Powered by Deep Web Technologies
Note: This page contains sample records for the topic "wind structures cxs" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


1

Wind Structure in the Atmospheric Boundary Layer  

Science Journals Connector (OSTI)

13 May 1971 research-article Wind Structure in the Atmospheric Boundary Layer...semi-empirical laws for the variation of mean wind speed with height and for the statistical...provide some useful ordering of the mean wind profile characteristics in relation to...

1971-01-01T23:59:59.000Z

2

Wind pressure distribution on shell structures  

E-Print Network (OSTI)

relates to both cost and safety. This study has revealed that wind pressure criteria for shell structures is not adequately covered by most building codes. Those that do exist are rather vague and sometimes erroneous. One recently published design manual...

Yancey, Kenneth Earl, Jr

1963-01-01T23:59:59.000Z

3

Extreme wind climate modeling of some locations in India for the specification of the design wind speed of structures  

Science Journals Connector (OSTI)

The wind load on a structure is proportional to the square of the wind speed. Extreme wind climate modeling should be required for specifying the design wind speed of structures. Extreme wind speeds for a storm t...

Arnab Sarkar; Navneet Kumar; Debojyoti Mitra

2014-06-01T23:59:59.000Z

4

Structural Analyses of Wind Turbine Tower for 3 kW Horizontal Axis Wind Turbine.  

E-Print Network (OSTI)

?? Structure analyses of a steel tower for Cal Poly's 3 kW small wind turbine is presented. First, some general design aspects of the wind… (more)

Gwon, Tae gyun (Tom)

2011-01-01T23:59:59.000Z

5

NREL: Wind Research - Structural Testing Laboratory  

NLE Websites -- All DOE Office Websites (Extended Search)

Structural Testing Laboratory Structural Testing Laboratory Photo of NREL's Wind Research User Facility. Shown in front are several test bays that protect proprietary information while companies disassemble turbines to analyze, test, and modify individual components. NREL's Structural Testing Laboratory includes office space for industry researchers, houses experimental laboratories, computer facilities, space for assembling turbines, components, and blades for testing. Credit: Patrick Corkery. NREL's Structural Testing Laboratory at the National Wind Technology Center (NWTC) provides office space for industry researchers, experimental laboratories, computer facilities for analytical work, and space for assembling components and turbines for atmospheric testing. The facility also houses two blade stands equipped with overhead cranes and

6

Wind tunnel simulation of wind loading on a solid structure of revolution  

Science Journals Connector (OSTI)

The wind tunnel simulations of wind loading on a solid structure of revolution ... smooth and five rough surfaces were conducted using wind tunnel tests. Time-mean and fluctuating pressure ... distributions. The ...

Le-Tian Yang; Zhi-Fu Gu

2010-08-01T23:59:59.000Z

7

Structural responses and power output of a wind turbine are strongly affected by the wind field acting on the wind turbine. Knowledge about the wind field and its  

E-Print Network (OSTI)

ABSTRACT Structural responses and power output of a wind turbine are strongly affected by the wind affect the power output and structural responses of a wind turbine. Wind field characteristics are conventionally described by time averaged features, such as mean wind speed, turbulence intensity and power

Stanford University

8

Structural efficiency of a wind turbine blade  

Science Journals Connector (OSTI)

Alternative structural layouts for wind turbine blades are investigated with the aim of improving their design, minimizing weight and reducing the cost of wind energy. New concepts were identified using topology optimization techniques on a 45 m wind turbine blade. Additionally, non-dimensional structural shape factors were developed for non-symmetric sections under biaxial bending to evaluate structural concepts in terms of ability to maximize stiffness and minimize stress. The topology optimization evolves a structure which transforms along the length of the blade, changing from a design with spar caps at the maximum thickness and a trailing edge mass, to a design with offset spar caps toward the tip. The shape factors indicate that the trailing edge reinforcement and the offset spar cap topology are both more efficient at maximizing stiffness and minimizing stress. In summary, an alternative structural layout for a wind turbine blade has been found and structural shape factors have been developed, which can quantitatively assess the structural efficiency under asymmetric bending.

Neil Buckney; Alberto Pirrera; Steven D. Green; Paul M. Weaver

2013-01-01T23:59:59.000Z

9

Modelling and analysis of a novel wind turbine structure  

Science Journals Connector (OSTI)

This study introduces a novel wind turbine structure for an urban environment. A computational modelling has been conducted to investigate the effect of the new structure on the flow behaviour of entrance wind through the structure and the feasibility of the new wind turbine working at different wind speeds in an urban area. The wind flow behaviour through a chamber of the wind turbine structure has resulted in an increase of 1.3 times of the wind velocity at the outlet of the wind turbine. This is equivalent to 2.5 times increase of wind energy. The wind tunnel tests were carried out to validate the simulation results. There is a good correlation between the experimental and computational results. It is evident that the presented computational method can predict and evaluate the performance of this new type of shroud structure in an urban environment.

Xu Zhang; Yong K. Chen; Rajnish K. Calay

2013-01-01T23:59:59.000Z

10

STRUCTURAL HEALTH MONITORING OF THE SUPPORT STRUCTURE OF WIND TURBINE USING WIRELESS SENSING SYSTEM  

E-Print Network (OSTI)

structure to resist the complicated environmental loading, especially for the offshore wind turbine. How efficiency of wind turbine, the development of offshore wind farm is in full swing. The wind turbine heavily, especially for the offshore wind turbine. How to manage these wind turbines and monitor the structural safety

Boyer, Edmond

11

Pulsar Wind Nebulae with Thick Toroidal Structure  

Science Journals Connector (OSTI)

We investigate a class of pulsar wind nebulae that show synchrotron emission from a thick toroidal structure. The best studied such object is the small radio and X-ray nebula around the Vela pulsar, which can be interpreted as the result of interaction of a mildly supersonic inward flow with the recent pulsar wind. Such a flow near the center of a supernova remnant can be produced in a transient phase when the reverse shock reaches the center of the remnant. Other nebulae with a thick toroidal structure are G106.6+2.9 and G76.9+1.0. Their structure contrasts with young pulsar nebulae like the Crab Nebula and 3C 38, which show a more chaotic, filamentary structure in the synchrotron emission. In both situations, a torus-jet structure is present where the pulsar wind passes through a termination shock, indicating the flow is initially toroidal. We suggest that the difference is due to the Rayleigh-Taylor instability that operates when the outer boundary of the nebula is accelerating into freely expanding supernova ejecta. The instability gives rise to mixing in the Crab and related objects, but is not present in the nebulae with thick toroidal regions.

Roger A. Chevalier; Stephen P. Reynolds

2011-01-01T23:59:59.000Z

12

Wind-Induced Instability of Structures [and Discussion  

Science Journals Connector (OSTI)

13 May 1971 research-article Wind-Induced Instability of Structures [and...G. V. Parkinson D. Dicker Forms of wind-induced instability of structures are...structural response frequency over a discrete wind speed range and amplification and phase...

1971-01-01T23:59:59.000Z

13

SUBSPACE-BASED DETECTION OF FATIGUE DAMAGE ON JACKET SUPPORT STRUCTURES OF OFFSHORE WIND TURBINES  

E-Print Network (OSTI)

SUBSPACE-BASED DETECTION OF FATIGUE DAMAGE ON JACKET SUPPORT STRUCTURES OF OFFSHORE WIND TURBINES damage in real size structural components of offshore wind turbines. KEYWORDS : Damage detection, Offshore wind turbines, Numerical response simulation. INTRODUCTION Offshore wind turbines are exposed

Paris-Sud XI, Université de

14

Support Structures of Wind Energy Converters  

Science Journals Connector (OSTI)

The wind energy market is one of the most promising markets of renewable energies. Besides biomass, photovoltaic, geothermal, and ocean energy especially the offshore wind energy will deliver the biggest part ...

Peter Schaumann; Cord Böker; Anne Bechtel…

2011-01-01T23:59:59.000Z

15

Incremental wind-wave analysis of the structural capacity of offshore wind turbine support structures under extreme loading  

Science Journals Connector (OSTI)

Abstract Offshore wind turbine (OWT) support structures are subjected to non-proportional environmental wind and wave load patterns with respect to increases in wave height and with respect to wind and wave combined loading. Traditional approaches to estimating the ultimate capacity of offshore support structures are not ideally suited to analysis of OWTs. In this paper, the concept of incremental wind-wave (IWWA) analysis of the structural capacity of OWT support structures is proposed. The approach uses static pushover analysis of OWT support structures subject to wind and wave combined load patterns corresponding to increasing mean return period (MRP). The IWWA framework can be applied as a one-parameter approach (IWWA1) in which the MRP for the wind and wave conditions is assumed to be the same or a two-parameter approach (IWWA2) in which the \\{MRPs\\} associated with wind and wave conditions are related to a joint probability density function characterizing the wind and wave conditions at the site. Example calculations for monopile and jacket supported \\{OWTs\\} at Atlantic marine sites are performed under both one parameter and two parameters IWWA framework. The analyses illustrate that: the results of an IWWA analysis are site specific; and structural response can be dominated by either wind or wave conditions depending on structural characteristics and site conditions. Finally, reliability analyses for both examples excluding uncertainties in structural resistance are estimated based on their IWWA results and probabilistic models for site environmental conditions.

Kai Wei; Sanjay R. Arwade; Andrew T. Myers

2014-01-01T23:59:59.000Z

16

Mirror Mode Structures in the Solar Wind: STEREO Observations  

E-Print Network (OSTI)

Mirror Mode Structures in the Solar Wind: STEREO Observations O. Enríquez-Rivera1 , X. Blanco-Cano1 Autónoma de México, Coyoacán, D.F., 04510, MEXICO 2. Institute of Geophysics and Planetary Physics of California, Berkeley, CA 94720, USA Abstract. Mirror mode structures occur in the solar wind either

California at Berkeley, University of

17

Structural reliability of offshore wind turbines.  

E-Print Network (OSTI)

??Statistical extrapolation is required to predict extreme loads, associated with a target return period, for offshore wind turbines. In statistical extrapolation, “short-term" distributions of the… (more)

Agarwal, Puneet, 1977-

2012-01-01T23:59:59.000Z

18

New tools for identification of wind turbine structures  

SciTech Connect

The new identification tools used in this research to analyze input-output time histories of a wind turbine structure, with a wide-band excitation, allow to obtain its modal state space representation. This representation reveals the internal behavior of the system, such as the interaction between its physical parameters. The techniques presented in this paper also allow researchers to obtain modal parameters, as well as frequency responses of a properly excited wind turbine structure immersed in wind noise. The use of two identification algorithms with the same, relatively simple numerical example, enables to compare the results obtained with the actual characteristics of the system modeled. Then, an example using the data generated by the ADAMS{reg_sign} model of the Micon 65/13 wind turbine structure is considered to illustrate additional elements to be included in the identification procedure for such a complex flexible structure.

Bialasiewicz, J.T.; Osgood, R.M. [National Renewable Enery Lab., Golden, CO (United States)

1995-12-31T23:59:59.000Z

19

Understanding of solar wind structure might be wrong  

NLE Websites -- All DOE Office Websites (Extended Search)

of solar wind structure might be wrong The plasma particles flowing from the Sun and blasting past the Earth might be configured more as a network of tubes than a...

20

Impact of Electric Industry Structure on High Wind Penetration Potential  

NLE Websites -- All DOE Office Websites (Extended Search)

273 273 July 2009 Impact of Electric Industry Structure on High Wind Penetration Potential M. Milligan and B. Kirby National Renewable Energy Laboratory R. Gramlich and M. Goggin American Wind Energy Association National Renewable Energy Laboratory 1617 Cole Boulevard, Golden, Colorado 80401-3393 303-275-3000 * www.nrel.gov NREL is a national laboratory of the U.S. Department of Energy Office of Energy Efficiency and Renewable Energy Operated by the Alliance for Sustainable Energy, LLC Contract No. DE-AC36-08-GO28308 Technical Report NREL/TP-550-46273 July 2009 Impact of Electric Industry Structure on High Wind Penetration Potential M. Milligan and B. Kirby National Renewable Energy Laboratory R. Gramlich and M. Goggin American Wind Energy Association

Note: This page contains sample records for the topic "wind structures cxs" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


21

Dynamic analysis of tension leg platform for offshore wind turbine support as fluid-structure interaction  

Science Journals Connector (OSTI)

Tension leg platform (TLP) for offshore wind turbine support is a new type structure in wind energy utilization. The strong-interaction method is ... and the dynamic characteristics of the TLP for offshore wind turbine

Hu Huang ? ?; She-rong Zhang ???

2011-03-01T23:59:59.000Z

22

Understanding of solar wind structure might be wrong  

NLE Websites -- All DOE Office Websites (Extended Search)

Solar wind structure misunderstood Solar wind structure misunderstood Understanding of solar wind structure might be wrong The plasma particles flowing from the Sun and blasting past the Earth might be configured more as a network of tubes than a river-like stream. September 7, 2010 Los Alamos National Laboratory sits on top of a once-remote mesa in northern New Mexico with the Jemez mountains as a backdrop to research and innovation covering multi-disciplines from bioscience, sustainable energy sources, to plasma physics and new materials. Los Alamos National Laboratory sits on top of a once-remote mesa in northern New Mexico with the Jemez mountains as a backdrop to research and innovation covering multi-disciplines from bioscience, sustainable energy sources, to plasma physics and new materials.

23

A Review of Wind Project Financing Structures in the USA  

SciTech Connect

The rapid pace of wind power development in the U.S. over the last decade has outstripped the ability of most project developers to provide adequate equity capital and make efficient use of project-related tax benefits. In response, the sector has created novel project financing structures that feature varying combinations of equity capital from project developers and third-party tax-oriented investors, and in some cases commercial debt. While their origins stem from variations in the financial capacity and business objectives of wind project developers, as well as the risk tolerances and objectives of equity and debt providers, each structure is, at its core, designed to manage project risk and allocate federal tax incentives to those entities that can use them most efficiently. This article surveys the six principal financing structures through which most new utility-scale wind projects (excluding utility-owned projects) in the U.S. have been financed from 1999 to the present. These structures include simple balance-sheet finance, several varieties of all-equity special allocation partnership 'flip' structures, and two leveraged structures. In addition to describing each structure's mechanics, the article also discusses its rationale for use, the types of investors that find it appealing and why, and its relative frequency of use in the market. The article concludes with a generalized summary of how a developer might choose one structure over another.

Bolinger, Mark A; Harper, John; Karcher, Matthew

2008-09-24T23:59:59.000Z

24

www.cesos.ntnu.no Author Centre for Ships and Ocean Structures Offshore Wind Turbine Operation  

E-Print Network (OSTI)

1 www.cesos.ntnu.no Author ­ Centre for Ships and Ocean Structures Offshore Wind Turbine Operation icing for offshore Wind Turbines ? · Wherever there is sea icing ! · Temperature bellow zero degree Structures Outline · Introduction · Wind Turbine Operational Conditions · Wind Turbine Operation under

Nørvåg, Kjetil

25

Multi-criteria assessment of offshore wind turbine support structures  

Science Journals Connector (OSTI)

Wind power, especially offshore, is considered one of the most promising sources of ‘clean’ energy towards meeting the EU and UK targets for 2020 and 2050. Deployment of wind turbines in constantly increasing water depths has raised the issue of the appropriate selection of the most suitable support structures’ options. Based on experience and technology from the offshore oil and gas industry, several different configurations have been proposed for different operational conditions. This paper presents a methodology for the systematic assessment of the selection of the most preferable, among the different configurations, support structures for offshore wind turbines, taking into consideration several attributes through the widely used multi-criteria decision making method TOPSIS (Technique for Order Preference by Similarity to Ideal Solution) for the benchmarking of those candidate options. An application comparing a monopile, a tripod and a jacket, for a reference 5.5 MW wind turbine and a reference depth of 40 m, considering multiple engineering, economical and environmental attributes, will illustrate the effectiveness of the proposed methodology.

E. Lozano-Minguez; A.J. Kolios; F.P. Brennan

2011-01-01T23:59:59.000Z

26

The Structure of the Solar Wind in the Inner Heliosphere  

E-Print Network (OSTI)

through the solar wind and produce extreme conditions thatspeed wind during the SC 22 period. Extreme-ultraviolet (

Lee, Christina On-Yee

2010-01-01T23:59:59.000Z

27

LOSS OF ROTOR ISOTROPY AS A BLADE DAMAGE INDICATOR FOR WIND TURBINE STRUCTURE HEALTH MONITORING SYSTEMS  

E-Print Network (OSTI)

LOSS OF ROTOR ISOTROPY AS A BLADE DAMAGE INDICATOR FOR WIND TURBINE STRUCTURE HEALTH MONITORING to simulated vibrations of a rotating rotor. KEYWORDS : wind turbine blade, rotor anisotropy, Floquet analysis, OMA INTRODUCTION Blades of modern wind turbines are complex high-tech structures, and their cost

Paris-Sud XI, Université de

28

PREDICTION OF DELAM INATION IN WIND TURBINE BLADE STRUCTURAL DETAILS John F. Mandell, Douglas S. Cairns  

E-Print Network (OSTI)

in Reference 3, available on the Sandia web site www.sandia.gov/Renewable_Energy/Wind_Energy/. DELAMINATION1 PREDICTION OF DELAM INATION IN WIND TURBINE BLADE STRUCTURAL DETAILS John F. Mandell, Douglas S materials structures such as wind turbine blades. Design methodologies to prevent such failures have

29

Finite element structural study of the VGOT wind turbine  

Science Journals Connector (OSTI)

We analyse the implementation of the finite element method to simulate the structural behaviour of the blade-wagons of variable-geometry oval-trajectory (VGOT) Darrieus wind turbines. The key feature of a VGOT machine is that each blade, instead of rotating around a central vertical axis, slides over rails mounted on a wagon formed by a tubular reticulated structure supported by standard train bogies. The structure should be designed to absorb the efforts in the vertical and traverse directions of the railroad due to the aerodynamic loads, the weight of the components and the centrifugal acceleration along the curved tracks. We show some results for the tip deflection and the tip torsion of the blade, the frontal and lateral angle variations in the blade bottom and the Von Misses tensions of five sample beams, all of them in function of the trajectory-length parameter; and some examples of the deformed configuration of the reticulated structure.

Alejandro D. Otero; Fernando L. Ponta

2004-01-01T23:59:59.000Z

30

Economics of Online Structural Health Monitoring of Wind Turbines: Cost Benefit Analysis  

E-Print Network (OSTI)

Economics of Online Structural Health Monitoring of Wind Turbines: Cost Benefit Analysis Jeremy Van monitoring (OSHM) and condition-based maintenance (CBM) of wind turbine blades has the potential to reduce O cost of energy (LCOE) [1]. The costs required to keep wind turbines working in extreme temperatures

McCalley, James D.

31

TOWARDS LIFE-CYCLE MANAGEMENT OF WIND TURBINES BASED ON STRUCTURAL HEALTH MONITORING  

E-Print Network (OSTI)

TOWARDS LIFE-CYCLE MANAGEMENT OF WIND TURBINES BASED ON STRUCTURAL HEALTH MONITORING K. Smarsly1) strategies can enable wind turbine manufacturers, owners, and operators to precisely schedule maintenance behavior of wind turbines and to reduce (epistemic) uncertainty. Both the resistance parameters

Stanford University

32

A Computational Framework for Life-Cycle Management of Wind Turbines incorporating Structural Health Monitoring  

E-Print Network (OSTI)

1 A Computational Framework for Life-Cycle Management of Wind Turbines incorporating Structural of wind turbines and reducing the life-cycle costs significantly. This paper presents a life-cycle management (LCM) framework for online monitoring and performance assessment of wind turbines, enabling

Stanford University

33

A MODULAR SHM-SCHEME FOR ENGINEERING STRUCTURES UNDER CHANGING CONDITIONS: APPLICATION TO AN OFFSHORE WIND  

E-Print Network (OSTI)

TO AN OFFSHORE WIND TURBINE Moritz W. H¨ackell1, Raimund Rolfes1 1 Institute of Structural Analysis, Leibniz in common. A shift from fossil to renewable energy source is the logical con- sequence. (Offshore) wind of remote offshore plants and an ageing fleet of onshore structures raise the demand of structural health

Paris-Sud XI, Université de

34

he defining element of modern wind farms is the pro-peller-like structure known as a horizontal-axis wind  

E-Print Network (OSTI)

T he defining element of modern wind farms is the pro- peller-like structure known as a horizontal-axis wind turbine.Amarvel of engineering, the HAWT typically comprises more than 8000 parts, and its blades it converts wind energy into electricity. In 1920 Albert Betz derived a theoretical limit on that efficiency

Dabiri, John O.

35

The structure and origin of magnetic clouds in the solar wind V. Bothmer1  

E-Print Network (OSTI)

The structure and origin of magnetic clouds in the solar wind V. Bothmer1 * and R. Schwenn2 1 Space-forward interplanetary shock waves, supporting the close association between MCs and SMEs (solar mass ejections). Seven in the surrounding solar wind. Minimum variance analysis (MVA) showed that MCs can best be described as large- scale

Boyer, Edmond

36

Integral variable structure current control of DFIG-based wind turbines near cut-in speed  

Science Journals Connector (OSTI)

Based on the grid voltage orientated vector control technique, a novel integral variable structure controller for current control of variable speed doubly fed induction generator (DFIG) wind turbines near cut-in wind speed is proposed. The proposed current controller can not only ensure generators' safe cut-in switches to the grid, but also maximum energy capture after switch motion without any regulations. By these, simulations of a 1.5 MW DFIG-based wind turbine near cut-in wind speed are separately conducted under integral variable structure control (IVSC) and PI control. The results show that IVSC strategy, which gives better dynamic response, less static error, smaller controller output dithering, stronger global robustness against generator parameters uncertainty and the grid voltage fluctuation, as well as needless controller regulation after cutting-in the grid, obviously preponderates over traditional PI control for DFIG-based wind turbines near cut-in speed.

Changliang Xia; Huimin Wang; Zhanfeng Song

2009-01-01T23:59:59.000Z

37

Mesoscale Structure of Trade Wind Convection over Puerto Rico: Composite Observations and Numerical Simulation  

Science Journals Connector (OSTI)

We examine the mesoscale structure of the atmospheric boundary layer (ABL), low-level circulation, and trade wind convection over the sub-tropical island of Puerto Rico in mid-summer. Shallow afternoon thunder...

Mark R. Jury; Sen Chiao; Eric W. Harmsen

2009-08-01T23:59:59.000Z

38

FLUID FLOW MODELING OF RESIN TRANSFER MOLDING FOR COMPOSITE MATERIAL WIND TURBINE BLADE STRUCTURES  

E-Print Network (OSTI)

FLUID FLOW MODELING OF RESIN TRANSFER MOLDING FOR COMPOSITE MATERIAL WIND TURBINE BLADE STRUCTURES the guidance and direction provided by my advisors: Dr. Mandell, Dr. Cairns and Dr. Larsen. I would also like

39

Interface behavior of grouted connection on monopile wind turbine offshore structure  

Science Journals Connector (OSTI)

The interface behavior of a concrete grouted connection is studied in a monopile wind turbine offshore structure. The grouted connection between transition piece ... investigating the behavior of grouted connecti...

Ki-Du Kim; Pasin Plodpradit; Bum-Joon Kim…

2014-09-01T23:59:59.000Z

40

Sustainability Assessment and Relevant Indicators of Steel Support Structures for Offshore Wind Turbines  

Science Journals Connector (OSTI)

Environmental and operational loads are design drivers for steel support structures of Offshore Wind Turbines. Besides common design and installation factors a ... developed for steel constructions of renewable f...

Peter Schaumann; Anne Bechtel

2014-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "wind structures cxs" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


41

Impact of orbital motion on the structure and stability of adiabatic shocks in colliding wind binaries  

E-Print Network (OSTI)

The collision of winds from massive stars in binaries results in the formation of a double-shock structure with observed signatures from radio to X-rays. We study the structure and stability of the colliding wind region as it turns into a spiral due to orbital motion. We focus on adiabatic winds, where mixing between the two winds is expected to be restricted to the Kelvin-Helmholtz instability (KHI). Mixing of the Wolf-Rayet wind with hydrogen-rich material is important for dust formation in pinwheel nebulae such as WR 104, where the spiral structure has been resolved in infrared. We use the hydrodynamical code RAMSES with an adaptive grid. A wide range of binary systems with different wind velocities and mass loss rates are studied with 2D simulations. A specific 3D simulation is performed to model WR 104. Orbital motion leads to the formation of two distinct spiral arms where the KHI develops differently. We find that the spiral structure is destroyed when there is a large velocity gradient between the win...

Lamberts, Astrid; Lesur, Geoffroy; Fromang, Sebastien

2012-01-01T23:59:59.000Z

42

Zhiyu Jiang, Department of Marine Technology & Centre for Ships and Ocean Structures Dynamic response of wind turbines in fault and  

E-Print Network (OSTI)

response of wind turbines in fault and shutdown conditions Zhiyu Jiang Deptartment of Marine Technology://www.newscientist.com/blogs/onepercent/2011/12/why-did-a-wind-turbine-self-co.html #12;3 Zhiyu Jiang, Department of Marine Technology & Centre & Centre for Ships and Ocean Structures Control and protection of wind turbines Emergency shutdown Pitch

Nørvåg, Kjetil

43

NREL Wind Turbine Blade Structural Testing of the Modular Wind Energy MW45 Blade: Cooperative Research and Development Final Report, CRADA Number CRD-09-354  

SciTech Connect

This CRADA was a purely funds-in CRADA with Modular Wind Energy (MWE). MWE had a need to perform full-scale testing of a 45-m wind turbine blade. NREL/NWTC provided the capabilities, facilities, and equipment to test this large-scale MWE wind turbine blade. Full-scale testing is required to demonstrate the ability of the wind turbine blade to withstand static design load cases and demonstrate the fatigue durability. Structural testing is also necessary to meet international blade testing certification requirements. Through this CRADA, MWE would obtain test results necessary for product development and certification, and NREL would benefit by working with an industrial partner to better understand the unique test requirements for wind turbine blades with advanced structural designs.

Hughes, S.

2012-05-01T23:59:59.000Z

44

Variance Analysis of Wind and Natural Gas Generation under Different Market Structures: Some Observations  

NLE Websites -- All DOE Office Websites (Extended Search)

Variance Analysis of Wind and Variance Analysis of Wind and Natural Gas Generation under Different Market Structures: Some Observations Brian Bush, Thomas Jenkin, David Lipowicz, and Douglas J. Arent National Renewable Energy Laboratory Roger Cooke Resources for the Future Technical Report NREL/TP-6A20-52790 January 2012 NREL is a national laboratory of the U.S. Department of Energy, Office of Energy Efficiency & Renewable Energy, operated by the Alliance for Sustainable Energy, LLC. National Renewable Energy Laboratory 1617 Cole Boulevard Golden, Colorado 80401 303-275-3000 * www.nrel.gov Contract No. DE-AC36-08GO28308 Variance Analysis of Wind and Natural Gas Generation under Different Market Structures: Some Observations Brian Bush, Thomas Jenkin, David Lipowicz,

45

Structural-borne sound mitigation in small wind turbines using constrained viscoelastic layer  

Science Journals Connector (OSTI)

As the growing acceptance of small wind turbines operating in suburban and rural communities coincides with increasingly stringent regulations on the sound emitted by these turbines the need for sound mitigation solutions becomes urgent. Small turbines need to be affordable for small business use and thus proposed solutions must be cost-effective and low maintenance. Easy retrofit to existing turbines is also desirable. Wind turbines generate sound via two main mechanisms: structural borne sound generated by the gearbox and generator and transmitted through the nacelle structure and aeroacoustic sound generated by the interaction of the airstream with the rotating blades and other turbine components. Current study focused on the mitigation of structural-borne sound in a 50 kW wind turbine using a constrained viscoelastic layer. The viscoelastic layer comprised of multiple tiles with normal force to the nacelle structure provided by ratcheting bands. Optimal value for the normal force was empirically determined and the resulting reductions in generated sound were documented both in the laboratory and on a working turbine under a number of operating conditions. The result is a cost-effective solution with zero cost of ownership and easy installation on a wide range of small to medium-size wind turbines.

Nic Strum; David Sampson; Ali Kheirabadi

2013-01-01T23:59:59.000Z

46

Sharp boundaries of small-and middle-scale solar wind structures  

E-Print Network (OSTI)

Sharp boundaries of small- and middle-scale solar wind structures M. O. Riazantseva1 and G. N Institute for Astrophysics and Space Research, Massachusetts Institute of Technology, Cambridge, Massachusetts, USA P. E. Eiges Space Research Institute, Russian Academy of Sciences, Moscow, Russia Received 7

Richardson, John

47

Solar wind suprathermal electron Stahl widths across high-speed stream structures  

SciTech Connect

Suprathermal electrons (100-1500 eV) observed in the solar wind typically show a strahl distribution, that is, a beam directed away from the Sun along the magnetic field direction. The strahl width observed at 1 AU is highly variable, ranging from 10-70 degrees. The obsenred finite width of the strahl results from the competition between beam focusing as the interplanetary magnetic field strength drops with distance from the Sun, and pitch-angle scattering as the beam interacts with the solar wind plasma in transit from the sun. Here we examine strahl width, observed with ACE SWEPAM across high-speed stream structures to investigate variations in electron scattering as a function of local plasma characteristics. We find that narrow strahls (less than 20 degrees wide), indicating reduced scattering, are observed within high-speed streams. Narrow strahls are also observed in both very low temperature solar wind, in association with ICMEs. Case studies of high-speed streams typically show the strahl narrowing at the leading edge of the stream. In some cases, the strahl narrows at the reverse shock or pressure wave, in other cases at the stream interface. The narrowing can either occur discontinuously or gradually over a period of hours. Within the high-speed wind, the strahl remains narrow for a period of hours to days, and then gradually broadens. The strahl width is roughly constant at all energies across these structures. For some fraction of high-speed streams, counterstreaming is associated with passage of the corotating interaction region. In these cases, we find the widths of the two counterstreaming beams frequently differ by more than 40 degrees. This dramatic difference in strahl width contrasts with observations in the solar wind as a whole, in which counterstreaming strahls typically differ in width by less than 20 degrees.

Skoug, Ruth M [Los Alamos National Laboratory; Steinberg, John T [Los Alamos National Laboratory; Goodrich, Katherine A [Los Alamos National Laboratory; Anderson, Brett R [DARTMUTH UNIV.

2011-01-03T23:59:59.000Z

48

Magnetohydrodynamic simulation of the radial evolution and stream structure of solar-wind turbulence  

Science Journals Connector (OSTI)

We present a unified interpretation of observations of interplanetary fluctuations in terms of nearly incompressible magnetohyrodynamics. Incompressive effects explain the rapid evolution of turbulence in slow wind containing the heliospheric current sheet. The relative constancy of the spectrum of ‘‘inward propagating’’ fluctuations compared to the rapid decline in ‘‘outward’’ fluctuations results from incompressive spectral transfer combined with strong dissipation of the outward fluctuations. Secondary compressive effects account for nearly pressure-balanced structures and the density fluctuation levels.

D. Aaron Roberts; Sanjoy Ghosh; Melvyn L. Goldstein; William H. Mattheaus

1991-12-30T23:59:59.000Z

49

Structure of the eastern Red Rocks and Wind Ridge thrust faults, Wyoming: how a thrust fault gains displacement along strike  

E-Print Network (OSTI)

STRUCTURE OF THE EASTERN RED ROCKS AND WIND RIDGE THRUST FAULTS, WYOMING: HOW A THRUST FAULT GAINS DISPLACEMENT ALONG STRIKE A Thesis by BRENT STANLEY HUNTSMAN Submitted to the Graduate College of Texas A&M University in partial fulfillment... of the requirements for the degree of MASTER OF SCIENCE December 1983 Major Subject: Geology STRUCTURE OF THE EASTERN RED ROCKS AND WIND RIDGE THRUST FAULTS, WYOMING: HOW A THRUST FAULT GAINS DISPLACEMENT ALONG STRIKE A Thesis by BRENT STANLEY HUNTSMAN...

Huntsman, Brent Stanley

1983-01-01T23:59:59.000Z

50

Salvage logging and forest renewal affect early aspen stand structure after catastrophic wind  

Science Journals Connector (OSTI)

Abstract Among the major natural disturbances that occur in the North American boreal forest, the effects of catastrophic wind are the least studied due to its infrequent occurrence, often in inaccessible areas, and lack of rapid research response. Most documented studies have been conducted in conifer or mixedwood forests and generally have not considered follow up forest renewal operations such as salvage logging followed by planting and tending. In 2006 after a severe wind disturbance in trembling aspen (Populus tremuloides Michx.) forest in northeastern Ontario, we established an operational study to investigate the effects of post-wind disturbance treatments on stand structure (residual live trees, snags, and downed wood) and early forest regeneration. The treatments were blowdown (B), blowdown followed by salvage logging (BS), blowdown followed by salvage logging, windrowing and planting (BSP), BSP followed by aerial spray (tending) with glyphosate 1 year after planting (BSPT), and clearcut (C). The operational salvage logging removed about 55% of the 60 m3 ha?1 of the snags and 15% of the 390 m3 ha?1 of the coarse downed wood. The relatively low rate of salvage removal increased the abundance (density and stocking) of aspen regeneration and reduced moss cover, but did not affect average height of aspen suckers or the abundance (cover) of other vegetation types. The mechanical operations damaged much of the advanced growth of conifers (mostly black spruce and balsam fir (Abies balsamea (L.) Mill.) released by the wind. However, these stems were not sufficiently abundant to contribute significantly to the regenerating forest. Windrowing before planting slightly reduced the amount of area covered by downed wood, while the tending reduced broadleaf regeneration and the abundance of shrubs and increased conifer regeneration and the abundance of grasses. If the management objective is to renew aspen forests lost to catastrophic wind, salvage logging is a viable option to clear the site for regeneration. Forest renewal treatments, including planting and tending, are required when the management objective is conifer regeneration.

Rongzhou Man; Han Y.H. Chen; Andrew Schafer

2013-01-01T23:59:59.000Z

51

ALMA data suggest the presence of a spiral structure in the inner wind of CW Leo  

E-Print Network (OSTI)

(abbreviated) We aim to study the inner wind of the well-known AGB star CW Leo. Different diagnostics probing different geometrical scales have pointed toward a non-homogeneous mass-loss process: dust clumps are observed at milli-arcsec scale, a bipolar structure is seen at arcsecond-scale and multi-concentric shells are detected beyond 1". We present the first ALMA Cycle 0 band 9 data around 650 GHz. The full-resolution data have a spatial resolution of 0".42x0".24, allowing us to study the morpho-kinematical structure within ~6". Results: We have detected 25 molecular lines. The emission of all but one line is spatially resolved. The dust and molecular lines are centered around the continuum peak position. The dust emission has an asymmetric distribution with a central peak flux density of ~2 Jy. The molecular emission lines trace different regions in the wind acceleration region and suggest that the wind velocity increases rapidly from about 5 R* almost reaching the terminal velocity at ~11 R*. The channel...

Decin, L; Neufeld, D; Steffen, W; Melnick, G; Lombaert, R

2014-01-01T23:59:59.000Z

52

Variable Structure Control of a Doubly Fed Induction Generator for Wind Energy Conversion Systems  

Science Journals Connector (OSTI)

Abstract This paper presents the powers control of a variable speed wind turbine (WT) device based on a doubly fed induction generator (DFIG). Indeed, to increase the efficiency of the WT system, a robust variable structure control has been applied. DFIG has been previously presented in several works with diverse control diagrams using generally conventional PI controllers. Nevertheless, this type of controllers does not sufficiently handle some of WT resource characteristics such as wind fluctuations effects. Indeed, these can reduce WT performances. Furthermore, DFIG parameter variations should be accounted for. In this context, this paper proposes a high-order sliding mode to control the WT DFIG. Simulation results show that the proposed approach presents attractive features such as chattering-free behavior, good response to speed variations and robustness against machine parameter variations compared to the conventional first order sliding mode technique and even fuzzy sliding mode one.

E. Bounadja; A. Djahbar; Z. Boudjema

2014-01-01T23:59:59.000Z

53

Steady and Unsteady Wind Loading of Buildings and Structures [and Discussion  

Science Journals Connector (OSTI)

...terrain are briefly discussed. For design based on steady wind loadings the design wind speed is dependent on the acceptable degree of risk. Force and pressure coefficients may be influenced by Reynolds number, surface roughness, wind characteristics...

1971-01-01T23:59:59.000Z

54

Structural Load Analysis of Floating Wind Turbines Under Blade Pitch System Faults  

Science Journals Connector (OSTI)

With the steady increase in wind power worldwide, offshore wind farms are most likely to be a ... some countries due to the high quality of offshore wind resources and their proximity to the big shore cities. To ...

Rannam Chaaban; Daniel Ginsberg; Claus-Peter Fritzen

2014-01-01T23:59:59.000Z

55

Wind Pressure Resistance of Walls with Exterior Rigid Foam: Structural Performance Testing and Development of Design Specifications  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Wind Pressure Resistance of Wind Pressure Resistance of Walls with Exterior Rigid Foam: Structural Performance Testing and Development of Design Specifications Building America Stakeholder Meeting February 2012 2 Gaps and Barriers  Wind pressure resistance of multi- layered walls with exterior rigid foam * Performance characteristics * Capacity * Limitations * Design method * Design specification 3 Market Implications  Walls with exterior rigid foam  2012 IECC - Climate Zones 3 and higher  Wall systems:  Claddings and their attachments  Interior finishes  Air sealing, air barriers  Cavity insulation 4 Research Tasks  Laboratory Testing of Wall Assemblies under dynamic wind pressures at the NAHB Research Center  NAHB/DOE/ACC  Laboratory Testing of a One-story House in IBHS Wind Tunnel Facility

56

Probing large-scale wind structures in Vela X-1 using off-states with INTEGRAL  

E-Print Network (OSTI)

Vela X-1 is the prototype of the class of wind-fed accreting pulsars in high mass X-ray binaries hosting a supergiant donor. We have analyzed in a systematic way ten years of INTEGRAL data of Vela X-1 (22-50 keV) and we found that when outside the X-ray eclipse, the source undergoes several luminosity drops where the hard X-rays luminosity goes below 5x10^34 erg/s, becoming undetected by INTEGRAL. These drops in the X-ray flux are usually referred to as "off-states" in the literature. We have investigated the distribution of these off-states along the Vela X-1 ~8.9 day orbit, finding that their orbital occurrence displays an asymmetric distribution, with a higher probability to observe an off-state near the pre-eclipse than during the post-eclipse. This asymmetry can be explained by scattering of hard X-rays in a region of ionized wind, able to reduce the source hard X-ray brightness preferentially near eclipse ingress. We associate this ionized large-scale wind structure with the photo-ionization wake produc...

Sidoli, L; Fuerst, F; Torrejon, J M; Kretschmar, P; Bozzo, E; Pottschmidt, K

2014-01-01T23:59:59.000Z

57

A new method to estimate annual solar wind parameters and contributions of different solar wind structures to geomagnetic activity  

E-Print Network (OSTI)

In this paper, we study two sets of local geomagnetic indices from 26 stations using the principal component (PC) and the independent component (IC) analysis methods. We demonstrate that the annually averaged indices can be accurately represented as linear combinations of two first components with weights systematically depending on latitude. We show that the annual contributions of coronal mass ejections (CMEs) and high speed streams (HSSs) to geomagnetic activity are highly correlated with the first and second IC. The first and second ICs are also found to be very highly correlated with the strength of the interplanetary magnetic field (IMF) and the solar wind speed, respectively, because solar wind speed is the most important parameter driving geomagnetic activity during HSSs while IMF strength dominates during CMEs. These results help in better understanding the long-term driving of geomagnetic activity and in gaining information about the long-term evolution of solar wind parameters and the different sol...

Holappa, Lauri; Asikainen, Timo

2015-01-01T23:59:59.000Z

58

WIND TURBINE STRUCTURAL HEALTH MONITORING: A SHORT INVESTIGATION BASED ON SCADA DATA  

E-Print Network (OSTI)

.papatheou@sheffield.ac.uk ABSTRACT The use of offshore wind farms has been growing in recent years, as steadier and higher wind to complicate the construction of land wind farms, offshore locations, which can be found more easily near densely populated areas, can be seen as an attrac- tive choice. However, the cost of an offshore wind farm

Boyer, Edmond

59

A comparative analysis of business structures suitable forfarmer-owned wind power projects in the United States  

SciTech Connect

For years, farmers in the United States have looked with envy on their European counterparts' ability to profitably farm the wind through ownership of distributed, utility-scale wind projects. Only within the past few years, however, has farmer- or community-owned wind power development become a reality in the United States. The primary hurdle to this type of development in the United States has been devising and implementing suitable business and legal structures that enable such projects to take advantage of tax-based federal incentives for wind power. This article discusses the limitations of such incentives in supporting farmer- or community-owned wind projects, describes four ownership structures that potentially overcome such limitations, and finally conducts comparative financial analysis on those four structures, using as an example a hypothetical 1.5 MW farmer-owned project located in the state of Oregon. We find that material differences in the competitiveness of each structure do exist, but that choosing the best structure for a given project will largely depend on the conditions at hand; e.g., the ability of the farmer(s) to utilize tax credits, preference for individual versus ''cooperative'' ownership, and the state and utility service territory in which the project will be located.

Bolinger, Mark; Wiser, Ryan

2004-11-11T23:59:59.000Z

60

Structure of Turbulence in Katabatic Flows below and above the Wind-Speed Maximum  

E-Print Network (OSTI)

Measurements of small-scale turbulence made over the complex-terrain atmospheric boundary layer during the MATERHORN Program are used to describe the structure of turbulence in katabatic flows. Turbulent and mean meteorological data were continuously measured at multiple levels at four towers deployed along the East lower slope (2-4 deg) of Granite Mountain. The multi-level observations made during a 30-day long MATERHORN-Fall field campaign in September-October 2012 allowed studying of temporal and spatial structure of katabatic flows in detail, and herein we report turbulence and their variations in katabatic winds. Observed vertical profiles show steep gradients near the surface, but in the layer above the slope jet the vertical variability is smaller. It is found that the vertical (normal to the slope) momentum flux and horizontal (along the slope) heat flux in a slope-following coordinate system change their sign below and above the wind maximum of a katabatic flow. The vertical momentum flux is directed...

Grachev, Andrey A; Di Sabatino, Silvana; Fernando, Harindra J S; Pardyjak, Eric R; Fairall, Christopher W

2015-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "wind structures cxs" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


61

Faint X-ray Structure in the Crab Pulsar-Wind Nebula  

E-Print Network (OSTI)

We report on a Chandra observation of the Crab Nebula that gives the first clear view of the faint boundary of the Crab's X-ray-emitting Pulsar Wind Nebula, or PWN. There is structure in all directions. Fingers, loops, bays, and the South Pulsar Jet all indicate that either filamentary material or the magnetic field are controlling the relativistic electrons. In general, spectra soften as distance from the pulsar increases but do not change rapidly along linear features. This is particularly true for the Pulsar Jet. The termination of the Jet is abrupt; the E side is close to an [O {\\small III}] optical filament which may be blocking propagation on this side. We argue that linear features have ordered magnetic fields and that the structure is determined by the synchrotron lifetime of particles diffusing perpendicular and parallel to the magnetic field. We find no significant evidence for thermal X-rays inside the filamentary envelope.

F. D. Seward; W. H. Tucker; R. A. Fesen

2006-08-23T23:59:59.000Z

62

Temporal structure of aggregate power fluctuations in large-eddy simulations of extended wind-farms  

E-Print Network (OSTI)

Fluctuations represent a major challenge for the incorporation of electric power from large wind-farms into power grids. Wind farm power output fluctuates strongly in time, over various time scales. Understanding these fluctuations, especially their spatio-temporal characteristics, is particularly important for the design of backup power systems that must be readily available in conjunction with wind-farms. In this work we analyze the power fluctuations associated with the wind-input variability at scales between minutes to several hours, using large eddy simulations (LES) of extended wind-parks, interacting with the atmospheric boundary layer. LES studies enable careful control of parameters and availability of wind-velocities simultaneously across the entire wind-farm. The present study focuses on neutral atmospheric conditions and flat terrain, using actuator-disk representations of the individual wind-turbines. We consider power from various aggregates of wind-turbines such as the total average power sign...

Stevens, Richard J A M

2014-01-01T23:59:59.000Z

63

Effects of the Interstellar Neutral Wind on the Structure of the Heliosphere - Laboratory Simulation  

Science Journals Connector (OSTI)

The interaction between the solar wind and the local intersteller medium (LISM) ... the relaxation toward pressure equilibrium between the solar wind and the intersteller magnetized plasma. We have been doing a l...

1994-01-01T23:59:59.000Z

64

NREL: Wind Research - National Wind Technology Center Map  

NLE Websites -- All DOE Office Websites (Extended Search)

Wind Technology Center in Golden, Colorado Structural Testing Laboratory (STL) As wind turbines grow in size and their blades become longer and more flexible, it becomes more...

65

AIR-FLOW STRUCTURE IN THE VERY CLOSE VICINITY OF WIND GENERATED WATER-WAVES  

E-Print Network (OSTI)

to : , with the air-density, u and w the horizontal and vertical components of the wind speed, u* the friction and the viscous drag at the sea sur- face, we build two new microphysical devices: 1) the wind-speed vertical of the vertical profile of the normalized phase-averaged wind-speed in the air-viscous layer (1mm above water

Paris-Sud XI, Université de

66

Wind energy: Program overview, FY 1992  

SciTech Connect

The DOE Wind Energy Program assists utilities and industry in developing advanced wind turbine technology to be economically competitive as an energy source in the marketplace and in developing new markets and applications for wind systems. This program overview describes the commercial development of wind power, wind turbine development, utility programs, industry programs, wind resources, applied research in wind energy, and the program structure.

Not Available

1993-06-01T23:59:59.000Z

67

Coupled fluid-structure interaction simulation of floating offshore wind turbines and waves: a large eddy simulation approach  

Science Journals Connector (OSTI)

We develop a computational framework for simulating the coupled interaction of complex floating structures with large-scale ocean waves and atmospheric turbulent winds. The near-field approach features a partitioned fluid-structure interaction model (FSI) combining the curvilinear immersed boundary (CURVIB) method of Borazjani and Sotiropoulos (J. Comput. Phys. 2008) and the two-phase flow level set formulation of Kang and Sotiropoulos (Adv. in Water Res. 2012) and is capable of solving complex free-surface flows interacting non-linearly with complex real life floating structures. The near-field solver is coupled with a large-scale wave and wind model based on the two-fluid approach of Yang and Shen (J. Comput. Phys. 2011) which integrates a viscous Navier-Stokes solver with undulatory boundaries for the motion of the air and an efficient potential-flow based wave solver. The large-scale turbulent wind is incorporated from the far-field solver to the near-field solver by feeding into the latter inlet boundary conditions. The wave field is incorporated to the near-field solver by using the pressure-forcing method of Guo and Shen (J. Comput. Phys. 2009) which has been appropriately adapted to the level set method. The algorithm for coupling the two codes has been validated for a variety of wave cases including a broadband spectrum showing excellent agreement when compared to theoretical results. Finally, the capabilities of the numerical framework are demonstrated by carrying out large eddy simulation (LES) of a floating wind turbine interacting with realistic ocean wind and wave conditions.

Antoni Calderer; Xin Guo; Lian Shen; Fotis Sotiropoulos

2014-01-01T23:59:59.000Z

68

Identifying Structural Parameters of an Idling Offshore Wind Turbine Using Operational Modal Analysis  

Science Journals Connector (OSTI)

The design of modern day offshore wind turbines (OWTs) relies on numerical models, which ... needed for determining the design life of the turbines. The dynamic behavior, and thus the lifetime, of the turbines ar...

Paul L. C. van der Valk; Marco G. L. Ogno

2014-01-01T23:59:59.000Z

69

Operational modal identification of offshore wind turbine structure based on modified stochastic subspace identification method considering harmonic interference  

Science Journals Connector (OSTI)

The structural modal parameter information can be generally obtained from different vibration responses triggered by unknown excitations using the classic modal identification methods which are based on the assumption that the input to the structure is exactly the same or close to the stationary random white noise. For the actual projects such as the offshore wind turbine structure however the imposed loads cannot be considered as the pure white noise excitation because the harmonic components emerge obviously in vibration responses due to periodic rotation excitations of the rotor. When the created harmonic components have greater energy and their frequencies are close to any natural modal frequency of the structure the classic methods can no longer separate harmonic modes from actual structural operational modes under this strong harmonic disturbance thus false modes may be generated and the identification accuracy may be badly affected. To identify the actual structural operational modes accurately under strong harmonic excitation a modified stochastic subspace identification (SSI) method considering harmonic interference called the harmonic modification SSI (HM-SSI) method was proposed in this paper assuming the input harmonic frequencies are known and time-invariant. Then the effectiveness and accuracy of the HM-SSI method were verified through a simple numerical model of cantilever beam excited by various harmonic inputs superimposed on random loads. Besides the superior robustness and better accuracy of identification results affected by the level of noise and the proportion of harmonic energy were reflected. Finally the modal parameter information under different operational conditions was obtained and the safety assessment of an operational wind turbine was made based on the measured data from one offshore wind turbine test prototype at high running speed.

Jijian Lian

2014-01-01T23:59:59.000Z

70

Mobile demersal megafauna at artificial structures in the German Bight – Likely effects of offshore wind farm development  

Science Journals Connector (OSTI)

Abstract Within the next few decades, large underwater structures of thousands of wind turbines in the northern European shelf seas will substantially increase the amount of habitat available for mobile demersal megafauna. As a first indication of the possible effects of this large scale habitat creation on faunal stocks settling on hard substrata, we compared selected taxa of the mobile demersal megafauna (decapods and fish) associated with the foundation of an offshore research platform (a wind-power foundation equivalent) with those of five shipwrecks and different areas of soft bottoms in the southern German Bight, North Sea. When comparing the amount of approximately 5000 planned wind-power foundations (covering 5.1 × 106 m2 of bottom area) with the existing number of at least 1000 shipwrecks (covering 1.2 × 106 m2 of bottom area), it becomes clear that the southern North Sea will provide about 4.3 times more available artificial hard substratum habitats than currently available. With regard to the fauna found on shipwrecks, on soft substrata and on the investigated wind-power foundation, we predict that the amount of added hard substrata will allow the stocks of substrata-limited mobile demersal hard bottom species to increase by 25–165% in that area. The fauna found at the offshore platform foundations is very similar to that at shipwrecks. Megafauna abundances at the foundations, however, are lower compared to those at the highly fractured wrecks and are irregularly scattered over the foundations. The upper regions of the platform construction (5 and 15 m depth) were only sparsely colonized by mobile fauna, the anchorages, however, more densely. The faunal assemblages from the shipwrecks and the foundations, respectively, as well as from the soft bottoms clearly differed from each other. We predict that new wind-power foundations will support the spread of hard bottom fauna into soft bottom areas with low wreck densities.

R. Krone; L. Gutow; T. Brey; J. Dannheim; A. Schröder

2013-01-01T23:59:59.000Z

71

Offshore floating vertical axis wind turbines, dynamics modelling state of the art. Part II: Mooring line and structural dynamics  

Science Journals Connector (OSTI)

Abstract The need to exploit enhanced wind resources far offshore as well as in deep waters requires the use of floating support structures to become economically viable. The conventional three-bladed horizontal axis wind turbine may not continue to be the optimal design for floating applications. Therefore it is important to assess alternative concepts in this context that may be more suitable. Vertical axis wind turbines (VAWTs) are a promising concept, and it is important to first understand the coupled and relatively complex dynamics of floating \\{VAWTs\\} to assess their technical feasibility. As part of this task, a series of articles have been developed to present a comprehensive literature review covering the various areas of engineering expertise required to understand the coupled dynamics involved in floating VAWTs. This second article focuses on the modelling of mooring systems and structural behaviour of floating VAWTs, discussing various mathematical models and their suitability within the context of developing a model of coupled dynamics. Emphasis is placed on computational aspects of model selection and development as computational efficiency is an important aspect during preliminary design stages. This paper has been written both for researchers new to this research area, outlining underlying theory whilst providing a comprehensive review of the latest work, and for experts in this area, providing a comprehensive list of the relevant references where the details of modelling approaches may be found.

Michael Borg; Maurizio Collu; Athanasios Kolios

2014-01-01T23:59:59.000Z

72

Offshore wind energy systems  

Science Journals Connector (OSTI)

Wind energy systems deployed in the shallow but windy waters of the southern North Sea have the potential to provide more than 20% of UK electricity needs. With existing experience of windmills, and of aircraft and offshore structures, such wind energy systems could be developed within a relatively short timescale. A preliminary assessment of the economics of offshore wind energy systems is encouraging.

P Musgrove

1978-01-01T23:59:59.000Z

73

HELICITY CONDENSATION AS THE ORIGIN OF CORONAL AND SOLAR WIND STRUCTURE  

SciTech Connect

Three of the most important and most puzzling features of the Sun's atmosphere are the smoothness of the closed-field corona (the so-called coronal loops), the accumulation of magnetic shear at photospheric polarity inversion lines (PILs; filament channels), and the complex dynamics of the slow wind. We propose that a single process, helicity condensation, is the physical mechanism giving rise to all three features. A simplified model is presented for how helicity is injected and transported in the closed corona by magnetic reconnection. With this model, we demonstrate that magnetic shear must accumulate at PILs and coronal hole boundaries, and estimate the rate of shear growth at PILs and the loss to the wind. Our results can account for many of the observed properties of the corona and wind.

Antiochos, S. K., E-mail: spiro.antiochos@nasa.gov [NASA Goddard Space Flight Center, Greenbelt, MD, 20771 (United States)

2013-07-20T23:59:59.000Z

74

U.S. Department of Energy Wind and Water Power Program Funding...  

Energy Savers (EERE)

wind turbines. The Cyber Wind Facility will model the impacts of complex wind and wave dynamics on wind turbine structures and energy performance, enabling developers to...

75

Structural and Damage Assessment of Multi-Section Modular Hybrid Composite Wind Turbine Blade  

E-Print Network (OSTI)

the size of wind turbines to generate higher power output. Typically, the larger/longer blade designs rely on hybrid material systems such as carbon and/or glass fiber (CF/GF) reinforced polymers to improve specific stiffness/strength and damage tolerance...

Nanami, Norimichi

2014-07-25T23:59:59.000Z

76

Spatial Variation and Interpolation of Wind Speed Statistics and Its Implication in Design Wind Load.  

E-Print Network (OSTI)

??Consideration of wind load is important for design of engineered structures. Codification of wind load for structural design requires the estimation of the quantiles or… (more)

Ye, Wei

2013-01-01T23:59:59.000Z

77

An experimental and numerical study of wind turbine seismic behavior  

E-Print Network (OSTI)

a steel 1-MW wind turbine tower. ” Engineering Structures,testing of a steel wind turbine tower. ” Proceedings of theanalysis of steel wind turbine towers in the canadian

Prowell, I.

2011-01-01T23:59:59.000Z

78

Wind derivatives: hedging wind risk:.  

E-Print Network (OSTI)

??Wind derivatives are financial contracts that can be used to hedge or mitigate wind risk. In this thesis, the focus was on pricing these wind… (more)

Hoyer, S.A.

2013-01-01T23:59:59.000Z

79

Effect of internal stiffening rings and wall thickness on the structural response of steel wind turbine towers  

Science Journals Connector (OSTI)

Abstract In this paper, the structural response of steel tubular wind turbine towers with various design configurations is analysed using FEM modelling. Towers of various heights between 50 and 250 m are considered and investigated with three different design options as follows: (i) thick walled tower with internal horizontal stiffening rings, (ii) thick walled tower without stiffening rings and (iii) thin walled tower with stiffening rings. Based on this analysis, weight reduction ratios are examined in relation to the horizontal sway and von Mises stress increase ratios in order to identify a more efficient design approach between reducing the wall thickness and adopting internal stiffeners. All studied design solutions satisfy the strength and serviceability requirements as specified by the design codes of practice. In the final part of paper, the dynamic characteristics of these three types of towers have been examined to obtain the natural frequencies and mode shapes. The studied model ignored the mass of nacelle-rotor system and the wind turbines, namely, only the isolated tower was included. Furthermore, the recommendations to avoid resonance for each height case are proposed.

Y. Hu; C. Baniotopoulos; J. Yang

2014-01-01T23:59:59.000Z

80

Aerodynamic performance and characteristic of vortex structures for Darrieus wind turbine. II. The relationship between vortex structure and aerodynamic performance  

Science Journals Connector (OSTI)

In this paper transient computational fluid dynamics (CFD) simulations of a straight-bladed Darrieus type vertical axis wind turbine were performed by means of an in-house CFD code. The Spalart-Allmaras turbulence model was implemented in the numerical code for the turbulence. Particular emphasis was placed on effect of interaction between vortices and blades on the aerodynamic performance of the simulated turbine at different tip speed and solidity ratios. The obtained results suggested that vortices were shed from previous blade passages and the close encounter of a rotor blade with these vortices can have a considerable impact on power coefficient of the simulated turbine during operation at different tip speed ratios. As a result possible reasons for the changes in the behavior of this type of turbine due to the variation of tip speed ratio and solidity were proposed.

2014-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "wind structures cxs" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


81

WIND ENERGY Wind Energ. (2014)  

E-Print Network (OSTI)

WIND ENERGY Wind Energ. (2014) Published online in Wiley Online Library (wileyonlinelibrary Correspondence M. Wächter, ForWind-Center for Wind Energy Research, Institute of Physics, Carl Von Ossietzky on the operation of wind energy converters (WECs) imposing different risks especially in terms of highly dynamic

Peinke, Joachim

82

Numerical simulation of wind-structure interaction for thin shells and membranes  

Science Journals Connector (OSTI)

Modern architecture promotes light and efficient structures. With the use of innovative constructions and materials, the realization of wide-spanned and creative buildings is possible. However, increasing lightne...

Alexander Kupzok; Roland WÜchner…

2006-01-01T23:59:59.000Z

83

wind energy  

National Nuclear Security Administration (NNSA)

5%2A en Pantex to Become Wind Energy Research Center http:nnsa.energy.govfieldofficesnponpopressreleasespantex-become-wind-energy-research-center

84

Wind Gallery | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

(shown here), concrete, or steel lattice. Supports the structure of the turbine. Because wind speed increases with height, taller towers enable turbines to capture more energy and...

85

Wind Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

FUPWG Meeting FUPWG Meeting NREL is a national laboratory of the U.S. Department of Energy Office of Energy Efficiency and Renewable Energy operated by the Alliance for Sustainable Energy, LLC Robi Robichaud November 18, 2009 Topics Introduction Review of the Current Wind Market Drivers for Wind Development Siting g Issues Wind Resource Assessment Wind Characteristics Wind Power Potential Basic Wind Turbine Theory Basic Wind Turbine Theory Types of Wind Turbines Facts About Wind Siting Facts About Wind Siting Wind Performance 1. United States: MW 1 9 8 2 1 9 8 3 1 9 8 4 1 9 8 5 1 9 8 6 1 9 8 7 1 9 8 8 1 9 8 9 1 9 9 0 1 9 9 1 1 9 9 2 1 9 9 3 1 9 9 4 1 9 9 5 1 9 9 6 1 9 9 7 1 9 9 8 1 9 9 9 2 0 0 0 2 0 0 1 2 0 0 2 2 0 0 3 2 0 0 4 2 0 0 5 2 0 0 6 2 0 0 7 2 0 0 8 Current Status of the Wind Industry Total Global Installed Wind Capacity Total Global Installed Wind Capacity Total Global Installed Wind Capacity

86

Dynamic response analysis of a 900 kW wind turbine subject to ground excitation  

E-Print Network (OSTI)

response analysis of wind turbine towers including soil-were attached to the wind turbine tower at 7 locations alongload demands on the wind turbine tower structure. Additional

Caudillo, Adrian Felix

2012-01-01T23:59:59.000Z

87

A multi-scale approach to statistical and model-based structural health monitoring with application to embedded sensing for wind energy  

E-Print Network (OSTI)

a tripod- supported wind turbine tower. White, et al. [35,load input to a wind turbine tower. This chapter develops

Taylor, Stuart Glynn

2013-01-01T23:59:59.000Z

88

Offshore Code Comparison Collaboration within IEA Wind Annex XXIII: Phase III Results Regarding Tripod Support Structure Modeling  

SciTech Connect

Offshore wind turbines are designed and analyzed using comprehensive simulation codes. This paper describes the findings of code-to-code verification activities of the IEA Offshore Code Comparison Collaboration.

Nichols, J.; Camp, T.; Jonkman, J.; Butterfield, S.; Larsen, T.; Hansen, A.; Azcona, J.; Martinez, A.; Munduate, X.; Vorpahl, F.; Kleinhansl, S.; Kohlmeier, M.; Kossel, T.; Boker, C.; Kaufer, D.

2009-01-01T23:59:59.000Z

89

Experiences with object-oriented and equation based modeling of a floating support structure for wind turbines in modelica  

Science Journals Connector (OSTI)

A floating substructure for wind turbines is modeled using the object-oriented modeling language Modelica in a coupled simulation environment. The equation-based modeling facilitates the implementation for engineers due to declarative model descriptions ...

Matthias Brommundt; Michael Muskulus; Mareike Strach; Michael Strobel; Fabian Vorpahl

2012-12-01T23:59:59.000Z

90

Wind Mills  

Science Journals Connector (OSTI)

Over 5,000 years ago, the ancient Egyptians used wind to sail ships on the Nile River. While the proliferation of water mills was in full swing, windmills appeared to harness more inanimate energy by employing wind

J. S. Rao

2011-01-01T23:59:59.000Z

91

Wind Farm  

Office of Energy Efficiency and Renewable Energy (EERE)

The wind farm in Greensburg, Kansas, was completed in spring 2010, and consists of ten 1.25 megawatt (MW) wind turbines that supply enough electricity to power every house, business, and municipal...

92

Wind Power  

NLE Websites -- All DOE Office Websites (Extended Search)

Wind Power As the accompanying map of New Mexico shows, the best wind power generation potential near WIPP is along the Delaware Mountain ridge line of the southern Guadalupe...

93

Wind Power  

Science Journals Connector (OSTI)

For off-shore wind energy, it is not economically profitable to locate wind turbines in waters with depths larger than about 40 m. For this reason, some floating turbine prototypes are being tested, which can be ...

Ricardo Guerrero-Lemus; José Manuel Martínez-Duart

2013-01-01T23:59:59.000Z

94

Wind energy  

Science Journals Connector (OSTI)

...is approximately 4.5-6.01 for onshore wind farms. The price for offshore wind farms is estimated to be 50% higher. For comparison...visually intrusive. The visual impact of offshore wind farms quickly diminishes with distance and 10km...

2007-01-01T23:59:59.000Z

95

‘Chinook winds.’  

Science Journals Connector (OSTI)

...of south-easterly winds, which blow over the...Ocean, from which the winds come, can at this season...freezing-point. The wind well known in the Alps as the foehn is another example of...result is complicated by local details; regions of...

George M. Dawson

1886-01-08T23:59:59.000Z

96

Lower Sioux Wind Feasibility & Development  

SciTech Connect

This report describes the process and findings of a Wind Energy Feasibility Study (Study) conducted by the Lower Sioux Indian Community (Community). The Community is evaluating the development of a wind energy project located on tribal land. The project scope was to analyze the critical issues in determining advantages and disadvantages of wind development within the Community. This analysis addresses both of the Community's wind energy development objectives: the single turbine project and the Commerical-scale multiple turbine project. The main tasks of the feasibility study are: land use and contraint analysis; wind resource evaluation; utility interconnection analysis; and project structure and economics.

Minkel, Darin

2012-04-01T23:59:59.000Z

97

Key Activities in Wind Energy | Department of Energy  

Office of Environmental Management (EM)

to develop aerodynamic, structural and electrical test centers for wind farms, wind turbines, rotor blades, and drivetrains Enable industry to meet performance and safety...

98

Wind Blog  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

wind-blog Office of Energy Efficiency & Renewable wind-blog Office of Energy Efficiency & Renewable Energy Forrestal Building 1000 Independence Avenue, SW Washington, DC 20585 en Two Facilities, One Goal: Advancing America's Wind Industry http://energy.gov/eere/articles/two-facilities-one-goal-advancing-america-s-wind-industry wind-industry" class="title-link">Two Facilities, One Goal: Advancing America's Wind Industry

99

Wind for Schools: A Wind Powering America Project (Brochure)  

Wind Powering America (EERE)

for Schools: for Schools: A Wind Powering America Project Donna Berry - Utah State University/PIX13969 2 2 What is the Wind for Schools Project? Energy is largely taken for granted within our society, but that perception is changing as the economic and environmental impacts of our current energy supply structure are more widely understood. The U.S. Department of Energy's (DOE's) Wind Powering America program (at the National Renewable Energy Laboratory) sponsors the Wind for Schools Project to raise awareness in rural America about the benefits of wind energy while simultaneously developing a wind energy knowledge base in future leaders of our communities, states, and nation. A wind turbine located at a school provides students and teachers with a physical example of how communities can take

100

Computational wind engineering using finite element package ADINA  

E-Print Network (OSTI)

Design of tall and long span structures is governed by the wind forces. Inadequate research in the field of wind dynamics has forced engineers to rely on design codes or wind tunnel tests for sufficient data. The present ...

Bajoria, Ankur

2008-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "wind structures cxs" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


101

Wind Power Forecasting  

NLE Websites -- All DOE Office Websites (Extended Search)

Retrospective Reports 2011 Smart Grid Wind Integration Wind Integration Initiatives Wind Power Forecasting Wind Projects Email List Self Supplied Balancing Reserves Dynamic...

102

CgWind: A high-order accurate simulation tool for wind turbines and wind farms  

SciTech Connect

CgWind is a high-fidelity large eddy simulation (LES) tool designed to meet the modeling needs of wind turbine and wind park engineers. This tool combines several advanced computational technologies in order to model accurately the complex and dynamic nature of wind energy applications. The composite grid approach provides high-quality structured grids for the efficient implementation of high-order accurate discretizations of the incompressible Navier-Stokes equations. Composite grids also provide a natural mechanism for modeling bodies in relative motion and complex geometry. Advanced algorithms such as matrix-free multigrid, compact discretizations and approximate factorization will allow CgWind to perform highly resolved calculations efficiently on a wide class of computing resources. Also in development are nonlinear LES subgrid-scale models required to simulate the many interacting scales present in large wind turbine applications. This paper outlines our approach, the current status of CgWind and future development plans.

Chand, K K; Henshaw, W D; Lundquist, K A; Singer, M A

2010-02-22T23:59:59.000Z

103

Wind turbine  

SciTech Connect

The improvement in a wind turbine comprises providing a tower with a freely liftable mount and adapting a nacelle which is fitted with a propeller windwheel consisting of a plurality of rotor blades and provided therein with means for conversion of wind energy to be shifted onto said mount attached to the tower. In case of a violent wind storm, the nacelle can be lowered down to the ground to protect the rotor blades from breakage due to the force of the wind. Required maintenance and inspection of the nacelle and replacement of rotor blades can be safely carried out on the ground.

Abe, M.

1982-01-19T23:59:59.000Z

104

Structural health and prognostics management for offshore wind turbines : case studies of rotor fault and blade damage with initial O&M cost modeling.  

SciTech Connect

Operations and maintenance costs for offshore wind plants are significantly higher than the current costs for land-based (onshore) wind plants. One way to reduce these costs would be to implement a structural health and prognostic management (SHPM) system as part of a condition based maintenance paradigm with smart load management and utilize a state-based cost model to assess the economics associated with use of the SHPM system. To facilitate the development of such a system a multi-scale modeling approach developed in prior work is used to identify how the underlying physics of the system are affected by the presence of damage and faults, and how these changes manifest themselves in the operational response of a full turbine. This methodology was used to investigate two case studies: (1) the effects of rotor imbalance due to pitch error (aerodynamic imbalance) and mass imbalance and (2) disbond of the shear web; both on a 5-MW offshore wind turbine in the present report. Based on simulations of damage in the turbine model, the operational measurements that demonstrated the highest sensitivity to the damage/faults were the blade tip accelerations and local pitching moments for both imbalance and shear web disbond. The initial cost model provided a great deal of insight into the estimated savings in operations and maintenance costs due to the implementation of an effective SHPM system. The integration of the health monitoring information and O&M cost versus damage/fault severity information provides the initial steps to identify processes to reduce operations and maintenance costs for an offshore wind farm while increasing turbine availability, revenue, and overall profit.

Myrent, Noah J. [Purdue Center for Systems Integrity, Lafayette, IN; Kusnick, Joshua F. [Purdue Center for Systems Integrity, Lafayette, IN; Barrett, Natalie C. [Purdue Center for Systems Integrity, Lafayette, IN; Adams, Douglas E. [Purdue Center for Systems Integrity, Lafayette, IN; Griffith, Daniel Todd

2013-04-01T23:59:59.000Z

105

Offshore Wind Research (Fact Sheet)  

SciTech Connect

This 2-page fact sheet describes NREL's offshore wind research and development efforts and capabilities. The National Renewable Energy Laboratory is internationally recognized for offshore wind energy research and development (R&D). Its experience and capabilities cover a wide spectrum of wind energy disciplines. NREL's offshore wind R&D efforts focus on critical areas that address the long-term needs of the offshore wind energy industry and the Department of Energy (DOE). R&D efforts include: (1) Developing offshore design tools and methods; (2) Collaborating with international partners; (3) Testing offshore systems and developing standards; (4) Conducting economic analyses; (5) Characterizing offshore wind resources; and (6) Identifying and mitigating offshore wind grid integration challenges and barriers. NREL has developed and maintains a robust, open-source, modular computer-aided engineering (CAE) tool, known as FAST. FAST's state-of-the-art capabilities provide full dynamic system simulation for a range of offshore wind systems. It models the coupled aerodynamic, hydrodynamic, control system, and structural response of offshore wind systems to support the development of innovative wind technologies that are reliable and cost effective. FAST also provides dynamic models of wind turbines on offshore fixed-bottom systems for shallow and transitional depths and floating-platform systems in deep water, thus enabling design innovation and risk reduction and facilitating higher performance designs that will meet DOE's cost of energy, reliability, and deployment objectives.

Not Available

2011-10-01T23:59:59.000Z

106

Towers for Offshore Wind Turbines  

Science Journals Connector (OSTI)

Increasing energy demand coupled with pollution free production of energy has found a viable solution in wind energy. Land based windmills have been utilized for power generation for more than two thousand years. In modern times wind generated power has become popular in many countries. Offshore wind turbines are being used in a number of countries to tap the energy from wind over the oceans and convert to electric energy. The advantages of offshore wind turbines as compared to land are that offshore winds flow at higher speed than onshore winds and the more available space. In some land based settings for better efficiency turbines are separated as much as 10 rotor diameters from each other. In offshore applications where only two wind directions are likely to predominate the distances between the turbines arranged in a line can be shortened to as little as two or four rotor diameters. Today more than a dozen offshore European wind facilities with turbine ratings of 450 kw to 3.6 MW exist offshore in very shallow waters of 5 to 12 m. Compared to onshore wind turbines offshore wind turbines are bigger and the tower height in offshore are in the range of 60 to 80 m. The water depths in oceans where offshore turbines can be located are within 30 m. However as the distance from land increases the costs of building and maintaining the turbines and transmitting the power back to shore also increase sharply. The objective of this paper is to review the parameters of design for the maximum efficiency of offshore wind turbines and to develop types offshore towers to support the wind turbines. The methodology of design of offshore towers to support the wind turbine would be given and the environmental loads for the design of the towers would be calculated for specific cases. The marine corrosion on the towers and the methods to control the corrosion also would be briefly presented. As the wind speeds tend to increase with distance from the shore turbines build father offshore will be able to capture more wind energy. Currently two types of towers are considered. Cylindrical tubular structures and truss type structures. But truss type structures have less weight and flexibility in design. The construction of the offshore towers to harness the wind energy is also presented. The results will include the calculation of wind and wave forces on the tower and the design details for the tower.

V. J. Kurian; S. P. Narayanan; C. Ganapathy

2010-01-01T23:59:59.000Z

107

Wind Powering America: Wind Events  

Wind Powering America (EERE)

calendar.asp Lists upcoming wind calendar.asp Lists upcoming wind power-related events. en-us julie.jones@nrel.gov (Julie Jones) http://www.windpoweringamerica.gov/images/wpa_logo_sm.jpg Wind Powering America: Wind Events http://www.windpoweringamerica.gov/calendar.asp Pennsylvania Wind for Schools Educator Workshop https://www.regonline.com/builder/site/Default.aspx?EventID=1352684 http://www.windpoweringamerica.gov/filter_detail.asp?itemid=4068 Wed, 4 Dec 2013 00:00:00 MST 2014 Joint Action Workshop http://www.windpoweringamerica.gov/filter_detail.asp?itemid=3996 http://www.windpoweringamerica.gov/filter_detail.asp?itemid=3996 Mon, 21 Oct 2013 00:00:00 MST AWEA Wind Project Operations and Maintenance and Safety Seminar http://www.windpoweringamerica.gov/filter_detail.asp?itemid=4009 http://www.windpoweringamerica.gov/filter_detail.asp?itemid=4009 Mon, 21

108

Microphysical Structure of the Marine Boundary Layer under Strong Wind and Spray Formation as Seen from Simulations Using a 2D Explicit  

E-Print Network (OSTI)

in the vertical profiles of wind speed occurring with in- creasing wind speeds were attributed to a decrease generation is de- termined by a source function depending on the background wind speed assumed in the surface roughness and the drag coefficient for wind speeds exceeding about 33 m s21 . This decrease

Mark, Pinsky

109

Published in Proceedings of the XL2003 (Response of Structures to Extreme Loading) Conference, Toronto, August 2003. EFFICIENT MODELS FOR WIND TURBINE EXTREME LOADS  

E-Print Network (OSTI)

, Toronto, August 2003. EFFICIENT MODELS FOR WIND TURBINE EXTREME LOADS USING INVERSE RELIABILITY K, USA ABSTRACT The reliability of wind turbines against extreme loads is the focus of this study of randomness in the gross wind environment as well as in the extreme response given wind conditions. A detailed

Manuel, Lance

110

Wyoming Wind Power Project (generation/wind)  

NLE Websites -- All DOE Office Websites (Extended Search)

Wind Power > Generation Hydro Power Wind Power Monthly GSP BPA White Book Dry Year Tools Firstgov Wyoming Wind Power Project (Foote Creek Rim I and II) Thumbnail image of wind...

111

Tornado type wind turbines  

DOE Patents (OSTI)

A tornado type wind turbine has a vertically disposed wind collecting tower with spaced apart inner and outer walls and a central bore. The upper end of the tower is open while the lower end of the structure is in communication with a wind intake chamber. An opening in the wind chamber is positioned over a turbine which is in driving communication with an electrical generator. An opening between the inner and outer walls at the lower end of the tower permits radially flowing air to enter the space between the inner and outer walls while a vertically disposed opening in the wind collecting tower permits tangentially flowing air to enter the central bore. A porous portion of the inner wall permits the radially flowing air to interact with the tangentially flowing air so as to create an intensified vortex flow which exits out of the top opening of the tower so as to create a low pressure core and thus draw air through the opening of the wind intake chamber so as to drive the turbine.

Hsu, Cheng-Ting (Ames, IA)

1984-01-01T23:59:59.000Z

112

Offshore Wind Power USA  

Energy.gov (U.S. Department of Energy (DOE))

The Offshore Wind Power USA conference provides the latest offshore wind market updates and forecasts.

113

NREL: Wind Research - Controls Analysis  

NLE Websites -- All DOE Office Websites (Extended Search)

Controls Analysis Controls Analysis Photo of a man working inside the hub of a large 3-blades turbine. Working in the hub of Controls Advanced Research Turbine (CART) at the National Wind Technology Center (NWTC) Man in wind turbine hub viewed from inside a wind turbine's blade. At the National Wind Technology Center (NWTC), we design, implement, and test advanced wind turbine controls to maximize energy extraction and reduce structural dynamic loads. These control designs are based on linear models of the turbine that are simulated using specialized modeling software. The resulting advanced controls algorithms are field tested on the NWTC's Controls Advanced Research Turbines (CARTs). NWTC researchers are also studying blade pitch and generator torque, and employing advanced sensors to optimize power capture and reduce wind

114

offshore wind farm  

Science Journals Connector (OSTI)

offshore wind farm, wind farm [‘Wind park’ which one may find on the ... engineers and should not be used. A wind farm consists of a network of wind turbines] ? Windkraftanlage f, Windpark m; Offshore

2014-08-01T23:59:59.000Z

115

Wind Energy Leasing Handbook  

E-Print Network (OSTI)

Wind Energy Leasing Handbook Wind Energy Leasing Handbook E-1033 Oklahoma Cooperative Extension?..................................................................................................................... 31 What do wind developers consider in locating wind energy projects?............................................................................................ 37 How do companies and individuals invest in wind energy projects?....................................................................

Balasundaram, Balabhaskar "Baski"

116

Design Wind Speed  

Science Journals Connector (OSTI)

Wind is characterized by various different parameters. They include the following items: (1) wind speed, such as the mean wind speed and maximum instantaneous wind speed; (2) wind direction such as the azimuth di...

Yozo Fujino; Kichiro Kimura; Hiroshi Tanaka

2012-01-01T23:59:59.000Z

117

Wind Powering America: New England Wind Forum  

Wind Powering America (EERE)

About the New England Wind Forum About the New England Wind Forum New England Wind Energy Education Project Historic Wind Development in New England State Activities Projects in New England Building Wind Energy in New England Wind Resource Wind Power Technology Economics Markets Siting Policy Technical Challenges Issues Small Wind Large Wind Newsletter Perspectives Events Quick Links to States CT MA ME NH RI VT Bookmark and Share The New England Wind Forum was conceived in 2005 as a platform to provide a single, comprehensive and objective source of up-to-date, Web-based information on a broad array of wind-energy-related issues pertaining to New England. The New England Wind Forum provides information to wind energy stakeholders through Web site features, periodic newsletters, and outreach activities. The New England Wind Forum covers the most frequently discussed wind energy topics.

118

Wind News  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

news Office of Energy Efficiency & Renewable news Office of Energy Efficiency & Renewable Energy Forrestal Building 1000 Independence Avenue, SW Washington, DC 20585 en New Report Shows Trend Toward Larger Offshore Wind Systems, with 11 Advanced Stage Projects Proposed in U.S. Waters http://energy.gov/eere/articles/new-report-shows-trend-toward-larger-offshore-wind-systems-11-advanced-stage-projects wind-systems-11-advanced-stage-projects" class="title-link">New Report Shows Trend Toward Larger Offshore Wind Systems, with 11 Advanced Stage Projects Proposed in U.S. Waters

119

Improved methodology for design of low wind speed specific wind turbine blades  

Science Journals Connector (OSTI)

Abstract The majority of wind power is currently produced on high wind speed sites, and the standard design of wind turbine blades has evolved to be structurally efficient under these conditions. Recently, sites with lower quality wind resources have begun to be considered for new wind farms. This study confirms the expectation that the standard high wind speed design process results in less efficient structures when used for low wind speed conditions, and that a low wind speed specific design process is able to yield structural improvements. A comparative structural analysis of generic blades from high and low wind speed turbines quantifies the differences in structural performance between high and low wind speed blades, and indicates the ways in which the standard design process should be modified to suit a low wind speed specific design. An improved design method specifically for low wind speed blades is proposed, with more emphasis on stiffness than in the standard high wind speed design. The improved design process results in a lighter and cheaper blade than the conventionally designed one, whilst still fulfilling the design requirements.

R.H. Barnes; E.V. Morozov; K. Shankar

2015-01-01T23:59:59.000Z

120

Wind energy  

Science Journals Connector (OSTI)

Wind energy is rapidly growing. In 2006 the installed generating capacity in the world increased by 25%, a growth rate which has more or less been sustained during the last decade. And there is no reason to believe that this growth will slow significantly in the coming years. For example, the United Kingdom's goal for installed wind turbines by 2020 is 33 GW up from 2 GW in 2006, an average annual growth rate of 22% over that period. More than half of all turbines are installed in Europe, but United States, India and lately China are also rapidly growing markets. The cradle of modern wind energy was set by innovative blacksmiths in rural Denmark. Now the wind provides more than 20% of the electrical power in Denmark, the industry has professionalized and has close ties with public research at universities. This focus issue is concerned with research in wind energy. The main purposes of research in wind energy are to: decrease the cost of power generated by the wind; increase the reliability and predictability of the energy source; investigate and reduce the adverse environmental impact of massive deployment of wind turbines; build research based educations for wind energy engineers. This focus issue contains contributions from several fields of research. Decreased costs cover a very wide range of activities from aerodynamics of the wind turbine blades, optimal site selection for the turbines, optimization of the electrical grid and power market for a fluctuating source, more efficient electrical generators and gears, and new materials and production techniques for turbine manufacturing. The United Kingdom recently started the construction of the London Array, a 1 GW off-shore wind farm east of London consisting of several hundred turbines. To design such a farm optimally it is necessary to understand the chaotic and very turbulent flow downwind from a turbine, which decreases the power production and increases the mechanical loads on other nearby turbines. Also addressed within the issue is how much conventional power production can be replaced by the ceaseless wind, with the question of how Greece's target of 29% renewables by 2020 is to be met efficiently. Other topics include an innovative way to determine the power curve of a turbine experimentally more accurately, the use of fluid dynamics tools to investigate the implications of placing vortex generators on wind turbine blades (thereby possibly improving their efficiency) and a study of the perception of wind turbine noise. It turns out that a small but significant fraction of wind turbine neighbours feel that turbine generated noise impairs their ability to rest. The annoyance is correlated with a negative attitude towards the visual impact on the landscape, but what is cause and effect is too early to say. As mentioned there is a rush for wind turbines in many countries. However, this positive development for the global climate is currently limited by practical barriers. One bottleneck is the difficulties for the sub-suppliers of gears and other parts to meet the demand. Another is the difficulties to meet the demand for engineers specialized in wind. For that reason the Technical University of Denmark (DTU) recently launched the world's first Wind Energy Masters Program. Here and elsewhere in the world of wind education and research we should really speed up now, as our chances of contributing to emission free energy production and a healthier global climate have never been better. Focus on Wind Energy Contents The articles below represent the first accepted contributions and further additions will appear in the near future. Wind turbines—low level noise sources interfering with restoration? Eja Pedersen and Kerstin Persson Waye On the effect of spatial dispersion of wind power plants on the wind energy capacity credit in Greece George Caralis, Yiannis Perivolaris, Konstantinos Rados and Arthouros Zervos Large-eddy simulation of spectral coherence in a wind turbine wake A Jimenez, A Crespo, E Migoya and J Garcia How to improve the estimation of

Jakob Mann; Jens Nørkær Sørensen; Poul-Erik Morthorst

2008-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "wind structures cxs" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


121

Multi-hazard Reliability Assessment of Offshore Wind Turbines  

E-Print Network (OSTI)

A probabilistic framework is developed to assess the structural reliability of offshore wind turbines. Probabilistic models are developed to predict the deformation, shear force and bending moment demands on the support structure of wind turbines...

Mardfekri Rastehkenari, Maryam 1981-

2012-12-04T23:59:59.000Z

122

Long-Term Dynamic Monitoring of an Offshore Wind Turbine  

Science Journals Connector (OSTI)

Future Offshore Wind Turbines will be hardly accessible; therefore, in ... modes of the foundation and tower structures. Wind turbines are complex structures and their dynamics vary ... track changes in the dynam...

Christof Devriendt; Filipe Magalhães…

2013-01-01T23:59:59.000Z

123

Large-Scale Uncertainty and Error Analysis for Time-dependent Fluid/Structure Interactions in Wind Turbine Applications  

SciTech Connect

The following is the final report covering the entire period of this aforementioned grant, June 1, 2011 - May 31, 2013 for the portion of the effort corresponding to Stanford University (SU). SU has partnered with Sandia National Laboratories (PI: Mike S. Eldred) and Purdue University (PI: Dongbin Xiu) to complete this research project and this final report includes those contributions made by the members of the team at Stanford. Dr. Eldred is continuing his contributions to this project under a no-cost extension and his contributions to the overall effort will be detailed at a later time (once his effort has concluded) on a separate project submitted by Sandia National Laboratories. At Stanford, the team is made up of Profs. Alonso, Iaccarino, and Duraisamy, post-doctoral researcher Vinod Lakshminarayan, and graduate student Santiago Padron. At Sandia National Laboratories, the team includes Michael Eldred, Matt Barone, John Jakeman, and Stefan Domino, and at Purdue University, we have Prof. Dongbin Xiu as our main collaborator. The overall objective of this project was to develop a novel, comprehensive methodology for uncertainty quantification by combining stochastic expansions (nonintrusive polynomial chaos and stochastic collocation), the adjoint approach, and fusion with experimental data to account for aleatory and epistemic uncertainties from random variable, random field, and model form sources. The expected outcomes of this activity were detailed in the proposal and are repeated here to set the stage for the results that we have generated during the time period of execution of this project: 1. The rigorous determination of an error budget comprising numerical errors in physical space and statistical errors in stochastic space and its use for optimal allocation of resources; 2. A considerable increase in efficiency when performing uncertainty quantification with a large number of uncertain variables in complex non-linear multi-physics problems; 3. A solution to the long-time integration problem of spectral chaos approaches; 4. A rigorous methodology to account for aleatory and epistemic uncertainties, to emphasize the most important variables via dimension reduction and dimension-adaptive refinement, and to support fusion with experimental data using Bayesian inference; 5. The application of novel methodologies to time-dependent reliability studies in wind turbine applications including a number of efforts relating to the uncertainty quantification in vertical-axis wind turbine applications. In this report, we summarize all accomplishments in the project (during the time period specified) focusing on advances in UQ algorithms and deployment efforts to the wind turbine application area. Detailed publications in each of these areas have also been completed and are available from the respective conference proceedings and journals as detailed in a later section.

Alonso, Juan J. [Stanford University; Iaccarino, Gianluca [Stanford University

2013-08-25T23:59:59.000Z

124

Wind Energy Benefits, Wind Powering America (WPA) (Fact Sheet...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Energy Benefits, Wind Powering America (WPA) (Fact Sheet), Wind And Water Power Program (WWPP) Wind Energy Benefits, Wind Powering America (WPA) (Fact Sheet), Wind And Water Power...

125

Structural Safety and Reliability, Corotis et al. (eds), 2001 Swets & Zeitlinger, ISBN 90 5809 197 X Moment-based fatigue load models for wind energy systems  

E-Print Network (OSTI)

197 X 1 Moment-based fatigue load models for wind energy systems Steven R. Winterstein & LeRoy M. Veers Sandia National Laboratories, Wind Energy Technology Department, Albuquerque, NM 87185-0708 Keywords: load models, fatigue loads, wind energy, non-Gaussian, moment-based models, long- term, short

Manuel, Lance

126

NREL: Wind Research - Wind Resource Assessment  

NLE Websites -- All DOE Office Websites (Extended Search)

Wind Resource Assessment Wind Resource Assessment A map of the United States is color-coded to indicate the high winds at 80 meters. This map shows the wind resource at 80 meters for both land-based and offshore wind resources in the United States. Correct estimation of the energy available in the wind can make or break the economics of wind plant development. Wind mapping and validation techniques developed at the National Wind Technology Center (NWTC) along with collaborations with U.S. companies have produced high-resolution maps of the United States that provide wind plant developers with accurate estimates of the wind resource potential. State Wind Maps International Wind Resource Maps Dynamic Maps, GIS Data, and Analysis Tools Due to the existence of special use airspace (SUA) (i.e., military airspace

127

New England Wind Forum: Wind Power Technology  

Wind Powering America (EERE)

Wind Power Technology Wind Power Technology Modern wind turbines have become sophisticated power plants while the concept of converting wind energy to electrical energy remains quite simple. Follow these links to learn more about the science behind wind turbine technology. Wind Power Animation An image of a scene from the wind power animation. The animation shows how moving air rotates a wind turbine's blades and describes how the internal components work to produce electricity. It shows small and large wind turbines and the differences between how they are used, as stand alone or connected to the utility grid. How Wind Turbines Work Learn how wind turbines make electricity; what are the types, sizes, and applications of wind turbines; and see an illustration of the components inside a wind turbine.

128

2011 Wind Technologies Market Report  

E-Print Network (OSTI)

that includes wind turbine towers. 2011 Wind TechnologiesSets Other Wind Turbine Components Towers Wind-Poweredselected wind turbine components includes towers as well as

Bolinger, Mark

2013-01-01T23:59:59.000Z

129

2010 Wind Technologies Market Report  

E-Print Network (OSTI)

that includes wind turbine towers. 2010 Wind TechnologiesImports : Other Wind Turbine Components Towers Wind-Poweredselected wind turbine components includes towers as well as

Wiser, Ryan

2012-01-01T23:59:59.000Z

130

Energy 101: Wind Turbines  

ScienceCinema (OSTI)

See how wind turbines generate clean electricity from the power of the wind. Highlighted are the various parts and mechanisms of a modern wind turbine.

None

2013-05-29T23:59:59.000Z

131

Balancing of Wind Power.  

E-Print Network (OSTI)

?? In the future, renewable energy share, especially wind power share, in electricity generation is expected to increase. Due to nature of the wind, wind… (more)

Ülker, Muhammed Akif

2011-01-01T23:59:59.000Z

132

Energy 101: Wind Turbines  

SciTech Connect

See how wind turbines generate clean electricity from the power of the wind. Highlighted are the various parts and mechanisms of a modern wind turbine.

None

2011-01-01T23:59:59.000Z

133

WINDExchange: Learn About Wind  

Wind Powering America (EERE)

Curricula & Teaching Materials Resources Learn About Wind Learn about how wind energy generates power; where the best wind resources are; how you can own, host, partner...

134

Wind power and Wind power and  

E-Print Network (OSTI)

Wind power and the CDM #12; Wind power and the CDM Emerging practices in developing wind power 2005 Jyoti P. Painuly, Niels-Erik Clausen, Jørgen Fenhann, Sami Kamel and Romeo Pacudan #12; WIND POWER AND THE CDM Emerging practices in developing wind power projects for the Clean Development Mechanism Energy

135

New England Wind Forum: Wind Power Economics  

Wind Powering America (EERE)

State Activities Projects in New England Building Wind Energy in New England Wind Resource Wind Power Technology Economics Cost Components Determining Factors Influencing Wind Economics in New England How does wind compare to the cost of other electricity options? Markets Siting Policy Technical Challenges Issues Small Wind Large Wind Newsletter Perspectives Events Quick Links to States CT MA ME NH RI VT Bookmark and Share Wind Power Economics Long-Term Cost Trends Since the first major installations of commercial-scale wind turbines in the 1980s, the cost of energy from wind power projects has decreased substantially due to larger turbine generators, towers, and rotor lengths; scale economies associated with larger projects; improvements in manufacturing efficiency, and technological advances in turbine generator and blade design. These technological advances have allowed for higher generating capacities per turbine and more efficient capture of wind, especially at lower wind speeds.

136

New England Wind Forum: Large Wind  

Wind Powering America (EERE)

Small Wind Small Wind Large Wind Newsletter Perspectives Events Quick Links to States CT MA ME NH RI VT Bookmark and Share Large Wind When establishing wind farms, wind energy developers generally approach landowners where they want to build. Interest in wind farms is frequently spurred by external pressures such as tax and other financial incentives and legislative mandates. Since each situation is influenced by local policies and permitting, we can only provide general guidance to help you learn about the process of installing wind turbines. Publications Wind Project Development Process Permitting of Wind Energy Facilities: A Handbook. (August 2002). National Wind Coordinating Collaborative. Landowner Frequently Asked Questions and Answers. (August 2003). "State Wind Working Group Handbook." pp. 130-133.

137

NREL: Wind Research - International Wind Resource Maps  

NLE Websites -- All DOE Office Websites (Extended Search)

projections of wind resources worldwide. This allows for more accurate siting of wind turbines and has led to the recognition of higher class winds in areas where none were...

138

HST-Scale 3D simulations of MHD disc winds : A rotating two-component jet structure  

E-Print Network (OSTI)

We present the results of large scale, three-dimensional magneto-hydrodynamics simulations of disc-winds for different initial magnetic field configurations. The jets are followed from the source to 90 AU scale, which covers several pixels of HST images of nearby protostellar jets. Our simulations show that jets are heated along their length by many shocks. We compute the emission lines that are produced, and find excellent agreement with observations. The jet width is found to be between 20 and 30 AU while the maximum velocities perpendicular to the jet is found to be up to above 100 km/s. The initially less open magnetic field configuration simulations results in a wider, two-component jet; a cylindrically shaped outer jet surrounding a narrow and much faster, inner jet. These simulations preserve the underlying Keplerian rotation profile of the inner jet to large distances from the source. However, for the initially most open magnetic field configuration the kink mode creates a narrow corkscrew-like jet wi...

Staff, Jan; Ouyed, Rachid; Thompson, Adam; Pudritz, Ralph

2014-01-01T23:59:59.000Z

139

Multivariate analysis and prediction of wind turbine response to varying wind field characteristics based on machine learning  

E-Print Network (OSTI)

Multivariate analysis and prediction of wind turbine response to varying wind field characteristics characteristics have a significant impact on the structural response and the lifespan of wind turbines. This paper presents a machine learning approach towards analyzing and predicting the response of wind turbine

Stanford University

140

Advanced Hydraulic Wind Energy  

Science Journals Connector (OSTI)

The Jet Propulsion Laboratory, California Institute of Technology, has developed a novel advanced hydraulic wind energy design, which has up to 23% performance improvement over conventional wind turbine and conventional hydraulic wind energy systems ... Keywords: wind, tide, energy, power, hydraulic

Jack A. Jones; Allan Bruce; Adrienne S. Lam

2013-04-01T23:59:59.000Z

Note: This page contains sample records for the topic "wind structures cxs" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


141

WINDExchange: Wind Economic Development  

Wind Powering America (EERE)

help you analyze the economics of a small wind electric system and decide whether wind energy will work for you. Wind Energy Finance Online Calculator Wind Energy Finance developed...

142

Exploiting Wind Versus Coal  

Science Journals Connector (OSTI)

...be offset with turbine mass production...of installed turbines, more than the...Denmark have wind parks offshore, where winds...of installed turbines, more than the...Denmark have wind parks offshore, where winds...

Mark Z. Jacobson; Gilbert M. Masters

2001-08-24T23:59:59.000Z

143

NREL: Wind Research - Wind Energy Videos  

NLE Websites -- All DOE Office Websites (Extended Search)

Wind Energy Videos The National Wind Technology Center (NWTC) is pleased to offer video presentations of its world-class capabilities, facilities, research areas, and personnel. As...

144

wind power station  

Science Journals Connector (OSTI)

wind power station [It may consist of just one wind turbine or a network of windmills] ? Windkraftanlage

2014-08-01T23:59:59.000Z

145

Session: Wind industry project development  

SciTech Connect

This first session at the Wind Energy and Birds/Bats workshop consisted of two presentations followed by a question and answer period. The session was intended to provide a general overview of wind energy product development, from the industry's perspective. Tom Gray of AWEA presented a paper titled ''State of the Wind Energy Industry in 2004'', highlighting improved performance and lower cost, efforts to address avian impacts, a status of wind energy in comparison to other energy-producing sources, and ending on expectations for the near future. Sam Enfield of Atlantic Renewable Energy Corporation presented a paper titled ''Key Factors for Consideration in Wind Plant Siting'', highlighting factors that wind facility developers must consider when choosing a site to build wind turbines and associated structures. Factors covered include wind resources available, ownership and land use patterns, access to transmission lines, accessibility and environmental impacts. The question and answer sum mary included topics related to risk taking, research and development, regulatory requirements, and dealing with utilities.

Gray, Tom; Enfield, Sam

2004-09-01T23:59:59.000Z

146

The Optimal Power Tracking Control Strategy of Grid-Connected Excited Synchronous Wind Power Generator.  

E-Print Network (OSTI)

??In this thesis, the wind power system is a coaxial coupling structure between servo motor and excited synchronous wind power generator. By using the excited… (more)

Cheng, Wen-kai

2014-01-01T23:59:59.000Z

147

NREL: Wind Research - Small Wind Turbine Webinars  

NLE Websites -- All DOE Office Websites (Extended Search)

Small Wind Turbine Webinars Small Wind Turbine Webinars Here you will find webinars about small wind turbines that NREL hosted. Introducing WindLease(tm): Making Wind Energy Affordable NREL and the American Solar Energy Society (ASES) Wind Division co-hosted this webinar. (Text Version.) Date: August 1, 2013 Run Time: 40 minutes Joe Hess, VP of Business Development at United Wind, described United Wind's WindQuote and WindLease Program and explained the process from the dealer's and consumer's perspective. Texas Renewable Energy Industries Association NREL and the American Solar Energy Society (ASES) Wind Division co-hosted this webinar. (Text Version). Date: March 7, 2013 Run Time: 1 hour Russel Smith, Texas Renewable Energy Industries Association executive director and co-founder, provided an overview of the trade association

148

New England Wind Forum: Small Wind  

Wind Powering America (EERE)

Wind for Schools Project Funding Case Studies: Thomas Harrison Middle School, Virginia Wind for Schools Project Funding Case Studies: Thomas Harrison Middle School, Virginia August 26, 2013 Workshop Explores Information's Role in Wind Project Siting: A Wind Powering America Success Story November 19, 2012 More News Subscribe to News Updates Events Renewable Energy Market Update Webinar January 29, 2014 Strategic Energy Planning: Webinar February 26, 2014 Introduction to Wind Systems March 10, 2014 More Events Publications 2012 Market Report on Wind Technologies in Distributed Applications August 12, 2013 More Publications Features Sign up for the New England Wind Forum Newsletter. New England Wind Forum About the New England Wind Forum New England Wind Energy Education Project Historic Wind Development in New England State Activities Projects in New England

149

NREL: Wind Research - Small Wind Turbine Development  

NLE Websites -- All DOE Office Websites (Extended Search)

Small Wind Turbine Development Small Wind Turbine Development A photo of Southwest Windpower's Skystream wind turbine in front of a home. PIX14936 Southwest Windpower's Skystream wind turbine. A photo of the Endurance wind turbine. PIX15006 The Endurance wind turbine. A photo of the Atlantic Orient Corporation 15/50 wind turbine at the National Wind Technology Center. PIX07301 The Atlantic Orient Corporation 15/50 wind turbine at the National Wind Technology Center. NREL supports continued market expansion of small wind turbines by funding manufacturers through competitive solicitations (i.e., subcontracts and/or grants) to refine prototype systems leading to commercialization. Learn more about the turbine development projects below. Skystream NREL installed and tested an early prototype of this turbine at the

150

NREL: Wind Research - Offshore Wind Research  

NLE Websites -- All DOE Office Websites (Extended Search)

Offshore Wind Research Offshore Wind Research Photo of a European offshore wind farm. Early progress in European Offshore Wind Energy over the last decade provides a glimpse into the vast potential of the global offshore resource. For more than eight years, NREL has worked with the Department of Energy to become an international leader in offshore wind energy research. Capabilities NREL's offshore wind capabilities focus on critical areas that reflect the long-term needs of the offshore wind energy industry and the U.S. Department of Energy including: Offshore Design Tools and Methods Offshore Standards and Testing Energy Analysis of Offshore Systems Offshore Wind Resource Characterization Grid Integration of Offshore Wind Key Research NREL documented the status of offshore wind energy in the United States in

151

NREL: Wind Research - Site Wind Resource Characteristics  

NLE Websites -- All DOE Office Websites (Extended Search)

Site Wind Resource Characteristics Site Wind Resource Characteristics A graphic showing the location of National Wind Technology Center and its wind power class 2. Click on the image to view a larger version. Enlarge image This graphic shows the wind power class at the National Wind Technology Center. You can download a printable copy. The National Wind Technology Center (NWTC) is on the Great Plains just miles from the Rocky Mountains. The site is flat and covered with short grasses. The terrain and lack of obstructions make the site highly suitable for testing wind turbines. Take a tour of the NWTC and its facilities to better understand its location and layout. Another prime feature of the NWTC is the strong directionality of the wind - most of the strong winds come within a few degrees of 285°. West of

152

DAMAGE DETECTION METHODS ON WIND TURBINE BLADE TESTING WITH WIRED AND WIRELESS ACCELEROMETER SENSORS  

E-Print Network (OSTI)

DAMAGE DETECTION METHODS ON WIND TURBINE BLADE TESTING WITH WIRED AND WIRELESS ACCELEROMETER for nonstationary blade excitations. KEYWORDS : Structural Health Monitoring, Damage Detection, Wind Turbine, Wireless sensing, Wavelets. INTRODUCTION Detecting damage in wind turbine blades is a very

Paris-Sud XI, Université de

153

Wind Technologies & Evolving Opportunities (Presentation)  

SciTech Connect

This presentation covers opportunities for wind technology; wind energy market trends; an overview of the National Wind Technology Center near Boulder, Colorado; wind energy price and cost trends; wind turbine technology improvements; and wind resource characterization improvements.

Robichaud, R.

2014-07-01T23:59:59.000Z

154

An Exploration of Wind Energy & Wind Turbines | Department of...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

An Exploration of Wind Energy & Wind Turbines An Exploration of Wind Energy & Wind Turbines Below is information about the student activitylesson plan from your search. Grades...

155

A National Offshore Wind Strategy: Creating an Offshore Wind...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

A National Offshore Wind Strategy: Creating an Offshore Wind Energy Industry in the United States A National Offshore Wind Strategy: Creating an Offshore Wind Energy Industry in...

156

20% Wind Energy by 2030 - Chapter 2: Wind Turbine Technology...  

Office of Environmental Management (EM)

20% Wind Energy by 2030: Increasing Wind Energy's Contribution to U.S. Electricity Supply U.S. Offshore Wind Manufacturing and Supply Chain Development Wind Program Accomplishments...

157

Wind pro?le assessment for wind power purposes.  

E-Print Network (OSTI)

??Preliminary estimation of wind speed at the wind turbine hub height is critically important when planning new wind farms. Wind turbine power output is proportional… (more)

Sointu, Iida

2014-01-01T23:59:59.000Z

158

Collegiate Wind Competition Engages Tomorrow's Wind Energy Innovators...  

Office of Environmental Management (EM)

Collegiate Wind Competition Engages Tomorrow's Wind Energy Innovators Collegiate Wind Competition Engages Tomorrow's Wind Energy Innovators January 6, 2014 - 10:00am Addthis 2014...

159

Wind for Schools Project Power System Brief, Wind Powering America...  

Wind Powering America (EERE)

Wind Powering America Fact Sheet Series Energy Efficiency & Renewable Energy Wind for Schools Project Power System Brief Wind for Schools Project Power System Brief Wind for...

160

NREL: Computational Science - Wind Energy Simulations  

NLE Websites -- All DOE Office Websites (Extended Search)

Wind Energy Simulations Wind Energy Simulations Scientists in the Computational Science Center at the National Renewable Energy Laboratory (NREL) are performing wind-farm computational fluid dynamics (CFD) and structural dynamics simulations that will provide a better understanding of the interactions of wind turbine wakes with one another, with the surrounding winds, and with the loads they impose on turbine blades and other components. Large-scale wind power generation deployment is a realistic and largely inevitable proposition as energy security, supply uncertainties, and global climate concerns drive the U.S. to develop diverse sources of domestic, clean, and renewable energy. The U.S. is currently on a path to produce 20% of its electricity from wind energy by 2030, which is a 10-fold increase

Note: This page contains sample records for the topic "wind structures cxs" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


161

Solar cycle dependence of global distribution of solar wind speed  

Science Journals Connector (OSTI)

A review is given of observational results concerning the solar cycle dependence of the global structure of solar wind speed distribution during the years from 1973 to 1987. Since observations of solar wind speed

Masayoshi Kojima; Takakiyo Kakinuma

1990-08-01T23:59:59.000Z

162

NIST BUILDING SCIENCE SERIES 180 Database-Assisted Design for Wind  

E-Print Network (OSTI)

climatological information on extreme wind speeds and their direction-dependence can be used in conjunction; aerodynamics; extreme winds; database-assisted design; structural dynamics; wind directionality; wind forcesNIST BUILDING SCIENCE SERIES 180 Database-Assisted Design for Wind: Concepts, Software

163

2009 Wind Technologies Market Report  

E-Print Network (OSTI)

Prepared for the Utility Wind Integration Group. Arlington,Arizona Public Service Wind Integration Cost Impact Study.an Order Revising the Wind Integration Rate for Wind Powered

Wiser, Ryan

2010-01-01T23:59:59.000Z

164

2010 Wind Technologies Market Report  

E-Print Network (OSTI)

2010. SPP WITF Wind Integration Study. Little Rock,an Order Revising the Wind Integration Rate for Wind PoweredPacifiCorp. 2010. 2010 Wind Integration Study. Portland,

Wiser, Ryan

2012-01-01T23:59:59.000Z

165

2011 Wind Technologies Market Report  

E-Print Network (OSTI)

and K. Porter. 2011. Wind Power and Electricity Markets.41 6. Wind Power Priceat Various Levels of Wind Power Capacity Penetration Wind

Bolinger, Mark

2013-01-01T23:59:59.000Z

166

Sandia National Laboratories: Wind Resources  

NLE Websites -- All DOE Office Websites (Extended Search)

EnergyWind Resources Wind Resources Comments are closed. Renewable Energy Wind Energy Wind Plant Optimization Test Site Operations & Maintenance Safety: Test Facilities Capital...

167

Sandia National Laboratories: wind energy  

NLE Websites -- All DOE Office Websites (Extended Search)

Wind Energy Manufacturing Lab Helps Engineers Improve Wind Power On November 15, 2011, in Energy, News, Partnership, Renewable Energy, Wind Energy Researchers at the Wind Energy...

168

Wind Energy | Department of Energy  

Office of Environmental Management (EM)

Wind Energy Wind Energy Below are resources for Tribes on wind energy technologies. 2012 Market Report on Wind Technologies in Distributed Applications Includes a breakdown of...

169

Collimated Outflow Formation via Binary Stars. 3-D Simulations of AGB Wind and Disk Wind Interactions  

E-Print Network (OSTI)

We present three-dimensional hydrodynamic simulations of the interaction of a slow wind from an asymptotic giant branch(AGB) star and a jet blown by an orbiting companion. The jet or "Collimated Fast Wind" is assumed to originate from an accretion disk which forms via Bondi accretion of the AGB wind or Roche lobe overflow. We present two distinct regimes in the wind-jet interaction determined by the ratio of the AGB wind to jet momentum flux. Our results show that when the wind momentum flux overwhelms the flux in the jet a more dis-ordered outflow outflow results with the jet assuming a corkscrew pattern and multiple shock structures driven into the AGB wind. In the opposite regime the jet dominates and will drive a highly collimated narrow waisted outflow. We compare our results with scenarios described by Soker & Rappaport (2000) and extrapolate the structures observed in PNe and Symbiotic stars.

F. Garcia-Arredondo; Adam Frank

2003-07-25T23:59:59.000Z

170

Wind energy systems: program summary  

SciTech Connect

The Federal Wind Energy Program (FWEP) was initiated to provide focus, direction and funds for the development of wind power. Each year a summary is prepared to provide the American public with an overview of government sponsored activities in the FWEP. This program summary describes each of the Department of Energy's (DOE) current wind energy projects initiated or renewed during FY 1979 (October 1, 1978 through September 30, 1979) and reflects their status as of April 30, 1980. The summary highlights on-going research, development and demonstration efforts and serves as a record of progress towards the program objectives. It also provides: the program's general management structure; review of last year's achievements; forecast of expected future trends; documentation of the projects conducted during FY 1979; and list of key wind energy publications.

None

1980-05-01T23:59:59.000Z

171

NREL: Wind Research - Small Wind Turbine Research  

NLE Websites -- All DOE Office Websites (Extended Search)

Small Wind Turbine Research Small Wind Turbine Research The National Renewable Energy Laboratory and U.S. Department of Energy (NREL/DOE) Small Wind Project's objectives are to reduce barriers to wind energy expansion, stabilize the market, and expand the number of small wind turbine systems installed in the United States. "Small wind turbine" refers to a turbine smaller than or equal to 100 kilowatts (kW). "Distributed wind" includes small and midsize turbines (100 kW through 1 megawatt [MW]). Since 1996, NREL's small wind turbine research has provided turbine testing, turbine development, and prototype refinement leading to more commercially available small wind turbines. Work is conducted under the following areas. You can also learn more about state and federal policies

172

Wind Vision Wind Farm | Open Energy Information  

Open Energy Info (EERE)

Wind Farm Wind Farm Jump to: navigation, search Name Wind Vision Wind Farm Facility Wind Vision Sector Wind energy Facility Type Commercial Scale Wind Facility Status In Service Owner Wind Vision Developer Wind Vision Location St. Ansgar IA Coordinates 43.348224°, -92.888816° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":43.348224,"lon":-92.888816,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

173

High Winds Wind Farm | Open Energy Information  

Open Energy Info (EERE)

Winds Wind Farm Winds Wind Farm Jump to: navigation, search Name High Winds Wind Farm Facility High Winds Sector Wind energy Facility Type Commercial Scale Wind Facility Status In Service Owner NextEra Energy Resources Developer NextEra Energy Resources Energy Purchaser PPM Energy Inc Location Solano County CA Coordinates 38.124844°, -121.764915° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":38.124844,"lon":-121.764915,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

174

Coastal Ohio Wind Project  

SciTech Connect

The Coastal Ohio Wind Project intends to address problems that impede deployment of wind turbines in the coastal and offshore regions of Northern Ohio. The project evaluates different wind turbine designs and the potential impact of offshore turbines on migratory and resident birds by developing multidisciplinary research, which involves wildlife biology, electrical and mechanical engineering, and geospatial science. Firstly, the project conducts cost and performance studies of two- and three-blade wind turbines using a turbine design suited for the Great Lakes. The numerical studies comprised an analysis and evaluation of the annual energy production of two- and three-blade wind turbines to determine the levelized cost of energy. This task also involved wind tunnel studies of model wind turbines to quantify the wake flow field of upwind and downwind wind turbine-tower arrangements. The experimental work included a study of a scaled model of an offshore wind turbine platform in a water tunnel. The levelized cost of energy work consisted of the development and application of a cost model to predict the cost of energy produced by a wind turbine system placed offshore. The analysis found that a floating two-blade wind turbine presents the most cost effective alternative for the Great Lakes. The load effects studies showed that the two-blade wind turbine model experiences less torque under all IEC Standard design load cases considered. Other load effects did not show this trend and depending on the design load cases, the two-bladed wind turbine showed higher or lower load effects. The experimental studies of the wake were conducted using smoke flow visualization and hot wire anemometry. Flow visualization studies showed that in the downwind turbine configuration the wake flow was insensitive to the presence of the blade and was very similar to that of the tower alone. On the other hand, in the upwind turbine configuration, increasing the rotor blade angle of attack reduced the wake size and enhanced the vortices in the flow downstream of the turbine-tower compared with the tower alone case. Mean and rms velocity distributions from hot wire anemometer data confirmed that in a downwind configuration, the wake of the tower dominates the flow, thus the flow fields of a tower alone and tower-turbine combinations are nearly the same. For the upwind configuration, the mean velocity shows a narrowing of the wake compared with the tower alone case. The downwind configuration wake persisted longer than that of an upwind configuration; however, it was not possible to quantify this difference because of the size limitation of the wind tunnel downstream of the test section. The water tunnel studies demonstrated that the scale model studies could be used to adequately produce accurate motions to model the motions of a wind turbine platform subject to large waves. It was found that the important factors that affect the platform is whether the platform is submerged or surface piercing. In the former, the loads on the platform will be relatively reduced whereas in the latter case, the structure pierces the wave free surface and gains stiffness and stability. The other important element that affects the movement of the platform is depth of the sea in which the wind turbine will be installed. Furthermore, the wildlife biology component evaluated migratory patterns by different monitoring systems consisting of marine radar, thermal IR camera and acoustic recorders. The types of radar used in the project are weather surveillance radar and marine radar. The weather surveillance radar (1988 Doppler), also known as Next Generation Radar (NEXRAD), provides a network of weather stations in the US. Data generated from this network were used to understand general migratory patterns, migratory stopover habitats, and other patterns caused by the effects of weather conditions. At a local scale our marine radar was used to complement the datasets from NEXRAD and to collect additional monitoring parameters such as passage rates, flight paths, flight directi

Gorsevski, Peter; Afjeh, Abdollah; Jamali, Mohsin; Bingman, Verner

2014-04-04T23:59:59.000Z

175

Distributed Wind Diffusion Model Overview (Presentation)  

SciTech Connect

Distributed wind market demand is driven by current and future wind price and performance, along with several non-price market factors like financing terms, retail electricity rates and rate structures, future wind incentives, and others. We developed a new distributed wind technology diffusion model for the contiguous United States that combines hourly wind speed data at 200m resolution with high resolution electricity load data for various consumer segments (e.g., residential, commercial, industrial), electricity rates and rate structures for utility service territories, incentive data, and high resolution tree cover. The model first calculates the economics of distributed wind at high spatial resolution for each market segment, and then uses a Bass diffusion framework to estimate the evolution of market demand over time. The model provides a fundamental new tool for characterizing how distributed wind market potential could be impacted by a range of future conditions, such as electricity price escalations, improvements in wind generator performance and installed cost, and new financing structures. This paper describes model methodology and presents sample results for distributed wind market potential in the contiguous U.S. through 2050.

Preus, R.; Drury, E.; Sigrin, B.; Gleason, M.

2014-07-01T23:59:59.000Z

176

15 - Offshore environmental loads and wind turbine design: impact of wind, wave, currents and ice  

Science Journals Connector (OSTI)

Abstract: In order to design offshore wind turbines, an engineer must understand the environmental loads that are imposed on the structure. This chapter describes the wind, wave, current and ice loading phenomena and how to translate the environmental characteristics to design loads against which the structure must be designed.

J. Van Der Tempel; N.F.B. Diepeveen; W.E. De Vries; D. Cerda Salzmann

2011-01-01T23:59:59.000Z

177

Lake Michigan Offshore Wind Feasibility Assessment  

SciTech Connect

The purpose of this project was to conduct the first comprehensive offshore wind assessment over Lake Michigan and to advance the body of knowledge needed to support future commercial wind energy development on the Great Lakes. The project involved evaluation and selection of emerging wind measurement technology and the permitting, installation and operation of the first mid-lake wind assessment meteorological (MET) facilities in Michigan’s Great Lakes. In addition, the project provided the first opportunity to deploy and field test floating LIDAR and Laser Wind Sensor (LWS) technology, and important research related equipment key to the sitting and permitting of future offshore wind energy development in accordance with public participation guidelines established by the Michigan Great Lakes Wind Council (GLOW). The project created opportunities for public dialogue and community education about offshore wind resource management and continued the dialogue to foster Great Lake wind resource utilization consistent with the focus of the GLOW Council. The technology proved to be effective, affordable, mobile, and the methods of data measurement accurate. The public benefited from a substantial increase in knowledge of the wind resources over Lake Michigan and gained insights about the potential environmental impacts of offshore wind turbine placements in the future. The unique first ever hub height wind resource assessment using LWS technology over water and development of related research data along with the permitting, sitting, and deployment of the WindSentinel MET buoy has captured public attention and has helped to increase awareness of the potential of future offshore wind energy development on the Great Lakes. Specifically, this project supported the acquisition and operation of a WindSentinel (WS) MET wind assessment buoy, and associated research for 549 days over multiple years at three locations on Lake Michigan. Four research objectives were defined for the project including to: 1) test and validate floating LIDAR technology; 2) collect and access offshore wind data; 3) detect and measure bird and bat activity over Lake Michigan; 4) conduct an over water sound propagation study; 5) prepare and offer a college course on offshore energy, and; 6) collect other environmental, bathometric, and atmospheric data. Desk-top research was performed to select anchorage sites and to secure permits to deploy the buoy. The project also collected and analyzed data essential to wind industry investment decision-making including: deploying highly mobile floating equipment to gather offshore wind data; correlating offshore wind data with conventional on-shore MET tower data; and performing studies that can contribute to the advancement and deployment of offshore wind technologies. Related activities included: • Siting, permitting, and deploying an offshore floating MET facility; • Validating the accuracy of floating LWS using near shoreline cup anemometer MET instruments; • Assessment of laser pulse technology (LIDAR) capability to establish hub height measurement of wind conditions at multiple locations on Lake Michigan; • Utilizing an extended-season (9-10 month) strategy to collect hub height wind data and weather conditions on Lake Michigan; • Investigation of technology best suited for wireless data transmission from distant offshore structures; • Conducting field-validated sound propagation study for a hypothetical offshore wind farm from shoreline locations; • Identifying the presence or absence of bird and bat species near wind assessment facilities; • Identifying the presence or absence of benthic and pelagic species near wind assessment facilities; All proposed project activities were completed with the following major findings: • Floating Laser Wind Sensors are capable of high quality measurement and recordings of wind resources. The WindSentinel presented no significant operational or statistical limitations in recording wind data technology at a at a high confidence level as compared to traditional an

Boezaart, Arnold [GVSU; Edmonson, James [GVSU; Standridge, Charles [GVSU; Pervez, Nahid [GVSU; Desai, Neel [University of Michigan; Williams, Bruce [University of Delaware; Clark, Aaron [GVSU; Zeitler, David [GVSU; Kendall, Scott [GVSU; Biddanda, Bopi [GVSU; Steinman, Alan [GVSU; Klatt, Brian [Michigan State University; Gehring, J. L. [Michigan State University; Walter, K. [Michigan State University; Nordman, Erik E. [GVSU

2014-06-30T23:59:59.000Z

178

Wind pump systems  

Science Journals Connector (OSTI)

The application of wind mills for water pumping is of lesser importance ... it is useful to discuss this type of wind energy application in a wind energy book targeted at development and planning...

Prof. Dr.-Ing. Robert Gasch; Prof. Dr.-Ing. Jochen Twele

2012-01-01T23:59:59.000Z

179

NREL: Wind Research - Testing  

NLE Websites -- All DOE Office Websites (Extended Search)

the National Wind Technology Center (NWTC) support the installation and testing of wind turbines that range in size from 400 watts to 5.0 megawatts. Engineers provide wind...

180

Fixed Offshore Wind Turbines  

Science Journals Connector (OSTI)

In this chapter, a perspective of offshore wind farms, applied concepts for fixed offshore wind turbines, and related statistics are given. One example of a large wind farm, which is successfully operating, is st...

Madjid Karimirad

2014-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "wind structures cxs" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


181

Wind Power Today  

SciTech Connect

Wind Power Today is an annual publication that provides an overview of the wind energy research conducted by the U.S. Department of Energy Wind and Hydropower Technologies Program.

Not Available

2006-05-01T23:59:59.000Z

182

Wind Power Today  

SciTech Connect

Wind Power Today is an annual publication that provides an overview of the wind energy research conducted by the U.S. Department of Energy Wind and Hydropower Technologies Program.

Not Available

2007-05-01T23:59:59.000Z

183

Wind farm noise  

Science Journals Connector (OSTI)

Arrays of small wind turbines recently coined as “wind farms” offer several advantages over single larger wind turbines producing the same electrical power. Noise source characteristics of wind farms are also different from those associated with a single wind turbine. One?third octave band noise measurements from 2 Hz to 10 kHz have been made and will be compared to measurements of noise produced by a single large wind turbine. [J. R. Balombin Technical Memorandum 81486.

Gregory C. Tocci; Brion G. Koning

1981-01-01T23:59:59.000Z

184

NREL: Wind Research - Offshore Wind Resource Characterization  

NLE Websites -- All DOE Office Websites (Extended Search)

Offshore Wind Resource Characterization Offshore Wind Resource Characterization Map of the United States, showing the wind potential of offshore areas across the country. Enlarge image US offshore wind speed estimates at 90-m height NREL scientists and engineers are leading efforts in resource mapping, remote sensor measurement and development, and forecasting that are essential for the development of offshore wind. Resource Mapping For more than 15 years, NREL's meteorologists, engineers, and Geographic Information System experts have led the production of wind resource characterization maps and reports used by policy makers, private industry, and other government organizations to inform and accelerate the development of wind energy in the United States. Offshore wind resource data and mapping has strategic uses. As with terrestrial developments, traditional

185

NREL: Wind Research - Midsize Wind Turbine Research  

NLE Websites -- All DOE Office Websites (Extended Search)

Midsize Wind Turbine Research Midsize Wind Turbine Research To facilitate the development and commercialization of midsize wind turbines (turbines with a capacity rating of more than 100 kW up to 1 MW), the U.S. Department of Energy (DOE) and NREL launched the Midsize Wind Turbine Development Project. In its latest study, NREL determined that there is a substantial market for midsize wind turbines. One of the most significant barriers to the midsize turbine market is the lack of turbines available for deployment; there are few midsize turbines on the market today. The objectives of the Midsize Wind Turbine Development Project are to reduce the barriers to wind energy expansion by filling an existing domestic technology gap; facilitate partnerships; accelerate maturation of existing U.S. wind energy businesses; and incorporate process improvement

186

Diablo Winds Wind Farm | Open Energy Information  

Open Energy Info (EERE)

Diablo Winds Wind Farm Diablo Winds Wind Farm Facility Diablo Winds Wind Farm Sector Wind energy Facility Type Commercial Scale Wind Facility Status In Service Owner NextEra Energy Resources Developer NextEra Energy Resources Energy Purchaser Pacific Gas & Electric Co Location Altamont Pass CA Coordinates 37.7347°, -121.652° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":37.7347,"lon":-121.652,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

187

Wind for Schools (Poster)  

SciTech Connect

As the United States dramatically expands wind energy deployment, the industry is challenged with developing a skilled workforce and addressing public resistance. Wind Powering America's Wind for Schools project addresses these issues by developing Wind Application Centers (WACs) at universities; WAC students assist in implementing school wind turbines and participate in wind courses, by installing small wind turbines at community "host" schools, by implementing teacher training with interactive curricula at each host school. This poster provides an overview of the first two years of the Wind for Schools project, primarily supporting activities in Colorado, Kansas, Nebraska, South Dakota, Montana, and Idaho.

Baring-Gould, I.

2010-05-01T23:59:59.000Z

188

Wind Turbine Tribology Seminar  

Energy.gov (U.S. Department of Energy (DOE))

Wind turbine reliability issues are often linked to failures of contacting components, such as bearings, gears, and actuators. Therefore, special consideration to tribological design in wind...

189

Wind energy bibliography  

SciTech Connect

This bibliography is designed to help the reader search for information on wind energy. The bibliography is intended to help several audiences, including engineers and scientists who may be unfamiliar with a particular aspect of wind energy, university researchers who are interested in this field, manufacturers who want to learn more about specific wind topics, and librarians who provide information to their clients. Topics covered range from the history of wind energy use to advanced wind turbine design. References for wind energy economics, the wind energy resource, and environmental and institutional issues related to wind energy are also included.

None

1995-05-01T23:59:59.000Z

190

Northern Wind Farm  

NLE Websites -- All DOE Office Websites (Extended Search)

a draft environmental assessment (EA) on the proposed interconnection of the Northern Wind Farm (Project) in Roberts County, near the city of Summit, South Dakota. Northern Wind,...

191

Wind Program News  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

eerewindwind-program-news en EERE Leadership Celebrates Offshore Wind in Maine http:energy.goveerearticleseere-leadership-celebrates-offshore-wind-maine

192

British wind band music.  

E-Print Network (OSTI)

??I have chosen to be assessed as an interpreter and conductor of British wind band music from the earliest writings for wind band up to,… (more)

Jones, GO

2005-01-01T23:59:59.000Z

193

WINDExchange: Wind Energy Ordinances  

Wind Powering America (EERE)

Wind Energy Ordinances Federal, state, and local regulations govern many aspects of wind energy development. The exact nature of the project and its location will largely drive the...

194

Wind Program: WINDExchange  

Wind Powering America (EERE)

Version Bookmark and Share WINDExchange logo WINDExchange is the U.S. Department of Energy (DOE) Wind Program's platform for disseminating credible information about wind...

195

WINDExchange: Siting Wind Turbines  

Wind Powering America (EERE)

Wind Wildlife Institute (AWWI) facilitates timely and responsible development of wind energy, while protecting wildlife and wildlife habitat. AWWI was created and is sustained by...

196

WINDExchange: Collegiate Wind Competition  

Wind Powering America (EERE)

& Teaching Materials Resources Collegiate Wind Competition The U.S. Department of Energy (DOE) Collegiate Wind Competition challenges interdisciplinary teams of undergraduate...

197

ARM - Wind Chill Calculations  

NLE Websites -- All DOE Office Websites (Extended Search)

FAQ Just for Fun Meet our Friends Cool Sites Teachers Teachers' Toolbox Lesson Plans Wind Chill Calculations Wind Chill is the apparent temperature felt on the exposed human...

198

Offshore Wind Turbines: Some Technical Challenges  

E-Print Network (OSTI)

1 Offshore Wind Turbines: Some Technical Challenges Prof. Guy Houlsby FREng Oxford University House engineers concerned with installation of offshore wind turbines. The author is Professor of Civil of foundations for offshore structures. He also has a strong interest in the development of the fundamental

Houlsby, Guy T.

199

THE SOLAR WIND PLASMA Dr. Joe Borovsky  

E-Print Network (OSTI)

involved multidipole plasma devices. Current research interests focus on structure in the solar wind THE SOLAR WIND PLASMA Dr. Joe Borovsky Los Alamos National Laboratory and University, magnetized, collisionless plasma, important for the geomagnetic activity that it drives at Earth and for its

Shyy, Wei

200

Module Handbook Specialisation Wind Energy  

E-Print Network (OSTI)

of Wind Turbines Module name: Wind potential, Aerodynamics & Loading of Wind Turbines Section Classes Evaluation of Wind Energy Potential Wind turbine Aerodynamics Static and dynamic Loading of Wind turbines Wind turbine Aerodynamics Static and dynamic Loading of Wind turbines Credit points 8 CP

Habel, Annegret

Note: This page contains sample records for the topic "wind structures cxs" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


201

Sandia National Laboratories: Wind Energy  

NLE Websites -- All DOE Office Websites (Extended Search)

specialprogramsslide5 windplantoptslide4 rotorinnovationslide3 offshorewindslide2 Materialsslide1 Wind Energy Wind Plant Optimization Materials,...

202

NREL: National Wind Technology Center Home Page  

NLE Websites -- All DOE Office Websites (Extended Search)

National Wind Technology Center National Wind Technology Center National Wind Technology Center NREL's National Wind Technology Center (NWTC) is the nation's premier wind energy technology research facility. The NWTC advances the development of innovative land-based and offshore wind energy technologies through its research and testing facilities. Researchers draw on years of experience and their wealth of expertise in fluid dynamics and structural testing to also advance marine and hydrokinetic water power technologies. At the NWTC researchers work side-by-side with industry partners to develop new technologies that can compete in the global market and to increase system reliability and reduce costs. Learn more about the facilities and capabilities at the NWTC by viewing our fact sheet.

203

Community Wind Toolkit | Open Energy Information  

Open Energy Info (EERE)

Wind Toolkit Wind Toolkit Jump to: navigation, search "Community wind" refers to a class of wind energy ownership structures. Projects are considered "community" projects when they are at least partially owned by individuals or businesses in the state and local area surrounding the wind power project. The community element of these projects can be defined narrowly so that ownership is concentrated in the county or region where the project is built, or it may be defined broadly so that project investors are from the state where the project is sited. Furthermore, the extent of local ownership may range from a small minority share to full ownership by persons in the immediate area surrounding the wind project site. Potential project owners include local farmers,

204

West Winds Wind Farm | Open Energy Information  

Open Energy Info (EERE)

West Winds Wind Farm West Winds Wind Farm Facility West Winds Sector Wind energy Facility Type Commercial Scale Wind Facility Status In Service Owner Caithness Developer SeaWest Energy Purchaser Southern California Edison/PacifiCorp Location San Gorgonio CA Coordinates 33.9095°, -116.734° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":33.9095,"lon":-116.734,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

205

Numerical simulation of wind effects: a probabilistic perspective Ahsan Kareem  

E-Print Network (OSTI)

Numerical simulation of wind effects: a probabilistic perspective Ahsan Kareem NatHaz Modeling Laboratory, University of Notre Dame, Notre Dame, IN 46556 ABSTRACT: Numerical simulations of wind loads and their effects are critical in the design of structures to ensure their safety under winds. The simulations range

Kareem, Ahsan

206

Wave Models for Offshore Wind Turbines Puneet Agarwal  

E-Print Network (OSTI)

Wave Models for Offshore Wind Turbines Puneet Agarwal§ and Lance Manuely Department of Civil for estimating loads on the support structure (monopile) of an offshore wind turbine. We use a 5MW utility-scale wind turbine model for the simulations. Using, first, the sim- pler linear irregular wave modeling

Manuel, Lance

207

Trans-Fast MHD Winds in a Pulsar Magnetosphere  

Science Journals Connector (OSTI)

......on the (x,^p)-diagram. That is, a trans-fast MHD wind solution is capable...magnetic field on the MHD wind structure while...on the (rr, up)-diagram and the N = 0 loop always...is, the trans-fast MHD wind solution is always......

Masaaki Takahashi; Shinpei Shibata

1998-04-01T23:59:59.000Z

208

AIAA-2001-0047 PARAMETRIC MODELS FOR ESTIMATING WIND TURBINE  

E-Print Network (OSTI)

. INTRODUCTION Design constraints for wind turbine structures fall into either extreme load or fatigue categoriesAIAA-2001-0047 1 PARAMETRIC MODELS FOR ESTIMATING WIND TURBINE FATIGUE LOADS FOR DESIGN Lance at Austin, Austin, TX 78712 2 Sandia National Laboratories, Wind Energy Technology Department, Albuquerque

Sweetman, Bert

209

PARAMETRIC MODELS FOR ESTIMATING WIND TURBINE FATIGUE LOADS FOR DESIGN  

E-Print Network (OSTI)

loads. #12;2 INTRODUCTION Design constraints for wind turbine structures fall into either extreme load1 PARAMETRIC MODELS FOR ESTIMATING WIND TURBINE FATIGUE LOADS FOR DESIGN Lance Manuel1 Paul S, TX 78712 2 Sandia National Laboratories, Wind Energy Technology Department, Albuquerque, NM 87185

Sweetman, Bert

210

RisR1437(EN) Wind Simulation for Extreme  

E-Print Network (OSTI)

Risø­R­1437(EN) Wind Simulation for Extreme and Fatigue Loads M. Nielsen, G. C. Larsen, J. Mann, S integrity of a wind turbine structure involves analyses of fatigue loading as well as extreme loading University of Denmark, and NEG-Micon A/S, as part of the EFP-2001(Wind) programme sponsored by the Danish

211

Howard County- Wind Ordinance  

Energy.gov (U.S. Department of Energy (DOE))

This ordinance sets up provisions for allowing small wind energy systems in various zoning districts.

212

The wind tunnel tests of wind pressure acting on the derrick of deepwater semi-submersible drilling platform  

Science Journals Connector (OSTI)

The increasing importance of the sustainability challenge in ocean engineering has led to the development of floating ocean structure. In this study, according to the 1/100 scale model of the HYSY-981 semi-submersible platform, the investigation on the wind resistant properties of the platform is measured through wind tunnel tests. The wind pressure coefficients of the derrick in 0?90°wind directions were obtained by calculation. The distribution of the wind pressures on windward side of the derrick was studied. These results may serve as a reference on the design for wind loads acting on the platform.

Gangjun Zhai; Zhe Ma; Hang Zhu

2012-01-01T23:59:59.000Z

213

Flexible dynamics of floating wind turbines  

E-Print Network (OSTI)

This work presents Tower Flex, a structural dynamics model for a coupled analysis of offshore floating wind turbines consisting of a tower, a floating platform and a mooring system. In this multi-body, linear frequency-domain ...

Luypaert, Thomas (Thomas J.)

2012-01-01T23:59:59.000Z

214

WIND DATA REPORT Ragged Mt Maine  

E-Print Network (OSTI)

...................................................................................................................... 8 Wind Speed Time Series............................................................................................................. 9 Wind Speed Distributions........................................................................................................... 9 Monthly Average Wind Speeds

Massachusetts at Amherst, University of

215

Wind Powering America  

Wind Powering America (EERE)

These news items are notable additions These news items are notable additions to the Wind Powering America Web site. The Wind Powering America Web site reports recent national and state wind market changes by cataloging wind activities such as wind resource maps, small wind consumer's guides, local wind workshops, news articles, and publications in the areas of policy, public power, small wind, Native Americans, agricultural sector, economic development, public lands, and schools. en-us julie.jones@nrel.gov (Julie Jones) http://www.windpoweringamerica.gov/images/wpa_logo_sm.jpg Wind Powering America http://www.windpoweringamerica.gov/ Nominate an Electric Cooperative for Wind Power Leadership Award by January 15 http://www.windpoweringamerica.gov/filter_detail.asp?itemid=4076 http://www.windpoweringamerica.gov/filter_detail.asp?itemid=4076 Mon, 16

216

New England Wind Forum: New England Wind Resources  

Wind Powering America (EERE)

New England Wind Forum About the New England Wind Forum New England Wind Energy Education Project Historic Wind Development in New England State Activities Projects in New England Building Wind Energy in New England Wind Resources Wind Power Technology Economics Markets Siting Policy Technical Challenges Issues Small Wind Large Wind Newsletter Perspectives Events Quick Links to States CT MA ME NH RI VT Bookmark and Share New England Wind Resources Go to the Vermont wind resource map. Go to the New Hampshire wind resource map. Go to the Maine wind resource map. Go to the Massachusetts wind resource map. Go to the Connecticut wind resource map. Go to the Rhode Island wind resource map. New England Wind Resource Maps Wind resources maps of Connecticut, Massachusetts, Maine, New Hampshire, Rhode Island, and Vermont.

217

NREL: Wind Research - National Wind Technology Center Blade Testing Video  

NLE Websites -- All DOE Office Websites (Extended Search)

Center Blade Testing Video (Text Version) Center Blade Testing Video (Text Version) Below is the text version for the National Wind Technology Center Blade Testing Video. The video opens with the NREL and NWTC logos, surrounded by black screen and including the title: "NWTC Test Facility Introduction, Dr. Fort Felker, Director of the National Wind Technology Center, TRT 1:42, May 29, 2013." Fort Felker is in a yellow helmet and vest, standing in the NWTC's testing facility. There is a railing to his left, construction cones behind him, and a ladder to his right. Fort Felker: "I'm Fort Felker, I'm the director at the Department of Energy's National Wind Technology Center." Fort's name and title cut in on the right. Fort walks toward the camera while talking. Fort Felker: "Here at the NWTC, we have been conducting structural testing

218

Wind Resource Maps (Postcard)  

SciTech Connect

The U.S. Department of Energy's Wind Powering America initiative provides high-resolution wind maps and estimates of the wind resource potential that would be possible from development of the available windy land areas after excluding areas unlikely to be developed. This postcard is a marketing piece that stakeholders can provide to interested parties; it will guide them to Wind Powering America's online wind energy resource maps.

Not Available

2011-07-01T23:59:59.000Z

219

Wind energy offers considerable promise; the wind itself is free,  

E-Print Network (OSTI)

Wind energy offers considerable promise; the wind itself is free, wind power is clean. One of these sources, wind energy, offers considerable promise; the wind itself is free, wind power is clean, and it is virtually inexhaustible. In recent years, research on wind energy has accelerated

Langendoen, Koen

220

Sandia National Laboratories: Sandia Vertical-Axis Wind-Turbine...  

NLE Websites -- All DOE Office Websites (Extended Search)

Energy, News, News & Events, Renewable Energy, Research & Capabilities, Systems Analysis, Wind Energy In June, Brian Owens (in Sandia's Analytical Structural Dynamics Dept.) and...

Note: This page contains sample records for the topic "wind structures cxs" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


221

The National Wind Technology Center  

SciTech Connect

Wind energy research began at the Rocky Flats test site in 1976 when Rockwell International subcontracted with the Energy Research and Development Administration (ERDA). The Rocky Flats Plant was competitively selected from a number of ERDA facilities primarily because it experienced high instantaneous winds and provided a large, clear land area. By 1977, several small wind turbines were in place. During the facility`s peak of operation, in 1979-1980, researchers were testing as many as 23 small wind turbines of various configurations, including commercially available machines and prototype turbines developed under subcontract to Rocky Flats. Facilities also included 8-kW, 40-kW, and 225-kW dynamometers; a variable-speed test bed; a wind/hybrid test facility; a controlled velocity test facility (in Pueblo, Colorado); a modal test facility, and a multimegawatt switchgear facility. The main laboratory building was dedicated in July 1981 and was operated by the Rocky Flats Plant until 1984, when the Solar Energy Research Institute (SERI) and Rocky Flats wind energy programs were merged and transferred to SERI. SERI and now the National Renewable Energy Laboratory (NREL) continued to conduct wind turbine system component tests after 1987, when most program personnel were moved to the Denver WEst Office Park in Golden and site ownership was transferred back to Rocky Flats. The Combined Experiment test bed was installed and began operation in 1988, and the NREL structural test facility began operation in 1990. In 1993, the site`s operation was officially transferred to the DOE Golden Field Office that oversees NREL. This move was in anticipation of NREL`s renovation and reoccupation of the facility in 1994.

Thresher, R.W.; Hock, S.M. [National Renewable Energy Lab., Golden, CO (United States)] [National Renewable Energy Lab., Golden, CO (United States); Loose, R.R.; Cadogon, J.B.

1994-07-01T23:59:59.000Z

222

Surface wind speed distributions| Implications for climate and wind power.  

E-Print Network (OSTI)

?? Surface constituent and energy fluxes, and wind power depend non-linearly on wind speed and are sensitive to the tails of the wind distribution. Until… (more)

Capps, Scott Blair

2010-01-01T23:59:59.000Z

223

Wind/Wave Misalignment in the Loads Analysis of a Floating Offshore Wind Turbine: Preprint  

SciTech Connect

Wind resources far from the shore and in deeper seas have encouraged the offshore wind industry to look into floating platforms. The International Electrotechnical Commission (IEC) is developing a new technical specification for the design of floating offshore wind turbines that extends existing design standards for land-based and fixed-bottom offshore wind turbines. The work summarized in this paper supports the development of best practices and simulation requirements in the loads analysis of floating offshore wind turbines by examining the impact of wind/wave misalignment on the system loads under normal operation. Simulations of the OC3-Hywind floating offshore wind turbine system under a wide range of wind speeds, significant wave heights, peak-spectral periods and wind/wave misalignments have been carried out with the aero-servo-hydro-elastic tool FAST [4]. The extreme and fatigue loads have been calculated for all the simulations. The extreme and fatigue loading as a function of wind/wave misalignment have been represented as load roses and a directional binning sensitivity study has been carried out. This study focused on identifying the number and type of wind/wave misalignment simulations needed to accurately capture the extreme and fatigue loads of the system in all possible metocean conditions considered, and for a down-selected set identified as the generic US East Coast site. For this axisymmetric platform, perpendicular wind and waves play an important role in the support structure and including these cases in the design loads analysis can improve the estimation of extreme and fatigue loads. However, most structural locations see their highest extreme and fatigue loads with aligned wind and waves. These results are specific to the spar type platform, but it is expected that the results presented here will be similar to other floating platforms.

Barj, L.; Stewart, S.; Stewart, G.; Lackner, M.; Jonkman, J.; Robertson, A.

2014-02-01T23:59:59.000Z

224

NREL: Wind Research - WindPACT  

NLE Websites -- All DOE Office Websites (Extended Search)

WindPACT WindPACT The Wind Partnerships for Advanced Component Technology (WindPACT) studies were conducted to assist industry by testing innovative components, such as advanced blades and drivetrains, to lower the cost of energy. Specific goals included: Foster technological advancements to reduce the cost of wind energy Determine probable size ranges of advanced utility-scale turbines over the next decade for U.S. application Evaluate advanced concepts that are necessary to achieve objectives of cost and size for future turbines Identify and solve technological hurdles that may block industry from taking advantage of promising technology Design, fabricate, and test selected advanced components to prove their viability Support wind industry through transfer of technology from

225

Estimating Hurricane Wind Structure in the Absence of Aircraft Reconnaissance JAMES P. KOSSIN,* JOHN A. KNAFF, HOWARD I. BERGER,* DERRICK C. HERNDON,*  

E-Print Network (OSTI)

estimates the entire two-dimensional surface wind field inside a storm-centered disk with a radius of 182 km- sondes (Hock and Franklin 1999) released from Gulf- stream-IV jet aircraft that routinely fly aircraft flying in the northwest Pacific basin (Wu et al. 2005). For reasons of safety, these small high

Kossin, James P.

226

Wind | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Wind Wind Wind America is home to one of the largest and fastest growing wind markets in the world. Watch the video to learn more about the latest trends in the U.S. wind power market and join us this Thursday, August 8 at 3 pm ET for a Google+ Hangout on wind energy in America. The United States is home to one of the largest and fastest growing wind markets in the world. To stay competitive in this sector, the Energy Department invests in wind projects, both on land and offshore, to advance technology innovations, create job opportunities and boost economic growth. Moving forward, the U.S. wind industry remains a critical part of the Energy Department's all-of-the-above energy strategy to cut carbon pollution, diversify our energy economy and bring the next-generation of

227

Offshore Wind Projects | Department of Energy  

Office of Environmental Management (EM)

Offshore Wind Projects Offshore Wind Projects This report covers the Wind and Water Power Program's offshore wind energy projects from fiscal years 2006 to 2014. Offshore Wind...

228

NREL: Wind Research - Offshore Wind Research  

NLE Websites -- All DOE Office Websites (Extended Search)

standards Third-party design verification of innovative floating and fixed-bottom wind turbines NREL's standards and testing capabilities address the need to validate our...

229

2012 Wind Technologies Market Report  

E-Print Network (OSTI)

Colorado: Xcel Energy. 2012 Wind Technologies Market ReportOperator. 2012 Wind Technologies Market Report Chadbourne &Power Company. 2012 Wind Technologies Market Report EnerNex

Wiser, Ryan

2014-01-01T23:59:59.000Z

230

2011 Wind Technologies Market Report  

E-Print Network (OSTI)

2010. SPP WITF Wind Integration Study. Little Rock,GE Energy. 2011a. Oahu Wind Integration Study Final Report.PacifiCorp. 2010. 2010 Wind Integration Study. Portland,

Bolinger, Mark

2013-01-01T23:59:59.000Z

231

NREL: Wind Research - @NWTC Newsletter  

NLE Websites -- All DOE Office Websites (Extended Search)

NREL Investigates the Logistics of Transporting and Installing Bigger, Taller Wind Turbines NREL Plays Founding, Developmental Role in Major Wind Journal Boosting Wind Plant...

232

2012 Wind Technologies Market Report  

E-Print Network (OSTI)

Department of Energy (DOE). 2008. 20% Wind Energy by2030: Increasing Wind Energy’s Contribution to U.S.Integrating Midwest Wind Energy into Southeast Electricity

Wiser, Ryan

2014-01-01T23:59:59.000Z

233

Sandia National Laboratories: Wind Power  

NLE Websites -- All DOE Office Websites (Extended Search)

Wind Energy Staff On March 24, 2011, in Wind Energy On November 10, 2010, in Wind Plant Opt. Rotor Innovation Materials, Reliability & Standards Siting & Barrier Mitigation...

234

Sandia National Laboratories: wind manufacturing  

NLE Websites -- All DOE Office Websites (Extended Search)

manufacturing Wind Energy Manufacturing Lab Helps Engineers Improve Wind Power On November 15, 2011, in Energy, News, Partnership, Renewable Energy, Wind Energy Researchers at the...

235

NREL: Wind Research - Projects  

NLE Websites -- All DOE Office Websites (Extended Search)

Projects Projects NREL's wind energy research and development projects focus on reducing the cost of wind technology and expanding access to wind energy sites. Our specialized technical expertise, comprehensive design and analysis tools, and unique testing facilities help industry overcome challenges to bringing new wind technology to the marketplace. Some of these success stories are described in NREL's Wind R&D Success Stories. We also work closely with universities and other national laboratories supporting fundamental research in wind technologies, including aerodynamics, aeroacoustics, and material sciences essential in the development of new blade technologies and advanced controls, power electronics, and testing to further refine drivetrain topology.

236

Wind power today  

SciTech Connect

This publication highlights initiatives of the US DOE`s Wind Energy Program. 1997 yearly activities are also very briefly summarized. The first article describes a 6-megawatt wind power plant installed in Vermont. Another article summarizes technical advances in wind turbine technology, and describes next-generation utility and small wind turbines in the planning stages. A village power project in Alaska using three 50-kilowatt turbines is described. Very brief summaries of the Federal Wind Energy Program and the National Wind Technology Center are also included in the publication.

NONE

1998-04-01T23:59:59.000Z

237

Wind Power Career Chat  

SciTech Connect

This document will teach students about careers in the wind energy industry. Wind energy, both land-based and offshore, is expected to provide thousands of new jobs in the next several decades. Wind energy companies are growing rapidly to meet America's demand for clean, renewable, and domestic energy. These companies need skilled professionals. Wind power careers will require educated people from a variety of areas. Trained and qualified workers manufacture, construct, operate, and manage wind energy facilities. The nation will also need skilled researchers, scientists, and engineers to plan and develop the next generation of wind energy technologies.

Not Available

2011-01-01T23:59:59.000Z

238

Wind energy information guide  

SciTech Connect

This book is divided into nine chapters. Chapters 1--8 provide background and annotated references on wind energy research, development, and commercialization. Chapter 9 lists additional sources of printed information and relevant organizations. Four indices provide alphabetical access to authors, organizations, computer models and design tools, and subjects. A list of abbreviations and acronyms is also included. Chapter topics include: introduction; economics of using wind energy; wind energy resources; wind turbine design, development, and testing; applications; environmental issues of wind power; institutional issues; and wind energy systems development.

NONE

1996-04-01T23:59:59.000Z

239

EA-1726: Kahuku Wind Power, LLC Wind Power Generation Facility...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

6: Kahuku Wind Power, LLC Wind Power Generation Facility, O'ahu, HI EA-1726: Kahuku Wind Power, LLC Wind Power Generation Facility, O'ahu, HI May 3, 2010 EA-1726: Final...

240

Women of Wind Energy Honor Wind Program Researchers | Department...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Women of Wind Energy Honor Wind Program Researchers Women of Wind Energy Honor Wind Program Researchers August 1, 2013 - 2:54pm Addthis This is an excerpt from the Second Quarter...

Note: This page contains sample records for the topic "wind structures cxs" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


241

Mitigation of Fatigue Loads Using Individual Pitch Control of Wind Turbines Based on FAST  

E-Print Network (OSTI)

Mitigation of Fatigue Loads Using Individual Pitch Control of Wind Turbines Based on FAST Yunqian University, China jiz@seu.edu.cn Abstract-With the increase of wind turbine dimension and capacity, the wind turbine structures are subjected to prominent loads and fatigue which would reduce the lifetime of wind

Chen, Zhe

242

Time-domain Fatigue Response and Reliability Analysis of Offshore Wind Turbines with  

E-Print Network (OSTI)

Time-domain Fatigue Response and Reliability Analysis of Offshore Wind Turbines with Emphasis of offshore wind turbines Defense: 09.12.2012 2012 - : Structural Engineer in Det Norske Veritas (DNV) 2007 of the drive train of an on-land wind turbine under dynamic wind loads. The main tasks of this study are to

Nørvåg, Kjetil

243

2008 Wind Energy Projects, Wind Powering America (Poster)  

SciTech Connect

The Wind Powering America program produces a poster at the end of every calendar year that depicts new U.S. wind energy projects. The 2008 poster includes the following projects: Stetson Wind Farm in Maine; Dutch Hill Wind Farm in New York; Grand Ridge Wind Energy Center in Illinois; Hooper Bay, Alaska; Forestburg, South Dakota; Elbow Creek Wind Project in Texas; Glacier Wind Farm in Montana; Wray, Colorado; Smoky Hills Wind Farm in Kansas; Forbes Park Wind Project in Massachusetts; Spanish Fork, Utah; Goodland Wind Farm in Indiana; and the Tatanka Wind Energy Project on the border of North Dakota and South Dakota.

Not Available

2009-01-01T23:59:59.000Z

244

NREL: Wind Research - National Wind Technology Center  

NLE Websites -- All DOE Office Websites (Extended Search)

Center Center The National Renewable Energy Laboratory's (NREL's) National Wind Technology Center (NWTC), located at the base of the foothills just south of Boulder, Colorado, is the nation's premier wind energy technology research facility. Built in 1993, the center provides an ideal environment for the development of advanced wind energy technologies. The goal of the research conducted at the center is to help industry reduce the cost of energy so that wind can compete with traditional energy sources, providing a clean, renewable alternative for our nation's energy needs. Research at the NWTC is organized under two main categories, Wind Technology Development and Testing and Operations. Illustration of the National Wind Technology Center's organization chart. Fort Felker is listed as the Center Director, with Mike Robinson, Deputy Center Director; Paul Veers, Chief Engineer, and Laura Davis and Dorothy Haldeman beneath him. The Associate Director position is empty. Beneath them is the Wind Technology Research and Development Group Manager, Mike Robinson; the Testing and Operations Group Manager, Dave Simms; and the Offshore Wind and Ocean Power Systems Acting Supervisor, Fort Felker.

245

Wind Rose Bias Correction  

Science Journals Connector (OSTI)

Wind rose summaries, which provide a basis for understanding and evaluating the climatological behavior of local wind, have a directional bias if a conventional method is used in their generation. Three techniques used to remove this bias are ...

Scott Applequist

2012-07-01T23:59:59.000Z

246

Surface Wind Direction Variability  

Science Journals Connector (OSTI)

Common large shifts of wind direction in the weak-wind nocturnal boundary layer are poorly understood and are not adequately captured by numerical models and statistical parameterizations. The current study examines 15 datasets representing a ...

Larry Mahrt

2011-01-01T23:59:59.000Z

247

GSA Wind Supply Opportunity  

Office of Environmental Management (EM)

Wind Supply Opportunity 1 2 3 Proposed Location * Size: 100-210 MegaWatts *Location: Bureau County, IL *Planned COD: December 2014 or 2015 *Site Control: 17,000 acres *Wind...

248

Scale Models & Wind Turbines  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Scale Models and Wind Turbines Grades: 5-8, 9-12 Topics: Wind Energy Owner: Kidwind Project This educational material is brought to you by the U.S. Department of Energy's Office of...

249

Distributed Wind 2015  

Energy.gov (U.S. Department of Energy (DOE))

Distributed Wind 2015 is committed to the advancement of both distributed and community wind energy. This two day event includes a Business Conference with sessions focused on advancing the...

250

Competitive Wind Grants (Vermont)  

Energy.gov (U.S. Department of Energy (DOE))

The Clean Energy Development Fund Board will offer a wind grant program beginning October 1, 2013. The grant program will replace the wind incentives that were originally part of the [http:/...

251

NREL: Wind Research - Awards  

NLE Websites -- All DOE Office Websites (Extended Search)

Awards NREL has received many awards for its technical innovations in wind energy. In addition, the research conducted at the National Wind Technology Center (NWTC) at NREL has led...

252

Talbot County- Wind Ordinance  

Energy.gov (U.S. Department of Energy (DOE))

This ordinance amends the Talbot County Code, Chapter 190, Zoning, Subdivision and Land Development, to permit small wind turbine systems with wind turbine towers not to exceed 160 feet in total...

253

Wind Career Map  

K-12 Energy Lesson Plans and Activities Web site (EERE)

This wind career map explores an expanding universe of wind energy occupations, describing diverse jobs across the industry, charting possible progression between them, and identifying the high-quality training necessary to do them well.

254

WINDExchange: Wind Events  

Wind Powering America (EERE)

Sun, 15 Feb 2015 00:00:00 MST 2015 Iowa Wind Power Conference and Iowa Wind Energy Association Midwest Regional Energy Job Fair http:www.iowawindenergy.org...

255

WINDExchange: Wind Potential Capacity  

Wind Powering America (EERE)

area with a gross capacity factor1 of 35% and higher, which may be suitable for wind energy development. AWS Truepower LLC produced the wind resource data with a spatial...

256

Offshore wind metadata management  

Science Journals Connector (OSTI)

Offshore wind energy is gaining more and more attention from industry and research community due to its high potential in producing green energy and lowering price on electricity consumption. However, offshore wind is facing many challenges, and hence ...

Trinh Hoang Nguyen; Rocky Dunlap; Leo Mark; Andreas Prinz; Bjørn Mo Østgren; Trond Friisø

2014-10-01T23:59:59.000Z

257

Simulations of an inhomogeneous stellar wind interacting with a pulsar wind in a binary system  

E-Print Network (OSTI)

Binary systems containing a massive star and a non-accreting pulsar present strong interaction between the stellar and the pulsar winds. The properties of this interaction, which largely determine the non-thermal radiation in these systems, strongly depend on the structure of the stellar wind, which can be clumpy or strongly anisotropic, as in Be stars. We study numerically the influence of inhomogeneities in the stellar wind on the structure of the two-wind interaction region. We carried out for the first time axisymmetric, relativistic hydrodynamical simulations, with Lorentz factors of ~6 and accounting for the impact of instabilities, to study the impact in the two-wind interaction structure of an over-dense region of the stellar wind. We also followed the evolution of this over-dense region or clump as it faces the impact of the pulsar wind. For typical system parameters, and adopting a stellar wind inhomogeneity with a density contrast >~10, clumps with radii of a few percent of the binary size can sign...

Paredes-Fortuny, Xavier; Perucho, Manel; Ribó, Marc

2014-01-01T23:59:59.000Z

258

2008 WIND TECHNOLOGIES MARKET REPORT  

E-Print Network (OSTI)

Prepared for the Utility Wind Integration Group. Arlington,Wind Logics, Inc. 2004. Wind Integration Study—Final Report.EnerNex Corp. 2006. Wind Integration Study for Public

Bolinger, Mark

2010-01-01T23:59:59.000Z

259

How Do Wind Turbines Work?  

Energy.gov (U.S. Department of Energy (DOE))

Instead of using electricity to make wind, like a fan, wind turbines use wind to make electricity. The wind turns the blades, which spin a shaft, which connects to a generator and makes electricity.

260

WINDExchange: Wind Basics and Education  

Wind Powering America (EERE)

locate higher education and training programs. Learn about Wind Learn about how wind energy generates power; where the best wind resources are; how you can get wind power; and...

Note: This page contains sample records for the topic "wind structures cxs" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


261

WINDExchange: What Is Wind Power?  

Wind Powering America (EERE)

animation to see how a wind turbine works or take a look inside. Wind power or wind energy describes the process by which the wind is used to generate mechanical power or...

262

The Wind at Our Backs  

Science Journals Connector (OSTI)

...uncertainty that chills U.S. wind farm development. He...serious challenge of siting wind turbines in the United States...a community college wind training program, and...and the nation's first offshore wind project near Nantucket...

Dan Reicher

2012-05-11T23:59:59.000Z

263

Kent County- Wind Ordinance  

Energy.gov (U.S. Department of Energy (DOE))

This ordinance establishes provisions and standards for small wind energy systems in various zoning districts in Kent County, Maryland.

264

Wind Energy Markets, 2. edition  

SciTech Connect

The report provides an overview of the global market for wind energy, including a concise look at wind energy development in key markets including installations, government incentives, and market trends. Topics covered include: an overview of wind energy including the history of wind energy production and the current market for wind energy; key business drivers of the wind energy market; barriers to the growth of wind energy; key wind energy trends and recent developments; the economics of wind energy, including cost, revenue, and government subsidy components; regional and national analyses of major wind energy markets; and, profiles of key wind turbine manufacturers.

NONE

2007-11-15T23:59:59.000Z

265

2009 Wind Technologies Market Report  

E-Print Network (OSTI)

is located in Europe. In contrast, all wind power projectsin Europe. In 2009, for example, more wind power was

Wiser, Ryan

2010-01-01T23:59:59.000Z

266

CONGRESSIONAL BRIEFING Offshore Wind  

E-Print Network (OSTI)

CONGRESSIONAL BRIEFING Offshore Wind Lessons Learned from Europe: Reducing Costs and Creating Jobs Thursday, June 12, 2014 Capitol Visitors Center, Room SVC 215 Enough offshore wind capacity to power six the past decade. What has Europe learned that is applicable to a U.S. effort to deploy offshore wind off

Firestone, Jeremy

267

Offshore Wind Potential Tables  

Wind Powering America (EERE)

Offshore wind resource by state and wind speed interval within 50 nm of shore. Wind Speed at 90 m (ms) 7.0 - 7.5 7.5 - 8.0 8.0 - 8.5 8.5 - 9.0 9.0 - 9.5 9.5 - 10.0 >10.0 Total...

268

Wind Turbine Competition Introduction  

E-Print Network (OSTI)

Wind Turbine Competition Introduction: The Society of Hispanic Professional Engineers, SHPE at UTK, wishes to invite you to participate in our first `Wind Turbine' competition as part of Engineer's Week). You will be evaluated by how much power your wind turbine generates at the medium setting of our fan

Wang, Xiaorui "Ray"

269

New England Wind Forum: New England Wind Projects  

Wind Powering America (EERE)

Projects in New England Building Wind Energy in New England Wind Resource Wind Power Technology Economics Markets Siting Policy Technical Challenges Issues Small Wind Large Wind Newsletter Perspectives Events Quick Links to States CT MA ME NH RI VT Bookmark and Share New England Wind Projects This page shows the location of installed and planned New England wind projects. Find windfarms, community-scale wind projects, customer-sited wind projects, small wind projects, and offshore wind projects. Read more information about how to use the Google Map and how to add your wind project to the map. Text version New England Wind Energy Projects Connecticut, East Canaan Wind Connecticut, Klug Farm Connecticut, Phoenix Press Connecticut, Wind Colebrook (South and North)

270

Wind: wind speed and wind power density maps at 10m and 50m above...  

Open Energy Info (EERE)

files of wind speed and wind power density at 10 and 50 m heights. Global data of offshore wind resource as generated by NASA's QuikSCAT SeaWinds scatterometer....

271

Wind: wind speed and wind power density GIS data at 10m and 50m...  

Open Energy Info (EERE)

files of wind speed and wind power density at 10 and 50 m heights. Global data of offshore wind resource as generated by NASA's QuikScat SeaWinds scatterometer....

272

Prairie Winds Wind Farm | Open Energy Information  

Open Energy Info (EERE)

Prairie Winds Wind Farm Prairie Winds Wind Farm Facility Prairie Winds Sector Wind energy Facility Type Commercial Scale Wind Facility Status In Service Owner Basin Electric Power Coop/Central Power Electric Coop Developer Basin Electric Power Coop/Central Power Electric Coop Energy Purchaser Basin Electric Power Coop/Central Power Electric Coop Location Near Minot ND Coordinates 48.022927°, -101.291435° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":48.022927,"lon":-101.291435,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

273

Wind energy | Open Energy Information  

Open Energy Info (EERE)

(Redirected from Wind) (Redirected from Wind) Jump to: navigation, search Wind energy is a form of solar energy.[1] Wind energy (or wind power) describes the process by which wind is used to generate electricity. Wind turbines convert the kinetic energy in the wind into mechanical power. A generator can convert mechanical power into electricity[2]. Mechanical power can also be utilized directly for specific tasks such as pumping water. The US DOE developed a short wind power animation that provides an overview of how a wind turbine works and describes the wind resources in the United States. Contents 1 Wind Energy Basics 1.1 Equation for Wind Power 2 DOE Wind Programs and Information 3 Worldwide Installed Capacity 3.1 United States Installed Capacity 4 Wind Farm Development 4.1 Land Requirements

274

Vertical axis wind turbine  

SciTech Connect

Wind turbines are largely divided into vertical axis wind turbines and propeller (Horizontal axis) wind turbines. The present invention discloses a vertical axis high speed wind turbine provided with a starting and braking control system. This vertical axis wind turbine is formed by having blades of a proper airfoil fitted to respective supporting arms provided radially from a vertical rotary axis by keeping the blade span-wise direction in parallel with the axis and being provided with a low speed control windmill in which the radial position of each operating piece varies with a centrifugal force produced by the rotation of the vertical rotary axis.

Kato, Y.; Seki, K.; Shimizu, Y.

1981-01-27T23:59:59.000Z

275

Vertical axis wind turbine  

SciTech Connect

Wind turbines are largely divided into vertical axis wind turbines and propeller (Horizontal axis) wind turbines. The present invention discloses a vertical axis high speed wind turbine provided with rotational speed control systems. This vertical axis wind turbine is formed by having blades of a proper airfoil fitted to respective supporting arms provided radially from a vertical rotating shaft by keeping the blade span-wise direction in parallel with the shaft and being provided with aerodynamic control elements operating manually or automatically to control the rotational speed of the turbine.

Kato, Y.; Seki, K.; Shimizu, Y.

1981-01-27T23:59:59.000Z

276

Energy in the Wind  

NLE Websites -- All DOE Office Websites (Extended Search)

Provi and BP Energy in the Wind - Exploring Basic Electrical Concepts by Modeling Wind Turbines Curriculum: Wind Power (simple machines, aerodynamics, weather/climatology, leverage, mechanics, atmospheric pressure, and energy resources/transformations) Grade Level: High School Small groups: 2 students Time: Introductory packet will take 2-3 periods. Scientific investigation will take 2-3 periods. (45-50 minute periods) Summary: Students explore basic electrical concepts. Students are introduced to electrical concepts by using a hand held generator utilizing a multimeter, modeling, and designing a wind turbine in a wind tunnel (modifications are given if a wind tunnel is not available). Students investigate how wind nergy is used as a renewable energy resource. e

277

NREL: Wind Research - Publications  

NLE Websites -- All DOE Office Websites (Extended Search)

Publications Publications The NREL wind research program develops publications about its R&D activities in wind energy technologies. Below you'll find links to recently published publications, links to the NREL Avian Literature and Publications Databases, and information about the Technical Library at the National Wind Technology Center (NWTC). The NWTC's quarterly newsletter, @NWTC, contains articles on current wind energy research projects and highlights the latest reports, papers, articles, and events published or sponsored by NREL. Subscribe to @NWTC. Selected Publications Featured Publication Large-scale Offshore Wind Power in the United States: Assessment of Opportunities and Barriers Here are some selected NWTC publications: 2011 Cost of Wind Energy Review Built-Environment Wind Turbine Roadmap

278

Offshore wind metadata management  

Science Journals Connector (OSTI)

Offshore wind energy is gaining more and more attention from industry and research community due to its high potential in producing green energy and lowering price on electricity consumption. However, offshore wind is facing many challenges, and hence it is still expensive to install in large scale. It therefore needs to be considered from different aspects of technologies in order to overcome these challenges. One of the problems of the offshore wind is that information comes from different sources with diversity in types and format. Besides, there are existing wind databases that should be utilised in order to enrich the knowledge base of the wind domain. This paper describes an approach to managing offshore wind metadata effectively using semantic technologies. An offshore wind ontology has been developed. The semantic gap between the developed ontology and the relational database is investigated. A prototype system has been developed to demonstrate the use of the ontology.

Trinh Hoang Nguyen; Rocky Dunlap; Leo Mark; Andreas Prinz; Bjørn Mo �stgren; Trond Friisø

2014-01-01T23:59:59.000Z

279

Wind energy conversion system  

DOE Patents (OSTI)

The wind energy conversion system includes a wind machine having a propeller connected to a generator of electric power, the propeller rotating the generator in response to force of an incident wind. The generator converts the power of the wind to electric power for use by an electric load. Circuitry for varying the duty factor of the generator output power is connected between the generator and the load to thereby alter a loading of the generator and the propeller by the electric load. Wind speed is sensed electro-optically to provide data of wind speed upwind of the propeller, to thereby permit tip speed ratio circuitry to operate the power control circuitry and thereby optimize the tip speed ratio by varying the loading of the propeller. Accordingly, the efficiency of the wind energy conversion system is maximized.

Longrigg, Paul (Golden, CO)

1987-01-01T23:59:59.000Z

280

Short-term wind forecast for the safety management of complex areas during hazardous wind events  

Science Journals Connector (OSTI)

Abstract This paper describes the short-term wind forecast system realised in the framework of the European Project “Wind and Ports: The forecast of wind for the management and safety of port areas”. The project?s aim is to contribute improving the safety and accessibility to the harbour areas of the largest ports in the Northern Tyrrhenian Sea, which are frequently exposed to hazardous winds, in order to minimise the risks for users, structures, transport means, stored goods and boats within the ports. The short-term wind forecast system is based on a mixed statistical-numerical procedure, trained by means of local wind measurements and implemented into an operational chain for the real-time prediction of the maximum expected wind velocity corresponding to three forecast horizons (30, 60 and 90 min) and three non-exceeding probabilities (90%, 95%, and 99%). The local wind measurements used to train the forecast algorithms have been recorded from the 15 ultra-sonic anemometers installed in the Ports of Savona, La Spezia, and Livorno. This wind-monitoring network is used also to carry out the short-term forecast system a posteriori verification and validation.

M. Burlando; M. Pizzo; M.P. Repetto; G. Solari; P. De Gaetano; M. Tizzi

2014-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "wind structures cxs" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


281

Simulations of pulsar wind formation  

E-Print Network (OSTI)

We present initial results of the first self-consistent numerical model of the outer magnetosphere of a pulsar. By using the relativistic ``particle-in-cell'' method with special boundary conditions to represent plasma dynamics in 3D, we are able to follow magnetospheric plasma through the light cylinder into the wind zone for arbitrary magnetic inclination angles. For aligned rotators we confirm the ``disk-dome'' charge-separated structure of the magnetosphere and find that this configuration is unstable to a 3D nonaxisymmetric diocotron instability. This instability allows plasma to move across the field lines and approach the corotating Goldreich-Julian solution within several rotation periods. For oblique rotators formation of the spiral ``striped wind'' in the equatorial direction is demonstrated and the acceleration of the wind and its magnetization is discussed. We find that the wind properties vary with stellar latitude; however, whether injection conditions at the pulsar are responsible for the observed jet-equator geometry of Crab and Vela is currently under investigation. We also comment on the electrodynamics of the simulated magnetospheres, their current closure, and future simulations.

Anatoly Spitkovsky; Jonathan Arons

2002-01-22T23:59:59.000Z

282

New England Wind Forum: Buying Wind Power  

Wind Powering America (EERE)

Buying Wind Power Buying Wind Power On this page find information about: Green Marketing Renewable Energy Certificates Green Pricing Green Marketing Green power marketing refers to selling green power in the competitive marketplace, in which multiple suppliers and service offerings exist. In states that have established retail competition, customers may be able to purchase green power from a competitive supplier. Connecticut Connecticut Clean Energy Options Beginning in April 2005, Connecticut's two investor-owned utilities, Connecticut Light and Power and United Illuminating, began to offer a simple, affordable program to their customers for purchasing clean energy such as wind power. In late 2006, stakeholders started to explore a new offering that would convey the price stability of wind energy (and other renewable energy resources) to Connecticut consumers. This new offering is still under development.

283

DOE Science Showcase - Wind Power  

Office of Scientific and Technical Information (OSTI)

DOE Science Showcase - Wind Power DOE Science Showcase - Wind Power Wind Powering America Wind Powering America is a nationwide initiative of the U.S. Department of Energy's Wind Program designed to educate, engage, and enable critical stakeholders to make informed decisions about how wind energy contributes to the U.S. electricity supply. Wind Power Research Results in DOE Databases IEA Wind Task 26: The Past and Future Cost of Wind Energy, Work Package 2, Energy Citations Database NREL Triples Previous Estimates of U.S. Wind Power Potential, Energy Citations Database Dynamic Models for Wind Turbines and Wind Power Plants, DOE Information Bridge 2012 ARPA-E Energy Innovation Summit: Profiling General Compression: A River of Wind, ScienceCinema, multimedia Solar and Wind Energy Resource Assessment (SWERA) Data from the

284

A Cyberinfrastructure for Integrated Monitoring and Life-Cycle Management of Wind Turbines  

E-Print Network (OSTI)

A Cyberinfrastructure for Integrated Monitoring and Life-Cycle Management of Wind Turbines Kay Abstract. Integrating structural health monitoring into life-cycle management strategies for wind turbines data) can effectively be used to capture the operational and structural behavior of wind turbines

Stanford University

285

New England Wind Forum: Selling Wind Power  

Wind Powering America (EERE)

Selling Wind Power Selling Wind Power Markets are either well-developed or developing for each of the 'products' produced by wind generators. These include electricity products and generation attributes. Electricity Electricity can be used in two ways: on-site (interconnected behind a retail customer's meter) of for sales of electricity over the electric grid. On-site generation can displace a portion of a customer's purchases of electricity from the grid. In addition, net metering rules are in place at the state level that in some cases allow generation in excess of on-site load to be sold back to the local utility (see state pages for net metering specifics). For sales over the electricity grid, the Independent System Operator of New England (ISO New England) creates and manages a wholesale market for electric energy, capacity, and ancillary services within the New England Power Pool (NEPOOL). Wind generators may sell their electric energy and capacity in spot markets organized by the ISO, or they may contract with wholesale buyers to sell these products for any term to buyers operating in the ISO New England marketplace. Wind generators do not generally produce other marketable ancillary services. The ISO has rules specific to the operation of wind generators reflecting operations, scheduling, calculation of installed capacity credit, and so forth.

286

The Inside of a Wind Turbine | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

The Inside of a Wind Turbine The Inside of a Wind Turbine The Inside of a Wind Turbine 1 of 17 Tower: 2 of 17 Tower: Made from tubular steel (shown here), concrete, or steel lattice. Supports the structure of the turbine. Because wind speed increases with height, taller towers enable turbines to capture more energy and generate more electricity. Generator: 3 of 17 Generator: Produces 60-cycle AC electricity; it is usually an off-the-shelf induction generator. High-speed shaft: 4 of 17 High-speed shaft: Drives the generator. Nacelle: 5 of 17 Nacelle: Sits atop the tower and contains the gear box, low- and high-speed shafts, generator, controller, and brake. Some nacelles are large enough for a helicopter to land on. Wind vane: 6 of 17 Wind vane: Measures wind direction and communicates with the yaw drive to orient the

287

Stakeholder Engagement and Outreach: Roles and Responsibilities for Wind  

Wind Powering America (EERE)

Roles and Responsibilities for Wind for Schools Participants Roles and Responsibilities for Wind for Schools Participants The following section describes the roles and responsibilities of each entity involved in a Wind for Schools project. Note that the structure was not rigidly defined to allow each state to implement the project as was most appropriate. School and Community Wind Application Center State Facilitator Wind Powering America Local Utility or Electric Cooperative State Energy Office School and Community In order for a Wind for Schools project to succeed, many people in the school community supported the concept, including the science teacher, the school principal and administration, the district superintendent and administration, and the school board. The school provided land for the project, support for the wind turbine interconnection to the school

288

Green Wind Energy formerly Solund Invest | Open Energy Information  

Open Energy Info (EERE)

Solund Invest Solund Invest Jump to: navigation, search Name Green Wind Energy (formerly Solund Invest) Place DK-3460 Birkerød, Denmark Zip DK-3460 Sector Wind energy Product Danish investment company specializing in structuring and selling wind turbine projects in Denmark and abroad to private investors. References Green Wind Energy (formerly Solund Invest)[1] LinkedIn Connections CrunchBase Profile No CrunchBase profile. Create one now! This article is a stub. You can help OpenEI by expanding it. Green Wind Energy (formerly Solund Invest) is a company located in DK-3460 Birkerød, Denmark . References ↑ "[ Green Wind Energy (formerly Solund Invest)]" Retrieved from "http://en.openei.org/w/index.php?title=Green_Wind_Energy_formerly_Solund_Invest&oldid=346065"

289

Community Wind: Once Again Pushing the Envelope of Project Finance  

NLE Websites -- All DOE Office Websites (Extended Search)

Community Wind: Once Again Pushing the Envelope of Project Finance Community Wind: Once Again Pushing the Envelope of Project Finance Title Community Wind: Once Again Pushing the Envelope of Project Finance Publication Type Report Refereed Designation Unknown Year of Publication 2011 Authors Bolinger, Mark Pagination 34 Date Published 01/2011 Publisher LBNL City Berkeley Keywords electricity markets and policy group, energy analysis and environmental impacts department Abstract The "community wind" sector in the United States - defined in this report as consisting of relatively small utility-scale wind power projects that sell power on the wholesale market and that are developed and owned primarily by local investors - has historically served as a "test bed" or "proving grounds" not only for up-and-coming wind turbine manufacturers trying to break into the broader U.S. wind market, but also for wind project financing structures. More recently, a handful of community wind projects built over the past year have been financed via new and creative structures that push the envelope of wind project finance in the U.S. - in many cases, moving beyond the now-standard partnership flip structures involving strategic tax equity investors. Details of the financing structures used for each project are described in Section 4 of the full report. In most cases, these are first-of-their-kind structures that could serve as useful examples for other projects - both community and commercial wind alike. Other policy-related enablers of some of the financial innovation profiled in this report include New Markets Tax Credits - which are not new but have only recently been tapped to help finance solar projects and, for the first time, in 2010 have been part of a community wind project financing - and Section 6108 of the 2008 Farm Bill, which expands the USDA's authority to loan to renewable generation projects, even if those projects are not serving traditional rural markets.

290

Microsoft Word - FFLF Wind Project EA 11 Feb 2010 rev4 FINAL...  

NLE Websites -- All DOE Office Websites (Extended Search)

selected the FFLF Wind Project for a 1.5 million grant based on its unique structure (small-scale wind project providing electricity directly to an adjacent commercial end...

291

High Altitude Wind Power Systems: A Survey on Flexible Power Kites Mariam Ahmed*  

E-Print Network (OSTI)

High Altitude Wind Power Systems: A Survey on Flexible Power Kites Mariam Ahmed* Grenoble wind power using a kite-based system, and the proposed structures *Corresponding author Mariam.AHMED@g2

Boyer, Edmond

292

NREL: Wind Research - News  

NLE Websites -- All DOE Office Websites (Extended Search)

Below are some select news stories from the National Wind Technology Below are some select news stories from the National Wind Technology Center. Subscribe to the RSS feed RSS . Learn about RSS. January 3, 2014 New Modularization Framework Transforms FAST Wind Turbine Modeling Tool The U.S. Department of Energy's National Renewable Energy Laboratory (NREL) recently released an expanded version of its FAST wind turbine computer-aided engineering tool under a new modularization framework. January 2, 2014 The Denver Post Highlights the NWTC's New 5-MW Dynamometer On January 2, a reporter from The Denver Post toured the new 5-megawatt dynamometer test facility at the National Wind Technology Center (NWTC). Archives 2013 | 2012 | 2011 | 2010 | 2009 | 2008 | 2007 | 2006 Printable Version Wind Research Home Capabilities Projects Facilities

293

Wind energy conversion system  

SciTech Connect

This patent describes a wind energy conversion system comprising: a propeller rotatable by force of wind; a generator of electricity mechanically coupled to the propeller for converting power of the wind to electric power for use by an electric load; means coupled between the generator and the electric load for varying the electric power drawn by the electric load to alter the electric loading of the generator; means for electro-optically sensing the speed of the wind at a location upwind from the propeller; and means coupled between the sensing means and the power varying means for operating the power varying means to adjust the electric load of the generator in accordance with a sensed value of wind speed to thereby obtain a desired ratio of wind speed to the speed of a tip of a blade of the propeller.

Longrigg, P.

1987-03-17T23:59:59.000Z

294

Session: Offshore wind  

SciTech Connect

This session at the Wind Energy and Birds/Bats workshop consisted of two presentations. Due to time constraints, a discussion period was not possible. The session addressed the current state of offshore wind energy development. The first presentation ''Monitoring Program and Results: Horns Rev and Nysted'' by Jette Gaarde summarized selected environmental studies conducted to date at operating offshore wind turbine projects in Denmark and lessons from other offshore wind developments in Europe. Wildlife impacts studies from the Danish sites focused on birds, fish, and mammals. The second presentation ''What has the U.S. Wind Industry Learned from the European Example'' by Bonnie Ram provided an update on current permit applications for offshore wind developments in the U.S. as well as lessons that may be drawn from the European experience.

Gaarde, Jette; Ram, Bonnie

2004-09-01T23:59:59.000Z

295

Wind Turbine Blade Design  

K-12 Energy Lesson Plans and Activities Web site (EERE)

Blade engineering and design is one of the most complicated and important aspects of modern wind turbine technology. Engineers strive to design blades that extract as much energy from the wind as possible throughout a range of wind speeds and gusts, yet are still durable, quiet and cheap. A variety of ideas for building turbines and teacher handouts are included in this document and at the Web site.

296

Howden Wind Turbines Ltd | Open Energy Information  

Open Energy Info (EERE)

Howden Wind Turbines Ltd Jump to: navigation, search Name: Howden Wind Turbines Ltd Place: United Kingdom Sector: Wind energy Product: Howden was a manufacturer of wind turbines in...

297

ABO Wind AG | Open Energy Information  

Open Energy Info (EERE)

AG Place: Hessen, Germany Zip: 65193 Sector: Bioenergy, Wind energy Product: German developer of wind and bioenergy generation assets. ABO Wind has no direct holding in any wind...

298

TS Wind Power Developers | Open Energy Information  

Open Energy Info (EERE)

TS Wind Power Developers Jump to: navigation, search Name: TS Wind Power Developers Place: Satara, Maharashtra, India Sector: Wind energy Product: Setting up 30MW wind farm in...

299

Daqing Longjiang Wind Power | Open Energy Information  

Open Energy Info (EERE)

Longjiang Wind Power Jump to: navigation, search Name: Daqing Longjiang Wind Power Place: Daqing, Heilongjiang Province, China Zip: 163316 Sector: Wind energy Product: Local wind...

300

Heilongjiang Lishu Wind Power | Open Energy Information  

Open Energy Info (EERE)

Lishu Wind Power Jump to: navigation, search Name: Heilongjiang Lishu Wind Power Place: Heilongjiang Province, China Sector: Wind energy Product: China-based wind project developer...

Note: This page contains sample records for the topic "wind structures cxs" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


301

WINDExchange Offshore Wind Webinar: Transmission Planning and...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Offshore Wind Webinar: Transmission Planning and Interconnection for Offshore Wind WINDExchange Offshore Wind Webinar: Transmission Planning and Interconnection for Offshore Wind...

302

Blyth Offshore Wind Ltd | Open Energy Information  

Open Energy Info (EERE)

Blyth Offshore Wind Ltd Jump to: navigation, search Name: Blyth Offshore Wind Ltd Place: United Kingdom Sector: Renewable Energy, Wind energy Product: Blyth Offshore Wind Limited,...

303

2013 Wind Technologies Market Report Presentation | Department...  

Office of Environmental Management (EM)

3 Wind Technologies Market Report Presentation 2013 Wind Technologies Market Report Presentation Presentation summarizing the 2013 Wind Technologies Market Report. 2013 Wind...

304

Environmental Wind Projects | Department of Energy  

Energy Savers (EERE)

Wind Projects Environmental Wind Projects This report covers the Wind and Water Power Technologies Office's environmental wind projects from fiscal years 2006 to 2014....

305

NREL: Wind Research - Research and Development  

NLE Websites -- All DOE Office Websites (Extended Search)

Printable Version Wind Research Home Research & Development Utility-Scale Wind Turbines Offshore Wind Turbines Small Wind Turbines Grid Integration Market Acceleration...

306

Workforce Development Wind Projects | Department of Energy  

Energy Savers (EERE)

Workforce Development Wind Projects Workforce Development Wind Projects This report covers the Wind and Water Power Technologies Office's workforce development wind projects from...

307

Environmental Wind Projects | Department of Energy  

Energy Savers (EERE)

Environmental Wind Projects Environmental Wind Projects This report covers the Wind and Water Power Technologies Office's environmental wind projects from fiscal years 2006 to...

308

Sandia National Laboratories: Wind Software Downloads  

NLE Websites -- All DOE Office Websites (Extended Search)

* SAND 2014-3685P * Wind software * wind tools Comments are closed. Renewable Energy Wind Energy Wind Plant Optimization Test Site Operations & Maintenance Safety: Test...

309

Wind Power | Open Energy Information  

Open Energy Info (EERE)

Wind Power Wind Power Jump to: navigation, search Wind Power WIndfarm.Sunset.jpg Wind power is a form of solar energy.[1] Wind is caused by the uneven heating of the atmosphere by the sun, variations in the earth's surface, and rotation of the earth. Mountains, bodies of water, and vegetation all influence wind flow patterns[2], [3]. Wind energy (or wind power) describes the process by which wind is used to generate electricity. Wind turbines convert the energy in wind to electricity by rotating propeller-like blades around a rotor. The rotor turns the drive shaft, which turns an electric generator.[2] Three key factors affect the amount of energy a turbine can harness from the wind: wind speed, air density, and swept area.[4] Mechanical power can also be utilized directly for specific tasks such as

310

High Energy Studies of Pulsar Wind Nebulae  

E-Print Network (OSTI)

The extended nebulae formed as pulsar winds expand into their surroundings provide information about the composition of the winds, the injection history from the host pulsar, and the material into which the nebulae are expanding. Observations from across the electromagnetic spectrum provide constraints on the evolution of the nebulae, the density and composition of the surrounding ejecta, the geometry of the systems, the formation of jets, and the maximum energy of the particles in the nebulae. Here I provide a broad overview of the structure of pulsar wind nebulae, with specific examples that demonstrate our ability to constrain the above parameters. The association of pulsar wind nebulae with extended sources of very high energy gamma-ray emission are investigated, along with constraints on the nature of such high energy emission.

Patrick Slane

2008-11-12T23:59:59.000Z

311

High Energy Studies of Pulsar Wind Nebulae  

E-Print Network (OSTI)

The extended nebulae formed as pulsar winds expand into their surroundings provide information about the composition of the winds, the injection history from the host pulsar, and the material into which the nebulae are expanding. Observations from across the electromagnetic spectrum provide constraints on the evolution of the nebulae, the density and composition of the surrounding ejecta, the geometry of the systems, the formation of jets, and the maximum energy of the particles in the nebulae. Here I provide a broad overview of the structure of pulsar wind nebulae, with specific examples that demonstrate our ability to constrain the above parameters. The association of pulsar wind nebulae with extended sources of very high energy gamma-ray emission are investigated, along with constraints on the nature of such high energy emission.

Slane, Patrick

2008-01-01T23:59:59.000Z

312

Gone with the Wind.  

E-Print Network (OSTI)

?? The purpose of this thesis is to explore disruptions Swedish wind turbines onshore are exposed to, and to estimate their economic impacts on the… (more)

Duncker, Nadja; Klötzer, Anneke

2010-01-01T23:59:59.000Z

313

Barstow Wind Turbine Project  

Energy.gov (U.S. Department of Energy (DOE))

Presentation covers the Barstow Wind Turbine project for the Federal Utility Partnership Working Group (FUPWG) meeting, held on November 18-19, 2009.

314

Vertical axis wind turbines  

DOE Patents (OSTI)

A vertical axis wind turbine is described. The wind turbine can include a top ring, a middle ring and a lower ring, wherein a plurality of vertical airfoils are disposed between the rings. For example, three vertical airfoils can be attached between the upper ring and the middle ring. In addition, three more vertical airfoils can be attached between the lower ring and the middle ring. When wind contacts the vertically arranged airfoils the rings begin to spin. By connecting the rings to a center pole which spins an alternator, electricity can be generated from wind.

Krivcov, Vladimir (Miass, RU); Krivospitski, Vladimir (Miass, RU); Maksimov, Vasili (Miass, RU); Halstead, Richard (Rohnert Park, CA); Grahov, Jurij (Miass, RU)

2011-03-08T23:59:59.000Z

315

NREL: Innovation Impact - Wind  

NLE Websites -- All DOE Office Websites (Extended Search)

Manufacturing Manufacturing Energy Systems Integration Energy Systems Integration Wind turbines must withstand powerful aerodynamic forces unlike any other propeller-drive...

316

Wind energy analysis system .  

E-Print Network (OSTI)

??One of the most important steps to be taken before a site is to be selected for the extraction of wind energy is the analysis… (more)

Koegelenberg, Johan

2014-01-01T23:59:59.000Z

317

Wind Power Forecasting  

Science Journals Connector (OSTI)

The National Center for Atmospheric Research (NCAR) has configured a Wind Power Forecasting System for Xcel Energy that integrates high resolution and ensemble...

Sue Ellen Haupt; William P. Mahoney; Keith Parks

2014-01-01T23:59:59.000Z

318

Wind Program: Publications  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

pres Details Bookmark & Share View Related Product Thumbnail Image 2014 Offshore Wind Market and Economic Analysis The objective of this report is to provide a...

319

Wind Success Stories  

Energy Savers (EERE)

+0000 843456 at http:energy.gov United States Launches First Grid-Connected Offshore Wind Turbine http:energy.goveeresuccess-storiesarticlesunited-states-launches-f...

320

wind_guidance  

Energy.gov (U.S. Department of Energy (DOE))

Guidance to Accompany Non-Availability Waiver of the Recovery Act Buy American Provisions for 5kW and 50kW Wind Turbines

Note: This page contains sample records for the topic "wind structures cxs" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


321

Allegany County Wind Ordinance  

Energy.gov (U.S. Department of Energy (DOE))

This ordinance sets requirements for industrial wind energy conversion systems. These requirements include minimum separation distances, setback requirements, electromagnetic interference analysis ...

322

Wind Power , Introduction  

Science Journals Connector (OSTI)

Successful implementation of new technologies requires social acceptance. Historically, for the implementation of wind energy this was considered a relatively simple issue ... strategies. Without much study, soci...

Prof. Lennart Söder

2013-01-01T23:59:59.000Z

323

Wind Power , Introduction  

Science Journals Connector (OSTI)

Successful implementation of new technologies requires social acceptance. Historically, for the implementation of wind energy this was considered a relatively simple issue ... strategies. Without much study, soci...

Prof. Lennart Söder

2012-01-01T23:59:59.000Z

324

Wind Energy Myths  

SciTech Connect

This two-sided fact sheet succinctly outlines and counters the top misconceptions about wind energy. It is well suited for general audiences.

Not Available

2005-05-01T23:59:59.000Z

325

Campbell County Wind Farm  

NLE Websites -- All DOE Office Websites (Extended Search)

environmental assessment (EA) on the proposed interconnection of the Campbell County Wind Farm (Project) in Campbell County, near the city of Pollock, South Dakota. Dakota...

326

Energy from the wind  

Science Journals Connector (OSTI)

The large?scale generation of electrical power by wind turbine fields is discussed. It is shown that the maximum power which can be extracted by a wind turbine is 16/27 or 59.3% of the power available in the wind. An estimate is made of the total electrical power which could be generated in the United States by utilizing wind energy. The material in this paper was presented by the authors in a one?semester course on energy science. It could also be used in an introductory physics class as an illustration of elementary fluid mechanics concepts and of the basic principles of energy and momentum conservation.

David G. Pelka; Robert T. Park; Runbir Singh

1978-01-01T23:59:59.000Z

327

What is Distributed Wind?  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

and refurbishers, including those from Canada, Mexico, Europe, China, and South Africa. In 2013, 30.4 MW of new distributed wind capacity was added, representing nearly...

328

CX-010215: Categorical Exclusion Determination  

Energy.gov (U.S. Department of Energy (DOE))

Laufer Wind Group National Wind Technology Center Structure Lighting Tests CX(s) Applied: B1.31, B5.15 Date: 05/30/2013 Location(s): Colorado Offices(s): Golden Field Office

329

Proceedings Nordic Wind Power Conference  

E-Print Network (OSTI)

Estimation of Possible Power for Wind Plant Control Power Fluctuations from Offshore Wind Farms; Model Validation System grounding of wind farm medium voltage cable grids Faults in the Collection Grid of Offshore systems of wind turbines and wind farms. NWPC presents the newest research results related to technical

330

Optimization of Wind Turbine Operation  

E-Print Network (OSTI)

inclination angle was about 1°. The spinner anemometer measurements were correlated with wind speed and windOptimization of Wind Turbine Operation by Use of Spinner Anemometer TF Pedersen, NN Sørensen, L Title: Optimization of Wind Turbine Operation by Use of Spinner Anemometer Department: Wind Energy

331

Michigan Wind II Wind Farm | Open Energy Information  

Open Energy Info (EERE)

Wind II Wind Farm Wind II Wind Farm Jump to: navigation, search Name Michigan Wind II Wind Farm Facility Michigan Wind II Wind Farm Sector Wind energy Facility Type Commercial Scale Wind Facility Status In Service Owner Exelon Wind Developer Exelon Wind Energy Purchaser Consumers Energy Location Minden City MI Coordinates 43.6572421°, -82.7681278° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":43.6572421,"lon":-82.7681278,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

332

20% Wind Energy by 2030: Increasing Wind Energy's Contribution...  

Office of Environmental Management (EM)

: Increasing Wind Energy's Contribution to U.S. Electricity Supply 20% Wind Energy by 2030: Increasing Wind Energy's Contribution to U.S. Electricity Supply Here you will find the...

333

NREL: Wind Research - Get to Know a Wind Energy Expert  

NLE Websites -- All DOE Office Websites (Extended Search)

Get to Know a Wind Energy Expert The Evolution of a Wind Expert A professional headshot photo of Maureen Hand Maureen Hand Maureen Hand knows wind. Growing up in Glenrock, Wyoming,...

334

American Wind Energy Association Wind Energy Finance and Investment...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Wind Energy Finance and Investment Seminar American Wind Energy Association Wind Energy Finance and Investment Seminar October 20, 2014 8:00AM EDT to October 21, 2014 5:00PM EDT...

335

United States Wind Resource Map: Annual Average Wind Speed at...  

Wind Powering America (EERE)

4.0 Source: Wind resource estimates developed by AWS Truepower, LLC for windNavigator . Web: http:www.windnavigator.com | http:www.awstruepower.com. Spatial resolution of wind...

336

WINDExchange: Offshore 90-Meter Wind Maps and Wind Resource Potential  

Wind Powering America (EERE)

Offshore 90-Meter Wind Maps and Wind Resource Potential The U.S. Department of Energy provides 90-meter (m) height, high-resolution wind maps and estimates of the total offshore...

337

LARGE SCALE WIND CLIMATOLOGICAL EXAMINATIONS OF WIND ENERGY UTILIZATION  

E-Print Network (OSTI)

The aim of this article is to describe the particular field of climatology which analyzes air movement characteristics regarding utilization of wind for energy generation. The article describes features of wind energy potential available in Hungary compared to wind conditions in other areas of the northern quarter sphere in order to assist the wind energy use development in Hungary. Information on wind climate gives a solid basis for financial and economic decisions of stakeholders in the field of wind energy utilization.

Andrea Kircsi

338

WIND BRAKING OF MAGNETARS  

SciTech Connect

We explore the wind braking of magnetars considering recent observations challenging the traditional magnetar model. There is evidence for strong multipole magnetic fields in active magnetars, but the dipole field inferred from spin-down measurements may be strongly biased by particle wind. Recent observations challenging the traditional model of magnetars may be explained naturally by the wind braking scenario: (1) the supernova energies of magnetars are of normal value; (2) the non-detection in Fermi observations of magnetars; (3) the problem posed by low magnetic field soft gamma-ray repeaters; (4) the relation between magnetars and high magnetic field pulsars; and (5) a decreasing period derivative during magnetar outbursts. Transient magnetars with L{sub x}<- E-dot{sub rot} may still be magnetic dipole braking. This may explain why low luminosity magnetars are more likely to have radio emissions. A strong reduction of the dipole magnetic field is possible only when the particle wind is very collimated at the star surface. A small reduction of the dipole magnetic field may result from detailed considerations of magnetar wind luminosity. In the wind braking scenario, magnetars are neutron stars with a strong multipole field. For some sources, a strong dipole field may no longer be needed. A magnetism-powered pulsar wind nebula will be one of the consequences of wind braking. For a magnetism-powered pulsar wind nebula, we should see a correlation between the nebula luminosity and the magnetar luminosity. Under the wind braking scenario, a braking index smaller than three is expected. Future braking index measurement of a magnetar may tell us whether magnetars are wind braking or magnetic dipole braking.

Tong, H. [Xinjiang Astronomical Observatory, Chinese Academy of Sciences, Urumqi, Xinjiang 830011 (China); Xu, R. X.; Qiao, G. J. [KIAA and School of Physics, Peking University, Beijing 100871 (China); Song, L. M., E-mail: tonghao@xao.ac.cn [Institute of High Energy Physics, Chinese Academy of Sciences, Beijing 100049 (China)

2013-05-10T23:59:59.000Z

339

Q-Winds satellite hurricane wind retrievals and H*Wind comparisons  

E-Print Network (OSTI)

tailored to extreme wind events. Because of this and precipitation effects, scatterometers have failed/passive scatterometer retrieval algorithm designed specifically for extreme wind events, hereafter identified1 Q-Winds satellite hurricane wind retrievals and H*Wind comparisons Pet Laupattarakasem and W

Hennon, Christopher C.

340

Offshore Wind Research (Fact Sheet), National Wind Technology Center (NWTC)  

NLE Websites -- All DOE Office Websites (Extended Search)

Offshore Offshore Wind Research The National Renewable Energy Laboratory is internationally recognized for offshore wind energy research and development (R&D). Its experience and capabilities cover a wide spectrum of wind energy disciplines. NREL's offshore wind R&D efforts focus on critical areas that address the long-term needs of the offshore wind energy industry and the Department of Energy (DOE). R&D efforts include: * Developing offshore design tools and methods * Collaborating with international partners * Testing offshore systems and developing standards * Conducting economic analyses * Characterizing offshore wind resources * Identifying and mitigating offshore wind grid integration challenges and barriers NREL documented the status of offshore wind energy in the United

Note: This page contains sample records for the topic "wind structures cxs" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


341

NREL: Wind Research - Utility-Scale Wind Turbine Research  

NLE Websites -- All DOE Office Websites (Extended Search)

wind turbine research addresses performance and reliability issues that large wind turbines experience throughout their lifespan and reduces system costs through innovative...

342

Wind Power Today, 2010, Wind and Water Power Program (WWPP) ...  

Office of Environmental Management (EM)

& Publications Wind Program Accomplishments Final Report DE-EE0005380 - Assessment of Offshore Wind Farm Effects on Sea Surface, Subsurface and Airborne Electronic Systems A...

343

NREL: Wind Research - NREL Supports Innovative Offshore Wind...  

NLE Websites -- All DOE Office Websites (Extended Search)

NREL Supports Innovative Offshore Wind Energy Projects Demonstration Projects Eligible for up to 46.7M Additional Funding An offshore wind turbine floating off the coast of...

344

American Wind Energy Association Wind Energy Finance and Investment Seminar  

Energy.gov (U.S. Department of Energy (DOE))

The American Wind Energy Association Wind Energy Finance and Investment Seminar will be attended by representatives in the financial sector, businesses, bankers, government and other nonprofit...

345

Sinomatech Wind Power Blade aka Sinoma Science Technology Wind...  

Open Energy Info (EERE)

Page Edit History Facebook icon Twitter icon Sinomatech Wind Power Blade aka Sinoma Science Technology Wind Turbine Blade Co Ltd Jump to: navigation, search Name: Sinomatech...

346

20% Wind Energy by 2030: Increasing Wind Energy's Contribution...  

Office of Environmental Management (EM)

Summary) 20% Wind Energy by 2030: Increasing Wind Energy's Contribution to U.S. Electricity Supply (Executive Summary) Executive summary of a report on the requirements needed...

347

Reliability analysis of wind turbine at high uncertain wind;.  

E-Print Network (OSTI)

??Wind energy plays a vital role in the renewable energy scenario of newlinethe world The wind turbine systems have complex components which are newlinerepairable The… (more)

Sunder selwyn T

2014-01-01T23:59:59.000Z

348

Young Neutron Stars and Their Wind Nebulae  

E-Print Network (OSTI)

With Teragauss magnetic fields, surface gravity sufficiently strong to significantly modify light paths, central densities higher than that of a standard nucleus, and rotation periods of only hundredths of a second, young neutron stars are sites of some of the most extreme physical conditions known in the Universe. They generate magnetic winds with particles that are accelerated to energies in excess of a TeV. These winds form synchrotron-emitting bubbles as the particle stream is eventually decelerated to match the general expansion caused by the explosion that formed the neutron stars. The structure of these pulsar wind nebulae allow us to infer properties of the winds and the pulsating neutron stars themselves. The surfaces of the the stars radiate energy from the rapidly cooling interiors where the physical structure is basically unknown because of our imprecise knowledge of the strong interaction at ultrahigh densities. Here I present a summary of recent measurements that allow us to infer the birth properties of neutron stars and to probe the nature of their winds, the physics of their atmospheres, and the structure of their interiors.

Patrick Slane

2005-05-24T23:59:59.000Z

349

2012 Wind Technologies Market Report  

E-Print Network (OSTI)

ERCOT (Brown 2012). Wind power plants with negative offersThermal Power Plants Under Increasing Wind Energy Supply. ”power plants that, among other benefits, lowers the costs of integrating wind

Wiser, Ryan

2014-01-01T23:59:59.000Z

350

2009 Wind Technologies Market Report  

E-Print Network (OSTI)

AWEA). 2010b. AWEA Small Wind Turbine Global Market Survey,html David, A. 2009. Wind Turbines: Industry and Tradewhich new large-scale wind turbines were installed in 2009 (

Wiser, Ryan

2010-01-01T23:59:59.000Z

351

Foundations for offshore wind turbines  

Science Journals Connector (OSTI)

...wind farms, although supplying green energy, tend to provoke some objections...wind farms, although supplying 'green energy', tend to provoke some objections...wind farms, although supplying `green energy', tend to provoke some objections...

2003-01-01T23:59:59.000Z

352

2011 Wind Technologies Market Report  

E-Print Network (OSTI)

Associates. 2010. SPP WITF Wind Integration Study. LittlePool. David, A. 2011. U.S. Wind Turbine Trade in a Changing2011. David, A. 2010. Impact of Wind Energy Installations on

Bolinger, Mark

2013-01-01T23:59:59.000Z

353

Sandia National Laboratories: Offshore Wind  

NLE Websites -- All DOE Office Websites (Extended Search)

EnergyOffshore Wind Offshore Wind Sandia executes several projects in support of the DOE Offshore Wind program, which address unique R&D needs related to offshore siting and, in...

354

2011 Wind Technologies Market Report  

E-Print Network (OSTI)

and the drop in wind power plant installations since 2009and the drop in wind power plant installations since 2009towers used in U.S. wind power plants increases from 80% in

Bolinger, Mark

2013-01-01T23:59:59.000Z

355

2010 Wind Technologies Market Report  

E-Print Network (OSTI)

and the drop in wind power plant installations, for example,the decrease in new wind power plant construction. A GrowingRelative Economics of Wind Power Plants Installed in Recent

Wiser, Ryan

2012-01-01T23:59:59.000Z

356

Wind Farms in North America  

E-Print Network (OSTI)

Public Perceptions of a Wind Energy Landscape. Landscape andDepartment of Energy (US DOE) (2008) 20% Wind Energy by2030: Increasing Wind Energy's Contribution to U.S.

Hoen, Ben

2014-01-01T23:59:59.000Z

357

Sandia National Laboratories: wind energy  

NLE Websites -- All DOE Office Websites (Extended Search)

uses the blade information to generate input files for other tools: The ANSYS ... Wind Energy Staff On March 24, 2011, in Wind Energy On November 10, 2010, in Wind Plant...

358

Foundations for offshore wind turbines  

Science Journals Connector (OSTI)

...T. Thompson Foundations for offshore wind turbines B. W. Byrne G. T...civil-engineering problems encountered for offshore wind turbines. A critical component...energy suppliers. Foundations|Offshore Wind Turbines|Renewable Energy...

2003-01-01T23:59:59.000Z

359

2011 Wind Technologies Market Report  

E-Print Network (OSTI)

the contribution of wind power to electricity consumption,GW per year needed for wind power to contribute 20% of thegrid; such wind turbines can also provide power to off-grid

Bolinger, Mark

2013-01-01T23:59:59.000Z

360

2012 Wind Technologies Market Report  

E-Print Network (OSTI)

the contribution of wind power to electricity consumption,16 GW/year needed for wind power to contribute 20% of thegrid; such wind turbines can also provide power to off-grid

Wiser, Ryan

2014-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "wind structures cxs" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


361

2009 Wind Technologies Market Report  

E-Print Network (OSTI)

the contribution of wind power to electricity consumption,per year pace needed for wind power to contribute 20% of thegrid; such wind turbines can also provide power to off-grid

Wiser, Ryan

2010-01-01T23:59:59.000Z

362

2008 WIND TECHNOLOGIES MARKET REPORT  

E-Print Network (OSTI)

First Wind and Noble Environmental Power – to pursue initialdistributed wind turbines can also provide power to off-power to others, sometimes taking some merchant risk 22 – in the wind

Bolinger, Mark

2010-01-01T23:59:59.000Z

363

2010 Wind Technologies Market Report  

E-Print Network (OSTI)

the contribution of wind power to electricity consumption,are intended to transmit wind power to load centers in theper year pace needed for wind power to contribute 20% of the

Wiser, Ryan

2012-01-01T23:59:59.000Z

364

Kivalina wind generator  

SciTech Connect

The project reported was to construct a system to harness the winds of an Arctic site to generate electricity that would power a greenhouse where fruit and vegetables could be raised for local consumption. The installation of the tower and an Enertech 4K wind generator are described. (LEW)

Aldrich, D.

1984-02-18T23:59:59.000Z

365

Carbon smackdown: wind warriors  

ScienceCinema (OSTI)

July 16. 2010 carbon smackdown summer lecture: learn how Berkeley Lab scientists are developing wind turbines to be used in an urban setting, as well as analyzing what it will take to increase the adoption of wind energy in the U.S.

Glen Dahlbacka of the Accelerator & Fusion Research Division and Ryan Wiser of the Environmental Energy Technologies Division are the speakers.

2010-09-01T23:59:59.000Z

366

Offshore Wind Geoff Sharples  

E-Print Network (OSTI)

Offshore Wind Geoff Sharples geoff@clearpathenergyllc.com #12;Frequently Unanswered Ques?ons · Why don't "they" build more offshore wind? · Why not make the blades bigger? · How big will turbines get? #12;Offshore Resource is Good #12

Kammen, Daniel M.

367

NREL: Wind Research - Facilities  

NLE Websites -- All DOE Office Websites (Extended Search)

Facilities Facilities Our facilities are designed to meet the wind industry's critical research needs with state-of-the-art design and testing facilities. NREL's unique and highly versatile facilities at the National Wind Technology Center offer research and analysis of wind turbine components and prototypes rated from 400 watts to 3 megawatts. Satellite facilities support the growth of wind energy development across the United States. National Wind Technology Center Facilities Our facilities are contained within a 305-acre area that comprises field test sites, test laboratories, industrial high-bay work areas, machine shops, electronics and instrumentation laboratories, and office areas. In addition, there are hundreds of test articles and supporting components such as turbines, meteorological towers, custom test apparatus, test sheds,

368

Wind Energy Update  

Wind Powering America (EERE)

by the Alliance for Sustainable Energy, LLC. by the Alliance for Sustainable Energy, LLC. Wind Energy Update Wind Powering America January 2012 NATIONAL RENEWABLE ENERGY LABORATORY Evolution of Commercial Wind Technology NATIONAL RENEWABLE ENERGY LABORATORY Small (≤100 kW) Homes Farms Remote Applications (e.g. water pumping, telecom sites, icemaking) Midscale (100-1000 kW) Village Power Hybrid Systems Distributed Power Large, Land-based (1-3 MW) Utility-scale wind farms Large Distributed Power Sizes and Applications Large, Offshore (3-7 MW) Utility-scale wind farms, shallow coastal waters No U.S. installations NATIONAL RENEWABLE ENERGY LABORATORY Capacity & Cost Trends As of January 2012 (AWEA) 0 5000 10000 15000 20000 25000 30000 35000 40000 45000 50000 $- $200 $400 $600 $800 $1,000 $1,200

369

Wind | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Wind Wind Wind EERE plays a key role in advancing America's "all of the above" energy strategy, leading a large network of researchers and other partners to deliver innovative technologies that will make renewable electricity generation cost-competitive with traditional sources of energy. EERE plays a key role in advancing America's "all of the above" energy strategy, leading a large network of researchers and other partners to deliver innovative technologies that will make renewable electricity generation cost-competitive with traditional sources of energy. Image of a wind turbine against a partly cloudy sky. The U.S. Department of Energy (DOE) leads national efforts to improve the performance, lower the costs, and accelerate the deployment of wind energy technologies-both on

370

Song of the Wind  

NLE Websites -- All DOE Office Websites (Extended Search)

Song of the Wind Song of the Wind Nature Bulletin No. 318-A October 26, 1968 Forest Preserve District of Cook County Richard B. Ogilvie, President Roland F. Eisenbeis, Supt. of Conservation SONG OF THE WIND The wind is simply air in motion. Air has substance like wood or water, it has pressure, it can acquire heat and hold a temperature, and it can travel from place to place.... The air which affects our lives is a layer seven or eight miles thick, called the troposphere, which is next to the earth. This air has pressure (14.7 pounds per square inch at sea level) and when various factors, one of which is temperature, cause changes in this pressure, the air starts moving. We cannot see it. We can hear it. The song of the wind is the most wonderful music on earth, and at times the most terrifying in its angry moments.

371

Stetson Wind Expansion Wind Farm | Open Energy Information  

Open Energy Info (EERE)

Stetson Wind Expansion Wind Farm Stetson Wind Expansion Wind Farm Jump to: navigation, search Name Stetson Wind Expansion Wind Farm Facility Stetson Wind Expansion Sector Wind energy Facility Type Commercial Scale Wind Facility Status In Service Owner First Wind Developer First Wind Location Washington County ME Coordinates 45.595833°, -67.928628° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":45.595833,"lon":-67.928628,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

372

NREL: Learning - Wind Energy Basics: How Wind Turbines Work  

NLE Websites -- All DOE Office Websites (Extended Search)

Wind Energy Basics: How Wind Turbines Work Wind Energy Basics: How Wind Turbines Work We have been harnessing the wind's energy for hundreds of years. From old Holland to farms in the United States, windmills have been used for pumping water or grinding grain. Today, the windmill's modern equivalent-a wind turbine-can use the wind's energy to generate electricity. Wind turbines, like windmills, are mounted on a tower to capture the most energy. At 100 feet (30 meters) or more aboveground, they can take advantage of the faster and less turbulent wind. Turbines catch the wind's energy with their propeller-like blades. Usually, two or three blades are mounted on a shaft to form a rotor. A blade acts much like an airplane wing. When the wind blows, a pocket of low-pressure air forms on the downwind side of the blade. The low-pressure

373

NREL: Wind Research - Grid Integration of Offshore Wind  

NLE Websites -- All DOE Office Websites (Extended Search)

Grid Integration of Offshore Wind Grid Integration of Offshore Wind Photograph of a wind turbine in the ocean. Located about 10 kilometers off the coast of Arklow, Ireland, the Arklow Bank offshore wind park consists of seven GE Wind 3.6-MW wind turbines. Much can be learned from the existing land-based integration research for handling the variability and uncertainty of the wind resource. Integration and Transmission One comprehensive grid integration study is the Eastern Wind Integration and Transmission Study (EWITS), in which offshore wind scenarios were analyzed. Nearly 80 GW of offshore wind was studied in the highest penetration scenario. Specific offshore grid distribution and transmission solutions were identified, including cost estimates. With the Atlantic coast likely to lead the way in offshore wind power deployment, EWITS is a benchmark for

374

2012 Wind Technologies Market Report  

E-Print Network (OSTI)

Colorado: Xcel Energy. 2012 Wind Technologies Market ReportDistributed Wind Market Report. PNNL- SA-94583. Washington,2013. 2012 State of the Market Report for PJM. Norristown,

Wiser, Ryan

2014-01-01T23:59:59.000Z

375

European Wind Energy Conference Exhibition  

NLE Websites -- All DOE Office Websites (Extended Search)

European Wind Energy Conference & Exhibition 2009 Parc Chanot, Marseille, France 16-19 March 2009 ACTIVE AERODYNAMIC BLADE CONTROL DESIGN FOR LOAD REDUCTION ON LARGE WIND TURBINES...

376

Solar Wind | Open Energy Information  

Open Energy Info (EERE)

Place: Krasnodar, Romania Zip: 350000 Sector: Solar, Wind energy Product: Russia-based PV product manufacturer. Solar Wind manufactures solar modules and cells. References: Solar...

377

Wind Wildlife Research Meeting X  

Energy.gov (U.S. Department of Energy (DOE))

The biennial Wind Wildlife Research Meeting provides an internationally recognized forum for researchers and wind-wildlife stakeholders to hear contributed papers, view research posters, and listen...

378

Wind Program | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

upcoming events, funding opportunities, and recent publications. Read more 2014 Offshore Wind Market and Economic Analysis Performed by Navigant 2014 Offshore Wind Market and...

379

Wind and Solar Curtailment: Preprint  

NLE Websites -- All DOE Office Websites (Extended Search)

Integration of Wind Power Into Power Systems as Well as on Transmission Networks for Offshore Wind Power Plants London, England October 22 - 24, 2013 Conference Paper NREL...

380

Wind Energy Resources and Technologies  

Energy.gov (U.S. Department of Energy (DOE))

This page provides a brief overview of wind energy resources and technologies supplemented by specific information to apply wind energy within the Federal sector.

Note: This page contains sample records for the topic "wind structures cxs" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


381

2010 Wind Technologies Market Report  

E-Print Network (OSTI)

Fish and Wildlife Service?s Draft Land- Based Wind Energywildlife impacts are addressed in the planning, siting, and permitting process for wind

Wiser, Ryan

2012-01-01T23:59:59.000Z

382

2010 Wind Technologies Market Report  

E-Print Network (OSTI)

wind turbine equipment-related costs are assumed to equal 85% of 2010 Wind Technologies Market Report periods to further avoid “noise”

Wiser, Ryan

2012-01-01T23:59:59.000Z

383

Summit Wind Farm, Summit, SD  

NLE Websites -- All DOE Office Websites (Extended Search)

a draft environmental assessment (EA) on the proposed interconnection of the Summit Wind Farm (Project) in Roberts County, near the city of Summit, South Dakota. SummitWind,...

384

Wind Career Map: Resource List  

Energy.gov (U.S. Department of Energy (DOE))

The following resources were used in the development of the Wind Career Map, associated job profile information, or are potential resources for interested Wind Career Map viewers.

385

2009 Wind Technologies Market Report  

E-Print Network (OSTI)

selected wind turbine components that include towers (tradeWind turbine transactions differ in the services offered (e.g. , whether towers

Wiser, Ryan

2010-01-01T23:59:59.000Z

386

2008 WIND TECHNOLOGIES MARKET REPORT  

E-Print Network (OSTI)

wind turbine manufacturers: Vestas (nacelles, blades, and towersWind turbine transactions differ in the services offered (e.g. , whether towers

Bolinger, Mark

2010-01-01T23:59:59.000Z

387

Wind is Energy (17 activities)  

K-12 Energy Lesson Plans and Activities Web site (EERE)

A nonfiction test to be read with primary student with basic information about wind as an energy source and hands-on, wind-related activities including

388

WINDExchange: Wind for Schools Project  

Wind Powering America (EERE)

Resources Wind for Schools Project As the United States dramatically expands wind energy deployment, the industry is challenged with developing a highly-educated workforce...

389

Robust Multi-loop Airborne SLAM in Unknown Wind Environments  

E-Print Network (OSTI)

Robust Multi-loop Airborne SLAM in Unknown Wind Environments Jonghyuk Kim Department of Engineering for Autonomous Systems University of Sydney, Australia Email: salah@acfr.usyd.edu.au Abstract-- This paper presents a robust multi-loop airborne SLAM structure which also augments wind information. The air velocity

Kim, Jonghyuk "Jon"

390

The Response of Wind-Wave Spectra to Changing Winds. Part I: Increasing Winds  

Science Journals Connector (OSTI)

Continuous time series of wind profiles and wind waves under growing conditions, recorded at Shirahama Oceanographic Tower Station and discussed by Kawai, Okada and Toba, have been reanalysed for this study of the response of one-dimensional wind-...

Yoshiaki Toba; Kozo Okada; Ian S. F. Jones

1988-09-01T23:59:59.000Z

391

Standards for Municipal Small Wind Regulations and Small Wind Model Wind  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Standards for Municipal Small Wind Regulations and Small Wind Model Standards for Municipal Small Wind Regulations and Small Wind Model Wind Ordinance Standards for Municipal Small Wind Regulations and Small Wind Model Wind Ordinance < Back Eligibility Agricultural Commercial Fed. Government Industrial Institutional Local Government Nonprofit Residential Schools State Government Tribal Government Utility Savings Category Wind Buying & Making Electricity Program Info State New Hampshire Program Type Solar/Wind Permitting Standards In July 2008, New Hampshire enacted legislation designed to prevent municipalities from adopting ordinances or regulations that place unreasonable limits or hinder the performance of wind energy systems up to 100 kilowatts (kW) in capacity. Such wind turbines must be used primarily to produce energy for on-site consumption. The law identifies a several

392

Community Wind: Once Again Pushing the Envelope of Project Finance  

SciTech Connect

In the United States, the 'community wind' sector - loosely defined here as consisting of relatively small utility-scale wind power projects that sell power on the wholesale market and that are developed and owned primarily by local investors - has historically served as a 'test bed' or 'proving grounds' for up-and-coming wind turbine manufacturers that are trying to break into the U.S. wind power market. For example, community wind projects - and primarily those located in the state of Minnesota - have deployed the first U.S. installations of wind turbines from Suzlon (in 2003), DeWind (2008), Americas Wind Energy (2008) and later Emergya Wind Technologies (2010), Goldwind (2009), AAER/Pioneer (2009), Nordic Windpower (2010), Unison (2010), and Alstom (2011). Thus far, one of these turbine manufacturers - Suzlon - has subsequently achieved some success in the broader U.S. wind market as well. Just as it has provided a proving grounds for new turbines, so too has the community wind sector served as a laboratory for experimentation with innovative new financing structures. For example, a variation of one of the most common financing arrangements in the U.S. wind market today - the special allocation partnership flip structure (see Figure 1 in Section 2.1) - was first developed by community wind projects in Minnesota more than a decade ago (and is therefore sometimes referred to as the 'Minnesota flip' model) before being adopted by the broader wind market. More recently, a handful of community wind projects built over the past year have been financed via new and creative structures that push the envelope of wind project finance in the U.S. - in many cases, moving beyond the now-standard partnership flip structures involving strategic tax equity investors. These include: (1) a 4.5 MW project in Maine that combines low-cost government debt with local tax equity, (2) a 25.3 MW project in Minnesota using a sale/leaseback structure, (3) a 10.5 MW project in South Dakota financed by an intrastate offering of both debt and equity, (4) a 6 MW project in Washington state that taps into New Markets Tax Credits using an 'inverted' or 'pass-through' lease structure, and (5) a 9 MW project in Oregon that combines a variety of state and federal incentives and loans with unconventional equity from high-net-worth individuals. In most cases, these are first-of-their-kind structures that could serve as useful examples for other projects - both community and commercial wind alike. This report describes each of these innovative new financing structures in some detail, using a case-study approach. The purpose is twofold: (1) to disseminate useful information on these new financial structures, most of which are widely replicable; and (2) to highlight the recent policy changes - many of them temporary unless extended - that have facilitated this innovation. Although the community wind market is currently only a small sub-sector of the U.S. wind market - as defined here, less than 2% of the overall market at the end of 2009 (Wiser and Bolinger 2010) - its small size belies its relevance to the broader market. As such, the information provided in this report has relevance beyond its direct application to the community wind sector. The next two sections of this report briefly summarize how most community wind projects in the U.S. have been financed historically (i.e., prior to this latest wave of innovation) and describe the recent federal policy changes that have enabled a new wave of financial innovation to occur, respectively. Section 4 contains brief case studies of how each of the five projects mentioned above were financed, noting the financial significance of each. Finally, Section 5 concludes by distilling a number of general observations or pertinent lessons learned from the experiences of these five projects.

bolinger, Mark A.

2011-01-18T23:59:59.000Z

393

Investigation of wind characteristics and wind energy potential at Ras Ghareb, Egypt  

Science Journals Connector (OSTI)

To study the structure of a coastal location «Ras Ghareb» on the Red Sea in Egypt, a measurement station with mast of 24.5 m has been established in a built-up area, near the seashore. First, a statistical analysis of the measured data over the period 2000–2005 was performed, including calculation of the wind speed power law index which was found to be 0.18 for Ras Ghareb area. Then, wind speed data was expressed at the height of (usually 10 m) which makes it directly related to the objective of those people working in the renewable energy sector. Therefore, the mean wind speeds, availability of data, seasonal variation and the distribution by the wind direction were studied to ascertain its potential for wind energy development. The annual wind speed over this site varies from 8.3 to 9.8 m/s at 10 and 24.5 m heights, respectively. Most of the time 73% the mean wind speed in the ranges 5–10 and 10–17 m/s at 10 m. Also, higher winds of the order 10 m/s and more observed during summer months. The main wind direction is north–northwest sector (330°) for about 51% of the times during the year that makes it unique for installation of wind parks. Second, numerical estimations to determine the seasonal power law coefficient and Weibull parameters at different heights from 10 to 100 m were carried out. Finally, Rayleigh distribution and our method stated in Ref. [3] were adopted for defining the monthly wind power available at 10 m height for this region. It is emphasized that Rayleigh model is not appropriate and our method is more efficient for Ras Ghareb area. Where the expected mean of wind power density was found to quite high 360 W/m2 per year at 10 m hub height, which makes this station likely candidates for wind power utilization. It is appear from our analysis that Ras Ghareb region can be explored for generating the electricity. Where the monthly and annual pattern of wind speed matches the electricity load pattern of the location.

Ahmed Shata Ahmed

2011-01-01T23:59:59.000Z

394

Wind speed vertical distribution at Mt. Graham  

E-Print Network (OSTI)

The characterization of the wind speed vertical distribution V(h) is fundamental for an astronomical site for many different reasons: (1) the wind speed shear contributes to trigger optical turbulence in the whole troposphere, (2) a few of the astroclimatic parameters such as the wavefront coherence time (tau_0) depends directly on V(h), (3) the equivalent velocity V_0, controlling the frequency at which the adaptive optics systems have to run to work properly, depends on the vertical distribution of the wind speed and optical turbulence. Also, a too strong wind speed near the ground can introduce vibrations in the telescope structures. The wind speed at a precise pressure (200 hPa) has frequently been used to retrieve indications concerning the tau_0 and the frequency limits imposed to all instrumentation based on adaptive optics systems, but more recently it has been proved that V_200 (wind speed at 200 hPa) alone is not sufficient to provide exhaustive elements concerning this topic and that the vertical d...

Hagelin, S; Lascaux, F

2010-01-01T23:59:59.000Z

395

New England Wind Forum: Markets  

Wind Powering America (EERE)

Markets Markets Selling Wind Power Wind generators interconnected directly to the transmission or distribution grid, or sized in excess of the load of a host end-user, interact with either well-developed or developing markets for the products produced by wind generators: electricity and generation attributes. Buying Wind Power Individuals, companies, institutions, and governments throughout New England have a number of opportunities to buying wind power or support the development of wind power. The links below take you to information on opportunities and guidance for buying wind power in New England. Motivations for Buying Wind Power Buying Wind Power Resources and Tools for Large Energy Users Printable Version Skip footer navigation to end of page. New England Wind Forum Home | Wind Program Home | EERE Home | U.S. Department of Energy

396

Wind News | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Wind News Wind News Wind News RSS February 7, 2011 Salazar, Chu Announce Major Offshore Wind Initiatives Strategic plan, $50 million in R&D funding, identified Wind Energy Areas will speed offshore wind energy development December 16, 2010 Department of Energy Finalizes Loan Guarantee to Support World's Largest Wind Project 845-Megawatt Wind Facility Will Create Hundreds of Jobs and Avoid Over 1.2 Million Tons of Carbon Dioxide Annually October 29, 2010 Statement by Energy Secretary Steven Chu on Today's Grand Opening of the Nordex Manufacturing Facility in Jonesboro, Arkansas Recovery Act investment creates jobs, helps lay the foundation for a clean energy economy September 13, 2010 DOE Announces More than $5 Million to Support Wind Energy Development Funds to Enhance Short-Term Wind Forecasting and Accelerate Midsize Wind

397

Midsize Wind Turbines for the U.S. Community Wind Market | Department...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Midsize Wind Turbines for the U.S. Community Wind Market Midsize Wind Turbines for the U.S. Community Wind Market Midsize Wind Turbines for the U.S. Community Wind Market More...

398

NREL: Wind Research - Computer-Aided Engineering Tools  

NLE Websites -- All DOE Office Websites (Extended Search)

Computer-Aided Engineering Tools Computer-Aided Engineering Tools Illustration of an offshore wind turbine on a barge with an illustration of how the moorings would work. A simulation of a 5-MW wind turbine on an offshore semi-submersible with catenary moorings. The National Wind Technology Center (NWTC) at NREL develops advanced computer-aided engineering (CAE) tools to support the wind and water power industries with state-of-the-art design and analysis capabilities. We have developed many software tools that produce realistic models that simulate the behavior of wind and water power technologies in complex environments-storm winds, waves offshore, earthquake loading, and extreme turbulence-and model the effects of turbulent inflow, unsteady aerodynamic forces, structural dynamics, drivetrain response, control

399

Property:Incentive/WindResPercMax | Open Energy Information  

Open Energy Info (EERE)

WindResPercMax WindResPercMax Jump to: navigation, search Property Name Incentive/WindResPercMax Property Type String Description The maximum % of the installed cost of a residential wind system that the rebate may offset. Use this for (1.) rebates calculated in terms of % of capital cost as well as (2.) rebates structured in terms of $/kW or $/kWh that also have a maximum % of costs that can be offset by the rebate. Ex: (1.) DE's rebate is 50% of the project cost; (2.) WI's residential wind incentive is based on annual expected performance, up to 25% of installed cost. Format: 25% [1] References ↑ DSIRE Pages using the property "Incentive/WindResPercMax" Showing 25 pages using this property. (previous 25) (next 25) A AEP Ohio - Renewable Energy Technology Program (Ohio) + 50% +

400

Assessment of research needs for wind turbine rotor materials technology  

SciTech Connect

Wind-driven power systems is a renewable energy technology that is still in the early stages of development. Wind power plants installed in early 1980s suffered structural failures chiefly because of incomplete understanding of wind forces (turbulent), in some cases because of poor product quality. Failures of rotor blades are now somewhat better understood. This committee has examined the experience base accumulated by wind turbines and the R and D programs sponsored by DOE. It is concluded that a wind energy system such as is described is within the capability of engineering practice; however because of certain gaps in knowledge, and the presence of only one major integrated manufacturer of wind power machines in the USA, a DOE R and D investment is still required.

Not Available

1991-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "wind structures cxs" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


401

Risk of collision between service vessels and offshore wind turbines  

Science Journals Connector (OSTI)

Offshore wind farms are growing in size and are situated farther and farther away from shore. The demand for service visits to transfer personnel and equipment to the wind turbines is increasing, and safe operation of the vessels is essential. Currently, collisions between service vessels and offshore wind turbines are paid little attention to in the offshore wind energy industry. This paper proposes a risk assessment framework for such collisions and investigates the magnitude of the collision risk and important risk-influencing factors. The paper concludes that collisions between turbines and service vessels even at low speed may cause structural damage to the turbines. There is a need for improved consideration of this kind of collision risk when designing offshore wind turbines and wind farms.

Lijuan Dai; Sören Ehlers; Marvin Rausand; Ingrid Bouwer Utne

2013-01-01T23:59:59.000Z

402

Utilizing Wind: Optimal Wind Farm Placement in the United States  

E-Print Network (OSTI)

Utilizing Wind: Optimal Wind Farm Placement in the United States By: Yintao Sun Advisor: Professor Acknowledgements First and foremost, I would like to thank my advisor, Professor Warren Powell, for all the help he An Introduction to Wind Energy 1 1.1 Wind, a Brief History . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

Powell, Warren B.

403

Wind Energy at NREL's National Wind Technology Center  

ScienceCinema (OSTI)

It is a pure, plentiful natural resource. Right now wind is in high demand and it holds the potential to transform the way we power our homes and businesses. NREL is at the forefront of wind energy research and development. NREL's National Wind Technology Center (NWTC) is a world-class facility dedicated to accelerating and deploying wind technology.

None

2013-05-29T23:59:59.000Z

404

Estimation of Wind Speed in Connection to a Wind Turbine  

E-Print Network (OSTI)

horizontal axis wind power plant with rated power 750 KW. The plant has a three bladed rotor and an automatic is shown in Figure 1 demand Drive train Generator Rotor Wind speed Power demand Grid Power Controller PitchEstimation of Wind Speed in Connection to a Wind Turbine X. Ma #3; , N. K. Poulsen #3; , H. Bindner

405

WIND ENERGY Wind Energ. 2013; 00:112  

E-Print Network (OSTI)

WIND ENERGY Wind Energ. 2013; 00:1­12 DOI: 10.1002/we RESEARCH ARTICLE Model predictive control in wind speed, ensuring certain power gradients, with an insignificant loss in energy production rejection, model predictive control, convex optimization, wind power control, energy storage, power output

406

Saturation wind power potential and its implications for wind energy  

Science Journals Connector (OSTI)

...and natural gas produce electricity...As such, wind turbines reduce direct...power, part I: Technologies, energy resources...arrays of wind turbines . J Wind Eng Ind...Yamada T (1982) Development of a turbulence...biofuel soot and gases, and methane...a single wind turbine intersects...

Mark Z. Jacobson; Cristina L. Archer

2012-01-01T23:59:59.000Z

407

Stakeholder Engagement and Outreach: Learn About Wind  

Wind Powering America (EERE)

About Wind Power Locating Wind Power Getting Wind Power Installed Wind Capacity Wind for Schools Project Collegiate Wind Competition School Project Locations Education & Training Programs Curricula & Teaching Materials Resources Learn About Wind Learn about how wind energy generates power; where the best wind resources are; how you can own, host, partner with, and support wind power; and how and where wind energy has increased over the past decade. What Is Wind Power? Learn about how wind energy generates power, about wind turbine sizes and how wind turbines work, and how wind energy can be used. Also read examples of financial and business decisions. Where Is Wind Power? Go to maps to see the wind resource for utility-, community-, and residential-scale wind development. Or, see how much energy wind projects

408

Wind Energy Resource Basics | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Renewable Energy Wind Wind Energy Resource Basics Wind Energy Resource Basics July 30, 2013 - 3:11pm Addthis Wind energy can be produced anywhere in the world where the wind...

409

Stakeholder Engagement and Outreach: Offshore 90-Meter Wind Maps and Wind  

Wind Powering America (EERE)

Offshore 90-Meter Wind Maps and Wind Resource Potential Offshore 90-Meter Wind Maps and Wind Resource Potential The Stakeholder Engagement and Outreach initiative provides 90-meter (m) height, high-resolution wind maps and estimates of the total offshore wind potential that would be possible from developing the available offshore areas. The offshore wind resource maps can be used as a guide to identify regions for commercial wind development. A map of the United States showing offshore wind resource. Washington offshore wind map. Oregon offshore wind map. California offshore wind map. Texas offshore wind map. Minnesota offshore wind map. Lousiana offshore wind map. Wisconsin offshore wind map. Michigan offshore wind map. Michigan offshore wind map. Illinois offshore wind map. Indiana offshore wind map. Ohio offshore wind map. Georgia offshore wind map. South Carolina offshore wind map. North Carolina offshore wind map. Virginia offshore wind map. Maryland offshore wind map. Pennsylvania offshore wind map. Delaware offshore wind map. New Jersey offshore wind map. New York offshore wind map. Maine offshore wind map. Massachusetts offshore wind map. Rhode Island offshore wind map. Connecticut offshore wind map. Hawaii offshore wind map. Delaware offshore wind map. New Hampshire offshore wind map.

410

NREL Wind Organization Chart  

NLE Websites -- All DOE Office Websites (Extended Search)

/16/13 /16/13 National Wind Technology Center Fort Felker, Center Director Wind Technology Research & Development Fort Felker, Group Manager (Acting) Wind Innovation & Reliability Jason Cotrell, Supervisor - Palmer Carlin - Lee Fingersh - Paul Fleming - Jim Johnson - Bonnie Jonkman - Jon Keller - Andrew Scholbrock - Shawn Sheng - Alan Wright Joint Appointees: - Katie Johnson (CSM) Students - Brendan Geels Post Docs - Yi Guo - Jason Laks Contractors: - Brian McNiff - Lucy Pao (CU) Aero & Systems Dynamics Pat Moriarty, Supervisor - Marshall Buhl - Matt Churchfield - Andrew Clifton - Rick Damiani - Caroline Draxl - Dennis Elliott - Steve Haymes - Jason Jonkman - Khanh Nguyen - Andrew Platt - Scott Schreck - George Scott - Diwanshu Shekhar

411

Cape Wind Project  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

G G Biological Assessment U.S. Department of the Interior Minerals Management Service MMS Cape Wind Energy Project January 2009 Final EIS Appendix G Biological Assessment Cape Wind Energy Project Nantucket Sound Biological Assessment Minerals Management Service for Consultation with the United States Fish and Wildlife Service and NOAA Fisheries May 2008 Appendix G Biological Assessment Cape Wind Energy Project i May 2008 U.S. Department of the Interior Minerals Management Service MMS TABLE OF CONTENTS 1.0 BACKGROUND ............................................................................................................ 1-1 1.1 Project History .............................................................................................................

412

Residential Wind Power  

E-Print Network (OSTI)

” Figure 3. “Wind Generators in Iowa – 2” Figure 4. “State Wind Power Capacity 2007” Figure 5. Annual average wind resource estimates in the contiguous United States (http://rredc.nrel.gov) Figure 6. “SkyStream Design Overview” Figure 7... crisis that raises crude oil prices hampering the price at the pump or commodity production and transportation. Many people do not even take the time to think about the impact to daily life that power and changes within the market play on their lives...

Willis, Gary

2011-12-16T23:59:59.000Z

413

2.3-MW Medium-Voltage, Three-Level Wind Energy Inverter Applying a Unique Bus Structure and 4.5-kV Si/SiC Hybrid Isolated Power Modules: Preprint  

SciTech Connect

A high-efficiency, 2.3-MW, medium-voltage, three-level inverter utilizing 4.5-kV Si/SiC (silicon carbide) hybrid modules for wind energy applications is discussed. The inverter addresses recent trends in siting the inverter within the base of multimegawatt turbine towers. A simplified split, three-layer laminated bus structure that maintains low parasitic inductances is introduced along with a low-voltage, high-current test method for determining these inductances. Feed-thru bushings, edge fill methods, and other design features of the laminated bus structure provide voltage isolation that is consistent with the 10.4-kV module isolation levels. Inverter efficiency improvement is a result of the (essential) elimination of the reverse recovery charge present in 4.5-kV Si PIN diodes, which can produce a significant reduction in diode turn-off losses as well as insulated-gate bipolar transistor (IGBT) turn-on losses. The hybrid modules are supplied in industry-standard 140 mm x 130 mm and 190 mm x 130 mm packages to demonstrate direct module substitution into existing inverter designs. A focus on laminated bus/capacitor-bank/module subassembly level switching performance is presented.

Erdman, W.; Keller, J.; Grider, D.; VanBrunt, E.

2014-11-01T23:59:59.000Z

414

Lidar-based Research and Innovation at DTU Wind Energy – a Review  

Science Journals Connector (OSTI)

As wind turbines during the past decade have increased in size so have the challenges met by the atmospheric boundary-layer meteorologists and the wind energy society to measure and characterize the huge-volume wind fields surpassing and driving them. At the DTU Wind Energy test site "Østerild" for huge wind turbines, the hub-height of a recently installed 8 MW Vestas V164 turbine soars 143 meters up above the ground, and its rotor of amazing 164 meters in diameter make the turbine tips flicker 225 meters into the sky. Following the revolution in photonics-based telecommunication at the turn of the Millennium new fibre-based wind lidar technologies emerged and DTU Wind Energy, at that time embedded within Rise National Laboratory, began in collaboration with researchers from wind lidar companies to measure remote sensed wind profiles and turbulence structures within the atmospheric boundary layer with the emerging, at that time new, all-fibre-based 1.55 ? coherent detection wind lidars. Today, ten years later, DTU Wind Energy routinely deploys ground-based vertical profilers instead of met masts for high-precision measurements of mean wind profiles and turbulence profiles. At the departments test site "Høvsøre" DTU Wind Energy also routinely calibrate and accredit wind lidar manufactures wind lidars. Meanwhile however, new methodologies for power curve assessment based on ground-based and nacelle based lidars have also emerged. For improving the turbines power curve assessments and for advancing their control with feed-forward wind measurements experience has also been gained with wind lidars installed on turbine nacelles and integrated into the turbines rotating spinners. A new mobile research infrastructure WindScanner.dk has also emerged at DTU Wind Energy. Wind and turbulence fields are today scanned from sets of three simultaneously in space and time synchronized scanning lidars. One set consists of three fast scanning continuous-wave based wind lidars (short-range system), and another consisting of three synchronized pulsed wind lidar systems (long-range system). Today, wind lidar profilers and WindScanners are routinely deployed and operated during field tests and measurement campaigns. Lidars have been installed and operated from ground, on offshore platforms, and also as scanning lidars integrated in operating turbines. As a result, wind profiles and also detailed 3D scanning of wind and turbulence fields have been achieved: 1) of the free wind aloft, 2) over complex terrain, 3) at coastal ranges with land-sea interfaces, 4) offshore, 5) in turbine inflow induction zone, and 6) of the complex and turbulent flow fields in the wakes inside wind parks.

T Mikkelsen

2014-01-01T23:59:59.000Z

415

Michigan Wind I Wind Farm | Open Energy Information  

Open Energy Info (EERE)

Wind I Wind Farm Wind I Wind Farm Jump to: navigation, search Name Michigan Wind I Wind Farm Facility Michigan Wind I Sector Wind energy Facility Type Commercial Scale Wind Facility Status In Service Owner John Deere Wind Developer Noble Environmental Power Energy Purchaser Consumers Energy Location Huron County MI Coordinates 43.7099°, -82.9388° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":43.7099,"lon":-82.9388,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

416

Cisco Wind Energy Wind Farm | Open Energy Information  

Open Energy Info (EERE)

Cisco Wind Energy Wind Farm Cisco Wind Energy Wind Farm Jump to: navigation, search Name Cisco Wind Energy Wind Farm Facility Cisco Wind Energy Sector Wind energy Facility Type Commercial Scale Wind Facility Status In Service Owner John Deere Wind Energy Developer Community Energy Purchaser Northern States Power Location Brewster MN Coordinates 43.696164°, -95.467078° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":43.696164,"lon":-95.467078,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

417

New England Wind Forum: Interviews with Wind Industry Stakeholders and  

Wind Powering America (EERE)

Small Wind Small Wind Large Wind Newsletter Perspectives Events Quick Links to States CT MA ME NH RI VT Bookmark and Share Interviews With Wind Industry Stakeholders and Pioneers in New England The New England Wind Forum will interview different stakeholders actively shaping the wind power landscape in New England and wind pioneers to examine how they have laid the groundwork for today's New England wind energy market. Stephan Wollenburg, Green Energy Program Director of Energy Consumers Alliance of New England January 2013 A Panel of Seven Offer Insight into the Evolving Drivers and Challenges Facing Wind Development in New England June 2011 John Norden, Manager of Renewable Resource Integration, Independent System Operator-New England September 2010 Angus King, Former Governor of Maine and Co-Founder of Independence Wind

418

New England Wind Forum: New England Wind Forum Newsletter  

Wind Powering America (EERE)

Projects in New England Building Wind Energy in New England Wind Resource Wind Power Technology Economics Markets Siting Policy Technical Challenges Issues Small Wind Large Wind Newsletter Perspectives Events Quick Links to States CT MA ME NH RI VT Bookmark and Share New England Wind Forum Newsletter Follow news from the New England Wind Forum by subscribing to its newsletter. Newsletter The New England Wind Forum Newsletter informs stakeholders of New England Wind Energy Education Project announcements, plus, events, project, siting, and policy updates. Enter your email address below to begin the registration process. After you subscribe to the New England Wind Forum Newsletter, you can choose to subscribe to other energy efficiency and renewable energy news. Archived copies of this e-newsletter are not available, but all of the news items can be found on this website under news, events, and publications. If you have ideas or news items to contribute for future issues, please contact Sustainable Energy Advantage.

419

New England Wind Forum: Building Wind Energy in New England  

Wind Powering America (EERE)

Projects in New England Building Wind Energy in New England Wind Resource Wind Power Technology Economics Markets Siting Policy Technical Challenges Issues Small Wind Large Wind Newsletter Perspectives Events Quick Links to States CT MA ME NH RI VT Bookmark and Share Building Wind Energy in New England Many factors influence the ability to develop wind power in the New England region. A viable project requires the right site and the right technology for the application. It must provide suitable revenue or economic value to justify investment in this capital-intensive but zero-fuel technology. Policy initiatives are in place throughout the region to support the expansion of wind power's role in the regional supply mix. However, issues affecting public acceptance of wind projects in host communities must be addressed. Information on topics affecting wind power development in New England can be found by using the navigation to the left.

420

NREL: Wind Research - Gaia-Wind's 11 Kilowatt Wind Turbine Testing and  

NLE Websites -- All DOE Office Websites (Extended Search)

Gaia-Wind's 11 Kilowatt Wind Turbine Testing and Results Gaia-Wind's 11 Kilowatt Wind Turbine Testing and Results A video of Gaia-Wind's 11-kW wind turbine. Text Version As part of the National Renewable Energy Laboratory and U.S. Department of Energy (NREL/DOE) Independent Testing project, NREL tested Gaia-Wind's 11-kilowatt (kW) small wind turbine at the National Wind Technology Center (NWTC). Gaia-Wind's turbine is a three-phase induction generator that operates at 480 volts. The turbine's downwind rotor has a 13-meter diameter, and its tower is 18 meters tall. The two-bladed, oversized rotor is designed for low to moderate wind speeds. Testing Summary The summary of the tests is below with the final reports. Cumulative Energy Production 6/11/2008: 210; 6/13/2008: 528; 6/16/2008: 716; 6/18/2008: 731; 6/19/2008:

Note: This page contains sample records for the topic "wind structures cxs" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


421

Conditional Simulation of a Gust-Front Wind Field Lijuan Wanga  

E-Print Network (OSTI)

Conditional Simulation of a Gust-Front Wind Field Lijuan Wanga , Ahsan Kareema a NatHaz Modeling the conditional simulation of gust-front wind velocities are presented to generate time series at locations effects on structures, the simulation of wind velocity conditional upon the availability of measured

Kareem, Ahsan

422

American Institute of Aeronautics and Astronautics A Framework for the Reliability Analysis of Wind Turbines  

E-Print Network (OSTI)

of Wind Turbines against Windstorms and Non-Standard Inflow Definitions Lance Manuel1 Dept. of Civil typical wind turbine systems are yet to be characterized in ways that drive aeroelastic loads and design., but the coherence structure and turbulence kinetics at the spatial scale of wind turbine rotors are not as well

Manuel, Lance

423

Analyzing the temporal variation of wind turbine responses using Gaussian Mixture Model and Gaussian Discriminant Analysis  

E-Print Network (OSTI)

1 Analyzing the temporal variation of wind turbine responses using Gaussian Mixture Model characteristics have a significant impact on the structural response and the lifespan of wind turbines. This paper presents a machine learning approach towards analyzing and predicting the response of a wind turbine

Stanford University

424

OPERATIONAL MODAL ANALYSIS AND WAVELET TRANSFORMATION FOR DAMAGE IDENTIFICATION IN WIND TURBINE BLADES  

E-Print Network (OSTI)

OPERATIONAL MODAL ANALYSIS AND WAVELET TRANSFORMATION FOR DAMAGE IDENTIFICATION IN WIND TURBINE-frequency modes. KEYWORDS : Wind Turbine Blades, Debonding, Wavelet Transformation, Operational Modal Analysis. INTRODUCTION While failure can happen in any structural component of the wind turbine, one of the most common

Paris-Sud XI, Université de

425

Incorporating Irregular Nonlinear Waves in Coupled Simulation of Offshore Wind Turbines  

E-Print Network (OSTI)

Incorporating Irregular Nonlinear Waves in Coupled Simulation of Offshore Wind Turbines Puneet, and Environmental Engineering The University of Texas, Austin, TX 78712 Design of an offshore wind turbine requires on the support structure (monopile) of an offshore wind turbine. We present the theory for the irregular

Manuel, Lance

426

IEEE TRANSACTIONS ON CONTROL SYSTEMS TECHNOLOGY 1 Airborne Wind Energy Based on Dual Airfoils  

E-Print Network (OSTI)

airfoil systems, but they are less advantageous at very large scales. Index Terms--Airborne wind energy Wind Energy (AWE) paradigm proposes to eliminate the structural elements not directly involved in power Wind Energy [17]. Crosswind flight extracts power from the airflow by flying an airfoil tethered

427

CONTINUOUS FATIGUE ASSESSMENT OF AN OFFSHORE WIND TURBINE USING A LIMITED NUMBER OF VIBRATION SENSORS  

E-Print Network (OSTI)

CONTINUOUS FATIGUE ASSESSMENT OF AN OFFSHORE WIND TURBINE USING A LIMITED NUMBER OF VIBRATION, Modal decomposition and expansion, Finite Element Model INTRODUCTION Offshore wind turbines are exposed locations along the structure. This is not the case though in monopile offshore wind turbines, where fatigue

Boyer, Edmond

428

Floating Offshore Wind Turbine Dynamics: Large-Angle Motions in Euler-Space  

E-Print Network (OSTI)

Floating Offshore Wind Turbine Dynamics: Large-Angle Motions in Euler-Space Bert Sweetman Texas A offshore wind turbines beyond sight of land, where waters tend to be deeper, and use of floating structures wind turbines in deep water, where environmental forcing could subject the rotor to meaningful angular

Sweetman, Bert

429

Nanogenerator as an active sensor for vortex capture and ambient wind-velocity detection  

E-Print Network (OSTI)

and mechanical (wind, water flow, vibration, friction and body movement) energies are common in the ambientNanogenerator as an active sensor for vortex capture and ambient wind-velocity detection Rui Zhang principle, ambient wind-speed measurements with the NG are demonstrated. Due to the simple structure, high

Wang, Zhong L.

430

An Examination of Tropical and Extratropical Gust Factors and the Associated Wind Speed Histograms  

Science Journals Connector (OSTI)

A gust factor, defined as the ratio between a peak wind gust and mean wind speed over a period of time, can be used along with other statistics to examine the structure of the wind. Gust factors are heavily dependent on upstream terrain ...

B. M. Paulsen; J. L. Schroeder

2005-02-01T23:59:59.000Z

431

Evidence that solar wind fluctuations substantially affect global convection and substorm occurrence  

E-Print Network (OSTI)

-scale transfer of solar wind energy to the magnetosphere-ionosphere system, to plasma sheet structure wind energy to the magnetosphere-ionosphere system, and we speculated that resonance between the solar that this implies that solar wind ULF power may be an important contributor to the strength of coupling of solar

Lyons, Larry

432

20% Wind Energy by 2030 - Chapter 6: Wind Power Markets Summary...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

6: Wind Power Markets Summary Slides 20% Wind Energy by 2030 - Chapter 6: Wind Power Markets Summary Slides Summary slides overviewing wind power markets, growth, applications, and...

433

Community Wind Benefits (Fact Sheet)  

SciTech Connect

This fact sheet explores the benefits of community wind projects, including citations to published research.

Not Available

2012-11-01T23:59:59.000Z

434

October 11, 2011 Wind Generation  

E-Print Network (OSTI)

years. #12;Reading on ESRP 285 Website #12;The Competition: Gas-Fired Generation from a Combined CycleESRP 285 October 11, 2011 Wind Generation · Videos · Power Point Lecture #12;Wind Videos Wind (CC) Power Plant #12;Wind Investors Face These Costs #12;Fixed Costs #12;Variable Costs #12;Bottom

Ford, Andrew

435

Wind Energy and Spatial Technology  

E-Print Network (OSTI)

2/3/2011 1 Wind Energy and Spatial Technology Lori Pelech Why Wind Energy? A clean, renewable 2,600 tons of carbon emissions annually ­ The economy · Approximately 85,000 wind energy workers (existing transmission lines)? #12;2/3/2011 3 US Energy Transmission Grid US Wind Map #12;2/3/2011 4

Schweik, Charles M.

436

The Solar Wind Energy Flux  

Science Journals Connector (OSTI)

The solar-wind energy flux measured near the Ecliptic is known...Helios, Ulysses, and Wind...covering a large range of latitudes and time, we show that the solar-wind energy flux is independent of the solar-wind....

G. Le Chat; K. Issautier; N. Meyer-Vernet

2012-07-01T23:59:59.000Z

437

Theory of Winds from Hot, Luminous Massive Stars  

E-Print Network (OSTI)

The high luminosities of massive stars drive strong stellar winds, through line scattering of the star's continuum radiation. This paper reviews the dynamics of such line driving, building first upon the standard CAK model for steady winds, and deriving the associated analytic scalings for the mass loss rate and wind velocity law. It next summarizes the origin and nature of the strong Line Deshadowing Instability (LDI) intrinsic to such line-driving, including also the role of a diffuse-line-drag effect that stabilizes the wind base, and then describes how both instability and drag are incorporated in the Smooth Source Function (SSF) method for time-dependent simulations of the nonlinear evolution of the resulting wind structure. The review concludes with a discussion of the effect of the resulting extensive structure in temperature, density and velocity for interpreting observational diagnostics. In addition to the usual clumping effect on density-squared diagnostics, the spatial porosity of optically thick ...

Owocki, Stanley

2014-01-01T23:59:59.000Z

438

OBSERVATION OF FLUX-TUBE CROSSINGS IN THE SOLAR WIND  

SciTech Connect

Current sheets are ubiquitous in the solar wind. They are a major source of the solar wind MHD turbulence intermittency. They may result from nonlinear interactions of the solar wind MHD turbulence or are the boundaries of flux tubes that originate from the solar surface. Some current sheets appear in pairs and are the boundaries of transient structures such as magnetic holes and reconnection exhausts or the edges of pulsed Alfven waves. For an individual current sheet, discerning whether it is a flux-tube boundary or due to nonlinear interactions or the boundary of a transient structure is difficult. In this work, using data from the Wind spacecraft, we identify two three-current-sheet events. Detailed examination of these two events suggests that they are best explained by the flux-tube-crossing scenario. Our study provides convincing evidence supporting the scenario that the solar wind consists of flux tubes where distinct plasmas reside.

Arnold, L.; Li, G.; Li, X. [Department of Physics and CSPAR, University of Alabama in Huntsville, Huntsville, AL 35899 (United States)] [Department of Physics and CSPAR, University of Alabama in Huntsville, Huntsville, AL 35899 (United States); Yan, Y., E-mail: gang.li@uah.edu [Key Laboratory of Solar Activity, National Astronomical Observatories of Chinese Academy of Sciences, Beijing 100012 (China)

2013-03-20T23:59:59.000Z

439

ARM - Measurement - Horizontal wind  

NLE Websites -- All DOE Office Websites (Extended Search)

govMeasurementsHorizontal wind govMeasurementsHorizontal wind ARM Data Discovery Browse Data Comments? We would love to hear from you! Send us a note below or call us at 1-888-ARM-DATA. Send Measurement : Horizontal wind The horizontal wind in terms of either speed and direction, or the zonal (u) and meridional (v) components. Categories Atmospheric State Instruments The above measurement is considered scientifically relevant for the following instruments. Refer to the datastream (netcdf) file headers of each instrument for a list of all available measurements, including those recorded for diagnostic or quality assurance purposes. ARM Instruments SONDE : Balloon-Borne Sounding System CO2FLX : Carbon Dioxide Flux Measurement Systems ECOR : Eddy Correlation Flux Measurement System DISDROMETER : Impact Disdrometer

440

Wind Technology Today  

Science Journals Connector (OSTI)

In 1988, the modern revival of interest in wind energy development (which began just before the Arab Oil Embargo) entered its fifteenth year. The first half of this period—ending about 1980—was dominated by th...

D. M. Dodge; R. W. Thresher

1989-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "wind structures cxs" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


441

Wind Turbines Benefit Crops  

SciTech Connect

Ames Laboratory associate scientist Gene Takle talks about research into the effect of wind turbines on nearby crops. Preliminary results show the turbines may have a positive effect by cooling and drying the crops and assisting with carbon dioxide uptake.

Takle, Gene

2010-01-01T23:59:59.000Z

442

Airborne Wind Turbine  

SciTech Connect

Broad Funding Opportunity Announcement Project: Makani Power is developing an Airborne Wind Turbine (AWT) that eliminates 90% of the mass of a conventional wind turbine and accesses a stronger, more consistent wind at altitudes of near 1,000 feet. At these altitudes, 85% of the country can offer viable wind resources compared to only 15% accessible with current technology. Additionally, the Makani Power wing can be economically deployed in deep offshore waters, opening up a resource which is 4 times greater than the entire U.S. electrical generation capacity. Makani Power has demonstrated the core technology, including autonomous launch, land, and power generation with an 8 meter wingspan, 20 kW prototype. At commercial scale, Makani Power aims to develop a 600 kW, 28 meter wingspan product capable of delivering energy at an unsubsidized cost competitive with coal, the current benchmark for low-cost power.

None

2010-09-01T23:59:59.000Z

443

Global Wind Power Installations  

Science Journals Connector (OSTI)

Several countries now have operational offshore wind power plants in Europe. These include Denmark, Sweden, the UK, the Netherlands, Belgium, Ireland, and Finland (see Table 8). Although significant development o...

Dr. Thomas Ackermann; Dr. Rena Kuwahata

2013-01-01T23:59:59.000Z

444

Global Wind Power Installations  

Science Journals Connector (OSTI)

Several countries now have operational offshore wind power plants in Europe. These include Denmark, Sweden, the UK, the Netherlands, Belgium, Ireland, and Finland (see Table 8). Although significant development o...

Dr. Thomas Ackermann; Dr. Rena Kuwahata

2012-01-01T23:59:59.000Z

445

Sandia National Laboratories: Wind  

NLE Websites -- All DOE Office Websites (Extended Search)

scale. The SWiFT site is managed and operated by Sandia National Laboratories for the DOE Wind Program. In a separate, ... Sandia Has Signed a Memorandum of Understanding with...

446

Offshore Wind Development 2011  

Science Journals Connector (OSTI)

Growth in the European offshore market will depend principally on the ability ... manufacturing capacity, and the development of specialized offshore wind turbines with their own manufacturing supply chain are...

Mark J. Kaiser; Brian F. Snyder

2012-01-01T23:59:59.000Z

447

Application of Damage Detection Techniques Using Wind Turbine Modal Data  

SciTech Connect

As any structure ages, its structural characteristics will also change. The goal of this work was to determine if modal response data fkom a wind turbine could be used in the detection of damage. The input stimuli to the wind turbine were from traditional modal hammer input and natural wind excitation. The structural response data was acquired using accelerometers mounted on the rotor of a parked and undamaged horizontal-axis wind turbine. The bolts at the root of one of the three blades were then loosened to simulate a damaged blade. The structural response data of the rotor was again recorded. The undamaged and damage-simulated datasets were compared using existing darnage detection algorithms. Also, a novel algorithm for combining the results of different damage detection algorithms was utilized in the assessment of the data. This paper summarizes the code development and discusses some preliminary damage detection results.

Gross, E.; Rumsey, M.; Simmermacher, T.; Zadoks, R.I.

1998-12-17T23:59:59.000Z

448

Coupled Dynamic Analysis of Multiple Unit Floating Offshore Wind Turbine  

E-Print Network (OSTI)

MUFOWT analysis tool is able to compute any type of floating platform with various kinds of horizontal axis wind turbines (HAWT). Individual control of each turbine is also available and the different structural properties of tower and blades can...

Bae, Yoon Hyeok

2013-04-23T23:59:59.000Z

449

Avista 2003 Wind RFP Final  

NLE Websites -- All DOE Office Websites (Extended Search)

7 2003 WIND RFP 7 2003 WIND RFP REQUEST FOR PROPOSALS Wind Power Up To 50 MW Avista Corporation August 2003 Introduction Avista's 2003 Integrated Resource Plan ("IRP") includes wind within its acquisition strategy beginning in the 2008-10 timeframe. Based on this result, the IRP includes an action item for Avista to investigate wind integration issues. In support of an integration issues study, Avista is interested in purchasing up to 50 MW of nameplate wind capability over a term of between two and five years to gain operational experience with this innovative resource. Because the Company has identified a wind resource preference beginning in 2008, options for project

450

The Political Economy of Wind Power in China  

E-Print Network (OSTI)

wind manufacturers to produce offshore wind turbines withturbines, including those suitable for offshore wind farms.

Swanson, Ryan Landon

2011-01-01T23:59:59.000Z

451

Mountain Wind | Open Energy Information  

Open Energy Info (EERE)

Mountain Wind Mountain Wind Jump to: navigation, search Mountain Wind is a wind farm located in Uinta County, Wyoming. It consists of 67 turbines and has a total capacity of 140.7 MW. It is owned by Edison Mission Group.[1] Based on assertions that the site is near Fort Bridger, its approximate coordinates are 41.318716°, -110.386418°.[2] References ↑ http://www.wsgs.uwyo.edu/Topics/EnergyResources/wind.aspx ↑ http://www.res-americas.com/wind-farms/operational-/mountain-wind-i-wind-farm.aspx Retrieved from "http://en.openei.org/w/index.php?title=Mountain_Wind&oldid=132229" Category: Wind Farms What links here Related changes Special pages Printable version Permanent link Browse properties 429 Throttled (bot load) Error 429 Throttled (bot load) Throttled (bot load)

452

Wind Report | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Wind Report Wind Report Wind Report Watch as our clean energy experts answer your questions about the U.S. wind industry -- one of the largest and fastest growing wind markets in the world. Related Links Top 8 Things You Didn't Know About Distributed Wind Small-Scale Distributed Wind: Northern Power Systems 100 kW turbine at the top of Burke Mountain in East Burke, Vermont. | Photo courtesy of Northern Power Systems. Test your energy knowledge by learning interesting facts about distributed wind. Charting the Future of Energy Storage As we continue to incorporate more renewable energy into the grid, technologies that store energy like batteries will be key to providing a continuous flow of clean energy even when the wind isn't blowing and the sun doesn't shine. Wind Industry Soars to New Heights

453

Wind Easements | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Wind Easements Wind Easements Wind Easements < Back Eligibility Agricultural Fed. Government Institutional Local Government Nonprofit Residential Schools State Government Tribal Government Savings Category Wind Buying & Making Electricity Program Info State North Dakota Program Type Solar/Wind Access Policy North Dakota allows property owners to grant an easement that ensures adequate exposure of a wind-energy system to the wind. The easement runs with the land benefited and burdened, and terminates upon the conditions stated in the easement. The statutes authorizing the creation of wind easements include several provisions to protect property owners. For example, a wind easement may not make the property owner liable for any property tax associated with the wind-energy system or other equipment

454

Wind Blog | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

August 6, 2013 August 6, 2013 Our latest Infographic highlights key findings from the 2012 Wind Technologies Market Report. | Infographic by Sarah Gerrity. America's Wind Industry Reaches Record Highs Sharing key findings from two new Energy Department reports that highlight the record growth of America's wind industry. August 5, 2013 Wind Industry Soars to New Heights Watch the video as Jose Zayas, Director of the Wind and Water Power Technologies Office, highlights the latest wind industry trends in the 2012 Wind Technologies Market Report. August 16, 2012 Wind Energy In America: Supporting Our Manufacturers Profiling success stories of the American wind industry. August 14, 2012 A Banner Year for the U.S. Wind Industry

455

Feasibility study of offshore wind turbine substructures for southwest offshore wind farm project in Korea  

Science Journals Connector (OSTI)

Abstract Korea has huge potential for offshore wind energy and the first Korean offshore wind farm has been initiated off the southwest coast. With increasing water depth, different substructures of the offshore wind turbine, such as the jacket and multipile, are the increasing focus of attention because they appear to be cost-effective. However, these substructures are still in the early stages of development in the offshore wind industry. The aim of the present study was to design a suitable substructure, such as a jacket or multipile, to support a 5 MW wind turbine in 33 m deep water for the Korean Southwest Offshore Wind Farm. This study also aimed to compare the dynamic responses of different substructures including the monopile, jacket and multipile and evaluate their feasibility. We therefore performed an eigenanalysis and a coupled aero-hydro-servo-elastic simulation under deterministic and stochastic conditions in the environmental conditions in Korea. The results showed that the designed jacket and multipile substructures, together with the modified monopile, were well located at soft–stiff intervals, where most modern utility-scale wind turbine support structures are designed. The dynamic responses of the different substructures showed that of the three substructures, the performance of the jacket was very good. In addition, considering the simple configuration of the multipile, which results in lower manufacturing cost, this substructure can provide another possible solution for Korean’s first offshore wind farm. This study provides knowledge that can be applied for the deployment of large-scale offshore wind turbines in intermediate water depths in Korea.

Wei Shi; Jonghoon Han; Changwan Kim; Daeyong Lee; Hyunkyoung Shin; Hyunchul Park

2015-01-01T23:59:59.000Z

456

Stakeholder Engagement and Outreach: State Wind Activities  

Wind Powering America (EERE)

Federal, Federal, State, & Local Printable Version Bookmark and Share Economic Development Policy Public Lands Public Power Regional Activities State Activities State Lands Siting State Wind Activities The U.S. map below summarizes Wind Powering America's state activities as of February 2010, which include Wind Working Groups, validated wind maps, anemometer loan programs, small wind guides, Wind for Schools Wind Applications Centers, exhibits, and workshops or webcasts. To read more state-specific news, click on a state. You can also view an enlarged map or print the state wind activities map. U.S. map showing Wind Powering America's activities in each state. Washington has an inactive/evolved wind working group, validated wind map, and a small wind guide. Exhibits have been displayed. Oregon has a wind working group, validated wind map, small wind guide, an anemometer loan program, and has had workshops or Webcasts. California has an inactive/evolved wind working group and valided wind map. Exhibits have been displayed. Idaho has an inactive/evolved wind working group, validated wind map, small wind guide, an anemometer loan program, has had workshops or Webcasts, exhibits have been displayed, and it has a Wind for Schools Wind Applications Center. Nevada has a wind working group, validated wind map, a small wind guide, an anemometer loan program, and has had workshops or Webcasts and exhibits. Montana has a wind working group, validated wind map, small wind guide, an anemometer loan program, and has had workshops or Webcasts, exhibits have been displayed, and it has a Wind for Schools Wind Applications Center. Wyoming has a wind working group, validated wind map, small wind guide, anemometer loan program, and has had workshops or Webcasts and exhibits. Utah has a wind working group, validated wind map, a small wind guide, an anemometer loan program, and has had workshops or Webcasts. Arizona has a wind working group, validated wind map, small wind guide, an anemometer loan program, has had workshops or Webcasts, and exhibits have been displayed. Colorado has a wind working group, a validated wind map, small wind guide, an anemometer loan program, has had workshops or Webcasts, exhibits have been displayed, and it has a Wind for Schools Wind Applications Center. New Mexico has a wind working group, validated wind map, small wind guide, an anemometer loan program, has had workshops or Webcasts, and exhibits have been displayed. North Dakota has a wind working group, validated wind map, small wind guide, an anemometer loan program, and has had workshops or Webcasts and exhibits. South Dakota has a wind working group, a validated wind map, small wind guide, an anemometer loan program, has had workshops or Webcasts, exhibits have been displayed, and it has a Wind for Schools Wind Applications Center. Nebraska has a wind working group, a validated wind map, a small wind guide, has had workshops or Webcasts, exhibits have been displayed, and it has a Wind for Schools Wind Applications Center. Kansas has a wind working group, a validated wind map, a small wind guide, has had workshops or Webcasts, exhibits have been displayed, and it has a Wind for Schools Wind Applications Center. Oklahoma has a wind working group, validated wind map, small wind guide, an anemometer loan program, and has had workshops or Webcasts. Texas currently does not have any Wind Powering America activities. Minnesota has a small wind guide. Iowa has a small wind guide and has had exhibits. Missouri has a wind working group, validated wind map, small wind guide, an anemometer loan program, and has had workshops or Webcasts. Arkansas has a wind working group, validated wind map, and workshops or Webcasts. Lousiana currently does not have any Wind Powering America activities. Mississippi currently does not have any Wind Powering America activities. Alabama currently does not have any Wind Powering America activities. Georgia has a wind working group, a validated wind map, and has had workshops or Webcasts. Florida currently does not have any Wind Powering America activities. South Carolina has a wind working group. Alaska has a wind working group, validated wind map, an anemometer loan program, has had workshops or Webcasts, and it has a Wind for Schools Wind Applications Center. Hawaii has a wind working group, validated wind map, a small wind guide, and has had exhibits. Puerto Rico has a validated wind map and a planned wind working group. Wisconsin has a wind working group, a small wind guide, an anemometer loan program, and has had workshops or Webcasts. Illinois has a wind working group, validated wind map, a small wind guide, and has had workshops or Webcasts. Michigan has a wind working group, validated wind map, a small wind guide, an anemometer loan program, and has had workshops or Webcasts and exhibits. Indiana has a wind working group, a validated wind map, a small wind guide, and has had workshops or Webcasts and exhibits. Kentucky has a wind working group and a validated wind map. Tennessee has a wind working group, a validated wind map, small wind guide, anemometer loan program, and has had workshops or Webcasts. North Carolina has a wind working group, validated wind map, a small wind guide, an anemometer loan program, has had workshops or Webcasts, exhibits have been displayed, and it has a Wind for Schools Wind Applications Center. Virginia has a wind working group, a validated wind map, a small wind guide, an anemometer loan program, has had workshops or Webcasts, exhibits have been displayed, and it has a Wind for Schools Wind Applications Center. West Virginia has a wind working group, a validated wind map, and has had workshops or Webcasts. Ohio has a wind working group, validated wind map, a small wind guide, an anemometer loan program, and has had workshops or Webcasts. Maryland has a wind working group, a validated wind map, a small wind guide, and an anemometer loan program. Pennsylvania has a wind working group, a validated wind map, small wind guide, an anemometer loan program, has had workshops or Webcasts, and it has a Wind for Schools Wind Applications Center. Delaware has a validated wind map and a small wind guide. New Jersey has a wind working group, validated wind map, a small wind guide, an anemometer loan program, and has had workshops or Webcasts. Connecticut has a wind working group and a validated wind map. New York has a small wind guide. Vermont has a validated wind map and a small wind guide. Massachusetts has a wind working group, validated wind map, a small wind guide, an anemometer loan program, and has had exhibits. New Hampshire has a validated wind map and small wind guide. Maine has a wind working group, validated wind map, small wind guide, an anemometer loan program, and has had workshops or Webcasts. Rhode Island has a validated wind map and small wind guide. The U.S. Virgin Islands have a validated wind map.

457

DOE Announces Nearly $14 Million to go to 28 New Wind Energy...  

Energy Savers (EERE)

Analatom, Inc. - Remote Structural Health Monitoring and Advanced Prognostics of Wind Turbines (Sunnyvale, CA) - 200,000 Bayer Material Science, LLC - Carbon Nanotube...

458

Is There a Chromospheric Footprint of the Solar Wind?  

Science Journals Connector (OSTI)

We correlate the inferred structure of the solar chromospheric plasma topography with in situ solar wind velocity and composition data measured at 1 AU. Diagnostics of atmospheric "depth" in the chromosphere are made for several observing periods in active, coronal hole, and quiet-Sun regions. We demonstrate that the inferred chromospheric diagnostics correlate very strongly with solar wind velocity and inversely with the ratio of ionic oxygen (O+7/O+6) densities. These correlations suggest that the structure of the solar wind is rooted deeper in the outer solar atmosphere than has been previously considered.

S. W. McIntosh; R. J. Leamon

2005-01-01T23:59:59.000Z

459

JD Wind 10 Wind Farm | Open Energy Information  

Open Energy Info (EERE)

10 Wind Farm 10 Wind Farm Jump to: navigation, search Name JD Wind 10 Wind Farm Facility JD Wind 10 Sector Wind energy Facility Type Commercial Scale Wind Facility Status In Service Owner DWS/John Deere Wind Developer DWS/John Deere Wind Energy Purchaser Southwestern Public Service Location TX Coordinates 35.808304°, -101.994807° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":35.808304,"lon":-101.994807,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

460

JD Wind 4 Wind Farm | Open Energy Information  

Open Energy Info (EERE)

4 Wind Farm 4 Wind Farm Jump to: navigation, search Name JD Wind 4 Wind Farm Facility JD Wind 4 Sector Wind energy Facility Type Commercial Scale Wind Facility Status In Service Owner John Deere Wind Developer DWS/John Deere Wind Energy Purchaser Xcel Energy Location Hansford County TX Coordinates 36.398384°, -101.376997° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":36.398384,"lon":-101.376997,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

Note: This page contains sample records for the topic "wind structures cxs" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


461

Wind Powering America Webinar: Wind and Wildlife Interactions | Department  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

and Wildlife Interactions and Wildlife Interactions Wind Powering America Webinar: Wind and Wildlife Interactions November 23, 2011 - 2:08pm Addthis This webinar is part of the U.S. Department of Energy's Wind Powering America 2011 webinar series. This webinar will provide an overview of wind turbine and wildlife issues, including a summary of research plans by the American Wind and Wildlife Institute. Other topics will include an update of the U.S. Fish and Wildlife Service wind regulations and bat/wind turbine interactions. The webinar is free; no registration is required. More Addthis Related Articles Wind Powering America Webinar: Wind Power Economics: Past, Present, and Future Trends DOE Announces Webinar on Tying Energy Efficiency to Compensation and Performance Reviews, and More

462

NREL: Wind Research - NREL's Wind Technology Patents Boost Efficiency and  

NLE Websites -- All DOE Office Websites (Extended Search)

NREL's Wind Technology Patents Boost Efficiency and Lower Costs NREL's Wind Technology Patents Boost Efficiency and Lower Costs March 22, 2013 Wind energy research conducted at the National Wind Technology Center (NWTC) at the U.S. Department of Energy's National Renewable Energy Laboratory (NREL) during the last decade has earned the lab two patents, one for adaptive pitch control and one for a resonance blade test system that will ultimately help its industry partners increase the efficiency of wind technologies and reduce the cost of wind energy. The most recent patent for adaptive pitch control for variable-speed wind turbines was granted in May 2012. Variable-speed wind turbines use rotor blade pitch control to regulate rotor speed at the high wind speed limit. Although manufacturers and operators have been interested in developing a nominal pitch to improve

463

Venture Wind I Wind Farm | Open Energy Information  

Open Energy Info (EERE)

Wind I Wind Farm Wind I Wind Farm Jump to: navigation, search Name Venture Wind I Wind Farm Facility Venture Wind I Sector Wind energy Facility Type Commercial Scale Wind Facility Status In Service Owner SeaWest Developer SeaWest Energy Purchaser Pacific Gas & Electric Co Location Altamont Pass CA Coordinates 37.7347°, -121.652° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":37.7347,"lon":-121.652,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

464

MAPping Foehn Winds in the Austrian Alps  

E-Print Network (OSTI)

and the flow above mountain-top level 3. Study the vertical and cross-gap distribution of wind speed-valley horizontal wind speed ("measured") vertical wind speed (calculated) total wind speed & streamlines -20 -10 0 October 1999 ­ TEACO2 calculated 2D winds down-valley horizontal wind speed ("measured") vertical wind

Gohm, Alexander

465

SAT-WIND project Final report  

E-Print Network (OSTI)

-2840 ISBN 87-550-3570-1 The SAT-WIND project `Winds from satellites for offshore and coastal wind energy) technologies for wind energy tools for wind resources and wind-indexing. The study area was the Danish Seas microwave polarimetric 223.3.1 History 3.3.2 Measurement principle 22 223.3.3 WindSat (passive microwave

466

Commonwealth Wind Commercial Wind Program | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Commercial Wind Program Commercial Wind Program Commonwealth Wind Commercial Wind Program < Back Eligibility Agricultural Commercial Construction Fed. Government Industrial Institutional Local Government Multi-Family Residential Municipal Utility Nonprofit Rural Electric Cooperative Schools State Government Tribal Government Savings Category Wind Buying & Making Electricity Maximum Rebate Public Entities: $100,000 Non-Public Entities: $67,000 Program Info Funding Source Massachusetts Renewable Energy Trust Start Date 05/2011 Expiration Date 08/01/2013 State Massachusetts Program Type State Grant Program Rebate Amount Varies depending on applicant type (public vs. non-public) and grant type (site assessment, feasibility study, onsite wind monitoring, acoustic studies, and business planning)

467

The Wind Integration National Dataset (WIND) toolkit (Presentation)  

SciTech Connect

Regional wind integration studies require detailed wind power output data at many locations to perform simulations of how the power system will operate under high penetration scenarios. The wind datasets that serve as inputs into the study must realistically reflect the ramping characteristics, spatial and temporal correlations, and capacity factors of the simulated wind plants, as well as being time synchronized with available load profiles.As described in this presentation, the WIND Toolkit fulfills these requirements by providing a state-of-the-art national (US) wind resource, power production and forecast dataset.

Caroline Draxl: NREL

2014-01-01T23:59:59.000Z

468

Temporal and spatial patterns in wind stress and wind stress curl over the central Southern California Bight  

Science Journals Connector (OSTI)

In 2001, the U.S. Geological Survey, together with several other federal and municipal agencies, began a series of field programs to determine along and cross-shelf transport patterns over the continental shelves in the central Southern California Bight. As a part of these programs, moorings that monitor winds were deployed off the Palos Verdes peninsula and within San Pedro Bay for six 3–4 month summer and winter periods between 2001 and 2008. In addition, nearly continuous records of winds for this 7-year period were obtained from a terrestrial site at the coast and from a basin site offshore of the long-term coastal site. The mean annual winds are downcoast at all sites. The alongshelf components of wind stress, which are the largest part of the low-frequency wind stress fields, are well correlated between basin, shelf and coastal sites. On average, the amplitude of alongshelf fluctuations in wind stress are 3–4 times larger over the offshore basin, compared to the coastal site, irrespective of whether the fluctuations represent the total, or just the correlated portion of the wind stress field. The curl in the large-scale wind stress tends to be positive, especially in the winter season when the mean wind stress is downcoast and larger at the offshore basin site than at the beach. However, since the fluctuation in wind stress amplitudes are usually larger than the mean, periods of weak negative curl do occur, especially in the summer season when the largest normalized differences in the amplitude of wind stress fluctuations are found in the nearshore region of the coastal ocean. Even though the low-frequency wind stress field is well-correlated over the continental shelf and offshore basins, out to distances of 35 km or more from the coast, winds even 10 km inshore of the beach do not represent the coastal wind field, at least in the summer months. The seasonal changes in the spatial structures in wind stress amplitudes suggest that an assessment of the amplitude of the responses of coastal ocean processes to wind forcing is complex and that the responses may have significant seasonal structures.

Marlene A. Noble; Kurt J. Rosenberger; Leslie K. Rosenfeld; George L. Robertson

2012-01-01T23:59:59.000Z

469

Probabilistic fatigue methodology and wind turbine reliability  

SciTech Connect

Wind turbines subjected to highly irregular loadings due to wind, gravity, and gyroscopic effects are especially vulnerable to fatigue damage. The objective of this study is to develop and illustrate methods for the probabilistic analysis and design of fatigue-sensitive wind turbine components. A computer program (CYCLES) that estimates fatigue reliability of structural and mechanical components has been developed. A FORM/SORM analysis is used to compute failure probabilities and importance factors of the random variables. The limit state equation includes uncertainty in environmental loading, gross structural response, and local fatigue properties. Several techniques are shown to better study fatigue loads data. Common one-parameter models, such as the Rayleigh and exponential models are shown to produce dramatically different estimates of load distributions and fatigue damage. Improved fits may be achieved with the two-parameter Weibull model. High b values require better modeling of relatively large stress ranges; this is effectively done by matching at least two moments (Weibull) and better by matching still higher moments. For this purpose, a new, four-moment {open_quotes}generalized Weibull{close_quotes} model is introduced. Load and resistance factor design (LRFD) methodology for design against fatigue is proposed and demonstrated using data from two horizontal-axis wind turbines. To estimate fatigue damage, wind turbine blade loads have been represented by their first three statistical moments across a range of wind conditions. Based on the moments {mu}{sub 1}{hor_ellipsis}{mu}{sub 3}, new {open_quotes}quadratic Weibull{close_quotes} load distribution models are introduced. The fatigue reliability is found to be notably affected by the choice of load distribution model.

Lange, C.H. [Stanford Univ., CA (United States)

1996-05-01T23:59:59.000Z

470

Wind turbine | Open Energy Information  

Open Energy Info (EERE)

turbine turbine Jump to: navigation, search Dictionary.png Wind turbine: A machine that converts wind energy to mechanical energy; typically connected to a generator to produce electricity. Other definitions:Wikipedia Reegle Contents 1 Types of Wind Turbines 1.1 Vertical Axis Wind Turbines 1.2 Horizontal Axis Wind Turbines 2 Wind Turbine Sizes 3 Components of a Wind Turbine 4 References Types of Wind Turbines There are two basic wind turbine designs: those with a vertical axis (sometimes referred to as VAWTs) and those with a horizontal axis (sometimes referred to as HAWTs). There are several manufacturers of vertical axis turbines, but they have not penetrated the "utility scale" (100 kW capacity and larger) market to the same degree as horizontal axis turbines.[1]

471

Environmental impact of wind energy  

Science Journals Connector (OSTI)

One purpose of wind turbines is to provide pollution-free electric power at a reasonable price in an environmentally sound way. In this focus issue the latest research on the environmental impact of wind farms is presented. Offshore wind farms affect the marine fauna in both positive and negative ways. For example, some farms are safe havens for porpoises while other farms show fewer harbor porpoises even after ten years. Atmospheric computer experiments are carried out to investigate the possible impact and resource of future massive installations of wind turbines. The following questions are treated. What is the global capacity for energy production by the wind? Will the added turbulence and reduced wind speeds generated by massive wind farms cool or heat the surface? Can wind farms affect precipitation? It is also shown through life-cycle analysis how wind energy can reduce the atmospheric emission of eight air pollutants. Finally, noise generation and its impact on humans are studied.

J Mann; J Teilmann

2013-01-01T23:59:59.000Z

472

PNE WIND USA II  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

PNE WIND USA II PNE WIND USA II 1 PNE Wind USA Tribal Energy Partnerships Cherokee & Chilocco Wind Parks Buchholz wind farm, Germany André De Rosa Managing Director Andre.DeRosa@PNEWind.com p. (312) 919-8042 Hot Springs NP M is s i s s i ppi M iss is s i pp i Mis si ss ip p i M ississippi M iss iss ippi M i ss i ss i pp i M is s issippi Missis sip pi M i s s is s ip p i Bonny State Park Bonny State Park Buffalo River State Park Buffalo River State Park Caprock Caprock Canyons Canyons State Park State Park Robbers Cave State Park Robbers Cave State Park Clinton State Park Clinton State Park Hillsdale State Park Hillsdale State Park Indian Cave State Park Indian Cave State Park Lake Murray State Park Lake Murray State Park Lake of Lake of the Ozarks the Ozarks St Park St Park Little River State Park Little River State Park Palo Duro

473

New England Wind Forum: Wind Power Policy in New England  

Wind Powering America (EERE)

Projects in New England Building Wind Energy in New England Wind Resource Wind Power Technology Economics Markets Siting Policy Renewable Energy Portfolio Standards State Renewable Energy Funds Federal Tax Incentives and Grants Net Metering and Interconnection Standards Pollutant Emission Reduction Policies Awareness Technical Challenges Issues Small Wind Large Wind Newsletter Perspectives Events Quick Links to States CT MA ME NH RI VT Bookmark and Share Wind Power Policy in New England Why Incentives and Policy? Federal and state policies play an important role in encouraging wind energy development by leveling the playing field compared to other energy sources. Many of the substantial benefits of wind power as a domestic, zero-emission part of the energy portfolio - sustainability, displacement of pollutant emissions from other power sources, fuel diversity, price stabilization, keeping a substantial portion of energy expenditures in the local economy - are shared by society as a whole and cannot be readily captured by wind generators directly in the price they charge for their output. In addition, while wind power receives some policy support, the level of federal incentives for wind represents less than 1% of the subsidies and tax breaks given to the fossil fuels and nuclear industries (source: "Wind Power An Increasingly Competitive Source of New Generation." Wind Energy Weekly #1130.).

474

Astraeus Wind Energy Inc | Open Energy Information  

Open Energy Info (EERE)

Sector: Wind energy Product: Michigan-based manufacturer of large scale, advanced composite wind blades and hub-related components. References: Astraeus Wind Energy Inc1 This...

475

Advanced Coal Wind Hybrid: Economic Analysis  

E-Print Network (OSTI)

Figure 12. Effect of Wind Integration and Resource Adequacy62 Table E-2. Estimates of Wind IntegrationAugust. Utility Wind Integration Group (UWIG), 2006. “

Phadke, Amol

2008-01-01T23:59:59.000Z

476

Sinovel Wind Co Ltd | Open Energy Information  

Open Energy Info (EERE)

Name: Sinovel Wind Co Ltd Place: Beijing Municipality, China Zip: 100872 Sector: Wind energy Product: Develops, manufactures and markets wind power generating equipment....

477

How Distributed Wind Works | Department of Energy  

Energy Savers (EERE)

Basics How Distributed Wind Works How Distributed Wind Works Residential Small wind turbines can be used in residential settings to directly offset electricity usage using net...

478

Helping Policymakers Evaluate Distributed Wind Options | Department...  

Energy Savers (EERE)

and consumers evaluate the effectiveness of policies that promote distributed wind-wind turbines installed at homes, farms, and busi-nesses. Distributed wind allows Americans to...

479

Westwind Wind Turbines | Open Energy Information  

Open Energy Info (EERE)

Jump to: navigation, search Name: Westwind Wind Turbines Place: Northern Ireland, United Kingdom Zip: BT29 4TF Sector: Wind energy Product: Northern Ireland based small scale wind...

480

Brilliant Wind Turbine | GE Global Research  

NLE Websites -- All DOE Office Websites (Extended Search)

Brilliant(tm) Wind Turbines Push Power and Efficient Boundaries Brilliant(tm) Wind Turbines Push Power and Efficient Boundaries The conventional wisdom around wind is that the...

Note: This page contains sample records for the topic "wind structures cxs" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


481

Offshore Ostsee Wind AG | Open Energy Information  

Open Energy Info (EERE)

Name: Offshore Ostsee Wind AG Place: Brgerende, Mecklenburg-Western Pomerania, Germany Zip: 18211 Sector: Wind energy Product: Joint venture formed to exploit offshore wind...

482

Infinity Wind Power Inc | Open Energy Information  

Open Energy Info (EERE)

Inc Jump to: navigation, search Name: Infinity Wind Power, Inc. Place: Santa Barbara, California Zip: 93105 Sector: Renewable Energy, Wind energy Product: California-based wind...

483

Guohua Qiqihaer Wind Power | Open Energy Information  

Open Energy Info (EERE)

Qiqihaer Wind Power Jump to: navigation, search Name: Guohua (Qiqihaer) Wind Power Place: Qiqihaer, Heilongjiang Province, China Zip: 161005 Sector: Wind energy Product: Guohua...

484

Wind Power Associates LLC | Open Energy Information  

Open Energy Info (EERE)

Associates LLC Jump to: navigation, search Name: Wind Power Associates LLC Place: Goldendale, Washington State Sector: Wind energy Product: Wind farm developer and operater....

485

Wind Success Stories | Department of Energy  

Office of Environmental Management (EM)

wind power more reliably. August 22, 2013 United States Launches First Grid-Connected Offshore Wind Turbine EERE investments help nation take first step toward offshore wind in...

486

Offshore Wind Accelerator | Open Energy Information  

Open Energy Info (EERE)

Offshore Wind Accelerator Place: United Kingdom Sector: Wind energy Product: Research and development initiative aimed at cutting the cost of offshore wind energy. References:...

487

Correlations in thermal comfort and natural wind  

E-Print Network (OSTI)

the average wind velocity and power spectrum exponent (?-of natural wind more accurately, power spectral analysisdata of natural wind versus the power spectral analysis

Kang, Ki-Nam; Song, Doosam; Schiavon, Stefano

2013-01-01T23:59:59.000Z

488

Wave Wind LLC | Open Energy Information  

Open Energy Info (EERE)

Wave Wind LLC Place: Sun Prairie, Wisconsin Zip: 53590 Sector: Services, Wind energy Product: Wisconsin-based wind developer and construction services provider. References: Wave...

489

NREL: Transmission Grid Integration - Wind Integration Datasets  

NLE Websites -- All DOE Office Websites (Extended Search)

Wind Integration Datasets The Wind Integration Datasets provide energy professionals with a consistent set of wind profiles for the eastern United States and the western United...

490

Foresight Wind Energy LLC | Open Energy Information  

Open Energy Info (EERE)

Foresight Wind Energy LLC Jump to: navigation, search Name: Foresight Wind Energy LLC Place: San Francisco, California Zip: 94105 Sector: Wind energy Product: San Francisco-based...

491

Han Wind Energy Corporation | Open Energy Information  

Open Energy Info (EERE)

Han Wind Energy Corporation Jump to: navigation, search Name: Han Wind Energy Corporation Place: Beijing, Beijing Municipality, China Zip: 100027 Sector: Wind energy Product: Han...

492

Berrendo Wind Energy | Open Energy Information  

Open Energy Info (EERE)

Berrendo Wind Energy Jump to: navigation, search Name: Berrendo Wind Energy Place: Boulder, Colorado Zip: 80304 Sector: Wind energy Product: Colorado-based firm developing utility...

493

Sandia National Laboratories: Offshore Wind Energy Simulation...  

NLE Websites -- All DOE Office Websites (Extended Search)

Offshore Wind Energy Simulation Toolkit Sandia Vertical-Axis Wind-Turbine Research Presented at Science of Making Torque from Wind Conference On July 8, 2014, in Computational...

494

Wind Success Stories | Department of Energy  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Wind Success Stories Wind Success Stories RSS The Office of Energy Efficiency and Renewable Energy's (EERE) successes in developing clean, affordable, and reliable domestic wind...

495

WINDExchange: U.S. Installed Wind Capacity  

Wind Powering America (EERE)

The animation shows the progress of installed wind capacity between 1999 and 2013. The Energy Department's annual Wind Technologies Market Report provides information about wind...

496

Sonne Wind Beteiligungen AG | Open Energy Information  

Open Energy Info (EERE)

Sonne Wind Beteiligungen AG Jump to: navigation, search Name: Sonne+Wind Beteiligungen AG Place: Berlin, Germany Zip: 10715 Sector: Efficiency, Solar, Wind energy Product:...

497

Scandia Wind Southwest LLC | Open Energy Information  

Open Energy Info (EERE)

navigation, search Name: Scandia Wind Southwest LLC Place: Bovina, Texas Sector: Wind energy Product: Scandia Wind Southwest, LLC is based in Parmer County, Bovina, Texas....

498

OpenEI - wind speed  

Open Energy Info (EERE)

NREL GIS Data: Global NREL GIS Data: Global Offshore Wind http://en.openei.org/datasets/node/869 GIS data for offshore wind speed (meters/second).  Specified to Exclusive Economic Zones (EEZ).Wind resource based on NOAA blended sea winds and monthly wind speed at 30km resolution, using a 0.11 wind sheer to extrapolate 10m - 90m.  Annual average  >= 10 months of data, no nulls. License

Type of License:  Other (please specify below)

499

OpenEI Community - Wind  

Open Energy Info (EERE)

Wind for Schools Wind for Schools Portal http://en.openei.org/community/group/wind-schools-portal

Description: Project to inspire students in the United States by educating and installing wind turbines. Wind Wind for Schools Portal Mon, 23 Sep 2013 20:01:10 +0000 Rmckeel 751 at http://en.openei.org/community Renewable Energy RFPs http://en.openei.org/community/group/renewable-energy-rfps
Description: Find renewable energy financial opportunities. We post solicitations for renewable energy generation, renewable energy certificates, and green power as a courtesy to our web site visitors. Unless otherwise noted, these requests

500

The Wind Project Development Process  

Wind Powering America (EERE)

Wind Project Wind Project Development Process Developed for the National Renewable Energy Laboratory by Dale Osborn Distributed Generation Systems, Inc. September 1998 The Wind Project Development Process Site Selection Land Agreements Wind Assessment Environmental Review Economic Modeling Interconnection Studies Financing Permitting Sales Agreements Turbine Procurement Construction Contracting Operations & Maintenance Site Selection Evidence of Significant Wind Preferably Privately Owned Remote Land Proximity to Transmission Lines Reasonable Road Access Few Environmental Concerns Receptive Community Land Agreements Term: Expected Life of the Turbine Assignable Indemnification Rights Compensation: Percentage of Revenues Reclamation Provision Wind Rights, Ingress/Egress Rights, Transmission Rights