Powered by Deep Web Technologies
Note: This page contains sample records for the topic "wind technology testing" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


1

Wind Technology Testing Center Acquires New Blade Fatigue Test...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Technology Testing Center Acquires New Blade Fatigue Test System Wind Technology Testing Center Acquires New Blade Fatigue Test System August 1, 2013 - 4:33pm Addthis This is an...

2

Wind Technology Testing Center Earns A2LA Accreditation for Blade...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Wind Technology Testing Center Earns A2LA Accreditation for Blade Testing Wind Technology Testing Center Earns A2LA Accreditation for Blade Testing October 1, 2012 - 12:16pm...

3

Testing of a 50-kW Wind-Diesel Hybrid System at the National Wind Technology Center  

SciTech Connect (OSTI)

In remote off-grid villages and communities, a reliable power source is important in improving the local quality of life. Villages often use a diesel generator for their power, but fuel can be expensive and maintenance burdensome. Including a wind turbine in a diesel system can reduce fuel consumption and lower maintenance, thereby reducing energy costs. However, integrating the various components of a wind-diesel system, including wind turbine, power conversion system, and battery storage (if applicable), is a challenging task. To further the development of commercial hybrid power systems, the National Renewable Energy Laboratory (NREL), in collaboration with the New World Village Power Corporation (NWVP), tested a NWVP 50-kW wind-diesel hybrid system connected to a 15/50 Atlantic Orient Corporation (AOC) wind turbine. Testing was conducted from October 1995 through March 1996 at the National Wind Technology Center (NWTC). A main objective of the testing was to better understand the application of wind turbines to weak grids typical of small villages. Performance results contained in this report include component characterization, such as power conversion losses for the rotary converter system and battery round trip efficiencies. In addition, system operation over the test period is discussed with special attention given to dynamic issues. Finally, future plans for continued testing and research are discussed.

Corbus, D. A.; Green, H. J.; Allderdice, A.; Rand, K.; Bianchi, J.; Linton, E.

1996-07-01T23:59:59.000Z

4

Building State-of-the-Art Wind Technology Testing Facilities (Fact Sheet)  

SciTech Connect (OSTI)

The new Wind Technology Test Center is the only facility in the nation capable of testing wind turbine blades up to 90 meters in length. A critical factor to wind turbine design and development is the ability to test new designs, components, and materials. In addition, wind turbine blade manufacturers are required to test their blades as part of the turbine certification process. The National Renewable Energy Laboratory (NREL) partnered with the U.S. Department of Energy (DOE) Wind Program and the Massachusetts Clean Energy Center (MassCEC) to design, construct, and operate the Wind Technology Center (WTTC) in Boston, Massachusetts. The WTTC offers a full suite of certification tests for turbine blades up to 90 meters in length. NREL worked closely with MTS Systems Corporation to develop the novel large-scale test systems needed to conduct the static and fatigue tests required for certification. Static tests pull wind turbine blades horizontally and vertically to measure blade deflection and strains. Fatigue tests cycle the blades millions of times to simulate what a blade goes through in its lifetime on a wind turbine. For static testing, the WTTC is equipped with servo-hydraulic winches and cylinders that are connected to the blade through cables to apply up to an 84-mega Newton meter maximum static bending moment. For fatigue testing, MTS developed a commercial version of NREL's patented resonant excitation system with hydraulic cylinders that actuate linear moving masses on the blade at one or more locations. This system applies up to a 21-meter tip-to-tip fatigue test tip displacement to generate 20-plus years of cyclic field loads in a matter of months. NREL also developed and supplied the WTTC with an advanced data acquisition system capable of measuring and recording hundreds of data channels at very fast sampling rates while communicating with test control systems.

Not Available

2012-03-01T23:59:59.000Z

5

Wind Technologies & Evolving Opportunities (Presentation)  

SciTech Connect (OSTI)

This presentation covers opportunities for wind technology; wind energy market trends; an overview of the National Wind Technology Center near Boulder, Colorado; wind energy price and cost trends; wind turbine technology improvements; and wind resource characterization improvements.

Robichaud, R.

2014-07-01T23:59:59.000Z

6

2011 Wind Technologies Market Report  

E-Print Network [OSTI]

that includes wind turbine towers. 2011 Wind TechnologiesSets Other Wind Turbine Components Towers Wind-Poweredselected wind turbine components includes towers as well as

Bolinger, Mark

2013-01-01T23:59:59.000Z

7

2010 Wind Technologies Market Report  

E-Print Network [OSTI]

that includes wind turbine towers. 2010 Wind TechnologiesImports : Other Wind Turbine Components Towers Wind-Poweredselected wind turbine components includes towers as well as

Wiser, Ryan

2012-01-01T23:59:59.000Z

8

Testing Active Power Control from Wind Power at the National Wind Technology Center (NWTC) (Presentation)  

SciTech Connect (OSTI)

In order to keep the electricity grid stable and the lights on, the power system relies on certain responses from its generating fleet. This presentation evaluates the potential for wind turbines and wind power plants to provide these services and assist the grid during critical times.

Ela, E.

2011-05-01T23:59:59.000Z

9

2012 Wind Technologies Market Report  

E-Print Network [OSTI]

Colorado: Xcel Energy. 2012 Wind Technologies Market ReportOperator. 2012 Wind Technologies Market Report Chadbourne &Power Company. 2012 Wind Technologies Market Report EnerNex

Wiser, Ryan

2014-01-01T23:59:59.000Z

10

Stability Design for the Crane Columns of the Wind Technology Testing Center E. M. Hines1  

E-Print Network [OSTI]

to test wind turbine blades up to 90 m in length. The laboratory is enclosed by eleven steel trussed generation of wind turbine blades for off-shore wind farm development. Whereas the largest blades for land of power per turbine, offshore wind turbines are expected to reach power outputs as high as 10 MW

Hines, Eric

11

Colorado and South Carolina: New Wind Test Facilities Open  

Office of Energy Efficiency and Renewable Energy (EERE)

Two state-of-the-art wind testing facilities will accelerate development and deployment of wind energy technologies.

12

Next-Generation Wind Technology  

Broader source: Energy.gov [DOE]

The Wind Program works with industry partners to increase the performance and reliability of next-generation wind technologies while lowering the cost of wind energy.

13

The new Wind Technology Test Center is the only facility in the nation capable of testing wind turbine blades up to  

E-Print Network [OSTI]

turbine blades up to 90 meters in length. A critical factor to wind turbine design and development is the ability to test new designs, components, and materials. In addition, wind turbine blade manufacturers are required to test their blades as part of the turbine certification process. The National Renewable Energy

14

Wind Technology Testing Center Earns A2LA Accreditation for Blade Testing |  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE:YearRound-Up from theDepartment of Dept.| WEATHERIZATION5 |and Analysis |3 Wind Program2Department

15

Wind Energy Resources and Technologies  

Broader source: Energy.gov [DOE]

This page provides a brief overview of wind energy resources and technologies supplemented by specific information to apply wind energy within the Federal sector.

16

2010 Wind Technologies Market Report  

E-Print Network [OSTI]

wind turbine equipment-related costs are assumed to equal 85% of 2010 Wind Technologies Market Report periods to further avoid “noise”

Wiser, Ryan

2012-01-01T23:59:59.000Z

17

2010 Wind Technologies Market Report  

E-Print Network [OSTI]

ET2/TL-08-1474. May 19, 2010 Wind Technologies Market ReportAssociates. 2010. SPP WITF Wind Integration Study. Little10, 2010. David, A. 2009. Wind Turbines: Industry and Trade

Wiser, Ryan

2012-01-01T23:59:59.000Z

18

National Wind Technology Center (Fact Sheet)  

SciTech Connect (OSTI)

This overview fact sheet is one in a series of information fact sheets for the National Wind Technology Center (NWTC). Wind energy is one of the fastest growing electricity generation sources in the world. NREL's National Wind Technology Center (NWTC), the nation's premier wind energy technology research facility, fosters innovative wind energy technologies in land-based and offshore wind through its research and testing facilities and extends these capabilities to marine hydrokinetic water power. Research and testing conducted at the NWTC offers specialized facilities and personnel and provides technical support critical to the development of advanced wind energy systems. From the base of a system's tower to the tips of its blades, NREL researchers work side-by-side with wind industry partners to increase system reliability and reduce wind energy costs. The NWTC's centrally located research and test facilities at the foot of the Colorado Rockies experience diverse and robust wind patterns ideal for testing. The NWTC tests wind turbine components, complete wind energy systems and prototypes from 400 watts to multiple megawatts in power rating.

Not Available

2011-12-01T23:59:59.000Z

19

Sinomatech Wind Power Blade aka Sinoma Science Technology Wind...  

Open Energy Info (EERE)

Sinomatech Wind Power Blade aka Sinoma Science Technology Wind Turbine Blade Co Ltd Jump to: navigation, search Name: Sinomatech Wind Power Blade (aka Sinoma Science & Technology...

20

Wind Energy and Spatial Technology  

E-Print Network [OSTI]

2/3/2011 1 Wind Energy and Spatial Technology Lori Pelech Why Wind Energy? A clean, renewable 2,600 tons of carbon emissions annually ­ The economy · Approximately 85,000 wind energy workers to Construct a Wind Farm... Geo-Spatial Components of Wind Farm Development Process Selecting a Project Site

Schweik, Charles M.

Note: This page contains sample records for the topic "wind technology testing" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


21

NREL Small Wind Turbine Test Project: Mariah Power's Windspire Wind Turbine Test Chronology  

SciTech Connect (OSTI)

This report presents a chronology of tests conducted at NREL's National Wind Technology Center on Mariah Power's Windspire 1.2-kW wind turbine and a letter of response from Mariah Power.

Huskey, A.; Forsyth, T.

2009-06-01T23:59:59.000Z

22

2010 Wind Technologies Market Report  

E-Print Network [OSTI]

ET2/TL-08-1474. May 19, 2010 Wind Technologies Market ReportIndustry Annual Market Report: Year Ending 2010. Washington,Quarter 2011 Market Report. Washington, D.C. : American Wind

Wiser, Ryan

2012-01-01T23:59:59.000Z

23

Wind Technologies and Evolving Opportunities (Presentation)  

SciTech Connect (OSTI)

This presentation provides an overview of wind energy research being conducted at the National Wind Technology Center, market and technology trends in wind energy, and opportunities for wind technology.

Robi Robichaud

2014-03-01T23:59:59.000Z

24

2009 Wind Technologies Market Report  

E-Print Network [OSTI]

Wind Technologies Market Report References Acker, T. 2007.Industry Annual Market Report: Year Ending 2009. Washington,AWEA Mid-Year 2010 Market Report. Washington, DC: American

Wiser, Ryan

2010-01-01T23:59:59.000Z

25

Active Power Control Testing at the U.S. National Wind Technology Center (NWTC) (Presentation)  

SciTech Connect (OSTI)

In order to keep the electricity grid stable and the lights on, the power system relies on certain responses from its generating fleet. This presentation evaluates the potential for wind turbines and wind power plants to provide these services and assist the grid during critical times.

Ela, E.

2011-01-01T23:59:59.000Z

26

PROGRESS OF WIND ENERGY TECHNOLOGY  

E-Print Network [OSTI]

This paper provides an overview of the progress of wind energy technology, along with the current status of wind power worldwide. Over the period of 2000-2012 grid-connected installed wind power has increased by a factor of more than 16. Due to the fast growth in wind market, wind turbine technology has developed different design approaches during this period. In addition to this, issues such as power grid integration, environmental impact, and economics are studied and discussed briefly in this paper, as well.

Bar?? Özerdem

27

Wind Turbine Generator System Acoustic Noise Test Report for the Gaia Wind 11-kW Wind Turbine  

SciTech Connect (OSTI)

This report details the acoustic noise test conducted on the Gaia-Wind 11-kW wind turbine at the National Wind Technology Center. The test turbine is a two- bladed, downwind wind turbine with a rated power of 11 kW. The test turbine was tested in accordance with the International Electrotechnical Commission standard, IEC 61400-11 Ed 2.1 2006-11 Wind Turbine Generator Systems -- Part 11 Acoustic Noise Measurement Techniques.

Huskey, A.

2011-11-01T23:59:59.000Z

28

2008 WIND TECHNOLOGIES MARKET REPORT  

E-Print Network [OSTI]

Reference Case Service Report, April 2009). DOE/EIA-0383(Integration Study—Final Report. Prepared for Xcel Energy andWind Technologies Market Report EnerNex Corp. and Windlogics

Bolinger, Mark

2010-01-01T23:59:59.000Z

29

National Wind Technology Center to Debut New Dynamometer (Fact Sheet)  

SciTech Connect (OSTI)

New test facility will be used to accelerate the development and deployment of next-generation offshore and land-based wind energy technologies.

Not Available

2013-05-01T23:59:59.000Z

30

Wind Energy at NREL's National Wind Technology Center  

ScienceCinema (OSTI)

It is a pure, plentiful natural resource. Right now wind is in high demand and it holds the potential to transform the way we power our homes and businesses. NREL is at the forefront of wind energy research and development. NREL's National Wind Technology Center (NWTC) is a world-class facility dedicated to accelerating and deploying wind technology.

None

2013-05-29T23:59:59.000Z

31

Wind Energy at NREL's National Wind Technology Center  

SciTech Connect (OSTI)

It is a pure, plentiful natural resource. Right now wind is in high demand and it holds the potential to transform the way we power our homes and businesses. NREL is at the forefront of wind energy research and development. NREL's National Wind Technology Center (NWTC) is a world-class facility dedicated to accelerating and deploying wind technology.

None

2010-01-01T23:59:59.000Z

32

South Carolina Opens Nation's Largest Wind Drivetrain Testing...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Carolina. The facility will help test and validate new turbines, particularly for offshore wind- helping to speed deployment of next generation energy technology, reduce...

33

South Carolina Opens Nation's Largest Wind Drivetrain Testing...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Institute, the facility will help test and validate new turbines, particularly for offshore wind-helping to speed deployment of next generation energy technology, reduce costs...

34

The National Wind Technology Center  

SciTech Connect (OSTI)

Wind energy research began at the Rocky Flats test site in 1976 when Rockwell International subcontracted with the Energy Research and Development Administration (ERDA). The Rocky Flats Plant was competitively selected from a number of ERDA facilities primarily because it experienced high instantaneous winds and provided a large, clear land area. By 1977, several small wind turbines were in place. During the facility`s peak of operation, in 1979-1980, researchers were testing as many as 23 small wind turbines of various configurations, including commercially available machines and prototype turbines developed under subcontract to Rocky Flats. Facilities also included 8-kW, 40-kW, and 225-kW dynamometers; a variable-speed test bed; a wind/hybrid test facility; a controlled velocity test facility (in Pueblo, Colorado); a modal test facility, and a multimegawatt switchgear facility. The main laboratory building was dedicated in July 1981 and was operated by the Rocky Flats Plant until 1984, when the Solar Energy Research Institute (SERI) and Rocky Flats wind energy programs were merged and transferred to SERI. SERI and now the National Renewable Energy Laboratory (NREL) continued to conduct wind turbine system component tests after 1987, when most program personnel were moved to the Denver WEst Office Park in Golden and site ownership was transferred back to Rocky Flats. The Combined Experiment test bed was installed and began operation in 1988, and the NREL structural test facility began operation in 1990. In 1993, the site`s operation was officially transferred to the DOE Golden Field Office that oversees NREL. This move was in anticipation of NREL`s renovation and reoccupation of the facility in 1994.

Thresher, R.W.; Hock, S.M. [National Renewable Energy Lab., Golden, CO (United States)] [National Renewable Energy Lab., Golden, CO (United States); Loose, R.R.; Cadogon, J.B.

1994-07-01T23:59:59.000Z

35

Next-Generation Wind Technology | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

Next-Generation Wind Technology Next-Generation Wind Technology The Wind Program works with industry partners to increase the performance and reliability of next-generation wind...

36

Wind Turbine Safety and Function Test Report for the Gaia-Wind 11-kW Wind Turbine  

SciTech Connect (OSTI)

This test was conducted as part of the U.S. Department of Energy's (DOE) Independent Testing project. This project was established to help reduce the barriers to wind energy expansion by providing independent testing results for small wind turbines (SWT). In total, four turbines were tested at the National Wind Technology Center (NWTC) as a part of this project. Safety and function testing is one of up to five tests performed on the turbines, including power performance, duration, noise, and power-quality tests. The results of the testing provide the manufacturers with reports that can be used for small wind turbine certification. The test equipment includes a Gaia-Wind 11-kW wind turbine mounted on an 18-m monopole tower. Gaia-Wind Ltd. manufactured the turbine in Denmark. The system was installed by the NWTC site operations group with guidance and assistance from Gaia-Wind.

Huskey, A.; Bowen, A.; Jager, D.

2010-01-01T23:59:59.000Z

37

2013 Wind Technologies Market Report Data | Department of Energy  

Office of Environmental Management (EM)

Report Data 2013 Wind Technologies Market Report Data 2013 Wind Technologies Market Report Data Tables.xlsx More Documents & Publications 2012 Data File 2013 Wind Technologies...

38

2010 Wind Technologies Market Report  

E-Print Network [OSTI]

wind turbine components (specifically, generators, bladeschangers. ” Wind turbine components such as blades, towers,17%). Wind turbine component exports (towers, blades,

Wiser, Ryan

2012-01-01T23:59:59.000Z

39

2011 Wind Technologies Market Report  

E-Print Network [OSTI]

and K. Porter. 2011. Wind Power and Electricity Markets.41 6. Wind Power Priceat Various Levels of Wind Power Capacity Penetration Wind

Bolinger, Mark

2013-01-01T23:59:59.000Z

40

2009 Wind Technologies Market Report  

E-Print Network [OSTI]

Prepared for the Utility Wind Integration Group. Arlington,Arizona Public Service Wind Integration Cost Impact Study.an Order Revising the Wind Integration Rate for Wind Powered

Wiser, Ryan

2010-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "wind technology testing" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


41

2010 Wind Technologies Market Report  

E-Print Network [OSTI]

2010. SPP WITF Wind Integration Study. Little Rock,an Order Revising the Wind Integration Rate for Wind PoweredPacifiCorp. 2010. 2010 Wind Integration Study. Portland,

Wiser, Ryan

2012-01-01T23:59:59.000Z

42

Wind Technology Advancements and Impacts on Western Wind Resources (Presentation)  

SciTech Connect (OSTI)

Robi Robichaud made this presentation at the Bureau of Land Management West-wide Wind Opportunities and Constraints Mapping (WWOCM) Project public meeting in Denver, Colorado in September 2014. This presentation outlines recent wind technology advancements, evolving turbine technologies, and industry challenges. The presentation includes maps of mean wind speeds at 50-m, 80-m, and 100-m hub heights on BLM lands. Robichaud also presented on the difference in mean wind speeds from 80m to 100m in Wyoming.

Robichaud, R.

2014-09-01T23:59:59.000Z

43

Cooperative field test program for wind systems  

SciTech Connect (OSTI)

The objectives of the Federal Wind Energy Program, managed by the US Department of Energy (DOE), are (1) to assist industry and utilities in achieving a multi-regional US market penetration of wind systems, and (2) to establish the United States as the world leader in the development of advanced wind turbine technology. In 1984, the program conducted a series of planning workshops with representatives from the wind energy industry to obtain input on the Five-Year Research Plan then being prepared by DOE. One specific suggestion that came out of these meetings was that the federal program should conduct cooperative research tests with industry to enhance the technology transfer process. It was also felt that the active involvement of industry in DOE-funded research would improve the state of the art of wind turbine technology. DOE established the Cooperative Field Test Program (CFTP) in response to that suggestion. This program was one of the first in DOE to feature joint industry-government research test teams working toward common objectives.

Bollmeier, W.S. II; Dodge, D.M.

1992-03-01T23:59:59.000Z

44

Paul S. Veers Wind Energy Technology Department  

E-Print Network [OSTI]

Paul S. Veers Wind Energy Technology Department Sandia National Laboratories Thursday, April 8th 3 Y WIND ENERGY SEMINAR SERIES Wind energy is a growing electricity source around the world, providing. The rapid expansion of wind is largely due to its relative similarity in levelized cost of energy to fossil

Ginzel, Matthew

45

2011 Wind Technologies Market Report  

E-Print Network [OSTI]

natural gas prices), pushed wind energy to the top of (andperformance, and price of wind energy, policy uncertainty –cost, performance, and price of wind energy, some of these

Bolinger, Mark

2013-01-01T23:59:59.000Z

46

2012 Wind Technologies Market Report  

E-Print Network [OSTI]

The Effects of Integrating Wind Power on Transmission Systemat Various Levels of Wind Power Capacity Penetration 201242 6. Wind Power Price

Wiser, Ryan

2014-01-01T23:59:59.000Z

47

2009 Wind Technologies Market Report  

E-Print Network [OSTI]

Prepared for the Utility Wind Integration Group. Arlington,Consult. 2010. International Wind Energy Development: WorldUBS Global I/O: Global Wind Sector. UBS Investment Research.

Wiser, Ryan

2010-01-01T23:59:59.000Z

48

2008 WIND TECHNOLOGIES MARKET REPORT  

E-Print Network [OSTI]

2008. Washington, DC: American Wind Energy Association.American Wind Energy Association ( AWEA).2009b. AWEA Small Wind Turbine Global Market Study: Year

Bolinger, Mark

2010-01-01T23:59:59.000Z

49

2011 Wind Technologies Market Report  

E-Print Network [OSTI]

2010. SPP WITF Wind Integration Study. Little Rock,GE Energy. 2011a. Oahu Wind Integration Study Final Report.PacifiCorp. 2010. 2010 Wind Integration Study. Portland,

Bolinger, Mark

2013-01-01T23:59:59.000Z

50

2011 Wind Technologies Market Report  

E-Print Network [OSTI]

wind turbine components (specifically, generators, bladeschangers. ” Wind turbine components such as blades, towers,Canada (8%). Wind turbine component exports (towers, blades,

Bolinger, Mark

2013-01-01T23:59:59.000Z

51

2010 Wind Technologies Market Report  

E-Print Network [OSTI]

Market Report vii potential wind energy generation withinthat nearly 8% of potential wind energy generation withinAreas, in GWh (and % of potential wind generation) Electric

Wiser, Ryan

2012-01-01T23:59:59.000Z

52

2009 Wind Technologies Market Report  

E-Print Network [OSTI]

capacity), with 17% of all potential wind energy generationthat roughly 17% of potential wind energy generation withinexample, roughly 1% of potential wind energy output in 2009

Wiser, Ryan

2010-01-01T23:59:59.000Z

53

Solar and Wind Technologies for Hydrogen Production: Report to Congress Solar and Wind Technologies  

E-Print Network [OSTI]

.........................5 1.4 Potential Capacity for Hydrogen Production from Conventional Electrolysis Using Wind and SolarSolar and Wind Technologies for Hydrogen Production: Report to Congress Solar and Wind Technologies For Hydrogen Production Report to Congress December 2005 (ESECS EE-3060) #12;Solar and Wind Technologies

54

U.S. Offshore Wind Advanced Technology Demonstration Projects...  

Broader source: Energy.gov (indexed) [DOE]

Offshore Wind Advanced Technology Demonstration Projects Public Meeting Transcript for Offshore Wind Demonstrations U.S. Offshore Wind Advanced Technology Demonstration Projects...

55

Wind Turbine Safety and Function Test Report for the Mariah Windspire Wind Turbine  

SciTech Connect (OSTI)

This test was conducted as part of the U.S. Department of Energy's (DOE) Independent Testing project. This project was established to help reduce the barriers to wind energy expansion by providing independent testing results for small wind turbines (SWT). In total, five turbines were tested at the National Wind Technology Center (NWTC) as a part of this project. Safety and function testing is one of up to five tests performed on the turbines, including power performance, duration, noise, and power-quality tests. NWTC testing results provide manufacturers with reports that may be used to meet part of small wind turbine certification requirements. The test equipment includes a Mariah Windspire wind turbine mounted on a monopole tower. L&E Machine manufactured the turbine in the United States. The inverter was manufactured separately by Technology Driven Products in the United States. The system was installed by the NWTC site operations group with guidance and assistance from Mariah Power.

Huskey, A.; Bowen, A.; Jager, D.

2010-07-01T23:59:59.000Z

56

2010 Wind Technologies Market Report  

E-Print Network [OSTI]

AWEA?s Wind Energy Weekly, DOE/EPRI?s Turbine Verification10% Wind Energy Penetration New large-scale 9 wind turbineswind energy continues to decline as a result of lower wind turbine

Wiser, Ryan

2012-01-01T23:59:59.000Z

57

2011 Wind Technologies Market Report  

E-Print Network [OSTI]

AWEA’s Wind Energy Weekly, DOE/EPRI’s Turbine Verification10% Wind Energy Penetration New large-scale 8 wind turbinesTurbine Market Report. Washington, D.C. : American Wind Energy

Bolinger, Mark

2013-01-01T23:59:59.000Z

58

2008 WIND TECHNOLOGIES MARKET REPORT  

E-Print Network [OSTI]

Prepared for the Utility Wind Integration Group. Arlington,Wind Logics, Inc. 2004. Wind Integration Study—Final Report.EnerNex Corp. 2006. Wind Integration Study for Public

Bolinger, Mark

2010-01-01T23:59:59.000Z

59

2009 Wind Technologies Market Report  

E-Print Network [OSTI]

is located in Europe. In contrast, all wind power projectsin Europe. In 2009, for example, more wind power was

Wiser, Ryan

2010-01-01T23:59:59.000Z

60

NREL: Wind Research - Testing  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May JunDatastreamsmmcrcalgovInstrumentsrucLas Conchas recoveryLaboratory | NationalJohn F. Geisz,AerialStaff Here you will findTesting

Note: This page contains sample records for the topic "wind technology testing" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


61

2009 Wind Technologies Market Report: Executive Summary  

SciTech Connect (OSTI)

This is the Executive Summary of the full report entitled 2009 Wind Technologies Market Report (DOE/GO-102010-3107).

Wiser, R.; Bolinger, M.

2010-08-01T23:59:59.000Z

62

2009 Wind Technologies Market Report  

E-Print Network [OSTI]

AWEA’s Wind Energy Weekly, DOE/EPRI’s Turbine Verification10% Wind Energy Penetration New large-scale 10 wind turbineswind energy became more challenging, orders for new turbines

Wiser, Ryan

2010-01-01T23:59:59.000Z

63

2009 Wind Technologies Market Report  

E-Print Network [OSTI]

natural gas prices), pushed wind energy from the bottom toover the cost and price of wind energy that it receives. Asweighted-average price of wind energy in 1999 was $65/MWh (

Wiser, Ryan

2010-01-01T23:59:59.000Z

64

2008 WIND TECHNOLOGIES MARKET REPORT  

E-Print Network [OSTI]

natural gas prices, though the economic value of wind energyenergy and climate policy initiatives. With wind turbine pricesprices reported here would be at least $20/MWh higher without the PTC), they do not represent wind energy

Bolinger, Mark

2010-01-01T23:59:59.000Z

65

2010 Wind Technologies Market Report  

E-Print Network [OSTI]

weighted-average price of wind energy in 1999 was roughly $reduced near-term price expectations, wind energy?s primaryelectricity prices in 2009 pushed wind energy to the top of

Wiser, Ryan

2012-01-01T23:59:59.000Z

66

2011 Wind Technologies Market Report  

E-Print Network [OSTI]

and the drop in wind power plant installations since 2009and the drop in wind power plant installations since 2009towers used in U.S. wind power plants increases from 80% in

Bolinger, Mark

2013-01-01T23:59:59.000Z

67

2010 Wind Technologies Market Report  

E-Print Network [OSTI]

and the drop in wind power plant installations, for example,the decrease in new wind power plant construction. A GrowingRelative Economics of Wind Power Plants Installed in Recent

Wiser, Ryan

2012-01-01T23:59:59.000Z

68

2009 Wind Technologies Market Report  

E-Print Network [OSTI]

AWEA). 2010b. AWEA Small Wind Turbine Global Market Survey,html David, A. 2009. Wind Turbines: Industry and Tradewhich new large-scale wind turbines were installed in 2009 (

Wiser, Ryan

2010-01-01T23:59:59.000Z

69

2011 Wind Technologies Market Report  

E-Print Network [OSTI]

Associates. 2010. SPP WITF Wind Integration Study. LittlePool. David, A. 2011. U.S. Wind Turbine Trade in a Changing2011. David, A. 2010. Impact of Wind Energy Installations on

Bolinger, Mark

2013-01-01T23:59:59.000Z

70

2011 Wind Technologies Market Report  

E-Print Network [OSTI]

shows that 8.5% of potential wind energy generation withinin GWh (and as a % of potential wind generation) Electricreport also laid out a potential wind power deployment path

Bolinger, Mark

2013-01-01T23:59:59.000Z

71

2008 WIND TECHNOLOGIES MARKET REPORT  

E-Print Network [OSTI]

AWEA’s Wind Energy Weekly, DOE/EPRI’s Turbine VerificationTurbine Global Market Study: Year Ending 2008. Washington, DC: American Wind Energy

Bolinger, Mark

2010-01-01T23:59:59.000Z

72

2009 Wind Technologies Market Report  

E-Print Network [OSTI]

selected wind turbine components that include towers (tradeWind turbine transactions differ in the services offered (e.g. , whether towers

Wiser, Ryan

2010-01-01T23:59:59.000Z

73

2008 WIND TECHNOLOGIES MARKET REPORT  

E-Print Network [OSTI]

wind turbine manufacturers: Vestas (nacelles, blades, and towersWind turbine transactions differ in the services offered (e.g. , whether towers

Bolinger, Mark

2010-01-01T23:59:59.000Z

74

2008 WIND TECHNOLOGIES MARKET REPORT  

E-Print Network [OSTI]

some wind turbine manufacturers experienced blade andwind turbine manufacturers: Vestas (nacelles, blades, and

Bolinger, Mark

2010-01-01T23:59:59.000Z

75

Concept tests: Wind tunnel tests in controlled wind Comparison tests: Free field comparison to 3D sonic anemometer  

E-Print Network [OSTI]

comparable potential. Wind measurements on wind turbines in undisturbed wind, relative to nacelle anemometryConcept tests: Wind tunnel tests in controlled wind Comparison tests: Free field comparison to 3D" by CFD calculations Spinner AnemometrySpinner Anemometry -- An Innovative Wind Measurement Concept

76

2011 Wind Technologies Market Report  

E-Print Network [OSTI]

wind power capacity stood at roughly 4,000 MW, with the vast majority located in Europe.in Europe. Just 470 MW of new offshore wind power capacity

Bolinger, Mark

2013-01-01T23:59:59.000Z

77

2009 Wind Technologies Market Report  

E-Print Network [OSTI]

generating sets. Wind turbine blades, hubs, generators,wind turbine components that include towers (trade category is “towers and lattice masts”), generators (“AC generators from 750 to 10,000 kVA”), blades

Wiser, Ryan

2010-01-01T23:59:59.000Z

78

2010 Wind Technologies Market Report  

E-Print Network [OSTI]

a Changing Environment. WINDPOWER 2011. Poster Presentation.sources and others, e.g. , Windpower Monthly, the GlobalTurboWinds (1.6 MW), Nordic Windpower (2 MW), Emergya Wind

Wiser, Ryan

2012-01-01T23:59:59.000Z

79

2010 Wind Technologies Market Report  

E-Print Network [OSTI]

wind energy in some quarters, planning, siting, and permitting can be challenging, as demonstrated in the long history

Wiser, Ryan

2012-01-01T23:59:59.000Z

80

National Wind Technology Center Dynamic 5-Megawatt Dynamometer  

SciTech Connect (OSTI)

The National Wind Technology Center (NWTC) offers wind industry engineers a unique opportunity to conduct a wide range of tests. Its custom-designed dynamometers can test wind turbine systems from 1 kilowatt (kW) to 5 megawatts (MW). The NWTC's new dynamometer facility simulates operating field conditions to assess the reliability and performance of wind turbine prototypes and commercial machines, thereby reducing deployment time, failures, and maintenance or replacement costs. Funded by the U.S. Department of Energy with American Recovery and Reinvestment Act (ARRA) funds, the 5-MW dynamometer will provide the ability to test wind turbine drivetrains and connect those drivetrains directly to the electricity grid or through a controllable grid interface (CGI). The CGI tests the low-voltage ride-through capability of a drivetrain as well as its response to faults and other abnormal grid conditions.

Felker, Fort

2013-11-13T23:59:59.000Z

Note: This page contains sample records for the topic "wind technology testing" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


81

National Wind Technology Center Dynamic 5-Megawatt Dynamometer  

ScienceCinema (OSTI)

The National Wind Technology Center (NWTC) offers wind industry engineers a unique opportunity to conduct a wide range of tests. Its custom-designed dynamometers can test wind turbine systems from 1 kilowatt (kW) to 5 megawatts (MW). The NWTC's new dynamometer facility simulates operating field conditions to assess the reliability and performance of wind turbine prototypes and commercial machines, thereby reducing deployment time, failures, and maintenance or replacement costs. Funded by the U.S. Department of Energy with American Recovery and Reinvestment Act (ARRA) funds, the 5-MW dynamometer will provide the ability to test wind turbine drivetrains and connect those drivetrains directly to the electricity grid or through a controllable grid interface (CGI). The CGI tests the low-voltage ride-through capability of a drivetrain as well as its response to faults and other abnormal grid conditions.

Felker, Fort

2014-06-10T23:59:59.000Z

82

National Wind Technology Center (Fact Sheet), National Wind Technology...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

hydrokinetic (MHK) energy devices are high-force, low-speed machines, similar to wind turbines that convert the kinetic energy of a moving fluid into electrical energy....

83

2013 Wind Technologies Market Report  

SciTech Connect (OSTI)

This annual report provides a detailed overview of developments and trends in the U.S. wind power market, with a particular focus on 2013. This 2013 edition updates data presented in previous editions while highlighting key trends and important new developments. The report includes an overview of key installation-related trends; trends in wind power capacity growth; how that growth compares to other countries and generation sources; the amount and percentage of wind energy in individual states; the status of offshore wind power development and the quantity of proposed wind power capacity in various interconnection queues in the United States.

Wiser, R.; Bolinger, M.; Barbose, G.; Darghouth, N.; Hoen, B.; Mills, A.; Weaver, S.; Porter, K.; Buckley, M.; Oteri, F.; Tegen, S.

2014-08-01T23:59:59.000Z

84

National Wind Tecnology Center Provides Dual Axis Resonant Blade Testing  

SciTech Connect (OSTI)

NREL's Structural Testing Laboratory at the National Wind Technology Center (NWTC) provides experimental laboratories, computer facilities for analytical work, space for assembling components and turbines for atmospheric testing as well as office space for industry researchers. Fort Felker, center director at the NWTC, discusses NREL's state-of-the-art structural testing capabilities and shows a flapwise and edgewise blade test in progress.

Felker, Fort

2013-11-13T23:59:59.000Z

85

National Wind Tecnology Center Provides Dual Axis Resonant Blade Testing  

ScienceCinema (OSTI)

NREL's Structural Testing Laboratory at the National Wind Technology Center (NWTC) provides experimental laboratories, computer facilities for analytical work, space for assembling components and turbines for atmospheric testing as well as office space for industry researchers. Fort Felker, center director at the NWTC, discusses NREL's state-of-the-art structural testing capabilities and shows a flapwise and edgewise blade test in progress.

Felker, Fort

2014-06-10T23:59:59.000Z

86

Duration Test Report for the Ventera VT10 Wind Turbine  

SciTech Connect (OSTI)

This project was established to help reduce the barriers of wind energy expansion by providing independent testing results for small wind turbines. Five turbines were tested at the National Wind Technology Center (NWTC) at the National Renewable Energy Laboratory (NREL) as a part of round one of this project. Duration testing is one of up to five tests that may be performed on the turbines, including power performance, safety and function, noise, and power quality. Test results will provide manufacturers with reports that can be used to fulfill part of the requirements for small wind turbine certification. The test equipment included a grid-connected Ventera Energy Corporation VT10 wind turbine mounted on an 18.3-m (60-ft) self-supporting lattice tower manufactured by Rohn.

Smith, J.; Huskey, A.; Jager, D.; Hur, J.

2013-06-01T23:59:59.000Z

87

Safety and Function Test Report for the SWIFT Wind Turbine  

SciTech Connect (OSTI)

This test was conducted as part of the U.S. Department of Energy's (DOE) Independent Testing project. This project was established to help reduce the barriers of wind energy expansion by providing independent testing results for small turbines. Three turbines where selected for testing at the National Wind Technology Center (NWTC) as a part of round two of the Small Wind Turbine Independent Testing project. Safety and Function testing is one of up to 5 tests that may be performed on the turbines. Other tests include power performance, duration, noise, and power quality. The results of the testing will provide the manufacturers with reports that may be used for small wind turbine certification.

Mendoza, I.; Hur, J.

2013-01-01T23:59:59.000Z

88

Duration Test Report for the SWIFT Wind Turbine  

SciTech Connect (OSTI)

This test was conducted as part of the U.S. Department of Energy's (DOE) Independent Testing project. This project was established to help reduce the barriers of wind energy expansion by providing independent testing results for small turbines. Three turbines where selected for testing at the National Wind Technology Center (NWTC) as a part of round two of the Small Wind Turbine Independent Testing project. Duration testing is one of up to 5 tests that may be performed on the turbines. Other tests include power performance, safety and function, noise, and power quality. The results of the testing will provide the manufacturers with reports that may be used for small wind turbine certification.

Mendoza, I.; Hur, J.

2013-01-01T23:59:59.000Z

89

2011 Wind Technologies Market Report  

SciTech Connect (OSTI)

This report describes the status of the U.S. wind energy industry market in 2011; its trends, performance, market drivers and future outlook.

Wiser, R.; Bolinger, M.

2012-08-01T23:59:59.000Z

90

2010 Wind Technologies Market Report  

SciTech Connect (OSTI)

This report describes the status of the U.S. wind energy industry market in 2010; its trends, performance, market drivers and future outlook.

Wiser, R.; Bolinger, M.

2011-06-01T23:59:59.000Z

91

2012 Wind Technologies Market Report  

SciTech Connect (OSTI)

This report describes the status of the U.S. wind energy industry market in 2012; its trends, performance, market drivers and future outlook.

Wiser, R.; Bolinger, M.; Barbose, G.; Darghouth, N.; Hoen, B.; Mills, A.; Weaver, S.; Porter, K.; Buckley, M.; Fink, S.; Oteri, F.; Tegen, S.

2013-08-01T23:59:59.000Z

92

2011 Wind Technologies Market Report  

E-Print Network [OSTI]

at the National Renewable Energy Laboratory’s National WindGolden, CO: National Renewable Energy Laboratory. ElectricColorado: National Renewable Energy Laboratory. EnerNex

Bolinger, Mark

2013-01-01T23:59:59.000Z

93

2009 Wind Technologies Market Report  

E-Print Network [OSTI]

federal loan programme. ” Windpower Monthly. Bloomberg NewWind 102. Presentation at AWEA’s WINDPOWER 2010 Conference &discussion at AWEA’s WINDPOWER 2010 Conference & Exhibition,

Wiser, Ryan

2010-01-01T23:59:59.000Z

94

2008 WIND TECHNOLOGIES MARKET REPORT  

SciTech Connect (OSTI)

The U.S. wind industry experienced a banner year in 2008, again surpassing even optimistic growth projections from years past. At the same time, the last year has been one of upheaval, with the global financial crisis impacting near-term growth prospects for the wind industry, and with federal policy changes enacted to push the industry towards continued aggressive expansion. This rapid pace of development has made it difficult to keep up with trends in the marketplace. Yet, the need for timely, objective information on the industry and its progress has never been greater. This report - the third of an ongoing annual series - attempts to meet this need by providing a detailed overview of developments and trends in the U.S. wind power market, with a particular focus on 2008. As with previous editions, this report begins with an overview of key wind power installation-related trends: trends in wind capacity growth in the U.S., how that growth compares to other countries and generation sources, the amount and percentage of wind in individual states and serving specific utilities, and the quantity of proposed wind capacity in various interconnection queues in the United States. Next, the report covers an array of wind industry trends, including developments in turbine manufacturer market share, manufacturing and supply-chain investments, wind turbine and wind project size, project financing developments, and trends among wind power developers, project owners, and power purchasers. The report then turns to a discussion of wind project price, cost, and performance trends. In so doing, it reviews the price of wind power in the United States, and how those prices compare to the cost of fossil-fueled generation, as represented by wholesale power prices. It also describes trends in installed wind project costs, wind turbine transaction prices, project performance, and operations and maintenance expenses. Next, the report examines other policy and market factors impacting the domestic wind power market, including federal and state policy drivers, transmission issues, and grid integration. Finally, the report concludes with a preview of possible near- to medium-term market developments. This version of the Annual Report updates data presented in the previous editions, while highlighting key trends and important new developments from 2008. New to this edition is an executive summary of the report and an expanded final section on near- to medium-term market development. The report concentrates on larger-scale wind applications, defined here as individual turbines or projects that exceed 50 kW in size. The U.S. wind power sector is multifaceted, however, and also includes smaller, customer-sited wind turbines used to power the needs of residences, farms, and businesses. Data on these applications are not the focus of this report, though a brief discussion on Distributed Wind Power is provided on page 4. Much of the data included in this report were compiled by Berkeley Lab, and come from a variety of sources, including the American Wind Energy Association (AWEA), the Energy Information Administration (EIA), and the Federal Energy Regulatory Commission (FERC). The Appendix provides a summary of the many data sources used in the report. Data on 2008 wind capacity additions in the United States are based on information provided by AWEA; some minor adjustments to those data may be expected. In other cases, the data shown here represent only a sample of actual wind projects installed in the United States; furthermore, the data vary in quality. As such, emphasis should be placed on overall trends, rather than on individual data points. Finally, each section of this document focuses on historical market information, with an emphasis on 2008; with the exception of the final section, the report does not seek to forecast future trends.

Wiser, Ryan H.; Bolinger, Mark; Barbose, G.; Mills, A.; Rosa, A.; Porter, K.; Fink, S.; Tegen, S.; Musial, W.; Oteri, F.; Heimiller, D.; Rberts, B.; Belyeu, K.; Stimmel, R.

2009-07-15T23:59:59.000Z

95

Robi, Robichaud, Wind Technologies and Evolving Opportunities  

Broader source: Energy.gov (indexed) [DOE]

Wind Technologies and Innovation for Our Energy Future Evolving Opportunities Robi Robichaud Senior Engineer N NR REL EL i is s a a n na at ti io on na al l l la ab bo ora rat to...

96

Wind Turbine Generator System Duration Test Report for the Gaia-Wind 11 kW Wind Turbine  

SciTech Connect (OSTI)

This test was conducted as part of the U.S. Department of Energy's (DOE) Independent Testing project. This project was established to help reduce the barriers of wind energy expansion by providing independent testing results for small turbines. In total, five turbines are being tested at the National Renewable Energy Laboratory's (NRELs) National Wind Technology Center (NWTC) as a part of this project. Duration testing is one of up to five tests that may be performed on the turbines, including power performance, safety and function, noise, and power quality tests. The results of the testing will provide the manufacturers with reports that may be used for small wind turbine certification. The test equipment includes a Gaia-Wind 11 kW wind turbine mounted on an 18 m monopole tower. Gaia-Wind Ltd. manufactured the turbine in Denmark, although the company is based in Scotland. The system was installed by the NWTC Site Operations group with guidance and assistance from Gaia-Wind.

Huskey, A.; Bowen, A.; Jager, D.

2010-09-01T23:59:59.000Z

97

2008 WIND TECHNOLOGIES MARKET REPORT  

E-Print Network [OSTI]

the impacts of wind on load-following and unit commitmentto a few minutes; load-following – tens of minutes to a fewreserves, to provide load following. Conversely, the higher

Bolinger, Mark

2010-01-01T23:59:59.000Z

98

2009 Wind Technologies Market Report  

E-Print Network [OSTI]

to a few minutes; load-following – tens of minutes to a fewimpacts of wind energy on load-following and unit commitmentCost ($/MWh) Regulation Load Following Unit Commit. trace

Wiser, Ryan

2010-01-01T23:59:59.000Z

99

2009 Wind Technologies Market Report  

SciTech Connect (OSTI)

The U.S. wind power industry experienced yet another record year in 2009, once again surpassing even optimistic growth projections from years past. At the same time, 2009 was a year of upheaval, with the global financial crisis impacting the wind power industry and with federal policy changes enacted to push the industry toward continued aggressive expansion. The year 2010, meanwhile, is anticipated to be one of some retrenchment, with expectations for fewer wind power capacity additions than seen in 2009. The rapid pace of development and change within the industry has made it difficult to keep up with trends in the marketplace, yet the need for timely, objective information on the industry and its progress has never been greater. This report - the fourth in an ongoing annual series - attempts to meet this need by providing a detailed overview of developments and trends in the United States wind power market, with a particular focus on 2009.

Wiser, R.; Bolinger, M.

2010-08-01T23:59:59.000Z

100

2011 Wind Technologies Market Report  

E-Print Network [OSTI]

in 2011, followed by Siemens (18%), Suzlon and Mitsubishi (GE, Vestas, and Siemens. On a worldwide basis, ChineseGE Wind and Vestas were Siemens (with an 18% market share),

Bolinger, Mark

2013-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "wind technology testing" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


101

2010 Wind Technologies Market Report  

E-Print Network [OSTI]

2011. North America Wind Energy Market Forecast: 2011–2025.study. Regions with fast energy markets, for example, changea sub-hourly, real-time energy market providing centralized,

Wiser, Ryan

2012-01-01T23:59:59.000Z

102

2008 WIND TECHNOLOGIES MARKET REPORT  

E-Print Network [OSTI]

the Midwest, Texas, Southwest, and PJM regions: wind in the52 GW), SPP (48 GW), and PJM (43 GW) account for over 70% ofThe queues surveyed include PJM Interconnection, Midwest

Bolinger, Mark

2010-01-01T23:59:59.000Z

103

2011 Wind Technologies Market Report  

E-Print Network [OSTI]

WindLogics Inc. (2006) [MN-MISO (2006)]; EnerNex et al. (IPP ISO ISO-NE ITC kW kWh MISO MW MWh NERC NREL NYISO OEMIndependent System Operator (MISO), New York ISO (NYISO),

Bolinger, Mark

2013-01-01T23:59:59.000Z

104

2009 Wind Technologies Market Report  

E-Print Network [OSTI]

Texas, May 24, 2010. MISO. 2010. Dispatchable Intermittentand Windlogics Inc. (2006) [MN-MISO]; Puget Sound Energy (ITC kW kWh LADWP LIBOR MISO American Wind Energy Association

Wiser, Ryan

2010-01-01T23:59:59.000Z

105

2010 Wind Technologies Market Report  

E-Print Network [OSTI]

WindLogics Inc. (2006) [MN-MISO (2006)]; EnerNex et al. (IPP ISO ISO-NE ITC kW kWh MISO MW MWh NERC NREL NYISO OEMIndependent System Operator (MISO), New York ISO (NYISO),

Wiser, Ryan

2012-01-01T23:59:59.000Z

106

2008 Wind Technologies Market Report  

SciTech Connect (OSTI)

The U.S. wind industry experienced a banner year in 2008, once again surpassing even optimistic growth projections from years past. At the same time, the past year has been one of upheaval, with the global financial crisis impacting near-term growth prospects for the wind industry, and with significant federal policy changes enacted to push the industry toward continued aggressive expansion. This report examines key trends.

Wiser, R.; Bolinger, M.

2009-07-01T23:59:59.000Z

107

Sparkr Blade Test Centre Fatigue tests of wind turbine blades  

E-Print Network [OSTI]

Sparkær Blade Test Centre Fatigue tests of wind turbine blades Flapwise fatigue tests of 3 blades wind load. By turning and oscillating the blade in the horzontal direction, an R-ratio of ­1 running at the Sparkær Centre Blade Test Facilities. Fatigue blade tests are performed in order

108

National Wind Technology Center sitewide, Golden, CO: Environmental assessment  

SciTech Connect (OSTI)

The National Renewable Energy Laboratory (NREL), the nation`s primary solar and renewable energy research laboratory, proposes to expand its wind technology research and development program activities at its National Wind Technology Center (NWTC) near Golden, Colorado. NWTC is an existing wind energy research facility operated by NREL for the US Department of Energy (DOE). Proposed activities include the construction and reuse of buildings and facilities, installation of up to 20 wind turbine test sites, improvements in infrastructure, and subsequent research activities, technology testing, and site operations. In addition to wind turbine test activities, NWTC may be used to support other NREL program activities and small-scale demonstration projects. This document assesses potential consequences to resources within the physical, biological, and human environment, including potential impacts to: air quality, geology and soils, water resources, biological resources, cultural and historic resources, socioeconomic resources, land use, visual resources, noise environment, hazardous materials and waste management, and health and safety conditions. Comment letters were received from several agencies in response to the scoping and predecisional draft reviews. The comments have been incorporated as appropriate into the document with full text of the letters contained in the Appendices. Additionally, information from the Rocky Flats Environmental Technology Site on going sitewide assessment of potential environmental impacts has been reviewed and discussed by representatives of both parties and incorporated into the document as appropriate.

NONE

1996-11-01T23:59:59.000Z

109

BY ERIC M. HINES, P.E., PH.D., AND WILLIAM C. GIBB THE RECENTLY COMMISSIONED Wind Technology Testing  

E-Print Network [OSTI]

of these blades, the Department of Energy (DOE) helped fund the WTTC as the nation's first high capacity blade testing facility near a deep-water port. The WTTC is the largest facility of its kind in the world and has direction, the lateral capacity of the frames is similar every 30 ft, placing minimal shear demands

Hines, Eric

110

20% Wind Energy by 2030 - Chapter 2: Wind Turbine Technology...  

Office of Environmental Management (EM)

20% Wind Energy by 2030: Increasing Wind Energy's Contribution to U.S. Electricity Supply U.S. Offshore Wind Manufacturing and Supply Chain Development Wind Program Accomplishments...

111

2010 Wind Technologies Market Report  

SciTech Connect (OSTI)

The U.S. wind power industry experienced a trying year in 2010, with a significant reduction in new builds compared to both 2008 and 2009. The delayed impact of the global financial crisis, relatively low natural gas and wholesale electricity prices, and slumping overall demand for energy countered the ongoing availability of existing federal and state incentives for wind energy deployment. The fact that these same drivers did not impact capacity additions in 2009 can be explained, in part, by the 'inertia' in capital-intensive infrastructure investments: 2009 capacity additions were largely determined by decisions made prior to the economy-wide financial crisis that was at its peak in late 2008 and early 2009, whereas decisions on 2010 capacity additions were often made at the height of the financial crisis. Cumulative wind power capacity still grew by a healthy 15% in 2010, however, and most expectations are for moderately higher wind power capacity additions in 2011 than witnessed in 2010, though those additions are also expected to remain below the 2009 high.

Exeter Associates; National Renewable Energy Laboratory; Energetics Incorporated; Wiser, Ryan; Bolinger, Mark; Barbose, Galen; Darghouth, Naim; Hoen, Ben; Mills, Andrew; Seel, Joachim; Porter, Kevin; Buckley, Michael; Fink, Sari; Oteri, Frank; Raymond, Russell

2011-06-27T23:59:59.000Z

112

Preliminary Assumptions for Wind Technologies  

E-Print Network [OSTI]

) Mountain Air Wind Farm (138 MW) ­ Elmore County, ID (Image courtesy of Terna-Energy) 3 #12;Current of operation Investment Tax Credit (ITC) alternative 30% towards developer's income tax for qualifying solar" prior to 12/31/16 Post-2016, credit drops to 10% - solar PV, geothermal 6 #12;Status of Regional RPS

113

Sparkr Blade Test Centre Static tests of wind turbine blades  

E-Print Network [OSTI]

Sparkær Blade Test Centre Static tests of wind turbine blades Static blade tests are performed-4000 Roskilde Denmark www.risoe.dk Wind Energy Department Sparkær Blade test Centre vea@risoe.dk Tel in order to determine the structural properties of a blade including stiffness data and strain distribution

114

An overview: Challenges in wind technology development  

SciTech Connect (OSTI)

Developing innovative wind turbine components and advanced turbine configurations is a primary focus for wind technology researchers. In their rush to bring these new components and systems to the marketplace, designers and developers should consider the lessons learned in the wind farms over the past 10 years. Experience has shown that a disciplined design approach is required that realistically accounts for the turbulence-induced loads, unsteady stall loading, and fatigue effects. This paper reviews past experiences and compares current modelling capabilities with experimental measurements in order to identify some of the knowledge gaps that challenge designers of advanced components and systems. 7 refs., 11 figs.

Thresher, R W; Hock, S M

1991-12-01T23:59:59.000Z

115

MHK Technologies/New Knowledge Wind and Wave Renewable Mobile...  

Open Energy Info (EERE)

Wave Renewable Mobile Wind and Wave Power Plant Platform < MHK Technologies Jump to: navigation, search << Return to the MHK database homepage New Knowledge Wind and Wave Renewable...

116

Establishment of Small Wind Regional Test Centers: Preprint  

SciTech Connect (OSTI)

The rapid growth of the small wind turbine (SWT) market is attracting numerous entrants. Small wind turbine purchasers now have many options but often lack information (such as third-party certification) to select a quality turbine. Most SWTs do not have third-party certification due to the expense and difficulty of the certification process. Until recently, the only SWT certification bodies were in Europe. In North America, testing has been limited to a small number of U.S. Department of Energy (DOE) subsidized tests conducted at the National Wind Technology Center (NWTC) under the ongoing Independent Testing Project. Within the past few years, the DOE, National Renewable Energy Lab (NREL), and some states have worked with the North American SWT industry to create a SWT certification infrastructure. The goal is to increase the number of certified turbines and gain greater consumer confidence in SWT technology. The American Wind Energy Association (AWEA) released the AWEA Small Wind Turbine Performance and Safety Standard (AWEA Standard 9.1 - 2009) in December 2009. The Small Wind Certification Council (SWCC), a North American certification body, began accepting applications for certification to the AWEA standard in February 2010. To reduce certification testing costs, DOE/NREL is providing financial and technical assistance for an initial round of tests at four SWT test sites which were selected via a competitive solicitation. The four organizations selected are Windward Engineering (Utah), The Alternative Energy Institute at West Texas A&M (Texas), a consortium consisting of Kansas State University and Colby Community College (Kansas), and Intertek (New York). Each organization will test two small wind turbines as part of their respective subcontract with DOE/NREL. The testing results will be made publically available. The goal is to establish a lower-cost U.S. small wind testing capability that will lead to increased SWT certification.

Jimenez, T.; Forsyth, T.; Huskey, A.; Mendoza, I.; Sinclair, K.; Smith, J.

2011-03-01T23:59:59.000Z

117

SMART Wind Turbine Rotor: Design and Field Test | Department...  

Broader source: Energy.gov (indexed) [DOE]

Design and Field Test SMART Wind Turbine Rotor: Design and Field Test This report documents the design, fabrication, and testing of the SMART Wind Turbine Rotor. This work...

118

The Great Plains Wind Power Test Facility  

SciTech Connect (OSTI)

This multi-year, multi-faceted project was focused on the continued development of a nationally-recognized facility for the testing, characterization, and improvement of grid-connected wind turbines, integrated wind-water desalination systems, and related educational and outreach topics. The project involved numerous faculty and graduate students from various engineering departments, as well as others from the departments of Geosciences (in particular the Atmospheric Science Group) and Economics. It was organized through the National Wind Institute (NWI), which serves as an intellectual hub for interdisciplinary and transdisciplinary research, commercialization and education related to wind science, wind energy, wind engineering and wind hazard mitigation at Texas Tech University (TTU). Largely executed by an academic based team, the project resulted in approximately 38 peer-reviewed publications, 99 conference presentations, the development/expansion of several experimental facilities, and two provisional patents.

Schroeder, John

2014-01-31T23:59:59.000Z

119

Wind Tunnel and Field Test of Three 2D Sonic Anemometers  

E-Print Network [OSTI]

Wind Tunnel and Field Test of Three 2D Sonic Anemometers Wiel Wauben R&D Information and Observation Technology, KNMI September 17, 2007 #12;#12;Wind Tunnel and Field Test of Three 2D Sonic.....................................................................................................1 2. Wind sensors

Stoffelen, Ad

120

Wind Energy Workforce Development: Engineering, Science, & Technology  

SciTech Connect (OSTI)

Broadly, this project involved the development and delivery of a new curriculum in wind energy engineering at the Pennsylvania State University; this includes enhancement of the Renewable Energy program at the Pennsylvania College of Technology. The new curricula at Penn State includes addition of wind energy-focused material in more than five existing courses in aerospace engineering, mechanical engineering, engineering science and mechanics and energy engineering, as well as three new online graduate courses. The online graduate courses represent a stand-alone Graduate Certificate in Wind Energy, and provide the core of a Wind Energy Option in an online intercollege professional Masters degree in Renewable Energy and Sustainability Systems. The Pennsylvania College of Technology erected a 10 kilowatt Xzeres wind turbine that is dedicated to educating the renewable energy workforce. The entire construction process was incorporated into the Renewable Energy A.A.S. degree program, the Building Science and Sustainable Design B.S. program, and other construction-related coursework throughout the School of Construction and Design Technologies. Follow-on outcomes include additional non-credit opportunities as well as secondary school career readiness events, community outreach activities, and public awareness postings.

Lesieutre, George A.; Stewart, Susan W.; Bridgen, Marc

2013-03-29T23:59:59.000Z

Note: This page contains sample records for the topic "wind technology testing" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


121

Wind Power Today: Building a New Energy Future, Wind and Hydropower Technologies Program 2009 (Brochure)  

SciTech Connect (OSTI)

Wind Power Today is an annual publication that provides an overview of the wind energy research conducted by the U.S. Department of Energy Wind and Hydropower Technologies Program.

Not Available

2009-04-01T23:59:59.000Z

122

Advanced Technology Vehicle Testing  

SciTech Connect (OSTI)

The goal of the U.S. Department of Energy's Advanced Vehicle Testing Activity (AVTA) is to increase the body of knowledge as well as the awareness and acceptance of electric drive and other advanced technology vehicles (ATV). The AVTA accomplishes this goal by testing ATVs on test tracks and dynamometers (Baseline Performance testing), as well as in real-world applications (Fleet and Accelerated Reliability testing and public demonstrations). This enables the AVTA to provide Federal and private fleet managers, as well as other potential ATV users, with accurate and unbiased information on vehicle performance and infrastructure needs so they can make informed decisions about acquiring and operating ATVs. The ATVs currently in testing include vehicles that burn gaseous hydrogen (H2) fuel and hydrogen/CNG (H/CNG) blended fuels in internal combustion engines (ICE), and hybrid electric (HEV), urban electric, and neighborhood electric vehicles. The AVTA is part of DOE's FreedomCAR and Vehicle Technologies Program.

James Francfort

2004-06-01T23:59:59.000Z

123

Combined Experiment Phase 1. [Horizontal axis wind turbines: wind tunnel testing versus field testing  

SciTech Connect (OSTI)

How does wind tunnel airfoil data differ from the airfoil performance on an operating horizontal axis wind turbine (HAWT) The National Renewable Energy laboratory has been conducting a comprehensive test program focused on answering this question and understanding the basic fluid mechanics of rotating HAWT stall aerodynamics. The basic approach was to instrument a wind rotor, using an airfoil that was well documented by wind tunnel tests, and measure operating pressure distributions on the rotating blade. Based an the integrated values of the pressure data, airfoil performance coefficients were obtained, and comparisons were made between the rotating data and the wind tunnel data. Care was taken to the aerodynamic and geometric differences between the rotating and the wind tunnel models. This is the first of two reports describing the Combined Experiment Program and its results. This Phase I report covers background information such as test setup and instrumentation. It also includes wind tunnel test results and roughness testing.

Butterfield, C.P.; Musial, W.P.; Simms, D.A.

1992-10-01T23:59:59.000Z

124

NREL's Wind R&D Success Stories, National Wind Technology Center (NWTC) (Fact Sheet)  

SciTech Connect (OSTI)

Wind energy research, development, and deployment have reduced the cost of large and small wind turbine technologies, increased wind energy system reliability and operability, lowered risk by validating performance and design, increased the understanding of the true impacts of wind energy on the U.S. electrical infrastructure, and expanded wind energy markets. A synopsis of research conducted on utility-scale wind turbines, small wind turbines, software, components, market development and grid integration are detailed.

Not Available

2010-01-01T23:59:59.000Z

125

Wind Program Announces $2 Million to Develop and Field Test Wind...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Wind Program today announced 2 million in funding to advance technologies that address wind development's potential impacts on wildlife. This funding will help address...

126

Advanced Control Design and Testing for Wind Turbines at the...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Control Design and Testing for Wind Turbines at the National Renewable Energy Laboratory: Preprint Advanced Control Design and Testing for Wind Turbines at the National Renewable...

127

Solar and Wind Technologies for Hydrogen Production Report to Congress  

Fuel Cell Technologies Publication and Product Library (EERE)

DOE's Solar and Wind Technologies for Hydrogen Production Report to Congress summarizes the technology roadmaps for solar- and wind-based hydrogen production. Published in December 2005, it fulfills t

128

This introduction to wind power technology is meant to help communities in considering or planning wind  

E-Print Network [OSTI]

This introduction to wind power technology is meant to help communities in considering or planning wind power. It focuses on commercial and medium-scale wind turbine technology that is available in the United States. This fact sheet also discusses the integration of wind power into the electrical grid

Massachusetts at Amherst, University of

129

Fostering a Renewable Energy Technology Industry: An International Comparison of Wind Industry Policy Support Mechanisms  

E-Print Network [OSTI]

and Renewable Energy, Wind & Hydropower Technologiesand Renewable Energy, Wind & Hydropower Technologies2004. International Wind Energy Development, World Market

Lewis, Joanna; Wiser, Ryan

2005-01-01T23:59:59.000Z

130

Advanced Technology Vehicle Testing  

SciTech Connect (OSTI)

The light-duty vehicle transportation sector in the United States depends heavily on imported petroleum as a transportation fuel. The Department of Energy’s Advanced Vehicle Testing Activity (AVTA) is testing advanced technology vehicles to help reduce this dependency, which would contribute to the economic stability and homeland security of the United States. These advanced technology test vehicles include internal combustion engine vehicles operating on 100% hydrogen (H2) and H2CNG (compressed natural gas) blended fuels, hybrid electric vehicles, neighborhood electric vehicles, urban electric vehicles, and electric ground support vehicles. The AVTA tests and evaluates these vehicles with closed track and dynamometer testing methods (baseline performance testing) and accelerated reliability testing methods (accumulating lifecycle vehicle miles and operational knowledge within 1 to 1.5 years), and in normal fleet environments. The Arizona Public Service Alternative Fuel Pilot Plant and H2-fueled vehicles are demonstrating the feasibility of using H2 as a transportation fuel. Hybrid, neighborhood, and urban electric test vehicles are demonstrating successful applications of electric drive vehicles in various fleet missions. The AVTA is also developing electric ground support equipment (GSE) test procedures, and GSE testing will start during the fall of 2003. All of these activities are intended to support U.S. energy independence. The Idaho National Engineering and Environmental Laboratory manages these activities for the AVTA.

James Francfort

2003-11-01T23:59:59.000Z

131

EWEC 2006, Athens, The Anemos Wind Power Forecasting Platform Technology The Anemos Wind Power Forecasting Platform Technology -  

E-Print Network [OSTI]

EWEC 2006, Athens, The Anemos Wind Power Forecasting Platform Technology 1 The Anemos Wind Power a professional, flexible platform for operating wind power prediction models, laying the main focus on state models from all over Europe are able to work on this platform. Keywords: wind energy, wind power

Boyer, Edmond

132

Cooperative field test program for wind systems. Final report  

SciTech Connect (OSTI)

The objectives of the Federal Wind Energy Program, managed by the US Department of Energy (DOE), are (1) to assist industry and utilities in achieving a multi-regional US market penetration of wind systems, and (2) to establish the United States as the world leader in the development of advanced wind turbine technology. In 1984, the program conducted a series of planning workshops with representatives from the wind energy industry to obtain input on the Five-Year Research Plan then being prepared by DOE. One specific suggestion that came out of these meetings was that the federal program should conduct cooperative research tests with industry to enhance the technology transfer process. It was also felt that the active involvement of industry in DOE-funded research would improve the state of the art of wind turbine technology. DOE established the Cooperative Field Test Program (CFTP) in response to that suggestion. This program was one of the first in DOE to feature joint industry-government research test teams working toward common objectives.

Bollmeier, W.S. II; Dodge, D.M.

1992-03-01T23:59:59.000Z

133

Field Testing: Independent, Accredited Testing and Validation for the Wind Industry (Fact Sheet)  

SciTech Connect (OSTI)

This fact sheet describes the field testing capabilities at the National Wind Technology Center (NWTC). NREL's specialized facilities and personnel at the NWTC provide the U.S. wind industry with scientific and engineering support that has proven critical to the development of wind energy for U.S. energy needs. The NWTC's specialized field-testing capabilities have evolved over 30 years of continuous support by the U.S. Department of Energy Wind and Hydropower Technologies Program and long standing industry partnerships. The NWTC provides wind industry manufacturers, developers, and operators with turbine and component testing all in one convenient location. Although industry utilizes sophisticated modeling tools to design and optimize turbine configurations, there are always limitations in modeling capabilities, and testing is a necessity to ensure performance and reliability. Designs require validation and testing is the only way to determine if there are flaws. Prototype testing is especially important in capturing manufacturing flaws that might require fleet-wide retrofits. The NWTC works with its industry partners to verify the performance and reliability of wind turbines that range in size from 400 Watts to 3 megawatts. Engineers conduct tests on components and full-scale turbines in laboratory environments and in the field. Test data produced from these tests can be used to validate turbine design codes and simulations that further advance turbine designs.

Not Available

2011-11-01T23:59:59.000Z

134

National Wind Technology Center | NREL  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May JunDatastreamsmmcrcalgovInstrumentsrucLas Conchas recoveryLaboratory | NationalJohn Cyber Security NuclearNew test facility will

135

Riso-M-2546 g Wind Turbine Test  

E-Print Network [OSTI]

Riso-M-2546 g Wind Turbine Test Wind Matic WM 17S Troels Friis Pedersen The Test Station for Windmills Riso National Laboratory, DK-4000 Roskilde Denmark April 1986 #12;#12;RIS0-M-2546 WIND TURBINE describes standard measurements performed on a Wind-Matic WM 17S, 75 kW wind turbine. The measurements

136

TECHNICALADVANCES IN EPOXY TECHNOLOGY FOR WIND TURBINE BLADE COMPOSITE FABRICATION  

E-Print Network [OSTI]

TECHNICALADVANCES IN EPOXY TECHNOLOGY FOR WIND TURBINE BLADE COMPOSITE FABRICATION George C. Jacob reliability in many demanding applications including components for aerospace and wind turbine blades. While in operation, wind turbine blades are subjected to significant stresses from their movement, wind and other

137

Establishment of Small Wind Turbine Regional Test Centers (Presentation)  

SciTech Connect (OSTI)

This presentation offers an overview of the Regional Test Centers project for Small Wind Turbine testing and certification.

Sinclair, K.

2011-09-16T23:59:59.000Z

138

Hi-Q Rotor - Low Wind Speed Technology  

SciTech Connect (OSTI)

The project objective was to optimize the performance of the Hi-Q Rotor. Early research funded by the California Energy Commission indicated the design might be advantageous over state-of-the-art turbines for collecting wind energy in low wind conditions. The Hi-Q Rotor is a new kind of rotor targeted for harvesting wind in Class 2, 3, and 4 sites, and has application in areas that are closer to cities, or 'load centers.' An advantage of the Hi-Q Rotor is that the rotor has non-conventional blade tips, producing less turbulence, and is quieter than standard wind turbine blades which is critical to the low-wind populated urban sites. Unlike state-of-the-art propeller type blades, the Hi-Q Rotor has six blades connected by end caps. In this phase of the research funded by DOE's Inventions and Innovation Program, the goal was to improve the current design by building a series of theoretical and numeric models, and composite prototypes to determine a best of class device. Development of the rotor was performed by aeronautical engineering and design firm, DARcorporation. From this investigation, an optimized design was determined and an 8-foot diameter, full-scale rotor was built and mounted using a Bergey LX-1 generator and furling system which were adapted to support the rotor. The Hi-Q Rotor was then tested side-by-side against the state-of-the-art Bergey XL-1 at the Alternative Energy Institute's Wind Test Center at West Texas State University for six weeks, and real time measurements of power generated were collected and compared. Early wind tunnel testing showed that the cut-in-speed of the Hi-Q rotor is much lower than a conventional tested HAWT enabling the Hi-Q Wind Turbine to begin collecting energy before a conventional HAWT has started spinning. Also, torque at low wind speeds for the Hi-Q Wind Turbine is higher than the tested conventional HAWT and enabled the wind turbine to generate power at lower wind speeds. Based on the data collected, the results of our first full-scale prototype wind turbine proved that higher energy can be captured at lower wind speeds with the new Hi-Q Rotor. The Hi-Q Rotor is almost 15% more productive than the Bergey from 6 m/s to 8 m/s, making it ideal in Class 3, 4, and 5 wind sites and has application in the critical and heretofore untapped areas that are closer to cities, 'load centers,' and may even be used directly in urban areas. The additional advantage of the Hi-Q Rotor's non-conventional blade tips, which eliminates most air turbulence, is noise reduction which makes it doubly ideal for populated urban areas. Hi-Q Products recommends one final stage of development to take the Hi-Q Rotor through Technology Readiness Levels 8-9. During this stage of development, the rotor will be redesigned to further increase efficiency, match the rotor to a more suitable generator, and lower the cost of manufacturing by redesigning the structure to allow for production in larger quantities at lower cost. Before taking the rotor to market and commercialization, it is necessary to further optimize the performance by finding a better generator and autofurling system, ones more suitable for lower wind speeds and rpms should be used in all future testing. The potential impact of this fully developed technology will be the expansion and proliferation of energy renewal into the heretofore untapped Class 2, 3, 4, and 5 Wind Sites, or the large underutilized sites where the wind speed is broken by physical features such as mountains, buildings, and trees. Market estimates by 2011, if low wind speed technology can be developed are well above: 13 million homes, 675,000 commercial buildings, 250,000 public facilities. Estimated commercial exploitation of the Hi-Q Rotor show potential increase in U.S. energy gained through the clean, renewable wind energy found in low and very low wind speed sites. This new energy source would greatly impact greenhouse emissions as well as the public sector's growing energy demands.

Todd E. Mills; Judy Tatum

2010-01-11T23:59:59.000Z

139

Aeroacoustic Testing of Wind Turbine Airfoils: February 20, 2004 - February 19, 2008  

SciTech Connect (OSTI)

The U.S. Department of Energy (DOE), working through its National Renewable Energy Laboratory (NREL), is engaged in a comprehensive research effort to improve the understanding of wind turbine aeroacoustics. The motivation for this effort is the desire to exploit the large expanse of low wind speed sites that tend to be close to U.S. load centers. Quiet wind turbines are an inducement to widespread deployment, so the goal of NREL's aeroacoustic research is to develop tools that the U.S. wind industry can use in developing and deploying highly efficient, quiet wind turbines at low wind speed sites. NREL's National Wind Technology Center (NWTC) is implementing a multifaceted approach that includes wind tunnel tests, field tests, and theoretical analyses in direct support of low wind speed turbine development by its industry partners. NWTC researchers are working hand in hand with engineers in industry to ensure that research findings are available to support ongoing design decisions.

Devenport, W.; Burdisso, R. A.; Camargo, H.; Crede, E.; Remillieux, M.; Rasnick, M.; Van Seeters, P.

2010-05-01T23:59:59.000Z

140

NREL: Wind Research - Accredited Testing  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmosphericNuclear Security Administration the Contributions andData andFleet Test and EvaluationManagementWorking with Us

Note: This page contains sample records for the topic "wind technology testing" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


141

Testing Technology: A Sandia technology bulletin  

SciTech Connect (OSTI)

Inside this issue is a farewell to Testing Technology message from technical advisor, Ruth David. Also included are articles on: Testing the I-40 bridge over the Rio Grande, simulated reactor meltdown studies, an inexpensive monitor for testing integrated circuits, testing of antihelicoptor mines, and quality assurance on aircraft inspection.

Goetsch, B.; Floyd, H.L.; Doran, L. [eds.

1994-08-01T23:59:59.000Z

142

Wind Turbine Test \\^ind Matic WM 15S  

E-Print Network [OSTI]

00 ·2 V. v/ RisoM-2481 Wind Turbine Test \\^ind Matic WM 15S Troels Friis Pedersent The Test Station for Windmills Riso National Laboratory, DK-4000 Roskilde, Denmark July 1986 #12;#12;RIS0-M-2481 WIND TURBINE describes standard measurements performed on a Wind-Matic WM 15S, 55 kW wind turbine. The measurements

143

Future of Wind Energy Technology in the United States  

SciTech Connect (OSTI)

This paper describes the status of wind energy in the United States as of 2007, its cost, the potential for growth, offshore development, and potential technology improvements.

Thresher, R.; Robinson, M.; Veers, P.

2008-10-01T23:59:59.000Z

144

Wind Turbine Inspection Technology Reaches New Heights | GE Global...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

week, we announced our advancement in technology that will make the inspection of wind turbines faster and more reliable for our customers. Currently, an inspector examines the...

145

NREL: Wind Research - NREL Analyzes Floating Offshore Wind Technology...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

representatives regarding NREL's analysis of Statoil's Hywind II offshore floating wind turbine design. Statoil's Hywind II is a 6-MW turbine on a floating spar-buoy...

146

Weekly Wrap-Up: Testing Wind Blades, Converting Carbon Emissions...  

Broader source: Energy.gov (indexed) [DOE]

Weekly Wrap-Up: Testing Wind Blades, Converting Carbon Emissions, and Eco-Driving Weekly Wrap-Up: Testing Wind Blades, Converting Carbon Emissions, and Eco-Driving July 23, 2010 -...

147

Modeling the Benefits of Storage Technologies to Wind Power  

SciTech Connect (OSTI)

Rapid expansion of wind power in the electricity sector is raising questions about how wind resource variability might affect the capacity value of wind farms at high levels of penetration. Electricity storage, with the capability to shift wind energy from periods of low demand to peak times and to smooth fluctuations in output, may have a role in bolstering the value of wind power at levels of penetration envisioned by a new Department of Energy report ('20% Wind by 2030, Increasing Wind Energy's Contribution to U.S. Electricity Supply'). This paper quantifies the value storage can add to wind. The analysis was done employing the Regional Energy Deployment System (ReEDS) model, formerly known as the Wind Deployment System (WinDS) model. ReEDS was used to estimate the cost and development path associated with 20% penetration of wind in the report. ReEDS differs from the WinDS model primarily in that the model has been modified to include the capability to build and use three storage technologies: pumped-hydroelectric storage (PHS), compressed-air energy storage (CAES), and batteries. To assess the value of these storage technologies, two pairs of scenarios were run: business-as-usual, with and without storage; 20% wind energy by 2030, with and without storage. This paper presents the results from those model runs.

Sullivan, P.; Short, W.; Blair, N.

2008-06-01T23:59:59.000Z

148

America's Wind Testing Facilities | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) "of EnergyEnergyENERGYWomen Ownedof EnergyAdvanced Biofuels |National Wind Technology Center - Colorado 1

149

2012 Market Report on U.S. Wind Technologies in Distributed Applicatio...  

Office of Environmental Management (EM)

2013 Distributed Wind Market Report Data 2012 Market Report on U.S. Wind Technologies in Distributed Applications Assessment of Offshore Wind Energy Resources for the United States...

150

INTERAGENCY FIELD TEST & EVALUATION OF WIND TURBINE - RADAR INTERFEREN...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

the tests and 2) summaries of three field tests designed to measure the impact of wind turbines on current air surveillance radars and the effectiveness of private sector...

151

Colorado and South Carolina: New Wind Test Facilities Open |...  

Energy Savers [EERE]

Act, the new facilities will accelerate the development and deployment of next-generation wind energy technologies for both offshore and land-based applications. Located on a...

152

Hydraulic Wind Power Transfer Technology Afshin Izadian  

E-Print Network [OSTI]

encouraged companies such as Mitsubishi and Chapdrive to invest in onshore and offshore hydraulic driven wind wind power, and by doing so, it reduces the capital equipment of the entire power plant

Zhou, Yaoqi

153

First International Workshop on Grid Simulator Testing of Wind Turbine Drivetrains: Workshop Proceedings  

SciTech Connect (OSTI)

This report summarizes the proceedings of the First International Workshop on Grid Simulator Testing of Wind Turbine Drivetrains, held from June 13 to 14, 2013, at the National Renewable Energy Laboratory's National Wind Technology Center, located south of Boulder, Colorado. The workshop was sponsored by the U.S. Department of Energy and cohosted by the National Renewable Energy Laboratory and Clemson University under ongoing collaboration via a cooperative research and development agreement. The purpose of the workshop was to provide a forum to discuss the research, testing needs, and state-of-the-art apparatuses involved in grid compliance testing of utility-scale wind turbine generators. This includes both dynamometer testing of wind turbine drivetrains ('ground testing') and field testing grid-connected wind turbines. Four sessions followed by discussions in which all attendees of the workshop were encouraged to participate comprised the workshop.

Gevorgian, V.; Link, H.; McDade, M.; Mander, A.; Fox, J. C.; Rigas, N.

2013-11-01T23:59:59.000Z

154

Wind Turbine Generator System Safety and Function Test Report for the Entegrity EW50 Wind Turbine  

SciTech Connect (OSTI)

This report summarizes the results of a safety and function test that NREL conducted on the Entegrity EW50 wind turbine. This test was conducted in accordance with the International Electrotechnical Commissions' (IEC) standard, Wind Turbine Generator System Part 2: Design requirements for small wind turbines, IEC 61400-2 Ed.2.0, 2006-03.

Smith, J.; Huskey, A.; Jager, D.; Hur, J.

2012-11-01T23:59:59.000Z

155

Wind Turbine Generator System Safety and Function Test Report for the Ventera VT10 Wind Turbine  

SciTech Connect (OSTI)

This report summarizes the results of a safety and function test that NREL conducted on the Ventera VT10 wind turbine. This test was conducted in accordance with the International Electrotechnical Commissions' (IEC) standard, Wind Turbine Generator System Part 2: Design requirements for small wind turbines, IEC 61400-2 Ed.2.0, 2006-03.

Smith, J.; Huskey, A.; Jager, D.; Hur, J.

2012-11-01T23:59:59.000Z

156

Sandia National Laboratories: Scaled Wind Farm Technology (SWIFT...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

wakes denoted by white helices and white fog. Development of the SWIFT Facility wind turbines reached a critical milestone this week, with the successful ground testing of the...

157

Ris-R-1093(EN) European Wind Turbine Testing  

E-Print Network [OSTI]

Risø-R-1093(EN) European Wind Turbine Testing Procedure Developments Task 2: Power Quality Poul #12;Contents Preface 5 1 Introduction 6 2 Standards and measurement procedures 6 3 Wind turbines 7 3 The present report describes the work done in the power quality subtask of the European Wind Turbine Testing

158

Duration Test Report for the Entegrity EW50 Wind Turbine  

SciTech Connect (OSTI)

This report summarizes the results of a duration test that NREL conducted on the Entegrity EW50 wind turbine. This test was conducted in accordance with the International Electrotechnical Commissions' (IEC) standard, Wind Turbine Generator System Part 2: Design requirements for small wind turbines, IEC 61400-2 Ed.2.0, 2006-03.

Smith, J.; Huskey, A.; Jager, D.; Hur, J.

2012-12-01T23:59:59.000Z

159

Ris-R-1209(EN) European Wind Turbine Testing  

E-Print Network [OSTI]

Risø-R-1209(EN) European Wind Turbine Testing Procedure Developments Task 1: Measurement Method to Verify Wind Turbine Performance Character- istics Raymond Hunter RES Task coordinator Troels Friis assessment and wind turbine power performance testing. A standards maintenance team is revising the current

160

Safety and Function Test Report for the Viryd CS8 Wind Turbine  

SciTech Connect (OSTI)

This test was conducted as part of the U.S. Department of Energy's (DOE) Independent Testing project. This project was established to help reduce the barriers of wind energy expansion by providing independent testing results for small turbines. Several turbines were selected for testing at the National Wind Technology Center (NWTC) at the National Renewable Energy Laboratory (NREL) as a part of the Small Wind Turbine Independent Testing project. Safety and function testing is one of up to five tests that may be performed on the turbines. Other tests include duration, power performance, acoustic noise, and power quality. Viryd Technologies, Inc. of Austin, Texas, was the recipient of the DOE grant and provided the turbine for testing.

Roadman, J.; Murphy, M.; van Dam, J.

2013-10-01T23:59:59.000Z

Note: This page contains sample records for the topic "wind technology testing" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


161

Wind Turbine Generator System Power Performance Test Report for the Entegrity EW50 Wind Turbine  

SciTech Connect (OSTI)

Report on the results of the power performance test that the National Renewable Energy Laboratory (NREL) conducted on Entegrity Wind System Inc.'s EW50 small wind turbine.

Smith, J.; Huskey, A.; Jager, D.; Hur, J.

2011-05-01T23:59:59.000Z

162

ARE660 Wind Generator: Low Wind Speed Technology for Small Turbine Development  

SciTech Connect (OSTI)

This project is for the design of a wind turbine that can generate most or all of the net energy required for homes and small businesses in moderately windy areas. The purpose is to expand the current market for residential wind generators by providing cost effective power in a lower wind regime than current technology has made available, as well as reduce noise and improve reliability and safety. Robert W. Preus’ experience designing and/or maintaining residential wind generators of many configurations helped identify the need for an improved experience of safety for the consumer. Current small wind products have unreliable or no method of stopping the wind generator in fault or high wind conditions. Consumers and their neighbors do not want to hear their wind generators. In addition, with current technology, only sites with unusually high wind speeds provide payback times that are acceptable for the on-grid user. Abundant Renewable Energy’s (ARE) basic original concept for the ARE660 was a combination of a stall controlled variable speed small wind generator and automatic fail safe furling for shutdown. The stall control for a small wind generator is not novel, but has not been developed for a variable speed application with a permanent magnet alternator (PMA). The fail safe furling approach for shutdown has not been used to our knowledge.

Robert W. Preus; DOE Project Officer - Keith Bennett

2008-04-23T23:59:59.000Z

163

Floating Offshore Wind Technology Generating Resources Advisory Committee  

E-Print Network [OSTI]

Floating Offshore Wind Technology Jeff King Generating Resources Advisory Committee May 28, 2014 1 resource Offshore technology Prototypes and projects Cost Proposed 7th Plan Treatment 2 #12;Why technology transfer from offshore oil & gas industry On-shore fabrication & assembly (assembled unit towed

164

Live Webcast on Recent Wind Energy Technology Advances  

Broader source: Energy.gov [DOE]

The Energy Department will present a live webcast titled “Recent Wind Technology Advances” on April 16, 2014, from 3:00 to 4:00 p.m. Eastern Standard Time.

165

Sparkr Blade Test Centre Modal Analysis of Wind Turbine Blades  

E-Print Network [OSTI]

Sparkær Blade Test Centre Modal Analysis of Wind Turbine Blades Modal analysis is the process the modes constitute a complete dynamic description of the wind turbine blade. The modes of vibration represent the inherent dynamic properties of the wind turbine blade. The range of applications for modal

166

Test application of a semi-objective approach to wind forecasting for wind energy applications  

SciTech Connect (OSTI)

The test application of the semi-objective (S-O) wind forecasting technique at three locations is described. The forecasting sites are described as well as site-specific forecasting procedures. Verification of the S-O wind forecasts is presented, and the observed verification results are interpreted. Comparisons are made between S-O wind forecasting accuracy and that of two previous forecasting efforts that used subjective wind forecasts and model output statistics. (LEW)

Wegley, H.L.; Formica, W.J.

1983-07-01T23:59:59.000Z

167

Power Performance Test Report for the SWIFT Wind Turbine  

SciTech Connect (OSTI)

This report summarizes the results of a power performance test that NREL conducted on the SWIFT wind turbine. This test was conducted in accordance with the International Electrotechnical Commission's (IEC) standard, Wind Turbine Generator Systems Part 12: Power Performance Measurements of Electricity Producing Wind Turbines, IEC 61400-12-1 Ed.1.0, 2005-12. However, because the SWIFT is a small turbine as defined by IEC, NREL also followed Annex H that applies to small wind turbines. In these summary results, wind speed is normalized to sea-level air density.

Mendoza, I.; Hur, J.

2012-12-01T23:59:59.000Z

168

New Wind Test Facilities Open in Colorado and South Carolina...  

Energy Savers [EERE]

Clemson facility in North Charleston is ideal for testing the larger multi-megawatt wind turbines that both the United States and international manufacturers are developing for...

169

South Carolina Opens Nation's Largest Wind Drivetrain Testing...  

Office of Environmental Management (EM)

makes it ideal for American and international companies to testing larger offshore wind turbines. Supported by a 47 million Energy Department investment as well as about 60...

170

Three Offshore Wind Advanced Technology Demonstration Projects...  

Office of Environmental Management (EM)

commercial operation by 2017. Dominion Power will install two 6-MW direct-drive wind turbines off the coast of Virginia Beach on twisted jacket foundations designed by Keystone...

171

Assessment of research needs for wind turbine rotor materials technology  

SciTech Connect (OSTI)

Wind-driven power systems is a renewable energy technology that is still in the early stages of development. Wind power plants installed in early 1980s suffered structural failures chiefly because of incomplete understanding of wind forces (turbulent), in some cases because of poor product quality. Failures of rotor blades are now somewhat better understood. This committee has examined the experience base accumulated by wind turbines and the R and D programs sponsored by DOE. It is concluded that a wind energy system such as is described is within the capability of engineering practice; however because of certain gaps in knowledge, and the presence of only one major integrated manufacturer of wind power machines in the USA, a DOE R and D investment is still required.

Not Available

1991-01-01T23:59:59.000Z

172

Wind Energy Technology Trends: Comparing and Contrasting Recent Cost and Performance Forecasts (Poster)  

SciTech Connect (OSTI)

Poster depicts wind energy technology trends, comparing and contrasting recent cost and performance forecasts.

Lantz, E.; Hand, M.

2010-05-01T23:59:59.000Z

173

Testing and Modeling of a 3-MW Wind Turbine Using Fully Coupled Simulation Codes (Poster)  

SciTech Connect (OSTI)

This poster describes the NREL/Alstom Wind testing and model verification of the Alstom 3-MW wind turbine located at NREL's National Wind Technology Center. NREL,in collaboration with ALSTOM Wind, is studying a 3-MW wind turbine installed at the National Wind Technology Center(NWTC). The project analyzes the turbine design using a state-of-the-art simulation code validated with detailed test data. This poster describes the testing and the model validation effort, and provides conclusions about the performance of the unique drive train configuration used in this wind turbine. The 3-MW machine has been operating at the NWTC since March 2011, and drive train measurements will be collected through the spring of 2012. The NWTC testing site has particularly turbulent wind patterns that allow for the measurement of large transient loads and the resulting turbine response. This poster describes the 3-MW turbine test project, the instrumentation installed, and the load cases captured. The design of a reliable wind turbine drive train increasingly relies on the use of advanced simulation to predict structural responses in a varying wind field. This poster presents a fully coupled, aero-elastic and dynamic model of the wind turbine. It also shows the methodology used to validate the model, including the use of measured tower modes, model-to-model comparisons of the power curve, and mainshaft bending predictions for various load cases. The drivetrain is designed to only transmit torque to the gearbox, eliminating non-torque moments that are known to cause gear misalignment. Preliminary results show that the drivetrain is able to divert bending loads in extreme loading cases, and that a significantly smaller bending moment is induced on the mainshaft compared to a three-point mounting design.

LaCava, W.; Guo, Y.; Van Dam, J.; Bergua, R.; Casanovas, C.; Cugat, C.

2012-06-01T23:59:59.000Z

174

Low Wind Speed Technology Phase II: Investigation of the Application of Medium-Voltage Variable-Speed Drive Technology to Improve the Cost of Energy from Low Wind Speed Turbines; Behnke, Erdman and Whitaker Engineering, Inc.  

SciTech Connect (OSTI)

This fact sheet describes a subcontract with Behnke, Erdman & Whitaker Engineering, Inc. to test the feasibility of applying medium-voltage variable-speed drive technology to low wind speed turbines.

Not Available

2006-03-01T23:59:59.000Z

175

Dual-Axis Resonance Testing of Wind Turbine Blades  

Energy Innovation Portal (Marketing Summaries) [EERE]

Wind turbine blades must undergo strength and fatigue testing in order to be rated and marketed appropriately. Presently, wind turbine blades are fatigue-tested in the flapwise direction and in the edgewise direction independently. This testing involves placing the blades through 1 to 10 million or more load or fatigue cycles, which may take 3 to 12 months or more to complete for each tested direction. There is a need for blade testing techniques that are less expensive to use and require...

2014-07-28T23:59:59.000Z

176

Field Test Results of Using a Nacelle-Mounted Lidar for Improving Wind Energy Capture by Reducing Yaw Misalignment (Presentation)  

SciTech Connect (OSTI)

Presented at the Nordic Wind Power Conference on November 5, 2014. This presentation describes field-test campaigns performed at the National Wind Technology Center in which lidar technology was used to improve the yaw alignment of the Controls Advanced Research Turbine (CART) 2 and CART3 wind turbines. The campaigns demonstrated that whether by learning a correction function to the nacelle vane, or by controlling yaw directly with the lidar signal, a significant improvement in power capture was demonstrated.

Fleming, P.; Scholbrock, A.; Wright, A.

2014-11-01T23:59:59.000Z

177

Duration Test Report for the Viryd CS8 Wind Turbine  

SciTech Connect (OSTI)

This report summarizes the results of a duration noise test that the National Renewable Energy Laboratory (NREL) conducted on the Viryd CS8 wind turbine. This test was conducted in accordance with Clause 9.4 of the International Electrotechnical Commission's (IEC) standard, Wind turbines - Part 2: Design requirements for small wind turbines, IEC 61400-2 Ed. 2.0:2006-03. NREL researchers evaluated the turbine based on structural integrity and material degradation, quality of environmental protection, and dynamic behavior.

Roadman, J.; Murphy, M.; van Dam, J.

2013-06-01T23:59:59.000Z

178

Environmental Mitigation Technology (Innovative System Testing...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Technology (Innovative System Testing)-Deployment and Testing of the Alden Hydropower Fish-Friendly Turbine Environmental Mitigation Technology (Innovative System...

179

Fostering a Renewable Energy Technology Industry: An International Comparison of Wind Industry Policy Support Mechanisms  

E-Print Network [OSTI]

Policy and Renewable Energy Technology. Proceedings of theDiffusion of Renewable Energy Technologies: Wind Power inFostering a Renewable Energy Technology Industry: An

Lewis, Joanna; Wiser, Ryan

2005-01-01T23:59:59.000Z

180

North Wind 4-kW wind-system development. Phase II. Fabrication and test  

SciTech Connect (OSTI)

This report presents the results of Phase II (testing and fabrication) of a program funded by the US Department of Energy to design, fabricate, and test a cost-effective wind system in the 3 to 6 kW class. During Phase II, using the design developed during Phase I, a prototype 4 kW machine was fabricated and tested in Waitsfield, Vermont. Several problems were encountered and subsequently analyzed. Design modifications, including the use of a larger alternator, are described. Test performed by North Wind and by Rockwell International (which monitored the program) demonstrated the predicted performance characteristics and the validity of the North Wind design.

Lynch, J.; Coleman, C.; Mayer, D.J.

1983-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "wind technology testing" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


181

Wind technology roadmap | OpenEI Community  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Office of InspectorConcentrating SolarElectric Coop,SaveWhiskey Flats Geothermal Areaarticle is a stub.Wind)

182

Turbine Inflow Characterization at the National Wind Technology Center: Preprint  

SciTech Connect (OSTI)

Utility-scale wind turbines operate in dynamic flows that can vary significantly over timescales from less than a second to several years. To better understand the inflow to utility-scale turbines, two inflow towers were installed and commissioned at the National Renewable Energy Laboratory's (NREL) National Wind Technology Center near Boulder, Colorado, in 2011. These towers are 135 m tall and instrumented with a combination of sonic anemometers, cup anemometers, wind vanes, and temperature measurements to characterize the inflow wind speed and direction, turbulence, stability and thermal stratification to two utility-scale turbines. Herein, we present variations in mean and turbulent wind parameters with height, atmospheric stability, and as a function of wind direction that could be important for turbine operation as well as persistence of turbine wakes. Wind speed, turbulence intensity, and dissipation are all factors that affect turbine performance. Our results shown that these all vary with height across the rotor disk, demonstrating the importance of measuring atmospheric conditions that influence wind turbine performance at multiple heights in the rotor disk, rather than relying on extrapolation from lower levels.

Clifton, A.; Schreck, S.; Scott, G.; Kelley, N.; Lundquist, J.

2012-01-01T23:59:59.000Z

183

Turbine Inflow Characterization at the National Wind Technology Center  

SciTech Connect (OSTI)

Utility-scale wind turbines operate in dynamic flows that can vary significantly over timescales from less than a second to several years. To better understand the inflow to utility-scale turbines, two inflow towers were installed and commissioned at the National Renewable Energy Laboratory's (NREL) National Wind Technology Center near Boulder, Colorado, in 2011. These towers are 135 m tall and instrumented with a combination of sonic anemometers, cup anemometers, wind vanes, and temperature measurements to characterize the inflow wind speed and direction, turbulence, stability and thermal stratification to two utility-scale turbines. Herein, we present variations in mean and turbulent wind parameters with height, atmospheric stability, and as a function of wind direction that could be important for turbine operation as well as persistence of turbine wakes. Wind speed, turbulence intensity, and dissipation are all factors that affect turbine performance. Our results show that these all vary with height across the rotor disk, demonstrating the importance of measuring atmospheric conditions that influence wind turbine performance at multiple heights in the rotor disk, rather than relying on extrapolation from lower levels.

Clifton, A.; Schreck, S.; Scott, G.; Kelley, N.; Lundquist, J. K.

2012-01-01T23:59:59.000Z

184

NREL: Wind Research - NREL's Wind Technology Patents Boost Efficiency and  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmosphericNuclear Security Administration the Contributions andData andFleet Test andField Verification ProjectProjectsLower

185

Maglev Wind Turbine Technologies | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Office of Inspector GeneralDepartmentAUDIT REPORTOpenWende New Energy Co Ltd JumpLightSourceRMaglev Wind Turbine

186

WIND AND WATER POWER TECHNOLOGIES OFFICE  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious RankCombustion |Energy Usage »of| Department of EnergyDepartment of5 - InWEIGHTEDREPRESENT.GUIDEWHO|WIND

187

WIND TURBINE DRIVETRAIN TEST FACILITY DATA ACQUISITION SYSTEM  

SciTech Connect (OSTI)

The Wind Turbine Drivetrain Test Facility (WTDTF) is a state-of-the-art industrial facility used for testing wind turbine drivetrains and generators. Large power output wind turbines are primarily installed for off-shore wind power generation. The facility includes two test bays: one to accommodate turbine nacelles up to 7.5 MW and one for nacelles up to 15 MW. For each test bay, an independent data acquisition system (DAS) records signals from various sensors required for turbine testing. These signals include resistance temperature devices, current and voltage sensors, bridge/strain gauge transducers, charge amplifiers, and accelerometers. Each WTDTF DAS also interfaces with the drivetrain load applicator control system, electrical grid monitoring system and vibration analysis system.

Mcintosh, J.

2012-01-03T23:59:59.000Z

188

National Spill Test Technology Database  

DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

Western Research Institute established, and ACRC continues to maintain, the National Spill Technology database to provide support to the Liquified Gaseous Fuels Spill Test Facility (now called the National HAZMAT Spill Center) as directed by Congress in Section 118(n) of the Superfund Amendments and Reauthorization Act of 1986 (SARA). The Albany County Research Corporation (ACRC) was established to make publicly funded data developed from research projects available to benefit public safety. The founders since 1987 have been investigating the behavior of toxic chemicals that are deliberately or accidentally spilled, educating emergency response organizations, and maintaining funding to conduct the research at the DOEÆs HAZMAT Spill Center (HSC) located on the Nevada Test Site. ACRC also supports DOE in collaborative research and development efforts mandated by Congress in the Clean Air Act Amendments. The data files are results of spill tests conducted at various times by the Silicones Environmental Health and Safety Council (SEHSC) and DOE, ANSUL, Dow Chemical, the Center for Chemical Process Safety (CCPS) and DOE, Lawrence Livermore National Laboratory (LLNL), OSHA, and DOT; DuPont, and the Western Research Institute (WRI), Desert Research Institute (DRI), and EPA. Each test data page contains one executable file for each test in the test series as well as a file named DOC.EXE that contains information documenting the test series. These executable files are actually self-extracting zip files that, when executed, create one or more comma separated value (CSV) text files containing the actual test data or other test information.

Sheesley, David (Western Research Institute)

189

This introduction to wind power technology is meant to help communities begin considering or  

E-Print Network [OSTI]

call both liquids and gases "fluids" ­ i.e. things that flow). A wind turbine's blades use aerodynamic of a typical wind turbine are: - Rotor: a wind turbine's blades and the hub to which they attach form the rotor or planning wind power. It focuses on commercial and medium-scale wind turbine technology available

Massachusetts at Amherst, University of

190

IllInoIs InstItute of technology's WInd energy research consortIum  

E-Print Network [OSTI]

IllInoIs InstItute of technology's WInd energy research consortIum Wanger Institute for Sustainable Energy Research (WISER) Illinois Institute of Technology On-campus wind turbine [OVER] The U.S. Department of Energy has invested $8 Million in the IIT-led Wind Energy Consortium to improve wind generation

Heller, Barbara

191

Test Results of a Nb3Sn Wind/React 'Stress-Managed' BlockDipole  

SciTech Connect (OSTI)

A second phase of a highfield dipole technology developmenthas been tested. A Nb3Sn block-coil model dipole was fabricated, usingmagnetic mirror geometry and wind/react coil technology. The primaryobjective of this phase was to make a first experimental test of thestress-management strategy pioneered at Texas A&M. In this strategy ahigh-strength support matrix is integrated with the windings to interceptLorentz stress from the inner winding so that it does not accumulate inthe outer winding. The magnet attained a field that was consistent withshort sample limit on the first quench; there was no training. Thedecoupling of Lorentz stress between inner and outer windings wasvalidated. In ramp rate studies the magnet exhibited a remarkablerobustness in rapid ramping operation. It reached 85 percent of shortsample(ss) current even while ramping 2-3 T/s. This robustness isattributed to the orientation of the Rutherford cables parallel to thefield in the windings, instead of the transverse orientation thatcharacterizes common dipole designs. Test results are presented and thenext development phase plans are discussed.

McInturff, A.; Bish, P.; Blackburn, R.; Diaczenko, N.; Elliott,T.; Hafalia Jr., R.; Henchel, W.; Jaisle, A.; Lau, W.; Lietzke, A.; McIntyre, P.; Noyes, P.; Nyman, M.; Sattarov, A.; Sattarov, A.

2006-08-25T23:59:59.000Z

192

Test Results of a Nb3Sn Wind/React"Stress-Managed" Block Dipole  

SciTech Connect (OSTI)

A second phase of a high field dipole technology development has been tested. A Nb{sub 3}Sn block-coil model dipole was fabricated, using magnetic mirror geometry and wind/react coil technology. The primary objective of this phase was to make a first experimental test of the stress-management strategy pioneered at Texas A&M. In this strategy a high-strength support matrix is integrated with the windings to intercept Lorentz stress from the inner winding so that it does not accumulate in the outer winding. The magnet attained a field that was consistent with short sample limit on the first quench; there was no training. The decoupling of Lorentz stress between inner and outer windings was validated. In ramp rate studies the magnet exhibited a remarkable robustness in rapid ramping operation. It reached 85% of short sample(ss) current even while ramping 2-3 T/s. This robustness is attributed to the orientation of the Rutherford cables parallel to the field in the windings, instead of the transverse orientation that characterizes common dipole designs. Test results are presented and the next development phase plans are discussed.

McInturff, A.; Blackburn, R.; Diaczenko, N.; Elliott, T.; Henchel, W.; Jaisle, A.; McIntyre, P.; Noyes, P.; Sattarov, A.; Lietzke, A.; Hafalia Jr., R.; Lau, W.; Nyman, M.; Bish, P.

2007-06-01T23:59:59.000Z

193

Wind Technology Modeling Within the System Advisor Model (SAM) (Poster)  

SciTech Connect (OSTI)

This poster provides detail for implementation and the underlying methodology for modeling wind power generation performance in the National Renewable Energy Laboratory's (NREL's) System Advisor Model (SAM). SAM's wind power model allows users to assess projects involving one or more large or small wind turbines with any of the detailed options for residential, commercial, or utility financing. The model requires information about the wind resource, wind turbine specifications, wind farm layout (if applicable), and costs, and provides analysis to compare the absolute or relative impact of these inputs. SAM is a system performance and economic model designed to facilitate analysis and decision-making for project developers, financers, policymakers, and energy researchers. The user pairs a generation technology with a financing option (residential, commercial, or utility) to calculate the cost of energy over the multi-year project period. Specifically, SAM calculates the value of projects which buy and sell power at retail rates for residential and commercial systems, and also for larger-scale projects which operate through a power purchase agreement (PPA) with a utility. The financial model captures complex financing and rate structures, taxes, and incentives.

Blair, N.; Dobos, A.; Ferguson, T.; Freeman, J.; Gilman, P.; Whitmore, J.

2014-05-01T23:59:59.000Z

194

E-Print Network 3.0 - arctic wind technology Sample Search Results  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

arctic wind technology Search Powered by Explorit Topic List Advanced Search Sample search results for: arctic wind technology Page: << < 1 2 3 4 5 > >> 1 NOAA's Arctic VisiON &...

195

Data analysis method for wind turbine dynamic response testing  

SciTech Connect (OSTI)

The Wind Research Branch at the Solar Energy Research Institute (SERI) has developed an efficient data analysis package for personal computer use in response to growing needs of the wind turbine industry and SERI's Cooperative Field Test Program. This new software is used by field test engineers to examine wind turbine performance and loads during testing, as well as by data analysts for detailed post-processing. The Wind Data Analysis Tool Set, WINDATS, has been written as a collection of tools that fall into two general groups. First, the preparatory tools perform subsection, filtering, decimation, preaveraging, scaling, and derivation of new channels. Second, analysis tools are used for mean removal, linear detrending, azimuth averaging and removal, per-rev averaging, binning, and spectral analysis. The input data file can be a standard ASCII file as is generated by most data acquisition software. 9 refs., 10 figs.

Olsen, T.L.; Hock, S.M.

1989-06-01T23:59:59.000Z

196

NREL: Wind Research - Small Wind Turbine Independent Testing  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmosphericNuclear Security Administration the Contributions andData andFleet Test andField VerificationPossibleResearchSmall

197

E-Print Network 3.0 - atlantic wind test Sample Search Results  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

wind test Search Powered by Explorit Topic List Advanced Search Sample search results for: atlantic wind test Page: << < 1 2 3 4 5 > >> 1 The Potential for Wind Energy in Atlantic...

198

Offshore Code Comparison Collaboration (OC3) for IEA Wind Task 23 Offshore Wind Technology and Deployment  

SciTech Connect (OSTI)

This final report for IEA Wind Task 23, Offshore Wind Energy Technology and Deployment, is made up of two separate reports, Subtask 1: Experience with Critical Deployment Issues and Subtask 2: Offshore Code Comparison Collaborative (OC3). Subtask 1 discusses ecological issues and regulation, electrical system integration, external conditions, and key conclusions for Subtask 1. Subtask 2 included here, is the larger of the two volumes and contains five chapters that cover background information and objectives of Subtask 2 and results from each of the four phases of the project.

Jonkman, J.; Musial, W.

2010-12-01T23:59:59.000Z

199

Advanced Wind Turbine Controls Reduce Loads (Fact Sheet)  

SciTech Connect (OSTI)

NREL's National Wind Technology Center provides the world's only dedicated turbine controls testing platforms.

Not Available

2012-03-01T23:59:59.000Z

200

Structural testing of the North Wind 250 composite rotor joint  

SciTech Connect (OSTI)

The North Wind 250 wind turbine is under development at Northern Power Systems (NPS) in Moretown, VT. The turbine uses a unique, flow-through, teetered-rotor design. This design eliminates structural discontinuities at the blade/hub interface by fabricating the rotor as one continuous structural element. To accomplish this, the two blade spars are joined at the center of the rotor using a proprietary bonding technique. Fatigue tests were conducted on the full-scale rotor joint at the National Renewable Energy Laboratory (NREL). Subsequent tests are now underway to test the full-scale rotor and hub assembly to verify the design assumptions. The test articles were mounted in dedicated test fixtures. For the joint test, a constant moment was generated across the joint and parent material. Hydraulic actuators applied sinusoidal loading to the test article at levels equivalent to 90% of the extreme wind load for over one million cycles. When the loading was increased to 112% of the extreme wind load, the joint failed by buckling. Strain levels were monitored at 14 locations inside and outside of the blade joint during the test. The tests were used to qualify this critical element of the rotor for field testing and to provide information needed to improve the structural design of the joint.

Musial, W; Link, H [National Renewable Energy Lab., Golden, CO (United States); Coleman, C [Northern Power Systems, Moretown, VT (United States)

1994-05-01T23:59:59.000Z

Note: This page contains sample records for the topic "wind technology testing" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


201

DOE/SNL-TTU scaled wind farm technology facility : research opportunities for study of turbine-turbine interaction.  

SciTech Connect (OSTI)

The proposed DOE/Sandia Scaled Wind Farm Technology Facility (SWiFT) hosted by Texas Tech University at Reese Technology Center in Lubbock, TX, will provide a facility for experimental study of turbine-turbine interaction and complex wind farm aerodynamics. This document surveys the current status of wind turbine wake and turbine-turbine interaction research, identifying knowledge and data gaps that the proposed test site can potentially fill. A number of turbine layouts is proposed, allowing for up to ten turbines at the site.

Barone, Matthew Franklin; White, Jonathan

2011-09-01T23:59:59.000Z

202

Wind Testing and Certification | Department of Energy  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmosphericNuclear SecurityTensile Strain Switched FerromagnetismWaste and MaterialsWenjun DengWISPWind Industry Soars toWind

203

Enabling Technologies for High Penetration of Wind and Solar Energy  

SciTech Connect (OSTI)

High penetration of variable wind and solar electricity generation will require modifications to the electric power system. This work examines the impacts of variable generation, including uncertainty, ramp rate, ramp range, and potentially excess generation. Time-series simulations were performed in the Texas (ERCOT) grid where different mixes of wind, solar photovoltaic and concentrating solar power provide up to 80% of the electric demand. Different enabling technologies were examined, including conventional generator flexibility, demand response, load shifting, and energy storage. A variety of combinations of these technologies enabled low levels of surplus or curtailed wind and solar generation depending on the desired penetration of renewable sources. At lower levels of penetration (up to about 30% on an energy basis) increasing flexible generation, combined with demand response may be sufficient to accommodate variability and uncertainty. Introduction of load-shifting through real-time pricing or other market mechanisms further increases the penetration of variable generation. The limited time coincidence of wind and solar generation presents increasing challenges as these sources provide greater than 50% of total demand. System flexibility must be increased to the point of virtually eliminating must-run baseload generators during periods of high wind and solar generation. Energy storage also becomes increasingly important as lower cost flexibility options are exhausted. The study examines three classes of energy storage - electricity storage, including batteries and pumped hydro, hybrid storage (compressed-air energy storage), and thermal energy storage. Ignoring long-distance transmission options, a combination of load shifting and storage equal to about 12 hours of average demand may keep renewable energy curtailment below 10% in the simulated system.

Denholm, P.

2011-01-01T23:59:59.000Z

204

Aerodynamic testing of a rotating wind turbine blade  

SciTech Connect (OSTI)

Aerodynamic, load, flow-visualization, and inflow measurements were taken on a downwind horizontal-axis wind turbine (HAWT). A video camera mounted on the rotor recorded video images of tufts attached to the low-pressure side of the blade. Strain gages, mounted every 10% of the blade's span, provided load and pressure measurements. Pressure taps at 32 chordwise positions recorded pressure distributions. Wind inflow was measured via a vertical-plane array of anemometers located 10 m upwind. The objectives of the test were to address whether airfoil pressure distributions measured on a rotating blade differed from those measured in the wind tunnel, if radial flow near or in the boundary layer of the airfoil affected pressure distributions, if dynamic stall could result in increased dynamic loads, and if the location of the separation boundary measured on the rotating blade agreed with that measured in two-dimensional flow in the wind tunnel. 6 refs., 9 figs., 1 tab.

Butterfield, C.P.; Nelsen, E.N.

1990-01-01T23:59:59.000Z

205

Performance Testing of a Small Vertical-Axis Wind Turbine , S. Tullis2  

E-Print Network [OSTI]

Performance Testing of a Small Vertical-Axis Wind Turbine R. Bravo1 , S. Tullis2 , S. Ziada3 of electric production [1]. Although most performance testing for small-scale wind turbines is conducted vertical-axis wind turbines (VAWT) in urban settings, full-scale wind tunnel testing of a prototype 3.5 k

Tullis, Stephen

206

Wind, Hydrogen and other Energy Technologies Similarities and Differences in Expectation Dynamics  

E-Print Network [OSTI]

Wind, Hydrogen and other Energy Technologies ­ Similarities and Differences in Expectation Dynamics But mostly a "storytelling" on expectations and wind energy Per Dannemand Andersen Head of Technology Scenarios research programme Risoe National Laboratory per.dannemand@risoe.dk #12;Expectations and Wind

207

IFT&E Industry Report Wind Turbine-Radar Interference Test Summary.  

SciTech Connect (OSTI)

Wind turbines have grown in size and capacity with today's average turbine having a power capacity of around 1.9 MW, reaching to heights of over 495 feet from ground to blade tip, and operating with speeds at the tip of the blade up to 200 knots. When these machines are installed within the line-of-sight of a radar system, they can cause significant clutter and interference, detrimentally impacting the primary surveillance radar (PSR) performance. The Massachusetts Institute of Technology's Lincoln Laboratory (MIT LL) and Sandia National Laboratories (SNL) were co-funded to conduct field tests and evaluations over two years in order to: I. Characterize the impact of wind turbines on existing Program-of-Record (POR) air surveillance radars; II. Assess near-term technologies proposed by industry that have the potential to mitigate the interference from wind turbines on radar systems; and III. Collect data and increase technical understanding of interference issues to advance development of long-term mitigation strategies. MIT LL and SNL managed the tests and evaluated resulting data from three flight campaigns to test eight mitigation technologies on terminal (short) and long-range (60 nmi and 250 nmi) radar systems. Combined across the three flight campaigns, more than 460 of hours of flight time were logged. This paper summarizes the Interagency Field Test & Evaluation (IFT&E) program and publicly- available results from the tests. It will also discuss the current wind turbine-radar interference evaluation process within the government and a proposed process to deploy mitigation technologies.

Karlson, Benjamin; LeBlanc, Bruce Philip; Minster, David G; Estill, Milford; Miller, Bryan Edward; Busse, Franz (MIT LL); Keck, Chris (MIT LL); Sullivan, Jonathan (MIT LL); Brigada, David (MIT LL); Parker, Lorri (MIT LL); Younger, Richard (MIT LL); Biddle, Jason (MIT LL)

2014-10-01T23:59:59.000Z

208

2012 Market Report on U.S. Wind Technologies in Distributed Applicatio...  

Broader source: Energy.gov (indexed) [DOE]

on U.S. Wind Technologies in Distributed Applications An annual report on U.S. wind power in distributed applications--expanded to include small, mid-size, and utility-scale...

209

Live Webinar on the Funding Opportunity for Technology Incubator for Wind Energy Innovations  

Broader source: Energy.gov [DOE]

On April 17, 2014, from 1:00 – 3:00 PM MDT, the Wind Program will hold a live webinar to provide information to potential applicants for the Technology Incubator for Wind Energy Innovations Funding Opportunity.

210

NREL: Wind Research - Field Test Sites  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmosphericNuclear Security Administration the Contributions andData andFleet Test and

211

Dual-axis resonance testing of wind turbine blades  

DOE Patents [OSTI]

An apparatus (100) for fatigue testing test articles (104) including wind turbine blades. The apparatus (100) includes a test stand (110) that rigidly supports an end (106) of the test article (104). An actuator assembly (120) is attached to the test article (104) and is adapted for substantially concurrently imparting first and second forcing functions in first and second directions on the test article (104), with the first and second directions being perpendicular to a longitudinal axis. A controller (130) transmits first and second sets of displacement signals (160, 164) to the actuator assembly (120) at two resonant frequencies of the test system (104). The displacement signals (160, 164) initiate the actuator assembly (120) to impart the forcing loads to concurrently oscillate the test article (104) in the first and second directions. With turbine blades, the blades (104) are resonant tested concurrently for fatigue in the flapwise and edgewise directions.

Hughes, Scott; Musial, Walter; White, Darris

2014-01-07T23:59:59.000Z

212

Offshore Wind Technology Development Projects | Department of Energy  

Office of Environmental Management (EM)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) "of EnergyEnergyENERGY TAXBalanced ScorecardReactor TechnologyOFFICE: I Oak4SmallGeneralOffshore Wind »

213

Wind Energy Technologies Available for Licensing - Energy Innovation Portal  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary)morphinanInformation Desert SouthwestTechnologies | Blandine Jerome Careers at WIPPCompletes aboutWind Energy

214

NREL: Wind Research - Dynamometer Test Facilities  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmosphericNuclear Security Administration the Contributions andData andFleet Test and EvaluationManagementWorking withDynamometer

215

NREL: Wind Research - Regional Test Centers  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmosphericNuclear Security Administration the Contributions andData andFleet Test andField VerificationPossible

216

NREL: Wind Research - Structural Testing Laboratory  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmosphericNuclear Security Administration the Contributions andData andFleet Test andField

217

Wind turbine blade testing system using base excitation  

DOE Patents [OSTI]

An apparatus (500) for fatigue testing elongate test articles (404) including wind turbine blades through forced or resonant excitation of the base (406) of the test articles (404). The apparatus (500) includes a testing platform or foundation (402). A blade support (410) is provided for retaining or supporting a base (406) of an elongate test article (404), and the blade support (410) is pivotally mounted on the testing platform (402) with at least two degrees of freedom of motion relative to the testing platform (402). An excitation input assembly (540) is interconnected with the blade support (410) and includes first and second actuators (444, 446, 541) that act to concurrently apply forces or loads to the blade support (410). The actuator forces are cyclically applied in first and second transverse directions. The test article (404) responds to shaking of its base (406) by oscillating in two, transverse directions (505, 507).

Cotrell, Jason; Thresher, Robert; Lambert, Scott; Hughes, Scott; Johnson, Jay

2014-03-25T23:59:59.000Z

218

EA-1939: Reese Technology Center Wind and Battery Integration Project, Lubbock County, TX  

Broader source: Energy.gov [DOE]

This EA will evaluate the potential environmental impacts of a proposal by the Center for Commercialization of Electric Technologies to demonstrate battery technology integration with wind generated electricity by deploying and evaluating utility-scale lithium battery technology to improve grid performance and thereby aid in the integration of wind generation into the local electricity supply.

219

Vertical-axis wind turbines -- The current status of an old technology  

SciTech Connect (OSTI)

Vertical-axis wind turbine technology is not well understood, even though the earliest wind machines rotated about a vertical axis. The operating environment of a vertical-axis wind turbine is quite complex, but detailed analysis capabilities have been developed and verified over the last 30 years. Although vertical-axis technology has not been widely commercialized, it exhibits both advantages and disadvantages compared to horizontal-axis technology, and in some applications, it appears to offer significant advantages.

Berg, D.E.

1996-12-31T23:59:59.000Z

220

Final Technical Report Laramie County Community College: Utility-Scale Wind Energy Technology  

SciTech Connect (OSTI)

The Utility-Scale Wind Energy Technology U.S. Department of Energy (DOE) grant EE0000538, provided a way ahead for Laramie County Community College (LCCC) to increase educational and training opportunities for students seeking an Associate of Applied Science (AAS) or Associate of Science (AS) degree in Wind Energy Technology. The DOE grant enabled LCCC to program, schedule, and successfully operate multiple wind energy technology cohorts of up to 20-14 students per cohort simultaneously. As of this report, LCCC currently runs four cohorts. In addition, the DOE grant allowed LCCC to procure specialized LABVOLT electronic equipment that directly supports is wind energy technology curriculum.

Douglas P. Cook

2012-05-22T23:59:59.000Z

Note: This page contains sample records for the topic "wind technology testing" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


221

Test plan for the 34 meter vertical axis wind turbine test bed located at Bushland, Texas  

SciTech Connect (OSTI)

A plan is presented for the testing and evaluation of a new 500 kw vertical axis wind turbine test bed. The plan starts with the initial measurements made during construction, proceeds through evaluation of the design, the development of control methods, and finally to the test bed phase where new concepts are evaluated and in-depth studies are performed.

Stephenson, W.A.

1986-12-01T23:59:59.000Z

222

Improved Performance of an Air Cooled Condenser (ACC) Using SPX Wind Guide Technology at Coal-Based Thermoelectric Power Plants  

SciTech Connect (OSTI)

This project added a new airflow enhancement technology to an existing ACC cooling process at a selected coal power plant. Airflow parameters and efficiency improvement for the main plant cooling process using the applied technology were determined and compared with the capabilities of existing systems. The project required significant planning and pre-test execution in order to reach the required Air Cooled Condenser system configuration for evaluation. A host Power Plant ACC system had to be identified, agreement finalized, and addition of the SPX ACC Wind Guide Technology completed on that site. Design of the modification, along with procurement, fabrication, instrumentation, and installation of the new airflow enhancement technology were executed. Baseline and post-modification cooling system data was collected and evaluated. The improvement of ACC thermal performance after SPX wind guide installation was clear. Testing of the improvement indicates there is a 5% improvement in heat transfer coefficient in high wind conditions and 1% improvement at low wind speed. The benefit increased with increasing wind speed. This project was completed on schedule and within budget.

Ken Mortensen

2010-12-31T23:59:59.000Z

223

Advanced Control Design for Wind Turbines; Part I: Control Design, Implementation, and Initial Tests  

SciTech Connect (OSTI)

The purpose of this report is to give wind turbine engineers information and examples of the design, testing through simulation, field implementation, and field testing of advanced wind turbine controls.

Wright, A. D.; Fingersh, L. J.

2008-03-01T23:59:59.000Z

224

V2G Technology for Designing Active Filter System to Improve Wind Power Quality  

E-Print Network [OSTI]

V2G Technology for Designing Active Filter System to Improve Wind Power Quality F. R. Islam, H. R factor correction and harmonics current compensation. Index Terms--PHEVs, V2G, Wind Power, Battery Scheme to design active filter is proposed here to improve the quality of wind power output. Harmonics is one

Pota, Himanshu Roy

225

New report assesses offshore wind technology challenges and potential risks and benefits.  

E-Print Network [OSTI]

New report assesses offshore wind technology challenges and potential risks and benefits. The report estimates that U.S. offshore winds have a gross potential generating capacity four times greater wind resources can provide many potential benefits, and with effective research, policies

226

Testing Small Wind Turbine Generators: Design of a Driving Dynamometer Stephen Rehmeyer Pepe  

E-Print Network [OSTI]

Testing Small Wind Turbine Generators: Design of a Driving Dynamometer by Stephen Rehmeyer Pepe Sc, Berkeley Spring 2007 #12;Testing Small Wind Turbine Generators: Design of a Driving Dynamometer Copyright c 2007 by Stephen Rehmeyer Pepe #12;Abstract Testing Small Wind Turbine Generators: Design of a Driving

Kammen, Daniel M.

227

Advanced Wind Technology: New Challenges for a New Century  

SciTech Connect (OSTI)

This paper describes the growth, advances, and challenges faced by the wind energy industry in 2006.

Thresher, R.; Laxson, A.

2006-06-01T23:59:59.000Z

228

A Sandia Technology Bulletin: Testing technology, July 1993  

SciTech Connect (OSTI)

Inside this issue various short articles on current testing technology research at Sandia National Laboratories. New techniques of imaging currents in integrated circuits are described. Geomaterials testing is improved with true axial loading under high pressure. Pyroshock simulation tests electronics for space and defense. Insulated cameras get pictures of extremely hot burning fuels. Solar cell testing is improved via spectral response and laser scanning. And missile launching accomplishments are presented.

Not Available

1993-09-01T23:59:59.000Z

229

New England Wind Forum: A Wind Powering America Project, Newsletter #5 -- January 2010, Wind and Hydropower Technologies Program (WHTP)  

SciTech Connect (OSTI)

Wind Powering America program launched the New England Wind Forum (NEWF) in 2005 to provide a single comprehensive source of up-to-date, Web-based information on a broad array of wind energy issues pertaining to New England. The NEWF newsletter provides New England stakeholders with updates on wind energy development in the region. In addition to regional updates, Issue #5 offers an interview with Angus King, former governor of Maine and co-founder of Independence Wind.

Grace, R. C.; Gifford, J.

2010-01-01T23:59:59.000Z

230

2009 ASME WIND ENERGY SYMPOSIUM Static and Fatigue Testing of Thick Adhesive Joints for  

E-Print Network [OSTI]

1 2009 ASME WIND ENERGY SYMPOSIUM Static and Fatigue Testing of Thick Adhesive Joints for Wind as wind blade size has increased. Typical blade joints use paste adhesives several millimeters thick aircraft, which are also of relevance to wind blades in many instances. The strengths of lap-shear and many

231

Wind Technology Testing Center Acquires New Blade Fatigue Test System |  

Broader source: Energy.gov (indexed) [DOE]

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) "ofEarlyEnergyDepartment ofDepartment of Energyof Energy This webinar is part ofMayDepartment of

232

Development and testing of improved statistical wind power forecasting methods.  

SciTech Connect (OSTI)

Wind power forecasting (WPF) provides important inputs to power system operators and electricity market participants. It is therefore not surprising that WPF has attracted increasing interest within the electric power industry. In this report, we document our research on improving statistical WPF algorithms for point, uncertainty, and ramp forecasting. Below, we provide a brief introduction to the research presented in the following chapters. For a detailed overview of the state-of-the-art in wind power forecasting, we refer to [1]. Our related work on the application of WPF in operational decisions is documented in [2]. Point forecasts of wind power are highly dependent on the training criteria used in the statistical algorithms that are used to convert weather forecasts and observational data to a power forecast. In Chapter 2, we explore the application of information theoretic learning (ITL) as opposed to the classical minimum square error (MSE) criterion for point forecasting. In contrast to the MSE criterion, ITL criteria do not assume a Gaussian distribution of the forecasting errors. We investigate to what extent ITL criteria yield better results. In addition, we analyze time-adaptive training algorithms and how they enable WPF algorithms to cope with non-stationary data and, thus, to adapt to new situations without requiring additional offline training of the model. We test the new point forecasting algorithms on two wind farms located in the U.S. Midwest. Although there have been advancements in deterministic WPF, a single-valued forecast cannot provide information on the dispersion of observations around the predicted value. We argue that it is essential to generate, together with (or as an alternative to) point forecasts, a representation of the wind power uncertainty. Wind power uncertainty representation can take the form of probabilistic forecasts (e.g., probability density function, quantiles), risk indices (e.g., prediction risk index) or scenarios (with spatial and/or temporal dependence). Statistical approaches to uncertainty forecasting basically consist of estimating the uncertainty based on observed forecasting errors. Quantile regression (QR) is currently a commonly used approach in uncertainty forecasting. In Chapter 3, we propose new statistical approaches to the uncertainty estimation problem by employing kernel density forecast (KDF) methods. We use two estimators in both offline and time-adaptive modes, namely, the Nadaraya-Watson (NW) and Quantilecopula (QC) estimators. We conduct detailed tests of the new approaches using QR as a benchmark. One of the major issues in wind power generation are sudden and large changes of wind power output over a short period of time, namely ramping events. In Chapter 4, we perform a comparative study of existing definitions and methodologies for ramp forecasting. We also introduce a new probabilistic method for ramp event detection. The method starts with a stochastic algorithm that generates wind power scenarios, which are passed through a high-pass filter for ramp detection and estimation of the likelihood of ramp events to happen. The report is organized as follows: Chapter 2 presents the results of the application of ITL training criteria to deterministic WPF; Chapter 3 reports the study on probabilistic WPF, including new contributions to wind power uncertainty forecasting; Chapter 4 presents a new method to predict and visualize ramp events, comparing it with state-of-the-art methodologies; Chapter 5 briefly summarizes the main findings and contributions of this report.

Mendes, J.; Bessa, R.J.; Keko, H.; Sumaili, J.; Miranda, V.; Ferreira, C.; Gama, J.; Botterud, A.; Zhou, Z.; Wang, J. (Decision and Information Sciences); (INESC Porto)

2011-12-06T23:59:59.000Z

233

New National Wind Potential Estimates for Modern and Near-Future Turbine Technologies (Poster)  

SciTech Connect (OSTI)

Recent advancements in utility-scale wind turbine technology and pricing have vastly increased the potential land area where turbines can be deployed in the United States. This presentation quantifies the new developable land potential (e.g., capacity curves), visually identifies new areas for possible development (e.g., new wind resource maps), and begins to address deployment barriers to wind in new areas for modern and future turbine technology.

Roberts, J. O.

2014-01-01T23:59:59.000Z

234

Sparkr Blade Test Centre Wind turbines with a rotor diameter exceed-  

E-Print Network [OSTI]

Sparkær Blade Test Centre Wind turbines with a rotor diameter exceed- ing 2 metres must have a type of a wind turbine. Failure of a rotor blade in service often involves damage of the entire turbine operating type cer- tification systems for wind turbines. Reg. no. 427 The Sparkær Blade Test Centre became

235

Ris-R-1392(EN) Full scale testing of wind turbine blade  

E-Print Network [OSTI]

Risø-R-1392(EN) Full scale testing of wind turbine blade to failure - flapwise loading Erik R F. Sørensen Risø National Laboratory, Roskilde June 2004 #12;Abstract A 25m wind turbine blade test of a 25m Vestas wind turbine blade. The major results of the entire project can be found

236

V2G Technology to Improve Wind Power Quality and Stability F. R. Islam and H. R. Pota  

E-Print Network [OSTI]

V2G Technology to Improve Wind Power Quality and Stability F. R. Islam and H. R. Pota Abstract an implementation of V2G technology is proposed here to improve the quality and stability of wind power output

Pota, Himanshu Roy

237

Line formation in the inner winds of classical T Tauri stars: testing the conical wind solution  

E-Print Network [OSTI]

We present the emission line profile models of hydrogen and helium based on the results from axisymmetric magnetohydrodynamics (MHD) simulations of the wind formed near the disk-magnetosphere boundary of classical T Tauri stars (CTTSs). We extend the previous outflow models of `the conical wind' by Romanova et al. to include a well defined magnetospheric accretion funnel flow which is essential for modelling the optical and near-infrared hydrogen and helium lines of CTTSs. Our MHD model shows outflows in conical shape with a half opening angle about 35 degrees. The flow properties such as the maximum outflow speed in the conical wind, maximum inflow speed in the accretion funnel, mass-accretion and mass-loss rates are comparable to those found in a typical CTTS. The density, velocity and temperature from the MHD simulations are used in a separate radiative transfer model to predict the line profiles and test the consistency of the MHD models with observations. The line profiles are computed with various combi...

Kurosawa, Ryuichi

2012-01-01T23:59:59.000Z

238

Advanced Wind Energy Projects Test Facility Moving to Texas Tech...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

The Lubbock site will include an initial installation of two 225-kilowatt wind turbines and three anemometer towers, with the potential to expand to nine or more wind...

239

Upcoming Funding Opportunity to Develop and Field Test Wind Energy...  

Energy Savers [EERE]

and operating wind energy facilities in locations with sensitive bat species. As wind energy continues to grow as a renewable source of energy for communities throughout...

240

Liberty Turbine Test Wind Farm | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home5b9fcbce19 No revision hasInformation Earth's Heat JumpInc Place:Keystone CleanLaton,LearnLeuppEnergyTurbine Test Wind Farm

Note: This page contains sample records for the topic "wind technology testing" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


241

2014 WIND POWER PROGRAM PEER REVIEW-TEST FACILITIES  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE:YearRound-Up from theDepartment(October-December 2013 issueTest Facilities March 24-27, 2014 Wind

242

Wind Tunnel Tests of Parabolic Trough Solar Collectors: March 2001--August 2003  

SciTech Connect (OSTI)

Conducted extensive wind-tunnel tests on parabolic trough solar collectors to determine practical wind loads applicable to structural design for stress and deformation, and local component design for concentrator reflectors.

Hosoya, N.; Peterka, J. A.; Gee, R. C.; Kearney, D.

2008-05-01T23:59:59.000Z

243

FAST Code Verification of Scaling Laws for DeepCwind Floating Wind System Tests: Preprint  

SciTech Connect (OSTI)

This paper investigates scaling laws that were adopted for the DeepCwind project for testing three different floating wind systems at 1/50 scale in a wave tank under combined wind and wave loading.

Jain, A.; Robertson, A. N.; Jonkman, J. M.; Goupee, A. J.; Kimball, R. W.; Swift, A. H. P.

2012-04-01T23:59:59.000Z

244

DAMAGE DETECTION METHODS ON WIND TURBINE BLADE TESTING WITH WIRED AND WIRELESS ACCELEROMETER SENSORS  

E-Print Network [OSTI]

DAMAGE DETECTION METHODS ON WIND TURBINE BLADE TESTING WITH WIRED AND WIRELESS ACCELEROMETER turbine blade. We compare the data collected from the wireless sensors against wired sensors for nonstationary blade excitations. KEYWORDS : Structural Health Monitoring, Damage Detection, Wind Turbine

Paris-Sud XI, Université de

245

Wind for Schools Affiliate Programs: Wind and Hydropower Technologies Program (Fact Sheet)  

SciTech Connect (OSTI)

The U.S. Department of Energy's (DOE's) Wind for Schools program is designed to raise awareness about the benefits of wind energy while simultaneously developing a wind energy knowledge base in future leaders of our communities, states, and nation. To accommodate the many stakeholders who are interested in the program, a Wind for Schools affiliate program has been implemented. This document describes the affiliate program and how interested schools may participate.

Not Available

2009-12-01T23:59:59.000Z

246

Wind Tunnel and Flight Testing of Active Flow Control on a UAV  

E-Print Network [OSTI]

Active flow control has been extensively explored in wind tunnel studies but successful in-flight implementation of an active flow control technology still remains a challenge. This thesis presents implementation of active flow control technology...

Babbar, Yogesh

2011-08-08T23:59:59.000Z

247

Progress in Wind-and-React Bi-2212 Accelerator Magnet Technology  

SciTech Connect (OSTI)

We report on our progress in the development of the technology for the application of Bi{sub 2}Sr{sub 2}CaCu{sub 2}O{sub 8+x}(Bi-2212) in Wind-and-React accelerator magnets. A series of superconducting subscale coils has been manufactured at LBNL and reacted at the wire manufacturer SWCC. Selected coils are impregnated and tested in self-field, even though the coils exhibited leakage during the partial melt heat treatment. Other coils have been disassembled after reaction and submitted to critical current (Ic) tests on individual cable sections. We report on the results of the current carrying capacity of the coils. Voltage-current (VI) transitions were reproducibly measured up to a quench currents around 1400 A, which is 25% of the expected performance. The results indicate that the coils are limited by the inner windings. We further compare possibilities to use Bi-2212 and Nb{sub 3}Sn tilted solenoid, and YBa{sub 2}Cu{sub 3}O{sub 7-{delta}} (YBCO) racetrack inserts to increase the magnetic field in HD2, a 36 mm bore Nb{sub 3}Sn dipole magnet which recently achieved a bore magnetic field of 13.8 T. The application of Bi-2212 and/or YBCO in accelerator type magnets, if successful, will open the road to higher magnetic fields, far surpassing the limitations of Nb{sub 3}Sn magnet technology.

Godeke, A.; Cheng, D.; Dietderich, D.R.; Hannaford, C.R.; Prestemon, S.O.; Sabbi, G.; Wang, X.; Hikichi, Y.; Nishioka, J.; Hasegawa, T.

2009-08-16T23:59:59.000Z

248

Manufactured Home Testing in Simulated and Naturally Occurring High Winds  

SciTech Connect (OSTI)

A typical double-wide manufactured home was tested in simulated and naturally occurring high winds to understand structural behavior and improve performance during severe windstorms. Seven (7) lateral load tests were conducted on a double-wide manufactured home at a remote field test site in Wyoming. An extensive instrumentation package monitored the overall behavior of the home and collected data vital to validating computational software for the manufactured housing industry. The tests were designed to approach the design load of the home without causing structural damage, thus allowing the behavior of the home to be accessed when the home was later exposed to high winds (to 80-mph). The data generally show near-linear initial system response with significant non-linear behavior as the applied loads increase. Load transfer across the marriage line is primarily compression. Racking, while present, is very small. Interface slip and shear displacement along the marriage line are nearly insignificant. Horizontal global displacements reached 0.6 inch. These tests were designed primarily to collect data necessary to calibrate a desktop analysis and design software tool, MHTool, under development at the Idaho National Laboratory specifically for manufactured housing. Currently available analysis tools are, for the most part, based on methods developed for “stick built” structures and are inappropriate for manufactured homes. The special materials utilized in manufactured homes, such as rigid adhesives used in the connection of the sheathing materials to the studs, significantly alter the behavior of manufactured homes under lateral loads. Previous full scale tests of laterally loaded manufactured homes confirm the contention that conventional analysis methods are not applicable. System behavior dominates the structural action of manufactured homes and its prediction requires a three dimensional analysis of the complete unit, including tiedowns. This project was sponsored by the US Department of Energy, US Department of Housing and Urban Development, and the Manufactured Housing Institute. The results of this research can lead to savings in annual losses of life and property by providing validated information to enable the advancement of code requirements and by developing engineering software that can predict and optimize wind resistance.

W. D. Richins; T. K. Larson

2006-08-01T23:59:59.000Z

249

Enertech 2-kW high-reliability wind system. Phase II. Fabrication and testing  

SciTech Connect (OSTI)

A high-reliability wind machine rated for 2 kW in a 9 m/s wind has been developed. Activities are summarized that are centered on the fabrication and testing of prototypes of the wind machine. The test results verified that the wind machine met the power output specification and that the variable-pitch rotor effectively controlled the rotor speed for wind speeds up to 50 mph. Three prototypes of the wind machine were shipped to the Rocky Flats test center in September through November of 1979. Work was also performed to reduce the start-up wind speed. The start-up wind speed to the Enertech facility has been reduced to 4.5 m/s.

Cordes, J A; Johnson, B A

1981-06-01T23:59:59.000Z

250

DOE and Partners Test Enhanced Geothermal Systems Technologies...  

Office of Environmental Management (EM)

DOE and Partners Test Enhanced Geothermal Systems Technologies DOE and Partners Test Enhanced Geothermal Systems Technologies February 20, 2008 - 4:33pm Addthis DOE has embarked on...

251

Oregon: Advancing Technology Readiness: Wave Energy Testing and...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Oregon: Advancing Technology Readiness: Wave Energy Testing and Demonstration Oregon: Advancing Technology Readiness: Wave Energy Testing and Demonstration March 6, 2014 - 1:23pm...

252

Conventional Hydropower Technologies, Wind And Water Power Program...  

Office of Environmental Management (EM)

Power for a Clean Energy Future (Fact Sheet), Wind and Water Power Program (WWPP) Hydropower Projects Environmental Impacts of Increased Hydroelectric Development at Existing Dams...

253

Roadmap Prioritizes Barriers to the Deployment of Wind Technology...  

Broader source: Energy.gov (indexed) [DOE]

National Renewable Energy Laboratory (NREL) recently published a Built-Environment Wind Turbine Roadmap that outlines a strategy for providing consumers with safe, reliable...

254

Upcoming Funding Opportunity for Technology Incubator for Wind...  

Energy Savers [EERE]

opportunity encompasses applications for any and all ideas that have a significant potential to advance the mission of the Wind Program. While all high-impact applications...

255

Technology Incubator for Wind Energy Innovations Funding Opportunity...  

Office of Environmental Management (EM)

a nonexclusive list of possible topic areas where innovative ideas would have significant potential to enhance its wind research goals: Novel Measurement Techniques for...

256

Ris-R-999(EN) Wind Tunnel Test of the RIS-1  

E-Print Network [OSTI]

coefficients and wake rake pressure measurements provided the total drag coefficient. Wind tunnel corrections of blades for stall regulated wind turbines with a Reynolds number betweenRisø-R-999(EN) Wind Tunnel Test of the RISØ-1 Airfoil Peter Fuglsang, Ioannis Antoniou, Christian

257

Developing a Practical Wind Tunnel Test Engineering Course for Undergraduate Aerospace Engineering Students  

E-Print Network [OSTI]

This thesis describes the development and assessment of an undergraduate wind tunnel test engineering course utilizing the 7ft by 10ft Oran W. Nicks Low Speed Wind Tunnel (LSWT). Only 5 other universities in the United States have a wind tunnel...

Recla, Benjamin Jeremiah

2013-04-19T23:59:59.000Z

258

Contribution to the Chapter on Wind Power Energy Technology  

E-Print Network [OSTI]

energy development, therefore it could be likely to cover as much as 20% of the world's electricity mainly in Europe, USA and China. The market is maturing, therefore achieving more stable economies in the wind energy sector. As a result, better electrical grids suited for wind power are being developed

259

RIVERTON DOME GAS EXPLORATION AND STIMULATION TECHNOLOGY DEMONSTRATION, WIND RIVER BASIN, WYOMING  

SciTech Connect (OSTI)

The new exploration technology for basin center gas accumulations developed by R.C. Surdam and Associates at the Institute for Energy Research, University of Wyoming, was applied to the Riverton Dome 3-D seismic area. Application of the technology resulted in the development of important new exploration leads in the Frontier, Muddy, and Nugget formations. The new leads are adjacent to a major north-south trending fault, which is downdip from the crest of the major structure in the area. In a blind test, the drilling results from six new Muddy test wells were accurately predicted. The initial production values, IP, for the six test wells ranged from < one mmcf/day to four mmcf/day. The three wells with the highest IP values (i.e., three to four mmcf/day) were drilled into an intense velocity anomaly (i.e., anomalously slow velocities). The well drilled at the end of the velocity anomaly had an IP value of one mmcf/day, and the two wells drilled outside of the velocity anomaly had IP values of < one mmcf/day and are presently shut in. Based on these test results, it is concluded that the new IER exploration strategy for detecting and delineating commercial, anomalously pressured gas accumulation is valid in the southwestern portions of the Wind River Basin, and can be utilized to significantly reduce exploration risk and to increase profitability of so-called basin center gas accumulations.

Ronald C. Surdam; Zunsheng Jiao; Nicholas K. Boyd

1999-11-01T23:59:59.000Z

260

Test Cases for Wind Power Plant Dynamic Models on Real-Time Digital Simulator: Preprint  

SciTech Connect (OSTI)

The objective of this paper is to present test cases for wind turbine generator and wind power plant models commonly used during commissioning of wind power plants to ensure grid integration compatibility. In this paper, different types of wind power plant models based on the Western Electricity Coordinating Council Wind Generator Modeling Group's standardization efforts are implemented on a real-time digital simulator, and different test cases are used to gauge their grid integration capability. The low-voltage ride through and reactive power support capability and limitations of wind turbine generators under different grid conditions are explored. Several types of transient events (e.g., symmetrical and unsymmetrical faults, frequency dips) are included in the test cases. The differences in responses from different types of wind turbine are discussed in detail.

Singh, M.; Muljadi, E.; Gevorgian, V.

2012-06-01T23:59:59.000Z

Note: This page contains sample records for the topic "wind technology testing" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


261

Zhiyu Jiang, Department of Marine Technology & Centre for Ships and Ocean Structures Dynamic response of wind turbines in fault and  

E-Print Network [OSTI]

response of wind turbines in fault and shutdown conditions Zhiyu Jiang Deptartment of Marine Technology://www.newscientist.com/blogs/onepercent/2011/12/why-did-a-wind-turbine-self-co.html #12;3 Zhiyu Jiang, Department of Marine Technology & Centre & Centre for Ships and Ocean Structures Control and protection of wind turbines Emergency shutdown Pitch

Nørvåg, Kjetil

262

NREL's Controllable Grid Interface for Testing Renewable Energy Technologies (Presentation)  

SciTech Connect (OSTI)

This presentation is an overview of NREL's Controllable Grid Interface capabilities for testing renewable energy technologies.

Gevorgian, V.

2014-09-01T23:59:59.000Z

263

SciTech Connect: Blade Testing Trends (Presentation)  

Office of Scientific and Technical Information (OSTI)

Org: Other Non-EERE Country of Publication: United States Language: English Subject: 17 WIND ENERGY BLADE TESTING; TRENDS; BIAXIAL TESTING; NATIONAL WIND TECHNOLOGY CENTER; NWTC;...

264

Albostan A.: Wind Energy: Analysis of the Technological Potential and policies  

E-Print Network [OSTI]

At the beginning of the 21 st century, due to increase in fossil fuel prices and environmental concerns, many countries started to invest in alternative energy resources. In addition, global environmental problems and climate change due to greenhouse gas emissions from fossil fuels showed the importance of renewable energy resources, especially wind energy. The major reason for this interest in wind energy technologies is the bulk availability of this resource without any cost. Due to increasing demand for wind energy, the technology and know-how in this field is increased expeditiously in this field. However, in order to increase the efficiency of wind turbines most of the system components must be enhanced. The research and development in this area mainly focuses on the turbine components such as blades, gear box, tower structure, control system, and generator technologies. Out of these, turbine, blade, and generator are the most important. The technological improvements or the next major breakthrough in wind turbines will be directly related to the increase in the capacity of these systems and their related size. In this paper, advancements in wind energy systems are investigated in detail by focusing on advantages and major problems in these systems, and analysing the current and future wind energy applications and policies in Turkey.

Sitki Güner; Mehmet Meliko?lu; Ayhan Albostan

2011-01-01T23:59:59.000Z

265

DOE Seeking Proposals to Advance Distributed Wind Turbine Technology...  

Energy Savers [EERE]

Project (CIP). The CIP aims to help U.S. manufacturers of small and mid-sized wind turbines with rotor swept areas up to 1,000 square meters improve their turbine designs and...

266

2012 Wind Technologies Market Report | Department of Energy  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE: Alternative Fuels DataCombinedDepartment ofCareersWindProject Management Workshop2 Webinar2 Wind

267

Historical hydronuclear testing: Characterization and remediation technologies  

SciTech Connect (OSTI)

This report examines the most current literature and information available on characterization and remediation technologies that could be used on the Nevada Test Site (NTS) historical hydronuclear test areas. Historical hydronuclear tests use high explosives and a small amount of plutonium. The explosion scatters plutonium within a contained subsurface environment. There is currently a need to characterize these test areas to determine the spatial extent of plutonium in the subsurface and whether geohydrologic processes are transporting the plutonium away from the event site. Three technologies were identified to assist in the characterization of the sites. These technologies are the Pipe Explorer{trademark}, cone penetrometer, and drilling. If the characterization results indicate that remediation is needed, three remediation technologies were identified that should be appropriate, namely: capping or sealing the surface, in situ grouting, and in situ vitrification. Capping the surface would prevent vertical infiltration of water into the soil column, but would not restrict lateral movement of vadose zone water. Both the in situ grouting and vitrification techniques would attempt to immobilize the radioactive contaminants to restrict or prevent leaching of the radioactive contaminants into the groundwater. In situ grouting uses penetrometers or boreholes to inject the soil below the contaminant zone with low permeability grout. In situ vitrification melts the soil containing contaminants into a solid block. This technique would provide a significantly longer contaminant immobilization, but some research and development would be required to re-engineer existing systems for use at deep soil depths. Currently, equipment can only handle shallow depth vitrification. After existing documentation on the historical hydronuclear tests have been reviewed and the sites have been visited, more specific recommendations will be made.

Shaulis, L.; Wilson, G.; Jacobson, R.

1997-09-01T23:59:59.000Z

268

Wind Turbine Blade Test Definition of the DeWind DW90 Rotor Blade: Cooperative Research and Development Final Report, CRADA Number CRD-09-326  

SciTech Connect (OSTI)

This CRADA was developed as a funds-in CRADA with DeWind to assess the suitability of facilities and equipment at the NWTC for performing certification blade testing on wind turbine blades made from advanced materials. DeWind produces a wind turbine blade which includes the use of high-strength and stiffness materials. NREL and DeWind had a mutual interest in defining the necessary facilities, equipment, and test methods for testing large wind turbine blades which incorporate advanced materials and adaptive structures, as the demands on test equipment and infrastructure are greater than current capabilities. Work under this CRADA would enable DeWind to verify domestic capability for certification-class static and fatigue testing, while NREL would be able to identify and develop specialized test capabilities based on the test requirements.

Hughes, S.

2012-05-01T23:59:59.000Z

269

Wind Turbine Drivetrain Condition Monitoring During GRC Phase 1 and Phase 2 Testing  

SciTech Connect (OSTI)

This report will present the wind turbine drivetrain condition monitoring (CM) research conducted under the phase 1 and phase 2 Gearbox Reliability Collaborative (GRC) tests. The rationale and approach for this drivetrain CM research, investigated CM systems, test configuration and results, and a discussion on challenges in wind turbine drivetrain CM and future research and development areas, will be presented.

Sheng, S.; Link, H.; LaCava, W.; van Dam, J.; McNiff, B.; Veers, P.; Keller, J.; Butterfield, S.; Oyague, F.

2011-10-01T23:59:59.000Z

270

Kaman 40-kW wind system. Phase II. Fabrication and tests. Volume II. Technical report  

SciTech Connect (OSTI)

A program is underway to design, fabricate and test a horizontal axis Wind Turbine Generator (WTG) capable of producing 40 kW electrical output power in a 20 mph wind. Results are presented of the program effort covering fabrication and testing of the Wing Turbine Generator designed earlier. A minimum of difficulties were experienced during fabrication and, after successful completion of Contractor tests through 20 mph winds, the WTG was shipped to Rocky Flats, assembled and operated there. The 40 kW WTG is presently undergoing extended tests at Rockwell's Rocky Flats test facility.

Howes, H; Perley, R

1981-01-01T23:59:59.000Z

271

An implementation and test of the NEXRAD Transverse Wind algorithm  

E-Print Network [OSTI]

by 5 km array (BOX) size was selected with 50 percent overlap. Figure 17 shows the computed wind vectors for each 5 km box. The overall wind flow pattern is much the same as shown by the 10 km arrays. The strong westerly winds in the extreme...) sizes to extremes. Figure 21 shows the result of using a 35 by 35 km box. There were 1849 data points in the box and only a single wind vector was produced. With a 50 percent overlap, there was insufficient space within the storm boundary for any...

Bensinger, Richard Bruce

2012-06-07T23:59:59.000Z

272

Sandia National Laboratories: Scaled Wind Farm Technology (SWIFT) Facility  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmosphericNuclear Security Administration the1 -theErikGroundbreaking Work on CriegeeElectronicsAssociationScaled Wind FarmWind

273

Enertech 15-kW wind-system development. Phase II. Fabrication and test  

SciTech Connect (OSTI)

This Phase II report presents a description of the Enertech 15 kW prototype wind system hardware fabrication; results of component tests; and results of preliminary testing conducted at Norwich, VT and the RF Wind Energy Research Center. In addition, the assembly sequence is documented. During testing, the unit experienced several operational problems, but testing proved the design concept and demonstrated the system's ability to meet the contract design specifications for power output.

Zickefoose, C.R.

1982-12-01T23:59:59.000Z

274

Coming Soon! 2011 Wind Technologies Market Report (Postcard)  

SciTech Connect (OSTI)

This valuable report will be available this summer! Prepared by the Energy Department's Lawrence Berkeley National Laboratory, the report is a must read, providing a comprehensive overview of United States wind industry: Installation Trends, Industry Trends, Price, Cost, and Performance Trends, Policy and Market Drivers, Future Outlook.

Not Available

2012-06-01T23:59:59.000Z

275

Summary of Test Results for the Interagency Field Test &Evaluation...  

Broader source: Energy.gov (indexed) [DOE]

Summary of Test Results for the Interagency Field Test &Evaluation of Wind Turbine - Radar Interference Mitigation Technologies Summary of Test Results for the Interagency Field...

276

Adapting to Limitations of a Wind Tunnel Test Facility in the Aerodynamic Testing of a new UAV  

E-Print Network [OSTI]

Adapting to Limitations of a Wind Tunnel Test Facility in the Aerodynamic Testing of a new UAV Dr K section for aerodynamic tests of aircraft models and aerodynamic devices. Improvements over the years have aerodynamic testing facility, albeit with much reduced capability. This paper reports on initial progress

Wong, K. C.

277

Wind-To-Hydrogen Project: Operational Experience, Performance Testing, and Systems Integration  

SciTech Connect (OSTI)

The Wind2H2 system is fully functional and continues to gather performance data. In this report, specifications of the Wind2H2 equipment (electrolyzers, compressor, hydrogen storage tanks, and the hydrogen fueled generator) are summarized. System operational experience and lessons learned are discussed. Valuable operational experience is shared through running, testing, daily operations, and troubleshooting the Wind2H2 system and equipment errors are being logged to help evaluate the reliability of the system.

Harrison, K. W.; Martin, G. D.; Ramsden, T. G.; Kramer, W. E.; Novachek, F. J.

2009-03-01T23:59:59.000Z

278

China-2050 Wind Technology Roadmap | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Office of InspectorConcentrating SolarElectricEnergyCTBarreisVolcanic National Park |Chile: EnergyOpen EnergyWind

279

Guangdong Mingyang Wind Power Technology Co Ltd | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Office of Inspector GeneralDepartmentAUDIT REPORTOpen EnergyBoard" form. ToGestionSolarPortocarrio SMingyang Wind

280

EA-1750: Smart Grid, Center for Commercialization of Electric Technology, Technology Solutions for Wind Integration in ERCOT, Houston, Texas  

Broader source: Energy.gov [DOE]

This EA evaluates the potential environmental impacts of providing a financial assistance grant under the American Recovery and Reinvestment Act of 2009 to the Center for Commercialization of Electric Technology to facilitate the development and demonstration of a multi-faceted, synergistic approach to managing fluctuations in wind power within the Electric Reliability Council of Texas transmission grid.

Note: This page contains sample records for the topic "wind technology testing" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


281

Proof-of-Concept Manufacturing and Testing of Composite Wind Generator Blades Made by HCBMP (High Compression Bladder Molded Prepreg)  

SciTech Connect (OSTI)

Proof-of-Concept Manufacturing and Testing of Composite Wind Generator Blades Made by HCBMP (High Compression Bladder Molded Prepreg)

William C. Leighty; DOE Project Officer - Keith Bennett

2005-10-04T23:59:59.000Z

282

Grid Simulator for Testing a Wind Turbine on Offshore Floating Platform  

SciTech Connect (OSTI)

An important aspect of such offshore testing of a wind turbine floating platform is electrical loading of the wind turbine generator. An option of interconnecting the floating wind turbine with the onshore grid via submarine power cable is limited by many factors such as costs and associated environmental aspects (i.e., an expensive and lengthy sea floor study is needed for cable routing, burial, etc). It appears to be a more cost effective solution to implement a standalone grid simulator on a floating platform itself for electrical loading of the test wind turbine. Such a grid simulator must create a stable fault-resilient voltage and frequency bus (a micro grid) for continuous operation of the test wind turbine. In this report, several electrical topologies for an offshore grid simulator were analyzed and modeled.

Gevorgian, V.

2012-02-01T23:59:59.000Z

283

Vehicle Technologies Office Merit Review 2014: INL Testing of...  

Broader source: Energy.gov (indexed) [DOE]

INL Testing of Wireless Charging Systems Vehicle Technologies Office Merit Review 2014: INL Testing of Wireless Charging Systems Presentation given by Idaho National Laboratory at...

284

Power Performance Test Report for the Viryd CS8 Wind Turbine  

SciTech Connect (OSTI)

This report contains the results of the power performance test that was performed on a Viryd CS8 wind turbine as part of the DOE Independent Testing project. The test is an accredited test to the IEC 61400-12-1 power performance standard.

Roadman, J.; Murphy, M.; van Dam, J.

2012-12-01T23:59:59.000Z

285

Test of a solar crop dryer Danish Technological Institute  

E-Print Network [OSTI]

Test of a solar crop dryer Danish Technological Institute Danish Institute of Agricultural Sciences Aidt Miljø A/S SEC-R-6 #12;Test of a solar crop dryer Søren �stergaard Jensen Danish Technological/S January 2001 #12;Preface The report describes the tests carried out on a solar crop dryer. The work

286

2013 Wind Technologies Market Report | Department of Energy  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May JunDatastreamsmmcrcalgovInstrumentsrucLasDelivered‰PNGExperience hands-onASTROPHYSICS H. I.Plasma Camp ViewResidentialWind

287

Sandia National Laboratories: Scaled Wind Farm Technologies Facility  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmosphericNuclear Security Administration the1 -theErikGroundbreaking Work on CriegeeElectronicsAssociationScaled Wind Farm

288

Sandia National Laboratories: Scaled Wind Farm Technology Facility  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmosphericNuclear Security Administration the1 -theErikGroundbreaking Work on CriegeeElectronicsAssociationScaled Wind

289

NREL: Learning - National Wind Technology Center Video (Text Version)  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmosphericNuclear Security Administration the Contributions and Achievements ofLizResults InterpretingBiofuelsNational Wind

290

Wind Energy Resources and Technologies | Department of Energy  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE:YearRound-Up from theDepartment of Dept.| WEATHERIZATION5 | EnergyMayDepartment ofWind Energy

291

NREL: Technology Deployment - Wind Energy Deployment and Market  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmosphericNuclear Security Administration the Contributions andData and ResourcesOther Federal AgencyTransformation Wind Energy

292

Design and Test of a Vertical-Axis Wind Turbine with Pitch Control J. J. Miau1,a  

E-Print Network [OSTI]

Design and Test of a Vertical-Axis Wind Turbine with Pitch Control J. J. Miau1,a , S. Y. Liang2 , R, USA a jjmiau@mail.ncku.edu.tw Keywords: vertical-axis wind turbine, pitch control, wind of a small vertical-axis wind turbine. Benefits gained can be shown by the experimental and numerical results

Leu, Tzong-Shyng "Jeremy"

293

NREL National Wind Technology Center (NWTC): M2 Tower; Boulder, Colorado (Data)  

DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

The National Wind Technology Center (NWTC), located at the foot of the Rocky Mountains near Boulder, Colorado, is a world-class research facility managed by NREL for the U.S. Department of Energy. NWTC researchers work with members of the wind energy industry to advance wind power technologies that lower the cost of wind energy through research and development of state-of-the-art wind turbine designs. NREL's Measurement and Instrument Data Center provides data from NWTC's M2 tower which are derived from instruments mounted on or near an 82 meter (270 foot) meteorological tower located at the western edge of the NWTC site and about 11 km (7 miles) west of Broomfield, and approximately 8 km (5 miles) south of Boulder, Colorado. The data represent the mean value of readings taken every two seconds and averaged over one minute. The wind speed and direction are measured at six heights on the tower and air temperature is measured at three heights. The dew point temperature, relative humidity, barometric pressure, totalized liquid precipitation, and global solar radiation are also available.

Jager, D.; Andreas, A.

294

A comparison of predicted wind turbine blade loads to test measurements  

SciTech Connect (OSTI)

The accurate prediction of wind turbine blade loads and response is important in predicting the fatigue life of wind machines. At the SERI Wind Energy Research Center, a rotor code called FLAP (Force and Loads Analysis Program) is currently being validated by comparing predicted results to machine measurements. The FLAP code has been modified to allow the teetering degrees of freedom. This paper describes these modifications and comparisons of predicted blade bending moments to test measurements. Wind tunnel data for a 1/20th scale model will be used to compare FLAP predictions for the cyclic flap-bending moments at the 33% spanwise station for three different wind speeds. The comparisons will be made for both rigid and teetering hubs. Currently, the FLAP code accounts for deterministic excitations such as wind shear, tower shadow, gravity, and prescribed yawing motions. Conclusions will be made regarding the code's accuracy in predicting the cyclic bending moments.

Wright, A.D.; Thresher, R.W.

1987-01-01T23:59:59.000Z

295

Cross-border transfer of climate change mitigation technologies : the case of wind energy from Denmark and Germany to India  

E-Print Network [OSTI]

This research investigated the causal factors and processes of international development and diffusion of wind energy technology by examining private sector cross-border technology transfer from Denmark and Germany to India ...

Mizuno, Emi, Ph. D. Massachusetts Institute of Technology

2007-01-01T23:59:59.000Z

296

Learning About Wind Turbine Technology, Motors and Generators...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

focused on topics outside of electric machines, to learn about the physics behind motors and generators. It is hard to believe that this technology has been around for well...

297

2012 Market Report on U.S. Wind Technologies in Distributed Applications  

SciTech Connect (OSTI)

At the end of 2012, U.S. wind turbines in distributed applications reached a 10-year cumulative installed capacity of more than 812 MW from more than 69,000 units across all 50 states. In 2012 alone, nearly 3,800 wind turbines totaling 175 MW of distributed wind capacity were documented in 40 states and in the U.S. Virgin Islands, with 138 MW using utility-scale turbines (i.e., greater than 1 MW in size), 19 MW using mid-size turbines (i.e., 101 kW to 1 MW in size), and 18.4 MW using small turbines (i.e., up to 100 kW in size). Distributed wind is defined in terms of technology application based on a wind project’s location relative to end-use and power-distribution infrastructure, rather than on technology size or project size. Distributed wind systems are either connected on the customer side of the meter (to meet the onsite load) or directly to distribution or micro grids (to support grid operations or offset large loads nearby). Estimated capacity-weighted average costs for 2012 U.S. distributed wind installations was $2,540/kW for utility-scale wind turbines, $2,810/kW for mid-sized wind turbines, and $6,960/kW for newly manufactured (domestic and imported) small wind turbines. An emerging trend observed in 2012 was an increased use of refurbished turbines. The estimated capacity-weighted average cost of refurbished small wind turbines installed in 2012 was $4,080/kW. As a result of multiple projects using utility-scale turbines, Iowa deployed the most new overall distributed wind capacity, 37 MW, in 2012. Nevada deployed the most small wind capacity in 2012, with nearly 8 MW of small wind turbines installed in distributed applications. In the case of mid-size turbines, Ohio led all states in 2012 with 4.9 MW installed in distributed applications. State and federal policies and incentives continued to play a substantial role in the development of distributed wind projects. In 2012, U.S. Treasury Section 1603 payments and grants and loans from the U.S. Department of Agriculture’s Rural Energy for America Program were the main sources of federal funding for distributed wind projects. State and local funding varied across the country, from rebates to loans, tax credits, and other incentives. Reducing utility bills and hedging against potentially rising electricity rates remain drivers of distributed wind installations. In 2012, other drivers included taking advantage of the expiring U.S. Treasury Section 1603 program and a prosperous year for farmers. While 2012 saw a large addition of distributed wind capacity, considerable barriers and challenges remain, such as a weak domestic economy, inconsistent state incentives, and very competitive solar photovoltaic and natural gas prices. The industry remains committed to improving the distributed wind marketplace by advancing the third-party certification process and introducing alternative financing models, such as third-party power purchase agreements and lease-to-own agreements more typical in the solar photovoltaic market. Continued growth is expected in 2013.

Orrell, Alice C.; Flowers, L. T.; Gagne, M. N.; Pro, B. H.; Rhoads-Weaver, H. E.; Jenkins, J. O.; Sahl, K. M.; Baranowski, R. E.

2013-08-06T23:59:59.000Z

298

Office of Wind and Hydropower Technologies Wind Energy Program: 2006 Peer Review Report  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious RankCombustion | Department ofT ib l L d F SSales LLC OrderEfficiencyOceanOctober0 - Visit0 PeerWind

299

NREL Wind Turbine Blade Structural Testing of the Modular Wind Energy MW45 Blade: Cooperative Research and Development Final Report, CRADA Number CRD-09-354  

SciTech Connect (OSTI)

This CRADA was a purely funds-in CRADA with Modular Wind Energy (MWE). MWE had a need to perform full-scale testing of a 45-m wind turbine blade. NREL/NWTC provided the capabilities, facilities, and equipment to test this large-scale MWE wind turbine blade. Full-scale testing is required to demonstrate the ability of the wind turbine blade to withstand static design load cases and demonstrate the fatigue durability. Structural testing is also necessary to meet international blade testing certification requirements. Through this CRADA, MWE would obtain test results necessary for product development and certification, and NREL would benefit by working with an industrial partner to better understand the unique test requirements for wind turbine blades with advanced structural designs.

Hughes, S.

2012-05-01T23:59:59.000Z

300

225-kW Dynamometer for Testing Small Wind Turbine Components: Preprint  

SciTech Connect (OSTI)

This paper describes NREL's new 225-kW dynamometer facility that is suitable for testing a variety of components and subsystems for small wind turbines and discusses opportunities for industry partnerships with NREL for use of the facility.

Green, J.

2006-06-01T23:59:59.000Z

Note: This page contains sample records for the topic "wind technology testing" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


301

High-R Walls for New Construction Structural Performance: Wind Pressure Testing  

SciTech Connect (OSTI)

This technical report is focused primarily on laboratory testing that evaluates wind pressure performance characteristics for wall systems constructed with exterior insulating sheathing. This research and test activity will help to facilitate the ongoing use of non-structural sheathing options and provide a more in-depth understanding of how wall system layers perform in response to high wind perturbations normal to the surface.

DeRenzis, A.; Kochkin, V.

2013-01-01T23:59:59.000Z

302

Institute for Software Technology Model-Based Testing  

E-Print Network [OSTI]

t Institute for Software Technology Model-Based Testing Ausgewählte Kapitel Softwaretechnologie 2 2013/14 B.K. Aichernig Model-Based Testing 1 / 38 #12;t Institute for Software Technology Testing Testing: checking or measuring some quality characteristics of an executing system by performing

303

Automatic fine-tuning and wind simulation at the Offshore Technology Research Center (OTRC)  

E-Print Network [OSTI]

the wind generator. The fans are required to move the ambient test facility air in a circulatory fashion. This paper examines the procedures taken to run the fans in a test matrix and fine tune the fan drive signals to provide the proper statistical...

Miller, Mark Alan

1994-01-01T23:59:59.000Z

304

2012 Market Report on U.S. Wind Technologies in Distributed Applications Webinar  

Broader source: Energy.gov [DOE]

DOE will present a live webcast titled "2012 Market Report on U.S. Wind Technologies in Distributed Applications" on Wednesday, August 21, from 3:00 p.m. to 4:00 p.m. Eastern Daylight Time. Alice...

305

Acoustic Noise Test Report for the Viryd CS8 Wind Turbine  

SciTech Connect (OSTI)

This report summarizes the results of an acoustic noise test that the National Renewable Energy Laboratory (NREL) conducted on the Viryd CS8 wind turbine. This test was conducted in accordance with the International Electrotechnical Commission's (IEC) standard, Wind Turbine Generator Systems Part 11: Acoustic Noise Measurement Techniques, IEC 61400-11 Ed.2.1, 2006-11. However, because the Viryd CS8 is a small turbine, as defined by IEC, NREL used 10-second averages instead of 60-second averages and binning by wind speed instead of regression analysis.

Roadman, J.; Huskey, A.

2013-07-01T23:59:59.000Z

306

Acoustic Noise Test Report for the SWIFT Wind Turbine in Boulder, CO  

SciTech Connect (OSTI)

This report summarizes the results of an acoustic noise test that the National Renewable Energy Laboratory (NREL) conducted on the SWIFT wind turbine. This test was conducted in accordance with the International Electrotechnical Commission's (IEC) standard, Wind Turbine Generator Systems Part 11: Acoustic Noise Measurement Techniques, IEC 61400-11 Ed.2.1, 2006-11. However, because the SWIFT is a small turbine, as defined by IEC, NREL used 10-second averages instead of 60-second averages and utilized binning by wind speed instead of regression analysis.

Roadman, J.; Huskey, A.

2013-04-01T23:59:59.000Z

307

IFE Chamber Technology Testing Program In NIF and Chamber Development Test Plan Mohamed A. Abdou  

E-Print Network [OSTI]

. As ITER serves as a fusion testing facility for magnetic fusion energy (MFE) nuclear technology componentIFE Chamber Technology Testing Program In NIF and Chamber Development Test Plan Mohamed A. Abdou chamber technology testing program in NIF involoving: criteria for evaluation

Abdou, Mohamed

308

Technology Improvement Opportunities for Low Wind Speed Turbines and Implications for Cost of Energy Reduction: July 9, 2005 - July 8, 2006  

SciTech Connect (OSTI)

This report analyzes the status of wind energy technology in 2002 and describes the potential for technology advancements to reduce the cost and increase the performance of wind turbines.

Cohen, J.; Schweizer, T.; Laxson, A.; Butterfield, S.; Schreck, S.; Fingersh, L.; Veers, P.; Ashwill, T.

2008-02-01T23:59:59.000Z

309

Sandia National Laboratories: Increasing the Scaled Wind Farm Technology  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May JunDatastreamsmmcrcalgovInstrumentsrucLas ConchasPassive SolarEducationStation Technology InfrastructureIEEE

310

Wind Energy Systems Technology LLC | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home5b9fcbce19 NoPublic Utilities Address: 160 East 300 South Place:ReferenceEdit JumpWill County, Illinois: NameGroupTechnology LLC

311

Wind Program Announces $2 Million to Develop and Field Test Wind Energy Bat  

Office of Environmental Management (EM)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) "of EnergyEnergyENERGYWomen Owned SmallOf TheViolations | Department ofEnergy Wind Power Today,

312

Vehicle Technologies Office Merit Review 2014: Advanced Vehicle Testing & Evaluation  

Broader source: Energy.gov [DOE]

Presentation given by Intertek at 2014 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Office Annual Merit Review and Peer Evaluation Meeting about testing and evaluating advanced...

313

Advancing Technology Readiness: Wave Energy Testing and Demonstration...  

Energy Savers [EERE]

proposed wave park off the coast of Oregon. | Photo courtesy of Ocean Power Technologies. Ocean Energy Projects Developing On and Off America's Shores Establishing a Testing Center...

314

EA-1792-S1: University of Maine's Deepwater Offshore Floating Wind Turbine Testing and Demonstration Project – Castine Harbor Test Site  

Broader source: Energy.gov [DOE]

This Supplemental EA evaluates the environmental impacts of the University of Maine proposal to use Congressionally directed federal funding, from DOE, to deploy, test and retrieve one 1/8-scale floating wind turbine (20kw) prototype in Castine Harbor, offshore of Castine Maine. This test would be conducted prior to testing at the site 2 miles from Monhegan Island (evaluated under DOE EA-1792).

315

Reliable, Efficient and Cost-Effective Electric Power Converter for Small Wind Turbines Based on AC-link Technology  

SciTech Connect (OSTI)

Grid-tied inverter power electronics have been an Achilles heel of the small wind industry, providing opportunity for new technologies to provide lower costs, greater efficiency, and improved reliability. The small wind turbine market is also moving towards the 50-100kW size range. The unique AC-link power conversion technology provides efficiency, reliability, and power quality advantages over existing technologies, and Princeton Power will adapt prototype designs used for industrial asynchronous motor control to a 50kW small wind turbine design.

Darren Hammell; Mark Holveck; DOE Project Officer - Keith Bennett

2006-08-01T23:59:59.000Z

316

Residential gas-fired sorption heat Test and technology evaluation  

E-Print Network [OSTI]

..........................................................................................10 1.3.2 Adsorption heat pumpsResidential gas-fired sorption heat pumps Test and technology evaluation Energiforskningsprogram EFP05 Journal nr: 33031-0054 December 2008 #12;Residential gas-fired sorption heat pumps Test

317

Vehicle Technologies Office Merit Review 2014: Post-Test Analysis...  

Broader source: Energy.gov (indexed) [DOE]

Post-Test Analysis of Lithium-Ion Battery Materials at Argonne National Laboratory Vehicle Technologies Office Merit Review 2014: Post-Test Analysis of Lithium-Ion Battery...

318

Test fire environmental testing operations at Mound Applied Technologies  

SciTech Connect (OSTI)

This paper describes Mound Laboratory`s environmental testing operations. The function of environmental testing is to perform quality environmental (thermal, mechanical, spin, resistance, visual) testing/conditioning of inert/explosive products to assure their compliance with specified customer acceptance criteria. Capabilities, organization, equipment specifications, and test facilities are summarized.

NONE

1992-03-01T23:59:59.000Z

319

NREL: Wind Research - Events  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Events Below are upcoming events related to wind energy technology. January 2015 2015 Wind Energy Systems Engineering Workshop January 14 - 15, 2015 Boulder, CO The third NREL Wind...

320

Michigan Technological University November 2001 Page 1 of 2 Calibration and Testing of Sonic Stimulation Technologies  

E-Print Network [OSTI]

Michigan Technological University November 2001 Page 1 of 2 Calibration and Testing of Sonic Stimulation Technologies A DOE-sponsored project by Michigan Technological University 2002-2004 Michigan Technological University has been awarded a contract from the US Department of Energy to establish a set

Note: This page contains sample records for the topic "wind technology testing" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


321

EA-1985: Virginia Offshore Wind Technology Advancement Project (VOWTAP), 24 nautical miles offshore of Virginia Beach, Virginia  

Broader source: Energy.gov [DOE]

DOE is proposing to fund Virginia Electric and Power Company's Virginia Offshore Wind Technology Advancement Project (VOWTAP). The proposed VOWTAP project consists of design, construction and operation of a 12 megawatt offshore wind facility located approximately 24 nautical miles off the coast of Virginia Beach, VA on the Outer Continental Shelf.

322

Investigation of Data Quality for Wind Tunnel Internal Balance Testing  

E-Print Network [OSTI]

Analysis Techniques . . . . . . . . 35 B. Examination of the Uncertainty in Measurements . . . . . 37 C. Data Acquisition and Reference Frames . . . . . . . . . . . 40 D. Sting De ections . . . . . . . . . . . . . . . . . . . . . . . 42 E. Static Tare... Balance Gages : : : : : : : : : : : : : : : 38 7 Uncertainty of Measured Testing Parameters : : : : : : : : : : : : : : 40 8 Uncertainty of the Reported Test Section and Model Parameters : : 55 9 Uncertainty of the Reported Force and Moment Coe cients...

Hidore, John Preston

2013-04-04T23:59:59.000Z

323

Implementation of a Biaxial Resonant Fatigue Test Method on a Large Wind Turbine Blade  

SciTech Connect (OSTI)

A biaxial resonant test method was utilized to simultaneously fatigue test a wind turbine blade in the flap and edge (lead-lag) direction. Biaxial resonant blade fatigue testing is an accelerated life test method utilizing oscillating masses on the blade; each mass is independently oscillated at the respective flap and edge blade resonant frequency. The flap and edge resonant frequency were not controlled, nor were they constant for this demonstrated test method. This biaxial resonant test method presented surmountable challenges in test setup simulation, control and data processing. Biaxial resonant testing has the potential to complete test projects faster than single-axis testing. The load modulation during a biaxial resonant test may necessitate periodic load application above targets or higher applied test cycles.

Snowberg, D.; Dana, S.; Hughes, S.; Berling, P.

2014-09-01T23:59:59.000Z

324

Fostering a Renewable Energy Technology Industry: An International Comparison of Wind Industry Policy Support Mechanisms  

E-Print Network [OSTI]

2004. International Wind Energy Development, World Market2005. International Wind Energy Development, World Market2004, March 2005. Canadian Wind Energy Association (CanWEA),

Lewis, Joanna; Wiser, Ryan

2005-01-01T23:59:59.000Z

325

Low Wind Speed Technology Phase I: Clipper Turbine Development Project; Clipper Windpower Technology, Inc.  

SciTech Connect (OSTI)

This fact sheet describes a subcontract with Clipper Windpower Technology, Inc. to develop a new turbine design that incorporates advanced elements.

Not Available

2006-03-01T23:59:59.000Z

326

Regional Test Centers for Solar Technologies  

Broader source: Energy.gov [DOE]

At the Regional Test Centers (RTCs) throughout the United States, DOE provides photovoltaic (PV) and concentrating photovoltaic (CPV) validation testing and systems monitoring for businesses and other industry stakeholders. The primary mission of the RTCs is to develop standards and guidelines for validating the performance and operation of PV modules and systems. The RTCs also serve as test beds for large-scale systems and provide independent validation of PV performance and reliability.

327

RADBALL TECHNOLOGY TESTING FOR HOT CELL CHARACTERIZATION  

SciTech Connect (OSTI)

Operations at various U.S. Department of Energy sites have resulted in substantial radiological contamination of tools, equipment, and facilities. It is essential to use remote technologies for characterization and decommissioning to keep worker exposures as low as reasonably achievable in these highly contaminated environments. A significant initial step in planning and implementing D&D of contaminated facilities involves the development of an accurate assessment of the radiological, chemical, and structural conditions inside of the facilities. Collected information describing facility conditions using remote technologies could reduce the conservatism associated with planning initial worker entry (and associated cost).

Farfan, E.; Jannik, T.

2010-03-25T23:59:59.000Z

328

Wind load reduction for heliostats  

SciTech Connect (OSTI)

This report presents the results of wind-tunnel tests supported through the Solar Energy Research Institute (SERI) by the Office of Solar Thermal Technology of the US Department of Energy as part of the SERI research effort on innovative concentrators. As gravity loads on drive mechanisms are reduced through stretched-membrane technology, the wind-load contribution of the required drive capacity increases in percentage. Reduction of wind loads can provide economy in support structure and heliostat drive. Wind-tunnel tests have been directed at finding methods to reduce wind loads on heliostats. The tests investigated primarily the mean forces, moments, and the possibility of measuring fluctuating forces in anticipation of reducing those forces. A significant increase in ability to predict heliostat wind loads and their reduction within a heliostat field was achieved.

Peterka, J.A.; Hosoya, N.; Bienkiewicz, B.; Cermak, J.E.

1986-05-01T23:59:59.000Z

329

Wind load and life-cycle testing of second generation heliostats  

SciTech Connect (OSTI)

As technical manager of the Second Generation Heliostat development contracts for the Department of Energy, Sandia National Laboratories has evaluated four heliostat designs. The evaluation of the heliostats included the life-cycling and simulated wind load testing of prototype heliostats and foundations. All of the heliostats had minor problems during this testing; as a result, specific design improvements were identified for each drive mechanism and for two of the four foundations.

Rorke, W.S. Jr.

1983-11-01T23:59:59.000Z

330

NREL Innovations Help Drive Wind Industry Transformation (Fact Sheet)  

SciTech Connect (OSTI)

For nearly 30 years, NREL has helped the wind turbine industry through design and research innovations. The comprehensive capabilities of the National Wind Technology Center (NWTC), ranging from specialized computer simulation tools to unique test facilities, has been used to design, develop, and deploy several generations of advanced wind energy technology.

Not Available

2013-08-01T23:59:59.000Z

331

DOE - NETL Gasification Technology Test Sites  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmospheric Optical Depth7-1D: Vegetation Proposed Newcatalyst phases onOrganization FY MiddlePLAN-46847 (2) Revision Number:technology

332

Providing proof: Desalination technology tested for efficiency, economics  

E-Print Network [OSTI]

;is new technology was tested in a pilot project in Laredo. #31;e pilot AdVE project, which opened in August #30;#29;#28;#29;, was funded by the city of Laredo and Terrabon, Inc., a bioenergy technology transfer company. Because the population...

Bentz, Laura

2012-01-01T23:59:59.000Z

333

Field testing of new multilateral drilling and completion technology at the Rocky Mountain Oilfield Testing Center  

SciTech Connect (OSTI)

The Rocky Mountain Oilfield Testing Center (RMOTC) has played an important role in bringing new multilateral well technology to the marketplace. Multilateral technology is more complex than most new technologies being brought to the oilfield. It is very difficult to test new designs in the laboratory or conventional test wells. They must be tested downhole in specialized wells to work out design and procedural details. Most of the applications for multilateral technology are in high cost drilling areas, such as offshore or in remote, environmentally sensitive areas. For this reason, opportunities for testing the new technology in the course of routine drilling and completion operations are scarce. Operators are not willing to risk expensive rig time, or losing a wellbore itself, on a test. RMOTC offers a neutral site where the technology can be tested in a relatively low cost environment. There are two drilling rigs and three workover and completion rigs available. Most associated services such as warehouse, roustabouts, backhoe, welders, and mechanics are also available on site, while specialized oilfield services and machine shops are available in nearby Casper. Technologies such as the hollow whipstock, adjustable stabilizer, downhole kickoff assembly, single trip sidetrack tool, stacked multidrain system, rotary steerable systems, and procedures for abandoning an open hole lateral have benefited through the use of RMOTC`s facilities. This paper details the capabilities of the new technologies and the benefits of testing them in a real oilfield environment before taking them to market.

Giangiacomo, L.A. [Fluor Daniel NPOSR, Inc., Casper, WY (United States). Rocky Mountain Oilfield Testing Center

1998-12-31T23:59:59.000Z

334

Two Facilities, One Goal: Advancing America’s Wind Industry  

Office of Energy Efficiency and Renewable Energy (EERE)

Two state-of-the-art wind turbine drivetrain test facilities are now open for business: the Clemson University Wind Turbine Drivetrain Testing Facility in South Carolina and a National Renewable Energy Laboratory dynamometer at the National Wind Technology Center in Colorado.

335

Evaluation of PM10 and Total Suspended Particulate Sampler Performance Through Wind Tunnel Testing  

E-Print Network [OSTI]

.................................................... 86 APPENDIX F SHARP-EDGE ORIFICE METER CALIBRATION PROCEDURE ................................................................................ 89 APPENDIX G TEXAS A&M WIND TUNNEL OPERATION PROCEDURE ... 92 APPENDIX H MALVER MASTERSIZER 2000... Velocity Uniformity ?10% for 2, 8 and 24 km/h Measurement 1) Minimum of 12 test points 2) Monitoring techniques: precision? 2% ; accuracy ? 5% Aerosol Concentration Uniformity ?10% of the mean Measurement ? 5 evenly spaced isokinetic samplers...

Thelen, Mary Katherine

2011-10-21T23:59:59.000Z

336

Wind-electric icemaking project: Analysis and dynamometer testing. Volume 1  

SciTech Connect (OSTI)

The wind/hybrid systems group at the National Renewable Energy Laboratory has been researching the most practical and cost-effective methods for producing ice from off-grid wind-electric power systems. The first phase of the project, conducted in 1993--1994, included full-scale dynamometer and field testing of two different electric ice makers directly connected to a permanent magnet alternator. The results of that phase were encouraging and the second phase of the project was launched in which steady-state and dynamic numerical models of these systems were developed and experimentally validated. The third phase of the project was the dynamometer testing of the North Star ice maker, which is powered by a 12-kilowatt Bergey Windpower Company, Inc., alternator. This report describes both the second and third project phases. Also included are detailed economic analyses and a discussion of the future prospects of wind-electric ice-making systems. The main report is contained in Volume 1. Volume 2 consists of the report appendices, which include the actual computer programs used in the analysis and the detailed test results.

Holz, R.; Gervorgian, V.; Drouilhet, S.; Muljadi, E.

1998-07-01T23:59:59.000Z

337

Wind-electric icemaking project: Analysis and dynamometer testing. Volume 2  

SciTech Connect (OSTI)

The wind/hybrid systems group at the National Renewable Energy Laboratory has been researching the most practical and cost-effective methods for producing ice from off-grid wind-electric power systems. The first phase of the project, conducted in 1993--1994, included full-scale dynamometer and field testing of two different electric ice makers directly connected to a permanent magnet alternator. The results of that phase were encouraging and the second phase of the project was launched in which steady-state and dynamic numerical models of these systems were developed and experimentally validated. The third phase of the project was the dynamometer testing of the North Star ice maker, which is powered by a 12-kilowatt Bergey Windpower Company, Inc., alternator. This report describes both the second and third project phases. Also included are detailed economic analyses and a discussion of the future prospects of wind-electric ice-making systems. The main report is contained in Volume 1. Volume 2 consists of the report appendices, which include the actual computer programs used in the analysis and the detailed test results.

Holz, R.; Gervorgian, V.; Drouilhet, S.; Muljadi, E.

1998-07-01T23:59:59.000Z

338

Vehicle Technologies Office Merit Review 2014: Idaho National Laboratory Testing of Advanced Technology Vehicles  

Broader source: Energy.gov [DOE]

Presentation given by Idaho National Laboratory at 2014 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Office Annual Merit Review and Peer Evaluation Meeting about testing of advanced...

339

UTILITY ADVANCED TURBINE SYSTEMS(ATS) TECHNOLOGY READINESS TESTING  

SciTech Connect (OSTI)

The following paper provides an overview of GE's H System{trademark} technology, and specifically, the design, development, and test activities associated with the DOE Advanced Turbine Systems (ATS) program. There was intensive effort expended in bringing this revolutionary advanced technology program to commercial reality. In addition to describing the magnitude of performance improvement possible through use of H System{trademark} technology, this paper discusses the technological milestones during the development of the first 9H (50Hz) and 7H (60 Hz) gas turbines. To illustrate the methodical product development strategy used by GE, this paper discusses several technologies that were essential to the introduction of the H System{trademark}. Also included are analyses of the series of comprehensive tests of materials, components and subsystems that necessarily preceded full scale field testing of the H System{trademark}. This paper validates one of the basic premises with which GE started the H System{trademark} development program: exhaustive and elaborate testing programs minimized risk at every step of this process, and increase the probability of success when the H System{trademark} is introduced into commercial service. In 1995, GE, the world leader in gas turbine technology for over half a century, in conjunction with the DOE National Energy Technology Laboratory's ATS program, introduced its new generation of gas turbines. This H System{trademark} technology is the first gas turbine ever to achieve the milestone of 60% fuel efficiency. Because fuel represents the largest individual expense of running a power plant, an efficiency increase of even a single percentage point can substantially reduce operating costs over the life of a typical gas-fired, combined-cycle plant in the 400 to 500 megawatt range. The H System{trademark} is not simply a state-of-the-art gas turbine. It is an advanced, integrated, combined-cycle system in which every component is optimized for the highest level of performance. The unique feature of an H-technology combined-cycle system is the integrated heat transfer system, which combines both the steam plant reheat process and gas turbine bucket and nozzle cooling. This feature allows the power generator to operate at a higher firing temperature than current technology units, thereby resulting in dramatic improvements in fuel-efficiency. The end result is the generation of electricity at the lowest, most competitive price possible. Also, despite the higher firing temperature of the H System{trademark}, the combustion temperature is kept at levels that minimize emission production. GE has more than 3.6 million fired hours of experience in operating advanced technology gas turbines, more than three times the fired hours of competitors' units combined. The H System{trademark} design incorporates lessons learned from this experience with knowledge gleaned from operating GE aircraft engines. In addition, the 9H gas turbine is the first ever designed using ''Design for Six Sigma'' methodology, which maximizes reliability and availability throughout the entire design process. Both the 7H and 9H gas turbines will achieve the reliability levels of our F-class technology machines. GE has tested its H System{trademark} gas turbine more thoroughly than any previously introduced into commercial service. The H System{trademark} gas turbine has undergone extensive design validation and component testing. Full-speed, no-load testing of the 9H was achieved in May 1998 and pre-shipment testing was completed in November 1999. The 9H will also undergo approximately a half-year of extensive demonstration and characterization testing at the launch site. Testing of the 7H began in December 1999, and full speed, no-load testing was completed in February 2000. The 7H gas turbine will also be subjected to extensive demonstration and characterization testing at the launch site.

Kenneth A. Yackly

2001-06-01T23:59:59.000Z

340

WindTurbineGenerator Introduction of the Renewable Micro-Grid Test-Bed  

E-Print Network [OSTI]

Simulator Wind Turbine: PMSM, 3kW, 8.3A Wind Generator: PMSM, 3kW, 8.3A 3 AC/DC Converter & DC/AC Inverter Wind Turbine: Torque or Speed Control Wind Generator: PQ Control Cubicle #4: Energy Storage Generator #1 3kW, 8.3A Wind Turbine #1 3kW, 8.3A Wind Turbine #2 3kW Wind Generator #2 3kW RS232

Johnson, Eric E.

Note: This page contains sample records for the topic "wind technology testing" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


341

Development and Commissioning of a Small/Mid-Size Wind Turbine Test Facility: Preprint  

SciTech Connect (OSTI)

This paper describes the development and commissioning tests of the new Clarkson University/Center for Evaluation of Clean Energy Technology Blade Test Facility. The facility is a result of the collaboration between the New York State Energy Research and Development Authority and Intertek, and is supported by national and international partners. This paper discusses important aspects associated with blade testing and includes results associated with modal, static, and fatigue testing performed on the Sandia National Laboratories' Blade Systems Design Studies blade. An overview of the test capabilities of the Blade Test Facility are also provided.

Valyou, D.; Arsenault, T.; Janoyan, K.; Marzocca, P.; Post, N.; Grappasonni, G.; Arras, M.; Coppotelli, G.; Cardenas, D.; Elizalde, H.; Probst, O.

2015-01-01T23:59:59.000Z

342

WIND DATA REPORT Thompson Island  

E-Print Network [OSTI]

WIND DATA REPORT Thompson Island March 1, 2003 ­ May 31, 2003 Prepared for Massachusetts Technology...................................................................................................................... 9 Wind Speed Time Series............................................................................................................. 9 Wind Speed Distributions

Massachusetts at Amherst, University of

343

WIND DATA REPORT Thompson Island  

E-Print Network [OSTI]

WIND DATA REPORT Thompson Island March 1, 2004 ­ May 31, 2004 Prepared for Massachusetts Technology...................................................................................................................... 9 Wind Speed Time Series............................................................................................................. 9 Wind Speed Distribution

Massachusetts at Amherst, University of

344

WIND DATA REPORT FALMOUTH, MA  

E-Print Network [OSTI]

WIND DATA REPORT FALMOUTH, MA June1, 2004 to August 31, 2004. Prepared for Massachusetts Technology...................................................................................................................... 8 Wind Speed Time Series............................................................................................................. 8 Wind Speed Distributions

Massachusetts at Amherst, University of

345

Grass roots technology and energy policy: Solar ovens and wind turbines in Kenya  

SciTech Connect (OSTI)

Kenya is said to be an ideal site for projects that promote renewable energy sources since it devotes over forty percent of its GNP to the purchase of imported coal and oil. The author presents a chronology of solar oven projects in Kenya and suggests that success of the program will be measured by the number of people who move on to wind turbine use. He discusses the role of renewable energy technology in reducing greenhouse gases and closes by recommending that industrialized nations that produce large amounts of carbon dioxide provide aid to develop projects that reduce carbon dioxide elsewhere in the world. At the same time they would receive credit towards their carbon dioxide quotas.

Kammen, D.M. [Harvard Univ., Cambridge, MA (United States). Dept. of Physics

1992-12-31T23:59:59.000Z

346

Utility advanced turbine systems (ATS) technology readiness testing  

SciTech Connect (OSTI)

The overall objective of the Advanced Turbine System (ATS) Phase 3 Cooperative Agreement between GE and the US Department of Energy (DOE) is the development of a highly efficient, environmentally superior, and cost-competitive utility ATS for base-load utility-scale power generation, the GE 7H (60 Hz) combined cycle power system, and related 9H (50 Hz) common technology. The major effort will be expended on detail design. Validation of critical components and technologies will be performed, including: hot gas path component testing, sub-scale compressor testing, steam purity test trials, and rotational heat transfer confirmation testing. Processes will be developed to support the manufacture of the first system, which was to have been sited and operated in Phase 4 but will now be sited and operated commercially by GE. This change has resulted from DOE's request to GE for deletion of Phase 4 in favor of a restructured Phase 3 (as Phase 3R) to include full speed, no load (FSNL) testing of the 7H gas turbine. Technology enhancements that are not required for the first machine design but will be critical for future ATS advances in performance, reliability, and costs will be initiated. Long-term tests of materials to confirm design life predictions will continue. A schematic of the GE H machine is shown.

NONE

2000-09-15T23:59:59.000Z

347

Necessity and Requirements of a Collaborative Effort to Develop a Large Wind Turbine Blade Test Facility in North America  

SciTech Connect (OSTI)

The wind power industry in North America has an immediate need for larger blade test facilities to ensure the survival of the industry. Blade testing is necessary to meet certification and investor requirements and is critical to achieving the reliability and blade life needed for the wind turbine industry to succeed. The U.S. Department of Energy's (DOE's) Wind Program is exploring options for collaborating with government, private, or academic entities in a partnership to build larger blade test facilities in North America capable of testing blades up to at least 70 m in length. The National Renewable Energy Laboratory (NREL) prepared this report for DOE to describe the immediate need to pursue larger blade test facilities in North America, categorize the numerous prospective partners for a North American collaboration, and document the requirements for a North American test facility.

Cotrell, J.; Musial, W.; Hughes, S.

2006-05-01T23:59:59.000Z

348

IFE chamber technology testing program in NIF and chamber development test plan  

SciTech Connect (OSTI)

Issues concerning chamber technology testing program in NIF involving: criteria for evaluation/prioritization of experiments, engineering scaling requirements for test article design and material selection and R and D plan prior to NIF testing were addressed in this paper. In order to maximize the benefits of testing program in NIF, the testing in NIF should provide the experimental data relevant to DEMO design choice or to DEMO design predictive capability by utilizing engineering scaling test article designs. Test plans were developed for 2 promising chamber design concepts. Early testing in non-fusion/non-ignition prior to testing in ignition facility serves a critical role in chamber R and D test plans in order to reduce the risks and costs of the more complex experiments in NIF.

Abdou, M.A. [Univ. of California, Los Angeles, CA (United States)

1995-12-31T23:59:59.000Z

349

Battery Technology Life Verification Test Manual Revision 1  

SciTech Connect (OSTI)

The purpose of this Technology Life Verification Test (TLVT) Manual is to help guide developers in their effort to successfully commercialize advanced energy storage devices such as battery and ultracapacitor technologies. The experimental design and data analysis discussed herein are focused on automotive applications based on the United States Advanced Battery Consortium (USABC) electric vehicle, hybrid electric vehicle, and plug-in hybrid electric vehicle (EV, HEV, and PHEV, respectively) performance targets. However, the methodology can be equally applied to other applications as well. This manual supersedes the February 2005 version of the TLVT Manual (Reference 1). It includes criteria for statistically-based life test matrix designs as well as requirements for test data analysis and reporting. Calendar life modeling and estimation techniques, including a user’s guide to the corresponding software tool is now provided in the Battery Life Estimator (BLE) Manual (Reference 2).

Jon P. Christophersen

2012-12-01T23:59:59.000Z

350

DOE 2012 Market Report on U.S. Wind Technologies for Distributed...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

the Global Distributed Wind Market (Poster) - Matt Gagne, eFormative Options Using the Wind Policy Tool to Examine Potential Feed-In Tariffs in the United States (Poster) - Matt...

351

U.S. Department of Energy Wind and Hydropower Technologies: Top 10 Program Accomplishments  

SciTech Connect (OSTI)

This brochure describes the top ten accompishments of the DOE Wind Energy Program during the past 30 years.

Not Available

2008-05-01T23:59:59.000Z

352

IEEE TRANSACTIONS ON CONTROL SYSTEMS TECHNOLOGY 1 Airborne Wind Energy Based on Dual Airfoils  

E-Print Network [OSTI]

airfoil systems, but they are less advantageous at very large scales. Index Terms--Airborne wind energy Wind Energy (AWE) paradigm proposes to eliminate the structural elements not directly involved in power Wind Energy [17]. Crosswind flight extracts power from the airflow by flying an airfoil tethered

353

Comparing State-Space Multivariable Controls to Multi-SISO Controls for Load Reduction of Drivetrain-Coupled Modes on Wind Turbines through Field-Testing: Preprint  

SciTech Connect (OSTI)

This paper presents the structure of an ongoing controller comparison experiment at NREL's National Wind Technology Center; the design process for the two controllers compared in this phase of the experiment, and initial comparison results obtained in field-testing. The intention of the study is to demonstrate the advantage of using modern multivariable methods for designing control systems for wind turbines versus conventional approaches. We will demonstrate the advantages through field-test results from experimental turbines located at the NWTC. At least two controllers are being developed side-by-side to meet an incrementally increasing number of turbine load-reduction objectives. The first, a multiple single-input, single-output (m-SISO) approach, uses separately developed decoupled and classicially tuned controllers, which is, to the best of our knowledge, common practice in the wind industry. The remaining controllers are developed using state-space multiple-input and multiple-output (MIMO) techniques to explicity account for coupling between loops and to optimize given known frequency structures of the turbine and disturbance. In this first publication from the study, we present the structure of the ongoing controller comparison experiment, the design process for the two controllers compared in this phase, and initial comparison results obtained in field-testing.

Fleming, P. A.; van Wingerden, J. W.; Wright, A. D.

2011-12-01T23:59:59.000Z

354

Utility Advanced Turbine Systems (ATS) technology readiness testing  

SciTech Connect (OSTI)

The overall objective of the Advanced Turbine System (ATS) Phase 3 Cooperative Agreement between GE and the US Department of Energy (DOE) is the development of the GE 7H and 9H combined cycle power systems. The major effort will be expended on detail design. Validation of critical components and technologies will be performed, including: hot gas path component testing, sub-scale compressor testing, steam purity test trials, and rotational heat transfer confirmation testing. Processes will be developed to support the manufacture of the first system, which was to have been sited and operated in Phase 4 but will now be sited and operated commercially by GE. This change has resulted horn DOE's request to GE for deletion of Phase 4 in favor of a restructured Phase 3 (as Phase 3R) to include fill speed, no load (FSNL) testing of the 7H gas turbine. Technology enhancements that are not required for the first machine design but will be critical for future ATS advances in performance, reliability, and costs will be initiated. Long-term tests of materials to confirm design life predictions will continue. A schematic of the GE H machine is shown.

NONE

1999-05-01T23:59:59.000Z

355

UTILITY ADVANCED TURBINE SYSTEMS (ATS) TECHNOLOGY READINESS TESTING  

SciTech Connect (OSTI)

The overall objective of the Advanced Turbine System (ATS) Phase 3 Cooperative Agreement between Ge and the US Department of Energy (DOE) is the development of the GE 7H and 9H combined cycle power systems. The major effort will be expended on detail design. Validation of critical components and technologies will be performed, including: hot gas path component testing, sub-scale compressor testing, steam purity test trials, and rotational heat transfer confirmation testing. Processes will be developed to support the manufacture of the first system, which was to have been sited and operated in Phase 4 but will now be sited and operated commercially be GE. This change has resulted from DOE's request to GE for deletion of Phase 4 in favor of a restructured Phase 3 (as Phase 3R) to include full speed, no load (FSNL) testing of the 7H gas turbine. Technology enhancements that are not required for the first machine design but will be critical for future ATS advances in performance, reliability, and costs will be initiated. Long-term tests of materials to confirm design life predictions will continue. A schematic of the GE H machine is shown. This report summarizes work accomplished from 4Q97 through 3Q98.

Unknown

1998-10-01T23:59:59.000Z

356

Utility Advanced Turbine Systems (ATS) Technology Readiness Testing  

SciTech Connect (OSTI)

The overall objective of the Advanced Turbine System (ATS) Phase 3 Cooperative Agreement between GE and the U.S. Department of Energy (DOE) is the development of the GE 7H and 9H combined cycle power systems. The major effort will be expended on detail design. Validation of critical components and technologies will be performed, including: hot gas path component testing, sub-scale compressor testing, steam purity test trials, and rotational heat transfer confirmation testing. Processes will be developed to support the manufacture of the first system, which was to have been sited and operated in Phase 4 but will now be sited and operated commercially by GE. This change has resulted from DOE's request to GE for deletion of Phase 4 in favor of a restructured Phase 3 (as Phase 3R) to include full speed, no load (FSNL) testing of the 7H gas turbine. Technology enhancements that are not required for the first machine design but will be critical for future ATS advances in performance, reliability, and costs will be initiated. Long-term tests of materials to confirm design life predictions will continue. A schematic of the GE H machine is shown in Figure 1-1. This report summarizes work accomplished in 2Q98. The most significant accomplishments are listed in the report.

NONE

1998-10-29T23:59:59.000Z

357

Nuclear waste repository transparency technology test bed demonstrations at WIPP  

SciTech Connect (OSTI)

Secretary of Energy, Bill Richardson, has stated that one of the nuclear waste legacy issues is ``The challenge of managing the fuel cycle's back end and assuring the safe use of nuclear power.'' Waste management (i.e., the back end) is a domestic and international issue that must be addressed. A key tool in gaining acceptance of nuclear waste repository technologies is transparency. Transparency provides information to outside parties for independent assessment of safety, security, and legitimate use of materials. Transparency is a combination of technologies and processes that apply to all elements of the development, operation, and closure of a repository system. A test bed for nuclear repository transparency technologies has been proposed to develop a broad-based set of concepts and strategies for transparency monitoring of nuclear materials at the back end of the fuel/weapons cycle. WIPP is the world's first complete geologic repository system for nuclear materials at the back end of the cycle. While it is understood that WIPP does not currently require this type of transparency, this repository has been proposed as realistic demonstration site to generate and test ideas, methods, and technologies about what transparency may entail at the back end of the nuclear materials cycle, and which could be applicable to other international repository developments. An integrated set of transparency demonstrations was developed and deployed during the summer, and fall of 1999 as a proof-of-concept of the repository transparency technology concept. These demonstrations also provided valuable experience and insight into the implementation of future transparency technology development and application. These demonstrations included: Container Monitoring Rocky Flats to WIPP; Underground Container Monitoring; Real-Time Radiation and Environmental Monitoring; Integrated level of confidence in the system and information provided. As the world's only operating deep geologic repository, the Waste Isolation Pilot Plant (WIPP) offers a unique opportunity to serve as an international cooperative test bed for developing and demonstrating technologies and processes in a fully operational repository system setting. To address the substantial national security implications for the US resulting from the lack of integrated, transparent management and disposition of nuclear materials at the back-end of the nuclear fuel and weapons cycles, it is proposed that WIPP be used as a test bed to develop and demonstrate technologies that will enable the transparent and proliferation-resistant geologic isolation of nuclear materials. The objectives of this initiative are to: (1) enhance public confidence in safe, secure geologic isolation of nuclear materials; (2) develop, test, and demonstrate transparency measures and technologies for the back-end of nuclear fuel cycle; and (3) foster international collaborations leading to workable, effective, globally-accepted standards for the transparent monitoring of geological repositories for nuclear materials. Test-bed activities include: development and testing of monitoring measures and technologies; international demonstration experiments; transparency workshops; visiting scientist exchanges; and educational outreach. These activities are proposed to be managed by the Department of Energy/Carlsbad Area Office (DOE/CAO) as part of The Center for Applied Repository and Underground Studies (CARUS).

BETSILL,J. DAVID; ELKINS,NED Z.; WU,CHUAN-FU; MEWHINNEY,JAMES D.; AAMODT,PAUL

2000-01-27T23:59:59.000Z

358

Base excitation testing system using spring elements to pivotally mount wind turbine blades  

DOE Patents [OSTI]

A system (1100) for fatigue testing wind turbine blades (1102) through forced or resonant excitation of the base (1104) of a blade (1102). The system (1100) includes a test stand (1112) and a restoring spring assembly (1120) mounted on the test stand (1112). The restoring spring assembly (1120) includes a primary spring element (1124) that extends outward from the test stand (1112) to a blade mounting plate (1130) configured to receive a base (1104) of blade (1102). During fatigue testing, a supported base (1104) of a blad (1102) may be pivotally mounted to the test stand (1112) via the restoring spring assembly (1120). The system (1100) may include an excitation input assembly (1140) that is interconnected with the blade mouting plate (1130) to selectively apply flapwise, edgewise, and/or pitch excitation forces. The restoring spring assemply (1120) may include at least one tuning spring member (1127) positioned adjacent to the primary spring element (1124) used to tune the spring constant or stiffness of the primary spring element (1124) in one of the excitation directions.

Cotrell, Jason; Hughes, Scott; Butterfield, Sandy; Lambert, Scott

2013-12-10T23:59:59.000Z

359

UTILITY ADVANCED TURBINE SYSTEMS (ATS) TECHNOLOGY READINESS TESTING  

SciTech Connect (OSTI)

The overall objective of the Advanced Turbine System (ATS) Phase 3 Cooperative Agreement between GE and the U.S. Department of Energy (DOE) is the development of a highly efficient, environmentally superior, and cost-competitive utility ATS for base-load utility-scale power generation, the GE 7H (60 Hz) combined cycle power system, and related 9H (50 Hz) common technology. The major effort will be expended on detail design. Validation of critical components and technologies will be performed, including: hot gas path component testing, sub-scale compressor testing, steam purity test trials, and rotational heat transfer confirmation testing. Processes will be developed to support the manufacture of the first system, which was to have been sited and operated in Phase 4 but will now be sited and operated commercially by GE. This change has resulted from DOE's request to GE for deletion of Phase 4 in favor of a restructured Phase 3 (as Phase 3R) to include full speed, no load (FSNL) testing of the 7H gas turbine. Technology enhancements that are not required for the first machine design but will be critical for future ATS advances in performance, reliability, and costs will be initiated. Long-term tests of materials to confirm design life predictions will continue. A schematic of the GE H machine is shown in Figure 1-1. Information specifically related to 9H production is presented for continuity in H program reporting, but lies outside the ATS program. This report summarizes work accomplished from 4Q98 through 3Q99. The most significant accomplishments are listed.

Unknown

1999-10-01T23:59:59.000Z

360

Technology Options for a Fast Spectrum Test Reactor  

SciTech Connect (OSTI)

Idaho National Laboratory in collaboration with Argonne National Laboratory has evaluated technology options for a new fast spectrum reactor to meet the fast-spectrum irradiation requirements for the USDOE Generation IV (Gen IV) and Advanced Fuel Cycle Initiative (AFCI) programs. The US currently has no capability for irradiation testing of large volumes of fuels or materials in a fast-spectrum reactor required to support the development of Gen IV fast reactor systems or to demonstrate actinide burning, a key element of the AFCI program. The technologies evaluated and the process used to select options for a fast irradiation test reactor (FITR) for further evaluation to support these programmatic objectives are outlined in this paper.

D. M. Wachs; R. W. King; I. Y. Glagolenko; Y. Shatilla

2006-06-01T23:59:59.000Z

Note: This page contains sample records for the topic "wind technology testing" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


361

Fieldbus technology passes beta tests at Texas plant  

SciTech Connect (OSTI)

Fieldbus technology has completed beta plant testing at Monsanto Co.`s Chocolate Bayou petrochemical complex at Alvin, Texas. The trial took place in a steam condensate recovery section of the Chocolate Bayou plant, which produces acrylonitrile, linear alkylbenzene, and a number of other petrochemical derivatives. Fieldbus is a plant communications network, or bus, that enables digital instruments to communicate with one another and with supervisory control systems. The fieldbus specification, written by the nonprofit organization Fieldbus Foundation, Austin, Texas, is called Foundation fieldbus. The beta tests at Chocolate Bayou successfully demonstrated fieldbus performance in a process control application.

NONE

1996-05-20T23:59:59.000Z

362

Exploratory battery technology development and testing report for 1989  

SciTech Connect (OSTI)

Sandia National Laboratories, Albuquerque, has been designated as Lead Center for the Exploratory Battery Technology Development and Testing Project, which is sponsored by the US Department of Energy's Office of Energy Storage and Distribution. In this capacity, Sandia is responsible for the engineering development of advanced rechargeable batteries for both mobile and stationary energy storage applications. This report details the technical achievements realized in pursuit of the Lead Center's goals during calendar year 1989. 4 refs., 84 figs., 18 tabs.

Magnani, N.J.; Diegle, R.B.; Braithwaite, J.W.; Bush, D.M.; Freese, J.M.; Akhil, A.A.; Lott, S.E.

1990-12-01T23:59:59.000Z

363

Lake Michigan Offshore Wind Feasibility Assessment  

SciTech Connect (OSTI)

The purpose of this project was to conduct the first comprehensive offshore wind assessment over Lake Michigan and to advance the body of knowledge needed to support future commercial wind energy development on the Great Lakes. The project involved evaluation and selection of emerging wind measurement technology and the permitting, installation and operation of the first mid-lake wind assessment meteorological (MET) facilities in Michigan’s Great Lakes. In addition, the project provided the first opportunity to deploy and field test floating LIDAR and Laser Wind Sensor (LWS) technology, and important research related equipment key to the sitting and permitting of future offshore wind energy development in accordance with public participation guidelines established by the Michigan Great Lakes Wind Council (GLOW). The project created opportunities for public dialogue and community education about offshore wind resource management and continued the dialogue to foster Great Lake wind resource utilization consistent with the focus of the GLOW Council. The technology proved to be effective, affordable, mobile, and the methods of data measurement accurate. The public benefited from a substantial increase in knowledge of the wind resources over Lake Michigan and gained insights about the potential environmental impacts of offshore wind turbine placements in the future. The unique first ever hub height wind resource assessment using LWS technology over water and development of related research data along with the permitting, sitting, and deployment of the WindSentinel MET buoy has captured public attention and has helped to increase awareness of the potential of future offshore wind energy development on the Great Lakes. Specifically, this project supported the acquisition and operation of a WindSentinel (WS) MET wind assessment buoy, and associated research for 549 days over multiple years at three locations on Lake Michigan. Four research objectives were defined for the project including to: 1) test and validate floating LIDAR technology; 2) collect and access offshore wind data; 3) detect and measure bird and bat activity over Lake Michigan; 4) conduct an over water sound propagation study; 5) prepare and offer a college course on offshore energy, and; 6) collect other environmental, bathometric, and atmospheric data. Desk-top research was performed to select anchorage sites and to secure permits to deploy the buoy. The project also collected and analyzed data essential to wind industry investment decision-making including: deploying highly mobile floating equipment to gather offshore wind data; correlating offshore wind data with conventional on-shore MET tower data; and performing studies that can contribute to the advancement and deployment of offshore wind technologies. Related activities included: • Siting, permitting, and deploying an offshore floating MET facility; • Validating the accuracy of floating LWS using near shoreline cup anemometer MET instruments; • Assessment of laser pulse technology (LIDAR) capability to establish hub height measurement of wind conditions at multiple locations on Lake Michigan; • Utilizing an extended-season (9-10 month) strategy to collect hub height wind data and weather conditions on Lake Michigan; • Investigation of technology best suited for wireless data transmission from distant offshore structures; • Conducting field-validated sound propagation study for a hypothetical offshore wind farm from shoreline locations; • Identifying the presence or absence of bird and bat species near wind assessment facilities; • Identifying the presence or absence of benthic and pelagic species near wind assessment facilities; All proposed project activities were completed with the following major findings: • Floating Laser Wind Sensors are capable of high quality measurement and recordings of wind resources. The WindSentinel presented no significant operational or statistical limitations in recording wind data technology at a at a high confidence level as compared to traditional an

Boezaart, Arnold [GVSU; Edmonson, James [GVSU; Standridge, Charles [GVSU; Pervez, Nahid [GVSU; Desai, Neel [University of Michigan; Williams, Bruce [University of Delaware; Clark, Aaron [GVSU; Zeitler, David [GVSU; Kendall, Scott [GVSU; Biddanda, Bopi [GVSU; Steinman, Alan [GVSU; Klatt, Brian [Michigan State University; Gehring, J. L. [Michigan State University; Walter, K. [Michigan State University; Nordman, Erik E. [GVSU

2014-06-30T23:59:59.000Z

364

Summary of Conclusions and Recommendations Drawn from the DeepCWind Scaled Floating Offshore Wind System Test Campaign: Preprint  

SciTech Connect (OSTI)

The DeepCwind consortium is a group of universities, national labs, and companies funded under a research initiative by the U.S. Department of Energy (DOE) to support the research and development of floating offshore wind power. The two main objectives of the project are to better understand the complex dynamic behavior of floating offshore wind systems and to create experimental data for use in validating the tools used in modeling these systems. In support of these objectives, the DeepCwind consortium conducted a model test campaign in 2011 of three generic floating wind systems, a tension-leg platform (TLP), a spar-buoy (spar), and a semisubmersible (semi). Each of the three platforms was designed to support a 1/50th-scale model of a 5 MW wind turbine and was tested under a variety of wind/wave conditions. The focus of this paper is to summarize the work done by consortium members in analyzing the data obtained from the test campaign and its use for validating the offshore wind modeling tool, FAST.

Robertson, A. N.; Jonkman, J. M.; Masciola, M. D.; Molta, P.; Goupee, A. J.; Coulling, A. J.; Prowell, I.; Browning, J.

2013-07-01T23:59:59.000Z

365

Wind Power Today  

SciTech Connect (OSTI)

Wind Power Today is an annual publication that provides an overview of the wind energy research conducted by the U.S. Department of Energy Wind and Hydropower Technologies Program.

Not Available

2006-05-01T23:59:59.000Z

366

Wind Power Today  

SciTech Connect (OSTI)

Wind Power Today is an annual publication that provides an overview of the wind energy research conducted by the U.S. Department of Energy Wind and Hydropower Technologies Program.

Not Available

2007-05-01T23:59:59.000Z

367

UTILITY ADVANCED TURBINE SYSTEMS (ATS) TECHNOLOGY READINESS TESTING  

SciTech Connect (OSTI)

The overall objective of the Advanced Turbine System (ATS) Phase 3 Cooperative Agreement between GE and the U.S. Department of Energy (DOE) is the development of the GE 7H and 9H combined cycle power systems. The major effort will be expended on detail design. Validation of critical components and technologies will be performed, including: hot gas path component testing, sub-scale compressor testing, steam purity test trials, and rotational heat transfer conflation testing. Processes will be developed to support the manufacture of the first system, which was to have been sited and operated in Phase 4 but will now be sited and operated commercially by GE. This change has resulted from DOE's request to GE for deletion of Phase 4 in favor of a restructured Phase 3 (as Phase 3R) to include full speed, no load (FSNL) testing of the 7H gas turbine. Technology enhancements that are not required for the first machine design but will be critical for future ATS advances in performance, reliability, and costs will be initiated. Long-term tests of materials to confirm design life predictions will continue. The objective of this task is to design 7H and 9H compressor rotor and stator structures with the goal of achieving high efficiency at lower cost and greater durability by applying proven GE Power Systems (GEPS) heavy-duty use design practices. The designs will be based on the GE Aircraft Engines (GEAE) CF6-80C2 compressor. Transient and steady-state thermo-mechanical stress analyses will be run to ensure compliance with GEPS life standards. Drawings will be prepared for forgings, castings, machining, and instrumentation for full speed, no load (FSNL) tests of the first unit on both 9H and 7H applications.

Unknown

1999-04-01T23:59:59.000Z

368

STANDARDS FOR MEASUREMENTS AND TESTING OF WIND TURBINE POWER QUALITY Poul Srensen, Ris National Laboratory, P.O.Box 49, DK-4000 Roskilde, Denmark.  

E-Print Network [OSTI]

STANDARDS FOR MEASUREMENTS AND TESTING OF WIND TURBINE POWER QUALITY Poul Sørensen, Risø National and verification of wind turbine power quality. The work has been organised in three major activities. The first farm summation on the power quality of wind turbines with constant rotor speed. The third activity has

Heinemann, Detlev

369

Study of the Reliability Enhancement of Wind Turbines Employing Direct-drive Technology.  

E-Print Network [OSTI]

??In traditional wind turbines employing gearboxes, the blades spin a shaft that is connected through a gearbox to the generator. The multiple wheels and bearings… (more)

Sara George, Reeba

2012-01-01T23:59:59.000Z

370

TESTING OF THE RADBALL TECHNOLOGY AT SAVANNAH RIVER NATIONAL LABORATORY  

SciTech Connect (OSTI)

The United Kingdom's National Nuclear Laboratory (NNL) has developed a remote, nonelectrical, radiation-mapping device known as RadBall (patent pending), which offers a means to locate and quantify radiation hazards and sources within contaminated areas of the nuclear industry. Positive results from initial deployment trials in nuclear waste reprocessing plants at Sellafield in the United Kingdom and the anticipated future potential use of RadBall throughout the U.S. Department of Energy Complex have led to the NNL partnering with the Savannah River National Laboratory (SRNL) to further test, underpin, and strengthen the technical performance of the technology. The study completed at SRNL addresses key aspects of the testing of the RadBall technology. The first set of tests was performed at Savannah River Nuclear Solutions Health Physics Instrument Calibration Laboratory (HPICL) using various gamma-ray sources and an x-ray machine with known radiological characteristics. The objective of these preliminary tests was to identify the optimal dose and collimator thickness. The second set of tests involved a highly contaminated hot cell. The objective of this testing was to characterize a hot cell with unknown radiation sources. The RadBall calibration experiments and hot cell deployment were successful in that for each trial radiation tracks were visible. The deployment of RadBall can be accomplished in different ways depending on the size and characteristics of the contaminated area (e.g., a hot cell that already has a crane/manipulator available or highly contaminated room that requires the use of a remote control device with sensor and video equipment to position RadBall). This report also presents SRNL-designed RadBall accessories for future RadBall deployment (a harness, PODS, and robot).

Farfan, E.; Foley, T.

2010-02-10T23:59:59.000Z

371

Test results, Industrial Solar Technology parabolic trough solar collector  

SciTech Connect (OSTI)

Sandia National Laboratories and Industrial Solar Technology are cost-sharing development of advanced parabolic trough technology. As part of this effort, several configurations of an IST solar collector were tested to determine the collector efficiency and thermal losses with black chrome and black nickel receiver selective coatings, combined with aluminized film and silver film reflectors, using standard Pyrex{reg_sign} and anti-reflective coated Pyrex{reg_sign} glass receiver envelopes. The development effort has been successful, producing an advanced collector with 77% optical efficiency, using silver-film reflectors, a black nickel receiver coating, and a solgel anti-reflective glass receiver envelope. For each receiver configuration, performance equations were empirically derived relating collector efficiency and thermal losses to the operating temperature. Finally, equations were derived showing collector performance as a function of input insolation value, incident angle, and operating temperature.

Dudley, V.E. [EG and G MSI, Albuquerque, NM (United States); Evans, L.R.; Matthews, C.W. [Sandia National Labs., Albuquerque, NM (United States)

1995-11-01T23:59:59.000Z

372

OPERATIONAL TEST OF SONIC WIND SENSORS AT KNMI Wiel M.F. Wauben  

E-Print Network [OSTI]

of transfer functions for wind direction, - speed and - gust that account for the change from one sensor vanes to measure wind speed and direction. Although the KNMI cup and vane meet WMO requirements into account by a wind direction and - speed dependent correction that is applied in the sensor software

Wauben, Wiel

373

SERI advanced wind turbine blades  

SciTech Connect (OSTI)

The primary goal of the Solar Energy Research Institute`s (SERI) advanced wind turbine blades is to convert the kinetic energy in the wind into mechanical energy in an inexpensive and efficient manner. To accomplish this goal, advanced wind turbine blades have been developed by SERI that utilize unique airfoil technology. Performance characteristics of the advanced blades were verified through atmospheric testing on fixed-pitch, stall-regulated horizontal-axis wind turbines (HAWTs). Of the various wind turbine configurations, the stall-regulated HAWT dominates the market because of its simplicity and low cost. Results of the atmospheric tests show that the SERI advanced blades produce 10% to 30% more energy than conventional blades. 6 refs.

Tangler, J.; Smith, B.; Jager, D.

1992-02-01T23:59:59.000Z

374

SERI advanced wind turbine blades  

SciTech Connect (OSTI)

The primary goal of the Solar Energy Research Institute's (SERI) advanced wind turbine blades is to convert the kinetic energy in the wind into mechanical energy in an inexpensive and efficient manner. To accomplish this goal, advanced wind turbine blades have been developed by SERI that utilize unique airfoil technology. Performance characteristics of the advanced blades were verified through atmospheric testing on fixed-pitch, stall-regulated horizontal-axis wind turbines (HAWTs). Of the various wind turbine configurations, the stall-regulated HAWT dominates the market because of its simplicity and low cost. Results of the atmospheric tests show that the SERI advanced blades produce 10% to 30% more energy than conventional blades. 6 refs.

Tangler, J.; Smith, B.; Jager, D.

1992-02-01T23:59:59.000Z

375

Mean and peak wind load reduction on heliostats  

SciTech Connect (OSTI)

This report presents the results of wind-tunnel tests supported through the Solar Energy Research Institute (SERI) by the Office of Solar Thermal Technology of the US Department of Energy as part of the SERI research effort on innovative concentrators. As gravity loads on drive mechanisms are reduced through stretched-membrane technology, the wind-load contribution of the required drive capacity increases in percentage. Reduction of wind loads can provide economy in support structure and heliostat drive. Wind-tunnel tests have been directed at finding methods to reduce wind loads on heliostats. The tests investigated both mean and peak forces, and moments. A significant increase in ability to predict heliostat wind loads and their reduction within a heliostat field was achieved. In addition, a preliminary review of wind loads on parabolic dish collectors was conducted, resulting in a recommended research program for these type collectors. 42 refs., 38 figs., 1 tab.

Peterka, J.A.; Tan, L.; Bienkiewcz, B.; Cermak, J.E.

1987-09-01T23:59:59.000Z

376

EA-1965: Florida Atlantic University Southeast National Marine Renewable Energy Center’s Offshore Marine Hydrokinetic Technology Testing Project, Florida  

Broader source: Energy.gov [DOE]

The Department of Energy (DOE), through its Wind and Water Power Technologies Office (WWPTO), is proposing to provide federal funding to Florida Atlantic University’s South-East National Marine Renewable Energy Center (FAU SNMREC) to support the at sea testing of FAU SNMREC’s experimental current generation turbine and the deployment and operation of their Small-Scale Ocean Current Turbine Test Berth, sited on the outer continental shelf (OCS) in waters off the coast of Ft Lauderdale, Florida. SNMREC would demonstrate the test berth site readiness by testing their pilot-scale experimental ocean current turbine unit at that location. The Bureau of Ocean Energy Management (BOEM) conducted an Environmental Assessment to analyze the impacts associated with leasing OCS lands to FAU SNMREC, per their jurisdictional responsibilities under the Outer Continental Shelf Lands Act. DOE was a cooperating agency in this process and based on the EA, DOE issued a Finding of No Significant Impact.

377

Letter report: Evaluation of dryer/calciner technologies for testing  

SciTech Connect (OSTI)

This letter report describes some past experiences on the drying and calcination of radioactive materials or corresponding simulants; and the information needed from testing. The report also includes an assessment of informational needs including possible impacts to a full-scale plant. This includes reliability, maintenance, and overall size versus throughput. Much of the material was previously compiled and reported by Mike Elliott of PNL {open_quotes}Melter Performance Assessment{close_quotes} and Larry Eisenstatt of SEG on contract to WHC in a letter to Rod Powell. Also, an annotated bibliography was prepared by Reagan Seymour of WHC. Descriptions of the drying and calciner technologies, development status, advantages and disadvantages of using a WFE or calciner, and recommendations for future testing are discussed in this report.

Sevigny, G.

1996-02-01T23:59:59.000Z

378

Part of the Climate Change Problem . . . and the Solution? Chinese-Made Wind Power Technology and Opportunities for Dissemination  

E-Print Network [OSTI]

Commercial  Scale  Wind  Turbines  in  Canada. ”  April Development of China?s Wind Turbine  Manufacturing Industry duties  on  importing wind turbine components.   13   “

Lewis, Joanna I.

2005-01-01T23:59:59.000Z

379

The Political Economy of Wind Power in China  

E-Print Network [OSTI]

by which wind turbine technology converts wind energy intoWind energy developers – usually power companies combined with a wind turbine

Swanson, Ryan Landon

2011-01-01T23:59:59.000Z

380

Collegiate Wind Competition Turbines go Blade-to-Blade in Wind...  

Broader source: Energy.gov (indexed) [DOE]

This wind tunnel constructed by NREL engineers will test the small wind turbines designed by 10 university teams competing in DOE's Collegiate Wind Competition. This wind tunnel...

Note: This page contains sample records for the topic "wind technology testing" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


381

NREL Develops New Controls that Proactively Adapt to the Wind (Fact Sheet)  

SciTech Connect (OSTI)

Until now, wind turbine controls that reduce the impacts of wind gusts and turbulence were always reactive-responding to the wind rather than anticipating it. But with today's laser-based sensors that measure wind speed ahead of the turbine, researchers at the National Renewable Energy Laboratory (NREL) and their industry partners are developing more intelligent controls. The world's first field tests of these controls are currently underway at the National Wind Technology Center (NWTC) at NREL, with plans for future commercialization.

Not Available

2012-11-01T23:59:59.000Z

382

NREL Develops New Controls that Proactively Adapt to the Wind (Fact Sheet)  

SciTech Connect (OSTI)

Until now, wind turbine controls that reduce the impacts of wind gusts and turbulence were always reactive -- responding to the wind rather than anticipating it. But with today's laser-based sensors that measure wind speed ahead of the turbine, researchers at the National Renewable Energy Laboratory (NREL) and their industry partners are developing more intelligent controls. The world's first field tests of these controls are currently underway at the National Wind Technology Center (NWTC) at NREL, with plans for future commercialization.

Not Available

2012-10-01T23:59:59.000Z

383

WP2 IEA Wind Task 26:The Past and Future Cost of Wind Energy  

E-Print Network [OSTI]

M. ( 2011). 2010 Wind Technologies Market Report. DOE/GO-Ashwill, T. (2008). Technology Improvement Opportunities forWind Power in Denmark: Technologies, Policies, and Results.

Lantz, Eric

2014-01-01T23:59:59.000Z

384

Wind Energy Facilities and Residential Properties: The Effect of Proximity and View on Sales Prices  

E-Print Network [OSTI]

and Renewable Energy (Wind & Hydropower TechnologiesU.S. Department of Energy (Wind and Hydropower TechnologiesPublic Perceptions of Wind Energy. Wind Energy, 2004, 8:2,

Hoen, Ben

2012-01-01T23:59:59.000Z

385

OBSERVATIONAL TEST OF STOCHASTIC HEATING IN LOW-{beta} FAST-SOLAR-WIND STREAMS  

SciTech Connect (OSTI)

Spacecraft measurements show that protons undergo substantial perpendicular heating during their transit from the Sun to the outer heliosphere. In this paper, we use Helios 2 measurements to investigate whether stochastic heating by low-frequency turbulence is capable of explaining this perpendicular heating. We analyze Helios 2 magnetic field measurements in low-{beta} fast-solar-wind streams between heliocentric distances r = 0.29 AU and r = 0.64 AU to determine the rms amplitude of the fluctuating magnetic field, {delta}B{sub p}, near the proton gyroradius scale {rho}{sub p}. We then evaluate the stochastic heating rate Q{sub stoch} using the measured value of {delta}B{sub p} and a previously published analytical formula for Q{sub stoch}. Using Helios measurements we estimate the ''empirical'' perpendicular heating rate Q{sub Up-Tack emp} = (k{sub B}/m{sub p}) BV (d/dr) (T{sub Up-Tack p}/B) that is needed to explain the T{sub p} profile. We find that Q{sub stoch} {approx} Q{sub emp}, but only if a key dimensionless constant appearing in the formula for Q{sub stoch} lies within a certain range of values. This range is approximately the same throughout the radial interval that we analyze and is consistent with the results of numerical simulations of the stochastic heating of test particles in reduced magnetohydrodynamic turbulence. These results support the hypothesis that stochastic heating accounts for much of the perpendicular proton heating occurring in low-{beta} fast-wind streams.

Bourouaine, Sofiane; Chandran, Benjamin D. G., E-mail: s.bourouaine@unh.edu [Space Science Center and Department of Physics, University of New Hampshire, Durham, NH 03824 (United States)

2013-09-10T23:59:59.000Z

386

Blades of Glory: Wind Technology Bringing Us Closer To a Clean...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

the length of a football field. In the United States, energy generation from wind turbines has grown by 27 percent over the last year, with production facilities now in more...

387

Part of the Climate Change Problem . . . and the Solution? Chinese-Made Wind Power Technology and Opportunities for Dissemination  

E-Print Network [OSTI]

the building of wind farms  with  turbines  manufactured tender  for  a  100  MW  wind  farm  located  in  Huilai, wind  turbines  in  its  wind  farm  projects.   Policy 

Lewis, Joanna I.

2005-01-01T23:59:59.000Z

388

Part of the Climate Change Problem . . . and the Solution? Chinese-Made Wind Power Technology and Opportunities for Dissemination  

E-Print Network [OSTI]

plans for onshore and offshore wind energy development in early problems with offshore wind turbines. 20 Figure 3.  

Lewis, Joanna I.

2005-01-01T23:59:59.000Z

389

WREF 2012: THE PAST AND FUTURE COST OF WIND ENERGY  

E-Print Network [OSTI]

Økonomi (The Economy of Wind Power). EUDP 33033-0196.to the Chapter on Wind Power in Energy TechnologyAgency (DEA). (1999). Wind Power in Denmark: Technologies,

Wiser, Ryan

2013-01-01T23:59:59.000Z

390

Comparison of Particle Sizing Instrument Technologies for Vehicle Emissions Testing  

E-Print Network [OSTI]

WCPC). Aerosol Science and Technology, 39, 659–672. 2005. 3.Aerosol Science and Technology, 39:519–526, 2005. 12. Zhang,ELPI. Aerosol Science and Technology 39:333–346. 2005. 13.

Chen, Vincent

2014-01-01T23:59:59.000Z

391

Idaho National Laboratory Testing of Advanced Technology Vehicles  

Broader source: Energy.gov (indexed) [DOE]

technologies and their required fueling infrastructures Barriers Barriers addressed 1. Cost 2. Infrastructure 3. Constant Advances in Technology Budget *FY 2011 project funding...

392

Initial ACTR retrieval technology evaluation test material recommendations  

SciTech Connect (OSTI)

Millions of gallons of radiaoctive waste are contained in underground storage tanks at Hanford (SE Washington). Techniques for retrieving much of this waste from the storage tanks have been developed. Current baseline approach is to use sluice jets for single-shell tanks and mixer pumps for double-shell tanks. The Acquire Commercial Technology for Retrieval (ACTR) effort was initiated to identify potential improvements in or alternatives to the baseline waste retrieval methods. Communications with a variety of vendors are underway to identify improved methods that can be implemented at Hanford with little or no additional development. Commercially available retrieval methods will be evaluated by a combination of testing and system-level cost estimation. Current progress toward developing waste simulants for testing ACTR candidate methods is reported; the simulants are designed to model 4 different types of tank waste. Simulant recipes are given for wet sludge, hardpan/dried sludge,hard saltcake, and soft saltcake. Comparisons of the waste and simulant properties are documented in this report.

Powell, M.R.

1996-04-01T23:59:59.000Z

393

Wind Events | Department of Energy  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Below is an industry calendar with meetings, conferences, and webinars of interest to the wind energy technology communities. IEA Wind Task 34 (WREN) Quarterly Webinar 3:...

394

Annual Report on U.S. Wind Power Installation, Cost, and Performance Trends: 2006  

E-Print Network [OSTI]

of the U.S. DOE’s Wind & Hydropower Technologies Program. Weand Renewable Energy (Wind & Hydropower Technologies ProgramManager Office of Wind and Hydropower Technologies Energy

2008-01-01T23:59:59.000Z

395

The Department of Aerospace Engineering Moving The Wind Industry With Technology  

E-Print Network [OSTI]

in the areas of jet noise and nozzle aerodynamics. He received his Bachelor's degree from N.C. State University with a current capability of 60 GW generated by 45,000 turbine. That is enough energy to power the equivalent and acoustics of the ro- tor and detailed concepts for wind turbine sound mitigation that are under development

Demirel, Melik C.

396

Wind Energy Program: Top 10 Program Accomplishments  

Broader source: Energy.gov [DOE]

Brochure on the top accomplishments of the Wind Energy Program, including the development of large wind machines, small machines for the residential market, wind tunnel testing, computer codes for modeling wind systems, high definition wind maps, and successful collaborations.

397

Idaho National Laboratory Testing of Advanced Technology Vehicles  

Broader source: Energy.gov (indexed) [DOE]

* Development of a testbed vehicle capable of testing a range of energy storage systems (ESS) via onroad testing and vehicle-based dynamometer testing * Test ESS intended for EVs,...

398

Mercury Emission Control Technologies for PPL Montana-Colstrip Testing  

SciTech Connect (OSTI)

The Energy & Environmental Research Center (EERC) was asked by PPL Montana LLC (PPL) to provide assistance and develop an approach to identify cost-effective options for mercury control at its coal-fired power plants. The work conducted focused on baseline mercury level and speciation measurement, short-term parametric testing, and week long testing of mercury control technology at Colstrip Unit 3. Three techniques and various combinations of these techniques were identified as viable options for mercury control. The options included oxidizing agents or sorbent enhancement additives (SEAs) such as chlorine-based SEA1 and an EERC proprietary SEA2 with and without activated carbon injection. Baseline mercury emissions from Colstrip Unit 3 are comparatively low relative to other Powder River Basin (PRB) coal-fired systems and were found to range from 5 to 6.5 g/Nm3 (2.9 to 3.8 lb/TBtu), with a rough value of approximately 80% being elemental upstream of the scrubber and higher than 95% being elemental at the outlet. Levels in the stack were also greater than 95% elemental. Baseline mercury removal across the scrubber is fairly variable but generally tends to be about 5% to 10%. Parametric results of carbon injection alone yielded minimal reduction in Hg emissions. SEA1 injection resulted in 20% additional reduction over baseline with the maximum rate of 400 ppm (3 gal/min). Week long testing was conducted with the combination of SEA2 and carbon, with injection rates of 75 ppm (10.3 lb/hr) and 1.5 lb/MMacf (40 lb/hr), respectively. Reduction was found to be an additional 30% and, overall during the testing period, was measured to be 38% across the scrubber. The novel additive injection method, known as novel SEA2, is several orders of magnitude safer and less expensive than current SEA2 injection methods. However, used in conjunction with this plant configuration, the technology did not demonstrate a significant level of mercury reduction. Near-future use of this technique at Colstrip is not seen. All the additives injected resulted in some reduction in mercury emissions. However, the target reduction of 55% was not achieved. The primary reason for the lower removal rates is because of the lower levels of mercury in the flue gas stream and the lower capture level of fine particles by the scrubbers (relative to that for larger particles). The reaction and interaction of the SEA materials is with the finer fraction of the fly ash, because the SEA materials are vaporized during the combustion or reaction process and condense on the surfaces of entrained particles or form very small particles. Mercury will have a tendency to react and interact with the finer fraction of entrained ash and sorbent as a result of the higher surface areas of the finer particles. The ability to capture the finer fraction of fly ash is the key to controlling mercury. Cost estimates for mercury removal based on the performance of each sorbent during this project are projected to be extremely high. When viewed on a dollar-per-pound-of-mercury removed basis activated carbon was projected to cost nearly $1.2 million per pound of mercury removed. This value is roughly six times the cost of other sorbent-enhancing agents, which were projected to be closer to $200,000 per pound of mercury removed.

John P. Kay; Michael L. Jones; Steven A. Benson

2007-04-01T23:59:59.000Z

399

An Updated Procedure for Tare and Interference Wind Tunnel Testing of Strut-Mounted Models  

E-Print Network [OSTI]

to the presence of wind tunnel walls. The standard correction procedure adjusts for the presence of these boundaries using approximations based on linear potential flow theory. Separately,tare and interference removal involves the linear subtraction of mounting...

Kutz, Douglas M

2014-05-02T23:59:59.000Z

400

State Agency Energy Efficiency or Renewable Energy Technology Test Program (Connecticut)  

Broader source: Energy.gov [DOE]

The State of Connecticut has an established pathway to test new energy efficiency or renewable energy technologies in state offices. The technology, product or process must be presently available...

Note: This page contains sample records for the topic "wind technology testing" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


401

Idaho National Laboratory Testing of Advanced Technology Vehicles  

Broader source: Energy.gov [DOE]

2013 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Program Annual Merit Review and Peer Evaluation Meeting

402

The Cost of Transmission for Wind Energy: A Review of Transmission Planning Studies  

E-Print Network [OSTI]

2006. Transmission and Wind Energy: Capturing the Prevailingand Renewable Energy (Wind & Hydropower Technologiesand Renewable Energy Wind & Hydropower Technologies Program

Mills, Andrew D.

2009-01-01T23:59:59.000Z

403

Part of the Climate Change Problem . . . and the Solution? Chinese-Made Wind Power Technology and Opportunities for Dissemination  

E-Print Network [OSTI]

Commercial  Scale  Wind  Turbines  in  Canada. ”  April import duty on wind  turbines and reduced  the import duty delivery  lead times for wind turbines and components are 

Lewis, Joanna I.

2005-01-01T23:59:59.000Z

404

Fostering a Renewable Energy Technology Industry: An International Comparison of Wind Industry Policy Support Mechanisms  

E-Print Network [OSTI]

Renewable Energy. Renewable Energy Policy Project ResearchIndustrial Policy and Renewable Energy Technology.Development of Renewable Energy. Energy Policy, 31, 799-812.

Lewis, Joanna; Wiser, Ryan

2005-01-01T23:59:59.000Z

405

An integrated approach to offshore wind energy assessment: Great Lakes 3D Wind Experiment. Part I. Calibration and testing RJ Barthelmie1, SC Pryor1, CM Smith1, P Crippa1, H Wang1, R. Krishnamurthy2, R. Calhoun2, D Valyou3, P Marzocca3, D Matthiesen4, N.  

E-Print Network [OSTI]

An integrated approach to offshore wind energy assessment: Great Lakes 3D Wind Experiment. Part I Government or any agency thereof." Introduction An experiment to test wind and turbulence measurement strategies was conducted at a northern Indiana wind farm in May 2012. The experimental design focused

Polly, David

406

Low Wind Speed Technology Phase I: Evaluation of Design and Construction Approaches for Economical Hybrid Steel/Concrete Wind Turbine Towers; BERGER/ABAM Engineers Inc.  

SciTech Connect (OSTI)

This fact sheet describes a subcontract with BERGER/ABAM Engineers Inc. to study the economic feasibility of concrete and hybrid concrete/steel wind turbine towers.

Not Available

2006-03-01T23:59:59.000Z

407

Final Technical Report: Supporting Wind Turbine Research and Testing - Gearbox Durability Study  

SciTech Connect (OSTI)

The combination of premature failure of wind turbine gearboxes and the downtime caused by those failures leads to an increase in the cost of electricity produced by the wind. There is a need for guidance to asset managers regarding how to maximize the longevity of their gearboxes in order to help keep the cost of wind energy as low as possible. A low cost of energy supports the US Department of Energy's goal of achieving 20% of the electricity in the United States produced by wind by the year 2030. DNV KEMA has leveraged our unique position in the industry as an independent third party engineering organization to study the problem of gearbox health management and develop guidance to project operators. This report describes the study. The study was conducted in four tasks. In Task 1, data that may be related to gearbox health and are normally available to wind project operators were collected for analysis. Task 2 took a more in-depth look at a small number of gearboxes to gain insight in to relevant failure modes. Task 3 brought together the previous tasks by evaluating the available data in an effort to identify data that could provide early indications of impending gearbox failure. Last, the observations from the work were collected to develop recommendations regarding gearbox health management.

Matthew Malkin

2012-04-30T23:59:59.000Z

408

Standardized Testing Program for Solid-State Hydrogen Storage Technologies  

SciTech Connect (OSTI)

In the US and abroad, major research and development initiatives toward establishing a hydrogen-based transportation infrastructure have been undertaken, encompassing key technological challenges in hydrogen production and delivery, fuel cells, and hydrogen storage. However, the principal obstacle to the implementation of a safe, low-pressure hydrogen fueling system for fuel-cell powered vehicles remains storage under conditions of near-ambient temperature and moderate pressure. The choices for viable hydrogen storage systems at the present time are limited to compressed gas storage tanks, cryogenic liquid hydrogen storage tanks, chemical hydrogen storage, and hydrogen absorbed or adsorbed in a solid-state material (a.k.a. solid-state storage). Solid-state hydrogen storage may offer overriding benefits in terms of storage capacity, kinetics and, most importantly, safety.The fervor among the research community to develop novel storage materials had, in many instances, the unfortunate consequence of making erroneous, if not wild, claims on the reported storage capacities achievable in such materials, to the extent that the potential viability of emerging materials was difficult to assess. This problem led to a widespread need to establish a capability to accurately and independently assess the storage behavior of a wide array of different classes of solid-state storage materials, employing qualified methods, thus allowing development efforts to focus on those materials that showed the most promise. However, standard guidelines, dedicated facilities, or certification programs specifically aimed at testing and assessing the performance, safety, and life cycle of these emergent materials had not been established. To address the stated need, the Testing Laboratory for Solid-State Hydrogen Storage Technologies was commissioned as a national-level focal point for evaluating new materials emerging from the designated Materials Centers of Excellence (MCoE) according to established and qualified standards. Working with industry, academia, and the U.S. government, SwRI set out to develop an accepted set of evaluation standards and analytical methodologies. Critical measurements of hydrogen sorption properties in the Laboratory have been based on three analytical capabilities: 1) a high-pressure Sievert-type volumetric analyzer, modified to improve low-temperature isothermal analyses of physisorption materials and permit in situ mass spectroscopic analysis of the sample’s gas space; 2) a static, high-pressure thermogravimetric analyzer employing an advanced magnetic suspension electro-balance, glove-box containment, and capillary interface for in situ mass spectroscopic analysis of the sample’s gas space; and 3) a Laser-induced Thermal Desorption Mass Spectrometer (LTDMS) system for high thermal-resolution desorption and mechanistic analyses. The Laboratory has played an important role in down-selecting materials and systems that have emerged from the MCoEs.

Miller, Michael A. [Southwest Research Institute; Page, Richard A. [Southwest Research Institute

2012-07-30T23:59:59.000Z

409

Power System Modeling of 20percent Wind-Generated Electricity by 2030  

E-Print Network [OSTI]

power system modeling, wind energy I. I NTRODUCTION Generating electricity from wind technology has several advantages

Hand, Maureen

2008-01-01T23:59:59.000Z

410

Validation of Innovative Exploration Technologies for Newberry Volcano: Map showing location of wells permitted, drilled and seismic test 2012  

SciTech Connect (OSTI)

Innovative Exploration Technologies for Newberry Volcano: Map showing location of wells permitted, drilled & seismic test, 2012

Jaffe, Todd

2012-01-01T23:59:59.000Z

411

Validation of Innovative Exploration Technologies for Newberry Volcano: Map showing location of wells permitted, drilled and seismic test 2012  

DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

Innovative Exploration Technologies for Newberry Volcano: Map showing location of wells permitted, drilled & seismic test, 2012

Jaffe, Todd

412

BOEM Issues First Renewable Energy Lease for MHK Technology Testing...  

Office of Environmental Management (EM)

test. As FAU has been working toward their goal of establishing the country's first offshore ocean current turbine test site, a milestone was met when an environmental assessment...

413

Vehicle Technologies Office Merit Review 2014: Battery Safety Testing  

Broader source: Energy.gov [DOE]

Presentation given by Sandia National Laboratory at 2014 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Office Annual Merit Review and Peer Evaluation Meeting about battery safety...

414

Oregon: Advancing Technology Readiness: Wave Energy Testing and Demonstration  

Office of Energy Efficiency and Renewable Energy (EERE)

EERE’s support enabled Northwest Energy Innovations to verify the functionality of its Wave Energy Technology—New Zealand (WET-NZ) device.

415

Vehicle Technologies Office Merit Review 2014: Electrochemical Performance Testing  

Broader source: Energy.gov [DOE]

Presentation given by Argonne National Laboratory at 2014 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Office Annual Merit Review and Peer Evaluation Meeting about electrochemical...

416

Idaho National Laboratory Testing of Advanced Technology Vehicles...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

1 DOE Hydrogen and Fuel Cells Program, and Vehicle Technologies Program Annual Merit Review and Peer Evaluation vss021francfort2011o.pdf More Documents & Publications Vehicle...

417

SAT-WIND project Final report  

E-Print Network [OSTI]

-2840 ISBN 87-550-3570-1 The SAT-WIND project `Winds from satellites for offshore and coastal wind energy) technologies for wind energy tools for wind resources and wind-indexing. The study area was the Danish Seas microwave polarimetric 223.3.1 History 3.3.2 Measurement principle 22 223.3.3 WindSat (passive microwave

418

Wind and Water Power Technologies FY'14 Budget At-a-Glance | Department of  

Office of Environmental Management (EM)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) "of EnergyEnergyENERGYWomen Owned SmallOf TheViolations | Department ofEnergy Wind Power06Energy and

419

Indian Centre for Wind Energy Technology C WET | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Office of Inspector GeneralDepartmentAUDIT REPORTOpen EnergyBoard"Starting a newIGUSLLC JumpIndependence Wind

420

Wind and Water Power Technologies FY'14 Budget At-a-Glance  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE:YearRound-Up from theDepartment of Dept.| WEATHERIZATION5 |and Analysis |3 WindEnergy1 2This 1

Note: This page contains sample records for the topic "wind technology testing" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


421

Annotated bibliography of literature relating to wind transport of plutonium-contaminated soils at the Nevada Test Site  

SciTech Connect (OSTI)

During the period from 1954 through 1963, a number of tests were conducted on the Nevada Test Site (NTS) and Tonopah Test Range (TTR) to determine the safety of nuclear devices with respect to storage, handling, transport, and accidents. These tests were referred to as ``safety shots.`` ``Safety`` in this context meant ``safety against fission reaction.`` The safety tests were comprised of chemical high explosive detonations with components of nuclear devices. The conduct of these tests resulted in the dispersion of plutonium, and some americium over areas ranging from several tens to several hundreds of hectares. Of the various locations used for safety tests, the site referred to as ``Plutonium Valley`` was subject to a significant amount of plutonium contamination. Plutonium Valley is located in Area 11 on the eastern boundary of the NTS at an elevation of about 1036 m (3400 ft). Plutonium Valley was the location of four safety tests (A,B,C, and D) conducted during 1956. A major environmental, health, and safety concern is the potential for inhalation of Pu{sup 239,240} by humans as a result of airborne dust containing Pu particles. Thus, the wind transport of Pu{sup 239,240} particles has been the subject of considerable research. This annotated bibliography was created as a reference guide to assist in the better understanding of the environmental characteristics of Plutonium Valley, the safety tests performed there, the processes and variables involved with the wind transport of dust, and as an overview of proposed clean-up procedures.

Lancaster, N.; Bamford, R.

1993-12-01T23:59:59.000Z

422

Field studies of the potential for wind transport of plutonium- contaminated soils at sites in Areas 6 and 11, Nevada Test Site  

SciTech Connect (OSTI)

This report describes and documents a series of field experiments carried out in Areas 6 and 11 of the Nevada Test Site in June and July 1994 to determine parameters of boundary layer winds, surface characteristics, and vegetation cover that can be used to predict dust emissions from the affected sites. Aerodynamic roughness of natural sites is determined largely by the lateral cover of the larger and more permanent roughness elements (shrubs). These provide a complete protection of the surface from wind erosion. Studies using a field-portable wind tunnel demonstrated that natural surfaces in the investigated areas of the Nevada Test Site are stable except at very high wind speeds (probably higher than normally occur, except perhaps in dust devils). However, disturbance of silty-clay surfaces by excavation devices and vehicles reduces the entrainment threshold by approximately 50% and makes these areas potentially very susceptible to wind erosion and transport of sediments.

Lancaster, N.; Bamford, R.; Metzger, S. [University and Community Coll. System of Nevada, Reno, NV (United States). Quaternary Sciences Center, Desert Research Institute

1995-07-01T23:59:59.000Z

423

A Predictive Maintenance Policy Based on the Blade of Offshore Wind Wenjin Zhu, Troyes University of Technology  

E-Print Network [OSTI]

A Predictive Maintenance Policy Based on the Blade of Offshore Wind Turbine Wenjin Zhu, Troyes, Paris-Erdogan law, rotor blade, wind turbine SUMMARY & CONCLUSIONS Based on the modeling and the better quality of the wind resource in the sea, the installation of wind turbines is shifting from

McCalley, James D.

424

The Sandia MEMS Passive Shock Sensor : FY08 testing for functionality, model validation, and technology readiness.  

SciTech Connect (OSTI)

This report summarizes the functional, model validation, and technology readiness testing of the Sandia MEMS Passive Shock Sensor in FY08. Functional testing of a large number of revision 4 parts showed robust and consistent performance. Model validation testing helped tune the models to match data well and identified several areas for future investigation related to high frequency sensitivity and thermal effects. Finally, technology readiness testing demonstrated the integrated elements of the sensor under realistic environments.

Walraven, Jeremy Allen; Blecke, Jill; Baker, Michael Sean; Clemens, Rebecca C.; Mitchell, John Anthony; Brake, Matthew Robert; Epp, David S.; Wittwer, Jonathan W.

2008-10-01T23:59:59.000Z

425

On the Use of Energy Storage Technologies for Regulation Services in Electric Power Systems with Significant Penetration of Wind Energy  

SciTech Connect (OSTI)

Energy produced by intermittent renewable resources is sharply increasing in the United States. At high penetration levels, volatility of wind power production could cause additional problems for the power system balancing functions such as regulation. This paper reports some partial results of a project work, recently conducted by the Pacific Northwest National Laboratory (PNNL) for Bonneville Power Administration (BPA). The project proposes to mitigate additional intermittency with the help of Wide Area Energy Management System (WAEMS) that would provide a two-way simultaneous regulation service for the BPA and California ISO systems by using a large energy storage facility. The paper evaluates several utility-scale energy storage technology options for their usage as regulation resources. The regulation service requires a participating resource to quickly vary its power output following the rapidly and frequently changing regulation signal. Several energy storage options have been analyzed based on thirteen selection criteria. The evaluation process resulted in the selection of flywheels, pumped hydro electric power (or conventional hydro electric power) plant and sodium sulfur or nickel cadmium batteries as candidate technologies for the WAEMS project. A cost benefit analysis should be conducted to narrow the choice to one technology.

Yang, Bo; Makarov, Yuri V.; DeSteese, John G.; Vishwanathan, Vilanyur V.; Nyeng, Preben; McManus, Bart; Pease, John

2008-05-27T23:59:59.000Z

426

7,511,624 Wind Energy Overview: Device for monitoring the balance and integrity of wind turbine blades either in  

E-Print Network [OSTI]

turbine blades either in service or as a quality control step in the manufacturing process Researchers oscillations (including imbalances and tracking variations) in wind turbine blades. This technology was tested covering the RPM rate of any wind turbine blade. This invention directly targets the operational monitoring

Maxwell, Bruce D.

427

Learning curves and engineering assessment of emerging energy technologies: onshore wind   

E-Print Network [OSTI]

Sustainable energy systems require deployment of new technologies to help tackle the challenges of climate change and ensuring energy supplies. Future sources of energy are less economically competitive than conventional ...

Mukora, Audrey Etheline

2014-06-30T23:59:59.000Z

428

Specificationbased Testing of Reactive Software: A Case Study in Technology Transfer  

E-Print Network [OSTI]

Specification­based Testing of Reactive Software: A Case Study in Technology Transfer Lalita be effective in practice. The case study illustrates that technology transfer efforts can benefit from that limit formal methods technology transfer. We also found that there is often a tension between the scope

Porter, Adam

429

Benchmark of aerodynamic cycling helmets using a refined wind tunnel test protocol for helmet drag research  

E-Print Network [OSTI]

The study of aerodynamics is very important in the world of cycling. Wind tunnel research is conducted on most of the equipment that is used by a rider and is a critical factor in the advancement of the sport. However, to ...

Sidelko, Stephanie

2007-01-01T23:59:59.000Z

430

Wind Energy Status and Future Wind Engineering Challenges: Preprint  

SciTech Connect (OSTI)

This paper describes the current status of wind energy technology, the potential for future wind energy development and the science and engineering challenges that must be overcome for the technology to meet its potential.

Thresher, R.; Schreck, S.; Robinson, M.; Veers, P.

2008-08-01T23:59:59.000Z

431

Assessing the Impacts of Reduced Noise Operations of Wind Turbines on Neighbor Annoyance: A Preliminary Analysis in Vinalhaven, Maine  

E-Print Network [OSTI]

Renewable Energy (Wind & Hydropower Technologies Program) ofRenewable Energy Wind & Hydropower Technologies Program U.S.Renewable Energy (Wind & Hydropower Technologies Program) of

Hoen, Ben

2010-01-01T23:59:59.000Z

432

Analysis and test results for a two-bladed, passive cycle pitch, horizontal-axis wind turbine in free and controlled yaw  

SciTech Connect (OSTI)

This report surveys the analysis and tests performed at Washington University in St. Louis, Missouri, on a horizontal-axis, two-laded wind turbine with teeter hub. The introduction is a brief account of results obtained during the 5-year period ending December 1985. The wind tunnel model and the test turbine (7.6 m [25 ft.] in diameter) at Washington University`s Tyson Research Center had a 67{degree} delta-three angle of the teeter axis. The introduction explains why this configuration was selected and named the passive cycle pitch (PCP) wind turbine. Through the analysis was not limited to the PCP rotor, all tests, including those done from 1986 to 1994, wee conducted with the same teetered wind rotor. The blades are rather stiff and have only a small elastic coning angle and no precone.

Holenemser, K.H. [Washington Univ., St. Louis, MO (United States)

1995-10-01T23:59:59.000Z

433

The Cost of Transmission for Wind Energy: A Review of Transmission Planning Studies  

E-Print Network [OSTI]

2006. Transmission and Wind Energy: Capturing the Prevailing40 6.2 20% Wind Energy: Wind Deployment System (and Renewable Energy (Wind & Hydropower Technologies

Mills, Andrew D.

2009-01-01T23:59:59.000Z

434

Wind Energy Facilities and Residential Properties: The Effect of Proximity and View on Sales Prices  

E-Print Network [OSTI]

U.S. Department of Energy (Wind and Hydropower Technologiesand Renewable Energy (Wind & Hydropower TechnologiesPublic Perceptions of Wind Energy. Wind Energy, 2004, 8:2,

Hoen, Ben

2012-01-01T23:59:59.000Z

435

Power System Modeling of 20percent Wind-Generated Electricity by 2030  

E-Print Network [OSTI]

Contribution to U.S. Electricity Supply. National Renewable20% of the nation's electricity from wind technology byTERMS wind-generated electricity; wind energy; 20% wind

Hand, Maureen

2008-01-01T23:59:59.000Z

436

ORNL tests energy-efficient technologies for expeditionary military...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

the summer, ORNL researchers tested the performance of various tent configurations and HVAC units in an outdoor environment as part of the Transformative Reductions in Operational...

437

The Political Economy of Wind Power in China  

E-Print Network [OSTI]

those suitable for offshore wind farms. But foreign firms,technology for offshore wind farms. 111 Thus, although China

Swanson, Ryan Landon

2011-01-01T23:59:59.000Z

438

ENERGY SMART SCHOOLS - APPLIED RESEARCH, FIELD TESTING, AND TECHNOLOGY INTEGRATION  

SciTech Connect (OSTI)

This multi-state collaborative project will coordinate federal, state, and private sector resources and high-priority school-related energy research under a comprehensive initiative that includes tasks that increase adoption of advanced energy efficiency high-performance technologies in both renovation of existing schools and building new ones; educate and inform school administrators, architects, engineers, and manufacturers nationwide as to the energy, economic, and environmental benefits of energy efficiency technologies; and improve the learning environment for the nation's students through use of better temperature controls, improvements in air quality, and increased daylighting in schools.

Kate Burke

2004-01-01T23:59:59.000Z

439

Field Test of Advanced Duct-Sealing Technologies Within the Weatherization Assistance Program  

SciTech Connect (OSTI)

A field test of an aerosol-spray duct-sealing technology and a conventional, best-practice approach was performed in 80 homes to determine the efficacy and programmatic needs of the duct-sealing technologies as applied in the U.S. Department of Energy Weatherization Assistance Program. The field test was performed in five states: Iowa, Virginia, Washington, West Virginia, and Wyoming. The study found that, compared with the best-practice approach, the aerosol-spray technology is 50% more effective at sealing duct leaks and can potentially reduce labor time and costs for duct sealing by 70%, or almost 4 crew-hours. Further study to encourage and promote use of the aerosol-spray technology within the Weatherization Assistance Program is recommended. A pilot test of full production weatherization programs using the aerosol-spray technology is recommended to develop approaches for integrating this technology with other energy conservation measures and minimizing impacts on weatherization agency logistics. In order to allow or improve adoption of the aerosol spray technology within the Weatherization Assistance Program, issues must be addressed concerning equipment costs, use of the technology under franchise arrangements with Aeroseal, Inc. (the holders of an exclusive license to use this technology), software used to control the equipment, safety, and training. Application testing of the aerosol-spray technology in mobile homes is also recommended.

Ternes, MP

2001-12-05T23:59:59.000Z

440

SciTech Connect: Offshore Wind Jobs and Economic Development...  

Office of Scientific and Technical Information (OSTI)

Technologies Office Country of Publication: United States Language: English Subject: 17 WIND ENERGY; 29 ENERGY PLANNING, POLICY AND ECONOMY OFFSHORE WIND JOBS; OFFSHORE WIND...

Note: This page contains sample records for the topic "wind technology testing" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


441

WIND DATA REPORT December, 2003 February 29, 2004  

E-Print Network [OSTI]

WIND DATA REPORT Orleans December, 2003 ­ February 29, 2004 Prepared for Massachusetts Technology.................................................................................................................... 10 Wind Speed Time Series........................................................................................................... 10 Wind Speed Distributions

Massachusetts at Amherst, University of

442

WIND DATA REPORT October 27, 2003 November 31, 2003  

E-Print Network [OSTI]

WIND DATA REPORT Orleans October 27, 2003 ­ November 31, 2003 Prepared for Massachusetts Technology...................................................................................................................... 9 Wind Speed Time Series............................................................................................................. 9 Wind Speed Distributions

Massachusetts at Amherst, University of

443

WIND DATA REPORT December 1, 2003 February 29, 2004  

E-Print Network [OSTI]

WIND DATA REPORT Mt. Tom December 1, 2003 ­ February 29, 2004 Prepared for Massachusetts Technology.................................................................................................................... 10 Wind Speed Time Series........................................................................................................... 10 Wind Speed Distributions

Massachusetts at Amherst, University of

444

WIND DATA REPORT March 1, 2004 May 31, 2004  

E-Print Network [OSTI]

WIND DATA REPORT Eastham March 1, 2004 ­ May 31, 2004 Prepared for Massachusetts Technology...................................................................................................................... 9 Wind Speed Time Series............................................................................................................. 9 Wind Speed Distributions

Massachusetts at Amherst, University of

445

WREF 2012: THE PAST AND FUTURE COST OF WIND ENERGY  

E-Print Network [OSTI]

2009). Technology Roadmap – Wind Energy. Paris, France:EWEA. (2011). Pure Power – Wind Energy Targets for 2020 andBelgium: European Wind Energy Association (19) Electric

Wiser, Ryan

2013-01-01T23:59:59.000Z

446

WREF 2012: THE PAST AND FUTURE COST OF WIND ENERGY  

E-Print Network [OSTI]

2009). Technology Roadmap – Wind Energy. Paris, France:5) Ceña, A; Simonot, E. (2011). The Cost of Wind Energy.Spanish Wind Energy Association (AEE) contribution to IEA

Wiser, Ryan

2013-01-01T23:59:59.000Z

447

The Political Economy of Wind Power in China  

E-Print Network [OSTI]

by pitching the blades of the turbines out of the wind. 114wind turbine technology converts wind energy into electricity, taking into account factors such as blade

Swanson, Ryan Landon

2011-01-01T23:59:59.000Z

448

1 to be published in Wind Energy Many engineering systems incorporate prognostics and health management (PHM), which consists of technologies  

E-Print Network [OSTI]

1 to be published in Wind Energy ABSTRACT Many engineering systems incorporate prognostics exist for wind energy systems, they do not specifically quantify the value of decisions after: GHaddad@slb.com. 1. INTRODUCTION Wind energy is at the forefront of alternative energy sources. The US

Sandborn, Peter

449

Alternate retrieval technology demonstrations program - test report (ARD Environmental, Inc.)  

SciTech Connect (OSTI)

A prototype vehicle, control system, and waste and water scavenging system were designed and fabricated with essentially the full capabilities of the vehicle system proposed by ARD Environmental. A test tank mockup, including riser and decontamination chamber were designed and fabricated, and approximately 830 cubic feet of six varieties of waste simulants poured. The tests were performed by ARD Environmental personnel at its site in Laurel, Maryland, from 4/22/97 through 5/2/97. The capabilities tested were deployment and retrieval, extended mobility and productivity, the ability to operate the system using video viewing only, retrieval after simulated failure, and retrieval and decontamination. Testing commenced with deployment of the vehicle into the tank. Deployment was accomplished using a crane and auxiliary winch to position the vehicle and lower it through the decontamination chamber, into the 36`` diameter x 6` high riser, and touch down on the waste field in the tank. The initial mobility tests were conducted immediately after deployment, prior to sluicing, as the waste field exhibited the greatest amount of variation at this time. This test demonstrated the ability of the vehicle to maneuver over the simulated waste field, and the ability of the operator to work with only video viewing available. In addition, the ability of the vehicle to right itself after being turned on its side was demonstrated. The production rate was evaluated daily through the testing period by measuring the surface and estimating the amount of material removed. The test demonstrated the ability of the vehicle to reduce the waste surface using 400 psi (nominal) water jets, scavenge water and material from the work area, and move to any location, even in the relatively confined space of the 20` diameter test tank. In addition, the ability to sluice to a remote scavenging module was demonstrated. The failure mode test demonstrated the ability to retrieve a stuck vehicle by pulling on the tether, even if the vehicle wheels were locked or the vehicle was on its side. Line pull required to retrieve the vehicle was measured, and side load on the riser calculated from the line pull and line angles. Finally, the decontamination test demonstrated the ability to effectively clean the umbilical and vehicle. The issues addressed and resolved during the testing were: Feasibility of deploying a vehicle- based system, mobility, production rate and limitation of water in the tank during sluicing, mining strategy, operator efficiency, vehicle recovery, and decontamination. Water usage and waste removal rates were used to estimate the time and water usage requirements for cleaning a Hanford SST.

Berglin, E.J.

1997-07-31T23:59:59.000Z

450

Advanced Wind Energy Projects Test Facility Moving to Texas Tech University  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE:Year in Review: Top Five EERE Blog Posts1-034 Advance| Department of Energy Advanced Wind

451

Advanced Airfoils for Wind Turbines: Office of Power Technologies (OPT) Success Stories Series Fact Sheet  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmospheric Optical Depth (AOD)ProductssondeadjustsondeadjustAbout the Building TechnologiesS1!4T opAddress:Adolphus L.Program Office of

452

FIELD TESTING & OPTIMIZATION OF CO2/SAND FRACTURING TECHNOLOGY  

SciTech Connect (OSTI)

These contract efforts involved the demonstration of a unique liquid free stimulation technology which was, at the beginning of these efforts, in 1993 unavailable in the US. The process had been developed, and patented in Canada in 1981, and held promise for stimulating liquid sensitive reservoirs in the US. The technology differs from that conventionally used in that liquid carbon dioxide (CO{sub 2}), instead of water is the base fluid. The CO{sub 2} is pumped as a liquid and then vaporizes at reservoir conditions, and because no other liquids or chemicals are used, a liquid free fracture is created. The process requires a specialized closed system blender to mix the liquid CO{sub 2} with proppant under pressure. These efforts were funded to consist of up to 21 cost-shared stimulation events. Because of the vagaries of CO{sub 2} supplies, service company support and operator interest only 19 stimulation events were performed in Montana, New Mexico, and Texas. Final reports have been prepared for each of the four demonstration groups, and the specifics of those demonstrations are summarized. A summary of the demonstrations of a novel liquid-free stimulation process which was performed in four groups of ''Candidate Wells'' situated in Crockett Co., TX; San Juan Co., NM; Phillips Co., MT; and Blaine Co., MT. The stimulation process which employs CO{sub 2} as the working fluid and the production responses were compared with those from wells treated with conventional stimulation technologies, primarily N{sub 2} foam, excepting those in Blaine Co., MT where the reservoir pressure is too low to clean up spent stimulation liquids. A total of 19 liquid-free CO{sub 2}/sand stimulations were performed in 16 wells and the production improvements were generally uneconomic.

Raymond L. Mazza

2004-11-30T23:59:59.000Z

453

ENERGY SMART SCHOOLS - APPLIED RESEARCH, FIELD TESTING, AND TECHNOLOGY INTEGRATION  

SciTech Connect (OSTI)

This multi-state collaborative project brings together federal, state, and private sector resources in order to move the design and use of high-performance energy technologies in schools to the forefront. Projects within each task area have begun to show results. Recently, NETL representatives and NASEO met with all Task Project Managers to discuss the progress of each project. Each project began slowly due to several unforeseen obstacles, which have now been overcome. Some projects may require an extension to complete project to full extent. Most tasks are now running smoothly and have or will soon acquire results.

Frank Bishop

2003-01-01T23:59:59.000Z

454

Wind Power Career Chat  

SciTech Connect (OSTI)

This document will teach students about careers in the wind energy industry. Wind energy, both land-based and offshore, is expected to provide thousands of new jobs in the next several decades. Wind energy companies are growing rapidly to meet America's demand for clean, renewable, and domestic energy. These companies need skilled professionals. Wind power careers will require educated people from a variety of areas. Trained and qualified workers manufacture, construct, operate, and manage wind energy facilities. The nation will also need skilled researchers, scientists, and engineers to plan and develop the next generation of wind energy technologies.

Not Available

2011-01-01T23:59:59.000Z

455

Development of Wind-and-React Bi-2212 Accelerator MagnetTechnology  

SciTech Connect (OSTI)

We report on the progress in our R&D program, targetedto develop the technology for the application of Bi2Sr2CaCu2Ox (Bi-2212)in accelerator magnets. The program uses subscale coils, wound frominsulated cables, to study suitable materials, heat treatmenthomogeneity, stability, and effects ofmagnetic field and thermal andelectro-magnetic loads. We have addressed material and reaction relatedissues and report onthe fabrication, heat treatment, and analysis ofsubscale Bi-2212 coils. Such coils can carry a current on the order of5000 A and generate, in various support structures, magnetic fields from2.6 to 9.9 T. Successful coils are therefore targeted towards a hybridNb3Sn-HTS magnet which will demonstrate the feasibility of Bi-2212 foraccelerator magnets, and open a new magnetic field realm, beyond what isachievable with Nb3Sn.

Godeke, A.; Cheng, D.; Dietderich, D.R.; English, C.D.; Felice,H.; Hannaford, C.R.; Prestemon, S.O.; Sabbi, G.; Scanlan, R.M.; Hikichi,Y.; Nishioka, J.; Hasegawa, T.

2007-08-28T23:59:59.000Z

456

Vehicle Technologies Office Merit Review 2014: INL Testing of Wireless Charging Systems  

Broader source: Energy.gov [DOE]

Presentation given by Idaho National Laboratory at 2014 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Office Annual Merit Review and Peer Evaluation Meeting about INL testing of...

457

Scaleup tests and supporting research for the development of duct injection technology  

SciTech Connect (OSTI)

Gilbert Commonwealth, Southern Research Institute and the American Electric Power Service Corporation have embarked on a program to convert DOE's Duct Injection Test Facility located at the Muskingum River Power Plant of Ohio Power Company to test alternate duct injection technologies. The technologies to be tested include slurry sorbent injection of hydrated lime using dual fluid nozzles, or a rotary atomizer and pneumatic injection of hydrated lime, with flue gas humidification before or after sorbent injection. The literature review and analysis contained in this report is a part of the preparatory effort for the test program.

Gooch, J.P.; Dismukes, E.B.; Dahlin, R.S.; Faulkner, M.G. (Southern Research Inst., Birmingham, AL (United States)); Klett, M.G.; Buchanan, T.L.; Hunt, J.E. (Gilbert/Commonwealth, Inc., Reading, PA (United States))

1989-05-01T23:59:59.000Z

458

ENGINEERING TECHNOLOGY Engineering Technology  

E-Print Network [OSTI]

, Mechatronics Technology, and Renewable Energy Technology. Career Opportunities Graduates of four: business administration, wind farm management, aircraft maintenance, tooling production, quality and safety or selected program track focus. Transfer students must talk to their advisor about transferring their courses

459

ENGINEERING TECHNOLOGY Engineering Technology  

E-Print Network [OSTI]

: business administration, energy management, wind farm management, automation and controls, aircraft, Mechatronics Technology, and Renewable Energy Technology. Career Opportunities Graduates of four students must talk to their advisor about transferring their courses over for WSU credit. Laboratory

460

Validation of Innovative Exploration Technologies for Newberry Volcano: Seismic data - raw taken by Apex Hipoint for 1st test 2012  

SciTech Connect (OSTI)

Validation of Innovative Exploration Technologies for Newberry Volcano: Seismic data - raw taken by Apex Hipoint for 1st test 2012

Jaffe, Todd

2012-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "wind technology testing" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


461

Validation of Innovative Exploration Technologies for Newberry Volcano: Seismic data - raw taken by Apex Hipoint for 1st test 2012  

DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

Validation of Innovative Exploration Technologies for Newberry Volcano: Seismic data - raw taken by Apex Hipoint for 1st test 2012

Jaffe, Todd

462

NWTC Controllable Grid Interface (Fact Sheet), National Wind Technology Center (NWTC)  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmosphericNuclear Security Administration the Contributions andData andFleet TestAccounts and AllocationsEMSL NWChem:

463

NWTC Controllable Grid Interface (Fact Sheet), National Wind Technology Center (NWTC)  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmosphericNuclear Security Administration the Contributions andData andFleet TestAccounts and AllocationsEMSL NWChem:NATIONAL

464

Development and Test of LARP Technological Quadrupole (TQC) Magnet  

SciTech Connect (OSTI)

In support of the development of a large-aperture Nb{sub 3}Sn superconducting quadrupole for the Large Hadron Collider (LHC) luminosity upgrade, two-layer quadrupole models (TQC and TQS) with 90 mm aperture are being constructed at Fermilab and LBNL within the framework of the US LHC Accelerator Research Program (LARP). This paper describes the construction and test of model TQC01. ANSYS calculations of the structure are compared with measurements during construction. Fabrication experience is described and in-process measurements are reported. Test results at 4.5 K are presented, including magnet training, current ramp rate studies and magnet quench current. Results of magnetic measurements at helium temperature are also presented.

Feher, S.; Bossert, R.C.; Ambrosio, G.; Andreev, N.; Barzi, E.; Carcagno, R.; Kashikhin, V.S.; Kashikhin, V.V.; Lamm, M.J.; Nobrega, F.; Novitski, I.; Pischalnikov, Yu.; Sylvester, C.; Tartaglia, M.; Turrioni, D.; Whitson, G.; Yamada, R.; Zlobin, A.V.; Caspi, S.; Dietderich, D.; Ferracin, P.; Hannaford, R.; Hafalia, A.R.; Sabbi, G.

2007-06-01T23:59:59.000Z

465

Development of Wind-and-React Bi-2212 Accelerator Magnet Technology  

SciTech Connect (OSTI)

We report on the progress in our R&D program, targeted to develop the technology for the application of Bi{sub 2}Sr{sub 2}CaCu{sub 2}O{sub x} (Bi-2212) in accelerator magnets. The program uses subscale coils, wound from insulated cables, to study suitable materials, heat treatment homogeneity, stability, and effects of magnetic field and thermal and electro-magnetic loads. We have addressed material and reaction related issues and report on the fabrication, heat treatment, and analysis of subscale Bi-2212 coils. Such coils can carry a current on the order of 5000 A and generate, in various support structures, magnetic fields from 2.6 to 9.9 T. Successful coils are therefore targeted towards a hybrid Nb{sub 3}Sn-HTS magnet which will demonstrate the feasibility of Bi-2212 for accelerator magnets, and open a new magnetic field realm, beyond what is achievable with Nb{sub 3}Sn.

Cheng, Daniel; Dietderich, Daniel R.; English, C.D.; Felice, Helene; Hannaford, Charles R.; Prestemon, Soren O.; Sabbi, GianLuca; Scanlan, Ron M.; Hikichi, Y.; Nishioka, J.; Hasegawa, T.; Godeke, A.

2007-06-01T23:59:59.000Z

466

Sandia National Laboratories: Photovoltaic Technology and Tour of PV Test  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmosphericNuclear Security Administration the1 -theErik SpoerkeSolar Regional Test Center in VermontContact UsFacilities

467

ENERGY SMART SCHOOLS APPLIED RESEARCH, FIELD TESTING, AND TECHNOLOGY INTEGRATION  

SciTech Connect (OSTI)

This multi-state collaborative project brings together federal, state, and private sector resources in order to move the design and use of high-performance energy technologies in schools to the forefront. NASEO and its contractors continue to make progress on completion of the statement of work. The high watermark for this period is the installation and operation of the micro-turbine in the Canton School District. The school is pleased to begin the monitoring phase of the project and looks forward to a ribbon cutting this Spring. The other projects continue to move forward and NYSERDA has now begun work in earnest. We expect the NASEO/NYSERDA workshop sometime this Spring as well. By the time the next Annual Technical Progress Report is submitted, we plan to have finished all of the work. The next year should be filled with dissemination of information to interested parties on the success of the project in an effort to get others to duplicate the high performance, and energy smart schools initiatives. We expect all of the deliverables to be completed with the possible exception of the high-performance schools retrofits in California. We expect that 2 of the 3 campuses undergoing retrofits will be complete and the third will be nearly complete. All other activities are on schedule for 10/1/03 completion at this time.

Frank Bishop

2003-04-01T23:59:59.000Z

468

Enhanced Sampling and Analysis, Selection of Technology for Testing  

SciTech Connect (OSTI)

The focus of this study includes the investigation of sampling technologies used in industry and their potential application to nuclear fuel processing. The goal is to identify innovative sampling methods using state of the art techniques that could evolve into the next generation sampling and analysis system for metallic elements. This report details the progress made in the first half of FY 2010 and includes a further consideration of the research focus and goals for this year. Our sampling options and focus for the next generation sampling method are presented along with the criteria used for choosing our path forward. We have decided to pursue the option of evaluating the feasibility of microcapillary based chips to remotely collect, transfer, track and supply microliters of sample solutions to analytical equipment in support of aqueous processes for used nuclear fuel cycles. Microchip vendors have been screened and a choice made for the development of a suitable microchip design followed by production of samples for evaluation by ANL, LANL, and INL on an independent basis.

Svoboda, John; Meikrantz, David

2010-02-01T23:59:59.000Z

469

The Cost of Transmission for Wind Energy in the United States: A Review of Transmission Planning Studies.  

E-Print Network [OSTI]

Grid. 2006. Trans mission and Wind Energy: Capturing theour sample. 20% Wind Energy: Wind Deployment System (WinDS)and Renewable Energy (Wind & Hydropower Technologies

Wiser, Ryan

2014-01-01T23:59:59.000Z

470

Wind energy information guide  

SciTech Connect (OSTI)

This book is divided into nine chapters. Chapters 1--8 provide background and annotated references on wind energy research, development, and commercialization. Chapter 9 lists additional sources of printed information and relevant organizations. Four indices provide alphabetical access to authors, organizations, computer models and design tools, and subjects. A list of abbreviations and acronyms is also included. Chapter topics include: introduction; economics of using wind energy; wind energy resources; wind turbine design, development, and testing; applications; environmental issues of wind power; institutional issues; and wind energy systems development.

NONE

1996-04-01T23:59:59.000Z

471

Parametric design of floating wind turbines  

E-Print Network [OSTI]

As the price of energy increases and wind turbine technology matures, it is evident that cost effective designs for floating wind turbines are needed. The next frontier for wind power is the ocean, yet development in near ...

Tracy, Christopher (Christopher Henry)

2007-01-01T23:59:59.000Z

472

Advanced controls for floating wind turbines  

E-Print Network [OSTI]

Floating Offshore Wind Turbines (FOWT) is a technology that stands to spearhead the rapid growth of the offshore wind energy sector and allow the exploration of vast high quality wind resources over coastal and offshore ...

Casanovas, Carlos (Casanovas Bermejo)

2014-01-01T23:59:59.000Z

473

Wind Program Newsletter: October 2014 Edition (Newsletter)  

SciTech Connect (OSTI)

The U.S. Department of Energy's Wind Program Newsletter, supported by the EERE Wind and Water Power Technologies office, highlights the Wind Program's key activities, events, and funding opportunities.

Not Available

2014-10-01T23:59:59.000Z

474

Chaninik Wind Group Wind Heat Smart Grids Final Report  

SciTech Connect (OSTI)

Final report summarizes technology used, system design and outcomes for US DoE Tribal Energy Program award to deploy Wind Heat Smart Grids in the Chaninik Wind Group communities in southwest Alaska.

Meiners, Dennis [Technical Contact

2013-06-29T23:59:59.000Z

475

Accumulation of operational history through emulation test to meet proven technology requirement for newly developed I and C technology  

SciTech Connect (OSTI)

As new advanced digital I and C technology with potential benefits of higher functionality and better cost effectiveness is available in the market, NPP (Nuclear Power Plant) operators are inclined to use the new technology for the construction of new plant and the upgrade of existing plants. However, this new technology poses risks to the NPP operators at the same time. These risks are mainly due to the poor reliability of newly developed technology. KHNP's past experiences with the new equipment shows many cases of reliability problems. And their consequences include unintended plant trips, lowered acceptance of the new digital technology by the plant I and C maintenance crew, and increased licensing burden in answering for questions from the nuclear regulatory body. Considering the fact that the risk of these failures in the nuclear plant operation is far greater than those in other industry, nuclear power plant operators want proven technology for I and C systems. This paper presents an approach for the emulation of operational history through which a newly developed technology becomes a proven technology. One of the essential elements of this approach is the feedback scheme of running the new equipment in emulated environment, gathering equipment failure, and correcting the design(and test bed). The emulation of environment includes normal and abnormal events of the new equipment such as reconfiguration of control system due to power failure, plant operation including full spectrum of credible scenarios in an NPP. Emulation of I and C equipment execution mode includes normal operation, initialization and termination, abnormal operation, hardware maintenance and maintenance of algorithm/software. Plant specific simulator is used to create complete profile of plant operational conditions that I and C equipment is to experience in the real plant. Virtual operating crew technology is developed to run the simulator scenarios without involvement of actual operators at the emulated environment. Verification and validation are performed for detecting problems of the new technology. Verification of the equipment is done in two ways, one is to evaluate the features of the equipment according to the criteria derived from good practices of well proven I and C products and the second is to evaluate the features of the equipment by I and C experts. Validations are done in two ways, one is to validate the functions and performance of the equipment and the other is to validate the robustness of the equipment by accumulation operational experience. (authors)

Yeong Cheol, Shin; Sung Kon, Kang [Nuclear Environment Technology Institute (NETEC), Korea Hydro and Nuclear Power(KHNP) P.O. Box Youseong-gu Daejeon (Korea, Republic of); Han Seong, Son [ENESYS Co., Ltd. 3F, Pianetta Bldg., 337-2, Jangdae-dong, Yuseong-gu, Daejeon (Korea, Republic of)

2006-07-01T23:59:59.000Z

476

Evaluation of melter technologies for vitrification of Hanford site low-level tank waste - phase 1 testing summary report  

SciTech Connect (OSTI)

Following negotiation of the fourth amendment to the Tri- Party Agreement for Hanford Site cleanup, commercially available melter technologies were tested during 1994 and 1995 for vitrification of the low-level waste (LLW) stream to be derived from retrieval and pretreatment of the radioactive defense wastes stored in 177 underground tanks. Seven vendors were selected for Phase 1 testing to demonstrate vitrification of a high-sodium content liquid LLW simulant. The tested melter technologies included four Joule-heated melters, a carbon electrode melter, a combustion melter, and a plasma melter. Various dry and slurry melter feed preparation processes also were tested. The technologies and Phase 1 testing results were evaluated and a preliminary technology down-selection completed. This report describes the Phase 1 LLW melter vendor testing and the tested technologies, and summarizes the testing results and the preliminary technology recommendations.

Wilson, C.N., Westinghouse Hanford

1996-06-27T23:59:59.000Z

477

Request for Information for Environmental Impact Minimization Technologies and Field Testing Opportunities  

Broader source: Energy.gov [DOE]

The Energy Department’s Wind Program is seeking feedback from the wind industry, academia, research laboratories, government agencies, and other stakeholders regarding a potential funding...

478

GSA's Green Proving Ground: Identifying, Testing and Evaluating Innovative Technologies (Presentation)  

SciTech Connect (OSTI)

GSA's Green Proving Ground (GPG) program utilizes GSA's real estate portfolio to test and evaluate innovative and underutilized sustainable building technologies and practices. Findings are used to support the development of GSA performance specifications and inform decision making within GSA, other federal agencies, and the real estate industry. The program aims to drive innovation in environmental performance in federal buildings and help lead market transformation through deployment of new technologies.

Kandt, A.; Lowell, M.

2012-05-01T23:59:59.000Z

479

The Federal Advanced Wind Turbine Program  

SciTech Connect (OSTI)

The development of technologically advanced, higher efficiency wind turbines has been identified as a high priority activity by the US wind industry. The Department of Energy`s Wind Energy Program has begun a multi-year development program aimed at assisting the wind industry with the design, development, and testing of advanced wind turbine systems that can compete with conventional electric generation for $0.05/kWh at 13 mph sites by the mid-1990s and with fossil-fuel-based generators for $0.04/kWh at 13 mph sites by the year 2000. The development plan consists of four phases: (1) Conceptual Design Studies; (2) Near-Term Product Development; (3) Next Generation Technology Integration and Design, and (4) Next- Generation Technology Development and Testing. The Conceptual Design Studies were begun in late 1990, and are scheduled for completion in the Spring of 1992. Preliminary results from these analyses are very promising and indicate that the goals stated above are technically feasible. This paper includes a brief summary of the Conceptual Design Studies and presents initial plans for the follow-on activities. 3 refs., 4 figs.

Hock, S.M.; Thresher, R.W. [National Renewable Energy Lab., Golden, CO (United States); Goldman, P.R. [USDOE, Washington, DC (United States)

1991-12-01T23:59:59.000Z

480

The Federal Advanced Wind Turbine Program  

SciTech Connect (OSTI)

The development of technologically advanced, higher efficiency wind turbines has been identified as a high priority activity by the US wind industry. The Department of Energy's Wind Energy Program has begun a multi-year development program aimed at assisting the wind industry with the design, development, and testing of advanced wind turbine systems that can compete with conventional electric generation for $0.05/kWh at 13 mph sites by the mid-1990s and with fossil-fuel-based generators for $0.04/kWh at 13 mph sites by the year 2000. The development plan consists of four phases: (1) Conceptual Design Studies; (2) Near-Term Product Development; (3) Next Generation Technology Integration and Design, and (4) Next- Generation Technology Development and Testing. The Conceptual Design Studies were begun in late 1990, and are scheduled for completion in the Spring of 1992. Preliminary results from these analyses are very promising and indicate that the goals stated above are technically feasible. This paper includes a brief summary of the Conceptual Design Studies and presents initial plans for the follow-on activities. 3 refs., 4 figs.

Hock, S M; Thresher, R W [National Renewable Energy Lab., Golden, CO (United States); Goldman, P R [USDOE, Washington, DC (United States)

1991-12-01T23:59:59.000Z

Note: This page contains sample records for the topic "wind technology testing" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


481

An experimental and numerical study of wind turbine seismic behavior  

E-Print Network [OSTI]

3.2.1 Description of Test Wind Turbine . . . . . .Figure 1.2: Components of a modern wind turbine . . . . . .D.3: D.4: Wind turbine parameters . . . . . . . . . . . .

Prowell, I.

2011-01-01T23:59:59.000Z

482

An experimental and numerical study of wind turbine seismic behavior  

E-Print Network [OSTI]

a steel 1-MW wind turbine tower. ” Engineering Structures,testing of a steel wind turbine tower. ” Proceedings of theanalysis of steel wind turbine towers in the canadian

Prowell, I.

2011-01-01T23:59:59.000Z

483

Mobile Melt-Dilute Technology Development Project FY 2005 Test Report  

SciTech Connect (OSTI)

The adaptation of Melt-Dilute technology to a mobile and deployable platform progressed with the installation of the prototype air-cooled induction furnace and power generator in an ISO cargo container. Process equipment tests were conducted in FY’05 on two fronts: the melt container and its associated hardware and the mobile furnace and generator. Container design was validated through tests at elevated temperature and pressure, under vacuum, and subjected to impact. The Mobile Melt-Dilute (MMD) furnace and power source tests were completed per the plan. The tests provided information necessary to successfully melt and dilute HEU research reactor fuel assemblies.

David A. Sell; Donald Fisher

2006-01-01T23:59:59.000Z

484

Wind Powering America Initiative (Fact Sheet)  

SciTech Connect (OSTI)

The U.S. Department of Energy's Wind Powering America initiative engages in technology market acceptance, barrier reduction, and technology deployment support activities. This fact sheet outlines ways in which the Wind Powering America team works to reduce barriers to appropriate wind energy deployment, primarily by focusing on six program areas: workforce development, communications and outreach, stakeholder analysis and resource assessment, wind technology technical support, wind power for Native Americans, and federal sector support and collaboration.

Not Available

2011-01-01T23:59:59.000Z

485

Wind Integration, Transmission, and Resource Assessment andCharacteri...  

Energy Savers [EERE]

& Publications Wind Integration, Transmission, and Resource Assessment and Characterization Projects Offshore Wind Projects Testing, Manufacturing, and Component Development...

486

Blade Testing Equipment Development and Commercialization: Cooperative Research and Development Final Report, CRADA Number CRD-09-346  

SciTech Connect (OSTI)

Blade testing is required to meet wind turbine design standards, reduce machine cost, and reduce the technical and financial risk of deploying mass-produced wind turbine models. NREL?s National Wind Technology Center (NWTC) in Colorado is the only blade test facility in the U.S. capable of performing full-scale static and fatigue testing of multi-megawatt-scale wind turbine blades. Rapid growth in wind turbine size over the past two decades has outstripped the size capacity of the NWTC blade test facility leaving the U.S. wind industry without a suitable means of testing blades for large land-based and offshore turbines. This CRADA will develop and commercialize testing technologies and test equipment, including scaling up, value engineering, and testing of equipment to be used at blade testing facilities in the U.S. and around the world.

Snowberg, D.; Hughes, S.

2013-04-01T23:59:59.000Z

487

NREL Releases RFP for Distributed Wind Turbine Competitiveness Improvement Projects  

Broader source: Energy.gov [DOE]

In support of DOE's efforts to further develop distributed wind technology, NREL's National Wind Technology Center has released a Request for Proposal for the following Distributed Wind Turbine Competitiveness Improvement Projects on the Federal Business

488

The Political Economy of Wind Power in China  

E-Print Network [OSTI]

China‘s Potent Wind Potential. ? Technology Review,Fairley, ?China‘s Potent Wind Potential,? Technology Review,s Grid-Limited Wind Energy Potential. ? Carbon-Nation. 15

Swanson, Ryan Landon

2011-01-01T23:59:59.000Z

489

Testing of Precision Agriculture Technologies in Irrigated Cotton at AG-CARES, Lamesa, Texas, 2000.  

E-Print Network [OSTI]

TITLE: Testing of Precision Agriculture Technologies in Irrigated Cotton at AG-CARES, Lamesa, Texas Specialist, Professor, Research Assistants and Technician. METHODS AND PROCEDURES: Experimental Design fertilizer in all three landscape positions of the precision agriculture site at AGCARES (Table 1 and 2

Mukhtar, Saqib

490

GSA's Green Proving Ground: Identifying, Testing and Evaluating Innovative Technologies; Preprint  

SciTech Connect (OSTI)

This paper will provide an overview of the GPG program and its objectives as well as a summary and status update of the 16 technologies selected for enhanced testing and evaluation in 2011. The federal government's General Services Administration's (GSA) Public Buildings Service (PBS) acquires space on behalf of the federal government through new construction and leasing, and acts as a caretaker for federal properties across the country. PBS owns or leases 9,624 assets and maintains an inventory of more than 370.2 million square feet of workspace, and as such has enormous potential for implementing energy efficient and renewable energy technologies to reduce energy and water use and associated emissions. The Green Proving Ground (GPG) program utilizes GSA's real estate portfolio to test and evaluate innovative and underutilized sustainable building technologies and practices. Findings are used to support the development of GSA performance specifications and inform decision making within GSA, other federal agencies, and the real estate industry. The program aims to drive innovation in environmental performance in federal buildings and help lead market transformation through deployment of new technologies. In 2011, the GPG program selected 16 technologies or practices for rigorous testing and evaluation. Evaluations are currently being performed in collaboration with the Department of Energy's National Laboratories, and a steady stream of results will be forthcoming throughout 2012. This paper will provide an overview of the GPG program and its objectives as well as a summary and status update of the 16 technologies selected for enhanced testing and evaluation in 2011. Lastly, it provides a general overview of the 2012 program.

Kandt, A.; Lowell, M.

2012-05-01T23:59:59.000Z

491

WP2 IEA Wind Task 26:The Past and Future Cost of Wind Energy  

E-Print Network [OSTI]

Cost of Energy From U.S. Wind Power Projects. PresentationTrust. (2008). Offshore Wind Power: Big Challenge, BigAgency (DEA). (1999). Wind Power in Denmark: Technologies,

Lantz, Eric

2014-01-01T23:59:59.000Z

492

Wind derivatives: hedging wind risk:.  

E-Print Network [OSTI]

??Wind derivatives are financial contracts that can be used to hedge or mitigate wind risk. In this thesis, the focus was on pricing these wind… (more)

Hoyer, S.A.

2013-01-01T23:59:59.000Z

493

U.S. Department of Energy Workshop Report - Research Needs for Wind Resource Characterization  

SciTech Connect (OSTI)

This workshop brought the different atmospheric and wind technology specialists together to evaluate research needs for wind resource characterization.

Schreck, S.; Lundquist, J.; Shaw, W.

2008-06-01T23:59:59.000Z

494

Space-time forecasting and evaluation of wind speed with statistical tests for comparing accuracy of spatial predictions  

E-Print Network [OSTI]

). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36 11 Comparing the predictive distributions for the models when the TDD model produces the best forecast (top panel) and when the BST model produces the best forecast (bottom panel). The small vertical line on the x-axis of each plot represents... of wind to benefit humans is not a new concept. Historically, wind- mills have been used to pump water from wells or to grind grain for centuries. But fast- forwarding into the 21st century, ?windmills? are being used to generate electricity. Wind turbines...

Hering, Amanda S.

2010-10-12T23:59:59.000Z

495

TECHNICAL EVALUATION OF REMEDIATION TECHNOLOGIES FOR PLUTONIUM-CONTAMINATED SOILS AT THE NEVADA TEST SITE (NTS)  

SciTech Connect (OSTI)

The Clemson Environmental Technologies Laboratory (CETL) was contracted by the National Energy Technology Center to evaluate technologies that might be used to reduce the volume of plutonium-contaminated soil at the Nevada Test Site. The project has been systematically approached. A thorough review and summary was completed for: (1) The NTS soil geological, geochemical and physical characteristics; (2) The characteristics and chemical form of the plutonium that is in these soils; (3) Previous volume reduction technologies that have been attempted on the NTS soils; (4) Vendors with technology that may be applicable; and (5) Related needs at other DOE sites. Soils from the Nevada Test Site were collected and delivered to the CETL. Soils were characterized for Pu-239/240, Am-241 and gross alpha. In addition, wet sieving and the subsequent characterization were performed on soils before and after attrition scrubbing to determine the particle size distribution and the distribution of Pu-239/240 and gross alpha as a function of particle size. Sequential extraction was performed on untreated soil to provide information about how tightly bound the plutonium was to the soil. Magnetic separation was performed to determine if this could be useful as part of a treatment approach. Using the information obtained from these reviews, three vendors were selected to demonstration their volume reduction technologies at the CETL. Two of the three technologies, bioremediation and soil washing, met the performance criteria. Both were able to significantly reduce the concentration plutonium in the soil from around 1100 pCi/g to 200 pCi/g or less with a volume reduction of around 95%, well over the target 70%. These results are especially encouraging because they indicate significant improvement over that obtained in these earlier pilot and field studies. Additional studies are recommended.

Steve Hoeffner

2003-12-31T23:59:59.000Z

496

Results from a beam test of silicon strip sensors manufactured by Infineon Technologies AG  

E-Print Network [OSTI]

Most modern particle physics experiments use silicon based sensors for their tracking systems. These sensors are able to detect particles generated in high energy collisions with high spatial resolution and therefore allow the precise reconstruction of particle tracks. So far only a few vendors were capable of producing silicon strip sensors with the quality needed in particle physics experiments. Together with the European-based semiconductor manufacturer Infineon Technologies AG (Infineon) the Institute of High Energy Physics of the Austrian Academy of Sciences (HEPHY) developed planar silicon strip sensors in p-on-n technology. This work presents the first results from a beam test of strip sensors manufactured by Infineon.

Dragicevic, M; Bartl, U; Bergauer, T; Gamerith, S; Hacker, J; König, A; Kröner, F; Kucher, E; Moser, J; Neidhart, T; Schulze, H-J; Schustereder, W; Treberspurg, W; Wübben, T

2014-01-01T23:59:59.000Z

497

Utility advanced turbine systems (ATS) technology readiness testing. Technical progress report, January 1--March 31, 1998  

SciTech Connect (OSTI)

The overall objective of the Advanced Turbine System (ATS) Phase 3 Cooperative Agreement between GE and the US Department of Energy (DOE) is the development of the GE 7H and 9H combined cycle power systems. The major effort will be expended on detail design. Validation of critical components and technologies will be performed including: hot gas path component testing, sub-scale compressor testing, steam purity test trials, and rotational heat transfer confirmation testing. Processes will be developed to support the manufacture of the first system, which was to have been sited and operated in Phase 4 but will now be sited and operated commercially by GE. This change has resulted from DOE`s request to GE for deletion of Phase 4 in favor of a restructured Phase 3 (as Phase 3R) to include full speed, no load (FSNL) testing of the 7H gas turbine. Technology enhancements that are not required for the first machine design but will be critical for future ATS advances in performance, reliability, and costs will be initiated. Long-term tests of materials to confirm design life predictions will continue. This report summarizes work accomplished in 1Q98.

NONE

1998-08-01T23:59:59.000Z

498

UTILITY ADVANCED TURBINE SYSTEMS (ATS) TECHNOLOGY READINESS TESTING: PHASE 3R  

SciTech Connect (OSTI)

The overall objective of the Advanced Turbine System (ATS) Phase 3 Cooperative Agreement between GE and the US Department of Energy (DOE) is the development of the GE 7H and 9H combined cycle power systems. The major effort will be expended on detail design. Validation of critical components and technologies will be performed, including: hot gas path component testing, sub-scale compressor testing, steam purity test trials, and rotational heat transfer confirmation testing. Processes will be developed to support the manufacture of the first system, which was to have been sited and operated in Phase 4 but will now be sited and operated commercially by GE. This change has resulted from DOE's request to GE for deletion of Phase 4 in favor of a restructured Phase 3 (as Phase 3R) to include full speed, no load (FSNL) testing of the 7H gas turbine. Technology enhancements that are not required for the first machine design but will be critical for future ATS advances in performance, reliability, and costs will be initiated. Long-term tests of materials to confirm design life predictions will continue. A schematic of the GE H machine is shown. This report summarizes work accomplished in 2Q99.

None

1999-09-01T23:59:59.000Z

499

Wind Power  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary)morphinanInformation Desert SouthwestTechnologies | Blandine Jerome Careers at WIPPCompletes aboutWind Energy

500

CONTROL TESTING OF THE UK NATIONAL NUCLEAR LABORATORY'S RADBALL TECHNOLOGY AT SAVANNAH RIVER NATIONAL LABORATORY  

SciTech Connect (OSTI)

The UK National Nuclear Laboratory (NNL) has developed a remote, non-electrical, radiation-mapping device known as RadBall (patent pending), which offers a means to locate and quantify radiation hazards and sources within contaminated areas of the nuclear industry. To date, the RadBall has been deployed in a number of technology trials in nuclear waste reprocessing plants at Sellafield in the UK. The trials have demonstrated the successful ability of the RadBall technology to be deployed and retrieved from active areas. The positive results from these initial deployment trials and the anticipated future potential of RadBall have led to the NNL partnering with the Savannah River National Laboratory (SRNL) to further underpin and strengthen the technical performance of the technology. RadBall consists of a colander-like outer shell that houses a radiation-sensitive polymer sphere. It has no power requirements and can be positioned in tight or hard-to reach places. The outer shell works to collimate radiation sources and those areas of the polymer sphere that are exposed react, becoming increasingly less transparent, in proportion to the absorbed dose. The polymer sphere is imaged in an optical-CT scanner which produces a high resolution 3D map of optical attenuation coefficients. Subsequent analysis of the optical attenuation maps provides information on the spatial distribution and strength of the sources in a given area forming a 3D characterization of the area of interest. This study completed at SRNL addresses key aspects of the testing of the RadBall technology. The first set of tests was performed at Savannah River Nuclear Solutions Health Physics Instrument Calibration Laboratory (HPICL) using various gamma-ray sources and an x-ray machine with known radiological characteristics. The objective of these preliminary tests was to identify the optimal dose and collimator thickness. The second set of tests involved a highly contaminated hot cell. The objective of this part of the testing was to characterize a hot cell with unknown radiation sources. The RadBall calibration experiments and hot cell deployment completed at SRNL were successful in that for each trial, the technology was able to locate the radiation sources. The NNL believe that the ability of RadBall to be remotely deployed with no electrical supplies into difficult to access areas of plant and locate and quantify radiation hazards is a unique radiation mapping service. The NNL consider there to be significant business potential associated with this innovative technology.

Farfan, E.

2009-11-23T23:59:59.000Z