Powered by Deep Web Technologies
Note: This page contains sample records for the topic "wind siting rules" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


1

Wind Siting Rules and Model Small Wind Ordinance | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

Wind Siting Rules and Model Small Wind Ordinance Wind Siting Rules and Model Small Wind Ordinance Wind Siting Rules and Model Small Wind Ordinance < Back Eligibility Commercial General Public/Consumer Industrial Local Government Nonprofit Residential Schools State Government Savings Category Wind Buying & Making Electricity Program Info State Wisconsin Program Type Solar/Wind Permitting Standards Provider Local Wind Application Filing Requirements '''Permitting Rules''' In September 2009, the Governor of Wisconsin signed S.B. 185 (Act 40) directing the Wisconsin Public Service Commission (PSC) to establish statewide wind energy siting rules. [http://psc.wi.gov/ PSC Docket 1-AC-231] was created to conduct the rulemaking, requiring the PSC to convene an advisory council composed of various interested stakeholders

2

NREL: Wind Research - Site Wind Resource Characteristics  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Site Wind Resource Characteristics Site Wind Resource Characteristics A graphic showing the location of National Wind Technology Center and its wind power class 2. Click on the image to view a larger version. Enlarge image This graphic shows the wind power class at the National Wind Technology Center. You can download a printable copy. The National Wind Technology Center (NWTC) is on the Great Plains just miles from the Rocky Mountains. The site is flat and covered with short grasses. The terrain and lack of obstructions make the site highly suitable for testing wind turbines. Take a tour of the NWTC and its facilities to better understand its location and layout. Another prime feature of the NWTC is the strong directionality of the wind - most of the strong winds come within a few degrees of 285°. West of

3

AWEA Wind Project Siting Seminar  

Broader source: Energy.gov [DOE]

The AWEA Wind Project Siting Seminar takes an in-depth look at the latest siting challenges and identify opportunities to reduce risks associated with the siting and operation of wind farms to...

4

WINDExchange: Siting Wind Turbines  

Wind Powering America (EERE)

Wind Wildlife Institute (AWWI) facilitates timely and responsible development of wind energy, while protecting wildlife and wildlife habitat. AWWI was created and is sustained by...

5

Stakeholder Engagement and Outreach: Siting Wind Turbines  

Wind Powering America (EERE)

Resources & Tools Resources & Tools Siting Wind Turbines Wind Powering America works to increase deployment of wind energy. This page provides resources about wind turbine siting. American Wind Wildlife Institute The American Wind Wildlife Institute (AWWI) facilitates timely and responsible development of wind energy, while protecting wildlife and wildlife habitat. AWWI was created and is sustained by a unique collaboration of environmentalists, conservationists, state wildlife agencies, and wind industry leaders. Its purpose is to help lay the scientific groundwork and best practices for wind farm siting and operations, through targeted initiatives: wind-wildlife research, landscape assessment, mitigation, and education. Ordinances Regulating Development of Commercial Wind Energy Facilities

6

Wind resource assessment and siting  

SciTech Connect (OSTI)

The objective of this program was to investigate the feasibility of employing wind power as a possible energy source to the New Hampshire power grid. Wind data was obtained from the New Hampshire State Forestry Service, the State Climatologist as well as other miscellaneous sources. Data on power generation and the power grid system was received from the Public Service Company of New Hampshire. Using this information as a data base, siting studies were made which indicated that there was a potential for a wind energy system in New Hampshire. Costs of fossil fuel generated power were compared to estimated wind generated production costs of electric energy fed into the Public Service Company of New Hampshire lines for various potential WECS sites. Based on the data and analysis provided in this study, it appears that WECS can be usefully developed in New Hampshire which would result in significant savings in fuel oil consumption.

Bortz, S.A. (IIT Research Inst., Chicago, IL); Fieldhouse, I.; Budenholzer, R.A.

1980-01-01T23:59:59.000Z

7

Articles about Wind Siting | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

about Wind Siting RSS Below are stories about siting featured by the U.S. Department of Energy (DOE) Wind Program. September 12, 2014 Sandia National Laboratories Develops Tool...

8

Siting Wind Energy | Open Energy Information  

Open Energy Info (EERE)

Siting Wind Energy Siting Wind Energy Jump to: navigation, search Wind turbines at the Forward Wind Energy Center in Fond du Lac and Dodge Counties, Wisconsin. Photo from Ruth Baranowski/NREL, NREL 21207 The following resources provide information about siting wind energy projects. Some are specific to a state or region but may still contain information applicable to other areas. Wind project siting tools, such as calculators and databases, can be found here. Resources American Wind Energy Association. (Updated 2011). Siting, Health, and the Environment. Accessed August 13, 2013. This fact sheet provides an overview of siting myths and facts. Environmental Law Institute. Siting Wind Energy Facilities: What Do Local Elected Officials Need to Know?. Accessed November 29, 2013.

9

Meteorological aspects of siting large wind turbines  

SciTech Connect (OSTI)

This report, which focuses on the meteorological aspects of siting large wind turbines (turbines with a rated output exceeding 100 kW), has four main goals. The first is to outline the elements of a siting strategy that will identify the most favorable wind energy sites in a region and that will provide sufficient wind data to make responsible economic evaluations of the site wind resource possible. The second is to critique and summarize siting techniques that were studied in the Department of Energy (DOE) Wind Energy Program. The third goal is to educate utility technical personnel, engineering consultants, and meteorological consultants (who may have not yet undertaken wind energy consulting) on meteorological phenomena relevant to wind turbine siting in order to enhance dialogues between these groups. The fourth goal is to minimize the chances of failure of early siting programs due to insufficient understanding of wind behavior.

Hiester, T.R.; Pennell, W.T.

1981-01-01T23:59:59.000Z

10

20% Wind Energy by 2030 - Chapter 5: Wind Power Siting and Environment...  

Office of Environmental Management (EM)

5: Wind Power Siting and Environmental Effects Summary Slides 20% Wind Energy by 2030 - Chapter 5: Wind Power Siting and Environmental Effects Summary Slides Environment and siting...

11

AWEA Wind Project Siting Seminar 2015  

Broader source: Energy.gov [DOE]

As the wind industry has grown and evolved, the scope and complexity of siting and environmental compliance issues has evolved and increased, and now affects all phases of a wind facility's life...

12

New England Wind Forum: Siting Considerations  

Wind Powering America (EERE)

Siting Considerations Siting Considerations Choosing a proper site for a wind turbine or farm is critical to a successful project. While the most important factors may vary from site to site, in any given instance a single factor can undermine success of an otherwise superlative project. On the other hand, sometimes a site may be weak in one area but so strong in another area that it is viable, such as a site with very strong winds that is farther than normal from a transmission line. A viable wind energy site generally includes the following key factors: Attractive Wind Resource Landowner and Community Support Feasible Permitting Compatible Land Use Nearby Access to an Appropriate Electrical Interconnect Point Appropriate Site Conditions for Access During Construction and Operations

13

NREL: Wind Research - Field Test Sites  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Field Test Sites Field Test Sites Aerial view of the National Wind Technology Center with the Flatiron Mountains in the background NREL's NWTC has numerous test pads available to industry partners for testing wind turbines that range in size from a few hundred kilowatts to several megawatts. PIX 17711. Manufacturers can take advantage of NREL's numerous test pads and the technical expertise of its staff to field test prototypes of small and large wind turbines. Many of the small wind turbines tested at the NWTC are participants in NREL's Small Wind Turbine Independent Test Program. Small and mid-sized turbines field tested at the NWTC include those manufactured by Atlantic Orient Corporation, Bergey Windpower, Southwest Wind Power, Northern Power Systems, Endurance Wind Power Inc., Gaia-Wind Ltd.,

14

Wind Project Siting Tools | Open Energy Information  

Open Energy Info (EERE)

source source History View New Pages Recent Changes All Special Pages Semantic Search/Querying Get Involved Help Apps Datasets Community Login | Sign Up Search Page Edit History Facebook icon Twitter icon » Wind Project Siting Tools Jump to: navigation, search Photo from Alstom 2010, NREL 18207 The following tools are helpful for anyone planning a wind project. Resources Cadmus Group. (2012). Distributed Wind Site Analysis Tool. Accessed March 29, 2013. The Distributed Wind Site Analysis Tool is an online tool for conducting detailed site assessments for single-turbine projects, from residential to community scale. Eastern Interconnection States' Planning Council. (2013). EISPC EZ Mapping Tool. Accessed August 13, 2013. This free online mapping tool helps to identify potential clean energy

15

Small Wind Guidebook/Is There Enough Wind on My Site | Open Energy  

Open Energy Info (EERE)

There Enough Wind on My Site There Enough Wind on My Site < Small Wind Guidebook Jump to: navigation, search Print PDF WIND ENERGY STAKEHOLDER ENGAGEMENT & OUTREACHSmall Wind Guidebook Home WindTurbine-icon.png Small Wind Guidebook * Introduction * First, How Can I Make My Home More Energy Efficient? * Is Wind Energy Practical for Me? * What Size Wind Turbine Do I Need? * What Are the Basic Parts of a Small Wind Electric System? * What Do Wind Systems Cost? * Where Can I Find Installation and Maintenance Support? * How Much Energy Will My System Generate? * Is There Enough Wind on My Site? * How Do I Choose the Best Site for My Wind Turbine? * Can I Connect My System to the Utility Grid? * Can I Go Off-Grid? * State Information Portal * Glossary of Terms * For More Information Is There Enough Wind on My Site?

16

Small Wind Guidebook/How Do I Choose the Best Site for My Wind Turbine |  

Open Energy Info (EERE)

Small Wind Guidebook/How Do I Choose the Best Site for My Wind Turbine Small Wind Guidebook/How Do I Choose the Best Site for My Wind Turbine < Small Wind Guidebook Jump to: navigation, search Print PDF WIND ENERGY STAKEHOLDER ENGAGEMENT & OUTREACHSmall Wind Guidebook Home WindTurbine-icon.png Small Wind Guidebook * Introduction * First, How Can I Make My Home More Energy Efficient? * Is Wind Energy Practical for Me? * What Size Wind Turbine Do I Need? * What Are the Basic Parts of a Small Wind Electric System? * What Do Wind Systems Cost? * Where Can I Find Installation and Maintenance Support? * How Much Energy Will My System Generate? * Is There Enough Wind on My Site? * How Do I Choose the Best Site for My Wind Turbine? * Can I Connect My System to the Utility Grid? * Can I Go Off-Grid? * State Information Portal * Glossary of Terms

17

RELIABILITY OF WIND POWER FROM DISPERSED SITES: A PRELIMINARY ASSESSMENT  

E-Print Network [OSTI]

ON METHODOLOGY: FROM WIND POWER FREQUENCY TO LOSS-OF-LOADJ.P. , "Some Aspects of Wind Power Statistics, " J. of Appl.SCTION Reliability of Wind Power From Dispersed Sites: A Pr

Kahn, E.

2011-01-01T23:59:59.000Z

18

Siting guidelines for utility application of wind turbines. Final report  

SciTech Connect (OSTI)

Utility-oriented guidelines are described for identifying viable sites for wind turbines. Topics and procedures are also discussed that are important in carrying out a wind turbine siting program. These topics include: a description of the Department of Energy wind resource atlases; procedures for predicting wind turbine performance at potential sites; methods for analyzing wind turbine economics; procedures for estimating installation and maintenance costs; methods for anlayzing the distribution of wind resources over an area; and instrumentation for documenting wind behavior at potential sites. The procedure described is applicable to small and large utilities. Although the procedure was developed as a site-selection tool, it can also be used by a utility who wishes to estimate the potential for wind turbine penetration into its future generation mix.

Pennell, W.T.

1983-01-01T23:59:59.000Z

19

Building Toward a Small Wind Turbine Site Assessor Credential (Presentation)  

SciTech Connect (OSTI)

Proper site assessment is integral to the development of a successful small wind project. Without a small wind site assessor certification program, consumers, including state incentive program managers, lack a benchmark for differentiating between qualified and nonqualified site assessors. A small wind site assessor best practice manual is being developed as a resource for consumers until a credential program becomes available. This presentation describes the purpose, proposed content, and the National Renewable Energy Laboratory's approach to the development of such a manual.

Sinclair, K.

2013-09-01T23:59:59.000Z

20

Distributed Wind Site Analysis Tool (DSAT) | Open Energy Information  

Open Energy Info (EERE)

Distributed Wind Site Analysis Tool (DSAT) Distributed Wind Site Analysis Tool (DSAT) Jump to: navigation, search Tool Summary LAUNCH TOOL Name: Distributed Wind Site Analysis Tool (DSAT) Focus Area: Renewable Energy Topics: Opportunity Assessment & Screening Website: dsat.cadmusgroup.com/Default.aspx Equivalent URI: cleanenergysolutions.org/content/distributed-wind-site-analysis-tool-d Language: English Policies: Deployment Programs DeploymentPrograms: Technical Assistance The Distributed Wind Site Analysis Tool (DSAT) is a powerful online tool for conducting detailed site assessments for single turbine projects, from residential to community scale. The tool offers users the ability to analyse potential wind turbine installment projects based on the type of turbine being installed, the terrain of the installment site, and the

Note: This page contains sample records for the topic "wind siting rules" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


21

Sandia National Laboratories: Siting: Wind Turbine/Radar Interference...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

and MIT Lincoln Laboratory). The goal is to overcome interference caused by wind turbines on civilian and military radar systems by developing site planning tools,...

22

Optimal Siting of Offshore Wind Farms  

Science Journals Connector (OSTI)

The goal of this study is finding the best location for constructing an offshore wind farm with respect to investment and operation costs and technical limitations. Wind speed, sea depth and distance between shor...

Salman Kheirabadi Shahvali

2014-01-01T23:59:59.000Z

23

20% Wind Energy by 2030 - Chapter 5: Wind Power Siting and Environment...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Environmental Effects Summary Slides Environment and siting overview 10-25% of proposed wind energy projects are delayed or not built due to environmental concerns Most...

24

Correcting Wind Speed Measurements for Site Obstructions  

Science Journals Connector (OSTI)

The effects of obstructions on winds measured by the 30 station FLOWS (FAA-Lincoln Laboratory Operational Weather Studies) mesonet and the 6 station FAA LLWAS (Low Level Wind Shear Alrt System) near Memphis, TN in 1985 are analyzed. The slowing ...

Marilyn M. Wolfson; T. Theodore Fujita

1989-04-01T23:59:59.000Z

25

Practical method for estimating wind characteristics at potential wind-energy-conversion sites  

SciTech Connect (OSTI)

Terrain features and variations in the depth of the atmospheric boundary layer produce local variations in wind, and these variations are not depicted well by standard weather reports. A method is developed to compute local winds for use in estimating the wind energy available at any potential site for a wind turbine. The method uses the terrain heights for an area surrounding the site and a series of wind and pressure reports from the nearest four or five national Weather Service stations. An initial estimate of the winds in the atmospheric boundary layer is made, then these winds are adjusted to satisfy the continuity equation. In this manner the flow is made to reflect the influences of the terrain and the shape of the boundary-layer top. This report describes in detail the methodology and results, and provides descriptions of the computer programs, instructions for using them, and complete program listings.

Endlich, R. M.; Ludwig, F. L.; Bhumralkar, C. M.; Estoque, M. A.

1980-08-01T23:59:59.000Z

26

Importance of thermal effects and sea surface roughness for wind resource and wind shear at offshore sites  

E-Print Network [OSTI]

at offshore sites Bernhard Lange*, Søren Larsen# , Jørgen Højstrup# , Rebecca Barthelmie# *ForWind - Centre of offshore wind power utilisation depends on the favourable wind conditions offshore as compared to sites for this flow. It's applicability for wind power prediction at offshore sites is investigated using data from

Heinemann, Detlev

27

On-Site Small Wind Incentive Program | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

On-Site Small Wind Incentive Program On-Site Small Wind Incentive Program On-Site Small Wind Incentive Program < Back Eligibility Agricultural Commercial Fed. Government Industrial Institutional Local Government Nonprofit Residential Schools State Government Savings Category Wind Buying & Making Electricity Maximum Rebate Lesser of $400,000 per site/customer or 50% of installed cost of system Program Info Funding Source RPS surcharge Start Date 01/01/2012 Expiration Date 12/31/2015 State New York Program Type State Rebate Program Rebate Amount First 10,000 kWh of expected annual energy production: $3.50/annual kWh Next 115,000 kWh of expected annual energy production: $1.00/annual kWh Energy production greater than 125,000 kWh: $0.30/annual kWh Provider New York State Energy Research and Development Authority

28

Parameterized tool for site specific LCAs of wind energy converters  

Science Journals Connector (OSTI)

The described tool allows assessing the site influence on the environmental and energetic performance of wind energy converters. After a onetime data collection for each converter and the implementation of this d...

Till Zimmermann

2013-01-01T23:59:59.000Z

29

Proposed rule for Interconnection for Wind Energy and Other Alternativ...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

REGULATORY COMMISSION 18 CFR Part 35 (Docket No. RM05-4-000) Interconnection for Wind Energy and Other Alternative Technologies (January 24, 2005) AGENCY: Federal Energy...

30

Site insolation and wind power characteristics: technical report Midwest region  

SciTech Connect (OSTI)

This phase of the Site Insolation and Wind Power Characteristics Study was performed to provide statistical information on the expected future availability of solar and wind power at various sites in the Midwest Region of the US Historic data (SOLMET), at 22 National Weather Service stations with hourly solar insolation and collateral meteorological information, were interrogated to provide an estimate of future trends. Solar data are global radiation incident on a horizontal surface, and wind data represent wind power normal to the air flow. Selected insolation and wind power conditions were investigated for their occurrence and persistence, for defined periods of time, on a monthly basis. Global horizontal insolation is related to inclined surfaces at each site. Ratios are provided, monthly, for multiplying global insolation to obtain insolation estimates on south-facing surfaces inclined at different angles with respect to the horizontal. Also, joint probability distribution tables are constructed showing the number of occurrences, out of a finite sample size, of daily average solar and wind power within selected intervals, by month. Information of this nature is intended as an aid to preliminary planning activities for the design and operation of solar and wind energy utilization and conversion systems.

None

1980-08-01T23:59:59.000Z

31

Wind power project siting workshop: emerging issues and technologies  

SciTech Connect (OSTI)

With wind power development extending more broadly across the various regions of the United States, and with new participants entering the wind development business, AWEA developed a workshop on the various ways in which wind power projects affect--and don't affect--elements of the human and natural environment. Over 180 people gathered in Portland, OR on October 13-14, 2004 to participate in a day and a half of presentations by 20 leading industry specialists. Their presentations covered emerging issues of project siting, such as bat interactions and wildlife survey techniques, and methods of generating local support for wind projects. Workshop topics included: Avian and Bat Research Updates; Wildlife Survey Technologies & Techniques; Technical Issues such as Noise, Aesthetics, and Lighting; National Environmental Policy Act (NEPA) Scenarios and Federal Land Policies; Tribal & Community Relations; Federal & State Permitting Process; and Bureau of Land Management Wind Power Developments.

anon.

2004-12-01T23:59:59.000Z

32

An Experimental Investigation on the Wake Interference of Wind Turbines Sited Over Complex Terrains  

E-Print Network [OSTI]

1 An Experimental Investigation on the Wake Interference of Wind Turbines Sited Over Complex, 50011 An experimental study was conducted to investigate the interferences of wind turbines sited over conducted in a large wind tunnel with of wind turbine models sited over a flat terrain (baseline case

Hu, Hui

33

A simple method of estimating wind turbine blade fatigue at potential wind turbine sites  

SciTech Connect (OSTI)

This paper presents a technique of estimating blade fatigue damage at potential wind turbine sites. The cornerstone of this technique is a simple model for the blade`s root flap bending moment. The model requires as input a simple set of wind measurements which may be obtained as part of a routine site characterization study. By using the model to simulate a time series of the root flap bending moment, fatigue damage rates may be estimated. The technique is evaluated by comparing these estimates with damage estimates derived from actual bending moment data; the agreement between the two is quite good. The simple connection between wind measurements and fatigue provided by the model now allows one to readily discriminate between damaging and more benign wind environments.

Barnard, J.C.; Wendell, L.L.

1995-06-01T23:59:59.000Z

34

Stakeholder Engagement and Outreach: Resources and Tools for Siting Wind  

Wind Powering America (EERE)

Federal, Federal, State, & Local Printable Version Bookmark and Share Economic Development Policy Public Lands Public Power Regional Activities State Activities State Lands Siting Resources & Tools Resources for Siting Wind Turbines This page lists information resources such as publications, websites, and news for siting wind turbines. Search the Stakeholder Engagement and Outreach initiative's Database Choose a Type of Information All News Publications Web Resource Videos Choose # of Records per Page Default (10 per page) 5 25 50 To search the titles, enter a word or phrase. Start Search Clear Contents Total of 39 records found. Page 1 of 8, Sorted by descending date Filtered by: Siting 1 2 3 4 5 6 7 8 Next Page >> Date sort by ascending date sort by descending date State sort by ascending state sort by descending state Type of Information Program Area Title sort by ascending title sort by descending title

35

Siting handbook for small wind energy conversion systems  

SciTech Connect (OSTI)

This handbook was written to serve as a siting guide for individuals wishing to install small wind energy conversion systems (WECS); that is, machines having a rated capacity of less than 100 kilowatts. It incorporates half a century of siting experience gained by WECS owners and manufacturers, as well as recently developed siting techniques. The user needs no technical background in meteorology or engineering to understand and apply the siting principles discussed; he needs only a knowledge of basic arithmetic and the ability to understand simple graphs and tables. By properly using the siting techniques, an owner can select a site that will yield the most power at the least installation cost, the least maintenance cost, and the least risk of damage or accidental injury.

Wegley, H.L.; Ramsdell, J.V.; Orgill, M.M.; Drake, R.L.

1980-03-01T23:59:59.000Z

36

Candidate wind turbine generator site: annual data summary, January 1981-December 1981  

SciTech Connect (OSTI)

Summarized hourly meteorological data for 34 candidate and wind turbine generator sites for calendar year 1981 are presented. These data are collected for the purpose of evaluating the wind energy potential at these sites and are used to assist in selection of potential sites for installation and testing of large wind turbines in electric utility systems. For each site, wind speed, direction, and distribution data are given in eight tables. Use of information from these tables, with information about specific wind turbines, should allow the user to estimate the potential for wind energy production at each site.

Sandusky, W.F.; Buck, J.W.; Renne, D.S.; Hadley, D.L.; Abbey, O.B.

1982-07-01T23:59:59.000Z

37

SUMMARY OF REVISED TORNADO, HURRICANE AND EXTREME STRAIGHT WIND CHARACTERISTICS AT NUCLEAR FACILITY SITES  

Broader source: Energy.gov [DOE]

Summary of Revised Tornado, Hurricane and Extreme Straight Wind Characteristics at Nuclear Facility Sites BY: John D. Stevenson Consulting Engineer

38

NREL-Philippine Wind Farm Analysis and Site Selection Analysis...  

Open Energy Info (EERE)

Philippine wind energy potential and foster wind farm development. Work to date includes completion of the NREL wind atlas for the Philippines as well as training courses and...

39

Impact of Increasing Distributed Wind Power and Wind Turbine Siting on Rural Distribution Feeder Voltage Profiles: Preprint  

SciTech Connect (OSTI)

Many favorable wind energy resources in North America are located in remote locations without direct access to the transmission grid. Building transmission lines to connect remotely-located wind power plants to large load centers has become a barrier to increasing wind power penetration in North America. By connecting utility-sized megawatt-scale wind turbines to the distribution system, wind power supplied to consumers could be increased greatly. However, the impact of including megawatt-scale wind turbines on distribution feeders needs to be studied. The work presented here examined the impact that siting and power output of megawatt-scale wind turbines have on distribution feeder voltage. This is the start of work to present a general guide to megawatt-scale wind turbine impact on the distribution feeder and finding the amount of wind power that can be added without adversely impacting the distribution feeder operation, reliability, and power quality.

Allen, A.; Zhang, Y. C.; Hodge, B. M.

2013-09-01T23:59:59.000Z

40

Potential Presence of Endangered Wildlife Species at the University of Delaware Wind Power Project Site  

E-Print Network [OSTI]

Potential Presence of Endangered Wildlife Species at the University of Delaware Wind Power Project wind power project site, we conducted an analysis of the suitability of habitat within the project

Firestone, Jeremy

Note: This page contains sample records for the topic "wind siting rules" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


41

Estimating expected energy capture at potential wind turbine sites in Norway  

Science Journals Connector (OSTI)

To estimate the expected energy capture at potential wind turbine sites in Norway, a combination of low-cost wind monitoring, correlation and models are used. The wind monitoring, the correlation and the uncertainty of the method are described. Results from two cases are compared with predictions made with the model WASP. The results indicate that measurements are needed near potential wind turbine sites, until a high quality reference data set has been established, and models for complex terrain effects are validated.

T.A. Nygaard

1992-01-01T23:59:59.000Z

42

NREL Studies Wind Farm Aerodynamics to Improve Siting (Fact Sheet...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

atmosphere contains large-scale turbulence struc- tures that propagate through the wind turbines and wind farms and influence wake motion. Over the course of a day, the wind...

43

EVALUATION OF MODELS FOR THE VERTICAL EXTRAPOLATION OF WIND SPEED MEASUREMENTS AT OFFSHORE SITES  

E-Print Network [OSTI]

EVALUATION OF MODELS FOR THE VERTICAL EXTRAPOLATION OF WIND SPEED MEASUREMENTS AT OFFSHORE SITES important for offshore wind energy utilisation are discussed and tested: Four models for the surface tested with data from the offshore field measurement Rødsand by extrapolating the measured 10 m wind

Heinemann, Detlev

44

Evaluation of the wind energy potential of two south west sites in Nigeria  

Science Journals Connector (OSTI)

Wind resource assessment is a crucial first step in gauging the potential of a site to produce energy from wind turbines. In this paper, the wind energy potential of Abeokuta (0703?N, 0319?E) and Ijebu-Ode (...

Olaleye M. Amoo

2012-09-01T23:59:59.000Z

45

University of Delaware Technical Analysis for On-Site Wind Generation  

E-Print Network [OSTI]

Energy Developments, Inc. Tuesday, May 19, 2009 #12;Final Report ­ Technical Analysis for On-site Wind. Gross P.E. prepared Section 4, Electrical System Impact Study and AWSTruewind, LLC provided wind.3 TERRAIN AND ROUGHNESS MAPS 12 2.4 RESOURCE GRID 13 2.5 WIND TURBINE POWER CURVE 14 2.6 SUMMMARY OF MODEL

Firestone, Jeremy

46

Wind shear for large wind turbine generators at selected tall tower sites  

SciTech Connect (OSTI)

The objective of the study described in this report is to examine the nature of wind shear profiles and their variability over the height of large horizontal-axis wind turbines and to provide information on wind shear relevant to the design and opertion of large wind turbines. Wind turbine fatigue life and power quality are related through the forcing functions on the blade to the shapes of the wind shear profiles and their fluctuations over the disk of rotation.

Elliott, D.L.

1984-04-01T23:59:59.000Z

47

Wind Power Opportunities in St. Thomas, USVI: A Site-Specific...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Power Opportunities in St. Thomas, USVI: A Site-Specific Evaluation and Analysis Wind Power Opportunities in St. Thomas, USVI: A Site-Specific Evaluation and Analysis Utilizes a...

48

Sri Lanka Wind Farm Analysis and Site Selection Assistance  

SciTech Connect (OSTI)

The United States Department of Energy (DOE), through the National Renewable Energy Laboratory (NREL), has been working in partnership with the U.S. Agency for International Development (USAID) in an on-going process to quantify the Sri Lanka wind energy potential and foster wind energy development. Work to date includes completion of the NREL wind atlas for Sri Lanka. In addition, the Ceylon Electricity Board (CEB) has conducted a wind resource assessment of several areas of the country and has successfully completed and is currently operating a 3-MW pilot wind project. A review of the work completed to date indicates that additional activities are necessary to provide Sri Lanka with the tools necessary to identify the best wind energy development opportunities. In addition, there is a need to identify key policy, regulatory, business and infrastructure issues that affect wind energy development and to recommend steps to encourage and support wind power development and investment.

Young, M.; Vilhauer, R.

2003-08-01T23:59:59.000Z

49

RELIABILITY OF WIND POWER FROM DISPERSED SITES: A PRELIMINARY ASSESSMENT  

E-Print Network [OSTI]

POWER FREQUENCY TO LOSS-OF-LOAD PROBABIL ITY The Basic Steps Optimization of Various Kinds WIND DATA

Kahn, E.

2011-01-01T23:59:59.000Z

50

MODELLING THE VERTICAL WIND SPEED AND TURBULENCE INTENSITY PROFILES AT PROSPECTIVE OFFSHORE WIND FARM SITES  

E-Print Network [OSTI]

MODELLING THE VERTICAL WIND SPEED AND TURBULENCE INTENSITY PROFILES AT PROSPECTIVE OFFSHORE WIND for conditions important for offshore wind energy utilisation are compared and tested: Four models tested with data from the offshore field measurement Rødsand by extrapolating the measured 10 m wind

Heinemann, Detlev

51

Environmental Impacts and Siting of Wind Projects | Department...  

Energy Savers [EERE]

Evaluation (IFT&E) effort, aimed at addressing the potential impacts of operating wind turbines on defense and civilian radar systems. The program characterized the impact of...

52

Site insolation and wind power characteristics, technical report northeast region. Vol. 2  

SciTech Connect (OSTI)

This phase of the Site Insolation and Wind Power Characteristics Study was performed to provide statistical information on the expected future availability of solar and wind power at various sites in the Northeast Region of the US Historic data (SOLMET), at 8 National Weather Service stations with hourly solar insolation and collateral meteorological information, were interrogated to provide an estimate of future trends. Solar data are global radiation incident on a horizontal surface, and wind data represent wind power normal to the air flow. Selected insolation and wind power conditions were investigated for their occurrence and persistence, for defined periods of time, on a monthly basis. Global horizontal insolation are related to inclined surfaces at each site. Ratios are provided, monthly, for multiplying global insolation to obtain insolation estimates on south-facing surfaces inclined at different angles with respect to the horizontal.

None

1980-08-01T23:59:59.000Z

53

EVALUATION OF MODELS FOR THE VERTICAL EXTRAPOLATION OF WIND SPEED MEASUREMENTS AT OFFSHORE SITES  

E-Print Network [OSTI]

EVALUATION OF MODELS FOR THE VERTICAL EXTRAPOLATION OF WIND SPEED MEASUREMENTS AT OFFSHORE SITES important for offshore wind energy utilisation are discussed and tested: Four models for the surface tested with measurements from the offshore field measurement Rødsand by extrapolating the measured 10 m

Heinemann, Detlev

54

Session: Development and application of guidelines for siting, constructing, operating and monitoring wind turbines  

SciTech Connect (OSTI)

This session at the Wind Energy and Birds/Bats workshop consisted of two presentations followed by a discussion/question and answer period. The two papers were: 'Development and Application of USFWS Guidance for Site Evaluation, Siting, Construction, Operation and Monitoring of Wind Turbines' by Albert Manville and 'Wind Power in Washington State' by Greg Hueckel. The session provided a comparison of wind project guidelines developed by the U.S. Fish and Wildlife Service (USFWS) in May 2003 and the Washington State Department of Fish and Wildlife in August 2003. Questions addressed included: is there a need or desire for uniform national or state criteria; can other states learn from Washington State's example, or from the USFWS voluntary guidelines; should there be uniform requirements/guidelines/check-lists for the siting, operation, monitoring, and mitigation to prevent or minimize avian, bat, and other wildlife impacts.

Manville, Albert; Hueckel, Greg

2004-09-01T23:59:59.000Z

55

Site insolation and wind power characteristics: technical report western region (south section)  

SciTech Connect (OSTI)

This phase of the Site Insolation and Wind Power Characteristics Study was performed to provide statistical information on the expected future availability of solar and wind power at various sites in the Western Region (South Section) of the US Historic data (SOLMET), at 22 National Weather Service stations with hourly solar insolation and collateral meteorological information, were interrogated to provide an estimate of future trends. Solar data are global radiation incident on a horizontal surface, and wind data represent wind power normal to the air flow. Selected insolation and wind power conditions were investigated for their occurrence and persistence, for defined periods of time, on a monthly basis. Global horizontal insolation is related to inclined surfaces at each site. Ratios are provided, monthly, for multiplying global insolation to obtain insolation estimates on south-facing surfaces inclined at different angles with respect to the horizontal. Also, joint probability distribution tables are constructed showing the number of occurrences, out of a finite sample size, of daily average solar and wind power within selected intervals, by month. Information of this nature is intended as an aid to preliminary planning activities for the design and operation of solar and wind energy utilization and conversion systems.

None

1980-08-01T23:59:59.000Z

56

Site insolation and wind power characteristics: technical report western region (north section)  

SciTech Connect (OSTI)

This phase of the Site Insolation and Wind Power Characteristics Study was performed to provide statistical information on the expected future availability of solar and wind power at various sites in the Western Region (North Section) of the US Historic data (SOLMET), at 21 National Weather Service stations with hourly solar insolation and collateral meteorological information, were interrogated to provide an estimate of future trends. Solar data are global radiation incident on a horizontal surface, and wind data represent wind power normal to the air flow. Selected insolation and wind power conditions were investigated for their occurrence and persistence, for defined periods of time, on a monthly basis. Global horizontal insolation is related to inclined surfaces at each site. Ratios are provided, monthly, for multiplying global insolation to obtain insolation estimates on south-facing surfaces inclined at different angles with respect to the horizontal. Also, joint probability distribution tables are constructed showing the number of occurrences, out of a finite sample size, of daily average solar and wind power within selected intervals, by month. Information of this nature is intended as an aid to preliminary planning activities for the design and operation of solar and wind energy utilization and conversion systems.

None

1980-08-01T23:59:59.000Z

57

QUANTIFYING ACCELERATED SOIL EROSION THROUGH ECOLOGICAL SITE-BASED ASSESSMENTS OF WIND AND WATER EROSION  

E-Print Network [OSTI]

QUANTIFYING ACCELERATED SOIL EROSION THROUGH ECOLOGICAL SITE- BASED ASSESSMENTS OF WIND AND WATER change and intensification have resulted in accelerated rates of soil erosion in many areas of the world quantification of accelerated soil erosion. Ecological site soil erosion Variation in the simulated erosion rates

58

Offshore Wind Guidance Document: Oceanography and Sediment Stability (Version 1) Development of a Conceptual Site Model.  

SciTech Connect (OSTI)

This guidance document provide s the reader with an overview of the key environmental considerations for a typical offshore wind coastal location and the tools to help guide the reader through a thoro ugh planning process. It will enable readers to identify the key coastal processes relevant to their offshore wind site and perform pertinent analysis to guide siting and layout design, with the goal of minimizing costs associated with planning, permitting , and long - ter m maintenance. The document highlight s site characterization and assessment techniques for evaluating spatial patterns of sediment dynamics in the vicinity of a wind farm under typical, extreme, and storm conditions. Finally, the document des cribe s the assimilation of all of this information into the conceptual site model (CSM) to aid the decision - making processes.

Roberts, Jesse D.; Jason Magalen; Craig Jones

2014-06-01T23:59:59.000Z

59

INTEGRATION OF RENEWABLE ENERGY SYSTEMS TO ISOLATED DESERT SITE IN EGYPT. Part I: Wind System Optimisation  

Science Journals Connector (OSTI)

ABSTRACT This paper discusses the technical and economical studies and the conceptual system designs for using renewable energy sources such as photovoltaic (PV), wind and biogas supplemented by conventional energy sources as an integerated system to isolated desert site south west of Egypt. (East Oweinat). The first part deals with the wind system optimisation . An attempt has been done, to find an analytical expression and graphical presentation for the proper tower height of a given Wind Energy Conversion System (WECS). This height is expressed as a function of both WECS characteristic speeds (Vci & Vr), and parameters of the site wind speed frequency distribution(WSFD). Application of the derived formula at different sites, and upon various WECS's shows that installing the WECS at that height ensures a high capacity factor of not less than 0.4 for the WECS. The paper also presents the possibility of determining that height directly from the given nomogram. KEY WORDS Wind system optimisation; integrated renewable energy system; wind energy conversion system; desert development; optimum height.

M. Galal Osman; M. Galal Osman; Fathy M.H. Youssef; Sobhy M. Abdelkader; Fathy M.H. Youssef; Sobhy M. Abdelkader

1988-01-01T23:59:59.000Z

60

Final Site-Wide Environmental Assessment of National Renewable Energy Laboratory's National Wind Technology Center  

Broader source: Energy.gov (indexed) [DOE]

May 31, 2002 May 31, 2002 DOE/EA 1378 FINDING OF NO SIGNIFICAflJT IMPACT For the NATIONAL WIND TECHNOLOGY CENTER Site Operations and Short-Term and Long-Term Improvement Programs Golden, Colorado AGENCY: Department of Energy, Golden Field Office ACTION: Finding of No Significant Impact SUMMARY: The Department of Energy (DOE) conducted a Site-Wide Environmental Assessment (EA) of the National Wind Technology Center (NWTC) to evaluate potential impacts of site operations and short-term and long-term improvement programs. DOE's Office of Energy Efficiency and Renewable Energy (EERE) leads the national research effort to develop clean, competitive, and reliable renewable energy and power delivery technologies for the 21st century. The mission of EERE's Wind Energy Program is to help the

Note: This page contains sample records for the topic "wind siting rules" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


61

Field studies of the potential for wind transport of plutonium- contaminated soils at sites in Areas 6 and 11, Nevada Test Site  

SciTech Connect (OSTI)

This report describes and documents a series of field experiments carried out in Areas 6 and 11 of the Nevada Test Site in June and July 1994 to determine parameters of boundary layer winds, surface characteristics, and vegetation cover that can be used to predict dust emissions from the affected sites. Aerodynamic roughness of natural sites is determined largely by the lateral cover of the larger and more permanent roughness elements (shrubs). These provide a complete protection of the surface from wind erosion. Studies using a field-portable wind tunnel demonstrated that natural surfaces in the investigated areas of the Nevada Test Site are stable except at very high wind speeds (probably higher than normally occur, except perhaps in dust devils). However, disturbance of silty-clay surfaces by excavation devices and vehicles reduces the entrainment threshold by approximately 50% and makes these areas potentially very susceptible to wind erosion and transport of sediments.

Lancaster, N.; Bamford, R.; Metzger, S. [University and Community Coll. System of Nevada, Reno, NV (United States). Quaternary Sciences Center, Desert Research Institute

1995-07-01T23:59:59.000Z

62

Land suitability assessment for wind power plant site selection using ANP-DEMATEL in a GIS environment: case study of Ardabil province, Iran  

Science Journals Connector (OSTI)

Wind energy is a renewable energy resource that ... . Site selection for the establishment of large wind turbines, called wind farms, like any other engineering project, ... . This study assessed the possibility ...

Ali Azizi; Bahram Malekmohammadi

2014-10-01T23:59:59.000Z

63

New England Wind Forum: Selling Wind Power  

Wind Powering America (EERE)

Selling Wind Power Selling Wind Power Markets are either well-developed or developing for each of the 'products' produced by wind generators. These include electricity products and generation attributes. Electricity Electricity can be used in two ways: on-site (interconnected behind a retail customer's meter) of for sales of electricity over the electric grid. On-site generation can displace a portion of a customer's purchases of electricity from the grid. In addition, net metering rules are in place at the state level that in some cases allow generation in excess of on-site load to be sold back to the local utility (see state pages for net metering specifics). For sales over the electricity grid, the Independent System Operator of New England (ISO New England) creates and manages a wholesale market for electric energy, capacity, and ancillary services within the New England Power Pool (NEPOOL). Wind generators may sell their electric energy and capacity in spot markets organized by the ISO, or they may contract with wholesale buyers to sell these products for any term to buyers operating in the ISO New England marketplace. Wind generators do not generally produce other marketable ancillary services. The ISO has rules specific to the operation of wind generators reflecting operations, scheduling, calculation of installed capacity credit, and so forth.

64

Best Practices in Literature Review for the 10 Year Extreme Wind Update at the DOE Pantex Site  

Broader source: Energy.gov [DOE]

Best Practices in Literature Review for the 10 Year Extreme Wind Update at the DOE Pantex Site Presented by B&W Technical Services, Pantex, Pro2Serve and EKU October 26, 2011

65

Optimal site matching of wind turbine generator: Case study of the Gulf of Suez region in Egypt  

Science Journals Connector (OSTI)

During the last few years, Egypt has emerged as the leader of wind power in the Middle East and Africa. In the Gulf of Suez region, a continuously expanding large-scale grid-connected wind farm is available at Zafarana site. The Gulf of EL-Zayt site in the Gulf of Suez region is now under extensive studies related to wind power projects such as feasibility and bird migration studies. Therefore, the Gulf of Suez region is considered in this paper for optimal site matching of wind turbine generator (WTG). This paper treats the problem of site matching of WTG through improved formulation of the capacity factor. Such factor is estimated based on Weibull PDF and an accurate model for the WTG output-power-curve. Ornithological, martial, and other limitations placed on WTG hub heights in the Gulf of Suez region in Egypt are taken into account. In addition, a MATLAB based program is created to implement the presented technique of optimal site matching of WTG. Based on turbine-performance-index (TPI) maximization, optimal output-power-curve and optimal commercial WTG are determined for each candidate site in the Gulf of Suez region. Long-term performance measurements at Zafarana wind farms in comparison with the results are used to validate the presented technique and the optimality of the results.

M. EL-Shimy

2010-01-01T23:59:59.000Z

66

Wind Power Opportunities in St. Thomas, USVI: A Site-Specific Evaluation and Analysis  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Power Opportunities in Power Opportunities in St. Thomas, USVI: A Site-Specific Evaluation and Analysis E. Lantz, A. Warren, J.O. Roberts, and V. Gevorgian Technical Report NREL/TP-7A20-55415 September 2012 NREL is a national laboratory of the U.S. Department of Energy, Office of Energy Efficiency & Renewable Energy, operated by the Alliance for Sustainable Energy, LLC. National Renewable Energy Laboratory 15013 Denver West Parkway Golden, Colorado 80401 303-275-3000 * www.nrel.gov Contract No. DE-AC36-08GO28308 Wind Power Opportunities in St. Thomas, USVI: A Site-Specific Evaluation and Analysis E. Lantz, A. Warren, J.O. Roberts, and V. Gevorgian Prepared under Task No. IDVI.1020 Technical Report NREL/TP-7A20-55415 September 2012 NOTICE This report was prepared as an account of work sponsored by an agency of the United States government.

67

Wind Resource Assessment Using SODAR at Cluttered Sites William LW Henson MSc*  

E-Print Network [OSTI]

. The UMass ART VT-1 SODAR measures wind speed and direction at multiple heights using the Doppler shift tilted (approximately 15 degrees) from vertical. Three sound beams are required to resolve the wind periods of approximately ten minutes to produce estimates of the mean wind- speed and wind

Massachusetts at Amherst, University of

68

SUMMARY OF REVISED TORNADO, HURRICANE AND EXTREME STRAIGHT WIND CHARACTERISTICS AT NUCLEAR FACILITY SITES  

Broader source: Energy.gov (indexed) [DOE]

Y Y : J O H N D . S T E V E N S O N C O N S U L T I N G E N G I N E E R 6 6 1 1 R O C K S I D E R D . I N D E P E N D E N C E , O H I O 4 4 1 3 1 T E L . 2 1 6 - 4 4 7 - 9 4 4 0 E M A I L : J S T E V E N S O N 4 @ E A R T H L I N K . N E T SUMMARY OF REVISED TORNADO, HURRICANE AND EXTREME STRAIGHT WIND CHARACTERISTICS AT NUCLEAR FACILITY SITES Categorization of Natural Hazard Phenomenon and Operational Load Combinations Prior to the 1988 Uniform Building Code, UBC (1) natural hazard phenomenon (earthquake, wind, flooding and precipitation) and operational load combinations were divided into two categories: NORMAL- Loads such as dead, live and design basis pressure. Expected frequency: 1.0 per yr with a limiting acceptance criteria Allowable stress design criteria: equal to one-half to two-thirds of specified minimum yield stress. SEVERE - Natural hazard and operational transient loads.

69

Sandia National Laboratories: Wind Resources  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

EnergyWind Resources Wind Resources Comments are closed. Renewable Energy Wind Energy Wind Plant Optimization Test Site Operations & Maintenance Safety: Test Facilities Capital...

70

Data requirement comparison between the fixed site upgrade rule guidance compendium and the Structured Assessment Approach Licensee Submittal Document  

SciTech Connect (OSTI)

We compared the Structured Assessment Approach's (SAA) Licensee Submittal Document (LSD) with the Fixed Site Physical Protection Upgrade Rule Guidance Compendium Standard Format and Content (SFC) Guide using correlation matrices to see how well the data requirements of the SFC Guide coincided with those of a specific automated vulnerability assessment technique for fixed-site nuclear fuel cycle facilities, namely, SAA. We found that a limited SAA assessment is possible using the SFC Guide, but significant and critical safeguards vulnerabilities might be missed. Also, it was found that in some cases the organization and format of the SFC Guide input data and information made the preparation of data for the SAA somewhat awkward. 2 refs., 2 tabs.

Parziale, A.A.; Sacks, I.J.

1980-12-01T23:59:59.000Z

71

NREL Studies Wind Farm Aerodynamics to Improve Siting (Fact Sheet), The Spectrum of Clean Energy Innovation, NREL (National Renewable Energy Laboratory)  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Studies Wind Farm Studies Wind Farm Aerodynamics to Improve Siting NREL researchers have used high-tech instruments and high- performance computing to understand atmospheric turbulence and turbine wake behavior in order to improve wind turbine design and siting within wind farms. The knowledge gained from this research could lead to improved turbine design standards, increased productivity in large wind farms, and a lower cost of energy from wind power. This is key, because as turbines grow in size-approximately doubling in height over the past five years-they present more complex challenges to wind turbine designers and operators. To gain new insights into turbine wind wakes, NREL and the Renewable and Sustainable Energy Institute (RASEI) joined together with the National Oceanic and Atmospheric Administration (NOAA), the

72

Wind Power Opportunities in St. Thomas, USVI: A Site-Specific...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

incentives, or higher should logistics preclude the use of megawatt (MW)-scale wind turbines (for additional detail on wind power costs in the USVI see Section 3.0 and...

73

Evaluation methodology for fixed-site physical protection systems. [Safeguards Upgrade Rule  

SciTech Connect (OSTI)

A system performance evaluation methodology has been developed to aid the Nuclear Regulatory Commission (NRC) in the implementation of new regulations designed to upgrade the physical protection of nuclear fuel cycle facilities. The evaluation methodology, called Safeguards Upgrade Rule Evaluation (SURE), provides a means of explicitly incorporating measures for highly important and often difficult to quantify performance factors, e.g., installation, maintenance, training and proficiency levels, compatibility of components in subsystems, etc. This is achieved by aggregating responses to component and system questionaires through successive levels of a functional hierarchy developed for each primary performance capability specified in the regulations, 10 CFR 73.45. An overall measure of performance for each capability is the result of this aggregation process. This paper provides a descripton of SURE.

Bennett, H.A.; Olascoaga, M.T.

1980-01-01T23:59:59.000Z

74

Evaluation of WRF predicted near hub-height winds and ramp events over a Pacific Northwest site with complex terrain  

SciTech Connect (OSTI)

The WRF model version 3.3 is used to simulate near hub-height winds and power ramps utilizing three commonly used planetary boundary-layer (PBL) schemes: Mellor-Yamada-Janji? (MYJ), University of Washington (UW), and Yonsei University (YSU). The predicted winds have small mean biases compared with observations. Power ramps and step changes (changes within an hour) consistently show that the UW scheme performed better in predicting up ramps under stable conditions with higher prediction accuracy and capture rates. Both YSU and UW scheme show good performance predicting up- and down- ramps under unstable conditions with YSU being slightly better for ramp durations longer than an hour. MYJ is the most successful simulating down-ramps under stable conditions. The high wind speed and large shear associated with low-level jets are frequently associated with power ramps, and the biases in predicted low-level jet explain some of the shown differences in ramp predictions among different PBL schemes. Low-level jets were observed as low as ~200 m in altitude over the Columbia Basin Wind Energy Study (CBWES) site, located in an area of complex terrain. The shear, low-level peak wind speeds, as well as the height of maximum wind speed are not well predicted. Model simulations with 3 PBL schemes show the largest variability among them under stable conditions.

Yang, Qing; Berg, Larry K.; Pekour, Mikhail S.; Fast, Jerome D.; Newsom, Rob K.; Stoelinga, Mark; Finley, Cathy

2013-08-16T23:59:59.000Z

75

Estimated global ocean wind power potential from QuikSCAT observations, accounting for turbine characteristics and siting  

E-Print Network [OSTI]

observations, vertical wind speed profile estimation giventhe wind speed profile is reduced, increasing vertical windvertical wind shear with respect to surface layer stability. Wind speeds

Capps, Scott B; Zender, Charles S

2010-01-01T23:59:59.000Z

76

Rules Governing Water and Wastewater Operator Certification (Tennessee) |  

Broader source: Energy.gov (indexed) [DOE]

Rules Governing Water and Wastewater Operator Certification Rules Governing Water and Wastewater Operator Certification (Tennessee) Rules Governing Water and Wastewater Operator Certification (Tennessee) < Back Eligibility Agricultural Commercial Construction Developer Fuel Distributor General Public/Consumer Industrial Installer/Contractor Institutional Investor-Owned Utility Local Government Municipal/Public Utility Nonprofit Rural Electric Cooperative Schools State/Provincial Govt Systems Integrator Transportation Tribal Government Utility Savings Category Alternative Fuel Vehicles Hydrogen & Fuel Cells Buying & Making Electricity Water Home Weatherization Solar Wind Program Info State Tennessee Program Type Environmental Regulations Siting and Permitting Provider Tennessee Department Of Environment and Conservation The Rules Governing Water and Wastewater Operator Certification are

77

Effects of Temporal Wind Patterns on the Value of Wind-Generated Electricity at Different Sites in California and the Northwest  

E-Print Network [OSTI]

Modeling Utility-Scale Wind Power Plants Part 2: Capacitycapacity factor of the wind power plant during the top 10

Fripp, Matthias; Wiser, Ryan

2006-01-01T23:59:59.000Z

78

Wind Power Opportunities in St. Thomas, USVI: A Site-Specific Evaluation and Analysis  

Office of Energy Efficiency and Renewable Energy (EERE)

Utilizes a development framework to assist the USVI in identifying and understanding concrete opportunities for wind power development in the territory.

79

Model Wind Ordinance | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

You are here You are here Home » Model Wind Ordinance Model Wind Ordinance < Back Eligibility Agricultural Commercial Fed. Government Industrial Institutional Local Government Nonprofit Residential Schools State Government Utility Savings Category Wind Buying & Making Electricity Program Info State North Carolina Program Type Solar/Wind Permitting Standards Provider North Carolina Department of Commerce ''Note: This model ordinance was designed to provide guidance to local governments that wish to develop their own siting rules for wind turbines. While it was developed as part of a cooperative effort involving several state agencies, the model itself has no legal or regulatory authority.'' In July, 2008 the North Carolina Wind Working Group, a coalition of state government, non-profit and wind industry organizations, published a model

80

Wind Energy  

Broader source: Energy.gov (indexed) [DOE]

FUPWG Meeting FUPWG Meeting NREL is a national laboratory of the U.S. Department of Energy Office of Energy Efficiency and Renewable Energy operated by the Alliance for Sustainable Energy, LLC Robi Robichaud November 18, 2009 Topics Introduction Review of the Current Wind Market Drivers for Wind Development Siting g Issues Wind Resource Assessment Wind Characteristics Wind Power Potential Basic Wind Turbine Theory Basic Wind Turbine Theory Types of Wind Turbines Facts About Wind Siting Facts About Wind Siting Wind Performance 1. United States: MW 1 9 8 2 1 9 8 3 1 9 8 4 1 9 8 5 1 9 8 6 1 9 8 7 1 9 8 8 1 9 8 9 1 9 9 0 1 9 9 1 1 9 9 2 1 9 9 3 1 9 9 4 1 9 9 5 1 9 9 6 1 9 9 7 1 9 9 8 1 9 9 9 2 0 0 0 2 0 0 1 2 0 0 2 2 0 0 3 2 0 0 4 2 0 0 5 2 0 0 6 2 0 0 7 2 0 0 8 Current Status of the Wind Industry Total Global Installed Wind Capacity Total Global Installed Wind Capacity Total Global Installed Wind Capacity

Note: This page contains sample records for the topic "wind siting rules" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


81

Analyzing the Effects of Temporal Wind Patterns on the Value of Wind-Generated Electricity at Different Sites in California and the Northwest  

E-Print Network [OSTI]

and Load Data ..20 2.7.1 Northwest Powerthe TrueWind wind power data and electricity load and pricepower markets and loads. In some cases, the TrueWind and anemometer data

Fripp, Matthias; Wiser, Ryan

2006-01-01T23:59:59.000Z

82

Sandia National Laboratories: Wind Software Downloads  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

* SAND 2014-3685P * Wind software * wind tools Comments are closed. Renewable Energy Wind Energy Wind Plant Optimization Test Site Operations & Maintenance Safety: Test...

83

The Impact of Wind Power Projects on Residential Property Values in the United States: A Multi-Site Hedonic Analysis  

E-Print Network [OSTI]

2002) Economic Impacts of Wind Power in Kittitas County, WA.about Large Offshore Wind Power: Underlying Factors. EnergyOpinion on Offshore Wind Power - Interim Report. University

Hoen, Ben

2010-01-01T23:59:59.000Z

84

Estimated global ocean wind power potential from QuikSCAT observations, accounting for turbine characteristics and siting  

E-Print Network [OSTI]

envisioned floating offshore wind turbines. Finally, global35 ] For the three turbines considered, offshore wind farmsusable wind power is evaluated for modern offshore turbine

Capps, Scott B; Zender, Charles S

2010-01-01T23:59:59.000Z

85

Wind Powering America: New England Wind Forum  

Wind Powering America (EERE)

About the New England Wind Forum About the New England Wind Forum New England Wind Energy Education Project Historic Wind Development in New England State Activities Projects in New England Building Wind Energy in New England Wind Resource Wind Power Technology Economics Markets Siting Policy Technical Challenges Issues Small Wind Large Wind Newsletter Perspectives Events Quick Links to States CT MA ME NH RI VT Bookmark and Share The New England Wind Forum was conceived in 2005 as a platform to provide a single, comprehensive and objective source of up-to-date, Web-based information on a broad array of wind-energy-related issues pertaining to New England. The New England Wind Forum provides information to wind energy stakeholders through Web site features, periodic newsletters, and outreach activities. The New England Wind Forum covers the most frequently discussed wind energy topics.

86

Sandia National Laboratories: Wind Power  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Wind Energy Staff On March 24, 2011, in Wind Energy On November 10, 2010, in Wind Plant Opt. Rotor Innovation Materials, Reliability & Standards Siting & Barrier Mitigation...

87

Application Filing Requirements for Wind-Powered Electric Generation  

Broader source: Energy.gov (indexed) [DOE]

Application Filing Requirements for Wind-Powered Electric Application Filing Requirements for Wind-Powered Electric Generation Facilities (Ohio) Application Filing Requirements for Wind-Powered Electric Generation Facilities (Ohio) < Back Eligibility Commercial Developer Utility Investor-Owned Utility Municipal/Public Utility Rural Electric Cooperative Savings Category Wind Buying & Making Electricity Program Info State Ohio Program Type Siting and Permitting Provider Ohio Power Siting Board Chapter 4906-17 of the Ohio Administrative Code states the Application Filing Requirements for wind-powered electric generating facilities in Ohio. The information requested in this rule shall be used to assess the environmental effects of the proposed facility. An applicant for a certificate to site a wind-powered electric generation

88

Best Practices in Literature Research for the 10-Year Extreme Wind Update at the DOE Pantex Site  

Broader source: Energy.gov (indexed) [DOE]

Best Practices in Literature Review Best Practices in Literature Review for the 10 Year Extreme Wind Update at the DOE Pantex Site Presented by October 26, 2011 DOE Standards * DOE O 420.1 - Basis of Requirements * DOE 1020 - Soon to be updated * Development of several ANS consensus codes have replaced several older DOE standards New DOE 1020 for Wind NPH Analysis and Design Process * Step 1: Establish performance requirements for SSCs * Step 2: Calculate maximum NPH demands on SSCs resulting from NPH Events * Step 3: Design of SSCs to ensure their ability to maintain required functionality ANSI/ANS - 2.3 - 2011 Scope Establishes guidelines to estimate the frequency of occurrence and the magnitude of parameters associated with rare meteorological events such as tornadoes, hurricanes, and extreme

89

NREL: Wind Research - International Wind Resource Maps  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

projections of wind resources worldwide. This allows for more accurate siting of wind turbines and has led to the recognition of higher class winds in areas where none were...

90

Offshore wind farms as productive sites or ecological traps for gadoid fishes? Impact on growth, condition index and diet composition  

Science Journals Connector (OSTI)

Abstract With the construction of wind farms all across the North Sea, numerous artificial reefs are created. These windmill artificial reefs (WARs) harbour high abundances of fish species which can be attracted fromelsewhere or can be the result of extra production induced by these wind farms. To resolve the attractionproduction debate in suddenly altered ecosystems (cf. wind farms), the possible consequences of attraction should be assessed; thereby bearing in mind that ecological traps may arise. In this paper we investigated whether the wind farms in the Belgian part of the North Sea act as ecological traps for pouting and Atlantic cod. Length-at-age, condition and diet composition of fish present at the windmill artificial reefs was compared to local and regional sandy areas. Fish data from the period 20092012 were evaluated. Mainly I- and II-group Atlantic cod were present around the WARs; while the 0- and I-group dominated for pouting. For Atlantic cod, no differences in length were observed between sites, indicating that fitness was comparable at the \\{WARs\\} and in sandy areas. No significant differences in condition index were observed for pouting. At the WARs, they were slightly larger and stomach fullness was enhanced compared to the surrounding sandy areas. Also diet differed considerably among the sites. The outcome of the proxies indicate that fitness of pouting was slightly enhanced compared to the surrounding sandy areas. No evidence was obtained supporting the hypothesis that the \\{WARs\\} act as an ecological trap for Atlantic cod and pouting.

Jan T. Reubens; Sofie Vandendriessche; Annemie N. Zenner; Steven Degraer; Magda Vincx

2013-01-01T23:59:59.000Z

91

Stormwater Management Rules (New Jersey) | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

Rules (New Jersey) Rules (New Jersey) Stormwater Management Rules (New Jersey) < Back Eligibility Agricultural Commercial Construction Fed. Government Fuel Distributor General Public/Consumer Industrial Installer/Contractor Institutional Investor-Owned Utility Local Government Low-Income Residential Multi-Family Residential Municipal/Public Utility Nonprofit Residential Retail Supplier Rural Electric Cooperative Schools State/Provincial Govt Systems Integrator Transportation Tribal Government Utility Savings Category Alternative Fuel Vehicles Hydrogen & Fuel Cells Buying & Making Electricity Water Home Weatherization Solar Wind Program Info State New Jersey Program Type Siting and Permitting Provider State of New Jersey Department of Environmental Protection This chapter establishes general requirements for stormwater management

92

ARM - Wind Chill Calculations  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

FAQ Just for Fun Meet our Friends Cool Sites Teachers Teachers' Toolbox Lesson Plans Wind Chill Calculations Wind Chill is the apparent temperature felt on the exposed human...

93

Estimated global ocean wind power potential from QuikSCAT observations, accounting for turbine characteristics and siting  

E-Print Network [OSTI]

Evaluation of global wind power, J. Geophys. Res. , 110,2009), Global ocean wind power sensitivity to surface layerCO 2 reductions via offshore wind power matched to inherent

Capps, Scott B; Zender, Charles S

2010-01-01T23:59:59.000Z

94

Estimated global ocean wind power potential from QuikSCAT observations, accounting for turbine characteristics and siting  

E-Print Network [OSTI]

C. S. Zender (2009), Global ocean wind power sensitivity toAND ZENDER: GLOBAL OCEAN WIND POWER POTENTIAL Serpetzoglou,Estimated global ocean wind power potential from QuikSCAT

Capps, Scott B; Zender, Charles S

2010-01-01T23:59:59.000Z

95

Estimated global ocean wind power potential from QuikSCAT observations, accounting for turbine characteristics and siting  

E-Print Network [OSTI]

3. The sensitivity of wind power to height is then evaluatedthe sensitivity of wind power to height. At a height z37 ] The sensitivity of wind power to height is evaluated

Capps, Scott B; Zender, Charles S

2010-01-01T23:59:59.000Z

96

The use of real-time off-site observations as a methodology for increasing forecast skill in prediction of large wind power ramps one or more hours ahead of their impact on a wind plant.  

SciTech Connect (OSTI)

ABSTRACT Application of Real-Time Offsite Measurements in Improved Short-Term Wind Ramp Prediction Skill Improved forecasting performance immediately preceding wind ramp events is of preeminent concern to most wind energy companies, system operators, and balancing authorities. The value of near real-time hub height-level wind data and more general meteorological measurements to short-term wind power forecasting is well understood. For some sites, access to onsite measured wind data - even historical - can reduce forecast error in the short-range to medium-range horizons by as much as 50%. Unfortunately, valuable free-stream wind measurements at tall tower are not typically available at most wind plants, thereby forcing wind forecasters to rely upon wind measurements below hub height and/or turbine nacelle anemometry. Free-stream measurements can be appropriately scaled to hub-height levels, using existing empirically-derived relationships that account for surface roughness and turbulence. But there is large uncertainty in these relationships for a given time of day and state of the boundary layer. Alternatively, forecasts can rely entirely on turbine anemometry measurements, though such measurements are themselves subject to wake effects that are not stationary. The void in free-stream hub-height level measurements of wind can be filled by remote sensing (e.g., sodar, lidar, and radar). However, the expense of such equipment may not be sustainable. There is a growing market for traditional anemometry on tall tower networks, maintained by third parties to the forecasting process (i.e., independent of forecasters and the forecast users). This study examines the value of offsite tall-tower data from the WINDataNOW Technology network for short-horizon wind power predictions at a wind farm in northern Montana. The presentation shall describe successful physical and statistical techniques for its application and the practicality of its application in an operational setting. It shall be demonstrated that when used properly, the real-time offsite measurements materially improve wind ramp capture and prediction statistics, when compared to traditional wind forecasting techniques and to a simple persistence model.

Martin Wilde, Principal Investigator

2012-12-31T23:59:59.000Z

97

Carteret County - Wind Energy System Ordinance | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

Carteret County - Wind Energy System Ordinance Carteret County - Wind Energy System Ordinance Carteret County - Wind Energy System Ordinance < Back Eligibility Agricultural Commercial General Public/Consumer Industrial Institutional Local Government Multi-Family Residential Residential Schools State Government Savings Category Wind Buying & Making Electricity Program Info State North Carolina Program Type Solar/Wind Permitting Standards Provider Carteret County Carteret County passed an ordinance to specify the permitting process and establish siting requirements for wind energy systems. There are different rules and a different permitting process depending on the size and location of a system. Small systems up to 25 kilowatts (kW) are considered to be an accessory use and do not require the approval of a Wind Energy Permit

98

Wind Speed Dependence of Single-Site Wave-Height Retrievals from High-Frequency Radars  

Science Journals Connector (OSTI)

Wave-height observations derived from single-site high-frequency (HF) radar backscattered Doppler spectra are generally recognized to be less accurate than overlapping radar techniques but can provide significantly larger sampling regions. The ...

Brian K. Haus; Lynn K. Shay; Paul A. Work; George Voulgaris; Rafael J. Ramos; Jorge Martinez-Pedraja

2010-08-01T23:59:59.000Z

99

The Wind at Our Backs  

Science Journals Connector (OSTI)

...uncertainty that chills U.S. wind farm development. He...serious challenge of siting wind turbines in the United States...a community college wind training program, and...and the nation's first offshore wind project near Nantucket...

Dan Reicher

2012-05-11T23:59:59.000Z

100

Estimated global ocean wind power potential from QuikSCAT observations, accounting for turbine characteristics and siting  

E-Print Network [OSTI]

estimate of future floating turbine depths. [ 32 ] Theenvisioned floating offshore wind turbines. Finally, global

Capps, Scott B; Zender, Charles S

2010-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "wind siting rules" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


101

Residency, site fidelity and habitat use of Atlantic cod (Gadus morhua) at an offshore wind farm using acoustic telemetry  

Science Journals Connector (OSTI)

Abstract Because offshore wind energy development is fast growing in Europe it is important to investigate the changes in the marine environment and how these may influence local biodiversity and ecosystem functioning. One of the species affected by these ecosystem changes is Atlantic cod (Gadus morhua), a heavily exploited, commercially important fish species. In this research we investigated the residency, site fidelity and habitat use of Atlantic cod on a temporal scale at windmill artificial reefs in the Belgian part of the North Sea. Acoustic telemetry was used and the Vemco VR2W position system was deployed to quantify the movement behaviour. In total, 22 Atlantic cod were tagged and monitored for up to one year. Many fish were present near the artificial reefs during summer and autumn, and demonstrated strong residency and high individual detection rates. When present within the study area, Atlantic cod also showed distinct habitat selectivity. We identified aggregation near the artificial hard substrates of the wind turbines. In addition, a clear seasonal pattern in presence was observed. The high number of fish present in summer and autumn alternated with a period of very low densities during the winter period.

Jan T. Reubens; Francesca Pasotti; Steven Degraer; Magda Vincx

2013-01-01T23:59:59.000Z

102

Annotated bibliography of literature relating to wind transport of plutonium-contaminated soils at the Nevada Test Site  

SciTech Connect (OSTI)

During the period from 1954 through 1963, a number of tests were conducted on the Nevada Test Site (NTS) and Tonopah Test Range (TTR) to determine the safety of nuclear devices with respect to storage, handling, transport, and accidents. These tests were referred to as ``safety shots.`` ``Safety`` in this context meant ``safety against fission reaction.`` The safety tests were comprised of chemical high explosive detonations with components of nuclear devices. The conduct of these tests resulted in the dispersion of plutonium, and some americium over areas ranging from several tens to several hundreds of hectares. Of the various locations used for safety tests, the site referred to as ``Plutonium Valley`` was subject to a significant amount of plutonium contamination. Plutonium Valley is located in Area 11 on the eastern boundary of the NTS at an elevation of about 1036 m (3400 ft). Plutonium Valley was the location of four safety tests (A,B,C, and D) conducted during 1956. A major environmental, health, and safety concern is the potential for inhalation of Pu{sup 239,240} by humans as a result of airborne dust containing Pu particles. Thus, the wind transport of Pu{sup 239,240} particles has been the subject of considerable research. This annotated bibliography was created as a reference guide to assist in the better understanding of the environmental characteristics of Plutonium Valley, the safety tests performed there, the processes and variables involved with the wind transport of dust, and as an overview of proposed clean-up procedures.

Lancaster, N.; Bamford, R.

1993-12-01T23:59:59.000Z

103

New England Wind Forum: Wind Power Economics  

Wind Powering America (EERE)

State Activities Projects in New England Building Wind Energy in New England Wind Resource Wind Power Technology Economics Cost Components Determining Factors Influencing Wind Economics in New England How does wind compare to the cost of other electricity options? Markets Siting Policy Technical Challenges Issues Small Wind Large Wind Newsletter Perspectives Events Quick Links to States CT MA ME NH RI VT Bookmark and Share Wind Power Economics Long-Term Cost Trends Since the first major installations of commercial-scale wind turbines in the 1980s, the cost of energy from wind power projects has decreased substantially due to larger turbine generators, towers, and rotor lengths; scale economies associated with larger projects; improvements in manufacturing efficiency, and technological advances in turbine generator and blade design. These technological advances have allowed for higher generating capacities per turbine and more efficient capture of wind, especially at lower wind speeds.

104

The Impact of Wind Power Projects on Residential Property Values in the United States: A Multi-Site Hedonic Analysis  

E-Print Network [OSTI]

towers are not visible (Des-Rosiers, 2002) and, similarly, decreases in annoyance with wind facility sounds if turbines

Hoen, Ben

2010-01-01T23:59:59.000Z

105

New England Wind Forum: New England Wind Resources  

Wind Powering America (EERE)

New England Wind Forum About the New England Wind Forum New England Wind Energy Education Project Historic Wind Development in New England State Activities Projects in New England Building Wind Energy in New England Wind Resources Wind Power Technology Economics Markets Siting Policy Technical Challenges Issues Small Wind Large Wind Newsletter Perspectives Events Quick Links to States CT MA ME NH RI VT Bookmark and Share New England Wind Resources Go to the Vermont wind resource map. Go to the New Hampshire wind resource map. Go to the Maine wind resource map. Go to the Massachusetts wind resource map. Go to the Connecticut wind resource map. Go to the Rhode Island wind resource map. New England Wind Resource Maps Wind resources maps of Connecticut, Massachusetts, Maine, New Hampshire, Rhode Island, and Vermont.

106

Coastal Permit Program Rules (New Jersey) | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

Coastal Permit Program Rules (New Jersey) Coastal Permit Program Rules (New Jersey) Coastal Permit Program Rules (New Jersey) < Back Eligibility Utility Fed. Government Commercial Agricultural Investor-Owned Utility State/Provincial Govt Industrial Construction Municipal/Public Utility Local Government Residential Installer/Contractor Rural Electric Cooperative Tribal Government Low-Income Residential Schools Retail Supplier Institutional Multi-Family Residential Systems Integrator Fuel Distributor Nonprofit General Public/Consumer Transportation Savings Category Alternative Fuel Vehicles Hydrogen & Fuel Cells Buying & Making Electricity Water Home Weatherization Solar Wind Program Info State New Jersey Program Type Siting and Permitting Provider Department of Environmental Protection The Coastal Permit Program Rules provide the processes for permit reviews.

107

2010 Wind Technologies Market Report  

E-Print Network [OSTI]

Fish and Wildlife Service?s Draft Land- Based Wind Energywildlife impacts are addressed in the planning, siting, and permitting process for wind

Wiser, Ryan

2012-01-01T23:59:59.000Z

108

New England Wind Forum: Small Wind  

Wind Powering America (EERE)

Wind for Schools Project Funding Case Studies: Thomas Harrison Middle School, Virginia Wind for Schools Project Funding Case Studies: Thomas Harrison Middle School, Virginia August 26, 2013 Workshop Explores Information's Role in Wind Project Siting: A Wind Powering America Success Story November 19, 2012 More News Subscribe to News Updates Events Renewable Energy Market Update Webinar January 29, 2014 Strategic Energy Planning: Webinar February 26, 2014 Introduction to Wind Systems March 10, 2014 More Events Publications 2012 Market Report on Wind Technologies in Distributed Applications August 12, 2013 More Publications Features Sign up for the New England Wind Forum Newsletter. New England Wind Forum About the New England Wind Forum New England Wind Energy Education Project Historic Wind Development in New England State Activities Projects in New England

109

Wind Powering America: Wind Events  

Wind Powering America (EERE)

calendar.asp Lists upcoming wind calendar.asp Lists upcoming wind power-related events. en-us julie.jones@nrel.gov (Julie Jones) http://www.windpoweringamerica.gov/images/wpa_logo_sm.jpg Wind Powering America: Wind Events http://www.windpoweringamerica.gov/calendar.asp Pennsylvania Wind for Schools Educator Workshop https://www.regonline.com/builder/site/Default.aspx?EventID=1352684 http://www.windpoweringamerica.gov/filter_detail.asp?itemid=4068 Wed, 4 Dec 2013 00:00:00 MST 2014 Joint Action Workshop http://www.windpoweringamerica.gov/filter_detail.asp?itemid=3996 http://www.windpoweringamerica.gov/filter_detail.asp?itemid=3996 Mon, 21 Oct 2013 00:00:00 MST AWEA Wind Project Operations and Maintenance and Safety Seminar http://www.windpoweringamerica.gov/filter_detail.asp?itemid=4009 http://www.windpoweringamerica.gov/filter_detail.asp?itemid=4009 Mon, 21

110

WP2 IEA Wind Task 26:The Past and Future Cost of Wind Energy  

E-Print Network [OSTI]

Energy Efficiency and Renewable Energy, Wind and HydropowerSpeed Sites. European Wind Energy Association. Marseille,Innovation and the price of wind energy in the US. Energy

Lantz, Eric

2014-01-01T23:59:59.000Z

111

WP2 IEA Wind Task 26:The Past and Future Cost of Wind Energy  

E-Print Network [OSTI]

Speed Sites. European Wind Energy Association. Marseille,Innovation and the price of wind energy in the US. EnergyThe Economics of Wind Energy. Renewable and Sustainable

Lantz, Eric

2014-01-01T23:59:59.000Z

112

New England Wind Forum: New England Wind Projects  

Wind Powering America (EERE)

Projects in New England Building Wind Energy in New England Wind Resource Wind Power Technology Economics Markets Siting Policy Technical Challenges Issues Small Wind Large Wind Newsletter Perspectives Events Quick Links to States CT MA ME NH RI VT Bookmark and Share New England Wind Projects This page shows the location of installed and planned New England wind projects. Find windfarms, community-scale wind projects, customer-sited wind projects, small wind projects, and offshore wind projects. Read more information about how to use the Google Map and how to add your wind project to the map. Text version New England Wind Energy Projects Connecticut, East Canaan Wind Connecticut, Klug Farm Connecticut, Phoenix Press Connecticut, Wind Colebrook (South and North)

113

Sandia National Laboratories: Offshore Wind  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

EnergyOffshore Wind Offshore Wind Sandia executes several projects in support of the DOE Offshore Wind program, which address unique R&D needs related to offshore siting and, in...

114

Model Wind Energy Facility Ordinance | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

Energy Facility Ordinance Energy Facility Ordinance Model Wind Energy Facility Ordinance < Back Eligibility Agricultural Commercial Fed. Government Industrial Institutional Local Government Nonprofit Residential Schools State Government Savings Category Wind Buying & Making Electricity Program Info State Maine Program Type Solar/Wind Permitting Standards Provider Land Use Planning Note: This model ordinance was designed to provide guidance to local governments that wish to develop their own siting rules for wind turbines. While it was developed as part of a cooperative effort involving several state agencies, the model itself has no legal or regulatory authority. In 2008, the Governor's Task Force on Wind Power Development issued its final report. One of the Task Force's recommendations was that the State

115

Guidance for Local Wind Energy Ordinances | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

You are here You are here Home » Guidance for Local Wind Energy Ordinances Guidance for Local Wind Energy Ordinances < Back Eligibility Agricultural Commercial Fed. Government Industrial Institutional Local Government Nonprofit Residential Schools State Government Tribal Government Savings Category Wind Buying & Making Electricity Program Info State New York Program Type Solar/Wind Permitting Standards Provider New York State Energy Research and Development Authority Note: The documents described in this summary were designed to provide guidance to local governments that wish to develop their own siting rules for wind turbines. While they were developed under contract with the New York State Energy Research and Development Authority (NYSERDA), a state agency, none of the documents themselves have any legal or regulatory

116

Model Wind Ordinance for Local Governments | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

Ordinance for Local Governments Ordinance for Local Governments Model Wind Ordinance for Local Governments < Back Eligibility Agricultural Commercial Fed. Government Industrial Institutional Local Government Nonprofit Schools State Government Savings Category Wind Buying & Making Electricity Program Info State Pennsylvania Program Type Solar/Wind Permitting Standards Provider Pennsylvania Department of Environmental Protection Note: This model ordinance was designed to provide guidance to local governments that wish to develop their own siting rules for wind turbines. While it was developed as part of a cooperative effort involving several state agencies, the model itself has no legal or regulatory authority. In 2006, Pennsylvania developed a model local ordinance for wind energy facilities through a collaborative effort involving several state

117

GSA Wind Supply Opportunity  

Office of Environmental Management (EM)

Wind Supply Opportunity 1 2 3 Proposed Location * Size: 100-210 MegaWatts *Location: Bureau County, IL *Planned COD: December 2014 or 2015 *Site Control: 17,000 acres *Wind...

118

Wind Powering America  

Wind Powering America (EERE)

These news items are notable additions These news items are notable additions to the Wind Powering America Web site. The Wind Powering America Web site reports recent national and state wind market changes by cataloging wind activities such as wind resource maps, small wind consumer's guides, local wind workshops, news articles, and publications in the areas of policy, public power, small wind, Native Americans, agricultural sector, economic development, public lands, and schools. en-us julie.jones@nrel.gov (Julie Jones) http://www.windpoweringamerica.gov/images/wpa_logo_sm.jpg Wind Powering America http://www.windpoweringamerica.gov/ Nominate an Electric Cooperative for Wind Power Leadership Award by January 15 http://www.windpoweringamerica.gov/filter_detail.asp?itemid=4076 http://www.windpoweringamerica.gov/filter_detail.asp?itemid=4076 Mon, 16

119

The Impact of Wind Power Projects on Residential Property Values in the United States: A Multi-Site Hedonic Analysis  

E-Print Network [OSTI]

and Annoyance due to Wind Turbine Noise: A Dose-Responsewind turbine, for example, might also have an impact if various nuisance effects are prominent, such as turbine noise,

Hoen, Ben

2010-01-01T23:59:59.000Z

120

2010 Wind Technologies Market Report  

E-Print Network [OSTI]

wind energy in some quarters, planning, siting, and permitting can be challenging, as demonstrated in the long history

Wiser, Ryan

2012-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "wind siting rules" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


121

Permit by Rule for Small Renewable Energy Projects (Virginia) | Department  

Broader source: Energy.gov (indexed) [DOE]

Permit by Rule for Small Renewable Energy Projects (Virginia) Permit by Rule for Small Renewable Energy Projects (Virginia) Permit by Rule for Small Renewable Energy Projects (Virginia) < Back Eligibility Commercial Construction Developer Industrial Investor-Owned Utility Local Government Municipal/Public Utility Rural Electric Cooperative State/Provincial Govt Systems Integrator Tribal Government Utility Savings Category Alternative Fuel Vehicles Hydrogen & Fuel Cells Buying & Making Electricity Water Home Weatherization Solar Wind Program Info State Virginia Program Type Siting and Permitting Provider Virginia Department of Environmental Quality In 2009, the Virginia General Assembly enacted legislation directing the Virginia Department of Environmental Quality to develop regulations for the construction and operation of renewable energy projects of 100 megawatts

122

Wind energy analysis system .  

E-Print Network [OSTI]

??One of the most important steps to be taken before a site is to be selected for the extraction of wind energy is the analysis (more)

Koegelenberg, Johan

2014-01-01T23:59:59.000Z

123

Cogeneration Rules (Arkansas) | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

Cogeneration Rules (Arkansas) Cogeneration Rules (Arkansas) Cogeneration Rules (Arkansas) < Back Eligibility Commercial Industrial Installer/Contractor Investor-Owned Utility Municipal/Public Utility Retail Supplier Rural Electric Cooperative Systems Integrator Utility Savings Category Alternative Fuel Vehicles Hydrogen & Fuel Cells Buying & Making Electricity Water Home Weatherization Solar Wind Program Info State Arkansas Program Type Generating Facility Rate-Making Interconnection Provider Arkansas Public Service Commission The Cogeneration Rules are enforced by the Arkansas Public Service Commission. These rules are designed to ensure that all power producers looking to sell their power to residents of Arkansas are necessary, benefit the public and are environmentally friendly. Under these rules new

124

Ground Water Management District Rules | Open Energy Information  

Open Energy Info (EERE)

District Rules Jump to: navigation, search OpenEI Reference LibraryAdd to library Web Site: Ground Water Management District Rules Abstract This webpage provides information...

125

NREL: Wind Research - Projects  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Projects Projects NREL's wind energy research and development projects focus on reducing the cost of wind technology and expanding access to wind energy sites. Our specialized technical expertise, comprehensive design and analysis tools, and unique testing facilities help industry overcome challenges to bringing new wind technology to the marketplace. Some of these success stories are described in NREL's Wind R&D Success Stories. We also work closely with universities and other national laboratories supporting fundamental research in wind technologies, including aerodynamics, aeroacoustics, and material sciences essential in the development of new blade technologies and advanced controls, power electronics, and testing to further refine drivetrain topology.

126

EA-1914: National Renewable Energy Laboratory (NREL) National Wind Technology Center (NWTC) Site-Wide Environmental Assessment, Golden, Colorado  

Broader source: Energy.gov [DOE]

This Site-Wide EA evaluates the environmental impacts of reasonably foreseeable activities at NWTC. Currently, natural resource surveys are in progress including wildlife, vegetation, avian, and bat surveys to establish baseline conditions of the NWTC. The proposed EA would address any changes in the regional environment that may have occurred since the previous EA and would evaluate new site development proposals and operations. A site-wide review provides an overall NEPA baseline that is useful for tiering or as a reference when preparing project-specific NEPA reviews.

127

Nebraska/Wind Resources | Open Energy Information  

Open Energy Info (EERE)

Nebraska/Wind Resources Nebraska/Wind Resources < Nebraska Jump to: navigation, search Print PDF Print Full Version WIND ENERGY STAKEHOLDER ENGAGEMENT & OUTREACHSmall Wind Guidebook Home OpenEI Home >> Wind >> Small Wind Guidebook >> Nebraska Wind Resources WindTurbine-icon.png Small Wind Guidebook * Introduction * First, How Can I Make My Home More Energy Efficient? * Is Wind Energy Practical for Me? * What Size Wind Turbine Do I Need? * What Are the Basic Parts of a Small Wind Electric System? * What Do Wind Systems Cost? * Where Can I Find Installation and Maintenance Support? * How Much Energy Will My System Generate? * Is There Enough Wind on My Site? * How Do I Choose the Best Site for My Wind Turbine? * Can I Connect My System to the Utility Grid? * Can I Go Off-Grid?

128

Alabama/Wind Resources | Open Energy Information  

Open Energy Info (EERE)

Alabama/Wind Resources Alabama/Wind Resources < Alabama Jump to: navigation, search Print PDF Print Full Version WIND ENERGY STAKEHOLDER ENGAGEMENT & OUTREACHSmall Wind Guidebook Home OpenEI Home >> Wind >> Small Wind Guidebook >> Alabama Wind Resources WindTurbine-icon.png Small Wind Guidebook * Introduction * First, How Can I Make My Home More Energy Efficient? * Is Wind Energy Practical for Me? * What Size Wind Turbine Do I Need? * What Are the Basic Parts of a Small Wind Electric System? * What Do Wind Systems Cost? * Where Can I Find Installation and Maintenance Support? * How Much Energy Will My System Generate? * Is There Enough Wind on My Site? * How Do I Choose the Best Site for My Wind Turbine? * Can I Connect My System to the Utility Grid? * Can I Go Off-Grid?

129

Florida/Wind Resources | Open Energy Information  

Open Energy Info (EERE)

Florida/Wind Resources Florida/Wind Resources < Florida Jump to: navigation, search Print PDF Print Full Version WIND ENERGY STAKEHOLDER ENGAGEMENT & OUTREACHSmall Wind Guidebook Home OpenEI Home >> Wind >> Small Wind Guidebook >> Florida Wind Resources WindTurbine-icon.png Small Wind Guidebook * Introduction * First, How Can I Make My Home More Energy Efficient? * Is Wind Energy Practical for Me? * What Size Wind Turbine Do I Need? * What Are the Basic Parts of a Small Wind Electric System? * What Do Wind Systems Cost? * Where Can I Find Installation and Maintenance Support? * How Much Energy Will My System Generate? * Is There Enough Wind on My Site? * How Do I Choose the Best Site for My Wind Turbine? * Can I Connect My System to the Utility Grid? * Can I Go Off-Grid?

130

Vermont/Wind Resources | Open Energy Information  

Open Energy Info (EERE)

Vermont/Wind Resources Vermont/Wind Resources < Vermont Jump to: navigation, search Print PDF Print Full Version WIND ENERGY STAKEHOLDER ENGAGEMENT & OUTREACHSmall Wind Guidebook Home OpenEI Home >> Wind >> Small Wind Guidebook >> Vermont Wind Resources WindTurbine-icon.png Small Wind Guidebook * Introduction * First, How Can I Make My Home More Energy Efficient? * Is Wind Energy Practical for Me? * What Size Wind Turbine Do I Need? * What Are the Basic Parts of a Small Wind Electric System? * What Do Wind Systems Cost? * Where Can I Find Installation and Maintenance Support? * How Much Energy Will My System Generate? * Is There Enough Wind on My Site? * How Do I Choose the Best Site for My Wind Turbine? * Can I Connect My System to the Utility Grid? * Can I Go Off-Grid?

131

Wisconsin/Wind Resources | Open Energy Information  

Open Energy Info (EERE)

Wisconsin/Wind Resources Wisconsin/Wind Resources < Wisconsin Jump to: navigation, search Print PDF Print Full Version WIND ENERGY STAKEHOLDER ENGAGEMENT & OUTREACHSmall Wind Guidebook Home OpenEI Home >> Wind >> Small Wind Guidebook >> Wisconsin Wind Resources WindTurbine-icon.png Small Wind Guidebook * Introduction * First, How Can I Make My Home More Energy Efficient? * Is Wind Energy Practical for Me? * What Size Wind Turbine Do I Need? * What Are the Basic Parts of a Small Wind Electric System? * What Do Wind Systems Cost? * Where Can I Find Installation and Maintenance Support? * How Much Energy Will My System Generate? * Is There Enough Wind on My Site? * How Do I Choose the Best Site for My Wind Turbine? * Can I Connect My System to the Utility Grid? * Can I Go Off-Grid?

132

Idaho/Wind Resources | Open Energy Information  

Open Energy Info (EERE)

Idaho/Wind Resources Idaho/Wind Resources < Idaho Jump to: navigation, search Print PDF Print Full Version WIND ENERGY STAKEHOLDER ENGAGEMENT & OUTREACHSmall Wind Guidebook Home OpenEI Home >> Wind >> Small Wind Guidebook >> Idaho Wind Resources WindTurbine-icon.png Small Wind Guidebook * Introduction * First, How Can I Make My Home More Energy Efficient? * Is Wind Energy Practical for Me? * What Size Wind Turbine Do I Need? * What Are the Basic Parts of a Small Wind Electric System? * What Do Wind Systems Cost? * Where Can I Find Installation and Maintenance Support? * How Much Energy Will My System Generate? * Is There Enough Wind on My Site? * How Do I Choose the Best Site for My Wind Turbine? * Can I Connect My System to the Utility Grid? * Can I Go Off-Grid?

133

Missouri/Wind Resources | Open Energy Information  

Open Energy Info (EERE)

Missouri/Wind Resources Missouri/Wind Resources < Missouri Jump to: navigation, search Print PDF Print Full Version WIND ENERGY STAKEHOLDER ENGAGEMENT & OUTREACHSmall Wind Guidebook Home OpenEI Home >> Wind >> Small Wind Guidebook >> Missouri Wind Resources WindTurbine-icon.png Small Wind Guidebook * Introduction * First, How Can I Make My Home More Energy Efficient? * Is Wind Energy Practical for Me? * What Size Wind Turbine Do I Need? * What Are the Basic Parts of a Small Wind Electric System? * What Do Wind Systems Cost? * Where Can I Find Installation and Maintenance Support? * How Much Energy Will My System Generate? * Is There Enough Wind on My Site? * How Do I Choose the Best Site for My Wind Turbine? * Can I Connect My System to the Utility Grid? * Can I Go Off-Grid?

134

Iowa/Wind Resources | Open Energy Information  

Open Energy Info (EERE)

Iowa/Wind Resources Iowa/Wind Resources < Iowa Jump to: navigation, search Print PDF Print Full Version WIND ENERGY STAKEHOLDER ENGAGEMENT & OUTREACHSmall Wind Guidebook Home OpenEI Home >> Wind >> Small Wind Guidebook >> Iowa Wind Resources WindTurbine-icon.png Small Wind Guidebook * Introduction * First, How Can I Make My Home More Energy Efficient? * Is Wind Energy Practical for Me? * What Size Wind Turbine Do I Need? * What Are the Basic Parts of a Small Wind Electric System? * What Do Wind Systems Cost? * Where Can I Find Installation and Maintenance Support? * How Much Energy Will My System Generate? * Is There Enough Wind on My Site? * How Do I Choose the Best Site for My Wind Turbine? * Can I Connect My System to the Utility Grid? * Can I Go Off-Grid?

135

Maryland/Wind Resources | Open Energy Information  

Open Energy Info (EERE)

Maryland/Wind Resources Maryland/Wind Resources < Maryland Jump to: navigation, search Print PDF Print Full Version WIND ENERGY STAKEHOLDER ENGAGEMENT & OUTREACHSmall Wind Guidebook Home OpenEI Home >> Wind >> Small Wind Guidebook >> Maryland Wind Resources WindTurbine-icon.png Small Wind Guidebook * Introduction * First, How Can I Make My Home More Energy Efficient? * Is Wind Energy Practical for Me? * What Size Wind Turbine Do I Need? * What Are the Basic Parts of a Small Wind Electric System? * What Do Wind Systems Cost? * Where Can I Find Installation and Maintenance Support? * How Much Energy Will My System Generate? * Is There Enough Wind on My Site? * How Do I Choose the Best Site for My Wind Turbine? * Can I Connect My System to the Utility Grid? * Can I Go Off-Grid?

136

Massachusetts/Wind Resources | Open Energy Information  

Open Energy Info (EERE)

Massachusetts/Wind Resources Massachusetts/Wind Resources < Massachusetts Jump to: navigation, search Print PDF Print Full Version WIND ENERGY STAKEHOLDER ENGAGEMENT & OUTREACHSmall Wind Guidebook Home OpenEI Home >> Wind >> Small Wind Guidebook >> Massachusetts Wind Resources WindTurbine-icon.png Small Wind Guidebook * Introduction * First, How Can I Make My Home More Energy Efficient? * Is Wind Energy Practical for Me? * What Size Wind Turbine Do I Need? * What Are the Basic Parts of a Small Wind Electric System? * What Do Wind Systems Cost? * Where Can I Find Installation and Maintenance Support? * How Much Energy Will My System Generate? * Is There Enough Wind on My Site? * How Do I Choose the Best Site for My Wind Turbine? * Can I Connect My System to the Utility Grid?

137

Minnesota/Wind Resources | Open Energy Information  

Open Energy Info (EERE)

Minnesota/Wind Resources Minnesota/Wind Resources < Minnesota Jump to: navigation, search Print PDF Print Full Version WIND ENERGY STAKEHOLDER ENGAGEMENT & OUTREACHSmall Wind Guidebook Home OpenEI Home >> Wind >> Small Wind Guidebook >> Minnesota Wind Resources WindTurbine-icon.png Small Wind Guidebook * Introduction * First, How Can I Make My Home More Energy Efficient? * Is Wind Energy Practical for Me? * What Size Wind Turbine Do I Need? * What Are the Basic Parts of a Small Wind Electric System? * What Do Wind Systems Cost? * Where Can I Find Installation and Maintenance Support? * How Much Energy Will My System Generate? * Is There Enough Wind on My Site? * How Do I Choose the Best Site for My Wind Turbine? * Can I Connect My System to the Utility Grid? * Can I Go Off-Grid?

138

Pennsylvania/Wind Resources | Open Energy Information  

Open Energy Info (EERE)

Pennsylvania/Wind Resources Pennsylvania/Wind Resources < Pennsylvania Jump to: navigation, search Print PDF Print Full Version WIND ENERGY STAKEHOLDER ENGAGEMENT & OUTREACHSmall Wind Guidebook Home OpenEI Home >> Wind >> Small Wind Guidebook >> Pennsylvania Wind Resources WindTurbine-icon.png Small Wind Guidebook * Introduction * First, How Can I Make My Home More Energy Efficient? * Is Wind Energy Practical for Me? * What Size Wind Turbine Do I Need? * What Are the Basic Parts of a Small Wind Electric System? * What Do Wind Systems Cost? * Where Can I Find Installation and Maintenance Support? * How Much Energy Will My System Generate? * Is There Enough Wind on My Site? * How Do I Choose the Best Site for My Wind Turbine? * Can I Connect My System to the Utility Grid?

139

Hawaii/Wind Resources | Open Energy Information  

Open Energy Info (EERE)

Hawaii/Wind Resources Hawaii/Wind Resources < Hawaii Jump to: navigation, search Print PDF Print Full Version WIND ENERGY STAKEHOLDER ENGAGEMENT & OUTREACHSmall Wind Guidebook Home OpenEI Home >> Wind >> Small Wind Guidebook >> Hawaii Wind Resources WindTurbine-icon.png Small Wind Guidebook * Introduction * First, How Can I Make My Home More Energy Efficient? * Is Wind Energy Practical for Me? * What Size Wind Turbine Do I Need? * What Are the Basic Parts of a Small Wind Electric System? * What Do Wind Systems Cost? * Where Can I Find Installation and Maintenance Support? * How Much Energy Will My System Generate? * Is There Enough Wind on My Site? * How Do I Choose the Best Site for My Wind Turbine? * Can I Connect My System to the Utility Grid? * Can I Go Off-Grid?

140

Alaska/Wind Resources | Open Energy Information  

Open Energy Info (EERE)

Alaska/Wind Resources Alaska/Wind Resources < Alaska Jump to: navigation, search Print PDF Print Full Version WIND ENERGY STAKEHOLDER ENGAGEMENT & OUTREACHSmall Wind Guidebook Home OpenEI Home >> Wind >> Small Wind Guidebook >> Alaska Wind Resources WindTurbine-icon.png Small Wind Guidebook * Introduction * First, How Can I Make My Home More Energy Efficient? * Is Wind Energy Practical for Me? * What Size Wind Turbine Do I Need? * What Are the Basic Parts of a Small Wind Electric System? * What Do Wind Systems Cost? * Where Can I Find Installation and Maintenance Support? * How Much Energy Will My System Generate? * Is There Enough Wind on My Site? * How Do I Choose the Best Site for My Wind Turbine? * Can I Connect My System to the Utility Grid? * Can I Go Off-Grid?

Note: This page contains sample records for the topic "wind siting rules" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


141

Wyoming/Wind Resources | Open Energy Information  

Open Energy Info (EERE)

Wyoming/Wind Resources Wyoming/Wind Resources < Wyoming Jump to: navigation, search Print PDF Print Full Version WIND ENERGY STAKEHOLDER ENGAGEMENT & OUTREACHSmall Wind Guidebook Home OpenEI Home >> Wind >> Small Wind Guidebook >> Wyoming Wind Resources WindTurbine-icon.png Small Wind Guidebook * Introduction * First, How Can I Make My Home More Energy Efficient? * Is Wind Energy Practical for Me? * What Size Wind Turbine Do I Need? * What Are the Basic Parts of a Small Wind Electric System? * What Do Wind Systems Cost? * Where Can I Find Installation and Maintenance Support? * How Much Energy Will My System Generate? * Is There Enough Wind on My Site? * How Do I Choose the Best Site for My Wind Turbine? * Can I Connect My System to the Utility Grid? * Can I Go Off-Grid?

142

Nevada/Wind Resources | Open Energy Information  

Open Energy Info (EERE)

Nevada/Wind Resources Nevada/Wind Resources < Nevada Jump to: navigation, search Print PDF Print Full Version WIND ENERGY STAKEHOLDER ENGAGEMENT & OUTREACHSmall Wind Guidebook Home OpenEI Home >> Wind >> Small Wind Guidebook >> Nevada Wind Resources WindTurbine-icon.png Small Wind Guidebook * Introduction * First, How Can I Make My Home More Energy Efficient? * Is Wind Energy Practical for Me? * What Size Wind Turbine Do I Need? * What Are the Basic Parts of a Small Wind Electric System? * What Do Wind Systems Cost? * Where Can I Find Installation and Maintenance Support? * How Much Energy Will My System Generate? * Is There Enough Wind on My Site? * How Do I Choose the Best Site for My Wind Turbine? * Can I Connect My System to the Utility Grid? * Can I Go Off-Grid?

143

Kansas/Wind Resources | Open Energy Information  

Open Energy Info (EERE)

Kansas/Wind Resources Kansas/Wind Resources < Kansas Jump to: navigation, search Print PDF Print Full Version WIND ENERGY STAKEHOLDER ENGAGEMENT & OUTREACHSmall Wind Guidebook Home OpenEI Home >> Wind >> Small Wind Guidebook >> Kansas Wind Resources WindTurbine-icon.png Small Wind Guidebook * Introduction * First, How Can I Make My Home More Energy Efficient? * Is Wind Energy Practical for Me? * What Size Wind Turbine Do I Need? * What Are the Basic Parts of a Small Wind Electric System? * What Do Wind Systems Cost? * Where Can I Find Installation and Maintenance Support? * How Much Energy Will My System Generate? * Is There Enough Wind on My Site? * How Do I Choose the Best Site for My Wind Turbine? * Can I Connect My System to the Utility Grid? * Can I Go Off-Grid?

144

Washington/Wind Resources | Open Energy Information  

Open Energy Info (EERE)

Washington/Wind Resources Washington/Wind Resources < Washington Jump to: navigation, search Print PDF Print Full Version WIND ENERGY STAKEHOLDER ENGAGEMENT & OUTREACHSmall Wind Guidebook Home OpenEI Home >> Wind >> Small Wind Guidebook >> Washington Wind Resources WindTurbine-icon.png Small Wind Guidebook * Introduction * First, How Can I Make My Home More Energy Efficient? * Is Wind Energy Practical for Me? * What Size Wind Turbine Do I Need? * What Are the Basic Parts of a Small Wind Electric System? * What Do Wind Systems Cost? * Where Can I Find Installation and Maintenance Support? * How Much Energy Will My System Generate? * Is There Enough Wind on My Site? * How Do I Choose the Best Site for My Wind Turbine? * Can I Connect My System to the Utility Grid?

145

Louisiana/Wind Resources | Open Energy Information  

Open Energy Info (EERE)

Louisiana/Wind Resources Louisiana/Wind Resources < Louisiana Jump to: navigation, search Print PDF Print Full Version WIND ENERGY STAKEHOLDER ENGAGEMENT & OUTREACHSmall Wind Guidebook Home OpenEI Home >> Wind >> Small Wind Guidebook >> Louisiana Wind Resources WindTurbine-icon.png Small Wind Guidebook * Introduction * First, How Can I Make My Home More Energy Efficient? * Is Wind Energy Practical for Me? * What Size Wind Turbine Do I Need? * What Are the Basic Parts of a Small Wind Electric System? * What Do Wind Systems Cost? * Where Can I Find Installation and Maintenance Support? * How Much Energy Will My System Generate? * Is There Enough Wind on My Site? * How Do I Choose the Best Site for My Wind Turbine? * Can I Connect My System to the Utility Grid? * Can I Go Off-Grid?

146

Oregon/Wind Resources | Open Energy Information  

Open Energy Info (EERE)

Oregon/Wind Resources Oregon/Wind Resources < Oregon Jump to: navigation, search Print PDF Print Full Version WIND ENERGY STAKEHOLDER ENGAGEMENT & OUTREACHSmall Wind Guidebook Home OpenEI Home >> Wind >> Small Wind Guidebook >> Oregon Wind Resources WindTurbine-icon.png Small Wind Guidebook * Introduction * First, How Can I Make My Home More Energy Efficient? * Is Wind Energy Practical for Me? * What Size Wind Turbine Do I Need? * What Are the Basic Parts of a Small Wind Electric System? * What Do Wind Systems Cost? * Where Can I Find Installation and Maintenance Support? * How Much Energy Will My System Generate? * Is There Enough Wind on My Site? * How Do I Choose the Best Site for My Wind Turbine? * Can I Connect My System to the Utility Grid? * Can I Go Off-Grid?

147

Kentucky/Wind Resources | Open Energy Information  

Open Energy Info (EERE)

Kentucky/Wind Resources Kentucky/Wind Resources < Kentucky Jump to: navigation, search Print PDF Print Full Version WIND ENERGY STAKEHOLDER ENGAGEMENT & OUTREACHSmall Wind Guidebook Home OpenEI Home >> Wind >> Small Wind Guidebook >> Kentucky Wind Resources WindTurbine-icon.png Small Wind Guidebook * Introduction * First, How Can I Make My Home More Energy Efficient? * Is Wind Energy Practical for Me? * What Size Wind Turbine Do I Need? * What Are the Basic Parts of a Small Wind Electric System? * What Do Wind Systems Cost? * Where Can I Find Installation and Maintenance Support? * How Much Energy Will My System Generate? * Is There Enough Wind on My Site? * How Do I Choose the Best Site for My Wind Turbine? * Can I Connect My System to the Utility Grid? * Can I Go Off-Grid?

148

Rule Engine.  

E-Print Network [OSTI]

?? This project is a study of the development of the Rule Engine, which is a validation system for quality assurance of product data used (more)

Eriksen, ystein

2007-01-01T23:59:59.000Z

149

New England Wind Forum: New England Wind Forum Newsletter  

Wind Powering America (EERE)

Projects in New England Building Wind Energy in New England Wind Resource Wind Power Technology Economics Markets Siting Policy Technical Challenges Issues Small Wind Large Wind Newsletter Perspectives Events Quick Links to States CT MA ME NH RI VT Bookmark and Share New England Wind Forum Newsletter Follow news from the New England Wind Forum by subscribing to its newsletter. Newsletter The New England Wind Forum Newsletter informs stakeholders of New England Wind Energy Education Project announcements, plus, events, project, siting, and policy updates. Enter your email address below to begin the registration process. After you subscribe to the New England Wind Forum Newsletter, you can choose to subscribe to other energy efficiency and renewable energy news. Archived copies of this e-newsletter are not available, but all of the news items can be found on this website under news, events, and publications. If you have ideas or news items to contribute for future issues, please contact Sustainable Energy Advantage.

150

New England Wind Forum: Building Wind Energy in New England  

Wind Powering America (EERE)

Projects in New England Building Wind Energy in New England Wind Resource Wind Power Technology Economics Markets Siting Policy Technical Challenges Issues Small Wind Large Wind Newsletter Perspectives Events Quick Links to States CT MA ME NH RI VT Bookmark and Share Building Wind Energy in New England Many factors influence the ability to develop wind power in the New England region. A viable project requires the right site and the right technology for the application. It must provide suitable revenue or economic value to justify investment in this capital-intensive but zero-fuel technology. Policy initiatives are in place throughout the region to support the expansion of wind power's role in the regional supply mix. However, issues affecting public acceptance of wind projects in host communities must be addressed. Information on topics affecting wind power development in New England can be found by using the navigation to the left.

151

Standards for Municipal Small Wind Regulations and Small Wind Model Wind  

Broader source: Energy.gov (indexed) [DOE]

Standards for Municipal Small Wind Regulations and Small Wind Model Standards for Municipal Small Wind Regulations and Small Wind Model Wind Ordinance Standards for Municipal Small Wind Regulations and Small Wind Model Wind Ordinance < Back Eligibility Agricultural Commercial Fed. Government Industrial Institutional Local Government Nonprofit Residential Schools State Government Tribal Government Utility Savings Category Wind Buying & Making Electricity Program Info State New Hampshire Program Type Solar/Wind Permitting Standards In July 2008, New Hampshire enacted legislation designed to prevent municipalities from adopting ordinances or regulations that place unreasonable limits or hinder the performance of wind energy systems up to 100 kilowatts (kW) in capacity. Such wind turbines must be used primarily to produce energy for on-site consumption. The law identifies a several

152

Model As-of Right Zoning Ordinance or Bylaw: Allowing Use of Wind Energy  

Broader source: Energy.gov (indexed) [DOE]

You are here You are here Home » Model As-of Right Zoning Ordinance or Bylaw: Allowing Use of Wind Energy Facilities Model As-of Right Zoning Ordinance or Bylaw: Allowing Use of Wind Energy Facilities < Back Eligibility Agricultural Commercial Fed. Government Industrial Institutional Local Government Nonprofit Residential Schools State Government Savings Category Wind Buying & Making Electricity Program Info State Massachusetts Program Type Solar/Wind Permitting Standards Note: This model ordinance was designed to provide guidance to local governments seeking to develop their own siting rules for wind turbines. While it was developed as part of a cooperative effort involving several state agencies, the model itself has no legal or regulatory authority. In 2007, the Massachusetts Department of Energy Resources (DOER) and the

153

Gone with the Wind - The Potential Tragedy of the Common Wind  

E-Print Network [OSTI]

to divert birds away from wind turbines). 144. See, e.g. ,although birds do collide with wind turbines at some sites,

Lifshitz-Goldberg, Yaei

2010-01-01T23:59:59.000Z

154

Wind energy  

Science Journals Connector (OSTI)

Wind energy is rapidly growing. In 2006 the installed generating capacity in the world increased by 25%, a growth rate which has more or less been sustained during the last decade. And there is no reason to believe that this growth will slow significantly in the coming years. For example, the United Kingdom's goal for installed wind turbines by 2020 is 33GW up from 2GW in 2006, an average annual growth rate of 22% over that period. More than half of all turbines are installed in Europe, but United States, India and lately China are also rapidly growing markets. The cradle of modern wind energy was set by innovative blacksmiths in rural Denmark. Now the wind provides more than 20% of the electrical power in Denmark, the industry has professionalized and has close ties with public research at universities. This focus issue is concerned with research in wind energy. The main purposes of research in wind energy are to: decrease the cost of power generated by the wind; increase the reliability and predictability of the energy source; investigate and reduce the adverse environmental impact of massive deployment of wind turbines; build research based educations for wind energy engineers. This focus issue contains contributions from several fields of research. Decreased costs cover a very wide range of activities from aerodynamics of the wind turbine blades, optimal site selection for the turbines, optimization of the electrical grid and power market for a fluctuating source, more efficient electrical generators and gears, and new materials and production techniques for turbine manufacturing. The United Kingdom recently started the construction of the London Array, a 1GW off-shore wind farm east of London consisting of several hundred turbines. To design such a farm optimally it is necessary to understand the chaotic and very turbulent flow downwind from a turbine, which decreases the power production and increases the mechanical loads on other nearby turbines. Also addressed within the issue is how much conventional power production can be replaced by the ceaseless wind, with the question of how Greece's target of 29% renewables by 2020 is to be met efficiently. Other topics include an innovative way to determine the power curve of a turbine experimentally more accurately, the use of fluid dynamics tools to investigate the implications of placing vortex generators on wind turbine blades (thereby possibly improving their efficiency) and a study of the perception of wind turbine noise. It turns out that a small but significant fraction of wind turbine neighbours feel that turbine generated noise impairs their ability to rest. The annoyance is correlated with a negative attitude towards the visual impact on the landscape, but what is cause and effect is too early to say. As mentioned there is a rush for wind turbines in many countries. However, this positive development for the global climate is currently limited by practical barriers. One bottleneck is the difficulties for the sub-suppliers of gears and other parts to meet the demand. Another is the difficulties to meet the demand for engineers specialized in wind. For that reason the Technical University of Denmark (DTU) recently launched the world's first Wind Energy Masters Program. Here and elsewhere in the world of wind education and research we should really speed up now, as our chances of contributing to emission free energy production and a healthier global climate have never been better. Focus on Wind Energy Contents The articles below represent the first accepted contributions and further additions will appear in the near future. Wind turbineslow level noise sources interfering with restoration? EjaPedersen andKerstin PerssonWaye On the effect of spatial dispersion of wind power plants on the wind energy capacity credit in Greece GeorgeCaralis, YiannisPerivolaris, KonstantinosRados andArthourosZervos Large-eddy simulation of spectral coherence in a wind turbine wake AJimenez, ACrespo, EMigoya andJGarcia How to improve the estimation of

Jakob Mann; Jens Nrkr Srensen; Poul-Erik Morthorst

2008-01-01T23:59:59.000Z

155

Montana/Wind Resources | Open Energy Information  

Open Energy Info (EERE)

Page Page Edit History Facebook icon Twitter icon » Montana/Wind Resources < Montana Jump to: navigation, search Print PDF Print Full Version WIND ENERGY STAKEHOLDER ENGAGEMENT & OUTREACHSmall Wind Guidebook Home OpenEI Home >> Wind >> Small Wind Guidebook >> Montana Wind Resources WindTurbine-icon.png Small Wind Guidebook * Introduction * First, How Can I Make My Home More Energy Efficient? * Is Wind Energy Practical for Me? * What Size Wind Turbine Do I Need? * What Are the Basic Parts of a Small Wind Electric System? * What Do Wind Systems Cost? * Where Can I Find Installation and Maintenance Support? * How Much Energy Will My System Generate? * Is There Enough Wind on My Site? * How Do I Choose the Best Site for My Wind Turbine? * Can I Connect My System to the Utility Grid?

156

Ohio/Wind Resources | Open Energy Information  

Open Energy Info (EERE)

Page Page Edit History Facebook icon Twitter icon » Ohio/Wind Resources < Ohio Jump to: navigation, search Print PDF Print Full Version WIND ENERGY STAKEHOLDER ENGAGEMENT & OUTREACHSmall Wind Guidebook Home OpenEI Home >> Wind >> Small Wind Guidebook >> Ohio Wind Resources WindTurbine-icon.png Small Wind Guidebook * Introduction * First, How Can I Make My Home More Energy Efficient? * Is Wind Energy Practical for Me? * What Size Wind Turbine Do I Need? * What Are the Basic Parts of a Small Wind Electric System? * What Do Wind Systems Cost? * Where Can I Find Installation and Maintenance Support? * How Much Energy Will My System Generate? * Is There Enough Wind on My Site? * How Do I Choose the Best Site for My Wind Turbine? * Can I Connect My System to the Utility Grid?

157

Small Wind Guidebook | Open Energy Information  

Open Energy Info (EERE)

Small Wind Guidebook Small Wind Guidebook Jump to: navigation, search Print PDF Print Full Version WIND ENERGY STAKEHOLDER ENGAGEMENT & OUTREACHSmall Wind Guidebook Home OpenEI Home >> Wind >> Small Wind Guidebook WindTurbine-icon.png Small Wind Guidebook * Introduction * First, How Can I Make My Home More Energy Efficient? * Is Wind Energy Practical for Me? * What Size Wind Turbine Do I Need? * What Are the Basic Parts of a Small Wind Electric System? * What Do Wind Systems Cost? * Where Can I Find Installation and Maintenance Support? * How Much Energy Will My System Generate? * Is There Enough Wind on My Site? * How Do I Choose the Best Site for My Wind Turbine? * Can I Connect My System to the Utility Grid? * Can I Go Off-Grid? * State Information Portal * Glossary of Terms

158

Net Metering Rules (Arkansas) | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

Net Metering Rules (Arkansas) Net Metering Rules (Arkansas) Net Metering Rules (Arkansas) < Back Eligibility Commercial Industrial Installer/Contractor Investor-Owned Utility Retail Supplier Rural Electric Cooperative Systems Integrator Utility Savings Category Alternative Fuel Vehicles Hydrogen & Fuel Cells Buying & Making Electricity Water Home Weatherization Solar Wind Program Info State Arkansas Program Type Net Metering Provider Arkansas Public Service Commission The Net Metering Rules are promulgated under the authority of the Arkansas Public Service Commission. These rules are created to establish rules for net energy metering and interconnection. These rules are developed pursuant to the Arkansas Renewable Energy Development Act (Arkansas Code Annotated 23-18-603). These rules apply to all electric utilities.

159

Stakeholder Engagement and Outreach: State Wind Activities  

Wind Powering America (EERE)

Federal, Federal, State, & Local Printable Version Bookmark and Share Economic Development Policy Public Lands Public Power Regional Activities State Activities State Lands Siting State Wind Activities The U.S. map below summarizes Wind Powering America's state activities as of February 2010, which include Wind Working Groups, validated wind maps, anemometer loan programs, small wind guides, Wind for Schools Wind Applications Centers, exhibits, and workshops or webcasts. To read more state-specific news, click on a state. You can also view an enlarged map or print the state wind activities map. U.S. map showing Wind Powering America's activities in each state. Washington has an inactive/evolved wind working group, validated wind map, and a small wind guide. Exhibits have been displayed. Oregon has a wind working group, validated wind map, small wind guide, an anemometer loan program, and has had workshops or Webcasts. California has an inactive/evolved wind working group and valided wind map. Exhibits have been displayed. Idaho has an inactive/evolved wind working group, validated wind map, small wind guide, an anemometer loan program, has had workshops or Webcasts, exhibits have been displayed, and it has a Wind for Schools Wind Applications Center. Nevada has a wind working group, validated wind map, a small wind guide, an anemometer loan program, and has had workshops or Webcasts and exhibits. Montana has a wind working group, validated wind map, small wind guide, an anemometer loan program, and has had workshops or Webcasts, exhibits have been displayed, and it has a Wind for Schools Wind Applications Center. Wyoming has a wind working group, validated wind map, small wind guide, anemometer loan program, and has had workshops or Webcasts and exhibits. Utah has a wind working group, validated wind map, a small wind guide, an anemometer loan program, and has had workshops or Webcasts. Arizona has a wind working group, validated wind map, small wind guide, an anemometer loan program, has had workshops or Webcasts, and exhibits have been displayed. Colorado has a wind working group, a validated wind map, small wind guide, an anemometer loan program, has had workshops or Webcasts, exhibits have been displayed, and it has a Wind for Schools Wind Applications Center. New Mexico has a wind working group, validated wind map, small wind guide, an anemometer loan program, has had workshops or Webcasts, and exhibits have been displayed. North Dakota has a wind working group, validated wind map, small wind guide, an anemometer loan program, and has had workshops or Webcasts and exhibits. South Dakota has a wind working group, a validated wind map, small wind guide, an anemometer loan program, has had workshops or Webcasts, exhibits have been displayed, and it has a Wind for Schools Wind Applications Center. Nebraska has a wind working group, a validated wind map, a small wind guide, has had workshops or Webcasts, exhibits have been displayed, and it has a Wind for Schools Wind Applications Center. Kansas has a wind working group, a validated wind map, a small wind guide, has had workshops or Webcasts, exhibits have been displayed, and it has a Wind for Schools Wind Applications Center. Oklahoma has a wind working group, validated wind map, small wind guide, an anemometer loan program, and has had workshops or Webcasts. Texas currently does not have any Wind Powering America activities. Minnesota has a small wind guide. Iowa has a small wind guide and has had exhibits. Missouri has a wind working group, validated wind map, small wind guide, an anemometer loan program, and has had workshops or Webcasts. Arkansas has a wind working group, validated wind map, and workshops or Webcasts. Lousiana currently does not have any Wind Powering America activities. Mississippi currently does not have any Wind Powering America activities. Alabama currently does not have any Wind Powering America activities. Georgia has a wind working group, a validated wind map, and has had workshops or Webcasts. Florida currently does not have any Wind Powering America activities. South Carolina has a wind working group. Alaska has a wind working group, validated wind map, an anemometer loan program, has had workshops or Webcasts, and it has a Wind for Schools Wind Applications Center. Hawaii has a wind working group, validated wind map, a small wind guide, and has had exhibits. Puerto Rico has a validated wind map and a planned wind working group. Wisconsin has a wind working group, a small wind guide, an anemometer loan program, and has had workshops or Webcasts. Illinois has a wind working group, validated wind map, a small wind guide, and has had workshops or Webcasts. Michigan has a wind working group, validated wind map, a small wind guide, an anemometer loan program, and has had workshops or Webcasts and exhibits. Indiana has a wind working group, a validated wind map, a small wind guide, and has had workshops or Webcasts and exhibits. Kentucky has a wind working group and a validated wind map. Tennessee has a wind working group, a validated wind map, small wind guide, anemometer loan program, and has had workshops or Webcasts. North Carolina has a wind working group, validated wind map, a small wind guide, an anemometer loan program, has had workshops or Webcasts, exhibits have been displayed, and it has a Wind for Schools Wind Applications Center. Virginia has a wind working group, a validated wind map, a small wind guide, an anemometer loan program, has had workshops or Webcasts, exhibits have been displayed, and it has a Wind for Schools Wind Applications Center. West Virginia has a wind working group, a validated wind map, and has had workshops or Webcasts. Ohio has a wind working group, validated wind map, a small wind guide, an anemometer loan program, and has had workshops or Webcasts. Maryland has a wind working group, a validated wind map, a small wind guide, and an anemometer loan program. Pennsylvania has a wind working group, a validated wind map, small wind guide, an anemometer loan program, has had workshops or Webcasts, and it has a Wind for Schools Wind Applications Center. Delaware has a validated wind map and a small wind guide. New Jersey has a wind working group, validated wind map, a small wind guide, an anemometer loan program, and has had workshops or Webcasts. Connecticut has a wind working group and a validated wind map. New York has a small wind guide. Vermont has a validated wind map and a small wind guide. Massachusetts has a wind working group, validated wind map, a small wind guide, an anemometer loan program, and has had exhibits. New Hampshire has a validated wind map and small wind guide. Maine has a wind working group, validated wind map, small wind guide, an anemometer loan program, and has had workshops or Webcasts. Rhode Island has a validated wind map and small wind guide. The U.S. Virgin Islands have a validated wind map.

160

The Wind Project Development Process  

Wind Powering America (EERE)

Wind Project Wind Project Development Process Developed for the National Renewable Energy Laboratory by Dale Osborn Distributed Generation Systems, Inc. September 1998 The Wind Project Development Process Site Selection Land Agreements Wind Assessment Environmental Review Economic Modeling Interconnection Studies Financing Permitting Sales Agreements Turbine Procurement Construction Contracting Operations & Maintenance Site Selection Evidence of Significant Wind Preferably Privately Owned Remote Land Proximity to Transmission Lines Reasonable Road Access Few Environmental Concerns Receptive Community Land Agreements Term: Expected Life of the Turbine Assignable Indemnification Rights Compensation: Percentage of Revenues Reclamation Provision Wind Rights, Ingress/Egress Rights, Transmission Rights

Note: This page contains sample records for the topic "wind siting rules" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


161

Career Map: Site/Plant Manager  

Broader source: Energy.gov [DOE]

The Wind Program's Career Map provides job description information for Site/Plant Manager positions.

162

NREL: Renewable Resource Data Center - Wind Resource Information  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Wind Resource Information Wind Resource Information Photo of five wind turbines at the Nine Canyon Wind Project. The Nine Canyon Wind Project in Benton County, Washington, includes 37 wind turbines and 48 MW of capacity. Detailed wind resource information can be found on NREL's Wind Research Web site. This site provides access to state and international wind resource maps. Wind Integration Datasets are provided to help energy professionals perform wind integration studies and estimate power production from hypothetical wind plants. In addition, RReDC offers Meteorological Field Measurements at Potential and Actual Wind Turbine Sites and a Wind Energy Resource Atlas of the United States. Wind resource maps are also available from the NREL Dynamic Maps, GIS Data, and Analysis Tools Web site.

163

Evaluation of WRF-Predicted Near-Hub-Height Winds and Ramp Events over a Pacific Northwest Site with Complex Terrain  

Science Journals Connector (OSTI)

One challenge with wind-power forecasts is the accurate prediction of rapid changes in wind speed (ramps). To evaluate the Weather Research and Forecasting (WRF) model's ability to predict such events, model simulations, conducted over an area of ...

Qing Yang; Larry K. Berg; Mikhail Pekour; Jerome D. Fast; Rob K. Newsom; Mark Stoelinga; Catherine Finley

2013-08-01T23:59:59.000Z

164

Wisconsin Wind Resources | Open Energy Information  

Open Energy Info (EERE)

Wind Resources Wind Resources Jump to: navigation, search Print PDF WIND ENERGY STAKEHOLDER ENGAGEMENT & OUTREACHSmall Wind Guidebook Home WindTurbine-icon.png Small Wind Guidebook * Introduction * First, How Can I Make My Home More Energy Efficient? * Is Wind Energy Practical for Me? * What Size Wind Turbine Do I Need? * What Are the Basic Parts of a Small Wind Electric System? * What Do Wind Systems Cost? * Where Can I Find Installation and Maintenance Support? * How Much Energy Will My System Generate? * Is There Enough Wind on My Site? * How Do I Choose the Best Site for My Wind Turbine? * Can I Connect My System to the Utility Grid? * Can I Go Off-Grid? * State Information Portal * Glossary of Terms * For More Information Wisconsin Wind Resources WisconsinMap.jpg Retrieved from

165

Wind Turbine Blade Design  

K-12 Energy Lesson Plans and Activities Web site (EERE)

Blade engineering and design is one of the most complicated and important aspects of modern wind turbine technology. Engineers strive to design blades that extract as much energy from the wind as possible throughout a range of wind speeds and gusts, yet are still durable, quiet and cheap. A variety of ideas for building turbines and teacher handouts are included in this document and at the Web site.

166

Wind derivatives: hedging wind risk:.  

E-Print Network [OSTI]

??Wind derivatives are financial contracts that can be used to hedge or mitigate wind risk. In this thesis, the focus was on pricing these wind (more)

Hoyer, S.A.

2013-01-01T23:59:59.000Z

167

Kivalina wind generator  

SciTech Connect (OSTI)

The project reported was to construct a system to harness the winds of an Arctic site to generate electricity that would power a greenhouse where fruit and vegetables could be raised for local consumption. The installation of the tower and an Enertech 4K wind generator are described. (LEW)

Aldrich, D.

1984-02-18T23:59:59.000Z

168

From rules to rule patterns  

Science Journals Connector (OSTI)

Rule-based systems are a commonly accepted solution for smoothly capturing the context-dependent and time-dependent organizational knowledge of large enterprises, also known as business policies. At the same t...

G. Kappel; S. Rausch-Schott; W. Retschitzegger

1996-01-01T23:59:59.000Z

169

Small Wind Guidebook/What Size Wind Turbine Do I Need | Open Energy  

Open Energy Info (EERE)

What Size Wind Turbine Do I Need What Size Wind Turbine Do I Need < Small Wind Guidebook Jump to: navigation, search Print PDF WIND ENERGY STAKEHOLDER ENGAGEMENT & OUTREACHSmall Wind Guidebook Home WindTurbine-icon.png Small Wind Guidebook * Introduction * First, How Can I Make My Home More Energy Efficient? * Is Wind Energy Practical for Me? * What Size Wind Turbine Do I Need? * What Are the Basic Parts of a Small Wind Electric System? * What Do Wind Systems Cost? * Where Can I Find Installation and Maintenance Support? * How Much Energy Will My System Generate? * Is There Enough Wind on My Site? * How Do I Choose the Best Site for My Wind Turbine? * Can I Connect My System to the Utility Grid? * Can I Go Off-Grid? * State Information Portal * Glossary of Terms * For More Information What Size Wind Turbine Do I Need?

170

Small Wind Guidebook/What Do Wind Systems Cost | Open Energy Information  

Open Energy Info (EERE)

What Do Wind Systems Cost What Do Wind Systems Cost < Small Wind Guidebook Jump to: navigation, search Print PDF WIND ENERGY STAKEHOLDER ENGAGEMENT & OUTREACHSmall Wind Guidebook Home WindTurbine-icon.png Small Wind Guidebook * Introduction * First, How Can I Make My Home More Energy Efficient? * Is Wind Energy Practical for Me? * What Size Wind Turbine Do I Need? * What Are the Basic Parts of a Small Wind Electric System? * What Do Wind Systems Cost? * Where Can I Find Installation and Maintenance Support? * How Much Energy Will My System Generate? * Is There Enough Wind on My Site? * How Do I Choose the Best Site for My Wind Turbine? * Can I Connect My System to the Utility Grid? * Can I Go Off-Grid? * State Information Portal * Glossary of Terms * For More Information What Do Wind Systems Cost?

171

Sandia National Laboratories: Wind  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

scale. The SWiFT site is managed and operated by Sandia National Laboratories for the DOE Wind Program. In a separate, ... Sandia Has Signed a Memorandum of Understanding with...

172

Mountain Wind | Open Energy Information  

Open Energy Info (EERE)

Mountain Wind Mountain Wind Jump to: navigation, search Mountain Wind is a wind farm located in Uinta County, Wyoming. It consists of 67 turbines and has a total capacity of 140.7 MW. It is owned by Edison Mission Group.[1] Based on assertions that the site is near Fort Bridger, its approximate coordinates are 41.318716°, -110.386418°.[2] References ↑ http://www.wsgs.uwyo.edu/Topics/EnergyResources/wind.aspx ↑ http://www.res-americas.com/wind-farms/operational-/mountain-wind-i-wind-farm.aspx Retrieved from "http://en.openei.org/w/index.php?title=Mountain_Wind&oldid=132229" Category: Wind Farms What links here Related changes Special pages Printable version Permanent link Browse properties 429 Throttled (bot load) Error 429 Throttled (bot load) Throttled (bot load)

173

Solar Decathlon Rules  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

RULES RULES Last Updated: September 3, 2009 2009 Solar Decathlon Rules i September 3, 2009 Contents SECTION I: DEFINITIONS ........................................................................................................................................1 SECTION II: GENERAL RULES ..................................................................................................................................5 Rule 1. Authority ............................................................................................................................................................................. 5 1-1. Director ................................................................................................................................................................................ 5

174

Photo Gallery - Hanford Site  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

soil generated by ARRA-funded cleanup projects across the Hanford Site. In this photo, additional containers needed to haul waste are delivered by Rule Steel to the...

175

Water Rules (Alabama) | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

Water Rules (Alabama) Water Rules (Alabama) Water Rules (Alabama) < Back Eligibility Commercial Construction Developer Industrial Local Government Municipal/Public Utility Residential Utility Savings Category Alternative Fuel Vehicles Hydrogen & Fuel Cells Buying & Making Electricity Water Home Weatherization Solar Wind Program Info State Alabama Program Type Environmental Regulations These rules and regulations shall apply to all water systems subject to the jurisdiction of the Alabama Public Service Commission. They are intended to promote good utility practices, to assure adequate and efficient service to the public at a reasonable cost, and to establish the rights and responsibilities of both the utility and the customer. Applications for certificates must be filed separately for each water system.

176

Commonwealth Wind Commercial Wind Program | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

Commercial Wind Program Commercial Wind Program Commonwealth Wind Commercial Wind Program < Back Eligibility Agricultural Commercial Construction Fed. Government Industrial Institutional Local Government Multi-Family Residential Municipal Utility Nonprofit Rural Electric Cooperative Schools State Government Tribal Government Savings Category Wind Buying & Making Electricity Maximum Rebate Public Entities: $100,000 Non-Public Entities: $67,000 Program Info Funding Source Massachusetts Renewable Energy Trust Start Date 05/2011 Expiration Date 08/01/2013 State Massachusetts Program Type State Grant Program Rebate Amount Varies depending on applicant type (public vs. non-public) and grant type (site assessment, feasibility study, onsite wind monitoring, acoustic studies, and business planning)

177

OpenEI Community - Wind  

Open Energy Info (EERE)

Wind for Schools Wind for Schools Portal http://en.openei.org/community/group/wind-schools-portal

Description: Project to inspire students in the United States by educating and installing wind turbines. Wind Wind for Schools Portal Mon, 23 Sep 2013 20:01:10 +0000 Rmckeel 751 at http://en.openei.org/community Renewable Energy RFPs http://en.openei.org/community/group/renewable-energy-rfps
Description: Find renewable energy financial opportunities. We post solicitations for renewable energy generation, renewable energy certificates, and green power as a courtesy to our web site visitors. Unless otherwise noted, these requests

178

Category:Small Wind Guidebook Pages | Open Energy Information  

Open Energy Info (EERE)

Guidebook Pages Guidebook Pages Jump to: navigation, search This is the category containing the Small Wind Guidebook pages. Pages in category "Small Wind Guidebook Pages" The following 16 pages are in this category, out of 16 total. S Small Wind Guidebook/Can I Connect My System to the Utility Grid Small Wind Guidebook/Can I Go Off-Grid Small Wind Guidebook/First, How Can I Make My Home More Energy Efficient Small Wind Guidebook/For More Information Small Wind Guidebook/Glossary of Terms Small Wind Guidebook/How Do I Choose the Best Site for My Wind Turbine S cont. Small Wind Guidebook/How Much Energy Will My System Generate Small Wind Guidebook/Image Library Small Wind Guidebook/Introduction Small Wind Guidebook/Is There Enough Wind on My Site Small Wind Guidebook/Is Wind Energy Practical for Me

179

Small Wind Guidebook/What are the Basic Parts of a Small Wind Electric  

Open Energy Info (EERE)

Page Page Edit History Facebook icon Twitter icon » Small Wind Guidebook/What are the Basic Parts of a Small Wind Electric System < Small Wind Guidebook Jump to: navigation, search Print PDF WIND ENERGY STAKEHOLDER ENGAGEMENT & OUTREACHSmall Wind Guidebook Home WindTurbine-icon.png Small Wind Guidebook * Introduction * First, How Can I Make My Home More Energy Efficient? * Is Wind Energy Practical for Me? * What Size Wind Turbine Do I Need? * What Are the Basic Parts of a Small Wind Electric System? * What Do Wind Systems Cost? * Where Can I Find Installation and Maintenance Support? * How Much Energy Will My System Generate? * Is There Enough Wind on My Site? * How Do I Choose the Best Site for My Wind Turbine? * Can I Connect My System to the Utility Grid?

180

Session: Offshore wind  

SciTech Connect (OSTI)

This session at the Wind Energy and Birds/Bats workshop consisted of two presentations. Due to time constraints, a discussion period was not possible. The session addressed the current state of offshore wind energy development. The first presentation ''Monitoring Program and Results: Horns Rev and Nysted'' by Jette Gaarde summarized selected environmental studies conducted to date at operating offshore wind turbine projects in Denmark and lessons from other offshore wind developments in Europe. Wildlife impacts studies from the Danish sites focused on birds, fish, and mammals. The second presentation ''What has the U.S. Wind Industry Learned from the European Example'' by Bonnie Ram provided an update on current permit applications for offshore wind developments in the U.S. as well as lessons that may be drawn from the European experience.

Gaarde, Jette; Ram, Bonnie

2004-09-01T23:59:59.000Z

Note: This page contains sample records for the topic "wind siting rules" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


181

Alternative Energy Provides a Second Wind  

E-Print Network [OSTI]

This report provides information for communities and other interested stakeholders about the development of wind energy at former mining sites. Local governments, residents and organizations may be interested in creating renewable energy resources and new economic opportunities at these sites. The report describes the mechanics of wind energy, details the various wind technology options, explores wind energys environmental, economic and social impacts at mining sites, and provides case studies and next steps to help get projects in place.

unknown authors

182

Advanced Wind Energy Projects Test Facility Moving to Texas Tech...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

The Lubbock site will include an initial installation of two 225-kilowatt wind turbines and three anemometer towers, with the potential to expand to nine or more wind...

183

WIND ENERGY Wind Energ. (2014)  

E-Print Network [OSTI]

WIND ENERGY Wind Energ. (2014) Published online in Wiley Online Library (wileyonlinelibrary Correspondence M. Wächter, ForWind-Center for Wind Energy Research, Institute of Physics, Carl Von Ossietzky on the operation of wind energy converters (WECs) imposing different risks especially in terms of highly dynamic

Peinke, Joachim

184

New York/Wind Resources | Open Energy Information  

Open Energy Info (EERE)

New York/Wind Resources New York/Wind Resources < New York Jump to: navigation, search Print PDF Print Full Version WIND ENERGY STAKEHOLDER ENGAGEMENT & OUTREACHSmall Wind Guidebook Home OpenEI Home >> Wind >> Small Wind Guidebook >> New York Wind Resources WindTurbine-icon.png Small Wind Guidebook * Introduction * First, How Can I Make My Home More Energy Efficient? * Is Wind Energy Practical for Me? * What Size Wind Turbine Do I Need? * What Are the Basic Parts of a Small Wind Electric System? * What Do Wind Systems Cost? * Where Can I Find Installation and Maintenance Support? * How Much Energy Will My System Generate? * Is There Enough Wind on My Site? * How Do I Choose the Best Site for My Wind Turbine? * Can I Connect My System to the Utility Grid? * Can I Go Off-Grid?

185

West Virginia/Wind Resources | Open Energy Information  

Open Energy Info (EERE)

West Virginia/Wind Resources West Virginia/Wind Resources < West Virginia Jump to: navigation, search Print PDF Print Full Version WIND ENERGY STAKEHOLDER ENGAGEMENT & OUTREACHSmall Wind Guidebook Home OpenEI Home >> Wind >> Small Wind Guidebook >> West Virginia Wind Resources WindTurbine-icon.png Small Wind Guidebook * Introduction * First, How Can I Make My Home More Energy Efficient? * Is Wind Energy Practical for Me? * What Size Wind Turbine Do I Need? * What Are the Basic Parts of a Small Wind Electric System? * What Do Wind Systems Cost? * Where Can I Find Installation and Maintenance Support? * How Much Energy Will My System Generate? * Is There Enough Wind on My Site? * How Do I Choose the Best Site for My Wind Turbine? * Can I Connect My System to the Utility Grid?

186

North Dakota/Wind Resources | Open Energy Information  

Open Energy Info (EERE)

North Dakota/Wind Resources North Dakota/Wind Resources < North Dakota Jump to: navigation, search Print PDF Print Full Version WIND ENERGY STAKEHOLDER ENGAGEMENT & OUTREACHSmall Wind Guidebook Home OpenEI Home >> Wind >> Small Wind Guidebook >> North Dakota Wind Resources WindTurbine-icon.png Small Wind Guidebook * Introduction * First, How Can I Make My Home More Energy Efficient? * Is Wind Energy Practical for Me? * What Size Wind Turbine Do I Need? * What Are the Basic Parts of a Small Wind Electric System? * What Do Wind Systems Cost? * Where Can I Find Installation and Maintenance Support? * How Much Energy Will My System Generate? * Is There Enough Wind on My Site? * How Do I Choose the Best Site for My Wind Turbine? * Can I Connect My System to the Utility Grid?

187

South Dakota/Wind Resources | Open Energy Information  

Open Energy Info (EERE)

South Dakota/Wind Resources South Dakota/Wind Resources < South Dakota Jump to: navigation, search Print PDF Print Full Version WIND ENERGY STAKEHOLDER ENGAGEMENT & OUTREACHSmall Wind Guidebook Home OpenEI Home >> Wind >> Small Wind Guidebook >> South Dakota Wind Resources WindTurbine-icon.png Small Wind Guidebook * Introduction * First, How Can I Make My Home More Energy Efficient? * Is Wind Energy Practical for Me? * What Size Wind Turbine Do I Need? * What Are the Basic Parts of a Small Wind Electric System? * What Do Wind Systems Cost? * Where Can I Find Installation and Maintenance Support? * How Much Energy Will My System Generate? * Is There Enough Wind on My Site? * How Do I Choose the Best Site for My Wind Turbine? * Can I Connect My System to the Utility Grid?

188

New Jersey/Wind Resources | Open Energy Information  

Open Energy Info (EERE)

New Jersey/Wind Resources New Jersey/Wind Resources < New Jersey Jump to: navigation, search Print PDF Print Full Version WIND ENERGY STAKEHOLDER ENGAGEMENT & OUTREACHSmall Wind Guidebook Home OpenEI Home >> Wind >> Small Wind Guidebook >> New Jersey Wind Resources WindTurbine-icon.png Small Wind Guidebook * Introduction * First, How Can I Make My Home More Energy Efficient? * Is Wind Energy Practical for Me? * What Size Wind Turbine Do I Need? * What Are the Basic Parts of a Small Wind Electric System? * What Do Wind Systems Cost? * Where Can I Find Installation and Maintenance Support? * How Much Energy Will My System Generate? * Is There Enough Wind on My Site? * How Do I Choose the Best Site for My Wind Turbine? * Can I Connect My System to the Utility Grid?

189

Rhode Island/Wind Resources | Open Energy Information  

Open Energy Info (EERE)

Rhode Island/Wind Resources Rhode Island/Wind Resources < Rhode Island Jump to: navigation, search Print PDF Print Full Version WIND ENERGY STAKEHOLDER ENGAGEMENT & OUTREACHSmall Wind Guidebook Home OpenEI Home >> Wind >> Small Wind Guidebook >> Rhode Island Wind Resources WindTurbine-icon.png Small Wind Guidebook * Introduction * First, How Can I Make My Home More Energy Efficient? * Is Wind Energy Practical for Me? * What Size Wind Turbine Do I Need? * What Are the Basic Parts of a Small Wind Electric System? * What Do Wind Systems Cost? * Where Can I Find Installation and Maintenance Support? * How Much Energy Will My System Generate? * Is There Enough Wind on My Site? * How Do I Choose the Best Site for My Wind Turbine? * Can I Connect My System to the Utility Grid?

190

South Carolina/Wind Resources | Open Energy Information  

Open Energy Info (EERE)

South Carolina/Wind Resources South Carolina/Wind Resources < South Carolina Jump to: navigation, search Print PDF Print Full Version WIND ENERGY STAKEHOLDER ENGAGEMENT & OUTREACHSmall Wind Guidebook Home OpenEI Home >> Wind >> Small Wind Guidebook >> South Carolina Wind Resources WindTurbine-icon.png Small Wind Guidebook * Introduction * First, How Can I Make My Home More Energy Efficient? * Is Wind Energy Practical for Me? * What Size Wind Turbine Do I Need? * What Are the Basic Parts of a Small Wind Electric System? * What Do Wind Systems Cost? * Where Can I Find Installation and Maintenance Support? * How Much Energy Will My System Generate? * Is There Enough Wind on My Site? * How Do I Choose the Best Site for My Wind Turbine? * Can I Connect My System to the Utility Grid?

191

Small Wind Guidebook/Is Wind Energy Practical for Me | Open Energy  

Open Energy Info (EERE)

Practical for Me Practical for Me < Small Wind Guidebook Jump to: navigation, search Print PDF WIND ENERGY STAKEHOLDER ENGAGEMENT & OUTREACHSmall Wind Guidebook Home WindTurbine-icon.png Small Wind Guidebook * Introduction * First, How Can I Make My Home More Energy Efficient? * Is Wind Energy Practical for Me? * What Size Wind Turbine Do I Need? * What Are the Basic Parts of a Small Wind Electric System? * What Do Wind Systems Cost? * Where Can I Find Installation and Maintenance Support? * How Much Energy Will My System Generate? * Is There Enough Wind on My Site? * How Do I Choose the Best Site for My Wind Turbine? * Can I Connect My System to the Utility Grid? * Can I Go Off-Grid? * State Information Portal * Glossary of Terms * For More Information Is Wind Energy Practical for Me?

192

wind energy  

National Nuclear Security Administration (NNSA)

5%2A en Pantex to Become Wind Energy Research Center http:nnsa.energy.govfieldofficesnponpopressreleasespantex-become-wind-energy-research-center

193

New England Wind Forum: New England Wind Energy Education Project  

Wind Powering America (EERE)

New England Wind Energy Education Project Conference and Workshop New England Wind Energy Education Project Conference and Workshop The New England Wind Energy Education Project (NEWEEP) held its one-day Conference and Workshop on June 7, 2011 in Marlborough, Massachusetts. The conference and workshop focused on presenting objective information relevant to issues of importance to individuals affected by wind energy proposals throughout New England. The conference was featured on the website of the Department of Energy's former Wind Powering America initiative: NEWEEP Convenes Conference and Workshop to Advance Social Acceptance of Well-Sited Wind Projects in New England: A Wind Powering America Success Story. Session I: Opening Plenary: Welcoming Remarks and Overview of New England Wind Project Development Activity

194

Requirements for Wind Development | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

Requirements for Wind Development Requirements for Wind Development Requirements for Wind Development < Back Eligibility Commercial Construction Industrial Installer/Contractor Utility Savings Category Wind Buying & Making Electricity Program Info State Oklahoma Program Type Solar/Wind Permitting Standards In 2010, Oklahoma passed HB 2973, known as The Oklahoma Wind Energy Development Act. The bill becomes effective January 1, 2011. The Act provides sets rules for owners of wind energy facilities related to decommissioning, payments, and insurance. * Within one year of abandonment of a project, equipment from wind energy facilities must be removed and the land must be returned to its condition prior to the facility construction, except for roads. * After 15 years of operation, wind energy facility owners must file an

195

Colorado Parks and Wildlife Rules and Regulations | Open Energy...  

Open Energy Info (EERE)

Rules and Regulations Jump to: navigation, search OpenEI Reference LibraryAdd to library Web Site: Colorado Parks and Wildlife Rules and Regulations Abstract This web page lists...

196

Montana Public Water Supply Law and Rules Webpage | Open Energy...  

Open Energy Info (EERE)

Montana Public Water Supply Law and Rules Webpage Jump to: navigation, search OpenEI Reference LibraryAdd to library Web Site: Montana Public Water Supply Law and Rules Webpage...

197

NREL: Wind Research - Facilities  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Facilities Facilities Our facilities are designed to meet the wind industry's critical research needs with state-of-the-art design and testing facilities. NREL's unique and highly versatile facilities at the National Wind Technology Center offer research and analysis of wind turbine components and prototypes rated from 400 watts to 3 megawatts. Satellite facilities support the growth of wind energy development across the United States. National Wind Technology Center Facilities Our facilities are contained within a 305-acre area that comprises field test sites, test laboratories, industrial high-bay work areas, machine shops, electronics and instrumentation laboratories, and office areas. In addition, there are hundreds of test articles and supporting components such as turbines, meteorological towers, custom test apparatus, test sheds,

198

Wind Energy Update  

Wind Powering America (EERE)

by the Alliance for Sustainable Energy, LLC. by the Alliance for Sustainable Energy, LLC. Wind Energy Update Wind Powering America January 2012 NATIONAL RENEWABLE ENERGY LABORATORY Evolution of Commercial Wind Technology NATIONAL RENEWABLE ENERGY LABORATORY Small (≤100 kW) Homes Farms Remote Applications (e.g. water pumping, telecom sites, icemaking) Midscale (100-1000 kW) Village Power Hybrid Systems Distributed Power Large, Land-based (1-3 MW) Utility-scale wind farms Large Distributed Power Sizes and Applications Large, Offshore (3-7 MW) Utility-scale wind farms, shallow coastal waters No U.S. installations NATIONAL RENEWABLE ENERGY LABORATORY Capacity & Cost Trends As of January 2012 (AWEA) 0 5000 10000 15000 20000 25000 30000 35000 40000 45000 50000 $- $200 $400 $600 $800 $1,000 $1,200

199

National Wind Technology Center Controllable Grid Interface  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

currently at the National Wind Technology Center (NWTC) test site * Many small wind turbines (less than 100 kW) installed as well * 2.5-MW and 5-MW dynamometers * 7-MVA...

200

New England Wind Forum: Wind Power Policy in New England  

Wind Powering America (EERE)

Projects in New England Building Wind Energy in New England Wind Resource Wind Power Technology Economics Markets Siting Policy Renewable Energy Portfolio Standards State Renewable Energy Funds Federal Tax Incentives and Grants Net Metering and Interconnection Standards Pollutant Emission Reduction Policies Awareness Technical Challenges Issues Small Wind Large Wind Newsletter Perspectives Events Quick Links to States CT MA ME NH RI VT Bookmark and Share Wind Power Policy in New England Why Incentives and Policy? Federal and state policies play an important role in encouraging wind energy development by leveling the playing field compared to other energy sources. Many of the substantial benefits of wind power as a domestic, zero-emission part of the energy portfolio - sustainability, displacement of pollutant emissions from other power sources, fuel diversity, price stabilization, keeping a substantial portion of energy expenditures in the local economy - are shared by society as a whole and cannot be readily captured by wind generators directly in the price they charge for their output. In addition, while wind power receives some policy support, the level of federal incentives for wind represents less than 1% of the subsidies and tax breaks given to the fossil fuels and nuclear industries (source: "Wind Power An Increasingly Competitive Source of New Generation." Wind Energy Weekly #1130.).

Note: This page contains sample records for the topic "wind siting rules" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


201

Vermont Wetland Rules (Vermont) | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

Wetland Rules (Vermont) Wetland Rules (Vermont) Vermont Wetland Rules (Vermont) < Back Eligibility Utility Fed. Government Commercial Agricultural Investor-Owned Utility State/Provincial Govt Industrial Construction Municipal/Public Utility Local Government Residential Installer/Contractor Rural Electric Cooperative Tribal Government Low-Income Residential Schools Retail Supplier Institutional Multi-Family Residential Systems Integrator Fuel Distributor Nonprofit General Public/Consumer Transportation Savings Category Alternative Fuel Vehicles Hydrogen & Fuel Cells Buying & Making Electricity Water Home Weatherization Solar Wind Program Info State Vermont Program Type Environmental Regulations Provider Department of Environmental Conservation A permit is required for any activity within a Class I or Class II wetland

202

Category:Rules, Regulations & Policies Incentive Types | Open Energy  

Open Energy Info (EERE)

Rules, Regulations & Policies Incentive Types Rules, Regulations & Policies Incentive Types Jump to: navigation, search Rules, Regulations and Policies Types. Pages in category "Rules, Regulations & Policies Incentive Types" The following 15 pages are in this category, out of 15 total. A Appliance/Equipment Efficiency Standards B Building Energy Codes E Energy Efficiency Resource Standard Energy Standards for Public Buildings Equipment Certification Requirements G Green Power Purchasing I Interconnection Standards L Line Extension Analysis M Mandatory Utility Green Power Option N Net Metering P Public Benefit Funds R Renewables Portfolio Standards S Solar and Wind Permitting Standards Solar/Wind Access Policy Solar/Wind Contractor Licensing Retrieved from "http://en.openei.org/w/index.php?title=Category:Rules,_Regulations_%26_Policies_Incentive_Types&oldid=390305

203

New Mexico/Wind Resources | Open Energy Information  

Open Energy Info (EERE)

Page Page Edit History Facebook icon Twitter icon » New Mexico/Wind Resources < New Mexico Jump to: navigation, search Print PDF Print Full Version WIND ENERGY STAKEHOLDER ENGAGEMENT & OUTREACHSmall Wind Guidebook Home OpenEI Home >> Wind >> Small Wind Guidebook >> New Mexico Wind Resources WindTurbine-icon.png Small Wind Guidebook * Introduction * First, How Can I Make My Home More Energy Efficient? * Is Wind Energy Practical for Me? * What Size Wind Turbine Do I Need? * What Are the Basic Parts of a Small Wind Electric System? * What Do Wind Systems Cost? * Where Can I Find Installation and Maintenance Support? * How Much Energy Will My System Generate? * Is There Enough Wind on My Site? * How Do I Choose the Best Site for My Wind Turbine?

204

Stakeholder Engagement and Outreach: Utility-Scale Land-Based 80-Meter Wind  

Wind Powering America (EERE)

Maps & Data Maps & Data Printable Version Bookmark and Share Utility-Scale Land-Based Maps Wind Resource Potential Offshore Maps Community-Scale Maps Residential-Scale Maps Anemometer Loan Programs & Data Utility-Scale Land-Based 80-Meter Wind Maps The U.S. Department of Energy provides an 80-meter (m) height, high-resolution wind resource map for the United States with links to state wind maps. States, utilities, and wind energy developers use utility-scale wind resource maps to locate and quantify the wind resource, identifying potentially windy sites within a fairly large region and determining a potential site's economic and technical viability. A wind resource map of the United States. Washington wind map and resources. Oregon wind map and resources. California wind map and resources. Idaho wind map and resources. Nevada wind map and resources. Arizona wind map and resources. Utah wind map and resources. Montana wind map and resources. Wyoming wind map and resources. North Dakota wind map and resources. South Dakota wind map and resources. Nebraska wind map and resources. Colorado wind map and resources. New Mexico wind map and resources. Kansas wind map and resources. Oklahoma wind map and resources. Texas wind map and resources. Minnesota wind map and resources. Iowa wind map and resources. Missouri wind map and resources. Arkansas wind map and resources. Lousiana wind map and resources. Wisconsin wind map and resources. Michigan wind map and resources. Michigan wind map and resources. Illinois wind map and resources. Indiana wind map and resources. Ohio wind map and resources. Kentucky wind map and resources. Tennessee wind map and resources. Mississippi wind map and resources. Alabama wind map and resources. Georgia wind map and resources. Florida wind map and resources. South Carolina wind map and resources. North Carolina wind map and resources. West Virginia wind map and resources. Virginia wind map and resources. Maryland wind map and resources. Pennsylvania wind map and resources. Delaware wind map and resources. New Jersey wind map and resources. New York wind map and resources. Maine wind map and resources. Vermont wind map and resources. New Hampshire wind map and resources. Massachusetts wind map and resources. Rhode Island wind map and resources. Connecticut wind map and resources. Alaska wind map and resources. Hawaii wind map and resources.

205

Ris-PhD-Report Sensing the wind profile  

E-Print Network [OSTI]

for wind speed measurements performed at either sites. The wind speed measurements are averaged for several to scale the wind speed with the surface friction velocity, whereas at Horns Rev a new scaling is added deviate from the logarithmic wind prole, but agree better with the wind speed measurements. The length

206

Wind power: executive summary on research on network wind power over the Pacific Northwest. Progress report, October 1979-September 1980  

SciTech Connect (OSTI)

This research in FY80 is composed of six primary tasks. These tasks include data collection and analysis, wind flow studies around an operational wind turbine generator (WTG), kite anemometer calibration, wind flow analysis and prediction, the Klickitat County small wind energy conversion system (SWECS) program, and network wind power analysis. The data collection and analysis task consists of four sections, three of which deal with wind flow site surveys and the fourth with collecting and analyzing wind data from existing data stations.

Baker, R.W.; Hewson, E.W.

1980-10-01T23:59:59.000Z

207

Improved diagnostic model for estimating wind energy  

SciTech Connect (OSTI)

Because wind data are available only at scattered locations, a quantitative method is needed to estimate the wind resource at specific sites where wind energy generation may be economically feasible. This report describes a computer model that makes such estimates. The model uses standard weather reports and terrain heights in deriving wind estimates; the method of computation has been changed from what has been used previously. The performance of the current model is compared with that of the earlier version at three sites; estimates of wind energy at four new sites are also presented.

Endlich, R.M.; Lee, J.D.

1983-03-01T23:59:59.000Z

208

Articles about Environmental Impacts and Siting  

Broader source: Energy.gov [DOE]

Stories about environmental impacts and siting featured by the U.S. Department of Energy (DOE) Wind Program.

209

Stakeholder Engagement and Outreach: Wind Basics and Education  

Wind Powering America (EERE)

Wind Basics and Education Wind Basics and Education Learn about wind power, the Wind for Schools project and curricula, and locate higher education and training programs. Learn about Wind Learn about how wind energy generates power; where the best wind resources are; how you can get wind power; and how and where wind energy has increased over the past decade. Wind for Schools Project Wind Powering America's Wind for Schools project, which began in 2005 and ended in September 2013, worked to promote wind industry workforce development by focusing on K-12 and university educators and students to counter the trend of reduced numbers of U.S. students entering science and engineering fields. The project also raised awareness in rural America about the benefits of wind energy through wind energy curricula and on-site

210

Wind Resource Assessment Overview | Open Energy Information  

Open Energy Info (EERE)

Wind Resource Assessment Overview Wind Resource Assessment Overview Jump to: navigation, search Maps.jpg The first step in developing a wind project is to locate and quantify the wind resource. The magnitude of the wind and the characteristics of the resource are the largest factors in determining a potential site's economic and technical viability. There are three basic steps to identifying and characterizing the wind resource: prospecting, validating, and micrositing. The process of locating sites for wind energy development is similar to exploration for other resources, such as minerals and petroleum. Thus, the term prospecting is often used to describe the identification and preliminary evaluation of a wind resource area. Prospecting includes identifying potentially windy sites within a fairly large region - such

211

Small Wind Guidebook/State Information Portal | Open Energy Information  

Open Energy Info (EERE)

Information Portal Information Portal < Small Wind Guidebook Jump to: navigation, search Print PDF Print Full Version WIND ENERGY STAKEHOLDER ENGAGEMENT & OUTREACHSmall Wind Guidebook Home OpenEI Home >> Wind >> Small Wind Guidebook WindTurbine-icon.png Small Wind Guidebook * Introduction * First, How Can I Make My Home More Energy Efficient? * Is Wind Energy Practical for Me? * What Size Wind Turbine Do I Need? * What Are the Basic Parts of a Small Wind Electric System? * What Do Wind Systems Cost? * Where Can I Find Installation and Maintenance Support? * How Much Energy Will My System Generate? * Is There Enough Wind on My Site? * How Do I Choose the Best Site for My Wind Turbine? * Can I Connect My System to the Utility Grid? * Can I Go Off-Grid? * State Information Portal

212

Small Wind Guidebook/Glossary of Terms | Open Energy Information  

Open Energy Info (EERE)

Small Wind Guidebook/Glossary of Terms Small Wind Guidebook/Glossary of Terms < Small Wind Guidebook Jump to: navigation, search Print PDF WIND ENERGY STAKEHOLDER ENGAGEMENT & OUTREACHSmall Wind Guidebook Home WindTurbine-icon.png Small Wind Guidebook * Introduction * First, How Can I Make My Home More Energy Efficient? * Is Wind Energy Practical for Me? * What Size Wind Turbine Do I Need? * What Are the Basic Parts of a Small Wind Electric System? * What Do Wind Systems Cost? * Where Can I Find Installation and Maintenance Support? * How Much Energy Will My System Generate? * Is There Enough Wind on My Site? * How Do I Choose the Best Site for My Wind Turbine? * Can I Connect My System to the Utility Grid? * Can I Go Off-Grid? * State Information Portal * Glossary of Terms * For More Information

213

Community Wind Handbook/Plan for Maintenance | Open Energy Information  

Open Energy Info (EERE)

Understand Preliminary Siting * Understand Permitting & Zoning * Engage with Neighbors * Conduct a Wind Resource Estimate * Research Interconnecting behind Your Meter * Research...

214

Writing Effective Business Rules  

Science Journals Connector (OSTI)

Writing Effective Business Rules moves beyond the fundamental dilemma of system design: defining business rules either in natural language, intelligible but often ambiguous, or program code (or rule engine instructions), unambiguous but unintelligible ...

Graham Witt

2012-03-01T23:59:59.000Z

215

Montana Air Quality Program Laws & Rules Webpage | Open Energy...  

Open Energy Info (EERE)

to: navigation, search OpenEI Reference LibraryAdd to library Web Site: Montana Air Quality Program Laws & Rules Webpage Abstract Provides an overview of statutes and...

216

Wind Mills  

Science Journals Connector (OSTI)

Over 5,000 years ago, the ancient Egyptians used wind to sail ships on the Nile River. While the proliferation of water mills was in full swing, windmills appeared to harness more inanimate energy by employing wind

J. S. Rao

2011-01-01T23:59:59.000Z

217

Wind Farm  

Office of Energy Efficiency and Renewable Energy (EERE)

The wind farm in Greensburg, Kansas, was completed in spring 2010, and consists of ten 1.25 megawatt (MW) wind turbines that supply enough electricity to power every house, business, and municipal...

218

Wind Power  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Wind Power As the accompanying map of New Mexico shows, the best wind power generation potential near WIPP is along the Delaware Mountain ridge line of the southern Guadalupe...

219

Wind Power  

Science Journals Connector (OSTI)

For off-shore wind energy, it is not economically profitable to locate wind turbines in waters with depths larger than about 40m. For this reason, some floating turbine prototypes are being tested, which can be ...

Ricardo Guerrero-Lemus; Jos Manuel Martnez-Duart

2013-01-01T23:59:59.000Z

220

Firming Wind Energy with Solar Photovoltaics.  

E-Print Network [OSTI]

??A number of research and development groups and several renewable project operators have examined combining wind power production with on-site solar power production. Past research (more)

Pattison, Chris

2011-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "wind siting rules" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


221

WINDExchange: Wind Energy Regional Resource Centers  

Wind Powering America (EERE)

Bookmark and Share Regional Resource Centers About Economic Development Siting Wind Energy Regional Resource Centers The U.S. Department of Energy's Regional Resource Centers...

222

Wind Speeds at Heights Crucial for Wind Energy: Measurements and Verification of Forecasts  

Science Journals Connector (OSTI)

Wind speed measurements from one year from meteorological towers and wind turbines at heights between 20 and 250 m for various European sites are analyzed and are compared with operational short-term forecasts of the global ECMWF model. The ...

Susanne Drechsel; Georg J. Mayr; Jakob W. Messner; Reto Stauffer

2012-09-01T23:59:59.000Z

223

Wind Class Sampling of Satellite SAR Imagery for Offshore Wind Resource Mapping  

Science Journals Connector (OSTI)

High-resolution wind fields retrieved from satellite synthetic aperture radar (SAR) imagery are combined for mapping of wind resources offshore where site measurements are costly and sparse. A new sampling strategy for the SAR scenes is ...

Merete Badger; Jake Badger; Morten Nielsen; Charlotte Bay Hasager; Alfredo Pea

2010-12-01T23:59:59.000Z

224

Wind energy  

Science Journals Connector (OSTI)

...is approximately 4.5-6.01 for onshore wind farms. The price for offshore wind farms is estimated to be 50% higher. For comparison...visually intrusive. The visual impact of offshore wind farms quickly diminishes with distance and 10km...

2007-01-01T23:59:59.000Z

225

Chinook winds.  

Science Journals Connector (OSTI)

...of south-easterly winds, which blow over the...Ocean, from which the winds come, can at this season...freezing-point. The wind well known in the Alps as the foehn is another example of...result is complicated by local details; regions of...

George M. Dawson

1886-01-08T23:59:59.000Z

226

Wind Resource Map: Mexico | Open Energy Information  

Open Energy Info (EERE)

Wind Resource Map: Mexico Wind Resource Map: Mexico Jump to: navigation, search Tool Summary LAUNCH TOOL Name: Wind Resource Map: Mexico Focus Area: Renewable Energy Topics: Potentials & Scenarios Website: www.altestore.com/howto/Reference-Materials/Wind-Resource-Map-Mexico/a Equivalent URI: cleanenergysolutions.org/content/wind-resource-map-mexico,http://clean Language: English Policies: Deployment Programs DeploymentPrograms: Technical Assistance This is on-shore wind resource map for rural power applications in Mexico. The map can be used to aid in appropriate siting of wind power installations. Please note that the wind speed classes are taken at 30 m (100 feet [ft]), instead of the usual 10 m (33 ft). Each wind power class should span two power densities. For example, Wind Power Class = 3

227

Power Services Site Navigation Menus  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Contact Information Power Services home page PBL banner with photos of Bonneville dam and wind turbines Power Services Site Navigation Menus Instructions: Click on (or tab to) a...

228

Design and implementation of wind energy system in Saudi Arabia  

Science Journals Connector (OSTI)

Abstract This paper introduces an accurate procedure to choose the best site from many sites and suitable wind turbines for these sites depending on the minimum price of kWh generated (Energy Cost Figure(ECF)) from wind energy system. In this paper a new proposed computer program has been introduced to perform all the calculations and optimization required to accurately design the wind energy system and matching between sites and wind turbines. Some of cost calculations of energy methods have been introduced and compared to choose the most suitable method. The data for five sites in Saudi Arabia and hundred wind turbines have been used to choose the best site and the optimum wind turbine for each site. These sites are Yanbo, Dhahran, Dhulom, Riyadh, and Qaisumah. One hundred wind turbines have been used to choose the best one for each site. This program is built in a generic form which allows it to be used with unlimited number of sites and wind turbines in all over the world. The program is written by using Visual Fortran and it is verified with simple calculation in Excel. The paper showed that the best site is Dhahran and the suitable wind turbine for this site is KMW-ERNO with 5.85Cents/kWh. The worst site to install wind energy system is Riyadh with minimum price of kWh of 12.81Cents/kWh in case of using GE Energy 2 wind turbine.

Ali M. Eltamaly

2013-01-01T23:59:59.000Z

229

Estimated airborne release of plutonium from Atomics International's Nuclear Materials Development Facility in the Santa Susana site, California, as a result of postulated damage from severe wind and earthquake hazard  

SciTech Connect (OSTI)

The potential mass of airborne releases of plutonium (source term) that could result from wind and seismic damage is estimated for the Atomics International Company's Nuclear Materials Development Facility (NMDF) at the Santa Susana site in California. The postulated source terms will be useful as the basis for estimating the potential dose to the maximum exposed individual by inhalation and to the total population living within a prescribed radius of the site. The respirable fraction of airborne particles is thus the principal concern. The estimated source terms are based on the damage ratio, and the potential airborne releases if all enclosures suffer particular levels of damage. In an attempt to provide a realistic range of potential source terms that include most of the normal processing conditions, a best estimate bounded by upper and lower limits is provided. The range of source terms is calculated by combining a high best estimate and a low damage ratio, based on a fraction of enclosures suffering crush or perforation, with the airborne release from enclosures based upon an upper limit, average, and lower limit inventory of dispersible materials at risk. Two throughput levels are considered. The factors used to evaluate the fractional airborne release of materials and the exchange rates between enclosed and exterior atmospheres are discussed. The postulated damage and source terms are discussed for wind and earthquake hazard scenarios in order of their increasing severity.

Mishima, J.; Ayer, J.E.

1981-09-01T23:59:59.000Z

230

Wind Blog  

Broader source: Energy.gov (indexed) [DOE]

wind-blog Office of Energy Efficiency & Renewable wind-blog Office of Energy Efficiency & Renewable Energy Forrestal Building 1000 Independence Avenue, SW Washington, DC 20585 en Two Facilities, One Goal: Advancing America's Wind Industry http://energy.gov/eere/articles/two-facilities-one-goal-advancing-america-s-wind-industry wind-industry" class="title-link">Two Facilities, One Goal: Advancing America's Wind Industry

231

Ris R 1068EN Extreme Winds  

E-Print Network [OSTI]

Ris R 1068EN Extreme Winds in Denmark Leif Kristensen and Ole Rathmann Ris National Laboratory of this investigationis to study, on basis of climatologicalrecords, how large extreme wind speeds are in various parts;Abstract Wind-speed data from four sites in Denmark have been analyzed in order to obtain estimates

232

Stakeholder Engagement and Outreach: Residential-Scale 30-Meter Wind Maps  

Wind Powering America (EERE)

Residential-Scale 30-Meter Wind Maps Residential-Scale 30-Meter Wind Maps The Stakeholder Engagement and Outreach initiative provides 30-meter (m) height, high-resolution wind resource maps for the United States. Businesses, farms, and homeowners use residential-scale wind resource maps to identify wind sites that may be appropriate for small-scale wind projects. A wind resource map of the United States. Go to the California wind resource map. Go to the Washington wind resource map. Go to the Oregon wind resource map. Go to the Idaho wind resource map. Go to the Nevada wind resource map. Go to the Montana wind resource map. Go to the Wyoming wind resource map. Go to the Utah wind resource map. Go to the Colorado wind resource map. Go to the Arizona wind resource map. Go to the New Mexico wind resource map. Go to the North Dakota wind resource map. Go to the South Dakota wind resource map. Go to the Nebraska wind resource map. Go to the Kansas wind resource map. Go to the Oklahoma wind resource map. Go to the Texas wind resource map. Go to the Minnesota wind resource map. Go to the Iowa wind resource map. Go to the Missouri wind resource map. Go to the Arkansas wind resource map. Go to the Louisiana wind resource map. Go to the Wisconsin wind resource map. Go to the Illinois wind resource map. Go to the Indiana wind resource map. Go to the Michigan wind resource map. Go to the Ohio wind resource map. Go to the Kentucky wind resource map. Go to the Tennessee wind resource map. Go to the Mississippi wind resource map. Go to the Alabama wind resource map. Go to the Florida wind resource map. Go to the Georgia wind resource map. Go to the South Carolina wind resource map. Go to the North Carolina wind resource map. Go to the Virginia wind resource map. Go to the West Virginia wind resource map. Go to the Pennsylvania wind resource map. Go to the Maryland wind resource map. Go to the Delaware wind resource map. Go to the New Jersey wind resource map. Go to the New York wind resource map. Go to the Connecticut wind resource map. Go to the Rhode Island wind resource map. Go to the Massachusetts wind resource map. Go to the Vermont wind resource map. Go to the New Hampshire wind resource map. Go to the Maine wind resource map. Go to the Alaska wind resource map. Go to the Hawaii wind resource map.

233

Small Wind Guidebook/Introduction | Open Energy Information  

Open Energy Info (EERE)

Introduction Introduction < Small Wind Guidebook Jump to: navigation, search Print PDF WIND ENERGY STAKEHOLDER ENGAGEMENT & OUTREACHSmall Wind Guidebook Home WindTurbine-icon.png Small Wind Guidebook * Introduction * First, How Can I Make My Home More Energy Efficient? * Is Wind Energy Practical for Me? * What Size Wind Turbine Do I Need? * What Are the Basic Parts of a Small Wind Electric System? * What Do Wind Systems Cost? * Where Can I Find Installation and Maintenance Support? * How Much Energy Will My System Generate? * Is There Enough Wind on My Site? * How Do I Choose the Best Site for My Wind Turbine? * Can I Connect My System to the Utility Grid? * Can I Go Off-Grid? * State Information Portal * Glossary of Terms * For More Information Introduction Can I use wind energy to power my home? This question is being asked across

234

Solar and Wind Rights | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

and Wind Rights and Wind Rights Solar and Wind Rights < Back Eligibility Commercial Fed. Government General Public/Consumer Industrial Local Government Nonprofit Residential Schools State Government Savings Category Heating & Cooling Commercial Heating & Cooling Solar Heating Buying & Making Electricity Water Heating Wind Program Info State Wisconsin Program Type Solar/Wind Access Policy Provider Public Service Commission of Wisconsin Wisconsin has several laws that protect a resident's right to install and operate a solar or wind energy system. These laws cover zoning restrictions by local governments, private land use restrictions, and system owner rights to unobstructed access to resources. Wisconsin permitting rules and model policy for small wind can be found [http://dsireusa.org/incentives/incentive.cfm?Incentive_Code=WI16R&re=1&ee=1

235

Robotic Ground Rules  

E-Print Network [OSTI]

Broadcast Transcript: In his short story Runaround, Isaac Asimov created his Laws of Robotics: Rule 1: a robot may not injure a human. Rule 2: A robot must obey orders from a human unless they conflict with Rule 1, and Rule 3: A robot must protect...

Hacker, Randi; Tsutsui, William; vonHolten, Leslie

2007-05-16T23:59:59.000Z

236

ERCOT Wind Scraper | Open Energy Information  

Open Energy Info (EERE)

Page Page Edit with form History Facebook icon Twitter icon » ERCOT Wind Scraper Jump to: navigation, search Tool Summary Name: ERCOT Wind Scraper Agency/Company /Organization: Prof. Mack Grady, Baylor University Sector: Energy Focus Area: Wind Resource Type: Software/modeling tools User Interface: Desktop Application Website: web.ecs.baylor.edu/faculty/grady/ OpenEI Keyword(s): Community Generated ERCOT Wind Scraper Screenshot References: W. Mack Grady[1] ERCOT Wind Scraper retrieves, displays, and logs minute-by-minute system generation, load, and wind generation from ERCOT's public web site. ERCOT Wind Scraper retrieves, displays, and logs minute-by-minute system generation, load, and wind generation from ERCOT's public web site. Instructions are included in a zipped file along with the program.

237

Distributed Wind | Open Energy Information  

Open Energy Info (EERE)

Distributed Wind Distributed Wind Jump to: navigation, search Distributed wind energy systems provide clean, renewable power for on-site use and help relieve pressure on the power grid while providing jobs and contributing to energy security for homes, farms, schools, factories, private and public facilities, distribution utilities, and remote locations.[1] Resources Clean Energy States Alliance. (2010). State-Based Financing Tools to Support Distributed and Community Wind Projects. Accessed September 27, 2013. This guide reviews the financing role that states, and specifically state clean energy funds, have played and can play in supporting community and distributed wind projects. Clean Energy States Alliance. (May 2010). Supporting Onsite Distributed Wind Generation Projects. Accessed September 27, 2013.

238

New England Wind Forum: A Wind Powering America Project - Newsletter #6 - September 2010, (NEWF), Wind and Water Power Program (WWPP)  

Wind Powering America (EERE)

6 - September 2010 6 - September 2010 WIND AND WATER POWER PROGRAM PIX 16204 New England and Northeast Look to the Horizon...and Beyond, for Offshore Wind In early December, Boston hosted the American Wind Energy Association's second annual Offshore Wind Project Workshop. U.S. and European offshore wind stakeholders convened to discuss the emerging U.S. offshore wind industry and provided evidence of a significant increase in activity along the Atlantic Coast from the Carolinas to Maine. The wind power industry and policymakers are looking to offshore for long-term growth, driven by aggressive policy goals, economic develop- ment opportunities, a finite set of attractive land-based wind sites, and immense wind energy potential at a modest distance from major population centers.

239

Synoptic and local influences on boundary layer processes, with an application to California wind power  

E-Print Network [OSTI]

Makarov, Y. , 2007: Wind Integration Issues and So- lutionsexpectations, and integration strategy for any wind powerwind climate and variability. Site design and operation, as well as market integration

Mansbach, David K.

2010-01-01T23:59:59.000Z

240

Operation Features of a Reduced Matrix Converter for Offshore Wind Power.  

E-Print Network [OSTI]

??When a wind park is sited offshore, compact, lightweight and reliable components are important requirements. In this Master's thesis a wind energy conversion system has (more)

Hanssen, Mari Red

2011-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "wind siting rules" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


241

Wind Power Forecasting  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Retrospective Reports 2011 Smart Grid Wind Integration Wind Integration Initiatives Wind Power Forecasting Wind Projects Email List Self Supplied Balancing Reserves Dynamic...

242

Haxtun Wind Project | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

Haxtun Wind Project Haxtun Wind Project Haxtun Wind Project November 13, 2013 - 10:45am Addthis The Haxtun Wind project in Phillips County, Colorado, is a community-owned 30 megawatt wind farm. The U.S. Department of Energy provided more than $2.5 million in funding for this Community Renewable Energy Deployment (CommRE) project. Wind Farm Phillips County is located in northeastern Colorado. The Haxtun Wind CommRE project will consist of up to 20 turbines located on more than 9,200 acres just south of the town of Haxtun, Colorado, and will tie into the grid at the existing Haxtun substation with few additional improvements needed. To ensure success, the Haxtun Wind project needs to be located on a site with a good wind resource, accessible transmission, a supportive community,

243

Wind turbine  

SciTech Connect (OSTI)

The improvement in a wind turbine comprises providing a tower with a freely liftable mount and adapting a nacelle which is fitted with a propeller windwheel consisting of a plurality of rotor blades and provided therein with means for conversion of wind energy to be shifted onto said mount attached to the tower. In case of a violent wind storm, the nacelle can be lowered down to the ground to protect the rotor blades from breakage due to the force of the wind. Required maintenance and inspection of the nacelle and replacement of rotor blades can be safely carried out on the ground.

Abe, M.

1982-01-19T23:59:59.000Z

244

Wind Energy: Large and Small Systems Competing  

Science Journals Connector (OSTI)

...the wheat in Kansas. Wind power...of mass-production they offer...systems produce electricity or drive-shaft...the specific site. Interference...Based on a production run of 1000...econ-omies of production in the past...could produce electricity at a cost...winds at the site, plus the...

WILLIAM D. METZ

1977-09-02T23:59:59.000Z

245

Wind Farm Brings Clean, Affordable Energy to Alaskan Cooperative |  

Broader source: Energy.gov (indexed) [DOE]

Wind Farm Brings Clean, Affordable Energy to Alaskan Cooperative Wind Farm Brings Clean, Affordable Energy to Alaskan Cooperative Wind Farm Brings Clean, Affordable Energy to Alaskan Cooperative September 26, 2013 - 5:50pm Addthis Wind Farm Brings Clean, Affordable Energy to Alaskan Cooperative A train carrying wind turbine components arrives in Alaska. The components were then transported to the Eva Creek Wind Farm site. | Photo courtesy of Golden Valley Electric Association A train carrying wind turbine components arrives in Alaska. The components were then transported to the Eva Creek Wind Farm site. | Photo courtesy of Golden Valley Electric Association Wind turbine blades are transported up the 10-mile-long, narrow dirt road to the Eva Creek Wind Farm site. | Photo courtesy of Golden Valley Electric Association

246

Wind speed estimation using multilayer perceptron  

Science Journals Connector (OSTI)

Abstract Wind speed knowledge is prerequisite in the siting of wind turbines. In consequence the wind energy use requires meticulous and specified knowledge of the wind characteristics at a location. This paper presents a method for determining the annual average wind speed at a complex terrain site by using neural networks, when only short term data are available for that site. This information is useful for preliminary calculations of the wind resource at a remote area having only a short time period of wind measurements measurement in a site. Artificial neural networks are useful for implementing non-linear process variables over time, and therefore are a useful tool for estimating the wind speed. The neural network used is multilayer perceptron with three layers and the supervised learning algorithm used is backpropagation. The inputs used in the neural network were wind speed and direction data from a single station, and the training patterns used correspond to sixty days data. The results obtained by simulating the annual average wind speed at the selected site based on data from nearby stations with correlation coefficients above 0.5 were satisfactory, compared with actual values. Reliable estimations were obtained, with errors below 6%.

Ramn Velo; Paz Lpez; Francisco Maseda

2014-01-01T23:59:59.000Z

247

Small Wind Guidebook/Image Library | Open Energy Information  

Open Energy Info (EERE)

Image Library Image Library < Small Wind Guidebook Jump to: navigation, search Print PDF WIND ENERGY STAKEHOLDER ENGAGEMENT & OUTREACHSmall Wind Guidebook Home WindTurbine-icon.png Small Wind Guidebook * Introduction * First, How Can I Make My Home More Energy Efficient? * Is Wind Energy Practical for Me? * What Size Wind Turbine Do I Need? * What Are the Basic Parts of a Small Wind Electric System? * What Do Wind Systems Cost? * Where Can I Find Installation and Maintenance Support? * How Much Energy Will My System Generate? * Is There Enough Wind on My Site? * How Do I Choose the Best Site for My Wind Turbine? * Can I Connect My System to the Utility Grid? * Can I Go Off-Grid? * State Information Portal * Glossary of Terms * For More Information *Capacity-10 kilowatts *Turbine manufacturer-Bergey Windpower Company

248

Numerical Simulation of the Irish Wind Climate and Comparison with Wind  

Open Energy Info (EERE)

Numerical Simulation of the Irish Wind Climate and Comparison with Wind Numerical Simulation of the Irish Wind Climate and Comparison with Wind Atlas Data Dataset Summary Description (Abstract): The wind climate of Ireland has been calculated using the Karlsruhe Atmospheric Mesoscale Model KAMM using the statistical-dynamical method. The large-scale climatology is represented by 65 classes of geostropic wind. From the frequency of the classes and the simulations the climatology of the surface wind is determined. The simulated winds are processed similar to observed data to obtain LIB-files for the Wind Atlas Analysis and Application Program WAsP. Comparisons are made with mast observations which have been analyzed by WAsP. Sites with high wind power potential are well predicted. Stations with low power are over predicted. (Purpose): Article describing an example of a KAMM

249

Switching transients in wind farm grids Poul Srensen1)  

E-Print Network [OSTI]

's point of view seems to have been on the fault- ride-through capability of the wind turbines, in order offshore wind farms than from distributed wind turbines on land sites [4], [5]. However according the internal sub-sea cable grid interconnecting the wind turbines, often referred to as the power collection

250

Hanford Site  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Rule Steel Environmental Restoration Disposal Facility Environmental Restoration Disposal Facility...

251

Session: Wind industry project development  

SciTech Connect (OSTI)

This first session at the Wind Energy and Birds/Bats workshop consisted of two presentations followed by a question and answer period. The session was intended to provide a general overview of wind energy product development, from the industry's perspective. Tom Gray of AWEA presented a paper titled ''State of the Wind Energy Industry in 2004'', highlighting improved performance and lower cost, efforts to address avian impacts, a status of wind energy in comparison to other energy-producing sources, and ending on expectations for the near future. Sam Enfield of Atlantic Renewable Energy Corporation presented a paper titled ''Key Factors for Consideration in Wind Plant Siting'', highlighting factors that wind facility developers must consider when choosing a site to build wind turbines and associated structures. Factors covered include wind resources available, ownership and land use patterns, access to transmission lines, accessibility and environmental impacts. The question and answer sum mary included topics related to risk taking, research and development, regulatory requirements, and dealing with utilities.

Gray, Tom; Enfield, Sam

2004-09-01T23:59:59.000Z

252

Calibrated Probabilistic Forecasting at the Stateline Wind Energy Center  

E-Print Network [OSTI]

Calibrated Probabilistic Forecasting at the Stateline Wind Energy Center: The Regime at wind energy sites are becoming paramount. Regime-switching space-time (RST) models merge meteorological forecast regimes at the wind energy site and fits a conditional predictive model for each regime

Washington at Seattle, University of

253

Foundation q-rules  

E-Print Network [OSTI]

The q-rules are three auxiliary rules that guide the application of Schrodinger's equation. They are a set of instructions that describe how stochastic choices cause the wave to collapse and "start over" with new boundary conditions.

Richard A. Mould

2011-11-10T23:59:59.000Z

254

Wyoming Wind Power Project (generation/wind)  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Wind Power > Generation Hydro Power Wind Power Monthly GSP BPA White Book Dry Year Tools Firstgov Wyoming Wind Power Project (Foote Creek Rim I and II) Thumbnail image of wind...

255

Naval Station Newport Wind Resource Assessment. A Study Prepared in Partnership with the Environmental Protection Agency for the RE-Powering America's Land Initiative: Siting Renewable Energy on Potentially Contaminated Land and Mine Sites, and The Naval Facilities Engineering Service Center  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Naval Station Newport Naval Station Newport Wind Resource Assessment A Study Prepared in Partnership with the Environmental Protection Agency for the RE-Powering America's Land Initiative: Siting Renewable Energy on Potentially Contaminated Land and Mine Sites, and The Naval Facilities Engineering Service Center Robi Robichaud, Jason Fields, and Joseph Owen Roberts Technical Report NREL/TP-6A20-52801 February 2012 NREL is a national laboratory of the U.S. Department of Energy, Office of Energy Efficiency & Renewable Energy, operated by the Alliance for Sustainable Energy, LLC. National Renewable Energy Laboratory 1617 Cole Boulevard Golden, Colorado 80401 303-275-3000 * www.nrel.gov Contract No. DE-AC36-08GO28308 Naval Station Newport

256

Stakeholder Engagement and Outreach: Regional Wind Activities  

Wind Powering America (EERE)

Regional Activities Regional Activities State Activities State Lands Siting Regional Wind Activities Learn more about regional activities in New England. New England Wind Forum The New England Wind Forum has its own website with information particular to the region and its own unique circumstances. Find regional events, news, projects, and information about wind technology, economics, markets for wind energy, siting considerations, policies and public acceptance issues as they all pertain to the New England region. The site was launched in 2005 to provide a single comprehensive source of up-to-date, Web-based information on a broad array of wind-energy-related issues pertaining to New England. Contacts | Website Policies | U.S. Department of Energy | USA.gov Content Last Updated: 9/2

257

Offshore Wind Power USA  

Broader source: Energy.gov [DOE]

The Offshore Wind Power USA conference provides the latest offshore wind market updates and forecasts.

258

Stakeholder Engagement and Outreach: Wind for Homeowners, Farmers, and  

Wind Powering America (EERE)

Rural Rural Communities Printable Version Bookmark and Share Agricultural & Rural Farm Bill Outreach Articles Wind for Homeowners, Farmers, & Businesses Wind Farms Resources & Tools Native Americans Wind for Homeowners, Farmers, and Businesses Wind Powering America produced Small Wind Electric Systems Consumer's Guides to help homeowners, ranchers, and small businesses decide if wind energy will work for them. A Small Wind Guidebook is available for each state and answers these questions. Is wind energy practical for me? What size wind turbine do I need? What are the basic parts of a small wind electric system? What do wind systems cost? Where can I find installation and maintenance support? How much energy will my system generate? Is there enough wind on my site?

259

Synoptic and local influences on boundary layer processes, with an application to California wind power  

E-Print Network [OSTI]

th percentiles of daily wind speeds (vertical axis) largelyand warm SST. Mean vertical pro?les of wind speed from EPICspeed at the wind farm sites, since inversion strength is largely controlled by the vertical

Mansbach, David K.

2010-01-01T23:59:59.000Z

260

offshore wind farm  

Science Journals Connector (OSTI)

offshore wind farm, wind farm [Wind park which one may find on the ... engineers and should not be used. A wind farm consists of a network of wind turbines] ? Windkraftanlage f, Windpark m; Offshore

2014-08-01T23:59:59.000Z

Note: This page contains sample records for the topic "wind siting rules" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


261

Wind Energy Leasing Handbook  

E-Print Network [OSTI]

Wind Energy Leasing Handbook Wind Energy Leasing Handbook E-1033 Oklahoma Cooperative Extension?..................................................................................................................... 31 What do wind developers consider in locating wind energy projects?............................................................................................ 37 How do companies and individuals invest in wind energy projects?....................................................................

Balasundaram, Balabhaskar "Baski"

262

Design Wind Speed  

Science Journals Connector (OSTI)

Wind is characterized by various different parameters. They include the following items: (1) wind speed, such as the mean wind speed and maximum instantaneous wind speed; (2) wind direction such as the azimuth di...

Yozo Fujino; Kichiro Kimura; Hiroshi Tanaka

2012-01-01T23:59:59.000Z

263

Wind modelling based on wind input data conditions using Weibull distribution  

Science Journals Connector (OSTI)

Weibull distribution can be used to model the wind speed distribution at a particular site and hence, it can help in wind resource assessment (WRA) of a site. By calculating the shape (k) and scale (c) parameters for Weibull distribution, the wind speed frequency curve for a site can be made. Once this wind speed distribution for site is determined, it can be convolved with the power curve for a wind turbine and the annual energy output from the site can be determined. This paper presents how the Weibull distribution is used to determine the wind speed distribution for Vadravadra site in Gau Island of Fiji and how closely the annual energy output from the modelled wind speed distribution matches with the annual energy output using the actual wind speed distribution. It also presents how k is related to the turbulence intensity for a site; how the c is related to the annual mean wind speed and how a formula for estimating c is derived at a new height.

R.D. Prasad; R.C. Bansal; M. Sauturaga

2009-01-01T23:59:59.000Z

264

Stakeholder Engagement and Outreach: Community-Scale 50-Meter Wind Maps  

Wind Powering America (EERE)

Community-Scale 50-Meter Wind Maps Community-Scale 50-Meter Wind Maps The Stakeholder Engagement and Outreach initiative provides 50-meter (m) height, high-resolution wind resource maps for most of the states and territories of Puerto Rico and the Virgin Islands in the United States. Counties, towns, utilities, and schools use community-scale wind resource maps to locate and quantify the wind resource, identifying potentially windy sites determining a potential site's economic and technical viability. Map of the updated wind resource assessment status for the United States. Go to the Washington wind resource map. Go to the Oregon wind resource map. Go to the California wind resource map. Go to the Nevada wind resource map. Go to the Idaho wind resource map. Go to the Utah wind resource map. Go to the Arizona wind resource map. Go to the Montana wind resource map. Go to the Wyoming wind resource map. Go to the Colorado wind resource map. Go to the New Mexico wind resource map. Go to the North Dakota wind resource map. Go to the South Dakota wind resource map. Go to the Nebraska wind resource map. Go to the Kansas wind resource map. Go to the Oklahoma wind resource map. Go to the Missouri wind resource map. Go to the Alaska wind resource map. Go to the Hawaii wind resource map. Go to the Michigan wind resource map. Go to the Illinois wind resource map. Go to the Indiana wind resource map. Go to the Ohio wind resource map. Go to the North Carolina wind resource map. Go to the Virginia wind resource map. Go to the Maryland wind resource map. Go to the West Virginia wind resource map. Go to the Pennsylvania wind resource map. Go to the Rhode Island wind resource map. Go to the Connecticut wind resource map. Go to the Massachusetts wind resource map. Go to the Vermont wind resource map. Go to the New Hampshire wind resource map. Go to the Maine wind resource map. Go to the Kentucky wind resource map. Go to the Tennessee wind resource map. Go to the Arkansas wind resource map. Go to the Puerto Rico wind resource map. Go to the U.S. Virgin Islands wind resource map. Go to the New Jersey wind resource map. Go to the Delaware wind resource map.

265

Estimation of capacity credit for wind power in Libya  

Science Journals Connector (OSTI)

This paper presents the results of a study that evaluated the wind potential at the central region of the Libyan coast and estimated the capacity credit of wind power in the national network. Several sites were investigated to choose the most suitable sites for wind farm establishment. Different sizes of Wind Energy Converter Systems (WECSs) were selected to estimate the wind potential. The sizes were selected to satisfy present and future market development as well as to satisfy technical, economic, and environmental aspects. Wind data from three meteorological stations in the proposed region were used in assessing the wind potential. The wind potential was estimated according to the characteristics of the sites and power curves of the WECSs, and considering certain assumptions. The results showed that the capacity credit varied from about 20% to 50%, depending on penetration levels of wind power, for the assumptions made in this study.

Wedad B. El-Osta; Mohamed Ali Ekhlat; Amal S. Yagoub; Yousef Khalifa; E. Borass

2005-01-01T23:59:59.000Z

266

Site Index - Hanford Site  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Site Index Site Index Calendar Hanford Blog Archive Search Site Feeds Site Index Weather What's New Site Index Email Email Page | Print Print Page |Text Increase Font Size Decrease...

267

Maine coast winds  

SciTech Connect (OSTI)

The Maine Coast Winds Project was proposed for four possible turbine locations. Significant progress has been made at the prime location, with a lease-power purchase contract for ten years for the installation of turbine equipment having been obtained. Most of the site planning and permitting have been completed. It is expect that the turbine will be installed in early May. The other three locations are less suitable for the project, and new locations are being considered.

Avery, Richard

2000-01-28T23:59:59.000Z

268

A concurrent rule scheduling algorithm for active rules  

Science Journals Connector (OSTI)

The use of rules in a distributed environment creates new challenges for the development of active rule execution models. In particular, since a single event can trigger multiple rules that execute over distributed sources of data, it is important to ... Keywords: Active rules, Concurrent rule execution, Confluence analysis, Rule scheduling algorithm

Ying Jin; Susan D. Urban; Suzanne W. Dietrich

2007-03-01T23:59:59.000Z

269

Federal Wind Energy Assistance through NREL (Fact Sheet)  

SciTech Connect (OSTI)

NREL assists with wind resource assessment and development activities initiated by federal agencies to facilitate distributed renewable energy projects at federal agency sites. This brief outlines the process for requesting NREL assistance with federal wind energy projects.

Not Available

2009-09-01T23:59:59.000Z

270

Frequently Asked Questions on Small Wind Systems | Department...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

is practical for powering your home. What are the benefits to homeowners from using wind turbines? Is wind power practical for me? Is my site right? What about legal,...

271

Solid Waste Management Rule (West Virginia) | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

Rule (West Virginia) Rule (West Virginia) Solid Waste Management Rule (West Virginia) < Back Eligibility Utility Fed. Government Commercial Agricultural Investor-Owned Utility State/Provincial Govt Industrial Construction Municipal/Public Utility Local Government Residential Installer/Contractor Rural Electric Cooperative Tribal Government Low-Income Residential Schools Retail Supplier Institutional Multi-Family Residential Systems Integrator Fuel Distributor Nonprofit General Public/Consumer Transportation Program Info State West Virginia Program Type Siting and Permitting This rule establishes requirements for the siting, financial assurance, installation, establishment, construction, design, groundwater monitoring, modification, operation, permitting, closure and post-closure care of any

272

Sewage Sludge Management Rule (West Virginia) | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

Sewage Sludge Management Rule (West Virginia) Sewage Sludge Management Rule (West Virginia) Sewage Sludge Management Rule (West Virginia) < Back Eligibility Utility Fed. Government Commercial Agricultural Investor-Owned Utility State/Provincial Govt Industrial Construction Municipal/Public Utility Local Government Residential Installer/Contractor Rural Electric Cooperative Tribal Government Low-Income Residential Schools Retail Supplier Institutional Multi-Family Residential Systems Integrator Fuel Distributor Nonprofit General Public/Consumer Transportation Program Info State West Virginia Program Type Siting and Permitting This rule establishes requirements for the permitting siting, bonding, installation, establishment, construction, modification, and operation of any facility that generates, processes, recycles and/or disposes of sewage

273

Analysis of Wind Power Generation of Texas  

E-Print Network [OSTI]

from Jul 2002 to Jan 2003 Degradation Analysis - On average, no degradation observed for nine wind farms analyzed over 4-year period. Application of Method 1 to New Site- Sweetwater I Wind Farm ? Energy Systems Laboratory, Texas A&M University Page 3... (ANN). Future Work ? Energy Systems Laboratory, Texas A&M University Page 4 Example: Sweetwater I Wind Farm (37.5 MW) ? Completed and commenced operation in late December 2003. ? Wind Turbines : GE Wind Energy 1.5s 1500 kW ? Tower Height: 80 m...

Liu, Z.; Haberl, J.; Subbarao, K.; Baltazar, J. C.

274

Wind News  

Broader source: Energy.gov (indexed) [DOE]

news Office of Energy Efficiency & Renewable news Office of Energy Efficiency & Renewable Energy Forrestal Building 1000 Independence Avenue, SW Washington, DC 20585 en New Report Shows Trend Toward Larger Offshore Wind Systems, with 11 Advanced Stage Projects Proposed in U.S. Waters http://energy.gov/eere/articles/new-report-shows-trend-toward-larger-offshore-wind-systems-11-advanced-stage-projects wind-systems-11-advanced-stage-projects" class="title-link">New Report Shows Trend Toward Larger Offshore Wind Systems, with 11 Advanced Stage Projects Proposed in U.S. Waters

275

New England Wind Forum: Historic Wind Development in New England: More New  

Wind Powering America (EERE)

More New England Wind Farms More New England Wind Farms Since Crotched Mountain, six additional wind farms have been installed to date in New England. The performance of New England wind farms has generally mirrored the performance of wind farms elsewhere, i.e., a slow start followed by rapid improvement. Original wind farm on Equinox Mountain, circa 1982. Photo courtesy of Endless Energy Corporation. Click on the image to view a larger version. Original wind farm on Equinox Mountain, circa 1982. Equinox Mountain, VT The four WTG turbines installed in 1981 and 1982 at Equinox Mountain, VT, comprised one of the first wind farm installations in the United States. These early turbines, which suffered mechanical issues (including blade throws), were subsequently removed, but Equinox Mountain continued to receive attention as a wind power site (see below).

276

EA-1914: Final Site-Wide Environmental Assessment  

Broader source: Energy.gov [DOE]

National Renewable Energy Laboratory (NREL) National Wind Technology Center (NWTC) Site-Wide Environmental Assessment, Golden, Colorado

277

Wind Integration Datasets from the National Renewable Energy Laboratory (NREL)  

DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

The Wind Integration Datasets provide time-series wind data for 2004, 2005, and 2006. They are intended to be used by energy professionals such as transmission planners, utility planners, project developers, and university researchers, helping them to perform comparisons of sites and estimate power production from hypothetical wind plants. NREL cautions that the information from modeled data may not match wind resource information shown on NREL;s state wind maps as they were created for different purposes and using different methodologies.

278

Improved methodology for design of low wind speed specific wind turbine blades  

Science Journals Connector (OSTI)

Abstract The majority of wind power is currently produced on high wind speed sites, and the standard design of wind turbine blades has evolved to be structurally efficient under these conditions. Recently, sites with lower quality wind resources have begun to be considered for new wind farms. This study confirms the expectation that the standard high wind speed design process results in less efficient structures when used for low wind speed conditions, and that a low wind speed specific design process is able to yield structural improvements. A comparative structural analysis of generic blades from high and low wind speed turbines quantifies the differences in structural performance between high and low wind speed blades, and indicates the ways in which the standard design process should be modified to suit a low wind speed specific design. An improved design method specifically for low wind speed blades is proposed, with more emphasis on stiffness than in the standard high wind speed design. The improved design process results in a lighter and cheaper blade than the conventionally designed one, whilst still fulfilling the design requirements.

R.H. Barnes; E.V. Morozov; K. Shankar

2015-01-01T23:59:59.000Z

279

Wind Energy Benefits, Wind Powering America (WPA) (Fact Sheet...  

Broader source: Energy.gov (indexed) [DOE]

Energy Benefits, Wind Powering America (WPA) (Fact Sheet), Wind And Water Power Program (WWPP) Wind Energy Benefits, Wind Powering America (WPA) (Fact Sheet), Wind And Water Power...

280

The Use of Tall Tower Field Data for Estimating Wind Turbine Power Performance , J. Chapman1  

E-Print Network [OSTI]

The Use of Tall Tower Field Data for Estimating Wind Turbine Power Performance A. Swift1 , J wind speed measurements on the TTU WISE 200m and 78m towers. A hypothetical wind turbine is shown. At potential wind turbine sites, it is uncommon to have wind measurements available at multiple heights. Then

Manuel, Lance

Note: This page contains sample records for the topic "wind siting rules" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


281

Small Wind Guidebook/For More Information | Open Energy Information  

Open Energy Info (EERE)

source source History View New Pages Recent Changes All Special Pages Semantic Search/Querying Get Involved Help Apps Datasets Community Login | Sign Up Search Page Edit History Facebook icon Twitter icon » Small Wind Guidebook/For More Information < Small Wind Guidebook Jump to: navigation, search Print PDF WIND ENERGY STAKEHOLDER ENGAGEMENT & OUTREACHSmall Wind Guidebook Home WindTurbine-icon.png Small Wind Guidebook * Introduction * First, How Can I Make My Home More Energy Efficient? * Is Wind Energy Practical for Me? * What Size Wind Turbine Do I Need? * What Are the Basic Parts of a Small Wind Electric System? * What Do Wind Systems Cost? * Where Can I Find Installation and Maintenance Support? * How Much Energy Will My System Generate? * Is There Enough Wind on My Site?

282

Network Wind Power Over the Pacific Northwest. Progress Report, October 1979-September 1980.  

SciTech Connect (OSTI)

The research in FY80 is composed of six primary tasks. These tasks include data collection and analysis, wind flow studies around an operational wind turbine generator (WTG), kite anemometer calibration, wind flow analysis and prediction, the Klickitat County small wind energy conversion system (SWECS) program, and network wind power analysis. The data collection and analysis task consists of four sections, three of which deal with wind flow site surveys and the fourth with collecting and analyzing wind data from existing data stations. This report also includes an appendix which contains mean monthly wind speed data summaries, wind spectrum summaries, time series analysis plots, and high wind summaries.

Baker, Robert W.; Hewson, E. Wendell

1980-10-01T23:59:59.000Z

283

NREL: Wind Research - Wind Resource Assessment  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Wind Resource Assessment Wind Resource Assessment A map of the United States is color-coded to indicate the high winds at 80 meters. This map shows the wind resource at 80 meters for both land-based and offshore wind resources in the United States. Correct estimation of the energy available in the wind can make or break the economics of wind plant development. Wind mapping and validation techniques developed at the National Wind Technology Center (NWTC) along with collaborations with U.S. companies have produced high-resolution maps of the United States that provide wind plant developers with accurate estimates of the wind resource potential. State Wind Maps International Wind Resource Maps Dynamic Maps, GIS Data, and Analysis Tools Due to the existence of special use airspace (SUA) (i.e., military airspace

284

New England Wind Forum: Wind Power Technology  

Wind Powering America (EERE)

Wind Power Technology Wind Power Technology Modern wind turbines have become sophisticated power plants while the concept of converting wind energy to electrical energy remains quite simple. Follow these links to learn more about the science behind wind turbine technology. Wind Power Animation An image of a scene from the wind power animation. The animation shows how moving air rotates a wind turbine's blades and describes how the internal components work to produce electricity. It shows small and large wind turbines and the differences between how they are used, as stand alone or connected to the utility grid. How Wind Turbines Work Learn how wind turbines make electricity; what are the types, sizes, and applications of wind turbines; and see an illustration of the components inside a wind turbine.

285

2011 Wind Technologies Market Report  

E-Print Network [OSTI]

that includes wind turbine towers. 2011 Wind TechnologiesSets Other Wind Turbine Components Towers Wind-Poweredselected wind turbine components includes towers as well as

Bolinger, Mark

2013-01-01T23:59:59.000Z

286

2010 Wind Technologies Market Report  

E-Print Network [OSTI]

that includes wind turbine towers. 2010 Wind TechnologiesImports : Other Wind Turbine Components Towers Wind-Poweredselected wind turbine components includes towers as well as

Wiser, Ryan

2012-01-01T23:59:59.000Z

287

Forecastability as a Design Criterion in Wind Resource Assessment: Preprint  

SciTech Connect (OSTI)

This paper proposes a methodology to include the wind power forecasting ability, or 'forecastability,' of a site as a design criterion in wind resource assessment and wind power plant design stages. The Unrestricted Wind Farm Layout Optimization (UWFLO) methodology is adopted to maximize the capacity factor of a wind power plant. The 1-hour-ahead persistence wind power forecasting method is used to characterize the forecastability of a potential wind power plant, thereby partially quantifying the integration cost. A trade-off between the maximum capacity factor and the forecastability is investigated.

Zhang, J.; Hodge, B. M.

2014-04-01T23:59:59.000Z

288

Rules and Regulations for Governing the Administration and Enforcement of  

Broader source: Energy.gov (indexed) [DOE]

Rules and Regulations for Governing the Administration and Rules and Regulations for Governing the Administration and Enforcement of the Fresh Water Wetlands Act (Rhode Island) Rules and Regulations for Governing the Administration and Enforcement of the Fresh Water Wetlands Act (Rhode Island) < Back Eligibility Agricultural Commercial Construction Fed. Government Fuel Distributor Industrial Installer/Contractor Institutional Investor-Owned Utility Local Government Municipal/Public Utility Retail Supplier Rural Electric Cooperative State/Provincial Govt Systems Integrator Transportation Tribal Government Utility Savings Category Alternative Fuel Vehicles Hydrogen & Fuel Cells Buying & Making Electricity Water Solar Wind Program Info State Rhode Island Program Type Environmental Regulations Provider Department of Environmental Managemenet

289

Community Wind Toolkit | Open Energy Information  

Open Energy Info (EERE)

Wind Toolkit Wind Toolkit Jump to: navigation, search "Community wind" refers to a class of wind energy ownership structures. Projects are considered "community" projects when they are at least partially owned by individuals or businesses in the state and local area surrounding the wind power project. The community element of these projects can be defined narrowly so that ownership is concentrated in the county or region where the project is built, or it may be defined broadly so that project investors are from the state where the project is sited. Furthermore, the extent of local ownership may range from a small minority share to full ownership by persons in the immediate area surrounding the wind project site. Potential project owners include local farmers,

290

Energy 101: Wind Turbines  

ScienceCinema (OSTI)

See how wind turbines generate clean electricity from the power of the wind. Highlighted are the various parts and mechanisms of a modern wind turbine.

None

2013-05-29T23:59:59.000Z

291

Balancing of Wind Power.  

E-Print Network [OSTI]

?? In the future, renewable energy share, especially wind power share, in electricity generation is expected to increase. Due to nature of the wind, wind (more)

lker, Muhammed Akif

2011-01-01T23:59:59.000Z

292

Energy 101: Wind Turbines  

SciTech Connect (OSTI)

See how wind turbines generate clean electricity from the power of the wind. Highlighted are the various parts and mechanisms of a modern wind turbine.

None

2011-01-01T23:59:59.000Z

293

WINDExchange: Learn About Wind  

Wind Powering America (EERE)

Curricula & Teaching Materials Resources Learn About Wind Learn about how wind energy generates power; where the best wind resources are; how you can own, host, partner...

294

Wind power and Wind power and  

E-Print Network [OSTI]

Wind power and the CDM #12; Wind power and the CDM Emerging practices in developing wind power 2005 Jyoti P. Painuly, Niels-Erik Clausen, Jørgen Fenhann, Sami Kamel and Romeo Pacudan #12; WIND POWER AND THE CDM Emerging practices in developing wind power projects for the Clean Development Mechanism Energy

295

The National Wind Technology Center  

SciTech Connect (OSTI)

Wind energy research began at the Rocky Flats test site in 1976 when Rockwell International subcontracted with the Energy Research and Development Administration (ERDA). The Rocky Flats Plant was competitively selected from a number of ERDA facilities primarily because it experienced high instantaneous winds and provided a large, clear land area. By 1977, several small wind turbines were in place. During the facility`s peak of operation, in 1979-1980, researchers were testing as many as 23 small wind turbines of various configurations, including commercially available machines and prototype turbines developed under subcontract to Rocky Flats. Facilities also included 8-kW, 40-kW, and 225-kW dynamometers; a variable-speed test bed; a wind/hybrid test facility; a controlled velocity test facility (in Pueblo, Colorado); a modal test facility, and a multimegawatt switchgear facility. The main laboratory building was dedicated in July 1981 and was operated by the Rocky Flats Plant until 1984, when the Solar Energy Research Institute (SERI) and Rocky Flats wind energy programs were merged and transferred to SERI. SERI and now the National Renewable Energy Laboratory (NREL) continued to conduct wind turbine system component tests after 1987, when most program personnel were moved to the Denver WEst Office Park in Golden and site ownership was transferred back to Rocky Flats. The Combined Experiment test bed was installed and began operation in 1988, and the NREL structural test facility began operation in 1990. In 1993, the site`s operation was officially transferred to the DOE Golden Field Office that oversees NREL. This move was in anticipation of NREL`s renovation and reoccupation of the facility in 1994.

Thresher, R.W.; Hock, S.M. [National Renewable Energy Lab., Golden, CO (United States)] [National Renewable Energy Lab., Golden, CO (United States); Loose, R.R.; Cadogon, J.B.

1994-07-01T23:59:59.000Z

296

Natural Gas Rules (Louisiana)  

Broader source: Energy.gov [DOE]

The Louisiana Department of Natural Resources administers the rules that govern natural gas exploration and extraction in the state. DNR works with the Louisiana Department of Environmental...

297

Origin of the Spring-time Westerly Bias in Equatorial Atlantic Surface Winds in  

E-Print Network [OSTI]

-atmosphere interaction generally rules. #12;Page 2 of 32 1. Introduction Trade winds (easterlies) prevail over most) in the central and eastern basins; and vice-versa. Along the equator, easterly winds generate equatorialOrigin of the Spring-time Westerly Bias in Equatorial Atlantic Surface Winds in CAM3/CCSM3 Model

Carton, James

298

Rules and Regulations for Control of Ionizing Radiation (Arkansas) |  

Broader source: Energy.gov (indexed) [DOE]

Rules and Regulations for Control of Ionizing Radiation (Arkansas) Rules and Regulations for Control of Ionizing Radiation (Arkansas) Rules and Regulations for Control of Ionizing Radiation (Arkansas) < Back Eligibility Utility Program Info State Arkansas Program Type Environmental Regulations Siting and Permitting Provider Department of Health The Rules and Regulations for Control of Ionizing Radiation are the Arkansas state laws made in accordance the federal Nuclear Regulatory Commission Rules. Any contractor with the US DOE or US Nuclear Regulatory Commission is exempt from the state laws. This set of rules and regulations basically restates the federal policy to ensure that Arkansas is in compliance with the federal standards governing nuclear energy. Specifically the State rules are equivalent to Nuclear Regulatory

299

Electric Light and Power Rules (North Carolina) | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

Electric Light and Power Rules (North Carolina) Electric Light and Power Rules (North Carolina) Electric Light and Power Rules (North Carolina) < Back Eligibility Utility Commercial Savings Category Alternative Fuel Vehicles Hydrogen & Fuel Cells Buying & Making Electricity Water Home Weatherization Solar Wind Program Info State North Carolina Program Type Generating Facility Rate-Making Renewables Portfolio Standards and Goals Safety and Operational Guidelines Provider NC Utilities Commission These rules shall apply to any person, firm, or corporation (except municipalities, or agents thereof) which is now or may hereafter become engaged as a public utility in the business of furnishing electric current for domestic, commercial or industrial consumers within the State of North Carolina. The rules are intended to define good practice which can normally

300

Wind Opportunities for Idaho State Lands  

Wind Powering America (EERE)

and Local Initiatives Group and Local Initiatives Group National Renewable Energy Laboratory Terri Walters Carol Tombari 303-275-3005 303-275-3821 terri_walters@nrel.gov carol_tombari@nrel.gov Wind Opportunities For Idaho State Lands March 3, 2004 Wind Overview Wind Overview * Technology * Resources * Markets and Drivers * Economic Development Opportunities * Wind Powering America U.S. Electricity Fuel Mix U.S. Electricity Fuel Mix Coal 51.8% Nuclear 19.8% Hydro 7.2% Petroleum 2.9% Gas 16.1% Other/Renewables 2.2% Sizes and Applications Sizes and Applications Small (≤10 kW) * Homes * Farms * Remote Applications (e.g. water pumping, telecom sites, icemaking) Intermediate (10-100 kW) * Village Power * Hybrid Systems * Distributed Power Large (660 kW - 2+MW) * Central Station Wind Farms * Distributed Power Growth of Wind Energy Capacity Growth of Wind Energy Capacity

Note: This page contains sample records for the topic "wind siting rules" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


301

Wind Energy Act (Maine) | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

Wind Energy Act (Maine) Wind Energy Act (Maine) Wind Energy Act (Maine) < Back Eligibility Developer Utility Agricultural Commercial Construction Fed. Government Fuel Distributor General Public/Consumer Industrial Installer/Contractor Institutional Investor-Owned Utility Local Government Low-Income Residential Multi-Family Residential Municipal/Public Utility Nonprofit Residential Retail Supplier Rural Electric Cooperative Schools State/Provincial Govt Systems Integrator Transportation Tribal Government Savings Category Wind Buying & Making Electricity Program Info State Maine Program Type Solar/Wind Access Policy Siting and Permitting The Maine Wind Energy Act is a summary of legislative findings that indicate the state's strong interest in promoting the development of wind energy and establish the state's desire to ease the regulatory process for

302

NREL: Wind Research - News Release Archives  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

1 1 December 9, 2011 Saving Farmland One Wind Energy Project at a Time Rich VanderVeen, president of Mackinaw Power, LLC in Michigan talks about wind power being an important wealth-building second crop for American farmers. November 22, 2011 New Database Assists with Wind Project Siting November 2, 2011 Wind Energy Has A Lot Riding on Programs up for Debate in Congress Lisa Daniels, Windustry executive director, talks about how wind energy has become a farm product and that clean energy program funding decisions are being made that will affect farm energy progress for years to come. October 25, 2011 Wind Powering America Updates Interactive Maps The school wind energy projects map features 291 projects, and the anemometer loan projects map features 45 projects.

303

NREL: News Feature - NREL Thinks Big at Wind Technology Center  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Thinks Big at Wind Technology Center Thinks Big at Wind Technology Center March 22, 2012 An aerial photograph of the National Wind Technology Center site shows three large wind turbines with other smaller wind turbines in the background. Mountains are in the background of the photo behind the site. Enlarge image The most noticeable change at the NWTC in recent years is the addition of multi-megawatt wind turbines used for a wide variety of R&D activities in collaboration with industry partners. Credit: Dennis Schroeder The Front Range environment at the National Wind Technology Center (NWTC) is harsh. The winds - the very reason the NWTC is there - have little mercy. The frigid cold of winter gives way to the baking sun of summer. Yet in the midst of this difficult landscape, the future of wind energy grows

304

Heuristic correction of wind speed mesoscale models simulations for wind farms prospecting and micrositing  

Science Journals Connector (OSTI)

Abstract The distribution of surface-level wind speeds over a given area is important information that is related to several processes in wind farm prospecting, design and micrositing. This information is often obtained from simulations using mesoscale models that take variables from global models as starting points. Improved outputs from mesoscale models can lead to reduced error compared to real wind speeds in the study area if in situ wind speed measurements are available. In this paper, we present several techniques to correct surface wind speed simulations from mesoscale models using data from measuring stations in wind farms. Specifically, we propose different heuristic corrections of the outputs from mesoscale models by means of surface fitting between the Weibull parameters of the wind speed series (from the mesoscale model) and those from the measuring stations (real wind speed) in the wind farm. The proposed methodology has direct applications in wind farm design, site prospection and micrositing. The good performance of our method is evident in the more accurate surface wind speeds obtained from mesoscale models in two wind farm prospection sites in Spain, where several measuring towers are installed.

B. Saavedra-Moreno; S. Salcedo-Sanz; C. Casanova-Mateo; J.A. Portilla-Figueras; L. Prieto

2014-01-01T23:59:59.000Z

305

New England Wind Forum: Large Wind  

Wind Powering America (EERE)

Small Wind Small Wind Large Wind Newsletter Perspectives Events Quick Links to States CT MA ME NH RI VT Bookmark and Share Large Wind When establishing wind farms, wind energy developers generally approach landowners where they want to build. Interest in wind farms is frequently spurred by external pressures such as tax and other financial incentives and legislative mandates. Since each situation is influenced by local policies and permitting, we can only provide general guidance to help you learn about the process of installing wind turbines. Publications Wind Project Development Process Permitting of Wind Energy Facilities: A Handbook. (August 2002). National Wind Coordinating Collaborative. Landowner Frequently Asked Questions and Answers. (August 2003). "State Wind Working Group Handbook." pp. 130-133.

306

Manzanita Wind Energy Feasibility Study  

SciTech Connect (OSTI)

The Manzanita Indian Reservation is located in southeastern San Diego County, California. The Tribe has long recognized that the Reservation has an abundant wind resource that could be commercially utilized to its benefit. Manzanita has explored the wind resource potential on tribal land and developed a business plan by means of this wind energy feasibility project, which enables Manzanita to make informed decisions when considering the benefits and risks of encouraging large-scale wind power development on their lands. Technical consultant to the project has been SeaWest Consulting, LLC, an established wind power consulting company. The technical scope of the project covered the full range of feasibility assessment activities from site selection through completion of a business plan for implementation. The primary objectives of this feasibility study were to: (1) document the quality and suitability of the Manzanita Reservation as a site for installation and long-term operation of a commercially viable utility-scale wind power project; and, (2) develop a comprehensive and financeable business plan.

Trisha Frank

2004-09-30T23:59:59.000Z

307

Potential wind power generation in South Egypt  

Science Journals Connector (OSTI)

Egypt is one of the developing countries. The production of electricity in Egypt is basically on petroleum, natural gas, hydro-power and wind energy. The objective of this work to prove the availability of sufficient wind potential in the wide area of deep south Egypt for the operation of wind turbines there. Nevertheless, it gives in general an approximate profile which is useful to the wind parks design for this area. The data used in the calculation are published and analyzed for the first time. The diagrams of the measured wind data for three meteorological stations over a period of two years (wind speed, frequency, direction), wind shear coefficient, the mean monthly and annual wind speed profile for every location are presented. Monthly Weibull parameters, standard deviation and coefficient of variation have been statistically discussed. A comparison of the rose diagrams shows that the wind speed is more persistent and blow over this region of Egypt in two main sectors N and NNW with long duration of frequencies from 67% to 87% over the year with an average wind speed in the range 6.87.9m/s at the three stations. Evaluation of monthly wind energy density at 10m height by two different methods was carried out. And the final diagram for every site shows no significant difference between them. The annual natural wind energies at 70m A.G.L. lie between 333 and 377W/m2 for Dakhla South and Kharga stations, respectively, which is similar to the inland wind potential of Vindeby (Denmark) and some European countries. These results indicate that Kharga and Dakhla South locations are new explored sites for future wind power generation projects.

Ahmed Shata Ahmed

2012-01-01T23:59:59.000Z

308

RSETHZ 214.200 General House Rules of ETH Zurich  

E-Print Network [OSTI]

RSETHZ 214.200 2 General House Rules of ETH Zurich 20 August 2013 Under Article 4(1)(b) of the ETH Zurich Organizational Regulations of 16 December 2003,(1 the Executive Board of ETH Zurich hereby de the restrictions under 1.3, the General House Rules apply to all buildings and sites used by ETH Zurich, regardless

Fischlin, Andreas

309

Advanced Hydraulic Wind Energy  

Science Journals Connector (OSTI)

The Jet Propulsion Laboratory, California Institute of Technology, has developed a novel advanced hydraulic wind energy design, which has up to 23% performance improvement over conventional wind turbine and conventional hydraulic wind energy systems ... Keywords: wind, tide, energy, power, hydraulic

Jack A. Jones; Allan Bruce; Adrienne S. Lam

2013-04-01T23:59:59.000Z

310

WINDExchange: Wind Economic Development  

Wind Powering America (EERE)

help you analyze the economics of a small wind electric system and decide whether wind energy will work for you. Wind Energy Finance Online Calculator Wind Energy Finance developed...

311

Exploiting Wind Versus Coal  

Science Journals Connector (OSTI)

...be offset with turbine mass production...of installed turbines, more than the...Denmark have wind parks offshore, where winds...of installed turbines, more than the...Denmark have wind parks offshore, where winds...

Mark Z. Jacobson; Gilbert M. Masters

2001-08-24T23:59:59.000Z

312

Rule modeling and markup  

Science Journals Connector (OSTI)

In this paper we address several issues of rule modeling on the basis of UML. We discuss the relationship between UML class models and OWL vocabularies. We show how certain rules can be specified in a class diagram with the help of OCL. We also show ...

Gerd Wagner

2005-07-01T23:59:59.000Z

313

Mining Association Rules in Large Association rules  

E-Print Network [OSTI]

, Eggs 3 Milk, Diaper, Beer, Coke 4 Bread, Milk, Diaper, Beer 5 Bread, Milk, Diaper, Coke Examples of association rules {Diaper} {Beer}, {Milk, Bread} {Diaper,Coke}, {Beer, Bread} {Milk}, #12;An even simpler, Beer, Coke 4 Bread, Milk, Diaper, Beer 5 Bread, Milk, Diaper, Coke Examples of frequent itemsets

Terzi, Evimaria

314

Cooperative virtual power plant formation using scoring rules  

Science Journals Connector (OSTI)

The growing focus on sustainable and environmentally friendly energy production has resulted in the proliferation of distributed energy resources (DERs), mainly based on renewable sources like wind and sunlight. However, their small size and the intermittent ... Keywords: energy and emissions, scoring rules, smart grid

Valentin Robu; Ramachandra Kota; Georgios Chalkiadakis; Alex Rogers; Nicholas R. Jennings

2012-06-01T23:59:59.000Z

315

NREL: Wind Research - Wind Energy Videos  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Wind Energy Videos The National Wind Technology Center (NWTC) is pleased to offer video presentations of its world-class capabilities, facilities, research areas, and personnel. As...

316

wind power station  

Science Journals Connector (OSTI)

wind power station [It may consist of just one wind turbine or a network of windmills] ? Windkraftanlage

2014-08-01T23:59:59.000Z

317

Texas - PUC Substantive Rule 22 - Procedural Rules | Open Energy...  

Open Energy Info (EERE)

Rules Jump to: navigation, search OpenEI Reference LibraryAdd to library Legal Document- RegulationRegulation: Texas - PUC Substantive Rule 22 - Procedural RulesLegal Abstract The...

318

Lake Michigan Offshore Wind Feasibility Assessment  

SciTech Connect (OSTI)

The purpose of this project was to conduct the first comprehensive offshore wind assessment over Lake Michigan and to advance the body of knowledge needed to support future commercial wind energy development on the Great Lakes. The project involved evaluation and selection of emerging wind measurement technology and the permitting, installation and operation of the first mid-lake wind assessment meteorological (MET) facilities in Michigans Great Lakes. In addition, the project provided the first opportunity to deploy and field test floating LIDAR and Laser Wind Sensor (LWS) technology, and important research related equipment key to the sitting and permitting of future offshore wind energy development in accordance with public participation guidelines established by the Michigan Great Lakes Wind Council (GLOW). The project created opportunities for public dialogue and community education about offshore wind resource management and continued the dialogue to foster Great Lake wind resource utilization consistent with the focus of the GLOW Council. The technology proved to be effective, affordable, mobile, and the methods of data measurement accurate. The public benefited from a substantial increase in knowledge of the wind resources over Lake Michigan and gained insights about the potential environmental impacts of offshore wind turbine placements in the future. The unique first ever hub height wind resource assessment using LWS technology over water and development of related research data along with the permitting, sitting, and deployment of the WindSentinel MET buoy has captured public attention and has helped to increase awareness of the potential of future offshore wind energy development on the Great Lakes. Specifically, this project supported the acquisition and operation of a WindSentinel (WS) MET wind assessment buoy, and associated research for 549 days over multiple years at three locations on Lake Michigan. Four research objectives were defined for the project including to: 1) test and validate floating LIDAR technology; 2) collect and access offshore wind data; 3) detect and measure bird and bat activity over Lake Michigan; 4) conduct an over water sound propagation study; 5) prepare and offer a college course on offshore energy, and; 6) collect other environmental, bathometric, and atmospheric data. Desk-top research was performed to select anchorage sites and to secure permits to deploy the buoy. The project also collected and analyzed data essential to wind industry investment decision-making including: deploying highly mobile floating equipment to gather offshore wind data; correlating offshore wind data with conventional on-shore MET tower data; and performing studies that can contribute to the advancement and deployment of offshore wind technologies. Related activities included: Siting, permitting, and deploying an offshore floating MET facility; Validating the accuracy of floating LWS using near shoreline cup anemometer MET instruments; Assessment of laser pulse technology (LIDAR) capability to establish hub height measurement of wind conditions at multiple locations on Lake Michigan; Utilizing an extended-season (9-10 month) strategy to collect hub height wind data and weather conditions on Lake Michigan; Investigation of technology best suited for wireless data transmission from distant offshore structures; Conducting field-validated sound propagation study for a hypothetical offshore wind farm from shoreline locations; Identifying the presence or absence of bird and bat species near wind assessment facilities; Identifying the presence or absence of benthic and pelagic species near wind assessment facilities; All proposed project activities were completed with the following major findings: Floating Laser Wind Sensors are capable of high quality measurement and recordings of wind resources. The WindSentinel presented no significant operational or statistical limitations in recording wind data technology at a at a high confidence level as compared to traditional an

Boezaart, Arnold [GVSU; Edmonson, James [GVSU; Standridge, Charles [GVSU; Pervez, Nahid [GVSU; Desai, Neel [University of Michigan; Williams, Bruce [University of Delaware; Clark, Aaron [GVSU; Zeitler, David [GVSU; Kendall, Scott [GVSU; Biddanda, Bopi [GVSU; Steinman, Alan [GVSU; Klatt, Brian [Michigan State University; Gehring, J. L. [Michigan State University; Walter, K. [Michigan State University; Nordman, Erik E. [GVSU

2014-06-30T23:59:59.000Z

319

Validation of Power Output for the WIND Toolkit  

SciTech Connect (OSTI)

Renewable energy integration studies require wind data sets of high quality with realistic representations of the variability, ramping characteristics, and forecast performance for current wind power plants. The Wind Integration National Data Set (WIND) Toolkit is meant to be an update for and expansion of the original data sets created for the weather years from 2004 through 2006 during the Western Wind and Solar Integration Study and the Eastern Wind Integration Study. The WIND Toolkit expands these data sets to include the entire continental United States, increasing the total number of sites represented, and it includes the weather years from 2007 through 2012. In addition, the WIND Toolkit has a finer resolution for both the temporal and geographic dimensions. Three separate data sets will be created: a meteorological data set, a wind power data set, and a forecast data set. This report describes the validation of the wind power data set.

King, J.; Clifton, A.; Hodge, B. M.

2014-09-01T23:59:59.000Z

320

NREL: Wind Research - Small Wind Turbine Webinars  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Small Wind Turbine Webinars Small Wind Turbine Webinars Here you will find webinars about small wind turbines that NREL hosted. Introducing WindLease(tm): Making Wind Energy Affordable NREL and the American Solar Energy Society (ASES) Wind Division co-hosted this webinar. (Text Version.) Date: August 1, 2013 Run Time: 40 minutes Joe Hess, VP of Business Development at United Wind, described United Wind's WindQuote and WindLease Program and explained the process from the dealer's and consumer's perspective. Texas Renewable Energy Industries Association NREL and the American Solar Energy Society (ASES) Wind Division co-hosted this webinar. (Text Version). Date: March 7, 2013 Run Time: 1 hour Russel Smith, Texas Renewable Energy Industries Association executive director and co-founder, provided an overview of the trade association

Note: This page contains sample records for the topic "wind siting rules" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


321

NREL: Wind Research - Small Wind Turbine Development  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Small Wind Turbine Development Small Wind Turbine Development A photo of Southwest Windpower's Skystream wind turbine in front of a home. PIX14936 Southwest Windpower's Skystream wind turbine. A photo of the Endurance wind turbine. PIX15006 The Endurance wind turbine. A photo of the Atlantic Orient Corporation 15/50 wind turbine at the National Wind Technology Center. PIX07301 The Atlantic Orient Corporation 15/50 wind turbine at the National Wind Technology Center. NREL supports continued market expansion of small wind turbines by funding manufacturers through competitive solicitations (i.e., subcontracts and/or grants) to refine prototype systems leading to commercialization. Learn more about the turbine development projects below. Skystream NREL installed and tested an early prototype of this turbine at the

322

Cost of Wind Energy: Comparing Distant Wind Resources to Local Resources in the Midwestern United States  

Science Journals Connector (OSTI)

A general expression of the total savings from reducing the capital costs of developing a wind site with capacity factor CF+?CF, relative to the capital costs of developing the local site with capacity factor CF, is given by eq 1 (see Supporting Information section 1.1 for derivation) where Z is the annual generation requirement (kWh/year), 8670 is the number of hours in a year, WUC is the installed wind capital cost estimate ($/kW), LQCM is the cost multiplier for low quality wind requiring higher hub height (see Section 3.4), CF is the unconstrained capacity factor, ?CF is the increase in unconstrained CF at distant wind site relative to local site, TL is the transmission loss, as a percentage of total wind energy injected into the grid, TC is the transmission constraint, as a percentage of the total wind energy injected into the grid that cannot be delivered because of inadequate transmission capacity, lw is the local wind, and dw is the distant wind. ... Class 1, 2, and 3 turbines are designed for high, medium, and low speed winds, respectively (16). ... From Table 1, the impact of distance on the transmission capacity of high voltage alternating current (HVAC) lines is clear (see Supporting Information section 8). ...

David C. Hoppock; Dalia Patio-Echeverri

2010-10-08T23:59:59.000Z

323

Contributed Paper Effects of Wind Energy Development on Nesting  

E-Print Network [OSTI]

Contributed Paper Effects of Wind Energy Development on Nesting Ecology of Greater Prairie 32611, U.S.A. Abstract: Wind energy is targeted to meet 20% of U.S. energy needs by 2030, but new sites for impacts of a wind energy development on the reproductive ecology of prairie-chickens in a 5-year study. We

Sandercock, Brett K.

324

ORIGINAL PAPER Review of Methodologies for Offshore Wind Resource  

E-Print Network [OSTI]

ORIGINAL PAPER Review of Methodologies for Offshore Wind Resource Assessment in European Seas A. M offshore is generally larger than at geographically nearby onshore sites, which can offset the higher installation, operation and maintenance costs associated with offshore wind parks. Successful offshore wind

Pryor, Sara C.

325

Accuracy of near real time updates in wind power forecasting  

E-Print Network [OSTI]

· advantage: no NWP data necessary ­ very actual shortest term forecasts possible · wind power inputAccuracy of near real time updates in wind power forecasting with regard to different weather October 2007 #12;EMS/ECAM 2007 ­ Nadja Saleck Outline · Study site · Wind power forecasting - method

Heinemann, Detlev

326

Chapter 52 Permits, Registrations, and Prohibitory Rules (Kentucky) |  

Broader source: Energy.gov (indexed) [DOE]

Chapter 52 Permits, Registrations, and Prohibitory Rules (Kentucky) Chapter 52 Permits, Registrations, and Prohibitory Rules (Kentucky) Chapter 52 Permits, Registrations, and Prohibitory Rules (Kentucky) < Back Eligibility Agricultural Commercial Construction Developer Industrial Installer/Contractor Investor-Owned Utility Municipal/Public Utility Rural Electric Cooperative Utility Program Info State Kentucky Program Type Environmental Regulations Siting and Permitting Provider Kentucky Department for Environmental Protection Kentucky Administrative Regulation Chapter 52, entitled Air Quality: Permits, Registrations, and Prohibitory Rules, is promulgated under the authority of the Division of Air Quality within the Energy and Environment Cabinet's Department for Environmental Protection. Chapter 52 outlines the permitting requirements for all air pollution sources within the state;

327

NPDES Rule for Coal Mining Facilities (West Virginia) | Department of  

Broader source: Energy.gov (indexed) [DOE]

NPDES Rule for Coal Mining Facilities (West Virginia) NPDES Rule for Coal Mining Facilities (West Virginia) NPDES Rule for Coal Mining Facilities (West Virginia) < Back Eligibility Utility Fed. Government Commercial Agricultural Investor-Owned Utility State/Provincial Govt Industrial Construction Municipal/Public Utility Local Government Residential Installer/Contractor Rural Electric Cooperative Tribal Government Low-Income Residential Schools Retail Supplier Institutional Multi-Family Residential Systems Integrator Fuel Distributor Nonprofit General Public/Consumer Transportation Program Info State West Virginia Program Type Siting and Permitting Provider Department of Environmental Protection This rule establishes requirements implementing the powers, duties, and responsibilities of State's Water Pollution Control Act with respect to all

328

PHYSICS DEPARTMENT RULES EVERYONE MUST KNOW  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

PHYSICS DEPARTMENT RULES EVERYONE MUST KNOW - December 2012 PHYSICS DEPARTMENT RULES EVERYONE MUST KNOW - December 2012 All individuals performing work at BNL are required to obtain a guest or permanent appointment before beginning work. Radioactive materials, chemicals, and equipment may not be brought into the Department without prior notification. All Employees must take General Employee Training (GET), Stop Work Training, Emergency Planning and Response Training, Environmental Protection Training, Cyber Security Training, Security Program and Responsibilities for New Employees Training, and a Department Specific Briefing. All Guests and Visitors working at BNL must take the Guest Site Orientation, Cyber Security Training (if access to computer networks is required) and a Department Specific Briefing.

329

Onshore wind max capacity 50.4% - what wind farm, what year? | OpenEI  

Open Energy Info (EERE)

Onshore wind max capacity 50.4% - what wind farm, what year? Onshore wind max capacity 50.4% - what wind farm, what year? Home How can I find more specific information about wind capacity? I can get the max/min/media stuff from the bar graphs. Is there any way to see individual wind farm capacity per year or get examples of performance? I'm helping run a tech site and some specific information would be helpful in dealing with skeptical individuals. Is there any more detailed information on capacity other than the graph summary statistics? (I do not know my way around this site, but I'm willing to learn.) Submitted by Bob Wallace on 15 June, 2013 - 00:23 1 answer Points: 0 Hi Bob- Thank you for posting your question. It seems that your question developed after viewing/using the Transparent Cost Database, however, I

330

NREL: Wind Research - Offshore Wind Research  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Offshore Wind Research Offshore Wind Research Photo of a European offshore wind farm. Early progress in European Offshore Wind Energy over the last decade provides a glimpse into the vast potential of the global offshore resource. For more than eight years, NREL has worked with the Department of Energy to become an international leader in offshore wind energy research. Capabilities NREL's offshore wind capabilities focus on critical areas that reflect the long-term needs of the offshore wind energy industry and the U.S. Department of Energy including: Offshore Design Tools and Methods Offshore Standards and Testing Energy Analysis of Offshore Systems Offshore Wind Resource Characterization Grid Integration of Offshore Wind Key Research NREL documented the status of offshore wind energy in the United States in

331

Installing and Maintaining a Small Wind Electric System | Department of  

Broader source: Energy.gov (indexed) [DOE]

Installing and Maintaining a Small Wind Electric System Installing and Maintaining a Small Wind Electric System Installing and Maintaining a Small Wind Electric System July 2, 2012 - 8:22pm Addthis Installing and Maintaining a Small Wind Electric System What does this mean for me? When installing a wind system, the location of the system, the energy budget for the site, the size of the system, and the height of the tower are important elements to consider. Deciding whether to connect the system to the electric grid or not is also an important decision. If you went through the planning steps to evaluate whether a small wind electric system will work at your location, you will already have a general idea about: The amount of wind at your site The zoning requirements and covenants in your area The economics, payback, and incentives of installing a wind system

332

Pipeline Safety Rule (Tennessee)  

Broader source: Energy.gov [DOE]

The Pipeline Safety Rule simply states, "The Minimum Federal Safety Standards for the transportation of natural and other gas by pipeline (Title 49, Chapter 1, Part 192) as published in the Federal...

333

Wind Technologies & Evolving Opportunities (Presentation)  

SciTech Connect (OSTI)

This presentation covers opportunities for wind technology; wind energy market trends; an overview of the National Wind Technology Center near Boulder, Colorado; wind energy price and cost trends; wind turbine technology improvements; and wind resource characterization improvements.

Robichaud, R.

2014-07-01T23:59:59.000Z

334

Wind Measurement Equipment: Registration (Nebraska) | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

Wind Measurement Equipment: Registration (Nebraska) Wind Measurement Equipment: Registration (Nebraska) Wind Measurement Equipment: Registration (Nebraska) < Back Eligibility Agricultural Commercial Construction Fed. Government Fuel Distributor General Public/Consumer Industrial Installer/Contractor Institutional Investor-Owned Utility Local Government Low-Income Residential Multi-Family Residential Municipal/Public Utility Nonprofit Residential Retail Supplier Rural Electric Cooperative Schools State/Provincial Govt Systems Integrator Transportation Tribal Government Utility Savings Category Wind Buying & Making Electricity Program Info State Nebraska Program Type Siting and Permitting Provider Department of Aeronautics All wind measurement equipment associated with the development or study of wind-powered electric generation, whether owned or leased, shall be

335

Oil and Gas Commission General Rules and Regulations (Arkansas) |  

Broader source: Energy.gov (indexed) [DOE]

Commission General Rules and Regulations (Arkansas) Commission General Rules and Regulations (Arkansas) Oil and Gas Commission General Rules and Regulations (Arkansas) < Back Eligibility Agricultural Commercial Construction Fuel Distributor General Public/Consumer Industrial Installer/Contractor Investor-Owned Utility Local Government Municipal/Public Utility Retail Supplier Rural Electric Cooperative Utility Program Info State Arkansas Program Type Environmental Regulations Siting and Permitting Provider Department of Natural Resources The Oil and Gas Commission General Rules and Regulations are the body of rules and regulations that relate to natural gas production in Arkansas. The statutory law is found Arkansas Code Annotated Title 15 chapter 72. Contained in this summary are the rules and regulations most relevant to

336

An Exploration of Wind Energy & Wind Turbines | Department of...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

An Exploration of Wind Energy & Wind Turbines An Exploration of Wind Energy & Wind Turbines Below is information about the student activitylesson plan from your search. Grades...

337

A National Offshore Wind Strategy: Creating an Offshore Wind...  

Broader source: Energy.gov (indexed) [DOE]

A National Offshore Wind Strategy: Creating an Offshore Wind Energy Industry in the United States A National Offshore Wind Strategy: Creating an Offshore Wind Energy Industry in...

338

20% Wind Energy by 2030 - Chapter 2: Wind Turbine Technology...  

Office of Environmental Management (EM)

20% Wind Energy by 2030: Increasing Wind Energy's Contribution to U.S. Electricity Supply U.S. Offshore Wind Manufacturing and Supply Chain Development Wind Program Accomplishments...

339

Wind pro?le assessment for wind power purposes.  

E-Print Network [OSTI]

??Preliminary estimation of wind speed at the wind turbine hub height is critically important when planning new wind farms. Wind turbine power output is proportional (more)

Sointu, Iida

2014-01-01T23:59:59.000Z

340

Collegiate Wind Competition Engages Tomorrow's Wind Energy Innovators...  

Office of Environmental Management (EM)

Collegiate Wind Competition Engages Tomorrow's Wind Energy Innovators Collegiate Wind Competition Engages Tomorrow's Wind Energy Innovators January 6, 2014 - 10:00am Addthis 2014...

Note: This page contains sample records for the topic "wind siting rules" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


341

Wind for Schools Project Power System Brief, Wind Powering America...  

Wind Powering America (EERE)

Wind Powering America Fact Sheet Series Energy Efficiency & Renewable Energy Wind for Schools Project Power System Brief Wind for Schools Project Power System Brief Wind for...

342

New England Wind Forum: Injecting Useful and Credible Information into Wind  

Wind Powering America (EERE)

Injecting Useful and Credible Information into Wind Power Siting Workshop Injecting Useful and Credible Information into Wind Power Siting Workshop The New England Wind Forum and New England Wind Energy Education Project hosted a one-day workshop on October 26, 2012 at Mount Wachusett Community College in Gardner, Massachusetts focusing on the role of information on issues impacting public acceptance in the appropriate siting of wind power in New England. The workshop included hands-on plenary sessions, panel presentations, and professionally facilitated small group discussions. See the full agenda. Open Plenary: Welcome and Introduction This presentation was presented by: Deborah Donovan, Sustainable Energy Advantage, LLC Ian Baring-Gould, National Renewable Energy Laboratory Bob Grace, Sustainable Energy Advantage, LLC

343

New England Wind Forum: Wind Compared to the Cost of Other Electricity  

Wind Powering America (EERE)

Wind Compared to the Cost of Other Electricity Generation Options Wind Compared to the Cost of Other Electricity Generation Options Figure 1: Average Cumulative Wind and Wholesale Power Prices by Region The chart shows average cumulative wind and wholesale power prices by region. Click on the graph to view a larger version. View a larger version of the graph. In terms of direct costs, larger wind farms in windier areas are now considered economically competitive with "conventional" fossil fuel power plants in many locations. In New England, direct costs for wind power at larger sites with strong winds are approaching the cost of alternatives, particularly given the recent high natural gas and oil prices. Figure 1 compares wind contract prices1 with wholesale electricity market prices in different U.S. regions for 2006. Although not directly comparable to wind prices due to wind's production timing and intermittence, the value of wind Renewable Energy Credits and carbon offsets, and the cost of wind integration and transmission, the average wholesale market energy price is a good indicator of the cost of alternative generation options. This graph demonstrates several points:

344

Definition: Community Wind | Open Energy Information  

Open Energy Info (EERE)

Wind Wind Jump to: navigation, search Dictionary.png Community Wind A community owned wind project. The asset can be owned by one or several types of community groups, including: farmers, small business, local groups and organizations, schools and local electric cooperatives and municipal utilities.[1] View on Wikipedia Wikipedia Definition Community wind projects are locally owned by farmers, investors, businesses, schools, utilities, or other public or private entities who utilize wind energy to support and reduce energy costs to the local community. The key feature is that local community members have a significant, direct financial stake in the project beyond land lease payments and tax revenue. Projects may be used for on-site power or to generate wholesale power for sale, usually on a commercial-scale greater

345

NREL: Transmission Grid Integration - Western Wind Dataset  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Western Wind Dataset Western Wind Dataset Here you will find information about the Western Wind Dataset, including the methodology used to develop the dataset, the accuracy of the data, site selection, and power output. Alert! Important Note Obtain the Western Wind Dataset This dataset was originally created for the Western Wind and Solar Integration Study. These data are modeled data and not actual measured data. Learn more about the datasets including the similarities and differences between the Eastern and Western datasets and the differences from the NREL state wind maps. Methodology 3TIER created the Western Dataset with oversight and assistance from NREL. Numerical Weather Prediction (NWP) models were used to essentially recreate the historical weather for the western U.S. for 2004, 2005, and 2006. The

346

Main Coast Winds - Final Scientific Report  

SciTech Connect (OSTI)

The Maine Coast Wind Project was developed to investigate the cost-effectiveness of small, distributed wind systems on coastal sites in Maine. The restructuring of Maine's electric grid to support net metering allowed for the installation of small wind installations across the state (up to 100kW). The study performed adds insight to the difficulties of developing cost-effective distributed systems in coastal environments. The technical hurdles encountered with the chosen wind turbine, combined with the lower than expected wind speeds, did not provide a cost-effective return to make a distributed wind program economically feasible. While the turbine was accepted within the community, the low availability has been a negative.

Jason Huckaby; Harley Lee

2006-03-15T23:59:59.000Z

347

Wind energy potential in the United States  

SciTech Connect (OSTI)

Estimates of the electricity that could potentially be generated by wind power and of the land area available for wind energy development have been calculated for the contiguous United States. The estimates are based on published wind resource data and exclude windy lands that are not suitable for development as a result of environmental and land-use considerations. Despite these exclusions, the potential electric power from wind energy is surprisingly large. Good wind areas, which cover 6% of the contiguous US land area, have the potential to supply more than one and a half times the current electricity consumption of the United States. Technology under development today will be capable of producing electricity economically from good wind sites in many regions of the country.

Elliott, D.L.; Schwartz, M.N.

1993-06-01T23:59:59.000Z

348

Wind Generation on Winnebago Tribal Lands  

SciTech Connect (OSTI)

The Winnebago Wind Energy Study evaluated facility-scale, community-scale and commercial-scale wind development on Winnebago Tribal lands in northeastern Nebraska. The Winnebago Tribe of Nebraska has been pursuing wind development in various forms for nearly ten years. Wind monitoring utilizing loaned met towers from NREL took place during two different periods. From April 2001 to April 2002, a 20-meter met tower monitored wind data at the WinnaVegas Casino on the far eastern edge of the Winnebago reservation in Iowa. In late 2006, a 50-meter tower was installed, and subsequently monitored wind data at the WinnaVegas site from late 2006 through late 2008. Significant challenges with the NREL wind monitoring equipment limited the availability of valid data, but based on the available data, average wind speeds between 13.6 14.3 miles were indicated, reflecting a 2+/3- wind class. Based on the anticipated cost of energy produced by a WinnaVegas wind turbine, and the utility policies and rates in place at this time, a WinnaVegas wind project did not appear to make economic sense. However, if substantial grant funding were available for energy equipment at the casino site, and if either Woodbury REC backup rates were lower, or NIPCO was willing to pay more for wind power, a WinnaVegas wind project could be feasible. With funding remaining in the DOE-funded project budget,a number of other possible wind project locations on the Winnebago reservation were considered. in early 2009, a NPPD-owned met tower was installed at a site identified in the study pursuant to a verbal agreement with NPPD which provided for power from any ultimately developed project on the Western Winnebago site to be sold to NPPD. Results from the first seven months of wind monitoring at the Western Winnebago site were as expected at just over 7 meters per second at 50-meter tower height, reflecting Class 4 wind speeds, adequate for commercial development. If wind data collected in the remaining months of the twelve-month collection period is consistent with that collected in the first seven months, the Western Winnebago site may present an interesting opportunity for Winnebago. Given the distance to nearby substations, and high cost of interconnection at higher voltage transmission lines, Winnebago would likely need to be part of a larger project in order to reduce power costs to more attractive levels. Another alternative would be to pursue grant funding for a portion of development or equipment costs, which would also help reduce the cost of power produced. The NREL tower from the WinnaVegas site was taken down in late 2008, re-instrumented and installation attempted on the Thunderway site south of the Winnebago community. Based on projected wind speeds, current equipment costs, and the projects proximity to substations for possible interconnection, a Thunderway community-scale wind project could also be feasible.

Multiple

2009-09-30T23:59:59.000Z

349

2009 Wind Technologies Market Report  

E-Print Network [OSTI]

Prepared for the Utility Wind Integration Group. Arlington,Arizona Public Service Wind Integration Cost Impact Study.an Order Revising the Wind Integration Rate for Wind Powered

Wiser, Ryan

2010-01-01T23:59:59.000Z

350

2010 Wind Technologies Market Report  

E-Print Network [OSTI]

2010. SPP WITF Wind Integration Study. Little Rock,an Order Revising the Wind Integration Rate for Wind PoweredPacifiCorp. 2010. 2010 Wind Integration Study. Portland,

Wiser, Ryan

2012-01-01T23:59:59.000Z

351

2011 Wind Technologies Market Report  

E-Print Network [OSTI]

and K. Porter. 2011. Wind Power and Electricity Markets.41 6. Wind Power Priceat Various Levels of Wind Power Capacity Penetration Wind

Bolinger, Mark

2013-01-01T23:59:59.000Z

352

Sandia National Laboratories: wind energy  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Wind Energy Manufacturing Lab Helps Engineers Improve Wind Power On November 15, 2011, in Energy, News, Partnership, Renewable Energy, Wind Energy Researchers at the Wind Energy...

353

Wind Energy | Department of Energy  

Office of Environmental Management (EM)

Wind Energy Wind Energy Below are resources for Tribes on wind energy technologies. 2012 Market Report on Wind Technologies in Distributed Applications Includes a breakdown of...

354

Obama Administration Hosts Great Lakes Offshore Wind Workshop in Chicago  

Broader source: Energy.gov (indexed) [DOE]

Hosts Great Lakes Offshore Wind Workshop in Hosts Great Lakes Offshore Wind Workshop in Chicago with Great Lakes Wind Collaborative Obama Administration Hosts Great Lakes Offshore Wind Workshop in Chicago with Great Lakes Wind Collaborative October 28, 2010 - 12:00am Addthis WASHINGTON - The White House Council on Environmental Quality and the U.S. Department of Energy hosted a workshop with the Great Lakes Wind Collaborative in Chicago on October 26 - 27, 2010, focused on the siting of offshore wind power in the Great Lakes. The two day workshop brought together wind developers, Federal and state regulators, environmental advocates, and other regional stakeholders to discuss methods for ensuring greater clarity, certainty and coordination of Federal and state decision-making for offshore wind development in the Great Lakes.

355

Rock River LLC Wind Farm | Open Energy Information  

Open Energy Info (EERE)

River LLC Wind Farm River LLC Wind Farm Jump to: navigation, search The Rock River LLC Wind Farm is in Carbon County, Wyoming. It consists of 50 turbines and has a total capacity of 50 MW. It is owned by Shell Wind Energy.[1] Based on assertions that the site is near Arlington, its approximate coordinates are 41.5946899°, -106.2083459°.[2] References ↑ http://www.wsgs.uwyo.edu/Topics/EnergyResources/wind.aspx ↑ http://www.thefreelibrary.com/Shell+WindEnergy+Acquires+Second+Wind+Farm+in+the+U.S.,+in+an...-a082345438 Retrieved from "http://en.openei.org/w/index.php?title=Rock_River_LLC_Wind_Farm&oldid=132230" Category: Wind Farms What links here Related changes Special pages Printable version Permanent link Browse properties 429 Throttled (bot load) Error 429 Throttled (bot load)

356

Atmospheric Circulation Effects on Wind Speed Variability at Turbine Height  

Science Journals Connector (OSTI)

Mean monthly wind speed at 70 m above ground level is investigated for 11 sites in Minnesota for the period 19952003. Wind speeds at these sites show significant spatial and temporal coherence, with prolonged periods of above- and below-normal ...

Katherine Klink

2007-04-01T23:59:59.000Z

357

NREL: Wind Research - Small Wind Turbine Research  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Small Wind Turbine Research Small Wind Turbine Research The National Renewable Energy Laboratory and U.S. Department of Energy (NREL/DOE) Small Wind Project's objectives are to reduce barriers to wind energy expansion, stabilize the market, and expand the number of small wind turbine systems installed in the United States. "Small wind turbine" refers to a turbine smaller than or equal to 100 kilowatts (kW). "Distributed wind" includes small and midsize turbines (100 kW through 1 megawatt [MW]). Since 1996, NREL's small wind turbine research has provided turbine testing, turbine development, and prototype refinement leading to more commercially available small wind turbines. Work is conducted under the following areas. You can also learn more about state and federal policies

358

Wind Vision Wind Farm | Open Energy Information  

Open Energy Info (EERE)

Wind Farm Wind Farm Jump to: navigation, search Name Wind Vision Wind Farm Facility Wind Vision Sector Wind energy Facility Type Commercial Scale Wind Facility Status In Service Owner Wind Vision Developer Wind Vision Location St. Ansgar IA Coordinates 43.348224°, -92.888816° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":43.348224,"lon":-92.888816,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

359

High Winds Wind Farm | Open Energy Information  

Open Energy Info (EERE)

Winds Wind Farm Winds Wind Farm Jump to: navigation, search Name High Winds Wind Farm Facility High Winds Sector Wind energy Facility Type Commercial Scale Wind Facility Status In Service Owner NextEra Energy Resources Developer NextEra Energy Resources Energy Purchaser PPM Energy Inc Location Solano County CA Coordinates 38.124844°, -121.764915° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":38.124844,"lon":-121.764915,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

360

Small Wind Guidebook/Can I Go Off-Grid | Open Energy Information  

Open Energy Info (EERE)

Can I Go Off-Grid Can I Go Off-Grid < Small Wind Guidebook Jump to: navigation, search Print PDF WIND ENERGY STAKEHOLDER ENGAGEMENT & OUTREACHSmall Wind Guidebook Home WindTurbine-icon.png Small Wind Guidebook * Introduction * First, How Can I Make My Home More Energy Efficient? * Is Wind Energy Practical for Me? * What Size Wind Turbine Do I Need? * What Are the Basic Parts of a Small Wind Electric System? * What Do Wind Systems Cost? * Where Can I Find Installation and Maintenance Support? * How Much Energy Will My System Generate? * Is There Enough Wind on My Site? * How Do I Choose the Best Site for My Wind Turbine? * Can I Connect My System to the Utility Grid? * Can I Go Off-Grid? * State Information Portal * Glossary of Terms * For More Information Can I Go "Off-Grid"?

Note: This page contains sample records for the topic "wind siting rules" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


361

Small Wind Guidebook/First, How Can I Make My Home More Energy Efficient |  

Open Energy Info (EERE)

First, How Can I Make My Home More Energy Efficient First, How Can I Make My Home More Energy Efficient < Small Wind Guidebook Jump to: navigation, search Print PDF WIND ENERGY STAKEHOLDER ENGAGEMENT & OUTREACHSmall Wind Guidebook Home WindTurbine-icon.png Small Wind Guidebook * Introduction * First, How Can I Make My Home More Energy Efficient? * Is Wind Energy Practical for Me? * What Size Wind Turbine Do I Need? * What Are the Basic Parts of a Small Wind Electric System? * What Do Wind Systems Cost? * Where Can I Find Installation and Maintenance Support? * How Much Energy Will My System Generate? * Is There Enough Wind on My Site? * How Do I Choose the Best Site for My Wind Turbine? * Can I Connect My System to the Utility Grid? * Can I Go Off-Grid? * State Information Portal * Glossary of Terms * For More Information

362

Small Wind Guidebook/How Much Energy Will My System Generate | Open Energy  

Open Energy Info (EERE)

How Much Energy Will My System Generate How Much Energy Will My System Generate < Small Wind Guidebook Jump to: navigation, search Print PDF WIND ENERGY STAKEHOLDER ENGAGEMENT & OUTREACHSmall Wind Guidebook Home WindTurbine-icon.png Small Wind Guidebook * Introduction * First, How Can I Make My Home More Energy Efficient? * Is Wind Energy Practical for Me? * What Size Wind Turbine Do I Need? * What Are the Basic Parts of a Small Wind Electric System? * What Do Wind Systems Cost? * Where Can I Find Installation and Maintenance Support? * How Much Energy Will My System Generate? * Is There Enough Wind on My Site? * How Do I Choose the Best Site for My Wind Turbine? * Can I Connect My System to the Utility Grid? * Can I Go Off-Grid? * State Information Portal * Glossary of Terms * For More Information

363

Small Wind Guidebook/Where Can I Find Installation and Maintenance Support  

Open Energy Info (EERE)

Where Can I Find Installation and Maintenance Support Where Can I Find Installation and Maintenance Support < Small Wind Guidebook Jump to: navigation, search Print PDF WIND ENERGY STAKEHOLDER ENGAGEMENT & OUTREACHSmall Wind Guidebook Home WindTurbine-icon.png Small Wind Guidebook * Introduction * First, How Can I Make My Home More Energy Efficient? * Is Wind Energy Practical for Me? * What Size Wind Turbine Do I Need? * What Are the Basic Parts of a Small Wind Electric System? * What Do Wind Systems Cost? * Where Can I Find Installation and Maintenance Support? * How Much Energy Will My System Generate? * Is There Enough Wind on My Site? * How Do I Choose the Best Site for My Wind Turbine? * Can I Connect My System to the Utility Grid? * Can I Go Off-Grid? * State Information Portal * Glossary of Terms * For More Information

364

Ris-R-1000(EN) Cost Optimization of Wind Turbines for  

E-Print Network [OSTI]

Risø-R-1000(EN) Cost Optimization of Wind Turbines for Large-scale Off-shore Wind Farms Peter contains a preliminary investigation of site specific design of off- shore wind turbines for a large off using a design tool for wind turbines that involve numerical optimization and aeroelastic calculations

365

Wind power resource assessment in complex urban environments: MIT campus case-study using CFD Analysis  

E-Print Network [OSTI]

around buildings. The software model has been used to evaluate the wind energy potential on the campus-site. Comparisons between the measurements and the predicted wind speeds allowed validation of the software results of Technology, 2Meteodyn Objectives Conclusions References [1] TopoWind software, User Manual [2] Wind Resource

366

Offshore Wind Power: Science, engineering, and policy MAST 628-010, Fall 2008  

E-Print Network [OSTI]

Offshore Wind Power: Science, engineering, and policy MAST 628-010, Fall 2008 Revised 10 October@udel.edu Class web site with lecture notes: www.udel.edu/sakai UD offshore wind research: http, plan, regulate, and develop offshore wind resources for large-scale power production. Offshore wind

Firestone, Jeremy

367

Calibrated Probabilistic Forecasting at the Stateline Wind Energy Center: The Regime-Switching  

E-Print Network [OSTI]

Calibrated Probabilistic Forecasting at the Stateline Wind Energy Center: The Regime at a wind energy site and fits a conditional predictive model for each regime. Geographically dispersed was applied to 2-hour-ahead forecasts of hourly average wind speed near the Stateline wind energy center

Genton, Marc G.

368

Wind pump systems  

Science Journals Connector (OSTI)

The application of wind mills for water pumping is of lesser importance ... it is useful to discuss this type of wind energy application in a wind energy book targeted at development and planning...

Prof. Dr.-Ing. Robert Gasch; Prof. Dr.-Ing. Jochen Twele

2012-01-01T23:59:59.000Z

369

NREL: Wind Research - Testing  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

the National Wind Technology Center (NWTC) support the installation and testing of wind turbines that range in size from 400 watts to 5.0 megawatts. Engineers provide wind...

370

Fixed Offshore Wind Turbines  

Science Journals Connector (OSTI)

In this chapter, a perspective of offshore wind farms, applied concepts for fixed offshore wind turbines, and related statistics are given. One example of a large wind farm, which is successfully operating, is st...

Madjid Karimirad

2014-01-01T23:59:59.000Z

371

Wind Power Today  

SciTech Connect (OSTI)

Wind Power Today is an annual publication that provides an overview of the wind energy research conducted by the U.S. Department of Energy Wind and Hydropower Technologies Program.

Not Available

2006-05-01T23:59:59.000Z

372

Wind Power Today  

SciTech Connect (OSTI)

Wind Power Today is an annual publication that provides an overview of the wind energy research conducted by the U.S. Department of Energy Wind and Hydropower Technologies Program.

Not Available

2007-05-01T23:59:59.000Z

373

ARE660 Wind Generator: Low Wind Speed Technology for Small Turbine Development  

SciTech Connect (OSTI)

This project is for the design of a wind turbine that can generate most or all of the net energy required for homes and small businesses in moderately windy areas. The purpose is to expand the current market for residential wind generators by providing cost effective power in a lower wind regime than current technology has made available, as well as reduce noise and improve reliability and safety. Robert W. Preus experience designing and/or maintaining residential wind generators of many configurations helped identify the need for an improved experience of safety for the consumer. Current small wind products have unreliable or no method of stopping the wind generator in fault or high wind conditions. Consumers and their neighbors do not want to hear their wind generators. In addition, with current technology, only sites with unusually high wind speeds provide payback times that are acceptable for the on-grid user. Abundant Renewable Energys (ARE) basic original concept for the ARE660 was a combination of a stall controlled variable speed small wind generator and automatic fail safe furling for shutdown. The stall control for a small wind generator is not novel, but has not been developed for a variable speed application with a permanent magnet alternator (PMA). The fail safe furling approach for shutdown has not been used to our knowledge.

Robert W. Preus; DOE Project Officer - Keith Bennett

2008-04-23T23:59:59.000Z

374

NEWTON: Rules of Science  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Rules of Science Rules of Science Name: Steven Status: other Grade: 12+ Location: WA Country: USA Date: Spring 2012 Question: What are the hard-and-fast rules of science? Are there any? How does science avoid becoming fiction? Replies: Interesting question. Since the question posed refers to some generic 'science', I would offer these few thoughts.... Science (to me) involves careful, precise observation of some natural or man-made phenomenon, accurately and objectively capturing the observation, honestly and objectively sharing of the captured data, fair and objective analysis of the captured data, and fair, honest, and objective efforts to test and thereby replicate the data in the interest of adding the gathered information to the ever-growing body of gathered, analyzed, tested and replicated knowledge we accept as the nearest thing to "fact" we know. Collection of the observed components of the phenomenon with integrity can help us to make predictions of future similar and dissimilar events

375

Wind farm noise  

Science Journals Connector (OSTI)

Arrays of small wind turbines recently coined as wind farms offer several advantages over single larger wind turbines producing the same electrical power. Noise source characteristics of wind farms are also different from those associated with a single wind turbine. One?third octave band noise measurements from 2 Hz to 10 kHz have been made and will be compared to measurements of noise produced by a single large wind turbine. [J. R. Balombin Technical Memorandum 81486.

Gregory C. Tocci; Brion G. Koning

1981-01-01T23:59:59.000Z

376

Voltage Impacts of Utility-Scale Distributed Wind  

SciTech Connect (OSTI)

Although most utility-scale wind turbines in the United States are added at the transmission level in large wind power plants, distributed wind power offers an alternative that could increase the overall wind power penetration without the need for additional transmission. This report examines the distribution feeder-level voltage issues that can arise when adding utility-scale wind turbines to the distribution system. Four of the Pacific Northwest National Laboratory taxonomy feeders were examined in detail to study the voltage issues associated with adding wind turbines at different distances from the sub-station. General rules relating feeder resistance up to the point of turbine interconnection to the expected maximum voltage change levels were developed. Additional analysis examined line and transformer overvoltage conditions.

Allen, A.

2014-09-01T23:59:59.000Z

377

NREL: Wind Research - Offshore Wind Resource Characterization  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Offshore Wind Resource Characterization Offshore Wind Resource Characterization Map of the United States, showing the wind potential of offshore areas across the country. Enlarge image US offshore wind speed estimates at 90-m height NREL scientists and engineers are leading efforts in resource mapping, remote sensor measurement and development, and forecasting that are essential for the development of offshore wind. Resource Mapping For more than 15 years, NREL's meteorologists, engineers, and Geographic Information System experts have led the production of wind resource characterization maps and reports used by policy makers, private industry, and other government organizations to inform and accelerate the development of wind energy in the United States. Offshore wind resource data and mapping has strategic uses. As with terrestrial developments, traditional

378

NREL: Wind Research - Midsize Wind Turbine Research  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Midsize Wind Turbine Research Midsize Wind Turbine Research To facilitate the development and commercialization of midsize wind turbines (turbines with a capacity rating of more than 100 kW up to 1 MW), the U.S. Department of Energy (DOE) and NREL launched the Midsize Wind Turbine Development Project. In its latest study, NREL determined that there is a substantial market for midsize wind turbines. One of the most significant barriers to the midsize turbine market is the lack of turbines available for deployment; there are few midsize turbines on the market today. The objectives of the Midsize Wind Turbine Development Project are to reduce the barriers to wind energy expansion by filling an existing domestic technology gap; facilitate partnerships; accelerate maturation of existing U.S. wind energy businesses; and incorporate process improvement

379

Diablo Winds Wind Farm | Open Energy Information  

Open Energy Info (EERE)

Diablo Winds Wind Farm Diablo Winds Wind Farm Facility Diablo Winds Wind Farm Sector Wind energy Facility Type Commercial Scale Wind Facility Status In Service Owner NextEra Energy Resources Developer NextEra Energy Resources Energy Purchaser Pacific Gas & Electric Co Location Altamont Pass CA Coordinates 37.7347°, -121.652° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":37.7347,"lon":-121.652,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

380

Wind for Schools (Poster)  

SciTech Connect (OSTI)

As the United States dramatically expands wind energy deployment, the industry is challenged with developing a skilled workforce and addressing public resistance. Wind Powering America's Wind for Schools project addresses these issues by developing Wind Application Centers (WACs) at universities; WAC students assist in implementing school wind turbines and participate in wind courses, by installing small wind turbines at community "host" schools, by implementing teacher training with interactive curricula at each host school. This poster provides an overview of the first two years of the Wind for Schools project, primarily supporting activities in Colorado, Kansas, Nebraska, South Dakota, Montana, and Idaho.

Baring-Gould, I.

2010-05-01T23:59:59.000Z

Note: This page contains sample records for the topic "wind siting rules" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


381

Wind Turbine Tribology Seminar  

Broader source: Energy.gov [DOE]

Wind turbine reliability issues are often linked to failures of contacting components, such as bearings, gears, and actuators. Therefore, special consideration to tribological design in wind...

382

Wind energy bibliography  

SciTech Connect (OSTI)

This bibliography is designed to help the reader search for information on wind energy. The bibliography is intended to help several audiences, including engineers and scientists who may be unfamiliar with a particular aspect of wind energy, university researchers who are interested in this field, manufacturers who want to learn more about specific wind topics, and librarians who provide information to their clients. Topics covered range from the history of wind energy use to advanced wind turbine design. References for wind energy economics, the wind energy resource, and environmental and institutional issues related to wind energy are also included.

None

1995-05-01T23:59:59.000Z

383

Northern Wind Farm  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

a draft environmental assessment (EA) on the proposed interconnection of the Northern Wind Farm (Project) in Roberts County, near the city of Summit, South Dakota. Northern Wind,...

384

Wind Program News  

Broader source: Energy.gov (indexed) [DOE]

eerewindwind-program-news en EERE Leadership Celebrates Offshore Wind in Maine http:energy.goveerearticleseere-leadership-celebrates-offshore-wind-maine

385

British wind band music.  

E-Print Network [OSTI]

??I have chosen to be assessed as an interpreter and conductor of British wind band music from the earliest writings for wind band up to, (more)

Jones, GO

2005-01-01T23:59:59.000Z

386

WINDExchange: Wind Energy Ordinances  

Wind Powering America (EERE)

Wind Energy Ordinances Federal, state, and local regulations govern many aspects of wind energy development. The exact nature of the project and its location will largely drive the...

387

Wind Program: WINDExchange  

Wind Powering America (EERE)

Version Bookmark and Share WINDExchange logo WINDExchange is the U.S. Department of Energy (DOE) Wind Program's platform for disseminating credible information about wind...

388

WINDExchange: Collegiate Wind Competition  

Wind Powering America (EERE)

& Teaching Materials Resources Collegiate Wind Competition The U.S. Department of Energy (DOE) Collegiate Wind Competition challenges interdisciplinary teams of undergraduate...

389

Pitt County - Wind Energy Systems Ordinance | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

Pitt County - Wind Energy Systems Ordinance Pitt County - Wind Energy Systems Ordinance Pitt County - Wind Energy Systems Ordinance < Back Eligibility Commercial Residential Savings Category Wind Buying & Making Electricity Program Info State North Carolina Program Type Solar/Wind Permitting Standards Provider Pitt County The Pitt County Board of Commissioners adopted amendments to the county zoning ordinance in March 2010 which classify wind energy systems as an accessory use and establish siting and permitting requirements for their installation. The ordinance applies to small to medium systems designed primarily for on-site use in conjunction with a principal dwelling unit or business. The ordinance does not apply to utility scale systems. '''Blade Clearance:''' Wind turbine blades may not be closer than 15 feet

390

Guide to Using the WIND Toolkit Validation Code  

SciTech Connect (OSTI)

In response to the U.S. Department of Energy's goal of using 20% wind energy by 2030, the Wind Integration National Dataset (WIND) Toolkit was created to provide information on wind speed, wind direction, temperature, surface air pressure, and air density on more than 126,000 locations across the United States from 2007 to 2013. The numerical weather prediction model output, gridded at 2-km and at a 5-minute resolution, was further converted to detail the wind power production time series of existing and potential wind facility sites. For users of the dataset it is important that the information presented in the WIND Toolkit is accurate and that errors are known, as then corrective steps can be taken. Therefore, we provide validation code written in R that will be made public to provide users with tools to validate data of their own locations. Validation is based on statistical analyses of wind speed, using error metrics such as bias, root-mean-square error, centered root-mean-square error, mean absolute error, and percent error. Plots of diurnal cycles, annual cycles, wind roses, histograms of wind speed, and quantile-quantile plots are created to visualize how well observational data compares to model data. Ideally, validation will confirm beneficial locations to utilize wind energy and encourage regional wind integration studies using the WIND Toolkit.

Lieberman-Cribbin, W.; Draxl, C.; Clifton, A.

2014-12-01T23:59:59.000Z

391

Module Handbook Specialisation Wind Energy  

E-Print Network [OSTI]

of Wind Turbines Module name: Wind potential, Aerodynamics & Loading of Wind Turbines Section Classes Evaluation of Wind Energy Potential Wind turbine Aerodynamics Static and dynamic Loading of Wind turbines Wind turbine Aerodynamics Static and dynamic Loading of Wind turbines Credit points 8 CP

Habel, Annegret

392

Sandia National Laboratories: Wind Energy  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

specialprogramsslide5 windplantoptslide4 rotorinnovationslide3 offshorewindslide2 Materialsslide1 Wind Energy Wind Plant Optimization Materials,...

393

Hualapai Wind Project Feasibility Report  

SciTech Connect (OSTI)

The Hualapai Department of Planning and Economic Development, with funding assistance from the U.S. Department of Energy, Tribal Energy Program, with the aid of six consultants has completed the four key prerequisites as follows: 1. Identify the site area for development and its suitability for construction. 2. Determine the wind resource potential for the identified site area. 3. Determine the electrical transmission and interconnection feasibility to get the electrical power produced to the marketplace. 4. Complete an initial permitting and environmental assessment to determine the feasibility for getting the project permitted. Those studies indicated a suitable wind resource and favorable conditions for permitting and construction. The permitting and environmental study did not reveal any fatal flaws. A review of the best power sale opportunities indicate southern California has the highest potential for obtaining a PPA that may make the project viable. Based on these results, the recommendation is for the Hualapai Tribal Nation to move forward with attracting a qualified wind developer to work with the Tribe to move the project into the second phase - determining the reality factors for developing a wind project. a qualified developer will bid to a utility or negotiate a PPA to make the project viable for financing.

Davidson, Kevin [Hualapai Tribe] [Hualapai Tribe; Randall, Mark [Daystar Consulting] [Daystar Consulting; Isham, Tom [Power Engineers] [Power Engineers; Horna, Marion J [MJH Power Consulting LLC] [MJH Power Consulting LLC; Koronkiewicz, T [SWCA Environmental, Inc.] [SWCA Environmental, Inc.; Simon, Rich [V-Bar, LLC] [V-Bar, LLC; Matthew, Rojas [Squire Sanders Dempsey] [Squire Sanders Dempsey; MacCourt, Doug C. [Ater Wynne, LLP] [Ater Wynne, LLP; Burpo, Rob [First American Financial Advisors, Inc.] [First American Financial Advisors, Inc.

2012-12-20T23:59:59.000Z

394

New England Wind Forum: New England Wind Energy Education Project Webinars  

Wind Powering America (EERE)

New England Wind Energy Education Project Webinars New England Wind Energy Education Project Webinars Here you can learn about New England Wind Energy Education Project (NEWEEP) webinars and find audiovisual files and transcripts of past webinars. The objectives of the NEWEEP webinar series include: cutting through the clutter of competing, conflicting, and sometimes misleading information on critical issues pertaining to wind energy generation helping to address concerns in communities where wind projects are proposed identifying areas for future research for example data gaps. The free NEWEEP webinars are designed for the general public, local officials, facility siting decision-makers, policy-makers, and others interested in objective information on wind energy impacts. Past Webinars Find audiovisual files and transcripts of webinars hosted by NEWEEP.

395

Natural Gas Rules (North Carolina) | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

Rules (North Carolina) Rules (North Carolina) Natural Gas Rules (North Carolina) < Back Eligibility Utility Program Info State North Carolina Program Type Generating Facility Rate-Making Safety and Operational Guidelines Siting and Permitting Provider North Carolina Utilities Commission These rules apply to any gas utility operating within the State of North Carolina under the jurisdiction of the North Carolina Utilities Commission and also to interstate natural gas companies having pipeline facilities located in North Carolina insofar as safety is concerned. These rules are intended to promote safe and adequate service to the public, to provide standards for uniform and reasonable practices by utilities, and to establish a basis for determining the reasonableness of such demands as may

396

Clean Air Interstate Rule (CAIR) Budget Permits (Michigan) | Department  

Broader source: Energy.gov (indexed) [DOE]

Clean Air Interstate Rule (CAIR) Budget Permits (Michigan) Clean Air Interstate Rule (CAIR) Budget Permits (Michigan) Clean Air Interstate Rule (CAIR) Budget Permits (Michigan) < Back Eligibility Utility Fed. Government Commercial Agricultural Investor-Owned Utility State/Provincial Govt Industrial Construction Municipal/Public Utility Local Government Residential Installer/Contractor Rural Electric Cooperative Tribal Government Low-Income Residential Schools Retail Supplier Institutional Multi-Family Residential Systems Integrator Fuel Distributor Nonprofit General Public/Consumer Transportation Program Info State Michigan Program Type Siting and Permitting Michigan implements the federal requirements of the Clean Air Interstate Rule (CAIR) through state regulations. Michigan's Rule 821 requires subject sources to obtain and operate in compliance with a CAIR Annual NOx Budget

397

Landowners' Frequently Asked Questions about Wind Development  

Wind Powering America (EERE)

Landowners' Frequently Asked Questions Landowners' Frequently Asked Questions about Wind Development 1 Landowners' Frequently Asked Questions about Wind Development Jay Haley, P.E. 1. How much money can I make? Based on wind projects in southern Minnesota and northern Iowa, landowners can expect to receive annual land-lease payments ranging from $2,000 to more than $4,000 per turbine. The amount depends on the size of the wind turbine and how much electricity it produces as well as the selling price of the electricity. The same turbine will produce more in one location than another depending on the annual average wind speed at the site. The payments typically represent from 2% to 4% of the annual gross revenue of the turbine. 2. How many turbines can be placed on a section of

398

Searchlight Wind Energy Project FEIS Appendix F  

Broader source: Energy.gov (indexed) [DOE]

F F Page | F 22B Appendix F: Literature Review of Socioeconomic Effects of Wind Project and Transmission Lines Searchlight Wind Energy Project FEIS Appendix F Page | 1 Prepared for" The Bureau of Land Management For the Searchlight Wind Energy Project Prepared by Bootstrap Solutions 752 E. Braemere Road Boise, ID 83702 Literature on Property Value Impacts of Wind Projects The economic effects of wind energy projects have been well documented. Several studies that have evaluated potential property value impacts are highlighted below (organized chronologically). No clear inference can be drawn from these studies and available research as the analyses vary in terms of rigor; methodology (e.g., survey sampling, statistical analysis, and expert opinion); size, location and site

399

Wind Energy Corporation | Open Energy Information  

Open Energy Info (EERE)

Corporation Corporation Place Elizabethtown, Kentucky Zip 42701 Sector Wind energy Product Kentucky-based wind harvesting firm conducting micro-wind research to gather detailed wind speed and gust data enabling applications to find sites for farms. In addition they bring to the market wind sail designs for turbines for clients. Coordinates 40.152603°, -76.606718° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":40.152603,"lon":-76.606718,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

400

SWERA/Wind Resource Information | Open Energy Information  

Open Energy Info (EERE)

source source History View New Pages Recent Changes All Special Pages Semantic Search/Querying Get Involved Help Apps Datasets Community Login | Sign Up Search Page Edit History Facebook icon Twitter icon » SWERA/Wind Resource Information < SWERA Jump to: navigation, search SWERA logo.png Solar and Wind Energy Resource Assessment (SWERA) Interactive Web PortalPowered by OpenEI Getting Started Data Sets Analysis Tools About SWERA Wind Resource Information SWERA wind products provide estimates of how much wind resource is available at potential development sites. SWERA wind resources are depicted as average wind speed (meters per second) or wind power density (watts per square meter) at a specified height above the ground (nominally 50 m). These are derived from models and satellite and global weather observations

Note: This page contains sample records for the topic "wind siting rules" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


401

Solar and Wind Permitting Laws | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

Permitting Laws Permitting Laws Solar and Wind Permitting Laws < Back Eligibility Commercial Industrial Nonprofit Residential Schools Savings Category Solar Buying & Making Electricity Wind Program Info State New Jersey Program Type Solar/Wind Permitting Standards Provider New Jersey Department of Community Affairs New Jersey has enacted three separate laws addressing local permitting practices for solar and wind energy facilities. The first deals with solar and wind facilities located in industrial-zoned districts; the second with wind energy devices sited on piers; and the third addresses permitting standards small wind energy devices in general. All three are described below. '''Solar and Wind as Permitted Uses in Industrial Zones''' In March 2009 the state enacted legislation (A.B. 2550) defining facilities

402

Incremental wind-wave analysis of the structural capacity of offshore wind turbine support structures under extreme loading  

Science Journals Connector (OSTI)

Abstract Offshore wind turbine (OWT) support structures are subjected to non-proportional environmental wind and wave load patterns with respect to increases in wave height and with respect to wind and wave combined loading. Traditional approaches to estimating the ultimate capacity of offshore support structures are not ideally suited to analysis of OWTs. In this paper, the concept of incremental wind-wave (IWWA) analysis of the structural capacity of OWT support structures is proposed. The approach uses static pushover analysis of OWT support structures subject to wind and wave combined load patterns corresponding to increasing mean return period (MRP). The IWWA framework can be applied as a one-parameter approach (IWWA1) in which the MRP for the wind and wave conditions is assumed to be the same or a two-parameter approach (IWWA2) in which the \\{MRPs\\} associated with wind and wave conditions are related to a joint probability density function characterizing the wind and wave conditions at the site. Example calculations for monopile and jacket supported \\{OWTs\\} at Atlantic marine sites are performed under both one parameter and two parameters IWWA framework. The analyses illustrate that: the results of an IWWA analysis are site specific; and structural response can be dominated by either wind or wave conditions depending on structural characteristics and site conditions. Finally, reliability analyses for both examples excluding uncertainties in structural resistance are estimated based on their IWWA results and probabilistic models for site environmental conditions.

Kai Wei; Sanjay R. Arwade; Andrew T. Myers

2014-01-01T23:59:59.000Z

403

Offshore Wind Turbines - Estimated Noise from Offshore Wind Turbine, Monhegan Island, Maine: Environmental Effects of Offshore Wind Energy Development  

SciTech Connect (OSTI)

Deep C Wind, a consortium headed by the University of Maine will test the first U.S. offshore wind platforms in 2012. In advance of final siting and permitting of the test turbines off Monhegan Island, residents of the island off Maine require reassurance that the noise levels from the test turbines will not disturb them. Pacific Northwest National Laboratory, at the request of the University of Maine, and with the support of the U.S. Department of Energy Wind Program, modeled the acoustic output of the planned test turbines.

Aker, Pamela M.; Jones, Anthony M.; Copping, Andrea E.

2010-11-23T23:59:59.000Z

404

Energy and reliability benefits of wind energy conversion systems  

Science Journals Connector (OSTI)

The electrical energy production and reliability benefits of a wind energy conversion system (WECS) at a specific site depend on many factors, including the statistical characteristics of the site wind speed and the design characteristics of the wind turbine generator (WTG) itself, particularly the cut-in, rated and cut-out wind speed parameters. In general, the higher the degree of the wind site matching with a WECS is, the more are the energy and reliability benefits. An electrical energy production and reliability benefit index designated as the Equivalent Capacity Ratio (ECR) is introduced in this paper. This index can be used to indicate the electrical energy production, the annual equivalent utilization time and the credit of a WECS, and quantify the degree of wind site matching with a WECS. The equivalent capacity of a WECS is modeled as the expected value of the power output random variable with the probability density function of the site wind speed. The analytical formulation of the ECR is based on a mathematical derivation with high accuracy. Twelve WTG types and two test systems are used to demonstrate the effectiveness of the proposed model. The results show that the ECR provides a useful index for a WTG to evaluate the energy production and the relative reliability performance in a power system, and can be used to assist in the determination of the optimal WTG type for a specific wind site.

Kaigui Xie; Roy Billinton

2011-01-01T23:59:59.000Z

405

West Winds Wind Farm | Open Energy Information  

Open Energy Info (EERE)

West Winds Wind Farm West Winds Wind Farm Facility West Winds Sector Wind energy Facility Type Commercial Scale Wind Facility Status In Service Owner Caithness Developer SeaWest Energy Purchaser Southern California Edison/PacifiCorp Location San Gorgonio CA Coordinates 33.9095°, -116.734° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":33.9095,"lon":-116.734,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

406

Howard County- Wind Ordinance  

Broader source: Energy.gov [DOE]

This ordinance sets up provisions for allowing small wind energy systems in various zoning districts.

407

Statewide Air Emissions Calculations from Energy Efficiency, Wind and Renewables  

E-Print Network [OSTI]

AND RENEWABLES May 2008 Energy Systems Laboratory p. 2 Electricity Production from Wind Farms (2002-2007) ? Installed capacity of wind turbines was 3,026 MW (March 2007). ? Announced new project capacity is 3,125 MW by 2010. ? Lowest electricity period... Speed (MPH) T u rb in e P o w er (k W h /h ) Hourly electricity produced vs on- site wind data acceptable for hourly modeling. Issue: hourly on-site data not always available. Calculating NOx Reductions from Wind Farms Energy...

Haberl, J.; Yazdani, B.; Culp, C.

408

Solid Waste Management Rules (Vermont)  

Broader source: Energy.gov [DOE]

These rules establish procedures and standards to protect public health and the environment by ensuring the safe, proper, and sustainable management of solid waste in Vermont. The rules apply to...

409

Loss-Free Pricing Rules  

Science Journals Connector (OSTI)

This chapter provides an application of the pricing rule approach to the analysis of unregulated market economies with non-convex production sets. Loss-free pricing rules provide a natural framework for this a...

Prof. Dr. Antonio Villar

2000-01-01T23:59:59.000Z

410

Stakeholder Engagement and Outreach: Wind Policy  

Wind Powering America (EERE)

Federal, Federal, State, & Local Printable Version Bookmark and Share Economic Development Policy Cap & Trade State Implementation Plans Supplemental Environmental Projects Resources & Tools Public Lands Public Power Regional Activities State Activities State Lands Siting Wind Policy Federal, state, and local policies play an important role in wind energy development. More than 20 states have established renewable portfolio standards that require electricity providers to obtain a portion of their power from renewable sources. More than 15 states have established renewable energy funds that provide financial incentives and other types of support for wind energy development. In addition, voluntary consumer decisions to purchase green power can provide an important revenue stream

411

WIND DATA REPORT Ragged Mt Maine  

E-Print Network [OSTI]

...................................................................................................................... 8 Wind Speed Time Series............................................................................................................. 9 Wind Speed Distributions........................................................................................................... 9 Monthly Average Wind Speeds

Massachusetts at Amherst, University of

412

Quality Assurance Rule | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

Rule Quality Assurance Rule This rule establishes quality assurance requirements for contractors conducting activities, including providing items or services which affect, or may...

413

NANA Wind Resource Assessment Program Final Report  

SciTech Connect (OSTI)

NANA Regional Corporation (NRC) of northwest Alaska is located in an area with abundant wind energy resources. In 2007, NRC was awarded grant DE-FG36-07GO17076 by the US Department of Energy's Tribal Energy Program for funding a Wind Resource Assessment Project (WRAP) for the NANA region. The NANA region, including Kotzebue Electric Association (KEA) and Alaska Village Electric Cooperative (AVEC) have been national leaders at developing, designing, building, and operating wind-diesel hybrid systems in Kotzebue (starting in 1996) and Selawik (2002). Promising sites for the development of new wind energy projects in the region have been identified by the WRAP, including Buckland, Deering, and the Kivalina/Red Dog Mine Port Area. Ambler, Shungnak, Kobuk, Kiana, Noorvik & Noatak were determined to have poor wind resources at sites in or very near each community. However, all five of these communities may have better wind resources atop hills or at sites with slightly higher elevations several miles away.

Jay Hermanson

2010-09-23T23:59:59.000Z

414

Wind Resource Maps (Postcard)  

SciTech Connect (OSTI)

The U.S. Department of Energy's Wind Powering America initiative provides high-resolution wind maps and estimates of the wind resource potential that would be possible from development of the available windy land areas after excluding areas unlikely to be developed. This postcard is a marketing piece that stakeholders can provide to interested parties; it will guide them to Wind Powering America's online wind energy resource maps.

Not Available

2011-07-01T23:59:59.000Z

415

Wind energy offers considerable promise; the wind itself is free,  

E-Print Network [OSTI]

Wind energy offers considerable promise; the wind itself is free, wind power is clean. One of these sources, wind energy, offers considerable promise; the wind itself is free, wind power is clean, and it is virtually inexhaustible. In recent years, research on wind energy has accelerated

Langendoen, Koen

416

EA-1914: Draft Site-Wide Environmental Assessment | Department...  

Office of Environmental Management (EM)

Facilities areas (Zone 1 and Zone 2); Increase site use and density by adding wind turbines, meteorological towers and associated infrastructure, and grid storage test...

417

Study identifies two Northwest basalt rock caverns sites for...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

PNNL and BPA have identified two possible sites in eastern Washington to build compressed air energy storage facilities that could temporarily store the Northwest's excess wind...

418

Chapter 2 Offshore Wind Power Stations  

Science Journals Connector (OSTI)

Publisher Summary This chapter presents the historical background and development of offshore wind power stations. As early as 1890, windmills were put to work to produce electricity and more than 50,000 mills were in use in the United States alone in the twenties and thirties. Their decline was precipitated by the Rural Electrification Program. According to the San Francisco based Transaction Energy Projects Institute, offshore windmills could generate all the electrical power needed by northern California. Ocean winds have of course provided energy to windmills for centuries. In 1976, a study was commissioned by the (U.S.) Energy Research and Development Administration to ascertain and assess the economic value of offshore multi units aiming at identification and classification of area offshore types, assessing utility requirements for offshore power systems. It includes developing installation concepts including various floating and bottom-mounted designs, assessing current WECS (wind energy converter systems) for use in offshore environments, assessing various electric transmission and hydrogen delivery concepts, and performing an economic assessment, providing tradeoffs for variables such as distance offshore, climate, bottom and wave characteristics and average wave velocities. It is suggested that high wind velocity sites must be identified because the energy flow increases with the cube of the wind velocity; the kinetic energy of the wind passing through the area swept by the blades of a turbine is the energy available to that wind turbine. An average wind speed distribution is required.

1993-01-01T23:59:59.000Z

419

Wind/Wave Misalignment in the Loads Analysis of a Floating Offshore Wind Turbine: Preprint  

SciTech Connect (OSTI)

Wind resources far from the shore and in deeper seas have encouraged the offshore wind industry to look into floating platforms. The International Electrotechnical Commission (IEC) is developing a new technical specification for the design of floating offshore wind turbines that extends existing design standards for land-based and fixed-bottom offshore wind turbines. The work summarized in this paper supports the development of best practices and simulation requirements in the loads analysis of floating offshore wind turbines by examining the impact of wind/wave misalignment on the system loads under normal operation. Simulations of the OC3-Hywind floating offshore wind turbine system under a wide range of wind speeds, significant wave heights, peak-spectral periods and wind/wave misalignments have been carried out with the aero-servo-hydro-elastic tool FAST [4]. The extreme and fatigue loads have been calculated for all the simulations. The extreme and fatigue loading as a function of wind/wave misalignment have been represented as load roses and a directional binning sensitivity study has been carried out. This study focused on identifying the number and type of wind/wave misalignment simulations needed to accurately capture the extreme and fatigue loads of the system in all possible metocean conditions considered, and for a down-selected set identified as the generic US East Coast site. For this axisymmetric platform, perpendicular wind and waves play an important role in the support structure and including these cases in the design loads analysis can improve the estimation of extreme and fatigue loads. However, most structural locations see their highest extreme and fatigue loads with aligned wind and waves. These results are specific to the spar type platform, but it is expected that the results presented here will be similar to other floating platforms.

Barj, L.; Stewart, S.; Stewart, G.; Lackner, M.; Jonkman, J.; Robertson, A.

2014-02-01T23:59:59.000Z

420

Surface wind speed distributions| Implications for climate and wind power.  

E-Print Network [OSTI]

?? Surface constituent and energy fluxes, and wind power depend non-linearly on wind speed and are sensitive to the tails of the wind distribution. Until (more)

Capps, Scott Blair

2010-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "wind siting rules" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


421

Rhode Island to Build First Offshore Wind Farm | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

Rhode Island to Build First Offshore Wind Farm Rhode Island to Build First Offshore Wind Farm Rhode Island to Build First Offshore Wind Farm March 15, 2010 - 6:38pm Addthis Rhode Island’s first offshore wind farm will be built in Block Island. | File photo Rhode Island's first offshore wind farm will be built in Block Island. | File photo Block Island, a small town with only 1,000 full-time, residents, is the site for a big project, when it will become home to Rhode Island's first offshore wind farm. Powerful ocean winds lie right off Block Island's south shore. That's the benefit of offshore wind farms - they can take advantage of the harder, stronger winds found a few miles off the coast Deepwater Wind LLC is leading the effort with plans to construct up to eight wind turbines three miles off of Block Island's shore.

422

Small Wind Guidebook/Can I Connect My System to the Utility Grid | Open  

Open Energy Info (EERE)

source source History View New Pages Recent Changes All Special Pages Semantic Search/Querying Get Involved Help Apps Datasets Community Login | Sign Up Search Page Edit History Facebook icon Twitter icon » Small Wind Guidebook/Can I Connect My System to the Utility Grid < Small Wind Guidebook Jump to: navigation, search Print PDF WIND ENERGY STAKEHOLDER ENGAGEMENT & OUTREACHSmall Wind Guidebook Home WindTurbine-icon.png Small Wind Guidebook * Introduction * First, How Can I Make My Home More Energy Efficient? * Is Wind Energy Practical for Me? * What Size Wind Turbine Do I Need? * What Are the Basic Parts of a Small Wind Electric System? * What Do Wind Systems Cost? * Where Can I Find Installation and Maintenance Support? * How Much Energy Will My System Generate? * Is There Enough Wind on My Site?

423

NREL: Wind Research - WindPACT  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

WindPACT WindPACT The Wind Partnerships for Advanced Component Technology (WindPACT) studies were conducted to assist industry by testing innovative components, such as advanced blades and drivetrains, to lower the cost of energy. Specific goals included: Foster technological advancements to reduce the cost of wind energy Determine probable size ranges of advanced utility-scale turbines over the next decade for U.S. application Evaluate advanced concepts that are necessary to achieve objectives of cost and size for future turbines Identify and solve technological hurdles that may block industry from taking advantage of promising technology Design, fabricate, and test selected advanced components to prove their viability Support wind industry through transfer of technology from

424

Temporal and spatial patterns in wind stress and wind stress curl over the central Southern California Bight  

Science Journals Connector (OSTI)

In 2001, the U.S. Geological Survey, together with several other federal and municipal agencies, began a series of field programs to determine along and cross-shelf transport patterns over the continental shelves in the central Southern California Bight. As a part of these programs, moorings that monitor winds were deployed off the Palos Verdes peninsula and within San Pedro Bay for six 34 month summer and winter periods between 2001 and 2008. In addition, nearly continuous records of winds for this 7-year period were obtained from a terrestrial site at the coast and from a basin site offshore of the long-term coastal site. The mean annual winds are downcoast at all sites. The alongshelf components of wind stress, which are the largest part of the low-frequency wind stress fields, are well correlated between basin, shelf and coastal sites. On average, the amplitude of alongshelf fluctuations in wind stress are 34 times larger over the offshore basin, compared to the coastal site, irrespective of whether the fluctuations represent the total, or just the correlated portion of the wind stress field. The curl in the large-scale wind stress tends to be positive, especially in the winter season when the mean wind stress is downcoast and larger at the offshore basin site than at the beach. However, since the fluctuation in wind stress amplitudes are usually larger than the mean, periods of weak negative curl do occur, especially in the summer season when the largest normalized differences in the amplitude of wind stress fluctuations are found in the nearshore region of the coastal ocean. Even though the low-frequency wind stress field is well-correlated over the continental shelf and offshore basins, out to distances of 35km or more from the coast, winds even 10km inshore of the beach do not represent the coastal wind field, at least in the summer months. The seasonal changes in the spatial structures in wind stress amplitudes suggest that an assessment of the amplitude of the responses of coastal ocean processes to wind forcing is complex and that the responses may have significant seasonal structures.

Marlene A. Noble; Kurt J. Rosenberger; Leslie K. Rosenfeld; George L. Robertson

2012-01-01T23:59:59.000Z

425

Wind | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

Wind Wind Wind America is home to one of the largest and fastest growing wind markets in the world. Watch the video to learn more about the latest trends in the U.S. wind power market and join us this Thursday, August 8 at 3 pm ET for a Google+ Hangout on wind energy in America. The United States is home to one of the largest and fastest growing wind markets in the world. To stay competitive in this sector, the Energy Department invests in wind projects, both on land and offshore, to advance technology innovations, create job opportunities and boost economic growth. Moving forward, the U.S. wind industry remains a critical part of the Energy Department's all-of-the-above energy strategy to cut carbon pollution, diversify our energy economy and bring the next-generation of

426

Offshore Wind Projects | Department of Energy  

Office of Environmental Management (EM)

Offshore Wind Projects Offshore Wind Projects This report covers the Wind and Water Power Program's offshore wind energy projects from fiscal years 2006 to 2014. Offshore Wind...

427

Wind to Hydrogen in California: Case Study  

SciTech Connect (OSTI)

This analysis presents a case study in California for a large scale, standalone wind electrolysis site. This is a techno-economic analysis of the 40,000 kg/day renewable production of hydrogen and subsequent delivery by truck to a fueling station in the Los Angeles area. This quantity of hydrogen represents about 1% vehicle market penetration for a city such as Los Angeles (assuming 0.62 kg/day/vehicle and 0.69 vehicles/person) [8]. A wind site near the Mojave Desert was selected for proximity to the LA area where hydrogen refueling stations are already built.

Antonia, O.; Saur, G.

2012-08-01T23:59:59.000Z

428

Stakeholder Engagement and Outreach: Incorporating Wind in Cap and Trade  

Wind Powering America (EERE)

Incorporating Wind in Cap and Trade Programs Incorporating Wind in Cap and Trade Programs There are various methods of allocating allowances to renewable energy sources under cap and trade programs, such as renewable energy set asides and output-based approaches. Background materials and presentations from the January 12, 2006 Webcast below, provide information on why it is important to include wind and other renewables in cap and trade programs and how best to incorporate them. Implications of Carbon Regulation for Green Power Markets Bird, L.; Holt, E.; Carroll, G. National Renewable Energy Laboratory, April 2007. January 12, 2006 Webcast: Incorporating Renewable Energy under the Clean Air Interstate Rule (CAIR) Co-Sponsors American Wind Energy Association (AWEA) U.S. DOE/NREL Wind Powering America

429

NREL: Wind Research - Offshore Wind Research  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

standards Third-party design verification of innovative floating and fixed-bottom wind turbines NREL's standards and testing capabilities address the need to validate our...

430

SAMPLING AND ANALYSIS PLAN CSMRI SITE REMEDIATION  

E-Print Network [OSTI]

Littleton, CO 80127 #12;CSMRI Site Remediation Quality Assurance Project Plan March 30, 2004 SAMPLING Environmental Consultants, Inc. Approved By: Date: Sally Cuffin Project Quality Assurance Manager New Horizons...................................................................................................................................3 2.5 Decision Rules

431

Stakeholder Engagement and Outreach: Wind Power on Public Lands  

Wind Powering America (EERE)

Resources Public Power Regional Activities State Activities State Lands Siting Wind Power on Public Lands Through its programs at the National Renewable Energy Laboratory (NREL) and partners, Wind Powering America is assisting with the evaluation of wind energy development on public lands. The cover of the publication. Federal Wind Energy Assistance through NREL The National Renewable Energy Laboratory assists with wind resource assessment and development activities initiated by federal agencies to facilitate distributed renewable energy projects at federal agency sites. This brief outlines the process for requesting National Renewable Energy Laboratory assistance with federal wind energy projects. Army National Guard NREL provided the Army National Guard at Fort Carson, Colorado, with a 50-m

432

Orange County - Wind Permitting Standards | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

Orange County - Wind Permitting Standards Orange County - Wind Permitting Standards Orange County - Wind Permitting Standards < Back Eligibility Agricultural Commercial Residential Savings Category Wind Buying & Making Electricity Program Info State California Program Type Solar/Wind Permitting Standards Provider OC Planning In December 2010, the County of Orange Board of Supervisors adopted small wind performance and development standards (Ord. No. 10-020) in order to promote distributed generation systems in non-urbanized areas (as defined in Government Code Section 65944(d)(2)) within the unincorporated territory. Permitting standards are for systems of 50 kW or less per customer site, for which the energy is primarily for on-site consumption. Height: For systems 45 feet tall or less, a use permit must be approved by

433

Demonstration of wind turbine. Final technical report at grant program  

SciTech Connect (OSTI)

Proposal F-602 is a demonstration of a commercially available wind-electric device - an Enertech Corp. Series 1800 model wind turbine. The demonstration site selected was the New Directions school campus, a public school facility, in Sarasota, Florida. During testing, an investigation of the wind power potential for the area was undertaken. In addition, negotiations with the Florida Power and Light Company for parallel operation of the wind system (utility interface), were initiated. An Operating Agreement contract is now pending approval by the Sarasota County School Board. The results to date, of this site's wind power potential, have been well below computational expectancies based upon wind speed data for the area. Analysis will continue, to determine the cause of the windplant's low net output.

Pendola, W. Jr.

1982-06-01T23:59:59.000Z

434

Final Scientific Report - Wind Powering America State Outreach Project  

SciTech Connect (OSTI)

The goal of the Wind Powering America State Outreach Project was to facilitate the adoption of effective state legislation, policy, finance programs, and siting best practices to accelerate public acceptance and development of wind energy. This was accomplished by Clean Energy States Alliance (CESA) through provision of informational tools including reports and webinars as well as the provision of technical assistance to state leaders on wind siting, policy, and finance best practices, identification of strategic federal-state partnership activities for both onshore and offshore wind, and participation in regional wind development collaboratives. The Final Scientific Report - Wind Powering America State Outreach Project provides a summary of the objectives, activities, and outcomes of this project as accomplished by CESA over the period 12/1/2009 - 11/30/2011.

Sinclair, Mark; Margolis, Anne

2012-02-01T23:59:59.000Z

435

2012 Wind Technologies Market Report  

E-Print Network [OSTI]

Colorado: Xcel Energy. 2012 Wind Technologies Market ReportOperator. 2012 Wind Technologies Market Report Chadbourne &Power Company. 2012 Wind Technologies Market Report EnerNex

Wiser, Ryan

2014-01-01T23:59:59.000Z

436

2011 Wind Technologies Market Report  

E-Print Network [OSTI]

2010. SPP WITF Wind Integration Study. Little Rock,GE Energy. 2011a. Oahu Wind Integration Study Final Report.PacifiCorp. 2010. 2010 Wind Integration Study. Portland,

Bolinger, Mark

2013-01-01T23:59:59.000Z

437

NREL: Wind Research - @NWTC Newsletter  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

NREL Investigates the Logistics of Transporting and Installing Bigger, Taller Wind Turbines NREL Plays Founding, Developmental Role in Major Wind Journal Boosting Wind Plant...

438

2012 Wind Technologies Market Report  

E-Print Network [OSTI]

Department of Energy (DOE). 2008. 20% Wind Energy by2030: Increasing Wind Energys Contribution to U.S.Integrating Midwest Wind Energy into Southeast Electricity

Wiser, Ryan

2014-01-01T23:59:59.000Z

439

Sandia National Laboratories: wind manufacturing  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

manufacturing Wind Energy Manufacturing Lab Helps Engineers Improve Wind Power On November 15, 2011, in Energy, News, Partnership, Renewable Energy, Wind Energy Researchers at the...

440

2007 Solar Decathlon Rules and Regulations  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Solar Decathlon Rules and Regulations Solar Decathlon Rules and Regulations Number of Pages Date of Last Revision Primary Documents Overview 7 pages February 16, 2007 Definitions 4 pages February 16, 2007 Competition Regulations 23 pages February 16, 2007 The Contests 2 pages February 16, 2007 Contest 1: Architecture 2 pages May 3, 2006 Drawings and Specifications Contest Activity Details 7 pages February 16, 2007 Contest 2: Engineering 2 pages February 16, 2007 Energy Analysis Contest Activity Details 3 pages February 16, 2007 Contest 3: Market Viability 2 pages February 16, 2007 Economic Analysis Contest Activity Details 6 pages February 16, 2007 Contest 4: Communications 2 pages February 16, 2007 Web Site Contest Activity Details 6 pages February 16, 2007 Contest 5: Comfort Zone

Note: This page contains sample records for the topic "wind siting rules" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


441

Wind power today  

SciTech Connect (OSTI)

This publication highlights initiatives of the US DOE`s Wind Energy Program. 1997 yearly activities are also very briefly summarized. The first article describes a 6-megawatt wind power plant installed in Vermont. Another article summarizes technical advances in wind turbine technology, and describes next-generation utility and small wind turbines in the planning stages. A village power project in Alaska using three 50-kilowatt turbines is described. Very brief summaries of the Federal Wind Energy Program and the National Wind Technology Center are also included in the publication.

NONE

1998-04-01T23:59:59.000Z

442

Wind Power Career Chat  

SciTech Connect (OSTI)

This document will teach students about careers in the wind energy industry. Wind energy, both land-based and offshore, is expected to provide thousands of new jobs in the next several decades. Wind energy companies are growing rapidly to meet America's demand for clean, renewable, and domestic energy. These companies need skilled professionals. Wind power careers will require educated people from a variety of areas. Trained and qualified workers manufacture, construct, operate, and manage wind energy facilities. The nation will also need skilled researchers, scientists, and engineers to plan and develop the next generation of wind energy technologies.

Not Available

2011-01-01T23:59:59.000Z

443

Wind energy information guide  

SciTech Connect (OSTI)

This book is divided into nine chapters. Chapters 1--8 provide background and annotated references on wind energy research, development, and commercialization. Chapter 9 lists additional sources of printed information and relevant organizations. Four indices provide alphabetical access to authors, organizations, computer models and design tools, and subjects. A list of abbreviations and acronyms is also included. Chapter topics include: introduction; economics of using wind energy; wind energy resources; wind turbine design, development, and testing; applications; environmental issues of wind power; institutional issues; and wind energy systems development.

NONE

1996-04-01T23:59:59.000Z

444

Origin of the Springtime Westerly Bias in Equatorial Atlantic Surface Winds in the Community Atmosphere Model Version 3 (CAM3) Simulation  

E-Print Network [OSTI]

­atmosphere interaction generally rules. 1. Introduction Trade winds (easterlies) prevail over most of the tropical in the cen- tral and eastern basins, and vice versa. Along the equa- tor, easterly winds generate equatorialOrigin of the Springtime Westerly Bias in Equatorial Atlantic Surface Winds in the Community

Nigam, Sumant

445

Optimization of Sodar Wind Profile Measurements in Low-Humidity Climates at High Altitudes: Cooperative Research and Development Final Report, CRADA number CRD-07-00246  

SciTech Connect (OSTI)

The assessment of potential wind energy sites in the region of the U.S. from the Rocky Mountains westward.

Kelley, N.

2010-07-01T23:59:59.000Z

446

EA-1726: Kahuku Wind Power, LLC Wind Power Generation Facility...  

Broader source: Energy.gov (indexed) [DOE]

6: Kahuku Wind Power, LLC Wind Power Generation Facility, O'ahu, HI EA-1726: Kahuku Wind Power, LLC Wind Power Generation Facility, O'ahu, HI May 3, 2010 EA-1726: Final...

447

Women of Wind Energy Honor Wind Program Researchers | Department...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Women of Wind Energy Honor Wind Program Researchers Women of Wind Energy Honor Wind Program Researchers August 1, 2013 - 2:54pm Addthis This is an excerpt from the Second Quarter...

448

Stakeholder Engagement and Outreach: Wind Energy Curricula and Teaching  

Wind Powering America (EERE)

Wind Energy Curricula and Teaching Materials Wind Energy Curricula and Teaching Materials This is a list of wind energy curricula and teaching materials for elementary, middle school, and high school students, in alphabetical order by the producing agency's name. 4-H Group Wind Curriculum Developed The Power of the Wind, which consists of one Youth Guide and one Facilitator's Guide. The activities involve young people in the engineering design process as they learn about the wind and its uses. The site also offers videos. Boise State University Compiled a list of resources for educators, including lesson plans created using the Idaho State and Common Core Standards. California Energy Commission Developed a set of educational materials called "Energy Quest" that includes the following: Energy Story: Wind Energy

449

Guidelines for Solar and Wind Local Ordinances (Virginia) | Department of  

Broader source: Energy.gov (indexed) [DOE]

Guidelines for Solar and Wind Local Ordinances (Virginia) Guidelines for Solar and Wind Local Ordinances (Virginia) Guidelines for Solar and Wind Local Ordinances (Virginia) < Back Eligibility Agricultural Commercial Fed. Government General Public/Consumer Industrial Installer/Contractor Investor-Owned Utility Local Government Low-Income Residential Multi-Family Residential Municipal Utility Nonprofit Residential Rural Electric Cooperative Schools State Government Tribal Government Utility Savings Category Solar Buying & Making Electricity Wind Program Info State Virginia Program Type Solar/Wind Permitting Standards In March 2011, the Virginia legislature enacted broad guidelines for local ordinances for solar and wind. The law states that any local ordinance related to the siting of solar or wind energy facilities must:

450

The effect of ocean waves on offshore wind turbines  

Science Journals Connector (OSTI)

The Ocean has a varying surface roughness where the roughness length is determined by the characteristics of the waves. In this paper, a method is established where the roughness length of the ocean is calculated from the wind speed and the fetch length. The fetch length depends on the wind direction and a case study is performed for a wind turbine exposed to wind blowing in two opposite directions: from the shore and the sea. For each case, the vertical wind speed distribution is calculated in order to study the influence that the direction of the wind has on the annual energy production. The potential for using a site-specific offshore turbine design, dependent on the prevailing wind direction, is also explored.

T. Thorsen; H. Naeser

2002-01-01T23:59:59.000Z

451

Aeroacoustic Testing of Wind Turbine Airfoils: February 20, 2004 - February 19, 2008  

SciTech Connect (OSTI)

The U.S. Department of Energy (DOE), working through its National Renewable Energy Laboratory (NREL), is engaged in a comprehensive research effort to improve the understanding of wind turbine aeroacoustics. The motivation for this effort is the desire to exploit the large expanse of low wind speed sites that tend to be close to U.S. load centers. Quiet wind turbines are an inducement to widespread deployment, so the goal of NREL's aeroacoustic research is to develop tools that the U.S. wind industry can use in developing and deploying highly efficient, quiet wind turbines at low wind speed sites. NREL's National Wind Technology Center (NWTC) is implementing a multifaceted approach that includes wind tunnel tests, field tests, and theoretical analyses in direct support of low wind speed turbine development by its industry partners. NWTC researchers are working hand in hand with engineers in industry to ensure that research findings are available to support ongoing design decisions.

Devenport, W.; Burdisso, R. A.; Camargo, H.; Crede, E.; Remillieux, M.; Rasnick, M.; Van Seeters, P.

2010-05-01T23:59:59.000Z

452

2008 Wind Energy Projects, Wind Powering America (Poster)  

SciTech Connect (OSTI)

The Wind Powering America program produces a poster at the end of every calendar year that depicts new U.S. wind energy projects. The 2008 poster includes the following projects: Stetson Wind Farm in Maine; Dutch Hill Wind Farm in New York; Grand Ridge Wind Energy Center in Illinois; Hooper Bay, Alaska; Forestburg, South Dakota; Elbow Creek Wind Project in Texas; Glacier Wind Farm in Montana; Wray, Colorado; Smoky Hills Wind Farm in Kansas; Forbes Park Wind Project in Massachusetts; Spanish Fork, Utah; Goodland Wind Farm in Indiana; and the Tatanka Wind Energy Project on the border of North Dakota and South Dakota.

Not Available

2009-01-01T23:59:59.000Z

453

Ris-R-Report Comparison of NWP wind speeds and  

E-Print Network [OSTI]

for nuclear power plants, and for Risø, the site of the Danish nuclear research reactors now being Risø 5 German nuclear power plant sites 9 Brunsbüttel 9 Brokdorf 12 Krümmel 15 Obrigheim 18) of wind speed and direction has been compared to measurements for seven German sites for nuclear power

454

NREL: Wind Research - National Wind Technology Center  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Center Center The National Renewable Energy Laboratory's (NREL's) National Wind Technology Center (NWTC), located at the base of the foothills just south of Boulder, Colorado, is the nation's premier wind energy technology research facility. Built in 1993, the center provides an ideal environment for the development of advanced wind energy technologies. The goal of the research conducted at the center is to help industry reduce the cost of energy so that wind can compete with traditional energy sources, providing a clean, renewable alternative for our nation's energy needs. Research at the NWTC is organized under two main categories, Wind Technology Development and Testing and Operations. Illustration of the National Wind Technology Center's organization chart. Fort Felker is listed as the Center Director, with Mike Robinson, Deputy Center Director; Paul Veers, Chief Engineer, and Laura Davis and Dorothy Haldeman beneath him. The Associate Director position is empty. Beneath them is the Wind Technology Research and Development Group Manager, Mike Robinson; the Testing and Operations Group Manager, Dave Simms; and the Offshore Wind and Ocean Power Systems Acting Supervisor, Fort Felker.

455

Hanford Site Tours - Hanford Site  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Site Tours Hanford Site Tours Hanford Tour Restrictions Hanford Site Tours Hanford Tours for Governmental Officials Hanford Tours for Tribal Affairs Hanford Private Tours Media...

456

Wind Rose Bias Correction  

Science Journals Connector (OSTI)

Wind rose summaries, which provide a basis for understanding and evaluating the climatological behavior of local wind, have a directional bias if a conventional method is used in their generation. Three techniques used to remove this bias are ...

Scott Applequist

2012-07-01T23:59:59.000Z

457

Surface Wind Direction Variability  

Science Journals Connector (OSTI)

Common large shifts of wind direction in the weak-wind nocturnal boundary layer are poorly understood and are not adequately captured by numerical models and statistical parameterizations. The current study examines 15 datasets representing a ...

Larry Mahrt

2011-01-01T23:59:59.000Z

458

Scale Models & Wind Turbines  

Broader source: Energy.gov (indexed) [DOE]

Scale Models and Wind Turbines Grades: 5-8, 9-12 Topics: Wind Energy Owner: Kidwind Project This educational material is brought to you by the U.S. Department of Energy's Office of...

459

Distributed Wind 2015  

Broader source: Energy.gov [DOE]

Distributed Wind 2015 is committed to the advancement of both distributed and community wind energy. This two day event includes a Business Conference with sessions focused on advancing the...

460

Competitive Wind Grants (Vermont)  

Broader source: Energy.gov [DOE]

The Clean Energy Development Fund Board will offer a wind grant program beginning October 1, 2013. The grant program will replace the wind incentives that were originally part of the [http:/...

Note: This page contains sample records for the topic "wind siting rules" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


461

NREL: Wind Research - Awards  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Awards NREL has received many awards for its technical innovations in wind energy. In addition, the research conducted at the National Wind Technology Center (NWTC) at NREL has led...

462

Talbot County- Wind Ordinance  

Broader source: Energy.gov [DOE]

This ordinance amends the Talbot County Code, Chapter 190, Zoning, Subdivision and Land Development, to permit small wind turbine systems with wind turbine towers not to exceed 160 feet in total...

463

Wind Career Map  

K-12 Energy Lesson Plans and Activities Web site (EERE)

This wind career map explores an expanding universe of wind energy occupations, describing diverse jobs across the industry, charting possible progression between them, and identifying the high-quality training necessary to do them well.

464

WINDExchange: Wind Events  

Wind Powering America (EERE)

Sun, 15 Feb 2015 00:00:00 MST 2015 Iowa Wind Power Conference and Iowa Wind Energy Association Midwest Regional Energy Job Fair http:www.iowawindenergy.org...

465

WINDExchange: Wind Potential Capacity  

Wind Powering America (EERE)

area with a gross capacity factor1 of 35% and higher, which may be suitable for wind energy development. AWS Truepower LLC produced the wind resource data with a spatial...

466

Offshore wind metadata management  

Science Journals Connector (OSTI)

Offshore wind energy is gaining more and more attention from industry and research community due to its high potential in producing green energy and lowering price on electricity consumption. However, offshore wind is facing many challenges, and hence ...

Trinh Hoang Nguyen; Rocky Dunlap; Leo Mark; Andreas Prinz; Bjrn Mo stgren; Trond Friis

2014-10-01T23:59:59.000Z

467

Regional Field Verification Project--Operational Results from Four Small Wind Turbines (Poster)  

SciTech Connect (OSTI)

A poster describing two years of operating data for four Bergey, 10-kW wind turbines on different host sites in the Pacific Northwest.

Sinclair, K.; Raker, J.

2006-06-01T23:59:59.000Z

468

Microsoft Word - DOE EA 1939-Final EA CCET Wind Energy at RTC...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

battery facility and foundation, (3) an access road, and (4) site clearing. Two wind turbines and foundations would also be constructed as part of the proposed action. Although...

469

DOE Announces Effort to Advance U.S. Wind Power Manufacturing...  

Energy Savers [EERE]

Effort to Define and Develop Technologies and Siting Strategies Necessary to Achieve 20% Wind Energy by 2030 HOUSTON, TEXAS -The U.S. Department of Energy (DOE) Assistant...

470

0 Riso-R-434 Wind Speed and Direction  

E-Print Network [OSTI]

meteorological statistics for the area as it was considered a possible site for a nuclear power plant. \\ \\ Duringm I 0 Riso-R-434 t Wind Speed and Direction Changes due to Terrain Effects revealed-4000 Roskilde, Denmark May 1983 #12;RIS?-R-434 WIND SPEED AND DIRECTION CHANGES DUE TO TERRAIN EFFECTS

471

Virginia Offshore Wind Cost Reduction Through Innovation Study (VOWCRIS) (Poster)  

SciTech Connect (OSTI)

The VOWCRIS project is an integrated systems approach to the feasibility-level design, performance, and cost-of-energy estimate for a notional 600-megawatt offshore wind project using site characteristics that apply to the Wind Energy Areas of Virginia, Maryland and North Carolina.

Maples, B.; Campbell, J.; Arora, D.

2014-10-01T23:59:59.000Z

472

Astronomy: The day the solar wind nearly died  

Science Journals Connector (OSTI)

... New open field lines (red lines) are produced at a reconnection site XS and solar wind energy is directly deposited in the inner magnetosphere and upper atmosphere, as well as being ... by reconnection at XLN, in this example in the Northern Hemisphere. In this instance, solar-wind energy is not added to the tail because no new open flux is produced. Closed ...

Mike Lockwood

2001-02-08T23:59:59.000Z

473

2008 WIND TECHNOLOGIES MARKET REPORT  

E-Print Network [OSTI]

Prepared for the Utility Wind Integration Group. Arlington,Wind Logics, Inc. 2004. Wind Integration StudyFinal Report.EnerNex Corp. 2006. Wind Integration Study for Public

Bolinger, Mark

2010-01-01T23:59:59.000Z

474

How Do Wind Turbines Work?  

Broader source: Energy.gov [DOE]

Instead of using electricity to make wind, like a fan, wind turbines use wind to make electricity. The wind turns the blades, which spin a shaft, which connects to a generator and makes electricity.

475

WINDExchange: Wind Basics and Education  

Wind Powering America (EERE)

locate higher education and training programs. Learn about Wind Learn about how wind energy generates power; where the best wind resources are; how you can get wind power; and...

476

WINDExchange: What Is Wind Power?  

Wind Powering America (EERE)

animation to see how a wind turbine works or take a look inside. Wind power or wind energy describes the process by which the wind is used to generate mechanical power or...

477

Description of the Columbia Basin Wind Energy Study (CBWES)  

SciTech Connect (OSTI)

The purpose of this Technical Report is to provide background information about the Columbia Basin Wind Energy Study (CBWES). This study, which was supported by the U.S. Department of Energys Wind and Water Power Program, was conducted from 16 November 2010 through 21 March 2012 at a field site in northeastern Oregon. The primary goal of the study was to provide profiles of wind speed and wind direction over the depth of the boundary layer in an operating wind farm located in an area of complex terrain. Measurements from propeller and vane anemometers mounted on a 62 m tall tower, Doppler Sodar, and Radar Wind Profiler were combined into a single data product to provide the best estimate of the winds above the site during the first part of CBWES. An additional goal of the study was to provide measurements of Turbulence Kinetic Energy (TKE) near the surface. To address this specific goal, sonic anemometers were mounted at two heights on the 62 m tower on 23 April 2011. Prior to the deployment of the sonic anemometers on the tall tower, a single sonic anemometer was deployed on a short tower 3.1 m tall that was located just to the south of the radar wind profiler. Data from the radar wind profiler, as well as the wind profile data product are available from the Atmospheric Radiation Measurements (ARM) Data Archive (http://www.arm.gov/data/campaigns). Data from the sonic anemometers are available from the authors.

Berg, Larry K.; Pekour, Mikhail S.; Nelson, Danny A.

2012-10-01T23:59:59.000Z

478

The status of wind energy development in Tanzania  

Science Journals Connector (OSTI)

Wind energy development in Tanzania started about 3 decades ago when some windmills were installed at several locations in the country to pump water for human and animal consumption and in a few cases for irrigation. There were some attempts to manufacture the windmills locally but these were never successful. In 1980 there were some attempts to generate electricity from wind but these also were unsuccessful. The analysed wind speed data revealed that the wind energy potential in Tanzania is fairly high. The analysis also showed that the windy season coincides with the dry season. The available wind energy at one prospective site called if harvested for the purpose of electricity generation could help to alleviate the shortage of hydroelectricity that prevails during the dry season. Wind energy experts are involved in analysing the available wind speed data and also measuring wind speed in small intervals of time at the sites that are believed to have high wind energy potential. It is also planned to draw a wind map for Tanzania.

R R M Kainkwa

2002-01-01T23:59:59.000Z

479

Kent County- Wind Ordinance  

Broader source: Energy.gov [DOE]

This ordinance establishes provisions and standards for small wind energy systems in various zoning districts in Kent County, Maryland.

480

Correlation analysis for wind speed and failure rate of wind turbines using time series approach  

Science Journals Connector (OSTI)

The correlation between wind speed and failure rate (FR) of wind turbines is analyzed with time series approach. The time series of power index (PI) and FR of wind turbines are established based on historical data which are pretreated by singularity processing stationarity processing and wavelet de-noising. The trend variations of the time series are analyzed from both time domain and frequency domain by extracting the indicator functions including auto-correlation function cross-correlation function and spectral density function. A case study is given out to verify the validity of the model and the method which is based on the wind speed and failure data from January 1995 to December of 2002 in Nordjylland Denmark. Auto-correlation function and spectral density function show that time series of PI and FR have strong seasonal characteristics and quite similar periodicity while the cross-correlation function shows they keep high consistency and strong correlation. The results indicate that by calculating and monitoring PI the failure rule of wind turbines can be forecast which provides theoretical basis for preventive maintenance of wind turbines.

Chun Su; Quan Jin; Yequn Fu

2012-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "wind siting rules" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


481

Wind Energy Markets, 2. edition  

SciTech Connect (OSTI)

The report provides an overview of the global market for wind energy, including a concise look at wind energy development in key markets including installations, government incentives, and market trends. Topics covered include: an overview of wind energy including the history of wind energy production and the current market for wind energy; key business drivers of the wind energy market; barriers to the growth of wind energy; key wind energy trends and recent developments; the economics of wind energy, including cost, revenue, and government subsidy components; regional and national analyses of major wind energy markets; and, profiles of key wind turbine manufacturers.

NONE

2007-11-15T23:59:59.000Z

482

Process Rule | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

Process Rule Process Rule Process Rule The Department of Energy (DOE) conducted a formal effort between 1995 and 1996 to improve the process it used to develop appliance efficiency standards. This effort involved many different stakeholders, including manufacturers, energy-efficiency advocates, trade associations, state agencies, utilities, and other interested parties. The result was the publication of the Process Rule: 61 FR 36974 (July 15, 1996). Found in the Code of Federal Regulations at 10 CFR 430 Appendix A to Subpart C, the Process Rule describes the procedures, interpretations, and policies that guide DOE in establishing new or revised energy-efficiency standards for consumer products. Elements of the Process Rule have been superseded or supplemented by more recent practices described elsewhere on

483

EPA Final Ground Water Rule  

Broader source: Energy.gov (indexed) [DOE]

Office of Nuclear Safety and Environment Office of Nuclear Safety and Environment Nuclear Safety and Environment Information Brief HS-20-IB-2007-02 (March 2007) EPA Final Ground Water Rule Safe Drinking Water Act: National Primary Drinking Water Regulations Ground Water Rule - 40 CFR Parts 9, 141 and 142 Final Rule: 71 FR 65574 Effective Date: January 8, 2007 1 RULE SYNOPSIS On November 8, 2006, the U.S. Environmental Protection Agency (EPA) published a final Ground Water Rule (GWR) to promote increased protection against microbial pathogens that may be present in public water systems (PWSs) that use ground water sources for their supply (these systems are known as ground water systems). This Rule establishes a risk-targeted approach

484

Accelerating Offshore Wind Development | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

Accelerating Offshore Wind Development Accelerating Offshore Wind Development Accelerating Offshore Wind Development Click on a project for more information. The Energy Department has selected seven projects that will accelerate the commercialization of innovative offshore wind technologies in the United States. Each project will receive up to $4 million from the Energy Department to complete the engineering, site evaluation, and planning phase of their project. Upon completion of this phase, the Energy Department will select the up to three of these projects to advance the follow-on design, fabrication, and deployment phases to achieve commercial operation by 2017. Each of the these projects will be eligible for up to $47 million in additional funding over four years, subject to Congressional appropriations. This map also includes 42

485

Performance Indicators of Wind Energy Production  

E-Print Network [OSTI]

Modeling wind speed is one of the key element when dealing with the production of energy through wind turbines. A good model can be used for forecasting, site evaluation, turbines design and many other purposes. In this work we are interested in the analysis of the future financial cash flows generated by selling the electrical energy produced. We apply an indexed semi-Markov model of wind speed that has been shown, in previous investigation, to reproduce accurately the statistical behavior of wind speed. The model is applied to the evaluation of financial indicators like the Internal Rate of Return, semi-Elasticity and relative Convexity that are widely used for the assessment of the profitability of an investment and for the measurement and analysis of interest rate risk. We compare the computation of these indicators for real and synthetic data. Moreover, we propose a new indicator that can be used to compare the degree of utilization of different power plants.

D'Amico, G; Prattico, F

2015-01-01T23:59:59.000Z

486

Rules and Regulations for Dredging and the Management of Dredged Material  

Broader source: Energy.gov (indexed) [DOE]

Rules and Regulations for Dredging and the Management of Dredged Rules and Regulations for Dredging and the Management of Dredged Material (Rhode Island) Rules and Regulations for Dredging and the Management of Dredged Material (Rhode Island) < Back Eligibility Agricultural Commercial Construction Developer Fed. Government Fuel Distributor General Public/Consumer Industrial Installer/Contractor Institutional Investor-Owned Utility Local Government Low-Income Residential Multi-Family Residential Municipal/Public Utility Nonprofit Residential Retail Supplier Rural Electric Cooperative Schools State/Provincial Govt Systems Integrator Transportation Tribal Government Utility Savings Category Water Buying & Making Electricity Wind Program Info State Rhode Island Program Type Environmental Regulations Provider Department of Environmental Management

487

2009 Wind Technologies Market Report  

E-Print Network [OSTI]

is located in Europe. In contrast, all wind power projectsin Europe. In 2009, for example, more wind power was

Wiser, Ryan

2010-01-01T23:59:59.000Z

488

CONGRESSIONAL BRIEFING Offshore Wind  

E-Print Network [OSTI]

CONGRESSIONAL BRIEFING Offshore Wind Lessons Learned from Europe: Reducing Costs and Creating Jobs Thursday, June 12, 2014 Capitol Visitors Center, Room SVC 215 Enough offshore wind capacity to power six the past decade. What has Europe learned that is applicable to a U.S. effort to deploy offshore wind off

Firestone, Jeremy

489

Offshore Wind Potential Tables  

Wind Powering America (EERE)

Offshore wind resource by state and wind speed interval within 50 nm of shore. Wind Speed at 90 m (ms) 7.0 - 7.5 7.5 - 8.0 8.0 - 8.5 8.5 - 9.0 9.0 - 9.5 9.5 - 10.0 >10.0 Total...

490

Offshore wind energy systems  

Science Journals Connector (OSTI)

Wind energy systems deployed in the shallow but windy waters of the southern North Sea have the potential to provide more than 20% of UK electricity needs. With existing experience of windmills, and of aircraft and offshore structures, such wind energy systems could be developed within a relatively short timescale. A preliminary assessment of the economics of offshore wind energy systems is encouraging.

P Musgrove

1978-01-01T23:59:59.000Z

491

Wind Turbine Competition Introduction  

E-Print Network [OSTI]

Wind Turbine Competition Introduction: The Society of Hispanic Professional Engineers, SHPE at UTK, wishes to invite you to participate in our first `Wind Turbine' competition as part of Engineer's Week). You will be evaluated by how much power your wind turbine generates at the medium setting of our fan

Wang, Xiaorui "Ray"

492

Rule of Tennessee Department of Conservation Division of Surface Mining  

Broader source: Energy.gov (indexed) [DOE]

Rule of Tennessee Department of Conservation Division of Surface Rule of Tennessee Department of Conservation Division of Surface Mining (Tennessee) Rule of Tennessee Department of Conservation Division of Surface Mining (Tennessee) < Back Eligibility Commercial Construction Industrial Retail Supplier Program Info State Tennessee Program Type Environmental Regulations Siting and Permitting Provider Tennessee Department Of Environment and Conservation The Division of Surface Mining, under the authority of the Department of Environment and Conservation, has established rules specific to the mining of coal. All coal mining operations must first obtain a National Pollution Discharge Elimination System Permit (NPEDS) from the Division of Water Pollution Control (WPC). In addition they must obtain a state mining Surface Mining Permit from the Division of Water Pollution Control, Mining

493

Groundwater Protection Rules Coal Mining Operations (West Virginia) |  

Broader source: Energy.gov (indexed) [DOE]

Protection Rules Coal Mining Operations (West Virginia) Protection Rules Coal Mining Operations (West Virginia) Groundwater Protection Rules Coal Mining Operations (West Virginia) < Back Eligibility Utility Commercial Investor-Owned Utility Industrial Municipal/Public Utility Local Government Rural Electric Cooperative Tribal Government Institutional Nonprofit Program Info State West Virginia Program Type Siting and Permitting Provider Department of Environmental Protection These rules establish a series of practices for the protection of groundwater which are to be followed by any person who conducts coal mining operations subject to the provisions of West Virginia Groundwater Protection Act and subject to regulation under the West Virginia Coal Mining and Reclamation Act and/or under West Virginia Water Pollution

494

Rules and Regulations Governing Geophysical, Seismic or Other Type  

Broader source: Energy.gov (indexed) [DOE]

Rules and Regulations Governing Geophysical, Seismic or Other Type Rules and Regulations Governing Geophysical, Seismic or Other Type Exploration on State-Owned Lands Other Than State-Owned Marine Waters (Mississippi) Rules and Regulations Governing Geophysical, Seismic or Other Type Exploration on State-Owned Lands Other Than State-Owned Marine Waters (Mississippi) < Back Eligibility Commercial Developer Fuel Distributor General Public/Consumer Industrial Investor-Owned Utility Municipal/Public Utility Utility Program Info State Mississippi Program Type Environmental Regulations Siting and Permitting Provider Mississippi Development Authority The Rules and Regulations Governing Geophysical, seismic or Other Type Exploration on State-Owned Lands Other than State-Owned Marine Waters is applicable to the Natural Gas Sector and the Coal with CCS Sector. This law

495

The impact of wind uncertainty on the strategic valuation of ...  

E-Print Network [OSTI]

an on-site DG system. More specifically, we consider a community-DG system consisting of a combined heat and power (CHP1) unit and wind turbines (See. Fig.

2015-01-14T23:59:59.000Z

496

Final Report - Wind and Hydro Energy Feasibility Study - June 2011  

SciTech Connect (OSTI)

This feasibility examined two of the Yurok Tribe's most promising renewable energy resources, wind and hydro, to provide the Tribe detailed, site specific information that will result in a comprehensive business plan sufficient to implement a favorable renewable energy project.

Jim Zoellick; Richard Engel; Rubin Garcia; Colin Sheppard

2011-06-17T23:59:59.000Z

497

NREL: Dynamic Maps, GIS Data, and Analysis Tools - Wind Maps  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

the MapSearch site. For information on how the 50m maps were developed, access the GIS Data Background page. For information on how some of the other wind maps were...

498

Underground Injection Control Rule (Vermont)  

Broader source: Energy.gov [DOE]

This rule regulates injection wells, including wells used by generators of hazardous or radioactive wastes, disposal wells within an underground source of drinking water, recovery of geothermal...

499

Air Quality Rules (North Carolina)  

Broader source: Energy.gov [DOE]

This is a comprehensive air quality rule for North Carolina that includes ambient air quality standards, emission control standards, monitoring and reporting requirements, and permitting procedures...