Sample records for wind structures cxs

  1. Wind induced torsional loads on structures

    E-Print Network [OSTI]

    Kareem, Ahsan

    Wind induced torsional loads on structures A. Kareem Department of Civil Engineering, University degrees of freedom. If the resultant wind forces do not coincide with the centre of mass at each floor is also sensitive to the ratio of torsional to translational frequencies. There is no existing wind load

  2. Facilitating Wind Development: The Importance of Electric Industry Structure

    SciTech Connect (OSTI)

    Kirby, B.; Milligan, M.

    2008-05-01T23:59:59.000Z

    This paper evaluates which wholesale elecricity market-structure characteristics best accommodate wind energy development.

  3. Structural responses and power output of a wind turbine are strongly affected by the wind field acting on the wind turbine. Knowledge about the wind field and its

    E-Print Network [OSTI]

    Stanford University

    ABSTRACT Structural responses and power output of a wind turbine are strongly affected by the wind field acting on the wind turbine. Knowledge about the wind field and its variations is essential not only for designing, but also for cost-efficiently managing wind turbines. Wind field monitoring

  4. Sandia National Laboratories: test wind turbine blade structures...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    wind turbine blade structures at an intermediate scale Wind-Turbine Blade Materials and Reliability Progress On May 21, 2014, in Energy, Materials Science, News, News & Events,...

  5. Wind pressure distribution on shell structures 

    E-Print Network [OSTI]

    Yancey, Kenneth Earl, Jr

    1963-01-01T23:59:59.000Z

    One of the most important loads that an architect or engineer is concerned with in the structural design of buildings is wind pressure, and it is one of the most difficult structural loads to estimate. The necessity of making a close estimate...

  6. IDENTIFYING CURRENT-SHEET–LIKE STRUCTURES IN THE SOLAR WIND

    E-Print Network [OSTI]

    Li, Gang

    2008-01-01T23:59:59.000Z

    Barish, F. D. 1974, in Solar Wind Three, ed. C. T. Russell (in AIP Conf. Proc. 471, Solar Wind Nine, ed. S. R. Habbal (SHEET–LIKE STRUCTURES IN THE SOLAR WIND G. Li Space Science

  7. IDENTIFYING CURRENT-SHEET–LIKE STRUCTURES IN THE SOLAR WIND

    E-Print Network [OSTI]

    Li, Gang

    2008-01-01T23:59:59.000Z

    Barish, F. D. 1974, in Solar Wind Three, ed. C. T. Russell (AIP Conf. Proc. 471, Solar Wind Nine, ed. S. R. Habbal (NewSTRUCTURES IN THE SOLAR WIND G. Li Space Science Laboratory,

  8. Reduced Order Structural Modeling of Wind Turbine Blades

    E-Print Network [OSTI]

    Jonnalagadda, Yellavenkatasunil

    2011-10-21T23:59:59.000Z

    Conventional three dimensional structural analysis methods prove to be expensive for the preliminary design of wind turbine blades. However, wind turbine blades are large slender members with complex cross sections. They can be accurately modeled...

  9. Wind pressure distribution on shell structures

    E-Print Network [OSTI]

    Yancey, Kenneth Earl, Jr

    1963-01-01T23:59:59.000Z

    of calculating wind pressures on buildings is illustrated in the following example: it is desired to find the velocity pressure 35 feet above the ground at Corpus Christi, Texas. The following is known: Anemometer height 42 feet Desired lifetime of structure... at the height of the anemometer, 42 feet, proceed vertically to 98 miles per hour; then 100 90 80 70 60 o 50 ~c 40 g 30 20 40 35 30 25 e 20 3 15 -' o + 10 e 0 9 0 0) 0 z C + 0 0 ) o' 10 20 30 40 50 100 200 300 400 500 Height in Feet...

  10. NREL: Wind Research - Structural Testing Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level:Energy: Grid Integration Redefining What's Possible for Renewable Energy: GridTruck Platooning Testing Photofrom U.S.6Site WindStructural

  11. Understanding of solar wind structure might be wrong

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    of solar wind structure might be wrong The plasma particles flowing from the Sun and blasting past the Earth might be configured more as a network of tubes than a...

  12. ASCE Specialty Conference on Probabilistic Mechanics and Structural Reliability ESTIMATING STRUCTURAL RELIABILITY UNDER HURRICANE WIND HAZARD

    E-Print Network [OSTI]

    Balaji, Rajagopalan

    STRUCTURAL RELIABILITY UNDER HURRICANE WIND HAZARD: APPLICATIONS TO WOOD STRUCTURES Balaji Rajagopalan.frangopol@colorado.edu Abstract A stochastic nonparametric framework to estimate structural reliability under hurricane wind Natural hazards in general and hurricanes in particular, lead to loss of life and tremendous property

  13. STRUCTURAL HEALTH MONITORING OF THE SUPPORT STRUCTURE OF WIND TURBINE USING WIRELESS SENSING SYSTEM

    E-Print Network [OSTI]

    Boyer, Edmond

    STRUCTURAL HEALTH MONITORING OF THE SUPPORT STRUCTURE OF WIND TURBINE USING WIRELESS SENSING SYSTEM, Taipei, Taiwan 2 Department of Hydraulic & Ocean Engineering, National Cheng Kung University, Tainan, Taiwan kclu@narlabs.org.tw ABSTRACT The wind turbine heavily depends on the success of the support

  14. Structural testing of the North Wind 250 composite rotor joint

    SciTech Connect (OSTI)

    Musial, W; Link, H [National Renewable Energy Lab., Golden, CO (United States); Coleman, C [Northern Power Systems, Moretown, VT (United States)

    1994-05-01T23:59:59.000Z

    The North Wind 250 wind turbine is under development at Northern Power Systems (NPS) in Moretown, VT. The turbine uses a unique, flow-through, teetered-rotor design. This design eliminates structural discontinuities at the blade/hub interface by fabricating the rotor as one continuous structural element. To accomplish this, the two blade spars are joined at the center of the rotor using a proprietary bonding technique. Fatigue tests were conducted on the full-scale rotor joint at the National Renewable Energy Laboratory (NREL). Subsequent tests are now underway to test the full-scale rotor and hub assembly to verify the design assumptions. The test articles were mounted in dedicated test fixtures. For the joint test, a constant moment was generated across the joint and parent material. Hydraulic actuators applied sinusoidal loading to the test article at levels equivalent to 90% of the extreme wind load for over one million cycles. When the loading was increased to 112% of the extreme wind load, the joint failed by buckling. Strain levels were monitored at 14 locations inside and outside of the blade joint during the test. The tests were used to qualify this critical element of the rotor for field testing and to provide information needed to improve the structural design of the joint.

  15. FLUID FLOW MODELING OF RESIN TRANSFER MOLDING FOR COMPOSITE MATERIAL WIND TURBINE BLADE STRUCTURES

    E-Print Network [OSTI]

    FLUID FLOW MODELING OF RESIN TRANSFER MOLDING FOR COMPOSITE MATERIAL WIND TURBINE BLADE STRUCTURES.............................................................................................................7 Composite Materials...................................................................................................7 Material Properties

  16. PREDICTION OF DELAM INATION IN WIND TURBINE BLADE STRUCTURAL DETAILS John F. Mandell, Douglas S. Cairns

    E-Print Network [OSTI]

    materials structures such as wind turbine blades. Design methodologies to prevent such failures have static and fatigue loading. INTRODUCTION Composite material structures such as wind turbine blades1 PREDICTION OF DELAM INATION IN WIND TURBINE BLADE STRUCTURAL DETAILS John F. Mandell, Douglas S

  17. SUBSPACE-BASED DETECTION OF FATIGUE DAMAGE ON JACKET SUPPORT STRUCTURES OF OFFSHORE WIND TURBINES

    E-Print Network [OSTI]

    Paris-Sud XI, Université de

    SUBSPACE-BASED DETECTION OF FATIGUE DAMAGE ON JACKET SUPPORT STRUCTURES OF OFFSHORE WIND TURBINES-based Damage Detec- tion (SSDD) method on model structures for an utilization of this approach on offshore wind damage in real size structural components of offshore wind turbines. KEYWORDS : Damage detection

  18. Loading and Response of Offshore Wind Turbine Support Structures: Prediction with Comparison to Measured Data

    E-Print Network [OSTI]

    Sweetman, Bert

    Loading and Response of Offshore Wind Turbine Support Structures: Prediction with Comparison, offshore wind support platforms differ from oil platforms is several important ways: First, wind platforms is often closer to frequencies at which there is meaningful wave energy. Second, wind farms often include

  19. LOSS OF ROTOR ISOTROPY AS A BLADE DAMAGE INDICATOR FOR WIND TURBINE STRUCTURE HEALTH MONITORING SYSTEMS

    E-Print Network [OSTI]

    Paris-Sud XI, Université de

    LOSS OF ROTOR ISOTROPY AS A BLADE DAMAGE INDICATOR FOR WIND TURBINE STRUCTURE HEALTH MONITORING to simulated vibrations of a rotating rotor. KEYWORDS : wind turbine blade, rotor anisotropy, Floquet analysis, OMA INTRODUCTION Blades of modern wind turbines are complex high-tech structures, and their cost

  20. www.cesos.ntnu.no Author Centre for Ships and Ocean Structures Offshore Wind Turbine Operation

    E-Print Network [OSTI]

    Nørvåg, Kjetil

    1 www.cesos.ntnu.no Author ­ Centre for Ships and Ocean Structures Offshore Wind Turbine Operation Structures Deep Water Offshore Wind Economic Production Cost WT Life Time : 20 Years Introduction Vast icing for offshore Wind Turbines ? · Wherever there is sea icing ! · Temperature bellow zero degree

  1. Large-scale structure of the fast solar wind

    E-Print Network [OSTI]

    Bisi, M. M.; Fallows, R. A.; Breen, A. R.; Habbal, S. Rifai; Jones, R. A.

    2007-01-01T23:59:59.000Z

    measurements of Solar Wind velocity, in press, Journal of1992), The Ulysses solar wind plasma experiment, AstronomyA. Hewish (1967), The solar wind outside the plane of the

  2. A Review of Wind Project Financing Structures in the USA

    E-Print Network [OSTI]

    Bolinger, Mark A

    2009-01-01T23:59:59.000Z

    on U.S. Wind Power Installation, Cost, and Performancecapital to finance wind project costs. Roughly $28 billion (90-95% of the total costs of a wind project qualify for 5-

  3. Vibration and Structural Response of Hybrid Wind Turbine Blades 

    E-Print Network [OSTI]

    Nanami, Norimichi

    2011-02-22T23:59:59.000Z

    academic experiences for me. I would also like to thank Dr. Alan Palazzolo and Dr.Thomas Straganac for serving on my committee and taking their valuable time to discuss this research with me. Thanks also go to my past and present lab mates, Melanie... of the panel increased. Local buckling and instant failure of panels arose from large and deep delaminations. The smaller delaminations closer to the surface of the panels showed stable growth. Jensen et al. [26] studied structural behaviors of a 34 m wind...

  4. Understanding of solar wind structure might be wrong

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office of ScienceandMesa del SolStrengthening aTurbulence mayUndergraduate ProgramCenter |Solar wind structure

  5. ACTIVE CONTROL OF FLOW SEPARATION AND STRUCTURAL VIBRATIONS OF WIND TURBINE BLADES

    E-Print Network [OSTI]

    Salama, Khaled

    ACTIVE CONTROL OF FLOW SEPARATION AND STRUCTURAL VIBRATIONS OF WIND TURBINE BLADES Sponsor: Ney actuators embedded inside the wind turbine blade to provide an efficient, rapid and compact means to alter the ability to shed excess wind loads off the blade. 3. Reduce vibration in the turbine blades by selectively

  6. A Computational Framework for Life-Cycle Management of Wind Turbines incorporating Structural Health Monitoring

    E-Print Network [OSTI]

    Stanford University

    1 A Computational Framework for Life-Cycle Management of Wind Turbines incorporating Structural of wind turbines and reducing the life-cycle costs significantly. This paper presents a life-cycle management (LCM) framework for online monitoring and performance assessment of wind turbines, enabling

  7. TOWARDS LIFE-CYCLE MANAGEMENT OF WIND TURBINES BASED ON STRUCTURAL HEALTH MONITORING

    E-Print Network [OSTI]

    Stanford University

    TOWARDS LIFE-CYCLE MANAGEMENT OF WIND TURBINES BASED ON STRUCTURAL HEALTH MONITORING K. Smarsly1) strategies can enable wind turbine manufacturers, owners, and operators to precisely schedule maintenance behavior of wind turbines and to reduce (epistemic) uncertainty. Both the resistance parameters

  8. Economics of Online Structural Health Monitoring of Wind Turbines: Cost Benefit Analysis

    E-Print Network [OSTI]

    McCalley, James D.

    Economics of Online Structural Health Monitoring of Wind Turbines: Cost Benefit Analysis Jeremy Van monitoring (OSHM) and condition-based maintenance (CBM) of wind turbine blades has the potential to reduce O cost of energy (LCOE) [1]. The costs required to keep wind turbines working in extreme temperatures

  9. A MODULAR SHM-SCHEME FOR ENGINEERING STRUCTURES UNDER CHANGING CONDITIONS: APPLICATION TO AN OFFSHORE WIND

    E-Print Network [OSTI]

    Paris-Sud XI, Université de

    TO AN OFFSHORE WIND TURBINE Moritz W. H¨ackell1, Raimund Rolfes1 1 Institute of Structural Analysis, Leibniz in common. A shift from fossil to renewable energy source is the logical con- sequence. (Offshore) wind : Offshore Wind Turbine, Machine Learning, Condition Parameter, Control Charts, Affinity Propagation

  10. Impact of Electric Industry Structure on High Wind Penetration Potential

    SciTech Connect (OSTI)

    Milligan, M.; Kirby, B.; Gramlich, R.; Goggin, M.

    2009-07-01T23:59:59.000Z

    This paper attempts to evaluate which balancing area (BA) characteristics best accommodate wind energy.

  11. Wind Farm Structures' Impact on Harmonic Emission and Grid Interaction

    E-Print Network [OSTI]

    Bak, Claus Leth

    in this paper. The largest wind farms in the world, Horns Rev 2 Offshore Wind Farm and Polish Karnice Onshore (WTs) with full-scale converters used in large offshore wind farms (OWFs) is increasing into consideration, the largest in the world Horns Rev 2 Offshore Wind Farm and located in Poland Karnice Onshore

  12. Organization of Energetic Particles by the Solar Wind Structure During the Declining to Minimum Phase of Solar Cycle 23

    E-Print Network [OSTI]

    2010-01-01T23:59:59.000Z

    Feldman, W.C. : 1978, Solar wind stream interfaces. J.of large-scale solar wind structures. Ph.D. dissertation,R.M. : 2008, Weaker solar wind from the polar coronal holes

  13. Large-scale structure of the fast solar wind

    E-Print Network [OSTI]

    Bisi, M. M.; Fallows, R. A.; Breen, A. R.; Habbal, S. Rifai; Jones, R. A.

    2007-01-01T23:59:59.000Z

    Scintillation measurements of Solar Wind velocity, in press,K. Sakurai (1992), The Ulysses solar wind plasma experiment,Telescope for the SOHO Mission, Solar Physics, 162, 291–312.

  14. Modal Dynamics of Large Wind Turbines with Different Support Structures

    SciTech Connect (OSTI)

    Bir, G.; Jonkman, J.

    2008-07-01T23:59:59.000Z

    This paper presents modal dynamics of floating-platform-supported and monopile-supported offshore wind turbines.

  15. Smart Structures and Systems, Vol. 6, No. 3 (2010) 000-000 1 Structural monitoring of wind turbines using wireless

    E-Print Network [OSTI]

    Sweetman, Bert

    2010-01-01T23:59:59.000Z

    . Longer and lighter blade designs using novel materials (e.g., fiberglass composites) will yield better performance (Schulz and Sundaresan 2006). Frequently reversing wind loads and blade orientation with respectSmart Structures and Systems, Vol. 6, No. 3 (2010) 000-000 1 Structural monitoring of wind turbines

  16. Smart Structures and Systems, Vol. 6, No. 3 (2010) 183-196 183 Structural monitoring of wind turbines using wireless

    E-Print Network [OSTI]

    Lynch, Jerome P.

    2010-01-01T23:59:59.000Z

    turbine designs. Longer and lighter blade designs using novel materials (e.g., fiberglass composites) will yield better performance (Schulz and Sundaresan 2006). Frequently reversing wind loads and bladeSmart Structures and Systems, Vol. 6, No. 3 (2010) 183-196 183 Structural monitoring of wind

  17. Facilitating wind development: the importance of electric industry structure

    SciTech Connect (OSTI)

    Kirby, Brendan; Milligan, Michael

    2008-04-15T23:59:59.000Z

    ISOs and RTOs, with their day-ahead and real-time markets, large geographies to aggregate diverse wind resources, large loads to aggregate with wind, large generation pools that tap conventional-generator flexibility, and regional transmission planning efforts, offer the best environments for wind generation to develop. (author)

  18. AIR-FLOW STRUCTURE IN THE VERY CLOSE VICINITY OF WIND GENERATED WATER-WAVES

    E-Print Network [OSTI]

    Paris-Sud XI, Université de

    the static pressure, / , the slope of the water waves, the air kinematic viscosity. Wave characteristics wereAIR-FLOW STRUCTURE IN THE VERY CLOSE VICINITY OF WIND GENERATED WATER-WAVES Hubert Branger1 the structure of the air flow in the very close vicinity of the water-surface above wind-generated waves. We

  19. A New Method to Find the Fractional Slot Windings Structures from a Distributed Slot Windings

    E-Print Network [OSTI]

    Paris-Sud XI, Université de

    a distributed slot permanent magnet synchronous machine (PMSM). It's a machine characterized by a distributed windings stator and a surface mounted PM rotor. First, a basic PMSM called "classical" has been studied performances assembled during the functional cycle of vehicle. Index Terms-- PMSM, distributed windings

  20. he defining element of modern wind farms is the pro-peller-like structure known as a horizontal-axis wind

    E-Print Network [OSTI]

    Dabiri, John O.

    T he defining element of modern wind farms is the pro- peller-like structure known as a horizontal-axis wind turbine.Amarvel of engineering, the HAWT typically comprises more than 8000 parts, and its blades it converts wind energy into electricity. In 1920 Albert Betz derived a theoretical limit on that efficiency

  1. Wind Finslerian structures: from Zermelo's navigation to the causality of spacetimes

    E-Print Network [OSTI]

    Caponio, Erasmo; Sánchez, Miguel

    2015-01-01T23:59:59.000Z

    The notion of wind Finslerian structure is developed; this is a generalization of Finsler metrics where the indicatrices at the tangent spaces may not contain the zero vector. In the particular case that these indicatrices are ellipsoids, called here wind Riemannian structures, they admit a double interpretation which provides: (a) a model for classical Zermelo's navigation problem even when the trajectories of the moving objects (planes, ships) are influenced by strong winds or streams, and (b) a natural description of the causal structure of relativistic spacetimes endowed with a non-vanishing Killing vector field (SSTK splittings), in terms of Finslerian elements. These elements can be regarded as conformally invariant Killing initial data on a partial Cauchy hypersurface. The wind Finslerian structure is described in terms of two (conic, pseudo) Finsler metrics, one with a convex indicatrix and the other with a concave one. However, the spacetime viewpoint for the wind Riemannian case gives a useful unifi...

  2. Altered structural development and accelerated succession from intermediate-scale wind disturbance in Quercus stands on the

    E-Print Network [OSTI]

    Hart, Justin

    . Logistic regression revealed an increasing probability of mortality during wind disturbance with increasingAltered structural development and accelerated succession from intermediate-scale wind disturbance Structure Succession Wind a b s t r a c t Natural disturbances play important roles in shaping the structure

  3. Vibration and Structural Response of Hybrid Wind Turbine Blades

    E-Print Network [OSTI]

    Nanami, Norimichi

    2011-02-22T23:59:59.000Z

    sources. Wind energy is capable of providing 72 TW (TW = 10^12 W) of electric power, which is approximately four and half times the world energy consumption of 15.8 TW as reported in 2006. Since power output extracted from wind turbines is proportional...

  4. Fine Structure of the Solar Wind Turbulence Inferred from Simultaneous Radio Occultation Observations at

    E-Print Network [OSTI]

    Padmanabhan, Janardhan

    Fine Structure of the Solar Wind Turbulence Inferred from Simultaneous Radio Occultation Observations at Widely-Spaced Ground Stations M.K. Bird , P. Janardhan , A.I. Efimov, L.N. Samoznaev, V extended for up to four hours, thereby allowing studies of solar wind turbulence dynamics at spatial scales

  5. Wind Energy's New Role in Supplying the World's Energy: What Role Will Structural Health Monitoring Play?

    SciTech Connect (OSTI)

    Butterfield, S.; Sheng, S.; Oyague, F.

    2009-12-01T23:59:59.000Z

    Wind energy installations are leading all other forms of new energy installations in the United States and Europe. In Europe, large wind plants are supplying as much as 25% of Denmark's energy needs and 8% of the electric needs for Germany and Spain, who have more ambitious goals on the horizon. Although wind energy only produces about 2% of the current electricity demand in the United States, the U.S. Department of Energy, in collaboration with wind industry experts, has drafted a plan that would bring the U.S. installed wind capacity up to 20% of the nation's total electrical supply. To meet these expectations, wind energy must be extremely reliable. Structural health monitoring will play a critical role in making this goal successful.

  6. Structural Monitoring of Wind Turbines using Wireless Sensor Networks

    E-Print Network [OSTI]

    Sweetman, Bert

    on traditional fossil fuel technologies. Conditional monitoring of wind turbines can help to avert unplanned). Technological improvements (e.g. larger, more powerful generation turbines) and federal tax subsidies have

  7. E-Technologies for Wind Effects on Structures Tracy Kijewskia

    E-Print Network [OSTI]

    Kareem, Ahsan

    to produce preliminary estimates of wind-induced response for alongwind, acrosswind and torsion: a prototype DATA PORTALS IN FULL-SCALE MONITORING Possibly the greatest challenge in long-term monitoring projects

  8. FRACTURE OF SKIN-STIFFENER INTERSECTIONS IN COMPOSITE WIND TURBINE BLADE STRUCTURES

    E-Print Network [OSTI]

    FRACTURE OF SKIN-STIFFENER INTERSECTIONS IN COMPOSITE WIND TURBINE BLADE STRUCTURES by Darrin John to the other graduate students in the composite materials group for your smiles and friendships over the past Material .........................................................................................10

  9. FATIGUE OF SKIN-STIFFENER INTERSECTIONS IN COMPOSITE WIND TURBINE BLADE STRUCTURES

    E-Print Network [OSTI]

    FATIGUE OF SKIN-STIFFENER INTERSECTIONS IN COMPOSITE WIND TURBINE BLADE STRUCTURES by Robert B in the Instron and Composite Laboratories toward the end of the experimental research. Finally, special thanks

  10. Wind turbine control systems: Dynamic model development using system identification and the fast structural dynamics code

    SciTech Connect (OSTI)

    Stuart, J.G.; Wright, A.D.; Butterfield, C.P.

    1996-10-01T23:59:59.000Z

    Mitigating the effects of damaging wind turbine loads and responses extends the lifetime of the turbine and, consequently, reduces the associated Cost of Energy (COE). Active control of aerodynamic devices is one option for achieving wind turbine load mitigation. Generally speaking, control system design and analysis requires a reasonable dynamic model of {open_quotes}plant,{close_quotes} (i.e., the system being controlled). This paper extends the wind turbine aileron control research, previously conducted at the National Wind Technology Center (NWTC), by presenting a more detailed development of the wind turbine dynamic model. In prior research, active aileron control designs were implemented in an existing wind turbine structural dynamics code, FAST (Fatigue, Aerodynamics, Structures, and Turbulence). In this paper, the FAST code is used, in conjunction with system identification, to generate a wind turbine dynamic model for use in active aileron control system design. The FAST code is described and an overview of the system identification technique is presented. An aileron control case study is used to demonstrate this modeling technique. The results of the case study are then used to propose ideas for generalizing this technique for creating dynamic models for other wind turbine control applications.

  11. Fatigue of Wind Blade Laminates:Fatigue of Wind Blade Laminates: Effects of Resin and Fabric Structure

    E-Print Network [OSTI]

    Fatigue of Wind Blade Laminates:Fatigue of Wind Blade Laminates: Effects of Resin and Fabric University MCARE 2012 #12;Outline · Overview of MSU Fatigue Program on Wind Blade MaterialsWind Blade Wind Blade Component Materials Acknowledgements: Sandia National Laboratories/DOE (Joshua Paquette

  12. Zhiyu Jiang, Department of Marine Technology & Centre for Ships and Ocean Structures Dynamic response of wind turbines in fault and

    E-Print Network [OSTI]

    Nørvåg, Kjetil

    response of wind turbines in fault and shutdown conditions Zhiyu Jiang Deptartment of Marine Technology://www.newscientist.com/blogs/onepercent/2011/12/why-did-a-wind-turbine-self-co.html #12;3 Zhiyu Jiang, Department of Marine Technology & Centre & Centre for Ships and Ocean Structures Control and protection of wind turbines Emergency shutdown Pitch

  13. THE SPATIALLY RESOLVED H{alpha}-EMITTING WIND STRUCTURE OF P CYGNI

    SciTech Connect (OSTI)

    Balan, Aurelian; Tycner, C. [Department of Physics, Central Michigan University, Mount Pleasant, MI 48859 (United States); Zavala, R. T.; Benson, J. A.; Hutter, D. J. [US Naval Observatory, Flagstaff Station, 10391 W. Naval Observatory Rd., Flagstaff, AZ 86001 (United States); Templeton, M., E-mail: abalan@delta.ed, E-mail: c.tycner@cmich.ed, E-mail: bzavala@nofs.navy.mi, E-mail: jbenson@nofs.navy.mi, E-mail: djh@nofs.navy.mi, E-mail: matthewt@aavso.or [American Association of Variable Star Observers, 49 Bay State Road, Cambridge, MA 02138 (United States)

    2010-06-15T23:59:59.000Z

    High spatial resolution observations of the H{alpha}-emitting wind structure associated with the luminous blue variable star P Cygni were obtained with the Navy Prototype Optical Interferometer. These observations represent the most comprehensive interferometric data set on P Cyg to date. We demonstrate how the apparent size of the H{alpha}-emitting region of the wind structure of P Cyg compares between the 2005, 2007, and 2008 observing seasons and how this relates to the H{alpha} line spectroscopy. Using the data sets from 2005, 2007, and 2008 observing seasons, we fit a circularly symmetric Gaussian model to the interferometric signature from the H{alpha}-emitting wind structure of P Cyg. Based on our results, we conclude that the radial extent of the H{alpha}-emitting wind structure around P Cyg is stable at the 10% level. We also show how the radial distribution of the H{alpha} flux from the wind structure deviates from a Gaussian shape, whereas a two-component Gaussian model is sufficient to fully describe the H{alpha}-emitting region around P Cyg.

  14. NREL Wind Turbine Blade Structural Testing of the Modular Wind Energy MW45 Blade: Cooperative Research and Development Final Report, CRADA Number CRD-09-354

    SciTech Connect (OSTI)

    Hughes, S.

    2012-05-01T23:59:59.000Z

    This CRADA was a purely funds-in CRADA with Modular Wind Energy (MWE). MWE had a need to perform full-scale testing of a 45-m wind turbine blade. NREL/NWTC provided the capabilities, facilities, and equipment to test this large-scale MWE wind turbine blade. Full-scale testing is required to demonstrate the ability of the wind turbine blade to withstand static design load cases and demonstrate the fatigue durability. Structural testing is also necessary to meet international blade testing certification requirements. Through this CRADA, MWE would obtain test results necessary for product development and certification, and NREL would benefit by working with an industrial partner to better understand the unique test requirements for wind turbine blades with advanced structural designs.

  15. Wind Turbine Structural Health Monitoring - Energy Innovation Portal

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level:Energy: Grid Integration Redefining What'sis Taking Over OurThe Iron SpinPrincetonUsingWhat is abig world of tinyWindEnergy

  16. Structural effects of unsteady aerodynamic forces on horizontal-axis wind turbines

    SciTech Connect (OSTI)

    Miller, M.S.; Shipley, D.E. [Univ. of Colorado, Boulder, CO (United States). BioServe Space Technologies

    1994-08-01T23:59:59.000Z

    Due to its renewable nature and abundant resources, wind energy has the potential to fulfill a large portion of this nation`s energy needs. The simplest means of utilizing wind energy is through the use of downwind, horizontal-axis wind turbines (HAWT) with fixed-pitch rotors. This configuration regulates the peak power by allowing the rotor blade to aerodynamically stall. The stall point, the point of maximum coefficient of lift, is currently predicted using data obtained from wind tunnel tests. Unfortunately, these tests do not accurately simulate conditions encountered in the field. Flow around the tower and nacelle coupled with inflow turbulence and rotation of the turbine blades create unpredicted aerodynamic forces. Dynamic stall is hypothesized to occur. Such aerodynamic loads are transmitted into the rotor and tower causing structural resonance that drastically reduces the design lifetime of the wind turbine. The current method of alleviating this problem is to structurally reinforce the tower and blades. However, this adds unneeded mass and, therefore, cost to the turbines. A better understanding of the aerodynamic forces and the manner in which they affect the structure would allow for the design of more cost effective and durable wind turbines. Data compiled by the National Renewable Energy Laboratory (NREL) for a downwind HAWT with constant chord, untwisted, fixed-pitch rotors is analyzed. From these data, the actual aerodynamic characteristics of the rotor are being portrayed and the potential effects upon the structure can for the first time be fully analyzed. Based upon their understanding, solutions to the problem of structural resonance are emerging.

  17. The relation of solar wind structure to hydromagnetic discontinuities

    SciTech Connect (OSTI)

    Alexander, C.J.; Neugebauer, M.; Smith, E.J.; Bame, S.J.

    1987-01-01T23:59:59.000Z

    High resolution ISEE-3 data have been used to examine the relative abundances of tangential (TD) vs rotational (RD) discontinuities in different types of solar wind flow. Three types of flow were examined; flow from coronal holes, sector boundary flow and transient flow. It has been found that coronal hole flow has substantially more discontinuities and a greater ratio of RD's to TD's than do the other types of flow. Discontinuities are least frequent in transient flows characterized by bidirectional streaming of electrons. This leads us to the conclusion that meaningful studies of the velocity dependence of the rates of occurrence of different types of discontinuities must take the type of flow (coronal hole versus transient) into account. 7 refs., 3 figs., 1 tab.

  18. Structural damage identification in wind turbine blades using piezoelectric active sensing with ultrasonic validation

    SciTech Connect (OSTI)

    Claytor, Thomas N [Los Alamos National Laboratory; Ammerman, Curtt N [Los Alamos National Laboratory; Park, Gyu Hae [Los Alamos National Laboratory; Farinholt, Kevin M [Los Alamos National Laboratory; Farrar, Charles R [Los Alamos National Laboratory; Atterbury, Marie K [Los Alamos National Laboratory

    2010-01-01T23:59:59.000Z

    This paper gives a brief overview of a new project at LANL in structural damage identification for wind turbines. This project makes use of modeling capabilities and sensing technology to understand realistic blade loading on large turbine blades, with the goal of developing the technology needed to automatically detect early damage. Several structural health monitoring (SHM) techniques using piezoelectric active materials are being investigated for the development of wireless, low power sensors that interrogate sections of the wind turbine blade using Lamb wave propagation data, frequency response functions (FRFs), and time-series analysis methods. The modeling and sensor research will be compared with extensive experimental testing, including wind tunnel experiments, load and fatigue tests, and ultrasonic scans - on small- to mid-scale turbine blades. Furthermore, this study will investigate the effect of local damage on the global response of the blade by monitoring low-frequency response changes.

  19. Wind Finslerian structures: from Zermelo's navigation to the causality of spacetimes

    E-Print Network [OSTI]

    Erasmo Caponio; Miguel Angel Javaloyes; Miguel Sánchez

    2015-06-02T23:59:59.000Z

    The notion of wind Finslerian structure is developed; this is a generalization of Finsler metrics where the indicatrices at the tangent spaces may not contain the zero vector. In the particular case that these indicatrices are ellipsoids, called here wind Riemannian structures, they admit a double interpretation which provides: (a) a model for classical Zermelo's navigation problem even when the trajectories of the moving objects (planes, ships) are influenced by strong winds or streams, and (b) a natural description of the causal structure of relativistic spacetimes endowed with a non-vanishing Killing vector field (SSTK splittings), in terms of Finslerian elements. These elements can be regarded as conformally invariant Killing initial data on a partial Cauchy hypersurface. The wind Finslerian structure is described in terms of two (conic, pseudo) Finsler metrics, one with a convex indicatrix and the other with a concave one. However, the spacetime viewpoint for the wind Riemannian case gives a useful unified viewpoint. A thorough study of the causal properties of such a spacetime is carried out in Finslerian terms. Randers-Kropina metrics appear as the Finslerian counterpart to the case of an SSTK when the Killing vector field is either timelike or lightlike. Among the applications, we obtain the solution of Zermelo's navigation with arbitrary stationary wind, metric-type properties (distance functions-type, completeness, existence of minimizing, maximizing or closed geodesics), as well as description of spacetime elements (Cauchy developments, black hole horizons) in terms of Finslerian elements in Killing initial data. A general Fermat's principle of independent interest for arbitrary spacetimes, as well as its applications to SSTK spacetimes and Zermelo's navigation, are also provided.

  20. Damage estimates from long-term structural analysis of a wind turbine in a US wind farm environment

    SciTech Connect (OSTI)

    Kelley, N.D. [National Renewable Energy Lab., Golden, CO (United States); Sutherland, H.J. [Sandia National Lab., Albuquerque, NM (United States)

    1996-10-01T23:59:59.000Z

    Time-domain simulations of the loads on wind energy conversion systems have been hampered in the past by the relatively long computational times for nonlinear structural analysis codes. However, recent advances in both the level of sophistication and computational efficiency of available computer hardware and the codes themselves now permit long-term simulations to be conducted in reasonable times. Thus, these codes provide a unique capability to evaluate the spectral content of the fatigue loads on a turbine. To demonstrate these capabilities, a Micon 65/13 turbine is analyzed using the YawDyn and the ADAMS dynamic analysis codes. The SNLWIND-3D simulator and measured boundary conditions are used to simulate the inflow environment that can be expected during a single, 24-hour period by a turbine residing in Row 41 of a wind farm located in San Gorgonio Pass, California. Also, long-term simulations (up to 8 hours of simulated time) with constant average inflow velocities are used to better define the characteristics of the fatigue load on the turbine. Damage calculations, using the LIFE2 fatigue analysis code and the MSU/DOE fatigue data base for composite materials, are then used to determine minimum simulation times for consistent estimates of service lifetimes.

  1. Smart Sensor System for Structural Condition Monitoring of Wind Turbines: 30 May 2002--30 April 2006

    SciTech Connect (OSTI)

    Schulz, M. J.; Sundaresan, M. J.

    2006-08-01T23:59:59.000Z

    This report describes the efforts of the University of Cincinnati, North Carolina A&T State University, and NREL to develop a structural neural system for structural health monitoring of wind turbine blades.

  2. 3D Printing Meets Computational Astrophysics: Deciphering the Structure of Eta Carinae's Inner Colliding Winds

    E-Print Network [OSTI]

    Madura, Thomas I; Gull, Theodore R; Kruip, Chael J H; Paardekooper, Jan-Pieter

    2015-01-01T23:59:59.000Z

    We present the first 3D prints of output from a supercomputer simulation of a complex astrophysical system, the colliding stellar winds in the massive (>120 M_Sun), highly eccentric (e ~ 0.9) binary star system Eta Carinae. We demonstrate the methodology used to incorporate 3D interactive figures into a PDF journal publication and the benefits of using 3D visualization and 3D printing as tools to analyze data from multidimensional numerical simulations. Using a consumer-grade 3D printer (MakerBot Replicator 2X), we successfully printed 3D smoothed particle hydrodynamics (SPH) simulations of Eta Carinae's inner (r ~ 110 au) wind-wind collision interface at multiple orbital phases. The 3D prints and visualizations reveal important, previously unknown 'finger-like' structures at orbital phases shortly after periastron (phi ~ 1.045) that protrude radially outward from the spiral wind-wind collision region. We speculate that these fingers are related to instabilities (e.g. thin-shell, Rayleigh-Taylor) that arise a...

  3. Solar wind structure in the outer heliosphere J.D. Richardson a,b,*, Y. Liu a

    E-Print Network [OSTI]

    California at Berkeley, University of

    Solar wind structure in the outer heliosphere J.D. Richardson a,b,*, Y. Liu a , C. Wang b a Kavli Academy of Sciences, P.O. Box 8701, Beijing 100080, China Received 29 November 2006; received in revised form 8 February 2007; accepted 27 March 2007 Abstract A solar wind parcel evolves as it moves outward

  4. Solar wind suprathermal electron Stahl widths across high-speed stream structures

    SciTech Connect (OSTI)

    Skoug, Ruth M [Los Alamos National Laboratory; Steinberg, John T [Los Alamos National Laboratory; Goodrich, Katherine A [Los Alamos National Laboratory; Anderson, Brett R [DARTMUTH UNIV.

    2011-01-03T23:59:59.000Z

    Suprathermal electrons (100-1500 eV) observed in the solar wind typically show a strahl distribution, that is, a beam directed away from the Sun along the magnetic field direction. The strahl width observed at 1 AU is highly variable, ranging from 10-70 degrees. The obsenred finite width of the strahl results from the competition between beam focusing as the interplanetary magnetic field strength drops with distance from the Sun, and pitch-angle scattering as the beam interacts with the solar wind plasma in transit from the sun. Here we examine strahl width, observed with ACE SWEPAM across high-speed stream structures to investigate variations in electron scattering as a function of local plasma characteristics. We find that narrow strahls (less than 20 degrees wide), indicating reduced scattering, are observed within high-speed streams. Narrow strahls are also observed in both very low temperature solar wind, in association with ICMEs. Case studies of high-speed streams typically show the strahl narrowing at the leading edge of the stream. In some cases, the strahl narrows at the reverse shock or pressure wave, in other cases at the stream interface. The narrowing can either occur discontinuously or gradually over a period of hours. Within the high-speed wind, the strahl remains narrow for a period of hours to days, and then gradually broadens. The strahl width is roughly constant at all energies across these structures. For some fraction of high-speed streams, counterstreaming is associated with passage of the corotating interaction region. In these cases, we find the widths of the two counterstreaming beams frequently differ by more than 40 degrees. This dramatic difference in strahl width contrasts with observations in the solar wind as a whole, in which counterstreaming strahls typically differ in width by less than 20 degrees.

  5. Small Solar Wind Transients and Their Connection to the Large-Scale Coronal Structure

    E-Print Network [OSTI]

    2009-01-01T23:59:59.000Z

    I.G. : 2006, In situ solar wind and magnetic ?eld signaturesPenou, E. : 2008, The IMPACT Solar Wind Electron Analyzer (Heliospheric images of the solar wind at Earth. Astrophys.

  6. Small Solar Wind Transients and Their Connection to the Large-Scale Coronal Structure

    E-Print Network [OSTI]

    2009-01-01T23:59:59.000Z

    I.G. : 2006, In situ solar wind and magnetic ?eld signaturesE. : 2008, The IMPACT Solar Wind Electron Analyzer (SWEA).Heliospheric images of the solar wind at Earth. Astrophys.

  7. Structural health and prognostics management for offshore wind turbines : an initial roadmap.

    SciTech Connect (OSTI)

    Griffith, Daniel Todd; Resor, Brian Ray; White, Jonathan Randall; Paquette, Joshua A.; Yoder, Nathanael C. [ATA Engineering, San Diego, CA

    2012-12-01T23:59:59.000Z

    Operations and maintenance costs for offshore wind plants are expected to be significantly higher than the current costs for onshore plants. One way in which these costs may be able to be reduced is through the use of a structural health and prognostic management system as part of a condition based maintenance paradigm with smart load management. To facilitate the creation of such a system a multiscale modeling approach has been developed to identify how the underlying physics of the system are affected by the presence of damage and how these changes manifest themselves in the operational response of a full turbine. The developed methodology was used to investigate the effects of a candidate blade damage feature, a trailing edge disbond, on a 5-MW offshore wind turbine and the measurements that demonstrated the highest sensitivity to the damage were the local pitching moments around the disbond. The multiscale method demonstrated that these changes were caused by a local decrease in the blade's torsional stiffness due to the disbond, which also resulted in changes in the blade's local strain field. Full turbine simulations were also used to demonstrate that derating the turbine power by as little as 5% could extend the fatigue life of a blade by as much as a factor of 3. The integration of the health monitoring information, conceptual repair cost versus damage size information, and this load management methodology provides an initial roadmap for reducing operations and maintenance costs for offshore wind farms while increasing turbine availability and overall profit.

  8. Inverse Load Calculation of Wind Turbine Support Structures - A Numerical Verification Using the Comprehensive Simulation Code FAST: Preprint (Revised)

    SciTech Connect (OSTI)

    Pahn, T.; Jonkman, J.; Rolges, R.; Robertson, A.

    2012-11-01T23:59:59.000Z

    Physically measuring the dynamic responses of wind turbine support structures enables the calculation of the applied loads using an inverse procedure. In this process, inverse means deriving the inputs/forces from the outputs/responses. This paper presents results of a numerical verification of such an inverse load calculation. For this verification, the comprehensive simulation code FAST is used. FAST accounts for the coupled dynamics of wind inflow, aerodynamics, elasticity and turbine controls. Simulations are run using a 5-MW onshore wind turbine model with a tubular tower. Both the applied loads due to the instantaneous wind field and the resulting system responses are known from the simulations. Using the system responses as inputs to the inverse calculation, the applied loads are calculated, which in this case are the rotor thrust forces. These forces are compared to the rotor thrust forces known from the FAST simulations. The results of these comparisons are presented to assess the accuracy of the inverse calculation. To study the influences of turbine controls, load cases in normal operation between cut-in and rated wind speed, near rated wind speed and between rated and cut-out wind speed are chosen. The presented study shows that the inverse load calculation is capable of computing very good estimates of the rotor thrust. The accuracy of the inverse calculation does not depend on the control activity of the wind turbine.

  9. A new method to estimate annual solar wind parameters and contributions of different solar wind structures to geomagnetic activity

    E-Print Network [OSTI]

    Holappa, Lauri; Asikainen, Timo

    2015-01-01T23:59:59.000Z

    In this paper, we study two sets of local geomagnetic indices from 26 stations using the principal component (PC) and the independent component (IC) analysis methods. We demonstrate that the annually averaged indices can be accurately represented as linear combinations of two first components with weights systematically depending on latitude. We show that the annual contributions of coronal mass ejections (CMEs) and high speed streams (HSSs) to geomagnetic activity are highly correlated with the first and second IC. The first and second ICs are also found to be very highly correlated with the strength of the interplanetary magnetic field (IMF) and the solar wind speed, respectively, because solar wind speed is the most important parameter driving geomagnetic activity during HSSs while IMF strength dominates during CMEs. These results help in better understanding the long-term driving of geomagnetic activity and in gaining information about the long-term evolution of solar wind parameters and the different sol...

  10. WIND TURBINE STRUCTURAL HEALTH MONITORING: A SHORT INVESTIGATION BASED ON SCADA DATA

    E-Print Network [OSTI]

    Boyer, Edmond

    .papatheou@sheffield.ac.uk ABSTRACT The use of offshore wind farms has been growing in recent years, as steadier and higher wind to complicate the construction of land wind farms, offshore locations, which can be found more easily near densely populated areas, can be seen as an attrac- tive choice. However, the cost of an offshore wind farm

  11. Structure of Turbulence in Katabatic Flows below and above the Wind-Speed Maximum

    E-Print Network [OSTI]

    Grachev, Andrey A; Di Sabatino, Silvana; Fernando, Harindra J S; Pardyjak, Eric R; Fairall, Christopher W

    2015-01-01T23:59:59.000Z

    Measurements of small-scale turbulence made over the complex-terrain atmospheric boundary layer during the MATERHORN Program are used to describe the structure of turbulence in katabatic flows. Turbulent and mean meteorological data were continuously measured at multiple levels at four towers deployed along the East lower slope (2-4 deg) of Granite Mountain. The multi-level observations made during a 30-day long MATERHORN-Fall field campaign in September-October 2012 allowed studying of temporal and spatial structure of katabatic flows in detail, and herein we report turbulence and their variations in katabatic winds. Observed vertical profiles show steep gradients near the surface, but in the layer above the slope jet the vertical variability is smaller. It is found that the vertical (normal to the slope) momentum flux and horizontal (along the slope) heat flux in a slope-following coordinate system change their sign below and above the wind maximum of a katabatic flow. The vertical momentum flux is directed...

  12. Temporal structure of aggregate power fluctuations in large-eddy simulations of extended wind-farms

    E-Print Network [OSTI]

    Stevens, Richard J A M

    2014-01-01T23:59:59.000Z

    Fluctuations represent a major challenge for the incorporation of electric power from large wind-farms into power grids. Wind farm power output fluctuates strongly in time, over various time scales. Understanding these fluctuations, especially their spatio-temporal characteristics, is particularly important for the design of backup power systems that must be readily available in conjunction with wind-farms. In this work we analyze the power fluctuations associated with the wind-input variability at scales between minutes to several hours, using large eddy simulations (LES) of extended wind-parks, interacting with the atmospheric boundary layer. LES studies enable careful control of parameters and availability of wind-velocities simultaneously across the entire wind-farm. The present study focuses on neutral atmospheric conditions and flat terrain, using actuator-disk representations of the individual wind-turbines. We consider power from various aggregates of wind-turbines such as the total average power sign...

  13. Turbulence descriptors for scaling fatigue loading spectra of wind turbine structural components

    SciTech Connect (OSTI)

    Kelley, N.D.

    1994-07-01T23:59:59.000Z

    The challenge for the designer in developing a new wind turbine is to incorporate sufficient strength in its components to safely achieve a 20- or 30-year service life. To accomplish this, the designer must understand the load and stress distributions (in a statistical sense at least) that the turbine is likely to encounter during its operating life. Sources of loads found in the normal operating environment include start/stop cycles, emergency shutdowns, the turbulence environment associated with the specific site and turbine location, and extreme or ``rare`` events that can challenge the turbine short-term survivability. Extreme events can result from an operational problem (e.g., controller failure) or violent atmospheric phenomena (tornadic circulations, strong gust fronts). For the majority of the operating time, however, the character of the turbulent inflow is the dominant source of the alternating stress distributions experienced by the structural components. Methods of characterizing or scaling the severity of the loading spectra (or the rate of fatigue damage accumulation) must be applicable to a wide range of turbulent inflow environments -- from solitary isolation to the complex flows associated with multi-row wind farms. The metrics chosen must be related to the properties of the turbulent inflow and independent of the nature of local terrain features.

  14. Clean Energy? Can Do! ANZSES 2006 1 of 7 Effect of Paraboloidal Dish Structure on the Wind near a

    E-Print Network [OSTI]

    Clean Energy? ­ Can Do! ­ ANZSES 2006 1 of 7 Effect of Paraboloidal Dish Structure on the Wind near a Cavity Receiver S. Paitoonsurikarn and K. Lovegrove Centre for Sustainable Energy Systems, Department of Engineering, Australian National University, Canberra ACT 0200, AUSTRALIA E-mail: sawat

  15. 3D radiative transfer simulations of Eta Carinae's inner colliding winds - II: Ionization structure of helium at periastron

    E-Print Network [OSTI]

    Clementel, Nicola; Kruip, Chael J H; Paardekooper, Jan-Pieter

    2015-01-01T23:59:59.000Z

    Spectral observations of the massive colliding wind binary Eta Carinae show phase-dependent variations, in intensity and velocity, of numerous helium emission and absorption lines throughout the entire 5.54-year orbit. Approaching periastron, the 3D structure of the wind-wind interaction region (WWIR) gets highly distorted due to the eccentric ($e \\sim 0.9$) binary orbit. The secondary star ($\\eta_{\\mathrm{B}}$) at these phases is located deep within the primary's dense wind photosphere. The combination of these effects is thought to be the cause of the particularly interesting features observed in the helium lines at periastron. We perform 3D radiative transfer simulations of $\\eta$ Car's interacting winds at periastron. Using the SimpleX radiative transfer algorithm, we post-process output from 3D smoothed particle hydrodynamic simulations of the inner 150 au of the $\\eta$ Car system for two different primary star mass-loss rates ($\\dot{M}_{\\eta_{\\mathrm{A}}}$). Using previous results from simulations at ap...

  16. Wind energy: Program overview, FY 1992

    SciTech Connect (OSTI)

    Not Available

    1993-06-01T23:59:59.000Z

    The DOE Wind Energy Program assists utilities and industry in developing advanced wind turbine technology to be economically competitive as an energy source in the marketplace and in developing new markets and applications for wind systems. This program overview describes the commercial development of wind power, wind turbine development, utility programs, industry programs, wind resources, applied research in wind energy, and the program structure.

  17. Wind tower service lift

    DOE Patents [OSTI]

    Oliphant, David; Quilter, Jared; Andersen, Todd; Conroy, Thomas

    2011-09-13T23:59:59.000Z

    An apparatus used for maintaining a wind tower structure wherein the wind tower structure may have a plurality of legs and may be configured to support a wind turbine above the ground in a better position to interface with winds. The lift structure may be configured for carrying objects and have a guide system and drive system for mechanically communicating with a primary cable, rail or other first elongate member attached to the wind tower structure. The drive system and guide system may transmit forces that move the lift relative to the cable and thereby relative to the wind tower structure. A control interface may be included for controlling the amount and direction of the power into the guide system and drive system thereby causing the guide system and drive system to move the lift relative to said first elongate member such that said lift moves relative to said wind tower structure.

  18. Structural optimisation of permanent magnet direct drive generators for 5MW wind turbines 

    E-Print Network [OSTI]

    Zavvos, Aristeidis

    2013-11-28T23:59:59.000Z

    This thesis focuses on permanent magnet "direct drive" electrical generators for wind turbines with large power output. A variety of such generator topologies is reviewed, tested and optimised in an attempt to increase ...

  19. Review of structural health and cure monitoring techniques for large wind turbine P.J. Schubel*, R.J. Crossley, E.K.G. Boateng, J.R. Hutchinson

    E-Print Network [OSTI]

    McCalley, James D.

    Review Review of structural health and cure monitoring techniques for large wind turbine blades P October 2012 Keywords: SHM Structural health monitoring Wind turbine blade Composite materials Acoustic monitoring is presented for the wind turbine blade industry. A comparison is presented for dielectric

  20. Variance Analysis of Wind and Natural Gas Generation under Different Market Structures: Some Observations

    SciTech Connect (OSTI)

    Bush, B.; Jenkin, T.; Lipowicz, D.; Arent, D. J.; Cooke, R.

    2012-01-01T23:59:59.000Z

    Does large scale penetration of renewable generation such as wind and solar power pose economic and operational burdens on the electricity system? A number of studies have pointed to the potential benefits of renewable generation as a hedge against the volatility and potential escalation of fossil fuel prices. Research also suggests that the lack of correlation of renewable energy costs with fossil fuel prices means that adding large amounts of wind or solar generation may also reduce the volatility of system-wide electricity costs. Such variance reduction of system costs may be of significant value to consumers due to risk aversion. The analysis in this report recognizes that the potential value of risk mitigation associated with wind generation and natural gas generation may depend on whether one considers the consumer's perspective or the investor's perspective and whether the market is regulated or deregulated. We analyze the risk and return trade-offs for wind and natural gas generation for deregulated markets based on hourly prices and load over a 10-year period using historical data in the PJM Interconnection (PJM) from 1999 to 2008. Similar analysis is then simulated and evaluated for regulated markets under certain assumptions.

  1. Reexamining the Vertical Structure of Tangential Winds in Tropical Cyclones: Observations and Theory

    E-Print Network [OSTI]

    Nolan, David S.

    theory are governed by the dual constraints of thermal wind balance and slantwise moist neutrality- fluences their dynamics in several ways, notably by al- tering the efficiency with which unbalanced heat energy is converted to balanced mean kinetic energy (Hack and Schubert 1986; Nolan et al. 2007

  2. Structural and Damage Assessment of Multi-Section Modular Hybrid Composite Wind Turbine Blade

    E-Print Network [OSTI]

    Nanami, Norimichi

    2014-07-25T23:59:59.000Z

    the size of wind turbines to generate higher power output. Typically, the larger/longer blade designs rely on hybrid material systems such as carbon and/or glass fiber (CF/GF) reinforced polymers to improve specific stiffness/strength and damage tolerance...

  3. Structural and Damage Assessment of Multi-Section Modular Hybrid Composite Wind Turbine Blade 

    E-Print Network [OSTI]

    Nanami, Norimichi

    2014-07-25T23:59:59.000Z

    the size of wind turbines to generate higher power output. Typically, the larger/longer blade designs rely on hybrid material systems such as carbon and/or glass fiber (CF/GF) reinforced polymers to improve specific stiffness/strength and damage tolerance...

  4. REINTERPRETATION OF SLOWDOWN OF SOLAR WIND MEAN VELOCITY IN NONLINEAR STRUCTURES OBSERVED UPSTREAM OF EARTH'S BOW SHOCK

    SciTech Connect (OSTI)

    Parks, G. K.; Lin, N. [Space Sciences Laboratory, University of California, Berkeley, CA (United States); Lee, E.; Hong, J. [School of Space Research, Kyung Hee University, Yongin, Gyeonggi (Korea, Republic of); Fu, S. Y. [School of Earth and Space Sciences, Peking University, Beijing (China); McCarthy, M. [Earth and Space Sciences, University of Washington, Seattle, WA (United States); Cao, J. B. [Beijing University of Aeronautics and Astronautics, 100190, Beijing (China); Liu, Y.; Shi, J. K. [Space Weather, National Space Science Center, Beijing (China); Goldstein, M. L. [NASA, Goddard Space Flight Center, Greenbelt, MD (United States); Canu, P. [Laboratory for Plasma Physics, Ecole Polytechnique, Paris (France); Dandouras, I. [CNRS, IRAP, 9 Ave. Colonel Roche, Toulouse (France); Reme, H., E-mail: parks@ssl.berkeley.edu [CNRS, IRAP, University of Toulouse, UPS-OMP, Toulouse (France)

    2013-07-10T23:59:59.000Z

    Two of the many features associated with nonlinear upstream structures are (1) the solar wind (SW) mean flow slows down and deviates substantially and (2) the temperature of the plasma increases in the structure. In this Letter, we show that the SW beam can be present throughout the entire upstream event maintaining a nearly constant beam velocity and temperature. The decrease of the velocity is due to the appearance of new particles moving in the opposite direction that act against the SW beam and reduce the mean velocity as computed via moments. The new population, which occupies a larger velocity space, also contributes to the second moment, increasing the temperature. The new particles include the reflected SW beam at the bow shock and another population of lower energies, accelerated nearby at the shock or at the boundary of the nonlinear structures.

  5. SMALL-SCALE PRESSURE-BALANCED STRUCTURES DRIVEN BY OBLIQUE SLOW MODE WAVES MEASURED IN THE SOLAR WIND

    SciTech Connect (OSTI)

    Yao Shuo [School of Geophysics and Information Technology, China University of Geosciences (Beijing), Beijing 100083 (China); He, J.-S.; Tu, C.-Y.; Wang, L.-H. [Department of Geophysics, Peking University, Beijing (China); Marsch, E., E-mail: yaoshuo@cugb.edu.cn [Christian Albrechts University at Kiel, Kiel (Germany)

    2013-09-01T23:59:59.000Z

    Recently, small-scale pressure-balanced structures (PBSs) were identified in the solar wind, but their formation mechanism remains unclear. This work aims to reveal the dependence of the properties of small-scale PBSs on the background magnetic field (B{sub 0}) direction and thus to corroborate the in situ mechanism that forms them. We analyze the plasma and magnetic field data obtained by WIND in the quiet solar wind at 1 AU. First, we use a developed moving-average method to obtain B{sub 0}(s, t) for every temporal scale (s) at each time moment (t). By wavelet cross-coherence analysis, we obtain the correlation coefficients between the thermal pressure P{sub th} and the magnetic pressure P{sub B}, distributing against the temporal scale and the angle {theta}{sub xB} between B{sub 0}(s, t) and Geocentric Solar Ecliptic coordinates (GSE)-x. We note that the angle coverage of a PBS decreases with shorter temporal scale, but the occurrence of the PBSs is independent of {theta}{sub xB}. Suspecting that the isolated small PBSs are formed by compressive waves in situ, we continue this study by testing the wave modes forming a small-scale PBS with B{sub 0}(s, t) quasi-parallel to GSE-x. As a result, we identify that the cross-helicity and the compressibility attain values for a slow mode from theoretical calculations. The wave vector is derived from minimum variance analysis. Besides, the proton temperatures obey T < T{sub Parallel-To} derived from the velocity distribution functions, excluding a mirror mode, which is the other candidate for the formation of PBSs in situ. Thus, a small-scale PBS is shown to be driven by oblique, slow-mode waves in the solar wind.

  6. Structural Composites Industries 4 kilowatt wind system development. Phase I: design and analysis, technical report

    SciTech Connect (OSTI)

    Malkine, N.; Bottrell, G.; Weingart, O.

    1981-05-01T23:59:59.000Z

    A 4 kW small wind energy conversion system (SWECS) has been designed for residential applications in which relatively low (10 mph) mean annual wind speeds prevail. The objectives were to develop such a machine to produce electrical energy at 6 cents per kWh while operating in parallel with a utility grid or auxiliary generator. The Phase I effort began in November, 1979 and was carried through the Final Design Review in February 1981. During this period extensive trade, optimization and analytical studies were performed in an effort to provide the optimum machine to best meet the objectives. Certain components, systems and manufacturing processes were tested and evaluated and detail design drawings were produced. The resulting design is a 31-foot diameter horizontal axis downwind machine rated 5.7 kW and incorporating the following unique features: Composite Blades; Free-Standing Composite Tower; Torque-Actuated Blade Pitch Control. The design meets or exceeds all contract requirements except that for cost of energy. The target 6 cents per kWh will be achieved in a mean wind speed slightly below 12 mph instead of the specified 10 mph.

  7. New Structural-Dynamics Module for Offshore Multimember Substructures within the Wind Turbine Computer-Aided Engineering Tool FAST: Preprint

    SciTech Connect (OSTI)

    Song, H.; Damiani, R.; Robertson, A.; Jonkman, J.

    2013-08-01T23:59:59.000Z

    FAST, developed by the National Renewable Energy Laboratory (NREL), is a computer-aided engineering (CAE) tool for aero-hydro-servo-elastic analysis of land-based and offshore wind turbines. This paper discusses recent upgrades made to FAST to enable loads simulations of offshore wind turbines with fixed-bottom, multimember support structures (e.g., jackets and tripods, which are commonly used in transitional-depth waters). The main theory and strategies for the implementation of the multimember substructure dynamics module (SubDyn) within the new FAST modularization framework are introduced. SubDyn relies on two main engineering schematizations: 1) a linear frame finite-element beam (LFEB) model and 2) a dynamics system reduction via Craig-Bampton's method. A jacket support structure and an offshore system consisting of a turbine atop a jacket substructure were simulated to test the SubDyn module and to preliminarily assess results against results from a commercial finite-element code.

  8. Wind Fins: Novel Lower-Cost Wind Power System

    SciTech Connect (OSTI)

    David C. Morris; Dr. Will D. Swearingen

    2007-10-08T23:59:59.000Z

    This project evaluated the technical feasibility of converting energy from the wind with a novel “wind fin” approach. This patent-pending technology has three major components: (1) a mast, (2) a vertical, hinged wind structure or fin, and (3) a power takeoff system. The wing structure responds to the wind with an oscillating motion, generating power. The overall project goal was to determine the basic technical feasibility of the wind fin technology. Specific objectives were the following: (1) to determine the wind energy-conversion performance of the wind fin and the degree to which its performance could be enhanced through basic design improvements; (2) to determine how best to design the wind fin system to survive extreme winds; (3) to determine the cost-effectiveness of the best wind fin designs compared to state-of-the-art wind turbines; and (4) to develop conclusions about the overall technical feasibility of the wind fin system. Project work involved extensive computer modeling, wind-tunnel testing with small models, and testing of bench-scale models in a wind tunnel and outdoors in the wind. This project determined that the wind fin approach is technically feasible and likely to be commercially viable. Project results suggest that this new technology has the potential to harvest wind energy at approximately half the system cost of wind turbines in the 10kW range. Overall, the project demonstrated that the wind fin technology has the potential to increase the economic viability of small wind-power generation. In addition, it has the potential to eliminate lethality to birds and bats, overcome public objections to the aesthetics of wind-power machines, and significantly expand wind-power’s contribution to the national energy supply.

  9. WIND ENERGY Wind Energ. (2014)

    E-Print Network [OSTI]

    Peinke, Joachim

    2014-01-01T23:59:59.000Z

    loads from the wind inflow through rotor aerodynamics, drive train and power electronics is stillWIND ENERGY Wind Energ. (2014) Published online in Wiley Online Library (wileyonlinelibrary wind inflow conditions M. R. Luhur, J. Peinke, J. Schneemann and M. Wächter ForWind-Center for Wind

  10. WP2 IEA Wind Task 26:The Past and Future Cost of Wind Energy

    E-Print Network [OSTI]

    Lantz, Eric

    2014-01-01T23:59:59.000Z

    RELATED TO BLADE MATERIALS Wind turbine blades are made of aMaterials and Innovations for Large Blade Structures: Research Opportunities in Wind

  11. Model-based design of an ultra high performance concrete support structure for a wind turbine

    E-Print Network [OSTI]

    Wang, Zheng, M. Eng. Massachusetts Institute of Technology

    2007-01-01T23:59:59.000Z

    A support tower is the main structure which would support rotor, power transmission and control systems, and elevates the rotating blades above the earth boundary layer. A successful design should ensure safe, efficient ...

  12. A multi-scale approach to statistical and model-based structural health monitoring with application to embedded sensing for wind energy

    E-Print Network [OSTI]

    Taylor, Stuart Glynn

    2013-01-01T23:59:59.000Z

    Simplified Models for Wind Turbine Blades," in 53rd AIAA/in composite wind turbine blades," Journal of IntelligentState estimate of wind turbine blades using geometrically

  13. A multi-scale approach to statistical and model-based structural health monitoring with application to embedded sensing for wind energy

    E-Print Network [OSTI]

    Taylor, Stuart Glynn

    2013-01-01T23:59:59.000Z

    in composite wind turbine blades," Journal of IntelligentState estimate of wind turbine blades using geometricallytests of CX-100 wind turbine blades. Part II: analysis," in

  14. A multi-scale approach to statistical and model-based structural health monitoring with application to embedded sensing for wind energy

    E-Print Network [OSTI]

    Taylor, Stuart Glynn

    2013-01-01T23:59:59.000Z

    comparison in a composite wind turbine rotor blade." Thecrack detection in composite wind turbine blades." Thecomparison in a composite wind turbine rotor blade,"

  15. Commonwealth Wind Commercial Wind Program

    Broader source: Energy.gov [DOE]

    Through the Commonwealth Wind Incentive Program – Commercial Wind Initiative the Massachusetts Clean Energy Center (MassCEC) offers site assessment grants of services, feasibility study grants, a...

  16. Commercial Wind Energy Property Valuation

    Broader source: Energy.gov [DOE]

    Prior to 2007, wind energy devices generating electricity for commercial sale were assessed differently depending on where they were located. Some counties valued the entire turbine structure ...

  17. A multi-scale approach to statistical and model-based structural health monitoring with application to embedded sensing for wind energy

    E-Print Network [OSTI]

    Taylor, Stuart Glynn

    2013-01-01T23:59:59.000Z

    the LIST Wind Turbine," in 2002 ASME Wind Energy Symposium ,from the LIST turbine," in 2001 ASME Wind Energy Symposium ,wind energy production site in the Great Plains. The Micon 65/13 model turbine

  18. WIND ENERGY Wind Energ. (2014)

    E-Print Network [OSTI]

    2014-01-01T23:59:59.000Z

    in the near wake. In conclusion, WiTTS performs satisfactorily in the rotor region of wind turbine wakes under neutral stability. Copyright © 2014 John Wiley & Sons, Ltd. KEYWORDS wind turbine wake; wake model; self in wind farms along several rows and columns. Because wind turbines generate wakes that propagate downwind

  19. A Fatigue Approach to Wind Turbine Control

    E-Print Network [OSTI]

    A Fatigue Approach to Wind Turbine Control Keld Hammerum Kongens Lyngby 2006 #12;Technical to the turbulent nature of wind, the structural components of a wind turbine are exposed to highly varying loads. Therefore, fatigue damage is a major consideration when designing wind turbines. The control scheme applied

  20. Offshore Code Comparison Collaboration within IEA Wind Annex XXIII: Phase III Results Regarding Tripod Support Structure Modeling

    SciTech Connect (OSTI)

    Nichols, J.; Camp, T.; Jonkman, J.; Butterfield, S.; Larsen, T.; Hansen, A.; Azcona, J.; Martinez, A.; Munduate, X.; Vorpahl, F.; Kleinhansl, S.; Kohlmeier, M.; Kossel, T.; Boker, C.; Kaufer, D.

    2009-01-01T23:59:59.000Z

    Offshore wind turbines are designed and analyzed using comprehensive simulation codes. This paper describes the findings of code-to-code verification activities of the IEA Offshore Code Comparison Collaboration.

  1. Coherent structure in solar wind C{sup 6+}/C{sup 4+} ionic composition data during the quiet-sun conditions of 2008

    SciTech Connect (OSTI)

    Edmondson, J. K.; Lepri, S. T.; Zurbuchen, T. H. [Department of Atmospheric, Oceanic, and Space Science, University of Michigan, Ann Arbor, MI 48109 (United States); Lynch, B. J. [Space Sciences Laboratory, University of California, Berkeley, CA 94720 (United States)

    2013-11-20T23:59:59.000Z

    This analysis offers evidence of characteristic scale sizes in solar wind charge state data measured in situ for 13 quiet-Sun Carrington rotations in 2008. Using a previously established novel methodology, we analyze the wavelet power spectrum of the charge state ratio C{sup 6+}/C{sup 4+} measured in situ by ACE/SWICS for 2 hr and 12 minute cadence. We construct a statistical significance level in the wavelet power spectrum to quantify the interference effects arising from filling missing data in the time series, allowing extraction of significant power from the measured data to a resolution of 24 minutes. We analyze each wavelet power spectrum for transient coherency and global periodicities resulting from the superposition of repeating coherent structures. From the significant wavelet power spectra, we find evidence for a general upper limit on individual transient coherency of ?10 days. We find evidence for a set of global periodicities between 4-5 hr and 35-45 days. We find evidence for the distribution of individual transient coherency scales consisting of two distinct populations. Below the ?2 day timescale, the distribution is reasonably approximated by an inverse power law, whereas for scales ?2 days, the distribution levels off, showing discrete peaks at common coherency scales. In addition, by organizing the transient coherency scale distributions by wind type, we find that these larger, common coherency scales are more prevalent and well defined in coronal hole wind. Finally, we discuss the implications of our results for current theories of solar wind generation and describe future work for determining the relationship between the coherent structures in our ionic composition data and the structure of the coronal magnetic field.

  2. Sandia Energy - Siting: Wind Turbine/Radar Interference Mitigation...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Supply Chain Reliability, O&M, Standards Development Structural Health Monitoring Offshore Wind High-Resolution Computational Algorithms for Simulating Offshore Wind Farms...

  3. Lower Sioux Wind Feasibility & Development

    SciTech Connect (OSTI)

    Minkel, Darin

    2012-04-01T23:59:59.000Z

    This report describes the process and findings of a Wind Energy Feasibility Study (Study) conducted by the Lower Sioux Indian Community (Community). The Community is evaluating the development of a wind energy project located on tribal land. The project scope was to analyze the critical issues in determining advantages and disadvantages of wind development within the Community. This analysis addresses both of the Community's wind energy development objectives: the single turbine project and the Commerical-scale multiple turbine project. The main tasks of the feasibility study are: land use and contraint analysis; wind resource evaluation; utility interconnection analysis; and project structure and economics.

  4. Wind Farm

    Office of Energy Efficiency and Renewable Energy (EERE)

    The wind farm in Greensburg, Kansas, was completed in spring 2010, and consists of ten 1.25 megawatt (MW) wind turbines that supply enough electricity to power every house, business, and municipal...

  5. Wind Energy

    Broader source: Energy.gov [DOE]

    Presentation covers wind energy at the Federal Utility Partnership Working Group (FUPWG) meeting, held on November 18-19, 2009.

  6. Computational wind engineering using finite element package ADINA

    E-Print Network [OSTI]

    Bajoria, Ankur

    2008-01-01T23:59:59.000Z

    Design of tall and long span structures is governed by the wind forces. Inadequate research in the field of wind dynamics has forced engineers to rely on design codes or wind tunnel tests for sufficient data. The present ...

  7. Data Analytics Methods in Wind Turbine Design and Operations

    E-Print Network [OSTI]

    Lee, Giwhyun

    2013-05-22T23:59:59.000Z

    This dissertation develops sophisticated data analytic methods to analyze structural loads on, and power generation of, wind turbines. Wind turbines, which convert the kinetic energy in wind into electrical power, are operated within stochastic...

  8. Data Analytics Methods in Wind Turbine Design and Operations 

    E-Print Network [OSTI]

    Lee, Giwhyun

    2013-05-22T23:59:59.000Z

    This dissertation develops sophisticated data analytic methods to analyze structural loads on, and power generation of, wind turbines. Wind turbines, which convert the kinetic energy in wind into electrical power, are operated within stochastic...

  9. Structure of the eastern Red Rocks and Wind Ridge thrust faults, Wyoming: how a thrust fault gains displacement along strike 

    E-Print Network [OSTI]

    Huntsman, Brent Stanley

    1983-01-01T23:59:59.000Z

    OF FIELD MAPPING Methods . Thrust Faults . The Wind Ridge Thrust Fault System The Red Rocks Thrust Fault System CLAY MODEL STUDIES Purpose and Description Model Results DISCUSSION OF RESULTS Kinematics of the Red Rocks Thrust Fault Termination... . Kinematics of the Southern Wind Ridge Thrust Fault . . . A Conceptual Model of the Red Rocks Thrust Fault Termination Implications of the Red Rocks Fault Termination . . . . . . Page V1 V11 1X X1 X11 7 9 17 18 18 21 24 27 35 35 38 49 49...

  10. A multi-scale approach to statistical and model-based structural health monitoring with application to embedded sensing for wind energy

    E-Print Network [OSTI]

    Taylor, Stuart Glynn

    2013-01-01T23:59:59.000Z

    Turbine," in 2002 ASME Wind Energy Symposium , 2002, pp.turbine," in 2001 ASME Wind Energy Symposium , 2001, pp.Program," in 2001 ASME Wind Energy Symposium , 2001, pp.

  11. Proceedings of the 4th UJNR Panel on Wind and Seismic Effects Workshop on Wind

    E-Print Network [OSTI]

    Kareem, Ahsan

    Proceedings of the 4th UJNR Panel on Wind and Seismic Effects Workshop on Wind Engineering, July 20-21, Tsukuba, Tokyo Modeling and Simulation of Transient Wind Load Effects Ahsan Kareem1 , Kyle Butler2 , Dae Kwon3 ABSTRACT Notwithstanding the developments made in recent decades in wind effects on structures

  12. This paper presents stability analysis of wind farms in frequency domain. The interaction between the wind

    E-Print Network [OSTI]

    Bak, Claus Leth

    in order to emphasize differences between the two wind farms. Keywords: offshore wind farms, stability with full-scale back-to-back converters are more and more used in large offshore wind farms. This affects offshore wind farms tend to be bigger and bigger with more and more complex structures which can introduce

  13. Structural health and prognostics management for offshore wind turbines : case studies of rotor fault and blade damage with initial O&M cost modeling.

    SciTech Connect (OSTI)

    Myrent, Noah J. [Purdue Center for Systems Integrity, Lafayette, IN; Kusnick, Joshua F. [Purdue Center for Systems Integrity, Lafayette, IN; Barrett, Natalie C. [Purdue Center for Systems Integrity, Lafayette, IN; Adams, Douglas E. [Purdue Center for Systems Integrity, Lafayette, IN; Griffith, Daniel Todd

    2013-04-01T23:59:59.000Z

    Operations and maintenance costs for offshore wind plants are significantly higher than the current costs for land-based (onshore) wind plants. One way to reduce these costs would be to implement a structural health and prognostic management (SHPM) system as part of a condition based maintenance paradigm with smart load management and utilize a state-based cost model to assess the economics associated with use of the SHPM system. To facilitate the development of such a system a multi-scale modeling approach developed in prior work is used to identify how the underlying physics of the system are affected by the presence of damage and faults, and how these changes manifest themselves in the operational response of a full turbine. This methodology was used to investigate two case studies: (1) the effects of rotor imbalance due to pitch error (aerodynamic imbalance) and mass imbalance and (2) disbond of the shear web; both on a 5-MW offshore wind turbine in the present report. Based on simulations of damage in the turbine model, the operational measurements that demonstrated the highest sensitivity to the damage/faults were the blade tip accelerations and local pitching moments for both imbalance and shear web disbond. The initial cost model provided a great deal of insight into the estimated savings in operations and maintenance costs due to the implementation of an effective SHPM system. The integration of the health monitoring information and O&M cost versus damage/fault severity information provides the initial steps to identify processes to reduce operations and maintenance costs for an offshore wind farm while increasing turbine availability, revenue, and overall profit.

  14. CgWind: A high-order accurate simulation tool for wind turbines and wind farms

    SciTech Connect (OSTI)

    Chand, K K; Henshaw, W D; Lundquist, K A; Singer, M A

    2010-02-22T23:59:59.000Z

    CgWind is a high-fidelity large eddy simulation (LES) tool designed to meet the modeling needs of wind turbine and wind park engineers. This tool combines several advanced computational technologies in order to model accurately the complex and dynamic nature of wind energy applications. The composite grid approach provides high-quality structured grids for the efficient implementation of high-order accurate discretizations of the incompressible Navier-Stokes equations. Composite grids also provide a natural mechanism for modeling bodies in relative motion and complex geometry. Advanced algorithms such as matrix-free multigrid, compact discretizations and approximate factorization will allow CgWind to perform highly resolved calculations efficiently on a wide class of computing resources. Also in development are nonlinear LES subgrid-scale models required to simulate the many interacting scales present in large wind turbine applications. This paper outlines our approach, the current status of CgWind and future development plans.

  15. Sandia National Laboratories: Wind

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Wind Grid System Planning for Wind: Wind Generator Modeling On June 11, 2014, in Wind generation continues to dominate the interconnection queues and the need for generic,...

  16. Wind turbulence characterization for wind energy development

    SciTech Connect (OSTI)

    Wendell, L.L.; Gower, G.L.; Morris, V.R.; Tomich, S.D.

    1991-09-01T23:59:59.000Z

    As part of its support of the US Department of Energy's (DOE's) Federal Wind Energy Program, the Pacific Northwest Laboratory (PNL) has initiated an effort to work jointly with the wind energy community to characterize wind turbulence in a variety of complex terrains at existing or potential sites of wind turbine installation. Five turbulence characterization systems were assembled and installed at four sites in the Tehachapi Pass in California, and one in the Green Mountains near Manchester, Vermont. Data processing and analyses techniques were developed to allow observational analyses of the turbulent structure; this analysis complements the more traditional statistical and spectral analyses. Preliminary results of the observational analyses, in the rotating framework or a wind turbine blade, show that the turbulence at a site can have two major components: (1) engulfing eddies larger than the rotor, and (2) fluctuating shear due to eddies smaller than the rotor disk. Comparison of the time series depicting these quantities at two sites showed that the turbulence intensity (the commonly used descriptor of turbulence) did not adequately characterize the turbulence at these sites. 9 refs., 10 figs.,

  17. The vertical structure of Jupiter's equatorial zonal wind above the cloud deck, derived using mesoscale gravity waves

    E-Print Network [OSTI]

    Watkins, C; 10.1029/2012GL054368

    2013-01-01T23:59:59.000Z

    Data from the Galileo Probe, collected during its descent into Jupiter's atmosphere, is used to obtain a vertical profile of the zonal wind from $\\mathbf{\\sim 0.5}$ bar (upper troposphere) to $\\mathbf{\\sim 0.1\\, \\mu{bar}}$ (lower thermosphere) at the probe entry site. This is accomplished by constructing a map of gravity wave Lomb-Scargle periodograms as a function of altitude. The profile obtained from the map indicates that the wind speed above the visible cloud deck increases with height to $\\mathbf{\\sim 150}$ m\\,s$\\mathbf{^{-1}}$ and then levels off at this value over a broad altitude range. The location of the turbopause, as a region of wide wave spectrum, is also identified from the map. In addition, a cross-equatorial oscillation of a jet, which has previously been linked to the quasi-quadrennial oscillation in the stratosphere, is suggested by the profile.

  18. Sandia Energy - Structural Health Monitoring

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Structural Health Monitoring Home Stationary Power Energy Conversion Efficiency Wind Energy Materials, Reliability, & Standards Structural Health Monitoring Structural Health...

  19. Tornado type wind turbines

    DOE Patents [OSTI]

    Hsu, Cheng-Ting (Ames, IA)

    1984-01-01T23:59:59.000Z

    A tornado type wind turbine has a vertically disposed wind collecting tower with spaced apart inner and outer walls and a central bore. The upper end of the tower is open while the lower end of the structure is in communication with a wind intake chamber. An opening in the wind chamber is positioned over a turbine which is in driving communication with an electrical generator. An opening between the inner and outer walls at the lower end of the tower permits radially flowing air to enter the space between the inner and outer walls while a vertically disposed opening in the wind collecting tower permits tangentially flowing air to enter the central bore. A porous portion of the inner wall permits the radially flowing air to interact with the tangentially flowing air so as to create an intensified vortex flow which exits out of the top opening of the tower so as to create a low pressure core and thus draw air through the opening of the wind intake chamber so as to drive the turbine.

  20. Offshore Wind Power USA

    Broader source: Energy.gov [DOE]

    The Offshore Wind Power USA conference provides the latest offshore wind market updates and forecasts.

  1. 20% Wind Energy 20% Wind Energy

    E-Print Network [OSTI]

    Powell, Warren B.

    (government, industry, utilities, NGOs) Analyzes wind's potential contributions to energy security, economic · Transmission a challenge #12;Wind Power Class Resource Potential Wind Power Density at 50 m W/m 2 Wind Speed20% Wind Energy by 2030 20% Wind Energy by 2030 #12;Presentation and Objectives Overview Background

  2. Wind Energy Leasing Handbook

    E-Print Network [OSTI]

    Balasundaram, Balabhaskar "Baski"

    Wind Energy Leasing Handbook Wind Energy Leasing Handbook E-1033 Oklahoma Cooperative Extension?..................................................................................................................... 31 What do wind developers consider in locating wind energy projects?............................................................................................ 37 How do companies and individuals invest in wind energy projects?....................................................................

  3. American Institute of Aeronautics and Astronautics An Experimental Investigation on Dynamic Wind Loads Acting on a

    E-Print Network [OSTI]

    Hu, Hui

    of the wind turbine blades = air density I. Introduction he mechanical design of a wind turbine structure Loads Acting on a Wind Turbine Model in Atomspheric Boundary Layer Winds Wei Tian1 , Ahmet Ozbay2 An experimental study was conducted to investigate the dynamic wind loads acting on a wind turbine model sited

  4. Multi-hazard Reliability Assessment of Offshore Wind Turbines

    E-Print Network [OSTI]

    Mardfekri Rastehkenari, Maryam 1981-

    2012-12-04T23:59:59.000Z

    A probabilistic framework is developed to assess the structural reliability of offshore wind turbines. Probabilistic models are developed to predict the deformation, shear force and bending moment demands on the support structure of wind turbines...

  5. Multi-hazard Reliability Assessment of Offshore Wind Turbines 

    E-Print Network [OSTI]

    Mardfekri Rastehkenari, Maryam 1981-

    2012-12-04T23:59:59.000Z

    A probabilistic framework is developed to assess the structural reliability of offshore wind turbines. Probabilistic models are developed to predict the deformation, shear force and bending moment demands on the support structure of wind turbines...

  6. Wind Spires as an Alternative Energy Source

    SciTech Connect (OSTI)

    Majid Rashidi, Ph.D., P.E.

    2012-10-30T23:59:59.000Z

    This report discloses the design and development of an innovative wind tower system having an axisymmetric wind deflecting structure with a plurality of symmetrically mounted rooftop size wind turbines near the axisymmetric structure. The purpose of the wind deflecting structure is to increase the ambient wind speed that in turn results in an overall increase in the power capacity of the wind turbines. Two working prototypes were constructed and installed in the summer of 2009 and 2012 respectively. The system installed in the Summer of 2009 has a cylindrical wind deflecting structure, while the tower installed in 2012 has a spiral-shape wind deflecting structure. Each tower has 4 turbines, each rated at 1.65 KW Name-Plate-Rating. Before fabricating the full-size prototypes, computational fluid dynamic (CFD) analyses and scaled-down table-top models were used to predict the performance of the full-scale models. The performance results obtained from the full-size prototypes validated the results obtained from the computational models and those of the scaled-down models. The second prototype (spiral configuration) showed at a wind speed of 11 miles per hour (4.9 m/s) the power output of the system could reach 1,288 watt, when a typical turbine installation, with no wind deflecting structure, could produce only 200 watt by the same turbines at the same wind speed. At a wind speed of 18 miles per hour (8 m/sec), the spiral prototype produces 6,143 watt, while the power generated by the same turbines would be 1,412 watt in the absence of a wind deflecting structure under the same wind speed. Four US patents were allowed, and are in print, as the results of this project (US 7,540,706, US 7,679,209, US 7,845,904, and US 8,002,516).

  7. Large-Scale Uncertainty and Error Analysis for Time-dependent Fluid/Structure Interactions in Wind Turbine Applications

    SciTech Connect (OSTI)

    Alonso, Juan J. [Stanford University; Iaccarino, Gianluca [Stanford University

    2013-08-25T23:59:59.000Z

    The following is the final report covering the entire period of this aforementioned grant, June 1, 2011 - May 31, 2013 for the portion of the effort corresponding to Stanford University (SU). SU has partnered with Sandia National Laboratories (PI: Mike S. Eldred) and Purdue University (PI: Dongbin Xiu) to complete this research project and this final report includes those contributions made by the members of the team at Stanford. Dr. Eldred is continuing his contributions to this project under a no-cost extension and his contributions to the overall effort will be detailed at a later time (once his effort has concluded) on a separate project submitted by Sandia National Laboratories. At Stanford, the team is made up of Profs. Alonso, Iaccarino, and Duraisamy, post-doctoral researcher Vinod Lakshminarayan, and graduate student Santiago Padron. At Sandia National Laboratories, the team includes Michael Eldred, Matt Barone, John Jakeman, and Stefan Domino, and at Purdue University, we have Prof. Dongbin Xiu as our main collaborator. The overall objective of this project was to develop a novel, comprehensive methodology for uncertainty quantification by combining stochastic expansions (nonintrusive polynomial chaos and stochastic collocation), the adjoint approach, and fusion with experimental data to account for aleatory and epistemic uncertainties from random variable, random field, and model form sources. The expected outcomes of this activity were detailed in the proposal and are repeated here to set the stage for the results that we have generated during the time period of execution of this project: 1. The rigorous determination of an error budget comprising numerical errors in physical space and statistical errors in stochastic space and its use for optimal allocation of resources; 2. A considerable increase in efficiency when performing uncertainty quantification with a large number of uncertain variables in complex non-linear multi-physics problems; 3. A solution to the long-time integration problem of spectral chaos approaches; 4. A rigorous methodology to account for aleatory and epistemic uncertainties, to emphasize the most important variables via dimension reduction and dimension-adaptive refinement, and to support fusion with experimental data using Bayesian inference; 5. The application of novel methodologies to time-dependent reliability studies in wind turbine applications including a number of efforts relating to the uncertainty quantification in vertical-axis wind turbine applications. In this report, we summarize all accomplishments in the project (during the time period specified) focusing on advances in UQ algorithms and deployment efforts to the wind turbine application area. Detailed publications in each of these areas have also been completed and are available from the respective conference proceedings and journals as detailed in a later section.

  8. Winding Trail 

    E-Print Network [OSTI]

    Unknown

    2011-09-05T23:59:59.000Z

    During the past decade, the demand for clean renewable energy continues to rise drastically in Europe, the US, and other countries. Wind energy in the ocean can possibly be one of those future renewable clean energy sources as long...

  9. Full-scale structural testing for severe wind, 1995. Proceedings of the INEL severe windstorm testing workshop

    SciTech Connect (OSTI)

    O`Brien, C.C.

    1996-05-01T23:59:59.000Z

    This document provides brief background information and reports the discussions and findings of the Idaho National Engineering Laboratory (INEL) Severe Windstorm Testing Workshop held November 29-30, 1995, in Idaho Falls, Idaho. Section 1 presents a historical perspective on wind engineering and testing in the U.S. Section 2 discusses INEL`s and the U.S. Department of Energy`s (DOE`s) interest in a new testing facility, and the efforts that led to the organization of the work-shop. The workshop discussions are then described in Sections 3 through 8. These sections focus on the interaction of the participants and are not intended to be exhaustive discussion of the subjects. A summary of the findings, along with the INEL`s recommendations, are presented in Section 9. A list of the workshop participants, a glossary, and additional technical information provided by selected participants are included in the Appendices.

  10. Offshore Code Comparison Collaboration Continuation (OC4), Phase I - Results of Coupled Simulations of an Offshore Wind Turbine with Jacket Support Structure: Preprint

    SciTech Connect (OSTI)

    Popko, W.; Vorpahl, F.; Zuga, A.; Kohlmeier, M.; Jonkman, J.; Robertson, A.; Larsen, T. J.; Yde, A.; Saetertro, K.; Okstad, K. M.; Nichols, J.; Nygaard, T. A.; Gao, Z.; Manolas, D.; Kim, K.; Yu, Q.; Shi, W.; Park, H.; Vasquez-Rojas, A.

    2012-03-01T23:59:59.000Z

    This paper presents the results of the IEA Wind Task 30, Offshore Code Comparison Collaboration Continuation Project - Phase 1.

  11. Wind Energy Benefits, Wind Powering America (WPA) (Fact Sheet...

    Broader source: Energy.gov (indexed) [DOE]

    Energy Benefits, Wind Powering America (WPA) (Fact Sheet), Wind And Water Power Program (WWPP) Wind Energy Benefits, Wind Powering America (WPA) (Fact Sheet), Wind And Water Power...

  12. Structural Safety and Reliability, Corotis et al. (eds), 2001 Swets & Zeitlinger, ISBN 90 5809 197 X Moment-based fatigue load models for wind energy systems

    E-Print Network [OSTI]

    Manuel, Lance

    197 X 1 Moment-based fatigue load models for wind energy systems Steven R. Winterstein & LeRoy M. Veers Sandia National Laboratories, Wind Energy Technology Department, Albuquerque, NM 87185-0708 Keywords: load models, fatigue loads, wind energy, non-Gaussian, moment-based models, long- term, short

  13. Published in Proceedings of the XL2003 (Response of Structures to Extreme Loading) Conference, Toronto, August 2003. EFFICIENT MODELS FOR WIND TURBINE EXTREME LOADS

    E-Print Network [OSTI]

    Manuel, Lance

    , Toronto, August 2003. EFFICIENT MODELS FOR WIND TURBINE EXTREME LOADS USING INVERSE RELIABILITY K, USA ABSTRACT The reliability of wind turbines against extreme loads is the focus of this study loads for a 600kW three-bladed horizontal-axis wind turbine. Only operating loads ­ here, flapwise (out

  14. Sustainable Energy Solutions Task 2.0: Wind Turbine Reliability and Maintainability Enhancement through System-wide Structure Health Monitoring and Modifications to Rotating Components

    SciTech Connect (OSTI)

    Janet M Twomey, PhD

    2010-04-30T23:59:59.000Z

    EXECUTIVE SUMARRY An evaluation of nondestructive structural health monitoring methods was completed with over 132 documents, 37 specifically about wind turbines, summarized into a technology matrix. This matrix lists the technology, what can be monitored with this technology, and gives a short summary of the key aspects of the technology and its application. Passive and active acoustic emission equipment from Physical Acoustics Corp. and Acellent Technologies have been evaluated and selected for use in experimental state loading and fatigue tests of composite wind turbine blade materials. Acoustic Emission (AE) and Active Ultrasonic Testing (AUT), were applied to composite coupons with both simulated and actual damage. The results found that, while composites are more complicated in nature, compared to metallic structures, an artificial neural network analysis could still be used to determine damage. For the AE system, the failure mode could be determined (i.e. fiber breakage, delamination, etc.). The Acellent system has been evaluated to work well with composite materials. A test-rig for reliability testing of the rotating components was constructed. The research on the types of bearings used in the wind turbines indicated that in most of the designs, the main bearings utilized to support the shaft are cylindrical roller bearings. The accelerated degradation testing of a population of bearings was performed. Vibration and acoustic emission data was collected and analyzed in order to identify a representative degradation signal for each bearing to identify the initiation of the degradation process in the bearings. Afterwards, the RMS of the vibration signal from degradation initiation up to the end of the useful life of the bearing was selected to predict the remaining useful life of the bearing. This step included fitting Autoregressive Moving Average (ARMA) models to the degradation signals and approximating the probability distribution function (PDF) of remaining useful life based on the results of Monte-Carlo simulation of the ARMA models. This step was performed for different percentages of the degradation signal of each bearing. The accuracy of the proposed approach then was assessed by comparing the actual life of the bearing and the estimated life of the bearing from the developed models. The results were impressive and indicated that the accuracy of the models improved as more data was utilized in developing the ARMA models (we get closer to the end of the life of the bearing).

  15. Energy 101: Wind Turbines

    ScienceCinema (OSTI)

    None

    2013-05-29T23:59:59.000Z

    See how wind turbines generate clean electricity from the power of the wind. Highlighted are the various parts and mechanisms of a modern wind turbine.

  16. WIND DATA REPORT Mattapoisett

    E-Print Network [OSTI]

    Massachusetts at Amherst, University of

    WIND DATA REPORT Mattapoisett Mattapoisett, Massachusetts December 1, 2006 ­ February 28, 2007...................................................................................................................... 9 Wind Speed Time Series........................................................................................................... 10 Wind Speed Distributions

  17. Energy 101: Wind Turbines

    SciTech Connect (OSTI)

    None

    2011-01-01T23:59:59.000Z

    See how wind turbines generate clean electricity from the power of the wind. Highlighted are the various parts and mechanisms of a modern wind turbine.

  18. Wind power and Wind power and

    E-Print Network [OSTI]

    Wind power and the CDM #12; Wind power and the CDM Emerging practices in developing wind power 2005 Jyoti P. Painuly, Niels-Erik Clausen, Jørgen Fenhann, Sami Kamel and Romeo Pacudan #12; WIND POWER AND THE CDM Emerging practices in developing wind power projects for the Clean Development Mechanism Energy

  19. Wind turbine

    DOE Patents [OSTI]

    Cheney, Jr., Marvin C. (Glastonbury, CT)

    1982-01-01T23:59:59.000Z

    A wind turbine of the type having an airfoil blade (15) mounted on a flexible beam (20) and a pitch governor (55) which selectively, torsionally twists the flexible beam in response to wind turbine speed thereby setting blade pitch, is provided with a limiter (85) which restricts unwanted pitch change at operating speeds due to torsional creep of the flexible beam. The limiter allows twisting of the beam by the governor under excessive wind velocity conditions to orient the blades in stall pitch positions, thereby preventing overspeed operation of the turbine. In the preferred embodiment, the pitch governor comprises a pendulum (65,70) which responds to changing rotor speed by pivotal movement, the limiter comprising a resilient member (90) which engages an end of the pendulum to restrict further movement thereof, and in turn restrict beam creep and unwanted blade pitch misadjustment.

  20. Wind Power

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level:Energy: Grid Integration Redefining What'sis Taking Over OurThe Iron SpinPrincetonUsingWhat is abig world of tinyWind Industry SoarsWind

  1. A high-entropy wind r-process study based on nuclear-structure quantities from the new finite-range droplet model FRDM(2012)

    E-Print Network [OSTI]

    Karl-Ludwig Kratz; Khalil Farouqi; Peter Möller

    2014-06-10T23:59:59.000Z

    Theoretical studies of the nucleosynthesis origin of the heavy elements in our Solar System (S.S.) by the rapid neutron-capture process (r-process) still face the entwined uncertainties in the possible astrophysical scenarios and the nuclear-physics properties far from stability. In this paper we present results from the investigation of an r-process in the high-entropy wind (HEW) of core-collapse supernovae (here chosen as one of the possible scenarios for this nucleosynthesis process), using new nuclear-data input calculated in a consistent approach, for masses and $\\beta$-decay properties from the new finite-range droplet model FRDM(2012). The accuracy of the new mass model is 0.56 MeV with respect to {\\sc AME2003}, to which it was adjusted. We compare the new HEW r-process abundance pattern to the latest S.S. r-process residuals and to our earlier calculations with the nuclear-structure quantities based on FRDM(1992). Substantial overall and specific local improvements in the calculated pattern of the r-process between $A\\simeq 110$ and $^{209}$Bi, as well as remaining deficiencies are discussed in terms of the underlying spherical and deformed shell structure far from stability.

  2. CX-002154: Categorical Exclusion Determination | Department of...

    Broader source: Energy.gov (indexed) [DOE]

    DeepCwind Consortium National Research Program: Validation of Coupled Models and Optimization of Materials for Offshore Wind Structures CX(s) Applied: B3.1, B3.3, B3.6, A9 Date:...

  3. CX-003713: Categorical Exclusion Determination | Department of...

    Broader source: Energy.gov (indexed) [DOE]

    CX-003713: Categorical Exclusion Determination Validation of Coupled Models and Optimization of Materials for Offshore Wind Structures CX(s) Applied: A9, B3.1, B3.3, B3.6 Date:...

  4. CX-002373: Categorical Exclusion Determination | Department of...

    Broader source: Energy.gov (indexed) [DOE]

    CX-002373: Categorical Exclusion Determination Validation of Coupled Models and Optimization of Materials for Offshore Wind Structures CX(s) Applied: B3.1, A9 Date: 05132010...

  5. CX-009425: Categorical Exclusion Determination | Department of...

    Broader source: Energy.gov (indexed) [DOE]

    Categorical Exclusion Determination Partial Validation of Coupled Models and Optimization of Materials for Offshore Wind Structures CX(s) Applied: B3.3, B3.16, B5.18 Date:...

  6. CX-004369: Categorical Exclusion Determination | Department of...

    Broader source: Energy.gov (indexed) [DOE]

    CX-004369: Categorical Exclusion Determination Validation of Coupled Models and Optimization of Materials for Offshore Wind Structures CX(s) Applied: A9, B3.1, B3.6 Date: 11...

  7. Oxygen Loss from Venus and the Influence of Extreme Solar Wind Conditions

    E-Print Network [OSTI]

    McEnulty, Tess

    2012-01-01T23:59:59.000Z

    W. C. Feldman (1978), Solar wind stream interfaces, Journal2008a), Evolution of solar wind structures from 0.72 to 123/24 with Historical Solar Wind Records at 1 AU, Solar

  8. Time-domain Fatigue Response and Reliability Analysis of Offshore Wind Turbines with

    E-Print Network [OSTI]

    Nørvåg, Kjetil

    Time-domain Fatigue Response and Reliability Analysis of Offshore Wind Turbines with Emphasis of offshore wind turbines Defense: 09.12.2012 2012 - : Structural Engineer in Det Norske Veritas (DNV) 2007 and higher wind speed, and less visual disturbance and noise for offshore wind energy. Offshore wind

  9. Wind Technologies & Evolving Opportunities (Presentation)

    SciTech Connect (OSTI)

    Robichaud, R.

    2014-07-01T23:59:59.000Z

    This presentation covers opportunities for wind technology; wind energy market trends; an overview of the National Wind Technology Center near Boulder, Colorado; wind energy price and cost trends; wind turbine technology improvements; and wind resource characterization improvements.

  10. 2015 Iowa Wind Power Conference and Iowa Wind Energy Association...

    Energy Savers [EERE]

    2015 Iowa Wind Power Conference and Iowa Wind Energy Association Midwest Regional Energy Job Fair 2015 Iowa Wind Power Conference and Iowa Wind Energy Association Midwest Regional...

  11. Community Wind Handbook/Understand Your Wind Resource and Conduct...

    Open Energy Info (EERE)

    Conduct a Preliminary Estimate < Community Wind Handbook Jump to: navigation, search WIND ENERGY STAKEHOLDER ENGAGEMENT & OUTREACHCommunity Wind Handbook WindTurbine-icon.png...

  12. American Wind Energy Association Wind Energy Finance and Investment...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    American Wind Energy Association Wind Energy Finance and Investment Seminar American Wind Energy Association Wind Energy Finance and Investment Seminar October 20, 2014 8:00AM EDT...

  13. 2010 Wind Technologies Market Report

    E-Print Network [OSTI]

    Wiser, Ryan

    2012-01-01T23:59:59.000Z

    wind turbine components (specifically, generators, bladeschangers. ” Wind turbine components such as blades, towers,17%). Wind turbine component exports (towers, blades,

  14. 2010 Wind Technologies Market Report

    E-Print Network [OSTI]

    Wiser, Ryan

    2012-01-01T23:59:59.000Z

    Public Service Wind Integration Cost Impact Study. Preparedequipment-related wind turbine costs, the overall importinstalled wind power project costs, wind turbine transaction

  15. 2009 Wind Technologies Market Report

    E-Print Network [OSTI]

    Wiser, Ryan

    2010-01-01T23:59:59.000Z

    Public Service Wind Integration Cost Impact Study. Preparedinstalled wind power project costs, wind turbine transactionand components and wind turbine costs. Excluded from all

  16. Sandia National Laboratories: wind energy

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Wind Energy Manufacturing Lab Helps Engineers Improve Wind Power On November 15, 2011, in Energy, News, Partnership, Renewable Energy, Wind Energy Researchers at the Wind Energy...

  17. Module Handbook Specialisation Wind Energy

    E-Print Network [OSTI]

    Habel, Annegret

    ;Specialisation Wind Energy, NTU Athens, 2nd Semester Module 1/Wind Energy: Wind potential, Aerodynamics & Loading of Wind Turbines Module name: Wind potential, Aerodynamics & Loading of Wind Turbines Section Classes Evaluation of Wind Energy Potential Wind turbine Aerodynamics Static and dynamic Loading of Wind turbines

  18. Wind energy systems: program summary

    SciTech Connect (OSTI)

    None

    1980-05-01T23:59:59.000Z

    The Federal Wind Energy Program (FWEP) was initiated to provide focus, direction and funds for the development of wind power. Each year a summary is prepared to provide the American public with an overview of government sponsored activities in the FWEP. This program summary describes each of the Department of Energy's (DOE) current wind energy projects initiated or renewed during FY 1979 (October 1, 1978 through September 30, 1979) and reflects their status as of April 30, 1980. The summary highlights on-going research, development and demonstration efforts and serves as a record of progress towards the program objectives. It also provides: the program's general management structure; review of last year's achievements; forecast of expected future trends; documentation of the projects conducted during FY 1979; and list of key wind energy publications.

  19. Distributed Wind Diffusion Model Overview (Presentation)

    SciTech Connect (OSTI)

    Preus, R.; Drury, E.; Sigrin, B.; Gleason, M.

    2014-07-01T23:59:59.000Z

    Distributed wind market demand is driven by current and future wind price and performance, along with several non-price market factors like financing terms, retail electricity rates and rate structures, future wind incentives, and others. We developed a new distributed wind technology diffusion model for the contiguous United States that combines hourly wind speed data at 200m resolution with high resolution electricity load data for various consumer segments (e.g., residential, commercial, industrial), electricity rates and rate structures for utility service territories, incentive data, and high resolution tree cover. The model first calculates the economics of distributed wind at high spatial resolution for each market segment, and then uses a Bass diffusion framework to estimate the evolution of market demand over time. The model provides a fundamental new tool for characterizing how distributed wind market potential could be impacted by a range of future conditions, such as electricity price escalations, improvements in wind generator performance and installed cost, and new financing structures. This paper describes model methodology and presents sample results for distributed wind market potential in the contiguous U.S. through 2050.

  20. Lake Michigan Offshore Wind Feasibility Assessment

    SciTech Connect (OSTI)

    Boezaart, Arnold [GVSU; Edmonson, James [GVSU; Standridge, Charles [GVSU; Pervez, Nahid [GVSU; Desai, Neel [University of Michigan; Williams, Bruce [University of Delaware; Clark, Aaron [GVSU; Zeitler, David [GVSU; Kendall, Scott [GVSU; Biddanda, Bopi [GVSU; Steinman, Alan [GVSU; Klatt, Brian [Michigan State University; Gehring, J. L. [Michigan State University; Walter, K. [Michigan State University; Nordman, Erik E. [GVSU

    2014-06-30T23:59:59.000Z

    The purpose of this project was to conduct the first comprehensive offshore wind assessment over Lake Michigan and to advance the body of knowledge needed to support future commercial wind energy development on the Great Lakes. The project involved evaluation and selection of emerging wind measurement technology and the permitting, installation and operation of the first mid-lake wind assessment meteorological (MET) facilities in Michigan’s Great Lakes. In addition, the project provided the first opportunity to deploy and field test floating LIDAR and Laser Wind Sensor (LWS) technology, and important research related equipment key to the sitting and permitting of future offshore wind energy development in accordance with public participation guidelines established by the Michigan Great Lakes Wind Council (GLOW). The project created opportunities for public dialogue and community education about offshore wind resource management and continued the dialogue to foster Great Lake wind resource utilization consistent with the focus of the GLOW Council. The technology proved to be effective, affordable, mobile, and the methods of data measurement accurate. The public benefited from a substantial increase in knowledge of the wind resources over Lake Michigan and gained insights about the potential environmental impacts of offshore wind turbine placements in the future. The unique first ever hub height wind resource assessment using LWS technology over water and development of related research data along with the permitting, sitting, and deployment of the WindSentinel MET buoy has captured public attention and has helped to increase awareness of the potential of future offshore wind energy development on the Great Lakes. Specifically, this project supported the acquisition and operation of a WindSentinel (WS) MET wind assessment buoy, and associated research for 549 days over multiple years at three locations on Lake Michigan. Four research objectives were defined for the project including to: 1) test and validate floating LIDAR technology; 2) collect and access offshore wind data; 3) detect and measure bird and bat activity over Lake Michigan; 4) conduct an over water sound propagation study; 5) prepare and offer a college course on offshore energy, and; 6) collect other environmental, bathometric, and atmospheric data. Desk-top research was performed to select anchorage sites and to secure permits to deploy the buoy. The project also collected and analyzed data essential to wind industry investment decision-making including: deploying highly mobile floating equipment to gather offshore wind data; correlating offshore wind data with conventional on-shore MET tower data; and performing studies that can contribute to the advancement and deployment of offshore wind technologies. Related activities included: • Siting, permitting, and deploying an offshore floating MET facility; • Validating the accuracy of floating LWS using near shoreline cup anemometer MET instruments; • Assessment of laser pulse technology (LIDAR) capability to establish hub height measurement of wind conditions at multiple locations on Lake Michigan; • Utilizing an extended-season (9-10 month) strategy to collect hub height wind data and weather conditions on Lake Michigan; • Investigation of technology best suited for wireless data transmission from distant offshore structures; • Conducting field-validated sound propagation study for a hypothetical offshore wind farm from shoreline locations; • Identifying the presence or absence of bird and bat species near wind assessment facilities; • Identifying the presence or absence of benthic and pelagic species near wind assessment facilities; All proposed project activities were completed with the following major findings: • Floating Laser Wind Sensors are capable of high quality measurement and recordings of wind resources. The WindSentinel presented no significant operational or statistical limitations in recording wind data technology at a at a high confidence level as compared to traditional an

  1. Wind Integration

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office of ScienceandMesa del SolStrengtheningWildfires may contribute more to global warmingGlobal »Wind

  2. Wind Power

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742EnergyOnItemResearch >Internship Program TheSiteEurekaWeekly UserWhat's New Today aboutWind

  3. Coastal Ohio Wind Project

    SciTech Connect (OSTI)

    Gorsevski, Peter; Afjeh, Abdollah; Jamali, Mohsin; Bingman, Verner

    2014-04-04T23:59:59.000Z

    The Coastal Ohio Wind Project intends to address problems that impede deployment of wind turbines in the coastal and offshore regions of Northern Ohio. The project evaluates different wind turbine designs and the potential impact of offshore turbines on migratory and resident birds by developing multidisciplinary research, which involves wildlife biology, electrical and mechanical engineering, and geospatial science. Firstly, the project conducts cost and performance studies of two- and three-blade wind turbines using a turbine design suited for the Great Lakes. The numerical studies comprised an analysis and evaluation of the annual energy production of two- and three-blade wind turbines to determine the levelized cost of energy. This task also involved wind tunnel studies of model wind turbines to quantify the wake flow field of upwind and downwind wind turbine-tower arrangements. The experimental work included a study of a scaled model of an offshore wind turbine platform in a water tunnel. The levelized cost of energy work consisted of the development and application of a cost model to predict the cost of energy produced by a wind turbine system placed offshore. The analysis found that a floating two-blade wind turbine presents the most cost effective alternative for the Great Lakes. The load effects studies showed that the two-blade wind turbine model experiences less torque under all IEC Standard design load cases considered. Other load effects did not show this trend and depending on the design load cases, the two-bladed wind turbine showed higher or lower load effects. The experimental studies of the wake were conducted using smoke flow visualization and hot wire anemometry. Flow visualization studies showed that in the downwind turbine configuration the wake flow was insensitive to the presence of the blade and was very similar to that of the tower alone. On the other hand, in the upwind turbine configuration, increasing the rotor blade angle of attack reduced the wake size and enhanced the vortices in the flow downstream of the turbine-tower compared with the tower alone case. Mean and rms velocity distributions from hot wire anemometer data confirmed that in a downwind configuration, the wake of the tower dominates the flow, thus the flow fields of a tower alone and tower-turbine combinations are nearly the same. For the upwind configuration, the mean velocity shows a narrowing of the wake compared with the tower alone case. The downwind configuration wake persisted longer than that of an upwind configuration; however, it was not possible to quantify this difference because of the size limitation of the wind tunnel downstream of the test section. The water tunnel studies demonstrated that the scale model studies could be used to adequately produce accurate motions to model the motions of a wind turbine platform subject to large waves. It was found that the important factors that affect the platform is whether the platform is submerged or surface piercing. In the former, the loads on the platform will be relatively reduced whereas in the latter case, the structure pierces the wave free surface and gains stiffness and stability. The other important element that affects the movement of the platform is depth of the sea in which the wind turbine will be installed. Furthermore, the wildlife biology component evaluated migratory patterns by different monitoring systems consisting of marine radar, thermal IR camera and acoustic recorders. The types of radar used in the project are weather surveillance radar and marine radar. The weather surveillance radar (1988 Doppler), also known as Next Generation Radar (NEXRAD), provides a network of weather stations in the US. Data generated from this network were used to understand general migratory patterns, migratory stopover habitats, and other patterns caused by the effects of weather conditions. At a local scale our marine radar was used to complement the datasets from NEXRAD and to collect additional monitoring parameters such as passage rates, flight paths, flight directi

  4. THE SOLAR WIND PLASMA Dr. Joe Borovsky

    E-Print Network [OSTI]

    Shyy, Wei

    involved multidipole plasma devices. Current research interests focus on structure in the solar wind THE SOLAR WIND PLASMA Dr. Joe Borovsky Los Alamos National Laboratory and University, magnetized, collisionless plasma, important for the geomagnetic activity that it drives at Earth and for its

  5. Paul S. Veers Wind Energy Technology Department

    E-Print Network [OSTI]

    Ginzel, Matthew

    turbulence simulation, fatigue analysis, reliability, structural dynamics, aeroelastic tailoring of blades journal for progress and applications in wind power. He has a MS in Engineering Mechanics fromPaul S. Veers Wind Energy Technology Department Sandia National Laboratories Thursday, April 8th 3

  6. Fast Wind Turbine Design via Geometric Programming

    E-Print Network [OSTI]

    Abbeel, Pieter

    Fast Wind Turbine Design via Geometric Programming Warren Hoburg and Pieter Abbeel UC Berkeley turbine aerodynamics have an underlying convex mathematical structure that these new methods can exploit the application of GP to large wind turbine design problems a promising approach. Nomenclature (·)a, (·)t axial

  7. The identification of inflow fluid dynamics parameters that can be used to scale fatigue loading spectra of wind turbine structural components

    SciTech Connect (OSTI)

    Kelley, N.D.

    1993-11-01T23:59:59.000Z

    We have recently shown that the alternating load fatigue distributions measured at several locations on a wind turbine operating in a turbulent flow can be described by a mixture of at least three parametric statistical models. The rainflow cycle counting of the horizontal and vertical inflow components results in a similar mixture describing the cyclic content of the wind. We believe such a description highlights the degree of non-Gaussian characteristics of the flow. We present evidence that the severity of the low-cycle, high-amplitude alternating stress loads seen by wind turbine components are a direct consequence of the degree of departure from normality in the inflow. We have examined the details of the turbulent inflow associated with series large loading events that took place on two adjacent wind turbines installed in a large wind park in San Gorgonio Pass, California. In this paper, we describe what we believe to be the agents in the flow that induced such events. We also discuss the atmospheric mechanisms that influence the low-cycle, high-amplitude range loading seen by a number of critical wind turbine components. We further present results that can be used to scale the specific distribution shape as functions of measured inflow fluid dynamics parameters.

  8. Wind Power Today

    SciTech Connect (OSTI)

    Not Available

    2006-05-01T23:59:59.000Z

    Wind Power Today is an annual publication that provides an overview of the wind energy research conducted by the U.S. Department of Energy Wind and Hydropower Technologies Program.

  9. Wind Power Today

    SciTech Connect (OSTI)

    Not Available

    2007-05-01T23:59:59.000Z

    Wind Power Today is an annual publication that provides an overview of the wind energy research conducted by the U.S. Department of Energy Wind and Hydropower Technologies Program.

  10. Sunflower Wind Farm EA

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Sunflower Wind Farm EA Sunflower Wind Farm Draft EA (25mb pdf) Note: If you have problems downloading this file, pelase contact Lou Hanebury at (406) 255-2812 Sunflower Wind Farm...

  11. Wind/Hydro Study

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    WindHydro Integration Feasibility Study Announcements (Updated July 8, 2010) The Final WindHydro Integration Feasibility Study Report, dated June 2, 2009, has been submitted to...

  12. Wind energy bibliography

    SciTech Connect (OSTI)

    None

    1995-05-01T23:59:59.000Z

    This bibliography is designed to help the reader search for information on wind energy. The bibliography is intended to help several audiences, including engineers and scientists who may be unfamiliar with a particular aspect of wind energy, university researchers who are interested in this field, manufacturers who want to learn more about specific wind topics, and librarians who provide information to their clients. Topics covered range from the history of wind energy use to advanced wind turbine design. References for wind energy economics, the wind energy resource, and environmental and institutional issues related to wind energy are also included.

  13. Wind Turbine Tribology Seminar

    Broader source: Energy.gov [DOE]

    Wind turbine reliability issues are often linked to failures of contacting components, such as bearings, gears, and actuators. Therefore, special consideration to tribological design in wind...

  14. Commonwealth Wind Incentive Program – Micro Wind Initiative

    Broader source: Energy.gov [DOE]

    Through the Commonwealth Wind Incentive Program – Micro Wind Initiative the Massachusetts Clean Energy Center (MassCEC) offers rebates of up to $4/W with a maximum of $130,000 for design and...

  15. 2008 WIND TECHNOLOGIES MARKET REPORT

    E-Print Network [OSTI]

    Bolinger, Mark

    2010-01-01T23:59:59.000Z

    States. Specifically, Bluewater Wind and Delmarva PowerLLC Babcock & Brown Acquisition Bluewater Wind Good Energies

  16. 2008 WIND TECHNOLOGIES MARKET REPORT

    E-Print Network [OSTI]

    Bolinger, Mark

    2010-01-01T23:59:59.000Z

    policy support for other renewable energy sources, wind mayrenewable energy and climate policy initiatives. With wind

  17. Low-Resolution STELab IPS 3D Reconstructions of the Whole Heliosphere Interval and Comparison with in-Ecliptic Solar Wind Measurements from STEREO and Wind Instrumentation

    E-Print Network [OSTI]

    Bisi, M. M.; Jackson, B. V.; Buffington, A.; Clover, J. M.; Hick, P. P.; Tokumaru, M.

    2009-01-01T23:59:59.000Z

    structure of the fast solar wind. J. Geophys. Res. 112,observations of the solar wind. Proc. SPIE 6689, 668911-1.W.A. , Maagoe, S. : 1972, Solar wind velocity from ips

  18. Ultimate strength of a large wind turbine blade

    E-Print Network [OSTI]

    Ultimate strength of a large wind turbine blade Find Mølholt Jensen Risø-PhD-34(EN) ISBN 978 2008 #12;#12;Author: Find Mølholt Jensen Title: Ultimate strength of a large wind turbine blade contains a study of the structural static strength of wind turbine blades loaded in flap-wise direction

  19. Wave Models for Offshore Wind Turbines Puneet Agarwal

    E-Print Network [OSTI]

    Manuel, Lance

    Wave Models for Offshore Wind Turbines Puneet Agarwal§ and Lance Manuely Department of Civil. These wave modeling assumptions do not adequately represent waves in shallow waters where most offshore wind for estimating loads on the support structure (monopile) of an offshore wind turbine. We use a 5MW utility

  20. Wind Resource Assessment in Europe Using Emergy

    E-Print Network [OSTI]

    Paudel, Subodh; Santarelli, Massimo; Martin, Viktoria; Lacarriere, Bruno; Le Corre, Olivier

    2014-01-01T23:59:59.000Z

    mance characteristics of wind generator. The wind speed atcharacteristics of the wind generator. When wind speed is

  1. Wind effect on long span bridge

    E-Print Network [OSTI]

    Zhang, Xi, M. Eng. Massachusetts Institute of Technology

    2012-01-01T23:59:59.000Z

    This thesis has studied different types of reactions of long span bridge under wind load, such as vortex shedding, flutter and buffeting. Since all of these conditions have the chance to damage bridge structure, we calculate ...

  2. Flexible dynamics of floating wind turbines

    E-Print Network [OSTI]

    Luypaert, Thomas (Thomas J.)

    2012-01-01T23:59:59.000Z

    This work presents Tower Flex, a structural dynamics model for a coupled analysis of offshore floating wind turbines consisting of a tower, a floating platform and a mooring system. In this multi-body, linear frequency-domain ...

  3. NREL Software Aids Offshore Wind Turbine Designs (Fact Sheet)

    SciTech Connect (OSTI)

    Not Available

    2013-10-01T23:59:59.000Z

    NREL researchers are supporting offshore wind power development with computer models that allow detailed analyses of both fixed and floating offshore wind turbines. While existing computer-aided engineering (CAE) models can simulate the conditions and stresses that a land-based wind turbine experiences over its lifetime, offshore turbines require the additional considerations of variations in water depth, soil type, and wind and wave severity, which also necessitate the use of a variety of support-structure types. NREL's core wind CAE tool, FAST, models the additional effects of incident waves, sea currents, and the foundation dynamics of the support structures.

  4. Advanced Coal Wind Hybrid: Economic Analysis

    E-Print Network [OSTI]

    Phadke, Amol

    2008-01-01T23:59:59.000Z

    Wind Generation2006. “ Integrating Wind Generation into Utility Systems”.Stand-Alone Wind Generation . 60

  5. Howard County- Wind Ordinance

    Broader source: Energy.gov [DOE]

    This ordinance sets up provisions for allowing small wind energy systems in various zoning districts.

  6. A multi-scale approach to statistical and model-based structural health monitoring with application to embedded sensing for wind energy

    E-Print Network [OSTI]

    Taylor, Stuart Glynn

    2013-01-01T23:59:59.000Z

    rotor blade," Structural Health Monitoring, accepted 12-Novdeployed for structural health monitoring applications,"J. -R. Lee, "Structural health monitoring of research-scale

  7. Wind energy offers considerable promise; the wind itself is free,

    E-Print Network [OSTI]

    Langendoen, Koen

    Wind energy offers considerable promise; the wind itself is free, wind power is clean. One of these sources, wind energy, offers considerable promise; the wind itself is free, wind power is clean, and it is virtually inexhaustible. In recent years, research on wind energy has accelerated

  8. Estimation of Wind Speed in Connection to a Wind Turbine

    E-Print Network [OSTI]

    Estimation of Wind Speed in Connection to a Wind Turbine X. Ma #3; , N. K. Poulsen #3; , H. Bindner y December 20, 1995 Abstract The wind speed varies over the rotor plane of wind turbine making the wind speed on the rotor plane will be estimated by using a wind turbine as a wind measuring device

  9. Wind Power Outlook 2004

    SciTech Connect (OSTI)

    anon.

    2004-01-01T23:59:59.000Z

    The brochure, expected to be updated annually, provides the American Wind Energy Association's (AWAE's) up-to-date assessment of the wind industry. It provides a summary of the state of wind power in the U.S., including the challenges and opportunities facing the industry. It provides summary information on the growth of the industry, policy-related factors such as the federal wind energy production tax credit status, comparisons with natural gas, and public views on wind energy.

  10. Wind/Wave Misalignment in the Loads Analysis of a Floating Offshore Wind Turbine: Preprint

    SciTech Connect (OSTI)

    Barj, L.; Stewart, S.; Stewart, G.; Lackner, M.; Jonkman, J.; Robertson, A.

    2014-02-01T23:59:59.000Z

    Wind resources far from the shore and in deeper seas have encouraged the offshore wind industry to look into floating platforms. The International Electrotechnical Commission (IEC) is developing a new technical specification for the design of floating offshore wind turbines that extends existing design standards for land-based and fixed-bottom offshore wind turbines. The work summarized in this paper supports the development of best practices and simulation requirements in the loads analysis of floating offshore wind turbines by examining the impact of wind/wave misalignment on the system loads under normal operation. Simulations of the OC3-Hywind floating offshore wind turbine system under a wide range of wind speeds, significant wave heights, peak-spectral periods and wind/wave misalignments have been carried out with the aero-servo-hydro-elastic tool FAST [4]. The extreme and fatigue loads have been calculated for all the simulations. The extreme and fatigue loading as a function of wind/wave misalignment have been represented as load roses and a directional binning sensitivity study has been carried out. This study focused on identifying the number and type of wind/wave misalignment simulations needed to accurately capture the extreme and fatigue loads of the system in all possible metocean conditions considered, and for a down-selected set identified as the generic US East Coast site. For this axisymmetric platform, perpendicular wind and waves play an important role in the support structure and including these cases in the design loads analysis can improve the estimation of extreme and fatigue loads. However, most structural locations see their highest extreme and fatigue loads with aligned wind and waves. These results are specific to the spar type platform, but it is expected that the results presented here will be similar to other floating platforms.

  11. The National Wind Technology Center

    SciTech Connect (OSTI)

    Thresher, R.W.; Hock, S.M. [National Renewable Energy Lab., Golden, CO (United States)] [National Renewable Energy Lab., Golden, CO (United States); Loose, R.R.; Cadogon, J.B.

    1994-07-01T23:59:59.000Z

    Wind energy research began at the Rocky Flats test site in 1976 when Rockwell International subcontracted with the Energy Research and Development Administration (ERDA). The Rocky Flats Plant was competitively selected from a number of ERDA facilities primarily because it experienced high instantaneous winds and provided a large, clear land area. By 1977, several small wind turbines were in place. During the facility`s peak of operation, in 1979-1980, researchers were testing as many as 23 small wind turbines of various configurations, including commercially available machines and prototype turbines developed under subcontract to Rocky Flats. Facilities also included 8-kW, 40-kW, and 225-kW dynamometers; a variable-speed test bed; a wind/hybrid test facility; a controlled velocity test facility (in Pueblo, Colorado); a modal test facility, and a multimegawatt switchgear facility. The main laboratory building was dedicated in July 1981 and was operated by the Rocky Flats Plant until 1984, when the Solar Energy Research Institute (SERI) and Rocky Flats wind energy programs were merged and transferred to SERI. SERI and now the National Renewable Energy Laboratory (NREL) continued to conduct wind turbine system component tests after 1987, when most program personnel were moved to the Denver WEst Office Park in Golden and site ownership was transferred back to Rocky Flats. The Combined Experiment test bed was installed and began operation in 1988, and the NREL structural test facility began operation in 1990. In 1993, the site`s operation was officially transferred to the DOE Golden Field Office that oversees NREL. This move was in anticipation of NREL`s renovation and reoccupation of the facility in 1994.

  12. Collegiate Wind Competition Engages Tomorrow's Wind Energy Innovators...

    Office of Environmental Management (EM)

    Engages Tomorrow's Wind Energy Innovators Collegiate Wind Competition Engages Tomorrow's Wind Energy Innovators January 6, 2014 - 10:00am Addthis 2014 Collegiate Teams Boise State...

  13. 20% Wind Energy by 2030: Increasing Wind Energy's Contribution...

    Energy Savers [EERE]

    : Increasing Wind Energy's Contribution to U.S. Electricity Supply (Executive Summary) 20% Wind Energy by 2030: Increasing Wind Energy's Contribution to U.S. Electricity Supply...

  14. National Wind Technology Center (Fact Sheet), National Wind Technology...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    NATIONAL WIND TECHNOLOGY CENTER www.nrel.govwind Wind energy is one of the fastest growing electricity generation sources in the world. NREL's National Wind Technology Center...

  15. Sinomatech Wind Power Blade aka Sinoma Science Technology Wind...

    Open Energy Info (EERE)

    Sinomatech Wind Power Blade aka Sinoma Science Technology Wind Turbine Blade Co Ltd Jump to: navigation, search Name: Sinomatech Wind Power Blade (aka Sinoma Science & Technology...

  16. 20% Wind Energy by 2030: Increasing Wind Energy's Contribution...

    Office of Environmental Management (EM)

    a new vision for wind energy through 2050. Taking into account all facets of wind energy (land-based, offshore, distributed), the new Wind Vision Report defines the...

  17. Sandia Energy - Sandia Wind Turbine Loads Database

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Sandia Wind Turbine Loads Database Home Stationary Power Energy Conversion Efficiency Wind Energy Resources Wind Software Downloads Sandia Wind Turbine Loads Database Sandia Wind...

  18. Wind Energy Research Project under the 6th Framework Programme Peter Hjuler Jensen, Ris National Laboratory,

    E-Print Network [OSTI]

    of wind turbines for future very large-scale applications, e.g. offshore wind farms of several hundred MW in wind farms and grid design issues, are to be analyzed, and new design approaches and concepts developed turbine structures. New developments in the field of wind farm lay out, control, and grid connection

  19. Mitigation of Fatigue Loads Using Individual Pitch Control of Wind Turbines Based on FAST

    E-Print Network [OSTI]

    Chen, Zhe

    Mitigation of Fatigue Loads Using Individual Pitch Control of Wind Turbines Based on FAST Yunqian University, China jiz@seu.edu.cn Abstract-With the increase of wind turbine dimension and capacity, the wind turbine structures are subjected to prominent loads and fatigue which would reduce the lifetime of wind

  20. Sandia National Laboratories: Wind Power

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Wind Energy Staff On March 24, 2011, in Wind Energy On November 10, 2010, in Wind Plant Opt. Rotor Innovation Materials, Reliability & Standards Siting & Barrier Mitigation...

  1. 2009 Wind Technologies Market Report

    E-Print Network [OSTI]

    Wiser, Ryan

    2010-01-01T23:59:59.000Z

    the Impact of Significant Wind Generation Facilities on BulkOperations Impacts of Wind Generation Integration Study.Impacts of Integrating Wind Generation into Idaho Power's

  2. 2011 Wind Technologies Market Report

    E-Print Network [OSTI]

    Bolinger, Mark

    2013-01-01T23:59:59.000Z

    Operations Impacts of Wind Generation Integration Study.Impacts of Integrating Wind Generation into Idaho Power's2008. Analysis of Wind Generation Impact on ERCOT Ancillary

  3. 2008 WIND TECHNOLOGIES MARKET REPORT

    E-Print Network [OSTI]

    Bolinger, Mark

    2010-01-01T23:59:59.000Z

    the Impact of Significant Wind Generation Facilities on BulkOperations Impacts of Wind Generation Integration Study.Impacts of Integrating Wind Generation into Idaho Power's

  4. 2010 Wind Technologies Market Report

    E-Print Network [OSTI]

    Wiser, Ryan

    2012-01-01T23:59:59.000Z

    Operations Impacts of Wind Generation Integration Study.Impacts of Integrating Wind Generation into Idaho Power'sthe Impact of Significant Wind Generation Facilities on Bulk

  5. WIND DATA REPORT Presque Isle

    E-Print Network [OSTI]

    Massachusetts at Amherst, University of

    WIND DATA REPORT Presque Isle June 1, 2005 ­ August 31, 2005 Prepared for United States Department...................................................................................................................... 9 Wind Speed Time Series............................................................................................................. 9 Wind Speed Distributions

  6. WIND DATA REPORT Presque Isle

    E-Print Network [OSTI]

    Massachusetts at Amherst, University of

    WIND DATA REPORT Presque Isle December 1, 2004 ­ February 28, 2005 Prepared for United States.................................................................................................................... 10 Wind Speed Time Series........................................................................................................... 10 Wind Speed Distributions

  7. WIND DATA REPORT Presque Isle

    E-Print Network [OSTI]

    Massachusetts at Amherst, University of

    WIND DATA REPORT Presque Isle December 1, 2004 ­ December 1, 2005 Prepared for United States ......................................................................................................... 9 Wind Speed Time Series........................................................................................................... 10 Wind Speed Distributions

  8. WIND DATA REPORT Thompson Island

    E-Print Network [OSTI]

    Massachusetts at Amherst, University of

    WIND DATA REPORT Thompson Island June 1, 2003 ­ August 31, 2003 Prepared for Massachusetts...................................................................................................................... 9 Wind Speed Time Series............................................................................................................. 9 Wind Speed Distribution

  9. 2009 Wind Technologies Market Report

    E-Print Network [OSTI]

    Wiser, Ryan

    2010-01-01T23:59:59.000Z

    Prepared for the Utility Wind Integration Group. Arlington,Consult. 2010. International Wind Energy Development: WorldUBS Global I/O: Global Wind Sector. UBS Investment Research.

  10. WIND DATA REPORT Thompson Island

    E-Print Network [OSTI]

    Massachusetts at Amherst, University of

    WIND DATA REPORT Thompson Island December 1, 2003 ­ February 29, 2004 Prepared for Massachusetts.................................................................................................................... 11 Wind Speed Time Series........................................................................................................... 11 Wind Speed Distribution

  11. WIND DATA REPORT Presque Isle

    E-Print Network [OSTI]

    Massachusetts at Amherst, University of

    WIND DATA REPORT Presque Isle March 1, 2005 ­ May 31, 2005 Prepared for United States Department.................................................................................................................... 10 Wind Speed Time Series........................................................................................................... 10 Wind Speed Distributions

  12. WIND DATA REPORT Thompson Island

    E-Print Network [OSTI]

    Massachusetts at Amherst, University of

    WIND DATA REPORT Thompson Island March 1, 2003 ­ May 31, 2003 Prepared for Massachusetts Technology...................................................................................................................... 9 Wind Speed Time Series............................................................................................................. 9 Wind Speed Distributions

  13. WIND DATA REPORT FALMOUTH, MA

    E-Print Network [OSTI]

    Massachusetts at Amherst, University of

    WIND DATA REPORT FALMOUTH, MA June1, 2004 to August 31, 2004. Prepared for Massachusetts Technology...................................................................................................................... 8 Wind Speed Time Series............................................................................................................. 8 Wind Speed Distributions

  14. WIND DATA REPORT Thompson Island

    E-Print Network [OSTI]

    Massachusetts at Amherst, University of

    WIND DATA REPORT Thompson Island September 1, 2003 ­ November 30, 2003 Prepared for Massachusetts...................................................................................................................... 9 Wind Speed Time Series............................................................................................................. 9 Wind Speed Distribution

  15. WIND DATA REPORT Thompson Island

    E-Print Network [OSTI]

    Massachusetts at Amherst, University of

    WIND DATA REPORT Thompson Island March 1, 2004 ­ May 31, 2004 Prepared for Massachusetts Technology...................................................................................................................... 9 Wind Speed Time Series............................................................................................................. 9 Wind Speed Distribution

  16. 2008 WIND TECHNOLOGIES MARKET REPORT

    E-Print Network [OSTI]

    Bolinger, Mark

    2010-01-01T23:59:59.000Z

    2008. Washington, DC: American Wind Energy Association.American Wind Energy Association ( AWEA).2009b. AWEA Small Wind Turbine Global Market Study: Year

  17. WIND DATA REPORT Thompson Island

    E-Print Network [OSTI]

    Massachusetts at Amherst, University of

    WIND DATA REPORT Thompson Island June 1, 2004 ­ August 31, 2004 Prepared for Massachusetts...................................................................................................................... 9 Wind Speed Time Series............................................................................................................. 9 Wind Speed Distribution

  18. 2008 WIND TECHNOLOGIES MARKET REPORT

    E-Print Network [OSTI]

    Bolinger, Mark

    2010-01-01T23:59:59.000Z

    Table 8 Figure 30. Wind Integration Costs at Various LevelsOperations and Maintenance Costs Wind project operations andPublic Service Wind Integration Cost Impact Study. Prepared

  19. 2011 Wind Technologies Market Report

    E-Print Network [OSTI]

    Bolinger, Mark

    2013-01-01T23:59:59.000Z

    wind turbine components (specifically, generators, bladeschangers. ” Wind turbine components such as blades, towers,Canada (8%). Wind turbine component exports (towers, blades,

  20. 2012 Wind Technologies Market Report

    E-Print Network [OSTI]

    Wiser, Ryan

    2014-01-01T23:59:59.000Z

    with the section on offshore wind; Donna Heimiller and Billyof 2012, global cumulative offshore wind capacity stood ats (DOE’s) investments in offshore wind energy research and

  1. 2011 Wind Technologies Market Report

    E-Print Network [OSTI]

    Bolinger, Mark

    2013-01-01T23:59:59.000Z

    charging wind power projects for balancing services. 81 BPA,in balancing reserves with increased wind power penetrationin balancing reserves with increased wind power penetration

  2. 2010 Wind Technologies Market Report

    E-Print Network [OSTI]

    Wiser, Ryan

    2012-01-01T23:59:59.000Z

    charging wind power projects for balancing services. 88 BPA,in balancing reserves with increased wind power penetrationin balancing reserves with increased wind power penetration

  3. 2012 Wind Technologies Market Report

    E-Print Network [OSTI]

    Wiser, Ryan

    2014-01-01T23:59:59.000Z

    Xcel Energy. 2011. Wind Induced Coal Plant Cyclingand the Implications of Wind Curtailment for Public Serviceof Colorado 2 GW and 3 GW Wind Integration Cost Study.

  4. Wind Farms in North America

    E-Print Network [OSTI]

    Hoen, Ben

    2014-01-01T23:59:59.000Z

    Opinion About Large Offshore Wind Power: Underlying Factors.Delaware Opinion on Offshore Wind Power - Interim Report.Newark, DE. 16 pages. Global Wind Energy Council (GWEC) (

  5. 2010 Wind Technologies Market Report

    E-Print Network [OSTI]

    Wiser, Ryan

    2012-01-01T23:59:59.000Z

    2011. In March 2011, NRG Bluewater Wind?s Delaware projectPurchaser Delmarva NRG Bluewater Wind (Delaware) Universitythe project, while NRG Bluewater would retain the remaining

  6. 2011 Wind Technologies Market Report

    E-Print Network [OSTI]

    Bolinger, Mark

    2013-01-01T23:59:59.000Z

    natural gas prices), pushed wind energy to the top of (andperformance, and price of wind energy, policy uncertainty –cost, performance, and price of wind energy, some of these

  7. WIND DATA REPORT Thompson Island

    E-Print Network [OSTI]

    Massachusetts at Amherst, University of

    WIND DATA REPORT Thompson Island December 1, 2004 ­ February 28, 2005 Prepared for Massachusetts.................................................................................................................... 10 Wind Speed Time Series........................................................................................................... 10 Wind Speed Distribution

  8. WIND DATA REPORT DARTMOUTH, MA

    E-Print Network [OSTI]

    Massachusetts at Amherst, University of

    WIND DATA REPORT DARTMOUTH, MA March 26th 2005 to May 31st 2005. Prepared for Massachusetts...................................................................................................................... 9 Wind Speed Time Series............................................................................................................. 9 Wind Speed Distributions

  9. WIND DATA REPORT FALMOUTH, MA

    E-Print Network [OSTI]

    Massachusetts at Amherst, University of

    WIND DATA REPORT FALMOUTH, MA June 1st 2004- May 31st 2005 Prepared for Massachusetts Technology.................................................................................................................... 10 Wind Speed Distributions......................................................................................................... 11 Monthly Average Wind Speeds

  10. WIND DATA REPORT Kingston, MA

    E-Print Network [OSTI]

    Massachusetts at Amherst, University of

    WIND DATA REPORT Kingston, MA March 1, 2006 - May 31, 2006 Prepared for Massachusetts Technology.................................................................................................................... 10 Wind Speed Time Series........................................................................................................... 11 Wind Speed Distributions.......

  11. WIND DATA REPORT Nantucket, MA

    E-Print Network [OSTI]

    Massachusetts at Amherst, University of

    WIND DATA REPORT Nantucket, MA September 1st 2005 to November 30th 2005. Prepared for Massachusetts.................................................................................................................... 10 Wind Speed Time Series........................................................................................................... 10 Wind Speed Distributions

  12. WIND DATA REPORT Wellfleet, MA

    E-Print Network [OSTI]

    Massachusetts at Amherst, University of

    WIND DATA REPORT Wellfleet, MA December 1st , 2006 ­ February 28th , 2007 Prepared...................................................................................................................... 8 Wind Speed Time Series............................................................................................................. 9 Wind Speed Distributions

  13. WIND DATA REPORT Nantucket, MA

    E-Print Network [OSTI]

    Massachusetts at Amherst, University of

    WIND DATA REPORT Nantucket, MA June 1st 2006 to August 31th 2006 Prepared for Massachusetts.................................................................................................................... 11 Wind Speed Time Series........................................................................................................... 11 Wind Speed D

  14. WIND DATA REPORT Truro, Massachusetts

    E-Print Network [OSTI]

    Massachusetts at Amherst, University of

    WIND DATA REPORT Truro, Massachusetts March 24th to May 31st , 2006 Prepared for Massachusetts.................................................................................................................... 11 Wind Speed Time Series........................................................................................................... 11 Wind Speed Distributions

  15. WIND DATA REPORT Chester, MA

    E-Print Network [OSTI]

    Massachusetts at Amherst, University of

    WIND DATA REPORT Chester, MA December 2006 ­ February 2007 Prepared for Massachusetts Technology...................................................................................................................... 9 Wind Speed Time Series........................................................................................................... 10 Wind Speed Distributions

  16. WIND DATA REPORT Brewster, Massachusetts

    E-Print Network [OSTI]

    Massachusetts at Amherst, University of

    WIND DATA REPORT Brewster, Massachusetts December 1, 2005 - February 28, 2006 Prepared.................................................................................................................... 11 Wind Speed Time Series........................................................................................................... 12 Wind Speed Di

  17. WIND DATA REPORT Truro, Massachusetts

    E-Print Network [OSTI]

    Massachusetts at Amherst, University of

    WIND DATA REPORT Truro, Massachusetts December, 2006 1st to February 28th , 2007 Prepared...................................................................................................................... 9 Wind Speed Time Series........................................................................................................... 10 Wind Speed Distributions

  18. WIND DATA REPORT Brewster, Massachusetts

    E-Print Network [OSTI]

    Massachusetts at Amherst, University of

    WIND DATA REPORT Brewster, Massachusetts June 1, 2006 - August 31, 2006 Prepared for Massachusetts.................................................................................................................... 11 Wind Speed Time Series........................................................................................................... 11 Wind Speed Di

  19. WIND DATA REPORT Chester, MA

    E-Print Network [OSTI]

    Massachusetts at Amherst, University of

    WIND DATA REPORT Chester, MA March 2007 ­ May 2007 Prepared for Massachusetts Technology...................................................................................................................... 8 Wind Speed Time Series........................................................................................................... 10 Wind Speed Distributions

  20. WIND DATA REPORT Chester, MA

    E-Print Network [OSTI]

    Massachusetts at Amherst, University of

    WIND DATA REPORT Chester, MA September ­ November 2006 Prepared for Massachusetts Technology.................................................................................................................... 10 Wind Speed Time Series........................................................................................................... 11 Wind Speed Distributions

  1. WIND DATA REPORT DARTMOUTH, MA

    E-Print Network [OSTI]

    Massachusetts at Amherst, University of

    WIND DATA REPORT DARTMOUTH, MA September 1st 2005 to November 30th 2005. Prepared for Massachusetts.................................................................................................................... 10 Wind Speed Time Series........................................................................................................... 10 Wind Speed Distributions

  2. WIND DATA REPORT Kingston, MA

    E-Print Network [OSTI]

    Massachusetts at Amherst, University of

    WIND DATA REPORT Kingston, MA December 1, 2005 - February 28, 2006 Prepared for Massachusetts.................................................................................................................... 10 Wind Speed Time Series........................................................................................................... 11 Wind Speed Distribution

  3. WIND DATA REPORT Brewster, Massachusetts

    E-Print Network [OSTI]

    Massachusetts at Amherst, University of

    WIND DATA REPORT Brewster, Massachusetts September 1, 2006 - November 30, 2006 Prepared.................................................................................................................... 11 Wind Speed Time Series........................................................................................................... 11 Wind Speed Distributions..................

  4. WIND DATA REPORT Nantucket, MA

    E-Print Network [OSTI]

    Massachusetts at Amherst, University of

    WIND DATA REPORT Nantucket, MA December 1st 2005 to February 28th 2006 Prepared for Massachusetts.................................................................................................................... 11 Wind Speed Time Series........................................................................................................... 11 Wind Speed Distributions

  5. WIND DATA REPORT Gardner NCCI

    E-Print Network [OSTI]

    Massachusetts at Amherst, University of

    WIND DATA REPORT Gardner NCCI March 1, 2007 ­ May 31, 2007 Prepared for Massachusetts Technology...................................................................................................................... 8 Wind Speed Time Series............................................................................................................. 9 Wind Speed Distributions

  6. WIND DATA REPORT FALMOUTH, MA

    E-Print Network [OSTI]

    Massachusetts at Amherst, University of

    WIND DATA REPORT FALMOUTH, MA Sep 1st 2004 to Nov 30th 2004. Prepared for Massachusetts Technology...................................................................................................................... 9 Wind Speed Time Series............................................................................................................. 9 Wind Speed Distributions

  7. WIND DATA REPORT Chester, MA

    E-Print Network [OSTI]

    Massachusetts at Amherst, University of

    WIND DATA REPORT Chester, MA June ­ August 2006 Prepared for Massachusetts Technology Collaborative.................................................................................................................... 10 Wind Speed Time Series........................................................................................................... 11 Wind Speed Distributions

  8. WIND DATA REPORT September 2005

    E-Print Network [OSTI]

    Massachusetts at Amherst, University of

    WIND DATA REPORT Lynn, MA September 2005 Prepared for Massachusetts Technology Collaborative 75.................................................................................................................... 11 Wind Speed Time Series........................................................................................................... 11 Monthly Average Wind Speeds

  9. WIND DATA REPORT Nantucket, MA

    E-Print Network [OSTI]

    Massachusetts at Amherst, University of

    WIND DATA REPORT Nantucket, MA June 1st 2005 to August 31st 2005. Prepared for Massachusetts.................................................................................................................... 10 Wind Speed Time Series........................................................................................................... 10 Wind Speed Distributions

  10. WIND DATA REPORT Truro, Massachusetts

    E-Print Network [OSTI]

    Massachusetts at Amherst, University of

    WIND DATA REPORT Truro, Massachusetts September 1st to November 30th , 2006 Prepared.................................................................................................................... 11 Wind Speed Time Series........................................................................................................... 11 Wind Speed Distributions

  11. WIND DATA REPORT Truro, Massachusetts

    E-Print Network [OSTI]

    Massachusetts at Amherst, University of

    WIND DATA REPORT Truro, Massachusetts June 1st to August 31st , 2006 Prepared for Massachusetts.................................................................................................................... 11 Wind Speed Time Series........................................................................................................... 11 Wind Speed Distributions

  12. WIND DATA REPORT DARTMOUTH, MA

    E-Print Network [OSTI]

    Massachusetts at Amherst, University of

    WIND DATA REPORT DARTMOUTH, MA June 1st 2005 to August 31st 2005. Prepared for Massachusetts.................................................................................................................... 10 Wind Speed Time Series........................................................................................................... 10 Wind Speed Distributions

  13. WIND DATA REPORT Brewster, Massachusetts

    E-Print Network [OSTI]

    Massachusetts at Amherst, University of

    WIND DATA REPORT Brewster, Massachusetts March 1, 2006 - May 31, 2006 Prepared for Massachusetts.................................................................................................................... 11 Wind Speed Time Series........................................................................................................... 11 Wind Speed Distributi

  14. WIND DATA REPORT Thompson Island

    E-Print Network [OSTI]

    Massachusetts at Amherst, University of

    WIND DATA REPORT Thompson Island September 1, 2004 ­ November 30, 2004 Prepared for Massachusetts.................................................................................................................... 11 Wind Speed Time Series........................................................................................................... 11 Wind Speed Distribution.............

  15. WIND DATA REPORT DARTMOUTH, MA

    E-Print Network [OSTI]

    Massachusetts at Amherst, University of

    WIND DATA REPORT DARTMOUTH, MA December 1st 2005 to February 28th 2006. Prepared for Massachusetts.................................................................................................................... 11 Wind Speed Time Series........................................................................................................... 11 Wind Speed Distributions

  16. WIND DATA REPORT Dartmouth, MA

    E-Print Network [OSTI]

    Massachusetts at Amherst, University of

    WIND DATA REPORT Dartmouth, MA March 1st 2006 to May 31th 2006 Prepared for Massachusetts.................................................................................................................... 11 Wind Speed Time Series........................................................................................................... 11 Wind Speed Distributions

  17. WIND DATA REPORT Wellfleet, MA

    E-Print Network [OSTI]

    Massachusetts at Amherst, University of

    WIND DATA REPORT Wellfleet, MA March 1st , 2007 ­ May 31st , 2007 Prepared for Massachusetts...................................................................................................................... 8 Wind Speed Time Series............................................................................................................. 9 Wind Speed Distributions

  18. WIND DATA REPORT Gardner NCCI

    E-Print Network [OSTI]

    Massachusetts at Amherst, University of

    WIND DATA REPORT Gardner NCCI September 1, 2007 ­ November 30, 2007 Prepared for Massachusetts...................................................................................................................... 8 Wind Speed Time Series............................................................................................................. 9 Wind Speed Distributions

  19. WIND DATA REPORT Thompson Island

    E-Print Network [OSTI]

    Massachusetts at Amherst, University of

    WIND DATA REPORT Thompson Island March 1, 2005 ­ May 31, 2005 Prepared for Massachusetts Technology.................................................................................................................... 10 Wind Speed Time Series........................................................................................................... 10 Wind Speed Distribution

  20. WIND DATA REPORT Chester, MA

    E-Print Network [OSTI]

    Massachusetts at Amherst, University of

    WIND DATA REPORT Chester, MA April 14 ­ May 31, 2006 Prepared for Massachusetts Technology.................................................................................................................... 10 Wind Speed Time Series........................................................................................................... 11 Wind Speed Distributions

  1. WIND DATA REPORT FALMOUTH, MA

    E-Print Network [OSTI]

    Massachusetts at Amherst, University of

    WIND DATA REPORT FALMOUTH, MA Dec 1st 2004 to Feb 28th 2005. Prepared for Massachusetts Technology ...................................................................................................................... 9 Wind Speed Time Series............................................................................................................. 9 Wind Speed Distributions

  2. WIND DATA REPORT FALMOUTH, MA

    E-Print Network [OSTI]

    Massachusetts at Amherst, University of

    WIND DATA REPORT FALMOUTH, MA March 1st 2005 to May 31st 2005. Prepared for Massachusetts...................................................................................................................... 9 Wind Speed Time Series............................................................................................................. 9 Wind Speed Distributions

  3. WIND DATA REPORT Dartmouth, MA

    E-Print Network [OSTI]

    Massachusetts at Amherst, University of

    WIND DATA REPORT Dartmouth, MA June 1st 2006 to July 31th 2006 Prepared for Massachusetts.................................................................................................................... 11 Wind Speed Time Series........................................................................................................... 11 Wind Speed Distributions

  4. WIND DATA REPORT Gardner NCCI

    E-Print Network [OSTI]

    Massachusetts at Amherst, University of

    WIND DATA REPORT Gardner NCCI June 1, 2007 ­ August 31, 2007 Prepared for Massachusetts Technology...................................................................................................................... 8 Wind Speed Time Series............................................................................................................. 9 Wind Speed Distributions

  5. 2011 Wind Technologies Market Report

    E-Print Network [OSTI]

    Bolinger, Mark

    2013-01-01T23:59:59.000Z

    studies show that wind energy integration costs are below $do not represent wind energy generation costs. This sectioncomponent of the overall cost of wind energy, but can vary

  6. 2008 WIND TECHNOLOGIES MARKET REPORT

    E-Print Network [OSTI]

    Bolinger, Mark

    2010-01-01T23:59:59.000Z

    do not represent wind energy generation costs. Based on thisproduction-cost reduction value of wind energy, without anwith wind energy. Generally, these costs are associated with

  7. 2011 Wind Technologies Market Report

    E-Print Network [OSTI]

    Bolinger, Mark

    2013-01-01T23:59:59.000Z

    performance, and price of wind energy, policy uncertainty –The wind energy integration, transmission, and policyand absent supportive policies for wind energy. That said,

  8. 2010 Wind Technologies Market Report

    E-Print Network [OSTI]

    Wiser, Ryan

    2012-01-01T23:59:59.000Z

    The wind energy integration, transmission, and policy2012, however, federal policy towards wind energy remainsin federal policy towards wind energy after 2012 places such

  9. 2009 Wind Technologies Market Report

    E-Print Network [OSTI]

    Wiser, Ryan

    2010-01-01T23:59:59.000Z

    The wind energy integration, transmission, and policyPTC. Moreover, federal policy towards wind energy remainsand policy announcements demonstrate accelerated activity in the offshore wind energy

  10. WIND DATA REPORT Nantucket, MA

    E-Print Network [OSTI]

    Massachusetts at Amherst, University of

    WIND DATA REPORT Nantucket, MA March 1st 2006 to May 31th 2006 Prepared for Massachusetts.................................................................................................................... 11 Wind Speed Time Series........................................................................................................... 11 Wind Speed Distribut

  11. 2010 Wind Technologies Market Report

    E-Print Network [OSTI]

    Wiser, Ryan

    2012-01-01T23:59:59.000Z

    Market Report vii potential wind energy generation withinthat nearly 8% of potential wind energy generation withinAreas, in GWh (and % of potential wind generation) Electric

  12. 2009 Wind Technologies Market Report

    E-Print Network [OSTI]

    Wiser, Ryan

    2010-01-01T23:59:59.000Z

    capacity), with 17% of all potential wind energy generationthat roughly 17% of potential wind energy generation withinexample, roughly 1% of potential wind energy output in 2009

  13. Q-Winds satellite hurricane wind retrievals and H*Wind comparisons

    E-Print Network [OSTI]

    Hennon, Christopher C.

    of the hurricane surface winds from NOAA and U.S. Air Force Weather Squadron aircraft flights. Further, results1 Q-Winds satellite hurricane wind retrievals and H*Wind comparisons Pet Laupattarakasem and W This paper presents a new hurricane ocean vector wind (OVW) product known as Q-Winds produced from the SeaWinds

  14. Active load control techniques for wind turbines.

    SciTech Connect (OSTI)

    van Dam, C.P. (University of California, Davis, CA); Berg, Dale E.; Johnson, Scott J. (University of California, Davis, CA)

    2008-07-01T23:59:59.000Z

    This report provides an overview on the current state of wind turbine control and introduces a number of active techniques that could be potentially used for control of wind turbine blades. The focus is on research regarding active flow control (AFC) as it applies to wind turbine performance and loads. The techniques and concepts described here are often described as 'smart structures' or 'smart rotor control'. This field is rapidly growing and there are numerous concepts currently being investigated around the world; some concepts already are focused on the wind energy industry and others are intended for use in other fields, but have the potential for wind turbine control. An AFC system can be broken into three categories: controls and sensors, actuators and devices, and the flow phenomena. This report focuses on the research involved with the actuators and devices and the generated flow phenomena caused by each device.

  15. BNL Direct Wind Superconducting Magnets

    SciTech Connect (OSTI)

    Parker, B.; Anerella, M.; Escallier, J.; Ghosh, A.; Jain, A.; Marone, A.; Muratore, A.; Wanderer, P.

    2011-09-12T23:59:59.000Z

    BNL developed Direct Wind magnet technology is used to create a variety of complex multi-functional multi-layer superconducting coil structures without the need for creating custom production tooling and fixturing for each new project. Our Direct Wind process naturally integrates prestress into the coil structure so external coil collars and yokes are not needed; the final coil package transverse size can then be very compact. Direct Wind magnets are produced with very good field quality via corrections applied during the course of coil winding. The HERA-II and BEPC-II Interaction Region (IR) magnet, J-PARC corrector and Alpha antihydrogen magnetic trap magnets and our BTeV corrector magnet design are discussed here along with a full length ILC IR prototype magnet presently in production and the coils that were wound for an ATF2 upgrade at KEK. A new IR septum magnet design concept for a 6.2 T combined-function IR magnet for eRHIC, a future RHIC upgrade, is introduced here.

  16. Wind Power Career Chat

    SciTech Connect (OSTI)

    Not Available

    2011-01-01T23:59:59.000Z

    This document will teach students about careers in the wind energy industry. Wind energy, both land-based and offshore, is expected to provide thousands of new jobs in the next several decades. Wind energy companies are growing rapidly to meet America's demand for clean, renewable, and domestic energy. These companies need skilled professionals. Wind power careers will require educated people from a variety of areas. Trained and qualified workers manufacture, construct, operate, and manage wind energy facilities. The nation will also need skilled researchers, scientists, and engineers to plan and develop the next generation of wind energy technologies.

  17. Wind energy information guide

    SciTech Connect (OSTI)

    NONE

    1996-04-01T23:59:59.000Z

    This book is divided into nine chapters. Chapters 1--8 provide background and annotated references on wind energy research, development, and commercialization. Chapter 9 lists additional sources of printed information and relevant organizations. Four indices provide alphabetical access to authors, organizations, computer models and design tools, and subjects. A list of abbreviations and acronyms is also included. Chapter topics include: introduction; economics of using wind energy; wind energy resources; wind turbine design, development, and testing; applications; environmental issues of wind power; institutional issues; and wind energy systems development.

  18. Wind power today

    SciTech Connect (OSTI)

    NONE

    1998-04-01T23:59:59.000Z

    This publication highlights initiatives of the US DOE`s Wind Energy Program. 1997 yearly activities are also very briefly summarized. The first article describes a 6-megawatt wind power plant installed in Vermont. Another article summarizes technical advances in wind turbine technology, and describes next-generation utility and small wind turbines in the planning stages. A village power project in Alaska using three 50-kilowatt turbines is described. Very brief summaries of the Federal Wind Energy Program and the National Wind Technology Center are also included in the publication.

  19. EA-1726: Kahuku Wind Power, LLC Wind Power Generation Facility...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    6: Kahuku Wind Power, LLC Wind Power Generation Facility, O'ahu, HI EA-1726: Kahuku Wind Power, LLC Wind Power Generation Facility, O'ahu, HI May 3, 2010 EA-1726: Final...

  20. 2008 Wind Energy Projects, Wind Powering America (Poster)

    SciTech Connect (OSTI)

    Not Available

    2009-01-01T23:59:59.000Z

    The Wind Powering America program produces a poster at the end of every calendar year that depicts new U.S. wind energy projects. The 2008 poster includes the following projects: Stetson Wind Farm in Maine; Dutch Hill Wind Farm in New York; Grand Ridge Wind Energy Center in Illinois; Hooper Bay, Alaska; Forestburg, South Dakota; Elbow Creek Wind Project in Texas; Glacier Wind Farm in Montana; Wray, Colorado; Smoky Hills Wind Farm in Kansas; Forbes Park Wind Project in Massachusetts; Spanish Fork, Utah; Goodland Wind Farm in Indiana; and the Tatanka Wind Energy Project on the border of North Dakota and South Dakota.

  1. ARMA systems in wind engineering Yousun Li and A. Kareem

    E-Print Network [OSTI]

    Kareem, Ahsan

    ARMA systems in wind engineering Yousun Li and A. Kareem Structural Aerodynamics and Ocean System The time domain solution of the equations of motion of structures subjected to a stochastic wind field histories of the aerodynamic force. Recently, autoregressive and moving average (ARMA) recursive models have

  2. Hurricane Katrina Wind Investigation Report

    SciTech Connect (OSTI)

    Desjarlais, A. O.

    2007-08-15T23:59:59.000Z

    This investigation of roof damage caused by Hurricane Katrina is a joint effort of the Roofing Industry Committee on Weather Issues, Inc. (RICOWI) and the Oak Ridge National Laboratory/U.S. Department of Energy (ORNL/DOE). The Wind Investigation Program (WIP) was initiated in 1996. Hurricane damage that met the criteria of a major windstorm event did not materialize until Hurricanes Charley and Ivan occurred in August 2004. Hurricane Katrina presented a third opportunity for a wind damage investigation in August 29, 2005. The major objectives of the WIP are as follows: (1) to investigate the field performance of roofing assemblies after major wind events; (2) to factually describe roofing assembly performance and modes of failure; and (3) to formally report results of the investigations and damage modes for substantial wind speeds The goal of the WIP is to perform unbiased, detailed investigations by credible personnel from the roofing industry, the insurance industry, and academia. Data from these investigations will, it is hoped, lead to overall improvement in roofing products, systems, roofing application, and durability and a reduction in losses, which may lead to lower overall costs to the public. This report documents the results of an extensive and well-planned investigative effort. The following program changes were implemented as a result of the lessons learned during the Hurricane Charley and Ivan investigations: (1) A logistics team was deployed to damage areas immediately following landfall; (2) Aerial surveillance--imperative to target wind damage areas--was conducted; (3) Investigation teams were in place within 8 days; (4) Teams collected more detailed data; and (5) Teams took improved photographs and completed more detailed photo logs. Participating associations reviewed the results and lessons learned from the previous investigations and many have taken the following actions: (1) Moved forward with recommendations for new installation procedures; (2) Updated and improved application guidelines and manuals from associations and manufacturers; (3) Launched certified product installer programs; and (4) Submitted building code changes to improve product installation. Estimated wind speeds at the damage locations came from simulated hurricane models prepared by Applied Research Associates of Raleigh, North Carolina. A dynamic hurricane wind field model was calibrated to actual wind speeds measured at 12 inland and offshore stations. The maximum estimated peak gust wind speeds in Katrina were in the 120-130 mph range. Hurricane Katrina made landfall near Grand Isle, Louisiana, and traveled almost due north across the city of New Orleans. Hurricane winds hammered the coastline from Houma, Louisiana, to Pensacola, Florida. The severe flooding problems in New Orleans made it almost impossible for the investigating teams to function inside the city. Thus the WIP investigations were all conducted in areas east of the city. The six teams covered the coastal areas from Bay Saint Louis, Mississippi, on the west to Pascagoula, Mississippi, on the east. Six teams involving a total of 25 persons documented damage to both low slope and steep slope roofing systems. The teams collected specific information on each building examined, including type of structure (use or occupancy), wall construction, roof type, roof slope, building dimensions, roof deck, insulation, construction, and method of roof attachment. In addition, the teams noted terrain exposure and the estimated wind speeds at the building site from the Katrina wind speed map. With each team member assigned a specific duty, they described the damage in detail and illustrated important features with numerous color photos. Where possible, the points of damage initiation were identified and damage propagation described. Because the wind speeds in Katrina at landfall, where the investigations took place, were less than code-specified design speeds, one would expect roof damage to be minimal. One team speculated that damage to all roofs in the area they examined was les

  3. 2010 Wind Technologies Market Report

    E-Print Network [OSTI]

    Wiser, Ryan

    2012-01-01T23:59:59.000Z

    AWEA?s Wind Energy Weekly, DOE/EPRI?s Turbine Verification10% Wind Energy Penetration New large-scale 9 wind turbineswind energy continues to decline as a result of lower wind turbine

  4. 2011 Wind Technologies Market Report

    E-Print Network [OSTI]

    Bolinger, Mark

    2013-01-01T23:59:59.000Z

    AWEA’s Wind Energy Weekly, DOE/EPRI’s Turbine Verification10% Wind Energy Penetration New large-scale 8 wind turbinesTurbine Market Report. Washington, D.C. : American Wind Energy

  5. Sandia Energy - Wind Plant Optimization

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Wind Plant Optimization Home Stationary Power Energy Conversion Efficiency Wind Energy Wind Plant Optimization Wind Plant OptimizationTara Camacho-Lopez2015-05-29T21:33:21+00:00...

  6. Wind Wave Float

    Broader source: Energy.gov (indexed) [DOE]

    Water Power Peer Review WindWaveFloat Alla Weinstein Principle Power, Inc. aweinstein@principlepowerinc.com November 1, 2011 2 | Wind and Water Power Program eere.energy.gov...

  7. Wind Energy Act (Maine)

    Broader source: Energy.gov [DOE]

    The Maine Wind Energy Act is a summary of legislative findings that indicate the state's strong interest in promoting the development of wind energy and establish the state's desire to ease the...

  8. Residential Wind Power

    E-Print Network [OSTI]

    Willis, Gary

    2011-12-16T23:59:59.000Z

    This research study will explore the use of residential wind power and associated engineering and environmental issues. There is various wind power generating devices available to the consumer. The study will discuss the dependencies of human...

  9. Airplane and the wind

    E-Print Network [OSTI]

    Airplane and the wind. An airplane starts from the point A and flies to B. The speed of the airplane with respect to the air is v (constant). There is also a wind of

  10. See the Wind

    Broader source: Energy.gov (indexed) [DOE]

    See the Wind Grades: 5-8 , 9-12 Topic: Wind Energy Owner: Kidwind Project This educational material is brought to you by the U.S. Department of Energy's Office of Energy Efficiency...

  11. Wind JOC Conference - Wind Control Changes

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    1 Wind Control Changes JOC August 10, 2012 Presentation updated on July 30, 2012 at 11:00 AM B O N N E V I L L E P O W E R A D M I N I S T R A T I O N 2 Wind Control Changes B O N...

  12. WP2 IEA Wind Task 26:The Past and Future Cost of Wind Energy

    E-Print Network [OSTI]

    Lantz, Eric

    2014-01-01T23:59:59.000Z

    Prospects for Offshore Wind Farms. ” Wind Engineering, 28:Techniques for Offshore Wind Farms. ” Journal of Solar

  13. Kent County- Wind Ordinance

    Broader source: Energy.gov [DOE]

    This ordinance establishes provisions and standards for small wind energy systems in various zoning districts in Kent County, Maryland.

  14. Wind Webinar Text Version

    Broader source: Energy.gov [DOE]

    Download the text version of the audio from the DOE Office of Indian Energy webinar on wind renewable energy.

  15. 2012 Wind Technologies Market Report

    E-Print Network [OSTI]

    Wiser, Ryan

    2014-01-01T23:59:59.000Z

    regulation and frequency response services charge to wind energyRegulation and Frequency Response Service rate for wind energy

  16. Wind Farms in North America

    E-Print Network [OSTI]

    Hoen, Ben

    2014-01-01T23:59:59.000Z

    Opinion About Large Offshore Wind Power: Underlying Factors.Delaware Opinion on Offshore Wind Power - Interim Report.

  17. 2010 Wind Technologies Market Report

    E-Print Network [OSTI]

    Wiser, Ryan

    2012-01-01T23:59:59.000Z

    space constraints. Ohio: The Lake Erie Energy DevelopmentGreat Lakes Ohio Wind, and Great Lakes Wind Energy LLC. In

  18. 2008 WIND TECHNOLOGIES MARKET REPORT

    E-Print Network [OSTI]

    Bolinger, Mark

    2010-01-01T23:59:59.000Z

    of larger balancing areas, the use of regional wind powerbalancing areas. The successful use of regional wind power

  19. 2009 Wind Technologies Market Report

    E-Print Network [OSTI]

    Wiser, Ryan

    2010-01-01T23:59:59.000Z

    directly charging wind power projects for balancing servicesin smaller balancing areas. The successful use of wind power

  20. Wind Economic Development (Postcard)

    SciTech Connect (OSTI)

    Not Available

    2011-08-01T23:59:59.000Z

    The U.S. Department of Energy's Wind Powering America initiative provides information on the economic development benefits of wind energy. This postcard is a marketing piece that stakeholders can provide to interested parties; it will guide them to the economic development benefits section on the Wind Powering America website.

  1. Wind farm electrical system

    DOE Patents [OSTI]

    Erdman, William L.; Lettenmaier, Terry M.

    2006-07-04T23:59:59.000Z

    An approach to wind farm design using variable speed wind turbines with low pulse number electrical output. The output of multiple wind turbines are aggregated to create a high pulse number electrical output at a point of common coupling with a utility grid network. Power quality at each individual wind turbine falls short of utility standards, but the aggregated output at the point of common coupling is within acceptable tolerances for utility power quality. The approach for aggregating low pulse number electrical output from multiple wind turbines relies upon a pad mounted transformer at each wind turbine that performs phase multiplication on the output of each wind turbine. Phase multiplication converts a modified square wave from the wind turbine into a 6 pulse output. Phase shifting of the 6 pulse output from each wind turbine allows the aggregated output of multiple wind turbines to be a 24 pulse approximation of a sine wave. Additional filtering and VAR control is embedded within the wind farm to take advantage of the wind farm's electrical impedence characteristics to further enhance power quality at the point of common coupling.

  2. Wind power outlook 2006

    SciTech Connect (OSTI)

    anon.

    2006-04-15T23:59:59.000Z

    This annual brochure provides the American Wind Energy Association's up-to-date assessment of the wind industry in the United States. This 2006 general assessment shows positive signs of growth, use and acceptance of wind energy as a vital component of the U.S. energy mix.

  3. Wind Turbine Competition Introduction

    E-Print Network [OSTI]

    Wang, Xiaorui "Ray"

    Wind Turbine Competition Introduction: The Society of Hispanic Professional Engineers, SHPE at UTK, wishes to invite you to participate in our first `Wind Turbine' competition as part of Engineer's Week). You will be evaluated by how much power your wind turbine generates at the medium setting of our fan

  4. Offshore Wind Geoff Sharples

    E-Print Network [OSTI]

    Kammen, Daniel M.

    Offshore Wind Geoff Sharples geoff@clearpathenergyllc.com #12;Frequently Unanswered Ques?ons · Why don't "they" build more offshore wind? · Why not make States Cape Wind PPA at 18 c/kWh #12;The cycle of non-innova?on Offshore

  5. CONGRESSIONAL BRIEFING Offshore Wind

    E-Print Network [OSTI]

    Firestone, Jeremy

    CONGRESSIONAL BRIEFING Offshore Wind Lessons Learned from Europe: Reducing Costs and Creating Jobs Thursday, June 12, 2014 Capitol Visitors Center, Room SVC 215 Enough offshore wind capacity to power six the past decade. What has Europe learned that is applicable to a U.S. effort to deploy offshore wind off

  6. Why do meteorologists use wind vanes? Wind vanes are used to determine the direction of the wind. Wind

    E-Print Network [OSTI]

    Nebraska-Lincoln, University of

    Fun Facts Why do meteorologists use wind vanes? Wind vanes are used to determine the direction of the wind. Wind· vanes are also called weather vanes. What do wind vanes look like on a weather station? Wind vanes that are on weather stations look a lot like the one you· made! The biggest differences

  7. Wind Turbine Shutdowns and Upgrades in Denmark: Timing Decisions and the Impact of Government Policy

    E-Print Network [OSTI]

    Lin, C.-Y. Cynthia

    Wind Turbine Shutdowns and Upgrades in Denmark: Timing Decisions and the Impact of Government structural econometric model of wind turbine owners' decisions about whether and when to add new turbines the underlying profit structure for wind producers and evaluate the impact of technology and government policy

  8. Ris-R-Report Grid fault and design-basis for wind turbines -

    E-Print Network [OSTI]

    of the new grid connection requirements for the fatigue and ultimate structural loads of wind turbines analysis for fatigue and ultimate structural loads, respectively, have been performed and compared for two variable speed wind turbines to produce power at wind speeds higher than 25m/s and up to 50m/s without

  9. A Cyberinfrastructure for Integrated Monitoring and Life-Cycle Management of Wind Turbines

    E-Print Network [OSTI]

    Stanford University

    A Cyberinfrastructure for Integrated Monitoring and Life-Cycle Management of Wind Turbines Kay Abstract. Integrating structural health monitoring into life-cycle management strategies for wind turbines data) can effectively be used to capture the operational and structural behavior of wind turbines

  10. Wind energy applications guide

    SciTech Connect (OSTI)

    anon.

    2001-01-01T23:59:59.000Z

    The brochure is an introduction to various wind power applications for locations with underdeveloped transmission systems, from remote water pumping to village electrification. It includes an introductory section on wind energy, including wind power basics and system components and then provides examples of applications, including water pumping, stand-alone systems for home and business, systems for community centers, schools, and health clinics, and examples in the industrial area. There is also a page of contacts, plus two specific example applications for a wind-diesel system for a remote station in Antarctica and one on wind-diesel village electrification in Russia.

  11. Wind energy conversion system

    DOE Patents [OSTI]

    Longrigg, Paul (Golden, CO)

    1987-01-01T23:59:59.000Z

    The wind energy conversion system includes a wind machine having a propeller connected to a generator of electric power, the propeller rotating the generator in response to force of an incident wind. The generator converts the power of the wind to electric power for use by an electric load. Circuitry for varying the duty factor of the generator output power is connected between the generator and the load to thereby alter a loading of the generator and the propeller by the electric load. Wind speed is sensed electro-optically to provide data of wind speed upwind of the propeller, to thereby permit tip speed ratio circuitry to operate the power control circuitry and thereby optimize the tip speed ratio by varying the loading of the propeller. Accordingly, the efficiency of the wind energy conversion system is maximized.

  12. Great Plains Wind Energy Transmission Development Project

    SciTech Connect (OSTI)

    Brad G. Stevens, P.E.; Troy K. Simonsen; Kerryanne M. Leroux

    2012-06-09T23:59:59.000Z

    In fiscal year 2005, the Energy & Environmental Research Center (EERC) received funding from the U.S. Department of Energy (DOE) to undertake a broad array of tasks to either directly or indirectly address the barriers that faced much of the Great Plains states and their efforts to produce and transmit wind energy at the time. This program, entitled Great Plains Wind Energy Transmission Development Project, was focused on the central goal of stimulating wind energy development through expansion of new transmission capacity or development of new wind energy capacity through alternative market development. The original task structure was as follows: Task 1 - Regional Renewable Credit Tracking System (later rescoped to Small Wind Turbine Training Center); Task 2 - Multistate Transmission Collaborative; Task 3 - Wind Energy Forecasting System; and Task 4 - Analysis of the Long-Term Role of Hydrogen in the Region. As carried out, Task 1 involved the creation of the Small Wind Turbine Training Center (SWTTC). The SWTTC, located Grand Forks, North Dakota, consists of a single wind turbine, the Endurance S-250, on a 105-foot tilt-up guyed tower. The S-250 is connected to the electrical grid on the 'load side' of the electric meter, and the power produced by the wind turbine is consumed locally on the property. Establishment of the SWTTC will allow EERC personnel to provide educational opportunities to a wide range of participants, including grade school through college-level students and the general public. In addition, the facility will allow the EERC to provide technical training workshops related to the installation, operation, and maintenance of small wind turbines. In addition, under Task 1, the EERC hosted two small wind turbine workshops on May 18, 2010, and March 8, 2011, at the EERC in Grand Forks, North Dakota. Task 2 involved the EERC cosponsoring and aiding in the planning of three transmission workshops in the midwest and western regions. Under Task 3, the EERC, in collaboration with Meridian Environmental Services, developed and demonstrated the efficacy of a wind energy forecasting system for use in scheduling energy output from wind farms for a regional electrical generation and transmission utility. With the increased interest at the time of project award in the production of hydrogen as a critical future energy source, many viewed hydrogen produced from wind-generated electricity as an attractive option. In addition, many of the hydrogen production-related concepts involve utilization of energy resources without the need for additional electrical transmission. For this reason, under Task 4, the EERC provided a summary of end uses for hydrogen in the region and focused on one end product in particular (fertilizer), including several process options and related economic analyses.

  13. West Winds Wind Farm | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are beingZealand Jump to:Ezfeedflag JumpID-fTri GlobalJump to: navigation,Goff,Holt WindInformationWestWinds Wind

  14. the risk issue of wind measurement for wind turbine operation

    E-Print Network [OSTI]

    Leu, Tzong-Shyng "Jeremy"

    Sciences, National Taiwan University #12;outline · Wind measurement in meteorology and wind farm design-related issues on wind turbine operation 3/31/2011 2 #12;WIND MEASUREMENT IN METEOROLOGY & WIND FARM DESIGN 3.brainybetty.com 11 wind farm at ChangHwa Coastal Industrial Park 70m wind tower 70m 50m 30m 10m #12;1 2 3 4 5 1 (70M

  15. Wind Tunnel Tests of Parabolic Trough Solar Collectors: March 2001--August 2003

    SciTech Connect (OSTI)

    Hosoya, N.; Peterka, J. A.; Gee, R. C.; Kearney, D.

    2008-05-01T23:59:59.000Z

    Conducted extensive wind-tunnel tests on parabolic trough solar collectors to determine practical wind loads applicable to structural design for stress and deformation, and local component design for concentrator reflectors.

  16. Design Considerations for Monopile Founded Offshore Wind Turbines Subject to Breaking Waves

    E-Print Network [OSTI]

    Owens, Garrett Reese 1987-

    2012-11-26T23:59:59.000Z

    The majority of offshore wind farms utilize monopile substructures. As these wind farms are typically located in water depths less than 30 meters, the effect of breaking waves on these structures is of great concern to design engineers...

  17. DAMAGE DETECTION METHODS ON WIND TURBINE BLADE TESTING WITH WIRED AND WIRELESS ACCELEROMETER SENSORS

    E-Print Network [OSTI]

    Paris-Sud XI, Université de

    DAMAGE DETECTION METHODS ON WIND TURBINE BLADE TESTING WITH WIRED AND WIRELESS ACCELEROMETER turbine blade. We compare the data collected from the wireless sensors against wired sensors for nonstationary blade excitations. KEYWORDS : Structural Health Monitoring, Damage Detection, Wind Turbine

  18. Design Considerations for Monopile Founded Offshore Wind Turbines Subject to Breaking Waves 

    E-Print Network [OSTI]

    Owens, Garrett Reese 1987-

    2012-11-26T23:59:59.000Z

    The majority of offshore wind farms utilize monopile substructures. As these wind farms are typically located in water depths less than 30 meters, the effect of breaking waves on these structures is of great concern to design engineers...

  19. WindWaveFloat Final Report

    SciTech Connect (OSTI)

    Alla Weinstein, Dominique Roddier, Kevin Banister

    2012-03-30T23:59:59.000Z

    Principle Power Inc. and National Renewable Energy Lab (NREL) have completed a contract to assess the technical and economic feasibility of integrating wave energy converters into the WindFloat, resulting in a new concept called the WindWaveFloat (WWF). The concentration of several devices on one platform could offer a potential for both economic and operational advantages. Wind and wave energy converters can share the electrical cable and power transfer equipment to transport the electricity to shore. Access to multiple generation devices could be simplified, resulting in cost saving at the operational level. Overall capital costs may also be reduced, provided that the design of the foundation can be adapted to multiple devices with minimum modifications. Finally, the WindWaveFloat confers the ability to increase energy production from individual floating support structures, potentially leading to a reduction in levelized energy costs, an increase in the overall capacity factor, and greater stability of the electrical power delivered to the grid. The research conducted under this grant investigated the integration of several wave energy device types into the WindFloat platform. Several of the resulting system designs demonstrated technical feasibility, but the size and design constraints of the wave energy converters (technical and economic) make the WindWaveFloat concept economically unfeasible at this time. Not enough additional generation could be produced to make the additional expense associated with wave energy conversion integration into the WindFloat worthwhile.

  20. Duration Test Report for the Viryd CS8 Wind Turbine

    SciTech Connect (OSTI)

    Roadman, J.; Murphy, M.; van Dam, J.

    2013-06-01T23:59:59.000Z

    This report summarizes the results of a duration noise test that the National Renewable Energy Laboratory (NREL) conducted on the Viryd CS8 wind turbine. This test was conducted in accordance with Clause 9.4 of the International Electrotechnical Commission's (IEC) standard, Wind turbines - Part 2: Design requirements for small wind turbines, IEC 61400-2 Ed. 2.0:2006-03. NREL researchers evaluated the turbine based on structural integrity and material degradation, quality of environmental protection, and dynamic behavior.

  1. Wind Resource Assessment in Europe Using Emergy

    E-Print Network [OSTI]

    Paudel, Subodh; Santarelli, Massimo; Martin, Viktoria; Lacarriere, Bruno; Le Corre, Olivier

    2014-01-01T23:59:59.000Z

    Wind energy assessment and wind farm simulation in Triunfo- Pernambuco, Brazil,wind resources for electrical energy production. Wind resources as- sessment of Brazil

  2. Sandia Energy - Wind & Water Power Newsletter

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Wind & Water Power Newsletter Home Stationary Power Energy Conversion Efficiency Wind Energy Resources Wind & Water Power Newsletter Wind & Water Power NewsletterTara...

  3. High Energy Studies of Pulsar Wind Nebulae

    E-Print Network [OSTI]

    Patrick Slane

    2008-11-12T23:59:59.000Z

    The extended nebulae formed as pulsar winds expand into their surroundings provide information about the composition of the winds, the injection history from the host pulsar, and the material into which the nebulae are expanding. Observations from across the electromagnetic spectrum provide constraints on the evolution of the nebulae, the density and composition of the surrounding ejecta, the geometry of the systems, the formation of jets, and the maximum energy of the particles in the nebulae. Here I provide a broad overview of the structure of pulsar wind nebulae, with specific examples that demonstrate our ability to constrain the above parameters. The association of pulsar wind nebulae with extended sources of very high energy gamma-ray emission are investigated, along with constraints on the nature of such high energy emission.

  4. Wind Tunnel Building - 3 

    E-Print Network [OSTI]

    Unknown

    2005-06-30T23:59:59.000Z

    1 Energy Systems Laboratory 1 A METHODOLOGY FOR CALCULATING EMISSIONS REDUCTIONS FROM RENEWABLE ENERGY PROGRAMS AND ITS APPLICATION TO THE WIND FARMS IN THE TEXAS ERCOT REGION Zi Liu, Jeff Haberl, Juan-Carlos Baltazar, Kris Subbarao, Charles... on Sweetwater I Wind Farm Capacity Factor Analysis Application to All Wind Farms Uncertainty Analysis Emissions Reduction Summary Energy Systems Laboratory 3 SUMMARYEMISSIONS REDUCTION UNCERTAINTY ANALYSIS APPLICATIONMETHODOLOGYINTRODUCTION Background...

  5. Wind Energy and Spatial Technology

    E-Print Network [OSTI]

    Schweik, Charles M.

    2/3/2011 1 Wind Energy and Spatial Technology Lori Pelech Why Wind Energy? A clean, renewable 2,600 tons of carbon emissions annually ­ The economy · Approximately 85,000 wind energy workers to Construct a Wind Farm... Geo-Spatial Components of Wind Farm Development Process Selecting a Project Site

  6. Wind Engineering & Natural Disaster Mitigation

    E-Print Network [OSTI]

    Denham, Graham

    Wind Engineering & Natural Disaster Mitigation For more than 45 years, Western University has been internationally recognized as the leading university for wind engineering and wind- related research. Its of environmental disaster mitigation, with specific strengths in wind and earthquake research. Boundary Layer Wind

  7. Proceedings Nordic Wind Power Conference

    E-Print Network [OSTI]

    Estimation of Possible Power for Wind Plant Control Power Fluctuations from Offshore Wind Farms; Model Validation System grounding of wind farm medium voltage cable grids Faults in the Collection Grid of Offshore systems of wind turbines and wind farms. NWPC presents the newest research results related to technical

  8. Enabling Wind Power Nationwide

    Office of Environmental Management (EM)

    hub heights of 110 meters (m) (which are already in wide commercial deployment in Germany and other European countries), the technical potential for wind deployment is...

  9. Allegany County Wind Ordinance

    Broader source: Energy.gov [DOE]

    This ordinance sets requirements for industrial wind energy conversion systems. These requirements include minimum separation distances, setback requirements, electromagnetic interference analysis ...

  10. Talkin’ Bout Wind Generation

    Broader source: Energy.gov [DOE]

    The amount of electricity generated by the wind industry started to grow back around 1999, and since 2007 has been increasing at a rapid pace.

  11. Enabling Wind Power Nationwide

    Office of Environmental Management (EM)

    including natural gas, and competing renewable power resources such as solar photovoltaics. Figure 4-3. Wind turbine hub height trends in Germany from 2007 to 2014 Source:...

  12. Accelerating Offshore Wind Development

    Broader source: Energy.gov [DOE]

    Today the Energy Department announced investments in seven offshore wind demonstration projects. Check out our map to see where these projects will be located.

  13. wind_guidance

    Broader source: Energy.gov [DOE]

    Guidance to Accompany Non-Availability Waiver of the Recovery Act Buy American Provisions for 5kW and 50kW Wind Turbines

  14. Barstow Wind Turbine Project

    Broader source: Energy.gov [DOE]

    Presentation covers the Barstow Wind Turbine project for the Federal Utility Partnership Working Group (FUPWG) meeting, held on November 18-19, 2009.

  15. Vertical axis wind turbines

    DOE Patents [OSTI]

    Krivcov, Vladimir (Miass, RU); Krivospitski, Vladimir (Miass, RU); Maksimov, Vasili (Miass, RU); Halstead, Richard (Rohnert Park, CA); Grahov, Jurij (Miass, RU)

    2011-03-08T23:59:59.000Z

    A vertical axis wind turbine is described. The wind turbine can include a top ring, a middle ring and a lower ring, wherein a plurality of vertical airfoils are disposed between the rings. For example, three vertical airfoils can be attached between the upper ring and the middle ring. In addition, three more vertical airfoils can be attached between the lower ring and the middle ring. When wind contacts the vertically arranged airfoils the rings begin to spin. By connecting the rings to a center pole which spins an alternator, electricity can be generated from wind.

  16. Wind | Department of Energy

    Office of Environmental Management (EM)

    in the world. To stay competitive in this sector, the Energy Department invests in wind projects, both on land and offshore, to advance technology innovations, create job...

  17. Northern Wind Farm

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    facilities to accommodate the interconnection. The EA also includes a review of the potential environmental impacts of Northern Wind, LLC, constructing, operating, and...

  18. Wind Power Today, 2010, Wind and Water Power Program (WWPP)

    SciTech Connect (OSTI)

    Not Available

    2010-05-01T23:59:59.000Z

    Wind Power Today is an annual publication that provides an overview of the wind energy research conducted by the U.S. Department of Energy Wind and Water Power Program.

  19. DOE Offers Conditional Commitment to Cape Wind Offshore Wind...

    Broader source: Energy.gov (indexed) [DOE]

    step toward issuing a 150 million loan guarantee to support the construction of the Cape Wind offshore wind project with a conditional commitment to Cape Wind Associates, LLC. The...

  20. Toward Controlled Wind Farm Output: Adjustable Power Filtering

    E-Print Network [OSTI]

    Lehn, Peter W.

    wind energy is extracted by the turbine blades. CP depends on the tip-speed ratio, , defined as = Rh structure for a fully-rated converter interfaced wind turbine. A singular perturbations decomposition the static curve that describes the aerodynamic conversion of energy by the bladed turbine rotor

  1. Introduction to the Wind Energy Science, Engineering, and Policy (WESEP)

    E-Print Network [OSTI]

    McCalley, James D.

    Introduction to the Wind Energy Science, Engineering, and Policy (WESEP) Real-Time Research Seminar concepts of "Advanced Wind Energy Concepts." Will use a text plus... · Each student takes 2-3 lectures. · I acceptable evidence that a problem is indeed solved? · What organizational structures and modes of human

  2. Kahuku Wind Power (First Wind) | Department of Energy

    Office of Environmental Management (EM)

    The project employs the integration of Clipper LibertyTM wind turbine generators and a control system to more efficiently integrate wind power with the utility's power grid....

  3. American Wind Energy Association Wind Energy Finance and Investment Seminar

    Broader source: Energy.gov [DOE]

    The American Wind Energy Association Wind Energy Finance and Investment Seminar will be attended by representatives in the financial sector, businesses, bankers, government and other nonprofit...

  4. WIND POWER PROGRAM WIND PROGRAM ACCOMPLISHMENTS U.S. Department...

    Office of Environmental Management (EM)

    capturing more wind than ever before through the installation of innovative offshore wind turbines and systems in U.S. waters, the Atmosphere to Electrons initiative which...

  5. Public Acceptance of Wind: Foundational Study Near US Wind Facilities

    Wind Powering America (EERE)

    Group * Energy Analysis and Environmental Impacts Department Public Acceptance of Wind Power Ben Hoen Lawrence Berkeley National Laboratory WindExchange Webinar June 17, 2015...

  6. 20% Wind Energy by 2030 - Chapter 2: Wind Turbine Technology...

    Energy Savers [EERE]

    Wind Energy's Contribution to U.S. Electricity Supply Testing, Manufacturing, and Component Development Projects U.S. Offshore Wind Manufacturing and Supply Chain Development...

  7. Fort Carson Wind Resource Assessment

    SciTech Connect (OSTI)

    Robichaud, R.

    2012-10-01T23:59:59.000Z

    This report focuses on the wind resource assessment, the estimated energy production of wind turbines, and economic potential of a wind turbine project on a ridge in the southeastern portion of the Fort Carson Army base.

  8. 2010 Wind Technologies Market Report

    E-Print Network [OSTI]

    Wiser, Ryan

    2012-01-01T23:59:59.000Z

    and the drop in wind power plant installations, for example,the decrease in new wind power plant construction. A GrowingRelative Economics of Wind Power Plants Installed in Recent

  9. 2011 Wind Technologies Market Report

    E-Print Network [OSTI]

    Bolinger, Mark

    2013-01-01T23:59:59.000Z

    and the drop in wind power plant installations since 2009and the drop in wind power plant installations since 2009towers used in U.S. wind power plants increases from 80% in

  10. 2010 Wind Technologies Market Report

    E-Print Network [OSTI]

    Wiser, Ryan

    2012-01-01T23:59:59.000Z

    ET2/TL-08-1474. May 19, 2010 Wind Technologies Market ReportAssociates. 2010. SPP WITF Wind Integration Study. Little10, 2010. David, A. 2009. Wind Turbines: Industry and Trade

  11. 2011 Wind Technologies Market Report

    E-Print Network [OSTI]

    Bolinger, Mark

    2013-01-01T23:59:59.000Z

    Associates. 2010. SPP WITF Wind Integration Study. LittlePool. David, A. 2011. U.S. Wind Turbine Trade in a Changing2011. David, A. 2010. Impact of Wind Energy Installations on

  12. 2011 Wind Technologies Market Report

    E-Print Network [OSTI]

    Bolinger, Mark

    2013-01-01T23:59:59.000Z

    Public Service Wind Integration Cost Impact Study. Preparedused to estimate wind integration costs and the ability toColorado 2 GW and 3 GW Wind Integration Cost Study. Denver,

  13. Wind Farms in North America

    E-Print Network [OSTI]

    Hoen, Ben

    2014-01-01T23:59:59.000Z

    Economic Analysis of a Wind Farm in Nantucket Sound. BeaconP. and Mueller, A. (2010) Wind Farm Announcements and RuralProposed Rail Splitter Wind Farm. Prepared for Hinshaw &

  14. 2008 WIND TECHNOLOGIES MARKET REPORT

    E-Print Network [OSTI]

    Bolinger, Mark

    2010-01-01T23:59:59.000Z

    to natural gas. 2008 Wind Technologies Market Report 1% windforward gas market. 2008 Wind Technologies Market Report 4.Market Report Wind Penetration (Capacity Basis) Arizona Public Service Avista Utilities California RPS Idaho Power Xcel-PSCo-2008 at 2006 Gas

  15. 2009 Wind Technologies Market Report

    E-Print Network [OSTI]

    Wiser, Ryan

    2010-01-01T23:59:59.000Z

    forward gas market. 2009 Wind Technologies Market Report TheMarket Report Wind Penetration (Capacity Basis) Xcel-PSCo-2008 at 2006 Gasgas facilities run at even lower capacity factors. 2009 Wind Technologies Market Report

  16. 2011 Wind Technologies Market Report

    E-Print Network [OSTI]

    Bolinger, Mark

    2013-01-01T23:59:59.000Z

    Technologies Market Report Wind Gas Coal Other Renewablethe forward gas market. 2011 Wind Technologies Market ReportMarket Report Nameplate Capacity (GW) Entered queue in 2011 Total in queue at end of 2011 Wind Natural Gas

  17. 2009 Wind Technologies Market Report

    E-Print Network [OSTI]

    Wiser, Ryan

    2010-01-01T23:59:59.000Z

    AWEA’s Wind Energy Weekly, DOE/EPRI’s Turbine Verification10% Wind Energy Penetration New large-scale 10 wind turbineswind energy became more challenging, orders for new turbines

  18. Wind Farms in North America

    E-Print Network [OSTI]

    Hoen, Ben

    2014-01-01T23:59:59.000Z

    P. and Mueller, A. (2010) Wind Farm Announcements and RuralProposed Rail Splitter Wind Farm. Prepared for Hinshaw &Economic Analysis of a Wind Farm in Nantucket Sound. Beacon

  19. 2009 Wind Technologies Market Report

    E-Print Network [OSTI]

    Wiser, Ryan

    2010-01-01T23:59:59.000Z

    natural gas prices), pushed wind energy from the bottom toover the cost and price of wind energy that it receives. Asweighted-average price of wind energy in 1999 was $65/MWh (

  20. 2008 WIND TECHNOLOGIES MARKET REPORT

    E-Print Network [OSTI]

    Bolinger, Mark

    2010-01-01T23:59:59.000Z

    natural gas prices, though the economic value of wind energyenergy and climate policy initiatives. With wind turbine pricesprices reported here would be at least $20/MWh higher without the PTC), they do not represent wind energy

  1. 2010 Wind Technologies Market Report

    E-Print Network [OSTI]

    Wiser, Ryan

    2012-01-01T23:59:59.000Z

    weighted-average price of wind energy in 1999 was roughly $reduced near-term price expectations, wind energy?s primaryelectricity prices in 2009 pushed wind energy to the top of

  2. 2009 Wind Technologies Market Report

    E-Print Network [OSTI]

    Wiser, Ryan

    2010-01-01T23:59:59.000Z

    AWEA). 2010b. AWEA Small Wind Turbine Global Market Survey,html David, A. 2009. Wind Turbines: Industry and Tradewhich new large-scale wind turbines were installed in 2009 (

  3. 2011 Wind Technologies Market Report

    E-Print Network [OSTI]

    Bolinger, Mark

    2013-01-01T23:59:59.000Z

    shows that 8.5% of potential wind energy generation withinin GWh (and as a % of potential wind generation) Electricreport also laid out a potential wind power deployment path

  4. Community Wind: Once Again Pushing the Envelope of Project Finance

    SciTech Connect (OSTI)

    bolinger, Mark A.

    2011-01-18T23:59:59.000Z

    In the United States, the 'community wind' sector - loosely defined here as consisting of relatively small utility-scale wind power projects that sell power on the wholesale market and that are developed and owned primarily by local investors - has historically served as a 'test bed' or 'proving grounds' for up-and-coming wind turbine manufacturers that are trying to break into the U.S. wind power market. For example, community wind projects - and primarily those located in the state of Minnesota - have deployed the first U.S. installations of wind turbines from Suzlon (in 2003), DeWind (2008), Americas Wind Energy (2008) and later Emergya Wind Technologies (2010), Goldwind (2009), AAER/Pioneer (2009), Nordic Windpower (2010), Unison (2010), and Alstom (2011). Thus far, one of these turbine manufacturers - Suzlon - has subsequently achieved some success in the broader U.S. wind market as well. Just as it has provided a proving grounds for new turbines, so too has the community wind sector served as a laboratory for experimentation with innovative new financing structures. For example, a variation of one of the most common financing arrangements in the U.S. wind market today - the special allocation partnership flip structure (see Figure 1 in Section 2.1) - was first developed by community wind projects in Minnesota more than a decade ago (and is therefore sometimes referred to as the 'Minnesota flip' model) before being adopted by the broader wind market. More recently, a handful of community wind projects built over the past year have been financed via new and creative structures that push the envelope of wind project finance in the U.S. - in many cases, moving beyond the now-standard partnership flip structures involving strategic tax equity investors. These include: (1) a 4.5 MW project in Maine that combines low-cost government debt with local tax equity, (2) a 25.3 MW project in Minnesota using a sale/leaseback structure, (3) a 10.5 MW project in South Dakota financed by an intrastate offering of both debt and equity, (4) a 6 MW project in Washington state that taps into New Markets Tax Credits using an 'inverted' or 'pass-through' lease structure, and (5) a 9 MW project in Oregon that combines a variety of state and federal incentives and loans with unconventional equity from high-net-worth individuals. In most cases, these are first-of-their-kind structures that could serve as useful examples for other projects - both community and commercial wind alike. This report describes each of these innovative new financing structures in some detail, using a case-study approach. The purpose is twofold: (1) to disseminate useful information on these new financial structures, most of which are widely replicable; and (2) to highlight the recent policy changes - many of them temporary unless extended - that have facilitated this innovation. Although the community wind market is currently only a small sub-sector of the U.S. wind market - as defined here, less than 2% of the overall market at the end of 2009 (Wiser and Bolinger 2010) - its small size belies its relevance to the broader market. As such, the information provided in this report has relevance beyond its direct application to the community wind sector. The next two sections of this report briefly summarize how most community wind projects in the U.S. have been financed historically (i.e., prior to this latest wave of innovation) and describe the recent federal policy changes that have enabled a new wave of financial innovation to occur, respectively. Section 4 contains brief case studies of how each of the five projects mentioned above were financed, noting the financial significance of each. Finally, Section 5 concludes by distilling a number of general observations or pertinent lessons learned from the experiences of these five projects.

  5. Shocks and Wind Bubbles Around Energetic Pulsars

    E-Print Network [OSTI]

    Bryan M. Gaensler

    2004-05-14T23:59:59.000Z

    The Crab Nebula demonstrates that neutron stars can interact with their environments in spectacular fashion, their relativistic winds generating nebulae observable across the electromagnetic spectrum. At many previous conferences, astronomers have discussed, debated and puzzled over the complicated structures seen in the Crab, but have been limited to treating most other pulsar wind nebulae (PWNe) as simple calorimeters for a pulsar's spin-down energy. However, with the wealth of high-quality data which have now become available, this situation has changed dramatically. I here review some of the main observational themes which have emerged from these new measurements. Highlights include the ubiquity of pulsar termination shocks, the unambiguous presence of relativistic jets in PWNe, complicated time variability seen in PWN structures, and the use of bow shocks to probe the interaction of pulsar winds with the ambient medium.

  6. Carbon smackdown: wind warriors

    SciTech Connect (OSTI)

    Glen Dahlbacka of the Accelerator & Fusion Research Division and Ryan Wiser of the Environmental Energy Technologies Division are the speakers.

    2010-07-21T23:59:59.000Z

    July 16. 2010 carbon smackdown summer lecture: learn how Berkeley Lab scientists are developing wind turbines to be used in an urban setting, as well as analyzing what it will take to increase the adoption of wind energy in the U.S.

  7. VARIABLE SPEED WIND TURBINE

    E-Print Network [OSTI]

    Chatinderpal Singh

    Wind energy is currently the fastest-growing renewable source of energy in India; India is a key market for the wind industry, presenting substantial opportunities for both the international and domestic players. In India the research is carried out on wind energy utilization on big ways.There are still many unsolved challenges in expanding wind power, and there are numerous problems of interest to systems and control researchers. In this paper we study the pitch control mechanism of wind turbine. The pitch control system is one of the most widely used control techniques to regulate the output power of a wind turbine generator. The pitch angle is controlled to keep the generator power at rated power by reducing the angle of the blades. By regulating, the angle of stalling, fast torque changes from the wind will be reutilized. It also describes the design of the pitch controller and discusses the response of the pitch-controlled system to wind velocity variations. The pitch control system is found to have a large output power variation and a large settling time.

  8. Small Wind Information (Postcard)

    SciTech Connect (OSTI)

    Not Available

    2011-08-01T23:59:59.000Z

    The U.S. Department of Energy's Wind Powering America initiative maintains a website section devoted to information about small wind turbines for homeowners, ranchers, and small businesses. This postcard is a marketing piece that stakeholders can provide to interested parties; it will guide them to this online resource.

  9. Carbon smackdown: wind warriors

    ScienceCinema (OSTI)

    Glen Dahlbacka of the Accelerator & Fusion Research Division and Ryan Wiser of the Environmental Energy Technologies Division are the speakers.

    2010-09-01T23:59:59.000Z

    July 16. 2010 carbon smackdown summer lecture: learn how Berkeley Lab scientists are developing wind turbines to be used in an urban setting, as well as analyzing what it will take to increase the adoption of wind energy in the U.S.

  10. Diablo Winds Wind Farm | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are being directedAnnualPropertyd8c-a9ae-f8521cbb8489 No revision hasda62829c05bGabbs TypeWinds Wind Farm Jump to:

  11. Illinois Wind Workers Group

    SciTech Connect (OSTI)

    David G. Loomis

    2012-05-28T23:59:59.000Z

    The Illinois Wind Working Group (IWWG) was founded in 2006 with about 15 members. It has grown to over 200 members today representing all aspects of the wind industry across the State of Illinois. In 2008, the IWWG developed a strategic plan to give direction to the group and its activities. The strategic plan identifies ways to address critical market barriers to the further penetration of wind. The key to addressing these market barriers is public education and outreach. Since Illinois has a restructured electricity market, utilities no longer have a strong control over the addition of new capacity within the state. Instead, market acceptance depends on willing landowners to lease land and willing county officials to site wind farms. Many times these groups are uninformed about the benefits of wind energy and unfamiliar with the process. Therefore, many of the project objectives focus on conferences, forum, databases and research that will allow these stakeholders to make well-educated decisions.

  12. 2011 Wind Technologies Market Report

    E-Print Network [OSTI]

    Bolinger, Mark

    2013-01-01T23:59:59.000Z

    regulation and frequency response services charge for wind energyRegulation and Frequency Response Service that charges a higher rate for wind energy

  13. Wind Events | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Below is an industry calendar with meetings, conferences, and webinars of interest to the wind energy technology communities. IEA Wind Task 34 (WREN) Quarterly Webinar 3:...

  14. 2010 Wind Technologies Market Report

    E-Print Network [OSTI]

    Wiser, Ryan

    2012-01-01T23:59:59.000Z

    forward gas market. 2010 Wind Technologies Market Report 4.Market Report Entered queue in 2010 Total in queue at end of 2010 Nameplate Capacity (GW) Wind Natural Gas

  15. 2008 WIND TECHNOLOGIES MARKET REPORT

    E-Print Network [OSTI]

    Bolinger, Mark

    2010-01-01T23:59:59.000Z

    AWEA’s Wind Energy Weekly, DOE/EPRI’s Turbine VerificationTurbine Global Market Study: Year Ending 2008. Washington, DC: American Wind Energy

  16. Wind Energy Resources and Technologies

    Broader source: Energy.gov [DOE]

    This page provides a brief overview of wind energy resources and technologies supplemented by specific information to apply wind energy within the Federal sector.

  17. Large Wind Property Tax Reduction

    Broader source: Energy.gov [DOE]

    In 2001, North Dakota established property tax reductions for commercial wind turbines constructed before 2011. Originally, the law reduced the taxable value of centrally-assessed* wind turbines...

  18. 2012 Wind Technologies Market Report

    E-Print Network [OSTI]

    Wiser, Ryan

    2014-01-01T23:59:59.000Z

    wind power projects in the United States to date have been installed on land,on developing wind power projects on public lands. State

  19. 2011 Wind Technologies Market Report

    E-Print Network [OSTI]

    Bolinger, Mark

    2013-01-01T23:59:59.000Z

    wind power projects in the United States to date have been installed on land,of developing wind power projects on public lands. State

  20. 2.3-MW Medium-Voltage, Three-Level Wind Energy Inverter Applying a Unique Bus Structure and 4.5-kV Si/SiC Hybrid Isolated Power Modules: Preprint

    SciTech Connect (OSTI)

    Erdman, W.; Keller, J.; Grider, D.; VanBrunt, E.

    2014-11-01T23:59:59.000Z

    A high-efficiency, 2.3-MW, medium-voltage, three-level inverter utilizing 4.5-kV Si/SiC (silicon carbide) hybrid modules for wind energy applications is discussed. The inverter addresses recent trends in siting the inverter within the base of multimegawatt turbine towers. A simplified split, three-layer laminated bus structure that maintains low parasitic inductances is introduced along with a low-voltage, high-current test method for determining these inductances. Feed-thru bushings, edge fill methods, and other design features of the laminated bus structure provide voltage isolation that is consistent with the 10.4-kV module isolation levels. Inverter efficiency improvement is a result of the (essential) elimination of the reverse recovery charge present in 4.5-kV Si PIN diodes, which can produce a significant reduction in diode turn-off losses as well as insulated-gate bipolar transistor (IGBT) turn-on losses. The hybrid modules are supplied in industry-standard 140 mm x 130 mm and 190 mm x 130 mm packages to demonstrate direct module substitution into existing inverter designs. A focus on laminated bus/capacitor-bank/module subassembly level switching performance is presented.

  1. Assessment of research needs for wind turbine rotor materials technology

    SciTech Connect (OSTI)

    Not Available

    1991-01-01T23:59:59.000Z

    Wind-driven power systems is a renewable energy technology that is still in the early stages of development. Wind power plants installed in early 1980s suffered structural failures chiefly because of incomplete understanding of wind forces (turbulent), in some cases because of poor product quality. Failures of rotor blades are now somewhat better understood. This committee has examined the experience base accumulated by wind turbines and the R and D programs sponsored by DOE. It is concluded that a wind energy system such as is described is within the capability of engineering practice; however because of certain gaps in knowledge, and the presence of only one major integrated manufacturer of wind power machines in the USA, a DOE R and D investment is still required.

  2. History of, and recent progress in, wind-energy utilization

    SciTech Connect (OSTI)

    Soerensen, B. [Roskilde Univ. (Denmark)

    1995-11-01T23:59:59.000Z

    This review presents the current status of wind turbine technology and recent advances in understanding the long history of wind energy. Reasons for the convergence of technologies solutions towards a horizontal axis concept with two or three blades are discussed, and the advances in materials science are identified as determinants of the change toward increasing optimum turbine size. The modest environmental impacts of wind turbines are illustrated by recent life-cycle analyses, and the economic incentive structure and power buy-back rates in different countries are invoked to explain the variation in wind technology penetration in countries with similar resource potentials. Finally, the possible future role of wind technology is discussed, based on resource estimates, competing land demands, government commitments and technological trends, including the recent offshore wind farm developments. 83 refs., 15 figs., 6 tabs.

  3. Ris National Laboratory DTU Wind Energy Department

    E-Print Network [OSTI]

    wind speed, wind direction relative to the spinner and flow inclination angle. A wind tunnel concept anemometer is a wind measurement concept in which measurements of wind speed in the flow over a wind turbine on a modified 300kW wind turbine spinner, was mounted with three 1D sonic wind speed sensors. The flow around

  4. Wind Resource Assessment in Europe Using Emergy

    E-Print Network [OSTI]

    Paudel, Subodh; Santarelli, Massimo; Martin, Viktoria; Lacarriere, Bruno; Le Corre, Olivier

    2014-01-01T23:59:59.000Z

    potential on Hong Kong islands - an analysis of wind power and wind turbine characteristics, Renewable Energy,

  5. Control of Airborne Wind Energy Systems Based on Nonlinear Model Predictive Control & Moving Horizon Estimation

    E-Print Network [OSTI]

    Control of Airborne Wind Energy Systems Based on Nonlinear Model Predictive Control & Moving arising in the Airborne Wind Energy paradigm, an essential one is the control of the tethered airfoil], [3], the Airborne Wind Energy (AWE) paradigm shift proposes to get rid of the structural elements

  6. NREL's National Wind Technology Center provides the world's only dedicated turbine controls testing platforms.

    E-Print Network [OSTI]

    cost. Researchers at the National Wind Technology Center (NWTC) at the National Renewable EnergyNREL's National Wind Technology Center provides the world's only dedicated turbine controls testing platforms. Today's utility-scale wind turbine structures are more complex and their compo- nents more

  7. The Solar Wind: Probing the Heliosphere with Multiple Spacecraft John D. Richardson

    E-Print Network [OSTI]

    Richardson, John

    1 The Solar Wind: Probing the Heliosphere with Multiple Spacecraft John D. Richardson Center of the Voyager spacecraft in the outer heliosphere, Ulysses at high latitudes, and multiple solar wind monitors near Earth provides a unique opportunity to study the global structure and evolution of the solar wind

  8. QUANTITATIVE DAMAGE ASSESSMENT OF HYBRID COMPOSITE WIND TURBINE BLADES BY ENERGY BASED ACOUSTIC EMISSION SOURCE

    E-Print Network [OSTI]

    Boyer, Edmond

    QUANTITATIVE DAMAGE ASSESSMENT OF HYBRID COMPOSITE WIND TURBINE BLADES BY ENERGY BASED ACOUSTIC in the wind turbine blade. It was tried to apply a new source location method, which has a developed algorithm assessment, source location, wind turbine blade, hybrid composites INTRODUCTION Structural health management

  9. Session: Poster Session + Poster Award + Scientific Award + Excellent young wind doctor award (PO.180) Track: Technical

    E-Print Network [OSTI]

    .180) Track: Technical STOCHASTIC MODELS FOR STRENGTH OF WIND TURBINE BLADES USING TESTS (abstract Dalsgaard Sørensen, Denmark (1) (1) Risø DTU Structural cost of wind turbine blades is dependent and fatigue strength of wind turbine blades especially considering the influence of prior knowledge and tests

  10. A Critical Assessment of Computer Tools for Calculating Composite Wind Turbine Blade Properties

    E-Print Network [OSTI]

    Yu, Wenbin

    A Critical Assessment of Computer Tools for Calculating Composite Wind Turbine Blade Properties Hui assess several computer tools for calculating the inertial and structural properties of wind turbine, and a realistic composite wind turbine blade are used to evaluate the performance of different tools

  11. 10.1098/rsta.2003.1286 Foundations for o shore wind turbines

    E-Print Network [OSTI]

    Byrne, Byron

    10.1098/rsta.2003.1286 Foundations for o® shore wind turbines By B. W. Byrne a n d G. T. Houlsby will be to harvest electrical power from the vast energy reserves o®shore, through wind turbines or current or wave®shore wind turbines. A critical component is the connection of the structure to the ground, and in particular

  12. CONTINUOUS FATIGUE ASSESSMENT OF AN OFFSHORE WIND TURBINE USING A LIMITED NUMBER OF VIBRATION SENSORS

    E-Print Network [OSTI]

    Boyer, Edmond

    CONTINUOUS FATIGUE ASSESSMENT OF AN OFFSHORE WIND TURBINE USING A LIMITED NUMBER OF VIBRATION, Modal decomposition and expansion, Finite Element Model INTRODUCTION Offshore wind turbines are exposed locations along the structure. This is not the case though in monopile offshore wind turbines, where fatigue

  13. Incorporating Irregular Nonlinear Waves in Coupled Simulation of Offshore Wind Turbines

    E-Print Network [OSTI]

    Manuel, Lance

    Incorporating Irregular Nonlinear Waves in Coupled Simulation of Offshore Wind Turbines Puneet, and Environmental Engineering The University of Texas, Austin, TX 78712 Design of an offshore wind turbine requires on the support structure (monopile) of an offshore wind turbine. We present the theory for the irregular

  14. American Institute of Aeronautics and Astronautics Foundation Models for Offshore Wind Turbines

    E-Print Network [OSTI]

    Manuel, Lance

    American Institute of Aeronautics and Astronautics 1 Foundation Models for Offshore Wind Turbines of alternative models for monopile pile foundations for shallow-water offshore wind turbines has on extreme loads) is the most common type of foundation used today for offshore wind turbines; the support structure connects

  15. Wind Energy Program: Top 10 Program Accomplishments

    Broader source: Energy.gov [DOE]

    Brochure on the top accomplishments of the Wind Energy Program, including the development of large wind machines, small machines for the residential market, wind tunnel testing, computer codes for modeling wind systems, high definition wind maps, and successful collaborations.

  16. Saturation wind power potential and its implications for wind energy

    E-Print Network [OSTI]

    Saturation wind power potential and its implications for wind energy Mark Z. Jacobsona,1 at 10 km above ground in the jet streams assuming airborne wind energy devices ("jet stream the theoretical limit of wind energy available at these altitudes, particularly because some recent studies

  17. Reference wind farm selection for regional wind power prediction models

    E-Print Network [OSTI]

    Paris-Sud XI, Université de

    1 Reference wind farm selection for regional wind power prediction models Nils Siebert George.siebert@ensmp.fr, georges.kariniotakis@ensmp.fr Abstract Short-term wind power forecasting is recognized today as a major requirement for a secure and economic integration of wind generation in power systems. This paper deals

  18. Wind Energy at NREL's National Wind Technology Center

    SciTech Connect (OSTI)

    None

    2010-01-01T23:59:59.000Z

    It is a pure, plentiful natural resource. Right now wind is in high demand and it holds the potential to transform the way we power our homes and businesses. NREL is at the forefront of wind energy research and development. NREL's National Wind Technology Center (NWTC) is a world-class facility dedicated to accelerating and deploying wind technology.

  19. Quantifying Offshore Wind Resources from Satellite Wind Maps

    E-Print Network [OSTI]

    Pryor, Sara C.

    the spatial extent of the wake behind large offshore wind farms. Copyright © 2006 John Wiley & Sons, LtdQuantifying Offshore Wind Resources from Satellite Wind Maps: Study Area the North Sea C. B National Laboratory, Roskilde, Denmark Offshore wind resources are quantified from satellite synthetic

  20. Wind Energy at NREL's National Wind Technology Center

    ScienceCinema (OSTI)

    None

    2013-05-29T23:59:59.000Z

    It is a pure, plentiful natural resource. Right now wind is in high demand and it holds the potential to transform the way we power our homes and businesses. NREL is at the forefront of wind energy research and development. NREL's National Wind Technology Center (NWTC) is a world-class facility dedicated to accelerating and deploying wind technology.

  1. WIND ENERGY Wind Energ. 2013; 16:7790

    E-Print Network [OSTI]

    Papalambros, Panos

    energy industry lags far behind the wind energy industry, it has the potential to become a role player is equal to the long-term potential of onshore wind energy.1,2 Therefore, the utilisation of marineWIND ENERGY Wind Energ. 2013; 16:77­90 Published online 19 March 2012 in Wiley Online Library

  2. Basic Integrative Models for Offshore Wind Turbine Systems

    E-Print Network [OSTI]

    Aljeeran, Fares

    2012-07-16T23:59:59.000Z

    This research study developed basic dynamic models that can be used to accurately predict the response behavior of a near-shore wind turbine structure with monopile, suction caisson, or gravity-based foundation systems. The marine soil conditions...

  3. Session: Poster Session + Poster Award + Scientific Award + Excellent young wind doctor award (PO.96) Track: Technical

    E-Print Network [OSTI]

    full scale wind field measurements. Verification of the structural integrity of a wind turbine structure involves analysis of fatigue loading as well as of extreme loading. With the trend of persistently its structural integrity. Among these are the Extreme operating gust (EOG) load case, the Extreme

  4. Wind | Department of Energy

    Energy Savers [EERE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are being directed off Energy.gov. Are you sureReportsofDepartmentSeries |Attacksof EnergyWhenWindWind ResearchWind

  5. Small Wind Guidebook/What are the Basic Parts of a Small Wind...

    Open Energy Info (EERE)

    What are the Basic Parts of a Small Wind Electric System < Small Wind Guidebook Jump to: navigation, search Print PDF WIND ENERGY STAKEHOLDER ENGAGEMENT & OUTREACHSmall Wind...

  6. 20% Wind Energy by 2030 - Chapter 6: Wind Power Markets Summary...

    Energy Savers [EERE]

    6: Wind Power Markets Summary Slides 20% Wind Energy by 2030 - Chapter 6: Wind Power Markets Summary Slides Summary slides overviewing wind power markets, growth, applications, and...

  7. WP2 IEA Wind Task 26:The Past and Future Cost of Wind Energy

    E-Print Network [OSTI]

    Lantz, Eric

    2014-01-01T23:59:59.000Z

    Looking forward, offshore wind costs are generally expectedachieving the U.S. 20% wind cost and performance trajectoryDissecting Wind Turbine Costs. ” WindStats Newsletter (21:

  8. WP2 IEA Wind Task 26:The Past and Future Cost of Wind Energy

    E-Print Network [OSTI]

    Lantz, Eric

    2014-01-01T23:59:59.000Z

    Carbon Trust. (2008). Offshore Wind Power: Big Challenge,Financial Support for Offshore Wind. The UK Department ofCost Reduction Prospects for Offshore Wind Farms. ” Wind

  9. Pitch Error and Shear Web Disbond Detection on Wind Turbine Blades...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    American Institute of Aeronautics and Astronautics 1 Pitch Error and Shear Web Disbond Detection on Wind Turbine Blades for Offshore Structural Health and Prognostics Management...

  10. Mixed Mode Static and Fatigue Crack Growth in Wind Blade Paste Adhesives

    E-Print Network [OSTI]

    , static GIc and mixed mode fracture, and fatigue crack growth resistance. I. Introduction Wind turbine blades are large composite structures which are typically resin infusion molded in sections

  11. wind engineering & natural disaster mitigation

    E-Print Network [OSTI]

    Denham, Graham

    wind engineering & natural disaster mitigation #12;wind engineering & natural disaster mitigation Investment WindEEE Dome at Advanced Manufacturing Park $31million Insurance Research Lab for Better Homes $8million Advanced Facility for Avian Research $9million #12;wind engineering & natural disaster mitigation

  12. 2008 WIND TECHNOLOGIES MARKET REPORT

    E-Print Network [OSTI]

    Bolinger, Mark

    2010-01-01T23:59:59.000Z

    some wind turbine manufacturers experienced blade andwind turbine manufacturers: Vestas (nacelles, blades, and

  13. Community Wind Benefits (Fact Sheet)

    SciTech Connect (OSTI)

    Not Available

    2012-11-01T23:59:59.000Z

    This fact sheet explores the benefits of community wind projects, including citations to published research.

  14. 2008 WIND TECHNOLOGIES MARKET REPORT

    E-Print Network [OSTI]

    Bolinger, Mark

    2010-01-01T23:59:59.000Z

    Cost Analysis: Multi-Year Analysis Results and Recommendations. Consultant report prepared by the California Wind

  15. Kentish Flats Offshore Wind Farm

    E-Print Network [OSTI]

    Firestone, Jeremy

    Kentish Flats Offshore Wind Farm #12;By August 2005 the offshore wind farm at Kentish Flats plateau just outside the main Thames shipping lanes. The Kentish Flats wind farm will comprise 30 of the wind farm could be up to 90 MW. For the benefit of the environment The British Government has set

  16. Optimization of Wind Turbine Operation

    E-Print Network [OSTI]

    Optimization of Wind Turbine Operation by Use of Spinner Anemometer TF Pedersen, NN Sørensen, L Title: Optimization of Wind Turbine Operation by Use of Spinner Anemometer Department: Wind Energy prototype wind turbine. Statistics of the yaw error showed an average of about 10°. The average flow

  17. Wind Electrolysis: Hydrogen Cost Optimization

    SciTech Connect (OSTI)

    Saur, G.; Ramsden, T.

    2011-05-01T23:59:59.000Z

    This report describes a hydrogen production cost analysis of a collection of optimized central wind based water electrolysis production facilities. The basic modeled wind electrolysis facility includes a number of low temperature electrolyzers and a co-located wind farm encompassing a number of 3MW wind turbines that provide electricity for the electrolyzer units.

  18. Wind Plant Ramping Behavior

    SciTech Connect (OSTI)

    Ela, E.; Kemper, J.

    2009-12-01T23:59:59.000Z

    With the increasing wind penetrations, utilities and operators (ISOs) are quickly trying to understand the impacts on system operations and planning. This report focuses on ramping imapcts within the Xcel service region.

  19. Wind Energy Systems Exemption

    Broader source: Energy.gov [DOE]

    Tennessee House Bill 809, enacted into law in Public Chapter 377, Acts of 2003 and codified under Title 67, Chapter 5, states that wind energy systems operated by public utilities, businesses or...

  20. Wind Energy Permitting Standards

    Broader source: Energy.gov [DOE]

    All wind facilities larger than 0.5 megawatts (MW) that begin construction after July 1, 2010, must obtain a permit from any county in which the facility is located. Facilities must also obtain...

  1. Wind Turbines Benefit Crops

    ScienceCinema (OSTI)

    Takle, Gene

    2013-03-01T23:59:59.000Z

    Ames Laboratory associate scientist Gene Takle talks about research into the effect of wind turbines on nearby crops. Preliminary results show the turbines may have a positive effect by cooling and drying the crops and assisting with carbon dioxide uptake.

  2. Wind Agreements (Nebraska)

    Broader source: Energy.gov [DOE]

    These regulations address leases or lease options securing land for the study or production of wind-generated energy. The regulations describe agreement terms, compliance, and a prohibition on land...

  3. Suite for Wind Ensemble

    E-Print Network [OSTI]

    Oliver, Theodore

    2014-05-31T23:59:59.000Z

    "Suite for Wind Ensemble" consists of three movements, each of which contains a main theme and several smaller themes. Each main theme is introduced within the first minute of the movement, and the main themes from the ...

  4. Airborne Wind Turbine

    SciTech Connect (OSTI)

    None

    2010-09-01T23:59:59.000Z

    Broad Funding Opportunity Announcement Project: Makani Power is developing an Airborne Wind Turbine (AWT) that eliminates 90% of the mass of a conventional wind turbine and accesses a stronger, more consistent wind at altitudes of near 1,000 feet. At these altitudes, 85% of the country can offer viable wind resources compared to only 15% accessible with current technology. Additionally, the Makani Power wing can be economically deployed in deep offshore waters, opening up a resource which is 4 times greater than the entire U.S. electrical generation capacity. Makani Power has demonstrated the core technology, including autonomous launch, land, and power generation with an 8 meter wingspan, 20 kW prototype. At commercial scale, Makani Power aims to develop a 600 kW, 28 meter wingspan product capable of delivering energy at an unsubsidized cost competitive with coal, the current benchmark for low-cost power.

  5. Wind Turbines Benefit Crops

    SciTech Connect (OSTI)

    Takle, Gene

    2010-01-01T23:59:59.000Z

    Ames Laboratory associate scientist Gene Takle talks about research into the effect of wind turbines on nearby crops. Preliminary results show the turbines may have a positive effect by cooling and drying the crops and assisting with carbon dioxide uptake.

  6. After the Wind Storm 

    E-Print Network [OSTI]

    Unknown

    2011-09-05T23:59:59.000Z

    Solar and wind power can be economical and environmentally friendly ways to pump water for homes, irrigation and/or livestock water wells. This publication explains how these pumps work, the advantages and disadvantages of using renewable energy...

  7. Wind Tunnel Building - 1 

    E-Print Network [OSTI]

    Unknown

    2005-06-30T23:59:59.000Z

    This paper describes a simple graphic tool that enables a building designer to evaluate the potential for wind induced ventilation cooling in several climate zones. Long term weather data were analyzed to determine the conditions for which available...

  8. JOURNAL OF STRUCTURAL ENGINEERING / AUGUST 2000 / 989 EQUIVALENT STATIC BUFFETING LOADS ON STRUCTURES

    E-Print Network [OSTI]

    Kareem, Ahsan

    wind loading used in design is equal to the mean wind force multiplied by the GLF. Although on structures is treated as the mean wind force multiplied by the GLF as follows: ^ ¯P(z) = GP(z) (1) where force, differs significantly from the inertial wind loading that is related to the mass and mode shape

  9. Wind Tunnel Building - 7 

    E-Print Network [OSTI]

    Unknown

    2005-06-30T23:59:59.000Z

    DETERMINATION OF WIND FROM NIMBUS-6 SATELLITE SOUNDING DATA A Thesis by WILLIAM EVERETT CARLE Submitted to the Graduate College of Texas A&M University in partial fulfil!. ment of the requirement for the deg. . ec of MASTER OF SCIENCE... December 1979 Major Subject: Meteorology DETEIQ&INATION OE WIND PROS1 NINEDS-6 SATELLITE SOUNDING DATA A Thesis WILLIA11 EVERETT CARLE Aporoved as to style and content by: (Chairman of Commi tee) Nember) (Head of Department) December 1979...

  10. Previous Wind Power Announcements (generation/wind)

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level:Energy: Grid Integration Redefining What's Possible forPortsmouth/Paducah ProjectPRE-AWARDenergyEnergytransmission-rates Sign In About |Wind

  11. Fluid--Structure Interaction : : Physiologic Simulation of Pulsatile Ventricular Assist Devices using Isogeometric Analysis

    E-Print Network [OSTI]

    Long, Christopher Curtis

    2013-01-01T23:59:59.000Z

    for prebending of wind turbine blades. 89:323–336, 2012. [wind turbine rotors at full scale. Part II: Fluid– structure interaction modeling with composite blades.

  12. Winding for linear pump

    DOE Patents [OSTI]

    Kliman, G.B.; Brynsvold, G.V.; Jahns, T.M.

    1989-08-22T23:59:59.000Z

    A winding and method of winding for a submersible linear pump for pumping liquid sodium are disclosed. The pump includes a stator having a central cylindrical duct preferably vertically aligned. The central vertical duct is surrounded by a system of coils in slots. These slots are interleaved with magnetic flux conducting elements, these magnetic flux conducting elements forming a continuous magnetic field conduction path along the stator. The central duct has placed therein a cylindrical magnetic conducting core, this core having a cylindrical diameter less than the diameter of the cylindrical duct. The core once placed to the duct defines a cylindrical interstitial pumping volume of the pump. This cylindrical interstitial pumping volume preferably defines an inlet at the bottom of the pump, and an outlet at the top of the pump. Pump operation occurs by static windings in the outer stator sequentially conveying toroidal fields from the pump inlet at the bottom of the pump to the pump outlet at the top of the pump. The winding apparatus and method of winding disclosed uses multiple slots per pole per phase with parallel winding legs on each phase equal to or less than the number of slots per pole per phase. The slot sequence per pole per phase is chosen to equalize the variations in flux density of the pump sodium as it passes into the pump at the pump inlet with little or no flux and acquires magnetic flux in passage through the pump to the pump outlet. 4 figs.

  13. Winding for linear pump

    DOE Patents [OSTI]

    Kliman, Gerald B. (Schenectady, NY); Brynsvold, Glen V. (San Jose, CA); Jahns, Thomas M. (Schenectady, NY)

    1989-01-01T23:59:59.000Z

    A winding and method of winding for a submersible linear pump for pumping liquid sodium is disclosed. The pump includes a stator having a central cylindrical duct preferably vertically aligned. The central vertical duct is surrounded by a system of coils in slots. These slots are interleaved with magnetic flux conducting elements, these magnetic flux conducting elements forming a continuous magnetic field conduction path along the stator. The central duct has placed therein a cylindrical magnetic conducting core, this core having a cylindrical diameter less than the diameter of the cylindrical duct. The core once placed to the duct defines a cylindrical interstitial pumping volume of the pump. This cylindrical interstitial pumping volume preferably defines an inlet at the bottom of the pump, and an outlet at the top of the pump. Pump operation occurs by static windings in the outer stator sequentially conveying toroidal fields from the pump inlet at the bottom of the pump to the pump outlet at the top of the pump. The winding apparatus and method of winding disclosed uses multiple slots per pole per phase with parallel winding legs on each phase equal to or less than the number of slots per pole per phase. The slot sequence per pole per phase is chosen to equalize the variations in flux density of the pump sodium as it passes into the pump at the pump inlet with little or no flux and acquires magnetic flux in passage through the pump to the pump outlet.

  14. An experimental and numerical study of wind turbine seismic behavior

    E-Print Network [OSTI]

    Prowell, I.

    2011-01-01T23:59:59.000Z

    and Scope Wind energy is growing and turbines are regularlyfor Design of Wind Turbines. Wind Energy Department of Risøloads on wind turbines. ” European Wind Energy Conference

  15. Wind Powering America Podcasts, Wind Powering America (WPA)

    SciTech Connect (OSTI)

    Not Available

    2012-04-01T23:59:59.000Z

    Wind Powering America and the National Association of Farm Broadcasters produce a series of radio interviews featuring experts discussing wind energy topics. The interviews are aimed at a rural stakeholder audience and are available as podcasts. On the Wind Powering America website, you can access past interviews on topics such as: Keys to Local Wind Energy Development Success, What to Know about Installing a Wind Energy System on Your Farm, and Wind Energy Development Can Revitalize Rural America. This postcard is a marketing piece that stakeholders can provide to interested parties; it will guide them to this online resource for podcast episodes.

  16. The Wind Integration National Dataset (WIND) toolkit (Presentation)

    SciTech Connect (OSTI)

    Caroline Draxl: NREL

    2014-01-01T23:59:59.000Z

    Regional wind integration studies require detailed wind power output data at many locations to perform simulations of how the power system will operate under high penetration scenarios. The wind datasets that serve as inputs into the study must realistically reflect the ramping characteristics, spatial and temporal correlations, and capacity factors of the simulated wind plants, as well as being time synchronized with available load profiles.As described in this presentation, the WIND Toolkit fulfills these requirements by providing a state-of-the-art national (US) wind resource, power production and forecast dataset.

  17. Robi, Robichaud, Wind Technologies and Evolving Opportunities

    Broader source: Energy.gov (indexed) [DOE]

    RPS * Wind Technology Overview * Larger Rotors * Taller Towers * Improved Controls * Wind Resource * Improved Assessment 2 Innova+on for Our Energy Future National Wind Technology...

  18. ANNUAL WIND DATA REPORT Thompson Island

    E-Print Network [OSTI]

    Massachusetts at Amherst, University of

    ANNUAL WIND DATA REPORT Thompson Island March 1, 2002 ­ February 28, 2003 Prepared.................................................................................................................... 11 Wind Speed Time Series........................................................................................................... 11 Wind Speed Distributions

  19. Correlations in thermal comfort and natural wind

    E-Print Network [OSTI]

    Kang, Ki-Nam; Song, Doosam; Schiavon, Stefano

    2013-01-01T23:59:59.000Z

    Chaotic ?uctuation in natural wind and its application toof natural and mechanical wind in built environment usingcharacteristics of natural wind. Refrigeration 71 (821),

  20. Wind Turbine Acoustic Noise A white paper

    E-Print Network [OSTI]

    Massachusetts at Amherst, University of

    Wind Turbine Acoustic Noise A white paper Prepared by the Renewable Energy Research Laboratory...................................................................... 8 Sound from Wind Turbines .............................................................................................. 10 Sources of Wind Turbine Sound

  1. WIND DATA REPORT January -December, 2003

    E-Print Network [OSTI]

    Massachusetts at Amherst, University of

    WIND DATA REPORT Vinalhaven January - December, 2003 Prepared for Fox Islands Electric Cooperative...................................................................................................................... 9 Wind Speed Time Series............................................................................................................. 9 Wind Speed Distributions

  2. Strong wind forcing of the ocean

    E-Print Network [OSTI]

    Zedler, Sarah E.

    2007-01-01T23:59:59.000Z

    of mesoscale and steady wind driven 1. Introduction 2. Modelparameterization at high wind speeds 1. Introduction 2. DataSupplementary Formulae 1. Wind Stress 2. Rankine Vortex A .

  3. WIND DATA REPORT January -March, 2004

    E-Print Network [OSTI]

    Massachusetts at Amherst, University of

    WIND DATA REPORT Vinalhaven January - March, 2004 Prepared for Fox Islands Electric Cooperative...................................................................................................................... 9 Wind Speed Time Series............................................................................................................. 9 Wind Speed Distributions

  4. WIND DATA REPORT Deer Island Outfall

    E-Print Network [OSTI]

    Massachusetts at Amherst, University of

    WIND DATA REPORT Deer Island Outfall August 18, 2003 ­ December 4, 2003 Prepared for Massachusetts...................................................................................................................... 7 Wind Speed Time Series............................................................................................................. 7 Wind Speed Distributions

  5. WIND DATA REPORT Deer Island Parking Lot

    E-Print Network [OSTI]

    Massachusetts at Amherst, University of

    WIND DATA REPORT Deer Island Parking Lot May 1, 2003 ­ July 15, 2003 Prepared for Massachusetts...................................................................................................................... 7 Wind Speed Time Series............................................................................................................. 7 Wind Speed Distributions

  6. Advanced Coal Wind Hybrid: Economic Analysis

    E-Print Network [OSTI]

    Phadke, Amol

    2008-01-01T23:59:59.000Z

    Wind Integration Costs ..adequacy costs. Wind generation costs are also significantlyvalue. 3. We add wind integration cost to the levelized cost

  7. Wavelet Analysis for Wind Fields Estimation

    E-Print Network [OSTI]

    Leite, Gladeston C.

    2013-01-01T23:59:59.000Z

    resource assessment and wind farm development in the UK. Inevaluation of oil spills and wind farms. Keywords: SAR; Winddata to characterize wind farms and their potential energy

  8. Sandia National Laboratories: Offshore Wind Energy Simulation...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Offshore Wind Energy Simulation Toolkit Sandia Vertical-Axis Wind-Turbine Research Presented at Science of Making Torque from Wind Conference On July 8, 2014, in Computational...

  9. Wind Resource Assessment in Europe Using Emergy

    E-Print Network [OSTI]

    Paudel, Subodh; Santarelli, Massimo; Martin, Viktoria; Lacarriere, Bruno; Le Corre, Olivier

    2014-01-01T23:59:59.000Z

    of the Northern Europe offshore wind resource, Journal ofof theoretical offshore wind farm for Jacksonville, Florida,interesting areas for offshore wind farm construction and

  10. Advanced Coal Wind Hybrid: Economic Analysis

    E-Print Network [OSTI]

    Phadke, Amol

    2008-01-01T23:59:59.000Z

    Coal Wind Hybrid: Economic Analysis additional cost of fuelWind Hybrid: Economic Analysis Levelized Generation CostCoal Wind Hybrid: Economic Analysis Notes: All Cost are in

  11. Wind Webinar Presentation Slides | Department of Energy

    Office of Environmental Management (EM)

    Wind Webinar Presentation Slides Wind Webinar Presentation Slides Download presentation slides from the DOE Office of Indian Energy webinar on wind renewable energy. DOE Office of...

  12. Advanced Coal Wind Hybrid: Economic Analysis

    E-Print Network [OSTI]

    Phadke, Amol

    2008-01-01T23:59:59.000Z

    of Figures Figure ES-1. Advanced Coal Wind Hybrid: Basicviii Figure 1. Advanced-Coal Wind Hybrid: Basic21 Figure 6. Comparison of ACWH and CCGT-Wind

  13. Wind Resource Assessment in Europe Using Emergy

    E-Print Network [OSTI]

    Paudel, Subodh; Santarelli, Massimo; Martin, Viktoria; Lacarriere, Bruno; Le Corre, Olivier

    2014-01-01T23:59:59.000Z

    of theoretical offshore wind farm for Jacksonville, Florida,interesting areas for offshore wind farm construction andof theoretical offshore wind farm on Jacksonville, Florida

  14. WIND DATA REPORT Quincy DPW, MA

    E-Print Network [OSTI]

    Massachusetts at Amherst, University of

    WIND DATA REPORT Quincy DPW, MA September 1st 2006 to November 30th 2006 Prepared for Massachusetts.................................................................................................................... 11 Wind Speed Time Series........................................................................................................... 11 Wind Speed Distributions

  15. WIND DATA REPORT Bishop and Clerks

    E-Print Network [OSTI]

    Massachusetts at Amherst, University of

    WIND DATA REPORT Bishop and Clerks March 1, 2005 ­ May 31, 2005 Prepared for Massachusetts.................................................................................................................... 11 Wind Speed Time Series........................................................................................................... 11 Wind Speed Distributions

  16. WIND DATA REPORT Quincy Quarry Hills

    E-Print Network [OSTI]

    Massachusetts at Amherst, University of

    WIND DATA REPORT Quincy Quarry Hills December 2006 to February 2007 Prepared for Massachusetts...................................................................................................................... 9 Wind Speed Time Series........................................................................................................... 10 Wind Speed Distributions

  17. WIND DATA REPORT Quincy DPW, MA

    E-Print Network [OSTI]

    Massachusetts at Amherst, University of

    WIND DATA REPORT Quincy DPW, MA June 1st 2006 to August 31st 2006 Prepared for Massachusetts.................................................................................................................... 11 Wind Speed Time Series........................................................................................................... 11 Wind Speed Distributions

  18. WIND DATA REPORT Quincy Quarry Hills

    E-Print Network [OSTI]

    Massachusetts at Amherst, University of

    WIND DATA REPORT Quincy Quarry Hills March 2007 to May 2007 Prepared for Massachusetts Technology...................................................................................................................... 8 Wind Speed Time Series............................................................................................................. 9 Wind Speed Distributions

  19. WIND DATA REPORT Rockport School Complex

    E-Print Network [OSTI]

    Massachusetts at Amherst, University of

    WIND DATA REPORT Rockport School Complex Rockport, Massachusetts March 1, 2006 ­ May 31, 2007...................................................................................................................... 9 Wind Speed Time Series........................................................................................................... 10 Wind Speed Distributions

  20. WIND DATA REPORT Quincy DPW, MA

    E-Print Network [OSTI]

    Massachusetts at Amherst, University of

    WIND DATA REPORT Quincy DPW, MA March 1st 2007 to May 31st 2007 Prepared for Massachusetts...................................................................................................................... 8 Wind Speed Time Series............................................................................................................. 9 Wind Speed Distributions

  1. WIND DATA REPORT Tisbury, Martha's Vineyard,

    E-Print Network [OSTI]

    Massachusetts at Amherst, University of

    WIND DATA REPORT Tisbury, Martha's Vineyard, Massachusetts September 1, 2007 ­ November 30, 2007...................................................................................................................... 8 Wind Speed Time Series............................................................................................................. 9 Wind Speed Distributions

  2. WIND DATA REPORT Rockport School Complex

    E-Print Network [OSTI]

    Massachusetts at Amherst, University of

    WIND DATA REPORT Rockport School Complex Rockport, Massachusetts December 1st , 2007 ­ February 29...................................................................................................................... 9 Wind Speed Time Series........................................................................................................... 10 Wind Speed Distributions

  3. WIND DATA REPORT Rockport School Complex

    E-Print Network [OSTI]

    Massachusetts at Amherst, University of

    WIND DATA REPORT Rockport School Complex Rockport, Massachusetts September 1, 2005 - November 31.................................................................................................................... 12 Wind Speed Time Series........................................................................................................... 12 Wind Speed Distributions

  4. WIND DATA REPORT Rockport School Complex

    E-Print Network [OSTI]

    Massachusetts at Amherst, University of

    WIND DATA REPORT Rockport School Complex Rockport, Massachusetts June 1, 2007 ­ August 31, 2007...................................................................................................................... 9 Wind Speed Time Series........................................................................................................... 10 Wind Speed Distributions

  5. WIND DATA REPORT December, 2004 28th

    E-Print Network [OSTI]

    Massachusetts at Amherst, University of

    WIND DATA REPORT Orleans 1st December, 2004 ­28th February, 2005 Prepared for Massachusetts...................................................................................................................... 9 Wind Speed Time Series............................................................................................................. 9 Wind Speed Distributions.......................................................................................................

  6. WIND DATA REPORT Rockport School Complex

    E-Print Network [OSTI]

    Massachusetts at Amherst, University of

    WIND DATA REPORT Rockport School Complex Rockport, Massachusetts December 1, 2006 ­ February 28...................................................................................................................... 9 Wind Speed Time Series........................................................................................................... 10 Wind Speed Distributions

  7. Helping Policymakers Evaluate Distributed Wind Options | Department...

    Energy Savers [EERE]

    distributed wind-wind turbines installed at homes, farms, and busi-nesses. Distributed wind allows Americans to generate their own clean electricity and cut their energy bills,...

  8. Sandia Energy - Continuous Reliability Enhancement for Wind ...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Enhancement for Wind (CREW): Project Update Home Renewable Energy Energy News Wind Energy News & Events Systems Analysis Continuous Reliability Enhancement for Wind (CREW):...

  9. Active Power Controls from Wind Power: Bridging the Gaps

    SciTech Connect (OSTI)

    Ela, E.; Gevorgian, V.; Fleming, P.; Zhang, Y. C.; Singh, M.; Muljadi, E.; Scholbrook, A.; Aho, J.; Buckspan, A.; Pao, L.; Singhvi, V.; Tuohy, A.; Pourbeik, P.; Brooks, D.; Bhatt, N.

    2014-01-01T23:59:59.000Z

    This paper details a comprehensive study undertaken by the National Renewable Energy Laboratory, Electric Power Research Institute, and the University of Colorado to understand how the contribution of wind power providing active power control (APC) can benefit the total power system economics, increase revenue streams, improve the reliability and security of the power system, and provide superior and efficient response while reducing any structural and loading impacts that may reduce the life of the wind turbine or its components. The study includes power system simulations, control simulations, and actual field tests using turbines at NREL's National Wind Technology Center (NWTC). The study focuses on synthetic inertial control, primary frequency control, and automatic generation control, and analyzes timeframes ranging from milliseconds to minutes to the lifetime of wind turbines, locational scope ranging from components of turbines to large wind plants to entire synchronous interconnections, and additional topics ranging from economics to power system engineering to control design.

  10. NREL: Wind Research - Wind Resource Assessment

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office of Science (SC)Integrated CodesTransparency VisitSilver Toyota Prius being drivenandWebmasterWind

  11. Wind Vision Wind Farm | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are beingZealand Jump to:Ezfeedflag JumpID-fTriWildcat 1 Wind Project Jump to:Wilson Hot

  12. Prairie Winds Wind Farm | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are beingZealand Jump to: navigation,Pillar Group BV Jump to: navigation,Power Rental MarketEthanol LLC JumpWinds ND

  13. High Winds Wind Farm | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are beingZealand Jump to: navigation, search OpenEIHesperia, California: Energy Resources JumpSheldon Energy Wind

  14. NREL: Wind Research - Offshore Wind Resource Characterization

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level:Energy: Grid Integration Redefining What's Possible for Renewable Energy: GridTruck Platooning Testing Photofrom U.S.6 DecemberWind Resource

  15. NREL: Wind Research - Site Wind Resource Characteristics

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level:Energy: Grid Integration Redefining What's Possible for Renewable Energy: GridTruck Platooning Testing Photofrom U.S.6Site Wind Resource

  16. NREL: Wind Research - Small Wind Turbine Development

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level:Energy: Grid Integration Redefining What's Possible for Renewable Energy: GridTruck Platooning Testing Photofrom U.S.6Site Wind ResourceSmall

  17. Advancements in Wind Integration Study Data Modeling: The Wind Integration National Dataset (WIND) Toolkit; Preprint

    SciTech Connect (OSTI)

    Draxl, C.; Hodge, B. M.; Orwig, K.; Jones, W.; Searight, K.; Getman, D.; Harrold, S.; McCaa, J.; Cline, J.; Clark, C.

    2013-10-01T23:59:59.000Z

    Regional wind integration studies in the United States require detailed wind power output data at many locations to perform simulations of how the power system will operate under high-penetration scenarios. The wind data sets that serve as inputs into the study must realistically reflect the ramping characteristics, spatial and temporal correlations, and capacity factors of the simulated wind plants, as well as be time synchronized with available load profiles. The Wind Integration National Dataset (WIND) Toolkit described in this paper fulfills these requirements. A wind resource dataset, wind power production time series, and simulated forecasts from a numerical weather prediction model run on a nationwide 2-km grid at 5-min resolution will be made publicly available for more than 110,000 onshore and offshore wind power production sites.

  18. Chaninik Wind Group Wind Heat Smart Grids Final Report

    SciTech Connect (OSTI)

    Meiners, Dennis [Technical Contact

    2013-06-29T23:59:59.000Z

    Final report summarizes technology used, system design and outcomes for US DoE Tribal Energy Program award to deploy Wind Heat Smart Grids in the Chaninik Wind Group communities in southwest Alaska.

  19. Responses of floating wind turbines to wind and wave excitation

    E-Print Network [OSTI]

    Lee, Kwang Hyun

    2005-01-01T23:59:59.000Z

    The use of wind power has recently emerged as a promising alternative to conventional electricity generation. However, space requirements and public pressure to place unsightly wind turbines out of visual range make it ...

  20. Wind Powering America Webinar Series (Postcard), Wind Powering America (WPA)

    SciTech Connect (OSTI)

    Not Available

    2012-02-01T23:59:59.000Z

    Wind Powering America offers a free monthly webinar series that provides expert information on today?s key wind energy topics. This postcard is an outreach tool that provides a brief description of the webinars as well as the URL.

  1. Wind Energy Status and Future Wind Engineering Challenges: Preprint

    SciTech Connect (OSTI)

    Thresher, R.; Schreck, S.; Robinson, M.; Veers, P.

    2008-08-01T23:59:59.000Z

    This paper describes the current status of wind energy technology, the potential for future wind energy development and the science and engineering challenges that must be overcome for the technology to meet its potential.

  2. Development of Regional Wind Resource and Wind Plant Output Datasets...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    50-47676 March 2010 Development of Regional Wind Resource and Wind Plant Output Datasets Final Subcontract Report 15 October 2007 - 15 March 2009 3TIER Seattle, Washington National...

  3. Wind for Schools: A Wind Powering America Project (Brochure)

    SciTech Connect (OSTI)

    Baring-Gould, I.

    2009-08-01T23:59:59.000Z

    This brochure provides an overview of Wind Powering America's Wind for Schools Project, including a description of the project, the participants, funding sources, the basic configurations, and how interested parties can become involved.

  4. Wind for Schools: A Wind Powering America Project (Alaska) (Brochure)

    SciTech Connect (OSTI)

    Not Available

    2010-02-01T23:59:59.000Z

    This brochure provides an overview of Wind Powering America's Wind for Schools Project, including a description of the project, the participants, funding sources, the basic configurations, and how interested parties can become involved.

  5. 20% Wind Energy by 2030: Increasing Wind Energy's Contribution...

    Broader source: Energy.gov (indexed) [DOE]

    0% Wind Energy by 2030 Increasing Wind Energy's Contribution to U.S. Electricity Supply DOEGO-102008-2578 * December 2008 More information is available on the web at:...

  6. Harvesting the wind

    SciTech Connect (OSTI)

    Kahn, R.D.

    1984-11-01T23:59:59.000Z

    This paper describes the wind farms in the Altamont Pass, the Tehachapi Mountains, and the San Gorgonio pass, all in California. The threat by Congress to eliminate federal tax credits could put the fledgling industry in the doldrums. The author shows how the selection of the right wind site can make the difference between a profitable venture and an expensive kinetic sculpture. To improve reliability wind-farm developers have turned to more durable Danish turbines from Zond, Windmatic, and Bonus. Recent research under DOE sponsorship has studied large-scale MOD-2 machines built by Boeing, several of which are now operating at a PGandL site north of San Francisco. The result of recent new standards may require the filing of quarterly reports on machine capacity, performance, and the amounts of electricity produced from the installation.

  7. Wind Turbine Blade Test Definition of the DeWind DW90 Rotor Blade: Cooperative Research and Development Final Report, CRADA Number CRD-09-326

    SciTech Connect (OSTI)

    Hughes, S.

    2012-05-01T23:59:59.000Z

    This CRADA was developed as a funds-in CRADA with DeWind to assess the suitability of facilities and equipment at the NWTC for performing certification blade testing on wind turbine blades made from advanced materials. DeWind produces a wind turbine blade which includes the use of high-strength and stiffness materials. NREL and DeWind had a mutual interest in defining the necessary facilities, equipment, and test methods for testing large wind turbine blades which incorporate advanced materials and adaptive structures, as the demands on test equipment and infrastructure are greater than current capabilities. Work under this CRADA would enable DeWind to verify domestic capability for certification-class static and fatigue testing, while NREL would be able to identify and develop specialized test capabilities based on the test requirements.

  8. Wind motor applications for transportation

    SciTech Connect (OSTI)

    Lysenko, G.P.; Grigoriev, B.V.; Karpin, K.B. [Moscow Aviation Inst. (Russian Federation)

    1996-12-31T23:59:59.000Z

    Motion equation for a vehicle equipped with a wind motor allows, taking into account the drag coefficients, to determine the optimal wind drag velocity in the wind motor`s plane, and hence, obtain all the necessary data for the wind wheel blades geometrical parameters definition. This optimal drag velocity significantly differs from the flow drag velocity which determines the maximum wind motor power. Solution of the motion equation with low drag coefficients indicates that the vehicle speed against the wind may be twice as the wind speed. One of possible transportation wind motor applications is its use on various ships. A ship with such a wind motor may be substantially easier to steer, and if certain devices are available, may proceed in autonomous control mode. Besides, it is capable of moving within narrow fairways. The cruise speed of a sailing boat and wind-motored ship were compared provided that the wind velocity direction changes along a harmonic law with regard to the motion direction. Mean dimensionless speed of the wind-motored ship appears to be by 20--25% higher than that of a sailing boat. There was analyzed a possibility of using the wind motors on planet rovers in Mars or Venus atmospheric conditions. A Mars rover power and motor system has been assessed for the power level of 3 kW.

  9. Wind Technology Advancements and Impacts on Western Wind Resources (Presentation)

    SciTech Connect (OSTI)

    Robichaud, R.

    2014-09-01T23:59:59.000Z

    Robi Robichaud made this presentation at the Bureau of Land Management West-wide Wind Opportunities and Constraints Mapping (WWOCM) Project public meeting in Denver, Colorado in September 2014. This presentation outlines recent wind technology advancements, evolving turbine technologies, and industry challenges. The presentation includes maps of mean wind speeds at 50-m, 80-m, and 100-m hub heights on BLM lands. Robichaud also presented on the difference in mean wind speeds from 80m to 100m in Wyoming.

  10. The divergent wind component in data sparse tropical wind fields 

    E-Print Network [OSTI]

    Snyder, Bruce Alan

    1985-01-01T23:59:59.000Z

    boundary data were estimated by linear extrapolation from inner to outer grid points. Comparisons of level Illb wind data and cloud drift winds were made using Geostationary Operational Environmental Satelhte (GOES) West observed winds obtained from... for 0000 GMT 25 January 1979 were drawn and subjectively compared. Claudy regions viewed in enhanced GOES West imagery were superimposed on these streamline fields to determine whether the aliased wind fields correlated well with the convective activity...

  11. TMCC WIND RESOURCE ASSESSMENT

    SciTech Connect (OSTI)

    Turtle Mountain Community College

    2003-12-30T23:59:59.000Z

    North Dakota has an outstanding resource--providing more available wind for development than any other state. According to U.S. Department of Energy (DOE) studies, North Dakota alone has enough energy from good wind areas, those of wind power Class 4 and higher, to supply 36% of the 1990 electricity consumption of the entire lower 48 states. At present, no more than a handful of wind turbines in the 60- to 100-kilowatt (kW) range are operating in the state. The first two utility-scale turbines were installed in North Dakota as part of a green pricing program, one in early 2002 and the second in July 2002. Both turbines are 900-kW wind turbines. Two more wind turbines are scheduled for installation by another utility later in 2002. Several reasons are evident for the lack of wind development. One primary reason is that North Dakota has more lignite coal than any other state. A number of relatively new minemouth power plants are operating in the state, resulting in an abundance of low-cost electricity. In 1998, North Dakota generated approximately 8.2 million megawatt-hours (MWh) of electricity, largely from coal-fired plants. Sales to North Dakota consumers totaled only 4.5 million MWh. In addition, the average retail cost of electricity in North Dakota was 5.7 cents per kWh in 1998. As a result of this surplus and the relatively low retail cost of service, North Dakota is a net exporter of electricity, selling approximately 50% to 60% of the electricity produced in North Dakota to markets outside the state. Keeping in mind that new electrical generation will be considered an export commodity to be sold outside the state, the transmission grid that serves to export electricity from North Dakota is at or close to its ability to serve new capacity. The markets for these resources are outside the state, and transmission access to the markets is a necessary condition for any large project. At the present time, technical assessments of the transmission network indicate that the ability to add and carry wind capacity outside of the state is limited. Identifying markets, securing long-term contracts, and obtaining a transmission path to export the power are all major steps that must be taken to develop new projects in North Dakota.

  12. Winds of Education

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are beingZealand Jump to:Ezfeedflag JumpID-fTriWildcat 1 Wind Project Jump to:Wilson HotWalkersWindridge Wind Farm

  13. Wind Vision: Impacts

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office of ScienceandMesa del SolStrengtheningWildfires may contribute more to globalWindWind Vision: Impacts

  14. Wind | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE: Alternative JC3 RSS SeptemberRenewableAbout Key ActivitiesWhy EnergyWindPeer06 WindScience &

  15. 1 INTRODUCTION The diversity of structures that are sensitive to the ef-

    E-Print Network [OSTI]

    Kareem, Ahsan

    ). According to the GLF method, the equivalent wind loading is equal to the mean wind force multiplying. The equivalent static wind loading used for design is equal to the mean wind force multiplied by the GLF1 INTRODUCTION The diversity of structures that are sensitive to the ef- fects of wind coupled

  16. WIND ENERGY Wind Energ. 2013; 00:112

    E-Print Network [OSTI]

    that by a novel change of variables, which focuses on power flows, we can transform the problem to one with linear rejection, model predictive control, convex optimization, wind power control, energy storage, power output to reliable operation of power systems due to the fluctuating nature of wind power. Thus, modern wind power

  17. LIDAR Wind Speed Measurements of Evolving Wind Fields

    SciTech Connect (OSTI)

    Simley, E.; Pao, L. Y.

    2012-07-01T23:59:59.000Z

    Light Detection and Ranging (LIDAR) systems are able to measure the speed of incoming wind before it interacts with a wind turbine rotor. These preview wind measurements can be used in feedforward control systems designed to reduce turbine loads. However, the degree to which such preview-based control techniques can reduce loads by reacting to turbulence depends on how accurately the incoming wind field can be measured. Past studies have assumed Taylor's frozen turbulence hypothesis, which implies that turbulence remains unchanged as it advects downwind at the mean wind speed. With Taylor's hypothesis applied, the only source of wind speed measurement error is distortion caused by the LIDAR. This study introduces wind evolution, characterized by the longitudinal coherence of the wind, to LIDAR measurement simulations to create a more realistic measurement model. A simple model of wind evolution is applied to a frozen wind field used in previous studies to investigate the effects of varying the intensity of wind evolution. LIDAR measurements are also evaluated with a large eddy simulation of a stable boundary layer provided by the National Center for Atmospheric Research. Simulation results show the combined effects of LIDAR errors and wind evolution for realistic turbine-mounted LIDAR measurement scenarios.

  18. Utilizing Wind: Optimal Wind Farm Placement in the United States

    E-Print Network [OSTI]

    Powell, Warren B.

    Utilizing Wind: Optimal Wind Farm Placement in the United States By: Yintao Sun Advisor: Professor . . . . . . . . . . . . . . . . . . . . . . . . . . . 10 1.4.1 Carbon-based Fuels . . . . . . . . . . . . . . . . . . . . . . . . 11 1.4.2 Solar . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26 iv #12;CONTENTS v 3 Designing Wind Farm Portfolios 27 3.1 Applying Markowitz Portfolio Theory

  19. Wake Flow Simulations for a Mid-Sized Rim Driven Wind Turbine

    SciTech Connect (OSTI)

    Rob O. Hovsapian; Various

    2014-06-01T23:59:59.000Z

    The onshore land where wind farms with conventional wind turbines can be places is limited by various factors including a requirement for relatively high wind speed for turbines' efficient operations. Where such a requirement cannot be met, mid-and small-sized turbines can be a solution. In the current paper simulations for near and for wakes behind a mid-sized Rim Driven Wind Turbine developed by Keuka Energy LLC is analyzed. The purposes of this study is to better understand the wake structure for more efficient wind farm planning. Simulations are conducted with the commercial CFD software STARCCM+

  20. The Inside of a Wind Turbine

    Office of Energy Efficiency and Renewable Energy (EERE)

    Wind turbines harness the power of the wind and use it to generate electricity. Simply stated, a wind turbine works the opposite of a fan. Instead of using electricity to make wind, like a fan,...