Sample records for wind technology roadmap

  1. Roadmap Prioritizes Barriers to the Deployment of Wind Technology...

    Broader source: Energy.gov (indexed) [DOE]

    National Renewable Energy Laboratory (NREL) recently published a Built-Environment Wind Turbine Roadmap that outlines a strategy for providing consumers with safe, reliable...

  2. Wind technology roadmap | OpenEI Community

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Office of InspectorConcentrating SolarElectric Coop,SaveWhiskey Flats Geothermal Areaarticle is a stub.Wind)

  3. ENERGY EFFICIENCY TECHNOLOGY ROADMAP

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    to involve more explicit alignment with BPA's newest demand-side roadmap resource, the Demand Response Technology Roadmap. 1 Roadmap chapters have been arranged in stand-alone...

  4. China-2050 Wind Technology Roadmap | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Office of InspectorConcentrating SolarElectricEnergyCTBarreisVolcanic National Park |Chile: EnergyOpen EnergyWind

  5. Technology Investment Roadmap 2012 -2017

    E-Print Network [OSTI]

    Hickman, Mark

    Technology Investment Roadmap 2012 - 2017 20 February 2012 #12;2 Contents Introduction & Overview................................................................... 23 #12;3 Introduction & Overview This Technology Investment Roadmap (TIR) has been developed

  6. Demand Response Technology Roadmap A

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    workshop agendas, presentation materials, and transcripts. For the background to the Demand Response Technology Roadmap and to make use of individual roadmaps, the reader is...

  7. Water Heating Technologies Research and Development Roadmap ...

    Energy Savers [EERE]

    Water Heating Technologies Research and Development Roadmap Water Heating Technologies Research and Development Roadmap This roadmap establishes a set of high-priority RD&D...

  8. Emerging Water Heating Technologies Research & Development Roadmap...

    Broader source: Energy.gov (indexed) [DOE]

    Water Heating Technologies Research & Development Roadmap Emerging Water Heating Technologies Research & Development Roadmap The Research and Development (R&D) Roadmap for Emerging...

  9. OHVT technology roadmap [2000

    SciTech Connect (OSTI)

    Bradley, R.A.

    2000-02-01T23:59:59.000Z

    The OHVT Technology Roadmap for 2000 presents the multiyear program plan of the U.S. DOE's Office of Heavy Vehicle Technologies (OHVT). It is an update of the 1997 plan, reflecting changes in regulations and ongoing discussions with DOE's heavy vehicle customers. The technical plan covers three classes of trucks: (1) class 7-8 (large, on-highway trucks); (2) class 3-6 (medium duty trucks); (3) class 1-2 (pickups, vans, and sport utility vehicles) as well as enabling and supporting technologies. The Roadmap documents program goals, schedules, and milestones.

  10. Research & Development Roadmap: Emerging Water Heating Technologies...

    Energy Savers [EERE]

    Emerging Water Heating Technologies Research & Development Roadmap: Emerging Water Heating Technologies The Research and Development (R&D) Roadmap for Emerging Water Heating...

  11. Built-Environment Wind Turbine Roadmap

    SciTech Connect (OSTI)

    Smith, J.; Forsyth, T.; Sinclair, K.; Oteri, F.

    2012-11-01T23:59:59.000Z

    Although only a small contributor to total electricity production needs, built-environment wind turbines (BWTs) nonetheless have the potential to influence the public's consideration of renewable energy, and wind energy in particular. Higher population concentrations in urban environments offer greater opportunities for project visibility and an opportunity to acquaint large numbers of people to the advantages of wind projects on a larger scale. However, turbine failures will be equally visible and could have a negative effect on public perception of wind technology. This roadmap provides a framework for achieving the vision set forth by the attendees of the Built-Environment Wind Turbine Workshop on August 11 - 12, 2010, at the U.S. Department of Energy's National Renewable Energy Laboratory. The BWT roadmap outlines the stakeholder actions that could be taken to overcome the barriers identified. The actions are categorized as near-term (0 - 3 years), medium-term (4 - 7 years), and both near- and medium-term (requiring immediate to medium-term effort). To accomplish these actions, a strategic approach was developed that identifies two focus areas: understanding the built-environment wind resource and developing testing and design standards. The authors summarize the expertise and resources required in these areas.

  12. National Algal Biofuels Technology Roadmap

    E-Print Network [OSTI]

    National Algal Biofuels Technology Roadmap MAY 2010 BIOMASS PROGRAM #12;#12;U.S. DOE 2010. National Algal Biofuels Technology Roadmap. U.S. Department of Energy, Office of Energy Efficiency and Renewable Energy, Biomass Program. Visit http://biomass.energy.gov for more information National Algal Biofuels

  13. ITP Chemicals: Vision 2020 Technology Roadmap for Combinatroial...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Vision 2020 Technology Roadmap for Combinatroial Methods; September 2001 ITP Chemicals: Vision 2020 Technology Roadmap for Combinatroial Methods; September 2001...

  14. EE Regional Technology Roadmap Includes comparison

    E-Print Network [OSTI]

    EE Regional Technology Roadmap Includes comparison against 6th Power Plan (Update cyclically Data Clearinghouse BPA/RTF NEEA/Regional Programs Group Update Regional EE Technology Roadmap Lighting

  15. A ROADMAP FOR TECHNOLOGY ENHANCED PROFESSIONAL

    E-Print Network [OSTI]

    Paris-Sud XI, Université de

    A ROADMAP FOR TECHNOLOGY ENHANCED PROFESSIONAL LEARNING (TEPL) Network of Excellence for engaging themselves in open and constructive dialogue with the Roadmapping team and for their contributions to various Roadmapping events - Richard Straub, IBM, Richard Straub Secretary-General ELIG, France - Fabrizio

  16. DOE Announces Strategic Engineering and Technology Roadmap for...

    Broader source: Energy.gov (indexed) [DOE]

    Strategic Engineering and Technology Roadmap for Cleanup of Cold War Era Nuclear Waste DOE Announces Strategic Engineering and Technology Roadmap for Cleanup of Cold War Era...

  17. Energy Department Releases Roadmaps on HVAC Technologies, Water...

    Energy Savers [EERE]

    Energy Department Releases Roadmaps on HVAC Technologies, Water Heating, Appliances, and Low-GWP Refrigerants Energy Department Releases Roadmaps on HVAC Technologies, Water...

  18. Integrated Engine and Aftertreatment Technology Roadmap for EPA...

    Broader source: Energy.gov (indexed) [DOE]

    Integrated Engine and Aftertreatment Technology Roadmap for EPA 2010 Heavy-duty Emissions Regulations Integrated Engine and Aftertreatment Technology Roadmap for EPA 2010...

  19. ENERGY EFFICIENCY TECHNOLOGY ROADMAP

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    l d i n g D e s i g n E n v e l o p e R&D Program Summaries Effective, cost competitive solar shingles. Building-integrated photovoltaic (PV) technologies helps make solar power...

  20. Solar and Wind Technologies for Hydrogen Production Report to Congress

    Fuel Cell Technologies Publication and Product Library (EERE)

    DOE's Solar and Wind Technologies for Hydrogen Production Report to Congress summarizes the technology roadmaps for solar- and wind-based hydrogen production. Published in December 2005, it fulfills t

  1. Wind Energy Workforce Development: A Roadmap to a Sustainable Wind Industry (Poster)

    SciTech Connect (OSTI)

    Baring-Gould, I.; Kelly, M.

    2010-05-01T23:59:59.000Z

    As the United States moves toward a vision of greatly expanded wind energy use as outlined in the U.S. Department of Energy's 20% Wind Energy by 2030 report, the need for skilled workers at all levels in the industry is repeatedly identified as a critical issue. This presentation is an overview of the educational infrastructure and expected industry needs to support the continued development of a vibrant U.S. wind industry through a discussion of the activities identified that must be put in place to train workers. The paper will also provide a framework to address issues raised from each of the education and industry sectors, identifying a roadmap for developing an educational infrastructure to support wind technology. The presentation will also provide an understanding of the available resources, materials, and programs available across the industry. This presentation provides an overview of the educational infrastructure and expected industry needs to support the continued development of a vibrant U.S. wind industry as part of a collaborative effort to develop a wind workforce roadmap. This presentation will provide 1) A review of needed programs to train workers for the wind industry; 2) An overview of the importance education will play if the nation is to expand wind energy (both in development and deployment terms) and a review of ongoing activities with a focus on federal efforts; 3) A review of the materials and resources available across the industry and a framework to address issues raised from each of the education and industry sectors.

  2. Building America Technology-to-Market Roadmaps - Request for...

    Energy Savers [EERE]

    Building America Technology-to-Market Roadmaps - Request for Information Building America Technology-to-Market Roadmaps - Request for Information April 3, 2015 - 4:22pm Addthis The...

  3. Hydrogen Production Roadmap: Technology Pathways to the Future, January 2009

    Fuel Cell Technologies Publication and Product Library (EERE)

    Roadmap to identify key challenges and priority R&D needs associated with various hydrogen fuel production technologies.

  4. Roadmap: Information Technology for Administrative Professionals Associate of Applied Business

    E-Print Network [OSTI]

    Sheridan, Scott

    Roadmap: Information Technology for Administrative Professionals ­ Associate of Applied Business This roadmap is a recommended semester-by-semester plan of study for this major. However, courses Minimum Total Hours Minimum Major GPA Overall GPA 61 2.000 2.000 #12;Roadmap: Information Technology

  5. Roadmap: Technical and Applied Studies Computer Technology Internet/Multimedia

    E-Print Network [OSTI]

    Sheridan, Scott

    Roadmap: Technical and Applied Studies ­ Computer Technology Internet/Multimedia ­ Bachelor Updated: 22-Aug-12/TET This roadmap is a recommended semester-by-semester plan of study for this major and minimum 39 upper-division credit hours #12;Roadmap: Technical and Applied Studies ­ Computer Technology

  6. Roadmap for Process Heating Technology

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious RankCombustion | Department ofT ib l LPROJECTS IN7 Roadmap for Bioenergy and Biobased Products in

  7. Roadmap: Technology Technology Education Licensure Bachelor of Science

    E-Print Network [OSTI]

    Sheridan, Scott

    Roadmap: Technology ­ Technology Education Licensure ­ Bachelor of Science [AT-BS-TECH-TEDL] College of Applied Engineering, Sustainability and Technology Education Minor [EDUC] College of Education Reasoning TECH 10001 Information Technology 3 TECH 13580 Engineering Graphics 3 C US 10097 Destination

  8. Technology Roadmap Biofuels for Transport

    E-Print Network [OSTI]

    that we are now on; low-carbon energy technologies will play a crucial role in the energy revolution

  9. Roadmap: Radiologic Technology Radiology Department Management Technology Associate of Technical Study

    E-Print Network [OSTI]

    Sheridan, Scott

    Roadmap: Radiologic Technology ­ Radiology Department Management Technology ­ Associate-Nov-13/LNHD This roadmap is a recommended semester-by-semester plan of study for this major. However

  10. Railroad and locomotive technology roadmap.

    SciTech Connect (OSTI)

    Stodolsky, F.; Gaines, L.; Energy Systems

    2003-02-24T23:59:59.000Z

    Railroads are important to the U.S. economy. They transport freight efficiently, requiring less energy and emitting fewer pollutants than other modes of surface transportation. While the railroad industry has steadily improved its fuel efficiency--by 16% over the last decade--more can, and needs to, be done. The ability of locomotive manufacturers to conduct research into fuel efficiency and emissions reduction is limited by the small number of locomotives manufactured annually. Each year for the last five years, the two North American locomotive manufacturers--General Electric Transportation Systems and the Electro-Motive Division of General Motors--have together sold about 800 locomotives in the United States. With such a small number of units over which research costs can be spread, outside help is needed to investigate all possible ways to reduce fuel usage and emissions. Because fuel costs represent a significant portion of the total operating costs of a railroad, fuel efficiency has always been an important factor in the design of locomotives and in the operations of a railroad. However, fuel efficiency has recently become even more critical with the introduction of strict emission standards by the U.S. Environmental Protection Agency, to be implemented in stages (Tiers 0, 1, and 2) between 2000 and 2005. Some of the technologies that could be employed to meet the emission standards may negatively affect fuel economy--by as much as 10-15% when emissions are reduced to Tier 1 levels. Lowering fuel economy by that magnitude would have a serious impact on the cost to the consumer of goods shipped by rail, on the competitiveness of the railroad industry, and on this country's dependence on foreign oil. Clearly, a joint government/industry R&D program is needed to help catalyze the development of advanced technologies that will substantially reduce locomotive engine emissions while also improving train system energy efficiency. DOE convened an industry-government workshop in January 2001 to gauge industry interest. As a result, the railroads, their suppliers, and the federal government5 have embarked on a cooperative effort to further improve railroad fuel efficiency--by 25% between now and 2010 and by 50% by 2020, on an equivalent gallon per revenue ton-mile basis, while meeting emission standards, all in a cost-effective, safe manner. This effort aims to bring the collaborative approaches of other joint industry-government efforts, such as FreedomCAR and the 21st Century Truck partnership, to the problem of increasing rail fuel efficiency. Under these other programs, DOE's Office of FreedomCAR and Vehicle Technologies has supported research on technologies to reduce fuel use and air emissions by light- and heavy-duty vehicles. DOE plans to bring similar efforts to bear on improving locomotives. The Department of Transportation's Federal Railroad Administration will also be a major participant in this new effort, primarily by supporting research on railroad safety. Like FreedomCAR and the 21st Century Truck program, a joint industry-government research effort devoted to locomotives and railroad technology could be a 'win' for the public and a 'win' for industry. Industry's expertise and in-kind contributions, coupled with federal funding and the resources of the DOE's national laboratories, could make for an efficient, effective program with measurable energy efficiency targets and realistic deployment schedules. This document provides the necessary background for developing such a program. Potential R&D pathways to greatly improve the efficiency of freight transportation by rail, while meeting future emission standards in a cost-effective, safe manner, were developed jointly by an industry-government team as a result of DOE's January 2001 Workshop on Locomotive Emissions and System Efficiency and are presented here. The status of technology, technical targets, barriers, and technical approaches for engine, locomotive, rail systems, and advanced power plants and fuels are presented.

  11. AFCI Safeguards Enhancement Study: Technology Development Roadmap

    SciTech Connect (OSTI)

    Smith, Leon E.; Dougan, A.; Tobin, Stephen; Cipiti, B.; Ehinger, Michael H.; Bakel, A. J.; Bean, Robert; Grate, Jay W.; Santi, P.; Bryan, Steven; Kinlaw, M. T.; Schwantes, Jon M.; Burr, Tom; Lehn, Scott A.; Tolk, K.; Chichester, David; Menlove, H.; Vo, D.; Duckworth, Douglas C.; Merkle, P.; Wang, T. F.; Duran, F.; Nakae, L.; Warren, Glen A.; Friedrich, S.; Rabin, M.

    2008-12-31T23:59:59.000Z

    The Advanced Fuel Cycle Initiative (AFCI) Safeguards Campaign aims to develop safeguards technologies and processes that will significantly reduce the risk of proliferation in the U.S. nuclear fuel cycle of tomorrow. The Safeguards Enhancement Study was chartered with identifying promising research and development (R&D) directions over timescales both near-term and long-term, and under safeguards oversight both domestic and international. This technology development roadmap documents recognized gaps and needs in the safeguarding of nuclear fuel cycles, and outlines corresponding performance targets for each of those needs. Drawing on the collective expertise of technologists and user-representatives, a list of over 30 technologies that have the potential to meet those needs was developed, along with brief summaries of each candidate technology. Each summary describes the potential impact of that technology, key research questions to be addressed, and prospective development milestones that could lead to a definitive viability or performance assessment. Important programmatic linkages between U.S. agencies and offices are also described, reflecting the emergence of several safeguards R&D programs in the U.S. and the reinvigoration of nuclear fuel cycles across the globe.

  12. Wind Technologies & Evolving Opportunities (Presentation)

    SciTech Connect (OSTI)

    Robichaud, R.

    2014-07-01T23:59:59.000Z

    This presentation covers opportunities for wind technology; wind energy market trends; an overview of the National Wind Technology Center near Boulder, Colorado; wind energy price and cost trends; wind turbine technology improvements; and wind resource characterization improvements.

  13. 2011 Wind Technologies Market Report

    E-Print Network [OSTI]

    Bolinger, Mark

    2013-01-01T23:59:59.000Z

    that includes wind turbine towers. 2011 Wind TechnologiesSets Other Wind Turbine Components Towers Wind-Poweredselected wind turbine components includes towers as well as

  14. 2010 Wind Technologies Market Report

    E-Print Network [OSTI]

    Wiser, Ryan

    2012-01-01T23:59:59.000Z

    that includes wind turbine towers. 2010 Wind TechnologiesImports : Other Wind Turbine Components Towers Wind-Poweredselected wind turbine components includes towers as well as

  15. Building America Webinar: Building America Technology-to-Market Roadmaps

    Broader source: Energy.gov [DOE]

    This webinar introduced the integrated Building America Technology-to-Market Roadmaps that will serve as a guide for Building Americas research, development, and demonstration activities over the coming years and result in an integrated Building America Research-to-Market Plan in 2015. This webinar is intended to be an informative session to assist stakeholders in providing review and comment to the Request for Information that will be issued regarding these Roadmaps.

  16. 2012 Wind Technologies Market Report

    E-Print Network [OSTI]

    Wiser, Ryan

    2014-01-01T23:59:59.000Z

    Colorado: Xcel Energy. 2012 Wind Technologies Market ReportOperator. 2012 Wind Technologies Market Report Chadbourne &Power Company. 2012 Wind Technologies Market Report EnerNex

  17. Roadmap: Electrical/Electronic Engineering Technology Electrical Engineering Technology (General) Associate of Applied Science

    E-Print Network [OSTI]

    Khan, Javed I.

    Roadmap: Electrical/Electronic Engineering Technology Electrical Engineering Technology (General: Electrical/Electronic Engineering Technology Electrical Engineering Technology (General) Associate Important Notes Semester One: [17 Credit Hours] EERT 12000 Electric Circuits I 4 MERT 12000 Engineering

  18. Power Tower Technology Roadmap and cost reduction plan.

    SciTech Connect (OSTI)

    Mancini, Thomas R.; Gary, Jesse A. (U.S. Department of Energy); Kolb, Gregory J.; Ho, Clifford Kuofei

    2011-04-01T23:59:59.000Z

    Concentrating solar power (CSP) technologies continue to mature and are being deployed worldwide. Power towers will likely play an essential role in the future development of CSP due to their potential to provide dispatchable solar electricity at a low cost. This Power Tower Technology Roadmap has been developed by the U.S. Department of Energy (DOE) to describe the current technology, the improvement opportunities that exist for the technology, and the specific activities needed to reach the DOE programmatic target of providing competitively-priced electricity in the intermediate and baseload power markets by 2020. As a first step in developing this roadmap, a Power Tower Roadmap Workshop that included the tower industry, national laboratories, and DOE was held in March 2010. A number of technology improvement opportunities (TIOs) were identified at this workshop and separated into four categories associated with power tower subsystems: solar collector field, solar receiver, thermal energy storage, and power block/balance of plant. In this roadmap, the TIOs associated with power tower technologies are identified along with their respective impacts on the cost of delivered electricity. In addition, development timelines and estimated budgets to achieve cost reduction goals are presented. The roadmap does not present a single path for achieving these goals, but rather provides a process for evaluating a set of options from which DOE and industry can select to accelerate power tower R&D, cost reductions, and commercial deployment.

  19. Text-Alternative Version of Building America Webinar: Technology-to-Market Roadmaps

    Broader source: Energy.gov [DOE]

    This is the text-alternative version of the Building America Webinar: Technology-to-Market Roadmaps.

  20. Science and Technology Roadmapping to Support Project Planning

    SciTech Connect (OSTI)

    Mc Carthy, Jeremiah Justin; Haley, Daniel Joseph; Dixon, Brent Wayne

    2001-07-01T23:59:59.000Z

    Disciplined science and technology roadmapping provides a framework to coordinate research and development activities with project objectives. This case-history paper describes initial project technology needs identification, assessment and R&D ranking activities supporting characterization of 781 waste tanks requiring a 'hazardous waste determination' or 'verification of empty' decision to meet an Idaho state Voluntary Consent Order.

  1. Vehicle Technologies Office: US DRIVE Partnership Plan, Roadmaps...

    Office of Environmental Management (EM)

    Energy Storage: Electrochemical Energy Storage Technical Team Roadmap Fuel Cells: Fuel Cell Technical Team Roadmap Grid Interaction: Grid Interaction Technical Team Roadmap...

  2. Roadmap: Theatre Studies Design and Technology Bachelor of Fine Arts [CA-BFA-THEA-DT

    E-Print Network [OSTI]

    Sheridan, Scott

    Roadmap: Theatre Studies ­ Design and Technology ­ Bachelor of Fine Arts [CA-BFA-THEA-DT] College This roadmap is a recommended semester-by-semester plan of study for this major. However, courses learning requirement and counts in the major GPA #12;Roadmap: Theatre Studies ­ Design and Technology

  3. Roadmap: Radiologic Technology Associate of Technical Study [RE-ATS-RADT

    E-Print Network [OSTI]

    Sheridan, Scott

    Roadmap: Radiologic Technology ­ Associate of Technical Study [RE-ATS-RADT] Regional College Catalog Year: 2013-2014 Page 1 of 1 | Last Updated: 25-Nov-13/LNHD This roadmap is a recommended semester

  4. Power sources manufactures association : power technology roadmap workshop - 2006.

    SciTech Connect (OSTI)

    Bowers, John S.

    2006-03-01T23:59:59.000Z

    The Power Sources Manufacturers Association (PSMA) is pleased to announce the release of the latest Power Technology Roadmap Workshop Report. This Fifth Edition Workshop Report includes presentations and discussions from the workshop as seen by the participants that included many of the industry's most influential members representing end-users, power supply manufacturers, component suppliers, consultants and academia. This report provides detailed projections for the next three to four years of various technologies in a quantitative form. There was special emphasis on how the increasing use of digital technologies will affect the industry in the next four years. The technology trend analysis and the roadmap is provided for the following specific product families expected to be the areas of largest market growth: (1) Ac-dc front end power supplies--1 kW from a single phase ac source; (2) External ac-dc power supplies; (3) Dc-dc bus converters; and (4) Non-isolated dc-dc converters. Bruce Miller, Chairman of PSMA, stated that 'the Power Technology Roadmap Workshop Report is an extensive document that analyzes and provides projections for most major technical parameters for a specific power supply. It is a unique document as it contains technology/parametric trends in a roadmap fashion from a variety of diverse sources, giving significant depth to its content. No such information is available from any other source'. The Power Technology Roadmap Workshop Report is available at no cost as to PSMA Regular and Associate members and at a reduced price to Affiliate members as a benefit of membership. The report will be offered to non-members at a price of $2490. For further information or to buy a copy of the report, please visit the publications page or the PSMA website or contact the Association Office.

  5. WREF 2012: THE PAST AND FUTURE COST OF WIND ENERGY

    E-Print Network [OSTI]

    Wiser, Ryan

    2013-01-01T23:59:59.000Z

    2009). Technology Roadmap Wind Energy. Paris, France:EWEA. (2011). Pure Power Wind Energy Targets for 2020 andBelgium: European Wind Energy Association (19) Electric

  6. WREF 2012: THE PAST AND FUTURE COST OF WIND ENERGY

    E-Print Network [OSTI]

    Wiser, Ryan

    2013-01-01T23:59:59.000Z

    2009). Technology Roadmap Wind Energy. Paris, France:5) Cea, A; Simonot, E. (2011). The Cost of Wind Energy.Spanish Wind Energy Association (AEE) contribution to IEA

  7. Roadmap: Engineering Technology Green and Alternative Energy Bachelor of Science

    E-Print Network [OSTI]

    Sheridan, Scott

    Roadmap: Engineering Technology ­ Green and Alternative Energy ­ Bachelor of Science [RE 26636 Project Management for Administrative Professionals 1 Green and Alternative Energy Elective 3 and Material Science 3 Green and Alternative Energy Elective 3 See note 2 on page 2 Kent Core Requirement 3

  8. Roadmap: Business Management Technology Business Administration Associate of Applied Business

    E-Print Network [OSTI]

    Sheridan, Scott

    Roadmap: Business Management Technology ­ Business Administration ­ Associate of Applied Business Credit Hours] ACTT 11000 Accounting I-Financial 4 BMRT 11000 Introduction to Business 3 COMT 11000 21000 Business Law and Ethics I 3 BMRT 21011 Fundamentals of Financial Management 3 BMRT 21050

  9. IEA Technology Roadmaps | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data CenterFranconia, Virginia: Energy Resources Jump to: navigation,Ohio:GreerHiCalifornia: EnergytheInformationRoadmaps Jump to:

  10. Roadmap: Aeronautics-Flight Technology-Bachelor of Science [AT-BS-AERN-FLGT

    E-Print Network [OSTI]

    Sheridan, Scott

    Roadmap: Aeronautics-Flight Technology-Bachelor of Science [AT-BS-AERN-FLGT] College of Applied This roadmap is a recommended semester-by-semester plan of study for this major. However, courses Resource Management 2 Offered in fall only AERN 45721 Crew Resource Management Laboratory 1 #12;Roadmap

  11. Roadmap: Applied Engineering Applied Engineering and Technology Management Bachelor of Science

    E-Print Network [OSTI]

    Sheridan, Scott

    Roadmap: Applied Engineering ­ Applied Engineering and Technology Management ­ Bachelor of Science­2013 Page 1 of 2 | Last Updated: 21-May-12/JS This roadmap is a recommended semester-by-semester plan TECH 43550 Computer-Aided Manufacturing 3 General Elective 6 #12;Roadmap: Applied Engineering

  12. Next-Generation Wind Technology

    Broader source: Energy.gov [DOE]

    The Wind Program works with industry partners to increase the performance and reliability of next-generation wind technologies while lowering the cost of wind energy.

  13. Power Generation Asset Management Technology Roadmap M

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    be done to determine optimal sensor deployment to address these criteria. TC8 Incorporate turbine layouts, make efforts and operational status within wind power plants to have more...

  14. Supplemental Material to Cryogenic Roadmap Current Commercial Technology

    E-Print Network [OSTI]

    Supplemental Material to Cryogenic Roadmap Current Commercial Technology Refrigeration Approximate,500 Brayton Turbine $800,000 $69.57 167 14.5 18.94% Liquid Air Plants Cosmodyne GF-1 80 N2 4 T/Day 8,400 Brayton Turbine $700,000 $83.33 372 44.3 6.21% Cosmodyne Aspen 1000 80 N2 1000 nM3 /Hr 64,969 Brayton

  15. The roadmap for downscaling and introducing new technologies in the semiconductor industry is well laid out for the next ten years2.

    E-Print Network [OSTI]

    The roadmap for downscaling and introducing new technologies in the semiconductor industry is well in the International Technology Roadmap for Semiconductors, one- dimensional structures, such as carbon nanotubes

  16. Hydrogen Delivery Technology Roadmap, November 2005

    Fuel Cell Technologies Publication and Product Library (EERE)

    Document describing plan for research into and development of hydrogen delivery technology for transportation applications.

  17. Hydrogen Storage Technologies Roadmap, November 2005

    Fuel Cell Technologies Publication and Product Library (EERE)

    Document describing plan for research into and development of hydrogen storage technology for transportation applications.

  18. Window Industry Technology Roadmap | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Office of InspectorConcentrating SolarElectric Coop,SaveWhiskey Flats Geothermal Areaarticle is a stub.Wind)Wind

  19. Implementation of a manufacturing technology roadmapping initiative

    E-Print Network [OSTI]

    Johnson, Marcus Cullen

    2012-01-01T23:59:59.000Z

    Strategic technology planning is a core competency of companies using technological capabilities for competitive advantage. It is also a competency with which many large companies struggle due to the cross-functional ...

  20. Wind Energy Resources and Technologies

    Broader source: Energy.gov [DOE]

    This page provides a brief overview of wind energy resources and technologies supplemented by specific information to apply wind energy within the Federal sector.

  1. 2010 Wind Technologies Market Report

    E-Print Network [OSTI]

    Wiser, Ryan

    2012-01-01T23:59:59.000Z

    wind turbine equipment-related costs are assumed to equal 85% of 2010 Wind Technologies Market Report periods to further avoid noise

  2. ITP Mining: Exploration and Mining Technology Roadmap

    Broader source: Energy.gov (indexed) [DOE]

    disturbance. Low-Cost and Efficient Production- Use advanced technologies to improve process efficiencies from exploration to final product. Advanced Products- Maintain and...

  3. 2010 Wind Technologies Market Report

    E-Print Network [OSTI]

    Wiser, Ryan

    2012-01-01T23:59:59.000Z

    ET2/TL-08-1474. May 19, 2010 Wind Technologies Market ReportAssociates. 2010. SPP WITF Wind Integration Study. Little10, 2010. David, A. 2009. Wind Turbines: Industry and Trade

  4. Sinomatech Wind Power Blade aka Sinoma Science Technology Wind...

    Open Energy Info (EERE)

    Sinomatech Wind Power Blade aka Sinoma Science Technology Wind Turbine Blade Co Ltd Jump to: navigation, search Name: Sinomatech Wind Power Blade (aka Sinoma Science & Technology...

  5. Wind Energy and Spatial Technology

    E-Print Network [OSTI]

    Schweik, Charles M.

    2/3/2011 1 Wind Energy and Spatial Technology Lori Pelech Why Wind Energy? A clean, renewable 2,600 tons of carbon emissions annually ­ The economy · Approximately 85,000 wind energy workers to Construct a Wind Farm... Geo-Spatial Components of Wind Farm Development Process Selecting a Project Site

  6. Roadmap: Electrical/Electronic Engineering Technology -Electrical Engineering Technology (General) -Associate of Applied Science

    E-Print Network [OSTI]

    Khan, Javed I.

    Roadmap: Electrical/Electronic Engineering Technology - Electrical Engineering Technology (General GPA Type Term Taken Semester One [17 Credits] ! EERT 12000 Electric Circuits I 4 ! MERT 12000 Electric Circuits II 3 ! EERT 12010 Introduction to Electronics 4 ENG 20002 Introduction to Technical

  7. Roadmap: Electrical/Electronic Engineering Technology Electrical Engineering Technology (General) Associate of Applied Science

    E-Print Network [OSTI]

    Sheridan, Scott

    Roadmap: Electrical/Electronic Engineering Technology ­ Electrical Engineering Technology (General Important Notes Semester One: [17 Credit Hours] EERT 12000 Electric Circuits I 4 MERT 12000 Engineering Core Summary Semester Two: [19 Credit Hours] EERT 12001 Electric Circuits II 3 EERT 12010 Introduction

  8. Technology Roadmap Research Program for the Steel Industry

    SciTech Connect (OSTI)

    Joseph R. Vehec

    2010-12-30T23:59:59.000Z

    The steel industry's Technology Roadmap Program (TRP) is a collaborative R&D effort jointly sponsored by the steel industry and the United States Department of Energy. The TRP program was designed to develop new technologies to save energy , increase competitiveness, and improve the environment. TRP ran from July, 1997 to December, 2008, with a total program budget of $38 million dollars. During that period 47 R&D projects were performed by 28 unique research organizations; co-funding was provided by DOE and 60 industry partners. The projects benefited all areas of steelmaking and much know-how was developed and transferred to industry. The American Iron and Steel Institute is the owner of all intellectual property developed under TRP and licenses it at commercial rates to all steelmakers. TRP technologies are in widespread use in the steel industry as participants received royalty-free use of intellectual property in return for taking the risk of funding this research.

  9. Technology Roadmapping: The Integration of Strategic

    Office of Scientific and Technical Information (OSTI)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary)morphinanInformation InInformation In closing, an overarchingInformationTHERMOANALYTICALSLAC, 28Technology

  10. Ground-based Nuclear Detonation Detection (GNDD) Technology Roadmap

    SciTech Connect (OSTI)

    Casey, Leslie A.

    2014-01-13T23:59:59.000Z

    This GNDD Technology Roadmap is intended to provide guidance to potential researchers and help management define research priorities to achieve technology advancements for ground-based nuclear explosion monitoring science being pursued by the Ground-based Nuclear Detonation Detection (GNDD) Team within the Office of Nuclear Detonation Detection in the National Nuclear Security Administration (NNSA) of the U.S. Department of Energy (DOE). Four science-based elements were selected to encompass the entire scope of nuclear monitoring research and development (R&D) necessary to facilitate breakthrough scientific results, as well as deliver impactful products. Promising future R&D is delineated including dual use associated with the Comprehensive Nuclear-Test-Ban Treaty (CTBT). Important research themes as well as associated metrics are identified along with a progression of accomplishments, represented by a selected bibliography, that are precursors to major improvements to nuclear explosion monitoring.

  11. 2010 Wind Technologies Market Report

    E-Print Network [OSTI]

    Wiser, Ryan

    2012-01-01T23:59:59.000Z

    ET2/TL-08-1474. May 19, 2010 Wind Technologies Market ReportIndustry Annual Market Report: Year Ending 2010. Washington,Quarter 2011 Market Report. Washington, D.C. : American Wind

  12. Wind Technologies and Evolving Opportunities (Presentation)

    SciTech Connect (OSTI)

    Robi Robichaud

    2014-03-01T23:59:59.000Z

    This presentation provides an overview of wind energy research being conducted at the National Wind Technology Center, market and technology trends in wind energy, and opportunities for wind technology.

  13. 2009 Wind Technologies Market Report

    E-Print Network [OSTI]

    Wiser, Ryan

    2010-01-01T23:59:59.000Z

    Wind Technologies Market Report References Acker, T. 2007.Industry Annual Market Report: Year Ending 2009. Washington,AWEA Mid-Year 2010 Market Report. Washington, DC: American

  14. PROGRESS OF WIND ENERGY TECHNOLOGY

    E-Print Network [OSTI]

    Bar?? zerdem

    This paper provides an overview of the progress of wind energy technology, along with the current status of wind power worldwide. Over the period of 2000-2012 grid-connected installed wind power has increased by a factor of more than 16. Due to the fast growth in wind market, wind turbine technology has developed different design approaches during this period. In addition to this, issues such as power grid integration, environmental impact, and economics are studied and discussed briefly in this paper, as well.

  15. Research and Development Roadmap: Windows and Building Envelope...

    Energy Savers [EERE]

    Envelope Technologies Overview - 2014 BTO Peer Review Research & Development Roadmap: Emerging HVAC Technologies Research & Development Roadmap: Emerging Water Heating Technologies...

  16. Trends in robotics: A summary of the Department of Energy`s critical technology roadmap

    SciTech Connect (OSTI)

    Eicker, P.J.

    1998-08-10T23:59:59.000Z

    Technology roadmaps serve as pathways to the future. They call attention to future needs for research and development; provide a structure for organizing technology forecasts and programs; and help communicate technological needs and expectations among end users and the research and development (R and D) community. Critical Technology roadmaps, of which the Robotics and Intelligent Machines (RIM) Roadmap is one example, focus on enabling or cross-cutting technologies that address the needs of multiple US Department of Energy (DOE) offices. Critical Technology roadmaps must be responsive to mission needs of the offices; must clearly indicate how the science and technology can improve DOE capabilities; and must describe an aggressive vision for the future of the technology itself. The RIM Roadmap defines a DOE research and development path for the period beginning today, and continuing through the year 2020. Its purpose is to identify, select and develop objectives that will satisfy near- and long-term challenges posed by DOE`s mission objectives. If implemented, this roadmap will support DOE`s mission needs while simultaneously advancing the state-of-the-art of RIM. For the purposes of this document, RIM refers to systems composed of machines, sensors, computers and software that deliver processes to DOE operations. The RIM Roadmap describes how such systems will revolutionize DOE processes, most notably manufacturing, hazardous and remote operations, and monitoring and surveillance. The advances in DOE operations and RIM discussed in this document will be possible due to the developments in many other areas of science and technology, including computing, communication, electronics and micro-engineering. Modern software engineering techniques will permit the implementation of inherently safe RIM systems that will depend heavily on software.

  17. Volume I of the roadmap marks the completion of the first phase of the NIST Cloud Computing program and initiative to collaboratively build a USG Cloud Computing Technology Roadmap. This milestone is

    E-Print Network [OSTI]

    Next Steps Volume I of the roadmap marks the completion of the first phase of the NIST Cloud Computing program and initiative to collaboratively build a USG Cloud Computing Technology Roadmap, and with the program time line presented in November 2010. As described previously, this roadmap document

  18. Fluoride Salt-Cooled High-Temperature Reactor Technology Development and Demonstration Roadmap

    SciTech Connect (OSTI)

    Holcomb, David Eugene [ORNL; Flanagan, George F [ORNL; Mays, Gary T [ORNL; Pointer, William David [ORNL; Robb, Kevin R [ORNL; Yoder Jr, Graydon L [ORNL

    2013-11-01T23:59:59.000Z

    Fluoride salt-cooled High-temperature Reactors (FHRs) are an emerging reactor class with potentially advantageous performance characteristics, and fully passive safety. This roadmap describes the principal remaining FHR technology challenges and the development path needed to address the challenges. This roadmap also provides an integrated overview of the current status of the broad set of technologies necessary to design, evaluate, license, construct, operate, and maintain FHRs. First-generation FHRs will not require any technology breakthroughs, but do require significant concept development, system integration, and technology maturation. FHRs are currently entering early phase engineering development. As such, this roadmap is not as technically detailed or specific as would be the case for a more mature reactor class. The higher cost of fuel and coolant, the lack of an approved licensing framework, the lack of qualified, salt-compatible structural materials, and the potential for tritium release into the environment are the most obvious issues that remain to be resolved.

  19. Roadmap for Agriculture

    E-Print Network [OSTI]

    Buckel, Jeffrey A.

    A Science Roadmap for Food and Agriculture A Science Roadmap for Food and Agriculture Prepared and Policy (ESCOP)-- Science and Technology Committee November 2010 #12;2 pA Science Roadmap for Food and Agriculture #12;A Science Roadmap for Food and Agriculture p i About this Publication To reference

  20. 2008 WIND TECHNOLOGIES MARKET REPORT

    E-Print Network [OSTI]

    Bolinger, Mark

    2010-01-01T23:59:59.000Z

    Reference Case Service Report, April 2009). DOE/EIA-0383(Integration StudyFinal Report. Prepared for Xcel Energy andWind Technologies Market Report EnerNex Corp. and Windlogics

  1. Roadmap: Environmental Health and Safety -Environmental Technology -Associate of Applied Science

    E-Print Network [OSTI]

    Khan, Javed I.

    Roadmap: Environmental Health and Safety - Environmental Technology - Associate of Applied Science [17 Credits] COMT 11000 Introduction to Computer Systems 3 EVHS 10001 Environmental Technology I or PH] BSCI 10110 Biological Diversity 4 KBS EVHS 20004 Environmental Health and Safety I 3 GEOG 17063 World

  2. Wind Energy Workforce Development: A Roadmap to a Wind Energy Educational Infrastructure (Presentation)

    SciTech Connect (OSTI)

    Baring-Gould, I.

    2011-05-01T23:59:59.000Z

    Wind Powering America national technical director Ian Baring-Gould made this presentation about workforce development in the wind energy industry to an audience at the American Wind Energy Association's annual WINDPOWER conference in Anaheim. The presentation outlines job projections from the 20% Wind Energy by 2030 report and steps to take at all levels of educational institutions to meet those projections.

  3. 1998 technology roadmap for integrated circuits used in critical applications

    SciTech Connect (OSTI)

    Dellin, T.A.

    1998-09-01T23:59:59.000Z

    Integrated Circuits (ICs) are being extensively used in commercial and government applications that have extreme consequences of failure. The rapid evolution of the commercial microelectronics industry presents serious technical and supplier challenges to this niche critical IC marketplace. This Roadmap was developed in conjunction with the Using ICs in Critical Applications Workshop which was held in Albuquerque, NM, November 11--12, 1997.

  4. Roadmap: Horticulture Technology Landscape Design Associate of Applied Science

    E-Print Network [OSTI]

    Sheridan, Scott

    Summer I: [6 Credit Hours] HORT 26018 Landscape Construction I 3 HORT 26021 Cooperative Work Experience Geology 3 Fulfills Kent Core Basic Sciences Technical Elective 3 Students preparing for the Bachelor Cooperative Work Experience in Landscape Management 3 Course is taken twice, in summer I and II #12;Roadmap

  5. Roadmap: Horticulture Technology Turfgrass Management Associate of Applied Science

    E-Print Network [OSTI]

    Sheridan, Scott

    Credit Hours] HORT 26018 Landscape Construction I 3 HORT 26031 Cooperative Work Experience in Turfgrass 3 Fulfills Kent Core Basic Sciences Technical Elective 3 Students preparing for the Bachelor Cooperative Work Experience in Turfgrass Management 3 Course is taken twice, in summer I and II #12;Roadmap

  6. Wind Energy at NREL's National Wind Technology Center

    ScienceCinema (OSTI)

    None

    2013-05-29T23:59:59.000Z

    It is a pure, plentiful natural resource. Right now wind is in high demand and it holds the potential to transform the way we power our homes and businesses. NREL is at the forefront of wind energy research and development. NREL's National Wind Technology Center (NWTC) is a world-class facility dedicated to accelerating and deploying wind technology.

  7. Wind Energy at NREL's National Wind Technology Center

    SciTech Connect (OSTI)

    None

    2010-01-01T23:59:59.000Z

    It is a pure, plentiful natural resource. Right now wind is in high demand and it holds the potential to transform the way we power our homes and businesses. NREL is at the forefront of wind energy research and development. NREL's National Wind Technology Center (NWTC) is a world-class facility dedicated to accelerating and deploying wind technology.

  8. Roadmap: Environmental Health and Safety Environmental Technology Associate of Applied Science

    E-Print Network [OSTI]

    Khan, Javed I.

    Roadmap: Environmental Health and Safety ­ Environmental Technology ­ Associate of Applied Science 10110 Biological Diversity 4 Fulfills Kent Core Basic Sciences EVHS 20004 Environmental Health CHEM 10050 Fundamentals of Chemistry 3 Fulfills Kent Core Basic Sciences EVHS 20001 Environmental Law 3

  9. Roadmap: Environmental Health and Safety Environmental Technology Associate of Applied Science

    E-Print Network [OSTI]

    Sheridan, Scott

    Roadmap: Environmental Health and Safety ­ Environmental Technology ­ Associate of Applied Science Environmental Geology 3 Fulfills Kent Core Basic Sciences Semester Four: [14-15 Credit Hours] CHEM 10052 Social Sciences (3 credit hours) 3 Basic Sciences (3 credit hours) Fulfilled in this major with CHEM

  10. Next-Generation Wind Technology | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    Next-Generation Wind Technology Next-Generation Wind Technology The Wind Program works with industry partners to increase the performance and reliability of next-generation wind...

  11. Structural health and prognostics management for offshore wind turbines : an initial roadmap.

    SciTech Connect (OSTI)

    Griffith, Daniel Todd; Resor, Brian Ray; White, Jonathan Randall; Paquette, Joshua A.; Yoder, Nathanael C. [ATA Engineering, San Diego, CA

    2012-12-01T23:59:59.000Z

    Operations and maintenance costs for offshore wind plants are expected to be significantly higher than the current costs for onshore plants. One way in which these costs may be able to be reduced is through the use of a structural health and prognostic management system as part of a condition based maintenance paradigm with smart load management. To facilitate the creation of such a system a multiscale modeling approach has been developed to identify how the underlying physics of the system are affected by the presence of damage and how these changes manifest themselves in the operational response of a full turbine. The developed methodology was used to investigate the effects of a candidate blade damage feature, a trailing edge disbond, on a 5-MW offshore wind turbine and the measurements that demonstrated the highest sensitivity to the damage were the local pitching moments around the disbond. The multiscale method demonstrated that these changes were caused by a local decrease in the blade's torsional stiffness due to the disbond, which also resulted in changes in the blade's local strain field. Full turbine simulations were also used to demonstrate that derating the turbine power by as little as 5% could extend the fatigue life of a blade by as much as a factor of 3. The integration of the health monitoring information, conceptual repair cost versus damage size information, and this load management methodology provides an initial roadmap for reducing operations and maintenance costs for offshore wind farms while increasing turbine availability and overall profit.

  12. IEA-Technology Roadmap: Concentrating Solar Power | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data CenterFranconia, Virginia: Energy Resources Jump to: navigation,Ohio:GreerHiCalifornia: EnergytheInformationRoadmaps JumpTool Summary

  13. 2013 Wind Technologies Market Report Data | Department of Energy

    Office of Environmental Management (EM)

    Report Data 2013 Wind Technologies Market Report Data 2013 Wind Technologies Market Report Data Tables.xlsx More Documents & Publications 2012 Data File 2013 Wind Technologies...

  14. Technology Assessment and Roadmap for the Emergency Radiation Dose Assessment Program

    SciTech Connect (OSTI)

    Turteltaub, K W; Hartman-Siantar, C; Easterly, C; Blakely, W

    2005-10-03T23:59:59.000Z

    A Joint Interagency Working Group (JIWG) under the auspices of the Department of Homeland Security Office of Research and Development conducted a technology assessment of emergency radiological dose assessment capabilities as part of the overall need for rapid emergency medical response in the event of a radiological terrorist event in the United States. The goal of the evaluation is to identify gaps and recommend general research and development needs to better prepare the Country for mitigating the effects of such an event. Given the capabilities and roles for responding to a radiological event extend across many agencies, a consensus of gaps and suggested development plans was a major goal of this evaluation and road-mapping effort. The working group consisted of experts representing the Departments of Homeland Security, Health and Human Services (Centers for Disease Control and the National Institutes of Health), Food and Drug Administration, Department of Defense and the Department of Energy's National Laboratories (see appendix A for participants). The specific goals of this Technology Assessment and Roadmap were to: (1) Describe the general context for deployment of emergency radiation dose assessment tools following terrorist use of a radiological or nuclear device; (2) Assess current and emerging dose assessment technologies; and (3) Put forward a consensus high-level technology roadmap for interagency research and development in this area. This report provides a summary of the consensus of needs, gaps and recommendations for a research program in the area of radiation dosimetry for early response, followed by a summary of the technologies available and on the near-term horizon. We then present a roadmap for a research program to bring present and emerging near-term technologies to bear on the gaps in radiation dose assessment and triage. Finally we present detailed supporting discussion on the nature of the threats we considered, the status of technology today, promising emerging technologies and references for further reading.

  15. 2010 Wind Technologies Market Report

    E-Print Network [OSTI]

    Wiser, Ryan

    2012-01-01T23:59:59.000Z

    wind turbine components (specifically, generators, bladeschangers. Wind turbine components such as blades, towers,17%). Wind turbine component exports (towers, blades,

  16. Vision 2020: Lighting Technology Roadmap | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home5b9fcbce19 NoPublic Utilities Address: 160 East 300 South Place: Salt Lake City,Division of Oil and GasRules,Energy IncRoadmap

  17. Roadmapping Engine Technology for Post-2020 Heavy Duty Vehicles |

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious RankCombustion | Department ofT ib l LPROJECTS IN7 Roadmap for Bioenergy and Biobased ProductsT hisDepartment

  18. 2011 Wind Technologies Market Report

    E-Print Network [OSTI]

    Bolinger, Mark

    2013-01-01T23:59:59.000Z

    and K. Porter. 2011. Wind Power and Electricity Markets.41 6. Wind Power Priceat Various Levels of Wind Power Capacity Penetration Wind

  19. 2009 Wind Technologies Market Report

    E-Print Network [OSTI]

    Wiser, Ryan

    2010-01-01T23:59:59.000Z

    Prepared for the Utility Wind Integration Group. Arlington,Arizona Public Service Wind Integration Cost Impact Study.an Order Revising the Wind Integration Rate for Wind Powered

  20. 2010 Wind Technologies Market Report

    E-Print Network [OSTI]

    Wiser, Ryan

    2012-01-01T23:59:59.000Z

    2010. SPP WITF Wind Integration Study. Little Rock,an Order Revising the Wind Integration Rate for Wind PoweredPacifiCorp. 2010. 2010 Wind Integration Study. Portland,

  1. Wind Technology Advancements and Impacts on Western Wind Resources (Presentation)

    SciTech Connect (OSTI)

    Robichaud, R.

    2014-09-01T23:59:59.000Z

    Robi Robichaud made this presentation at the Bureau of Land Management West-wide Wind Opportunities and Constraints Mapping (WWOCM) Project public meeting in Denver, Colorado in September 2014. This presentation outlines recent wind technology advancements, evolving turbine technologies, and industry challenges. The presentation includes maps of mean wind speeds at 50-m, 80-m, and 100-m hub heights on BLM lands. Robichaud also presented on the difference in mean wind speeds from 80m to 100m in Wyoming.

  2. Roadmapping - A Tool for Resolving Science and Technology Issues Related to Processing, Packaging, and Shipping Nuclear Materials and Waste

    SciTech Connect (OSTI)

    Luke, Dale Elden; Dixon, Brent Wayne; Murphy, James Anthony

    2002-06-01T23:59:59.000Z

    Roadmapping is an effective methodology to identify and link technology development and deployment efforts to a program's or project's needs and requirements. Roadmapping focuses on needed technical support to the baselines (and to alternatives to the baselines) where the probability of success is low (high uncertainty) and the consequences of failure are relatively high (high programmatic risk, higher cost, longer schedule, or higher ES&H risk). The roadmap identifies where emphasis is needed, i.e., areas where investments are large, the return on investment is high, or the timing is crucial. The development of a roadmap typically involves problem definition (current state versus the desired state) and major steps (functions) needed to reach the desired state. For Nuclear Materials (NM), the functions could include processing, packaging, storage, shipping, and/or final disposition of the material. Each function is examined to determine what technical development would be needed to make the function perform as desired. This requires a good understanding of the current state of technology and technology development and validation activities to ensure the viability of each step. In NM disposition projects, timing is crucial! Technology must be deployed within the project window to be of value. Roadmaps set the stage to keep the technology development and deployment focused on project milestones and ensure that the technologies are sufficiently mature when needed to mitigate project risk and meet project commitments. A recent roadmapping activity involved a 'cross-program' effort, which included NM programs, to address an area of significant concern to the Department of Energy (DOE) related to gas generation issues, particularly hydrogen. The roadmap that was developed defined major gas generation issues within the DOE complex and research that has been and is being conducted to address gas generation concerns. The roadmap also provided the basis for sharing ''lessons learned'' from R&D efforts across DOE programs to increase efficiency and effectiveness in addressing gas generation issues. The gas generation roadmap identified pathways that have significant risk, indicating where more emphasis should be placed on contingency planning. Roadmapping further identified many opportunities for sharing of information and collaboration. Roadmapping will continue to be useful in keeping focused on the efforts necessary to mitigate the risk in the disposition pathways and to respond to the specific needs of the sites. Other areas within NM programs, including transportation and disposition of orphan and other nuclear materials, are prime candidates for additional roadmapping to assure achievement of timely and cost effective solutions for the processing, packaging, shipping, and/or final disposition of nuclear materials.

  3. LAW ENFORCEMENT TECHNOLOGY ROADMAP: LESSONS TO DATE FROM THE NORTHWEST TECHNOLOGY DESK AND THE NORTHWEST FADE PILOTS

    SciTech Connect (OSTI)

    West, Curtis L.; Kreyling, Sean J.

    2011-04-01T23:59:59.000Z

    The goal of this report is to provide insight into the information technology needs of law enforcement based on first hand observations as an embedded and active participant over the course of two plus years. This report is intended as a preliminary roadmap for technology and project investment that will benefit the entire law enforcement community nationwide. Some recommendations are immediate and have more of an engineering flavor, while others are longer term and will require research and development to solve.

  4. Paul S. Veers Wind Energy Technology Department

    E-Print Network [OSTI]

    Ginzel, Matthew

    Paul S. Veers Wind Energy Technology Department Sandia National Laboratories Thursday, April 8th 3 Y WIND ENERGY SEMINAR SERIES Wind energy is a growing electricity source around the world, providing. The rapid expansion of wind is largely due to its relative similarity in levelized cost of energy to fossil

  5. 2011 Wind Technologies Market Report

    E-Print Network [OSTI]

    Bolinger, Mark

    2013-01-01T23:59:59.000Z

    natural gas prices), pushed wind energy to the top of (andperformance, and price of wind energy, policy uncertainty cost, performance, and price of wind energy, some of these

  6. 2012 Wind Technologies Market Report

    E-Print Network [OSTI]

    Wiser, Ryan

    2014-01-01T23:59:59.000Z

    The Effects of Integrating Wind Power on Transmission Systemat Various Levels of Wind Power Capacity Penetration 201242 6. Wind Power Price

  7. 2009 Wind Technologies Market Report

    E-Print Network [OSTI]

    Wiser, Ryan

    2010-01-01T23:59:59.000Z

    Prepared for the Utility Wind Integration Group. Arlington,Consult. 2010. International Wind Energy Development: WorldUBS Global I/O: Global Wind Sector. UBS Investment Research.

  8. 2008 WIND TECHNOLOGIES MARKET REPORT

    E-Print Network [OSTI]

    Bolinger, Mark

    2010-01-01T23:59:59.000Z

    2008. Washington, DC: American Wind Energy Association.American Wind Energy Association ( AWEA).2009b. AWEA Small Wind Turbine Global Market Study: Year

  9. 2011 Wind Technologies Market Report

    E-Print Network [OSTI]

    Bolinger, Mark

    2013-01-01T23:59:59.000Z

    2010. SPP WITF Wind Integration Study. Little Rock,GE Energy. 2011a. Oahu Wind Integration Study Final Report.PacifiCorp. 2010. 2010 Wind Integration Study. Portland,

  10. 2011 Wind Technologies Market Report

    E-Print Network [OSTI]

    Bolinger, Mark

    2013-01-01T23:59:59.000Z

    wind turbine components (specifically, generators, bladeschangers. Wind turbine components such as blades, towers,Canada (8%). Wind turbine component exports (towers, blades,

  11. 2010 Wind Technologies Market Report

    E-Print Network [OSTI]

    Wiser, Ryan

    2012-01-01T23:59:59.000Z

    Market Report vii potential wind energy generation withinthat nearly 8% of potential wind energy generation withinAreas, in GWh (and % of potential wind generation) Electric

  12. 2009 Wind Technologies Market Report

    E-Print Network [OSTI]

    Wiser, Ryan

    2010-01-01T23:59:59.000Z

    capacity), with 17% of all potential wind energy generationthat roughly 17% of potential wind energy generation withinexample, roughly 1% of potential wind energy output in 2009

  13. Solar and Wind Technologies for Hydrogen Production: Report to Congress Solar and Wind Technologies

    E-Print Network [OSTI]

    .........................5 1.4 Potential Capacity for Hydrogen Production from Conventional Electrolysis Using Wind and SolarSolar and Wind Technologies for Hydrogen Production: Report to Congress Solar and Wind Technologies For Hydrogen Production Report to Congress December 2005 (ESECS EE-3060) #12;Solar and Wind Technologies

  14. Windows and Building Envelope Research and Development: Roadmap for Emerging Technologies

    Office of Environmental Management (EM)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) "of EnergyEnergyENERGYWomen Owned SmallOf TheViolations | Department ofEnergy WindR&D Roadmap For

  15. U.S. Offshore Wind Advanced Technology Demonstration Projects...

    Broader source: Energy.gov (indexed) [DOE]

    Offshore Wind Advanced Technology Demonstration Projects Public Meeting Transcript for Offshore Wind Demonstrations U.S. Offshore Wind Advanced Technology Demonstration Projects...

  16. 2010 Wind Technologies Market Report

    E-Print Network [OSTI]

    Wiser, Ryan

    2012-01-01T23:59:59.000Z

    AWEA?s Wind Energy Weekly, DOE/EPRI?s Turbine Verification10% Wind Energy Penetration New large-scale 9 wind turbineswind energy continues to decline as a result of lower wind turbine

  17. 2011 Wind Technologies Market Report

    E-Print Network [OSTI]

    Bolinger, Mark

    2013-01-01T23:59:59.000Z

    AWEAs Wind Energy Weekly, DOE/EPRIs Turbine Verification10% Wind Energy Penetration New large-scale 8 wind turbinesTurbine Market Report. Washington, D.C. : American Wind Energy

  18. 2008 WIND TECHNOLOGIES MARKET REPORT

    E-Print Network [OSTI]

    Bolinger, Mark

    2010-01-01T23:59:59.000Z

    Prepared for the Utility Wind Integration Group. Arlington,Wind Logics, Inc. 2004. Wind Integration StudyFinal Report.EnerNex Corp. 2006. Wind Integration Study for Public

  19. 2009 Wind Technologies Market Report

    E-Print Network [OSTI]

    Wiser, Ryan

    2010-01-01T23:59:59.000Z

    is located in Europe. In contrast, all wind power projectsin Europe. In 2009, for example, more wind power was

  20. Pre-Decisional Sodium Bearing Waste Technology Development Roadmap FY-01 Update

    SciTech Connect (OSTI)

    Mc Dannel, Gary Eidson

    2001-09-01T23:59:59.000Z

    This report provides an update to the Sodium Bearing Waste (SBW) Technology Development Roadmap generated a year ago. It outlines progress made to date and near-term plans for the technology development work necessary to support processing SBW. In addition, it serves as a transition document to the Risk Management Plan (RMP) required by the Project per DOE Order 413.3, Program and Project Management for the Acquisition of Capital Assets. Technical uncertainties have been identified as design basis elements (DBEs) and captured in a technical baseline database. As the risks are discovered, assessed, and mitigated, the status of the DBEs in the database will be updated and tracked to closure.

  1. Instrumentation, Controls, and Human-Machine Interface Technology Development Roadmap in Support of Grid Appropriate Reactors

    SciTech Connect (OSTI)

    Holcomb, David Eugene [ORNL] [ORNL; Upadhyaya, Belle R. [University of Tennessee, Knoxville (UTK)] [University of Tennessee, Knoxville (UTK); Kisner, Roger A [ORNL] [ORNL; O'Hara, John [Brookhaven National Laboratory (BNL)] [Brookhaven National Laboratory (BNL); Quinn, Edward L. [Longenecker & Associates] [Longenecker & Associates; Miller, Don W. [Ohio State University] [Ohio State University

    2009-01-01T23:59:59.000Z

    Grid Appropriate Reactors (GARs) are a component of the U.S. Department of Energy s (DOE s) Global Nuclear Energy Partnership (GNEP) program. GARs have smaller output power (<~600 MWe), than those intended for deployment on large, tightly coupled grids. This smaller size is important in avoiding grid destabilization, which can result from having a large fraction of a grid s electrical generation supplied by a single source. GARs are envisioned to be deployed worldwide often in locations without extensive nuclear power experience. DOE recently sponsored the creation of an Instrumentation, Controls, and Human-Machine Interface (ICHMI) technology development roadmap emphasizing the specific characteristics of GARs [1]. This roadmapping effort builds upon and focuses the recently developed, more general nuclear energy ICHMI technology development roadmap [2]. The combination of the smaller plant size, smaller grids, and deployment in locations without extensive prior nuclear power experience presents particular infrastructure, regulation, design, operational, and safeguards challenges for effective GAR deployment. ICHMI technologies are central to efficient GAR operation and as such are a dimension of each of these challenges. Further, while the particular ICHMI technologies to be developed would be useful at larger power plants, they are not high-priority development items at the larger plants. For example, grid transient resilience would be a useful feature for any reactor/grid combination and indeed would have limited some recent blackout events. However, most large reactors have limited passive cooling features. Large plants with active safety response features will likely preserve trip preferential grid transient response. This contrasts sharply with GARs featuring passive shutdown cooling, which can safely support grid stability during large grid transients. ICHMI technologies ranging from alternative control algorithms to simplified human-interface system designs are key to enabling GARs to respond properly and thereby stabilize the grid during transients.

  2. Roadmap: Applied Engineering Computer Engineering Technology -Bachelor of Science

    E-Print Network [OSTI]

    Sheridan, Scott

    -BS-AENG-CET] College of Applied Engineering, Sustainability and Technology Catalog Year: 2012-2013 Page 1 of 2 | Last Technology - Bachelor of Science [AT-BS-AENG-CET] College of Applied Engineering, Sustainability Technology 3 Semester Eight: [13 Credit Hours] TECH 43222 Computer Hardware Engineering and Architecture 3

  3. 2009 Wind Technologies Market Report: Executive Summary

    SciTech Connect (OSTI)

    Wiser, R.; Bolinger, M.

    2010-08-01T23:59:59.000Z

    This is the Executive Summary of the full report entitled 2009 Wind Technologies Market Report (DOE/GO-102010-3107).

  4. 2009 Wind Technologies Market Report

    E-Print Network [OSTI]

    Wiser, Ryan

    2010-01-01T23:59:59.000Z

    AWEAs Wind Energy Weekly, DOE/EPRIs Turbine Verification10% Wind Energy Penetration New large-scale 10 wind turbineswind energy became more challenging, orders for new turbines

  5. 2009 Wind Technologies Market Report

    E-Print Network [OSTI]

    Wiser, Ryan

    2010-01-01T23:59:59.000Z

    natural gas prices), pushed wind energy from the bottom toover the cost and price of wind energy that it receives. Asweighted-average price of wind energy in 1999 was $65/MWh (

  6. 2008 WIND TECHNOLOGIES MARKET REPORT

    E-Print Network [OSTI]

    Bolinger, Mark

    2010-01-01T23:59:59.000Z

    natural gas prices, though the economic value of wind energyenergy and climate policy initiatives. With wind turbine pricesprices reported here would be at least $20/MWh higher without the PTC), they do not represent wind energy

  7. 2010 Wind Technologies Market Report

    E-Print Network [OSTI]

    Wiser, Ryan

    2012-01-01T23:59:59.000Z

    weighted-average price of wind energy in 1999 was roughly $reduced near-term price expectations, wind energy?s primaryelectricity prices in 2009 pushed wind energy to the top of

  8. 2011 Wind Technologies Market Report

    E-Print Network [OSTI]

    Bolinger, Mark

    2013-01-01T23:59:59.000Z

    and the drop in wind power plant installations since 2009and the drop in wind power plant installations since 2009towers used in U.S. wind power plants increases from 80% in

  9. 2010 Wind Technologies Market Report

    E-Print Network [OSTI]

    Wiser, Ryan

    2012-01-01T23:59:59.000Z

    and the drop in wind power plant installations, for example,the decrease in new wind power plant construction. A GrowingRelative Economics of Wind Power Plants Installed in Recent

  10. 2009 Wind Technologies Market Report

    E-Print Network [OSTI]

    Wiser, Ryan

    2010-01-01T23:59:59.000Z

    AWEA). 2010b. AWEA Small Wind Turbine Global Market Survey,html David, A. 2009. Wind Turbines: Industry and Tradewhich new large-scale wind turbines were installed in 2009 (

  11. 2011 Wind Technologies Market Report

    E-Print Network [OSTI]

    Bolinger, Mark

    2013-01-01T23:59:59.000Z

    Associates. 2010. SPP WITF Wind Integration Study. LittlePool. David, A. 2011. U.S. Wind Turbine Trade in a Changing2011. David, A. 2010. Impact of Wind Energy Installations on

  12. 2011 Wind Technologies Market Report

    E-Print Network [OSTI]

    Bolinger, Mark

    2013-01-01T23:59:59.000Z

    shows that 8.5% of potential wind energy generation withinin GWh (and as a % of potential wind generation) Electricreport also laid out a potential wind power deployment path

  13. 2008 WIND TECHNOLOGIES MARKET REPORT

    E-Print Network [OSTI]

    Bolinger, Mark

    2010-01-01T23:59:59.000Z

    AWEAs Wind Energy Weekly, DOE/EPRIs Turbine VerificationTurbine Global Market Study: Year Ending 2008. Washington, DC: American Wind Energy

  14. 2009 Wind Technologies Market Report

    E-Print Network [OSTI]

    Wiser, Ryan

    2010-01-01T23:59:59.000Z

    selected wind turbine components that include towers (tradeWind turbine transactions differ in the services offered (e.g. , whether towers

  15. 2008 WIND TECHNOLOGIES MARKET REPORT

    E-Print Network [OSTI]

    Bolinger, Mark

    2010-01-01T23:59:59.000Z

    wind turbine manufacturers: Vestas (nacelles, blades, and towersWind turbine transactions differ in the services offered (e.g. , whether towers

  16. National Wind Technology Center (Fact Sheet)

    SciTech Connect (OSTI)

    Not Available

    2011-12-01T23:59:59.000Z

    This overview fact sheet is one in a series of information fact sheets for the National Wind Technology Center (NWTC). Wind energy is one of the fastest growing electricity generation sources in the world. NREL's National Wind Technology Center (NWTC), the nation's premier wind energy technology research facility, fosters innovative wind energy technologies in land-based and offshore wind through its research and testing facilities and extends these capabilities to marine hydrokinetic water power. Research and testing conducted at the NWTC offers specialized facilities and personnel and provides technical support critical to the development of advanced wind energy systems. From the base of a system's tower to the tips of its blades, NREL researchers work side-by-side with wind industry partners to increase system reliability and reduce wind energy costs. The NWTC's centrally located research and test facilities at the foot of the Colorado Rockies experience diverse and robust wind patterns ideal for testing. The NWTC tests wind turbine components, complete wind energy systems and prototypes from 400 watts to multiple megawatts in power rating.

  17. ENERGY EFFICIENCY TECHNOLOGY ROADMAP VOLUME 8: COMBINED HEAT...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    See "Technology Area Definitions" section No Explicit Systems Integration Renewable power generation creates income stream to support management of waste streams Very high...

  18. International Energy Agency Technology Roadmap for Wind Energy | Open

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Office of InspectorConcentrating Solar Powerstories on climate compatible developmentClimate Governance

  19. China-2050 Wind Technology Roadmap | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Office of Inspector GeneralDepartmentAUDIT REPORTOpenWendeGuoCatalystPathways Calculator Jump

  20. 2008 WIND TECHNOLOGIES MARKET REPORT

    E-Print Network [OSTI]

    Bolinger, Mark

    2010-01-01T23:59:59.000Z

    some wind turbine manufacturers experienced blade andwind turbine manufacturers: Vestas (nacelles, blades, and

  1. Roadmapping Engine Technology for Post-2020 Heavy Duty Vehicles...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    for post-2020 NAFTA line haul trucks deer11gruden.pdf More Documents & Publications High-Efficiency Engine Technologies Session Introduction The New ICE Age The New ICE Age...

  2. Roadmap Finalized for Low-Temperature, Coproduced, and Geopressured...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Roadmap Finalized for Low-Temperature, Coproduced, and Geopressured Technologies Roadmap Finalized for Low-Temperature, Coproduced, and Geopressured Technologies March 23, 2011 -...

  3. Roadmap: Technology Bachelor of Science [AT-BS-TECH

    E-Print Network [OSTI]

    Sheridan, Scott

    Engineering Graphics I 3 TECH 20002 Materials and Processes 3 US 10097 Destination Kent State: FYE 1-Aided Engineering Graphics 3 ECON 22060 Principles of Microeconomics 3 Fulfills Kent Core Social Sciences PSYC; fulfills Kent Core Basic Science TECH 20001 Energy/Power 3 TECH 31015 Construction Technology 3 COMM

  4. Roadmap: Technology Bachelor of Science [AT-BS-TECH

    E-Print Network [OSTI]

    Sheridan, Scott

    Reasoning TECH 10001 Information Technology 3 TECH 13580 Engineering Graphics I 3 TECH 20002 Materials] MATH 11022 Trigonometry 3 Fulfills Kent Core Additional TECH 23581 Computer-Aided Engineering Graphics offered on Regional Campuses only Semester Four: [14-16 Credit Hours] TECH 20001 Energy/Power 3 TECH

  5. 2011 Wind Technologies Market Report

    E-Print Network [OSTI]

    Bolinger, Mark

    2013-01-01T23:59:59.000Z

    wind power capacity stood at roughly 4,000 MW, with the vast majority located in Europe.in Europe. Just 470 MW of new offshore wind power capacity

  6. 2009 Wind Technologies Market Report

    E-Print Network [OSTI]

    Wiser, Ryan

    2010-01-01T23:59:59.000Z

    generating sets. Wind turbine blades, hubs, generators,wind turbine components that include towers (trade category is towers and lattice masts), generators (AC generators from 750 to 10,000 kVA), blades

  7. 2010 Wind Technologies Market Report

    E-Print Network [OSTI]

    Wiser, Ryan

    2012-01-01T23:59:59.000Z

    a Changing Environment. WINDPOWER 2011. Poster Presentation.sources and others, e.g. , Windpower Monthly, the GlobalTurboWinds (1.6 MW), Nordic Windpower (2 MW), Emergya Wind

  8. 2010 Wind Technologies Market Report

    E-Print Network [OSTI]

    Wiser, Ryan

    2012-01-01T23:59:59.000Z

    wind energy in some quarters, planning, siting, and permitting can be challenging, as demonstrated in the long history

  9. Technology Roadmap for the 21st Century Truck Program, a government-industry research partnership

    SciTech Connect (OSTI)

    None

    2000-12-01T23:59:59.000Z

    The 21st Century Truck Program has been established as a government-industry research partnership to support the development and implementation of commercially viable technologies that will dramatically cut fuel use and emissions of commercial trucks and buses while enhancing their safety and affordability as well as maintaining or enhancing performance. The innovations resulting from this program will reduce dependence on foreign oil, improve our nation's air quality, provide advanced technology for military vehicles, and enhance the competitiveness of the U.S. truck and bus industry while ensuring safe and affordable freight and bus transportation for the nation's economy. This Technology Roadmap for the 21st Century Truck Program has been prepared to guide the development of the technical advancements that will enable the needed improvements in commercial truck fuel economy, emissions, and safety.

  10. National Wind Technology Center (Fact Sheet), National Wind Technology...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    hydrokinetic (MHK) energy devices are high-force, low-speed machines, similar to wind turbines that convert the kinetic energy of a moving fluid into electrical energy....

  11. 2013 Wind Technologies Market Report

    SciTech Connect (OSTI)

    Wiser, R.; Bolinger, M.; Barbose, G.; Darghouth, N.; Hoen, B.; Mills, A.; Weaver, S.; Porter, K.; Buckley, M.; Oteri, F.; Tegen, S.

    2014-08-01T23:59:59.000Z

    This annual report provides a detailed overview of developments and trends in the U.S. wind power market, with a particular focus on 2013. This 2013 edition updates data presented in previous editions while highlighting key trends and important new developments. The report includes an overview of key installation-related trends; trends in wind power capacity growth; how that growth compares to other countries and generation sources; the amount and percentage of wind energy in individual states; the status of offshore wind power development and the quantity of proposed wind power capacity in various interconnection queues in the United States.

  12. Window and Envelope Technologies Overview - 2014 BTO Peer Review...

    Energy Savers [EERE]

    Research and Development Roadmap: Windows and Building Envelope Research & Development Roadmap: Emerging Water Heating Technologies Research & Development Roadmap: Emerging HVAC...

  13. 1. "A Roadmap for Developing Accelerator Transmutation of Waste Technology," Report to Congress, DOE0RW-0519, U.S.

    E-Print Network [OSTI]

    Danon, Yaron

    1. "A Roadmap for Developing Accelerator Transmutation of Waste Technology," Report to Congress, R. C. Block (RPI) A novel, tunable X-ray source using the 100-MeV electron linear accelerator photons" is associated with electrons moving through a medium at relativistic speeds. These photons

  14. 2011 Wind Technologies Market Report

    SciTech Connect (OSTI)

    Wiser, R.; Bolinger, M.

    2012-08-01T23:59:59.000Z

    This report describes the status of the U.S. wind energy industry market in 2011; its trends, performance, market drivers and future outlook.

  15. 2010 Wind Technologies Market Report

    SciTech Connect (OSTI)

    Wiser, R.; Bolinger, M.

    2011-06-01T23:59:59.000Z

    This report describes the status of the U.S. wind energy industry market in 2010; its trends, performance, market drivers and future outlook.

  16. 2012 Wind Technologies Market Report

    SciTech Connect (OSTI)

    Wiser, R.; Bolinger, M.; Barbose, G.; Darghouth, N.; Hoen, B.; Mills, A.; Weaver, S.; Porter, K.; Buckley, M.; Fink, S.; Oteri, F.; Tegen, S.

    2013-08-01T23:59:59.000Z

    This report describes the status of the U.S. wind energy industry market in 2012; its trends, performance, market drivers and future outlook.

  17. 2011 Wind Technologies Market Report

    E-Print Network [OSTI]

    Bolinger, Mark

    2013-01-01T23:59:59.000Z

    at the National Renewable Energy Laboratorys National WindGolden, CO: National Renewable Energy Laboratory. ElectricColorado: National Renewable Energy Laboratory. EnerNex

  18. 2009 Wind Technologies Market Report

    E-Print Network [OSTI]

    Wiser, Ryan

    2010-01-01T23:59:59.000Z

    federal loan programme. Windpower Monthly. Bloomberg NewWind 102. Presentation at AWEAs WINDPOWER 2010 Conference &discussion at AWEAs WINDPOWER 2010 Conference & Exhibition,

  19. 2008 WIND TECHNOLOGIES MARKET REPORT

    SciTech Connect (OSTI)

    Wiser, Ryan H.; Bolinger, Mark; Barbose, G.; Mills, A.; Rosa, A.; Porter, K.; Fink, S.; Tegen, S.; Musial, W.; Oteri, F.; Heimiller, D.; Rberts, B.; Belyeu, K.; Stimmel, R.

    2009-07-15T23:59:59.000Z

    The U.S. wind industry experienced a banner year in 2008, again surpassing even optimistic growth projections from years past. At the same time, the last year has been one of upheaval, with the global financial crisis impacting near-term growth prospects for the wind industry, and with federal policy changes enacted to push the industry towards continued aggressive expansion. This rapid pace of development has made it difficult to keep up with trends in the marketplace. Yet, the need for timely, objective information on the industry and its progress has never been greater. This report - the third of an ongoing annual series - attempts to meet this need by providing a detailed overview of developments and trends in the U.S. wind power market, with a particular focus on 2008. As with previous editions, this report begins with an overview of key wind power installation-related trends: trends in wind capacity growth in the U.S., how that growth compares to other countries and generation sources, the amount and percentage of wind in individual states and serving specific utilities, and the quantity of proposed wind capacity in various interconnection queues in the United States. Next, the report covers an array of wind industry trends, including developments in turbine manufacturer market share, manufacturing and supply-chain investments, wind turbine and wind project size, project financing developments, and trends among wind power developers, project owners, and power purchasers. The report then turns to a discussion of wind project price, cost, and performance trends. In so doing, it reviews the price of wind power in the United States, and how those prices compare to the cost of fossil-fueled generation, as represented by wholesale power prices. It also describes trends in installed wind project costs, wind turbine transaction prices, project performance, and operations and maintenance expenses. Next, the report examines other policy and market factors impacting the domestic wind power market, including federal and state policy drivers, transmission issues, and grid integration. Finally, the report concludes with a preview of possible near- to medium-term market developments. This version of the Annual Report updates data presented in the previous editions, while highlighting key trends and important new developments from 2008. New to this edition is an executive summary of the report and an expanded final section on near- to medium-term market development. The report concentrates on larger-scale wind applications, defined here as individual turbines or projects that exceed 50 kW in size. The U.S. wind power sector is multifaceted, however, and also includes smaller, customer-sited wind turbines used to power the needs of residences, farms, and businesses. Data on these applications are not the focus of this report, though a brief discussion on Distributed Wind Power is provided on page 4. Much of the data included in this report were compiled by Berkeley Lab, and come from a variety of sources, including the American Wind Energy Association (AWEA), the Energy Information Administration (EIA), and the Federal Energy Regulatory Commission (FERC). The Appendix provides a summary of the many data sources used in the report. Data on 2008 wind capacity additions in the United States are based on information provided by AWEA; some minor adjustments to those data may be expected. In other cases, the data shown here represent only a sample of actual wind projects installed in the United States; furthermore, the data vary in quality. As such, emphasis should be placed on overall trends, rather than on individual data points. Finally, each section of this document focuses on historical market information, with an emphasis on 2008; with the exception of the final section, the report does not seek to forecast future trends.

  20. Robi, Robichaud, Wind Technologies and Evolving Opportunities

    Broader source: Energy.gov (indexed) [DOE]

    Wind Technologies and Innovation for Our Energy Future Evolving Opportunities Robi Robichaud Senior Engineer N NR REL EL i is s a a n na at ti io on na al l l la ab bo ora rat to...

  1. 2008 WIND TECHNOLOGIES MARKET REPORT

    E-Print Network [OSTI]

    Bolinger, Mark

    2010-01-01T23:59:59.000Z

    the impacts of wind on load-following and unit commitmentto a few minutes; load-following tens of minutes to a fewreserves, to provide load following. Conversely, the higher

  2. 2009 Wind Technologies Market Report

    E-Print Network [OSTI]

    Wiser, Ryan

    2010-01-01T23:59:59.000Z

    to a few minutes; load-following tens of minutes to a fewimpacts of wind energy on load-following and unit commitmentCost ($/MWh) Regulation Load Following Unit Commit. trace

  3. 2009 Wind Technologies Market Report

    SciTech Connect (OSTI)

    Wiser, R.; Bolinger, M.

    2010-08-01T23:59:59.000Z

    The U.S. wind power industry experienced yet another record year in 2009, once again surpassing even optimistic growth projections from years past. At the same time, 2009 was a year of upheaval, with the global financial crisis impacting the wind power industry and with federal policy changes enacted to push the industry toward continued aggressive expansion. The year 2010, meanwhile, is anticipated to be one of some retrenchment, with expectations for fewer wind power capacity additions than seen in 2009. The rapid pace of development and change within the industry has made it difficult to keep up with trends in the marketplace, yet the need for timely, objective information on the industry and its progress has never been greater. This report - the fourth in an ongoing annual series - attempts to meet this need by providing a detailed overview of developments and trends in the United States wind power market, with a particular focus on 2009.

  4. 2011 Wind Technologies Market Report

    E-Print Network [OSTI]

    Bolinger, Mark

    2013-01-01T23:59:59.000Z

    in 2011, followed by Siemens (18%), Suzlon and Mitsubishi (GE, Vestas, and Siemens. On a worldwide basis, ChineseGE Wind and Vestas were Siemens (with an 18% market share),

  5. 2010 Wind Technologies Market Report

    E-Print Network [OSTI]

    Wiser, Ryan

    2012-01-01T23:59:59.000Z

    2011. North America Wind Energy Market Forecast: 20112025.study. Regions with fast energy markets, for example, changea sub-hourly, real-time energy market providing centralized,

  6. 2008 WIND TECHNOLOGIES MARKET REPORT

    E-Print Network [OSTI]

    Bolinger, Mark

    2010-01-01T23:59:59.000Z

    the Midwest, Texas, Southwest, and PJM regions: wind in the52 GW), SPP (48 GW), and PJM (43 GW) account for over 70% ofThe queues surveyed include PJM Interconnection, Midwest

  7. 2011 Wind Technologies Market Report

    E-Print Network [OSTI]

    Bolinger, Mark

    2013-01-01T23:59:59.000Z

    WindLogics Inc. (2006) [MN-MISO (2006)]; EnerNex et al. (IPP ISO ISO-NE ITC kW kWh MISO MW MWh NERC NREL NYISO OEMIndependent System Operator (MISO), New York ISO (NYISO),

  8. 2009 Wind Technologies Market Report

    E-Print Network [OSTI]

    Wiser, Ryan

    2010-01-01T23:59:59.000Z

    Texas, May 24, 2010. MISO. 2010. Dispatchable Intermittentand Windlogics Inc. (2006) [MN-MISO]; Puget Sound Energy (ITC kW kWh LADWP LIBOR MISO American Wind Energy Association

  9. 2010 Wind Technologies Market Report

    E-Print Network [OSTI]

    Wiser, Ryan

    2012-01-01T23:59:59.000Z

    WindLogics Inc. (2006) [MN-MISO (2006)]; EnerNex et al. (IPP ISO ISO-NE ITC kW kWh MISO MW MWh NERC NREL NYISO OEMIndependent System Operator (MISO), New York ISO (NYISO),

  10. 2008 Wind Technologies Market Report

    SciTech Connect (OSTI)

    Wiser, R.; Bolinger, M.

    2009-07-01T23:59:59.000Z

    The U.S. wind industry experienced a banner year in 2008, once again surpassing even optimistic growth projections from years past. At the same time, the past year has been one of upheaval, with the global financial crisis impacting near-term growth prospects for the wind industry, and with significant federal policy changes enacted to push the industry toward continued aggressive expansion. This report examines key trends.

  11. Next Generation Nuclear Plant Project Technology Development Roadmaps: The Technical Path Forward for 750800C Reactor Outlet Temperature

    SciTech Connect (OSTI)

    John Collins

    2009-08-01T23:59:59.000Z

    This document presents the NGNP Critical PASSCs and defines their technical maturation path through Technology Development Roadmaps (TDRMs) and their associated Technology Readiness Levels (TRLs). As the critical PASSCs advance through increasing levels of technical maturity, project risk is reduced and the likelihood of within-budget and on-schedule completion is enhanced. The current supplier-generated TRLs and TDRMs for a 750800C reactor outlet temperature (ROT) specific to each supplier are collected in Appendix A.

  12. The National Wind Technology Center

    SciTech Connect (OSTI)

    Thresher, R.W.; Hock, S.M. [National Renewable Energy Lab., Golden, CO (United States)] [National Renewable Energy Lab., Golden, CO (United States); Loose, R.R.; Cadogon, J.B.

    1994-07-01T23:59:59.000Z

    Wind energy research began at the Rocky Flats test site in 1976 when Rockwell International subcontracted with the Energy Research and Development Administration (ERDA). The Rocky Flats Plant was competitively selected from a number of ERDA facilities primarily because it experienced high instantaneous winds and provided a large, clear land area. By 1977, several small wind turbines were in place. During the facility`s peak of operation, in 1979-1980, researchers were testing as many as 23 small wind turbines of various configurations, including commercially available machines and prototype turbines developed under subcontract to Rocky Flats. Facilities also included 8-kW, 40-kW, and 225-kW dynamometers; a variable-speed test bed; a wind/hybrid test facility; a controlled velocity test facility (in Pueblo, Colorado); a modal test facility, and a multimegawatt switchgear facility. The main laboratory building was dedicated in July 1981 and was operated by the Rocky Flats Plant until 1984, when the Solar Energy Research Institute (SERI) and Rocky Flats wind energy programs were merged and transferred to SERI. SERI and now the National Renewable Energy Laboratory (NREL) continued to conduct wind turbine system component tests after 1987, when most program personnel were moved to the Denver WEst Office Park in Golden and site ownership was transferred back to Rocky Flats. The Combined Experiment test bed was installed and began operation in 1988, and the NREL structural test facility began operation in 1990. In 1993, the site`s operation was officially transferred to the DOE Golden Field Office that oversees NREL. This move was in anticipation of NREL`s renovation and reoccupation of the facility in 1994.

  13. Recent and Current Research & Roadmapping Activities: Overview (Presentation)

    SciTech Connect (OSTI)

    Darzins, A.

    2008-09-01T23:59:59.000Z

    December 2008 DOE Algal Biofuels Technology Roadmap Workshop plenary presentation: summarizes past and current algal biofuels activity, status of research funding, and recent roadmapping activities.

  14. WASTE-TO-ENERGY ROADMAPPING WORKSHOP | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    WASTE-TO-ENERGY ROADMAPPING WORKSHOP WASTE-TO-ENERGY ROADMAPPING WORKSHOP The Bioenergy Technologies Office (BETO) at the Department of Energy aims to identify and address key...

  15. 20% Wind Energy by 2030 - Chapter 2: Wind Turbine Technology...

    Office of Environmental Management (EM)

    20% Wind Energy by 2030: Increasing Wind Energy's Contribution to U.S. Electricity Supply U.S. Offshore Wind Manufacturing and Supply Chain Development Wind Program Accomplishments...

  16. 2010 Wind Technologies Market Report

    SciTech Connect (OSTI)

    Exeter Associates; National Renewable Energy Laboratory; Energetics Incorporated; Wiser, Ryan; Bolinger, Mark; Barbose, Galen; Darghouth, Naim; Hoen, Ben; Mills, Andrew; Seel, Joachim; Porter, Kevin; Buckley, Michael; Fink, Sari; Oteri, Frank; Raymond, Russell

    2011-06-27T23:59:59.000Z

    The U.S. wind power industry experienced a trying year in 2010, with a significant reduction in new builds compared to both 2008 and 2009. The delayed impact of the global financial crisis, relatively low natural gas and wholesale electricity prices, and slumping overall demand for energy countered the ongoing availability of existing federal and state incentives for wind energy deployment. The fact that these same drivers did not impact capacity additions in 2009 can be explained, in part, by the 'inertia' in capital-intensive infrastructure investments: 2009 capacity additions were largely determined by decisions made prior to the economy-wide financial crisis that was at its peak in late 2008 and early 2009, whereas decisions on 2010 capacity additions were often made at the height of the financial crisis. Cumulative wind power capacity still grew by a healthy 15% in 2010, however, and most expectations are for moderately higher wind power capacity additions in 2011 than witnessed in 2010, though those additions are also expected to remain below the 2009 high.

  17. Preliminary Assumptions for Wind Technologies

    E-Print Network [OSTI]

    ) Mountain Air Wind Farm (138 MW) Elmore County, ID (Image courtesy of Terna-Energy) 3 #12;Current of operation Investment Tax Credit (ITC) alternative 30% towards developer's income tax for qualifying solar" prior to 12/31/16 Post-2016, credit drops to 10% - solar PV, geothermal 6 #12;Status of Regional RPS

  18. An overview: Challenges in wind technology development

    SciTech Connect (OSTI)

    Thresher, R W; Hock, S M

    1991-12-01T23:59:59.000Z

    Developing innovative wind turbine components and advanced turbine configurations is a primary focus for wind technology researchers. In their rush to bring these new components and systems to the marketplace, designers and developers should consider the lessons learned in the wind farms over the past 10 years. Experience has shown that a disciplined design approach is required that realistically accounts for the turbulence-induced loads, unsteady stall loading, and fatigue effects. This paper reviews past experiences and compares current modelling capabilities with experimental measurements in order to identify some of the knowledge gaps that challenge designers of advanced components and systems. 7 refs., 11 figs.

  19. MHK Technologies/New Knowledge Wind and Wave Renewable Mobile...

    Open Energy Info (EERE)

    Wave Renewable Mobile Wind and Wave Power Plant Platform < MHK Technologies Jump to: navigation, search << Return to the MHK database homepage New Knowledge Wind and Wave Renewable...

  20. Wind Energy Workforce Development: Engineering, Science, & Technology

    SciTech Connect (OSTI)

    Lesieutre, George A.; Stewart, Susan W.; Bridgen, Marc

    2013-03-29T23:59:59.000Z

    Broadly, this project involved the development and delivery of a new curriculum in wind energy engineering at the Pennsylvania State University; this includes enhancement of the Renewable Energy program at the Pennsylvania College of Technology. The new curricula at Penn State includes addition of wind energy-focused material in more than five existing courses in aerospace engineering, mechanical engineering, engineering science and mechanics and energy engineering, as well as three new online graduate courses. The online graduate courses represent a stand-alone Graduate Certificate in Wind Energy, and provide the core of a Wind Energy Option in an online intercollege professional Masters degree in Renewable Energy and Sustainability Systems. The Pennsylvania College of Technology erected a 10 kilowatt Xzeres wind turbine that is dedicated to educating the renewable energy workforce. The entire construction process was incorporated into the Renewable Energy A.A.S. degree program, the Building Science and Sustainable Design B.S. program, and other construction-related coursework throughout the School of Construction and Design Technologies. Follow-on outcomes include additional non-credit opportunities as well as secondary school career readiness events, community outreach activities, and public awareness postings.

  1. Wind Power Today: Building a New Energy Future, Wind and Hydropower Technologies Program 2009 (Brochure)

    SciTech Connect (OSTI)

    Not Available

    2009-04-01T23:59:59.000Z

    Wind Power Today is an annual publication that provides an overview of the wind energy research conducted by the U.S. Department of Energy Wind and Hydropower Technologies Program.

  2. NREL's Wind R&D Success Stories, National Wind Technology Center (NWTC) (Fact Sheet)

    SciTech Connect (OSTI)

    Not Available

    2010-01-01T23:59:59.000Z

    Wind energy research, development, and deployment have reduced the cost of large and small wind turbine technologies, increased wind energy system reliability and operability, lowered risk by validating performance and design, increased the understanding of the true impacts of wind energy on the U.S. electrical infrastructure, and expanded wind energy markets. A synopsis of research conducted on utility-scale wind turbines, small wind turbines, software, components, market development and grid integration are detailed.

  3. This introduction to wind power technology is meant to help communities in considering or planning wind

    E-Print Network [OSTI]

    Massachusetts at Amherst, University of

    This introduction to wind power technology is meant to help communities in considering or planning wind power. It focuses on commercial and medium-scale wind turbine technology that is available in the United States. This fact sheet also discusses the integration of wind power into the electrical grid

  4. Fostering a Renewable Energy Technology Industry: An International Comparison of Wind Industry Policy Support Mechanisms

    E-Print Network [OSTI]

    Lewis, Joanna; Wiser, Ryan

    2005-01-01T23:59:59.000Z

    and Renewable Energy, Wind & Hydropower Technologiesand Renewable Energy, Wind & Hydropower Technologies2004. International Wind Energy Development, World Market

  5. EWEC 2006, Athens, The Anemos Wind Power Forecasting Platform Technology The Anemos Wind Power Forecasting Platform Technology -

    E-Print Network [OSTI]

    Boyer, Edmond

    EWEC 2006, Athens, The Anemos Wind Power Forecasting Platform Technology 1 The Anemos Wind Power a professional, flexible platform for operating wind power prediction models, laying the main focus on state models from all over Europe are able to work on this platform. Keywords: wind energy, wind power

  6. Technology Development Roadmap for the Advanced High Temperature Reactor Secondary Heat Exchanger

    SciTech Connect (OSTI)

    P. Sabharwall; M. McCllar; A. Siahpush; D. Clark; M. Patterson; J. Collins

    2012-09-01T23:59:59.000Z

    This Technology Development Roadmap (TDRM) presents the path forward for deploying large-scale molten salt secondary heat exchangers (MS-SHX) and recognizing the benefits of using molten salt as the heat transport medium for advanced high temperature reactors (AHTR). This TDRM will aid in the development and selection of the required heat exchanger for: power production (the first anticipated process heat application), hydrogen production, steam methane reforming, methanol to gasoline production, or ammonia production. This TDRM (a) establishes the current state of molten salt SHX technology readiness, (b) defines a path forward that systematically and effectively tests this technology to overcome areas of uncertainty, (c) demonstrates the achievement of an appropriate level of maturity prior to construction and plant operation, and (d) identifies issues and prioritizes future work for maturing the state of SHX technology. This study discusses the results of a preliminary design analysis of the SHX and explains the evaluation and selection methodology. An important engineering challenge will be to prevent the molten salt from freezing during normal and off-normal operations because of its high melting temperature (390C for KF ZrF4). The efficient transfer of energy for industrial applications depends on the ability to incorporate cost-effective heat exchangers between the nuclear heat transport system and industrial process heat transport system. The need for efficiency, compactness, and safety challenge the capabilities of existing heat exchanger technology. The description of potential heat exchanger configurations or designs (such as printed circuit, spiral or helical coiled, ceramic, plate and fin, and plate type) were covered in an earlier report (Sabharwall et al. 2011). Significant future work, much of which is suggested in this report, is needed before the benefits and full potential of the AHTR can be realized. The execution of this TDRM will focuses research efforts on the near-term qualification, selection, or maturation strategy as detailed in this report. Development of the integration methodology feasibility study, along with research and development (R&D) needs, are ongoing tasks that will be covered in the future reports as work progresses. Section 2 briefly presents the integration of AHTR technology with conventional chemical industrial processes., See Idaho National Laboratory (INL) TEV-1160 (2011) for further details

  7. TECHNICALADVANCES IN EPOXY TECHNOLOGY FOR WIND TURBINE BLADE COMPOSITE FABRICATION

    E-Print Network [OSTI]

    TECHNICALADVANCES IN EPOXY TECHNOLOGY FOR WIND TURBINE BLADE COMPOSITE FABRICATION George C. Jacob reliability in many demanding applications including components for aerospace and wind turbine blades. While in operation, wind turbine blades are subjected to significant stresses from their movement, wind and other

  8. Technological development under global warning : roadmap of the coal generation technology

    E-Print Network [OSTI]

    Furuyama, Yasushi, 1963-

    2004-01-01T23:59:59.000Z

    This thesis explores the measures for the Japanese electric power utilities to meet the Kyoto Target, and the technological development of the coal thermal power generation to meet the further abatement of the carbon dioxide ...

  9. Future of Wind Energy Technology in the United States

    SciTech Connect (OSTI)

    Thresher, R.; Robinson, M.; Veers, P.

    2008-10-01T23:59:59.000Z

    This paper describes the status of wind energy in the United States as of 2007, its cost, the potential for growth, offshore development, and potential technology improvements.

  10. Wind Turbine Inspection Technology Reaches New Heights | GE Global...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    week, we announced our advancement in technology that will make the inspection of wind turbines faster and more reliable for our customers. Currently, an inspector examines the...

  11. National Wind Technology Center to Debut New Dynamometer (Fact Sheet)

    SciTech Connect (OSTI)

    Not Available

    2013-05-01T23:59:59.000Z

    New test facility will be used to accelerate the development and deployment of next-generation offshore and land-based wind energy technologies.

  12. NREL: Wind Research - NREL Analyzes Floating Offshore Wind Technology...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    representatives regarding NREL's analysis of Statoil's Hywind II offshore floating wind turbine design. Statoil's Hywind II is a 6-MW turbine on a floating spar-buoy...

  13. SPINNING-IN OF TERRESTRIAL MICRO-SYSTEMS AND TECHNOLOGIES TO SPACE ROBOTICS: RESULTS AND TECHNOLOGY ROADMAPS

    E-Print Network [OSTI]

    Papadopoulos, Evangelos

    ROADMAPS Iosif S. Paraskevas, Thaleia Flessa, and Evangelos G. Papadopoulos National Technical University & Robotics (A&R) systems can result in more robust, less power- intensive and less expensive systems. These observations motivated this paper that presents (a) the findings of a thorough review and assessment

  14. Wind Technology Testing Center Acquires New Blade Fatigue Test...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Technology Testing Center Acquires New Blade Fatigue Test System Wind Technology Testing Center Acquires New Blade Fatigue Test System August 1, 2013 - 4:33pm Addthis This is an...

  15. Modeling the Benefits of Storage Technologies to Wind Power

    SciTech Connect (OSTI)

    Sullivan, P.; Short, W.; Blair, N.

    2008-06-01T23:59:59.000Z

    Rapid expansion of wind power in the electricity sector is raising questions about how wind resource variability might affect the capacity value of wind farms at high levels of penetration. Electricity storage, with the capability to shift wind energy from periods of low demand to peak times and to smooth fluctuations in output, may have a role in bolstering the value of wind power at levels of penetration envisioned by a new Department of Energy report ('20% Wind by 2030, Increasing Wind Energy's Contribution to U.S. Electricity Supply'). This paper quantifies the value storage can add to wind. The analysis was done employing the Regional Energy Deployment System (ReEDS) model, formerly known as the Wind Deployment System (WinDS) model. ReEDS was used to estimate the cost and development path associated with 20% penetration of wind in the report. ReEDS differs from the WinDS model primarily in that the model has been modified to include the capability to build and use three storage technologies: pumped-hydroelectric storage (PHS), compressed-air energy storage (CAES), and batteries. To assess the value of these storage technologies, two pairs of scenarios were run: business-as-usual, with and without storage; 20% wind energy by 2030, with and without storage. This paper presents the results from those model runs.

  16. 2012 Market Report on U.S. Wind Technologies in Distributed Applicatio...

    Office of Environmental Management (EM)

    2013 Distributed Wind Market Report Data 2012 Market Report on U.S. Wind Technologies in Distributed Applications Assessment of Offshore Wind Energy Resources for the United States...

  17. Hydraulic Wind Power Transfer Technology Afshin Izadian

    E-Print Network [OSTI]

    Zhou, Yaoqi

    encouraged companies such as Mitsubishi and Chapdrive to invest in onshore and offshore hydraulic driven wind wind power, and by doing so, it reduces the capital equipment of the entire power plant

  18. 21st Century Truck Partnership Roadmap Roadmap and Technical...

    Broader source: Energy.gov (indexed) [DOE]

    Roadmap Roadmap and Technical White Papers - 21CTP-0003, December 2006 21st Century Truck Partnership Roadmap Roadmap and Technical White Papers - 21CTP-0003, December 2006 Report...

  19. A Roadmap to the Future of Learning

    E-Print Network [OSTI]

    Session Tb; Kay Howell; Jan Cannon-bowers; Albert Corbett; Max Louwerse; Alfred Moye

    Federation, a partnership among industry, academia, and private foundations to stimulate research and development in learning science and technology. The Roadmap outlines a detailed research plan for developing next-generation learning environments focused on post-secondary science, math, engineering, and technology education. Developed over a three-year period with advice provided by over seventy experts from educational institutions, government, and industry, the roadmap identifies key research priorities, along with metrics and milestones for each research focus area. The panel, comprised of researchers who participated in the development of the Roadmap, will summarize the key research challenges, R&D chronology, and five and ten-year goals identified in the Roadmap. The panelists will encourage comment from the audience regarding the research priorities identified in the Roadmap and effective management strategies for building multi-disciplinary teams to undertake the research. Index Terms learning, learning technology, technologyenabled learning, roadmap

  20. ARE660 Wind Generator: Low Wind Speed Technology for Small Turbine Development

    SciTech Connect (OSTI)

    Robert W. Preus; DOE Project Officer - Keith Bennett

    2008-04-23T23:59:59.000Z

    This project is for the design of a wind turbine that can generate most or all of the net energy required for homes and small businesses in moderately windy areas. The purpose is to expand the current market for residential wind generators by providing cost effective power in a lower wind regime than current technology has made available, as well as reduce noise and improve reliability and safety. Robert W. Preus experience designing and/or maintaining residential wind generators of many configurations helped identify the need for an improved experience of safety for the consumer. Current small wind products have unreliable or no method of stopping the wind generator in fault or high wind conditions. Consumers and their neighbors do not want to hear their wind generators. In addition, with current technology, only sites with unusually high wind speeds provide payback times that are acceptable for the on-grid user. Abundant Renewable Energys (ARE) basic original concept for the ARE660 was a combination of a stall controlled variable speed small wind generator and automatic fail safe furling for shutdown. The stall control for a small wind generator is not novel, but has not been developed for a variable speed application with a permanent magnet alternator (PMA). The fail safe furling approach for shutdown has not been used to our knowledge.

  1. Preparation of a technology development roadmap for the Accelerator Transmutation of Waste (ATW) System : report of the ATW separations technologies and waste forms technical working group.

    SciTech Connect (OSTI)

    Collins, E.; Duguid, J.; Henry, R.; Karell, E.; Laidler, J.; McDeavitt, S.; Thompson, M.; Toth, M.; Williamson, M.; Willit, J.

    1999-08-12T23:59:59.000Z

    In response to a Congressional mandate to prepare a roadmap for the development of Accelerator Transmutation of Waste (ATW) technology, a Technical Working Group comprised of members from various DOE laboratories was convened in March 1999 for the purpose of preparing that part of the technology development roadmap dealing with the separation of certain radionuclides for transmutation and the disposal of residual radioactive wastes from these partitioning operations. The Technical Working Group for ATW Separations Technologies and Waste Forms completed its work in June 1999, having carefully considered the technology options available. A baseline process flowsheet and backup process were identified for initial emphasis in a future research, development and demonstration program. The baseline process combines aqueous and pyrochemical processes to permit the efficient separation of the uranium, technetium, iodine and transuranic elements from the light water reactor (LWR) fuel in the head-end step. The backup process is an all- pyrochemical system. In conjunction with the aqueous process, the baseline flowsheet includes a pyrochemical process to prepare the transuranic material for fabrication of the ATW fuel assemblies. For the internal ATW fuel cycle the baseline process specifies another pyrochemical process to extract the transuranic elements, Tc and 1 from the ATW fuel. Fission products not separated for transmutation and trace amounts of actinide elements would be directed to two high-level waste forms, one a zirconium-based alloy and the other a glass/sodalite composite. Baseline cost and schedule estimates are provided for a RD&D program that would provide a full-scale demonstration of the complete separations and waste production flowsheet within 20 years.

  2. Floating Offshore Wind Technology Generating Resources Advisory Committee

    E-Print Network [OSTI]

    Floating Offshore Wind Technology Jeff King Generating Resources Advisory Committee May 28, 2014 1 resource Offshore technology Prototypes and projects Cost Proposed 7th Plan Treatment 2 #12;Why technology transfer from offshore oil & gas industry On-shore fabrication & assembly (assembled unit towed

  3. Live Webcast on Recent Wind Energy Technology Advances

    Broader source: Energy.gov [DOE]

    The Energy Department will present a live webcast titled Recent Wind Technology Advances on April 16, 2014, from 3:00 to 4:00 p.m. Eastern Standard Time.

  4. Three Offshore Wind Advanced Technology Demonstration Projects...

    Office of Environmental Management (EM)

    commercial operation by 2017. Dominion Power will install two 6-MW direct-drive wind turbines off the coast of Virginia Beach on twisted jacket foundations designed by Keystone...

  5. Assessment of research needs for wind turbine rotor materials technology

    SciTech Connect (OSTI)

    Not Available

    1991-01-01T23:59:59.000Z

    Wind-driven power systems is a renewable energy technology that is still in the early stages of development. Wind power plants installed in early 1980s suffered structural failures chiefly because of incomplete understanding of wind forces (turbulent), in some cases because of poor product quality. Failures of rotor blades are now somewhat better understood. This committee has examined the experience base accumulated by wind turbines and the R and D programs sponsored by DOE. It is concluded that a wind energy system such as is described is within the capability of engineering practice; however because of certain gaps in knowledge, and the presence of only one major integrated manufacturer of wind power machines in the USA, a DOE R and D investment is still required.

  6. Wind Energy Technology Trends: Comparing and Contrasting Recent Cost and Performance Forecasts (Poster)

    SciTech Connect (OSTI)

    Lantz, E.; Hand, M.

    2010-05-01T23:59:59.000Z

    Poster depicts wind energy technology trends, comparing and contrasting recent cost and performance forecasts.

  7. A roadmap to the realiza/on of fusion energy

    E-Print Network [OSTI]

    A roadmap to the realiza/on of fusion energy Francesco Romanelli, EFDA STAC #12;Why a roadmap · The need for a long-term strategy on energy Strategic Energy Technology plan, Energy Roadmap 2050 · In this context, Fusion must

  8. RESEARCH INFRASTRUCTURES Roadmap 2008

    E-Print Network [OSTI]

    Horn, David

    RESEARCH INFRASTRUCTURES FOR FRANCE Roadmap 2008 #12;INTRODUCTION European research infrastructures and development, benefiting to Europe's economy and competitiveness. This roadmap for the research infrastructures....................................................................................................6 3. The roadmap: existing and already decided RIs and others at the planning stage

  9. National Wind Technology Center Dynamic 5-Megawatt Dynamometer

    SciTech Connect (OSTI)

    Felker, Fort

    2013-11-13T23:59:59.000Z

    The National Wind Technology Center (NWTC) offers wind industry engineers a unique opportunity to conduct a wide range of tests. Its custom-designed dynamometers can test wind turbine systems from 1 kilowatt (kW) to 5 megawatts (MW). The NWTC's new dynamometer facility simulates operating field conditions to assess the reliability and performance of wind turbine prototypes and commercial machines, thereby reducing deployment time, failures, and maintenance or replacement costs. Funded by the U.S. Department of Energy with American Recovery and Reinvestment Act (ARRA) funds, the 5-MW dynamometer will provide the ability to test wind turbine drivetrains and connect those drivetrains directly to the electricity grid or through a controllable grid interface (CGI). The CGI tests the low-voltage ride-through capability of a drivetrain as well as its response to faults and other abnormal grid conditions.

  10. National Wind Technology Center Dynamic 5-Megawatt Dynamometer

    ScienceCinema (OSTI)

    Felker, Fort

    2014-06-10T23:59:59.000Z

    The National Wind Technology Center (NWTC) offers wind industry engineers a unique opportunity to conduct a wide range of tests. Its custom-designed dynamometers can test wind turbine systems from 1 kilowatt (kW) to 5 megawatts (MW). The NWTC's new dynamometer facility simulates operating field conditions to assess the reliability and performance of wind turbine prototypes and commercial machines, thereby reducing deployment time, failures, and maintenance or replacement costs. Funded by the U.S. Department of Energy with American Recovery and Reinvestment Act (ARRA) funds, the 5-MW dynamometer will provide the ability to test wind turbine drivetrains and connect those drivetrains directly to the electricity grid or through a controllable grid interface (CGI). The CGI tests the low-voltage ride-through capability of a drivetrain as well as its response to faults and other abnormal grid conditions.

  11. Fostering a Renewable Energy Technology Industry: An International Comparison of Wind Industry Policy Support Mechanisms

    E-Print Network [OSTI]

    Lewis, Joanna; Wiser, Ryan

    2005-01-01T23:59:59.000Z

    Policy and Renewable Energy Technology. Proceedings of theDiffusion of Renewable Energy Technologies: Wind Power inFostering a Renewable Energy Technology Industry: An

  12. Turbine Inflow Characterization at the National Wind Technology Center: Preprint

    SciTech Connect (OSTI)

    Clifton, A.; Schreck, S.; Scott, G.; Kelley, N.; Lundquist, J.

    2012-01-01T23:59:59.000Z

    Utility-scale wind turbines operate in dynamic flows that can vary significantly over timescales from less than a second to several years. To better understand the inflow to utility-scale turbines, two inflow towers were installed and commissioned at the National Renewable Energy Laboratory's (NREL) National Wind Technology Center near Boulder, Colorado, in 2011. These towers are 135 m tall and instrumented with a combination of sonic anemometers, cup anemometers, wind vanes, and temperature measurements to characterize the inflow wind speed and direction, turbulence, stability and thermal stratification to two utility-scale turbines. Herein, we present variations in mean and turbulent wind parameters with height, atmospheric stability, and as a function of wind direction that could be important for turbine operation as well as persistence of turbine wakes. Wind speed, turbulence intensity, and dissipation are all factors that affect turbine performance. Our results shown that these all vary with height across the rotor disk, demonstrating the importance of measuring atmospheric conditions that influence wind turbine performance at multiple heights in the rotor disk, rather than relying on extrapolation from lower levels.

  13. Turbine Inflow Characterization at the National Wind Technology Center

    SciTech Connect (OSTI)

    Clifton, A.; Schreck, S.; Scott, G.; Kelley, N.; Lundquist, J. K.

    2012-01-01T23:59:59.000Z

    Utility-scale wind turbines operate in dynamic flows that can vary significantly over timescales from less than a second to several years. To better understand the inflow to utility-scale turbines, two inflow towers were installed and commissioned at the National Renewable Energy Laboratory's (NREL) National Wind Technology Center near Boulder, Colorado, in 2011. These towers are 135 m tall and instrumented with a combination of sonic anemometers, cup anemometers, wind vanes, and temperature measurements to characterize the inflow wind speed and direction, turbulence, stability and thermal stratification to two utility-scale turbines. Herein, we present variations in mean and turbulent wind parameters with height, atmospheric stability, and as a function of wind direction that could be important for turbine operation as well as persistence of turbine wakes. Wind speed, turbulence intensity, and dissipation are all factors that affect turbine performance. Our results show that these all vary with height across the rotor disk, demonstrating the importance of measuring atmospheric conditions that influence wind turbine performance at multiple heights in the rotor disk, rather than relying on extrapolation from lower levels.

  14. Instrumentation and Control and Human Machine Interface Science and Technology Roadmap in Support of Advanced Reactors and Fuel Programs in the U.S.

    SciTech Connect (OSTI)

    Miller, Don W.; Arndt, Steven A.; Dudenhoeffer, Donald D.; Hallbert, Bruce P.; Bond, Leonard J.; Holcomb, David E.; Wood, Richard T.; Naser, Joseph A.; O'Hara, John M.; Quinn, Edward L.

    2008-06-01T23:59:59.000Z

    The purpose of this paper is to provide an overview of the current status of the Instrumentation, Control and Human Machine Interface (ICHMI) Science and Technology Roadmap (Reference xi) that was developed to address the major challenges in this technical area for the Gen IV and other U.S. Department of Energy (DOE) initiatives that support future deployments of nuclear energy systems. Reliable, capable ICHMI systems will be necessary for the advanced nuclear plants to be economically competitive. ICHMI enables measurement, control, protection, monitoring, and maintenance for processes and components. Through improvements in the technologies and demonstration of their use to facilitate licensing, ICHMI can contribute to the reduction of plant operations and maintenance costs while helping to ensure high plant availability. The impact of ICHMI can be achieved through effective use of the technologies to improve operational efficiency and optimize use of human resources. However, current licensing experience with digital I&C systems has provided lessons learned concerning the difficulties that can be encountered when introducing advanced technologies with expanded capabilities. Thus, in the development of advanced nuclear power designs, it will be important to address both the technical foundations of ICHMI systems and their licensing considerations. The ICHMI roadmap will identify the necessary research, development and demonstration activities that are essential to facilitate necessary technology advancement and resolve outstanding issues.

  15. National Wind Technology Center sitewide, Golden, CO: Environmental assessment

    SciTech Connect (OSTI)

    NONE

    1996-11-01T23:59:59.000Z

    The National Renewable Energy Laboratory (NREL), the nation`s primary solar and renewable energy research laboratory, proposes to expand its wind technology research and development program activities at its National Wind Technology Center (NWTC) near Golden, Colorado. NWTC is an existing wind energy research facility operated by NREL for the US Department of Energy (DOE). Proposed activities include the construction and reuse of buildings and facilities, installation of up to 20 wind turbine test sites, improvements in infrastructure, and subsequent research activities, technology testing, and site operations. In addition to wind turbine test activities, NWTC may be used to support other NREL program activities and small-scale demonstration projects. This document assesses potential consequences to resources within the physical, biological, and human environment, including potential impacts to: air quality, geology and soils, water resources, biological resources, cultural and historic resources, socioeconomic resources, land use, visual resources, noise environment, hazardous materials and waste management, and health and safety conditions. Comment letters were received from several agencies in response to the scoping and predecisional draft reviews. The comments have been incorporated as appropriate into the document with full text of the letters contained in the Appendices. Additionally, information from the Rocky Flats Environmental Technology Site on going sitewide assessment of potential environmental impacts has been reviewed and discussed by representatives of both parties and incorporated into the document as appropriate.

  16. Maglev Wind Turbine Technologies | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Office of Inspector GeneralDepartmentAUDIT REPORTOpenWende New Energy Co Ltd JumpLightSourceRMaglev Wind Turbine

  17. WIND AND WATER POWER TECHNOLOGIES OFFICE

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious RankCombustion |Energy Usage »of| Department of EnergyDepartment of5 - InWEIGHTEDREPRESENT.GUIDEWHO|WIND

  18. Next Generation Nuclear Plant Project Technology Development Roadmaps: The Technical Path Forward

    SciTech Connect (OSTI)

    John Collins

    2009-01-01T23:59:59.000Z

    This document presents the Next Generation Nuclear Plant (NGNP) Systems, Subsystems, and Components, establishes a baseline for the current technology readiness status, and provides a path forward to achieve increasing levels of technical maturity.

  19. Roadmap Prioritizes Barriers to the Deployment of Wind Technology in Built

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE:Year in3.pdfEnergyDepartmentEnergyHydrokineticClothes7,ofDiverse Ways of KnowingRita

  20. US DRIVE Electrochemical Energy Storage Technical Team Roadmap...

    Broader source: Energy.gov (indexed) [DOE]

    This U.S. DRIVE electrochemical energy storage roadmap describes ongoing and planned efforts to develop electrochemical energy storage technologies for plug-in electric vehicles...

  1. NATIONAL HYDROGEN ENERGY ROADMAP

    E-Print Network [OSTI]

    NATIONAL HYDROGEN ENERGY ROADMAP NATIONAL HYDROGEN ENERGY ROADMAP . . Toward a More Secure and Cleaner Energy Future for America Based on the results of the National Hydrogen Energy Roadmap Workshop to make it a reality. This Roadmap provides a framework that can make a hydrogen economy a reality

  2. Technology Roadmap Analysis 2013: Assessing Automotive Technology R&D Relevant to DOE Power Electronics Cost Targets

    Broader source: Energy.gov [DOE]

    2013 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Program Annual Merit Review and Peer Evaluation Meeting

  3. This introduction to wind power technology is meant to help communities begin considering or

    E-Print Network [OSTI]

    Massachusetts at Amherst, University of

    call both liquids and gases "fluids" ­ i.e. things that flow). A wind turbine's blades use aerodynamic of a typical wind turbine are: - Rotor: a wind turbine's blades and the hub to which they attach form the rotor or planning wind power. It focuses on commercial and medium-scale wind turbine technology available

  4. IllInoIs InstItute of technology's WInd energy research consortIum

    E-Print Network [OSTI]

    Heller, Barbara

    IllInoIs InstItute of technology's WInd energy research consortIum Wanger Institute for Sustainable Energy Research (WISER) Illinois Institute of Technology On-campus wind turbine [OVER] The U.S. Department of Energy has invested $8 Million in the IIT-led Wind Energy Consortium to improve wind generation

  5. Wind Technology Modeling Within the System Advisor Model (SAM) (Poster)

    SciTech Connect (OSTI)

    Blair, N.; Dobos, A.; Ferguson, T.; Freeman, J.; Gilman, P.; Whitmore, J.

    2014-05-01T23:59:59.000Z

    This poster provides detail for implementation and the underlying methodology for modeling wind power generation performance in the National Renewable Energy Laboratory's (NREL's) System Advisor Model (SAM). SAM's wind power model allows users to assess projects involving one or more large or small wind turbines with any of the detailed options for residential, commercial, or utility financing. The model requires information about the wind resource, wind turbine specifications, wind farm layout (if applicable), and costs, and provides analysis to compare the absolute or relative impact of these inputs. SAM is a system performance and economic model designed to facilitate analysis and decision-making for project developers, financers, policymakers, and energy researchers. The user pairs a generation technology with a financing option (residential, commercial, or utility) to calculate the cost of energy over the multi-year project period. Specifically, SAM calculates the value of projects which buy and sell power at retail rates for residential and commercial systems, and also for larger-scale projects which operate through a power purchase agreement (PPA) with a utility. The financial model captures complex financing and rate structures, taxes, and incentives.

  6. E-Print Network 3.0 - arctic wind technology Sample Search Results

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    arctic wind technology Search Powered by Explorit Topic List Advanced Search Sample search results for: arctic wind technology Page: << < 1 2 3 4 5 > >> 1 NOAA's Arctic VisiON &...

  7. Wind Technology Testing Center Earns A2LA Accreditation for Blade...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Wind Technology Testing Center Earns A2LA Accreditation for Blade Testing Wind Technology Testing Center Earns A2LA Accreditation for Blade Testing October 1, 2012 - 12:16pm...

  8. Offshore Code Comparison Collaboration (OC3) for IEA Wind Task 23 Offshore Wind Technology and Deployment

    SciTech Connect (OSTI)

    Jonkman, J.; Musial, W.

    2010-12-01T23:59:59.000Z

    This final report for IEA Wind Task 23, Offshore Wind Energy Technology and Deployment, is made up of two separate reports, Subtask 1: Experience with Critical Deployment Issues and Subtask 2: Offshore Code Comparison Collaborative (OC3). Subtask 1 discusses ecological issues and regulation, electrical system integration, external conditions, and key conclusions for Subtask 1. Subtask 2 included here, is the larger of the two volumes and contains five chapters that cover background information and objectives of Subtask 2 and results from each of the four phases of the project.

  9. COSPAR Roadmap team v. 2014/07/281 Advancing space weather science to protect

    E-Print Network [OSTI]

    Schrijver, Karel

    COSPAR Roadmap team v. 2014/07/281 Advancing space weather science to protect society's technological infrastructure: a COSPAR/ILWS roadmap Advancing space weather science to protect society's technological infrastructure: a COSPAR/ILWS roadmap · Alan Aylward; University College London, UK · Sarah Gibson

  10. Hi-Q Rotor - Low Wind Speed Technology

    SciTech Connect (OSTI)

    Todd E. Mills; Judy Tatum

    2010-01-11T23:59:59.000Z

    The project objective was to optimize the performance of the Hi-Q Rotor. Early research funded by the California Energy Commission indicated the design might be advantageous over state-of-the-art turbines for collecting wind energy in low wind conditions. The Hi-Q Rotor is a new kind of rotor targeted for harvesting wind in Class 2, 3, and 4 sites, and has application in areas that are closer to cities, or 'load centers.' An advantage of the Hi-Q Rotor is that the rotor has non-conventional blade tips, producing less turbulence, and is quieter than standard wind turbine blades which is critical to the low-wind populated urban sites. Unlike state-of-the-art propeller type blades, the Hi-Q Rotor has six blades connected by end caps. In this phase of the research funded by DOE's Inventions and Innovation Program, the goal was to improve the current design by building a series of theoretical and numeric models, and composite prototypes to determine a best of class device. Development of the rotor was performed by aeronautical engineering and design firm, DARcorporation. From this investigation, an optimized design was determined and an 8-foot diameter, full-scale rotor was built and mounted using a Bergey LX-1 generator and furling system which were adapted to support the rotor. The Hi-Q Rotor was then tested side-by-side against the state-of-the-art Bergey XL-1 at the Alternative Energy Institute's Wind Test Center at West Texas State University for six weeks, and real time measurements of power generated were collected and compared. Early wind tunnel testing showed that the cut-in-speed of the Hi-Q rotor is much lower than a conventional tested HAWT enabling the Hi-Q Wind Turbine to begin collecting energy before a conventional HAWT has started spinning. Also, torque at low wind speeds for the Hi-Q Wind Turbine is higher than the tested conventional HAWT and enabled the wind turbine to generate power at lower wind speeds. Based on the data collected, the results of our first full-scale prototype wind turbine proved that higher energy can be captured at lower wind speeds with the new Hi-Q Rotor. The Hi-Q Rotor is almost 15% more productive than the Bergey from 6 m/s to 8 m/s, making it ideal in Class 3, 4, and 5 wind sites and has application in the critical and heretofore untapped areas that are closer to cities, 'load centers,' and may even be used directly in urban areas. The additional advantage of the Hi-Q Rotor's non-conventional blade tips, which eliminates most air turbulence, is noise reduction which makes it doubly ideal for populated urban areas. Hi-Q Products recommends one final stage of development to take the Hi-Q Rotor through Technology Readiness Levels 8-9. During this stage of development, the rotor will be redesigned to further increase efficiency, match the rotor to a more suitable generator, and lower the cost of manufacturing by redesigning the structure to allow for production in larger quantities at lower cost. Before taking the rotor to market and commercialization, it is necessary to further optimize the performance by finding a better generator and autofurling system, ones more suitable for lower wind speeds and rpms should be used in all future testing. The potential impact of this fully developed technology will be the expansion and proliferation of energy renewal into the heretofore untapped Class 2, 3, 4, and 5 Wind Sites, or the large underutilized sites where the wind speed is broken by physical features such as mountains, buildings, and trees. Market estimates by 2011, if low wind speed technology can be developed are well above: 13 million homes, 675,000 commercial buildings, 250,000 public facilities. Estimated commercial exploitation of the Hi-Q Rotor show potential increase in U.S. energy gained through the clean, renewable wind energy found in low and very low wind speed sites. This new energy source would greatly impact greenhouse emissions as well as the public sector's growing energy demands.

  11. Research and Development Technology Development Roadmaps for the Next Generation Nuclear Plant Project

    SciTech Connect (OSTI)

    Ian McKirdy

    2011-07-01T23:59:59.000Z

    The U.S. Department of Energy (DOE) has selected the high temperature gas-cooled reactor (HTGR) design for the Next Generation Nuclear Plant (NGNP) Project. The NGNP will demonstrate the use of nuclear power for process heat, hydrogen and electricity production. The reactor will be graphite moderated with helium as the primary coolant and may be either prismatic or pebble-bed. Although, final design features have not yet been determined. Research and Development (R&D) activities are proceeding on those known plant systems to mature the technology, codify the materials for specific applications, and demonstrate the component and system viability in NGNP relevant and integrated environments. Collectively these R&D activities serve to reduce the project risk and enhance the probability of on-budget, on-schedule completion and NRC licensing. As the design progresses, in more detail, toward final design and approval for construction, selected components, which have not been used in a similar application, in a relevant environment nor integrated with other components and systems, must be tested to demonstrate viability at reduced scales and simulations prior to full scale operation. This report and its R&D TDRMs present the path forward and its significance in assuring technical readiness to perform the desired function by: Choreographing the integration between design and R&D activities; and proving selected design components in relevant applications.

  12. Enabling Technologies for High Penetration of Wind and Solar Energy

    SciTech Connect (OSTI)

    Denholm, P.

    2011-01-01T23:59:59.000Z

    High penetration of variable wind and solar electricity generation will require modifications to the electric power system. This work examines the impacts of variable generation, including uncertainty, ramp rate, ramp range, and potentially excess generation. Time-series simulations were performed in the Texas (ERCOT) grid where different mixes of wind, solar photovoltaic and concentrating solar power provide up to 80% of the electric demand. Different enabling technologies were examined, including conventional generator flexibility, demand response, load shifting, and energy storage. A variety of combinations of these technologies enabled low levels of surplus or curtailed wind and solar generation depending on the desired penetration of renewable sources. At lower levels of penetration (up to about 30% on an energy basis) increasing flexible generation, combined with demand response may be sufficient to accommodate variability and uncertainty. Introduction of load-shifting through real-time pricing or other market mechanisms further increases the penetration of variable generation. The limited time coincidence of wind and solar generation presents increasing challenges as these sources provide greater than 50% of total demand. System flexibility must be increased to the point of virtually eliminating must-run baseload generators during periods of high wind and solar generation. Energy storage also becomes increasingly important as lower cost flexibility options are exhausted. The study examines three classes of energy storage - electricity storage, including batteries and pumped hydro, hybrid storage (compressed-air energy storage), and thermal energy storage. Ignoring long-distance transmission options, a combination of load shifting and storage equal to about 12 hours of average demand may keep renewable energy curtailment below 10% in the simulated system.

  13. National Aeronautics and Space Administration NaNotechNology Roadmap

    E-Print Network [OSTI]

    Waliser, Duane E.

    National Aeronautics and Space Administration · NaNotechNology Roadmap Technology Area 10 Michael A: Nanotechnology. NASA developed this DRAFT Space Technology Roadmap for use by the National Research Council (NRC Nanotechnology involves the manipulation of matter at the atomic level, where convention- al physics breaks down

  14. Wind, Hydrogen and other Energy Technologies Similarities and Differences in Expectation Dynamics

    E-Print Network [OSTI]

    Wind, Hydrogen and other Energy Technologies ­ Similarities and Differences in Expectation Dynamics But mostly a "storytelling" on expectations and wind energy Per Dannemand Andersen Head of Technology Scenarios research programme Risoe National Laboratory per.dannemand@risoe.dk #12;Expectations and Wind

  15. Research Roadmap Presentation

    E-Print Network [OSTI]

    Sloman, Aaron

    Research Roadmap Presentation: euCognition Meeting, Munich 12 Jan 2007 http://www.eucognition.org/six_monthly_meeting_2.htm What's a Research Roadmap For? Why do we need one? How can we produce one? Aaron Sloman ( http.cs.bham.ac.uk/research/projects/cosy/papers/#pr0701 See also the euCognition Research Roadmap project: http://www.eucognition.org/wiki/index.php?title=Research_Roadmap

  16. ENERGY EFFICIENCY TECHNOLOGY ROADMAP

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    electric lighting while maintaining good quality lighting that promotes health and productivity. O t h e r S o u r c e s The list below is intended to be broadly representative...

  17. Collaborative Transmission Technology Roadmap

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    and bring together organizations with broadly-shared goals but potentially very different corporate cultures, strategic plans, and legal mandates, neither document Back to Table of...

  18. ENERGY EFFICIENCY TECHNOLOGY ROADMAP

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    renewable generation, grid supply, energy storage, distribution, communication, demand control, and end uses. Workshop findings are pending as of March 2013. Lawrence...

  19. Collaborative Transmission Technology Roadmap

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    techniques, and tools to analyze data from power quality recorders Size-up demand response opportunities Transmission level monitoring with PMUs is not sufficient and needs to...

  20. 2012 Market Report on U.S. Wind Technologies in Distributed Applicatio...

    Broader source: Energy.gov (indexed) [DOE]

    on U.S. Wind Technologies in Distributed Applications An annual report on U.S. wind power in distributed applications--expanded to include small, mid-size, and utility-scale...

  1. Live Webinar on the Funding Opportunity for Technology Incubator for Wind Energy Innovations

    Broader source: Energy.gov [DOE]

    On April 17, 2014, from 1:00 3:00 PM MDT, the Wind Program will hold a live webinar to provide information to potential applicants for the Technology Incubator for Wind Energy Innovations Funding Opportunity.

  2. AISI/DOE Technology Roadmap Program: A Technology of Low Coal Rate and High Productivity of RHF Ironmaking

    SciTech Connect (OSTI)

    Wei-Kao Lu

    2002-09-15T23:59:59.000Z

    An economical and environment-friendly ironmaking process based on heating the chemiexecy self-sufficient green balls of iron ore and coal in a hearth furnace is being developed with financial support from AISI members and DOE. DRI, which is hot (1400 C), dense (3.2 g/cm) and of high degree of metallization (95%), has been produced in laboratory and in a pilot plant in Genoa, Italy. Products of such quality have been made from American and Brazilian ores, BOF sludge, EAF dust/BOF sludge mixtures and millscale. The removal of zinc and lead from green balls by this process is essentially complete. In comparison with typical blast furnace operation, the new technology with a melter would have a lower total coal rate by 200kg.THM. The elimination of cokemaking and high temperature agglomeration steps, and a simpler gas handling system would lead to lower capital and operating costs. In comparison with commercial RHF practice it is different in atmosphere (fully oxidized at 1600 to 1650 C), in bed height (120 mm instead of 20-25 mm) and in pellet composition (much less coal but of higher VM). The combined effect leads to three times higher furnace productivity, lower coal consumption and superior DRI quality. The risk of re-oxidation (slag formation) and dusty operation are practiexecy eliminated. The process is stable, tolerant and independent of the size, shape and movement of the hearth. However, materials handling (e.g., discharge of hot DRI) and the exact energy savings have to be established in a larger furnace, straight or rotary, and in a continuous mode of operation.

  3. Offshore Wind Technology Development Projects | Department of Energy

    Office of Environmental Management (EM)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) "of EnergyEnergyENERGY TAXBalanced ScorecardReactor TechnologyOFFICE: I Oak4SmallGeneralOffshore Wind »

  4. Wind Energy Technologies Available for Licensing - Energy Innovation Portal

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary)morphinanInformation Desert SouthwestTechnologies | Blandine Jerome Careers at WIPPCompletes aboutWind Energy

  5. Roadmap: Aeronautics -Aviation Management -Bachelor of Science [AT-BS-AERN-AVMN

    E-Print Network [OSTI]

    Sheridan, Scott

    Roadmap: Aeronautics - Aviation Management - Bachelor of Science [AT-BS-AERN-AVMN] College of 3 | Last Updated: 6-Dec-12/JS This roadmap is a recommended semester-by-semester plan of study on page 2 TECH 36620 Project Management in Engineering and Technology 3 #12;Roadmap: Aeronautics

  6. Roadmap for Venus Exploration: 2014 (Draft for Community Review, Feb. 21, 2014)

    E-Print Network [OSTI]

    Rathbun, Julie A.

    Roadmap for Venus Exploration: 2014 (Draft for Community Review, Feb. 21, 2014) #12;ii the document prioritizing Goals, Objectives and Investigations for Venus Exploration, (2) develop a Roadmap priorities, and (3) develop a white paper on technologies for Venus missions. Here, we present the Roadmap

  7. Roadmap for Venus Exploration Roadmap for Venus Exploration

    E-Print Network [OSTI]

    Rathbun, Julie A.

    Roadmap for Venus Exploration May 2014 #12;ii Roadmap for Venus Exploration At the VEXAG meeting in November 2013, it was resolved and Investigations for Venus Exploration (GOI), (2) develop a Roadmap for Venus exploration

  8. EA-1939: Reese Technology Center Wind and Battery Integration Project, Lubbock County, TX

    Broader source: Energy.gov [DOE]

    This EA will evaluate the potential environmental impacts of a proposal by the Center for Commercialization of Electric Technologies to demonstrate battery technology integration with wind generated electricity by deploying and evaluating utility-scale lithium battery technology to improve grid performance and thereby aid in the integration of wind generation into the local electricity supply.

  9. Roadmapping - A Tool for Strategic Planning and Leveraging R&D completed by other Agencies

    SciTech Connect (OSTI)

    Collins, J. W.

    2002-02-28T23:59:59.000Z

    The Department of Energy (DOE) is responsible for management of the environmental legacy of the nation's nuclear weapons and research program. This is the largest, most complex environmental cleanup program in the world. The issues and problems encountered in this program create the need to develop many scientific and technological solutions. To be effective, the process used to create these solutions must be well coordinated through DOE's Environmental Management program, the rest of DOE, and other Federal agencies. Roadmapping is one strategic planning tool to provide the needed coordination. Past roadmapping accomplishments include: (1) Issuance of the Draft EM Roadmapping Guidance; (2) Issuance of the EM R&D Program Plan and Strategic Plan which established the direction for Roadmapping; (3) Issuance of the OST Management Plan which calls out Roadmapping as a key tool in EM Research & Development (R&D) Strategic Planning; (4) Completion of or progress on key EM Roadmaps, i.e., Savannah River High Level Waste (HLW) Salt Dispositioning Roadmaps, Hanford Groundwater/Vadose Zone Roadmap, Robotics and Intelligent Machines Critical Technology Roadmap, Complex-Wide Vadose Zone Roadmap, Long-Term Stewardship Preliminary Roadmap, Hydrogen Gas Generation R&D Plan (Roadmap), Idaho National Engineering and Environmental Laboratory (INEEL) Sodium Bearing Waste Dispositioning Roadmap, INEEL Voluntary Consent Order Tanks Characterization Roadmap, INEEL Vadose Zone/Groundwater Roadmap, Calcine Treatment Alternatives Roadmap. These efforts represent a great start; however, there is more to be accomplished in using Roadmapping as a tool for planning strategic initiatives and in coordinating the R&D performed by multiple federal agencies.

  10. Vertical-axis wind turbines -- The current status of an old technology

    SciTech Connect (OSTI)

    Berg, D.E.

    1996-12-31T23:59:59.000Z

    Vertical-axis wind turbine technology is not well understood, even though the earliest wind machines rotated about a vertical axis. The operating environment of a vertical-axis wind turbine is quite complex, but detailed analysis capabilities have been developed and verified over the last 30 years. Although vertical-axis technology has not been widely commercialized, it exhibits both advantages and disadvantages compared to horizontal-axis technology, and in some applications, it appears to offer significant advantages.

  11. Final Technical Report Laramie County Community College: Utility-Scale Wind Energy Technology

    SciTech Connect (OSTI)

    Douglas P. Cook

    2012-05-22T23:59:59.000Z

    The Utility-Scale Wind Energy Technology U.S. Department of Energy (DOE) grant EE0000538, provided a way ahead for Laramie County Community College (LCCC) to increase educational and training opportunities for students seeking an Associate of Applied Science (AAS) or Associate of Science (AS) degree in Wind Energy Technology. The DOE grant enabled LCCC to program, schedule, and successfully operate multiple wind energy technology cohorts of up to 20-14 students per cohort simultaneously. As of this report, LCCC currently runs four cohorts. In addition, the DOE grant allowed LCCC to procure specialized LABVOLT electronic equipment that directly supports is wind energy technology curriculum.

  12. DCNS, OTEC roadmap May 2013 DCNSDCNS -Ocean Energy Business Unit

    E-Print Network [OSTI]

    © DCNS, OTEC roadmap ­ May 2013 © DCNSDCNS - Ocean Energy Business Unit Emmanuel BROCHARD, VP OTEC positioning for DCNS on Ocean Energy Provider of added-value · On Ocean Thermal Energy Conversion, Floating #12;© DCNS, OTEC roadmap ­ May 2013 4 DNCS invests in 4 ocean energy technologies Keypoints OTEC

  13. V2G Technology for Designing Active Filter System to Improve Wind Power Quality

    E-Print Network [OSTI]

    Pota, Himanshu Roy

    V2G Technology for Designing Active Filter System to Improve Wind Power Quality F. R. Islam, H. R factor correction and harmonics current compensation. Index Terms--PHEVs, V2G, Wind Power, Battery Scheme to design active filter is proposed here to improve the quality of wind power output. Harmonics is one

  14. New report assesses offshore wind technology challenges and potential risks and benefits.

    E-Print Network [OSTI]

    New report assesses offshore wind technology challenges and potential risks and benefits. The report estimates that U.S. offshore winds have a gross potential generating capacity four times greater wind resources can provide many potential benefits, and with effective research, policies

  15. Advanced Wind Technology: New Challenges for a New Century

    SciTech Connect (OSTI)

    Thresher, R.; Laxson, A.

    2006-06-01T23:59:59.000Z

    This paper describes the growth, advances, and challenges faced by the wind energy industry in 2006.

  16. New England Wind Forum: A Wind Powering America Project, Newsletter #5 -- January 2010, Wind and Hydropower Technologies Program (WHTP)

    SciTech Connect (OSTI)

    Grace, R. C.; Gifford, J.

    2010-01-01T23:59:59.000Z

    Wind Powering America program launched the New England Wind Forum (NEWF) in 2005 to provide a single comprehensive source of up-to-date, Web-based information on a broad array of wind energy issues pertaining to New England. The NEWF newsletter provides New England stakeholders with updates on wind energy development in the region. In addition to regional updates, Issue #5 offers an interview with Angus King, former governor of Maine and co-founder of Independence Wind.

  17. Vehicle Technologies Office: US DRIVE Materials Technical Team...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    US DRIVE Materials Technical Team Roadmap Vehicle Technologies Office: US DRIVE Materials Technical Team Roadmap The Materials Technical Team (MTT) of the U.S. DRIVE Partnership...

  18. New National Wind Potential Estimates for Modern and Near-Future Turbine Technologies (Poster)

    SciTech Connect (OSTI)

    Roberts, J. O.

    2014-01-01T23:59:59.000Z

    Recent advancements in utility-scale wind turbine technology and pricing have vastly increased the potential land area where turbines can be deployed in the United States. This presentation quantifies the new developable land potential (e.g., capacity curves), visually identifies new areas for possible development (e.g., new wind resource maps), and begins to address deployment barriers to wind in new areas for modern and future turbine technology.

  19. SCHOOL OF MEDICINE RESEARCH ROADMAP

    E-Print Network [OSTI]

    Chapman, Michael S.

    SCHOOL OF MEDICINE RESEARCH ROADMAP October 2011 #12;OHSU School of Medicine Research Roadmap internal and external stakeholders and the public. #12;OHSU School of Medicine Research Roadmap October human health and well-being. At the Research Roadmap Retreat in December 2010, I issued a charge

  20. MARSAME Roadmap Introduction to MARSAME

    E-Print Network [OSTI]

    MARSAME Roadmap ROADMAP Introduction to MARSAME The Multi-Agency Radiation Survey and Assessment flexibility in the survey process, and this flexibility is incorporated into MARSAME. The Goal of the Roadmap The increased flexibility of MARSAME comes with increased complexity. The goal of the roadmap is to assist

  1. V2G Technology to Improve Wind Power Quality and Stability F. R. Islam and H. R. Pota

    E-Print Network [OSTI]

    Pota, Himanshu Roy

    V2G Technology to Improve Wind Power Quality and Stability F. R. Islam and H. R. Pota Abstract an implementation of V2G technology is proposed here to improve the quality and stability of wind power output

  2. Wind for Schools Affiliate Programs: Wind and Hydropower Technologies Program (Fact Sheet)

    SciTech Connect (OSTI)

    Not Available

    2009-12-01T23:59:59.000Z

    The U.S. Department of Energy's (DOE's) Wind for Schools program is designed to raise awareness about the benefits of wind energy while simultaneously developing a wind energy knowledge base in future leaders of our communities, states, and nation. To accommodate the many stakeholders who are interested in the program, a Wind for Schools affiliate program has been implemented. This document describes the affiliate program and how interested schools may participate.

  3. Testing of a 50-kW Wind-Diesel Hybrid System at the National Wind Technology Center

    SciTech Connect (OSTI)

    Corbus, D. A.; Green, H. J.; Allderdice, A.; Rand, K.; Bianchi, J.; Linton, E.

    1996-07-01T23:59:59.000Z

    In remote off-grid villages and communities, a reliable power source is important in improving the local quality of life. Villages often use a diesel generator for their power, but fuel can be expensive and maintenance burdensome. Including a wind turbine in a diesel system can reduce fuel consumption and lower maintenance, thereby reducing energy costs. However, integrating the various components of a wind-diesel system, including wind turbine, power conversion system, and battery storage (if applicable), is a challenging task. To further the development of commercial hybrid power systems, the National Renewable Energy Laboratory (NREL), in collaboration with the New World Village Power Corporation (NWVP), tested a NWVP 50-kW wind-diesel hybrid system connected to a 15/50 Atlantic Orient Corporation (AOC) wind turbine. Testing was conducted from October 1995 through March 1996 at the National Wind Technology Center (NWTC). A main objective of the testing was to better understand the application of wind turbines to weak grids typical of small villages. Performance results contained in this report include component characterization, such as power conversion losses for the rotary converter system and battery round trip efficiencies. In addition, system operation over the test period is discussed with special attention given to dynamic issues. Finally, future plans for continued testing and research are discussed.

  4. Conventional Hydropower Technologies, Wind And Water Power Program...

    Office of Environmental Management (EM)

    Power for a Clean Energy Future (Fact Sheet), Wind and Water Power Program (WWPP) Hydropower Projects Environmental Impacts of Increased Hydroelectric Development at Existing Dams...

  5. Sandia National Laboratories: Scaled Wind Farm Technology (SWIFT...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    wakes denoted by white helices and white fog. Development of the SWIFT Facility wind turbines reached a critical milestone this week, with the successful ground testing of the...

  6. Upcoming Funding Opportunity for Technology Incubator for Wind...

    Energy Savers [EERE]

    opportunity encompasses applications for any and all ideas that have a significant potential to advance the mission of the Wind Program. While all high-impact applications...

  7. Technology Incubator for Wind Energy Innovations Funding Opportunity...

    Office of Environmental Management (EM)

    a nonexclusive list of possible topic areas where innovative ideas would have significant potential to enhance its wind research goals: Novel Measurement Techniques for...

  8. Contribution to the Chapter on Wind Power Energy Technology

    E-Print Network [OSTI]

    energy development, therefore it could be likely to cover as much as 20% of the world's electricity mainly in Europe, USA and China. The market is maturing, therefore achieving more stable economies in the wind energy sector. As a result, better electrical grids suited for wind power are being developed

  9. Testing Active Power Control from Wind Power at the National Wind Technology Center (NWTC) (Presentation)

    SciTech Connect (OSTI)

    Ela, E.

    2011-05-01T23:59:59.000Z

    In order to keep the electricity grid stable and the lights on, the power system relies on certain responses from its generating fleet. This presentation evaluates the potential for wind turbines and wind power plants to provide these services and assist the grid during critical times.

  10. Zhiyu Jiang, Department of Marine Technology & Centre for Ships and Ocean Structures Dynamic response of wind turbines in fault and

    E-Print Network [OSTI]

    Nørvåg, Kjetil

    response of wind turbines in fault and shutdown conditions Zhiyu Jiang Deptartment of Marine Technology://www.newscientist.com/blogs/onepercent/2011/12/why-did-a-wind-turbine-self-co.html #12;3 Zhiyu Jiang, Department of Marine Technology & Centre & Centre for Ships and Ocean Structures Control and protection of wind turbines Emergency shutdown Pitch

  11. Albostan A.: Wind Energy: Analysis of the Technological Potential and policies

    E-Print Network [OSTI]

    Sitki Gner; Mehmet Meliko?lu; Ayhan Albostan

    2011-01-01T23:59:59.000Z

    At the beginning of the 21 st century, due to increase in fossil fuel prices and environmental concerns, many countries started to invest in alternative energy resources. In addition, global environmental problems and climate change due to greenhouse gas emissions from fossil fuels showed the importance of renewable energy resources, especially wind energy. The major reason for this interest in wind energy technologies is the bulk availability of this resource without any cost. Due to increasing demand for wind energy, the technology and know-how in this field is increased expeditiously in this field. However, in order to increase the efficiency of wind turbines most of the system components must be enhanced. The research and development in this area mainly focuses on the turbine components such as blades, gear box, tower structure, control system, and generator technologies. Out of these, turbine, blade, and generator are the most important. The technological improvements or the next major breakthrough in wind turbines will be directly related to the increase in the capacity of these systems and their related size. In this paper, advancements in wind energy systems are investigated in detail by focusing on advantages and major problems in these systems, and analysing the current and future wind energy applications and policies in Turkey.

  12. DOE Seeking Proposals to Advance Distributed Wind Turbine Technology...

    Energy Savers [EERE]

    Project (CIP). The CIP aims to help U.S. manufacturers of small and mid-sized wind turbines with rotor swept areas up to 1,000 square meters improve their turbine designs and...

  13. 2012 Wind Technologies Market Report | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE: Alternative Fuels DataCombinedDepartment ofCareersWindProject Management Workshop2 Webinar2 Wind

  14. Roadmapping as a Knowledge Creation Process: The PROLEARN Roadmap

    E-Print Network [OSTI]

    Vana Kamtsiou; Ambjrn Naeve; Lampros K. Stergioulas; Tapio Koskinen

    Abstract: The paper presents a new approach to developing a roadmap for technologyenhanced professional training. The new methodology views roadmapping as a knowledge creation process and involves the key phases of foresight analysis (identification of prevalent visions) and gap analysis. A conceptual model of the roadmapping process as a knowledge creation exercise is introduced and discussed.

  15. STRATEGIC ROADMAP College of Engineering

    E-Print Network [OSTI]

    Tullos, Desiree

    STRATEGIC ROADMAP College of Engineering College of Engineering Oregon State University 101 Covell our strate- gic plan once the university's strategic plan is complete. This roadmap is an informal

  16. First-ever ieRoadmap Workshop Reviews Progress in Achieving Roadmap...

    Broader source: Energy.gov (indexed) [DOE]

    First-ever ieRoadmap Workshop Reviews Progress in Achieving Roadmap Goals First-ever ieRoadmap Workshop Reviews Progress in Achieving Roadmap Goals On May 28-29, 2008, the first...

  17. Reactor User Interface Technology Development Roadmaps for a High Temperature Gas-Cooled Reactor Outlet Temperature of 750 degrees C

    SciTech Connect (OSTI)

    Ian Mckirdy

    2010-12-01T23:59:59.000Z

    This report evaluates the technology readiness of the interface components that are required to transfer high-temperature heat from a High Temperature Gas-Cooled Reactor (HTGR) to selected industrial applications. This report assumes that the HTGR operates at a reactor outlet temperature of 750C and provides electricity and/or process heat at 700C to conventional process applications, including the production of hydrogen.

  18. Sandia National Laboratories: Scaled Wind Farm Technology (SWIFT) Facility

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmosphericNuclear Security Administration the1 -theErikGroundbreaking Work on CriegeeElectronicsAssociationScaled Wind FarmWind

  19. Coming Soon! 2011 Wind Technologies Market Report (Postcard)

    SciTech Connect (OSTI)

    Not Available

    2012-06-01T23:59:59.000Z

    This valuable report will be available this summer! Prepared by the Energy Department's Lawrence Berkeley National Laboratory, the report is a must read, providing a comprehensive overview of United States wind industry: Installation Trends, Industry Trends, Price, Cost, and Performance Trends, Policy and Market Drivers, Future Outlook.

  20. Stochastic Roadmap Simulation: Efficient Representation and Algorithms for

    E-Print Network [OSTI]

    Brutlag, Doug

    Stochastic Roadmap Simulation: Efficient Representation and Algorithms for the Analysis Roadmap Simulation (SRS) #12;Stochastic Roadmap Simulation (SRS) Multiple paths at once; #12;Stochastic Roadmap Simulation (SRS) Multiple paths at once; No local minimum problem; #12;Stochastic Roadmap

  1. Guangdong Mingyang Wind Power Technology Co Ltd | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Office of Inspector GeneralDepartmentAUDIT REPORTOpen EnergyBoard" form. ToGestionSolarPortocarrio SMingyang Wind

  2. EA-1750: Smart Grid, Center for Commercialization of Electric Technology, Technology Solutions for Wind Integration in ERCOT, Houston, Texas

    Broader source: Energy.gov [DOE]

    This EA evaluates the potential environmental impacts of providing a financial assistance grant under the American Recovery and Reinvestment Act of 2009 to the Center for Commercialization of Electric Technology to facilitate the development and demonstration of a multi-faceted, synergistic approach to managing fluctuations in wind power within the Electric Reliability Council of Texas transmission grid.

  3. Roadmap To Success | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    Roadmap To Success Roadmap To Success Form that is issued by DOE employees to assist them in creating their Indiviual Development Plan Roadmap to Success for DOE Employees.doc More...

  4. 2013 Wind Technologies Market Report | Department of Energy

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May JunDatastreamsmmcrcalgovInstrumentsrucLasDelivered‰PNGExperience hands-onASTROPHYSICS H. I.Plasma Camp ViewResidentialWind

  5. Sandia National Laboratories: Scaled Wind Farm Technologies Facility

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmosphericNuclear Security Administration the1 -theErikGroundbreaking Work on CriegeeElectronicsAssociationScaled Wind Farm

  6. Sandia National Laboratories: Scaled Wind Farm Technology Facility

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmosphericNuclear Security Administration the1 -theErikGroundbreaking Work on CriegeeElectronicsAssociationScaled Wind

  7. NREL: Learning - National Wind Technology Center Video (Text Version)

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmosphericNuclear Security Administration the Contributions and Achievements ofLizResults InterpretingBiofuelsNational Wind

  8. Wind Energy Resources and Technologies | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE:YearRound-Up from theDepartment of Dept.| WEATHERIZATION5 | EnergyMayDepartment ofWind Energy

  9. NREL: Technology Deployment - Wind Energy Deployment and Market

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmosphericNuclear Security Administration the Contributions andData and ResourcesOther Federal AgencyTransformation Wind Energy

  10. NREL National Wind Technology Center (NWTC): M2 Tower; Boulder, Colorado (Data)

    DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

    Jager, D.; Andreas, A.

    The National Wind Technology Center (NWTC), located at the foot of the Rocky Mountains near Boulder, Colorado, is a world-class research facility managed by NREL for the U.S. Department of Energy. NWTC researchers work with members of the wind energy industry to advance wind power technologies that lower the cost of wind energy through research and development of state-of-the-art wind turbine designs. NREL's Measurement and Instrument Data Center provides data from NWTC's M2 tower which are derived from instruments mounted on or near an 82 meter (270 foot) meteorological tower located at the western edge of the NWTC site and about 11 km (7 miles) west of Broomfield, and approximately 8 km (5 miles) south of Boulder, Colorado. The data represent the mean value of readings taken every two seconds and averaged over one minute. The wind speed and direction are measured at six heights on the tower and air temperature is measured at three heights. The dew point temperature, relative humidity, barometric pressure, totalized liquid precipitation, and global solar radiation are also available.

  11. Cross-border transfer of climate change mitigation technologies : the case of wind energy from Denmark and Germany to India

    E-Print Network [OSTI]

    Mizuno, Emi, Ph. D. Massachusetts Institute of Technology

    2007-01-01T23:59:59.000Z

    This research investigated the causal factors and processes of international development and diffusion of wind energy technology by examining private sector cross-border technology transfer from Denmark and Germany to India ...

  12. Cultural Roadmap Meeting | OpenEI Community

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Office of InspectorConcentratingRenewable Solutions LLC JumpCrow Lake Wind Jump to:Roadmap Meeting Home > Groups

  13. Learning About Wind Turbine Technology, Motors and Generators...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    focused on topics outside of electric machines, to learn about the physics behind motors and generators. It is hard to believe that this technology has been around for well...

  14. 2012 Market Report on U.S. Wind Technologies in Distributed Applications

    SciTech Connect (OSTI)

    Orrell, Alice C.; Flowers, L. T.; Gagne, M. N.; Pro, B. H.; Rhoads-Weaver, H. E.; Jenkins, J. O.; Sahl, K. M.; Baranowski, R. E.

    2013-08-06T23:59:59.000Z

    At the end of 2012, U.S. wind turbines in distributed applications reached a 10-year cumulative installed capacity of more than 812 MW from more than 69,000 units across all 50 states. In 2012 alone, nearly 3,800 wind turbines totaling 175 MW of distributed wind capacity were documented in 40 states and in the U.S. Virgin Islands, with 138 MW using utility-scale turbines (i.e., greater than 1 MW in size), 19 MW using mid-size turbines (i.e., 101 kW to 1 MW in size), and 18.4 MW using small turbines (i.e., up to 100 kW in size). Distributed wind is defined in terms of technology application based on a wind projects location relative to end-use and power-distribution infrastructure, rather than on technology size or project size. Distributed wind systems are either connected on the customer side of the meter (to meet the onsite load) or directly to distribution or micro grids (to support grid operations or offset large loads nearby). Estimated capacity-weighted average costs for 2012 U.S. distributed wind installations was $2,540/kW for utility-scale wind turbines, $2,810/kW for mid-sized wind turbines, and $6,960/kW for newly manufactured (domestic and imported) small wind turbines. An emerging trend observed in 2012 was an increased use of refurbished turbines. The estimated capacity-weighted average cost of refurbished small wind turbines installed in 2012 was $4,080/kW. As a result of multiple projects using utility-scale turbines, Iowa deployed the most new overall distributed wind capacity, 37 MW, in 2012. Nevada deployed the most small wind capacity in 2012, with nearly 8 MW of small wind turbines installed in distributed applications. In the case of mid-size turbines, Ohio led all states in 2012 with 4.9 MW installed in distributed applications. State and federal policies and incentives continued to play a substantial role in the development of distributed wind projects. In 2012, U.S. Treasury Section 1603 payments and grants and loans from the U.S. Department of Agricultures Rural Energy for America Program were the main sources of federal funding for distributed wind projects. State and local funding varied across the country, from rebates to loans, tax credits, and other incentives. Reducing utility bills and hedging against potentially rising electricity rates remain drivers of distributed wind installations. In 2012, other drivers included taking advantage of the expiring U.S. Treasury Section 1603 program and a prosperous year for farmers. While 2012 saw a large addition of distributed wind capacity, considerable barriers and challenges remain, such as a weak domestic economy, inconsistent state incentives, and very competitive solar photovoltaic and natural gas prices. The industry remains committed to improving the distributed wind marketplace by advancing the third-party certification process and introducing alternative financing models, such as third-party power purchase agreements and lease-to-own agreements more typical in the solar photovoltaic market. Continued growth is expected in 2013.

  15. Lightweighting and Propulsion Materials Roadmapping Workshop...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Lightweighting and Propulsion Materials Roadmapping Workshop Outbrief Lightweighting and Propulsion Materials Roadmapping Workshop Outbrief 2012 DOE Hydrogen and Fuel Cells Program...

  16. A Roadmap for Engineering Piezoelectricity in Graphene

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Roadmap for Engineering Piezoelectricity in Graphene A Roadmap for Engineering Piezoelectricity in Graphene Doping this 'Miracle Material' May Lead to New Array of Nanoscale...

  17. Office of Wind and Hydropower Technologies Wind Energy Program: 2006 Peer Review Report

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious RankCombustion | Department ofT ib l L d F SSales LLC OrderEfficiencyOceanOctober0 - Visit0 PeerWind

  18. Vehicle Battery Safety Roadmap Guidance

    SciTech Connect (OSTI)

    Doughty, D. H.

    2012-10-01T23:59:59.000Z

    The safety of electrified vehicles with high capacity energy storage devices creates challenges that must be met to assure commercial acceptance of EVs and HEVs. High performance vehicular traction energy storage systems must be intrinsically tolerant of abusive conditions: overcharge, short circuit, crush, fire exposure, overdischarge, and mechanical shock and vibration. Fail-safe responses to these conditions must be designed into the system, at the materials and the system level, through selection of materials and safety devices that will further reduce the probability of single cell failure and preclude propagation of failure to adjacent cells. One of the most important objectives of DOE's Office of Vehicle Technologies is to support the development of lithium ion batteries that are safe and abuse tolerant in electric drive vehicles. This Roadmap analyzes battery safety and failure modes of state-of-the-art cells and batteries and makes recommendations on future investments that would further DOE's mission.

  19. Building State-of-the-Art Wind Technology Testing Facilities (Fact Sheet)

    SciTech Connect (OSTI)

    Not Available

    2012-03-01T23:59:59.000Z

    The new Wind Technology Test Center is the only facility in the nation capable of testing wind turbine blades up to 90 meters in length. A critical factor to wind turbine design and development is the ability to test new designs, components, and materials. In addition, wind turbine blade manufacturers are required to test their blades as part of the turbine certification process. The National Renewable Energy Laboratory (NREL) partnered with the U.S. Department of Energy (DOE) Wind Program and the Massachusetts Clean Energy Center (MassCEC) to design, construct, and operate the Wind Technology Center (WTTC) in Boston, Massachusetts. The WTTC offers a full suite of certification tests for turbine blades up to 90 meters in length. NREL worked closely with MTS Systems Corporation to develop the novel large-scale test systems needed to conduct the static and fatigue tests required for certification. Static tests pull wind turbine blades horizontally and vertically to measure blade deflection and strains. Fatigue tests cycle the blades millions of times to simulate what a blade goes through in its lifetime on a wind turbine. For static testing, the WTTC is equipped with servo-hydraulic winches and cylinders that are connected to the blade through cables to apply up to an 84-mega Newton meter maximum static bending moment. For fatigue testing, MTS developed a commercial version of NREL's patented resonant excitation system with hydraulic cylinders that actuate linear moving masses on the blade at one or more locations. This system applies up to a 21-meter tip-to-tip fatigue test tip displacement to generate 20-plus years of cyclic field loads in a matter of months. NREL also developed and supplied the WTTC with an advanced data acquisition system capable of measuring and recording hundreds of data channels at very fast sampling rates while communicating with test control systems.

  20. 2012 Market Report on U.S. Wind Technologies in Distributed Applications Webinar

    Broader source: Energy.gov [DOE]

    DOE will present a live webcast titled "2012 Market Report on U.S. Wind Technologies in Distributed Applications" on Wednesday, August 21, from 3:00 p.m. to 4:00 p.m. Eastern Daylight Time. Alice...

  1. Technology Roadmaps | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious RankCombustion |Energy Usage »of Energy StrainClientDesignOffice - 201420122 DOEServices »

  2. National Algal Biofuels Technology Roadmap

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    a number of unique scale-up challenges. Algal Lipid: Precursor to Biofuels Bio-Crude * Biogas * Co-products (e.g., animal feed, fertilizers, industrial enzymes, bioplastics, and...

  3. Technology Roadmaps | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE: AlternativeEnvironment,Institutes and1 SpecialMaximizingResidentialProducts

  4. National Algal Biofuels Technology Roadmap

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious RankCombustion | Department ofT ib l L d F S i DOEToward aInnovationHydrogenNRGA CNathan Dexter About

  5. Demand Response Technology Roadmap M

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    between May 2014 and February 2015. The Bonneville Power Administration (BPA) Demand Response Executive Sponsor Team decided upon the scope of the project in May. Two subsequent...

  6. BPA Transmission Commercial Project Roadmap

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Commercial Project Roadmap 15-Minute Scheduling Dynamic Transfer Program NT Redispatch WECC-Bal- 002 ST Comp & Preemption ST ATC Method. PCM Monthlyweekly Implementation PCM...

  7. Building America Webinar: Building America Technology-to-Market...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Building America Webinar: Building America Technology-to-Market Roadmaps Building America Webinar: Building America Technology-to-Market Roadmaps April 7, 2015 3:00PM to 4:30PM EDT...

  8. Technology Improvement Opportunities for Low Wind Speed Turbines and Implications for Cost of Energy Reduction: July 9, 2005 - July 8, 2006

    SciTech Connect (OSTI)

    Cohen, J.; Schweizer, T.; Laxson, A.; Butterfield, S.; Schreck, S.; Fingersh, L.; Veers, P.; Ashwill, T.

    2008-02-01T23:59:59.000Z

    This report analyzes the status of wind energy technology in 2002 and describes the potential for technology advancements to reduce the cost and increase the performance of wind turbines.

  9. Waste-to-Energy Roadmapping Workshop Agenda | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    Waste-to-Energy Roadmapping Workshop Agenda Waste-to-Energy Roadmapping Workshop Agenda Waste-to-Energy Roadmapping Workshop Agenda, November 5-6, 2014, Arlington, Virginia....

  10. Sandia National Laboratories: Increasing the Scaled Wind Farm Technology

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May JunDatastreamsmmcrcalgovInstrumentsrucLas ConchasPassive SolarEducationStation Technology InfrastructureIEEE

  11. Wind Energy Systems Technology LLC | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home5b9fcbce19 NoPublic Utilities Address: 160 East 300 South Place:ReferenceEdit JumpWill County, Illinois: NameGroupTechnology LLC

  12. EUROPEAN Roadmap Presented by X. LITAUDON

    E-Print Network [OSTI]

    EUROfusion EUROfusion EUROPEAN Roadmap Presented by X. LITAUDON Head of ITER Physics Department ROADMAP TO THE REALISATION OF FUSION ENERGY A Roadmap to the realization of fusion energy adopted end of 2012. The roadmap aims at achieving the know-how to start the construction of a demonstration power

  13. TUDelftLibrary Roadmap 2014-2020

    E-Print Network [OSTI]

    TUDelftLibrary Roadmap 2014-2020 TU Delft Library #12;2 `No crime is so great as daring to excel' Winston Churchill Roadmap 2014-2020 TU Delft Library #12;3 Inhoud 1 Inleiding 5 2 Context 6 2.1 Roadmap TU is deze roadmap die naar 2020 toewerkt. Een strategisch document, waarin we omschrijven hoe we onze

  14. Uranium Mill Tailings Remedial Action 1993 Roadmap

    SciTech Connect (OSTI)

    Not Available

    1993-10-18T23:59:59.000Z

    The 1993 Roadmap for the Uranium Mill Tailings Remedial Action (UMTRA) Project office is a tool to assess and resolve issues. The US Department of Energy (DOE) UMTRA Project Office uses the nine-step roadmapping process as a basis for Surface and Groundwater Project planning. This is the second year the Roadmap document has been used to identify key issues and assumptions, develop logic diagrams, and outline milestones. This document is a key element of the DOE planning process. A multi-interest group used the nine-step process to focus on issues, root cause analysis and resolutions. This core group updated and incorporated comments on the basic assumptions, then used these assumptions to identify issues. The list of assumptions was categorized into the following areas: institutional, regulatory compliance, project management, human resource requirements, and other site-specific assumptions. The group identified 10 issues in the analysis phase. All of the issues are ranked according to importance. The number one issue from the 1992 Roadmap, ``Lack of sufficient human resources,`` remained the number one issue in 1993. The issues and their ranking are as follows: Lack of sufficient human resources; increasing regulatory requirements; unresolved groundwater issues; extension of UMTRCA through September 30, 1998; lack of post-UMTRA and post-cell closure policies; unpredictable amounts and timing of Federal funding; lack of regulatory compliance agreements; problem with states providing their share of remedial action costs; different interests and priorities among participants; and technology development/transfer. The issues are outlined and analyzed in detail in Section 8.0, with a schedule for resolution of these issues in Section 9.0.

  15. Webinar: California Fuel Cell Partnership's Roadmap to the Commercialization of Hydrogen Fuel Cell Electric Vehicles

    Broader source: Energy.gov [DOE]

    Video recording of the Fuel Cell Technologies Office webinar, California Fuel Cell Partnership's Roadmap to the Commercialization of Hydrogen Fuel Cell Electric Vehicles, originally presented on October 16, 2013.

  16. Reliable, Efficient and Cost-Effective Electric Power Converter for Small Wind Turbines Based on AC-link Technology

    SciTech Connect (OSTI)

    Darren Hammell; Mark Holveck; DOE Project Officer - Keith Bennett

    2006-08-01T23:59:59.000Z

    Grid-tied inverter power electronics have been an Achilles heel of the small wind industry, providing opportunity for new technologies to provide lower costs, greater efficiency, and improved reliability. The small wind turbine market is also moving towards the 50-100kW size range. The unique AC-link power conversion technology provides efficiency, reliability, and power quality advantages over existing technologies, and Princeton Power will adapt prototype designs used for industrial asynchronous motor control to a 50kW small wind turbine design.

  17. Low Wind Speed Technology Phase II: Investigation of the Application of Medium-Voltage Variable-Speed Drive Technology to Improve the Cost of Energy from Low Wind Speed Turbines; Behnke, Erdman and Whitaker Engineering, Inc.

    SciTech Connect (OSTI)

    Not Available

    2006-03-01T23:59:59.000Z

    This fact sheet describes a subcontract with Behnke, Erdman & Whitaker Engineering, Inc. to test the feasibility of applying medium-voltage variable-speed drive technology to low wind speed turbines.

  18. The Soils and Groundwater EM-20 S&T Roadmap Quality Assurance Project Plan

    SciTech Connect (OSTI)

    Fix, N. J.

    2008-02-11T23:59:59.000Z

    The Soils and Groundwater EM-20 Science and Technology Roadmap Project is a U.S. Department of Energy, Office of Environmental Management-funded initiative designed to develop new methods, strategies and technology for characterizing, modeling, remediating, and monitoring soils and groundwater contaminated with metals, radionuclides, and chlorinated organics. This Quality Assurance Project Plan provides the quality assurance requirements and processes that will be followed by EM-20 Roadmap Project staff.

  19. NREL: Wind Research - Events

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Events Below are upcoming events related to wind energy technology. January 2015 2015 Wind Energy Systems Engineering Workshop January 14 - 15, 2015 Boulder, CO The third NREL Wind...

  20. EA-1985: Virginia Offshore Wind Technology Advancement Project (VOWTAP), 24 nautical miles offshore of Virginia Beach, Virginia

    Broader source: Energy.gov [DOE]

    DOE is proposing to fund Virginia Electric and Power Company's Virginia Offshore Wind Technology Advancement Project (VOWTAP). The proposed VOWTAP project consists of design, construction and operation of a 12 megawatt offshore wind facility located approximately 24 nautical miles off the coast of Virginia Beach, VA on the Outer Continental Shelf.

  1. Manufacturing R&D for the Hydrogen Economy Roadmap Workshop

    E-Print Network [OSTI]

    Manufacturing R&D for the Hydrogen Economy Roadmap Workshop In his 2003 State of the Union Address of the hydrogen and fuel cell technologies needed to move the U.S. toward a future hydrogen economy. While many-volume commercial manufacturing has been identified as one potential showstopper to a future hydrogen economy

  2. Development of the INEEL Site Wide Vadose Zone Roadmap

    SciTech Connect (OSTI)

    Yonk, Alan Keith

    2001-09-01T23:59:59.000Z

    The INEEL Vadose Zone Roadmap was developed to identify inadquacies in current knowledge, to assist in contaminant management capabilities relative to the INEEL vadose zone, and to ensure that ongoing and planned Science and Technology developments will meet the risk management challenges facing the INEEL in coming years. The primary objective of the Roadmap is to determine the S&T needs that will facilitate monitoring, characterization, prediction, and assessment activities necessary to support INEEL risk management decisions and to ensure that long-term stewardship of contaminated sites at the INEEL is achieved. The mission of the Roadmap is to insure that the long-term S&T strategy is aligned with site programs, that it takes advantage of progress made to date, and that it can assist in meeting the milestones and budgets of operations.

  3. SSL Manufacturing Roadmap

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious RankCombustion | Department ofT ib l LPROJECTS IN7 Roadmap forDKT.AwardsSPEER'sPods BringDepartmentEarly 1

  4. Fostering a Renewable Energy Technology Industry: An International Comparison of Wind Industry Policy Support Mechanisms

    E-Print Network [OSTI]

    Lewis, Joanna; Wiser, Ryan

    2005-01-01T23:59:59.000Z

    2004. International Wind Energy Development, World Market2005. International Wind Energy Development, World Market2004, March 2005. Canadian Wind Energy Association (CanWEA),

  5. Roadmap for Building Lean Supplier Networks (Roadmap Tool)

    E-Print Network [OSTI]

    Bozdogan, Kirk

    2004-03-15T23:59:59.000Z

    This tool represents a "how-to" implementation guide that lays out a structured process for evolving lean supply chain management capabilities in order to build lean supplier networks. The Roadmap Tool is linked to the ...

  6. Low Wind Speed Technology Phase I: Clipper Turbine Development Project; Clipper Windpower Technology, Inc.

    SciTech Connect (OSTI)

    Not Available

    2006-03-01T23:59:59.000Z

    This fact sheet describes a subcontract with Clipper Windpower Technology, Inc. to develop a new turbine design that incorporates advanced elements.

  7. A Roadmap for Engineering Piezoelectricity in Graphene

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary)morphinanInformation Desert SouthwestTechnologies |November 2011A First LookMicroscopyComplex Ion.FlowA RichRoadmap

  8. DOE/SNL-TTU scaled wind farm technology facility : research opportunities for study of turbine-turbine interaction.

    SciTech Connect (OSTI)

    Barone, Matthew Franklin; White, Jonathan

    2011-09-01T23:59:59.000Z

    The proposed DOE/Sandia Scaled Wind Farm Technology Facility (SWiFT) hosted by Texas Tech University at Reese Technology Center in Lubbock, TX, will provide a facility for experimental study of turbine-turbine interaction and complex wind farm aerodynamics. This document surveys the current status of wind turbine wake and turbine-turbine interaction research, identifying knowledge and data gaps that the proposed test site can potentially fill. A number of turbine layouts is proposed, allowing for up to ten turbines at the site.

  9. Final Report: Axion "Roadmap" Workshop

    SciTech Connect (OSTI)

    Rosenberg, Leslie J

    2013-03-19T23:59:59.000Z

    Final report for "Vistas in Axion Physics: A Roadmap for Theoretical and Experimental Axion Physics through 2025", which was held at the University of Washington, INT, from April 23 - 26, 2012.

  10. National Hydrogen Roadmap Workshop Proceedings

    Fuel Cell Technologies Publication and Product Library (EERE)

    This document summarizes the presentations and suggestions put forth by officials, industry experts and policymakers in their efforts to come together to develop a roadmap for America''s clean energy

  11. Nancy Rader, Executive Director California Wind Energy Association

    E-Print Network [OSTI]

    Nancy Rader, Executive Director California Wind Energy Association Improving Methods for Estimating Fatality of Birds and Bats at Wind Energy Facilities California Wind Energy Association Public Webinar Wind Energy Development 2008 CEC Research "Roadmap" on Impact Assessment Methods 2008 CEC PIER RFP 2009

  12. Roadmap for preferential logics Dov M Gabbay

    E-Print Network [OSTI]

    Paris-Sud XI, Université de

    Roadmap for preferential logics Dov M Gabbay King's College, London Karl Schlechta Laboratoire d. Thus, as a good roadmap should, the article points out easy ways to go from A to B, but also puts up

  13. Roadmap: Associate of Science Regional College

    E-Print Network [OSTI]

    Sheridan, Scott

    Roadmap: Associate of Science [RE-AS-AS] Regional College Catalog Year: 2013-2014 Page 1 of 2 | Last Updated: 27-Feb-13/LNHD This roadmap is a recommended semester-by-semester plan of study.000 #12;Roadmap: Associate of Science [RE-AS-AS] Regional College Catalog Year: 2013-2014 Page 2 of 2

  14. Pilot Plant Options for the MFE Roadmap

    E-Print Network [OSTI]

    Pilot Plant Options for the MFE Roadmap Hutch Neilson Princeton Plasma Physics Laboratory International Workshop MFE Roadmapping for the ITER Era Princeton, NJ 10 September 2011 #12;Outline 2 · Pilot plant ­ mission, motivation, and description. · Role of pilot plants on the Roadmap to Demo. Pilot Plant

  15. Roadmap: Associate of Arts Regional College

    E-Print Network [OSTI]

    Sheridan, Scott

    Roadmap: Associate of Arts [RE-AA-AA] Regional College Catalog Year: 2013-2014 Page 1 of 2 | Last Updated: 27-Feb-13/LNHD This roadmap is a recommended semester-by-semester plan of study for this major.000 #12;Roadmap: Associate of Arts [RE-AA-AA] Regional College Catalog Year: 2013-2014 Page 2 of 2 | Last

  16. Roadmap: Associate of Arts Regional College

    E-Print Network [OSTI]

    Sheridan, Scott

    Roadmap: Associate of Arts [RE-AA-AA] Regional College Catalog Year: 2012-2013 Page 1 of 2 | Last Updated: 12-Mar-12/LNHD This roadmap is a recommended semester-by-semester plan of study for this major GPA Overall GPA 61 2.000 2.000 #12;Roadmap: Associate of Arts [RE-AA-AA] Regional College Catalog Year

  17. Satellite Meteorology and Climatology Division Roadmap

    E-Print Network [OSTI]

    Kuligowski, Bob

    Satellite Meteorology and Climatology Division Roadmap NOAA NESDIS Center for Satellite Applications and Research #12;SMCD Roadmap 2 NOAA/NESDIS/STAR Satellite Meteorology and Climatology Division Roadmap September 2005 NOAA Science Center, 5200 Auth Road, Room 712, Camp Springs, MD 20746 #12;SMCD

  18. Roadmap: Associate of Science Regional College

    E-Print Network [OSTI]

    Sheridan, Scott

    Roadmap: Associate of Science [RE-AS-AS] Regional College Catalog Year: 2012-2013 Page 1 of 2 | Last Updated: 12-Mar-12/LNHD This roadmap is a recommended semester-by-semester plan of study GPA Overall GPA 61 2.000 2.000 #12;Roadmap: Associate of Science [RE-AS-AS] Regional College Catalog

  19. Epigenomics: A Roadmap, But to Where?

    E-Print Network [OSTI]

    43 Epigenomics: A Roadmap, But to Where? RECENTLY, THE DIRECTOR OF THE NATIONAL Institutes of Health (NIH) allocated $190 mil- lion for an "Epigenomics" Roadmap initiative (1 to equate the value of this Roadmap initiative with the Human Genome Project, it fails on several grounds

  20. Progress in Wind-and-React Bi-2212 Accelerator Magnet Technology

    SciTech Connect (OSTI)

    Godeke, A.; Cheng, D.; Dietderich, D.R.; Hannaford, C.R.; Prestemon, S.O.; Sabbi, G.; Wang, X.; Hikichi, Y.; Nishioka, J.; Hasegawa, T.

    2009-08-16T23:59:59.000Z

    We report on our progress in the development of the technology for the application of Bi{sub 2}Sr{sub 2}CaCu{sub 2}O{sub 8+x}(Bi-2212) in Wind-and-React accelerator magnets. A series of superconducting subscale coils has been manufactured at LBNL and reacted at the wire manufacturer SWCC. Selected coils are impregnated and tested in self-field, even though the coils exhibited leakage during the partial melt heat treatment. Other coils have been disassembled after reaction and submitted to critical current (Ic) tests on individual cable sections. We report on the results of the current carrying capacity of the coils. Voltage-current (VI) transitions were reproducibly measured up to a quench currents around 1400 A, which is 25% of the expected performance. The results indicate that the coils are limited by the inner windings. We further compare possibilities to use Bi-2212 and Nb{sub 3}Sn tilted solenoid, and YBa{sub 2}Cu{sub 3}O{sub 7-{delta}} (YBCO) racetrack inserts to increase the magnetic field in HD2, a 36 mm bore Nb{sub 3}Sn dipole magnet which recently achieved a bore magnetic field of 13.8 T. The application of Bi-2212 and/or YBCO in accelerator type magnets, if successful, will open the road to higher magnetic fields, far surpassing the limitations of Nb{sub 3}Sn magnet technology.

  1. BPA seeks research partners to advance technology solutions

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    transmission technologies, data intelligence, next-generation energy efficiency and demand response technologies, generation asset management. A copy of each roadmap is...

  2. Improved Performance of an Air Cooled Condenser (ACC) Using SPX Wind Guide Technology at Coal-Based Thermoelectric Power Plants

    SciTech Connect (OSTI)

    Ken Mortensen

    2010-12-31T23:59:59.000Z

    This project added a new airflow enhancement technology to an existing ACC cooling process at a selected coal power plant. Airflow parameters and efficiency improvement for the main plant cooling process using the applied technology were determined and compared with the capabilities of existing systems. The project required significant planning and pre-test execution in order to reach the required Air Cooled Condenser system configuration for evaluation. A host Power Plant ACC system had to be identified, agreement finalized, and addition of the SPX ACC Wind Guide Technology completed on that site. Design of the modification, along with procurement, fabrication, instrumentation, and installation of the new airflow enhancement technology were executed. Baseline and post-modification cooling system data was collected and evaluated. The improvement of ACC thermal performance after SPX wind guide installation was clear. Testing of the improvement indicates there is a 5% improvement in heat transfer coefficient in high wind conditions and 1% improvement at low wind speed. The benefit increased with increasing wind speed. This project was completed on schedule and within budget.

  3. NASA Net Zero Energy Buildings Roadmap

    SciTech Connect (OSTI)

    Pless, S.; Scheib, J.; Torcellini, P.; Hendron, B.; Slovensky, M.

    2014-10-01T23:59:59.000Z

    In preparation for the time-phased net zero energy requirement for new federal buildings starting in 2020, set forth in Executive Order 13514, NASA requested that the National Renewable Energy Laboratory (NREL) to develop a roadmap for NASA's compliance. NASA detailed a Statement of Work that requested information on strategic, organizational, and tactical aspects of net zero energy buildings. In response, this document presents a high-level approach to net zero energy planning, design, construction, and operations, based on NREL's first-hand experience procuring net zero energy construction, and based on NREL and other industry research on net zero energy feasibility. The strategic approach to net zero energy starts with an interpretation of the executive order language relating to net zero energy. Specifically, this roadmap defines a net zero energy acquisition process as one that sets an aggressive energy use intensity goal for the building in project planning, meets the reduced demand goal through energy efficiency strategies and technologies, then adds renewable energy in a prioritized manner, using building-associated, emission- free sources first, to offset the annual energy use required at the building; the net zero energy process extends through the life of the building, requiring a balance of energy use and production in each calendar year.

  4. Stability Design for the Crane Columns of the Wind Technology Testing Center E. M. Hines1

    E-Print Network [OSTI]

    Hines, Eric

    to test wind turbine blades up to 90 m in length. The laboratory is enclosed by eleven steel trussed generation of wind turbine blades for off-shore wind farm development. Whereas the largest blades for land of power per turbine, offshore wind turbines are expected to reach power outputs as high as 10 MW

  5. WIND DATA REPORT Thompson Island

    E-Print Network [OSTI]

    Massachusetts at Amherst, University of

    WIND DATA REPORT Thompson Island March 1, 2003 ­ May 31, 2003 Prepared for Massachusetts Technology...................................................................................................................... 9 Wind Speed Time Series............................................................................................................. 9 Wind Speed Distributions

  6. WIND DATA REPORT Thompson Island

    E-Print Network [OSTI]

    Massachusetts at Amherst, University of

    WIND DATA REPORT Thompson Island March 1, 2004 ­ May 31, 2004 Prepared for Massachusetts Technology...................................................................................................................... 9 Wind Speed Time Series............................................................................................................. 9 Wind Speed Distribution

  7. WIND DATA REPORT FALMOUTH, MA

    E-Print Network [OSTI]

    Massachusetts at Amherst, University of

    WIND DATA REPORT FALMOUTH, MA June1, 2004 to August 31, 2004. Prepared for Massachusetts Technology...................................................................................................................... 8 Wind Speed Time Series............................................................................................................. 8 Wind Speed Distributions

  8. Draft Innovative Exploration Technologies Needs Assessment |...

    Energy Savers [EERE]

    Program June 6 - 10, 2011 The Dixie Valley Geothermal Plant in Nevada produces 60 MW of electricity. A Roadmap for Strategic Development of Geothermal Exploration Technologies...

  9. Roadmap to Secure Control Systems in the Energy Sector 2006 ...

    Broader source: Energy.gov (indexed) [DOE]

    2006 - Presentation to the 2008 ieRoadmap Workshop Roadmap to Secure Control Systems in the Energy Sector 2006 - Presentation to the 2008 ieRoadmap Workshop Presentation by Hank...

  10. Software Roadmap to Plug and Play Petaflop/s

    E-Print Network [OSTI]

    2006-01-01T23:59:59.000Z

    1993). LBNL Software Roadmap to Plug and Play Petaflop/s 7.16, 2005. LBNL Software Roadmap to Plug and Play Petaflop/sChombo. LBNL Software Roadmap to Plug and Play Petaflop/s

  11. High Performance Healthcare Buildings: A Roadmap to Improved Energy Efficiency

    E-Print Network [OSTI]

    Singer, Brett C.

    2010-01-01T23:59:59.000Z

    Roadmap to Improved Energy Efficiency iii 11-Sept-2009 ListA Roadmap to Improved Energy Efficiency 11-Sept-2009 Topic /A Roadmap to Improved Energy Efficiency 11-Sept-2009 Topic /

  12. Grass roots technology and energy policy: Solar ovens and wind turbines in Kenya

    SciTech Connect (OSTI)

    Kammen, D.M. [Harvard Univ., Cambridge, MA (United States). Dept. of Physics

    1992-12-31T23:59:59.000Z

    Kenya is said to be an ideal site for projects that promote renewable energy sources since it devotes over forty percent of its GNP to the purchase of imported coal and oil. The author presents a chronology of solar oven projects in Kenya and suggests that success of the program will be measured by the number of people who move on to wind turbine use. He discusses the role of renewable energy technology in reducing greenhouse gases and closes by recommending that industrialized nations that produce large amounts of carbon dioxide provide aid to develop projects that reduce carbon dioxide elsewhere in the world. At the same time they would receive credit towards their carbon dioxide quotas.

  13. Jamaica-Caribbean Community (CARICOM) Sustainable Energy Roadmap...

    Open Energy Info (EERE)

    Jamaica-Caribbean Community (CARICOM) Sustainable Energy Roadmap and Strategy Jump to: navigation, search Name Jamaica-Caribbean Community (CARICOM) Sustainable Energy Roadmap and...

  14. Grenada-Caribbean Community (CARICOM) Sustainable Energy Roadmap...

    Open Energy Info (EERE)

    Grenada-Caribbean Community (CARICOM) Sustainable Energy Roadmap and Strategy Jump to: navigation, search Name Grenada-Caribbean Community (CARICOM) Sustainable Energy Roadmap and...

  15. Barbados-Caribbean Community (CARICOM) Sustainable Energy Roadmap...

    Open Energy Info (EERE)

    Barbados-Caribbean Community (CARICOM) Sustainable Energy Roadmap and Strategy Jump to: navigation, search Name Barbados-Caribbean Community (CARICOM) Sustainable Energy Roadmap...

  16. Belize-Caribbean Community (CARICOM) Sustainable Energy Roadmap...

    Open Energy Info (EERE)

    Belize-Caribbean Community (CARICOM) Sustainable Energy Roadmap and Strategy Jump to: navigation, search Name Belize-Caribbean Community (CARICOM) Sustainable Energy Roadmap and...

  17. Suriname-Caribbean Community (CARICOM) Sustainable Energy Roadmap...

    Open Energy Info (EERE)

    Suriname-Caribbean Community (CARICOM) Sustainable Energy Roadmap and Strategy Jump to: navigation, search Name Suriname-Caribbean Community (CARICOM) Sustainable Energy Roadmap...

  18. Haiti-Caribbean Community (CARICOM) Sustainable Energy Roadmap...

    Open Energy Info (EERE)

    Caribbean Community (CARICOM) Sustainable Energy Roadmap and Strategy Jump to: navigation, search Name Haiti-Caribbean Community (CARICOM) Sustainable Energy Roadmap and Strategy...

  19. Bahamas-Caribbean Community (CARICOM) Sustainable Energy Roadmap...

    Open Energy Info (EERE)

    Bahamas-Caribbean Community (CARICOM) Sustainable Energy Roadmap and Strategy Jump to: navigation, search Name Bahamas-Caribbean Community (CARICOM) Sustainable Energy Roadmap and...

  20. National CHP Roadmap: Doubling Combined Heat and Power Capacity...

    Broader source: Energy.gov (indexed) [DOE]

    National CHP Roadmap: Doubling Combined Heat and Power Capacity in the United States by 2010, March 2001 National CHP Roadmap: Doubling Combined Heat and Power Capacity in the...

  1. US DRIVE Materials Technical Team Roadmap | Department of Energy

    Energy Savers [EERE]

    Materials Technical Team Roadmap US DRIVE Materials Technical Team Roadmap The Materials Technical Team (MTT) focuses primarily on reducing the mass of structural systems such as...

  2. Windows and Building Envelope Research and Development Roadmap...

    Broader source: Energy.gov (indexed) [DOE]

    Windows and Building Envelope Research and Development Roadmap Windows and Building Envelope Research and Development Roadmap Cover of windows and envelope report, depicting a...

  3. Regulatory Roadmap Workshop for Federal Bulk Transmission Regulations...

    Open Energy Info (EERE)

    Regulatory Roadmapping Pgower's picture Submitted by Pgower(45) Member 7 August, 2014 - 13:19 One-day workshop to review regulatory roadmaps for bulk transmission. Date:...

  4. 21st Century Truck Partnership - Roadmap and Technical White...

    Broader source: Energy.gov (indexed) [DOE]

    - Roadmap and Technical White Papers Appendix of Supporting Information - 21CTP-0003, December 2006 21st Century Truck Partnership - Roadmap and Technical White Papers Appendix of...

  5. US DRIVE Vehicle Systems and Analysis Technical Team Roadmap...

    Energy Savers [EERE]

    Vehicle Systems and Analysis Technical Team Roadmap US DRIVE Vehicle Systems and Analysis Technical Team Roadmap VSATT provides the analytic support and subsystem characterizations...

  6. Roadmap to the SRS computing architecture

    SciTech Connect (OSTI)

    Johnson, A.

    1994-07-05T23:59:59.000Z

    This document outlines the major steps that must be taken by the Savannah River Site (SRS) to migrate the SRS information technology (IT) environment to the new architecture described in the Savannah River Site Computing Architecture. This document proposes an IT environment that is {open_quotes}...standards-based, data-driven, and workstation-oriented, with larger systems being utilized for the delivery of needed information to users in a client-server relationship.{close_quotes} Achieving this vision will require many substantial changes in the computing applications, systems, and supporting infrastructure at the site. This document consists of a set of roadmaps which provide explanations of the necessary changes for IT at the site and describes the milestones that must be completed to finish the migration.

  7. RIVERTON DOME GAS EXPLORATION AND STIMULATION TECHNOLOGY DEMONSTRATION, WIND RIVER BASIN, WYOMING

    SciTech Connect (OSTI)

    Ronald C. Surdam; Zunsheng Jiao; Nicholas K. Boyd

    1999-11-01T23:59:59.000Z

    The new exploration technology for basin center gas accumulations developed by R.C. Surdam and Associates at the Institute for Energy Research, University of Wyoming, was applied to the Riverton Dome 3-D seismic area. Application of the technology resulted in the development of important new exploration leads in the Frontier, Muddy, and Nugget formations. The new leads are adjacent to a major north-south trending fault, which is downdip from the crest of the major structure in the area. In a blind test, the drilling results from six new Muddy test wells were accurately predicted. The initial production values, IP, for the six test wells ranged from < one mmcf/day to four mmcf/day. The three wells with the highest IP values (i.e., three to four mmcf/day) were drilled into an intense velocity anomaly (i.e., anomalously slow velocities). The well drilled at the end of the velocity anomaly had an IP value of one mmcf/day, and the two wells drilled outside of the velocity anomaly had IP values of < one mmcf/day and are presently shut in. Based on these test results, it is concluded that the new IER exploration strategy for detecting and delineating commercial, anomalously pressured gas accumulation is valid in the southwestern portions of the Wind River Basin, and can be utilized to significantly reduce exploration risk and to increase profitability of so-called basin center gas accumulations.

  8. National Aeronautics and Space Administration Space power and energy Storage roadmap

    E-Print Network [OSTI]

    Waliser, Duane E.

    National Aeronautics and Space Administration Space power and energy Storage roadmap Technology Energy Storage TA03-16 2.2.3. Power Management & Distribution (PMAD) TA03-17 2.2.3.1. PMAD Overall TA03 activities. This document presents the DRAFT Technology Area 03 input: Space Power and Energy Storage. NASA

  9. DOE 2012 Market Report on U.S. Wind Technologies for Distributed...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    the Global Distributed Wind Market (Poster) - Matt Gagne, eFormative Options Using the Wind Policy Tool to Examine Potential Feed-In Tariffs in the United States (Poster) - Matt...

  10. U.S. Department of Energy Wind and Hydropower Technologies: Top 10 Program Accomplishments

    SciTech Connect (OSTI)

    Not Available

    2008-05-01T23:59:59.000Z

    This brochure describes the top ten accompishments of the DOE Wind Energy Program during the past 30 years.

  11. IEEE TRANSACTIONS ON CONTROL SYSTEMS TECHNOLOGY 1 Airborne Wind Energy Based on Dual Airfoils

    E-Print Network [OSTI]

    airfoil systems, but they are less advantageous at very large scales. Index Terms--Airborne wind energy Wind Energy (AWE) paradigm proposes to eliminate the structural elements not directly involved in power Wind Energy [17]. Crosswind flight extracts power from the airflow by flying an airfoil tethered

  12. Strategic Roadmap 2024 and Tactical Action Plan

    SciTech Connect (OSTI)

    none,

    2014-05-14T23:59:59.000Z

    This chart defines the CRITICAL PATHWAYS described in the Strategic Roadmap and the breakdown of the STRATEGIC TARGET AREAS, providing WORK SCOPE ESTIMATES for each heading.

  13. Partnership Plan, Roadmaps, and Other Documents | Department...

    Broader source: Energy.gov (indexed) [DOE]

    As the Partnership updates its documents to reflect the transition to U.S. DRIVE, current roadmaps and previous accomplishments reports are available for reference and information....

  14. Canadian Fuel Cell Commercialization Roadmap Update: Progress...

    Open Energy Info (EERE)

    Commercialization Roadmap Update: Progress of Canada's Hydrogen and Fuel Cell Industry Jump to: navigation, search Tool Summary LAUNCH TOOL Name: Canadian Fuel Cell...

  15. Hawaiian Electric Company Demand Response Roadmap Project

    E-Print Network [OSTI]

    Levy, Roger

    2014-01-01T23:59:59.000Z

    potential as-available renewable over generation issues,examining many of the roadmap renewable integration options.integration of significant renewable resources into the HECO

  16. Roadmap to Achieve Energy Delivery Systems Cybersecurity

    Office of Environmental Management (EM)

    roadmap in support of the Electricity Sub-sector Coordinating Council, Oil and Natural Gas Sector Coordinating Council, and the Government Coordinating Council for Energy under...

  17. Separations and Actinide Science -- 2005 Roadmap

    SciTech Connect (OSTI)

    Not Available

    2005-09-01T23:59:59.000Z

    The Separations and Actinide Science Roadmap presents a vision to establish a separations and actinide science research (SASR) base composed of people, facilities, and collaborations and provides new and innovative nuclear fuel cycle solutions to nuclear technology issues that preclude nuclear proliferation. This enabling science base will play a key role in ensuring that Idaho National Laboratory (INL) achieves its long-term vision of revitalizing nuclear energy by providing needed technologies to ensure our nation's energy sustainability and security. To that end, this roadmap suggests a 10-year journey to build a strong SASR technical capability with a clear mission to support nuclear technology development. If nuclear technology is to be used to satisfy the expected growth in U.S. electrical energy demand, the once-through fuel cycle currently in use should be reconsidered. Although the once-through fuel cycle is cost-effective and uranium is inexpensive, a once-through fuel cycle requires long-term disposal to protect the environment and public from long-lived radioactive species. The lack of a current disposal option (i.e., a licensed repository) has resulted in accumulation of more than 50,000 metric tons of spent nuclear fuel. The process required to transition the current once-through fuel cycle to full-recycle will require considerable time and significant technical advancement. INL's extensive expertise in aqueous separations will be used to develop advanced separations processes. Computational chemistry will be expanded to support development of future processing options. In the intermediate stage of this transition, reprocessing options will be deployed, waste forms with higher loading densities and greater stability will be developed, and transmutation of long-lived fission products will be explored. SASR will support these activities using its actinide science and aqueous separations expertise. In the final stage, full recycle will be enabled by advanced reactors and reprocessing methods based on pyrochemical methods and by using different fuel cycles that do not readily produce plutonium. SASR will facilitate the deployment of advanced pyrochemical separation technology and support development of reprocessing of thorium-based reactor fuels.

  18. Hydrogen Production Technical Team Roadmap

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE:YearRound-UpHeatMulti-Dimensional Subject:GroundtoProduction Technical Team Roadmap June 2013 This

  19. Wind Power Today

    SciTech Connect (OSTI)

    Not Available

    2006-05-01T23:59:59.000Z

    Wind Power Today is an annual publication that provides an overview of the wind energy research conducted by the U.S. Department of Energy Wind and Hydropower Technologies Program.

  20. Wind Power Today

    SciTech Connect (OSTI)

    Not Available

    2007-05-01T23:59:59.000Z

    Wind Power Today is an annual publication that provides an overview of the wind energy research conducted by the U.S. Department of Energy Wind and Hydropower Technologies Program.

  1. Cryogenic Roadmap U.S. Department of Energy

    E-Print Network [OSTI]

    06/18/01 1 Cryogenic Roadmap U.S. Department of Energy Superconductivity Program for Electric a "roadmap". The roadmap provides goals and objectives along with the desired outcomes that may result of what needs to be accomplished in the area of cryogenics; hence the need for a roadmap. There have been

  2. Study of the Reliability Enhancement of Wind Turbines Employing Direct-drive Technology.

    E-Print Network [OSTI]

    Sara George, Reeba

    2012-01-01T23:59:59.000Z

    ??In traditional wind turbines employing gearboxes, the blades spin a shaft that is connected through a gearbox to the generator. The multiple wheels and bearings (more)

  3. 1 National Roadmap Committee for Large-Scale Research Facilities the netherlands' roadmap for large-scale research facilities

    E-Print Network [OSTI]

    Horn, David

    #12;1 National Roadmap Committee for Large-Scale Research Facilities the netherlands' roadmap for large-scale research facilities #12;2 National Roadmap Committee for Large-Scale Research Facilities1 by Roselinde Supheert) #12;3 National Roadmap Committee for Large-Scale Research Facilities The Netherlands

  4. SAMPLING-BASED ROADMAP OF TREES FOR PARALLEL MOTION PLANNING 1 Sampling-Based Roadmap of Trees for Parallel

    E-Print Network [OSTI]

    Chen, Brian Y.

    SAMPLING-BASED ROADMAP OF TREES FOR PARALLEL MOTION PLANNING 1 Sampling-Based Roadmap of Trees for multiple query motion planning (Probabilistic Roadmap Method - PRM) with sampling-based tree methods algorithms, roadmap, tree, PRM, EST, RRT, SRT. I. INTRODUCTION HIGH-DIMENSIONAL problems such as those

  5. College of Charleston Major Roadmap: Religious Studies, B.A. | 2014-15 Page 1 MAJOR ROADMAP

    E-Print Network [OSTI]

    Kasman, Alex

    College of Charleston Major Roadmap: Religious Studies, B.A. | 2014-15 Page 1 MAJOR ROADMAP Religious Studies, B.A. Catalog Year: 2014-15 This roadmap is a suggested semester-by-semester planning availability may vary from semester to semester. Roadmaps are not meant to cover every possibility

  6. DUF6 Materials Use Roadmap

    SciTech Connect (OSTI)

    Haire, M.J.

    2002-09-04T23:59:59.000Z

    The U.S. government has {approx}500,000 metric tons (MT) of surplus depleted uranium (DU) in various chemical forms stored at U.S. Department of Energy (DOE) sites across the United States. This DU, most of which is DU hexafluoride (DUF{sub 6}) resulting from uranium enrichment operations, is the largest amount of nuclear material in DOE's inventory. On July 6, 1999, DOE issued the ''Final Plan for the Conversion of Depleted Uranium Hexafluoride as required by Public Law 105-204'', in which DOE committed to develop a ''Depleted Uranium Hexafluoride Materials Use Roadmap'' in order to establish a strategy for the products resulting from conversion of DUF{sub 6} to a stable form. This report meets the commitment in the Final Plan by providing a comprehensive roadmap that DOE will use to guide any future research and development activities for the materials associated with its DUF{sub 6} inventory. The Roadmap supports the decision presented in the ''Record of Decision for Long-Term Management and Use of Depleted Uranium Hexafluoride'', namely to begin conversion of the DUF{sub 6} inventory as soon as possible, either to uranium oxide, uranium metal, or a combination of both, while allowing for future uses of as much of this inventory as possible. In particular, the Roadmap is intended to explore potential uses for the DUF{sub 6} conversion products and to identify areas where further development work is needed. It focuses on potential governmental uses of DUF{sub 6} conversion products but also incorporates limited analysis of using the products in the private sector. The Roadmap builds on the analyses summarized in the recent ''Programmatic Environmental Impact Statement for Alternative Strategies for the Long-Term Management and Use of Depleted Uranium Hexafluoride''. It also addresses other surplus DU, primarily in the form of DU trioxide and DU tetrafluoride. The DU-related inventory considered here includes the following: (1) Components directly associated with the DUF{sub 6} presently being stored at gaseous diffusion plant sites in Paducah, Kentucky; Portsmouth, Ohio; and Oak Ridge, Tennessee--470,500 MT of DU, 225,000 MT of fluorine chemically combined with the DU, and 74,000 MT of carbon steel comprising the storage cylinders; (2) Approximately 27,860 MT of DU in the form of uranium trioxide, tetrafluoride, and various other forms containing varying amounts of radioactive and chemical impurities, presently stored primarily at DOE's Savannah River Site. This Roadmap characterizes and analyzes alternative paths for eventual disposition of these materials, identifies the barriers that exist to implementing the paths, and makes recommendations concerning the activities that should be undertaken to overcome the barriers. The disposition paths considered in this roadmap and shown in Fig. ES.1 are (a) implementation of cost-effective and institutionally feasible beneficial uses of DU using the products of DUF{sub 6} conversion and other forms of DU in DOE's inventory, (b) processing the fluorine product resulting from DUF{sub 6} conversion to yield an optimal mix of valuable fluorine compounds [e.g., hydrogen fluoride (hydrofluoric acid), boron trifluoride] for industrial use, and (c) processing emptied cylinders to yield intact cylinders that are suitable for reuse, while maintaining an assured and cost-effective direct disposal path for all of the DU-related materials. Most paths consider the potential beneficial use of the DU and other DUF{sub 6} conversion products for the purpose of achieving overall benefits, including cost savings to the federal government, compared with simply disposing of the materials. However, the paths provide for assured direct disposal of these products if cost-effective and institutionally feasible beneficial uses are not found.

  7. Vehicle Technologies Office: U.S. DRIVE 2013 Technical Accomplishments...

    Energy Savers [EERE]

    Energy Storage Technical Team Roadmap Progress of DOE Materials, Manufacturing Process R&D, and ARRA Battery Manufacturing Grants Vehicle Technologies Office: 2009 Energy Storage...

  8. Building America Webinar: Building America Technology-to-Market...

    Broader source: Energy.gov (indexed) [DOE]

    introduced the integrated Building America Technology-to-Market Roadmaps that will serve as a guide for Building America's research, development, and demonstration activities over...

  9. Modeling Clean and Secure Energy Scenarios for the Indian Power Sector in 2030

    E-Print Network [OSTI]

    Abhyankara, Nikit

    2014-01-01T23:59:59.000Z

    12), 32573267. IEA. (2011). Technology Roadmap: China WindEnvironmental Energy Technologies Division Itron Inc. cTechnologies

  10. Active Power Control Testing at the U.S. National Wind Technology Center (NWTC) (Presentation)

    SciTech Connect (OSTI)

    Ela, E.

    2011-01-01T23:59:59.000Z

    In order to keep the electricity grid stable and the lights on, the power system relies on certain responses from its generating fleet. This presentation evaluates the potential for wind turbines and wind power plants to provide these services and assist the grid during critical times.

  11. Part of the Climate Change Problem . . . and the Solution? Chinese-Made Wind Power Technology and Opportunities for Dissemination

    E-Print Network [OSTI]

    Lewis, Joanna I.

    2005-01-01T23:59:59.000Z

    Commercial Scale Wind Turbines in Canada. AprilDevelopmentofChina?sWindTurbine ManufacturingIndustryduties on importingwindturbinecomponents. 13

  12. International Workshop on MFE Roadmapping in the ITER Era Princeton University, McDonnell Hall

    E-Print Network [OSTI]

    Status and Prospects 17:00 R. Kurtz, Materials Issues and Facility Needs on the Pathway to Fusion Energy to Demo 11:15 M. Abdou, Fusion Nuclear Science and Technology Issues, Facilities, and Challenges. Prager, Welcome 08:45 D. Maisonnier, Toward a Credible EU Roadmap for Fusion 09:45 J. Li, On Chinese

  13. New Roadmap Updates Status of DOE Carbon Capture and Storage RD&D Efforts

    Broader source: Energy.gov [DOE]

    An overview of research, development, and demonstration efforts to supply cost-effective, advanced carbon capture and storage technologies for coal-based power systems is the focus of a new roadmap published by the U.S. Department of Energy.

  14. A roadmap for carbon capture and storage in the UK Clair Gough a,

    E-Print Network [OSTI]

    Haszeldine, Stuart

    A roadmap for carbon capture and storage in the UK Clair Gough a, *, Sarah Mander a , Stuart IPCC 2001 scenario (Raupach et al., 2007). Carbon capture and storage (CCS) technology is endorsed Budget through ``a competition to develop the UK's first full-scale demonstration of carbon capture

  15. The Political Economy of Wind Power in China

    E-Print Network [OSTI]

    Swanson, Ryan Landon

    2011-01-01T23:59:59.000Z

    by which wind turbine technology converts wind energy intoWind energy developers usually power companies combined with a wind turbine

  16. WP2 IEA Wind Task 26:The Past and Future Cost of Wind Energy

    E-Print Network [OSTI]

    Lantz, Eric

    2014-01-01T23:59:59.000Z

    M. ( 2011). 2010 Wind Technologies Market Report. DOE/GO-Ashwill, T. (2008). Technology Improvement Opportunities forWind Power in Denmark: Technologies, Policies, and Results.

  17. Wind Energy Facilities and Residential Properties: The Effect of Proximity and View on Sales Prices

    E-Print Network [OSTI]

    Hoen, Ben

    2012-01-01T23:59:59.000Z

    and Renewable Energy (Wind & Hydropower TechnologiesU.S. Department of Energy (Wind and Hydropower TechnologiesPublic Perceptions of Wind Energy. Wind Energy, 2004, 8:2,

  18. Blades of Glory: Wind Technology Bringing Us Closer To a Clean...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    the length of a football field. In the United States, energy generation from wind turbines has grown by 27 percent over the last year, with production facilities now in more...

  19. Part of the Climate Change Problem . . . and the Solution? Chinese-Made Wind Power Technology and Opportunities for Dissemination

    E-Print Network [OSTI]

    Lewis, Joanna I.

    2005-01-01T23:59:59.000Z

    thebuildingofwindfarms with turbines manufacturedtender for a 100 MW wind farm located in Huilai,wind turbines in its wind farm projects. Policy

  20. Generation IV International Forum Updates Technology Roadmap...

    Office of Environmental Management (EM)

    nuclear energy Generation IV International Forum Signs Agreement to Collaborate on Sodium Cooled Fast Reactors China and Russia to Join the Generation IV International Forum...

  1. Desalination and Water Purification Technology Roadmap

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    in this document are those that are produced during oil and gas extraction activities and coal bed methane production, or that are contained in saline aquifers. of water sources of...

  2. ITP Chemicals: Technology Roadmap for Computational Chemistry

    Broader source: Energy.gov (indexed) [DOE]

    software, coupled with user-friendly graphical user interfaces, access to high performance computing is becoming available to a much broader community of users. In the longer...

  3. ITP Metal Casting: Metalcasting Industry Technology Roadmap

    Broader source: Energy.gov (indexed) [DOE]

    Target Waste Stream General Requirements Clean Air Act Particulate, hazardous air pollutants Emission control equipment, monitoring, reporting, and permits Clean Water Act...

  4. Desalination and Water Purification Technology Roadmap

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May JunDatastreamsmmcrcalgovInstrumentsruc DocumentationP-Series to UserProduct: CrudeOffice ofINLNuclear262About UsDepthDerek F

  5. Steel Industry Technology Roadmap | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious RankCombustion |Energy Usage » SearchEnergyDepartmentScopingOverviewFranklinStatusJ.R. Simplot DonSteelSteel

  6. Sandia National Laboratories: energy systems technology roadmaps

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmosphericNuclear Security Administration the1development Sandia, NRELdeep-waterbiofuelssituations

  7. Part of the Climate Change Problem . . . and the Solution? Chinese-Made Wind Power Technology and Opportunities for Dissemination

    E-Print Network [OSTI]

    Lewis, Joanna I.

    2005-01-01T23:59:59.000Z

    plansforonshoreandoffshorewindenergydevelopmentinearlyproblemswithoffshorewindturbines. 20 Figure3.

  8. WREF 2012: THE PAST AND FUTURE COST OF WIND ENERGY

    E-Print Network [OSTI]

    Wiser, Ryan

    2013-01-01T23:59:59.000Z

    konomi (The Economy of Wind Power). EUDP 33033-0196.to the Chapter on Wind Power in Energy TechnologyAgency (DEA). (1999). Wind Power in Denmark: Technologies,

  9. Fluoride Salt-Cooled High-Temperature Reactor Development Roadmap

    SciTech Connect (OSTI)

    Holcomb, David Eugene [ORNL] [ORNL; Flanagan, George F [ORNL] [ORNL; Mays, Gary T [ORNL] [ORNL; Pointer, William David [ORNL] [ORNL; Robb, Kevin R [ORNL] [ORNL; Yoder Jr, Graydon L [ORNL] [ORNL

    2014-01-01T23:59:59.000Z

    Fluoride salt-cooled high-temperature reactors (FHRs) are an emerging reactor class with potentially advantageous performance characteristics and fully passive safety. This paper provides an overview of a technology development pathway for expeditious commercial deployment of first-generation FHRs. The paper describes the principal remaining FHR technology challenges and the development path needed to address the challenges. First-generation FHRs do not appear to require any technology breakthroughs, but will require significant technology development and demonstration. FHRs are currently entering early phase engineering development. As such, the development roadmap is not as technically detailed or specific as would be the case for a more mature reactor class. The higher cost of fuel and coolant; the lack of an approved licensing framework; the lack of qualified, salt-compatible structural materials; and the potential for tritium release into the environment are the most obvious issues that remain to be resolved.

  10. 2.0New York solar roadmap

    E-Print Network [OSTI]

    Perez, Richard R.

    2.0New York solar roadmap A plan for energy reliability, security, environmental responsibility support. The U.S. Photovoltaic Manufacturing Consortium (PVMC), a joint initiative between the College

  11. Wind Events | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Below is an industry calendar with meetings, conferences, and webinars of interest to the wind energy technology communities. IEA Wind Task 34 (WREN) Quarterly Webinar 3:...

  12. Software Roadmap to Plug and Play Petaflop/s

    E-Print Network [OSTI]

    2006-01-01T23:59:59.000Z

    Chem. , 14, 13471363 (1993). LBNL Software Roadmap to PlugSpain, Sep. 1216, 2005. LBNL Software Roadmap to Plug andeffective. ANL, ORNL, and LBNL have expertise here. Memory

  13. Roadmap: Viticulture -Associate of Applied Science [RE-AAS-VITI

    E-Print Network [OSTI]

    Sheridan, Scott

    Roadmap: Viticulture - Associate of Applied Science [RE-AAS-VITI] Regional College Catalog Year: 2012-2013 Page 1 of 1 | Last Updated: 12-Mar-12/LNHD This roadmap is a recommended semester

  14. Roadmap: Enology -Associate of Applied Science [RE-AAS-ENOL

    E-Print Network [OSTI]

    Sheridan, Scott

    Roadmap: Enology - Associate of Applied Science [RE-AAS-ENOL] Regional College Catalog Year: 2013-2014 Page 1 of 1 | Last Updated: 11-Apr-13/LNHD This roadmap is a recommended semester-by-semester plan

  15. Non-Hardware ("Soft") Cost-Reduction Roadmap for

    E-Print Network [OSTI]

    Non-Hardware ("Soft") Cost- Reduction Roadmap for Residential and Small Commercial Solar Golden, CO 80401 303-275-3000 · www.nrel.gov Non-Hardware ("Soft") Cost- Reduction Roadmap

  16. Roadmap: Enology -Associate of Applied Science [RE-AAS-ENOL

    E-Print Network [OSTI]

    Sheridan, Scott

    Roadmap: Enology - Associate of Applied Science [RE-AAS-ENOL] Regional College Catalog Year: 2012-2013 Page 1 of 1 | Last Updated: 9-Mar-12/LNHD This roadmap is a recommended semester-by-semester plan

  17. Roadmap: Viticulture -Associate of Applied Science [RE-AAS-VITI

    E-Print Network [OSTI]

    Sheridan, Scott

    Roadmap: Viticulture - Associate of Applied Science [RE-AAS-VITI] Regional College Catalog Year: 2013-2014 Page 1 of 1 | Last Updated: 11-Apr-13/LNHD This roadmap is a recommended semester

  18. Roadmap: Applied Engineering Manufacturing Systems Bachelor of Science

    E-Print Network [OSTI]

    Sheridan, Scott

    Roadmap: Applied Engineering Manufacturing Systems Bachelor of Science [AT 15000 Introduction to Human Communication 3 Fulfills Kent Core Additional Kent Core Requirement 3 See #12;Roadmap: Applied Engineering Manufacturing Systems Bachelor of Science [AT

  19. Proceedings of the National Hydrogen Energy Roadmap Workshop...

    Broader source: Energy.gov (indexed) [DOE]

    National Hydrogen Energy Roadmap Workshop: Washington, DC; April 2-3, 2002 Proceedings of the National Hydrogen Energy Roadmap Workshop: Washington, DC; April 2-3, 2002 Summary of...

  20. Codes and Standards Research, Development and Demonstration Roadmap, May 2006

    Fuel Cell Technologies Publication and Product Library (EERE)

    C&S RD&D Roadmap - 2008: This Roadmap is a guide to the Research, Development & Demonstration activities that will provide data required for Standards Development Organizations (SDOs) to develop perfo

  1. Obama Administration Releases Roadmap for Solar Energy Development...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Releases Roadmap for Solar Energy Development on Public Lands Obama Administration Releases Roadmap for Solar Energy Development on Public Lands July 24, 2012 - 4:00pm Addthis News...

  2. An obstacle-based probabilistic roadmap method for path planning

    E-Print Network [OSTI]

    Wu, Yan

    1996-01-01T23:59:59.000Z

    This thesis presents a new obstacle-based probabilistic roadmap method for motion planning for many degree of freedom robots that can be used to obtain high quality roadmaps even when the robot's configuration space is crowded. The main novelty...

  3. NIST Roadmap for Improving Critical Infrastructure Cybersecurity February 12, 2014

    E-Print Network [OSTI]

    NIST Roadmap for Improving Critical Infrastructure Cybersecurity February 12, 2014 1. Introduction This companion Roadmap to the Framework for Improving Critical Infrastructure Cybersecurity ("the Framework, which has been moved to this document. 2. Evolution of the Cybersecurity Framework Since

  4. Waste-to-Energy Roadmapping Workshop | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    Waste-to-Energy Roadmapping Workshop Waste-to-Energy Roadmapping Workshop November 5, 2014 9:00AM EST to November 6, 2014 12:00PM EST DoubleTree Hotel Crystal City 300 Army Navy...

  5. Annual Report on U.S. Wind Power Installation, Cost, and Performance Trends: 2006

    E-Print Network [OSTI]

    2008-01-01T23:59:59.000Z

    of the U.S. DOEs Wind & Hydropower Technologies Program. Weand Renewable Energy (Wind & Hydropower Technologies ProgramManager Office of Wind and Hydropower Technologies Energy

  6. Automatic fine-tuning and wind simulation at the Offshore Technology Research Center (OTRC)

    E-Print Network [OSTI]

    Miller, Mark Alan

    1994-01-01T23:59:59.000Z

    the wind generator. The fans are required to move the ambient test facility air in a circulatory fashion. This paper examines the procedures taken to run the fans in a test matrix and fine tune the fan drive signals to provide the proper statistical...

  7. The Department of Aerospace Engineering Moving The Wind Industry With Technology

    E-Print Network [OSTI]

    Demirel, Melik C.

    in the areas of jet noise and nozzle aerodynamics. He received his Bachelor's degree from N.C. State University with a current capability of 60 GW generated by 45,000 turbine. That is enough energy to power the equivalent and acoustics of the ro- tor and detailed concepts for wind turbine sound mitigation that are under development

  8. Renewable Hydrogen: Technology Review and Policy Recommendations for State-Level Sustainable Energy Futures

    E-Print Network [OSTI]

    Lipman, Timothy; Edwards, Jennifer Lynn; Brooks, Cameron

    2006-01-01T23:59:59.000Z

    Commercialization Strategy for Hydrogen Energy Technologies,International Journal of Hydrogen Energy 23(7): 617-620.NYSERDA) (2005), New York Hydrogen Energy Roadmap, NYSERDA

  9. Roadmap: Photo Illustration -Bachelor of Science [CI-BS-PHOI

    E-Print Network [OSTI]

    Sheridan, Scott

    Roadmap: Photo Illustration - Bachelor of Science [CI-BS-PHOI] College of Communication/LNHD This roadmap is a recommended semester-by-semester plan of study for this major. However, courses if not satisfied earlier. See note 3 on page 2. #12;Roadmap: Photo Illustration - Bachelor of Science [CI

  10. Roadmap: Fashion Design Bachelor of Arts College of the Arts

    E-Print Network [OSTI]

    Sheridan, Scott

    Roadmap: Fashion Design ­ Bachelor of Arts [CA-BA-FD] College of the Arts School of Fashion Design and Merchandising Catalog Year: 2012-2013 Page 1 of 2 | Last Updated: 30-May-12/JS This roadmap is a recommended Requirements 3 See Kent Core Summary on page 2Kent Core Requirements 3 Kent Core Requirements 3 #12;Roadmap

  11. CONSULTATION RESPONSE Wellcome Trust response to RCUK Large Facilities Roadmap

    E-Print Network [OSTI]

    Rambaut, Andrew

    CONSULTATION RESPONSE Wellcome Trust response to RCUK Large Facilities Roadmap December 2007 Page 1 of 4 RCUK Large Facilities Roadmap Response by the Wellcome Trust December 2007 1. The Wellcome Trust is pleased to have the opportunity to feed into the process of prioritising the RCUK Large Facilities Roadmap

  12. Roadmap: Human Development and Family Studies -Gerontology -Bachelor of Science

    E-Print Network [OSTI]

    Sheridan, Scott

    Roadmap: Human Development and Family Studies - Gerontology - Bachelor of Science [EH Catalog Year: 2012­2013 Page 1 of 3 | Last Updated: 8-June-12/JS This roadmap is a recommended semester or upper division) 3 See note 2 on page 2 #12;Roadmap: Human Development and Family Studies - Gerontology

  13. Roadmap: Sport Administration -Bachelor of Science [EH-BS-SPAD

    E-Print Network [OSTI]

    Sheridan, Scott

    Roadmap: Sport Administration - Bachelor of Science [EH-BS-SPAD] College of Education, Health of Business Administration Catalog Year: 2012-2013 Page 1 of 2 | Last Updated: 15-May-12/JS This roadmap and Recreation 3 General Elective (lower or upper division) 3 #12;Roadmap: Sport Administration - Bachelor

  14. Roadmap-based Motion Planning in Dynamic Environments

    E-Print Network [OSTI]

    van den Berg, Jur

    Roadmap-based Motion Planning in Dynamic Environments Jur P. van den Berg Mark H. Overmars propose a practical algorithm based on a roadmap that is created for the static part of the scene. On this roadmap an approximate time-optimal trajectory from a start to a goal configuration is computed

  15. Roadmap: English Bachelor of Arts [AS-BA-ENG

    E-Print Network [OSTI]

    Sheridan, Scott

    Roadmap: English ­ Bachelor of Arts [AS-BA-ENG] College of Arts and Sciences Department of English Catalog Year: 2013-2014 Page 1 of 4 | Last Updated: 7-May-13/LNHD This roadmap is a recommended semester 5 on page 3 General Electives (upper division) 6 #12;Roadmap: English ­ Bachelor of Arts [AS

  16. LERU Roadmap foR REsEaRch data

    E-Print Network [OSTI]

    Zürich, Universität

    LERU Roadmap foR REsEaRch data LERU REsEaRch data WoRking gRoUp University of Amsterdam, Responsibilities and Skills 28 7 Recommendations 31 #12;3 INTRODUCTION The LERU Roadmap for Research Data that LERU members need to act. In 2011, the LERU community of Chief Information Officers produced a Roadmap

  17. Roadmap: Art History Bachelor of Arts [CA-BA-ARTH

    E-Print Network [OSTI]

    Sheridan, Scott

    Roadmap: Art History ­ Bachelor of Arts [CA-BA-ARTH] College of the Arts School of Art Catalog Year: 2013­2014 Page 1 of 2 | Last Updated: 30-Apr-13/JS This roadmap is a recommended semester Elective (upper division) 3 Minor Requirements or General Electives 9 See note 2 on page 2 #12;Roadmap

  18. Roadmap: Physical Education Physical Education Licensure Bachelor of Science

    E-Print Network [OSTI]

    Sheridan, Scott

    Roadmap: Physical Education ­ Physical Education Licensure ­ Bachelor of Science [EH | Last Updated: 31-May-13/JS This roadmap is a recommended semester-by-semester plan of study;Roadmap: Physical Education ­ Physical Education Licensure ­ Bachelor of Science [EH-BS-PEP-PEL] College

  19. Cryogenic Roadmap U.S. Department of Energy

    E-Print Network [OSTI]

    i Cryogenic Roadmap U.S. Department of Energy Superconductivity Program for Electric Systems these systems to advance to meet these desired characteristics. Consequently, it is called a "roadmap". The roadmap provides goals and objectives along with the desired outcomes that may result if these goals

  20. Roadmap for Venus Exploration (rev. 3, Dec 5, 2013)

    E-Print Network [OSTI]

    Rathbun, Julie A.

    1 Roadmap for Venus Exploration (rev. 3, Dec 5, 2013) Introduction Venus is so similar, and the likelihood of habitable planets in other solar systems. This Roadmap lays out a framework for the future proposals. Proposals that address the measurement goals expressed in this Roadmap should be recognized

  1. Roadmap: Technical and Applied Studies Fire and Emergency Services Administration

    E-Print Network [OSTI]

    Sheridan, Scott

    Roadmap: Technical and Applied Studies ­ Fire and Emergency Services Administration ­ Bachelor Updated: 5-Apr-13/LNHD This roadmap is a recommended semester-by-semester plan of study for this major;Roadmap: Technical and Applied Studies ­ Fire and Emergency Services Administration ­ Bachelor

  2. Roadmap-based Motion Planning in Dynamic Environments

    E-Print Network [OSTI]

    Utrecht, Universiteit

    Roadmap-based Motion Planning in Dynamic Environments Jur P. van den Berg Mark H. Overmars.cs.uu.nl #12;Roadmap-based Motion Planning in Dynamic Environments Jur P. van den Berg Mark H. Overmars April obstacles. We propose a practical algorithm based on a roadmap that is created for the static part

  3. Roadmap: Paralegal Studies Bachelor of Arts [AS-BA-PLST

    E-Print Network [OSTI]

    Sheridan, Scott

    Roadmap: Paralegal Studies ­ Bachelor of Arts [AS-BA-PLST] College of Arts and Sciences Department of Sociology Catalog Year: 2013-2014 Page 1 of 3 | Last Updated: 7-May-13/LNHD This roadmap is a recommended on page 2 #12;Roadmap: Paralegal Studies ­ Bachelor of Arts [AS-BA-PLST] College of Arts and Sciences

  4. Roadmap for Venus Exploration (Version 4, 1/29/14)

    E-Print Network [OSTI]

    Rathbun, Julie A.

    1 Roadmap for Venus Exploration (Version 4, 1/29/14) Introduction Venus is so similar solar systems. This Roadmap lays out a framework for the future exploration of Venus, encompassing expressed in this Roadmap should be recognized by NASA review panels as being consistent with VEXAG

  5. Roadmap to Residency: From Application to the Match and Beyond

    E-Print Network [OSTI]

    Sherman, S. Murray

    Roadmap to Residency: From Application to the Match and Beyond Association of American Medical Colleges Learn Serve Lead #12;Roadmap to Residency: From Application to the Match and Beyond #12;© 2006 with application to U.S. residency programs. iii Roadmap to Residency: From Application to the Match and Beyond

  6. Roadmap for Real World Internet applications Socioeconomic scenarios

    E-Print Network [OSTI]

    Paris-Sud XI, Université de

    Roadmap for Real World Internet applications ­ Socioeconomic scenarios and design recommendations that is feasible to roadmap the dynamic deployment of Real World Internet applications. A multi- faceted scenarios. These scenarios are used as a roadmap for the system and architecture deployment. The application

  7. Roadmap: Mathematics -Bachelor of Science [AS-BS-MATH

    E-Print Network [OSTI]

    Sheridan, Scott

    Roadmap: Mathematics - Bachelor of Science [AS-BS-MATH] College of Arts and Science Department of Mathematical Sciences Catalog Year: 2012­2013 Page 1 of 2 | Last Updated: 11-May-2012/LNHD This roadmap #12;Roadmap: Mathematics - Bachelor of Science [AS-BS-MATH] College of Arts and Science Department

  8. Roadmap Query for Sensor Network Assisted Navigation in Dynamic Environments

    E-Print Network [OSTI]

    Lu, Chenyang

    Roadmap Query for Sensor Network Assisted Navigation in Dynamic Environments Sangeeta Bhattacharya approach that integrates a roadmap based navigation algorithm with a novel WSN query protocol called Roadmap Query (RQ). RQ enables collection of frequent, up-to- date information about the surrounding

  9. Roadmap to Residency: From Application to the Match and Beyond

    E-Print Network [OSTI]

    Weber, David J.

    Roadmap to Residency: From Application to the Match and Beyond Association of American Medical Colleges Learn Serve Lead Second Edition #12;Roadmap to Residency: From Application to the Match and Beyond in the processes associated with application to U.S. residency programs. iii Roadmap to Residency: From Application

  10. Roadmap: Art History Bachelor of Arts [CA-BA-ARTH

    E-Print Network [OSTI]

    Sheridan, Scott

    Roadmap: Art History ­ Bachelor of Arts [CA-BA-ARTH] College of the Arts School of Art Catalog Year: 2012­2013 Page 1 of 2 | Last Updated: 29-May-12/JS This roadmap is a recommended semester Elective (upper division) 3 Minor Requirements or General Electives 9 See note 2 on page 2 #12;Roadmap

  11. Roadmap: Biology -Bachelor of Arts [AS-BA-BSCI

    E-Print Network [OSTI]

    Sheridan, Scott

    Roadmap: Biology - Bachelor of Arts [AS-BA-BSCI] College of Arts and Sciences Department of Biological Sciences Catalog Year: 2012­2013 Page 1 of 3 | Last Updated: 2-May-12/LNHD This roadmap hours and minimum 42 upper- division credit hours #12;Roadmap: Biology - Bachelor of Arts [AS

  12. Roadmap: Zoology Bachelor of Science [AS-BS-ZOOL

    E-Print Network [OSTI]

    Sheridan, Scott

    Roadmap: Zoology ­ Bachelor of Science [AS-BS-ZOOL] College of Arts and Science Department of Biological Sciences Catalog Year: 2012­2013 Page 1 of 3 | Last Updated: 14-May-2012/LNHD This roadmap hours and minimum 42 upper- division credit hours #12;Roadmap: Zoology ­ Bachelor of Science [AS

  13. Roadmap: Electronic Media Electronic Media Sports Production Bachelor of Science

    E-Print Network [OSTI]

    Sheridan, Scott

    Roadmap: Electronic Media ­ Electronic Media Sports Production ­ Bachelor of Science [CI­2013 Page 1 of 4 | Last Updated: 23-May-12/LNHD This roadmap is a recommended semester-by-semester plan requirement #12;Roadmap: Electronic Media ­ Electronic Media Sports Production ­ Bachelor of Science [CI

  14. The Cost of Transmission for Wind Energy: A Review of Transmission Planning Studies

    E-Print Network [OSTI]

    Mills, Andrew D.

    2009-01-01T23:59:59.000Z

    2006. Transmission and Wind Energy: Capturing the Prevailingand Renewable Energy (Wind & Hydropower Technologiesand Renewable Energy Wind & Hydropower Technologies Program

  15. Part of the Climate Change Problem . . . and the Solution? Chinese-Made Wind Power Technology and Opportunities for Dissemination

    E-Print Network [OSTI]

    Lewis, Joanna I.

    2005-01-01T23:59:59.000Z

    Commercial Scale Wind Turbines in Canada. Aprilimportdutyonwind turbinesandreduced theimportdutydelivery leadtimesforwindturbinesandcomponentsare

  16. A Roadmap for NEAMS Capability Transfer

    SciTech Connect (OSTI)

    Bernholdt, David E [ORNL

    2011-11-01T23:59:59.000Z

    The vision of the Nuclear Energy Advanced Modeling and Simulation (NEAMS) program is to bring truly predictive modeling and simulation (M&S) capabilities to the nuclear engineering community in order to enable a new approach to the design and analysis of nuclear energy systems. From its inception, the NEAMS program has always envisioned a broad user base for its software and scientific products, including researchers within the DOE complex, nuclear industry technology developers and vendors, and operators. However activities to date have focused almost exclusively on interactions with NEAMS sponsors, who are also near-term users of NEAMS technologies. The task of the NEAMS Capability Transfer (CT) program element for FY2011 is to develop a comprehensive plan to support the program's needs for user outreach and technology transfer. In order to obtain community input to this plan, a 'NEAMS Capability Transfer Roadmapping Workshop' was held 4-5 April 2011 in Chattanooga, TN, and is summarized in this report. The 30 workshop participants represented the NEAMS program, the DOE and industrial user communities, and several outside programs. The workshop included a series of presentations providing an overview of the NEAMS program and presentations on the user outreach and technology transfer experiences of (1) The Advanced Simulation and Computing (ASC) program, (2) The Standardized Computer Analysis for Licensing Evaluation (SCALE) project, and (3) The Consortium for Advanced Simulation of Light Water Reactors (CASL), followed by discussion sessions. Based on the workshop and other discussions throughout the year, we make a number of recommendations of key areas for the NEAMS program to develop the user outreach and technology transfer activities: (1) Engage not only DOE, but also industrial users sooner and more often; (2) Engage with the Nuclear Regulatory Commission to facilitate their understanding and acceptance of NEAMS approach to predictive M&S; (3) Place requirements gathering from prospective users on a more formal footing, updating requirements on a regular basis and incorporate them into planning and execution of the project in a traceable fashion; (4) Seek out the best available data for validation purposes, and work with experimental programs to design and carry out new experiments that satisfy the need for data suitable for validation of high-fidelity M&S codes; (5) Develop and implement program-wide plans and policies for export control, licensing, and distribution of NEAMS software products; (6) Establish a program of sponsored alpha testing by experienced users in order to obtain feedback on NEAMS codes; (7) Provide technical support for NEAMS software products; (8) Develop and deliver documentation, tutorial materials, and live training classes; and (9) Be prepared to support outside users who wish to contribute to the codes.

  17. Fostering a Renewable Energy Technology Industry: An International Comparison of Wind Industry Policy Support Mechanisms

    E-Print Network [OSTI]

    Lewis, Joanna; Wiser, Ryan

    2005-01-01T23:59:59.000Z

    Renewable Energy. Renewable Energy Policy Project ResearchIndustrial Policy and Renewable Energy Technology.Development of Renewable Energy. Energy Policy, 31, 799-812.

  18. Low Wind Speed Technology Phase I: Evaluation of Design and Construction Approaches for Economical Hybrid Steel/Concrete Wind Turbine Towers; BERGER/ABAM Engineers Inc.

    SciTech Connect (OSTI)

    Not Available

    2006-03-01T23:59:59.000Z

    This fact sheet describes a subcontract with BERGER/ABAM Engineers Inc. to study the economic feasibility of concrete and hybrid concrete/steel wind turbine towers.

  19. Power System Modeling of 20percent Wind-Generated Electricity by 2030

    E-Print Network [OSTI]

    Hand, Maureen

    2008-01-01T23:59:59.000Z

    power system modeling, wind energy I. I NTRODUCTION Generating electricity from wind technology has several advantages

  20. SAT-WIND project Final report

    E-Print Network [OSTI]

    -2840 ISBN 87-550-3570-1 The SAT-WIND project `Winds from satellites for offshore and coastal wind energy) technologies for wind energy tools for wind resources and wind-indexing. The study area was the Danish Seas microwave polarimetric 223.3.1 History 3.3.2 Measurement principle 22 223.3.3 WindSat (passive microwave

  1. Roadmap for Venus Exploration: 2014 (Draft for Community Review, March 12, 2014)

    E-Print Network [OSTI]

    Rathbun, Julie A.

    Roadmap for Venus Exploration: 2014 (Draft for Community Review, March 12, 2014) #12;ii Roadmap, (2) develop a Roadmap for Venus exploration that is consistent with VEXAG priorities as well. Here, we present the Roadmap for Venus Exploration: 2014. Developed by Venus Exploration Roadmap

  2. Wind and Water Power Technologies FY'14 Budget At-a-Glance | Department of

    Office of Environmental Management (EM)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) "of EnergyEnergyENERGYWomen Owned SmallOf TheViolations | Department ofEnergy Wind Power06Energy and

  3. Indian Centre for Wind Energy Technology C WET | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Office of Inspector GeneralDepartmentAUDIT REPORTOpen EnergyBoard"Starting a newIGUSLLC JumpIndependence Wind

  4. Wind Technology Testing Center Earns A2LA Accreditation for Blade Testing |

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE:YearRound-Up from theDepartment of Dept.| WEATHERIZATION5 |and Analysis |3 Wind Program2Department

  5. Wind and Water Power Technologies FY'14 Budget At-a-Glance

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE:YearRound-Up from theDepartment of Dept.| WEATHERIZATION5 |and Analysis |3 WindEnergy1 2This 1

  6. A Predictive Maintenance Policy Based on the Blade of Offshore Wind Wenjin Zhu, Troyes University of Technology

    E-Print Network [OSTI]

    McCalley, James D.

    A Predictive Maintenance Policy Based on the Blade of Offshore Wind Turbine Wenjin Zhu, Troyes, Paris-Erdogan law, rotor blade, wind turbine SUMMARY & CONCLUSIONS Based on the modeling and the better quality of the wind resource in the sea, the installation of wind turbines is shifting from

  7. The new Wind Technology Test Center is the only facility in the nation capable of testing wind turbine blades up to

    E-Print Network [OSTI]

    turbine blades up to 90 meters in length. A critical factor to wind turbine design and development is the ability to test new designs, components, and materials. In addition, wind turbine blade manufacturers are required to test their blades as part of the turbine certification process. The National Renewable Energy

  8. On the Use of Energy Storage Technologies for Regulation Services in Electric Power Systems with Significant Penetration of Wind Energy

    SciTech Connect (OSTI)

    Yang, Bo; Makarov, Yuri V.; DeSteese, John G.; Vishwanathan, Vilanyur V.; Nyeng, Preben; McManus, Bart; Pease, John

    2008-05-27T23:59:59.000Z

    Energy produced by intermittent renewable resources is sharply increasing in the United States. At high penetration levels, volatility of wind power production could cause additional problems for the power system balancing functions such as regulation. This paper reports some partial results of a project work, recently conducted by the Pacific Northwest National Laboratory (PNNL) for Bonneville Power Administration (BPA). The project proposes to mitigate additional intermittency with the help of Wide Area Energy Management System (WAEMS) that would provide a two-way simultaneous regulation service for the BPA and California ISO systems by using a large energy storage facility. The paper evaluates several utility-scale energy storage technology options for their usage as regulation resources. The regulation service requires a participating resource to quickly vary its power output following the rapidly and frequently changing regulation signal. Several energy storage options have been analyzed based on thirteen selection criteria. The evaluation process resulted in the selection of flywheels, pumped hydro electric power (or conventional hydro electric power) plant and sodium sulfur or nickel cadmium batteries as candidate technologies for the WAEMS project. A cost benefit analysis should be conducted to narrow the choice to one technology.

  9. Learning curves and engineering assessment of emerging energy technologies: onshore wind

    E-Print Network [OSTI]

    Mukora, Audrey Etheline

    2014-06-30T23:59:59.000Z

    Sustainable energy systems require deployment of new technologies to help tackle the challenges of climate change and ensuring energy supplies. Future sources of energy are less economically competitive than conventional ...

  10. Wind Energy Status and Future Wind Engineering Challenges: Preprint

    SciTech Connect (OSTI)

    Thresher, R.; Schreck, S.; Robinson, M.; Veers, P.

    2008-08-01T23:59:59.000Z

    This paper describes the current status of wind energy technology, the potential for future wind energy development and the science and engineering challenges that must be overcome for the technology to meet its potential.

  11. In Future of Software Engineering, 22nd International Conference on Software Engineering, June 2000. Testing: A Roadmap

    E-Print Network [OSTI]

    Harrold, Mary Jean

    . Testing: A Roadmap Mary Jean Harrold College of Computing Georgia Institute of Technology 801 Atlantic Drive Atlanta, GA 30332-0280 harrold@cc.gatech.edu ABSTRACT Testing is an important process that is performed to support quality assurance. Testing activities support quality assurance by gathering

  12. Assessing the Impacts of Reduced Noise Operations of Wind Turbines on Neighbor Annoyance: A Preliminary Analysis in Vinalhaven, Maine

    E-Print Network [OSTI]

    Hoen, Ben

    2010-01-01T23:59:59.000Z

    Renewable Energy (Wind & Hydropower Technologies Program) ofRenewable Energy Wind & Hydropower Technologies Program U.S.Renewable Energy (Wind & Hydropower Technologies Program) of

  13. Roadmap for Hydrogen and Fuel Cell Vehicles in California: A Transition Strategy through 2017

    E-Print Network [OSTI]

    Ogden, J; Cunningham, Joshua M; Nicholas, Michael A

    2010-01-01T23:59:59.000Z

    new partnerships? H2-FCV Roadmap Report - FINAL December 21,Roadmap for Hydrogen and Fuel Cell Vehicles in California: ACalifornia, Davis H2-FCV Roadmap Report - FINAL December 21,

  14. Software Roadmap to Plug and Play Petaflop/s Editor: Bill Kramer (wtkramer@lbl.gov)

    E-Print Network [OSTI]

    Geddes, Cameron Guy Robinson

    LBNL-59999 Software Roadmap to Plug and Play Petaflop/s Editor: Bill Kramer (wtkramer Software Roadmap to Plug and Play Petaflop/s 1 Software Roadmap to Plug and Play Petaflop/s In the next

  15. Roadmap and Technical White Papers for 21st Century Truck Partnership...

    Broader source: Energy.gov (indexed) [DOE]

    Roadmap and Technical White Papers for 21st Century Truck Partnership Roadmap and Technical White Papers for 21st Century Truck Partnership Roadmap document for 21st Century Truck...

  16. The Cost of Transmission for Wind Energy: A Review of Transmission Planning Studies

    E-Print Network [OSTI]

    Mills, Andrew D.

    2009-01-01T23:59:59.000Z

    2006. Transmission and Wind Energy: Capturing the Prevailing40 6.2 20% Wind Energy: Wind Deployment System (and Renewable Energy (Wind & Hydropower Technologies

  17. Wind Energy Facilities and Residential Properties: The Effect of Proximity and View on Sales Prices

    E-Print Network [OSTI]

    Hoen, Ben

    2012-01-01T23:59:59.000Z

    U.S. Department of Energy (Wind and Hydropower Technologiesand Renewable Energy (Wind & Hydropower TechnologiesPublic Perceptions of Wind Energy. Wind Energy, 2004, 8:2,

  18. Power System Modeling of 20percent Wind-Generated Electricity by 2030

    E-Print Network [OSTI]

    Hand, Maureen

    2008-01-01T23:59:59.000Z

    Contribution to U.S. Electricity Supply. National Renewable20% of the nation's electricity from wind technology byTERMS wind-generated electricity; wind energy; 20% wind

  19. Colorado and South Carolina: New Wind Test Facilities Open

    Office of Energy Efficiency and Renewable Energy (EERE)

    Two state-of-the-art wind testing facilities will accelerate development and deployment of wind energy technologies.

  20. The Political Economy of Wind Power in China

    E-Print Network [OSTI]

    Swanson, Ryan Landon

    2011-01-01T23:59:59.000Z

    those suitable for offshore wind farms. But foreign firms,technology for offshore wind farms. 111 Thus, although China

  1. Responding to a Changing Energy Industry : 2007 Wind Energy Business Plan

    E-Print Network [OSTI]

    Jacobson, Ryan J.

    2007-12-14T23:59:59.000Z

    This EMGT 835 project is a wind energy business plan for Midwest Engineering, an engineering and construction company active in the energy sector. This plan was created to develop a roadmap for the company to increase its market share in wind...

  2. Imposed-Dynamo Driven Spheromak Roadmap

    E-Print Network [OSTI]

    Imposed-Dynamo Driven Spheromak Roadmap Derek Sutherland and Tom Jarboe University of Washington 34 sustained spheromak with pressure. · NIMROD simulations indicate existence of closed flux with large by Imposed-Dynamo Current Drive (IDCD). · IDCD-enabled spheromak development path. · Conclusions

  3. Swarming Behavior Using Probabilistic Roadmap Techniques

    E-Print Network [OSTI]

    Lien, Jyh-Ming

    Swarming Behavior Using Probabilistic Roadmap Techniques O. Bur¸chan Bayazit1 , Jyh-Ming Lien2 behaviors: homing, exploring (covering and goal searching), passing through narrow areas and shepherding. We consider several different behaviors: homing, goal searching, covering, passing through narrow passages

  4. WEB MINING: A ROADMAP Magdalini Eirinaki

    E-Print Network [OSTI]

    Eirinaki, Magdalini

    1 WEB MINING: A ROADMAP Magdalini Eirinaki Dept. of Informatics Athens University of Economics and Business CHAPTER 1 Introduction ­ The three axes of Web Mining 1.1 WWW Impact The World Wide Web, has grown of the Web content, the creation of some meta- knowledge out of the information which is available on the Web

  5. Roadmap for Solar System Research October 2012

    E-Print Network [OSTI]

    Crowther, Paul

    Roadmap for Solar System Research October 2012 DRAFT Prepared by the Solar System Advisory Panel on behalf of the UK Community of Solar and Planetary Scientists for the STFC Programmatic Review Panel and processes that influence its dynamics. The remit of the Solar System Advisory Panel (SSAP) covers all b

  6. Roadmap for Solar System Research November 2012

    E-Print Network [OSTI]

    Crowther, Paul

    Roadmap for Solar System Research November 2012 Prepared by the Solar System Advisory Panel on behalf of the UK Community of Solar System Scientists for the STFC Programmatic Review Panel membership. The Solar System Advisory Panel (SSAP) invited its community to a Town Meeting in London on 10th September

  7. RESEARCH ROADMAP FOR GREENHOUSE GAS INVENTORY

    E-Print Network [OSTI]

    RESEARCH ROADMAP FOR GREENHOUSE GAS INVENTORY METHODS Prepared For: California Energy Commission Consulting · Riitta Pipatti, IPCC Task Force on National Greenhouse Gas Inventories · Dennis Rolston Agency · Fabian Wagner, IPCC Task Force on National Greenhouse Gas Inventories · Wilfried Winiwarter

  8. Finnish Research Infrastructure Survey and Roadmap Project

    E-Print Network [OSTI]

    Horn, David

    location ERA policy ESFRI Roadmap EU27 MS & AS Survey "RI landscape" 2 #12;Background for National RI is appropriate in fields that require major investments in expensive research equipment (e.g. synchrotron light sources, research reactors), special laboratories (e.g. cleanrooms) or research materials (e.g. hazardous

  9. SciTech Connect: Offshore Wind Jobs and Economic Development...

    Office of Scientific and Technical Information (OSTI)

    Technologies Office Country of Publication: United States Language: English Subject: 17 WIND ENERGY; 29 ENERGY PLANNING, POLICY AND ECONOMY OFFSHORE WIND JOBS; OFFSHORE WIND...

  10. WIND DATA REPORT December, 2003 February 29, 2004

    E-Print Network [OSTI]

    Massachusetts at Amherst, University of

    WIND DATA REPORT Orleans December, 2003 ­ February 29, 2004 Prepared for Massachusetts Technology.................................................................................................................... 10 Wind Speed Time Series........................................................................................................... 10 Wind Speed Distributions

  11. WIND DATA REPORT October 27, 2003 November 31, 2003

    E-Print Network [OSTI]

    Massachusetts at Amherst, University of

    WIND DATA REPORT Orleans October 27, 2003 ­ November 31, 2003 Prepared for Massachusetts Technology...................................................................................................................... 9 Wind Speed Time Series............................................................................................................. 9 Wind Speed Distributions

  12. WIND DATA REPORT December 1, 2003 February 29, 2004

    E-Print Network [OSTI]

    Massachusetts at Amherst, University of

    WIND DATA REPORT Mt. Tom December 1, 2003 ­ February 29, 2004 Prepared for Massachusetts Technology.................................................................................................................... 10 Wind Speed Time Series........................................................................................................... 10 Wind Speed Distributions

  13. WIND DATA REPORT March 1, 2004 May 31, 2004

    E-Print Network [OSTI]

    Massachusetts at Amherst, University of

    WIND DATA REPORT Eastham March 1, 2004 ­ May 31, 2004 Prepared for Massachusetts Technology...................................................................................................................... 9 Wind Speed Time Series............................................................................................................. 9 Wind Speed Distributions

  14. The Political Economy of Wind Power in China

    E-Print Network [OSTI]

    Swanson, Ryan Landon

    2011-01-01T23:59:59.000Z

    by pitching the blades of the turbines out of the wind. 114wind turbine technology converts wind energy into electricity, taking into account factors such as blade

  15. 1 to be published in Wind Energy Many engineering systems incorporate prognostics and health management (PHM), which consists of technologies

    E-Print Network [OSTI]

    Sandborn, Peter

    1 to be published in Wind Energy ABSTRACT Many engineering systems incorporate prognostics exist for wind energy systems, they do not specifically quantify the value of decisions after: GHaddad@slb.com. 1. INTRODUCTION Wind energy is at the forefront of alternative energy sources. The US

  16. Thermally Activated Technologies Technology Roadmap, May 2003 | Department

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious RankCombustion |Energy Usage »of EnergyThe EnergyDepartment of Energy TheAgedMachines |of Energy

  17. EM Engineering & Technology Roadmap and Major Technology Demonstrations

    Office of Environmental Management (EM)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) "of Energy Power SystemsResources DOE ZeroThreeEnergyDepartment0: DOE512: Alaska EM|of Energy

  18. Advanced Airfoils for Wind Turbines: Office of Power Technologies (OPT) Success Stories Series Fact Sheet

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmospheric Optical Depth (AOD)ProductssondeadjustsondeadjustAbout the Building TechnologiesS1!4T opAddress:Adolphus L.Program Office of

  19. Idaho National Engineering Laboratory installation roadmap assumptions document. Revision 1

    SciTech Connect (OSTI)

    Not Available

    1993-05-01T23:59:59.000Z

    This document is a composite of roadmap assumptions developed for the Idaho National Engineering Laboratory (INEL) by the US Department of Energy Idaho Field Office and subcontractor personnel as a key element in the implementation of the Roadmap Methodology for the INEL Site. The development and identification of these assumptions in an important factor in planning basis development and establishes the planning baseline for all subsequent roadmap analysis at the INEL.

  20. Guyana-Caribbean Community (CARICOM) Sustainable Energy Roadmap...

    Open Energy Info (EERE)

    Guyana-Caribbean Community (CARICOM) Sustainable Energy Roadmap and Strategy AgencyCompany Organization Inter-American Development Bank, World Watch Institute (WWI) Sector...