Powered by Deep Web Technologies
Note: This page contains sample records for the topic "wind turbine development" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


1

NREL: Wind Research - Small Wind Turbine Development  

NLE Websites -- All DOE Office Websites (Extended Search)

Small Wind Turbine Development Small Wind Turbine Development A photo of Southwest Windpower's Skystream wind turbine in front of a home. PIX14936 Southwest Windpower's Skystream wind turbine. A photo of the Endurance wind turbine. PIX15006 The Endurance wind turbine. A photo of the Atlantic Orient Corporation 15/50 wind turbine at the National Wind Technology Center. PIX07301 The Atlantic Orient Corporation 15/50 wind turbine at the National Wind Technology Center. NREL supports continued market expansion of small wind turbines by funding manufacturers through competitive solicitations (i.e., subcontracts and/or grants) to refine prototype systems leading to commercialization. Learn more about the turbine development projects below. Skystream NREL installed and tested an early prototype of this turbine at the

2

Small Wind Turbine Testing and Applications Development  

Science Conference Proceedings (OSTI)

Small wind turbines offer a promising alternative for many remote electrical uses where there is a good wind resource. The National Wind Technology Center (NWTC) of the National Renewable Energy Laboratory helps further the role that small turbines can play in supplying remote power needs. The NWTC tests and develops new applications for small turbines. The NWTC also develops components used in conjunction with wind turbines for various applications. This paper describes wind energy research at the NWTC for applications including battery charging stations, water desalination/purification, and health clinics. Development of data acquisition systems and tests on small turbines are also described.

Corbus, D.; Baring-Gould, I.; Drouilhet, S.; Gevorgian, V.; Jimenez, T.; Newcomb, C.; Flowers, L.

1999-09-14T23:59:59.000Z

3

Wind Turbine Productivity and Development in Iran  

Science Conference Proceedings (OSTI)

This paper presents an overview of the status of wind energy productivity and development issues in Iran. It also presents a summary of the present global work on offshore energy, including the most recent works as well as potential offshore wind energy ... Keywords: Iran, development, offshore, turbine, wind

Ali Mostafaeipour; Saeid Abesi

2010-03-01T23:59:59.000Z

4

Economic Impacts of Wind Turbine Development in U.S. Counties  

E-Print Network (OSTI)

15 percent)). Cumulative wind turbine capacity installed inper capita income of wind turbine development (measured inour sample, cumulative wind turbine capacity on a per person

J., Brown

2012-01-01T23:59:59.000Z

5

Development of a Scale Model Wind Turbine for Testing of Offshore Floating Wind Turbine Systems.  

E-Print Network (OSTI)

??This thesis presents the development of a 1/50th scale 5 MW wind turbine intended for wind and wave basin model testing of commercially viable floating (more)

Martin, Heather Rae

2011-01-01T23:59:59.000Z

6

Development of Wind Turbines Prototyping Software Under Matlab/Simulink  

E-Print Network (OSTI)

204 1 Development of Wind Turbines Prototyping Software Under Matlab/Simulink® Through present the development of a wind turbine prototyping software under Matlab/Simulink® through and the end of 1999, around 75% of all new grid-connected wind turbines worldwide were installed in Europe [3

Paris-Sud XI, Université de

7

Mod 2 Wind Turbine Development Project  

Science Conference Proceedings (OSTI)

The primary objective in the development of Mod 2 was to design a wind turbine to produce energy for less than 5 cents/kWh based on 1980 cost forecasts. The pricing method used to project the Mod 2 energy costs is the levelized fixed charge rate approach, generally accepted in the electric utility industry as a basis for relative ranking of energy alternatives. This method derives a levelized energy price necessary to recover utility's purchasing, installing, owning, operating, and maintenance costs.

None

1980-10-01T23:59:59.000Z

8

Wind Turbines  

Energy.gov (U.S. Department of Energy (DOE))

Although all wind turbines operate on similar principles, several varieties are in use today. These include horizontal axis turbines and vertical axis turbines.

9

Applications: Operational wind turbines  

E-Print Network (OSTI)

Capability Applications: Operational wind turbines Benefits: Optimize wind turbine performance Summary: Researchers at the Los Alamos National Laboratory (LANL) Intelligent Wind Turbine Program are developing a multi-physics modeling approach for the analysis of wind turbines in the presence of realistic

10

DOE/NREL Advanced Wind Turbine Development Program  

DOE Green Energy (OSTI)

The development of technologically advanced, high-efficiency wind turbines continues to be a high-priority activity of the US wind industry. The National Renewable Energy Laboratory (formerly the Solar Energy Research Institute), sponsored by the US Department of Energy (DOE), has initiated the Advanced Wind Turbine Program to assist the wind industry in the development of a new class of advanced wind turbines. The initial phase of the program focused on developing conceptual designs for near-term and advanced turbines. The goal of the second phase of this program is to use the experience gained over the last decade of turbine design and operation combined with the latest existing design tools to develop a turbine that will produce energy at $0.05 per kilowatt-hour (kWh) in a 5.8-m/s (13-mph) wind site. Three contracts have been awarded, and two more are under negotiation in the second phase. The third phase of the program will use new innovations and state-of-the-art wind turbine design technology to produce a turbine that will generate energy at $0.04/kWh in a 5.8-m/s wind site. Details of the third phase will be announced in early 1993.

Butterfield, C.P.; Smith, B.; Laxson, A.; Thresher, B. [National Renewable Energy Lab., Golden, CO (United States); Goldman, P. [USDOE Assistant Secretary for Conservation and Renewable Energy, Washington, DC (United States). Wind/Hydro/Ocean Technologies Div.

1993-05-01T23:59:59.000Z

11

Economic Impacts of Wind Turbine Development in U.S. Counties  

NLE Websites -- All DOE Office Websites (Extended Search)

Impacts of Wind Turbine Development in U.S. Counties Title Economic Impacts of Wind Turbine Development in U.S. Counties Publication Type Presentation Year of Publication...

12

An overview of DOE`s wind turbine development programs  

DOE Green Energy (OSTI)

The development of technologically advanced, higher efficiency wind turbines continues to be a high priority activity of the US wind industry. The United States Department of Energy (DOE) is conducting and sponsoring a range of programs aimed at assisting the wind industry with system design, development, and testing. The overall goal is to develop systems that can compete with conventional electric generation for $.05/kWh at 5.8 m/s (13 mph sites) by the mid-1990s and with fossil-fuel-based generators for $.04/kWh at 5.8 m/s sites by the year 2000. These goals will be achieved through several programs. The Value Engineered Turbine Program will promote the rapid development of US capability to manufacture wind turbines with known and well documented records of performance, cost, and reliability, to take advantage of near-term market opportunities. The Advanced Wind Turbine Program will assist US industry to develop and integrate innovative technologies into utility-grade wind turbines for the near-term (mid 1990s) and to develop a new generation of turbines for the year 2000. The collaborative Electric Power Research Institute (EPRI)/DOE Utility Wind Turbine Performance Verification Program will deploy and evaluate commercial-prototype wind turbines in typical utility operating environments, to provide a bridge between development programs currently underway and commercial purchases of utility-grade wind turbines. A number of collaborative efforts also will help develop a range of small systems optimized to work in a diesel hybrid environment to provide electricity for smaller non-grid-connected applications.

Laxson, A; Dodge, D; Flowers, L [National Renewable Energy Lab., Golden, CO (United States); Loose, R; Goldman, P [Dept. of Energy, Washington, DC (United States)

1993-09-01T23:59:59.000Z

13

U.S. Department of Energy Wind Turbine Development Projects  

DOE Green Energy (OSTI)

This paper provides an overview of wind-turbine development activities in the Unites States and relates those activities to market conditions and projections. Several factors are responsible for a surge in wind energy development in the United States, including a federal production tax credit, ''green power'' marketing, and improving cost and reliability. More development is likely, as approximately 363 GW of new capacity will be needed by 2020 to meet growing demand and replace retiring units. The U.S. Department of Energy (DOE) is helping two companies develop next-generation turbines intended to generate electricity for $0.025/kWh or less. We expect to achieve this objective through a combination of improved engineering methods and configuration advancements. This should ensure that wind power will compete effectively against advanced combined-cycle plants having projected generating costs of $0.031/kWh in 2005. To address the market for small and intermediate-size wind turbines, DOE is assisting five companies in their attempts to develop new turbines having low capital cost and high reliability. Additional information regarding U.S. wind energy programs is available on the internet site www.nrel.gov/wind/. E-mail addresses for the turbine manufacturers are found in the Acknowledgements.

Migliore, P. G. (National Renewable Energy Laboratory); Calvert, S. D. (U.S. Department of Energy)

1999-04-26T23:59:59.000Z

14

Real time wind turbine simulator.  

E-Print Network (OSTI)

??A novel dynamic real-time wind turbine simulator (WTS) is developed in this thesis, which is capable of reproducing dynamic behavior of real wind turbine. The (more)

Gong, Bing

2007-01-01T23:59:59.000Z

15

NREL Develops Simulations for Wind Plant Power and Turbine Loads...  

NLE Websites -- All DOE Office Websites (Extended Search)

loading due to wake turbulence. The current state of knowledge concerning wind turbine wakes and how they interact with other turbines and the atmospheric boundary layer is...

16

Advanced Wind Turbine Program Next Generation Turbine Development Project: June 17, 1997--April 30, 2005  

Science Conference Proceedings (OSTI)

This document reports the technical results of the Next Generation Turbine Development Project conducted by GE Wind Energy LLC. This project is jointly funded by GE and the U.S. Department of Energy's National Renewable Energy Laboratory.The goal of this project is for DOE to assist the U.S. wind industry in exploring new concepts and applications of cutting-edge technology in pursuit of the specific objective of developing a wind turbine that can generate electricity at a levelized cost of energy of $0.025/kWh at sites with an average wind speed of 15 mph (at 10 m height).

GE Wind Energy, LLC

2006-05-01T23:59:59.000Z

17

Energy Basics: Wind Turbines  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Energy Basics Renewable Energy Printable Version Share this resource Biomass Geothermal Hydrogen Hydropower Ocean Solar Wind Wind Turbines Wind Resources Wind Turbines...

18

Wind turbine  

DOE Patents (OSTI)

A wind turbine of the type having an airfoil blade (15) mounted on a flexible beam (20) and a pitch governor (55) which selectively, torsionally twists the flexible beam in response to wind turbine speed thereby setting blade pitch, is provided with a limiter (85) which restricts unwanted pitch change at operating speeds due to torsional creep of the flexible beam. The limiter allows twisting of the beam by the governor under excessive wind velocity conditions to orient the blades in stall pitch positions, thereby preventing overspeed operation of the turbine. In the preferred embodiment, the pitch governor comprises a pendulum (65,70) which responds to changing rotor speed by pivotal movement, the limiter comprising a resilient member (90) which engages an end of the pendulum to restrict further movement thereof, and in turn restrict beam creep and unwanted blade pitch misadjustment.

Cheney, Jr., Marvin C. (Glastonbury, CT)

1982-01-01T23:59:59.000Z

19

NREL: Wind Research - Midsize Wind Turbine Research  

NLE Websites -- All DOE Office Websites (Extended Search)

Midsize Wind Turbine Research Midsize Wind Turbine Research To facilitate the development and commercialization of midsize wind turbines (turbines with a capacity rating of more than 100 kW up to 1 MW), the U.S. Department of Energy (DOE) and NREL launched the Midsize Wind Turbine Development Project. In its latest study, NREL determined that there is a substantial market for midsize wind turbines. One of the most significant barriers to the midsize turbine market is the lack of turbines available for deployment; there are few midsize turbines on the market today. The objectives of the Midsize Wind Turbine Development Project are to reduce the barriers to wind energy expansion by filling an existing domestic technology gap; facilitate partnerships; accelerate maturation of existing U.S. wind energy businesses; and incorporate process improvement

20

NREL: Wind Research - Small Wind Turbine Research  

NLE Websites -- All DOE Office Websites (Extended Search)

Small Wind Turbine Research Small Wind Turbine Research The National Renewable Energy Laboratory and U.S. Department of Energy (NREL/DOE) Small Wind Project's objectives are to reduce barriers to wind energy expansion, stabilize the market, and expand the number of small wind turbine systems installed in the United States. "Small wind turbine" refers to a turbine smaller than or equal to 100 kilowatts (kW). "Distributed wind" includes small and midsize turbines (100 kW through 1 megawatt [MW]). Since 1996, NREL's small wind turbine research has provided turbine testing, turbine development, and prototype refinement leading to more commercially available small wind turbines. Work is conducted under the following areas. You can also learn more about state and federal policies

Note: This page contains sample records for the topic "wind turbine development" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


21

Offshore Wind Turbines - Estimated Noise from Offshore Wind Turbine, Monhegan Island, Maine: Environmental Effects of Offshore Wind Energy Development  

SciTech Connect

Deep C Wind, a consortium headed by the University of Maine will test the first U.S. offshore wind platforms in 2012. In advance of final siting and permitting of the test turbines off Monhegan Island, residents of the island off Maine require reassurance that the noise levels from the test turbines will not disturb them. Pacific Northwest National Laboratory, at the request of the University of Maine, and with the support of the U.S. Department of Energy Wind Program, modeled the acoustic output of the planned test turbines.

Aker, Pamela M.; Jones, Anthony M.; Copping, Andrea E.

2010-11-23T23:59:59.000Z

22

Wind Turbines and Health  

E-Print Network (OSTI)

Wind power has been gaining prominence as a viable sustainable alternative to other forms of energy production. Studies have found that there is increasing population demand for green energy 1,2. In Australia, this has been encouraged by the introduction of the Renewable Energy (Electricity) Act in 2000 and the Renewable Energy Target Scheme in 2009. As with any new technology, wind turbines are not without controversy. Those who oppose the development of wind farms contend that wind turbines can adversely impact the health of individuals living in close proximity. Do wind turbines impact on health? Concerns regarding the adverse health impacts of wind turbines focus on infrasound noise, electromagnetic interference, shadow flicker and blade glint produced

unknown authors

2010-01-01T23:59:59.000Z

23

Wind Turbines and Health  

E-Print Network (OSTI)

Wind power has been gaining prominence as a viable sustainable alternative to other forms of energy production. Studies have found that there is increasing population demand for green energy1,2. In Australia, this has been encouraged by the introduction of the Renewable Energy (Electricity) Act in 2000 and the Renewable Energy Target Scheme in 2009. As with any new technology, wind turbines are not without controversy. Those who oppose the development of wind farms contend that wind turbines can adversely impact the health of individuals living in close proximity. Do wind turbines impact on health? Concerns regarding the adverse health impacts of wind turbines focus on infrasound noise, electromagnetic interference, shadow flicker and blade glint produced

unknown authors

2010-01-01T23:59:59.000Z

24

Power-Electronic, Variable-Speed Wind Turbine Development: 1988-1993  

Science Conference Proceedings (OSTI)

A five-year development program culminated in the 33M-VS power-electronic, variable-speed turbine, used in a number of wind power plants to offer competitively priced electricity. This report describes turbine development activities from conception through field testing, highlights design decisions that led to the new technology, and provides an overview of the turbine's electrical and mechanical design. An appendix describes technical issues relevant to building a wind power plant using 33M-VS turbines.

1995-11-16T23:59:59.000Z

25

Definition of a 5-MW Reference Wind Turbine for Offshore System Development  

SciTech Connect

This report describes a three-bladed, upwind, variable-speed, variable blade-pitch-to-feather-controlled multimegawatt wind turbine model developed by NREL to support concept studies aimed at assessing offshore wind technology.

Jonkman, J.; Butterfield, S.; Musial, W.; Scott, G.

2009-02-01T23:59:59.000Z

26

Acoustic Array Development for Wind Turbine Noise Characterization  

DOE Green Energy (OSTI)

This report discusses the design and use of a multi-arm, logarithmic spiral acoustic array by the National Renewable Energy Laboratory (NREL) for measurement and characterization of wind turbine-generated noise. The array was developed in collaboration with a team from the University of Colorado Boulder. This design process is a continuation of the elliptical array design work done by Simley. A description of the array system design process is presented, including array shape design, mechanical design, design of electronics and the data acquisition system, and development of post-processing software. System testing and calibration methods are detailed. Results from the initial data acquisition campaign are offered and discussed. Issues faced during this initial deployment of the array are presented and potential remedies discussed.

Buck, S.; Roadman, J.; Moriarty, P.; Palo, S.

2013-11-01T23:59:59.000Z

27

Wind Turbine Productivity Improvement Guidelines Development Status and Plan  

Science Conference Proceedings (OSTI)

At the end of 1999, the installed nameplate wind generation totaled about 2.5 GW in the U.S. and 14.5 GW worldwide. Even with the new modern turbine technology, many wind plants do not achieve the original projected annual wind energy generation target on which the project feasibility analysis was based. The reasons for lower than projected energy generation vary, but there are many common themes, including inaccurate wind resource assessments, higher than expected energy losses, and higher than expected...

2000-12-19T23:59:59.000Z

28

ARE660 Wind Generator: Low Wind Speed Technology for Small Turbine Development  

DOE Green Energy (OSTI)

This project is for the design of a wind turbine that can generate most or all of the net energy required for homes and small businesses in moderately windy areas. The purpose is to expand the current market for residential wind generators by providing cost effective power in a lower wind regime than current technology has made available, as well as reduce noise and improve reliability and safety. Robert W. Preus experience designing and/or maintaining residential wind generators of many configurations helped identify the need for an improved experience of safety for the consumer. Current small wind products have unreliable or no method of stopping the wind generator in fault or high wind conditions. Consumers and their neighbors do not want to hear their wind generators. In addition, with current technology, only sites with unusually high wind speeds provide payback times that are acceptable for the on-grid user. Abundant Renewable Energys (ARE) basic original concept for the ARE660 was a combination of a stall controlled variable speed small wind generator and automatic fail safe furling for shutdown. The stall control for a small wind generator is not novel, but has not been developed for a variable speed application with a permanent magnet alternator (PMA). The fail safe furling approach for shutdown has not been used to our knowledge.

Robert W. Preus; DOE Project Officer - Keith Bennett

2008-04-23T23:59:59.000Z

29

Low Wind Speed Turbine Developments in Convoloid Gearing: Final Technical Report, June 2005 - October 2008  

DOE Green Energy (OSTI)

This report presents the results of a study conducted by Genesis Partners LP as part of the United States Department of Energy Wind Energy Research Program to develop wind technology that will enable wind systems to compete in regions having low wind speeds. The purpose of the program is to reduce the cost of electricity from large wind systems in areas having Class 4 winds to 3 cents per kWh for onshore systems or 5 cents per kWh for offshore systems. This work builds upon previous activities under the WindPACT project, the Next Generation Turbine project, and Phase I of the Low Wind Speed Turbine (LWST) project. This project is concerned with the development of more cost-effective gearing for speed increasers for wind turbines.

Genesis Partners LP

2010-08-01T23:59:59.000Z

30

Wind turbine control systems: Dynamic model development using system identification and the fast structural dynamics code  

DOE Green Energy (OSTI)

Mitigating the effects of damaging wind turbine loads and responses extends the lifetime of the turbine and, consequently, reduces the associated Cost of Energy (COE). Active control of aerodynamic devices is one option for achieving wind turbine load mitigation. Generally speaking, control system design and analysis requires a reasonable dynamic model of {open_quotes}plant,{close_quotes} (i.e., the system being controlled). This paper extends the wind turbine aileron control research, previously conducted at the National Wind Technology Center (NWTC), by presenting a more detailed development of the wind turbine dynamic model. In prior research, active aileron control designs were implemented in an existing wind turbine structural dynamics code, FAST (Fatigue, Aerodynamics, Structures, and Turbulence). In this paper, the FAST code is used, in conjunction with system identification, to generate a wind turbine dynamic model for use in active aileron control system design. The FAST code is described and an overview of the system identification technique is presented. An aileron control case study is used to demonstrate this modeling technique. The results of the case study are then used to propose ideas for generalizing this technique for creating dynamic models for other wind turbine control applications.

Stuart, J.G.; Wright, A.D.; Butterfield, C.P.

1996-10-01T23:59:59.000Z

31

The U.S. Department of Energy Wind Turbine Development Program  

Science Conference Proceedings (OSTI)

The development of technologically-advanced wind turbines continues to be a high priority of the US wind industry. The United States Department of Energy (DOE) is sponsoring a range of projects that assist the wind industry to design, develop, and test new wind turbines. The overall goal is to develop turbines that can compete with conventional electric generation with a cost of energy (COE) of 5 cents/kWh at 5.8 m/s (13 mph sites) by the mid-1990s and with a cost of energy of 4 cents/kWh or less at 5.8 m/s sites by the year 2000. These goals will be supported through the DOE Turbine Development Program. The Turbine Development Program uses a two-path approach. The first path assists US industry to develop and integrate innovative technologies into utility-grade wind turbines for the near-term (mid-1990s). The second path assists industry to develop a new generation of turbines for the year 2000. This paper describes present and planned projects under the Turbine Development Program.

Link, H.; Laxson, A.; Smith, B. [National Renewable Energy Lab., Golden, CO (United States); Goldman, P. [Dept. of Energy, Washington, DC (United States)

1995-03-01T23:59:59.000Z

32

Energy Basics: Wind Turbines  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Photo of a crane lifting the blades onto a wind turbine that reads 'U.S. Department of Energy, NREL.' You can learn more about horizontal axis turbines from the EERE Wind Program's...

33

Wind Turbine Maintenance Guide  

Science Conference Proceedings (OSTI)

This guideline provides component-level information regarding the maintenance of major components associated with a wind turbine. It combines recommendations offered by major equipment manufacturers with lessons learned from owner/operators of wind turbine facilities.

2012-06-29T23:59:59.000Z

34

Parametric design of floating wind turbines  

E-Print Network (OSTI)

As the price of energy increases and wind turbine technology matures, it is evident that cost effective designs for floating wind turbines are needed. The next frontier for wind power is the ocean, yet development in near ...

Tracy, Christopher (Christopher Henry)

2007-01-01T23:59:59.000Z

35

NREL: Wind Research - Small Wind Turbine Webinars  

NLE Websites -- All DOE Office Websites (Extended Search)

Small Wind Turbine Webinars Small Wind Turbine Webinars Here you will find webinars about small wind turbines that NREL hosted. Introducing WindLease(tm): Making Wind Energy Affordable NREL and the American Solar Energy Society (ASES) Wind Division co-hosted this webinar. (Text Version.) Date: August 1, 2013 Run Time: 40 minutes Joe Hess, VP of Business Development at United Wind, described United Wind's WindQuote and WindLease Program and explained the process from the dealer's and consumer's perspective. Texas Renewable Energy Industries Association NREL and the American Solar Energy Society (ASES) Wind Division co-hosted this webinar. (Text Version). Date: March 7, 2013 Run Time: 1 hour Russel Smith, Texas Renewable Energy Industries Association executive director and co-founder, provided an overview of the trade association

36

Development and Validation of WECC Variable Speed Wind Turbine Dynamic Models for Grid Integration Studies  

DOE Green Energy (OSTI)

This paper describes reduced-order, simplified wind turbine models for analyzing the stability impact of large arrays of wind turbines with a single point of network interconnection.

Behnke, M.; Ellis, A.; Kazachkov, Y.; McCoy, T.; Muljadi, E.; Price, W.; Sanchez-Gasca, J.

2007-09-01T23:59:59.000Z

37

DOE to Develop Multi-Megawatt Offshore Wind Turbine with General Electric |  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

to Develop Multi-Megawatt Offshore Wind Turbine with General to Develop Multi-Megawatt Offshore Wind Turbine with General Electric DOE to Develop Multi-Megawatt Offshore Wind Turbine with General Electric March 9, 2006 - 11:44am Addthis Contract Valued at $27 million, supports President Bush's Advanced Energy Initiative WASHINGTON, D.C. - The U.S. Department of Energy's (DOE) National Renewable Energy Laboratory (NREL) in Golden, Colorado, has signed a $27 million, multi-year contract with the General Electric Company (GE) to develop a new offshore wind power system over the next several years. Approximately $8 million of the offshore wind project will be cost-shared by DOE. "Offshore wind technology, another aspect of President Bush's Advanced Energy Initiative, can reduce our dependence on foreign energy sources as

38

An approach to the development and analysis of wind turbine control algorithms  

DOE Green Energy (OSTI)

The objective of this project is to develop the capability of symbolically generating an analytical model of a wind turbine for studies of control systems. This report focuses on a theoretical formulation of the symbolic equations of motion (EOMs) modeler for horizontal axis wind turbines. In addition to the power train dynamics, a generic 7-axis rotor assembly is used as the base model from which the EOMs of various turbine configurations can be derived. A systematic approach to generate the EOMs is presented using d`Alembert`s principle and Lagrangian dynamics. A Matlab M file was implemented to generate the EOMs of a two-bladed, free yaw wind turbine. The EOMs will be compared in the future to those of a similar wind turbine modeled with the YawDyn code for verification. This project was sponsored by Sandia National Laboratories as part of the Adaptive Structures and Control Task. This is the final report of Sandia Contract AS-0985.

Wu, K.C.

1998-03-01T23:59:59.000Z

39

Airborne Wind Turbine  

Science Conference Proceedings (OSTI)

Broad Funding Opportunity Announcement Project: Makani Power is developing an Airborne Wind Turbine (AWT) that eliminates 90% of the mass of a conventional wind turbine and accesses a stronger, more consistent wind at altitudes of near 1,000 feet. At these altitudes, 85% of the country can offer viable wind resources compared to only 15% accessible with current technology. Additionally, the Makani Power wing can be economically deployed in deep offshore waters, opening up a resource which is 4 times greater than the entire U.S. electrical generation capacity. Makani Power has demonstrated the core technology, including autonomous launch, land, and power generation with an 8 meter wingspan, 20 kW prototype. At commercial scale, Makani Power aims to develop a 600 kW, 28 meter wingspan product capable of delivering energy at an unsubsidized cost competitive with coal, the current benchmark for low-cost power.

None

2010-09-01T23:59:59.000Z

40

Development and Verification of a Fully Coupled Simulator for Offshore Wind Turbines: Preprint  

Science Conference Proceedings (OSTI)

This report outlines the development of an analysis tool capable of analyzing a variety of wind turbine, support platform, and mooring system configurations.The simulation capability was tested by model-to-model comparisons to ensure its correctness.

Jonkman, J. M.; Buhl, M. L. Jr.

2007-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "wind turbine development" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


41

Wind Turbines | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Turbines Wind Turbines July 30, 2013 - 2:58pm Addthis Energy 101: Wind Turbines Basics This video explains the basics of how wind turbines operate to produce clean power from an...

42

The wind turbine  

Science Conference Proceedings (OSTI)

In this paper we present the modeling of a wing turbine, using the Euler Lagrange method and circuits theory. We get the mathematical equation (modeling) that describes the wind turbine and we simulate it using the mathlab program. Keywords: modeling, simulation, wind turbine

Jos De Jess Rubio Avila; Andrs Ferreira Ramrez; Genaro Deloera Flores; Martn Salazar Pereyra; Fernando Baruch Santillanes Posada

2008-07-01T23:59:59.000Z

43

Applications: Wind turbine and blade design  

E-Print Network (OSTI)

Capability Applications: Wind turbine and blade design optimization Energy production enhancement Summary: As the wind energy industry works to provide the infra- structure necessary for wind turbine develops a means to aug- ment power production with wind-derived energy. Turbines have become massive

44

Virtual Wind Speed Sensor for Wind Turbines Andrew Kusiak1  

E-Print Network (OSTI)

Virtual Wind Speed Sensor for Wind Turbines Andrew Kusiak1 ; Haiyang Zheng2 ; and Zijun Zhang3 Abstract: A data-driven approach for development of a virtual wind-speed sensor for wind turbines is presented. The virtual wind-speed sensor is built from historical wind-farm data by data-mining algorithms

Kusiak, Andrew

45

Low Wind Speed Technology Phase II: Development of a 2-MW Direct-Drive Wind Turbine for Low Wind Speed Sites; Northern Power Systems  

SciTech Connect

This fact sheet describes a subcontract with Northern Power Systems (NPS) to develop and evaluate a 2-MW wind turbine that could offer significant opportunities for reducing the cost of energy (COE).

2006-03-01T23:59:59.000Z

46

SERI advanced wind turbine blades  

DOE Green Energy (OSTI)

The primary goal of the Solar Energy Research Institute`s (SERI) advanced wind turbine blades is to convert the kinetic energy in the wind into mechanical energy in an inexpensive and efficient manner. To accomplish this goal, advanced wind turbine blades have been developed by SERI that utilize unique airfoil technology. Performance characteristics of the advanced blades were verified through atmospheric testing on fixed-pitch, stall-regulated horizontal-axis wind turbines (HAWTs). Of the various wind turbine configurations, the stall-regulated HAWT dominates the market because of its simplicity and low cost. Results of the atmospheric tests show that the SERI advanced blades produce 10% to 30% more energy than conventional blades. 6 refs.

Tangler, J.; Smith, B.; Jager, D.

1992-02-01T23:59:59.000Z

47

SERI advanced wind turbine blades  

DOE Green Energy (OSTI)

The primary goal of the Solar Energy Research Institute's (SERI) advanced wind turbine blades is to convert the kinetic energy in the wind into mechanical energy in an inexpensive and efficient manner. To accomplish this goal, advanced wind turbine blades have been developed by SERI that utilize unique airfoil technology. Performance characteristics of the advanced blades were verified through atmospheric testing on fixed-pitch, stall-regulated horizontal-axis wind turbines (HAWTs). Of the various wind turbine configurations, the stall-regulated HAWT dominates the market because of its simplicity and low cost. Results of the atmospheric tests show that the SERI advanced blades produce 10% to 30% more energy than conventional blades. 6 refs.

Tangler, J.; Smith, B.; Jager, D.

1992-02-01T23:59:59.000Z

48

Lattice Tower Design of Offshore Wind Turbine Support Structures.  

E-Print Network (OSTI)

??Optimal design of support structure including foundation and turbine tower is among the most critical challenges for offshore wind turbine. With development of offshore wind (more)

Gong, W.

2011-01-01T23:59:59.000Z

49

Use of SCADA Data for Failure Detection in Wind Turbines  

SciTech Connect

This paper discusses the use of existing wind turbine SCADA data for development of fault detection and diagnostic techniques for wind turbines.

Kim, K.; Parthasarathy, G.; Uluyol, O.; Foslien, W.; Sheng, S.; Fleming, P.

2011-10-01T23:59:59.000Z

50

Wind Turbine Generator Condition Monitoring via the Generator Control Loop.  

E-Print Network (OSTI)

??This thesis focuses on the development of condition monitoring techniques for application in wind turbines, particularly for offshore wind turbine driven doubly fed induction generators. (more)

ZAGGOUT, MAHMOUD,NOUH

2013-01-01T23:59:59.000Z

51

Low Wind Speed Turbine Development Project Report: November 4, 2002 - December 31, 2006  

Science Conference Proceedings (OSTI)

This report summarizes work conducted by Clipper Windpower under the DOE Low Wind Speed Turbine project. The objective of this project was to produce a wind turbine that can lower the cost of energy.

Mikhail, A.

2009-01-01T23:59:59.000Z

52

Wind turbine | Open Energy Information  

Open Energy Info (EERE)

turbine turbine Jump to: navigation, search Dictionary.png Wind turbine: A machine that converts wind energy to mechanical energy; typically connected to a generator to produce electricity. Other definitions:Wikipedia Reegle Contents 1 Types of Wind Turbines 1.1 Vertical Axis Wind Turbines 1.2 Horizontal Axis Wind Turbines 2 Wind Turbine Sizes 3 Components of a Wind Turbine 4 References Types of Wind Turbines There are two basic wind turbine designs: those with a vertical axis (sometimes referred to as VAWTs) and those with a horizontal axis (sometimes referred to as HAWTs). There are several manufacturers of vertical axis turbines, but they have not penetrated the "utility scale" (100 kW capacity and larger) market to the same degree as horizontal axis turbines.[1]

53

NREL: Wind Research - Large Wind Turbine Research  

NLE Websites -- All DOE Office Websites (Extended Search)

Wind Research Search More Search Options Site Map Printable Version Large Wind Turbine Research NREL's utility scale wind system research addresses performance and...

54

Vertical axis wind turbine development. Final report, March 1, 1976-June 30, 1977  

DOE Green Energy (OSTI)

Theoretical and experimental research accomplished in evaluating an innovative concept for vertical axis wind turbines (VAWT) is described. The concept is that of using straight blades composed of circulation controlled airfoil sections. The theoretical analysis has been developed to determine the unsteady lift and moment characteristics of multiple-blade cross-flow wind turbines. To determine the drag data needed as input to the theoretical analysis, an outdoor test model VAWT has been constructed; design details, instrumentation, calibration results, and initial test results are reported. Initial testing was with fixed pitch blades having cross-sections of conventional symmetrical airfoils. Costs of building the test model are included, as well as cost estimates for blades constructed with composite materials. These costs are compared with those of other types of wind turbines.

Walters, R. E.; Fanucci, J. B.; Hill, P. W.; Migliore, P. G.

1979-07-01T23:59:59.000Z

55

Stakeholder Engagement and Outreach: Siting Wind Turbines  

Wind Powering America (EERE)

Resources & Tools Resources & Tools Siting Wind Turbines Wind Powering America works to increase deployment of wind energy. This page provides resources about wind turbine siting. American Wind Wildlife Institute The American Wind Wildlife Institute (AWWI) facilitates timely and responsible development of wind energy, while protecting wildlife and wildlife habitat. AWWI was created and is sustained by a unique collaboration of environmentalists, conservationists, state wildlife agencies, and wind industry leaders. Its purpose is to help lay the scientific groundwork and best practices for wind farm siting and operations, through targeted initiatives: wind-wildlife research, landscape assessment, mitigation, and education. Ordinances Regulating Development of Commercial Wind Energy Facilities

56

Vertical axis wind turbines  

DOE Patents (OSTI)

A vertical axis wind turbine is described. The wind turbine can include a top ring, a middle ring and a lower ring, wherein a plurality of vertical airfoils are disposed between the rings. For example, three vertical airfoils can be attached between the upper ring and the middle ring. In addition, three more vertical airfoils can be attached between the lower ring and the middle ring. When wind contacts the vertically arranged airfoils the rings begin to spin. By connecting the rings to a center pole which spins an alternator, electricity can be generated from wind.

Krivcov, Vladimir (Miass, RU); Krivospitski, Vladimir (Miass, RU); Maksimov, Vasili (Miass, RU); Halstead, Richard (Rohnert Park, CA); Grahov, Jurij (Miass, RU)

2011-03-08T23:59:59.000Z

57

Wind Turbine Acoustic Noise A white paper  

E-Print Network (OSTI)

Wind Turbine Acoustic Noise A white paper Prepared by the Renewable Energy Research Laboratory...................................................................... 8 Sound from Wind Turbines .............................................................................................. 10 Sources of Wind Turbine Sound

Massachusetts at Amherst, University of

58

Model Development and Loads Analysis of a Wind Turbine on a Floating Offshore Tension Leg Platform  

SciTech Connect

This report presents results of the analysis of a 5-MW wind turbine located on a floating offshore tension leg platform (TLP) that was conducted using the fully coupled time-domain aero-hydro-servo-elastic design code FAST with AeroDyn and HydroDyn. Models in this code are of greater fidelity than most of the models that have been used to analyze floating turbines in the past--which have neglected important hydrodynamic and mooring system effects. The report provides a description of the development process of a TLP model, which is a modified version of a Massachusetts Institute of Technology design derived from a parametric linear frequency-domain optimization process. An extensive loads and stability analysis for ultimate and fatigue loads according to the procedure of the International Electrotechnical Commission offshore wind turbine design standard was performed with the verified TLP model. Response statistics, extreme event tables, fatigue lifetimes, and selected time histories of design-driving extreme events are analyzed and presented. Loads for the wind turbine on the TLP are compared to those of an equivalent land-based turbine in terms of load ratios. Major instabilities for the TLP are identified and described.

Matha, D.; Fischer, T.; Kuhn, M.; Jonkman, J.

2010-02-01T23:59:59.000Z

59

Definition: Wind turbine | Open Energy Information  

Open Energy Info (EERE)

turbine turbine Jump to: navigation, search Dictionary.png Wind turbine A machine that converts wind energy to mechanical energy; typically connected to a generator to produce electricity.[1][2] View on Wikipedia Wikipedia Definition A wind turbine is a device that converts kinetic energy from the wind, also called wind energy, into mechanical energy in a process known as wind power. If the mechanical energy is used to produce electricity, the device may be called a wind turbine or wind power plant. If the mechanical energy is used to drive machinery, such as for grinding grain or pumping water, the device is called a windmill or wind pump. Similarly, it may be referred to as a wind charger when used for charging batteries. The result of over a millennium of windmill development and modern engineering,

60

Hull Wind II: A Case Study of the Development of a Second Large Wind Turbine Installation in the Town of Hull, MA  

E-Print Network (OSTI)

Hull Wind II: A Case Study of the Development of a Second Large Wind Turbine Installation of Massachusetts, Amherst, Massachusetts * Hull Municipal Light and Water, Hull, Massachusetts American Wind Energy community: since 2001 the town's municipal light plant (HMLP) has owned and operated "Hull Wind I

Massachusetts at Amherst, University of

Note: This page contains sample records for the topic "wind turbine development" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


61

Improving Wind Turbine Gearbox Reliability: Preprint  

DOE Green Energy (OSTI)

This paper describes a new research and development initiative to improve gearbox reliability in wind turbines begun at the National Renewable Energy Laboratory (NREL) in Golden, Colorado, USA.

Musial, W.; Butterfield, S.; McNiff, B.

2007-06-01T23:59:59.000Z

62

Economic Impacts of Wind Turbine Development in U.S. Counties  

DOE Green Energy (OSTI)

The objective is to address the research question using post-project construction, county-level data, and econometric evaluation methods. Wind energy is expanding rapidly in the United States: Over the last 4 years, wind power has contributed approximately 35 percent of all new electric power capacity. Wind power plants are often developed in rural areas where local economic development impacts from the installation are projected, including land lease and property tax payments and employment growth during plant construction and operation. Wind energy represented 2.3 percent of the U.S. electricity supply in 2010, but studies show that penetrations of at least 20 percent are feasible. Several studies have used input-output models to predict direct, indirect, and induced economic development impacts. These analyses have often been completed prior to project construction. Available studies have not yet investigated the economic development impacts of wind development at the county level using post-construction econometric evaluation methods. Analysis of county-level impacts is limited. However, previous county-level analyses have estimated operation-period employment at 0.2 to 0.6 jobs per megawatt (MW) of power installed and earnings at $9,000/MW to $50,000/MW. We find statistically significant evidence of positive impacts of wind development on county-level per capita income from the OLS and spatial lag models when they are applied to the full set of wind and non-wind counties. The total impact on annual per capita income of wind turbine development (measured in MW per capita) in the spatial lag model was $21,604 per MW. This estimate is within the range of values estimated in the literature using input-output models. OLS results for the wind-only counties and matched samples are similar in magnitude, but are not statistically significant at the 10-percent level. We find a statistically significant impact of wind development on employment in the OLS analysis for wind counties only, but not in the other models. Our estimates of employment impacts are not precise enough to assess the validity of employment impacts from input-output models applied in advance of wind energy project construction. The analysis provides empirical evidence of positive income effects at the county level from cumulative wind turbine development, consistent with the range of impacts estimated using input-output models. Employment impacts are less clear.

J., Brown; B., Hoen; E., Lantz; J., Pender; R., Wiser

2011-07-25T23:59:59.000Z

63

On the Fatigue Analysis of Wind Turbines  

DOE Green Energy (OSTI)

Modern wind turbines are fatigue critical machines that are typically used to produce electrical power from the wind. Operational experiences with these large rotating machines indicated that their components (primarily blades and blade joints) were failing at unexpectedly high rates, which led the wind turbine community to develop fatigue analysis capabilities for wind turbines. Our ability to analyze the fatigue behavior of wind turbine components has matured to the point that the prediction of service lifetime is becoming an essential part of the design process. In this review paper, I summarize the technology and describe the ''best practices'' for the fatigue analysis of a wind turbine component. The paper focuses on U.S. technology, but cites European references that provide important insights into the fatigue analysis of wind turbines.

Sutherland, Herbert J.

1999-06-01T23:59:59.000Z

64

Session: Development and application of guidelines for siting, constructing, operating and monitoring wind turbines  

DOE Green Energy (OSTI)

This session at the Wind Energy and Birds/Bats workshop consisted of two presentations followed by a discussion/question and answer period. The two papers were: 'Development and Application of USFWS Guidance for Site Evaluation, Siting, Construction, Operation and Monitoring of Wind Turbines' by Albert Manville and 'Wind Power in Washington State' by Greg Hueckel. The session provided a comparison of wind project guidelines developed by the U.S. Fish and Wildlife Service (USFWS) in May 2003 and the Washington State Department of Fish and Wildlife in August 2003. Questions addressed included: is there a need or desire for uniform national or state criteria; can other states learn from Washington State's example, or from the USFWS voluntary guidelines; should there be uniform requirements/guidelines/check-lists for the siting, operation, monitoring, and mitigation to prevent or minimize avian, bat, and other wildlife impacts.

Manville, Albert; Hueckel, Greg

2004-09-01T23:59:59.000Z

65

Wind Turbine Blade Test Definition of the DeWind DW90 Rotor Blade: Cooperative Research and Development Final Report, CRADA Number CRD-09-326  

DOE Green Energy (OSTI)

This CRADA was developed as a funds-in CRADA with DeWind to assess the suitability of facilities and equipment at the NWTC for performing certification blade testing on wind turbine blades made from advanced materials. DeWind produces a wind turbine blade which includes the use of high-strength and stiffness materials. NREL and DeWind had a mutual interest in defining the necessary facilities, equipment, and test methods for testing large wind turbine blades which incorporate advanced materials and adaptive structures, as the demands on test equipment and infrastructure are greater than current capabilities. Work under this CRADA would enable DeWind to verify domestic capability for certification-class static and fatigue testing, while NREL would be able to identify and develop specialized test capabilities based on the test requirements.

Hughes, S.

2012-05-01T23:59:59.000Z

66

Wind turbine blade fatigue tests: lessons learned and application to SHM system development  

DOE Green Energy (OSTI)

This paper presents experimental results of several structural health monitoring (SHM) methods applied to a 9-meter CX-100 wind turbine blade that underwent fatigue loading. The blade was instrumented with piezoelectric transducers, accelerometers, acoustic emission sensors, and foil strain gauges. It underwent harmonic excitation at its first natural frequency using a hydraulically actuated resonant excitation system. The blade was initially excited at 25% of its design load, and then with steadily increasing loads until it failed. Various data were collected between and during fatigue loading sessions. The data were measured over multiple frequency ranges using a variety of acquisition equipment, including off-the-shelf systems and specially designed hardware developed by the authors. Modal response, diffuse wave-field transfer functions, and ultrasonic guided wave methods were applied to assess the condition of the wind turbine blade. The piezoelectric sensors themselves were also monitored using a sensor diagnostics procedure. This paper summarizes experimental procedures and results, focusing particularly on fatigue crack detection, and concludes with considerations for implementing such damage identification systems, which will be used as a guideline for future SHM system development for operating wind turbine blades.

Taylor, Stuart G. [Los Alamos National Laboratory; Farinholt, Kevin M. [Los Alamos National Laboratory; Jeong, Hyomi [Chonbuk National University, Korea; Jang, JaeKyung [Chonbuk National University, Korea; Park, Gyu Hae [Los Alamos National Laboratory; Todd, Michael D. [Los Alamos National Laboratory; Farrar, Charles R. [Los Alamos National Laboratory; Ammerman, Curtt N. [Los Alamos National Laboratory

2012-06-28T23:59:59.000Z

67

Vertical axis wind turbine development. Executive summary. Final report, March 1, 1976-June 30, 1977  

DOE Green Energy (OSTI)

Information is presented concerning the numerical solution of the aerodynamics of cross-flow wind turbines; boundary layer considerations for a vertical axis wind turbine; WVU VAWT outdoor test model; low solidity blade tests; high solidity blade design; cost analysis of the WVU VAWT test model; structural parametric analysis of VAWT blades; and cost study of current WECS.

Walters, R. E.; Fanucci, J. B.; Hill, P. W.; Migliore, P. G.

1979-07-01T23:59:59.000Z

68

Tornado type wind turbines  

DOE Patents (OSTI)

A tornado type wind turbine has a vertically disposed wind collecting tower with spaced apart inner and outer walls and a central bore. The upper end of the tower is open while the lower end of the structure is in communication with a wind intake chamber. An opening in the wind chamber is positioned over a turbine which is in driving communication with an electrical generator. An opening between the inner and outer walls at the lower end of the tower permits radially flowing air to enter the space between the inner and outer walls while a vertically disposed opening in the wind collecting tower permits tangentially flowing air to enter the central bore. A porous portion of the inner wall permits the radially flowing air to interact with the tangentially flowing air so as to create an intensified vortex flow which exits out of the top opening of the tower so as to create a low pressure core and thus draw air through the opening of the wind intake chamber so as to drive the turbine.

Hsu, Cheng-Ting (Ames, IA)

1984-01-01T23:59:59.000Z

69

Wind turbine spoiler  

DOE Patents (OSTI)

An aerodynamic spoiler system for a vertical axis wind turbine includes spoilers on the blades initially stored near the rotor axis to minimize drag. A solenoid latch adjacent the central support tower releases the spoilers and centrifugal force causes the spoilers to move up the turbine blades away from the rotor axis, thereby producing a braking effect and actual slowing of the associated wind turbine, if desired. The spoiler system can also be used as an infinitely variable power control by regulated movement of the spoilers on the blades over the range between the undeployed and fully deployed positions. This is done by the use of a suitable powered reel and cable located at the rotor tower to move the spoilers.

Sullivan, William N. (Albuquerque, NM)

1985-01-01T23:59:59.000Z

70

Low Speed Technology for Small Turbine Development Reaction Injection Molded 7.5 Meter Wind Turbine Blade  

Science Conference Proceedings (OSTI)

An optimized small turbine blade (7.5m radius) was designed and a partial section molded with the RIM (reaction-injection molded polymer) process for mass production. The intended market is for generic three-bladed wind turbines, 100 kilowatts or less, for grid-assist end users with rural and semi-rural sites, such as the farm/ranch market, having low to moderate IEC Class 3-4 wind regimes. This blade will have substantial performance improvements over, and be cheaper than, present-day 7.5m blades. This is made possible by the injection-molding process, which yields high repeatability, accurate geometry and weights, and low cost in production quantities. No wind turbine blade in the 7.5m or greater size has used this process. The blade design chosen uses a RIM skin bonded to a braided infused carbon fiber/epoxy spar. This approach is attractive to present users of wind turbine blades in the 5-10m sizes. These include rebladeing California wind farms, refurbishing used turbines for the Midwest farm market, and other manufacturers introducing new turbines in this size range.

David M. Wright; DOE Project Officer - Keith Bennett

2007-07-31T23:59:59.000Z

71

NREL Wind Turbine Blade Structural Testing of the Modular Wind Energy MW45 Blade: Cooperative Research and Development Final Report, CRADA Number CRD-09-354  

DOE Green Energy (OSTI)

This CRADA was a purely funds-in CRADA with Modular Wind Energy (MWE). MWE had a need to perform full-scale testing of a 45-m wind turbine blade. NREL/NWTC provided the capabilities, facilities, and equipment to test this large-scale MWE wind turbine blade. Full-scale testing is required to demonstrate the ability of the wind turbine blade to withstand static design load cases and demonstrate the fatigue durability. Structural testing is also necessary to meet international blade testing certification requirements. Through this CRADA, MWE would obtain test results necessary for product development and certification, and NREL would benefit by working with an industrial partner to better understand the unique test requirements for wind turbine blades with advanced structural designs.

Hughes, S.

2012-05-01T23:59:59.000Z

72

Westwind Wind Turbines | Open Energy Information  

Open Energy Info (EERE)

Westwind Wind Turbines Jump to: navigation, search Name Westwind Wind Turbines Place Northern Ireland, United Kingdom Zip BT29 4TF Sector Wind energy Product Northern Ireland based...

73

Howden Wind Turbines Ltd | Open Energy Information  

Open Energy Info (EERE)

Howden Wind Turbines Ltd Jump to: navigation, search Name Howden Wind Turbines Ltd Place United Kingdom Sector Wind energy Product Howden was a manufacturer of wind turbines in the...

74

Model Development and Loads Analysis of an Offshore Wind Turbine on a Tension Leg Platform with a Comparison to Other Floating Turbine Concepts: April 2009  

DOE Green Energy (OSTI)

This report presents results of the analysis of a 5-MW wind turbine located on a floating offshore tension leg platform (TLP) that was conducted using the fully coupled time-domain aero-hydro-servo-elastic design code FAST with AeroDyn and HydroDyn. The report also provides a description of the development process of the TLP model. The model has been verified via comparisons to frequency-domain calculations. Important differences have been identified between the frequency-domain and time-domain simulations, and have generated implications for the conceptual design process. An extensive loads and stability analysis for ultimate and fatigue loads according to the procedure of the IEC 61400-3 offshore wind turbine design standard was performed with the verified TLP model. This report compares the loads for the wind turbine on the TLP to those of an equivalent land-based turbine. Major instabilities for the TLP are identified and described.

Matha, D.

2010-02-01T23:59:59.000Z

75

Development of Fully Coupled Aeroelastic and Hydrodynamic Models for Offshore Wind Turbines: Preprint  

SciTech Connect

Aeroelastic simulation tools are routinely used to design and analyze onshore wind turbines, in order to obtain cost effective machines that achieve favorable performance while maintaining structural integrity. These tools employ sophisticated models of wind-inflow; aerodynamic, gravitational, and inertial loading of the rotor, nacelle, and tower; elastic effects within and between components; and mechanical actuation and electrical responses of the generator and of control and protection systems. For offshore wind turbines, additional models of the hydrodynamic loading in regular and irregular seas, the dynamic coupling between the support platform motions and wind turbine motions, and the dynamic characterization of mooring systems for compliant floating platforms are also important. Hydrodynamic loading includes contributions from hydrostatics, wave radiation, and wave scattering, including free surface memory effects. The integration of all of these models into comprehensive simulation tools, capable of modeling the fully coupled aeroelastic and hydrodynamic responses of floating offshore wind turbines, is presented.

Jonkman, J. M.; Sclavounos, P. D.

2006-01-01T23:59:59.000Z

76

Advanced wind turbine near-term product development. Final technical report  

DOE Green Energy (OSTI)

In 1990 the US Department of Energy initiated the Advanced Wind Turbine (AWT) Program to assist the growth of a viable wind energy industry in the US. This program, which has been managed through the National Renewable Energy Laboratory (NREL) in Golden, Colorado, has been divided into three phases: (1) conceptual design studies, (2) near-term product development, and (3) next-generation product development. The goals of the second phase were to bring into production wind turbines which would meet the cost goal of $0.05 kWh at a site with a mean (Rayleigh) windspeed of 5.8 m/s (13 mph) and a vertical wind shear exponent of 0.14. These machines were to allow a US-based industry to compete domestically with other sources of energy and to provide internationally competitive products. Information is given in the report on design values of peak loads and of fatigue spectra and the results of the design process are summarized in a table. Measured response is compared with the results from mathematical modeling using the ADAMS code and is discussed. Detailed information is presented on the estimated costs of maintenance and on spare parts requirements. A failure modes and effects analysis was carried out and resulted in approximately 50 design changes including the identification of ten previously unidentified failure modes. The performance results of both prototypes are examined and adjusted for air density and for correlation between the anemometer site and the turbine location. The anticipated energy production at the reference site specified by NREL is used to calculate the final cost of energy using the formulas indicated in the Statement of Work. The value obtained is $0.0514/kWh in January 1994 dollars. 71 figs., 30 tabs.

None

1996-01-01T23:59:59.000Z

77

Wind Turbine Manufacturing Process Monitoring  

SciTech Connect

To develop a practical inline inspection that could be used in combination with automated composite material placement equipment to economically manufacture high performance and reliable carbon composite wind turbine blade spar caps. The approach technical feasibility and cost benefit will be assessed to provide a solid basis for further development and implementation in the wind turbine industry. The program is focused on the following technology development: (1) Develop in-line monitoring methods, using optical metrology and ultrasound inspection, and perform a demonstration in the lab. This includes development of the approach and performing appropriate demonstration in the lab; (2) Develop methods to predict composite strength reduction due to defects; and (3) Develop process models to predict defects from leading indicators found in the uncured composites.

Waseem Faidi; Chris Nafis; Shatil Sinha; Chandra Yerramalli; Anthony Waas; Suresh Advani; John Gangloff; Pavel Simacek

2012-04-26T23:59:59.000Z

78

Development of a light-weight, wind-turbine-rotor-based data acquisition system  

DOE Green Energy (OSTI)

Wind-energy researchers at Sandia National Laboratories (SNL) and the National Renewable Energy Laboratory (NREL) are developing a new, light-weight, modular system capable of acquiring long-term, continuous time-series data from current-generation small or large, dynamic wind-turbine rotors. Meetings with wind-turbine research personnel at NREL and SNL resulted in a list of the major requirements that the system must meet. Initial attempts to locate a commercial system that could meet all of these requirements were not successful, but some commercially available data acquisition and radio/modem subsystems that met many of the requirements were identified. A time synchronization subsystem and a programmable logic device subsystem to integrate the functions of the data acquisition, the radio/modem, and the time synchronization subsystems and to communicate with the user have been developed at SNL. This paper presents the data system requirements, describes the four major subsystems comprising the system, summarizes the current status of the system, and presents the current plans for near-term development of hardware and software.

Berg, D.E.; Rumsey, M.; Robertson, P. [Sandia National Labs., Albuquerque, NM (United States); Kelley, N.; McKenna, E. [National Renewable Energy Lab., Golden, CO (United States); Gass, K. [Utah State Univ., Logan, UT (United States)

1997-12-01T23:59:59.000Z

79

Certification testing for small wind turbines  

DOE Green Energy (OSTI)

This paper describes the testing procedures for obtaining type certification for a small wind turbine. Southwest Windpower (SWWP) is seeking type certification from Underwriters Laboratory (UL) for the AIR 403 wind turbine. UL is the certification body and the National Renewable Energy Laboratory (NREL) is providing technical assistance including conducting the certification testing. This is the first small turbine to be certified in the US, therefore standards must be interpreted and test procedures developed.

Corbus, D.; Link, H.; Butterfield, S.; Stork, C.; Newcomb, C.

1999-10-20T23:59:59.000Z

80

Airfoils for wind turbine  

DOE Patents (OSTI)

Airfoils for the blade of a wind turbine wherein each airfoil is characterized by a thickness in a range from 16%-24% and a maximum lift coefficient designed to be largely insensitive to roughness effects. The airfoils include a family of airfoils for a blade 15 to 25 meters in length, a family of airfoils for a blade 1 to 5 meters in length, and a family of airfoils for a blade 5 to 10 meters in length.

Tangler, James L. (Boulder, CO); Somers, Dan M. (State College, PA)

1996-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "wind turbine development" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


81

Airfoils for wind turbine  

DOE Patents (OSTI)

Airfoils are disclosed for the blade of a wind turbine wherein each airfoil is characterized by a thickness in a range from 16%-24% and a maximum lift coefficient designed to be largely insensitive to roughness effects. The airfoils include a family of airfoils for a blade 15 to 25 meters in length, a family of airfoils for a blade 1 to 5 meters in length, and a family of airfoils for a blade 5 to 10 meters in length. 10 figs.

Tangler, J.L.; Somers, D.M.

1996-10-08T23:59:59.000Z

82

Luther College Wind Turbine | Open Energy Information  

Open Energy Info (EERE)

Luther College Wind Turbine Luther College Wind Turbine Jump to: navigation, search Name Luther College Wind Turbine Facility Luther College Wind Turbine Sector Wind energy Facility Type Community Wind Facility Status In Service Owner Luther College Wind Energy Project LLC Developer Luther College Energy Purchaser Alliant Energy Location Decorah IA Coordinates 43.30919891°, -91.81617737° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":43.30919891,"lon":-91.81617737,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

83

Wind Turbine System State Awareness - Energy Innovation Portal  

Technology Marketing Summary Researchers at the Los Alamos National Laboratory Intelligent Wind Turbine Program are developing a multi-physics ...

84

Development and Validation of an Aeroelastic Model of a Small Furling Wind Turbine: Preprint  

DOE Green Energy (OSTI)

Small wind turbines often use some form of furling (yawing and/or tilting out of the wind) to protect against excessive power generation and rotor speeds in high winds.The verification study demonstrated the correct implementation of FAST's furling dynamics. During validation, the model tends to predict mean rotor speeds higher than measured in spite of the fact that the mean furl motion and rotor thrust are predicted quite accurately. This work has culminated with an enhanced version of FAST that should prove to be a valuable asset to designers of small wind turbines.

Jonkman, J. M.; Hansen, A. C.

2004-12-01T23:59:59.000Z

85

Assessing the Importance of Nonlinearities in the Development of a Substructure Model for the Wind Turbine CAE Tool FAST: Preprint  

DOE Green Energy (OSTI)

Design and analysis of wind turbines are performed using aero-servo-elastic tools that account for the nonlinear coupling between aerodynamics, controls, and structural response. The NREL-developed computer-aided engineering (CAE) tool FAST also resolves the hydrodynamics of fixed-bottom structures and floating platforms for offshore wind applications. This paper outlines the implementation of a structural-dynamics module (SubDyn) for offshore wind turbines with space-frame substructures into the current FAST framework, and focuses on the initial assessment of the importance of structural nonlinearities. Nonlinear effects include: large displacements, axial shortening due to bending, cross-sectional transverse shear effects, etc.

Damiani, R.; Jonkman, J.; Robertson, A.; Song, H.

2013-03-01T23:59:59.000Z

86

Williams Stone Wind Turbine | Open Energy Information  

Open Energy Info (EERE)

Wind Turbine Wind Turbine Jump to: navigation, search Name Williams Stone Wind Turbine Facility Williams Stone Wind Turbine Sector Wind energy Facility Type Community Wind Facility Status In Service Owner Williams Stone Developer Sustainable Energy Developments Energy Purchaser Williams Stone Location Otis MA Coordinates 42.232526°, -73.070952° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":42.232526,"lon":-73.070952,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

87

NREL Identifies Investments for Wind Turbine Drivetrain Technologies (Fact Sheet), NREL Highlights, Research & Development, NREL (National Renewable Energy Laboratory)  

NLE Websites -- All DOE Office Websites (Extended Search)

examines current U.S. manufacturing and supply examines current U.S. manufacturing and supply chain capabilities for advanced wind turbine drivetrain technologies. Innovative technologies are helping boost the capacity and operating reliability of conventional wind turbine drivetrains. With the proper manufacturing and supply chain capabilities in place, the United States can better develop and deploy these advanced technologies- increasing the competitiveness of the U.S. wind industry and reducing the levelized cost of energy (LCOE). National Renewable Energy Laboratory (NREL) researchers conducted a study for the U.S. Department of Energy to assess the state of the nation's manufacturing and supply chain capabilities for advanced wind turbine drivetrain technologies. The findings helped determine the

88

Charlestown Wind Turbine | Open Energy Information  

Open Energy Info (EERE)

Charlestown Wind Turbine Charlestown Wind Turbine Jump to: navigation, search Name Charlestown Wind Turbine Facility Charlestown Wind Turbine Sector Wind energy Facility Type Commercial Scale Wind Facility Status In Service Owner MWRA Developer MWRA Energy Purchaser Distributed generation - net metered Location Boston MA Coordinates 42.39094522°, -71.07094288° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":42.39094522,"lon":-71.07094288,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

89

Wind Turbine Basics | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Wind Turbine Basics Wind Turbine Basics Wind Turbine Basics July 30, 2013 - 2:58pm Addthis Energy 101: Wind Turbines Basics This video explains the basics of how wind turbines operate to produce clean power from an abundant, renewable resource-the wind. Text Version Wind turbine assembly Although all wind turbines operate on similar principles, several varieties are in use today. These include horizontal axis turbines and vertical axis turbines. Horizontal Axis Turbines Horizontal axis turbines are the most common turbine configuration used today. They consist of a tall tower, atop which sits a fan-like rotor that faces into or away from the wind, a generator, a controller, and other components. Most horizontal axis turbines built today are two- or three-bladed. Horizontal axis turbines sit high atop towers to take advantage of the

90

Applications: Wind turbine structural health  

E-Print Network (OSTI)

of turbine system management. The data obtained from this multi-scale sensing capability will be fullyCapability Applications: Wind turbine structural health monitoring Individual turbine maintenance for active control in the field Limit damage propagation and maintenance costs Maximize return

91

Development, Implementation, and Testing of Fault Detection Strategies on the National Wind Technology Center's Controls Advanced Research Turbines  

Science Conference Proceedings (OSTI)

The National Renewable Energy Laboratory's National Wind Technology Center dedicates two 600 kW turbines for advanced control systems research. A fault detection system for both turbines has been developed, analyzed, and improved across years of experiments to protect the turbines as each new controller is tested. Analysis of field data and ongoing fault detection strategy improvements have resulted in a system of sensors, fault definitions, and detection strategies that have thus far been effective at protecting the turbines. In this paper, we document this fault detection system and provide field data illustrating its operation while detecting a range of failures. In some cases, we discuss the refinement process over time as fault detection strategies were improved. The purpose of this article is to share field experience obtained during the development and field testing of the existing fault detection system, and to offer a possible baseline for comparison with more advanced turbine fault detection controllers.

Johnson, K. E.; Fleming, P. A.

2011-06-01T23:59:59.000Z

92

NREL: Wind Research - Wind Project Development Updates  

NLE Websites -- All DOE Office Websites (Extended Search)

Wind Project Development Updates A 2.3 megawatt Siemens wind turbine nacelle on route to the Record Hill Wind project in Roxbury, Maine. January 14, 2013 As a result of the...

93

Wind Turbine Basics | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Turbine Basics Turbine Basics Wind Turbine Basics July 30, 2013 - 2:58pm Addthis Energy 101: Wind Turbines Basics This video explains the basics of how wind turbines operate to produce clean power from an abundant, renewable resource-the wind. Text Version Wind turbine assembly Although all wind turbines operate on similar principles, several varieties are in use today. These include horizontal axis turbines and vertical axis turbines. Horizontal Axis Turbines Horizontal axis turbines are the most common turbine configuration used today. They consist of a tall tower, atop which sits a fan-like rotor that faces into or away from the wind, a generator, a controller, and other components. Most horizontal axis turbines built today are two- or three-bladed. Horizontal axis turbines sit high atop towers to take advantage of the

94

Small Wind Turbine Applications: Current Practice in Colorado  

DOE Green Energy (OSTI)

Numerous small wind turbines are being used by homeowners in Colorado. Some of these installations are quite recent while others date back to the federal tax-credit era of the early 1980s. Through visits with small wind turbine owners in Colorado, I have developed case studies of six small wind energy applications focusing on the wind turbine technology, wind turbine siting, the power systems and electric loads, regulatory issues, and motivations about wind energy. These case studies offer a glimpse into the current state-of-the-art of small-scale wind energy and provide some insight into issues affecting development of a wider market.

Green, J.

1999-09-30T23:59:59.000Z

95

Low Wind Speed Technology Phase I: Clipper Turbine Development Project; Clipper Windpower Technology, Inc.  

DOE Green Energy (OSTI)

This fact sheet describes a subcontract with Clipper Windpower Technology, Inc. to develop a new turbine design that incorporates advanced elements.

Not Available

2006-03-01T23:59:59.000Z

96

Wind turbine rotor aileron  

DOE Patents (OSTI)

A wind turbine has a rotor with at least one blade which has an aileron which is adjusted by an actuator. A hinge has two portions, one for mounting a stationary hinge arm to the blade, the other for coupling to the aileron actuator. Several types of hinges can be used, along with different actuators. The aileron is designed so that it has a constant chord with a number of identical sub-assemblies. The leading edge of the aileron has at least one curved portion so that the aileron does not vent over a certain range of angles, but vents if the position is outside the range. A cyclic actuator can be mounted to the aileron to adjust the position periodically. Generally, the aileron will be adjusted over a range related to the rotational position of the blade. A method for operating the cyclic assembly is also described.

Coleman, Clint (Warren, VT); Kurth, William T. (Warren, VT)

1994-06-14T23:59:59.000Z

97

Dual-speed wind turbine generation  

SciTech Connect

Induction generator has been used since the early development of utility-scale wind turbine generation. An induction generator is the generator of choice because of its ruggedness and low cost. With an induction generator, the operating speed of the wind turbine is limited to a narrow range (almost constant speed). Dual- speed operation can be accomplished by using an induction generator with two different sets of winding configurations or by using a dual output drive train to drive two induction generators with two different rated speeds. With single-speed operation, the wind turbine operates at different power coefficients (Cp) as the wind speed varies. Operation at maximum Cp can occur only at a single wind speed. However, if the wind speed.varies across a wider range, the operating Cp will vary significantly. Dual-speed operation has the advantage of enabling the wind turbine to operate at near maximum Cp over a wider range of wind speeds. Thus, annual energy production can be increased. The dual-speed mode may generate less energy than a variable-speed mode; nevertheless, it offers an alternative which captures more energy than single-speed operation. In this paper, dual-speed operation of a wind turbine is investigated. Annual energy production is compared between single-speed and dual-speed operation. One type of control algorithm for dual-speed operation is proposed. Some results from a dynamic simulation will be presented to show how the control algorithm works as the wind turbine is exposed to varying wind speeds.

Muljadi, E.; Butterfield, C.P. [National Renewable Energy Lab., Golden, CO (United States); Handman, D. [Flowind Corp., San Rafael, CA (United States)

1996-10-01T23:59:59.000Z

98

Model-based fault detection and isolation of a liquid-cooled frequency converter on a wind turbine  

Science Conference Proceedings (OSTI)

With the rapid development of wind energy technologies and growth of installed wind turbine capacity in the world, the reliability of the wind turbine becomes an important issue for wind turbine manufactures, owners, and operators. The reliability of ...

Peng Li, Peter Fogh Odgaard, Jakob Stoustrup, Alexander Larsen, Kim Mrk

2012-01-01T23:59:59.000Z

99

Low Wind Speed Technology Phase I: Prototype Multi-Megawatt Low Wind Speed Turbine; General Electric Wind Energy, LLC  

SciTech Connect

This fact sheet describes a subcontract with GE Wind Energy to develop an advanced prototype turbine to significantly reduce energy costs (COE) in low wind speed environments.

2006-03-01T23:59:59.000Z

100

Capps et al. Wind Power Sensitivity to Turbine Characteristics Sensitivity of Southern California Wind Power to Turbine  

E-Print Network (OSTI)

functions. However, for the installation of a single or small cluster of turbines, a wind developer may find phase of a wind project includes monitoring and evaluating the local wind resource, determining possible turbine locations, and estimating the economic feasibility of a wind project. It may also include

Hall, Alex

Note: This page contains sample records for the topic "wind turbine development" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


101

Applied Materials Wind Turbine | Open Energy Information  

Open Energy Info (EERE)

Wind Turbine Wind Turbine Jump to: navigation, search Name Applied Materials Wind Turbine Facility Applied Materials Sector Wind energy Facility Type Community Wind Facility Status In Service Owner Applied Materials Developer Applied Materials Energy Purchaser Applied Materials Location Gloucester MA Coordinates 42.62895426°, -70.65153122° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":42.62895426,"lon":-70.65153122,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

102

Onshore Wind Turbines Life Extension  

Science Conference Proceedings (OSTI)

Wind turbines are currently type-certified for nominal 20-year design lives, but many wind industry stakeholders are considering the possibility of extending the operating lives of their projects by 5, 10, or 15 years. Life extensionthe operation of an asset beyond the nominal design lifeis just one option to maximize the financial return of these expensive assets. Other options include repowering, upgrading, or uprating a turbine.In order to make informed decisions ...

2012-10-01T23:59:59.000Z

103

An experimental and numerical study of wind turbine seismic behavior  

E-Print Network (OSTI)

3.2.1 Description of Test Wind Turbine . . . . . .Figure 1.2: Components of a modern wind turbine . . . . . .Wind Turbine . . . . . . . . . . . . . . . . . . . . . . .

Prowell, I.

2011-01-01T23:59:59.000Z

104

Gamesa Wind Turbines Pvt Ltd | Open Energy Information  

Open Energy Info (EERE)

Turbines Pvt Ltd Jump to: navigation, search Name Gamesa Wind Turbines Pvt. Ltd. Place Chennai, Tamil Nadu, India Sector Wind energy Product Chennai-based wind turbine...

105

NREL: Wind Research - Small Wind Turbine Independent Testing  

NLE Websites -- All DOE Office Websites (Extended Search)

Wind Research Search More Search Options Site Map Printable Version Small Wind Turbine Independent Testing One of the barriers for the small wind market has been the lack...

106

Subhourly wind forecasting techniques for wind turbine operations  

DOE Green Energy (OSTI)

Three models for making automated forecasts of subhourly wind and wind power fluctuations were examined to determine the models' appropriateness, accuracy, and reliability in wind forecasting for wind turbine operation. Such automated forecasts appear to have value not only in wind turbine control and operating strategies, but also in improving individual wind turbine control and operating strategies, but also in improving individual wind turbine operating strategies (such as determining when to attempt startup). A simple persistence model, an autoregressive model, and a generalized equivalent Markhov (GEM) model were developed and tested using spring season data from the WKY television tower located near Oklahoma City, Oklahoma. The three models represent a pure measurement approach, a pure statistical method and a statistical-dynamical model, respectively. Forecasting models of wind speed means and measures of deviations about the mean were developed and tested for all three forecasting techniques for the 45-meter level and for the 10-, 30- and 60-minute time intervals. The results of this exploratory study indicate that a persistence-based approach, using onsite measurements, will probably be superior in the 10-minute time frame. The GEM model appears to have the most potential in 30-minute and longer time frames, particularly when forecasting wind speed fluctuations. However, several improvements to the GEM model are suggested. In comparison to the other models, the autoregressive model performed poorly at all time frames; but, it is recommended that this model be upgraded to an autoregressive moving average (ARMA or ARIMA) model. The primary constraint in adapting the forecasting models to the production of wind turbine cluster power output forecasts is the lack of either actual data, or suitable models, for simulating wind turbine cluster performance.

Wegley, H.L.; Kosorok, M.R.; Formica, W.J.

1984-08-01T23:59:59.000Z

107

Vertical axis wind turbine control strategy  

DOE Green Energy (OSTI)

Early expensive in automatic operation of the Sandia 17-m vertical axis research wind turbine (VAWT) has demonstrated the need for a systematic study of control algorithms. To this end, a computer model has been developed that uses actual wind time series and turbine performance data to calculate the power produced by the Sandia 17-m VAWT operating in automatic control. The model has been used to investigate the influence of starting algorithms on annual energy production. The results indicate that, depending on turbine and local wind characteristics, a bad choice of a control algorithm can significantly reduce overall energy production. The model can be used to select control algorithms and threshold parameters that maximize long-term energy production. An attempt has been made to generalize these results from local site and turbine characteristics to obtain general guidelines for control algorithm design.

McNerney, G.M.

1981-08-01T23:59:59.000Z

108

Airfoils for wind turbine  

DOE Patents (OSTI)

Airfoils for the tip and mid-span regions of a wind turbine blade have upper surface and lower surface shapes and contours between a leading edge and a trailing edge that minimize roughness effects of the airfoil and provide maximum lift coefficients that are largely insensitive to roughness effects. The airfoil in one embodiment is shaped and contoured to have a thickness in a range of about fourteen to seventeen percent, a Reynolds number in a range of about 1,500,000 to 2,000,000, and a maximum lift coefficient in a range of about 1.4 to 1.5. In another embodiment, the airfoil is shaped and contoured to have a thickness in a range of about fourteen percent to sixteen percent, a Reynolds number in a range of about 1,500,000 to 3,000,000, and a maximum lift coefficient in a range of about 0.7 to 1.5. Another embodiment of the airfoil is shaped and contoured to have a Reynolds in a range of about 1,500,000 to 4,000,000, and a maximum lift coefficient in a range of about 1.0 to 1.5.

Tangler, James L. (Boulder, CO); Somers, Dan M. (State College, PA)

2000-01-01T23:59:59.000Z

109

Energy 101: Wind Turbines | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Wind Turbines Wind Turbines Energy 101: Wind Turbines Addthis Description See how wind turbines generate clean electricity from the power of the wind. Highlighted are the various parts and mechanisms of a modern wind turbine. Duration 2:16 Topic Tax Credits, Rebates, Savings Wind Energy Economy Credit Energy Department Video MR. : We've all seen those creaky old windmills on farms, and although they may seem about as low-tech as you can get, those old windmills are the predecessors for new modern wind turbines that generate electricity. The same wind that used to pump water for cattle is now turning giant wind turbines to power cities and homes. OK, have a look at this wind farm in the California desert, a hot desert next to tall mountains - an ideal place for a lot of wind.

110

MEASURING IMPACTS TO BIRDS CAUSED BY WIND TURBINES MEASURING IMPACTS TO BIRDS CAUSED BY WIND TURBINES  

E-Print Network (OSTI)

APPENDIX A MEASURING IMPACTS TO BIRDS CAUSED BY WIND TURBINES #12;A-1 APPENDIX A MEASURING IMPACTS TO BIRDS CAUSED BY WIND TURBINES 1.0 INTRODUCTION Differential composition of wind turbines at wind energy used is the number of fatalities per wind turbine per year (Anderson et al. 1999). This metric has

111

A Dynamic Wind Turbine Simulator of the Wind Turbine Generator System  

Science Conference Proceedings (OSTI)

To study dynamic performances of wind turbine generator system (WTGS), and to determine the control structures in laboratory. The dynamic torque generated by wind turbine (WT) must be simulated. In there paper, a dynamic wind turbine emulator (WTE) is ... Keywords: dynamic wind turbine emulation, wind shear, tower shadow, torque compensation

Lei Lu; Zhen Xie; Xing Zhang; Shuying Yang; Renxian Cao

2012-01-01T23:59:59.000Z

112

Development of a Direct Drive Permanent Magnet Generator for Small Wind Turbines  

SciTech Connect

In this program, TIAX performed the conceptual design and analysis of an innovative, modular, direct-drive permanent magnet generator (PMG) for use in small wind turbines that range in power rating from 25 kW to 100 kW. TIAX adapted an approach that has been successfully demonstrated in high volume consumer products such as direct-drive washing machines and portable generators. An electromagnetic model was created and the modular PMG design was compared to an illustrative non-modular design. The resulting projections show that the modular design can achieve significant reductions in size, weight, and manufacturing cost without compromising efficiency. Reducing generator size and weight can also lower the size and weight of other wind turbine components and hence their manufacturing cost.

Chertok, Allan; Hablanian, David; McTaggart, Paul; DOE Project Officer - Keith Bennett

2004-11-16T23:59:59.000Z

113

Aluminum-blade development for the Mod-0A 200-kilowatt wind turbine  

DOE Green Energy (OSTI)

This report documents the operating experience with two aluminum blades used on the DOE/NASA Mod-0A 200-kilowatt wind turbine located at Clayton, New Mexico. Each Mod-0A aluminum blade is 59.9 feet long and weighs 2360 pounds. The aluminum Mod-0A blade design requirements, the selected design, fabrication procedures, and the blade analyses are discussed. A detailed chronology is presented on the operating experience of the Mod-0A aluminum blades used at Clayton, New Mexico. Blade structural damage was experienced. Inspection and damage assessment were required. Structural modifications that were incorporated to the blades successfully extended the useful operating life of the blades. The aluminum blades completed the planned 2 years of operation of the Clayton wind turbine. The blades were removed from service in August 1980 to allow testing of advanced technology wood composite blades.

Linscott, B.S.; Shaltens, R.K.; Eggers, A.G.

1981-12-01T23:59:59.000Z

114

Offshore Wind Turbines and Their Installation  

Science Conference Proceedings (OSTI)

Offshore winds tend to be higher, more constant and not disturbed by rough terrain, so there is a large potential for utilizing wind energy near to the sea. Compared with the wind energy converters onland, wind turbine components offshore will subject ... Keywords: renewable energy, wind power generation, offshore wind turbines, offshore installation

Liwei Li; Jianxing Ren

2010-01-01T23:59:59.000Z

115

Wind Turbines Electrical and Mechanical Engineering  

E-Print Network (OSTI)

Wind Turbines Electrical and Mechanical Engineering Objective · Introduce students to the concept of alternative energy. · Explain the math and scientific principles behind engineering wind turbines. Standards and how it applies to wind energy · About how surface area and shape effects wind turbine efficiency

Provancher, William

116

Portsmouth Abbey School Wind Turbine Wind Farm | Open Energy Information  

Open Energy Info (EERE)

School Wind Turbine Wind Farm School Wind Turbine Wind Farm Jump to: navigation, search Name Portsmouth Abbey School Wind Turbine Wind Farm Facility Portsmouth Abbey School Wind Turbine Sector Wind energy Facility Type Community Wind Facility Status In Service Owner Portsmouth Abbey School Developer Portsmouth Abbey School Energy Purchaser Portsmouth Abbey School Location Portsmouth RI Coordinates 41.599032°, -71.268688° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":41.599032,"lon":-71.268688,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

117

Harbec Plastic Wind Turbine Wind Farm | Open Energy Information  

Open Energy Info (EERE)

Harbec Plastic Wind Turbine Wind Farm Harbec Plastic Wind Turbine Wind Farm Jump to: navigation, search Name Harbec Plastic Wind Turbine Wind Farm Facility Harbec Plastic Wind Turbine Sector Wind energy Facility Type Community Wind Facility Status In Service Owner Harbeck Plastic Developer Lorax Energy Systems Energy Purchaser Harbeck Plastic Location Rochester NY Coordinates 43.226039°, -77.361776° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":43.226039,"lon":-77.361776,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

118

Energy 101: Wind Turbines | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Wind Turbines Wind Turbines Energy 101: Wind Turbines Addthis Below is the text version for the Energy 101: Wind Turbines video. The video opens with "Energy 101: Wind Turbines." This is followed by wooden windmills on farms. We've all seen those creaky, old windmills on farms. And although they may seem about as low-tech as you can get, those old windmills are the predecessors for new, modern wind turbines that generat electricity. The video pans through shots of large windmills and wind farms of different sizes, situated on cultivated plains and hills. The same wind that used to pump water for cattle is now turning giant wind turbines to power cities and homes. OK, have a look at this wind farm in the California desert. A hot desert, next to tall mountains. An ideal place for a lot of wind.

119

Maglev Wind Turbine Technologies | Open Energy Information  

Open Energy Info (EERE)

Maglev Wind Turbine Technologies Maglev Wind Turbine Technologies Jump to: navigation, search Name Maglev Wind Turbine Technologies Place Sierra Vista, Arizona Zip 85635 Sector Wind energy Product The new company employs magnetic levitation (Maglev) technology in its wind turbines, which it says will have a longer life span, be cheaper to build, and produce 1GW of energy each. References Maglev Wind Turbine Technologies[1] LinkedIn Connections CrunchBase Profile No CrunchBase profile. Create one now! This article is a stub. You can help OpenEI by expanding it. Maglev Wind Turbine Technologies is a company located in Sierra Vista, Arizona . References ↑ "Maglev Wind Turbine Technologies" Retrieved from "http://en.openei.org/w/index.php?title=Maglev_Wind_Turbine_Technologies&oldid=348578"

120

DOE to Invest $6 Million in Midsize Wind Turbine Technology ...  

DOE to Invest $6 Million in Midsize Wind Turbine Technology Development May 25, 2010. The U.S. Department of Energy (DOE) today announced the availability ...

Note: This page contains sample records for the topic "wind turbine development" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


121

Using Neural Networks to Estimate Wind Turbine  

E-Print Network (OSTI)

This paper uses data collected at Central and South West Services Fort Davis wind farm to develop a neural network based prediction of power produced by each turbine. The power generated by electric wind turbines changes rapidly because of the continuous fluctuation of wind speed and direction. It is important for the power industry to have the capability to perform this prediction for diagnostic purposes---lower-than-expected wind power may be an early indicator of a need for maintenance. In this paper, characteristics of wind power generation are first evaluated in order to establish the relative importance for the neural network. A four input neural network is developed and its performance is shown to be superior to the single parameter traditional model approach.

Power Generation Shuhui; Shuhui Li; Donald C. Wunsch; Edgar A. Ohair; Michael G. Giesselmann; Senior Member; Senior Member

2001-01-01T23:59:59.000Z

122

NREL: Wind Research - Advanced Research Turbines  

NLE Websites -- All DOE Office Websites (Extended Search)

Research Turbines Two 440 foot meteorological towers are upwind of two research wind turbines. Two 600-kW Westinghouse turbines at the NWTC are used to test new control...

123

Development of an Operations and Maintenance Cost Model to Identify Cost of Energy Savings for Low Wind Speed Turbines: July 2, 2004 -- June 30, 2008  

SciTech Connect

The report describes the operatons and maintenance cost model developed by Global Energy Concepts under contract to NREL to estimate the O&M costs for commercial wind turbine generator facilities.

Poore, R.

2008-01-01T23:59:59.000Z

124

Wind and solar powered turbine  

SciTech Connect

A power generating station having a generator driven by solar heat assisted ambient wind is disclosed. A first plurality of radially extending air passages direct ambient wind to a radial flow wind turbine disposed in a centrally located opening in a substantially disc-shaped structure. A solar radiation collecting surface having black bodies is disposed above the first plurality of air passages and in communication with a second plurality of radial air passages. A cover plate enclosing the second plurality of radial air passages is transparent so as to permit solar radiation to effectively reach the black bodies. The second plurality of air passages direct ambient wind and thermal updrafts generated by the black bodies to an axial flow turbine which also derives additional motive power from the air mass exhausted by the radial flow turbine. The rotating shaft of the turbines drive the generator. The solar and wind driven power generating system operates in electrical cogeneration mode with a fuel powered prime mover. The system is particularly adapted to satisfy the power requirements of a relatively small community located in a geographic area having favorable climatic conditions for wind and solar powered power generation.

Wells, I.D.; Holmes, M.; Kohn, J.L.

1984-02-28T23:59:59.000Z

125

Vertical axis wind turbine airfoil  

DOE Patents (OSTI)

A vertical axis wind turbine airfoil is described. The wind turbine airfoil can include a leading edge, a trailing edge, an upper curved surface, a lower curved surface, and a centerline running between the upper surface and the lower surface and from the leading edge to the trailing edge. The airfoil can be configured so that the distance between the centerline and the upper surface is the same as the distance between the centerline and the lower surface at all points along the length of the airfoil. A plurality of such airfoils can be included in a vertical axis wind turbine. These airfoils can be vertically disposed and can rotate about a vertical axis.

Krivcov, Vladimir; Krivospitski, Vladimir; Maksimov, Vasili; Halstead, Richard; Grahov, Jurij Vasiljevich

2012-12-18T23:59:59.000Z

126

Wind Turbine Productivity Improvement and Procurement Guidelines  

Science Conference Proceedings (OSTI)

Proper selection of equipment specifications during wind turbine procurement and careful operation and maintenance procedures are keys to maximizing wind project availability and annual energy generation and revenues.

2002-03-28T23:59:59.000Z

127

Structural Health Monitoring of Wind Turbine Blades  

Science Conference Proceedings (OSTI)

Presentation Title, Structural Health Monitoring of Wind Turbine Blades. Author(s) ... is mandatory for the cost-effective operation of an offshore wind power plant.

128

10MW Class Direct Drive HTS Wind Turbine: Cooperative Research and Development Final Report, CRADA Number CRD-08-00312  

DOE Green Energy (OSTI)

This paper summarizes the work completed under the CRADA between NREL and American Superconductor (AMSC). The CRADA combined NREL and AMSC resources to benchmark high temperature superconducting direct drive (HTSDD) generator technology by integrating the technologies into a conceptual wind turbine design, and comparing the design to geared drive and permanent magnet direct drive (PMDD) wind turbine configurations. Analysis was accomplished by upgrading the NREL Wind Turbine Design Cost and Scaling Model to represent geared and PMDD turbines at machine ratings up to 10 MW and then comparing cost and mass figures of AMSC's HTSDD wind turbine designs to theoretical geared and PMDD turbine designs at 3.1, 6, and 10 MW sizes.

Musial, W.

2011-05-01T23:59:59.000Z

129

10MW Class Direct Drive HTS Wind Turbine: Cooperative Research and Development Final Report, CRADA Number CRD-08-00312  

SciTech Connect

This paper summarizes the work completed under the CRADA between NREL and American Superconductor (AMSC). The CRADA combined NREL and AMSC resources to benchmark high temperature superconducting direct drive (HTSDD) generator technology by integrating the technologies into a conceptual wind turbine design, and comparing the design to geared drive and permanent magnet direct drive (PMDD) wind turbine configurations. Analysis was accomplished by upgrading the NREL Wind Turbine Design Cost and Scaling Model to represent geared and PMDD turbines at machine ratings up to 10 MW and then comparing cost and mass figures of AMSC's HTSDD wind turbine designs to theoretical geared and PMDD turbine designs at 3.1, 6, and 10 MW sizes.

Musial, W.

2011-05-01T23:59:59.000Z

130

NREL: Awards and Honors - North Wind 100/20 Wind Turbine  

NLE Websites -- All DOE Office Websites (Extended Search)

North Wind 100/20 Wind Turbine North Wind 100/20 Wind Turbine Developers: Gerry Nix and Brian Smith, National Renewable Energy Laboratory; Johnathan Lynch, Clint Coleman, Garrett Bywaters, and Rob Roland, Norhtern Power Systems; Dr. David Bubenheim and Michael Flynn, NASA Ames Research Center; and John Rand, National Science Foundation. The North Wind 100/20 Wind Turbine is a state-of-the-art wind turbine that is ideal for extreme cold conditions perfect for remote locations that may be off-grid or local-grid. The numeric designations represent the North Wind's capacity, 100-kilowatts (which is enough energy for 25-50 homes), and 20-meter diameter blades. The size of the North Wind 100/20 is unique, fitting an important market niche between large and small turbines. Large turbines (400-kilowatts and

131

Siting guidelines for utility application of wind turbines. Final report  

DOE Green Energy (OSTI)

Utility-oriented guidelines are described for identifying viable sites for wind turbines. Topics and procedures are also discussed that are important in carrying out a wind turbine siting program. These topics include: a description of the Department of Energy wind resource atlases; procedures for predicting wind turbine performance at potential sites; methods for analyzing wind turbine economics; procedures for estimating installation and maintenance costs; methods for anlayzing the distribution of wind resources over an area; and instrumentation for documenting wind behavior at potential sites. The procedure described is applicable to small and large utilities. Although the procedure was developed as a site-selection tool, it can also be used by a utility who wishes to estimate the potential for wind turbine penetration into its future generation mix.

Pennell, W.T.

1983-01-01T23:59:59.000Z

132

Wind turbine reliability :understanding and minimizing wind turbine operation and maintenance costs.  

DOE Green Energy (OSTI)

Wind turbine system reliability is a critical factor in the success of a wind energy project. Poor reliability directly affects both the project's revenue stream through increased operation and maintenance (O&M) costs and reduced availability to generate power due to turbine downtime. Indirectly, the acceptance of wind-generated power by the financial and developer communities as a viable enterprise is influenced by the risk associated with the capital equipment reliability; increased risk, or at least the perception of increased risk, is generally accompanied by increased financing fees or interest rates. This paper outlines the issues relevant to wind turbine reliability for wind turbine power generation projects. The first sections describe the current state of the industry, identify the cost elements associated with wind farm O&M and availability and discuss the causes of uncertainty in estimating wind turbine component reliability. The latter sections discuss the means for reducing O&M costs and propose O&M related research and development efforts that could be pursued by the wind energy research community to reduce cost of energy.

Walford, Christopher A. (Global Energy Concepts. Kirkland, WA)

2006-03-01T23:59:59.000Z

133

Wind turbine reliability :understanding and minimizing wind turbine operation and maintenance costs.  

SciTech Connect

Wind turbine system reliability is a critical factor in the success of a wind energy project. Poor reliability directly affects both the project's revenue stream through increased operation and maintenance (O&M) costs and reduced availability to generate power due to turbine downtime. Indirectly, the acceptance of wind-generated power by the financial and developer communities as a viable enterprise is influenced by the risk associated with the capital equipment reliability; increased risk, or at least the perception of increased risk, is generally accompanied by increased financing fees or interest rates. This paper outlines the issues relevant to wind turbine reliability for wind turbine power generation projects. The first sections describe the current state of the industry, identify the cost elements associated with wind farm O&M and availability and discuss the causes of uncertainty in estimating wind turbine component reliability. The latter sections discuss the means for reducing O&M costs and propose O&M related research and development efforts that could be pursued by the wind energy research community to reduce cost of energy.

Walford, Christopher A. (Global Energy Concepts. Kirkland, WA)

2006-03-01T23:59:59.000Z

134

Radar-cross-section reduction of wind turbines. part 1.  

SciTech Connect

In recent years, increasing deployment of large wind-turbine farms has become an issue of growing concern for the radar community. The large radar cross section (RCS) presented by wind turbines interferes with radar operation, and the Doppler shift caused by blade rotation causes problems identifying and tracking moving targets. Each new wind-turbine farm installation must be carefully evaluated for potential disruption of radar operation for air defense, air traffic control, weather sensing, and other applications. Several approaches currently exist to minimize conflict between wind-turbine farms and radar installations, including procedural adjustments, radar upgrades, and proper choice of low-impact wind-farm sites, but each has problems with limited effectiveness or prohibitive cost. An alternative approach, heretofore not technically feasible, is to reduce the RCS of wind turbines to the extent that they can be installed near existing radar installations. This report summarizes efforts to reduce wind-turbine RCS, with a particular emphasis on the blades. The report begins with a survey of the wind-turbine RCS-reduction literature to establish a baseline for comparison. The following topics are then addressed: electromagnetic model development and validation, novel material development, integration into wind-turbine fabrication processes, integrated-absorber design, and wind-turbine RCS modeling. Related topics of interest, including alternative mitigation techniques (procedural, at-the-radar, etc.), an introduction to RCS and electromagnetic scattering, and RCS-reduction modeling techniques, can be found in a previous report.

Brock, Billy C.; Loui, Hung; McDonald, Jacob J.; Paquette, Joshua A.; Calkins, David A.; Miller, William K.; Allen, Steven E.; Clem, Paul Gilbert; Patitz, Ward E.

2012-03-05T23:59:59.000Z

135

Offshore Wind Turbines: Some Technical Challenges  

E-Print Network (OSTI)

1 Offshore Wind Turbines: Some Technical Challenges Prof. Guy Houlsby FREng Oxford University House engineers concerned with installation of offshore wind turbines. The author is Professor of Civil solved, a DTI and EPSRC-sponsored research programme on foundations for wind turbines will be briefly

Houlsby, Guy T.

136

AWEA Small Wind Turbine Global Market Study  

E-Print Network (OSTI)

wind turbines ­ those with rated capacities of 100 kilowatts (kW)1 and less ­ grew 15% in 2009 with 20 small wind turbines, 95 of which-- more than one-third--are based in the u.S. An estimated 100,000 unitsAWEA Small Wind Turbine Global Market Study YEAR ENDING 2009 #12;Summary 3 Survey Findings

Leu, Tzong-Shyng "Jeremy"

137

Error analysis in wind turbine field testing  

DOE Green Energy (OSTI)

In wind turbine field testing, one of the most important issues is understanding and accounting for data errors. Extended dynamic testing of wind turbines requires a thorough uncertainty analysis and a regimen of quality assurance steps in order to preserve accuracy. Test objectives need to be identified to determine the accuracy requirements of any data measurement, collection, and analysis process. Frequently, the uncertainty analysis reveals that the major sources of error can be allowed for with careful calibration and signal drift tracking procedures. This paper offers a basis for the discussion and development of a repeatable and accurate process to track errors and account for them in data processing.

McNiff, B [McNiff Light Industries, Carlisle, MA (United States); Simms, D [National Renewable Energy Lab., Golden, CO (United States)

1994-08-01T23:59:59.000Z

138

Condition Monitoring of Wind Turbines  

Science Conference Proceedings (OSTI)

Based on industry experience, after four years of operation, failures of wind turbine gearboxes, generators, and other major components become common, and each failure typically requires major repairs and/or component replacement. Wind project owners and operators who apply lube oil monitoring, vibration-signature analysis, and other condition monitoring technology can expect to detect subtle changes in machine condition that often lead to major failures if left unrepaired. The estimated cost savings of ...

2006-03-27T23:59:59.000Z

139

Development and application of a light-weight, wind-turbine rotor-based data acquisition system  

DOE Green Energy (OSTI)

Wind-energy researchers at the National Wind Technology Center (NWTC), representing Sandia National Laboratories (SNL) and the National Renewable Energy Laboratory (NREL), are developing a new, light-weight, modular data acquisition unit capable of acquiring long-term, continuous time-series data from small and/or dynamic wind-turbine rotors. The unit utilizes commercial data acquisition hardware, spread-spectrum radio modems, and Global Positioning System receivers, and a custom-built programmable logic device. A prototype of the system is now operational, and initial field deployment is expected this summer. This paper describes the major subsystems comprising the unit, summarizes the current status of the system, and presents the current plans for near-term development of hardware and software.

Berg, D.E.; Robertson, P.J.; Ortiz, M.F. [Sandia National Labs., Albuquerque, NM (United States)

1998-04-01T23:59:59.000Z

140

NREL: Wind Research - Case Study: Burke Mountain Wind Turbine...  

NLE Websites -- All DOE Office Websites (Extended Search)

composting program, and encouraging visitors to recycle whenever possible. Wind Powering America verified the following wind turbine project facts with Hannah Collins from...

Note: This page contains sample records for the topic "wind turbine development" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


141

Wind shear climatology for large wind turbine generators  

DOE Green Energy (OSTI)

Climatological wind shear analyses relevant to the design and operation of multimegawatt wind turbines are provided. Insight is provided for relating the wind experienced by a rotating blade in a shear flow to the analysis results. A simple analysis of the wind experienced by a rotating blade for three types of wind shear profiles under steady-state conditions is presented in graphical form. Comparisons of the magnitude and frequency of the variations in 1) the wind sensed by a single blade element, 2) the sum, and 3) the difference of the winds sensed by opposite blade elements show strong sensitivity to profile shape. These three items represent forcing functions that can be related to 1) flatwise bending moment, 2) torque on the shaft, and 3) teeter angle. A computer model was constructed to simulate rotational sampling of 10-s sampled winds from a tall tower for three different types of large wind turbines. Time series produced by the model indicated that the forcing functions on a rotating blade vary according to the shear profile encountered during each revolution as opposed to a profile derived from average wind conditions, e.g., hourly average winds. An analysis scheme was developed to establish a climatology of wind shear profiles derived from 10-s sampled winds and hourly average winds measured over a one-year period at several levels on a tall tower. Because of the sensitivity of the forcing function variability to profile shape, the analyses performed and presented are in the form of joint frequency distributions of velocity differences of the the top-to-hub versus the hub-to-bottom portion of disks of rotation for the three turbine configurations.

Elliott, D.L.; Wendell, L.L.; Heflick, S.K.

1982-10-01T23:59:59.000Z

142

Economic Impacts of Wind Turbine Development in U.S. Counties  

NLE Websites -- All DOE Office Websites (Extended Search)

are the economic development impacts on U.S. counties of are the economic development impacts on U.S. counties of wind power projects, as defined by growth in per capita income and employment? Objective To address the research question using post-project construction, county-level data, and econometric evaluation methods. Background * Wind energy is expanding rapidly in the United States: Over the last 4 years, wind power has contributed approximately 35 percent of all new electric power capacity. * Wind power plants are often developed in rural areas where local economic development impacts from the installation are projected, including land lease and property tax payments and employment growth during plant construction and operation. * Wind energy represented 2.3 percent of the U.S. electricity supply in 2010, but studies show

143

Wind Turbine Drivetrain Condition Monitoring - An Overview (Presentation)  

DOE Green Energy (OSTI)

High operation and maintenance costs still hamper the development of the wind industry despite its quick growth worldwide. To reduce unscheduled downtime and avoid catastrophic failures of wind turbines and their components have been and will be crucial to further raise the competitiveness of wind power. Condition monitoring is one of the key tools for achieving such a goal. To enhance the research and development of advanced condition monitoring techniques dedicated to wind turbines, we present an overview of wind turbine condition monitoring, discuss current practices, point out existing challenges, and suggest possible solutions.

Sheng, S.; Yang, W.

2013-07-01T23:59:59.000Z

144

Built-Environment Wind Turbine Roadmap  

SciTech Connect

Although only a small contributor to total electricity production needs, built-environment wind turbines (BWTs) nonetheless have the potential to influence the public's consideration of renewable energy, and wind energy in particular. Higher population concentrations in urban environments offer greater opportunities for project visibility and an opportunity to acquaint large numbers of people to the advantages of wind projects on a larger scale. However, turbine failures will be equally visible and could have a negative effect on public perception of wind technology. This roadmap provides a framework for achieving the vision set forth by the attendees of the Built-Environment Wind Turbine Workshop on August 11 - 12, 2010, at the U.S. Department of Energy's National Renewable Energy Laboratory. The BWT roadmap outlines the stakeholder actions that could be taken to overcome the barriers identified. The actions are categorized as near-term (0 - 3 years), medium-term (4 - 7 years), and both near- and medium-term (requiring immediate to medium-term effort). To accomplish these actions, a strategic approach was developed that identifies two focus areas: understanding the built-environment wind resource and developing testing and design standards. The authors summarize the expertise and resources required in these areas.

Smith, J.; Forsyth, T.; Sinclair, K.; Oteri, F.

2012-11-01T23:59:59.000Z

145

Built-Environment Wind Turbine Roadmap  

DOE Green Energy (OSTI)

Although only a small contributor to total electricity production needs, built-environment wind turbines (BWTs) nonetheless have the potential to influence the public's consideration of renewable energy, and wind energy in particular. Higher population concentrations in urban environments offer greater opportunities for project visibility and an opportunity to acquaint large numbers of people to the advantages of wind projects on a larger scale. However, turbine failures will be equally visible and could have a negative effect on public perception of wind technology. This roadmap provides a framework for achieving the vision set forth by the attendees of the Built-Environment Wind Turbine Workshop on August 11 - 12, 2010, at the U.S. Department of Energy's National Renewable Energy Laboratory. The BWT roadmap outlines the stakeholder actions that could be taken to overcome the barriers identified. The actions are categorized as near-term (0 - 3 years), medium-term (4 - 7 years), and both near- and medium-term (requiring immediate to medium-term effort). To accomplish these actions, a strategic approach was developed that identifies two focus areas: understanding the built-environment wind resource and developing testing and design standards. The authors summarize the expertise and resources required in these areas.

Smith, J.; Forsyth, T.; Sinclair, K.; Oteri, F.

2012-11-01T23:59:59.000Z

146

Method and apparatus for wind turbine air gap control - Energy ...  

Methods and apparatus for assembling a wind turbine generator are provided. The wind turbine generator includes a core and a plurality of stator windings ...

147

Modelling and Analysis of Variable Speed Wind Turbines with Induction Generator during Grid  

E-Print Network (OSTI)

Modelling and Analysis of Variable Speed Wind Turbines with Induction Generator during Grid Fault Wind Turbines with Induction Generator during Grid Fault by Sigrid M. Bolik Institute of Energy turbine technology has undergone rapid developments. Growth in size and the optimization of wind turbines

Hansen, René Rydhof

148

Dynamic Models for Wind Turbines and Wind Power Plants  

DOE Green Energy (OSTI)

The primary objective of this report was to develop universal manufacturer-independent wind turbine and wind power plant models that can be shared, used, and improved without any restrictions by project developers, manufacturers, and engineers. Manufacturer-specific models of wind turbines are favored for use in wind power interconnection studies. While they are detailed and accurate, their usages are limited to the terms of the non-disclosure agreement, thus stifling model sharing. The primary objective of the work proposed is to develop universal manufacturer-independent wind power plant models that can be shared, used, and improved without any restrictions by project developers, manufacturers, and engineers. Each of these models includes representations of general turbine aerodynamics, the mechanical drive-train, and the electrical characteristics of the generator and converter, as well as the control systems typically used. To determine how realistic model performance is, the performance of one of the models (doubly-fed induction generator model) has been validated using real-world wind power plant data. This work also documents selected applications of these models.

Singh, M.; Santoso, S.

2011-10-01T23:59:59.000Z

149

Wind turbine reliability : understanding and minimizing wind turbine operation and maintenance costs.  

SciTech Connect

Wind turbine system reliability is a critical factor in the success of a wind energy project. Poor reliability directly affects both the project's revenue stream through increased operation and maintenance (O&M) costs and reduced availability to generate power due to turbine downtime. Indirectly, the acceptance of wind-generated power by the financial and developer communities as a viable enterprise is influenced by the risk associated with the capital equipment reliability; increased risk, or at least the perception of increased risk, is generally accompanied by increased financing fees or interest rates. Cost of energy (COE) is a key project evaluation metric, both in commercial applications and in the U.S. federal wind energy program. To reflect this commercial reality, the wind energy research community has adopted COE as a decision-making and technology evaluation metric. The COE metric accounts for the effects of reliability through levelized replacement cost and unscheduled maintenance cost parameters. However, unlike the other cost contributors, such as initial capital investment and scheduled maintenance and operating expenses, costs associated with component failures are necessarily speculative. They are based on assumptions about the reliability of components that in many cases have not been operated for a complete life cycle. Due to the logistical and practical difficulty of replacing major components in a wind turbine, unanticipated failures (especially serial failures) can have a large impact on the economics of a project. The uncertainty associated with long-term component reliability has direct bearing on the confidence level associated with COE projections. In addition, wind turbine technology is evolving. New materials and designs are being incorporated in contemporary wind turbines with the ultimate goal of reducing weight, controlling loads, and improving energy capture. While the goal of these innovations is reduction in the COE, there is a potential impact on reliability whenever new technologies are introduced. While some of these innovations may ultimately improve reliability, in the short term, the technology risks and the perception of risk will increase. The COE metric used by researchers to evaluate technologies does not address this issue. This paper outlines the issues relevant to wind turbine reliability for wind turbine power generation projects. The first sections describe the current state of the industry, identify the cost elements associated with wind farm O&M and availability and discuss the causes of uncertainty in estimating wind turbine component reliability. The latter sections discuss the means for reducing O&M costs and propose O&M related research and development efforts that could be pursued by the wind energy research community to reduce COE.

2004-11-01T23:59:59.000Z

150

Wind turbine reliability : understanding and minimizing wind turbine operation and maintenance costs.  

DOE Green Energy (OSTI)

Wind turbine system reliability is a critical factor in the success of a wind energy project. Poor reliability directly affects both the project's revenue stream through increased operation and maintenance (O&M) costs and reduced availability to generate power due to turbine downtime. Indirectly, the acceptance of wind-generated power by the financial and developer communities as a viable enterprise is influenced by the risk associated with the capital equipment reliability; increased risk, or at least the perception of increased risk, is generally accompanied by increased financing fees or interest rates. Cost of energy (COE) is a key project evaluation metric, both in commercial applications and in the U.S. federal wind energy program. To reflect this commercial reality, the wind energy research community has adopted COE as a decision-making and technology evaluation metric. The COE metric accounts for the effects of reliability through levelized replacement cost and unscheduled maintenance cost parameters. However, unlike the other cost contributors, such as initial capital investment and scheduled maintenance and operating expenses, costs associated with component failures are necessarily speculative. They are based on assumptions about the reliability of components that in many cases have not been operated for a complete life cycle. Due to the logistical and practical difficulty of replacing major components in a wind turbine, unanticipated failures (especially serial failures) can have a large impact on the economics of a project. The uncertainty associated with long-term component reliability has direct bearing on the confidence level associated with COE projections. In addition, wind turbine technology is evolving. New materials and designs are being incorporated in contemporary wind turbines with the ultimate goal of reducing weight, controlling loads, and improving energy capture. While the goal of these innovations is reduction in the COE, there is a potential impact on reliability whenever new technologies are introduced. While some of these innovations may ultimately improve reliability, in the short term, the technology risks and the perception of risk will increase. The COE metric used by researchers to evaluate technologies does not address this issue. This paper outlines the issues relevant to wind turbine reliability for wind turbine power generation projects. The first sections describe the current state of the industry, identify the cost elements associated with wind farm O&M and availability and discuss the causes of uncertainty in estimating wind turbine component reliability. The latter sections discuss the means for reducing O&M costs and propose O&M related research and development efforts that could be pursued by the wind energy research community to reduce COE.

Not Available

2004-11-01T23:59:59.000Z

151

NREL Software Aids Offshore Wind Turbine Designs (Fact Sheet)  

DOE Green Energy (OSTI)

NREL researchers are supporting offshore wind power development with computer models that allow detailed analyses of both fixed and floating offshore wind turbines. While existing computer-aided engineering (CAE) models can simulate the conditions and stresses that a land-based wind turbine experiences over its lifetime, offshore turbines require the additional considerations of variations in water depth, soil type, and wind and wave severity, which also necessitate the use of a variety of support-structure types. NREL's core wind CAE tool, FAST, models the additional effects of incident waves, sea currents, and the foundation dynamics of the support structures.

Not Available

2013-10-01T23:59:59.000Z

152

NREL: Learning - Wind Energy Basics: How Wind Turbines Work  

NLE Websites -- All DOE Office Websites (Extended Search)

Wind Energy Basics: How Wind Turbines Work Wind Energy Basics: How Wind Turbines Work We have been harnessing the wind's energy for hundreds of years. From old Holland to farms in the United States, windmills have been used for pumping water or grinding grain. Today, the windmill's modern equivalent-a wind turbine-can use the wind's energy to generate electricity. Wind turbines, like windmills, are mounted on a tower to capture the most energy. At 100 feet (30 meters) or more aboveground, they can take advantage of the faster and less turbulent wind. Turbines catch the wind's energy with their propeller-like blades. Usually, two or three blades are mounted on a shaft to form a rotor. A blade acts much like an airplane wing. When the wind blows, a pocket of low-pressure air forms on the downwind side of the blade. The low-pressure

153

Method and apparatus for wind turbine braking  

DOE Patents (OSTI)

A method for braking a wind turbine including at least one rotor blade coupled to a rotor. The method includes selectively controlling an angle of pitch of the at least one rotor blade with respect to a wind direction based on a design parameter of a component of the wind turbine to facilitate reducing a force induced into the wind turbine component as a result of braking.

Barbu, Corneliu (Laguna Hills, CA); Teichmann, Ralph (Nishkayuna, NY); Avagliano, Aaron (Houston, TX); Kammer, Leonardo Cesar (Niskayuna, NY); Pierce, Kirk Gee (Simpsonville, SC); Pesetsky, David Samuel (Greenville, SC); Gauchel, Peter (Muenster, DE)

2009-02-10T23:59:59.000Z

154

New Modeling Tool Analyzes Floating Platform Concepts for Offshore Wind Turbines (Fact Sheet), NREL Highlights, Research & Development, NREL (National Renewable Energy Laboratory)  

NLE Websites -- All DOE Office Websites (Extended Search)

at the National Renewable Energy Laboratory at the National Renewable Energy Laboratory (NREL) develop a new complex modeling and analysis tool capable of analyzing floating platform concepts for offshore wind turbines. The new modeling tool combines the computational methodologies used to analyze land-based wind turbines with the comprehensive hydrodynamic computer programs developed for offshore oil and gas industries. This new coupled dynamic simulation tool will enable the development of cost-effective offshore technologies capable of harvesting the rich offshore wind resources at water depths that cannot be reached using the current technology. Currently, most offshore wind turbines are installed in shallow water, less than 30 meters deep, on bottom-mounted substructures. But these substructures are not

155

Status of the large wind turbine handbook  

DOE Green Energy (OSTI)

The site-selection strategy presented here and in the LWH is conservative, partially because utilities are conservative. They should be. The large-scale generation of electricity by wind turbine generators is an unproven technology. It is assumed that wind characteristics at a site will have to be thoroughly documented. This is because the nature of the wind at the site not only governs the energy output of the WECS farm, but also affects the service life of the wind equipment and both scheduled and unscheduled maintenance costs. Perhaps as experience is gained, the site-selection process can be simplified. Certain steps may be found unnecessary, or requirements on the quantity and quality of wind data collected at each step may be relaxed; however, at this stage of wind energy development, a conservative approach seems prudent.

Heister, T. R.; Pennell, W. T.

1979-12-01T23:59:59.000Z

156

Chapter 14: Wind Turbine Control Systems  

DOE Green Energy (OSTI)

Wind turbines are complex, nonlinear, dynamic systems forced by gravity, stochastic wind disturbances, and gravitational, centrifugal, and gyroscopic loads. The aerodynamic behavior of wind turbines is nonlinear, unsteady, and complex. Turbine rotors are subjected to a complicated three-dimensional turbulent wind inflow field that drives fatigue loading. Wind turbine modeling is also complex and challenging. Accurate models must contain many degrees of freedom (DOF) to capture the most important dynamic effects. The rotation of the rotor adds complexity to the dynamics modeling. Designs of control algorithms for wind turbines must account for these complexities. Algorithms must capture the most important turbine dynamics without being too complex and unwieldy. Off-the-shelf commercial soft ware is seldom adequate for wind turbine dynamics modeling. Instead, specialized dynamic simulation codes are usually required to model all the important nonlinear effects. As illustrated in Figure 14-1, a wind turbine control system consists of sensors, actuators and a system that ties these elements together. A hardware or software system processes input signals from the sensors and generates output signals for actuators. The main goal of the controller is to modify the operating states of the turbine to maintain safe turbine operation, maximize power, mitigate damaging fatigue loads, and detect fault conditions. A supervisory control system starts and stops the machine, yaws the turbine when there is a significant yaw misalignment, detects fault conditions, and performs emergency shut-downs. Other parts of the controller are intended to maximize power and reduce loads during normal turbine operation.

Wright, A. D.

2009-01-01T23:59:59.000Z

157

Wind Turbine Generator System Acoustic Noise Test Report for the Gaia Wind 11-kW Wind Turbine  

DOE Green Energy (OSTI)

This report details the acoustic noise test conducted on the Gaia-Wind 11-kW wind turbine at the National Wind Technology Center. The test turbine is a two- bladed, downwind wind turbine with a rated power of 11 kW. The test turbine was tested in accordance with the International Electrotechnical Commission standard, IEC 61400-11 Ed 2.1 2006-11 Wind Turbine Generator Systems -- Part 11 Acoustic Noise Measurement Techniques.

Huskey, A.

2011-11-01T23:59:59.000Z

158

Dynamic simulation of dual-speed wind turbine generation  

SciTech Connect

Induction generators have been used since the early development of utility-scale wind turbine generation. An induction generator is the generator of choice because of its ruggedness, and low cost. With an induction generator, the operating speed of the wind turbine is limited to a narrow range (almost constant speed). Dual- speed operation can be accomplished by using an induction generator with two different sets of winding configurations or by using two induction generators with two different rated speeds. With single- speed operation, the wind turbine operates at different power coefficients (Cp) as the wind speed varies. The operation at maximum Cp can occur only at a single wind speed. However, if the wind speed varies across a wider range, the operating Cp will vary significantly. Dual-speed operation has the advantage of enabling the wind turbine to operate at near maximum Cp over a wider range of wind-speeds. Thus, annual energy production can be increased. The dual-speed mode may generate less energy than a variable-speed mode; nevertheless, it offers an alternative to capture more energy than single-speed operation. In this paper, dual-speed operation of a wind turbine will be investigated. One type of control algorithm for dual- speed operation is proposed. Results from a dynamic simulation will be presented to show how the control algorithm works and how power, current and torque of the system vary as the wind turbine is exposed to varying wind speeds.

Muljadi, E.; Butterfield, C.P.

1996-10-01T23:59:59.000Z

159

Energy 101: Wind Turbines | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Wind Turbines Wind Turbines Energy 101: Wind Turbines July 30, 2010 - 10:47am Addthis John Schueler John Schueler Former New Media Specialist, Office of Public Affairs On Tuesday, the Department announced a $117 million loan guarantee through for the Kahuku Wind Power Project in Hawaii. That's a major step forward for clean energy in the region, as it's expected to supply clean electricity to roughly 7,700 households per year, and it also invites a deceptively simple question: how exactly do wind turbines generate electricity? One thing you might not realize is that wind is actually a form of solar energy. This is because wind is produced by the sun heating Earth's atmosphere, the rotation of the earth, and the earth's surface irregularities. Wind turbines are the rotary devices that convert the

160

Offshore Wind Turbine Wakes Measured by Sodar  

Science Conference Proceedings (OSTI)

A ship-mounted sodar was used to measure wind turbine wakes in an offshore wind farm in Denmark. The wake magnitude and vertical extent were determined by measuring the wind speed profile behind an operating turbine, then shutting down the ...

R. J. Barthelmie; L. Folkerts; F. T. Ormel; P. Sanderhoff; P. J. Eecen; O. Stobbe; N. M. Nielsen

2003-04-01T23:59:59.000Z

Note: This page contains sample records for the topic "wind turbine development" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


161

NREL: Wind Research - Mariah Power's Windspire Wind Turbine Testing and  

NLE Websites -- All DOE Office Websites (Extended Search)

Mariah Power's Windspire Wind Turbine Testing and Results Mariah Power's Windspire Wind Turbine Testing and Results A video of Mariah Power's Windspire wind turbine. Text Version As part of the National Renewable Energy Laboratory and U.S. Department of Energy (NREL/DOE) Independent Testing project, NREL tested Mariah Power's Windspire Giromill small wind turbine at the National Wind Technology Center (NWTC) through January 14, 2009 when NREL terminated its testing. Read a chronology of events and letter from Mariah Power to NREL. The Windspire is a 1.2-kilowatt (kW) vertical-axis small wind turbine. The turbine tower is 9.1 meters tall, and its rotor area is 1.2 by 6.1 meters. The turbine has a permanent-magnet generator with a single-phase output at 120 volts AC. Testing Summary Testing was terminated January 14, 2009. Published test reports include

162

Probabilistic fatigue methodology and wind turbine reliability  

DOE Green Energy (OSTI)

Wind turbines subjected to highly irregular loadings due to wind, gravity, and gyroscopic effects are especially vulnerable to fatigue damage. The objective of this study is to develop and illustrate methods for the probabilistic analysis and design of fatigue-sensitive wind turbine components. A computer program (CYCLES) that estimates fatigue reliability of structural and mechanical components has been developed. A FORM/SORM analysis is used to compute failure probabilities and importance factors of the random variables. The limit state equation includes uncertainty in environmental loading, gross structural response, and local fatigue properties. Several techniques are shown to better study fatigue loads data. Common one-parameter models, such as the Rayleigh and exponential models are shown to produce dramatically different estimates of load distributions and fatigue damage. Improved fits may be achieved with the two-parameter Weibull model. High b values require better modeling of relatively large stress ranges; this is effectively done by matching at least two moments (Weibull) and better by matching still higher moments. For this purpose, a new, four-moment {open_quotes}generalized Weibull{close_quotes} model is introduced. Load and resistance factor design (LRFD) methodology for design against fatigue is proposed and demonstrated using data from two horizontal-axis wind turbines. To estimate fatigue damage, wind turbine blade loads have been represented by their first three statistical moments across a range of wind conditions. Based on the moments {mu}{sub 1}{hor_ellipsis}{mu}{sub 3}, new {open_quotes}quadratic Weibull{close_quotes} load distribution models are introduced. The fatigue reliability is found to be notably affected by the choice of load distribution model.

Lange, C.H. [Stanford Univ., CA (United States)

1996-05-01T23:59:59.000Z

163

Quantifying the Impact of Wind Turbine Wakes on Power Output at Offshore Wind Farms  

Science Conference Proceedings (OSTI)

There is an urgent need to develop and optimize tools for designing large wind farm arrays for deployment offshore. This research is focused on improving the understanding of, and modeling of, wind turbine wakes in order to make more accurate ...

R. J. Barthelmie; S. C. Pryor; S. T. Frandsen; K. S. Hansen; J. G. Schepers; K. Rados; W. Schlez; A. Neubert; L. E. Jensen; S. Neckelmann

2010-08-01T23:59:59.000Z

164

Offshore Wind Turbines Estimated Noise from Offshore Wind Turbine, Monhegan Island, Maine Addendum 2  

SciTech Connect

Additional modeling for offshore wind turbines, for proposed floating wind platforms to be deployed by University of Maine/DeepCwind.

Aker, Pamela M.; Jones, Anthony M.; Copping, Andrea E.

2011-03-01T23:59:59.000Z

165

The Federal Advanced Wind Turbine Program  

SciTech Connect

The development of technologically advanced, higher efficiency wind turbines has been identified as a high priority activity by the US wind industry. The Department of Energy's Wind Energy Program has begun a multi-year development program aimed at assisting the wind industry with the design, development, and testing of advanced wind turbine systems that can compete with conventional electric generation for $0.05/kWh at 13 mph sites by the mid-1990s and with fossil-fuel-based generators for $0.04/kWh at 13 mph sites by the year 2000. The development plan consists of four phases: (1) Conceptual Design Studies; (2) Near-Term Product Development; (3) Next Generation Technology Integration and Design, and (4) Next- Generation Technology Development and Testing. The Conceptual Design Studies were begun in late 1990, and are scheduled for completion in the Spring of 1992. Preliminary results from these analyses are very promising and indicate that the goals stated above are technically feasible. This paper includes a brief summary of the Conceptual Design Studies and presents initial plans for the follow-on activities. 3 refs., 4 figs.

Hock, S M; Thresher, R W [National Renewable Energy Lab., Golden, CO (United States); Goldman, P R [USDOE, Washington, DC (United States)

1991-12-01T23:59:59.000Z

166

The Federal Advanced Wind Turbine Program  

DOE Green Energy (OSTI)

The development of technologically advanced, higher efficiency wind turbines has been identified as a high priority activity by the US wind industry. The Department of Energy`s Wind Energy Program has begun a multi-year development program aimed at assisting the wind industry with the design, development, and testing of advanced wind turbine systems that can compete with conventional electric generation for $0.05/kWh at 13 mph sites by the mid-1990s and with fossil-fuel-based generators for $0.04/kWh at 13 mph sites by the year 2000. The development plan consists of four phases: (1) Conceptual Design Studies; (2) Near-Term Product Development; (3) Next Generation Technology Integration and Design, and (4) Next- Generation Technology Development and Testing. The Conceptual Design Studies were begun in late 1990, and are scheduled for completion in the Spring of 1992. Preliminary results from these analyses are very promising and indicate that the goals stated above are technically feasible. This paper includes a brief summary of the Conceptual Design Studies and presents initial plans for the follow-on activities. 3 refs., 4 figs.

Hock, S.M.; Thresher, R.W. [National Renewable Energy Lab., Golden, CO (United States); Goldman, P.R. [USDOE, Washington, DC (United States)

1991-12-01T23:59:59.000Z

167

Small Wind Research Turbine: Final Report  

DOE Green Energy (OSTI)

The Small Wind Research Turbine (SWRT) project was initiated to provide reliable test data for model validation of furling wind turbines and to help understand small wind turbine loads. This report will familiarize the user with the scope of the SWRT test and support the use of these data. In addition to describing all the testing details and results, the report presents an analysis of the test data and compares the SWRT test data to simulation results from the FAST aeroelastic simulation model.

Corbus, D.; Meadors, M.

2005-10-01T23:59:59.000Z

168

International Turbine Research Wind Farm | Open Energy Information  

Open Energy Info (EERE)

Turbine Research Wind Farm Turbine Research Wind Farm Jump to: navigation, search Name International Turbine Research Wind Farm Facility International Turbine Research Sector Wind energy Facility Type Commercial Scale Wind Facility Status In Service Developer International Turbine Research Energy Purchaser Pacific Gas & Electric Co Location Pacheco Pass CA Coordinates 37.0445°, -121.175° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":37.0445,"lon":-121.175,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

169

Mid-Size Wind Turbines | Open Energy Information  

Open Energy Info (EERE)

Page Page Edit History Facebook icon Twitter icon » Mid-Size Wind Turbines Jump to: navigation, search A Vergnet GEV MP C 275-kW turbine at the Sandywoods Community, Rhode island. Photo from Stefan Dominioni/Vergnet S.A., NREL 26490. The U.S. Department of Energy defines mid-size wind turbines as 101 kilowatts to 1 megawatt.[1] Resources Kwartin, R.; Wolfrum, A.; Granfield, K.; Kagel, A.; Appleton, A. (2008). An Analysis of the Technical and Economic Potential for Mid-Scale Distributed Wind. National Renewable Energy Laboratory. Accessed September 27, 2013. National Renewable Energy Laboratory. Midsize Wind Turbine Research. Accessed September 27, 2013. This webpage discusses efforts to develop and commercialize mid-size wind turbines in the United States. References

170

Wind Turbine Towers Establish New Height Standards and Reduce Cost of Wind Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Wind Tower Systems to develop the Wind Tower Systems to develop the Space Frame tower, a new concept for wind turbine towers. Instead of a solid steel tube, the Space Frame tower consists of a highly optimized design of five custom-shaped legs and interlaced steel struts. With this design, Space Frame towers can support turbines at greater heights, yet weigh and cost less than traditional steel tube towers. Wind Tower Systems LLC (now

171

City of Medford Wind Turbine | Open Energy Information  

Open Energy Info (EERE)

Medford Wind Turbine Medford Wind Turbine Jump to: navigation, search Name City of Medford Wind Turbine Facility City of Medford Wind Turbine Sector Wind energy Facility Type Small Scale Wind Facility Status In Service Owner City of Medford Developer Sustainable Energy Developments Energy Purchaser City of Medford Location Medford MA Coordinates 42.415768°, -71.107337° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":42.415768,"lon":-71.107337,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

172

Stakeholder Engagement and Outreach: Wind Turbine Ordinances  

Wind Powering America (EERE)

Information Information Resources Printable Version Bookmark and Share Publications Success Stories Webinars Podcasts Videos Stakeholder Interviews Lessons Learned Wind Working Groups Economic Impact Studies Wind Turbine Ordinances Wind Turbine Ordinances This page lists 135 state and local wind turbine ordinances. State and local governments and policymakers can use this collection of example wind turbine ordinances when drafting a new wind energy ordinance in a town or county without existing ordinances. Due to increasing energy demands in the United States and more installed wind projects, rural communities and local governments with limited or no experience with wind energy now have the opportunity to become involved in this industry. Communities with good wind resources may be approached by

173

Wind Turbine Design Innovations Drive Industry Transformation...  

NLE Websites -- All DOE Office Websites (Extended Search)

Wind Turbine Design Innovations Drive Industry Transformation For more than 20 years, the National Renewable Energy Laboratory (NREL) has helped GE and its predecessors achieve...

174

The Economic Optimization of Wind Turbine Design .  

E-Print Network (OSTI)

??This thesis studies the optimization of a variable speed, three blade, horizontal-axis wind turbine. The design parameters considered are the rotor diameter, hub height and (more)

Schmidt, Michael Frank

2007-01-01T23:59:59.000Z

175

THE ENERGY BALANCE OF MODERN WIND TURBINES  

E-Print Network (OSTI)

A modern Danish 600 kW wind turbine will recover all the energy spent in its manufacture, maintenance, and scrapping within some three months of its commissioning.

unknown authors

1997-01-01T23:59:59.000Z

176

Modelling and control of large wind turbine.  

E-Print Network (OSTI)

?? In order to make the wind energy an economical alternative for energy production, upscaling of turbine to 10 - 15MW may be necessary to (more)

zafar, syed hammad

2013-01-01T23:59:59.000Z

177

Wind Turbine Generator System Safety and Function Test Report for the Entegrity EW50 Wind Turbine  

DOE Green Energy (OSTI)

This report summarizes the results of a safety and function test that NREL conducted on the Entegrity EW50 wind turbine. This test was conducted in accordance with the International Electrotechnical Commissions' (IEC) standard, Wind Turbine Generator System Part 2: Design requirements for small wind turbines, IEC 61400-2 Ed.2.0, 2006-03.

Smith, J.; Huskey, A.; Jager, D.; Hur, J.

2012-11-01T23:59:59.000Z

178

Wind Turbine Generator System Safety and Function Test Report for the Ventera VT10 Wind Turbine  

DOE Green Energy (OSTI)

This report summarizes the results of a safety and function test that NREL conducted on the Ventera VT10 wind turbine. This test was conducted in accordance with the International Electrotechnical Commissions' (IEC) standard, Wind Turbine Generator System Part 2: Design requirements for small wind turbines, IEC 61400-2 Ed.2.0, 2006-03.

Smith, J.; Huskey, A.; Jager, D.; Hur, J.

2012-11-01T23:59:59.000Z

179

Innovative wind turbines. Circulation controlled vertical axis wind turbine. Progress report, March 1-December 31, 1976  

DOE Green Energy (OSTI)

Theoretical and experimental research efforts in evaluating an innovative concept for vertical axis wind turbines (VAWT) are described. The concept is that of using straight blades composed of circulation controlled airfoil sections. The theoretical analysis has been developed to determine the unsteady lift and moment characteristics of multiple-blade cross-flow wind turbines. To determine the drag data needed as input to the theoretical analysis, an outdoor test model VAWT has been constructed; design details, instrumentation, and calibration results are reported. Initial testing is with fixed pitch blades having cross-sections of conventional symmetrical airfoils. Costs of building the test model are included, as well as estimates for blades constructed with composite materials. These costs are compared with those of other types of wind turbines.

Walters, R. E.; Fanucci, J. B.; Hill, P. W.; Migliore, P. G.; Squire, W.; Waltz, T. L.

1978-10-01T23:59:59.000Z

180

An experimental and numerical study of wind turbine seismic behavior  

E-Print Network (OSTI)

Utility Scale Wind Turbine, with a preliminary author lista Utility Scale Wind Turbine with a preliminary author listUtility Scale Wind Turbine Including Operational E?ects with a preliminary author list

Prowell, I.

2011-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "wind turbine development" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


181

Dynamic analysis of a 5 megawatt offshore floating wind turbine  

E-Print Network (OSTI)

1985. 23. Hau, E. Wind Turbines: Fundamentals, Technologies,for Floating Offshore Wind Turbines. Tech. no. NREL/CP-500-Full-scale Floating Wind Turbine." Statoil, 14 Oct. 2009.

Harriger, Evan Michael

2011-01-01T23:59:59.000Z

182

Understanding Trends in Wind Turbine Prices Over the Past Decade  

E-Print Network (OSTI)

Bloomberg NEF). 2011c. Wind Turbine Price Index, Issue V.Hand, A. Laxson. 2006. Wind Turbine Design Cost and Scalingof a Multi-MegaWatt Wind Turbine. Renewable Energy, vol.

Bolinger, Mark

2012-01-01T23:59:59.000Z

183

NREL: Wind Research - SWIFT Wind Turbine Testing and Results  

NLE Websites -- All DOE Office Websites (Extended Search)

SWIFT Wind Turbine Testing and Results SWIFT Wind Turbine Testing and Results The SWIFT wind turbine. Text Version As part of the National Renewable Energy Laboratory and U.S. Department of Energy (NREL/DOE) Independent Testing project, NREL is testing the SWIFT small wind turbine at the National Wind Technology Center (NWTC). The competitive grant was awarded to Cascade Engineering. The SWIFT is a 1-kilowatt (kW), five-bladed with outer ring, horizontal-axis upwind small wind turbine. The turbine's rotor diameter is 2 meters, and its hub height is 13.72 meters. The SWIFT uses a single-phase permanent-magnet generator rated at 1 kW grid connected through an inverter at 240 volts AC. Testing Summary Supporting data and explanations for data provided in this table will be provided in the final reports. Data presented are preliminary and subject

184

Utility Scale Wind turbine Demonstration Project  

SciTech Connect

The purpose of the Three Affiliated Tribes proposing to Department of Energy was nothing new to Denmark. National Meteorological Studies have proved that North Dakota has some of the most consistence wind resources in the world. The Three Affiliated Tribes wanted to assess their potential and become knowledgeable to developing this new and upcoming resource now valuable. By the Tribe implementing the Utility-scale Wind Turbine Project on Fort Berthold, the tribe has proven the ability to complete a project, and has already proceeded in a feasibility studies to developing a large-scale wind farm on the reservation due to tribal knowledge learned, public awareness, and growing support of a Nation wanting clean renewable energy. The tribe is working through the various measures and regulations with the want to be self-sufficient, independent, and marketable with 17,000 times the wind energy needed to service Fort Berthold alone.

Terry Fredericks

2006-03-31T23:59:59.000Z

185

CgWind: A high-order accurate simulation tool for wind turbines and wind farms  

DOE Green Energy (OSTI)

CgWind is a high-fidelity large eddy simulation (LES) tool designed to meet the modeling needs of wind turbine and wind park engineers. This tool combines several advanced computational technologies in order to model accurately the complex and dynamic nature of wind energy applications. The composite grid approach provides high-quality structured grids for the efficient implementation of high-order accurate discretizations of the incompressible Navier-Stokes equations. Composite grids also provide a natural mechanism for modeling bodies in relative motion and complex geometry. Advanced algorithms such as matrix-free multigrid, compact discretizations and approximate factorization will allow CgWind to perform highly resolved calculations efficiently on a wide class of computing resources. Also in development are nonlinear LES subgrid-scale models required to simulate the many interacting scales present in large wind turbine applications. This paper outlines our approach, the current status of CgWind and future development plans.

Chand, K K; Henshaw, W D; Lundquist, K A; Singer, M A

2010-02-22T23:59:59.000Z

186

How Does a Wind Turbine Work?  

Energy.gov (U.S. Department of Energy (DOE))

Wind turbines operate on a simple principle. The energy in the wind turns two or three propeller-like blades around a rotor. The rotor is connected to the main shaft, which spins a generator to...

187

Siting technologies for large wind turbine clusters  

DOE Green Energy (OSTI)

Site selection for large wind turbine clusters requires thorough documentation of the wind characteristics at the site, because of the influence these characteristics will have on the economics, operations, and service life of the wind turbines. The wind prospecting strategy can be used by a utility to determine specific locations for each wind turbine in a cluster of 10 to 50 or more machines. The key to site selection is knowing what and where to measure. Siting techniques to be used at the various stages of the wind-prospecting strategy are discussed. These techniques help determine where to measure. What to measure at a site is still a moot question. Suggestions are made on what data are needed at what sampling rates. These are based on the assumption that until further experience in siting large clusters of wind turbines is in hand, thorough documentation of wind characteristics affecting machine and cluster output characteristics, operation strategies, and service life are necessary.

Hiester, T.R.; Pennell, W.T.

1979-11-01T23:59:59.000Z

188

SUSTAINABLE CONCRETE FOR WIND TURBINE FOUNDATIONS.  

SciTech Connect

The use of wind power to generate electricity continues to grow, especially given commitments by various countries throughout the world to ensure that a significant percentage of energy comes from renewable sources. In order to meet such objectives, increasingly larger turbines with higher capacity are being developed. The engineering aspects of larger turbine development tend to focus on design and materials for blades and towers. However, foundations are also a critical component of large wind turbines and represent a significant cost of wind energy projects. Ongoing wind research at BNL is examining two areas: (a) structural response analysis of wind turbine-tower-foundation systems and (b) materials engineering of foundations. This work is investigating the dynamic interactions in wind turbine systems, which in turn assists the wind industry in achieving improved reliability and more cost efficient foundation designs. The results reported herein cover initial studies of concrete mix designs for large wind turbine foundations and how these may be tailored to reduce cost and incorporate sustainability and life cycle concepts. The approach taken was to investigate material substitutions so that the environmental, energy and CO{sub 2}-impact of concrete could be reduced. The use of high volumes of ''waste'' materials in concrete was examined. These materials included fly ash, blast furnace slag and recycled concrete aggregate. In addition, the use of steel fiber reinforcement as a means to improve mechanical properties and potentially reduce the amount of bar reinforcement in concrete foundations was studied. Four basic mixes were considered. These were: (1) conventional mix with no material substitutions, (2) 50% replacement of cement with fly ash, (3) 50% replacement of cement with blast furnace slag and (4) 25% replacement of cement with fly ash and 25% replacement with blast furnace slag. Variations on these mixes included the addition of 1% by volume steel fibers. The use of recycled concrete aggregate in the conventional and 50% slag mixes was also studied. Properties investigated included compressive and tensile strengths, elastic modulus, coefficient of permeability, thermal conductivity and durability in seawater and sulfate solutions. It was determined that the mixes containing 50% slag gave the best overall performance. Slag was particularly beneficial for concrete that used recycled aggregate and could reduce strength losses. Initial durability results indicated that corrosion of fibers in the different concrete mixes when exposed to seawater was minimal. Future research needs to include more detailed studies of mix design and properties of concrete for wind turbine foundations. Emphasis on slag-modified mixes with natural and recycled concrete aggregate is recommended. The proportion of slag that can be incorporated in the concrete needs to be optimized, as does the grading of recycled aggregate. The potential for using silica fume in conjunction with slag is worth exploring as this may further enhance strength and durability. Longer-term durability studies are necessary and other pertinent properties of concrete that require investigation include damping characteristics, pullout strength, fatigue strength and risk of thermal cracking. The properties of sustainable concrete mixes need to be integrated with studies on the structural behavior of wind turbine foundations in order to determine the optimal mix design and to examine means of reducing conservatism and cost of foundations.

BERNDT,M.L.

2004-06-01T23:59:59.000Z

189

Experimental Study of Stability Limits for Slender Wind Turbine Blades.  

E-Print Network (OSTI)

??There is a growing interest in extracting more power per turbine by increasing the rotor size in offshore wind turbines. As a result, the turbine (more)

Ladge, Shruti

2012-01-01T23:59:59.000Z

190

An experimental and numerical study of wind turbine seismic behavior  

E-Print Network (OSTI)

2.2.1 Turbine Description . . . . . . . . . . . . . . . . .112 4.2 Description of Turbine . . . . . . . . . . . . . . .3.2.1 Description of Test Wind Turbine . . . . . .

Prowell, I.

2011-01-01T23:59:59.000Z

191

The EPRI/DOE Utility Wind Turbine Performance Verification Program  

DOE Green Energy (OSTI)

In 1992, the Electric Power Research Institute (EPRI) and the US Department of Energy (DOE) initiated the Utility Wind Turbine Performance Verification Program (TVP). This paper provides an overview of the TVP, its purpose and goals, and the participating utility projects. Improved technology has significantly reduced the cost of energy from wind turbines since the early 1980s. In 1992, turbines were producing electricity for about $0.07--$0.09/kilowatt-hour (kWh) (at 7 m/s [16 mph sites]), compared with more than $0.30/kWh in 1980. Further technology improvements were expected to lower the cost of energy from wind turbines to $0.05/kWh. More than 17,000 wind turbines, totaling more than 1,500 MW capacity, were installed in the US, primarily in California and Hawaii. The better wind plants had availabilities above 95%, capacity factors exceeding 30%, and operation and maintenance costs of $0.01/kWh. However, despite improving technology, EPRI and DOE recognized that utility use of wind turbines was still largely limited to turbines installed in California and Hawaii during the 1980s. Wind resource assessments showed that other regions of the US, particularly the Midwest, had abundant wind resources. EPRI and DOE sought to provide a bridge from utility-grade turbine development programs under way to commercial purchases of the wind turbines. The TVP was developed to allow utilities to build and operate enough candidate turbines to gain statistically significant operating and maintenance data.

Calvert, S.; Goldman, P. [Department of Energy, Washington, DC (United States); DeMeo, E.; McGowin, C. [Electric Power Research Inst., Palo Alto, CA (United States); Smith, B.; Tromly, K. [National Renewable Energy Lab., Golden, CO (United States)

1997-01-01T23:59:59.000Z

192

Wind Turbine Generator System Power Performance Test Report for the ARE442 Wind Turbine  

DOE Green Energy (OSTI)

This report summarizes the results of a power performance test that NREL conducted on the ARE 442 wind turbine. This test was conducted in accordance with the International Electrotechnical Commission's (IEC) standard, Wind Turbine Generator Systems Part 12: Power Performance Measurements of Electricity Producing Wind Turbines, IEC 61400-12-1 Ed.1.0, 2005-12. However, because the ARE 442 is a small turbine as defined by IEC, NREL also followed Annex H that applies to small wind turbines. In these summary results, wind speed is normalized to sea-level air density.

van Dam, J.; Jager, D.

2010-02-01T23:59:59.000Z

193

Mixer-Ejector Wind Turbine: Breakthrough High Efficiency Shrouded Wind Turbine  

SciTech Connect

Broad Funding Opportunity Announcement Project: FloDesign Wind Turbines innovative wind turbine, inspired by the design of jet engines, could deliver 300% more power than existing wind turbines of the same rotor diameter by extracting more energy over a larger area. FloDesign Wind Turbines unique shrouded design expands the wind capture area, and the mixing vortex downstream allows more energy to flow through the rotor without stalling the turbine. The unique rotor and shrouded design also provide significant opportunity for mass production and simplified assembly, enabling mid-scale turbines (approximately 100 kW) to produce power at a cost that is comparable to larger-scale conventional turbines.

None

2010-02-22T23:59:59.000Z

194

NREL: Wind Research - Small Wind Turbine Tests and Testing Approach  

NLE Websites -- All DOE Office Websites (Extended Search)

Association of Laboratory Accreditation (A2LA). The suite of tests conducted on small wind turbines includes acoustic noise emissions, duration, power performance, power...

195

EA-1923: Green Energy School Wind Turbine Project on Saipan,...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

3: Green Energy School Wind Turbine Project on Saipan, Commonwealth of the Northern Mariana Islands EA-1923: Green Energy School Wind Turbine Project on Saipan, Commonwealth of the...

196

UMore Park Wind Turbine Project Loggerhead Shrike Survey, DOE...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

UMore Park Wind Turbine Project Loggerhead Shrike Survey, DOEEA-1791 (June 2010) UMore Park Wind Turbine Project Loggerhead Shrike Survey, DOEEA-1791 (June 2010) The project area...

197

The Wind Project Development Process  

Wind Powering America (EERE)

Wind Project Wind Project Development Process Developed for the National Renewable Energy Laboratory by Dale Osborn Distributed Generation Systems, Inc. September 1998 The Wind Project Development Process Site Selection Land Agreements Wind Assessment Environmental Review Economic Modeling Interconnection Studies Financing Permitting Sales Agreements Turbine Procurement Construction Contracting Operations & Maintenance Site Selection Evidence of Significant Wind Preferably Privately Owned Remote Land Proximity to Transmission Lines Reasonable Road Access Few Environmental Concerns Receptive Community Land Agreements Term: Expected Life of the Turbine Assignable Indemnification Rights Compensation: Percentage of Revenues Reclamation Provision Wind Rights, Ingress/Egress Rights, Transmission Rights

198

Effect of generalized wind characteristics on annual power estimates from wind turbine generators  

SciTech Connect

A technique is presented for estimating the average power output of a wind turbine using, as the wind characteristic input, only the mean annual wind magnitude. Hourly wind speeds are assumed to have a Rayleigh frequency distribution which requires a single parameter input (e.g., the mean value, variance or higher moment values). Based upon a general shape, for the wind speed versus machine output, a generic set of curves is developed to estimate the average power output of wind turbines. Also, estimates of the percent of time the wind turbine would not produce power (percent down time) and the percent of time the wind turbine would be operating at its rated power are presented.

Cliff, W.C.

1977-10-01T23:59:59.000Z

199

NREL: Wind Research - Abundant Renewable Energy's ARE 442 Wind Turbine  

NLE Websites -- All DOE Office Websites (Extended Search)

Abundant Renewable Energy's ARE 442 Wind Turbine Testing and Results Abundant Renewable Energy's ARE 442 Wind Turbine Testing and Results Get the Adobe Flash Player to see this video. A video of Abundant Renewable Energy's ARE 442 wind turbine. Text Version As part of the National Renewable Energy Laboratory and U.S. Department of Energy (NREL/DOE) Independent Testing project, NREL tested Abundant Renewable Energy's ARE 442 turbine at the National Wind Technology Center (NWTC). The ARE 442 is a 10-kilowatt (kW), three-bladed, horizontal-axis upwind small wind turbine. It has a hub height of 30.9 meters and a rotor diameter of 7.2 meters. The turbine has a single-phase permanent-magnet generator that operates at variable voltages up to 410 volts AC. Testing Summary The summary of the tests is below with the final reports.

200

Aerodynamic interference between two Darrieus wind turbines  

DOE Green Energy (OSTI)

The effect of aerodynamic interference on the performance of two curved bladed Darrieus-type vertical axis wind turbines has been calculated using a vortex/lifting line aerodynamic model. The turbines have a tower-to-tower separation distance of 1.5 turbine diameters, with the line of turbine centers varying with respect to the ambient wind direction. The effects of freestream turbulence were neglected. For the cases examined, the calculations showed that the downwind turbine power decrement (1) was significant only when the line of turbine centers was coincident with the ambient wind direction, (2) increased with increasing tipspeed ratio, and (3) is due more to induced flow angularities downstream than to speed deficits near the downstream turbine.

Schatzle, P.R.; Klimas, P.C.; Spahr, H.R.

1981-04-01T23:59:59.000Z

Note: This page contains sample records for the topic "wind turbine development" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


201

Power control of a wind farm with active stall wind turbines and AC grid connection  

E-Print Network (OSTI)

turbines with AC connection. The control of other wind farm concepts such as wind farms with DFIG wind

202

Responses of floating wind turbines to wind and wave excitation  

E-Print Network (OSTI)

The use of wind power has recently emerged as a promising alternative to conventional electricity generation. However, space requirements and public pressure to place unsightly wind turbines out of visual range make it ...

Lee, Kwang Hyun

2005-01-01T23:59:59.000Z

203

Lightning protection system for a wind turbine  

DOE Patents (OSTI)

In a wind turbine (104, 500, 704) having a plurality of blades (132, 404, 516, 744) and a blade rotor hub (120, 712), a lightning protection system (100, 504, 700) for conducting lightning strikes to any one of the blades and the region surrounding the blade hub along a path around the blade hub and critical components of the wind turbine, such as the generator (112, 716), gearbox (708) and main turbine bearings (176, 724).

Costin, Daniel P. (Chelsea, VT); Petter, Jeffrey K. (Williston, VT)

2008-05-27T23:59:59.000Z

204

EA-1792: University of Maine's Deepwater Offshore Floating Wind Turbine  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

EA-1792: University of Maine's Deepwater Offshore Floating Wind EA-1792: University of Maine's Deepwater Offshore Floating Wind Turbine Testing and Demonstration Project, Gulf of Maine EA-1792: University of Maine's Deepwater Offshore Floating Wind Turbine Testing and Demonstration Project, Gulf of Maine Summary This EA evaluates the environmental impacts of a proposal to support research on floating offshore wind turbine platforms. This project would support the mission, vision, and goals of DOE's Office of Energy Efficiency and Renewable Energy Wind and Water Power Program to improve performance, lower costs, and accelerate deployment of innovative wind power technologies. Development of offshore wind energy technologies would help the nation reduce its greenhouse gas emissions, diversify its energy supply, provide cost-competitive electricity to key coastal regions, and

205

Optimal Design of Hybrid Energy System with PV/ Wind Turbine/ Storage: A Case Study  

E-Print Network (OSTI)

Optimal Design of Hybrid Energy System with PV/ Wind Turbine/ Storage: A Case Study Rui Huang development of photovoltaic (PV), wind turbine and battery technologies, hybrid energy system has received of the hybrid energy system that consists of PV arrays, wind turbines and battery storage and use that to define

Low, Steven H.

206

Wind Turbine Towers Establish New Height Standards and Reduce...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Wind Turbine Towers Establish New Height Standards and Reduce Cost of Wind Energy Wind Turbine Towers Establish New Height Standards and Reduce Cost of Wind Energy Case study that...

207

Fatigue case study and reliability analyses for wind turbines  

DOE Green Energy (OSTI)

Modern wind turbines are fatigue critical machines used to produce electrical power. To insure long term, reliable operation, their structure must be optimized if they are to be economically viable. The fatigue and reliability projects in Sandia`s Wind Energy Program are developing the analysis tools required to accomplish these design requirements. The first section of the paper formulates the fatigue analysis of a wind turbine using a cumulative damage technique. The second section uses reliability analysis for quantifying the uncertainties and the inherent randomness associated with turbine performance and the prediction of service lifetimes. Both research areas are highlighted with typical results.

Sutherland, H.J.; Veers, P.S.

1994-12-31T23:59:59.000Z

208

Real-time wind turbine emulator suitable for power quality and dynamic control studies, MASc Thesis  

E-Print Network (OSTI)

Abstract Wind turbines are increasingly becoming significant components of power systems. To evaluate competing wind energy conversion technologies, a real-time Wind Turbine Emulator, which emulates the dynamic torque produced by an actual turbine has been developed. This is necessary since the real world performance of a wind turbine, subjected to variable wind conditions is more difficult to evaluate than a standard turbine generator system operating in near steady state. This emulator is capable of reproducing both the static and dynamic torque of an actual wind turbine. It models the torque oscillations caused by wind shear, tower shadow, and the obvious pulsations caused by variable wind speed. Also included are the dynamic effects of a large turbine inertia. This emulator will allow testing without the costly construction of the actual turbine blades and tower to determine the strengths and weaknesses of competing energy conversion and control technologies.

Dale S. L. Dolan; Student Member; P. W. Lehn; Member Ieee

2005-01-01T23:59:59.000Z

209

Liberty Turbine Test Wind Farm | Open Energy Information  

Open Energy Info (EERE)

Turbine Test Wind Farm Turbine Test Wind Farm Jump to: navigation, search Name Liberty Turbine Test Wind Farm Facility Liberty Turbine Test Sector Wind energy Facility Type Commercial Scale Wind Facility Status In Service Developer Clipper Windpower Energy Purchaser Platte River Power Authority Location Near Medicine Bow WY Coordinates 41.96251°, -106.415918° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":41.96251,"lon":-106.415918,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

210

Wind Turbine Blade Structural Health Monitoring  

Science Conference Proceedings (OSTI)

Structural health monitoring (SHM) is the automated inspection and evaluation of structures such as wind turbine blades. This report examines the current state-of-the-art blade SHM systems, identifies future trends, and outlines a methodology for probabilistic cost-benefit analysis of the application of SHM systems to wind turbine blades. The reliability of wind turbine blades is an ongoing concern for the wind industry. Applying SHM to blades may be one way to reduce blade failure rates and reduce the d...

2010-12-31T23:59:59.000Z

211

Meteorological aspects of siting large wind turbines  

DOE Green Energy (OSTI)

This report, which focuses on the meteorological aspects of siting large wind turbines (turbines with a rated output exceeding 100 kW), has four main goals. The first is to outline the elements of a siting strategy that will identify the most favorable wind energy sites in a region and that will provide sufficient wind data to make responsible economic evaluations of the site wind resource possible. The second is to critique and summarize siting techniques that were studied in the Department of Energy (DOE) Wind Energy Program. The third goal is to educate utility technical personnel, engineering consultants, and meteorological consultants (who may have not yet undertaken wind energy consulting) on meteorological phenomena relevant to wind turbine siting in order to enhance dialogues between these groups. The fourth goal is to minimize the chances of failure of early siting programs due to insufficient understanding of wind behavior.

Hiester, T.R.; Pennell, W.T.

1981-01-01T23:59:59.000Z

212

Nature's Classroom Wind Turbine | Open Energy Information  

Open Energy Info (EERE)

Nature's Classroom Wind Turbine Nature's Classroom Wind Turbine Jump to: navigation, search Name Nature's Classroom Wind Turbine Facility Nature's Classroom Wind Turbine Sector Wind energy Facility Type Small Scale Wind Facility Status In Service Owner Nature's Classroom Energy Purchaser Nature's Classroom Location Charlton MA Coordinates 42.113685°, -72.008475° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":42.113685,"lon":-72.008475,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

213

Midwest Consortium for Wind Turbine Reliability and Optimization  

SciTech Connect

This report provides an overview of the efforts aimed to establish a student focused laboratory apparatus that will enhance Purdue's ability to recruit and train students in topics related to the dynamics, operations and economics of wind turbines. The project also aims to facilitate outreach to students at Purdue and in grades K-12 in the State of Indiana by sharing wind turbine operational data. For this project, a portable wind turbine test apparatus was developed and fabricated utilizing an AirX 400W wind energy converter. This turbine and test apparatus was outfitted with an array of sensors used to monitor wind speed, turbine rotor speed, power output and the tower structural dynamics. A major portion of this project included the development of a data logging program used to display real-time sensor data and the recording and creation of output files for data post-processing. The apparatus was tested in an open field to subject the turbine to typical operating conditions and the data acquisition system was adjusted to obtain desired functionality to facilitate use for student projects in existing courses offered at Purdue University and Indiana University. Data collected using the data logging program is analyzed and presented to demonstrate the usefulness of the test apparatus related to wind turbine dynamics and operations.

Scott R. Dana; Douglas E. Adams; Noah J. Myrent

2012-05-11T23:59:59.000Z

214

Influence of refraction on wind turbine noise  

E-Print Network (OSTI)

A semi-empirical method is applied to calculate the time-average sound level of wind turbine noise generation and propagation. Both are affected by wind shear refraction. Under upwind conditions the partially ensonified zone separates the fully ensonified zone (close to the turbine) and the shadow zone (far away from the turbine). Refraction is described in terms of the wind speed linear profile fitted to the power law profile. The rotating blades are treated as a two-dimensional circular source in the vertical plane. Inside the partially ensonified zone the effective A-weighted sound power decreases to zero when the receiver moves from the turbine toward the shadow zone. The presented results would be useful in practical applications to give a quick estimate of the effect of refraction on wind turbine noise.

Makarewicz, Rufin

2013-01-01T23:59:59.000Z

215

Aeroelastic stability analysis of a Darrieus wind turbine  

DOE Green Energy (OSTI)

An aeroelastic stability analysis has been developed for predicting flutter instabilities on vertical axis wind turbines. The analytical model and mathematical formulation of the problem are described as well as the physical mechanism that creates flutter in Darrieus turbines. Theoretical results are compared with measured experimental data from flutter tests of the Sandia 2 Meter turbine. Based on this comparison, the analysis appears to be an adequate design evaluation tool.

Popelka, D.

1982-02-01T23:59:59.000Z

216

Lower Sioux Wind Feasibility & Development  

SciTech Connect

This report describes the process and findings of a Wind Energy Feasibility Study (Study) conducted by the Lower Sioux Indian Community (Community). The Community is evaluating the development of a wind energy project located on tribal land. The project scope was to analyze the critical issues in determining advantages and disadvantages of wind development within the Community. This analysis addresses both of the Community's wind energy development objectives: the single turbine project and the Commerical-scale multiple turbine project. The main tasks of the feasibility study are: land use and contraint analysis; wind resource evaluation; utility interconnection analysis; and project structure and economics.

Minkel, Darin

2012-04-01T23:59:59.000Z

217

Wind Turbine Lubrication Maintenance Guide  

Science Conference Proceedings (OSTI)

With the rush to develop todays massive wind energy sites, more attention should be paid to the inevitable need to perform routine maintenance and develop practical means of assessing the condition of the components within the nacelles and other outside support equipment for the wind farms. Current operating models have not adequately established accurate assumptions or expectations on the unavailability of the windmills and the impact on lost generation. Contracts for purchase of their generation output...

2012-06-20T23:59:59.000Z

218

NREL Computer Models Integrate Wind Turbines with Floating Platforms (Fact Sheet)  

DOE Green Energy (OSTI)

Far off the shores of energy-hungry coastal cities, powerful winds blow over the open ocean, where the water is too deep for today's seabed-mounted offshore wind turbines. For the United States to tap into these vast offshore wind energy resources, wind turbines must be mounted on floating platforms to be cost effective. Researchers at the National Renewable Energy Laboratory (NREL) are supporting that development with computer models that allow detailed analyses of such floating wind turbines.

Not Available

2011-07-01T23:59:59.000Z

219

NREL Computer Models Integrate Wind Turbines with Floating Platforms (Fact Sheet)  

SciTech Connect

Far off the shores of energy-hungry coastal cities, powerful winds blow over the open ocean, where the water is too deep for today's seabed-mounted offshore wind turbines. For the United States to tap into these vast offshore wind energy resources, wind turbines must be mounted on floating platforms to be cost effective. Researchers at the National Renewable Energy Laboratory (NREL) are supporting that development with computer models that allow detailed analyses of such floating wind turbines.

2011-07-01T23:59:59.000Z

220

The new Wind Technology Test Center is the only facility in the nation capable of testing wind turbine blades up to  

E-Print Network (OSTI)

turbine blades up to 90 meters in length. A critical factor to wind turbine design and development is the ability to test new designs, components, and materials. In addition, wind turbine blade manufacturers the blades millions of times to simulate what a blade goes through in its lifetime on a wind turbine

Note: This page contains sample records for the topic "wind turbine development" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


221

A low order model for vertical axis wind turbines  

E-Print Network (OSTI)

A new computational model for initial sizing and performance prediction of vertical axis wind turbines

Drela, Mark

222

Advanced Wind Turbine Controls Reduce Loads (Fact Sheet)  

DOE Green Energy (OSTI)

NREL's National Wind Technology Center provides the world's only dedicated turbine controls testing platforms.

Not Available

2012-03-01T23:59:59.000Z

223

Loads Analysis of Several Offshore Floating Wind Turbine Concepts  

SciTech Connect

This paper presents a comprehensive dynamic-response analysis of six offshore floating wind turbine concepts.

Robertson, A. N.; Jonkman, J. M.

2011-10-01T23:59:59.000Z

224

An experimental and numerical study of wind turbine seismic behavior  

E-Print Network (OSTI)

of Turbine Rotor . . . . . . . . . . . . . . 3.9 Results ofA. C. (2006). WindPACT turbine rotor design study. ReportA. C. (2006). WindPACT turbine rotor design study. Report

Prowell, I.

2011-01-01T23:59:59.000Z

225

Automatic Detection of Wind Turbine Clutter for Weather Radars  

Science Conference Proceedings (OSTI)

Wind turbines cause contamination of weather radar signals that is often detrimental and difficult to distinguish from cloud returns. Because the turbines are always at the same location, it would seem simple to identify where wind turbine ...

Kenta Hood; Sebastin Torres; Robert Palmer

2010-11-01T23:59:59.000Z

226

Active load control techniques for wind turbines.  

DOE Green Energy (OSTI)

This report provides an overview on the current state of wind turbine control and introduces a number of active techniques that could be potentially used for control of wind turbine blades. The focus is on research regarding active flow control (AFC) as it applies to wind turbine performance and loads. The techniques and concepts described here are often described as 'smart structures' or 'smart rotor control'. This field is rapidly growing and there are numerous concepts currently being investigated around the world; some concepts already are focused on the wind energy industry and others are intended for use in other fields, but have the potential for wind turbine control. An AFC system can be broken into three categories: controls and sensors, actuators and devices, and the flow phenomena. This report focuses on the research involved with the actuators and devices and the generated flow phenomena caused by each device.

van Dam, C.P. (University of California, Davis, CA); Berg, Dale E.; Johnson, Scott J. (University of California, Davis, CA)

2008-07-01T23:59:59.000Z

227

Coupled Dynamic Analysis of Multiple Unit Floating Offshore Wind Turbine  

E-Print Network (OSTI)

In the present study, a numerical simulation tool has been developed for the rotor-floater-tether coupled dynamic analysis of Multiple Unit Floating Offshore Wind Turbine (MUFOWT) in the time domain including aero-blade-tower dynamics and control, mooring dynamics and platform motion. In particular, the numerical tool developed in this study is based on the single turbine analysis tool FAST, which was developed by National Renewable Energy Laboratory (NREL). For linear or nonlinear hydrodynamics of floating platform and generalized-coordinate-based FEM mooring line dynamics, CHARM3D program, hull-riser-mooring coupled dynamics program developed by Prof. M.H. Kims research group during the past two decades, is incorporated. So, the entire dynamic behavior of floating offshore wind turbine can be obtained by coupled FAST-CHARM3D in the time domain. During the coupling procedure, FAST calculates all the dynamics and control of tower and wind turbine including the platform itself, and CHARM3D feeds all the relevant forces on the platform into FAST. Then FAST computes the whole dynamics of wind turbine using the forces from CHARM3D and return the updated displacements and velocities of the platform to CHARM3D. To analyze the dynamics of MUFOWT, the coupled FAST-CHARM3D is expanded more and re-designed. The global matrix that includes one floating platform and a number of turbines is built at each time step of the simulation, and solved to obtain the entire degrees of freedom of the system. The developed MUFOWT analysis tool is able to compute any type of floating platform with various kinds of horizontal axis wind turbines (HAWT). Individual control of each turbine is also available and the different structural properties of tower and blades can be applied. The coupled dynamic analysis for the three-turbine MUFOWT and five-turbine MUFOWT are carried out and the performances of each turbine and floating platform in normal operational condition are assessed. To investigate the coupling effect between platform and each turbine, one turbine failure event is simulated and checked. The analysis shows that some of the mal-function of one turbine in MUFOWT may induce significant changes in the performance of other turbines or floating platform. The present approach can directly be applied to the development of the remote structural health monitoring system of MUFOWT in detecting partial turbine failure by measuring tower or platform responses in the future.

Bae, Yoon Hyeok

2013-05-01T23:59:59.000Z

228

NREL Develops Simulations for Wind Plant Power and Turbine Loads (Fact Sheet)  

DOE Green Energy (OSTI)

NREL researchers are the first to use a high-performance computing tool for a large-eddy simulation of an entire wind plant.

Not Available

2012-04-01T23:59:59.000Z

229

NREL: Wind Research - Gaia-Wind's 11 Kilowatt Wind Turbine Testing and  

NLE Websites -- All DOE Office Websites (Extended Search)

Gaia-Wind's 11 Kilowatt Wind Turbine Testing and Results Gaia-Wind's 11 Kilowatt Wind Turbine Testing and Results A video of Gaia-Wind's 11-kW wind turbine. Text Version As part of the National Renewable Energy Laboratory and U.S. Department of Energy (NREL/DOE) Independent Testing project, NREL tested Gaia-Wind's 11-kilowatt (kW) small wind turbine at the National Wind Technology Center (NWTC). Gaia-Wind's turbine is a three-phase induction generator that operates at 480 volts. The turbine's downwind rotor has a 13-meter diameter, and its tower is 18 meters tall. The two-bladed, oversized rotor is designed for low to moderate wind speeds. Testing Summary The summary of the tests is below with the final reports. Cumulative Energy Production 6/11/2008: 210; 6/13/2008: 528; 6/16/2008: 716; 6/18/2008: 731; 6/19/2008:

230

Dynamic analysis of a 5 megawatt offshore floating wind turbine  

E-Print Network (OSTI)

Enabling New Markets for Offshore Wind Energy." Proc. ofMary, and Laura Parsons. Offshore Wind Energy. Washingto,Challenges for Floating Offshore Wind Turbines. Tech. no.

Harriger, Evan Michael

2011-01-01T23:59:59.000Z

231

Solving Wind Turbine Tribological Issues with Materials Science  

Science Conference Proceedings (OSTI)

Abstract Scope, Wind energy is becoming more important to society as we are ... Large wind turbines convert the mechanical energy harnessed from the wind...

232

Wind turbine having a direct-drive drivetrain - Energy Innovation ...  

A wind turbine comprising an electrical generator that includes a rotor assembly. A wind rotor that includes a wind rotor hub is directly coupled to the rotor ...

233

Methods and apparatus for reducing peak wind turbine loads ...  

A method for reducing peak loads of wind turbines in a changing wind environment includes measuring or estimating an instantaneous wind speed and direction at the ...

234

Dynamic analysis of a 5 megawatt offshore floating wind turbine  

E-Print Network (OSTI)

Enabling New Markets for Offshore Wind Energy." Proc. ofand Laura Parsons. Offshore Wind Energy. Washingto, DC:Challenges for Floating Offshore Wind Turbines. Tech. no.

Harriger, Evan Michael

2011-01-01T23:59:59.000Z

235

PowerJet Wind Turbine Project  

SciTech Connect

PROJECT OBJECTIVE The PowerJet wind turbine overcomes problems characteristic of the small wind turbines that are on the market today by providing reliable output at a wide range of wind speeds, durability, silent operation at all wind speeds, and bird-safe operation. Prime Energyâ??s objective for this project was to design and integrate a generator with an electrical controller and mechanical controls to maximize the generation of electricity by its wind turbine. The scope of this project was to design, construct and test a mechanical back plate to control rotational speed in high winds, and an electronic controller to maximize power output and to assist the base plate in controlling rotational speed in high winds. The test model will continue to operate beyond the time frame of the project, with the ultimate goal of manufacturing and marketing the PowerJet worldwide. Increased Understanding of Electronic & Mechanical Controls Integrated With Electricity Generator The PowerJet back plate begins to open as wind speed exceeds 13.5 mps. The pressure inside the turbine and the turbine rotational speed are held constant. Once the back plate has fully opened at approximately 29 mps, the controller begins pulsing back to the generator to limit the rotational speed of the turbine. At a wind speed in excess of 29 mps, the controller shorts the generator and brings the turbine to a complete stop. As the wind speed subsides, the controller releases the turbine and it resumes producing electricity. Data collection and instrumentation problems prevented identification of the exact speeds at which these events occur. However, the turbine, controller and generator survived winds in excess of 36 mps, confirming that the two over-speed controls accomplished their purpose. Technical Effectiveness & Economic Feasibility Maximum Electrical Output The output of electricity is maximized by the integration of an electronic controller and mechanical over-speed controls designed and tested during the course of this project. The output exceeds that of the PowerJetâ??s 3-bladed counterparts (see Appendix). Durability All components of the PowerJet turbine assemblyâ??including the electronic and mechanical controls designed, manufactured and field tested during the course of this projectâ??proved to be durable through severe weather conditions, with constant operation and no interruption in energy production. Low Cost Materials for the turbine, generator, tower, charge controllers and ancillary parts are available at reasonable prices. Fabrication of these parts is also readily available worldwide. The cost of assembling and installing the turbine is reduced because it has fewer parts and requires less labor to manufacture and assemble, making it competitively priced compared with turbines of similar output manufactured in the U.S. and Europe. The electronic controller is the unique part to be included in the turbine package. The controllers can be manufactured in reasonably-sized production runs to keep the cost below $250 each. The data logger and 24 sensors are for research only and will be unnecessary for the commercial product. Benefit To Public The PowerJet wind-electric system is designed for distributed wind generation in 3 and 4 class winds. This wind turbine meets DOEâ??s requirements for a quiet, durable, bird-safe turbine that eventually can be deployed as a grid-connected generator in urban and suburban settings. Results As described more fully below and illustrated in the Appendices, the goals and objectives outlined in 2060 SOPO were fully met. Electronic and mechanical controls were successfully designed, manufactured and integrated with the generator. The turbine, tower, controllers and generators operated without incident throughout the test period, surviving severe winter and summer weather conditions such as extreme temperatures, ice and sustained high winds. The electronic controls were contained in weather-proof electrical boxes and the elec

Bartlett, Raymond J

2008-11-30T23:59:59.000Z

236

Nonlinear Control of a Wind Turbine Sven Creutz Thomsen  

E-Print Network (OSTI)

. This quantity is denoted the point wind. However, the turbine is not subject to a single wind speed, but ratherNonlinear Control of a Wind Turbine Sven Creutz Thomsen Kongens Lyngby 2006 #12;Technical describes analysis of various nonlinear control methods for controlling a wind turbine. High speed wind

237

Wind Turbine R&D and Certification Services: Cooperative Research and Development Final Report, CRADA Number CRD-04-00147  

DOE Green Energy (OSTI)

NREL and Underwriters Laboratories Inc. are developing a domestic certification program for the US wind and photovoltaic (PV) industry.

Link, H.

2011-02-01T23:59:59.000Z

238

A Study on Vibration Isolation in a Wind Turbine Subjected to Wind and Seismic Loading.  

E-Print Network (OSTI)

??The primary loading on wind turbines is in the lateral direction and is of a stochastic nature, due to wind and seismic forces. As turbines (more)

Van der Woude, Chad

2011-01-01T23:59:59.000Z

239

Flexible dynamics of floating wind turbines  

E-Print Network (OSTI)

This work presents Tower Flex, a structural dynamics model for a coupled analysis of offshore floating wind turbines consisting of a tower, a floating platform and a mooring system. In this multi-body, linear frequency-domain ...

Luypaert, Thomas (Thomas J.)

2012-01-01T23:59:59.000Z

240

Airfoils for wind turbine - Energy Innovation Portal  

Airfoils for the tip and mid-span regions of a wind turbine blade have upper surface and lower surface shapes and contours between a leading edge and a trailing edge ...

Note: This page contains sample records for the topic "wind turbine development" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


241

Diffuser for augmenting a wind turbine  

DOE Patents (OSTI)

A diffuser for augmenting a wind turbine having means for energizing the boundary layer at several locations along the diffuser walls is improved by the addition of a short collar extending radially outward from the outlet of the diffuser.

Foreman, Kenneth M. (North Bellmore, NY); Gilbert, Barry L. (Westbury, NY)

1984-01-01T23:59:59.000Z

242

Direct drive wind turbine - Energy Innovation Portal  

A wind turbine is provided that minimizes the size of the drive train and nacelle while maintaining the power electronics and transformer at the top of the tower. The ...

243

Vertical Axis Wind Turbine Foundation parameter study  

DOE Green Energy (OSTI)

The dynamic failure criterion governing the dimensions of prototype Vertical Axis Wind Turbine Foundations is treated as a variable parameter. The resulting change in foundation dimensions and costs is examined.

Lodde, P.F.

1980-07-01T23:59:59.000Z

244

Wind Turbine Drivetrain Condition Monitoring - An Overview  

DOE Green Energy (OSTI)

This paper provides an overview of wind turbine drivetrain condition monitoring based on presentations from a condition monitoring workshop organized by the National Renewable Energy Laboratory in 2009 and on additional references.

Sheng, S; Veers, P.

2011-10-01T23:59:59.000Z

245

k-? turbulence modeling for a wind turbine.  

E-Print Network (OSTI)

?? In this report we discuss the use of k-? RANS (Reynolds-averaged Navier-Stokes equations) turbulence model for wind turbine applications. This model has been implemented (more)

EREK, ERMAN

2011-01-01T23:59:59.000Z

246

Wind Turbine Safety and Function Test Report for the Gaia-Wind 11-kW Wind Turbine  

DOE Green Energy (OSTI)

This test was conducted as part of the U.S. Department of Energy's (DOE) Independent Testing project. This project was established to help reduce the barriers to wind energy expansion by providing independent testing results for small wind turbines (SWT). In total, four turbines were tested at the National Wind Technology Center (NWTC) as a part of this project. Safety and function testing is one of up to five tests performed on the turbines, including power performance, duration, noise, and power-quality tests. The results of the testing provide the manufacturers with reports that can be used for small wind turbine certification. The test equipment includes a Gaia-Wind 11-kW wind turbine mounted on an 18-m monopole tower. Gaia-Wind Ltd. manufactured the turbine in Denmark. The system was installed by the NWTC site operations group with guidance and assistance from Gaia-Wind.

Huskey, A.; Bowen, A.; Jager, D.

2010-01-01T23:59:59.000Z

247

Wind Turbine Safety and Function Test Report for the Mariah Windspire Wind Turbine  

SciTech Connect

This test was conducted as part of the U.S. Department of Energy's (DOE) Independent Testing project. This project was established to help reduce the barriers to wind energy expansion by providing independent testing results for small wind turbines (SWT). In total, five turbines were tested at the National Wind Technology Center (NWTC) as a part of this project. Safety and function testing is one of up to five tests performed on the turbines, including power performance, duration, noise, and power-quality tests. NWTC testing results provide manufacturers with reports that may be used to meet part of small wind turbine certification requirements. The test equipment includes a Mariah Windspire wind turbine mounted on a monopole tower. L&E Machine manufactured the turbine in the United States. The inverter was manufactured separately by Technology Driven Products in the United States. The system was installed by the NWTC site operations group with guidance and assistance from Mariah Power.

Huskey, A.; Bowen, A.; Jager, D.

2010-07-01T23:59:59.000Z

248

Passively cooled direct drive wind turbine  

SciTech Connect

A wind turbine is provided that passively cools an electrical generator. The wind turbine includes a plurality of fins arranged peripherally around a generator house. Each of the fins being oriented at an angle greater than zero degrees to allow parallel flow of air over the fin. The fin is further tapered to allow a constant portion of the fin to extend beyond the air stream boundary layer. Turbulence initiators on the nose cone further enhance heat transfer at the fins.

Costin, Daniel P. (Chelsea, VT)

2008-03-18T23:59:59.000Z

249

Coupled Dynamic Modeling of Floating Wind Turbine Systems: Preprint  

DOE Green Energy (OSTI)

This article presents a collaborative research program that the Massachusetts Institute of Technology (MIT) and the National Renewable Energy Laboratory (NREL) have undertaken to develop innovative and cost-effective floating and mooring systems for offshore wind turbines in water depths of 10-200 m. Methods for the coupled structural, hydrodynamic, and aerodynamic analysis of floating wind turbine systems are presented in the frequency domain. This analysis was conducted by coupling the aerodynamics and structural dynamics code FAST [4] developed at NREL with the wave load and response simulation code WAMIT (Wave Analysis at MIT) [15] developed at MIT. Analysis tools were developed to consider coupled interactions between the wind turbine and the floating system. These include the gyroscopic loads of the wind turbine rotor on the tower and floater, the aerodynamic damping introduced by the wind turbine rotor, the hydrodynamic damping introduced by wave-body interactions, and the hydrodynamic forces caused by wave excitation. Analyses were conducted for two floater concepts coupled with the NREL 5-MW Offshore Baseline wind turbine in water depths of 10-200 m: the MIT/NREL Shallow Drafted Barge (SDB) and the MIT/NREL Tension Leg Platform (TLP). These concepts were chosen to represent two different methods of achieving stability to identify differences in performance and cost of the different stability methods. The static and dynamic analyses of these structures evaluate the systems' responses to wave excitation at a range of frequencies, the systems' natural frequencies, and the standard deviations of the systems' motions in each degree of freedom in various wind and wave environments. This article in various wind and wave environments. This article explores the effects of coupling the wind turbine with the floating platform, the effects of water depth, and the effects of wind speed on the systems' performance. An economic feasibility analysis of the two concepts was also performed. Key cost components included the material and construction costs of the buoy; material and installation costs of the tethers, mooring lines, and anchor technologies; costs of transporting and installing the system at the chosen site; and the cost of mounting the wind turbine to the platform. The two systems were evaluated based on their static and dynamic performance and the total system installed cost. Both systems demonstrated acceptable motions, and have estimated costs of $1.4-$1.8 million, not including the cost of the wind turbine, the power electronics, or the electrical transmission.

Wayman, E. N.; Sclavounos, P. D.; Butterfield, S.; Jonkman, J.; Musial, W.

2006-03-01T23:59:59.000Z

250

Coupled Dynamic Modeling of Floating Wind Turbine Systems: Preprint  

SciTech Connect

This article presents a collaborative research program that the Massachusetts Institute of Technology (MIT) and the National Renewable Energy Laboratory (NREL) have undertaken to develop innovative and cost-effective floating and mooring systems for offshore wind turbines in water depths of 10-200 m. Methods for the coupled structural, hydrodynamic, and aerodynamic analysis of floating wind turbine systems are presented in the frequency domain. This analysis was conducted by coupling the aerodynamics and structural dynamics code FAST [4] developed at NREL with the wave load and response simulation code WAMIT (Wave Analysis at MIT) [15] developed at MIT. Analysis tools were developed to consider coupled interactions between the wind turbine and the floating system. These include the gyroscopic loads of the wind turbine rotor on the tower and floater, the aerodynamic damping introduced by the wind turbine rotor, the hydrodynamic damping introduced by wave-body interactions, and the hydrodynamic forces caused by wave excitation. Analyses were conducted for two floater concepts coupled with the NREL 5-MW Offshore Baseline wind turbine in water depths of 10-200 m: the MIT/NREL Shallow Drafted Barge (SDB) and the MIT/NREL Tension Leg Platform (TLP). These concepts were chosen to represent two different methods of achieving stability to identify differences in performance and cost of the different stability methods. The static and dynamic analyses of these structures evaluate the systems' responses to wave excitation at a range of frequencies, the systems' natural frequencies, and the standard deviations of the systems' motions in each degree of freedom in various wind and wave environments. This article in various wind and wave environments. This article explores the effects of coupling the wind turbine with the floating platform, the effects of water depth, and the effects of wind speed on the systems' performance. An economic feasibility analysis of the two concepts was also performed. Key cost components included the material and construction costs of the buoy; material and installation costs of the tethers, mooring lines, and anchor technologies; costs of transporting and installing the system at the chosen site; and the cost of mounting the wind turbine to the platform. The two systems were evaluated based on their static and dynamic performance and the total system installed cost. Both systems demonstrated acceptable motions, and have estimated costs of $1.4-$1.8 million, not including the cost of the wind turbine, the power electronics, or the electrical transmission.

Wayman, E. N.; Sclavounos, P. D.; Butterfield, S.; Jonkman, J.; Musial, W.

2006-03-01T23:59:59.000Z

251

NREL Small Wind Turbine Test Project: Mariah Power's Windspire Wind Turbine Test Chronology  

SciTech Connect

This report presents a chronology of tests conducted at NREL's National Wind Technology Center on Mariah Power's Windspire 1.2-kW wind turbine and a letter of response from Mariah Power.

Huskey, A.; Forsyth, T.

2009-06-01T23:59:59.000Z

252

Wind Turbine Generator System Power Performance Test Report for the Entegrity EW50 Wind Turbine  

DOE Green Energy (OSTI)

Report on the results of the power performance test that the National Renewable Energy Laboratory (NREL) conducted on Entegrity Wind System Inc.'s EW50 small wind turbine.

Smith, J.; Huskey, A.; Jager, D.; Hur, J.

2011-05-01T23:59:59.000Z

253

Advanced wind turbine design studies: Advanced conceptual study. Final report  

DOE Green Energy (OSTI)

In conjunction with the US Department of Energy and the National Renewable Energy Laboratory`s Advanced Wind Turbine Program, the Atlantic Orient Corporation developed preliminary designs for the next generation of wind turbines. These 50 kW and 350 kW turbines are based upon the concept of simplicity. By adhering to a design philosophy that emphasizes simplicity, we project that these turbines will produce energy at extremely competitive rates which will unlock the potential of wind energy domestically and internationally. The program consisted of three distinct phases. First, we evaluated the operational history of the Enertech 44 series wind turbines. As a result of this evaluation, we developed, in the second phase, a preliminary design for a new 50 kW turbine for the near-term market. In the third phase, we took a clean-sheet-of-paper approach to designing a 350 kW turbine focused on the mid-1990s utility market that incorporated past experience and advanced technology.

Hughes, P.; Sherwin, R. [Atlantic Orient Corp., Norwich, VT (United States)

1994-08-01T23:59:59.000Z

254

Portsmouth Wind Turbine | Open Energy Information  

Open Energy Info (EERE)

Portsmouth Wind Turbine Portsmouth Wind Turbine Facility Portsmouth Wind Turbine Sector Wind energy Facility Type Community Wind Facility Status In Service Owner Town of Portsmouth Energy Purchaser Town of Portsmouth Location Portsmouth RI Coordinates 41.614216°, -71.25165° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":41.614216,"lon":-71.25165,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

255

Multi-hazard Reliability Assessment of Offshore Wind Turbines  

E-Print Network (OSTI)

A probabilistic framework is developed to assess the structural reliability of offshore wind turbines. Probabilistic models are developed to predict the deformation, shear force and bending moment demands on the support structure of wind turbines. The proposed probabilistic models are developed starting from a commonly accepted deterministic model and by adding correction terms and model errors to capture respectively, the inherent bias and the uncertainty in developed models. A Bayesian approach is then used to assess the model parameters incorporating the information from virtual experiment data. The database of virtual experiments is generated using detailed three-dimensional finite element analyses of a suite of typical offshore wind turbines. The finite element analyses properly account for the nonlinear soil-structure interaction. Separate probabilistic demand models are developed for three operational/load conditions including: (1) operating under day-to-day wind and wave loading; (2) operating throughout earthquake in presence of day-to-day loads; and (3) parked under extreme wind speeds and earthquake ground motions. The proposed approach gives special attention to the treatment of both aleatory and epistemic uncertainties in predicting the demands on the support structure of wind turbines. The developed demand models are then used to assess the reliability of the support structure of wind turbines based on the proposed damage states for typical wind turbines and their corresponding performance levels. A multi-hazard fragility surface of a given wind turbine support structure as well as the seismic and wind hazards at a specific site location are incorporated into a probabilistic framework to estimate the annual probability of failure of the support structure. Finally, a framework is proposed to investigate the performance of offshore wind turbines operating under day-to-day loads based on their availability for power production. To this end, probabilistic models are proposed to predict the mean and standard deviation of drift response of the tower. The results are used in a random vibration based framework to assess the fragility as the probability of exceeding certain drift thresholds given specific levels of wind speed.

Mardfekri Rastehkena, Maryam 1981-

2012-12-01T23:59:59.000Z

256

Passive load control for large wind turbines.  

DOE Green Energy (OSTI)

Wind energy research activities at Sandia National Laboratories focus on developing large rotors that are lighter and more cost-effective than those designed with current technologies. Because gravity scales as the cube of the blade length, gravity loads become a constraining design factor for very large blades. Efforts to passively reduce turbulent loading has shown significant potential to reduce blade weight and capture more energy. Research in passive load reduction for wind turbines began at Sandia in the late 1990's and has moved from analytical studies to blade applications. This paper discusses the test results of two Sandia prototype research blades that incorporate load reduction techniques. The TX-100 is a 9-m long blade that induces bend-twist coupling with the use of off-axis carbon in the skin. The STAR blade is a 27-m long blade that induces bend-twist coupling by sweeping the blade in a geometric fashion.

Ashwill, Thomas D.

2010-05-01T23:59:59.000Z

257

NREL: Technology Transfer - White Earth Nation Installs Turbines: A Wind  

NLE Websites -- All DOE Office Websites (Extended Search)

White Earth Nation Installs Turbines: A Wind Powering America Success Story White Earth Nation Installs Turbines: A Wind Powering America Success Story February 11, 2013 Almost 8 years after taking the initial steps to harness the wind, the White Earth Nation recently completed the installation of two small wind turbines that will help offset energy costs for Minnesota's largest and most populous Native American reservation. Mike Triplett, economic development planner with the White Earth Development Office, believes that the project represents a unique opportunity for tribal entities in the United States. He noted that tribes don't qualify for tax-based incentives. "And as for working with investors, we never found that to be a viable option," Triplett said. "So we've relied heavily on grants." Funded through nearly $1.8 million in congressional appropriations along

258

A Summary of the Fatigue Properties of Wind Turbine Materials  

DOE Green Energy (OSTI)

Modern wind turbines are fatigue critical machines that are typically used to produce electrical power from the wind. The materials used to construct these machines are subjected to a unique loading spectrum that contains several orders of magnitude more cycles than other fatigue critical structures, e.g., an airplane. To facilitate fatigue designs, a large database of material properties has been generated over the past several years that is specialized to materials typically used in wind turbines. In this paper, I review these fatigue data. Major sections are devoted to the properties developed for wood, metals (primarily aluminum) and fiberglass. Special emphasis is placed on the fiberglass discussion because this material is current the material of choice for wind turbine blades. The paper focuses on the data developed in the U.S., but cites European references that provide important insights.

SUTHERLAND, HERBERT J.

1999-10-07T23:59:59.000Z

259

Jet spoiler arrangement for wind turbine  

DOE Patents (OSTI)

An air jet spoiler arrangement is provided for a Darrieus-type vertical axis wind-powered turbine. Air is drawn into hollow turbine blades through air inlets at the ends thereof and is ejected in the form of air jets through small holes or openings provided along the lengths of the blades. The air jets create flow separation at the surfaces of the turbine blades, thereby inducing stall conditions and reducing the output power. A feedback control unit senses the power output of the turbine and controls the amount of air drawn into the air inlets accordingly.

Cyrus, Jack D. (Corrales, NM); Kadlec, Emil G. (Albuquerque, NM); Klimas, Paul C. (Albuquerque, NM)

1985-01-01T23:59:59.000Z

260

Jet spoiler arrangement for wind turbine  

DOE Patents (OSTI)

An air jet spoiler arrangement is provided for a Darrieus-type vertical axis wind-powered turbine. Air is drawn into hollow turbine blades through air inlets at the end thereof and is ejected in the form of air jets through small holes or openings provided along the lengths of the blades. The air jets create flow separation at the surfaces of the turbine blades, thereby including stall conditions and reducing the output power. A feedback control unit senses the power output of the turbine and controls the amount of air drawn into the air inlets accordingly.

Cyrus, J.D.; Kadlec, E.G.; Klimas, P.C.

1983-09-15T23:59:59.000Z

Note: This page contains sample records for the topic "wind turbine development" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


261

Iskra Wind Turbine Manufacturers Ltd | Open Energy Information  

Open Energy Info (EERE)

Iskra Wind Turbine Manufacturers Ltd Iskra Wind Turbine Manufacturers Ltd Jump to: navigation, search Name Iskra Wind Turbine Manufacturers Ltd Place Nottingham, United Kingdom Sector Wind energy Product Iskra manufactures and markets the AT5-1 home-sized wind turbine rated at 5.3 kW, suitable for low wind speeds. References Iskra Wind Turbine Manufacturers Ltd[1] LinkedIn Connections CrunchBase Profile No CrunchBase profile. Create one now! This article is a stub. You can help OpenEI by expanding it. Iskra Wind Turbine Manufacturers Ltd is a company located in Nottingham, United Kingdom . References ↑ "Iskra Wind Turbine Manufacturers Ltd" Retrieved from "http://en.openei.org/w/index.php?title=Iskra_Wind_Turbine_Manufacturers_Ltd&oldid=347129" Categories: Clean Energy Organizations

262

Field verification program for small wind turbines  

DOE Green Energy (OSTI)

In 1999 Windward Engineering (Windward) was awarded a Cooperative Agreement under the Field Verification Program with the Department of Energy (DOE) to install two Whisper H40 wind turbines, one at the NREL National Wind Technology Center (NWTC) and one at a test site near Spanish Fork, Utah. After installation, the turbine at the NWTC was to be operated, maintained, and monitored by NREL while the turbine in Spanish Fork was to be administered by Windward. Under this award DOE and Windward defined the primary objectives of the project as follows: (1) Determine and demonstrate the reliability and energy production of a furling wind turbine at a site where furling will be a very frequent event and extreme gusts can be expected during the duration of the tests. (2) Make engineering measurements and conduct limited computer modeling of the furling behavior to improve the industry understanding of the mechanics and nature of furling. We believe the project has achieved these objectives. The turbine has operated for approximately three and a half years. We have collected detailed engineering data approximately 75 percent of that time. Some of these data were used in an ADAMS model validation that highlighted the accuracies and inaccuracies of the computer modeling for a passively furling wind turbine. We also presented three papers at the American Wind Energy Association (AWEA) Windpower conferences in 2001, 2002, and 2003. These papers addressed the following three topics: (a) general overview of the project [1], (b) furling operation during extreme wind events [2], and (c) extrapolation of extreme (design) loads [3]. We believe these papers have given new insight into the mechanics and nature of furling and have set the stage for future research. In this final report we will highlight some of the more interesting aspects of the project as well as summarize the data for the entire project. We will also present information on the installation of the turbines as well as the findings from the post-test inspection of the turbine.

Windward Engineering, LLC

2003-11-30T23:59:59.000Z

263

Estimation of Blade and Tower Properties for the Gearbox Research Collaborative Wind Turbine  

SciTech Connect

This report documents the structural and modal properties of the blade and tower of a 3-bladed 750-kW upwind turbine to develop an aeroelastic model of the wind turbine.

Bir, G.S.; Oyague, F.

2007-11-01T23:59:59.000Z

264

Memorandum of Understanding between the U.S. Wind Turbine Manufacturers and  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Memorandum of Understanding between the U.S. Wind Turbine Memorandum of Understanding between the U.S. Wind Turbine Manufacturers and the U.S. Department of Energy on Developing a Shared Strategy to Achieve 20% Wind Energy in 2030 Memorandum of Understanding between the U.S. Wind Turbine Manufacturers and the U.S. Department of Energy on Developing a Shared Strategy to Achieve 20% Wind Energy in 2030 this Memorandum of Understanding (MOU), the U.S. Department of Energy (DOE) and the signing members of the wind turbine industry (the Parties) agree to work cooperatively to define and develop the framework for appropriate technology R&D and siting strategies for realizing 20% Wind Energy by 2030. Memorandum of Understanding between the U.S. Wind Turbine Manufacturers and the U.S. Department of Energy on Developing a Shared Strategy to Achieve

265

Middelgrunden Wind Turbine Cooperative | Open Energy Information  

Open Energy Info (EERE)

Middelgrunden Wind Turbine Cooperative Middelgrunden Wind Turbine Cooperative Jump to: navigation, search Name Middelgrunden Wind Turbine Cooperative Place Copenhagen, Denmark Zip 2200 Sector Wind energy Product Copenhagen-based, partnership founded in May 1997 by the Working Group for Wind Turbines on Middelgrunden, with the aim to produce electricity through the establishment and management of wind turbines on the Middelgrunden shoal. Coordinates 55.67631°, 12.569355° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":55.67631,"lon":12.569355,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

266

Nonlinear Control of a Wind Turbine Sven Creutz Thomsen  

E-Print Network (OSTI)

Nonlinear Control of a Wind Turbine Sven Creutz Thomsen Kongens Lyngby 2006 #12; Technical describes analysis of various nonlinear control methods for controlling a wind turbine. High speed wind Modeling and analysis 5 2 Model descriptions 7 2.1 Variable speed wind turbine

267

Dynamic Simulation of DFIG Wind Turbines on FPGA Boards  

E-Print Network (OSTI)

Dynamic Simulation of DFIG Wind Turbines on FPGA Boards Hao Chen, Student Member, IEEE, Song Sun is a friction coefficient. The wind turbine model is based on the relation between the upstream wind speed V w + 1 where p is the air density; Rw is the wind turbine radius; cp (A, (3) is the performance

Zambreno, Joseph A.

268

Wind Turbine Investment and Disinvestment: A Structural Econometric Model  

E-Print Network (OSTI)

Wind Turbine Investment and Disinvestment: A Structural Econometric Model Jonathan A. Cook C model of wind turbine owners' decisions about whether and when to add new turbines to a pre profit structure for wind producers and evaluate the impact of technology and government policy on wind

Lin, C.-Y. Cynthia

269

innovati nNREL Computer Models Integrate Wind Turbines with  

E-Print Network (OSTI)

innovati nNREL Computer Models Integrate Wind Turbines with Floating Platforms Far off the shores for today's seabed-mounted offshore wind turbines. For the United States to tap into these vast offshore wind energy resources, wind turbines must be mounted on floating platforms to be cost effective

270

TECHNICALADVANCES IN EPOXY TECHNOLOGY FOR WIND TURBINE BLADE COMPOSITE FABRICATION  

E-Print Network (OSTI)

TECHNICALADVANCES IN EPOXY TECHNOLOGY FOR WIND TURBINE BLADE COMPOSITE FABRICATION George C. Jacob reliability in many demanding applications including components for aerospace and wind turbine blades. While in operation, wind turbine blades are subjected to significant stresses from their movement, wind and other

271

Necessity and Requirements of a Collaborative Effort to Develop a Large Wind Turbine Blade Test Facility in North America  

DOE Green Energy (OSTI)

The wind power industry in North America has an immediate need for larger blade test facilities to ensure the survival of the industry. Blade testing is necessary to meet certification and investor requirements and is critical to achieving the reliability and blade life needed for the wind turbine industry to succeed. The U.S. Department of Energy's (DOE's) Wind Program is exploring options for collaborating with government, private, or academic entities in a partnership to build larger blade test facilities in North America capable of testing blades up to at least 70 m in length. The National Renewable Energy Laboratory (NREL) prepared this report for DOE to describe the immediate need to pursue larger blade test facilities in North America, categorize the numerous prospective partners for a North American collaboration, and document the requirements for a North American test facility.

Cotrell, J.; Musial, W.; Hughes, S.

2006-05-01T23:59:59.000Z

272

Load attenuating passively adaptive wind turbine blade  

DOE Patents (OSTI)

A method and apparatus for improving wind turbine performance by alleviating loads and controlling the rotor. The invention employs the use of a passively adaptive blade that senses the wind velocity or rotational speed, and accordingly modifies its aerodynamic configuration. The invention exploits the load mitigation prospects of a blade that twists toward feather as it bends. The invention includes passively adaptive wind turbine rotors or blades with currently preferred power control features. The apparatus is a composite fiber horizontal axis wind-turbine blade, in which a substantial majority of fibers in the blade skin are inclined at angles of between 15 and 30 degrees to the axis of the blade, to produces passive adaptive aeroelastic tailoring (bend-twist coupling) to alleviate loading without unduly jeopardizing performance.

Veers, Paul S. (Albuquerque, NM); Lobitz, Donald W. (Albuquerque, NM)

2003-01-01T23:59:59.000Z

273

Wind Turbine Micropitting Workshop: A Recap  

DOE Green Energy (OSTI)

Micropitting is a Hertzian fatigue phenomenon that affects many wind turbine gearboxes, and it affects the reliability of the machines. With the major growth and increasing dependency on renewable energy, mechanical reliability is an extremely important issue. The U.S. Department of Energy has made a commitment to improving wind turbine reliability and the National Renewable Energy Laboratory (NREL) has started a gearbox reliability project. Micropitting as an issue that needed attention came to light through this effort. To understand the background of work that had already been accomplished, and to consolidate some level of collective understanding of the issue by acknowledged experts, NREL hosted a wind turbine micropitting workshop, which was held at the National Wind Technology Center in Boulder, Colorado, on April 15 and 16, 2009.

Sheng, S.

2010-02-01T23:59:59.000Z

274

Experimental and theoretical study of horizontal-axis wind turbines  

E-Print Network (OSTI)

in many of the large machines which are now operating . 1.2 Recent developments (prior to 1978) Since 1973 wind power has grown at a very rapid rate in both Europe and America. The number of horizontal-axis wind turbines which have been built... .1 Introduction 9.2 Wind velocity measurement 9.3 Concluding remarks re wind velocity measurement 9.4 Power vs. wind speed 9.5 POWer coefficient vs. tip speed ratio 9.6 Conclusions Chapter 10. Summary of conclusions and suggestions for further research...

Anderson, Michael Broughton

1981-10-20T23:59:59.000Z

275

Simulation of winds as seen by a rotating vertical axis wind turbine blade  

DOE Green Energy (OSTI)

The objective of this report is to provide turbulent wind analyses relevant to the design and testing of Vertical Axis Wind Turbines (VAWT). A technique was developed for utilizing high-speed turbulence wind data from a line of seven anemometers at a single level to simulate the wind seen by a rotating VAWT blade. Twelve data cases, representing a range of wind speeds and stability classes, were selected from the large volume of data available from the Clayton, New Mexico, Vertical Plane Array (VPA) project. Simulations were run of the rotationally sampled wind speed relative to the earth, as well as the tangential and radial wind speeds, which are relative to the rotating wind turbine blade. Spectral analysis is used to compare and assess wind simulations from the different wind regimes, as well as from alternate wind measurement techniques. The variance in the wind speed at frequencies at or above the blade rotation rate is computed for all cases, and is used to quantitatively compare the VAWT simulations with Horizontal Axis Wind Turbine (HAWT) simulations. Qualitative comparisons are also made with direct wind measurements from a VAWT blade.

George, R.L.

1984-02-01T23:59:59.000Z

276

Tennessee Valley Authority Buffalo Mountain Wind Power Project Development: U.S. Department of Energy - EPRI Wind Turbine Verificati on Program  

Science Conference Proceedings (OSTI)

This report describes the development experience at the Tennessee Valley Authority (TVA) Buffalo Mountain Wind Power Project located near Oliver Springs, Tennessee. The lessons learned from the project will be valuable to other utilities or companies planning similar wind projects.

2003-03-24T23:59:59.000Z

277

Basic Integrative Models for Offshore Wind Turbine Systems  

E-Print Network (OSTI)

This research study developed basic dynamic models that can be used to accurately predict the response behavior of a near-shore wind turbine structure with monopile, suction caisson, or gravity-based foundation systems. The marine soil conditions were modeled using apparent fixity level, Randolph elastic continuum, and modified cone models. The offshore wind turbine structures were developed using a finite element formulation. A two-bladed 3.0 megawatt (MW) and a three-bladed 1.5 MW capacity wind turbine were studied using a variety of design load, and soil conditions scenarios. Aerodynamic thrust loads were estimated using the FAST Software developed by the U.S Department of Energys National Renewable Energy Laboratory (NREL). Hydrodynamic loads were estimated using Morisons equation and the more recent Faltinsen Newman Vinje (FNV) theory. This research study addressed two of the important design constraints, specifically, the angle of the support structure at seafloor and the horizontal displacement at the hub elevation during dynamic loading. The simulation results show that the modified cone model is stiffer than the apparent fixity level and Randolph elastic continuum models. The effect of the blade pitch failure on the offshore wind turbine structure decreases with increasing water depth, but increases with increasing hub height of the offshore wind turbine structure.

Aljeeran, Fares

2011-05-01T23:59:59.000Z

278

Danish Wind Turbine Owners Association | Open Energy Information  

Open Energy Info (EERE)

Owners Association Owners Association Jump to: navigation, search Name Danish Wind Turbine Owners' Association Place Aarhus C, Denmark Zip DK-8000 Sector Wind energy Product Danish Wind Turbine Ownersâ€(tm) Association is a non-profit, independent association overseeing wind turbine ownersâ€(tm) mutual interests regarding the authorities, political decision-makers, utilities and wind turbine manufacturers. References Danish Wind Turbine Owners' Association[1] LinkedIn Connections CrunchBase Profile No CrunchBase profile. Create one now! This article is a stub. You can help OpenEI by expanding it. Danish Wind Turbine Owners' Association is a company located in Aarhus C, Denmark . References ↑ "Danish Wind Turbine Owners' Association" Retrieved from "http://en.openei.org/w/index.php?title=Danish_Wind_Turbine_Owners_Association&oldid=344068

279

Design and Dynamic Modeling of the Support Structure for a 10 MW Offshore Wind Turbine.  

E-Print Network (OSTI)

?? This thesis presents two designs of tension-leg-platforms (TLP) support structures for the 10 MW reference wind turbine being developed by the Norwegian Research Centre (more)

Crozier, Aina

2011-01-01T23:59:59.000Z

280

Dynamics Modeling and Loads Analysis of an Offshore Floating Wind Turbine  

SciTech Connect

This report describes the development, verification, and application of a comprehensive simulation tool for modeling coupled dynamic responses of offshore floating wind turbines.

Jonkman, J. M.

2007-12-01T23:59:59.000Z

Note: This page contains sample records for the topic "wind turbine development" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


281

Experimental and analytical research on the aerodynamics of wind turbines. Mid-term technical report, June 1--December 31, 1975  

SciTech Connect

The successful development of reliable, cost competitive horizontal axis, propeller-type wind energy conversion systems (WECS) is strongly dependent on the availability of advanced technology for each of the system components. Past experience and current studies of this type of wind energy conversion systems have shown that the wind turbine subsystem most significantly effects the system's cost effectiveness and performance capability. Thus adequate technology bases are essential for all elements of the wind turbine design. Information is presented concerning aerodynamic design and performance technology, wind turbine parametric performance study, selection of model wind turbine configurations, and structural design of wind turbine models.

Rohrbach, C.

1976-02-01T23:59:59.000Z

282

Experimental and analytical research on the aerodynamics of wind turbines. Mid-term technical report, June 1--December 31, 1975  

DOE Green Energy (OSTI)

The successful development of reliable, cost competitive horizontal axis, propeller-type wind energy conversion systems (WECS) is strongly dependent on the availability of advanced technology for each of the system components. Past experience and current studies of this type of wind energy conversion systems have shown that the wind turbine subsystem most significantly effects the system's cost effectiveness and performance capability. Thus adequate technology bases are essential for all elements of the wind turbine design. Information is presented concerning aerodynamic design and performance technology, wind turbine parametric performance study, selection of model wind turbine configurations, and structural design of wind turbine models.

Rohrbach, C.

1976-02-01T23:59:59.000Z

283

Data Analytics Methods in Wind Turbine Design and Operations  

E-Print Network (OSTI)

This dissertation develops sophisticated data analytic methods to analyze structural loads on, and power generation of, wind turbines. Wind turbines, which convert the kinetic energy in wind into electrical power, are operated within stochastic environments. To account for the influence of environmental factors, we employ a conditional approach by modeling the expectation or distribution of response of interest, be it the structural load or power output, conditional on a set of environmental factors. Because of the different nature associated with the two types of responses, our methods also come in different forms, conducted through two studies. The first study presents a Bayesian parametric model for the purpose of estimating the extreme load on a wind turbine. The extreme load is the highest stress level that the turbine structure would experience during its service lifetime. A wind turbine should be designed to resist such a high load to avoid catastrophic structural failures. To assess the extreme load, turbine structural responses are evaluated by conducting field measurement campaigns or performing aeroelastic simulation studies. In general, data obtained in either case are not sufficient to represent various loading responses under all possible weather conditions. An appropriate extrapolation is necessary to characterize the structural loads in a turbines service life. This study devises a Bayesian spline method for this extrapolation purpose and applies the method to three sets of load response data to estimate the corresponding extreme loads at the roots of the turbine blades. In the second study, we propose an additive multivariate kernel method as a new power curve model, which is able to incorporate a variety of environmental factors in addition to merely the wind speed. In the wind industry, a power curve refers to the functional relationship between the power output generated by a wind turbine and the wind speed at the time of power generation. Power curves are used in practice for a number of important tasks including predicting wind power production and assessing a turbines energy production efficiency. Nevertheless, actual wind power data indicate that the power output is affected by more than just wind speed. Several other environmental factors, such as wind direction, air density, humidity, turbulence intensity, and wind shears, have potential impact. Yet, in industry practice, as well as in the literature, current power curve models primarily consider wind speed and, with comparatively less frequency, wind speed and direction. Our model provides, conditional on a given environmental condition, both the point estimation and density estimation of the power output. It is able to capture the nonlinear relationships between environmental factors and wind power output, as well as the high-order inter- action effects among some of the environmental factors. To illustrate the application of the new power curve model, we conduct case studies that demonstrate how the new method can help with quantifying the benefit of vortex generator installation, advising pitch control adjustment, and facilitating the diagnosis of faults.

Lee, Giwhyun

2013-08-01T23:59:59.000Z

284

Comparing Single and Multiple Turbine Representations in a Wind Farm Simulation: Preprint  

SciTech Connect

This paper compares single turbine representation versus multiple turbine representation in a wind farm simulation.

Muljadi, E.; Parsons, B.

2006-03-01T23:59:59.000Z

285

Wind turbine data acquisition and analysis system  

DOE Green Energy (OSTI)

Under Department of Energy (DOE) sponsorship, Sandia Laboratories has implemented a program to develop vertical-axis wind turbine (VAWT) systems. One aspect of this program has been the development of an instrumented test site adjacent to Sandia Laboratories' Technical Area I on Kirtland Air Force Base. Three VAWTs are now in operation on this test site. This paper describes the data acquisition and analyses system developed to meet the needs of the VAWT test site. The system employs a 16-bit work-length minicomputer as the major element in a stand-alone configuration. A variety of peripheral devices perform the required data acquisition functions and provide for data display and analysis. Included is a disk-based software operating system that supports a mass storage-file system, high-level language, and auxiliary software procedures.

Stiefeld, B.

1978-07-01T23:59:59.000Z

286

Sinomatech Wind Power Blade aka Sinoma Science Technology Wind Turbine  

Open Energy Info (EERE)

Sinomatech Wind Power Blade aka Sinoma Science Technology Wind Turbine Sinomatech Wind Power Blade aka Sinoma Science Technology Wind Turbine Blade Co Ltd Jump to: navigation, search Name Sinomatech Wind Power Blade (aka Sinoma Science & Technology Wind Turbine Blade Co Ltd) Place Nanjing, Jiangsu Province, China Zip 210012 Sector Wind energy Product Jiangsu-based wind turbine blade manufactuer. Coordinates 32.0485°, 118.778969° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":32.0485,"lon":118.778969,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

287

Larger Turbines and the Future Cost of Wind Energy (Poster)  

DOE Green Energy (OSTI)

The move to larger turbines has been observed in the United States and around the world. Turbine scaling increases energy capture while reducing general project infrastructure costs and landscape impacts, each of which of can reduce the cost of wind energy. However, scaling in the absence of innovation, can increase turbine costs. The ability of turbine designers and manufacturers to continue to scale turbines, while simultaneously reducing costs, is an important factor in long-term viability of the industry. This research seeks to better understand how technology innovation can allow the continued development of larger turbines on taller towers while also achieving lower cost of energy. Modeling incremental technology improvements identified over the past decade demonstrates that cost reductions on the order of 10%, and capacity factor improvements on the order of 5% (for sites with annual mean wind speed of 7.25 m/s at 50m), are achievable for turbines up to 3.5 MW. However, to achieve a 10% cost reduction and a 10% capacity factor improvement for turbines up to 5 MW, additional technology innovations must be developed and implemented.

Lantz, E.; Hand, M.

2011-03-01T23:59:59.000Z

288

2009 WIND TURBINE IMPACT STUDY APPRAISAL GROUP ONE 9/9/2009 WIND TURBINE IMPACT STUDY  

E-Print Network (OSTI)

This is a study of the impact that wind turbines have on residential property value. The wind turbines that are the focus of this study are the larger turbines being approximately 389ft tall and producing 1.0+ megawatts each, similar to the one pictured to the right. The study has been broken into three component parts, each looking at the value impact of the wind turbines from a different perspective. The three parts are: (1) a literature study, which reviews and summarizes what has been published on this matter found in the general media; (2) an opinion survey, which was given to area Realtors to learn their opinions on the impact of wind turbines in

Fond Du; Lac Counties Wisconsin

2009-01-01T23:59:59.000Z

289

Wind Turbine Generator System Duration Test Report for the Mariah Power Windspire Wind Turbine  

Science Conference Proceedings (OSTI)

This test was conducted as part of the U.S. Department of Energy's (DOE) Independent Testing project to help reduce the barriers of wind energy expansion by providing independent testing results for small turbines. In total, five turbines are being tested at the National Wind Technology Center (NWTC) as a part of the first round of this project. Duration testing is one of up to five tests that may be performed on the turbines. Other tests include power performance, safety and function, noise, and power quality tests. NWTC testing results provide manufacturers with reports that may be used to meet part of small wind turbine certification requirements. This duration test report focuses on the Mariah Power Windspire wind turbine.

Huskey, A.; Bowen, A.; Jager, D.

2010-05-01T23:59:59.000Z

290

Wind Turbine Safety and Function Test Report for the ARE 442 Wind Turbine  

DOE Green Energy (OSTI)

This test was conducted as part of the U.S. Department of Energy's (DOE) Independent Testing project. This project was established to help reduce the barriers of wind energy expansion by providing independent testing results for small turbines. In total, four turbines were tested at the National Wind Technology Center (NWTC) as a part of this project. Safety and function testing is one of up to five tests that were performed on the turbines, including power performance, duration, noise, and power quality tests. Test results provide manufacturers with reports that can be used for small wind turbine certification. The test equipment includes an ARE 442 wind turbine mounted on a 100-ft free-standing lattice tower. The system was installed by the NWTC Site Operations group with guidance and assistance from Abundant Renewable Energy.

van Dam, J.; Baker, D.; Jager, D.

2010-02-01T23:59:59.000Z

291

Operational-Condition-Independent Criteria Dedicated to Monitoring Wind Turbine Generators: Preprint  

DOE Green Energy (OSTI)

To date the existing wind turbine condition monitoring technologies and commercially available systems have not been fully accepted for improving wind turbine availability and reducing their operation and maintenance costs. One of the main reasons is that wind turbines are subject to constantly varying loads and operate at variable rotational speeds. As a consequence, the influences of turbine faults and the effects of varying load and speed are coupled together in wind turbine condition monitoring signals. So, there is an urgent need to either introduce some operational condition de-coupling procedures into the current wind turbine condition monitoring techniques or develop a new operational condition independent wind turbine condition monitoring technique to maintain high turbine availability and achieve the expected economic benefits from wind. The purpose of this paper is to develop such a technique. In the paper, three operational condition independent criteria are developed dedicated for monitoring the operation and health condition of wind turbine generators. All proposed criteria have been tested through both simulated and practical experiments. The experiments have shown that these criteria provide a solution for detecting both mechanical and electrical faults occurring in wind turbine generators.

Yang, W.; Sheng, S.; Court, R.

2012-08-01T23:59:59.000Z

292

A doubly-fed permanent magnet generator for wind turbines  

E-Print Network (OSTI)

Optimum extraction of energy from a wind turbine requires that turbine speed vary with wind speed. Existing solutions to produce constant-frequency electrical output under windspeed variations are undesirable due to ...

Thomas, Andrew J. (Andrew Joseph), 1981-

2004-01-01T23:59:59.000Z

293

A simulation-based planning system for wind turbine construction  

Science Conference Proceedings (OSTI)

Wind turbine construction is a challenging undertaking due to the need to lift heavy loads to high locations in conditions of high and variable wind speeds. These conditions create great risks to contractors during the turbine assembly process. This ...

Dina Atef; Hesham Osman; Moheeb Ibrahim; Khaled Nassar

2010-12-01T23:59:59.000Z

294

Understanding Trends in Wind Turbine Prices Over the Past Decade  

E-Print Network (OSTI)

wind turbine market, along with newly emerging competition from a number of Asian countries, most notably Japan and India.Wind Turbine Equipment Imports Over Time Denmark Euro zone U.K. Japan India

Bolinger, Mark

2012-01-01T23:59:59.000Z

295

First wind turbine blade delivered to Pantex | National Nuclear...  

National Nuclear Security Administration (NNSA)

Work crews began to erect the first of five wind turbines that will make up the Pantex Renewable Energy Project (PREP). The first wind turbine blade was delivered to the site...

296

Pioneer Asia Wind Turbines | Open Energy Information  

Open Energy Info (EERE)

Turbines Turbines Jump to: navigation, search Name Pioneer Asia Wind Turbines Place Madurai, Tamil Nadu, India Zip 625 002 Sector Wind energy Product Madurai-based wind energy division of the Pioneer Group. Coordinates 9.92544°, 78.1192° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":9.92544,"lon":78.1192,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

297

Wind Turbine Design Cost and Scaling Model  

NLE Websites -- All DOE Office Websites (Extended Search)

Wind Turbine Design Cost Wind Turbine Design Cost and Scaling Model L. Fingersh, M. Hand, and A. Laxson Technical Report NREL/TP-500-40566 December 2006 NREL is operated by Midwest Research Institute ● Battelle Contract No. DE-AC36-99-GO10337 Wind Turbine Design Cost and Scaling Model L. Fingersh, M. Hand, and A. Laxson Prepared under Task No. WER6.0703 Technical Report NREL/TP-500-40566 December 2006 National Renewable Energy Laboratory 1617 Cole Boulevard, Golden, Colorado 80401-3393 303-275-3000 * www.nrel.gov Operated for the U.S. Department of Energy Office of Energy Efficiency and Renewable Energy by Midwest Research Institute * Battelle Contract No. DE-AC36-99-GO10337 NOTICE This report was prepared as an account of work sponsored by an agency of the United States government.

298

Built-Environment Wind Turbine Roadmap  

NLE Websites -- All DOE Office Websites (Extended Search)

Built-Environment Wind Turbine Built-Environment Wind Turbine Roadmap J. Smith, T. Forsyth, K. Sinclair, and F. Oteri Technical Report NREL/TP-5000-50499 November 2012 NREL is a national laboratory of the U.S. Department of Energy, Office of Energy Efficiency & Renewable Energy, operated by the Alliance for Sustainable Energy, LLC. National Renewable Energy Laboratory 15013 Denver West Parkway Golden, Colorado 80401 303-275-3000 * www.nrel.gov Contract No. DE-AC36-08GO28308 Built-Environment Wind Turbine Roadmap J. Smith, T. Forsyth, K. Sinclair, and F. Oteri Prepared under Task No. WE11250 Technical Report NREL/TP-5000-50499 November 2012 NOTICE This report was prepared as an account of work sponsored by an agency of the United States government.

299

Methods of making wind turbine rotor blades  

DOE Patents (OSTI)

A method of manufacturing a root portion of a wind turbine blade includes, in an exemplary embodiment, providing an outer layer of reinforcing fibers including at least two woven mats of reinforcing fibers, providing an inner layer of reinforcing fibers including at least two woven mats of reinforcing fibers, and positioning at least two bands of reinforcing fibers between the inner and outer layers, with each band of reinforcing fibers including at least two woven mats of reinforcing fibers. The method further includes positioning a mat of randomly arranged reinforcing fibers between each pair of adjacent bands of reinforcing fibers, introducing a polymeric resin into the root potion of the wind turbine blade, infusing the resin through the outer layer, the inner layer, each band of reinforcing fibers, and each mat of random reinforcing fibers, and curing the resin to form the root portion of the wind turbine blade.

Livingston, Jamie T. (Pensacola, FL); Burke, Arthur H. E. (Gulf Breeze, FL); Bakhuis, Jan Willem (Nijverdal, NL); Van Breugel, Sjef (Enschede, NL); Billen, Andrew (Daarlerveen, NL)

2008-04-01T23:59:59.000Z

300

The Effect of Wind Speed and Electric Rates On Wind Turbine Economics  

E-Print Network (OSTI)

The Effect of Wind Speed and Electric Rates On Wind Turbine Economics Economics of wind power depends mainly on the wind speeds and the turbine make and model. Definition: Simple Payback The "Simple period of a small wind power project. All the figures are per turbine, so it can be used for a one, two

Massachusetts at Amherst, University of

Note: This page contains sample records for the topic "wind turbine development" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


301

Heavy Section Ductile Iron Castings for Use in Wind Turbine ...  

Science Conference Proceedings (OSTI)

However, wind power still accounts for less than 2% of total energy production in the US. One hurdle to producing larger capacity wind turbine generators lies in...

302

State of the Art in Floating Wind Turbine Design Tools  

SciTech Connect

This paper presents an overview of the simulation codes available to the offshore wind industry that are capable of performing integrated dynamic calculations for floating offshore wind turbines.

Cordle, A.; Jonkman, J.

2011-10-01T23:59:59.000Z

303

Holy Name Central Catholic School Wind Turbine | Open Energy Information  

Open Energy Info (EERE)

Name Central Catholic School Wind Turbine Name Central Catholic School Wind Turbine Jump to: navigation, search Name Holy Name Central Catholic School Wind Turbine Facility Holy Name Central Catholic School Wind Turbine Sector Wind energy Facility Type Community Wind Facility Status In Service Owner Holy Name Central Catholic School Developer Sustainable Energy Developments Energy Purchaser Holy Name Central Catholic School Location Worcester MA Coordinates 42.24087°, -71.783879° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":42.24087,"lon":-71.783879,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

304

Woods Hole Research Center Wind Turbine | Open Energy Information  

Open Energy Info (EERE)

Hole Research Center Wind Turbine Hole Research Center Wind Turbine Jump to: navigation, search Name Woods Hole Research Center Wind Turbine Facility Woods Hole Research Center Wind Turbine Sector Wind energy Facility Type Small Scale Wind Facility Status In Service Owner Woods Hole Research Center Developer Sustainable Energy Developments Energy Purchaser Woods Hole Research Center Location Falmouth MA Coordinates 41.548637°, -70.64326° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":41.548637,"lon":-70.64326,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

305

Establishment of Small Wind Turbine Regional Test Centers (Presentation)  

DOE Green Energy (OSTI)

This presentation offers an overview of the Regional Test Centers project for Small Wind Turbine testing and certification.

Sinclair, K.

2011-09-16T23:59:59.000Z

306

Modal Dynamics of Large Wind Turbines with Different Support Structures  

SciTech Connect

This paper presents modal dynamics of floating-platform-supported and monopile-supported offshore wind turbines.

Bir, G.; Jonkman, J.

2008-07-01T23:59:59.000Z

307

Low Wind Speed Technology Phase II: LIDAR for Turbine Control  

SciTech Connect

This fact sheet describes NREL's subcontract with QinetiQ to conduct a study on LIDAR systems for wind turbines.

Not Available

2006-06-01T23:59:59.000Z

308

Alstom 3-MW Wind Turbine Installed at NWTC (Fact Sheet)  

DOE Green Energy (OSTI)

The 3-MW Alstom wind turbine was installed at NREL's NWTC in October 2010. Test data will be used to validate advanced turbine design and analysis tools. NREL signed a Cooperative Research and Development Agreement with Alstom in 2010 to conduct certification testing on the company's 3-MW ECO 100 wind turbine and to validate models of Alstom's unique drivetrain concept. The turbine was installed at NREL's National Wind Technology Center (NWTC) in October 2010 and engineers began certification testing in 2011. Tests to be conducted by NREL include a power quality test to finalize the International Electrotechnical Commission (IEC) requirements for type certification of the 60-Hz unit. The successful outcome of this test will enable Alstom to begin commercial production of ECO 100 in the United States. NREL also will obtain additional measurements of power performance, acoustic noise, and system frequency to complement the 50 Hz results previously completed in Europe. After NREL completes the certification testing on the ECO 100, it will conduct long-term testing to validate gearbox performance to gain a better understanding of the machine's unique ALSTOM PURE TORQUE{trademark} drivetrain concept. In conventional wind turbines, the rotor is supported by the shaft-bearing gearbox assembly. Rotor loads are partially transmitted to the gearbox and may reduce gearbox reliability. In the ALSTOM PURE TORQUE concept, the rotor is supported by a cast frame running through the hub, which transfers bending loads directly to the tower. Torque is transmitted to the shaft through an elastic coupling at the front of the hub. According to Alstom, this system will increase wind turbine reliability and reduce operation and maintenance costs by isolating the gearbox from rotor loads. Gearbox reliability has challenged the wind energy industry for more than two decades. Gearbox failures require expensive and time-consuming replacement, significantly increasing the cost of wind plant operation while reducing the plant's power output and revenue. To solve gearbox reliability issues, NREL launched a Gearbox Reliability Collaborative (GRC) in 2006 and brought together the world's leading turbine manufacturers, consultants, and experts from more than 30 companies and organizations. GRC's goal was to validate the typical design process-from wind turbine system loads to bearing ratings-through a comprehensive dynamometer and field-test program. Design analyses will form a basis for improving reliability of future designs and retrofit packages. Through its study of Alstom's Eco 100 gearbox, NREL can compare its GRC model gearbox with Alstom's and add the results to the GRC database, which is helping to advance more reliable wind turbine technology.

Not Available

2011-09-01T23:59:59.000Z

309

Amplitude modulation of wind turbine noise  

E-Print Network (OSTI)

Due to swish and thump amplitude modulation, the noise of wind turbines cause more annoyance than other environmental noise of the same average level. The wind shear accounts for the thump modulation (van den Berg effect). Making use of the wind speed measurements at the hub height, as well as at the top and the bottom of the rotor disc (Fig.1), the non-standard wind profile is applied. It causes variations in the A-weighted sound pressure level, LpA. The difference between the maximum and minimum of LpA characterizes thump modulation (Fig.2).

Makarewicz, Rufin

2013-01-01T23:59:59.000Z

310

Dynamic stall on wind turbine blades  

DOE Green Energy (OSTI)

Dynamic loads must be predicted accurately in order to estimate the fatigue life of wind turbines operating in turbulent environments. Dynamic stall contributes to increased dynamic loads during normal operation of all types of horizontal-axis wind turbine (HAWTs). This report illustrates how dynamic stall varies throughout the blade span of a 10 m HAWT during yawed and unyawed operating conditions. Lift, drag, and pitching moment coefficients during dynamics stall are discussed. Resulting dynamic loads are presented, and the effects of dynamic stall on yaw loads are demonstrated using a yaw loads dynamic analysis (YAWDYN). 12 refs., 22 figs., 1 tab.

Butterfield, C.P.; Simms, D.; Scott, G. [National Renewable Energy Lab., Golden, CO (United States)] [National Renewable Energy Lab., Golden, CO (United States); Hansen, A.C. [Utah Univ., Salt Lake City, UT (United States)] [Utah Univ., Salt Lake City, UT (United States)

1991-12-01T23:59:59.000Z

311

Estimated global ocean wind power potential from QuikSCAT observations, accounting for turbine characteristics and siting  

E-Print Network (OSTI)

for off- shore wind turbines in Europe and North America,of wind power and wind turbine characteristics, Renewablea multi?megawatt wind turbine, Renewable Energy, Matthews,

Capps, Scott B; Zender, Charles S

2010-01-01T23:59:59.000Z

312

Wind Turbine Verification Project Experience: 1999: U.S. Department of Energy - EPRI Wind Turbine Verification Program  

Science Conference Proceedings (OSTI)

EPRI and the U.S. Department of Energy (DOE) initiated the Turbine Verification Program (TVP) in 1992 to evaluate prototype advanced wind turbines and to provide a bridge from development programs to commercial purchases. This report provides an overview and comparisons of site and operating experiences at the seven TVP projects in Ft. Davis, Texas; Searsburg, Vermont; Kotzebue, Alaska; Glenmore, Wisconsin; Algona, Iowa; Springview, Nebraska; and Big Spring, Texas. The lessons learned throughout the prog...

2000-12-12T23:59:59.000Z

313

Wilson Bull., 11l(l), 1999, pp. 100-104 EFFECTS OF WIND TURBINES ON UPLAND NESTING BIRDS IN  

E-Print Network (OSTI)

turbine foundations (Patrick and Henderson) was commissioned to design a foundation. More detailHull Wind II: A Case Study of the Development of a Second Large Wind Turbine Installation", the largest wind turbine (660 kW) yet installed in the state. That project proved to be so popular that HMLP

314

Composite Wind Turbine Blade Effects of Defects: Part B--Progressive Damage Modeling of Fiberglass/Epoxy  

E-Print Network (OSTI)

Composite Wind Turbine Blade Effects of Defects: Part B-- Progressive Damage Modeling of Fiberglass for the reliability of modern composite wind turbine blades. The DOE has sponsored a comprehensive study to a wind turbine blade reliability infrastructure. To support this development of a reliability

315

UMore Park Wind Turbine Project Loggerhead Shrike Survey Draft Report to Barr Engineering  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

UMore Park Wind Turbine Project UMore Park Wind Turbine Project Loggerhead Shrike Survey Draft Report to Barr Engineering Lee A. Pfannmuller June 15, 2010 [1] UMore Park Wind Turbine Project Loggerhead Shrike Survey Report to Barr Engineering Lee A. Pfannmuller June 15, 2010 Project Area The University of Minnesota owns approximately 5,000 acres in Dakota County, known as the University of Minnesota Outreach, Research and Education (UMore) Park. A concept master plan was developed

316

IMPLEMENTATION OF WIND TURBINE CONTROLLERS W.E.Leithead  

E-Print Network (OSTI)

IMPLEMENTATION OF WIND TURBINE CONTROLLERS D.J.Leith W.E.Leithead Department of Electronic-speed wind turbines are considered, namely, (1) accommodation of the strongly nonlinear rotor aerodynamics derived and extended to cater for all wind turbine configurations. A rigorous stability analysis

Duffy, Ken

317

Fast Verification of Wind Turbine Power Summary of Project Results  

E-Print Network (OSTI)

a wind turbine's design phase, the power curve can be predicted using analytical techniques such as Blade using a single cup anemometer at the wind turbine's hub height and it is assumed that this measurementFast Verification of Wind Turbine Power Curves: Summary of Project Results by: Cameron Brown ­ s

318

Stochastic Analysis of Wind Turbine Power Curves Edgar Anahua  

E-Print Network (OSTI)

procedure (IEC 61400-12) for power performance charac- terization of a single wind turbines is shown by the standard IEC 61400-12 3 [12]. In this standard procedure the power curve of a single wind turbine of the blade pitch angle system of a wind turbine [9]. The phase averaged P(t,t ) function depends on the time

Peinke, Joachim

319

Assessing the Impacts of Reduced Noise Operations of Wind Turbines  

E-Print Network (OSTI)

i LBNL-3562E Assessing the Impacts of Reduced Noise Operations of Wind Turbines on Neighbor Operations of Wind Turbines on Neighbor Annoyance: A Preliminary Analysis in Vinalhaven, Maine Prepared from the turbines is unwelcome and annoying. Fox Islands Wind, the owner of the facility, hypothesized

320

Understanding Trends inUnderstanding Trends in Wind Turbine Prices  

E-Print Network (OSTI)

(worldwide) Polynomial trend line e(2010$/kW 400 600 800 1,000 TurbinePric Recent wind turbine price quotes 0Understanding Trends inUnderstanding Trends in Wind Turbine Prices OOver the Past Decade Mark Division · Energy Analysis Department Efficiency and Renewable Energy (Wind & Water Power Program) under

Note: This page contains sample records for the topic "wind turbine development" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


321

Sliding mode control law for a variable speed wind turbine  

Science Conference Proceedings (OSTI)

Modern wind turbines are designed in order to work in variable speed operations. To perform this task, wind turbines are provided with adjustable speed generators, like the double feed induction generator. One of the main advantage of adjustable speed ... Keywords: modeling and simulation, variable structure control, wind turbine control

Oscar Barambones; Jose Maria Gonzalez De Durana; Patxi Alkorta; Jose Antonio Ramos; Manuel De La Sen

2011-02-01T23:59:59.000Z

322

Duration Test Report for the Entegrity EW50 Wind Turbine  

DOE Green Energy (OSTI)

This report summarizes the results of a duration test that NREL conducted on the Entegrity EW50 wind turbine. This test was conducted in accordance with the International Electrotechnical Commissions' (IEC) standard, Wind Turbine Generator System Part 2: Design requirements for small wind turbines, IEC 61400-2 Ed.2.0, 2006-03.

Smith, J.; Huskey, A.; Jager, D.; Hur, J.

2012-12-01T23:59:59.000Z

323

EFFECTS OF FIBER WAVINESS ON COMPOSITES FOR WIND TURBINE BLADES  

E-Print Network (OSTI)

EFFECTS OF FIBER WAVINESS ON COMPOSITES FOR WIND TURBINE BLADES J.F. Mandell D.D. Samborsky and L Composite materials of interest for wind turbine blades use relatively low cost fibers, resins and processes WORDS: Composite Materials, Fiber Waviness, Compressive Strength #12;1. INTRODUCTION Wind turbine blades

324

Lessons Learned: Milwaukees Wind Turbine Project  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

City of Milwaukee: City of Milwaukee: Wind Turbine Project Matt Howard, Environmental Sustainability Director Project Best Practices * Transparency and information * Find the most appropriate site - both wind profile and building load * Stay away from neighborhoods and iconic civic sites * No surprises for locally elected officials * Active public engagement * Know the facts; kill the myths; control the narrative * Tie to local economic development * Cost-benefit analysis, budgeting, payback, over and over and over... Project Basics * Proposal to site ONE, small-scale wind turbine on City-owned building on Port Authority property * 2323 S. Lincoln Memorial Dr., Port Administration Building * Turbine will power ALL of Port Admin. Bldg's needs * Best estimate of total cost of installation/operation: $550,000-$600,000

325

Structural health monitoring of wind turbines  

DOE Green Energy (OSTI)

To properly determine what is needed in a structural health monitoring system, actual operational structures need to be studied. We have found that to effectively monitor the structural condition of an operational structure four areas must be addressed: determination of damage-sensitive parameters, test planning, information condensation, and damage identification techniques. In this work, each of the four areas has been exercised on an operational structure. The structures studied were all be wind turbines of various designs. The experiments are described and lessons learned will be presented. The results of these studies include a broadening of experience in the problems of monitoring actual structures as well as developing a process for implementing such monitoring systems.

Simmermacher, T.; James, G.H. III.; Hurtado, J.E.

1997-09-01T23:59:59.000Z

326

Archbold Local Schools Wind Turbine | Open Energy Information  

Open Energy Info (EERE)

Archbold Local Schools Wind Turbine Archbold Local Schools Wind Turbine Jump to: navigation, search Name Archbold Local Schools Wind Turbine Facility Archbold Local Schools Wind Turbine Sector Wind energy Facility Type Community Wind Facility Status In Service Owner Archbold Area Local Schools District Developer Archbold Area Local Schools District Energy Purchaser Archbold Area Local Schools District Location Archbold OH Coordinates 41.51543828°, -84.31605577° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":41.51543828,"lon":-84.31605577,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

327

Conneaut Wastewater Facility Wind Turbine | Open Energy Information  

Open Energy Info (EERE)

Wastewater Facility Wind Turbine Wastewater Facility Wind Turbine Jump to: navigation, search Name Conneaut Wastewater Facility Wind Turbine Facility Conneaut Wastewater Facility Wind Turbine Sector Wind energy Facility Type Community Wind Facility Status In Service Owner Conneaut Wastewater Facility Developer NexGen Energy Partners Energy Purchaser Conneaut Wastewater Facility Location Conneaut OH Coordinates 41.968223°, -80.552268° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":41.968223,"lon":-80.552268,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

328

Conneaut Middle School Wind Turbine | Open Energy Information  

Open Energy Info (EERE)

Conneaut Middle School Wind Turbine Conneaut Middle School Wind Turbine Jump to: navigation, search Name Conneaut Middle School Wind Turbine Facility Conneaut Middle School Wind Turbine Sector Wind energy Facility Type Community Wind Facility Status In Service Owner Conneaut Middle School Developer NexGen Energy Partners Energy Purchaser Conneaut Middle School Location Conneaut OH Coordinates 41.92601°, -80.557126° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":41.92601,"lon":-80.557126,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

329

Optimizing wind turbine control system parameters  

Science Conference Proceedings (OSTI)

The impending expiration of the levelized period in the Interim Standard Offer Number 4 (ISO4) utility contracts for purchasing wind-generated power in California mandates, more than ever, that windplants be operated in a cost-effective manner. Operating plans and approaches are needed that maximize the net revenue from wind parks--after accounting for operation and maintenance costs. This paper describes a design tool that makes it possible to tailor a control system of a wind turbine (WT) to maximize energy production while minimizing the financial consequences of fatigue damage to key structural components. Plans for code enhancements to include expert systems and fuzzy logic are discussed, and typical results are presented in which the code is applied to study the controls of a generic Danish 15-m horizontal axis wind turbine (HAWT).

Schluter, L.L. [Sandia National Labs., Albuquerque, NM (United States); Vachon, W.A. [Vachon (W.A.) and Associates, Inc., Manchester, MA (United States)

1993-08-01T23:59:59.000Z

330

Memorandum of Understanding between the U.S. Wind Turbine Manufacturer...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

U.S. Department of Energy on Developing a Shared Strategy to Achieve 20% Wind Energy in 2030 Memorandum of Understanding between the U.S. Wind Turbine Manufacturers and the U.S....

331

Memorandum of Understanding between the U.S. Wind Turbine Manufacturer...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Memorandum of Understanding between the U.S. Wind Turbine Manufacturers and the U.S. Department of Energy on Developing a Shared Strategy to Achieve 20% Wind Energy in 2030...

332

Wind Turbine Generator System Power Quality Test Report for the Gaia Wind 11-kW Wind Turbine  

DOE Green Energy (OSTI)

This report details the power quality test on the Gaia Wind 11-kW Wind Turbine as part of the U.S. Department of Energy's Independent Testing Project. In total five turbines are being tested as part of the project. Power quality testing is one of up to five test that may be performed on the turbines including power performance, safety and function, noise, and duration tests. The results of the testing provide manufacturers with reports that may be used for small wind turbine certification.

Curtis, A.; Gevorgian, V.

2011-07-01T23:59:59.000Z

333

International Workshop on Small Scale Wind Energy for Developing Countries  

Open Energy Info (EERE)

Scale Wind Energy for Developing Countries Scale Wind Energy for Developing Countries Jump to: navigation, search Name International Workshop on Small Scale Wind Energy for Developing Countries Agency/Company /Organization Risoe DTU Sector Energy Focus Area Renewable Energy, Wind Topics Implementation, Technology characterizations Resource Type Workshop, Training materials, Lessons learned/best practices Website http://www.risoe.dtu.dk/~/medi References International Workshop on Small Scale Wind Energy for Developing Countries[1] Background "The workshop covers the following main themes: Wind energy technologies, their perspectives and applications in developing countries. Reliability of wind turbines, lifetime and strength of wind turbine components. Low cost and natural materials for wind turbines.

334

Wind Turbine Generator System Duration Test Report for the ARE 442 Wind Turbine  

DOE Green Energy (OSTI)

This test is being conducted as part of the U.S. Department of Energy's (DOE) Independent Testing project. This project was established to help reduce the barriers of wind energy expansion by providing independent testing results for small turbines. In total, four turbines are being tested at the NWTC as a part of this project. Duration testing is one of up to 5 tests that may be performed on the turbines, including power performance, safety and function, noise, and power quality tests. The results of the testing provide manufacturers with reports that may be used for small wind turbine certification. The test equipment includes a grid connected ARE 442 wind turbine mounted on a 30.5 meter (100 ft) lattice tower manufactured by Abundant Renewable Energy. The system was installed by the NWTC Site Operations group with guidance and assistance from Abundant Renewable Energy.

van Dam, J.; Baker, D.; Jager, D.

2010-05-01T23:59:59.000Z

335

Development of an 8 kW wind turbine generator for residential type applications. Phase I: design and analysis. Volume II. Technical report  

SciTech Connect

This Phase I summary report contains a description of the 8 kW wind energy conversion system developed by the United Technologies Research Center (UTRC) for the Department of Energy. The wind turbine employs the UTRC Bearingless Rotor Concept in conjunction with a passive pendulum control system which controls blade pitch for start-up, efficient power generation, and high-speed survivability. The report contains a summary of the experimental and analytical programs in support of design efforts. These supporting programs include materials tests, a wind tunnel program, and aeroelastic analyses to evaluate system stability. An estimate is also made of the projected manufacturing cost of the system if produced in quantity.

Cheney, M.C.

1979-06-25T23:59:59.000Z

336

NREL Collaborates to Improve Wind Turbine Technology (Fact Sheet)  

DOE Green Energy (OSTI)

NREL's Gearbox Reliability Collaborative leads to wind turbine gearbox reliability, lowering the cost of energy. Unintended gearbox failures have a significant impact on the cost of wind farm operations. In 2007, the National Renewable Energy Laboratory (NREL) initiated the Gearbox Reliability Collaborative (GRC), which follows a multi-pronged approach based on a collaborative of manufacturers, owners, researchers, and consultants. The project combines analysis, field testing, dynamometer testing, condition monitoring, and the development and population of a gearbox failure database. NREL and other GRC partners have been able to identify shortcomings in the design, testing, and operation of wind turbines that contribute to reduced gearbox reliability. In contrast to private investigations of these problems, GRC findings are quickly shared among GRC participants, including many wind turbine manufacturers and equipment suppliers. Ultimately, the findings are made public for use throughout the wind industry. This knowledge will result in increased gearbox reliability and an overall reduction in the cost of wind energy. Project essentials include the development of two redesigned and heavily instrumented representative gearbox designs. Field and dynamometer tests are conducted on the gearboxes to build an understanding of how selected loads and events translate into bearing and gear response. The GRC evaluates and validates current wind turbine, gearbox, gear and bearing analytical tools/models, develops new tools/models, and recommends improvements to design and certification standards, as required. In addition, the GRC is investigating condition monitoring methods to improve turbine reliability. Gearbox deficiencies are the result of many factors, and the GRC team recommends efficient and cost-effective improvements in order to expand the industry knowledge base and facilitate immediate improvements in the gearbox life cycle.

Not Available

2012-01-01T23:59:59.000Z

337

Operation of a third generation wind turbine  

SciTech Connect

A modern wind turbine was installed on May 26, 1982, at the USDA Conservation and Production Research Laboratory, Bushland, Texas. This wind machine was used to provide electrical energy for irrigation pumping and other agricultural loads. The wind turbine purchased for this research is an Enertech Model 44, manufactured by Enertech Corporation, Norwich, Vermont. The horizontal-axis wind turbine has a 13.4 m diameter, three-bladed, fixed-pitch rotor on a 24.4-m tower. The blades are laminated epoxy-wood, and are attached to a steel hub. A 25-kW induction generator provides 240 V, 60 Hz, single-phase electrical power. The wind turbine operated 64 percent of the time, while being available to operate over 94 percent of the time. The unit had a net energy production of over 80,000 kWh in an average windspeed of 5.9 m/s at a height of 10 m in a 16-month period. The blade pitch was originally offset two degrees from design to maintain power production within the limitations of the gearbox, generator, and brakes. A maximum output of 23.2 kW averaged over a 15-second period indicated that with a new brake, the system was capable of handling more power. After a new brake was installed, the blade pitch was changed to one degree from design. The maximum power output measured after the pitch change was 29.3 kW. Modified blade tip brakes were installed on the wind turbine on July 7, 1983. These tip brakes increased power production at lower windspeeds while reducing power at higher windspeeds.

Vosper, F.C.; Clark, R.N.

1983-12-01T23:59:59.000Z

338

A Methodology for Assessment of Wind Turbine Noise Generation  

E-Print Network (OSTI)

The detailed analysis of a series of acoustic measurements taken near several large wind turbines (100 kWand above) has identified the maximum acoustic energy as being concentrated in the low-frequency audible and subaudible ranges, usually less than 100 Hz. These measurements have also shown any reported community annoyance associated with turbine operations has often been related to the degree of coherent impulsiveness present and the subsequent harmonic coupling of acoustic energy to residential structures. Thus, one technique to assess the annoyance potential of a given wind turbine design is to develop a method which quantifies this degree of impulsiveness or coherency in the radiated acoustic energy spectrum under a wide range of operating conditions. Experience has also shown the presence of annoying conditions is highly time dependent and nonstationary, and, therefore, any attempts to quantify or at least classify wind turbine designs in terms of their noise annoyance potential must be handled within the proper probabilistic framework. A technique is described which employs multidimensional, joint probability analysis to establish the expected coincidence of acoustic energy levels in a contiguous sequence of octave frequency bands which have been chosen because of their relationship to common structural resonant frequencies in residential buildings. Evidence is presented to justify the choice of these particular bands. Comparisons of the acoustic performance and an estimate of the annoyance potential of several large wind turbine designs using this technique is also discussed.

N. D. Kelley; R. R. Hemphill; M. E. Mckenna

1981-01-01T23:59:59.000Z

339

A sensorless control for wind turbine  

Science Conference Proceedings (OSTI)

This paper presents a sensorless control for a stall regulated variable speed wind turbine, where the speed reference is obtained from the estimated aerodynamic torque. The LQG/LTR methodology is applied to the design of an optimal discrete-time feedback ...

Ronilson Rocha

2009-06-01T23:59:59.000Z

340

Root region airfoil for wind turbine  

DOE Patents (OSTI)

A thick airfoil for the root region of the blade of a wind turbine. The airfoil has a thickness in a range from 24%-26% and a Reynolds number in a range from 1,000,000 to 1,800,000. The airfoil has a maximum lift coefficient of 1.4-1.6 that has minimum sensitivity to roughness effects.

Tangler, James L. (Boulder, CO); Somers, Dan M. (State College, PA)

1995-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "wind turbine development" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


341

Wooden wind turbine blade manufacturing process  

DOE Patents (OSTI)

A wooden wind turbine blade is formed by laminating wood veneer in a compression mold having the exact curvature needed for one side of the blade, following which the other side of the blade is ground flat along its length but twisted with respect to the blade axis.

Coleman, Clint (Warren, VT)

1986-01-01T23:59:59.000Z

342

Wind Turbine Tribology Seminar - A Recap  

DOE Green Energy (OSTI)

Tribology is the science and engineering of interacting surfaces in relative motion. It includes the study and application of the principles of friction, lubrication, and wear. It is an important phenomenon that not only impacts the design and operation of wind turbine gearboxes, but also their subsequent maintenance requirements and overall reliability. With the major growth and increasing dependency on renewable energy, mechanical reliability is an extremely important issue. The Wind Turbine Tribology Seminar was convened to explore the state-of-the-art in wind turbine tribology and lubricant technologies, raise industry awareness of a very complex topic, present the science behind each technology, and identify possible R&D areas. To understand the background of work that had already been accomplished, and to consolidate some level of collective understanding of tribology by acknowledged experts, the National Renewable Energy Laboratory (NREL), Argonne National Laboratory (ANL), and the U.S. Department of Energy (DOE) hosted a wind turbine tribology seminar. It was held at the Renaissance Boulder Flatiron Hotel in Broomfield, Colorado on November 15-17, 2011. This report is a summary of the content and conclusions. The presentations given at the meeting can be downloaded. Interested readers who were not at the meeting may wish to consult the detailed publications listed in the bibliography section, obtain the cited articles in the public domain, or contact the authors directly.

Errichello, R.; Sheng, S.; Keller, J.; Greco, A.

2012-02-01T23:59:59.000Z

343

Hydrogen Storage in Wind Turbine Towers  

DOE Green Energy (OSTI)

Low-cost hydrogen storage is recognized as a cornerstone of a renewables-hydrogen economy. Modern utility-scale wind turbine towers are typically conical steel structures that, in addition to supporting the rotor, could be used to store hydrogen. This study has three objectives: (1) Identify the paramount considerations associated with using a wind turbine tower for hydrogen storage; (2)Propose and analyze a cost-effective design for a hydrogen-storing tower; and (3) Compare the cost of storage in hydrogen towers to the cost of storage in conventional pressure vessels. The paramount considerations associated with a hydrogen tower are corrosion (in the form of hydrogen embrittlement) and structural failure (through bursting or fatigue life degradation). Although hydrogen embrittlement (HE) requires more research, it does not appear to prohibit the use of turbine towers for hydrogen storage. Furthermore, the structural modifications required to store hydrogen in a tower are not cost prohibitive.

Kottenstette, R.; Cotrell, J.

2003-09-01T23:59:59.000Z

344

Small Wind Guidebook/What Size Wind Turbine Do I Need | Open Energy  

Open Energy Info (EERE)

What Size Wind Turbine Do I Need What Size Wind Turbine Do I Need < Small Wind Guidebook Jump to: navigation, search Print PDF WIND ENERGY STAKEHOLDER ENGAGEMENT & OUTREACHSmall Wind Guidebook Home WindTurbine-icon.png Small Wind Guidebook * Introduction * First, How Can I Make My Home More Energy Efficient? * Is Wind Energy Practical for Me? * What Size Wind Turbine Do I Need? * What Are the Basic Parts of a Small Wind Electric System? * What Do Wind Systems Cost? * Where Can I Find Installation and Maintenance Support? * How Much Energy Will My System Generate? * Is There Enough Wind on My Site? * How Do I Choose the Best Site for My Wind Turbine? * Can I Connect My System to the Utility Grid? * Can I Go Off-Grid? * State Information Portal * Glossary of Terms * For More Information What Size Wind Turbine Do I Need?

345

DEVELOPMENT OF OPTIMUM DESIGN CONFIGURATION AND PERFORMANCE FOR VERTICAL AXIS WIND TURBINE  

E-Print Network (OSTI)

report was prepared as a result of work sponsored by the California Energy Commission (Commission). It does not necessarily represent the views of the Commission, its employees, or the state of California. The Commission, the state of California, its employees, contractors, and subcontractors make no warranty, express or implied, and assume no legal liability for the information in this report; nor does any party represent that the use of this information will not infringe upon privately owned rights. This report has not been approved or disapproved by the Commission nor has the Commission passed upon the accuracy or adequacy of the information in this report. PREFACE The Public Interest Energy Research (PIER) Program supports public interest energy research and development that will help improve the quality of life in California by bringing environmentally safe, affordable and reliable energy services and products to the marketplace. The PIER Program, managed by the California Energy Commission (Commission), annually awards up to $62 million of which $2 million/year is allocated to the Energy Innovation Small Grant (EISG) Program for grants. The EISG Program is administered by the San Diego State

Hamid R. Rahai; Eisg Awardee

2001-01-01T23:59:59.000Z

346

Dynamically Adjustable Wind Turbine Blades: Adaptive Turbine Blades, Blown Wing Technology for Low-Cost Wind Power  

SciTech Connect

Broad Funding Opportunity Announcement Project: Caitin is developing wind turbines with a control system that delivers compressed air from special slots located in the surface of its blades. The compressed air dynamically adjusts the aerodynamic performance of the blades, and can essentially be used to control lift, drag, and ultimately power. This control system has been shown to exhibit high levels of control in combination with an exceptionally fast response rate. The deployment of such a control system in modern wind turbines would lead to better management of the load on the system during peak usage, allowing larger blades to be deployed with a resulting increase in energy production.

2010-02-02T23:59:59.000Z

347

Yaw dynamics of horizontal axis wind turbines  

DOE Green Energy (OSTI)

Designers of a horizontal axis wind turbine yaw mechanism are faced with a difficult decision. They know that if they elect to use a yaw- controlled rotor then the system will suffer increased initial cost and increased inherent maintenance and reliability problems. On the other hand, if they elect to allow the rotor to freely yaw they known they will have to account for unknown and random, though bounded, yaw rates. They will have a higher-risk design to trade-off against the potential for cost savings and reliability improvement. The risk of a yaw-free system could be minimized if methods were available for analyzing and understanding yaw behavior. The complexity of yaw behavior has, until recently, discouraged engineers from developing a complete yaw analysis method. The objectives of this work are to (1) provide a fundamental understanding of free-yaw mechanics and the design concepts most effective at eliminating yaw problems, and (2) provide tested design tools and guidelines for use by free-yaw wind systems manufacturers. The emphasis is on developing practical and sufficiently accurate design methods.

Hansen, A.C. (Utah Univ., Salt Lake City, UT (United States))

1992-05-01T23:59:59.000Z

348

Power Performance Test Report for the SWIFT Wind Turbine  

DOE Green Energy (OSTI)

This report summarizes the results of a power performance test that NREL conducted on the SWIFT wind turbine. This test was conducted in accordance with the International Electrotechnical Commission's (IEC) standard, Wind Turbine Generator Systems Part 12: Power Performance Measurements of Electricity Producing Wind Turbines, IEC 61400-12-1 Ed.1.0, 2005-12. However, because the SWIFT is a small turbine as defined by IEC, NREL also followed Annex H that applies to small wind turbines. In these summary results, wind speed is normalized to sea-level air density.

Mendoza, I.; Hur, J.

2012-12-01T23:59:59.000Z

349

Wind Turbine Asset Management Technology Assessment  

Science Conference Proceedings (OSTI)

Wind power is one of the fastest growing generation resources in the United States and elsewhere in the world. As of December 2009, the installed wind capacity was more than 35 GW in the United States and more than 160 GW worldwide, and it is forecast to nearly triple to 100 GW and 450 GW, respectively, by 2014. The industry considers the major wind turbine components to be mature commercial technology. However, failures of gearboxes, blades, electrical controls, and other components continue to reduce t...

2010-12-31T23:59:59.000Z

350

Response of a Vertical Axis Wind Turbine to Time Varying Wind Conditions found within the Urban  

E-Print Network (OSTI)

Response of a Vertical Axis Wind Turbine to Time Varying Wind Conditions found within the Urban, 2010 PP 389­401 389 ABSTRACT Experimental testing of a vertical axis wind turbine within the urban of the turbine. Temporal variation of the wind with respect to the direction and velocity fluctuations

Tullis, Stephen

351

RESEARCH ARTICLE Dynamic wind loads and wake characteristics of a wind turbine  

E-Print Network (OSTI)

RESEARCH ARTICLE Dynamic wind loads and wake characteristics of a wind turbine model of the unsteady vortex and turbulent flow structures in the near wake of a horizontal axis wind turbine model.e., aerodynamic forces and bending moments) acting on the wind turbine model by using a high-sensitive force

Hu, Hui

352

Field Measurements of Wind Turbine Wakes with Lidars  

Science Conference Proceedings (OSTI)

Field measurements of the wake flow produced from a 2-MW Enercon E-70 wind turbine were performed using three scanning Doppler wind lidars. A GPS-based technique was used to determine the position of the wind turbine and the wind lidar locations, ...

Giacomo Valerio Iungo; Yu-Ting Wu; Fernando Port-Agel

2013-02-01T23:59:59.000Z

353

Minnkota Power Cooperative Wind Turbine (Petersburg) | Open Energy  

Open Energy Info (EERE)

Petersburg) Petersburg) Jump to: navigation, search Name Minnkota Power Cooperative Wind Turbine (Petersburg) Facility Minnkota Power Cooperative Wind Turbine (Petersburg) Sector Wind energy Facility Type Commercial Scale Wind Facility Status In Service Owner Minnkota Power Cooperative Developer Minnkota Power Cooperative Energy Purchaser Minnkota Power Cooperative Location East of Petersburg ND Coordinates 48.008793°, -97.930931° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":48.008793,"lon":-97.930931,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

354

Effects of Changing Atmospheric Conditions on Wind Turbine Performance (Poster)  

SciTech Connect

Multi-megawatt, utility-scale wind turbines operate in turbulent and dynamic winds that impact turbine performance in ways that are gradually becoming better understood. This poster presents a study made using a turbulent flow field simulator (TurbSim) and a Turbine aeroelastic simulator (FAST) of the response of a generic 1.5 MW wind turbine to changing inflow. The turbine power output is found to be most sensitive to wind speed and turbulence intensity, but the relationship depends on the wind speed with respect to the turbine's rated wind speed. Shear is found to be poorly correlated to power. A machine learning method called 'regression trees' is used to create a simple model of turbine performance that could be used as part of the wind resource assessment process. This study has used simple flow fields and should be extended to more complex flows, and validated with field observations.

Clifton, A.

2012-12-01T23:59:59.000Z

355

Duration Test Report for the Viryd CS8 Wind Turbine  

DOE Green Energy (OSTI)

This report summarizes the results of a duration noise test that the National Renewable Energy Laboratory (NREL) conducted on the Viryd CS8 wind turbine. This test was conducted in accordance with Clause 9.4 of the International Electrotechnical Commission's (IEC) standard, Wind turbines - Part 2: Design requirements for small wind turbines, IEC 61400-2 Ed. 2.0:2006-03. NREL researchers evaluated the turbine based on structural integrity and material degradation, quality of environmental protection, and dynamic behavior.

Roadman, J.; Murphy, M.; van Dam, J.

2013-06-01T23:59:59.000Z

356

Wind Turbine Generator System Acoustic Noise Test Report for the ARE 442 Wind Turbine  

Science Conference Proceedings (OSTI)

This test was conducted on the ARE 442 as part of the U.S. Department of Energy's (DOE's) Independent Testing project. This project was established to help reduce the barriers of wind energy expansion by providing independent testing results for small turbines. In total, five turbines are being tested at the National Wind Technology Center (NWTC) as a part of this project. Acoustic noise testing is one of up to five tests that may be performed on the turbines, including duration, safety and function, power performance, and power quality tests. The acoustic noise test was conducted to the IEC 61400-11 Edition 2.1.

Huskey, A.; van Dam, J.

2010-11-01T23:59:59.000Z

357

Cost Study for Large Wind Turbine Blades  

SciTech Connect

The cost study for large wind turbine blades reviewed three blades of 30 meters, 50 meters, and 70 meters in length. Blade extreme wind design loads were estimated in accordance with IEC Class I recommendations. Structural analyses of three blade sizes were performed at representative spanwise stations assuming a stressed shell design approach and E-glass/vinylester laminate. A bill of materials was prepared for each of the three blade sizes using the laminate requirements prepared during the structural analysis effort. The labor requirements were prepared for twelve major manufacturing tasks. TPI Composites developed a conceptual design of the manufacturing facility for each of the three blade sizes, which was used for determining the cost of labor and overhead (capital equipment and facilities). Each of the three potential manufacturing facilities was sized to provide a constant annual rated power production (MW per year) of the blades it produced. The cost of the production tooling and overland transportation was also estimated. The results indicate that as blades get larger, materials become a greater proportion of total cost, while the percentage of labor cost is decreased. Transportation costs decreased as a percentage of total cost. The study also suggests that blade cost reduction efforts should focus on reducing material cost and lowering manufacturing labor, because cost reductions in those areas will have the strongest impact on overall blade cost.

ASHWILL, THOMAS D.

2003-05-01T23:59:59.000Z

358

Fish schooling as a basis for vertical axis wind turbine farm design  

E-Print Network (OSTI)

Most wind farms consist of horizontal axis wind turbines (HAWTs) due to the high power coefficient (mechanical power output divided by the power of the free-stream air through the turbine cross-sectional area) of an isolated turbine. However when in close proximity to neighbouring turbines, HAWTs suffer from a reduced power coefficient. In contrast, previous research on vertical axis wind turbines (VAWTs) suggests that closely-spaced VAWTs may experience only small decreases (or even increases) in an individual turbine's power coefficient when placed in close proximity to neighbours, thus yielding much higher power outputs for a given area of land. A potential flow model of inter-VAWT interactions is developed to investigate the effect of changes in VAWT spatial arrangement on the array performance coefficient, which compares the expected average power coefficient of turbines in an array to a spatially-isolated turbine. A geometric arrangement based on the configuration of shed vortices in the wake of schooli...

Whittlesey, Robert W; Dabiri, John O

2010-01-01T23:59:59.000Z

359

Small Wind Guidebook/How Do I Choose the Best Site for My Wind Turbine |  

Open Energy Info (EERE)

Small Wind Guidebook/How Do I Choose the Best Site for My Wind Turbine Small Wind Guidebook/How Do I Choose the Best Site for My Wind Turbine < Small Wind Guidebook Jump to: navigation, search Print PDF WIND ENERGY STAKEHOLDER ENGAGEMENT & OUTREACHSmall Wind Guidebook Home WindTurbine-icon.png Small Wind Guidebook * Introduction * First, How Can I Make My Home More Energy Efficient? * Is Wind Energy Practical for Me? * What Size Wind Turbine Do I Need? * What Are the Basic Parts of a Small Wind Electric System? * What Do Wind Systems Cost? * Where Can I Find Installation and Maintenance Support? * How Much Energy Will My System Generate? * Is There Enough Wind on My Site? * How Do I Choose the Best Site for My Wind Turbine? * Can I Connect My System to the Utility Grid? * Can I Go Off-Grid? * State Information Portal * Glossary of Terms

360

Property:WindTurbineManufacturer | Open Energy Information  

Open Energy Info (EERE)

WindTurbineManufacturer WindTurbineManufacturer Jump to: navigation, search This is a property of type Page. Pages using the property "WindTurbineManufacturer" Showing 25 pages using this property. (previous 25) (next 25) 3 3-D Metals + Northern Power Systems + A AB Tehachapi Wind Farm + Vestas + AFCEE MMR Turbines + GE Energy + AG Land 1 + GE Energy + AG Land 2 + GE Energy + AG Land 3 + GE Energy + AG Land 4 + GE Energy + AG Land 5 + GE Energy + AG Land 6 + GE Energy + AVTEC + Northern Power Systems + Adair Wind Farm I + Vestas + Adair Wind Farm II + Siemens + Adams Wind Project + Alstom + Aeroman Repower Wind Farm + GE Energy + Affinity Wind Farm + Suzlon Energy Company + Agassiz Beach Wind Farm + Vestas + Agriwind Wind Farm + Suzlon Energy Company + Ainsworth Wind Energy Facility + Vestas +

Note: This page contains sample records for the topic "wind turbine development" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


361

Understanding Trends in Wind Turbine Prices Over the Past Decade  

E-Print Network (OSTI)

Innovation and the price of wind energy in the US. Energythe impact of energy price changes on wind turbine prices.Costs 3.6 Energy Prices Life-cycle analyses of wind projects

Bolinger, Mark

2012-01-01T23:59:59.000Z

362

An experimental and numerical study of wind turbine seismic behavior  

E-Print Network (OSTI)

and the issues. Wind Energy, 7(4), 373392. Somerville, P.turbines. European Wind Energy Conference and Exhibition,Athens, Greece. European Wind Energy Association, He, X. (

Prowell, I.

2011-01-01T23:59:59.000Z

363

Understanding Wind Turbine Price Trends in the U.S. Over the Past Decade  

E-Print Network (OSTI)

consequent impacts on wind turbine and wind energy pricing.Bloomberg NEF). 2011c. Wind Turbine Price Index, Issue V.Understanding Trends in Wind Turbine Prices Over the Past

Bolinger, Mark

2013-01-01T23:59:59.000Z

364

Cambridge Danehy Park Wind Turbine Preliminary Project Assessment  

E-Print Network (OSTI)

.0 100.0 120.0 0 10 20 30 40 Noise Level (dBA) Distance from Wind Turbine (m) SS P20, NP100, and P500 ACambridge Danehy Park Wind Turbine Preliminary Project Assessment Overview MIT Wind Energy Projects 4 / 25 2.5 / 25 Rated Wind Speed (m/s) 13 10 14.5 ~15 12 The above turbines were chosen to provide

365

Landowners' Frequently Asked Questions about Wind Development  

Wind Powering America (EERE)

Landowners' Frequently Asked Questions Landowners' Frequently Asked Questions about Wind Development 1 Landowners' Frequently Asked Questions about Wind Development Jay Haley, P.E. 1. How much money can I make? Based on wind projects in southern Minnesota and northern Iowa, landowners can expect to receive annual land-lease payments ranging from $2,000 to more than $4,000 per turbine. The amount depends on the size of the wind turbine and how much electricity it produces as well as the selling price of the electricity. The same turbine will produce more in one location than another depending on the annual average wind speed at the site. The payments typically represent from 2% to 4% of the annual gross revenue of the turbine. 2. How many turbines can be placed on a section of

366

Assessment of research needs for wind turbine rotor materials technology  

DOE Green Energy (OSTI)

Wind-driven power systems is a renewable energy technology that is still in the early stages of development. Wind power plants installed in early 1980s suffered structural failures chiefly because of incomplete understanding of wind forces (turbulent), in some cases because of poor product quality. Failures of rotor blades are now somewhat better understood. This committee has examined the experience base accumulated by wind turbines and the R and D programs sponsored by DOE. It is concluded that a wind energy system such as is described is within the capability of engineering practice; however because of certain gaps in knowledge, and the presence of only one major integrated manufacturer of wind power machines in the USA, a DOE R and D investment is still required.

Not Available

1991-01-01T23:59:59.000Z

367

Feasibility of Floating Platform Systems for Wind Turbines: Preprint  

DOE Green Energy (OSTI)

This paper provides a general technical description of several types of floating platforms for wind turbines. Platform topologies are classified into multiple- or single-turbine floaters and by mooring method. Platforms using catenary mooring systems are contrasted to vertical mooring systems and the advantages and disadvantages are discussed. Specific anchor types are described in detail. A rough cost comparison is performed for two different platform architectures using a generic 5-MW wind turbine. One platform is a Dutch study of a tri-floater platform using a catenary mooring system, and the other is a mono-column tension-leg platform developed at the National Renewable Energy Laboratory. Cost estimates showed that single unit production cost is $7.1 M for the Dutch tri-floater, and $6.5 M for the NREL TLP concept. However, value engineering, multiple unit series production, and platform/turbine system optimization can lower the unit platform costs to $4.26 M and $2.88 M, respectively, with significant potential to reduce cost further with system optimization. These foundation costs are within the range necessary to bring the cost of energy down to the DOE target range of $0.05/kWh for large-scale deployment of offshore floating wind turbines.

Musial, W.; Butterfield, S.; Boone, A.

2003-11-01T23:59:59.000Z

368

Wind Turbine Drivetrain Condition Monitoring During GRC Phase 1 and Phase 2 Testing  

DOE Green Energy (OSTI)

This report will present the wind turbine drivetrain condition monitoring (CM) research conducted under the phase 1 and phase 2 Gearbox Reliability Collaborative (GRC) tests. The rationale and approach for this drivetrain CM research, investigated CM systems, test configuration and results, and a discussion on challenges in wind turbine drivetrain CM and future research and development areas, will be presented.

Sheng, S.; Link, H.; LaCava, W.; van Dam, J.; McNiff, B.; Veers, P.; Keller, J.; Butterfield, S.; Oyague, F.

2011-10-01T23:59:59.000Z

369

Advanced Wind Turbine Drivetrain Concepts: Workshop Report, June 29-30, 2010  

DOE Green Energy (OSTI)

This report presents key findings from the Department of Energy's Advanced Drivetrain Workshop, held on June 29-30, 2010 in Broomfield, Colorado, to assess different advanced drivetrain technologies, their relative potential to improve the state-of-the-art in wind turbine drivetrains, and the scope of research and development needed for their commercialization in wind turbine applications.

DOE, EERE

2010-12-01T23:59:59.000Z

370

Advanced Wind Turbine Drivetrain Concepts: Workshop Report, June 29-30, 2010  

SciTech Connect

This report presents key findings from the Department of Energy's Advanced Drivetrain Workshop, held on June 29-30, 2010 in Broomfield, Colorado, to assess different advanced drivetrain technologies, their relative potential to improve the state-of-the-art in wind turbine drivetrains, and the scope of research and development needed for their commercialization in wind turbine applications.

DOE, EERE

2010-12-01T23:59:59.000Z

371

Wind Turbine Modeling for Computational Fluid Dynamics: December 2010 - December 2012  

DOE Green Energy (OSTI)

With the shortage of fossil fuel and the increasing environmental awareness, wind energy is becoming more and more important. As the market for wind energy grows, wind turbines and wind farms are becoming larger. Current utility-scale turbines extend a significant distance into the atmospheric boundary layer. Therefore, the interaction between the atmospheric boundary layer and the turbines and their wakes needs to be better understood. The turbulent wakes of upstream turbines affect the flow field of the turbines behind them, decreasing power production and increasing mechanical loading. With a better understanding of this type of flow, wind farm developers could plan better-performing, less maintenance-intensive wind farms. Simulating this flow using computational fluid dynamics is one important way to gain a better understanding of wind farm flows. In this study, we compare the performance of actuator disc and actuator line models in producing wind turbine wakes and the wake-turbine interaction between multiple turbines. We also examine parameters that affect the performance of these models, such as grid resolution, the use of a tip-loss correction, and the way in which the turbine force is projected onto the flow field.

Tossas, L. A. M.; Leonardi, S.

2013-07-01T23:59:59.000Z

372

Wind shear for large wind turbine generators at selected tall tower sites  

DOE Green Energy (OSTI)

The objective of the study described in this report is to examine the nature of wind shear profiles and their variability over the height of large horizontal-axis wind turbines and to provide information on wind shear relevant to the design and opertion of large wind turbines. Wind turbine fatigue life and power quality are related through the forcing functions on the blade to the shapes of the wind shear profiles and their fluctuations over the disk of rotation.

Elliott, D.L.

1984-04-01T23:59:59.000Z

373

NREL: Wind Research - Fabric-Covered Blades Could Make Wind Turbines...  

NLE Websites -- All DOE Office Websites (Extended Search)

Fabric-Covered Blades Could Make Wind Turbines Cheaper and More Efficient A photo of a crew of workers watching as a wind blade is hauled up to a turbine for assembly. A new...

374

Wind turbine reliability database update.  

SciTech Connect

This report documents the status of the Sandia National Laboratories' Wind Plant Reliability Database. Included in this report are updates on the form and contents of the Database, which stems from a fivestep process of data partnerships, data definition and transfer, data formatting and normalization, analysis, and reporting. Selected observations are also reported.

Peters, Valerie A.; Hill, Roger Ray; Stinebaugh, Jennifer A.; Veers, Paul S.

2009-03-01T23:59:59.000Z

375

Extreme learning machine based wind speed estimation and sensorless control for wind turbine power generation system  

Science Conference Proceedings (OSTI)

This paper proposes a precise real-time wind speed estimation method and sensorless control for variable-speed variable-pitch wind turbine power generation system (WTPGS). The wind speed estimation is realized by a nonlinear input-output mapping extreme ... Keywords: Extreme learning machine, Sensorless control, Wind speed estimation, Wind turbine power generation system

Si Wu; Youyi Wang; Shijie Cheng

2013-02-01T23:59:59.000Z

376

Wind Turbine Generator System Duration Test Report for the Gaia-Wind 11 kW Wind Turbine  

DOE Green Energy (OSTI)

This test was conducted as part of the U.S. Department of Energy's (DOE) Independent Testing project. This project was established to help reduce the barriers of wind energy expansion by providing independent testing results for small turbines. In total, five turbines are being tested at the National Renewable Energy Laboratory's (NRELs) National Wind Technology Center (NWTC) as a part of this project. Duration testing is one of up to five tests that may be performed on the turbines, including power performance, safety and function, noise, and power quality tests. The results of the testing will provide the manufacturers with reports that may be used for small wind turbine certification. The test equipment includes a Gaia-Wind 11 kW wind turbine mounted on an 18 m monopole tower. Gaia-Wind Ltd. manufactured the turbine in Denmark, although the company is based in Scotland. The system was installed by the NWTC Site Operations group with guidance and assistance from Gaia-Wind.

Huskey, A.; Bowen, A.; Jager, D.

2010-09-01T23:59:59.000Z

377

Wind Development on the Rosebud  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Rosebud Sioux Rosebud Sioux Indian Reservation Wind Development on the Rosebud Akicita Cikala 750 Kw turbine Owl Feather War Bonnet Wind Farm, 30Mw North Antelope Highlands Wind Farm, 190Mw Met towers installed in 2003 Met tower installed in 2001 Met tower installed in 1999 Met towers installed in 2009 Akicita Cikala Turbine Neg Micon 750kw Commissioned March 2003 Owl Feather War Bonnet Wind Farm 2003 Dept. of Energy Grant DOE Funding $448,551.00 DISGEN Cost share/in-kind $78,750.00 RST/TUC Cost share/in-kind $27,272.00 Participants in Development RST Resource Development Office, Ken Haukaas, Coordinator RST Tribal Utilities Commission, Tony Rogers, Director RST Natural Resource Office, Stephanie Middlebrooks, Wildlife Biologist Distribute Generation Inc., Dale Osborn, President, Belvin Pete, Project

378

Root region airfoil for wind turbine  

DOE Patents (OSTI)

A thick airfoil is described for the root region of the blade of a wind turbine. The airfoil has a thickness in a range from 24%--26% and a Reynolds number in a range from 1,000,000 to 1,800,000. The airfoil has a maximum lift coefficient of 1.4--1.6 that has minimum sensitivity to roughness effects. 3 Figs.

Tangler, J.L.; Somers, D.M.

1995-05-23T23:59:59.000Z

379

36 SEPTEMBER | 2012 WiNd TURbiNE CAPACiTY  

E-Print Network (OSTI)

36 SEPTEMBER | 2012 WiNd TURbiNE CAPACiTY FRONTiER FROM SCAdA ThE WORld hAS SEEN A significant contributor to this growth. The wind turbine generated energy depends on the wind potential and the turbine of wind turbines. Supervi- sory control and data acquisition (SCADA) systems record wind turbine

Kusiak, Andrew

380

Electric Power Research Institute Utility Wind Turbine Verification Program  

Science Conference Proceedings (OSTI)

This report provides an overview of the DOE EPRI Wind Turbine Verification Program (TVP) and the Turbine Verification and Technology Transfer Projects funded by the program between 1994 and 2004.

2008-12-22T23:59:59.000Z

Note: This page contains sample records for the topic "wind turbine development" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


381

Numerical simulation of tower rotor interaction for downwind wind turbine  

Science Conference Proceedings (OSTI)

Downwind wind turbines have lower upwind rotormisalignment, and thus lower turning moment and self-steered advantage over the upwind configuration. In this paper, numerical simulation to the downwind turbine is conducted to investigate the interaction ...

Isam Janajreh; Ilham Talab; Jill Macpherson

2010-01-01T23:59:59.000Z

382

Dynamic analysis of a 5 megawatt offshore floating wind turbine  

E-Print Network (OSTI)

of wind turbine. Rating Control Rotor Radius Rated Windturbines is a major design consideration due to cyclic loading induced by the rotating rotors [the turbine. The base was assumed to be fixed and the rotor

Harriger, Evan Michael

2011-01-01T23:59:59.000Z

383

TurbSim: Reliability-based wind turbine simulator  

Science Conference Proceedings (OSTI)

Wind turbine farms are an effective generator of electricity in windy parts of the world, with prices progressing to levels competitive with other sources. Choosing the correct turbine for a given installation requires significant engineering and the ...

Joseph T. Foley; Timothy G. Gutowski

2008-05-01T23:59:59.000Z

384

Predicting aerodynamic characteristic of typical wind turbine airfoils using CFD  

DOE Green Energy (OSTI)

An investigation was conducted into the capabilities and accuracy of a representative computational fluid dynamics code to predict the flow field and aerodynamic characteristics of typical wind-turbine airfoils. Comparisons of the computed pressure and aerodynamic coefficients were made with wind tunnel data. This work highlights two areas in CFD that require further investigation and development in order to enable accurate numerical simulations of flow about current generation wind-turbine airfoils: transition prediction and turbulence modeling. The results show that the laminar-to turbulent transition point must be modeled correctly to get accurate simulations for attached flow. Calculations also show that the standard turbulence model used in most commercial CFD codes, the k-e model, is not appropriate at angles of attack with flow separation. 14 refs., 28 figs., 4 tabs.

Wolfe, W.P. [Sandia National Labs., Albuquerque, NM (United States); Ochs, S.S. [Iowa State Univ., Ames, IA (United States). Aerospace Engineering Dept.

1997-09-01T23:59:59.000Z

385

Wind Turbine Pitch Angle Controllers for Grid Frequency Stabilisation  

E-Print Network (OSTI)

Wind Turbine Pitch Angle Controllers for Grid Frequency Stabilisation Clemens Jauch Risø National Laboratory Wind Energy Department P.O. Box 49 DK-4000 Roskilde, Denmark clemens.jauch@risoe.dk Abstract: In this paper it is investigated how active-stall wind turbines can contribute to the stabilisation of the power

386

Lidar investigation of atmosphere effect on a wind turbine wake  

Science Conference Proceedings (OSTI)

An experimental study of the spatial wind structure in the vicinity of a wind turbine by a NOAA coherent Doppler lidar has been conducted. It has been found out that a working wind turbine generates a wake with the maximum velocity deficit varying ...

I. N. Smalikho; V. A. Banakh; Y. L. Pichugina; W. A. Brewer; R. M. Banta; J. K. Lundquist; N. D. Kelley

387

Lidar Investigation of Atmosphere Effect on a Wind Turbine Wake  

Science Conference Proceedings (OSTI)

An experimental study of the spatial wind structure in the vicinity of a wind turbine by a NOAA coherent Doppler lidar has been conducted. It was found that a working wind turbine generates a wake with the maximum velocity deficit varying from 27% ...

I. N. Smalikho; V. A. Banakh; Y. L. Pichugina; W. A. Brewer; R. M. Banta; J. K. Lundquist; N. D. Kelley

2013-11-01T23:59:59.000Z

388

Advanced Hydrogen Turbine Development  

DOE Green Energy (OSTI)

Siemens has developed a roadmap to achieve the DOE goals for efficiency, cost reduction, and emissions through innovative approaches and novel technologies which build upon worldwide IGCC operational experience, platform technology, and extensive experience in G-class operating conditions. In Phase 1, the technologies and concepts necessary to achieve the program goals were identified for the gas turbine components and supporting technology areas and testing plans were developed to mitigate identified risks. Multiple studies were conducted to evaluate the impact in plant performance of different gas turbine and plant technologies. 2015 gas turbine technologies showed a significant improvement in IGCC plant efficiency, however, a severe performance penalty was calculated for high carbon capture cases. Thermodynamic calculations showed that the DOE 2010 and 2015 efficiency targets can be met with a two step approach. A risk management process was instituted in Phase 1 to identify risk and develop mitigation plans. For the risks identified, testing and development programs are in place and the risks will be revisited periodically to determine if changes to the plan are necessary. A compressor performance prediction has shown that the design of the compressor for the engine can be achieved with additional stages added to the rear of the compressor. Tip clearance effects were studied as well as a range of flow and pressure ratios to evaluate the impacts to both performance and stability. Considerable data was obtained on the four candidate combustion systems: diffusion, catalytic, premix, and distributed combustion. Based on the results of Phase 1, the premixed combustion system and the distributed combustion system were chosen as having the most potential and will be the focus of Phase 2 of the program. Significant progress was also made in obtaining combustion kinetics data for high hydrogen fuels. The Phase 1 turbine studies indicate initial feasibility of the advanced hydrogen turbine that meets the aggressive targets set forth for the advanced hydrogen turbine, including increased rotor inlet temperature (RIT), lower total cooling and leakage air (TCLA) flow, higher pressure ratio, and higher mass flow through the turbine compared to the baseline. Maintaining efficiency with high mass flow Syngas combustion is achieved using a large high AN2 blade 4, which has been identified as a significant advancement beyond the current state-of-the-art. Preliminary results showed feasibility of a rotor system capable of increased power output and operating conditions above the baseline. In addition, several concepts were developed for casing components to address higher operating conditions. Rare earth modified bond coat for the purpose of reducing oxidation and TBC spallation demonstrated an increase in TBC spallation life of almost 40%. The results from Phase 1 identified two TBC compositions which satisfy the thermal conductivity requirements and have demonstrated phase stability up to temperatures of 1850 C. The potential to join alloys using a bonding process has been demonstrated and initial HVOF spray deposition trials were promising. The qualitative ranking of alloys and coatings in environmental conditions was also performed using isothermal tests where significant variations in alloy degradation were observed as a function of gas composition. Initial basic system configuration schematics and working system descriptions have been produced to define key boundary data and support estimation of costs. Review of existing materials in use for hydrogen transportation show benefits or tradeoffs for materials that could be used in this type of applications. Hydrogen safety will become a larger risk than when using natural gas fuel as the work done to date in other areas has shown direct implications for this type of use. Studies were conducted which showed reduced CO{sub 2} and NOx emissions with increased plant efficiency. An approach to maximize plant output is needed in order to address the DOE turbine goal for 20-30% reduction o

Joesph Fadok

2008-01-01T23:59:59.000Z

389

Program on Technology Innovation: Materials Degradation in Wind Turbines  

Science Conference Proceedings (OSTI)

The materials used for the construction of wind turbine systems can affect the economics of these systems for a variety of reasons. For instance, improvements in such materials properties as strength, stiffness, and fatigue life can lead to more efficient and more reliable wind turbines and to reductions in operation and maintenance costs. This report provides a comprehensive summary of the state of knowledge of materials used in major wind turbine components for both land-based and offshore applications...

2006-08-09T23:59:59.000Z

390

Maine Project Launches First Grid-Connected Offshore Wind Turbine in the  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Maine Project Launches First Grid-Connected Offshore Wind Turbine Maine Project Launches First Grid-Connected Offshore Wind Turbine in the U.S. Maine Project Launches First Grid-Connected Offshore Wind Turbine in the U.S. May 31, 2013 - 11:00am Addthis News Media Contact (202) 586-4940 WASHINGTON - The Energy Department today recognized the nation's first grid-connected offshore floating wind turbine prototype off the coast of Castine, Maine. Led by the University of Maine, this project represents the first concrete-composite floating platform wind turbine to be deployed in the world - strengthening American leadership in innovative clean energy technologies that diversify the nation's energy mix with more clean, domestic energy sources. "Developing America's vast renewable energy resources is an important part of the Energy Department's all-of-the-above strategy to pave the way

391

Wind turbulence characterization for wind energy development  

DOE Green Energy (OSTI)

As part of its support of the US Department of Energy's (DOE's) Federal Wind Energy Program, the Pacific Northwest Laboratory (PNL) has initiated an effort to work jointly with the wind energy community to characterize wind turbulence in a variety of complex terrains at existing or potential sites of wind turbine installation. Five turbulence characterization systems were assembled and installed at four sites in the Tehachapi Pass in California, and one in the Green Mountains near Manchester, Vermont. Data processing and analyses techniques were developed to allow observational analyses of the turbulent structure; this analysis complements the more traditional statistical and spectral analyses. Preliminary results of the observational analyses, in the rotating framework or a wind turbine blade, show that the turbulence at a site can have two major components: (1) engulfing eddies larger than the rotor, and (2) fluctuating shear due to eddies smaller than the rotor disk. Comparison of the time series depicting these quantities at two sites showed that the turbulence intensity (the commonly used descriptor of turbulence) did not adequately characterize the turbulence at these sites. 9 refs., 10 figs.,

Wendell, L.L.; Gower, G.L.; Morris, V.R.; Tomich, S.D.

1991-09-01T23:59:59.000Z

392

Superconductivity for Large Scale Wind Turbines  

SciTech Connect

A conceptual design has been completed for a 10MW superconducting direct drive wind turbine generator employing low temperature superconductors for the field winding. Key technology building blocks from the GE Wind and GE Healthcare businesses have been transferred across to the design of this concept machine. Wherever possible, conventional technology and production techniques have been used in order to support the case for commercialization of such a machine. Appendices A and B provide further details of the layout of the machine and the complete specification table for the concept design. Phase 1 of the program has allowed us to understand the trade-offs between the various sub-systems of such a generator and its integration with a wind turbine. A Failure Modes and Effects Analysis (FMEA) and a Technology Readiness Level (TRL) analysis have been completed resulting in the identification of high risk components within the design. The design has been analyzed from a commercial and economic point of view and Cost of Energy (COE) calculations have been carried out with the potential to reduce COE by up to 18% when compared with a permanent magnet direct drive 5MW baseline machine, resulting in a potential COE of 0.075 $/kWh. Finally, a top-level commercialization plan has been proposed to enable this technology to be transitioned to full volume production. The main body of this report will present the design processes employed and the main findings and conclusions.

R. Fair; W. Stautner; M. Douglass; R. Rajput-Ghoshal; M. Moscinski; P. Riley; D. Wagner; J. Kim; S. Hou; F. Lopez; K. Haran; J. Bray; T. Laskaris; J. Rochford; R. Duckworth

2012-10-12T23:59:59.000Z

393

The Inside of a Wind Turbine | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

The Inside of a Wind Turbine The Inside of a Wind Turbine The Inside of a Wind Turbine 1 of 17 Tower: 2 of 17 Tower: Made from tubular steel (shown here), concrete, or steel lattice. Supports the structure of the turbine. Because wind speed increases with height, taller towers enable turbines to capture more energy and generate more electricity. Generator: 3 of 17 Generator: Produces 60-cycle AC electricity; it is usually an off-the-shelf induction generator. High-speed shaft: 4 of 17 High-speed shaft: Drives the generator. Nacelle: 5 of 17 Nacelle: Sits atop the tower and contains the gear box, low- and high-speed shafts, generator, controller, and brake. Some nacelles are large enough for a helicopter to land on. Wind vane: 6 of 17 Wind vane: Measures wind direction and communicates with the yaw drive to orient the

394

Wind turbine ring/shroud drive system - Energy Innovation Portal  

A wind turbine capable of driving multiple electric generators having a ring or shroud structure for reducing blade root bending moments, hub loads, blade fastener ...

395

WINDTUR1. TXT Large Wind Turbine Machines for ...  

Science Conference Proceedings (OSTI)

... 4. Reducing the diameter of the tower to lessen its shadow effect on the wind striking the turbine. D Suggested design changesO ...

2011-08-02T23:59:59.000Z

396

An introduction to the small wind turbine project  

DOE Green Energy (OSTI)

Small wind turbines are typically used for the remote or rural areas of the world including: a village in Chile; a cabin dweller in the U.S.; a farmer who wants to water his crop; or a utility company that wants to use distributed generation to help defer building new transmission lines and distribution facilities. Small wind turbines can be used for powering communities, businesses, homes, and miscellaneous equipment to support unattended operation. This paper covers the U.S. Department of Energy/National Renewable Energy Laboratory Small Wind Turbine project, its specifications, its applications, the subcontractors and their small wind turbines concepts. 4 refs., 4 figs.

Forsyth, T.L.

1997-07-01T23:59:59.000Z

397

Barr Engineering Statement of Methodology Rosemount Wind Turbine...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Barr Engineering Statement of Methodology Rosemount Wind Turbine Simulations by Truescape Visual Reality, DOEEA-1791 (May 2010) Barr Engineering Statement of Methodology Rosemount...

398

Assessing the Impacts of Reduced Noise Operations of Wind Turbines...  

NLE Websites -- All DOE Office Websites (Extended Search)

LBNL-3562E Assessing the Impacts of Reduced Noise Operations of Wind Turbines on Neighbor Annoyance: A Preliminary Analysis in Vinalhaven, Maine Ben Hoen, Haftan Eckholdt, and Ryan...

399

Dynamic analysis of a 5 megawatt offshore floating wind turbine  

E-Print Network (OSTI)

to the support platform is the NREL offshore 5- MW baselineOffshore wind turbine classification [3]. .. 3 Figure 1.2: Alternative platform

Harriger, Evan Michael

2011-01-01T23:59:59.000Z

400

3D Simulation of a 5MW Wind Turbine.  

E-Print Network (OSTI)

??In the present work, the influence of turbulence and gravity forces on the tower and the rotor of a 5MW onshore wind turbine has been (more)

Namiranian, Abtin

2011-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "wind turbine development" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


401

NREL: News - New Wind Turbine Dynamometer Test Facility Dedicated...  

NLE Websites -- All DOE Office Websites (Extended Search)

913 New Wind Turbine Dynamometer Test Facility Dedicated at NREL November 19, 2013 Today, the Energy Department (DOE) and its National Renewable Energy Laboratory (NREL) dedicated...

402

European Union Wind Energy Forecasting Model Development and Testing: U.S. Department of Energy -- EPRI Wind Turbine Verification Pr ogram  

Science Conference Proceedings (OSTI)

Wind forecasting can increase the strategic and market values of wind power from large wind facilities. This report summarizes the results of the European Union (EU) wind energy forecasting project and performance testing of the EU wind forecasting model. The testing compared forecast and observed wind speed and generation data from U.S. wind facilities.

1999-12-15T23:59:59.000Z

403

Documentation, User Support, and Verification of Wind Turbine and Plant Models  

SciTech Connect

As part of the Utility Wind Energy Integration Group (UWIG) and EnerNex's Wind Turbine Modeling Project, EnerNex has received ARRA (federal stimulus) funding through the Department of Energy (DOE) to further the progress of wind turbine and wind plant models. Despite the large existing and planned wind generation deployment, industry-standard models for wind generation have not been formally adopted. Models commonly provided for interconnection studies are not adequate for use in general transmission planning studies, where public, non-proprietary, documented and validated models are needed. NERC MOD (North American Electric Reliability Corporation) reliability standards require that power flow and dynamics models be provided, in accordance with regional requirements and procedures. The goal of this project is to accelerate the appropriate use of generic wind turbine models for transmission network analysis by: (1) Defining proposed enhancements to the generic wind turbine model structures that would allow representation of more advanced; (2) Comparative testing of the generic models against more detailed (and sometimes proprietary) versions developed by turbine vendors; (3) Developing recommended parameters for the generic models to best mimic the performance of specific commercial wind turbines; (4) Documenting results of the comparative simulations in an application guide for users; (5) Conducting technology transfer activities in regional workshops for dissemination of knowledge and information gained, and to engage electric power and wind industry personnel in the project while underway; (6) Designing of a "living" homepage to establish an online resource for transmission planners.

Robert Zavadil; Vadim Zheglov; Yuriy Kazachkov; Bo Gong; Juan Sanchez; Jun Li

2012-09-18T23:59:59.000Z

404

Documentation, User Support, and Verification of Wind Turbine and Plant Models  

SciTech Connect

As part of the Utility Wind Energy Integration Group (UWIG) and EnerNex's Wind Turbine Modeling Project, EnerNex has received ARRA (federal stimulus) funding through the Department of Energy (DOE) to further the progress of wind turbine and wind plant models. Despite the large existing and planned wind generation deployment, industry-standard models for wind generation have not been formally adopted. Models commonly provided for interconnection studies are not adequate for use in general transmission planning studies, where public, non-proprietary, documented and validated models are needed. NERC MOD (North American Electric Reliability Corporation) reliability standards require that power flow and dynamics models be provided, in accordance with regional requirements and procedures. The goal of this project is to accelerate the appropriate use of generic wind turbine models for transmission network analysis by: (1) Defining proposed enhancements to the generic wind turbine model structures that would allow representation of more advanced; (2) Comparative testing of the generic models against more detailed (and sometimes proprietary) versions developed by turbine vendors; (3) Developing recommended parameters for the generic models to best mimic the performance of specific commercial wind turbines; (4) Documenting results of the comparative simulations in an application guide for users; (5) Conducting technology transfer activities in regional workshops for dissemination of knowledge and information gained, and to engage electric power and wind industry personnel in the project while underway; (6) Designing of a "living" homepage to establish an online resource for transmission planners.

Robert Zavadil; Vadim Zheglov; Yuriy Kazachkov; Bo Gong; Juan Sanchez; Jun Li

2012-09-18T23:59:59.000Z

405

Vertical-axis wind turbines -- The current status of an old technology  

DOE Green Energy (OSTI)

Vertical-axis wind turbine technology is not well understood, even though the earliest wind machines rotated about a vertical axis. The operating environment of a vertical-axis wind turbine is quite complex, but detailed analysis capabilities have been developed and verified over the last 30 years. Although vertical-axis technology has not been widely commercialized, it exhibits both advantages and disadvantages compared to horizontal-axis technology, and in some applications, it appears to offer significant advantages.

Berg, D.E.

1996-12-31T23:59:59.000Z

406

Airfoil treatments for vertical axis wind turbines  

SciTech Connect

Sandia National Laboratories (SNL) has taken three airfoil related approaches to decreasing the cost of energy of vertical axis wind turbine (VAWT) systems; airfoil sections designed specifically for VAWTs, vortex generators (VGs), and ''pumped spoiling.'' SNL's blade element airfoil section design effort has led to three promising natural laminar flow (NLF) sections. One section is presently being run on the SNL 17-m turbine. Increases in peak efficiency and more desirable dynamic stall regulation characteristics have been observed. Vane-type VGs were fitted on one DOE/Alcoa 100 kW VAWT. With approximately 12% of span having VGs, annual energy production increased by 5%. Pumped spoiling utilizes the centrifugal pumping capabilities of hollow blades. With the addition of small perforations in the surface of the blades and valves controlled by windspeed at the ends of each blade, lift spoiling jets may be generated inducing premature stall and permitting lower capacity, lower cost drivetrain components. SNL has demonstrated this concept on its 5-m turbine and has wind tunnel tested perforation geometries on one NLF section.

Klimas, P.C.

1985-01-01T23:59:59.000Z

407

NREL's Gearbox Reliability Collaborative leads to wind turbine gearbox reliability, lowering the cost of energy.  

E-Print Network (OSTI)

NREL's Gearbox Reliability Collaborative leads to wind turbine gearbox reliability, lowering have been able to identify shortcomings in the design, testing, and operation of wind turbines findings are quickly shared among GRC participants, including many wind turbine manufacturers and equipment

408

Rotationally sampled wind characteristics and correlations with MOD-OA wind turbine response  

SciTech Connect

This report presents results of a comprehensive wind and wind turbine measurement program: the Clayton, New Mexico, vertical plane array/MOD-OA project. In this experiment, the turbulent wind was measured for a large array of fixed anemometers located two blade diameters upwind of a 200-kW horizontal-axis wind turbine (HAWT). Simultaneously, key wind turbine response parameters were also measured. The first of two major objectives of this experiment was to determine the turbulent wind, rotationally sampled to emulate the motion of the wind turbine blade, for the range of different wind speeds and stability classes actually experienced by the wind turbine. The second major objective was to correlate this rotationally sampled wind with the wind turbine blade stress and power, in order to assess the usefulness of the wind measurements for wind turbine loads testing a prediction. Time series of rotationally sampled winds and wind turbine blade bending moments and power were converted to frequency spectra using Fourier transform techniques. These spectra were used as the basis for both qualitative and quantitative comparisons among the various cases. A quantitative comparison between the rotationally sampled wind input and blade bending response was made, using the Fourier spectra to estimate the blade transfer function. These transfer functions were then used to calculate an approximate damping coefficient for the MOD-OA fiberglass blade.

George, R.L.; Connell, J.R.

1984-09-01T23:59:59.000Z

409

Wind Turbine Generator System Power Performance Test Report for the Gaia-Wind 11-kW Wind Turbine  

DOE Green Energy (OSTI)

This test was conducted as part of the U.S. Department of Energy's (DOE) Independent Testing project. It is a power performance test that the National Renewable Energy Laboratory (NREL) conducted on the Gaia-Wind 11-kW small wind turbine.

Huskey, A.; Bowen, A.; Jager, D.

2009-12-01T23:59:59.000Z

410

Wind Turbine Generator System Power Performance Test Report for the Gaia-Wind 11-kW Wind Turbine  

SciTech Connect

This test was conducted as part of the U.S. Department of Energy's (DOE) Independent Testing project. It is a power performance test that the National Renewable Energy Laboratory (NREL) conducted on the Gaia-Wind 11-kW small wind turbine.

Huskey, A.; Bowen, A.; Jager, D.

2009-12-01T23:59:59.000Z

411

Wind energy conversion. Volume X. Aeroelastic stability of wind turbine rotor blades  

DOE Green Energy (OSTI)

The nonlinear equations of motion of a general wind turbine rotor blade are derived from first principles. The twisted, tapered blade may be preconed out of the plane of rotation, and its root may be offset from the axis of rotation by a small amount. The aerodynamic center, center of mass, shear center, and area centroid are distinct in this derivation. The equations are applicable to studies of forced response or of aeroelastic flutter, however, neither gravity forcing, nor wind shear and gust forcing are included. The equations derived are applied to study the aeroelastic stability of the NASA-ERDA 100 kW wind turbine, and solved using the Galerkin method. The numerical results are used in conjunction with a mathematical comparison to prove the validity of an equivalent hinge model developed by the Wind Energy Conversion Project at the Massachusetts Institute of Technology.

Wendell, J.

1978-09-01T23:59:59.000Z

412

NREL Establishes a 1.5-MW Wind Turbine Test Platform for Research Partnerships (Fact Sheet)  

SciTech Connect

Research turbine supports sustained technology development. For more than three decades, engineers at the National Renewable Energy Laboratory's (NREL) National Wind Technology Center (NWTC) have worked with the U.S. Department of Energy (DOE) Wind Program and industry partners to advance wind energy technology, improve wind turbine performance, and reduce the cost of energy. Although there have been dramatic increases in performance and drops in the cost of wind energy-from $0.80 per kilowatt-hour to between $0.06 and $0.08 per kilowatt-hour-the goal of the DOE Wind Program is to further increase performance and reduce the cost of energy for land-based systems so that wind energy can compete with natural gas by 2020. In support of the program's research and development (R and D) efforts, NREL has constructed state-of-the-art facilities at the NWTC where industry partners, universities, and other DOE laboratories can conduct tests and experiments to further advance wind technology. The latest facility to come online is the DOE-GE 1.5-MW wind turbine test platform. Working with DOE, NREL purchased and installed a GE 1.5-MW wind turbine at the NWTC in 2009. Since then, NREL engineers have extensively instrumented the machine, conducted power performance and full-system modal tests, and collected structural loads measurements to obtain baseline characterization of the turbine's power curve, vibration characteristics, and fatigue loads in the uniquely challenging NWTC inflow environment. By successfully completing a baseline for the turbine's performance and structural response, NREL engineers have established a test platform that can be used by industry, university, and DOE laboratory researchers to test wind turbine control systems and components. The new test platform will also enable researchers to acquire the measurements needed to develop and validate wind turbine models and improve design codes.

2012-03-01T23:59:59.000Z

413

NREL Establishes a 1.5-MW Wind Turbine Test Platform for Research Partnerships (Fact Sheet)  

DOE Green Energy (OSTI)

Research turbine supports sustained technology development. For more than three decades, engineers at the National Renewable Energy Laboratory's (NREL) National Wind Technology Center (NWTC) have worked with the U.S. Department of Energy (DOE) Wind Program and industry partners to advance wind energy technology, improve wind turbine performance, and reduce the cost of energy. Although there have been dramatic increases in performance and drops in the cost of wind energy-from $0.80 per kilowatt-hour to between $0.06 and $0.08 per kilowatt-hour-the goal of the DOE Wind Program is to further increase performance and reduce the cost of energy for land-based systems so that wind energy can compete with natural gas by 2020. In support of the program's research and development (R and D) efforts, NREL has constructed state-of-the-art facilities at the NWTC where industry partners, universities, and other DOE laboratories can conduct tests and experiments to further advance wind technology. The latest facility to come online is the DOE-GE 1.5-MW wind turbine test platform. Working with DOE, NREL purchased and installed a GE 1.5-MW wind turbine at the NWTC in 2009. Since then, NREL engineers have extensively instrumented the machine, conducted power performance and full-system modal tests, and collected structural loads measurements to obtain baseline characterization of the turbine's power curve, vibration characteristics, and fatigue loads in the uniquely challenging NWTC inflow environment. By successfully completing a baseline for the turbine's performance and structural response, NREL engineers have established a test platform that can be used by industry, university, and DOE laboratory researchers to test wind turbine control systems and components. The new test platform will also enable researchers to acquire the measurements needed to develop and validate wind turbine models and improve design codes.

Not Available

2012-03-01T23:59:59.000Z

414

NREL: Wind Research - White Earth Nation Installs Turbines: A...  

NLE Websites -- All DOE Office Websites (Extended Search)

White Earth Nation Installs Turbines: A Wind Powering America Success Story February 11, 2013 Almost 8 years after taking the initial steps to harness the wind, the White Earth...

415

Lessons Learned: Milwaukees Wind Turbine Project  

Energy.gov (U.S. Department of Energy (DOE))

U.S. Department of Energy Community and Renewable Energy Success Stories webinar series titled Wind Energy in Urban Environments. This presentation describes a mid-size wind turbine installation near downtown Milwaukee, Wisconsin.

416

Plasma Aerodynamic Control Effectors for Improved Wind Turbine Performance  

DOE Green Energy (OSTI)

Orbital Research Inc is developing an innovative Plasma Aerodynamic Control Effectors (PACE) technology for improved performance of wind turbines. The PACE system is aimed towards the design of "smart" rotor blades to enhance energy capture and reduce aerodynamic loading and noise using flow-control. The PACE system will provide ability to change aerodynamic loads and pitch distribution across the wind turbine blade without any moving surfaces. Additional benefits of the PACE system include reduced blade structure weight and complexity that should translate into a substantially reduced initial cost. During the Phase I program, the ORI-UND Team demonstrated (proof-of-concept) performance improvements on select rotor blade designs using PACE concepts. Control of both 2-D and 3-D flows were demonstrated. An analytical study was conducted to estimate control requirements for the PACE system to maintain control during wind gusts. Finally, independent laboratory experiments were conducted to identify promising dielectric materials for the plasma actuator, and to examine environmental effects (water and dust) on the plasma actuator operation. The proposed PACE system will be capable of capturing additional energy, and reducing aerodynamic loading and noise on wind turbines. Supplementary benefits from the PACE system include reduced blade structure weight and complexity that translates into reduced initial capital costs.

Mehul P. Patel; Srikanth Vasudevan; Robert C. Nelson; Thomas C. Corke

2008-08-01T23:59:59.000Z

417

Recovery Act: Online Nonintrusive Condition Monitoring and Fault Detection for Wind Turbines  

DOE Green Energy (OSTI)

The penetration of wind power has increased greatly over the last decade in the United States and across the world. The U.S. wind power industry installed 1,118 MW of new capacity in the first quarter of 2011 alone and entered the second quarter with another 5,600 MW under construction. By 2030, wind energy is expected to provide 20% of the U.S. electricity needs. As the number of wind turbines continues to grow, the need for effective condition monitoring and fault detection (CMFD) systems becomes increasingly important [3]. Online CMFD is an effective means of not only improving the reliability, capacity factor, and lifetime, but it also reduces the downtime, energy loss, and operation and maintenance (O&M) of wind turbines. The goal of this project is to develop novel online nonintrusive CMFD technologies for wind turbines. The proposed technologies use only the current measurements that have been used by the control and protection system of a wind turbine generator (WTG); no additional sensors or data acquisition devices are needed. Current signals are reliable and easily accessible from the ground without intruding on the wind turbine generators (WTGs) that are situated on high towers and installed in remote areas. Therefore, current-based CMFD techniques have great economic benefits and the potential to be adopted by the wind energy industry. Specifically, the following objectives and results have been achieved in this project: (1) Analyzed the effects of faults in a WTG on the generator currents of the WTG operating at variable rotating speed conditions from the perspective of amplitude and frequency modulations of the current measurements; (2) Developed effective amplitude and frequency demodulation methods for appropriate signal conditioning of the current measurements to improve the accuracy and reliability of wind turbine CMFD; (3) Developed a 1P-invariant power spectrum density (PSD) method for effective signature extraction of wind turbine faults with characteristic frequencies in the current or current demodulated signals, where 1P stands for the shaft rotating frequency of a WTG; (4) Developed a wavelet filter for effective signature extraction of wind turbine faults without characteristic frequencies in the current or current demodulated signals; (5) Developed an effective adaptive noise cancellation method as an alternative to the wavelet filter method for signature extraction of wind turbine faults without characteristic frequencies in the current or current demodulated signals; (6) Developed a statistical analysis-based impulse detection method for effective fault signature extraction and evaluation of WTGs based on the 1P-invariant PSD of the current or current demodulated signals; (7) Validated the proposed current-based wind turbine CMFD technologies through extensive computer simulations and experiments for small direct-drive WTGs without gearboxes; and (8) Showed, through extensive experiments for small direct-drive WTGs, that the performance of the proposed current-based wind turbine CMFD technologies is comparable to traditional vibration-based methods. The proposed technologies have been successfully applied for detection of major failures in blades, shafts, bearings, and generators of small direct-drive WTGs. The proposed technologies can be easily integrated into existing wind turbine control, protection, and monitoring systems and can be implemented remotely from the wind turbines being monitored. The proposed technologies provide an alternative to vibration-sensor-based CMFD. This will reduce the cost and hardware complexity of wind turbine CMFD systems. The proposed technologies can also be combined with vibration-sensor-based methods to improve the accuracy and reliability of wind turbine CMFD systems. When there are problems with sensors, the proposed technologies will ensure proper CMFD for the wind turbines, including their sensing systems. In conclusion, the proposed technologies offer an effective means to achieve condition-based smart maintenance for wind turbines and have a gre

Wei Qiao

2012-05-29T23:59:59.000Z

418

Final Technical Report Recovery Act: Online Nonintrusive Condition Monitoring and Fault Detection for Wind Turbines  

SciTech Connect

The penetration of wind power has increased greatly over the last decade in the United States and across the world. The U.S. wind power industry installed 1,118 MW of new capacity in the first quarter of 2011 alone and entered the second quarter with another 5,600 MW under construction. By 2030, wind energy is expected to provide 20% of the U.S. electricity needs. As the number of wind turbines continues to grow, the need for effective condition monitoring and fault detection (CMFD) systems becomes increasingly important [3]. Online CMFD is an effective means of not only improving the reliability, capacity factor, and lifetime, but it also reduces the downtime, energy loss, and operation and maintenance (O&M) of wind turbines. The goal of this project is to develop novel online nonintrusive CMFD technologies for wind turbines. The proposed technologies use only the current measurements that have been used by the control and protection system of a wind turbine generator (WTG); no additional sensors or data acquisition devices are needed. Current signals are reliable and easily accessible from the ground without intruding on the wind turbine generators (WTGs) that are situated on high towers and installed in remote areas. Therefore, current-based CMFD techniques have great economic benefits and the potential to be adopted by the wind energy industry. Specifically, the following objectives and results have been achieved in this project: (1) Analyzed the effects of faults in a WTG on the generator currents of the WTG operating at variable rotating speed conditions from the perspective of amplitude and frequency modulations of the current measurements; (2) Developed effective amplitude and frequency demodulation methods for appropriate signal conditioning of the current measurements to improve the accuracy and reliability of wind turbine CMFD; (3) Developed a 1P-invariant power spectrum density (PSD) method for effective signature extraction of wind turbine faults with characteristic frequencies in the current or current demodulated signals, where 1P stands for the shaft rotating frequency of a WTG; (4) Developed a wavelet filter for effective signature extraction of wind turbine faults without characteristic frequencies in the current or current demodulated signals; (5) Developed an effective adaptive noise cancellation method as an alternative to the wavelet filter method for signature extraction of wind turbine faults without characteristic frequencies in the current or current demodulated signals; (6) Developed a statistical analysis-based impulse detection method for effective fault signature extraction and evaluation of WTGs based on the 1P-invariant PSD of the current or current demodulated signals; (7) Validated the proposed current-based wind turbine CMFD technologies through extensive computer simulations and experiments for small direct-drive WTGs without gearboxes; and (8) Showed, through extensive experiments for small direct-drive WTGs, that the performance of the proposed current-based wind turbine CMFD technologies is comparable to traditional vibration-based methods. The proposed technologies have been successfully applied for detection of major failures in blades, shafts, bearings, and generators of small direct-drive WTGs. The proposed technologies can be easily integrated into existing wind turbine control, protection, and monitoring systems and can be implemented remotely from the wind turbines being monitored. The proposed technologies provide an alternative to vibration-sensor-based CMFD. This will reduce the cost and hardware complexity of wind turbine CMFD systems. The proposed technologies can also be combined with vibration-sensor-based methods to improve the accuracy and reliability of wind turbine CMFD systems. When there are problems with sensors, the proposed technologies will ensure proper CMFD for the wind turbines, including their sensing systems. In conclusion, the proposed technologies offer an effective means to achieve condition-based smart maintenance for wind turbines and have a gre

Wei Qiao

2012-05-29T23:59:59.000Z

419

Big Spring Wind Power Project Third- Through Fifth-Year Operating Experience: 2001-2004: U.S. Department of Energy-EPRI Wind Turbine Verification Program  

Science Conference Proceedings (OSTI)

This report describes the third-, fourth-, and fifth-year operating experience at the 34-MW Big Spring Wind Power Plant near Big Spring, Texas. The project consists of 42 Vestas V47 wind turbines installed on 65-m (213-ft) towers and four Vestas V66 wind turbines installed on 80-m (262-ft) towers. Lessons learned in the project will be valuable to other utilities and wind power developers planning similar wind power projects.

2004-10-25T23:59:59.000Z

420

Big Spring Wind Power Project Second-Year Operating Experience: 2000-2001: U.S. Department of Energy - EPRI Wind Turbine Verificatio n Program  

Science Conference Proceedings (OSTI)

This report describes second-year operating experience at the 34 MW Big Spring Wind Power Plant near Big Spring, Texas. The project consists of 42 Vestas V47 wind turbines installed on 65-meter (213-foot) towers and 4 Vestas V66 wind turbines installed on 80-meter (262-foot) towers. The lessons learned in the project will be valuable to other utilities and wind power developers planning similar wind power projects.

2001-12-06T23:59:59.000Z

Note: This page contains sample records for the topic "wind turbine development" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


421

NREL: News Feature - Giant Wind Turbine Test Takes a Heavyweight  

NLE Websites -- All DOE Office Websites (Extended Search)

Giant Wind Turbine Test Takes a Heavyweight Giant Wind Turbine Test Takes a Heavyweight May 17, 2010 Photo of Samsung's 90-ton drive train connected to NREL's 2.5-megawatt dynamometer in a high-ceiling metal building. The drive train is a cylindrical shape, but several attachments give it the look of a giant Lego contraption. Enlarge image A coupling of giants: Samsung's 2.5-megawatt wind turbine drive train meets the National Wind Technology Center's 2.5-megawatt dynamometer. Samsung's drive train weighs 90 tons and is the brains behind its 2.5-megawatt wind turbine that can supply electricity to 1,800 homes. Credit: Rob Wallen In a coupling of giants recently, the 2.5-megawatt dynamometer at the U.S. Department of Energy's National Renewable Energy Laboratory blasted 12.6 million inch pounds of torque at Samsung's 185,000-pound wind turbine drive

422

Multi-piece wind turbine rotor blades and wind turbines incorporating same  

DOE Patents (OSTI)

A multisection blade for a wind turbine includes a hub extender having a pitch bearing at one end, a skirt or fairing having a hole therethrough and configured to mount over the hub extender, and an outboard section configured to couple to the pitch bearing.

Moroz; Emilian Mieczyslaw (San Diego, CA)

2008-06-03T23:59:59.000Z

423

The Probability Distribution of Wind Power From a Dispersed Array of Wind Turbine Generators  

Science Conference Proceedings (OSTI)

A method is presented for estimating the probability distribution of wind power from a dispersed array of wind turbine sites where the correlation between wind speeds at distinct sites is less than unity. The distribution is obtained from a model ...

John Carlin; John Haslett

1982-03-01T23:59:59.000Z

424

Performance of a Wind-Profiling Lidar in the Region of Wind Turbine Rotor Disks  

Science Conference Proceedings (OSTI)

As the wind energy sector continues to grow, so does the need for reliable vertical wind profiles in the assessment of wind resources and turbine performance. In situ instrumentation mounted on meteorological towers can rarely probe the atmosphere ...

Matthew L. Aitken; Michael E. Rhodes; Julie K. Lundquist

2012-03-01T23:59:59.000Z

425

Department of Energy to Invest up to $4 Million for Wind Turbine Blade  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

up to $4 Million for Wind Turbine up to $4 Million for Wind Turbine Blade Testing Facilities Department of Energy to Invest up to $4 Million for Wind Turbine Blade Testing Facilities June 25, 2007 - 2:07pm Addthis New facilities in Massachusetts and Texas will bring cutting-edge technology to wind research WASHINGTON, DC - The U.S. Department of Energy (DOE) Secretary Samuel W. Bodman today announced that DOE has selected the Commonwealth of Massachusetts Partnership in Massachusetts, and the Lone Star Wind Alliance in Texas, to each receive up to $2 million in test equipment to develop large-scale wind blade test facilities, accelerating the commercial availability of wind energy. These consortia have been selected to negotiate cooperative research and development agreements (CRADAs) to

426

Understanding Wind Turbine Price Trends in the U.S. Over the Past Decade  

E-Print Network (OSTI)

A. Zervos. 2011a. Wind Energy. In IPCC Special Report onconsequent impacts on wind turbine and wind energy pricing.References American Wind Energy Association (AWEA). 2011.

Bolinger, Mark

2013-01-01T23:59:59.000Z

427

Wind Turbine Blade Flow Fields and Prospects for Active Aerodynamic Control: Preprint  

DOE Green Energy (OSTI)

This paper describes wind turbine flow fields that can cause adverse aerodynamic loading and can impact active aerodynamic control methodologies currently contemplated for wind turbine applications.

Schreck, S.; Robinson, M.

2007-08-01T23:59:59.000Z

428

An investigation of design alternatives for 328-ft (100-m) tall wind turbine towers.  

E-Print Network (OSTI)

??As wind turbines are continued to be placed at higher elevations, the need for taller wind turbine towers becomes necessary. However, there are multiple challenges (more)

Lewin, Thomas James

2010-01-01T23:59:59.000Z

429

An examination of loads and responses of a wind turbine undergoing variable-speed operation  

DOE Green Energy (OSTI)

The National Renewable Energy Laboratory has recently developed the ability to predict turbine loads and responses for machines undergoing variable-speed operation. The wind industry has debated the potential benefits of operating wind turbine sat variable speeds for some time. Turbine system dynamic responses (structural response, resonance, and component interactions) are an important consideration for variable-speed operation of wind turbines. The authors have implemented simple, variable-speed control algorithms for both the FAST and ADAMS dynamics codes. The control algorithm is a simple one, allowing the turbine to track the optimum power coefficient (C{sub p}). The objective of this paper is to show turbine loads and responses for a particular two-bladed, teetering-hub, downwind turbine undergoing variable-speed operation. The authors examined the response of the machine to various turbulent wind inflow conditions. In addition, they compare the structural responses under fixed-speed and variable-speed operation. For this paper, they restrict their comparisons to those wind-speed ranges for which limiting power by some additional control strategy (blade pitch or aileron control, for example) is not necessary. The objective here is to develop a basic understanding of the differences in loads and responses between the fixed-speed and variable-speed operation of this wind turbine configuration.

Wright, A.D.; Buhl, M.L. Jr.; Bir, G.S.

1996-11-01T23:59:59.000Z

430

Towards a Wind Energy Climatology at Advanced Turbine Hub-Heights: Preprint  

DOE Green Energy (OSTI)

Measurements of wind characteristics over a wide range of heights up to and above 100 m are useful to: (1) characterize the local and regional wind climate; (2) validate wind resource estimates derived from numerical models; and (3) evaluate changes in wind characteristics and wind shear over the area swept by the blades. Developing wind climatology at advanced turbine hub heights for the United States benefits wind energy development. Tall tower data from Kansas, Indiana, and Minnesota (which have the greatest number of tall towers with measurement data) will be the focus of this paper. Analyses of data from the tall towers will start the process of developing a comprehensive climatology.

Schwartz, M.; Elliott, D.

2005-05-01T23:59:59.000Z

431

Control of Wind Turbines: Past, Present, and Future  

Science Conference Proceedings (OSTI)

We review the objectives and techniques used in the control of horizontal axis wind turbines at the individual turbine level, where controls are applied to the turbine blade pitch and generator. The turbine system is modeled as a flexible structure operating in the presence of turbulent wind disturbances. Some overview of the various stages of turbine operation and control strategies used to maximize energy capture in below rated wind speeds is given, but emphasis is on control to alleviate loads when the turbine is operating at maximum power. After reviewing basic turbine control objectives, we provide an overview of the common basic linear control approaches and then describe more advanced control architectures and why they may provide significant advantages.

Laks, J. H.; Pao, L. Y.; Wright, A. D.

2009-01-01T23:59:59.000Z

432

Overview: Zoning for Small Wind Turbines  

Wind Powering America (EERE)

Overview: Overview: Zoning for Small Wind Turbines Jim Green NREL ASES Small Wind Division Webinar January 17, 2008 2 Zoning Basics * Zoning is one form of land use law * Based on legal principle of "police power:" the power to regulate in order to promote the health, morals, safety, and general welfare of the community * Zoning authority originates from state laws called "zoning enabling legislation" - Standard Zoning Enabling Act, Dept. of Commerce, 1920s * Enabling legislation delegates land use authority to local jurisdictions, "Home Rule" - counties, parishes, boroughs, townships, municipalities, cities, villages, etc. 3 Zoning is Daunting * 3,034 counties (National Association of Counties) * 16,504 townships * 19,429 municipalities (National League of Cities)

433

Wind turbine generator with improved operating subassemblies  

DOE Patents (OSTI)

A wind turbine includes a yaw spring return assembly to return the nacelle from a position to which it has been rotated by yawing forces, thus preventing excessive twisting of the power cables and control cables. It also includes negative coning restrainers to limit the bending of the flexible arms of the rotor towards the tower, and stop means on the rotor shaft to orient the blades in a vertical position during periods when the unit is upwind when the wind commences. A pendulum pitch control mechanism is improved by orienting the pivot axis for the pendulum arm at an angle to the longitudinal axis of its support arm, and excessive creep is of the synthetic resin flexible beam support for the blades is prevented by a restraining cable which limits the extent of pivoting of the pendulum during normal operation but which will permit further pivoting under abnormal conditions to cause the rotor to stall.

Cheney, Jr., Marvin C. (24 Stonepost Rd., Glastonbury, CT 06033)

1985-01-01T23:59:59.000Z

434

(Construction of a wind turbine). Final report  

Science Conference Proceedings (OSTI)

A wind powered electrical generator was built by industrial arts students working in electricity, woodworking, and metal technology facilities. The blades were originally aluminum frames covered with sailcloth. These were replaced with hand-carved laminated basswood blades. Original plans called for a bullet and downwind propeller, but this was replaced with an upwind propeller and an aft-mounted tailfin. A V-belt and pulley drive transmits power from the turbine and a motorcycle brake stops the machine during high winds and/or for safe servicing. The original 13 volt, 105 amp alternator was replaced by a 12 volt, 100 amp dc generator. Publicity and dissemination events are listed as well as expenditures. (LEW)

Devine, L.E.

1982-03-22T23:59:59.000Z

435

M. Bahrami ENSC 283 (S 11) Wind Turbine Project 1 ENSC 283 Project  

E-Print Network (OSTI)

M. Bahrami ENSC 283 (S 11) Wind Turbine Project 1 ENSC 283 Project Assigned date: Feb. 23, 2011 family), but also important are those which extract energy form the fluid such as turbines. Wind turbines understanding of wind energy. Figure 1: Typical wind turbines Devices to harvest wind energy are available

Bahrami, Majid

436

innovati nNREL Innovations Contribute to an Award-Winning Small Wind Turbine  

E-Print Network (OSTI)

innovati nNREL Innovations Contribute to an Award-Winning Small Wind Turbine The Skystream 3.7 wind (NREL) and Southwest Windpower, a commercially successful small wind turbine manufacturer. NREL drew blade design that makes the wind turbine more efficient and quieter than most. Small wind turbines

437

Time-domain Fatigue Response and Reliability Analysis of Offshore Wind Turbines with  

E-Print Network (OSTI)

-domain based simulation model of 750 kW land-based wind turbine Gear contact fatigue analysis of a wind of 750 kW land-based wind turbine Gear contact fatigue analysis of a wind turbine drive train under response and reliability analysis #12;Time domain based simulation model of 750 kW land-based wind turbine

Nørvåg, Kjetil

438

Optimal wind turbines placement within a distribution market environment  

Science Conference Proceedings (OSTI)

This paper proposes a hybrid optimization method for optimal allocation of wind turbines (WTs) that combines genetic algorithm (GA) and market-based optimal power flow (OPF). The method jointly maximizes net present value (NPV) related to WTs investment ... Keywords: Genetic algorithm, Net present value, Social welfare maximization, Wind turbines

Geev Mokryani, Pierluigi Siano

2013-10-01T23:59:59.000Z

439

Optimization locations of wind turbines with the particle swarm optimization  

Science Conference Proceedings (OSTI)

In this paper, a new algorithm is presented for the locations of wind turbine in the distribution systems. Technical constraints such as feeder capacity limits, bus voltage, and load balance are considered. The Particle Swarm Optimization(PSO) is applied ... Keywords: distribution system, equivalent current injection, particle swarm optimization, wind turbine

Ming-Tang Tsai; Szu-Wzi Wu

2012-06-01T23:59:59.000Z

440

Electromagnetic torque analysis of a DFIG for wind turbines  

Science Conference Proceedings (OSTI)

Electromagnetic torque of doubly fed induction generator (DFIG) is a consequence of the rotor and stator supply. The stator voltage has a fixed amount and frequency. The rotor voltage of the DFIG as a part of a wind turbine has a variable amount and ... Keywords: DFIG, electromagnetic torque, renewable energy, wind turbine

Jurica Smajo; Dinko Vukadinovic

2008-05-01T23:59:59.000Z

Note: This page contains sample records for the topic "wind turbine development" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


441

Simulation of doubly-fed machine with improved wind turbine  

Science Conference Proceedings (OSTI)

Most of wind turbines use induction generators that are very reliable with low costs [2], but when it is straightly connected to the grid, maximum power is not accessible [1] and only a few change of speed between maximum speed and synchronous speed ... Keywords: doubly-fed machine, gearbox ratio, high speed shaft, low speed shaft, wind turbine

Hengameh Kojooyan Jafari

2009-02-01T23:59:59.000Z

442

The Estimation of Wind Turbine Pitch Angle Based on ANN  

Science Conference Proceedings (OSTI)

Variable-speed and constant-frequency (VSCF) pitch-controlled wind turbine is believed to be superior to other types of wind turbine due to its features such as high efficiency and ideal starting and braking performance, Artificial Neural Networks (ANN) ... Keywords: VSCF, ANN, pitch angle, Pitch-controlled system

Yanping Liu; Shuhong Liu; Hongmei Guo; Huajun Wang

2009-11-01T23:59:59.000Z

443

Barr Engineering Statement of Methodology Rosemount Wind Turbine  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Barr Engineering Statement of Methodology Rosemount Wind Turbine Barr Engineering Statement of Methodology Rosemount Wind Turbine Simulations by Truescape Visual Reality, DOE/EA-1791 (May 2010) Barr Engineering Statement of Methodology Rosemount Wind Turbine Simulations by Truescape Visual Reality, DOE/EA-1791 (May 2010) Barr Engineering, Minneapolis engaged Truescape in May 2010 to: 1) Provide a series of TrueViewTM2 "human field of view" survey controlled photo simulations from pre-determined viewpoint locations to assist with the assessment of the potential visibility of a proposed turbine, and 2) Simulate two different height options for the turbine tower, being 80m vs. 100m. Barr Engineering Statement of Methodology Rosemount Wind Turbine Simulations by Truescape Visual Reality, DOE/EA-1791 (May 2010)

444

Barr Engineering Statement of Methodology Rosemount Wind Turbine  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Barr Engineering Statement of Methodology Rosemount Wind Turbine Barr Engineering Statement of Methodology Rosemount Wind Turbine Simulations by Truescape Visual Reality, DOE/EA-1791 (May 2010) Barr Engineering Statement of Methodology Rosemount Wind Turbine Simulations by Truescape Visual Reality, DOE/EA-1791 (May 2010) Barr Engineering, Minneapolis engaged Truescape in May 2010 to: 1) Provide a series of TrueViewTM2 "human field of view" survey controlled photo simulations from pre-determined viewpoint locations to assist with the assessment of the potential visibility of a proposed turbine, and 2) Simulate two different height options for the turbine tower, being 80m vs. 100m. Barr Engineering Statement of Methodology Rosemount Wind Turbine Simulations by Truescape Visual Reality, DOE/EA-1791 (May 2010)

445

Combining Droop Curve Concepts with Control Systems for Wind Turbine Active Power Control: Preprint  

DOE Green Energy (OSTI)

Wind energy is becoming a larger portion of the global energy portfolio and wind penetration has increased dramatically in certain regions of the world. This increasing wind penetration has driven the need for wind turbines to provide active power control (APC) services to the local utility grid, as wind turbines do not intrinsically provide frequency regulation services that are common with traditional generators. It is common for large scale wind turbines to be decoupled from the utility grid via power electronics, which allows the turbine to synthesize APC commands via control of the generator torque and blade pitch commands. Consequently, the APC services provided by a wind turbine can be more flexible than those provided by conventional generators. This paper focuses on the development and implementation of both static and dynamic droop curves to measure grid frequency and output delta power reference signals to a novel power set point tracking control system. The combined droop curve and power tracking controller is simulated and comparisons are made between simulations using various droop curve parameters and stochastic wind conditions. The tradeoffs involved with aggressive response to frequency events are analyzed. At the turbine level, simulations are performed to analyze induced structural loads. At the grid level, simulations test a wind plant's response to a dip in grid frequency.

Buckspan, A.; Aho, J.; Pao, L.; Fleming, P.; Jeong, Y.

2012-06-01T23:59:59.000Z

446

Combining Droop Curve Concepts with Control Systems for Wind Turbine Active Power Control: Preprint  

SciTech Connect

Wind energy is becoming a larger portion of the global energy portfolio and wind penetration has increased dramatically in certain regions of the world. This increasing wind penetration has driven the need for wind turbines to provide active power control (APC) services to the local utility grid, as wind turbines do not intrinsically provide frequency regulation services that are common with traditional generators. It is common for large scale wind turbines to be decoupled from the utility grid via power electronics, which allows the turbine to synthesize APC commands via control of the generator torque and blade pitch commands. Consequently, the APC services provided by a wind turbine can be more flexible than those provided by conventional generators. This paper focuses on the development and implementation of both static and dynamic droop curves to measure grid frequency and output delta power reference signals to a novel power set point tracking control system. The combined droop curve and power tracking controller is simulated and comparisons are made between simulations using various droop curve parameters and stochastic wind conditions. The tradeoffs involved with aggressive response to frequency events are analyzed. At the turbine level, simulations are performed to analyze induced structural loads. At the grid level, simulations test a wind plant's response to a dip in grid frequency.

Buckspan, A.; Aho, J.; Pao, L.; Fleming, P.; Jeong, Y.

2012-06-01T23:59:59.000Z