selected for modeling, namely, power output and rotor speed. A virtual model for each of the two parameters is developed and tested with data collected at a wind farm. Both models consider controllable and noncontrollable parameters of the wind turbine, as well as the delay effect of wind speed and other parameters. To mitigate data bias of each virtual model and ensure its robustness, a training set is assembled from ten randomly selected turbines. The performance of a virtual model is largely determined by the input parameters selected and the data mining algorithms used to extract the model. Several data mining algorithms for parameter selection and model extraction are analyzed. The research presented in the paper is illustrated with computational results. Index Terms—Data mining, parameter selection, power prediction, virtual model, wind turbine. I.

Andrew Kusiak

Note: This page contains sample records for the topic "wind turbine towers" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


441

Project Title: Residential wind turbine design Project Description: This project aims to  

E-Print Network [OSTI]

that wind is expected to come. Therefore it may be a good idea to consider a vertical-axis wind turbine of the conventional wind turbines use horizontal- axis configuration (see Fig. 1) and is aligned with the directionPROJECT 1: Project Title: Residential wind turbine design Project Description: This project aims

Muradoglu, Metin

442

Coriolis Effect on Dynamic Stall in a Vertical Axis Wind Turbine at Moderate Reynolds Number  

E-Print Network [OSTI]

axis wind turbines (VAWT) offer several advantages over horizontal axis wind turbines (HAWT), namely to yaw wind direction (because they are omnidirectional), and their increased power output in skewed flowCoriolis Effect on Dynamic Stall in a Vertical Axis Wind Turbine at Moderate Reynolds Number Hsieh

Colonius, Tim

443

An Experimental Investigation on the Wake Interference of Wind Turbines Sited Over Complex Terrains  

E-Print Network [OSTI]

1 An Experimental Investigation on the Wake Interference of Wind Turbines Sited Over Complex, 50011 An experimental study was conducted to investigate the interferences of wind turbines sited over conducted in a large wind tunnel with of wind turbine models sited over a flat terrain (baseline case

Hu, Hui

444

Set-point reconfiguration approach for the FTC of wind turbines  

E-Print Network [OSTI]

Set-point reconfiguration approach for the FTC of wind turbines B. Boussaid C. Aubrun N system stability. The effectiveness of the proposed solution is illustrated by a wind turbine example issue. Nowadays, wind turbines which generate electrical energy from the wind energy are considered one

Paris-Sud XI, Université de

445

Management and Conservation Article Behavioral Responses of Bats to Operating Wind Turbines  

E-Print Network [OSTI]

Management and Conservation Article Behavioral Responses of Bats to Operating Wind Turbines JASON W used thermal infrared (TIR) cameras to assess the flight behavior of bats at wind turbines because fatalities, migratory tree bats, thermal infrared imaging, wind power, wind turbines. Recent studies indicate

Holberton, Rebecca L.

446

Mitigation of Fatigue Loads Using Individual Pitch Control of Wind Turbines Based on FAST  

E-Print Network [OSTI]

Mitigation of Fatigue Loads Using Individual Pitch Control of Wind Turbines Based on FAST Yunqian University, China jiz@seu.edu.cn Abstract-With the increase of wind turbine dimension and capacity, the wind turbine structures are subjected to prominent loads and fatigue which would reduce the lifetime of wind

Chen, Zhe

447

Hilbert Transform-Based Bearing Failure Detection in DFIG-Based Wind Turbines  

E-Print Network [OSTI]

Hilbert Transform-Based Bearing Failure Detection in DFIG-Based Wind Turbines Yassine Amirat1 and proactive maintenance of wind turbines assumes more importance with the increasing number of installed wind current sensors installed within the wind turbine generator. This paper describes then an approach based

Boyer, Edmond

448

BAYESIAN UPDATING OF PROBABILISTIC TIME-DEPENDENT FATIGUE MODEL: APPLICATION TO JACKET FOUNDATIONS OF WIND TURBINES  

E-Print Network [OSTI]

OF WIND TURBINES Benjamin Rocher1,2 , Franck Schoefs1 , Marc François1 , Arnaud Salou2 1 LUNAM Université.rocher@univ-nantes.fr ABSTRACT Due to both wave and wind fluctuation, the metal foundations of offshore wind turbines are highly algorithm. KEYWORDS: Fatigue, Damage, Reliability, Bayesian updating. INTRODUCTION In offshore wind turbines

Boyer, Edmond

449

Ris-R-1000(EN) Cost Optimization of Wind Turbines for  

E-Print Network [OSTI]

Risø-R-1000(EN) Cost Optimization of Wind Turbines for Large-scale Off-shore Wind Farms Peter contains a preliminary investigation of site specific design of off- shore wind turbines for a large off using a design tool for wind turbines that involve numerical optimization and aeroelastic calculations

450

Dynamic control of wind turbines Andrew Kusiak*, Wenyan Li, Zhe Song  

E-Print Network [OSTI]

Dynamic control of wind turbines Andrew Kusiak*, Wenyan Li, Zhe Song Department of Mechanical Keywords: Wind turbine Wind energy Data mining Model predictive control Evolutionary computation algorithm Control strategy optimization a b s t r a c t The paper presents an intelligent wind turbine control

Kusiak, Andrew

451

Time-domain Fatigue Response and Reliability Analysis of Offshore Wind Turbines with  

E-Print Network [OSTI]

Time-domain Fatigue Response and Reliability Analysis of Offshore Wind Turbines with Emphasis of offshore wind turbines Defense: 09.12.2012 2012 - : Structural Engineer in Det Norske Veritas (DNV) 2007 of the drive train of an on-land wind turbine under dynamic wind loads. The main tasks of this study are to

Nørvåg, Kjetil

452

Ris-R-Report Grid fault and design-basis for wind turbines -  

E-Print Network [OSTI]

Risø-R-Report Grid fault and design-basis for wind turbines - Final report Anca D. Hansen, Nicolaos and design-basis for wind turbines - Final report Division: Wind Energy Division Risø-R-1714(EN) January 2010-basis for wind turbines". The objective of this project has been to assess and analyze the consequences

453

Performance Testing of a Small Vertical-Axis Wind Turbine , S. Tullis2  

E-Print Network [OSTI]

Performance Testing of a Small Vertical-Axis Wind Turbine R. Bravo1 , S. Tullis2 , S. Ziada3 of electric production [1]. Although most performance testing for small-scale wind turbines is conducted vertical-axis wind turbines (VAWT) in urban settings, full-scale wind tunnel testing of a prototype 3.5 k

Tullis, Stephen

454

New tools for identification of wind turbine structures  

SciTech Connect (OSTI)

The new identification tools used in this research to analyze input-output time histories of a wind turbine structure, with a wide-band excitation, allow to obtain its modal state space representation. This representation reveals the internal behavior of the system, such as the interaction between its physical parameters. The techniques presented in this paper also allow researchers to obtain modal parameters, as well as frequency responses of a properly excited wind turbine structure immersed in wind noise. The use of two identification algorithms with the same, relatively simple numerical example, enables to compare the results obtained with the actual characteristics of the system modeled. Then, an example using the data generated by the ADAMS{reg_sign} model of the Micon 65/13 wind turbine structure is considered to illustrate additional elements to be included in the identification procedure for such a complex flexible structure.

Bialasiewicz, J.T.; Osgood, R.M. [National Renewable Enery Lab., Golden, CO (United States)

1995-12-31T23:59:59.000Z

455

A Summary of the Fatigue Properties of Wind Turbine Materials  

SciTech Connect (OSTI)

Modern wind turbines are fatigue critical machines that are typically used to produce electrical power from the wind. The materials used to construct these machines are subjected to a unique loading spectrum that contains several orders of magnitude more cycles than other fatigue critical structures, e.g., an airplane. To facilitate fatigue designs, a large database of material properties has been generated over the past several years that is specialized to materials typically used in wind turbines. In this paper, I review these fatigue data. Major sections are devoted to the properties developed for wood, metals (primarily aluminum) and fiberglass. Special emphasis is placed on the fiberglass discussion because this material is current the material of choice for wind turbine blades. The paper focuses on the data developed in the U.S., but cites European references that provide important insights.

SUTHERLAND, HERBERT J.

1999-10-07T23:59:59.000Z

456

Application of Damage Detection Techniques Using Wind Turbine Modal Data  

SciTech Connect (OSTI)

As any structure ages, its structural characteristics will also change. The goal of this work was to determine if modal response data fkom a wind turbine could be used in the detection of damage. The input stimuli to the wind turbine were from traditional modal hammer input and natural wind excitation. The structural response data was acquired using accelerometers mounted on the rotor of a parked and undamaged horizontal-axis wind turbine. The bolts at the root of one of the three blades were then loosened to simulate a damaged blade. The structural response data of the rotor was again recorded. The undamaged and damage-simulated datasets were compared using existing darnage detection algorithms. Also, a novel algorithm for combining the results of different damage detection algorithms was utilized in the assessment of the data. This paper summarizes the code development and discusses some preliminary damage detection results.

Gross, E.; Rumsey, M.; Simmermacher, T.; Zadoks, R.I.

1998-12-17T23:59:59.000Z

457

Assessing the Impacts of Reduced Noise Operations of Wind Turbines on Neighbor Annoyance: A Preliminary Analysis in Vinalhaven, Maine  

E-Print Network [OSTI]

only self-reported wind and turbine sound levels were used.Noise Operations of Wind Turbines on Neighbor Annoyance: ANoise Operations of Wind Turbines on Neighbor Annoyance: A

Hoen, Ben

2010-01-01T23:59:59.000Z

458

Assessing the Impacts of Reduced Noise Operations of Wind Turbines on Neighbor Annoyance: A Preliminary Analysis in Vinalhaven, Maine  

E-Print Network [OSTI]

of Reduced Noise Operations of Wind Turbines on Neighborof Reduced Noise Operations of Wind Turbines on NeighborWind Speed (m/s) 3 Turbines (in operation at the time) Noise

Hoen, Ben

2010-01-01T23:59:59.000Z

459

Methods and apparatus for cooling wind turbine generators  

DOE Patents [OSTI]

A wind turbine generator includes a stator having a core and a plurality of stator windings circumferentially spaced about a generator longitudinal axis. A rotor is rotatable about the generator longitudinal axis, and the rotor includes a plurality of magnetic elements coupled to the rotor and cooperating with the stator windings. The magnetic elements are configured to generate a magnetic field and the stator windings are configured to interact with the magnetic field to generate a voltage in the stator windings. A heat pipe assembly thermally engaging one of the stator and the rotor to dissipate heat generated in the stator or rotor.

Salamah, Samir A. (Niskayuna, NY); Gadre, Aniruddha Dattatraya (Rexford, NY); Garg, Jivtesh (Schenectady, NY); Bagepalli, Bharat Sampathkumaran (Niskayuna, NY); Jansen, Patrick Lee (Alplaus, NY); Carl, Jr., Ralph James (Clifton Park, NY)

2008-10-28T23:59:59.000Z

460

Modelling of offshore wind turbine wakes with the wind farm program FLaP  

E-Print Network [OSTI]

Modelling of offshore wind turbine wakes with the wind farm program FLaP Bernhard Lange(1) , Hans been extended to improve the description of wake development in offshore conditions, especially the low from the Danish offshore wind farm Vindeby. Vertical wake profiles and mean turbulence intensities

Heinemann, Detlev

Note: This page contains sample records for the topic "wind turbine towers" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


461

Optimizing small wind turbine performance in battery charging applications  

SciTech Connect (OSTI)

Many small wind turbine generators (10 kW or less) consist of a variable speed rotor driving a permanent magnet synchronous generator (alternator). One application of such wind turbines is battery charging, in which the generator is connected through a rectifier to a battery bank. The wind turbine electrical interface is essentially the same whether the turbine is part of a remote power supply for telecommunications, a standalone residential power system, or a hybrid village power system, in short, any system in which the wind generator output is rectified and fed into a DC bus. Field experience with such applications has shown that both the peak power output and the total energy capture of the wind turbine often fall short of expectations based on rotor size and generator rating. In this paper, the authors present a simple analytical model of the typical wind generator battery charging system that allows one to calculate actual power curves if the generator and rotor properties are known. The model clearly illustrates how the load characteristics affect the generator output. In the second part of this paper, the authors present four approaches to maximizing energy capture from wind turbines in battery charging applications. The first of these is to determine the optimal battery bank voltage for a given WTG. The second consists of adding capacitors in series with the generator. The third approach is to place an optimizing DC/DC voltage converter between the rectifier and the battery bank. The fourth is a combination of the series capacitors and the optimizing voltage controller. They also discuss both the limitations and the potential performance gain associated with each of the four configurations.

Drouilhet, S; Muljadi, E; Holz, R [National Renewable Energy Lab., Golden, CO (United States). Wind Technology Div.; Gevorgian, V [State Engineering Univ. of Armenia, Yerevan (Armenia)

1995-05-01T23:59:59.000Z

462

Passive Acoustic Detection of Wind Turbine In-Flow Conditions for Active Control and Optimization  

SciTech Connect (OSTI)

Wind is a significant source of energy; however, the human capability to produce electrical energy still has many hurdles to overcome. One of these is the unpredictability of the winds in the atmospheric boundary layer (ABL). The ABL is highly turbulent in both stable and unstable conditions (based on the vertical temperature profile) and the resulting fluctuations can have a dramatic impact on wind turbine operation. Any method by which these fluctuations could be observed, estimated, or predicted could provide a benefit to the wind energy industry as a whole. Based on the fundamental coupling of velocity fluctuations to pressure fluctuations in the nearly incompressible flow in the ABL, This work hypothesizes that a ground-based array of infrasonic pressure transducers could be employed to estimate the vertical wind profile over a height relevant for wind turbines. To analyze this hypothesis, experiments and field deployments were conducted. Wind tunnel experiments were performed for a thick turbulent boundary layer over a neutral or heated surface. Surface pressure and velocity probe measurements were acquired simultaneously. Two field deployments yielded surface pressure data from a 49 element array. The second deployment at the Reese Technology Center in Lubbock, TX, also included data from a smaller aperture, 96-element array and a 200-meter tall meteorological tower. Analysis of the data successfully demonstrated the ability to estimate the vertical velocity profile using coherence data from the pressure array. Also, dynamical systems analysis methods were successful in identifying and tracking a gust type event. In addition to the passive acoustic profiling method, this program also investigated a rapid response Doppler SODAR system, the optimization of wind turbine blades for enhanced power with reduced aeroacoustic noise production, and the implementation of a wireless health monitoring system for the wind turbine blades. Each of these other objectives was met successfully. The use of phase unwrapping applied to SODAR data was found to yield reasonable results for per-pulse measurements. A health monitoring system design analysis was able to demonstrate the ability to use a very small number of sensors to monitor blade health based on the blade's overall structural modes. Most notable was the development of a multi-objective optimization methodology that successfully yielded an aerodynamic blade design that produces greater power output with reduced aerodynamic loading noise. This optimization method could be significant for future design work.

Murray, Nathan E.

2012-03-12T23:59:59.000Z

463

Multi-Body Unsteady Aerodynamics in 2D Applied to aVertical-Axis Wind Turbine Using a Vortex Method.  

E-Print Network [OSTI]

?? Vertical axis wind turbines (VAWT) have many advantages over traditional Horizontalaxis wind turbines (HAWT).One of the more severe problem of VAWTs are the complicated… (more)

Österberg, David

2010-01-01T23:59:59.000Z

464

Laboratory implementation of variable-speed wind turbine generation  

SciTech Connect (OSTI)

To improve the performance of wind turbines, various control schemes such as variable speed operation have been proposed. Testing of these control algorithms on a full scale system is very expensive. To test these systems simulation, we developed programs and small scale laboratory experiments. We used this system to verify a control method that attempts to keep the turbine operating at its peak power coefficient. Both the simulations and the experiments verified the principle of operation of this control scheme.

Zinger, D.S. [Northern Illinois University, DeKalb, IL (United States)] [Northern Illinois University, DeKalb, IL (United States); Miller, A.A. [Univ. of Idaho, Moscow, ID (United States)] [Univ. of Idaho, Moscow, ID (United States); Muljadi, E.; Butterfield, C.P.; Robinson, M.C. [National Renewable Energy Lab., Golden, CO (United States)] [National Renewable Energy Lab., Golden, CO (United States)

1996-07-01T23:59:59.000Z

465

Simulation of winds as seen by a rotating vertical axis wind turbine blade  

SciTech Connect (OSTI)

The objective of this report is to provide turbulent wind analyses relevant to the design and testing of Vertical Axis Wind Turbines (VAWT). A technique was developed for utilizing high-speed turbulence wind data from a line of seven anemometers at a single level to simulate the wind seen by a rotating VAWT blade. Twelve data cases, representing a range of wind speeds and stability classes, were selected from the large volume of data available from the Clayton, New Mexico, Vertical Plane Array (VPA) project. Simulations were run of the rotationally sampled wind speed relative to the earth, as well as the tangential and radial wind speeds, which are relative to the rotating wind turbine blade. Spectral analysis is used to compare and assess wind simulations from the different wind regimes, as well as from alternate wind measurement techniques. The variance in the wind speed at frequencies at or above the blade rotation rate is computed for all cases, and is used to quantitatively compare the VAWT simulations with Horizontal Axis Wind Turbine (HAWT) simulations. Qualitative comparisons are also made with direct wind measurements from a VAWT blade.

George, R.L.

1984-02-01T23:59:59.000Z

466

Quiet airfoils for small and large wind turbines  

DOE Patents [OSTI]

Thick airfoil families with desirable aerodynamic performance with minimal airfoil induced noise. The airfoil families are suitable for a variety of wind turbine designs and are particularly well-suited for use with horizontal axis wind turbines (HAWTs) with constant or variable speed using pitch and/or stall control. In exemplary embodiments, a first family of three thick airfoils is provided for use with small wind turbines and second family of three thick airfoils is provided for use with very large machines, e.g., an airfoil defined for each of three blade radial stations or blade portions defined along the length of a blade. Each of the families is designed to provide a high maximum lift coefficient or high lift, to exhibit docile stalls, to be relatively insensitive to roughness, and to achieve a low profile drag.

Tangler, James L. (Boulder, CO); Somers, Dan L. (Port Matilda, PA)

2012-06-12T23:59:59.000Z

467

Adaptive pitch control for variable speed wind turbines  

DOE Patents [OSTI]

An adaptive method for adjusting blade pitch angle, and controllers implementing such a method, for achieving higher power coefficients. Average power coefficients are determined for first and second periods of operation for the wind turbine. When the average power coefficient for the second time period is larger than for the first, a pitch increment, which may be generated based on the power coefficients, is added (or the sign is retained) to the nominal pitch angle value for the wind turbine. When the average power coefficient for the second time period is less than for the first, the pitch increment is subtracted (or the sign is changed). A control signal is generated based on the adapted pitch angle value and sent to blade pitch actuators that act to change the pitch angle of the wind turbine to the new or modified pitch angle setting, and this process is iteratively performed.

Johnson, Kathryn E. (Boulder, CO); Fingersh, Lee Jay (Westminster, CO)

2012-05-08T23:59:59.000Z

468

Low Wind Speed Turbine Development Project Report: November 4, 2002 - December 31, 2006  

SciTech Connect (OSTI)

This report summarizes work conducted by Clipper Windpower under the DOE Low Wind Speed Turbine project. The objective of this project was to produce a wind turbine that can lower the cost of energy.

Mikhail, A.

2009-01-01T23:59:59.000Z

469

Small Wind Turbines Taking Off: Q&A with Andy Kruse | Department...  

Broader source: Energy.gov (indexed) [DOE]

Small Wind Turbines Taking Off: Q&A with Andy Kruse Small Wind Turbines Taking Off: Q&A with Andy Kruse June 9, 2010 - 10:36am Addthis Andy Kruse, senior vice president of...

470

Influence of Control on the Pitch Damping of a Floating Wind Turbine  

SciTech Connect (OSTI)

This paper presents the influence of conventional wind turbine blade-pitch control actions on the pitch damping of a wind turbine supported by an offshore floating barge with catenary moorings.

Jonkman, J. M.

2008-03-01T23:59:59.000Z

471

Coordination of Voltage and Frequency Feedback in Load-Frequency Control Capability of Wind Turbine  

E-Print Network [OSTI]

Coordination of Voltage and Frequency Feedback in Load-Frequency Control Capability of Wind Turbine-Frequency Control (LFC) is gradually shifted to Variable Speed Wind Turbines (VSWTs). In order to equip VSWT

Silva, Filipe Faria Da

472

Photo of the Week: Eye-to-Eye with a Wind Turbine | Department...  

Broader source: Energy.gov (indexed) [DOE]

Eye-to-Eye with a Wind Turbine Photo of the Week: Eye-to-Eye with a Wind Turbine August 7, 2013 - 10:35am Addthis At the National Renewables Energy Laboratory (NREL), scientists...

473

Advanced Control Design for Wind Turbines; Part I: Control Design, Implementation, and Initial Tests  

SciTech Connect (OSTI)

The purpose of this report is to give wind turbine engineers information and examples of the design, testing through simulation, field implementation, and field testing of advanced wind turbine controls.

Wright, A. D.; Fingersh, L. J.

2008-03-01T23:59:59.000Z

474

Concepts for Wind Turbine Sound Mitigation Page 1 of 16 AWEA Windpower 2013  

E-Print Network [OSTI]

influenced by turbine operational parameters such as rotational speed and blade pitch angle as well as wind turbine source noise mitigation techniques as well as how these technologies and turbine operation canConcepts for Wind Turbine Sound Mitigation Page 1 of 16 AWEA Windpower 2013 Chicago, IL May 6

McCalley, James D.

475

Wind Turbine Gearbox Failure Modes - A Brief (Presentation)  

SciTech Connect (OSTI)

Wind turbine gearboxes are not always meeting 20-year design life. Premature failure of gearboxes increases cost of energy, turbine downtime, unplanned maintenance, gearbox replacement and rebuild, and increased warranty reserves. The problem is widespread, affects most Original Equipment Manufacturers, and is not caused by manufacturing practices. There is a need to improve gearbox reliability and reduce turbine downtime. The topics of this presentation are: GRC (Gearbox Reliability Collaborative) technical approach; Gearbox failure database; Recorded incidents summary; Top failure modes for bearings; Top failure modes for gears; GRC test gearbox; Bearing nomenclature; Test history; Real damage; Gear sets; Bearings; Observations; and Summary. 5 refs.

Sheng, S.; McDade, M.; Errichello, R.

2011-10-01T23:59:59.000Z

476

Analysis of the effects of integrating wind turbines into a conventional utility: a case study. Revised final report  

SciTech Connect (OSTI)

The impact on a utility incorporating wind turbine generation due to wind speed sampling frequency, wind turbine performance model, and wind speed forecasting accuracy is examined. The utility analyzed in this study was the Los Angeles Department of Water and Power, and the wind turbine assumed was the MOD-2. The sensitivity of the economic value of wind turbine generation to wind speed sampling frequency and wind turbine modeling technique is examined as well as the impact of wind forecasting accuracy on utility operation and production costs. Wind speed data from San Gorgonio Pass, California during 1979 are used to estimate wind turbine performance using four different simulation methods. (LEW)

Goldenblatt, M.K.; Wegley, H.L.; Miller, A.H.

1983-03-01T23:59:59.000Z

477

PERFORMANCE ASSESSMENT OF THE CASE WESTERN RESERVE UNIVERSITYWIND TURBINE AND CHARACTERIZATION OF WIND AVAILABILITY.  

E-Print Network [OSTI]

??To better understand the behavior of wind turbines placed in an urban environment, a study was performed to characterize the wind availability and performance of… (more)

Wo, Chung

2014-01-01T23:59:59.000Z

478

Interconnection of Direct-drive Wind Turbines Using A Series Connected DC Grid.  

E-Print Network [OSTI]

??This thesis presents the concept of a "distributed HVDC converter" for offshore wind farms. The proposed converter topology allows series interconnection of wind turbines obviating… (more)

Veilleux, Etienne

2010-01-01T23:59:59.000Z

479

Convection towers  

DOE Patents [OSTI]

Convection towers which are capable of cleaning the pollution from large quantities of air and of generating electricity utilize the evaporation of water sprayed into the towers to create strong airflows and to remove pollution from the air. Turbines in tunnels at the skirt section of the towers generate electricity. Other embodiments may also provide fresh water, and operate in an updraft mode. 5 figures.

Prueitt, M.L.

1994-02-08T23:59:59.000Z

480

EA-1857: Wind Turbine Power Generation Complex at Idaho National Laboratory  

Broader source: Energy.gov [DOE]

This EA would evaluate the environmental impacts of the proposed wind turbine power generation complex at Idaho National Laboratory, Idaho.

Note: This page contains sample records for the topic "wind turbine towers" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


481

FLUID FLOW MODELING OF RESIN TRANSFER MOLDING FOR COMPOSITE MATERIAL WIND TURBINE BLADE STRUCTURES  

E-Print Network [OSTI]

FLUID FLOW MODELING OF RESIN TRANSFER MOLDING FOR COMPOSITE MATERIAL WIND TURBINE BLADE STRUCTURES.............................................................................................................7 Composite Materials...................................................................................................7 Material Properties

482

Torque ripple in a Darrieus, vertical axis wind turbine  

SciTech Connect (OSTI)

Interaction between a steady wind and a rotating, Darrieus, vertical axis wind turbine produces time periodic aerodynamic loads which cause time dependent torque variations, referred to as torque ripple, to occur in the mechanical link between the turbine and the electrical generator. There is concern for the effect of torque ripple upon fatigue life of drive train components and upon power quality. An analytical solution characterizing the phenomenon of torque ripple has been obtained which is based upon a Fourier expansion of the time dependent features of the problem. Numerical results for torque ripple, some experimental data, determination of acceptable levels and methods of controlling it, are presented and discussed.

Reuter, R.C. Jr.

1980-09-01T23:59:59.000Z

483

Simulating Turbulent Wind Fields for Offshore Turbines in Hurricane-Prone Regions (Poster)  

SciTech Connect (OSTI)

Extreme wind load cases are one of the most important external conditions in the design of offshore wind turbines in hurricane prone regions. Furthermore, in these areas, the increase in load with storm return-period is higher than in extra-tropical regions. However, current standards have limited information on the appropriate models to simulate wind loads from hurricanes. This study investigates turbulent wind models for load analysis of offshore wind turbines subjected to hurricane conditions. Suggested extreme wind models in IEC 61400-3 and API/ABS (a widely-used standard in oil and gas industry) are investigated. The present study further examines the wind turbine response subjected to Hurricane wind loads. Three-dimensional wind simulator, TurbSim, is modified to include the API wind model. Wind fields simulated using IEC and API wind models are used for an offshore wind turbine model established in FAST to calculate turbine loads and response.

Guo, Y.; Damiani, R.; Musial, W.

2014-04-01T23:59:59.000Z

484

Offshore Wind Turbine Design: Addressing Uncertainty Drivers Sten Frandsen Niels Jacob Tarp-Johansen  

E-Print Network [OSTI]

Offshore Wind Turbine Design: Addressing Uncertainty Drivers Sten Frandsen Niels Jacob Tarp@civil.auc.dk leje@elsam-eng.com Abstract: Current offshore wind turbine design methods have matured to a 1st identification of the most important uncertainty drivers specific for offshore wind turbine design loads

485

Incorporating Irregular Nonlinear Waves in Coupled Simulation of Offshore Wind Turbines  

E-Print Network [OSTI]

Incorporating Irregular Nonlinear Waves in Coupled Simulation of Offshore Wind Turbines Puneet, and Environmental Engineering The University of Texas, Austin, TX 78712 Design of an offshore wind turbine requires on the support structure (monopile) of an offshore wind turbine. We present the theory for the irregular

Manuel, Lance

486

A Cyberinfrastructure for Integrated Monitoring and Life-Cycle Management of Wind Turbines  

E-Print Network [OSTI]

A Cyberinfrastructure for Integrated Monitoring and Life-Cycle Management of Wind Turbines Kay Abstract. Integrating structural health monitoring into life-cycle management strategies for wind turbines data) can effectively be used to capture the operational and structural behavior of wind turbines

Stanford University

487

Mooring Line Modelling and Design Optimization of Floating Offshore Wind Turbines  

E-Print Network [OSTI]

Mooring Line Modelling and Design Optimization of Floating Offshore Wind Turbines by Matthew Thomas Mooring Line Modelling and Design Optimization of Floating Offshore Wind Turbines by Matthew Thomas Jair was coupled to the floating wind turbine simulator FAST. The results of the comparison study indicate the need

Victoria, University of

488

LPTV SUBSPACE ANALYSIS OF WIND TURBINES DATA Laurent Mevel1, Ivan Gueguen2, Dmitri Tcherniak3  

E-Print Network [OSTI]

LPTV SUBSPACE ANALYSIS OF WIND TURBINES DATA Laurent Mevel1, Ivan Gueguen2, Dmitri Tcherniak3 1.mevel@inria.fr ABSTRACT The modal analysis of a wind turbine has been generally handled with the assumption for stability analysis, especially, with the current development of very large wind turbines with complex

Paris-Sud XI, Université de

489

ORIGINAL PAPER Insect attraction to wind turbines: does colour play a role?  

E-Print Network [OSTI]

ORIGINAL PAPER Insect attraction to wind turbines: does colour play a role? C. V. Long & J. A at wind turbine installations has been generating increasing con- cern, both for the continued development the phenomenon of avian and bat mortality at wind turbine installations, an issue that could potentially

Paris-Sud XI, Université de

490

Individual Pitch Control for Mitigation of Power Fluctuation of Variable Speed Wind Turbines  

E-Print Network [OSTI]

Individual Pitch Control for Mitigation of Power Fluctuation of Variable Speed Wind Turbines, China mcheng@seu.edu.cn Abstract-- Grid connected wind turbines are the sources of power fluctuations presents an individual pitch control (IPC) strategy to mitigate the wind turbine power fluctuation at both

Hu, Weihao

491

Measurement of Infrasound Emissions from Wind Turbines Dave Pepyne, Michael Zink and Jamyang Tenzin  

E-Print Network [OSTI]

Measurement of Infrasound Emissions from Wind Turbines Dave Pepyne, Michael Zink and Jamyang Tenzin energy has made wind turbine technology a suitable candidate for pollution-free energy. With its great that received many complaints from the residents living near the large wind turbine poles. Many scientists

Mountziaris, T. J.

492

A Review of "Small-Scale Wind Turbines Policy Perspectives and  

E-Print Network [OSTI]

ERG/200607 A Review of "Small-Scale Wind Turbines ­ Policy Perspectives and Recommendations of Engineering Mathematics at Dalhousie University. #12;Hughes-Long: A Review of Small-Scale Wind Turbines proposed changes to their municipal Bylaws to allow the installation of "small-scale" wind turbines (i

Hughes, Larry

493

Mortality of bats at wind turbines links to nocturnal insect migration?  

E-Print Network [OSTI]

REVIEW Mortality of bats at wind turbines links to nocturnal insect migration? Jens Rydell & Lothar. Modern wind turbines seem to reach high enough into the airspace to interfere with the migratory movements of insects. The hypothesis is consistent with recent observa- tions of bats at wind turbines

Paris-Sud XI, Université de

494

Am. ~Iidl. Nal. 14:\\:-11-52 Bird Mortality Associated with Wind Turbines at the Buffalo  

E-Print Network [OSTI]

238-w Am. ~Iidl. Nal. 14:\\:-11-52 Bird Mortality Associated with Wind Turbines at the Buffalo Ridge with these wind turbines (Nelson and Curry. 1995). Orloff and Flannery (1992) suggested that the hunting beha) sampled 359 wind turbines in Alameda and Contra Costa counties. California, and found 42 dead birds

495

DETECTION OF IMPULSE-LIKE AIRBORNE SOUND FOR DAMAGE IDENTIFICATION IN ROTOR BLADES OF WIND TURBINES  

E-Print Network [OSTI]

DETECTION OF IMPULSE-LIKE AIRBORNE SOUND FOR DAMAGE IDENTIFICATION IN ROTOR BLADES OF WIND TURBINES burdens of wind turbines. To detect damage of rotor blades, several research projects focus on an acoustic, rotor blade, wind turbine INTRODUCTION There are several publications of non destructive damage

Boyer, Edmond

496

Economics of Online Structural Health Monitoring of Wind Turbines: Cost Benefit Analysis  

E-Print Network [OSTI]

Economics of Online Structural Health Monitoring of Wind Turbines: Cost Benefit Analysis Jeremy Van monitoring (OSHM) and condition-based maintenance (CBM) of wind turbine blades has the potential to reduce O cost of energy (LCOE) [1]. The costs required to keep wind turbines working in extreme temperatures

McCalley, James D.

497

Effect of Dynamic Stall on the Aerodynamics of Vertical-Axis Wind Turbines  

E-Print Network [OSTI]

Effect of Dynamic Stall on the Aerodynamics of Vertical-Axis Wind Turbines Frank Scheurich of the aerodynamic performance of vertical-axis wind turbines pose a significant challenge for computational fluid of the aerodynamics of a vertical- axis wind turbine that consists of three curved rotor blades that are twisted

McCalley, James D.

498

Power optimization of wind turbines with data mining and evolutionary computation  

E-Print Network [OSTI]

Power optimization of wind turbines with data mining and evolutionary computation Andrew Kusiak July 2009 Accepted 25 August 2009 Available online 17 September 2009 Keywords: Wind turbine Data mining for maximization of the power produced by wind turbines is presented. The power optimization objective

Kusiak, Andrew

499

Low-Voltage Ride-Through Techniques for DFIG-Based Wind Turbines  

E-Print Network [OSTI]

Low-Voltage Ride-Through Techniques for DFIG-Based Wind Turbines: State-of-the-Art Review deals with low-voltage ride-through (LVRT) capability of wind turbines (WTs) and in particular those as to index some emerging solutions. Index Terms--Wind turbine, doubly-fed induction generator, low voltage

Paris-Sud XI, Université de

500

American Institute of Aeronautics and Astronautics A Framework for the Reliability Analysis of Wind Turbines  

E-Print Network [OSTI]

of Wind Turbines against Windstorms and Non-Standard Inflow Definitions Lance Manuel1 Dept. of Civil typical wind turbine systems are yet to be characterized in ways that drive aeroelastic loads and design., but the coherence structure and turbulence kinetics at the spatial scale of wind turbine rotors are not as well

Manuel, Lance