Sample records for wind resource datasets

  1. Development of Regional Wind Resource and Wind Plant Output Datasets...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    50-47676 March 2010 Development of Regional Wind Resource and Wind Plant Output Datasets Final Subcontract Report 15 October 2007 - 15 March 2009 3TIER Seattle, Washington National...

  2. Afghanistan Pakistan High Resolution Wind Resource - Datasets - OpenEI

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are beingZealand Jump to:Ezfeedflag JumpID-fTriWildcat 1AMEE JumpAeroWind Inc. Place:AerospatialeAffton,Datasets

  3. Wind Resources by Class and Country At 50m - Datasets - OpenEI Datasets

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov YouKizildere IRaghuraji Agro IndustriesTown ofNationwideWTEDBird,Wilsonville, Oregon: EnergyWindCooperatives Jumpto

  4. Development of Regional Wind Resource and Wind Plant Output Datasets: Final Subcontract Report, 15 October 2007 - 15 March 2009

    SciTech Connect (OSTI)

    3TIER, Seattle, Washington

    2010-03-01T23:59:59.000Z

    This report describes the development of the necessary and needed wind and solar datasets used in the Western Wind and Solar Integration Study (WWSIS).

  5. Development of Regional Wind Resource and Wind Plant Output Datasets for the Hawaiian Islands

    SciTech Connect (OSTI)

    Manobianco, J.; Alonge, C.; Frank, J.; Brower, M.

    2010-07-01T23:59:59.000Z

    In March 2009, AWS Truepower was engaged by the National Renewable Energy Laboratory (NREL) to develop a set of wind resource and plant output data for the Hawaiian Islands. The objective of this project was to expand the methods and techniques employed in the Eastern Wind Integration and Transmission Study (EWITS) to include the state of Hawaii.

  6. Development of Eastern Regional Wind Resource and Wind Plant Output Datasets: March 3, 2008 -- March 31, 2010

    SciTech Connect (OSTI)

    Brower, M.

    2009-12-01T23:59:59.000Z

    The objective of this project was to provide wind resource inputs to the Eastern Wind Integration and Transmission Study.

  7. The Wind Integration National Dataset (WIND) toolkit (Presentation)

    SciTech Connect (OSTI)

    Caroline Draxl: NREL

    2014-01-01T23:59:59.000Z

    Regional wind integration studies require detailed wind power output data at many locations to perform simulations of how the power system will operate under high penetration scenarios. The wind datasets that serve as inputs into the study must realistically reflect the ramping characteristics, spatial and temporal correlations, and capacity factors of the simulated wind plants, as well as being time synchronized with available load profiles.As described in this presentation, the WIND Toolkit fulfills these requirements by providing a state-of-the-art national (US) wind resource, power production and forecast dataset.

  8. Wind Integration Datasets from the National Renewable Energy Laboratory (NREL)

    DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

    The Wind Integration Datasets provide time-series wind data for 2004, 2005, and 2006. They are intended to be used by energy professionals such as transmission planners, utility planners, project developers, and university researchers, helping them to perform comparisons of sites and estimate power production from hypothetical wind plants. NREL cautions that the information from modeled data may not match wind resource information shown on NREL;s state wind maps as they were created for different purposes and using different methodologies.

  9. Advancements in Wind Integration Study Data Modeling: The Wind Integration National Dataset (WIND) Toolkit; Preprint

    SciTech Connect (OSTI)

    Draxl, C.; Hodge, B. M.; Orwig, K.; Jones, W.; Searight, K.; Getman, D.; Harrold, S.; McCaa, J.; Cline, J.; Clark, C.

    2013-10-01T23:59:59.000Z

    Regional wind integration studies in the United States require detailed wind power output data at many locations to perform simulations of how the power system will operate under high-penetration scenarios. The wind data sets that serve as inputs into the study must realistically reflect the ramping characteristics, spatial and temporal correlations, and capacity factors of the simulated wind plants, as well as be time synchronized with available load profiles. The Wind Integration National Dataset (WIND) Toolkit described in this paper fulfills these requirements. A wind resource dataset, wind power production time series, and simulated forecasts from a numerical weather prediction model run on a nationwide 2-km grid at 5-min resolution will be made publicly available for more than 110,000 onshore and offshore wind power production sites.

  10. Wind Energy Resources and Technologies

    Broader source: Energy.gov [DOE]

    This page provides a brief overview of wind energy resources and technologies supplemented by specific information to apply wind energy within the Federal sector.

  11. Fort Carson Wind Resource Assessment

    SciTech Connect (OSTI)

    Robichaud, R.

    2012-10-01T23:59:59.000Z

    This report focuses on the wind resource assessment, the estimated energy production of wind turbines, and economic potential of a wind turbine project on a ridge in the southeastern portion of the Fort Carson Army base.

  12. Wind Resource Assessment in Europe Using Emergy

    E-Print Network [OSTI]

    Paudel, Subodh; Santarelli, Massimo; Martin, Viktoria; Lacarriere, Bruno; Le Corre, Olivier

    2014-01-01T23:59:59.000Z

    Wind energy assessment and wind farm simulation in Triunfo- Pernambuco, Brazil,wind resources for electrical energy production. Wind resources as- sessment of Brazil

  13. NREL: Transmission Grid Integration - Wind Integration Datasets

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level:Energy: Grid Integration Redefining What's Possible for Renewable Energy: Grid IntegrationReportTransmission Planning andStudy PhaseWind

  14. TMCC WIND RESOURCE ASSESSMENT

    SciTech Connect (OSTI)

    Turtle Mountain Community College

    2003-12-30T23:59:59.000Z

    North Dakota has an outstanding resource--providing more available wind for development than any other state. According to U.S. Department of Energy (DOE) studies, North Dakota alone has enough energy from good wind areas, those of wind power Class 4 and higher, to supply 36% of the 1990 electricity consumption of the entire lower 48 states. At present, no more than a handful of wind turbines in the 60- to 100-kilowatt (kW) range are operating in the state. The first two utility-scale turbines were installed in North Dakota as part of a green pricing program, one in early 2002 and the second in July 2002. Both turbines are 900-kW wind turbines. Two more wind turbines are scheduled for installation by another utility later in 2002. Several reasons are evident for the lack of wind development. One primary reason is that North Dakota has more lignite coal than any other state. A number of relatively new minemouth power plants are operating in the state, resulting in an abundance of low-cost electricity. In 1998, North Dakota generated approximately 8.2 million megawatt-hours (MWh) of electricity, largely from coal-fired plants. Sales to North Dakota consumers totaled only 4.5 million MWh. In addition, the average retail cost of electricity in North Dakota was 5.7 cents per kWh in 1998. As a result of this surplus and the relatively low retail cost of service, North Dakota is a net exporter of electricity, selling approximately 50% to 60% of the electricity produced in North Dakota to markets outside the state. Keeping in mind that new electrical generation will be considered an export commodity to be sold outside the state, the transmission grid that serves to export electricity from North Dakota is at or close to its ability to serve new capacity. The markets for these resources are outside the state, and transmission access to the markets is a necessary condition for any large project. At the present time, technical assessments of the transmission network indicate that the ability to add and carry wind capacity outside of the state is limited. Identifying markets, securing long-term contracts, and obtaining a transmission path to export the power are all major steps that must be taken to develop new projects in North Dakota.

  15. Wind Resource Assessment in Europe Using Emergy

    E-Print Network [OSTI]

    Paudel, Subodh; Santarelli, Massimo; Martin, Viktoria; Lacarriere, Bruno; Le Corre, Olivier

    2014-01-01T23:59:59.000Z

    energy in Vietnam: Resource assessment, development statusWind Resource Assessment in Europe Using Emergy Subodhspeed). Keywords: Wind resource assessment; Emergy Analysis;

  16. Wind Resource Assessment in Europe Using Emergy

    E-Print Network [OSTI]

    Paudel, Subodh; Santarelli, Massimo; Martin, Viktoria; Lacarriere, Bruno; Le Corre, Olivier

    2014-01-01T23:59:59.000Z

    of the Northern Europe offshore wind resource, Journal ofof theoretical offshore wind farm for Jacksonville, Florida,interesting areas for offshore wind farm construction and

  17. NREL: Wind Research - Offshore Wind Resource Characterization

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level:Energy: Grid Integration Redefining What's Possible for Renewable Energy: GridTruck Platooning Testing Photofrom U.S.6 DecemberWind Resource

  18. NREL: Wind Research - Site Wind Resource Characteristics

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level:Energy: Grid Integration Redefining What's Possible for Renewable Energy: GridTruck Platooning Testing Photofrom U.S.6Site Wind Resource

  19. Probabilistic Wind Resource Assessment and Power Predictions

    E-Print Network [OSTI]

    Firestone, Jeremy

    Probabilistic Wind Resource Assessment and Power Predictions Luca Delle Monache (lucadm Accurate wind resource assessment and power forecasts and reliable quanXficaXon of their uncertainty Mo5va5on · Power forecast: o Increase wind energy penetra

  20. Session: Wind resources and site characterisation 2 (DW3.5) Track: Technical

    E-Print Network [OSTI]

    including wind shear, turbulence intensities etc., at potential wind turbine positions. - ApplicationSession: Wind resources and site characterisation 2 (DW3.5) Track: Technical THE BOLUND EXPERIMENT - A NEW DATASET OF LOCAL WIND CONDITIONS IN COMPLEX TERRAIN (abstract-ID: 357) Jeppe Johansen (Risø DTU

  1. Bhutan Solar Resources - Datasets - OpenEI Datasets

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are beingZealand Jump to:EzfeedflagBiomass ConversionsSouth Carolina:Energy LLC Place:BeverlyBeyWatchBhutan Solar

  2. NREL: Wind Research - Wind Resource Assessment

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office of Science (SC)Integrated CodesTransparency VisitSilver Toyota Prius being drivenandWebmasterWind

  3. Quantifying Offshore Wind Resources from Satellite Wind Maps

    E-Print Network [OSTI]

    Pryor, Sara C.

    the spatial extent of the wake behind large offshore wind farms. Copyright © 2006 John Wiley & Sons, LtdQuantifying Offshore Wind Resources from Satellite Wind Maps: Study Area the North Sea C. B National Laboratory, Roskilde, Denmark Offshore wind resources are quantified from satellite synthetic

  4. Wind Resource Assessment of Gujarat (India)

    SciTech Connect (OSTI)

    Draxl, C.; Purkayastha, A.; Parker, Z.

    2014-07-01T23:59:59.000Z

    India is one of the largest wind energy markets in the world. In 1986 Gujarat was the first Indian state to install a wind power project. In February 2013, the installed wind capacity in Gujarat was 3,093 MW. Due to the uncertainty around existing wind energy assessments in India, this analysis uses the Weather Research and Forecasting (WRF) model to simulate the wind at current hub heights for one year to provide more precise estimates of wind resources in Gujarat. The WRF model allows for accurate simulations of winds near the surface and at heights important for wind energy purposes. While previous resource assessments published wind power density, we focus on average wind speeds, which can be converted to wind power densities by the user with methods of their choice. The wind resource estimates in this study show regions with average annual wind speeds of more than 8 m/s.

  5. Wind Integration National Dataset (WIND) Toolkit | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742Energy China 2015ofDepartment of EnergyThe U.S. DepartmentEnergyWilliam E.Much asPhoto4,

  6. Estimating the Wind Resource in Uttarakhand: Comparison of Dynamic...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Estimating the Wind Resource in Uttarakhand: Comparison of Dynamic Downscaling with Doppler Lidar Wind Measurements Estimating the Wind Resource in Uttarakhand: Comparison of...

  7. Improved Offshore Wind Resource Assessment in Global Climate Stabilization Scenarios

    SciTech Connect (OSTI)

    Arent, D.; Sullivan, P.; Heimiller, D.; Lopez, A.; Eurek, K.; Badger, J.; Jorgensen, H. E.; Kelly, M.; Clarke, L.; Luckow, P.

    2012-10-01T23:59:59.000Z

    This paper introduces a technique for digesting geospatial wind-speed data into areally defined -- country-level, in this case -- wind resource supply curves. We combined gridded wind-vector data for ocean areas with bathymetry maps, country exclusive economic zones, wind turbine power curves, and other datasets and relevant parameters to build supply curves that estimate a country's offshore wind resource defined by resource quality, depth, and distance-from-shore. We include a single set of supply curves -- for a particular assumption set -- and study some implications of including it in a global energy model. We also discuss the importance of downscaling gridded wind vector data to capturing the full resource potential, especially over land areas with complex terrain. This paper includes motivation and background for a statistical downscaling methodology to account for terrain effects with a low computational burden. Finally, we use this forum to sketch a framework for building synthetic electric networks to estimate transmission accessibility of renewable resource sites in remote areas.

  8. MOWII Webinar: Wind Development Cultural Resource Management

    Broader source: Energy.gov [DOE]

    During the planning stages, wind energy development can be affected by the regulatory process relative to cultural resource management issues. Section 106 of the National Historic Preservation Act ...

  9. Offshore wind resource assessment through satellite images

    E-Print Network [OSTI]

    1 Slide no. 4 Offshore wind resource assessment through satellite images Charlotte Bay Hasager images for offshore wind ressource assessment in lieu of in-situ mast observations #12;4 Slide no Hasager, Dellwik, Nielsen and Furevik, 2004, Validation of ERS-2 SAR offshore wind-speed maps in the North

  10. Solar and Wind Energy Resource Assessment Programme's Renewable...

    Open Energy Info (EERE)

    Solar and Wind Energy Resource Assessment Programme's Renewable Energy Resource Explorer Jump to: navigation, search Tool Summary LAUNCH TOOL Name: Solar and Wind Energy Resource...

  11. NREL: Wind Research - International Wind Resource Maps

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level:Energy: Grid Integration Redefining What's Possible for Renewable Energy: GridTruck Platooning Testing Photo ofResearchFAST RevsInternational

  12. Assessment of Offshore Wind Energy Resources for the United States...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Offshore Wind Energy Resources for the United States This report summarizes the offshore wind resource potential for the contiguous United States and Hawaii as of May 2009. The...

  13. ORIGINAL PAPER Review of Methodologies for Offshore Wind Resource

    E-Print Network [OSTI]

    Pryor, Sara C.

    ORIGINAL PAPER Review of Methodologies for Offshore Wind Resource Assessment in European Seas A. M installation, operation and maintenance costs associated with offshore wind parks. Successful offshore wind. Keywords Wind energy Á Offshore Á Resources assessment Á European seas Á Wind mapping Á Wind climatology Á

  14. Wind Resource Assessment in Europe Using Emergy

    E-Print Network [OSTI]

    Paudel, Subodh; Martin, Viktoria; Lacarriere, Bruno; Corre, Olivier Le

    2015-01-01T23:59:59.000Z

    In context of increasing use of renewable sources, it is of importance to correctly evaluate the actual sustainability of their implementation. Emergy analysis is one of the possible methods useful for such an assessment. This work aims to demonstrate how the emergy approach can be used to assess the sustainability of wind energy resource in Europe. The Emergy Index of Sustainability (EIS) and the Emergy Yield Ratio (EYR) are used to analyze 90 stations of European regions for three types of wind turbines. To do so, the simplified Chou wind turbine model is used for different set of parameters as: nominal power and size of the wind turbines, and cut-in and cut-out wind speeds. Based on the calculation of the emergy indices, a mapping is proposed to identify the most appropriate locations for an implementation of wind turbines in European regions. The influence of the wind turbine type on the sustainability is also analyzed, in link with the local wind resource. Thus, it is concluded that the emergy sustainabi...

  15. Wind Energy Resources and Technologies | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    Wind Energy Resources and Technologies Wind Energy Resources and Technologies Photo of two wind turbines standing on a mountain in front of a cloudy blue sky. The Department of...

  16. NANA Wind Resource Assessment Program Final Report

    SciTech Connect (OSTI)

    Jay Hermanson

    2010-09-23T23:59:59.000Z

    NANA Regional Corporation (NRC) of northwest Alaska is located in an area with abundant wind energy resources. In 2007, NRC was awarded grant DE-FG36-07GO17076 by the US Department of Energy's Tribal Energy Program for funding a Wind Resource Assessment Project (WRAP) for the NANA region. The NANA region, including Kotzebue Electric Association (KEA) and Alaska Village Electric Cooperative (AVEC) have been national leaders at developing, designing, building, and operating wind-diesel hybrid systems in Kotzebue (starting in 1996) and Selawik (2002). Promising sites for the development of new wind energy projects in the region have been identified by the WRAP, including Buckland, Deering, and the Kivalina/Red Dog Mine Port Area. Ambler, Shungnak, Kobuk, Kiana, Noorvik & Noatak were determined to have poor wind resources at sites in or very near each community. However, all five of these communities may have better wind resources atop hills or at sites with slightly higher elevations several miles away.

  17. Wind Resource Assessment in Europe Using Emergy

    E-Print Network [OSTI]

    Paudel, Subodh; Santarelli, Massimo; Martin, Viktoria; Lacarriere, Bruno; Le Corre, Olivier

    2014-01-01T23:59:59.000Z

    mance characteristics of wind generator. The wind speed atcharacteristics of the wind generator. When wind speed is

  18. Linked data about: /lod/resource/datasets/373/

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov YouKizildere I Geothermal Pwer Plant Jump to:Landowners and WindLighting ControlWyoming:RhodeLienHwaLinked Open

  19. Wind energy resource atlas. Volume 4. The Northeast region

    SciTech Connect (OSTI)

    Pickering, K.E.; Vilardo, J.M.; Schakenbach, J.T.; Elliott, D.L.; Barchet, W.R.; George, R.L.

    1980-09-01T23:59:59.000Z

    This atlas of the wind energy resource is composed of introductory and background information, a regional summary of the wind resource, and assessments of the wind resource in each state of the region. Background is presented on how the wind resource is assessed and on how the results of the assessment should be interpreted. A description of the wind resource on a regional scale is then given. The results of the wind energy assessments for each state are assembled in this chapter into an overview and summary of the various features of the regional wind energy resource. An introduction and outline are provided for in the descriptions of the wind resource given for each state. Assessments for individual states are presented. The state wind energy resources are described in greater detail than is the regional wind energy resource, and features of selected stations are discussed. This preface outlines the use and interpretation of the information found in the state chapters.

  20. Wind energy resource atlas. Volume 9. The Southwest Region

    SciTech Connect (OSTI)

    Simon, R.L.; Norman, G.T.; Elliott, D.L.; Barchet, W.R.; George, R.L.

    1980-11-01T23:59:59.000Z

    This atlas of the wind energy resource is composed of introductory and background information, a regional summary of the wind resource, and assessments of the wind resource in Nevada and California. Background on how the wind resource is assessed and on how the results of the assessment should be interpreted is presented. A description of the wind resource on a regional scale is then given. The results of the wind energy assessments for each state are assembled into an overview and summary of the various features of the regional wind energy resource. An introduction and outline to the descriptions of the wind resource given for each state are given. Assessments for individual states are presented as separate chapters. The state wind energy resources are described in greater detail than is the regional wind energy resource, and features of selected stations are discussed.

  1. Wind energy resource atlas. Volume 10. Alaska region

    SciTech Connect (OSTI)

    Wise, J.L.; Wentink, T. Jr.; Becker, R. Jr.; Comiskey, A.L.; Elliott, D.L.; Barchet, W.R.; George, R.L.

    1980-12-01T23:59:59.000Z

    This atlas of the wind energy resource is composed of introductory and background information, a regional summary of the wind resource, and assessments of the wind resource in each subregion of Alaska. Background is presented on how the wind resource is assessed and on how the results of the assessment should be interpreted. A description of the wind resource on a state scale is given. The results of the wind energy assessments for each subregion are assembled into an overview and summary of the various features of the Alaska wind energy resource. An outline to the descriptions of the wind resource given for each subregion is included. Assessments for individual subregions are presented as separate chapters. The subregion wind energy resources are described in greater detail than is the Alaska wind energy resource, and features of selected stations are discussed. This preface outlines the use and interpretation of the information found in the subregion chapters.

  2. Community Wind Handbook/Understand Your Wind Resource and Conduct...

    Open Energy Info (EERE)

    Conduct a Preliminary Estimate < Community Wind Handbook Jump to: navigation, search WIND ENERGY STAKEHOLDER ENGAGEMENT & OUTREACHCommunity Wind Handbook WindTurbine-icon.png...

  3. Using satellite data for mapping offshore wind resources and wakes

    E-Print Network [OSTI]

    (no wind) Horns Rev Offshore Wind Farm Blaavandshuk Met. mast N #12;Wind Horns Rev Wind speed map from · Wake near large offshore wind farms is quantified in space and time · Software for usersUsing satellite data for mapping offshore wind resources and wakes Charlotte Bay Hasager, Merete

  4. Illinois/Wind Resources | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are beingZealand Jump to: navigation, search OpenEIHesperia,IDGWP Wind FarmInformationIllinois/Wind Resources <

  5. Four Corners Wind Resource Center Webinar: Recent Developments...

    Energy Savers [EERE]

    Recent Developments in Western Energy Markets, the EIM, and the Integration of Wind Energy Four Corners Wind Resource Center Webinar: Recent Developments in Western Energy...

  6. Wind Integration, Transmission, and Resource Assessment and Characterization Projects

    Broader source: Energy.gov [DOE]

    This report covers the Wind and Water Power Program’s Wind Integration, Transmission, and Resource Assessment and Characterization Projects from FY 2006 to FY 2014.

  7. Wind energy resource atlas. Volume 5: the East Central Region

    SciTech Connect (OSTI)

    Brode, R.; Stoner, R.; Elliott, D.L.; Barchet, W.R.; George, R.L.

    1980-01-01T23:59:59.000Z

    This atlas of the wind energy resource is composed of introductory and background information, a regional summary of the wind resource, and assessments of the wind resource in each state of the region. Background is presented on how the wind resource is assessed and on how the results of the assessment should be interpreted. A description of the wind resource on a regional scale is then given. The results of the wind energy assessments for each state are assembled into an overview and summary of the various features of the regional wind energy resource. Assessments for individual states are presented as separate chapters. The state wind energy resources are described in greater detail than is the regional wind energy resource, and features of selected stations are discussed. This preface outlines the use and interpretation of the information found in the state chapters. States include Delaware, Maryland, Kentucky, North Carolina, Tennessee, Virginia, and West Virginia.

  8. Wind resource assessment with a mesoscale non-hydrostatic model

    E-Print Network [OSTI]

    Boyer, Edmond

    Wind resource assessment with a mesoscale non- hydrostatic model Vincent Guénard, Center for Energy is developed for assessing the wind resource and its uncertainty. The work focuses on an existing wind farm mast measurements. The wind speed and turbulence fields are discussed. It is shown that the k

  9. Improvement of Offshore Wind Resource Modeling in the Mid-

    E-Print Network [OSTI]

    Firestone, Jeremy

    Improvement of Offshore Wind Resource Modeling in the Mid- Atlantic Bight Wind Energy Symposium Sienkiewicz , Chris Hughes 26 February 2013 #12;Improving Atmospheric Models for Offshore Wind Resource Interaction Tower ­ 23 m NOAA Buzzard's Bay Tower ­ 25 m Cape Wind Tower (60 m from 2003-2011; just platform

  10. Wind Resource Assessment in Europe Using Emergy

    E-Print Network [OSTI]

    Paudel, Subodh; Santarelli, Massimo; Martin, Viktoria; Lacarriere, Bruno; Le Corre, Olivier

    2014-01-01T23:59:59.000Z

    potential on Hong Kong islands - an analysis of wind power and wind turbine characteristics, Renewable Energy,

  11. AWEA Wind Resource & Project Energy Assessment Seminar 2014 ...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AWEA Wind Resource & Project Energy Assessment Seminar 2014 AWEA Wind Resource & Project Energy Assessment Seminar 2014 December 2, 2014 8:00AM EST to December 3, 2014 5:00PM EST...

  12. Energy Department Releases New Land-Based/Offshore Wind Resource...

    Broader source: Energy.gov (indexed) [DOE]

    up to 50 nautical miles from shore. It allows users to easily compare land-based with offshore wind resources. For example, it shows that the offshore wind resource of the...

  13. The Potential Wind Power Resource in Australia: A New Perspective

    E-Print Network [OSTI]

    Hallgren, Willow

    Australia is considered to have very good wind resources, and the utilization of this renewable energy resource is increasing. Wind power installed capacity increased by 35% from 2006 to 2011 and is predicted to account ...

  14. The Potential Wind Power Resource in Australia: A New Perspective

    E-Print Network [OSTI]

    Hallgren, Willow

    Australia’s wind resource is considered to be very good, and the utilization of this renewable energy resource is increasing rapidly: wind power installed capacity increased by 35% from 2006 to 2011 and is predicted to ...

  15. Wind Energy Resource Assessment of the Caribbean and Central America

    SciTech Connect (OSTI)

    DL Elliott; CI Aspliden; GL Gower; CG Holladay, MN Schwartz

    1987-04-01T23:59:59.000Z

    A wind energy resource assessment of the Caribbean and Central America has identified many areas with good to outstanding wind resource potential for wind turbine applications. Annual average wind resource maps and summary tables have been developed for 35 island/country areas throughout the Caribbean and Central America region. The wind resource maps highlight the locations of major resource areas and provide estimates of the wind energy resource potential for typical well-exposed sites in these areas. The average energy in the wind flowing in the layer near the ground is expressed as a wind power class: the greater the average wind energy, the higher the wind power class. The summary tables that are included with each of the 35 island/country wind energy maps provide information on the frequency distribution of the wind speeds (expressed as estimates of the Weibull shape factor, k) and seasonal variations in the wind resource for the major wind resource areas identified on the maps. A new wind power class legend has been developed for relating the wind power classes to values of mean wind power density, mean wind speed, and Weibull k. Guidelines are presented on how to adjust these values to various heights above ground for different roughness and terrain characteristics. Information evaluated in preparing the assessment included existing meteorological data from airports and other weather stations, and from ships and buoys in offshore and coastal areas. In addition, new data from recent measurement sites established for wind energy siting studies were obtained for a few areas of the Caribbean. Other types of information evaluated in the assessment were climatological data and maps on winds aloft, surface pressure, air flow, and topography. The various data were screened and evaluated for their usefulness in preparing the wind resource assessment. Much of the surface data from airports and other land-based weather stations were determined to be from sheltered sites and were thus not very useful in assessing the wind resource at locations that are well exposed to the winds. Ship data were determined to be the most useful for estimating the large-scale wind flow and assessing the spatial distribution of the wind resource throughout the region. Techniques were developed for analyzing and correcting ship wind data and extrapolating these data to coastal and inland areas by considering terrain influences on the large-scale wind flow. In areas where extrapolation of ship wind data was not entirely feasible, such as interior areas of Central America, other techniques were developed for estimating the wind flow and distribution of the wind resource. Through the application of the various innovative techniques developed for assessing the wind resource throughout the Caribbean and Central America region, many areas with potentially good to outstanding wind resource were identified that had not been previously recognized. In areas where existing site data were available from exposed locations, the measured wind resource was compared with the estimated wind resource that was derived using the assessment techniques. In most cases, there was good agreement between the measured wind resource and the estimated wind resource. This assessment project supported activities being pursued by the U.S. Committee for Renewable Energy Commerce and Trade (CORECT), the U.S. government's interagency program to assist in overseas marketing and promote renewable energy exports. An overall goal of the program is to improve U.S. competitiveness in the world renewable energy market. The Caribbean and Central America assessment, which is the first of several possible follow-on international wind energy resource assessments, provides valuable information needed by the U.S. wind energy industry to identify suitable wind resource areas and concentrate their efforts on these areas.

  16. Virginia/Wind Resources | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are beingZealand Jump to:Ezfeedflag JumpID-fTri Global EnergyUtility RateVirginia/Wind Resources < Virginia Jump to:

  17. Alabama/Wind Resources | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are beingZealand Jump to:Ezfeedflag JumpID-fTriWildcat 1AMEEAisin Seiki G60 Jump2008EnergyAlabama/Wind Resources <

  18. Iowa/Wind Resources | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are8COaBulkTransmissionSitingProcess.pdfGetecGtelInterias Solar Energy Jump to:IESIntervalIosilPark,Iowa/Wind Resources

  19. Massachusetts/Wind Resources | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are beingZealand Jump to: navigation, searchOfRose Bend <Stevens JumpMassachusetts/Wind Resources < Massachusetts

  20. Tennessee/Wind Resources | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov YouKizildere IRaghuraji Agro Industries PvtStratosolar JumpTennessee/Wind Resources < Tennessee Jump to: navigation,

  1. Arizona/Wind Resources | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are beingZealand Jump to:Ezfeedflag JumpID-fTriWildcatAntrim County,DelhiArdmore,Ariton,EnergyTUVArizona/Wind Resources

  2. Calwind Resources Wind Farm | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are being directedAnnualProperty EditCalifornia:Power LPInformation 8thCalwind II CEC Wind Farm Jump to:Resources

  3. Wind Resource Assessment in Europe Using Emergy

    E-Print Network [OSTI]

    Paudel, Subodh; Santarelli, Massimo; Martin, Viktoria; Lacarriere, Bruno; Le Corre, Olivier

    2014-01-01T23:59:59.000Z

    of theoretical offshore wind farm for Jacksonville, Florida,interesting areas for offshore wind farm construction andof theoretical offshore wind farm on Jacksonville, Florida

  4. Wind Atlas for Egypt A national database for wind resource assessment and

    E-Print Network [OSTI]

    Wind Atlas for Egypt A national database for wind resource assessment and wind power planning Niels G. Mortensen Wind Energy Department Risř National Laboratory MENAREC 3, Cairo, Egypt 12 June 2006 #12;Acknowledgements The "Wind Atlas for Egypt" is the result of a comprehensive team effort! · New

  5. NREL: Renewable Resource Data Center - Wind Resource Information

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level:Energy: Grid Integration Redefining What's Possible for Renewable Energy: Grid Integration NRELCost of6Data The following solarWind Resource

  6. National-Scale Wind Resource Assessment for Power Generation (Presentation)

    SciTech Connect (OSTI)

    Baring-Gould, E. I.

    2013-08-01T23:59:59.000Z

    This presentation describes the current standards for conducting a national-scale wind resource assessment for power generation, along with the risk/benefit considerations to be considered when beginning a wind resource assessment. The presentation describes changes in turbine technology and viable wind deployment due to more modern turbine technology and taller towers and shows how the Philippines national wind resource assessment evolved over time to reflect changes that arise from updated technologies and taller towers.

  7. Wind Resource Map: Mexico | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are beingZealand Jump to:Ezfeedflag JumpID-fTriWildcat 1 Wind Project Jump to:Wilson Hot SpringNevada:Data0-'92Atlas

  8. Wyoming/Wind Resources | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are beingZealand Jump to:Ezfeedflag JumpID-fTriWildcat 1 Wind Projectsource History View New Pages Recent

  9. Alaska/Wind Resources | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are beingZealand Jump to:Ezfeedflag JumpID-fTriWildcat 1AMEEAisin Seikiand Telephone CoStatutes: Title 38Alaska/Wind

  10. Kansas/Wind Resources | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are8COaBulkTransmissionSitingProcess.pdfGetecGtelInteriasIowa: EnergyKanabec County, Minnesota:KankakeeKansas/Wind

  11. Maine/Wind Resources | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are beingZealand Jump to: navigation, searchOfRose Bend < MHKconvertersource History View New Pages RecentMaine/Wind

  12. Indiana/Wind Resources | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are8COaBulkTransmissionSitingProcess.pdfGetecGtel JumpCounty,Jump7 VarnishInformation Company SmartIndiana/Wind

  13. Missouri/Wind Resources | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are beingZealand Jump to: navigation, searchOfRose BendMiasole IncMinuteman Wind LLC

  14. NREL: Learning - Student Resources on Wind Energy

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level:Energy: Grid Integration Redefining What's Possible for Renewable Energy: Grid Integration NREL isDataWorking withFuelSolar Energy TheWind

  15. Solar and Wind Energy Resource Assessment (SWERA)

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are being directedAnnualProperty Edit with form HistoryRistmaSinosteelSolar Energy sroWiki Page Solar and Wind Energy

  16. Nevada/Wind Resources | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov YouKizildere I Geothermal Pwer PlantMunhall, Pennsylvania: EnergyEnergyPPCR) JumpAirWorkInformationNevada/Wind

  17. Wind Resource Assessment Overview | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are being directedAnnualProperty Edit withTianlinPapers Home Kyoung's pictureWind Power Energia JumpMaps.jpg The first

  18. Wind Resource Assessment | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are being directedAnnualProperty Edit withTianlinPapers Home Kyoung's pictureWind Power Energia JumpMaps.jpg The

  19. Wind Power Resource Assessment in Ohio and Puerto Rico

    E-Print Network [OSTI]

    Womeldorf, Carole

    Wind Power Resource Assessment in Ohio and Puerto Rico: A Motivational and Educational Tool Juan University, Athens, Ohio Abstract This paper presents an educational guide and example of a wind resource calculations. New data representing wind speed and direction for locations in Ohio and Puerto Rico

  20. Characterization of the Wind Power Resource in Europe and its

    E-Print Network [OSTI]

    Characterization of the Wind Power Resource in Europe and its Intermittency Alexandra Cosseron, C;1 Characterization of the Wind Power Resource in Europe and its Intermittency Alexandra Cosseron* , C. Adam Schlosser , and Udaya Bhaskar Gunturu Abstract Wind power is assessed over Europe, with special attention given

  1. Characterization of wind power resource in the United States*

    E-Print Network [OSTI]

    Characterization of wind power resource in the United States* U. Bhaskar Gunturu and C. Adam Chemistry and Physics Characterization of wind power resource in the United States U. B. Gunturu and C. A, 120 m turbine hub heights. The wind power density (WPD) estimates at 50 m are qualitatively similar

  2. The Potential Wind Power Resource in Australia: A New Perspective*

    E-Print Network [OSTI]

    The Potential Wind Power Resource in Australia: A New Perspective* Willow Hallgren, Udaya Bhaskar: globalchange@mit.edu Website: http://globalchange.mit.edu/ #12;The Potential Wind Power Resource in Australia density, and analyzes the variation of these characteristics with current and potential wind turbine hub

  3. The Potential Wind Power Resource in Australia: A New Perspective

    E-Print Network [OSTI]

    The Potential Wind Power Resource in Australia: A New Perspective Willow Hallgren, Udaya Bhaskar;1 The Potential Wind Power Resource in Australia: A New Perspective Willow Hallgren* , Udaya Bhaskar Gunturu intermittency can potentially be mitigated by the aggregation of geographically dispersed wind farms. Our

  4. Wind power resource assessment in complex urban environments

    E-Print Network [OSTI]

    in Computational Fluid Dynamics (CFD) methods holds potential for the advancement of wind energy resource buildings. CFD simulations have been used to evaluate the wind energy potential on the campus. 2 Objectives The aim of this study is to assess wind energy resource on the MIT campus for potential

  5. South Dakota Wind Resource Assessment Network (WRAN)

    DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

    WRAN is a network of instrument stations sited throughout South Dakota. As of 2010, there are eleven stations, and some have been collecting data since 2001. The purpose of the WRAN:

    There are several reasons why the WRAN was built. One of the most obvious is that it will allow verification of the existing resource assessments of our state. South Dakota has tremendous potential as an exporter of wind-generated electricity. There has recently been a great deal of publicity over a Pacific Northwest National Laboratories study conducted in the early 1990s that ranked the contiguous 48 states in terms of their potential to produce windpower. (Click here for the results of this study as given by the American Wind Energy Association.) South Dakota ranked fourth in that study. Also, more recently, detailed maps of the wind resource in South Dakota were produced by the National Renewable Energy Laboratory (NREL). Unfortunately, both of these studies had to rely heavily on computer-generated models and very sparse measured data, because very little appropriate measured data exists. The WRAN will provide valuable data that we anticipate will validate the NREL maps, and perhaps suggest minor adjustments.

    There are many other benefits the WRAN will provide. The data it will measure will be at heights above ground that are more appropriate for predicting the performance of large modern wind turbines, as opposed to data collected at National Weather Service stations whose anemometers are usually only about 9 m (30 feet) above ground. Also, we will collect some different types of data than most wind measurement networks, which will allow a series of important studies of the potential impact and value of South Dakota's windpower. In addition, all of the WRAN data will be made available to the public via this WWWeb site. This will hopefully enable extensive informed discussion among all South Dakotans on such important topics as rural economic development and transmission system expansion. [Copied from http://sdwind.com/about/

  6. Wind Resource and Feasibility Assessment Report for the Lummi Reservation

    SciTech Connect (OSTI)

    DNV Renewables (USA) Inc.; J.C. Brennan & Associates, Inc.; Hamer Environmental L.P.

    2012-08-31T23:59:59.000Z

    This report summarizes the wind resource on the Lummi Indian Reservation (Washington State) and presents the methodology, assumptions, and final results of the wind energy development feasibility assessment, which included an assessment of biological impacts and noise impacts.

  7. Estimating the Wind Resource in Uttarakhand: Comparison of Dynamic Downscaling with Doppler Lidar Wind Measurements

    SciTech Connect (OSTI)

    Lundquist, J. K.; Pukayastha, A.; St. Martin, C.; Newsom, R.

    2014-03-01T23:59:59.000Z

    Previous estimates of the wind resources in Uttarakhand, India, suggest minimal wind resources in this region. To explore whether or not the complex terrain in fact provides localized regions of wind resource, the authors of this study employed a dynamic down scaling method with the Weather Research and Forecasting model, providing detailed estimates of winds at approximately 1 km resolution in the finest nested simulation.

  8. Wind Resource Assessment in Europe Using Emergy

    E-Print Network [OSTI]

    Paudel, Subodh; Santarelli, Massimo; Martin, Viktoria; Lacarriere, Bruno; Le Corre, Olivier

    2014-01-01T23:59:59.000Z

    of wind turbine assessment based on energy, exergy, LCA andLCA and emergy) in the case of sustainability assessment of windLCA does. In emergy analysis, direct and indirect inputs of wind

  9. Wind Resource Assessment in Europe Using Emergy

    E-Print Network [OSTI]

    Paudel, Subodh; Santarelli, Massimo; Martin, Viktoria; Lacarriere, Bruno; Le Corre, Olivier

    2014-01-01T23:59:59.000Z

    to change in upstream and downstream wind speed from 850 kW,1650 kW and 3000 kW wind turbinesseJ/J) Transformity of Wind Turbine (1650kW) Latitude

  10. MSU-Wind Applications Center: Wind Resource Worksheet Theoretical Power Calculation

    E-Print Network [OSTI]

    Dyer, Bill

    MSU-Wind Applications Center: Wind Resource Worksheet Theoretical Power Calculation Equations: A= swept area = air density v= velocity R= universal gas constant Steps: 1. Measure wind speed from fan. = ___________/(________*________)= _________kg/m3 5. Theoretical Power a. Low Setting Theoretical Wind Power i. Power= ˝*______*______*______*.59

  11. Wind resources and wind farm wake effects offshore observed from satellite

    E-Print Network [OSTI]

    Wind resources and wind farm wake effects offshore observed from satellite Charlotte Bay Hasager to quantify the wake effect at two large offshore wind farms in Denmark. It is found that the wake velocity further. There is fast progress on planning and installation of offshore wind farms in the European waters

  12. Forecastability as a Design Criterion in Wind Resource Assessment: Preprint

    SciTech Connect (OSTI)

    Zhang, J.; Hodge, B. M.

    2014-04-01T23:59:59.000Z

    This paper proposes a methodology to include the wind power forecasting ability, or 'forecastability,' of a site as a design criterion in wind resource assessment and wind power plant design stages. The Unrestricted Wind Farm Layout Optimization (UWFLO) methodology is adopted to maximize the capacity factor of a wind power plant. The 1-hour-ahead persistence wind power forecasting method is used to characterize the forecastability of a potential wind power plant, thereby partially quantifying the integration cost. A trade-off between the maximum capacity factor and the forecastability is investigated.

  13. Wind Technology Advancements and Impacts on Western Wind Resources (Presentation)

    SciTech Connect (OSTI)

    Robichaud, R.

    2014-09-01T23:59:59.000Z

    Robi Robichaud made this presentation at the Bureau of Land Management West-wide Wind Opportunities and Constraints Mapping (WWOCM) Project public meeting in Denver, Colorado in September 2014. This presentation outlines recent wind technology advancements, evolving turbine technologies, and industry challenges. The presentation includes maps of mean wind speeds at 50-m, 80-m, and 100-m hub heights on BLM lands. Robichaud also presented on the difference in mean wind speeds from 80m to 100m in Wyoming.

  14. Wind energy resources atlas. Volume 1. Northwest region

    SciTech Connect (OSTI)

    Elliott, D.L.; Barchet, W.R.

    1980-04-01T23:59:59.000Z

    Information is presented concering regional wind energy resource assessment; regional features; and state features for Idaho, Montana, Oregon, Washington, and Wyoming.

  15. Floating Offshore Wind Technology Generating Resources Advisory Committee

    E-Print Network [OSTI]

    Floating Offshore Wind Technology Jeff King Generating Resources Advisory Committee May 28, 2014 1 to site) Potential interconnection to future offshore PNWCA intertie 4 #12;5 Ave wind speed >= 10 m. (2010) Large-scale Offshore Wind Power in the United States National Renewable Energy Laboratory. (2012

  16. Solar Resources by Class and Country - Datasets - OpenEI Datasets

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov YouKizildere IRaghuraji Agro Industries Pvt LtdShawangunk, NewSingapore Jump to: navigation,Panels PlusCaliforniaSolar

  17. Modeling access to wind resources in the United States

    SciTech Connect (OSTI)

    Short, W.D.

    1999-10-20T23:59:59.000Z

    To project the US potential to meet future electricity demands with wind energy, estimates of available wind resource and costs to access that resource are critical. The US Department of Energy (DOE) Energy Information Administration (EIA) annually estimates the US market penetration of wind in its Annual Energy Outlook series. For these estimates, the EIA uses wind resource data developed by the Pacific Northwest National Laboratory for each region of the country. However, the EIA multiplies the cost of windpower by several factors, some as large as 3, to account for resource quality, market factors associated with accessing the resource, electric grid impacts, and rapid growth in the wind industry. This paper examines the rationale behind these additional costs and suggests alternatives.

  18. Wind Resource Assessment Report: Mille Lacs Indian Reservation, Minnesota

    SciTech Connect (OSTI)

    Jimenez, A. C.

    2013-12-01T23:59:59.000Z

    The U.S. Environmental Protection Agency (EPA) launched the RE-Powering America's Land initiative to encourage development of renewable energy on potentially contaminated land and mine sites. EPA collaborated with the U.S. Department of Energy's (DOE's) National Renewable Energy Laboratory (NREL) and the Mille Lacs Band of Chippewa Indians to evaluate the wind resource and examine the feasibility of a wind project at a contaminated site located on the Mille Lacs Indian Reservation in Minnesota. The wind monitoring effort involved the installation of a 60-m met tower and the collection of 18 months of wind data at multiple heights above the ground. This report focuses on the wind resource assessment, the estimated energy production of wind turbines, and an assessment of the economic feasibility of a potential wind project sited this site.

  19. Wind energy resource atlas. Volume 3. Great Lakes Region

    SciTech Connect (OSTI)

    Paton, D.L.; Bass, A.; Smith, D.G.; Elliott, D.L.; Barchet, W.R.; George, R.L.

    1981-02-01T23:59:59.000Z

    The Great Lakes Region atlas assimilates six collections of wind resource data, one for the region and one for each of the five states that compose the Great Lakes region: Illinois, Indiana, Michigan, Ohio, Wisconsin. At the state level, features of the climate, topography, and wind resource are discussed in greater detail than in the regional discussion and the data locations on which the assessment is based are mapped. Variations over several time scales in the wind resource at selected stations in each state are shown on graphs of monthly average and interannual wind speed and power, and of hourly average wind speed for each season. Other graphs present speed, direction, and duration frequencies of the wind at these locations.

  20. Wind energy resource atlas: Volume 6. The Southeast region

    SciTech Connect (OSTI)

    Zabransky, J.; Vilardo, J.M.; Schakenbach, J.T.; Elliott, D.L.; Barchet, W.R.; George, R.L.

    1981-01-01T23:59:59.000Z

    The Southeast atlas assimilates six collections of wind resource data: one for the region and one for each of the five states that compose the Southeast region (Alabama, Florida, Georgia, Mississippi, and South Carolina). At the state level, features of the climate, topography and wind resource are discussed in greater detail than is provided in the regional discussion, and the data locations on which the assessment is based are mapped. Variations, over several time scales, in the wind resource at selected stations in each state are shown on graphs of monthly average and interannual wind speed and power, and hourly average wind speed for each season. Other graphs present speed, direction and duration frequencies of the wind at these locations.

  1. Wind energy resource atlas. Volume 2. The North Central Region

    SciTech Connect (OSTI)

    Freeman, D.L.; Hadley, D.L.; Elliott, D.L.; Barchet, W.R.; George, R.L.

    1981-02-01T23:59:59.000Z

    The North Central atlas assimilates six collections of wind resource data: one for the region and one for each of the five states that compose the North Central region (Iowa, Minnesota, Nebraska, North Dakota, and South Dakota). At the state level, features of the climate, topography and wind resource are discussed in greater detail than is provided in the regional discussion, and that data locations on which the assessment is based are mapped. Variations, over several time scales, in the wind resource at selected stations in each state are shown on graphs of monthly average and international wind speed and power, and hourly average wind speed for each season. Other graphs present speed direction and duration frequencies of the wind at these locations.

  2. Wind energy resource atlas. Volume 7. The south central region

    SciTech Connect (OSTI)

    Edwards, R.L.; Graves, L.F.; Sprankle, A.C.; Elliott, D.L.; Barchet, W.R.; George, R.L.

    1981-03-01T23:59:59.000Z

    This atlas of the south central region combines seven collections of wind resource data: one for the region, and one for each of the six states (Arkansas, Kansas, Louisiana, Missouri, Oklahoma, and Texas). At the state level, features of the climate, topography, and wind resource are discussed in greater detail than that provided in the regional discussion, and the data locations on which the assessment is based are mapped. Variations, over several time scales, in the wind resource at selected stations in each state are shown on graphs of monthly average and interannual wind speed and power, and hourly average wind speed for each season. Other graphs present speed, direction, and duration frequencies of the wind at these locations.

  3. Wind Resource Assessment in Europe Using Emergy

    E-Print Network [OSTI]

    Paudel, Subodh; Santarelli, Massimo; Martin, Viktoria; Lacarriere, Bruno; Le Corre, Olivier

    2014-01-01T23:59:59.000Z

    of an Italian wind farm, Renewable and Sustainable Energyof size on energyy yield, Renewable and Sustainable EnergyPernambuco, Brazil, Renewable Energy, 35, 2705-2713. Lu,

  4. Earth System Grid II, Turning Climate Datasets into Community Resources

    SciTech Connect (OSTI)

    Middleton, Don

    2006-08-01T23:59:59.000Z

    The Earth System Grid (ESG) II project, funded by the Department of Energy’s Scientific Discovery through Advanced Computing program, has transformed climate data into community resources. ESG II has accomplished this goal by creating a virtual collaborative environment that links climate centers and users around the world to models and data via a computing Grid, which is based on the Department of Energy’s supercomputing resources and the Internet. Our project’s success stems from partnerships between climate researchers and computer scientists to advance basic and applied research in the terrestrial, atmospheric, and oceanic sciences. By interfacing with other climate science projects, we have learned that commonly used methods to manage and remotely distribute data among related groups lack infrastructure and under-utilize existing technologies. Knowledge and expertise gained from ESG II have helped the climate community plan strategies to manage a rapidly growing data environment more effectively. Moreover, approaches and technologies developed under the ESG project have impacted datasimulation integration in other disciplines, such as astrophysics, molecular biology and materials science.

  5. U.S. Department of Energy Workshop Report - Research Needs for Wind Resource Characterization

    SciTech Connect (OSTI)

    Schreck, S.; Lundquist, J.; Shaw, W.

    2008-06-01T23:59:59.000Z

    This workshop brought the different atmospheric and wind technology specialists together to evaluate research needs for wind resource characterization.

  6. EWEC 2006 Wind Energy Conference and Exhibition Turbine Wake Model for Wind Resource Software

    E-Print Network [OSTI]

    EWEC 2006 Wind Energy Conference and Exhibition 1 Turbine Wake Model for Wind Resource Software Ole) AT: #12;EWEC 2006 Wind Energy Conference and Exhibition 2 21 2 0TT C U= (1) 0 0(1 )wU a U= - (2); 1.5 0.75 AR Aw0 U0 Uw0 T #12;EWEC 2006 Wind Energy Conference and Exhibition 3 ( )2 0 1 ( , ) 1

  7. Session: What can we learn from developed wind resource areas

    SciTech Connect (OSTI)

    Thelander, Carl; Erickson, Wally

    2004-09-01T23:59:59.000Z

    This session at the Wind Energy and Birds/Bats workshop was composed of two parts intended to examine what existing science tells us about wind turbine impacts at existing wind project sites. Part one dealt with the Altamont Wind Resource area, one of the older wind projects in the US, with a paper presented by Carl Thelander titled ''Bird Fatalities in the Altamont Pass Wind Resource Area: A Case Study, Part 1''. Questions addressed by the presenter included: how is avian habitat affected at Altamont and do birds avoid turbine sites; are birds being attracted to turbine strings; what factors contribute to direct impacts on birds by wind turbines at Altamont; how do use, behavior, avoidance and other factors affect risk to avian species, and particularly impacts those species listed as threatened, endangered, or of conservation concern, and other state listed species. The second part dealt with direct impacts to birds at new generation wind plants outside of California, examining such is sues as mortality, avoidance, direct habitat impacts from terrestrial wind projects, species and numbers killed per turbine rates/MW generated, impacts to listed threatened and endangered species, to USFWS Birds of Conservation Concern, and to state listed species. This session focused on newer wind project sites with a paper titled ''Bird Fatality and Risk at New Generation Wind Projects'' by Wally Erickson. Each paper was followed by a discussion/question and answer period.

  8. Characterization of wind power resource in the United States

    E-Print Network [OSTI]

    Gunturu, Udaya Bhaskar

    Wind resource in the continental and offshore United States has been reconstructed and characterized using metrics that describe, apart from abundance, its availability, persistence and intermittency. The Modern Era ...

  9. Wind Resource Assessment Handbook: Fundamentals for Conducting a Successful Monitoring

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level:Energy: Grid Integration Redefining What'sis Taking Over OurThe Iron SpinPrincetonUsingWhat is abig world of tinyWind IndustryWindWindWind W

  10. Wind Resource Mapping of the State of Vermont

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level:Energy: Grid Integration Redefining What'sis Taking Over OurThe Iron SpinPrincetonUsingWhat is abig world of tinyWind IndustryWindWindWind

  11. Use of synthetic aperture radar for offshore wind resource assessment and wind farm development in the UK 

    E-Print Network [OSTI]

    Cameron, Iain Dickson

    2008-01-01T23:59:59.000Z

    The UK has an abundant offshore wind resource with offshore wind farming set to grow rapidly over the coming years. Optimisation of energy production is of the utmost importance and accurate estimates of wind speed distributions are critical...

  12. Session: Wind resources and site characterisation 1 (BT1.3) Track: Technical

    E-Print Network [OSTI]

    . The validation is based on meteorological and wind farm production data from about 10 wind farms, situated) application of the results for improved wind farm power production predictions as well as wind resource on meteorological and wind turbine data from about 10 wind farms in complex terrain. The wind farm sites are located

  13. Wind resource assessment: San Nicolas Island, California

    SciTech Connect (OSTI)

    McKenna, E. [National Renewable Energy Lab., Golden, CO (United States); Olsen, T.L. [Timothy L. Olsen Consulting, (United States)

    1996-01-01T23:59:59.000Z

    San Nicolas Island (SNI) is the site of the Navy Range Instrumentation Test Site which relies on an isolated diesel-powered grid for its energy needs. The island is located in the Pacific Ocean 85 miles southwest of Los Angeles, California and 65 miles south of the Naval Air Weapons Station (NAWS), Point Mugu, California. SNI is situated on the continental shelf at latitude N33{degree}14` and longitude W119{degree}27`. It is approximately 9 miles long and 3.6 miles wide and encompasses an area of 13,370 acres of land owned by the Navy in fee title. Winds on San Nicolas are prevailingly northwest and are strong most of the year. The average wind speed is 7.2 m/s (14 knots) and seasonal variation is small. The windiest months, March through July, have wind speeds averaging 8.2 m/s (16 knots). The least windy months, August through February, have wind speeds averaging 6.2 m/s (12 knots).

  14. Kaneohe, Hawaii Wind Resource Assessment Report

    SciTech Connect (OSTI)

    Robichaud, R.; Green, J.; Meadows, B.

    2011-11-01T23:59:59.000Z

    The Department of Energy (DOE) has an interagency agreement to assist the Department of Defense (DOD) in evaluating the potential to use wind energy for power at residential properties at DOD bases in Hawaii. DOE assigned the National Renewable Energy Laboratory (NREL) to facilitate this process by installing a 50-meter (m) meteorological (Met) tower on residential property associated with the Marine Corps Base Housing (MCBH) Kaneohe Bay in Hawaii.

  15. New Facility to Shed Light on Offshore Wind Resource (Fact Sheet)

    SciTech Connect (OSTI)

    Not Available

    2013-05-01T23:59:59.000Z

    Chesapeake Light Tower facility will gather key data for unlocking the nation's vast offshore wind resource.

  16. Assessment of Offshore Wind Energy Resources for the United States |

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE: Alternative Fuels DataEnergyDepartmentWind Siting Articles about Wind SitingBStatesDepartment

  17. WINDExchange: Offshore 90-Meter Wind Maps and Wind Resource Potential

    Wind Powering America (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov YouKizildere IRaghuraji Agro IndustriesTownDells, Wisconsin: EnergyWyandanch,EagaAbout Printable VersionNews This

  18. Potential for Development of Solar and Wind Resource in Bhutan

    SciTech Connect (OSTI)

    Gilman, P.; Cowlin, S.; Heimiller, D.

    2009-09-01T23:59:59.000Z

    With support from the U.S. Agency for International Development (USAID), the U.S. Department of Energy's National Renewable Energy Laboratory (NREL) produced maps and data of the wind and solar resources in Bhutan. The solar resource data show that Bhutan has an adequate resource for flat-plate collectors, with annual average values of global horizontal solar radiation ranging from 4.0 to 5.5 kWh/m2-day (4.0 to 5.5 peak sun hours per day). The information provided in this report may be of use to energy planners in Bhutan involved in developing energy policy or planning wind and solar projects, and to energy analysts around the world interested in gaining an understanding of Bhutan's wind and solar energy potential.

  19. Q: When planning a wind farm, how are wind resources estimated? And if the average wind speed is known at 10 meters is there a general rule for estimating the wind speed at

    E-Print Network [OSTI]

    Q: When planning a wind farm, how are wind resources estimated? And if the average wind speed is known at 10 meters is there a general rule for estimating the wind speed at larger heights above ground level? The wind resource at a wind farm can be estimated in two ways: by measurement or by modeling

  20. Avian use of Norris Hill Wind Resource Area, Montana

    SciTech Connect (OSTI)

    Harmata, A.; Podruzny, K.; Zelenak, J. [Montana State Univ., Bozeman, MT (United States). Biology Dept.

    1998-07-01T23:59:59.000Z

    This document presents results of a study of avian use and mortality in and near a proposed wind resource area in southwestern Montana. Data collected in autumn 1995 through summer 1996 represented preconstruction condition; it was compiled, analyzed, and presented in a format such that comparison with post-construction data would be possible. The primary emphasis of the study was recording avian migration in and near the wind resource area using state-of-the-art marine surveillance radar. Avian use and mortality were investigated during the breeding season by employing traditional avian sampling methods, radiotelemetry, radar, and direct visual observation. 61 figs., 34 tabs.

  1. Illinois/Wind Resources/Full Version | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are beingZealand Jump to: navigation, search OpenEIHesperia,IDGWP Wind FarmInformationIllinois/Wind Resources

  2. Indiana/Wind Resources/Full Version | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are beingZealand Jump to: navigation, search OpenEIHesperia,IDGWP WindSatelliteInSARIndianaIndiana/Wind Resources/Full

  3. Iowa/Wind Resources/Full Version | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are beingZealand Jump to: navigation, searchOf Kilauea Volcano, Hawaii | OpenSuperior Wind FarmIowa/Wind Resources/Full

  4. Missouri/Wind Resources/Full Version | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are beingZealand Jump to: navigation, searchOfRose BendMiasole IncMinuteman Wind LLCMissouri/Wind Resources/Full

  5. Arkansas/Wind Resources | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are being directedAnnualProperty EditCalifornia: Energy ResourcesInformation Arizona's 6thsourcesource History

  6. Ris-R-Report Satellite SAR wind resource mapping in China

    E-Print Network [OSTI]

    -Shore Wind Energy Resource Assessment and Feasibility Study of Off-Shore Wind Farm Development in China). The detailed wind resource maps will be used, in combination with other data sets, for an assessment;Risø-R-1706(EN) 5 1 Introduction The project `Off-Shore Wind Energy Resource Assessment and Feasibility

  7. Solar and Wind Resource Assessments for Afghanistan and Pakistan

    SciTech Connect (OSTI)

    Renne, D. S.; Kelly, M.; Elliott, D.; George, R.; Scott, G.; Haymes, S.; Heimiller, D.; Milbrandt, A.; Cowlin, S.; Gilman, P.; Perez, R.

    2007-01-01T23:59:59.000Z

    The U.S. National Renewable Energy Laboratory (NREL) has recently completed the production of high-resolution wind and solar energy resource maps and related data products for Afghanistan and Pakistan. The resource data have been incorporated into a geospatial toolkit (GsT), which allows the user to manipulate the resource information along with country-specific geospatial information such as highway networks, power facilities, transmission corridors, protected land areas, etc. The toolkit allows users to then transfer resource data for specific locations into NREL's micropower optimization model known as HOMER.

  8. Wind Energy Resource Basics | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742EnergyOn AprilA group currentBradley NickellApril 16, 2008 TBD-0075 -In theWide Bandgap3Below1

  9. Louisiana/Wind Resources | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov YouKizildere I Geothermal Pwer Plant Jump to:Landowners andLodgepole,Lotsee, Oklahoma: EnergyInformation

  10. NREL: Wind Research - Data and Resources

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office of Science (SC)Integrated CodesTransparency VisitSilver Toyota Prius being driven in frontData and

  11. Georgia/Wind Resources | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are being directedAnnualPropertyd8c-a9ae-f8521cbb8489InformationFrenchtown,JumpValleyTopics

  12. Vermont/Wind Resources | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are beingZealand Jump to:Ezfeedflag JumpID-fTri Global EnergyUtility Rate HomeVela Jump to:I

  13. Washington/Wind Resources | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are beingZealand Jump to:Ezfeedflag JumpID-fTri GlobalJump to: navigation, search Contents 1 Financial

  14. Hawaii/Wind Resources | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are beingZealand Jump to: navigation, search OpenEI ReferenceJumpEnergyStrategy |HatchetInformation Hawaii's

  15. Kentucky/Wind Resources | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are beingZealand Jump to: navigation, searchOf Kilauea Volcano, Hawaii |Island,Kas Farmssource History View

  16. Ohio/Wind Resources | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are beingZealand Jump to: navigation, searchOfRoseConcerns JumpsourceOffshoreInformation

  17. Oklahoma/Wind Resources | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are beingZealand Jump to: navigation, searchOfRoseConcernsCompany Oil and Gas Company

  18. Oregon/Wind Resources | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are beingZealand Jump to: navigation, searchOfRoseConcernsCompany Oil andOpenEITODOOregonOregon/Geothermal

  19. Pennsylvania/Wind Resources | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are beingZealand Jump to: navigation, searchOfRoseConcernsCompanyPCNInformation US Recovery Act Smart

  20. Idaho/Wind Resources | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are8COaBulkTransmissionSitingProcess.pdfGetecGtel JumpCounty, Texas:ITCSolidIdaho‎ | Transmission JumpIdaho,

  1. Wind Integration, Transmission, and Resource Assessment and

    Broader source: Energy.gov (indexed) [DOE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742Energy China 2015ofDepartment of EnergyThe U.S. DepartmentEnergyWilliam E.Much

  2. WINDExchange: Wind Energy Regional Resource Centers

    Wind Powering America (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov YouKizildere IRaghuraji Agro IndustriesTownDells, Wisconsin: EnergyWyandanch,EagaAbout PrintableEducation Printable

  3. WINDExchange: Wind Economic Development Resources and Tools

    Wind Powering America (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov YouKizildere IRaghuraji Agro IndustriesTownDells, Wisconsin:Deployment Activities Printable Version BookmarkDevelopment

  4. Maryland/Wind Resources | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are beingZealand Jump to: navigation, searchOfRose Bend <Stevens Jump to:source History View New Pages

  5. Michigan/Wind Resources | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are beingZealand Jump to: navigation, searchOfRose BendMiasole Inc Jump to:

  6. Minnesota/Wind Resources | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are beingZealand Jump to: navigation, searchOfRose BendMiasole Inc JumpMicroPlanet

  7. Montana/Wind Resources | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are beingZealand Jump to: navigation, searchOfRose BendMiasole IncMinutemanVista Capital LLCMontana/Incentives

  8. Nebraska/Wind Resources | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are beingZealand Jump to: navigation, searchOfRoseConcerns Jump to: navigation,

  9. Mississippi/Wind Resources | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov YouKizildere I Geothermal Pwer Plant JumpMarysville, Ohio:Menomonee|MililaniMindanaoMinuanoIVInformation

  10. Texas/Wind Resources | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are beingZealand Jump to:Ezfeedflag JumpID-f <MaintainedInformation 2 RegisteredInformation

  11. Delaware/Wind Resources | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are beingZealand JumpConceptual Model,DOE Facility Database DataDatatechnicNewDeafDeerDelIowa: EnergyDelaware,

  12. California/Wind Resources | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are being directedAnnualProperty EditCalifornia:Power LPInformation 8th congressional district:

  13. Colorado/Wind Resources | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are being directedAnnualProperty EditCalifornia:PowerCER.png El CERCollierInformationInformation Base

  14. Connecticut/Wind Resources | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are being directedAnnualProperty EditCalifornia:PowerCER.png ElColumbia,2005) |UseCondon

  15. Wind Energy Resource Atlas of Armenia

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level:Energy: Grid Integration Redefining What'sis Taking Over OurThe Iron SpinPrincetonUsingWhat is abig world of tiny motionsWEF Work?

  16. Florida/Wind Resources | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are8COaBulkTransmissionSitingProcess.pdf Jump to:ar-80m.pdfFillmore County,andJumpInformation TurboGenix

  17. Utah/Wind Resources | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov YouKizildere IRaghuraji Agro IndustriesTown of Ladoga,planning methodologies and toolsoperation plans for facility

  18. Four Corners Wind Resource Center Webinar: Building Utility-Scale Wind: Permitting and Regulation Lessons for County Decision-Makers

    Broader source: Energy.gov [DOE]

    The Four Corners Wind Resource Center will host this webinar exploring lessons learned in the permitting of utility-scale wind projects and the development of ordinances and regulations for...

  19. After the wind resource and project site have been determined and the community outreach effort has

    E-Print Network [OSTI]

    Massachusetts at Amherst, University of

    permit application. See the Fact Sheets on resource assessment and wind resource data for more: Technology Performance Impacts & Issues Siting Resource Assessment Wind Data Permitting Case Studies 1. 2. 3After the wind resource and project site have been determined and the community outreach effort has

  20. Wind for Schools Portal Educational Resources | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov YouKizildere IRaghuraji Agro IndustriesTown ofNationwideWTEDBird,Wilsonville, Oregon: EnergyWindCooperativesWind Works-

  1. Wyoming/Wind Resources/Full Version | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are beingZealand Jump to:Ezfeedflag JumpID-fTriWildcat 1 Wind Projectsource History View New Pages RecentWyoming/Wind

  2. New Jersey/Wind Resources | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are beingZealand Jump to: navigation, searchOfRoseConcerns Jump to:Neppel WindNew Grid EnergyHarvestNewNew Jersey/Wind

  3. New Wind Technology Resource Center Launched | Department of Energy

    Office of Environmental Management (EM)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33Frequently Asked QuestionsDepartment ofDepartment ofNew PSAs HelpDepartmentDepartment ofWindWind

  4. Wind power resource assessment in complex urban environments: MIT campus case-study using CFD Analysis

    E-Print Network [OSTI]

    Wind power resource assessment in complex urban environments: MIT campus case-study using CFD of Technology, 2Meteodyn Objectives Conclusions References [1] TopoWind software, User Manual [2] Wind Resource Assessment Handbook: Fundamentals for Conducting a Successful Wind Monitoring Program, AWS Scientific, Inc

  5. Evaluation of the Impacts of Deep Penetration of Wind Resources on Transmission Utilization and

    E-Print Network [OSTI]

    Gross, George

    Terms--wind generation, grid integration, trans- mission utilization, stability analysis, dynamic perfor- tion of wind generation resources into the power grids requires the evaluation of the impacts of wind quantification of the impacts of wind resource integration on the system. The evaluation of these impacts

  6. Offshore wind resources from satellite SAR Charlotte Bay Hasager, Merete Bruun Christiansen, Morten Nielsen,

    E-Print Network [OSTI]

    Offshore wind resources from satellite SAR Charlotte Bay Hasager, Merete Bruun Christiansen, Morten ocean wind maps were described. For offshore wind resource estimation based on satellite observations and the near-coastal zone (up to 40 km offshore) is not mapped. In contrast, Envisat ASAR wind maps can

  7. The Earth System Grid Center for Enabling Technologies: Focusing Technologies on Climate Datasets and Resource Needs

    SciTech Connect (OSTI)

    Williams, Dean N. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States)

    2007-09-26T23:59:59.000Z

    This report discusses a project that used prototyping technology to access and analyze climate data. This project was initially funded under the DOE’s Next Generation Internet (NGI) program, with follow-on support from BER and the Mathematical, Information, and Computational Sciences (MICS) office. In this prototype, we developed Data Grid technologies for managing the movement and replication of large datasets, and applied these technologies in a practical setting (i.e., an ESG-enabled data browser based on current climate data analysis tools), achieving cross-country transfer rates of more than 500 Mb/s. Having demonstrated the potential for remotely accessing and analyzing climate data located at sites across the U.S., we won the “Hottest Infrastructure” award in the Network Challenge event. While the ESG I prototype project substantiated a proof of concept (“Turning Climate Datasets into Community Resources”), the SciDAC Earth System Grid (ESG) II project made this a reality. Our efforts targeted the development of metadata technologies (standard schema, XML metadata extraction based on netCDF, and a Metadata Catalog Service), security technologies (Web-based user registration and authentication, and community authorization), data transport technologies (GridFTPenabled OPeNDAP-G for high-performance access, robust multiple file transport and integration with mass storage systems, and support for dataset aggregation and subsetting), as well as web portal technologies to provide interactive access to climate data holdings. At this point, the technology was in place and assembled, and ESG II was poised to make a substantial impact on the climate modelling community.

  8. The Association of Large-Scale Climate Variability and Teleconnections on Wind Energy Resource

    E-Print Network [OSTI]

    The Association of Large-Scale Climate Variability and Teleconnections on Wind Energy Resource over on Wind Energy Resource over Europe and its Intermittency Pascal Kriesche* and Adam Schlosser* Abstract

  9. Assessment of Offshore Wind Energy Resources for the United States

    SciTech Connect (OSTI)

    Schwartz, M.; Heimiller, D.; Haymes, S.; Musial, W.

    2010-06-01T23:59:59.000Z

    This report summarizes the offshore wind resource potential for the contiguous United States and Hawaii as of May 2009. The development of this assessment has evolved over multiple stages as new regional meso-scale assessments became available, new validation data was obtained, and better modeling capabilities were implemented. It is expected that further updates to the current assessment will be made in future reports.

  10. Wind Resource Assessment Using SODAR at Cluttered Sites William LW Henson MSc*

    E-Print Network [OSTI]

    Massachusetts at Amherst, University of

    Wind Resource Assessment Using SODAR at Cluttered Sites William LW Henson MSc* Anthony L Rogers Ph. The RERL's use of SODAR in wind resource assessment is due to the often-stated advantages that SODAR and representative wind resource data. One such challenging environment can be called a cluttered site

  11. Ris-R-1322 (EN) Danish-Czech Wind Resource Know-

    E-Print Network [OSTI]

    Risř-R-1322 (EN) Danish-Czech Wind Resource Know- how Transfer Project Interim Report 2002 Ole The progress of the Danish-Czech Wind Resource Know-how Trans- fer Project is reported. The know-how transfer component of the project has consisted in performing a wind resource training workshop for about 13 indi

  12. Ris-R-1447 (EN) Danish-Czech Wind Resource Know-

    E-Print Network [OSTI]

    Risř-R-1447 (EN) Danish-Czech Wind Resource Know- how Transfer Project Final Report Ole Rathmann of the Danish-Czech Wind Resource Know-how Transfer Project is reported. The know-how transfer component of the project has con- sisted in performing a wind resource training workshop for about 13 individuals from

  13. Alaska/Wind Resources/Full Version | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are being directedAnnualProperty Edit withTianlinPapersWindeySanta2004)AirwaysourceAlaskaAlaska/Wind Resources/Full

  14. AWEA Wind Resource & Project Energy Assessment | Department of Energy

    Energy Savers [EERE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are being directed off Energy.gov. Are you0 ARRA Newsletters 20103-03 AUDIT REPORT: OAS-L-03-03 DecemberWind Resource

  15. Utah/Wind Resources/Full Version | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are beingZealand Jump to:Ezfeedflag JumpID-fTri Global Energy LLCEnergy)PeteforsythUtah/Wind Resources/Full Version

  16. Virginia/Wind Resources/Full Version | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are beingZealand Jump to:Ezfeedflag JumpID-fTri Global EnergyUtility RateVirginia/Wind Resources < Virginia Jump

  17. Ohio/Wind Resources/Full Version | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are beingZealand Jump to: navigation, searchOfRoseConcerns JumpsourceOffshoreInformationOhio/Wind Resources/Full

  18. Oklahoma/Wind Resources/Full Version | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are beingZealand Jump to: navigation, searchOfRoseConcernsCompany Oil and Gas CompanyOklahoma/Wind Resources/Full

  19. Massachusetts/Wind Resources/Full Version | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are beingZealand Jump to: navigation, searchOfRose Bend <Stevens JumpMassachusetts/Wind Resources <

  20. Michigan/Wind Resources/Full Version | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are beingZealand Jump to: navigation, searchOfRose BendMiasole Inc Jump to:Michigan/Wind Resources/Full Version <

  1. Minnesota/Wind Resources/Full Version | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are beingZealand Jump to: navigation, searchOfRose BendMiasole Inc JumpMicroPlanetMinnesota/Wind Resources/Full Version

  2. Nebraska/Wind Resources/Full Version | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are beingZealand Jump to: navigation, searchOfRoseConcerns Jump to: navigation,Nebraska/Wind Resources/Full Version

  3. North Dakota/Wind Resources | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov YouKizildere I Geothermal Pwer PlantMunhall,Missouri: Energy Resources JumpOklahoma:NorthCastle, NewNorth Dakota/Wind

  4. Connecticut/Wind Resources/Full Version | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are being directedAnnualProperty EditCalifornia:PowerCER.png ElColumbia,2005) |UseCondonConnecticut/Wind Resources/Full

  5. Wind Integration, Transmission, and Resource Assessment andCharacteri...

    Office of Environmental Management (EM)

    Assessment and Characterization Projects More Documents & Publications Environmental Wind Projects Testing, Manufacturing, and Component Development Projects Offshore Wind Projects...

  6. IEA Wind Task 26 - Multi-national Case Study of the Financial...

    Open Energy Info (EERE)

    Focus Area: Wind Topics: Market analysis, Technology characterizations Resource Type: Case studiesexamples, Dataset, Technical report Website: nrelpubs.nrel.govWebtopws...

  7. Georgia/Wind Resources/Full Version | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are being directedAnnualPropertyd8c-a9ae-f8521cbb8489InformationFrenchtown,JumpValleyTopicsGeorgia/Wind

  8. Wind Energy Resources for Teachers | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov YouKizildere IRaghuraji Agro IndustriesTown ofNationwideWTEDBird,Wilsonville, Oregon: EnergyWind Energy

  9. Small Wind Guidebook/Web Resources | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov YouKizildere IRaghuraji Agro Industries Pvt LtdShawangunk, New York:SiG SolarSkykomish,NewEnergySmall WindSmallsource

  10. West Virginia/Wind Resources | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are beingZealand Jump to:Ezfeedflag JumpID-fTri GlobalJump to: navigation,Goff,Holt WindInformationWest

  11. Wind Resource Atlas of Oaxaca | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are beingZealand Jump to:Ezfeedflag JumpID-fTriWildcat 1 Wind Project Jump to:Wilson Hot SpringNevada:Data0-'92Atlas of

  12. Idaho/Wind Resources/Full Version | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are beingZealand Jump to: navigation, search OpenEIHesperia,IDGWP Wind Farm Jump to:ILabPointIdaho

  13. Oregon/Wind Resources/Full Version | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are beingZealand Jump to: navigation, searchOfRoseConcernsCompany Oil andOpenEITODOOregonOregon/GeothermalOregon/Wind

  14. Assessment of Offshore Wind Energy Resources for the United States

    Wind Powering America (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov YouKizildere IRaghuraji Agro IndustriesTownDells, Wisconsin: EnergyWyandanch,EagaAbout PrintableEducation PrintableWind2

  15. Potential Wind Resource Chart for the United States

    Wind Powering America (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov YouKizildere IRaghuraji Agro IndustriesTownDells, Wisconsin: EnergyWyandanch,EagaAbout PrintableEducationOffshore wind

  16. 2014 WIND POWER PROGRAM PEER REVIEW-RESOURCE CHARACTERIZATION

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels DataDepartment of Energy Your Density Isn't Your Destiny: The Future of BadTHEEnergyReliability and A2e March 24-27, 2014 Wind

  17. Maryland/Wind Resources/Full Version | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are beingZealand Jump to: navigation, searchOfRose Bend <Stevens Jump to:source History View New PagesMaryland/Wind

  18. Mississippi/Wind Resources/Full Version | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are beingZealand Jump to: navigation, searchOfRose BendMiasole IncMinuteman Wind LLC Jump to:source History

  19. Nevada/Wind Resources/Full Version | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are beingZealand Jump to: navigation, searchOfRoseConcerns Jump to:Neppel Wind PowerNevada StateNevada, Texas:source

  20. New Hampshire/Wind Resources | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are beingZealand Jump to: navigation, searchOfRoseConcerns Jump to:Neppel WindNew Grid Energy SolutionsNew

  1. New Mexico/Wind Resources | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are beingZealand Jump to: navigation, searchOfRoseConcerns Jump to:Neppel WindNew GridHyTep Jumpsource History View

  2. Wind Career Map: Resource List | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels DataDepartment of Energy Your DensityEnergy U.S.-China Electric VehicleCenters | Department ofofto PurchaseApril 16,WhoWhy3 0WillieWind

  3. California/Wind Resources/Full Version | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are being directedAnnualProperty EditCalifornia:Power LPInformation 8th congressional district:California/Wind

  4. Wind for Schools Portal Developer Resources | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are being directedAnnualProperty Edit withTianlinPapers Home Kyoung's pictureWind Power Energia

  5. Assessing the wind field over the continental shelf as a resource for electric power

    E-Print Network [OSTI]

    Firestone, Jeremy

    Assessing the wind field over the continental shelf as a resource for electric power by Richard W. Garvine1,2 and Willett Kempton1,3,4 ABSTRACT To assess the wind power resources of a large continental for the comparison period) that the near-coast phase advantage is obviated. We also find more consistent wind power

  6. Characterization of the wind power resource in Europe and its intermittency*

    E-Print Network [OSTI]

    Characterization of the wind power resource in Europe and its intermittency* Alexandra Cosseron Characterization of the wind power resource in Europe and its intermittency Alexandra Cosseron a, *, Udaya Bhaskar-4307, USA Abstract Wind power is assessed over Europe, with a special care given to the quantification

  7. Geothermal resources of the Wind River Basin, Wyoming

    SciTech Connect (OSTI)

    Hinckley, B.S.; Heasler, H.P.

    1985-01-01T23:59:59.000Z

    The geothermal resources of the Wind River Basin were investigated. Oil-well bottom-hole temperatures, thermal logs of wells, and heat flow data have been interpreted within a framework of geologic and hydrologic constraints. Basic thermal data, which includes the background thermal gradient and the highest recorded temperature and corresponding depth for each basin, is tabulated. Background heat flow in the Wind River Basin is generally insufficient to produce high conductive gradients. Only where hydrologic systems re-distribute heat through mass movement of water will high temperatures occur at shallow depths. Aquifers which may have the confinement and structural characteristics necessary to create such geothermal systems are the Lance/Fort Union, Mesa Verde, Frontier, Muddy, Cloverly, Sundance, Nugget, Park City, Tensleep, Amsden, Madison, Bighorn, and Flathead Formations. Of these the Tensleep Sandstone and Madison Limestone are the most attractive in terms of both productivity and water quality. Most of the identified geothermal anomalies in the Wind River Basin occur along complex structures in the southwest and south. The most attractive geothermal prospects identified are anomalous Areas 2 and 3 north of Lander, Sweetwater Station Springs west of Jeffrey City, and the thermal springs southwest of Dubois. Even in these areas, it is unlikely temperatures in excess of 130 to 150/sup 0/F can be developed. 16 refs., 7 figs., 7 tabs. (ACR)

  8. 2014 WIND POWER PROGRAM PEER REVIEW-RESOURCE CHARACTERIZATION

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    and Progress * Simulator fOr Wind Farm Applications (SOWFA) * High performance computing and engineering modules * Wind farm parameterization model in WRF * Outcome...

  9. United States Wind Resource Map: Annual Average Wind Speed at 80 Meters

    Wind Powering America (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov YouKizildere IRaghuraji Agro IndustriesTownDells, Wisconsin:Deployment Activities Printable80 m 01-APR-2011 2.1.1 Wind

  10. Title: Ontario Wind Power Allocation Ontario Ministry of Natural Resources

    E-Print Network [OSTI]

    Title: Ontario Wind Power Allocation Data Creator / Copyright Owner: Ontario Ministry of Natural/A Updates: N/A Abstract: This data consists of a polygon shapefile, Wind Power Allocation Block. A Wind Power Allocation Block is an area that could be allocated for the exploration of wind power generation

  11. Ben Ticha M. B., Ranchin T., Wald L., Using several data sources for offshore wind resource assessment, 2005, Copenhagen Offshore Wind conference 2005

    E-Print Network [OSTI]

    Boyer, Edmond

    financial risks associated to the installation of offshore wind farms. Usually, for evaluating the resourceBen Ticha M. B., Ranchin T., Wald L., Using several data sources for offshore wind resource assessment, 2005, Copenhagen Offshore Wind conference 2005 1 Using several data sources for offshore wind

  12. High Wind Penetration Impact on U.S. Wind Manufacturing Capacity and Critical Resources

    SciTech Connect (OSTI)

    Laxson, A.; Hand, M. M.; Blair, N.

    2006-10-01T23:59:59.000Z

    This study used two different models to analyze a number of alternative scenarios of annual wind power capacity expansion to better understand the impacts of high levels of wind generated electricity production on wind energy manufacturing and installation rates.

  13. Importance of thermal effects and sea surface roughness for offshore wind resource assessment

    E-Print Network [OSTI]

    Heinemann, Detlev

    sites. The first large offshore wind farms are currently being built in several countries in EuropeImportance of thermal effects and sea surface roughness for offshore wind resource assessment National Laboratory, Roskilde, Denmark Abstract The economic feasibility of offshore wind power utilisation

  14. Impact of increased penetration of wind and PV solar resources on the

    E-Print Network [OSTI]

    to the BES through a power electronic inverter · Residential roof top PV solar also has an inverter whichImpact of increased penetration of wind and PV solar resources on the bulk power system Vijay;Wind and PV solar grid interface · Modern wind turbine generators are typically rated between 1.5 MW

  15. Preliminary assessment of climate change impacts on the UK onshore wind energy resource

    E-Print Network [OSTI]

    Harrison, Gareth

    while summer decreases. Keywords: climate change, United Kingdom, wind energy, wind climate. 1, the potential for changes in climate to affect the significant onshore wind resource in the United Kingdom (UK contributor to future long term renewable energy targets. This is particularly true in the United Kingdom (UK

  16. Calculating the offshore wind power resource: Robust assessment methods applied to the U.S. Atlantic Coast

    E-Print Network [OSTI]

    Firestone, Jeremy

    Calculating the offshore wind power resource: Robust assessment methods applied to the U 2011 Available online xxx Keywords: Wind power Offshore wind power Resource assessment Marine spatial, annual energy output is calculated for a representative offshore wind turbine. The average power resource

  17. Wind resource and site assessment in the German Bight: Extreme Winds at Meso-to Microscale

    E-Print Network [OSTI]

    Heinemann, Detlev

    in the offshore wind farms. In the following, the validated Weather Research and Forecast (WRF) model simulations resolution which resolves sites of the individual offshore wind farms. In addition, the FINO-1 measurements of offshore wind farms, where in-situ measurements are scarce and expensive, the validated mesoscale wind

  18. Final Map Draft Comparison Report WIND ENERGY RESOURCE MODELING AND MEASUREMENT PROJECT

    E-Print Network [OSTI]

    SOLUTIONS, LLC (now AWS Truewind LLC) 255 FULLER ROAD, SUITE 274 ALBANY, NEW YORK Michael Brower PrincipalII Final Map Draft Comparison Report #12;WIND ENERGY RESOURCE MODELING AND MEASUREMENT PROJECT Tel: 978-749-9591 Fax: 978-749-9713 mbrower@awstruewind.com August 10, 2004 #12;2 WIND ENERGY RESOURCE

  19. Wind energy resource atlas. Volume 8. The southern Rocky Mountain region

    SciTech Connect (OSTI)

    Andersen, S.R.; Freeman, D.L.; Hadley, D.L.; Elliott, D.L.; Barchet, W.R.; George, R.L.

    1981-03-01T23:59:59.000Z

    The Southern Rocky Mountain atlas assimilates five collections of wind resource data: one for the region and one for each of the four states that compose the Southern Rocky Mountain region (Arizona, Colorado, New Mexico, and Utah). At the state level, features of the climate, topography and wind resource are discussed in greater detail than is provided in the regional discussion, and the data locations on which the assessment is based are mapped. Variations, over several time scales, in the wind resource at selected stations in each state are shown on graphs of monthly average and interannual wind speed and power, and hourly average wind speed for each season. Other graphs present speed, direction, and duration frequencies of the wind at these locations.

  20. Wind energy resource atlas. Volume 12. Puerto Rico and US Virgin Islands

    SciTech Connect (OSTI)

    Wegley, H.L.; Elliott, D.L.; Barchet, W.R.; George, R.L.

    1981-01-01T23:59:59.000Z

    The Puerto Rico/US Virgin Island atlas assimilates three collections of wind resource data: one for the region as a whole and one each for both the Commonwealth of Puerto Rico and the US Virgin Islands. For the two subregions, features of the climate, topography and wind resource are discussed in greater detail than is provided in the regional discussion, and the data locations on which the assessment is based are mapped. Variations, over several time scales, in the wind resource at selected stations in both subregions are shown on graphs of monthly average and interannual wind speed and power, and hourly average wind speed for each season. Other graphs present speed, direction and duration frequencies of the wind at these locations.

  1. areal wind resource: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    and Utilization Websites Summary: Renewable Energy Center California Off-shore Wind Technology Assessment 12;California Renewable EnergyRESEARCH RESULTS FORUM FOR RENEWABLE...

  2. aruba wind resource: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    and Utilization Websites Summary: Renewable Energy Center California Off-shore Wind Technology Assessment 12;California Renewable EnergyRESEARCH RESULTS FORUM FOR RENEWABLE...

  3. Arizona/Wind Resources/Full Version | Open Energy Information

    Open Energy Info (EERE)

    Requirements Most utilities and other electricity providers require you to enter into a formal agreement with them before you interconnect your wind turbine with the...

  4. Wind resource characterization results to support the Sandia Wind Farm Feasibility Study : August 2008 through March 2009.

    SciTech Connect (OSTI)

    Deola, Regina Anne

    2010-01-01T23:59:59.000Z

    Sandia National Laboratories Wind Technology Department is investigating the feasibility of using local wind resources to meet the requirements of Executive Order 13423 and DOE Order 430.2B. These Orders, along with the DOE TEAM initiative, identify the use of on-site renewable energy projects to meet specified renewable energy goals over the next 3 to 5 years. A temporary 30-meter meteorological tower was used to perform interim monitoring while the National Environmental Policy Act (NEPA) process for the larger Wind Feasibility Project ensued. This report presents the analysis of the data collected from the 30-meter meteorological tower.

  5. The impact of climate change on the U.S. wind energy resource

    SciTech Connect (OSTI)

    Daniel Kirk-Davidoff; Daniel Barrie

    2013-03-19T23:59:59.000Z

    The growing need for low-carbon emitting electricity sources has resulted in rapid growth in the wind power industry. The size and steadiness of the offshore wind resource has attracted growing investment in the planning of offshore wind turbine installations. Decisions about the location and character of wind farms should be made with an eye not only to present but also future wind resource, which may change as increasing carbon dioxide forces reductions in the poleward temperature gradient, and thus potentially in the mean tropospheric westerly winds. I propose to use the new North American Regional Climate Change Assessment Program climate projections to estimate the change of the wind power resource under various carbon dioxide loading scenarios and for a range of climate models. We will compare our assessment with both our assessment based on the IPCC AR4 model runs, to explore the extent to which improved model resolution changes the prediction for the wind power resource, and with present day estimates from reanalysis and scatterometer winds.

  6. BIRD BEHAVIORS IN THE ALTAMONT PASS WIND RESOURCE AREA 8.1 INTRODUCTION

    E-Print Network [OSTI]

    a different view, arguing that intensity of use of the area in a wind farm is unrelated to turbine-caused bird the sampling area. At each plot, two observers performed circular visual scans (360o ), also called variable246 CHAPTER 8 BIRD BEHAVIORS IN THE ALTAMONT PASS WIND RESOURCE AREA 8.1 INTRODUCTION Specific

  7. BIRD MORTALITY IN THE ALTAMONT PASS WIND RESOURCE AREA 3.1 INTRODUCTION

    E-Print Network [OSTI]

    46 CHAPTER 3 BIRD MORTALITY IN THE ALTAMONT PASS WIND RESOURCE AREA 3.1 INTRODUCTION The approximately 5,400 wind turbines operating in the APWRA generate about 580 MW of electricity, but they also estimates in terms of mortality, without regard to local species' populations. Mortality was expressed

  8. A PRODUCTION SIMULATION TOOL FOR SYSTEMS WITH INTEGRATED WIND ENERGY RESOURCES

    E-Print Network [OSTI]

    Gross, George

    A PRODUCTION SIMULATION TOOL FOR SYSTEMS WITH INTEGRATED WIND ENERGY RESOURCES BY NICOLAS BENOIT reserves resulting in increased system production costs. Consequently, there is an acute need production simulation tool with the capability to quantify the variable effects of systems with varying wind

  9. Wind Energy Resource Atlas. Volume 11. Hawaii and Pacific Islands Region

    SciTech Connect (OSTI)

    Schroeder, T.A.; Hori, A.M.; Elliott, D.L.; Barchet, W.R.; George, R.L.

    1981-02-01T23:59:59.000Z

    This atlas of the wind energy resource is composed of introductory and background information, and assessments of the wind resource in each division of the region. Background on how the wind resource is assessed and on how the results of the assessment should be inerpreted is presented. An introduction and outline to the descriptions of the wind resource for each division are provided. Assessments for individual divisions are presented as separate chapters. Much of the information in the division chapters is given in graphic or tabular form. The sequences for each chapter are similar, but some presentations used for Hawaii are inappropriate or impractical for presentation with the Pacific Islands. Hawaii chapter figure and tables are cited below and appropriate Pacific Islands figure and table numbers are included in brackets ().

  10. Characterization of Wind Power Resource in the United States and its Intermittency

    E-Print Network [OSTI]

    Gunturu, U.B.

    Wind resource in the continental and offshore United States has been reconstructed and characterized using metrics that describe, apart from abundance, its availability, persistence and intermittency. The Modern Era ...

  11. Wind Resource Estimation and Mapping at the National Renewable Energy Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level:Energy: Grid Integration Redefining What'sis Taking Over OurThe Iron SpinPrincetonUsingWhat is abig world of tinyWind IndustryWindWindWind W

  12. SODAR Wind Resource Measurement Results at Falmouth, MA Prepared for

    E-Print Network [OSTI]

    Massachusetts at Amherst, University of

    treatment plant in the spring of 2005 by the Renewable Energy Research Laboratory at the University wind speed at 70 m is most likely between 5.88 and 6.36 m/s. Introduction The Renewable Energy Research the possibility of problems with echoes from ground clutter was identified. In this case ground clutter means low

  13. Onshore wind energy in the UK, the unexploited resource 

    E-Print Network [OSTI]

    Stokes, Peter

    2014-08-06T23:59:59.000Z

    major switch of large scale energy generation is required to reduce these emissions; from the burning of fossil fuels to generation by renewable sources. Onshore wind energy is one of the most viable of the UK’s renewable energy sources, but its uptake...

  14. U.S. Virgin Islands Wind Resources Update 2014

    SciTech Connect (OSTI)

    Roberts, J. O.; Warren, A.

    2014-12-01T23:59:59.000Z

    This report summarizes the data collected from two 60-meter meteorological towers and three sonic detection and ranging units on St. Thomas and St. Croix in 2012 and 2013. These results are an update to the previous feasibility study; the collected data are critical to the successful development of a wind project at either site.

  15. Satellite data for high resolution offshore wind resource mapping: A data fusion approach M.B. Ben Ticha a,*

    E-Print Network [OSTI]

    Paris-Sud XI, Université de

    Satellite data for high resolution offshore wind resource mapping: A data fusion approach M.B. Ben accurate high spatial and temporal resolutions wind measurements. Offshore, satellite data are an accurate radar, scatterometer, data fusion, offshore wind energy resource assessment. 1. INTRODUCTION Since

  16. The Association of Large-Scale Climate Variability and Teleconnections on Wind Energy Resource over Europe and its Intermittency

    E-Print Network [OSTI]

    Kriesche, Pascal

    In times of increasing importance of wind power in the world’s energy mix, this study focuses on a better understanding of the influences of large-scale climate variability on wind power resource over Europe. The impact ...

  17. Wind Integration, Transmission, and Resource Assessment andCharacteri...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    totaling more than 25 million for 41 projects focused on integration, transmission, and resource assessment and characterization. This report highlights each of these R&D...

  18. Bird Mortaility at the Altamont Pass Wind Resource Area: March 1998--September 2001

    SciTech Connect (OSTI)

    Smallwood, K. S.; Thelander, C. G.

    2005-09-01T23:59:59.000Z

    Over the past 15 years, research has shown that wind turbines in the Altamont Pass Wind Resource Area (APWRA) kill many birds, including raptors, which are protected by the Migratory Bird Treaty Act (MBTA), the Bald and Golden Eagle Protection Act, and/or state and federal Endangered Species Acts. Early research in the APWRA on avian mortality mainly attempted to identify the extent of the problem. In 1998, however, the National Renewable Energy Laboratory (NREL) initiated research to address the causal relationships between wind turbines and bird mortality. NREL funded a project by BioResource Consultants to perform this research directed at identifying and addressing the causes of mortality of various bird species from wind turbines in the APWRA.With 580 megawatts (MW) of installed wind turbine generating capacity in the APWRA, wind turbines there provide up to 1 billion kilowatt-hours (kWh) of emissions-free electricity annually. By identifying and implementing new methods and technologies to reduce or resolve bird mortality in the APWRA, power producers may be able to increase wind turbine electricity production at the site and apply similar mortality-reduction methods at other sites around the state and country.

  19. Quantifying emissions reductions from New England offshore wind energy resources

    E-Print Network [OSTI]

    Berlinski, Michael Peter

    2006-01-01T23:59:59.000Z

    Access to straightforward yet robust tools to quantify the impact of renewable energy resources on air emissions from fossil fuel power plants is important to governments aiming to improve air quality and reduce greenhouse ...

  20. Avian Monitoring and Risk Assessment at the San Gorgonio Wind Resource Area

    SciTech Connect (OSTI)

    Anderson, R.; Tom, J.; Neumann, N.; Erickson, W. P.; Strickland, M. D.; Bourassa, M.; Bay, K. J.; Sernka, K. J.

    2005-08-01T23:59:59.000Z

    The primary objective of this study at the San Gorgonio Wind Resource Area was to estimate and compare bird utilization, fatality rates, and the risk index among factors including bird taxonomic groups, wind turbine and reference areas, wind turbine sizes and types, and geographic locations. The key questions addressed to meet this objective include: (1) Are there any differences in the level of bird activity, called ''utilization rate'' or ''use'', with the operating wind plant and within the surrounding undeveloped areas (reference area)?; (2) Are there any differences in the rate of bird fatalities (or avian fatality) within the operating wind plant or the surrounding undeveloped areas (reference area)?; (3) Does bird use, fatality rates, or bird risk index vary according to the geographic location, type and size of wind turbine, and/or type of bird within the operating wind plant and surrounding undeveloped areas (reference area)?; and (4) How do raptor fatality rates at San Gorgonio compare to other wind projects with comparable data?

  1. Solar and Wind Energy Resource Assessment Programme's Renewable Energy

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are beingZealand Jump to:Ezfeedflag JumpID-f < RAPID‎ |RippeyInformationSodaAtlassourceResource Explorer |

  2. Arkansas/Wind Resources/Full Version | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are being directedAnnualProperty EditCalifornia: Energy ResourcesInformation Arizona's 6thsourcesource

  3. Wind Energy Resource Atlas of Armenia (CD-ROM)

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level:Energy: Grid Integration Redefining What'sis Taking Over OurThe Iron SpinPrincetonUsingWhat is abig world of tiny motionsWEF Work?Resource

  4. Assessment of the Southern New England Offshore Wind Energy Resource James F. Manwell, Anthony Rogers, Jon G. McGowan

    E-Print Network [OSTI]

    Massachusetts at Amherst, University of

    1 Assessment of the Southern New England Offshore Wind Energy Resource James F. Manwell, Anthony the potential for the near term development of offshore wind energy projects in that region. The work summarized here consists of four aspects: 1) a review of existing offshore wind data, 2) the measurement of new

  5. Control Strategies for Distributed Energy Resources to Maximize the Use of Wind Power in Rural Microgrids

    SciTech Connect (OSTI)

    Lu, Shuai; Elizondo, Marcelo A.; Samaan, Nader A.; Kalsi, Karanjit; Mayhorn, Ebony T.; Diao, Ruisheng; Jin, Chunlian; Zhang, Yu

    2011-10-10T23:59:59.000Z

    The focus of this paper is to design control strategies for distributed energy resources (DERs) to maximize the use of wind power in a rural microgrid. In such a system, it may be economical to harness wind power to reduce the consumption of fossil fuels for electricity production. In this work, we develop control strategies for DERs, including diesel generators, energy storage and demand response, to achieve high penetration of wind energy in a rural microgrid. Combinations of centralized (direct control) and decentralized (autonomous response) control strategies are investigated. Detailed dynamic models for a rural microgrid are built to conduct simulations. The system response to large disturbances and frequency regulation are tested. It is shown that optimal control coordination of DERs can be achieved to maintain system frequency while maximizing wind power usage and reducing the wear and tear on fossil fueled generators.

  6. Energy Department Announces Funding to Access Higher Quality Wind Resources

    Broader source: Energy.gov (indexed) [DOE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33Frequently20,000 Russian NuclearandJunetrackEllen O'Kane Tauscher -TheEconomy,Research Centers

  7. Florida/Wind Resources/Full Version | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are being directedAnnualPropertyd8c-a9ae-f8521cbb8489Information Hydro Inc Iosil Energy

  8. Alabama/Wind Resources/Full Version | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are being directedAnnualProperty Edit withTianlinPapersWindeySanta2004)Airwaysource History View New Pages

  9. Category:State Wind Resources | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are beingZealand JumpConceptual Model, click here. Category:ConceptualGeothermalInformationSolar

  10. Solar and Wind Energy Resource Assessment (SWERA) | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov YouKizildere IRaghuraji Agro Industries Pvt LtdShawangunk, NewSingapore Jump to:Voltaic Malaysia Sdn Bhd JumpSolar

  11. Vermont/Wind Resources/Full Version | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are beingZealand Jump to:Ezfeedflag JumpID-fTri Global EnergyUtility Rate HomeVela Jump to:Isource History View New

  12. Hawaii/Wind Resources/Full Version | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are beingZealand Jump to: navigation, search OpenEI ReferenceJumpEnergyStrategy |HatchetInformation

  13. Kansas/Wind Resources/Full Version | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are beingZealand Jump to: navigation, searchOf Kilauea Volcano, Hawaii |Island, Florida:KaneEthanolsource

  14. Kentucky/Wind Resources/Full Version | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are beingZealand Jump to: navigation, searchOf Kilauea Volcano, Hawaii |Island,Kas Farmssource History

  15. Pennsylvania/Wind Resources/Full Version | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are beingZealand Jump to: navigation, searchOfRoseConcernsCompanyPCNInformation US Recovery Act

  16. Wind Resource Assessment and Characterization | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742Energy China 2015ofDepartment of EnergyThe U.S. DepartmentEnergyWilliam0, 2015A crucial

  17. United States Offshore Wind Resource Map at 90 Meters

    Wind Powering America (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov YouKizildere IRaghuraji Agro IndustriesTownDells, Wisconsin: EnergyWyandanch,EagaAbout PrintableEducationOffshore

  18. WINDExchange: Resources and Tools for Siting Wind Turbines

    Wind Powering America (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov YouKizildere IRaghuraji Agro IndustriesTownDells, Wisconsin:Deployment Activities Printable80 m 01-APR-2011Map

  19. Maine/Wind Resources/Full Version | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are beingZealand Jump to: navigation, searchOfRose Bend < MHKconvertersource History View New Pages

  20. Rhode Island/Wind Resources | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are beingZealand Jump to:Ezfeedflag JumpID-f < RAPID‎ | RoadmapRenewableGeothermalsource History View New

  1. SWERA/Wind Resource Information | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are beingZealand Jump to:Ezfeedflag JumpID-f < RAPID‎ |Rippey Jump to:WY) JumpLandSRT Jump to:STIL2FROMTMY <

  2. Solar and Wind Energy Resource Assessment (SWERA) | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are beingZealand Jump to:Ezfeedflag JumpID-f < RAPID‎ |RippeyInformationSodaAtlassource

  3. NREL-Wind Resource Assessment Handbook | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are beingZealand Jump to: navigation, searchOfRose BendMiasoleTremor(Question) |Renewable Energy |I

  4. New York/Wind Resources | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are beingZealand Jump to: navigation, searchOfRoseConcerns Jump to:Neppelsource History View New Pages RecentNew

  5. North Carolina/Wind Resources | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are beingZealand Jump to: navigation, searchOfRoseConcerns Jumpsource History View New Pages Recent Changes All

  6. NREL-International Wind Resource Maps | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are being directedAnnual SiteofEvaluatingGroup |JilinLu anMicrogreenMoonNASA/Ames GlobalView

  7. South Dakota/Wind Resources | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov YouKizildere IRaghuraji Agro Industries Pvt LtdShawangunk, NewSingaporeSonix Japan IncInformation

  8. U.S. Virgin Islands Wind Resources Update 2014

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels DataDepartment of Energy Your Density Isn'tOriginEducationVideoStrategic|IndustrialCenterMarchC.DepartmentTexasof Energy 1EnergyU.S.

  9. NREL: International Activities - Philippines Wind Resource Maps and Data

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level:Energy: Grid Integration Redefining What's Possible for Renewable Energy: Grid Integration NREL isDataWorking with Us Photo ofA map depicting

  10. South Carolina/Wind Resources | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are beingZealand Jump to:Ezfeedflag JumpID-f < RAPID‎SolarCity Corp Jumpsource History View New Pages

  11. Tennessee/Wind Resources/Full Version | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are beingZealand Jump to:Ezfeedflag JumpID-f <Maintained ByManagement IncDrillbe nice ifTennessee/Incentives

  12. Mexico-NREL Wind Resource Assessments | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are being directedAnnual SiteofEvaluatingGroup |JilinLu an GroupInformationMexico CentralEnergyMexico) JumpNREL

  13. Assessment of Offshore Wind Energy Resources for the United States

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page onYouTube YouTube Note: Since the YouTube platform is alwaysISOSource Heat 1PowerofSystems |AsApril 1,and

  14. Estimating the Wind Resource in Uttarakhand: Comparison of Dynamic

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels DataDepartment of Energy Your Density Isn't Your Destiny:RevisedAdvisoryStandardGeneration |10 DOEGoals DuringMarkets - EAC 2011

  15. Colorado/Wind Resources/Full Version | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are being directedAnnualProperty EditCalifornia:PowerCER.png El CERCollierInformationInformation Basesource

  16. Wind Energy Resource Atlas of the Dominican Republic

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level:Energy: Grid Integration Redefining What'sis Taking Over OurThe Iron SpinPrincetonUsingWhat is abig world of tiny motionsWEF

  17. Energy Department Announces Funding to Access Higher Quality Wind Resources

    Office of Environmental Management (EM)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 1112011AT&T,OfficeEnd of Year 2010 SNF & HLWAdvancedand Lower Costs | Department of

  18. Four Corners Wind Resource Center Webinar: Recent Developments in Western

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE: Alternative FuelsNovember 13,StatementFinancing SolutionsFossil Energy RSS Feeds FossilFourEnergy

  19. New Wind Technology Resource Center Launched | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page onYouTube YouTube Note: Since the.pdfBreaking ofOilNEW HAMPSHIREof EnergyBulbs |ReactorsEnergy WaysWhen

  20. Delaware/Wind Resources/Full Version | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are being directedAnnualPropertyd8c-a9ae-f8521cbb8489 No revision hasda62829c05b NoCounty,

  1. Validation of Updated State Wind Resource Maps for the United States: Preprint

    SciTech Connect (OSTI)

    Schwartz, M.; Elliott, D.

    2004-07-01T23:59:59.000Z

    The National Renewable Energy Laboratory (NREL) has coordinated the validation of updated state wind resource maps for multiple regions of the United States. The purpose of the validation effort is to produce the best map possible within fairly stringent time constraints.

  2. The role of energy storage in accessing remote wind resources in the Midwest

    E-Print Network [OSTI]

    Jaramillo, Paulina

    with renewable energy could pro- vide part of the solution since most renewable technologies do not produce an increase in renewable capacity with incentives such as the federal production tax credit for wind power to 40% of generation coming from qualifying renewable resources (Database of State Incentives

  3. 80 and 100 Meter Wind Energy Resource Potential for the United States (Poster)

    SciTech Connect (OSTI)

    Elliott, D.; Schwartz, M.; Haymes, S.; Heimiller, D.; Scott, G.; Flowers, L.; Brower, M.; Hale, E.; Phelps, B.

    2010-05-01T23:59:59.000Z

    Accurate information about the wind potential in each state is required for federal and state policy initiatives that will expand the use of wind energy in the United States. The National Renewable Energy Laboratory (NREL) and AWS Truewind have collaborated to produce the first comprehensive new state-level assessment of wind resource potential since 1993. The estimates are based on high-resolution maps of predicted mean annual wind speeds for the contiguous 48 states developed by AWS Truewind. These maps, at spatial resolution of 200 meters and heights of 60 to 100 meters, were created with a mesoscale-microscale modeling technique and adjusted to reduce errors through a bias-correction procedure involving data from more than 1,000 measurement masts. NREL used the capacity factor maps to estimate the wind energy potential capacity in megawatts for each state by capacity factor ranges. The purpose of this presentation is to (1) inform state and federal policy makers, regulators, developers, and other stakeholders on the availability of the new wind potential information that may influence development, (2) inform the audience of how the new information was derived, and (3) educate the audience on how the information should be interpreted in developing state and federal policy initiatives.

  4. United States Wind Resource Map: Annual Average Wind Speed at 30 Meters

    Wind Powering America (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov YouKizildere IRaghuraji Agro IndustriesTownDells, Wisconsin:Deployment Activities Printable

  5. Community Wind Handbook/Understand Your Wind Resource and Conduct a

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are being directedAnnual Siteof EnergyInnovationin UrbanCityCoatedCommunity ElectricPreliminary Estimate | Open

  6. Community Wind Handbook/Conduct a Wind Resource Estimate | Open Energy

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are being directedAnnualProperty EditCalifornia:PowerCER.png ElColumbia, NorthCommunity Management

  7. Importance of thermal effects and sea surface roughness for wind resource and wind shear at offshore sites

    E-Print Network [OSTI]

    Heinemann, Detlev

    at offshore sites Bernhard Lange*, Sřren Larsen# , Jřrgen Hřjstrup# , Rebecca Barthelmie# *ForWind - Centre of offshore wind power utilisation depends on the favourable wind conditions offshore as compared to sites for this flow. It's applicability for wind power prediction at offshore sites is investigated using data from

  8. Mapping of offshore wind resources C. B. Hasager, P. Astrup, M. B. Christiansen, M. Nielsen, A. Pea

    E-Print Network [OSTI]

    Oct Nov Dec 1995 - 2005 5 6 7 8 9 10 11Windspeed[m/s] Baltic Sea North Sea Monthly profile of averageMapping of offshore wind resources C. B. Hasager, P. Astrup, M. B. Christiansen, M. Nielsen, A The European Wind Atlas, Risř Weibull fitting: A = scale parameter k = shape parameter #12;Horns Rev, Elsam A

  9. S. C. Pryor R. J. Barthelmie E. Kjellstro m Potential climate change impact on wind energy resources in northern

    E-Print Network [OSTI]

    Pryor, Sara C.

    S. C. Pryor � R. J. Barthelmie � E. Kjellstro¨ m Potential climate change impact on wind energy these changes have potentially profound implications for the wind energy resource in a region that has both: 25 August 2005 � Springer-Verlag 2005 Abstract There is considerable interest in the potential impact

  10. Offshore wind resource assessment in European Seas, state-of-the art. A survey within the FP6 "POW'WOW" Coordination Action Project.

    E-Print Network [OSTI]

    , Germany (5) FORWIND, University of Oldenburg, Germany ABSTRACT To plan an offshore wind farm, a careful 1999, large wind farms with wind turbines up to 5 MW have been erected offshore especially in the NorthOffshore wind resource assessment in European Seas, state-of- the ­art. A survey within the FP6

  11. Colorado Wind Resource Map with 17 school locations for a potential pilot project

    Wind Powering America (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov YouKizildere IRaghuraji Agro IndustriesTownDells, Wisconsin:Deployment Activities Printable80 mPilot ProjectWind An

  12. Puerto Rico and U.S. Virgin Islands Wind Resource Map at 50 meters

    Wind Powering America (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov YouKizildere IRaghuraji Agro IndustriesTownDells, Wisconsin:Deployment Activities Printable80 mPilot ProjectWindJEDIJob% %

  13. Category:Wind for Schools Portal Other Resources | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are being directedAnnual Siteof EnergyInnovation inOpenadd: China Datang Corporation Trina Solar JAsourcePagesWind

  14. New Hampshire/Wind Resources/Full Version | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are beingZealand Jump to: navigation, searchOfRoseConcerns Jump to:Neppel WindNew Grid Energy

  15. New Jersey/Wind Resources/Full Version | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are beingZealand Jump to: navigation, searchOfRoseConcerns Jump to:Neppel WindNew Grid EnergyHarvestNewNew

  16. New Mexico/Wind Resources/Full Version | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are beingZealand Jump to: navigation, searchOfRoseConcerns Jump to:Neppel WindNew GridHyTep Jumpsource History

  17. South Dakota/Wind Resources/Full Version | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are beingZealand Jump to:Ezfeedflag JumpID-f < RAPID‎SolarCity Corp Jumpsource History View NewChestnutDakota/Wind

  18. Eastern Wind Integration and Transmission Study -- Preliminary Findings: Preprint

    SciTech Connect (OSTI)

    Corbus, D.; Milligan, M.; Ela, E.; Schuerger, M.; Zavadil, B.

    2009-09-01T23:59:59.000Z

    This paper reviews the Eastern Wind Integration and Transmission Study, the development of wind datasets, the transmission analysis, and the results of wind integration analysis for four scenarios.

  19. Sandia Energy - Sandia Wind Turbine Loads Database

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Sandia Wind Turbine Loads Database Home Stationary Power Energy Conversion Efficiency Wind Energy Resources Wind Software Downloads Sandia Wind Turbine Loads Database Sandia Wind...

  20. Wind Technologies & Evolving Opportunities (Presentation)

    SciTech Connect (OSTI)

    Robichaud, R.

    2014-07-01T23:59:59.000Z

    This presentation covers opportunities for wind technology; wind energy market trends; an overview of the National Wind Technology Center near Boulder, Colorado; wind energy price and cost trends; wind turbine technology improvements; and wind resource characterization improvements.

  1. SciTech Connect: U.S. Virgin Islands Wind Resources Update 2014

    Office of Scientific and Technical Information (OSTI)

    Integrated Deployment Country of Publication: United States Language: English Subject: 17 WIND ENERGY; 29 ENERGY PLANNING, POLICY AND ECONOMY; 24 POWER TRANSMISSION AND...

  2. Datasets - OpenEI Datasets

    Open Energy Info (EERE)

    a purpose and need statement is put together for the Grande Prairie Wind Project. PDF CHP Units in Washington State This is data taken from the website http:www.eea-inc.com...

  3. 20% Wind Energy 20% Wind Energy

    E-Print Network [OSTI]

    Powell, Warren B.

    (government, industry, utilities, NGOs) Analyzes wind's potential contributions to energy security, economic · Transmission a challenge #12;Wind Power Class Resource Potential Wind Power Density at 50 m W/m 2 Wind Speed20% Wind Energy by 2030 20% Wind Energy by 2030 #12;Presentation and Objectives Overview Background

  4. Characterization of the Wind Power Resource in Europe and its Intermittency

    E-Print Network [OSTI]

    Cosseron, A.

    Wind power is assessed over Europe, with special attention given to the quantification of intermittency. Using the methodology developed in Gunturu and Schlosser (2011), the MERRA boundary flux data was used to compute ...

  5. Sandia Energy - Wind & Water Power Newsletter

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Wind & Water Power Newsletter Home Stationary Power Energy Conversion Efficiency Wind Energy Resources Wind & Water Power Newsletter Wind & Water Power NewsletterTara...

  6. Revisiting the 'Buy versus Build' Decision for Publicly Owned Utilities in California Considering Wind and Geothermal Resources

    SciTech Connect (OSTI)

    Bolinger, Mark; Wiser, Ryan; Golove, William

    2001-12-11T23:59:59.000Z

    The last two decades have seen a dramatic increase in the market share of independent, nonutility generators (NUGs) relative to traditional, utility-owned generation assets. Accordingly, the ''buy versus build'' decision facing utilities--i.e., whether a utility should sign a power purchase agreement (PPA) with a NUG, or develop and own the generation capacity itself--has gained prominence in the industry. Very little of this debate, however, has focused specifically on publicly owned electric utilities, and with few exceptions, renewable sources of supply have received similarly scant attention. Contrary to historical treatment, however, the buy versus build debate is quite relevant to publicly owned utilities and renewables because publicly owned utilities are able to take advantage of some renewable energy incentives only in a ''buy'' situation, while others accrue only in a ''build'' situation. In particular, possible economic advantages of public utility ownership include: (1) the tax-free status of publicly owned utilities and the availability of low-cost debt, and (2) the renewable energy production incentive (REPI) available only to publicly owned utilities. Possible economic advantages to entering into a PPA with a NUG include: (1) the availability of federal tax credits and accelerated depreciation schedules for certain forms of NUG-owned renewable energy, and (2) the California state production incentives available to NUGs but not utilities. This article looks at a publicly owned utility's decision to buy or build new renewable energy capacity--specifically wind and geothermal power--in California. To examine the economic aspects of this decision, we used a 20-year financial cash-flow model to assess the levelized cost of electricity under four supply options: (1) public utility ownership of new geothermal capacity, (2) public utility ownership of new wind capacity, (3) a PPA for new geothermal capacity, and (4) a PPA for new wind capacity. We focus on wind and geothermal because both resources are abundant and, in some cases, potentially economic in California. Our analysis is not intended to provide precise estimates of the levelized cost of electricity from wind projects and geothermal plants; nor is our intent to compare the levelized costs of wind and geothermal power to one another. Instead, our intent is simply to compare the costs of buying wind or geothermal power to the costs of building and operating wind or geothermal capacity under various scenarios. Of course, the ultimate decision to buy or build cannot and should not rest solely on a comparison of the levelized cost of electricity. Thus, in addition to quantitative analysis, we also include a qualitative discussion of several important features of the ''buy versus build'' decision not reflected in the economic analysis.

  7. test dataset - Datasets - OpenEI Datasets

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov YouKizildere IRaghuraji Agro IndustriesTownDells, Wisconsin: EnergyWyandanch,Eaga SolarZoloHomeimprovesecurity Hometest

  8. How do Wind and Solar Power Affect Grid Operations: The Western Wind and Solar Integration Study; Preprint

    SciTech Connect (OSTI)

    Lew, D.; Milligan, M.; Jordan, G.; Freeman, L.; Miller, N.; Clark, K.; Piwko, R.

    2009-09-01T23:59:59.000Z

    This paper reviews the scope of the Western Wind and Solar Integration Study, the development of wind and solar datasets, and the results to date on three scenarios.

  9. Fossil Gulch Wind Park | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are being directedAnnualPropertyd8c-a9ae-f8521cbb8489Information HydroFontana,datasetWind Farm Jump to:Gulch Wind

  10. Operational Impacts of Wind Energy Resources in the Bonneville Power Administration Control Area - Phase I Report

    SciTech Connect (OSTI)

    Makarov, Yuri V.; Lu, Shuai

    2008-07-15T23:59:59.000Z

    This report presents a methodology developed to study the future impact of wind on BPA power system load following and regulation requirements. The methodology uses historical data and stochastic processes to simulate the load balancing processes in the BPA power system, by mimicking the actual power system operations. Therefore, the results are close to reality, yet the study based on this methodology is convenient to conduct. Compared with the proposed methodology, existing methodologies for doing similar analysis include dispatch model simulation and standard deviation evaluation on load and wind data. Dispatch model simulation is constrained by the design of the dispatch program, and standard deviation evaluation is artificial in separating the load following and regulation requirements, both of which usually do not reflect actual operational practice. The methodology used in this study provides not only capacity requirement information, it also analyzes the ramp rate requirements for system load following and regulation processes. The ramp rate data can be used to evaluate generator response/maneuverability requirements, which is another necessary capability of the generation fleet for the smooth integration of wind energy. The study results are presented in an innovative way such that the increased generation capacity or ramp requirements are compared for two different years, across 24 hours a day. Therefore, the impact of different levels of wind energy on generation requirements at different times can be easily visualized.

  11. A SUMMARY OF TERTIARY COAL RESOURCES OF THE WIND RIVER BASIN, WYOMING

    E-Print Network [OSTI]

    and C. W. Keighin in U.S. Geological Survey Professional Paper 1625-A 1999 Resource assessment Resource assessment of selected Tertiary coal beds and zones in the Northern Rocky Mountains and Great member of the Fort Union Formation. 1999 Resource assessment of selected Tertiary coal beds and zones

  12. Bird Risk Behaviors and Fatalities at the Altamont Pass Wind Resource Area: Period of Performance, March 1998--December 2000

    SciTech Connect (OSTI)

    Thelander, C. G.; Smallwood, K. S.; Rugge, L.

    2003-12-01T23:59:59.000Z

    It has been documented that wind turbine operations at the Altamont Pass Wind Resource Area kill large numbers of birds of multiple species, including raptors. We initiated a study that integrates research on bird behaviors, raptor prey availability, turbine design, inter-turbine distribution, landscape attributes, and range management practices to explain the variation in avian mortality at two levels of analysis: the turbine and the string of turbines. We found that inter-specific differences in intensities of use of airspace within close proximity did not explain the variation in mortality among species. Unique suites of attributes relate to mortality of each species, so species-specific analyses are required to understand the factors that underlie turbine-caused fatalities. We found that golden eagles are killed by turbines located in the canyons and that rock piles produced during preparation of the wind tower laydown areas related positively to eagle mortality, perhaps due to the use of these rock piles as cover by desert cottontails. Other similar relationships between fatalities and environmental factors are identified and discussed. The tasks remaining to complete the project are summarized.

  13. Greater Sage-Grouse Habitat Use and Population Demographics at the Simpson Ridge Wind Resource Area, Carbon County, Wyoming

    SciTech Connect (OSTI)

    Gregory D. Johnson; Chad W. LeBeau; Ryan Nielsen; Troy Rintz; Jamey Eddy; Matt Holloran

    2012-03-27T23:59:59.000Z

    This study was conducted to obtain baseline data on use of the proposed Simpson Ridge Wind Resource Area (SRWRA) in Carbon County, Wyoming by greater sage-grouse. The first two study years were designed to determine pre-construction seasonally selected habitats and population-level vital rates (productivity and survival). The presence of an existing wind energy facility in the project area, the PacifiCorp Seven Mile Hill (SMH) project, allowed us to obtain some information on initial sage-grouse response to wind turbines the first two years following construction. To our knowledge these are the first quantitative data on sage-grouse response to an existing wind energy development. This report presents results of the first two study years (April 1, 2009 through March 30, 2011). This study was selected for continued funding by the National Wind Coordinating Collaborative Sage-Grouse Collaborative (NWCC-SGC) and has been ongoing since March 30, 2011. Future reports summarizing results of this research will be distributed through the NWCC-SGC. To investigate population trends through time, we determined the distribution and numbers of males using leks throughout the study area, which included a 4-mile radius buffer around the SRWRA. Over the 2-year study, 116 female greater sage-grouse were captured by spotlighting and use of hoop nets on roosts surrounding leks during the breeding period. Radio marked birds were located anywhere from twice a week to once a month, depending on season. All radio-locations were classified to season. We developed predictor variables used to predict success of fitness parameters and relative probability of habitat selection within the SRWRA and SMH study areas. Anthropogenic features included paved highways, overhead transmission lines, wind turbines and turbine access roads. Environmental variables included vegetation and topography features. Home ranges were estimated using a kernel density estimator. We developed resource selection functions (RSF) to estimate probability of selection within the SRWRA and SMH. Fourteen active greater sage-grouse leks were documented during lek surveys Mean lek size decreased from 37 in 2008 to 22 in 2010. Four leks located 0.61, 1.3, 1.4 and 2.5 km from the nearest wind turbine remained active throughout the study, but the total number of males counted on these four leks decreased from 162 the first year prior to construction (2008), to 97 in 2010. Similar lek declines were noted in regional leks not associated with wind energy development throughout Carbon County. We obtained 2,659 sage-grouse locations from radio-equipped females, which were used to map use of each project area by season. The sage-grouse populations within both study areas are relatively non-migratory, as radio-marked sage-grouse used similar areas during all annual life cycles. Potential impacts to sage-grouse from wind energy infrastructure are not well understood. The data rom this study provide insight into the early interactions of wind energy infrastructure and sage-grouse. Nest success and brood-rearing success were not statistically different between areas with and without wind energy development in the short-term. Nest success also was not influenced by anthropogenic features such as turbines in the short-term. Additionally, female survival was similar among both study areas, suggesting wind energy infrastructure was not impacting female survival in the short-term; however, further analysis is needed to identify habitats with different levels of risk to better understand the impact of wind enregy development on survival. Nest and brood-rearing habitat selection were not influenced by turbines in the short-term; however, summer habitat selection occurred within habitats closer to wind turbines. Major roads were avoided in both study areas and during most of the seasons. The impact of transmission lines varied among study areas, suggesting other landscape features may be influencing selection. The data provided in this report are preliminary and are not meant to provide a basis for fo

  14. Wind Power Price Trends in the United States

    E-Print Network [OSTI]

    Bolinger, Mark

    2010-01-01T23:59:59.000Z

    the true cost of wind generation (which would be at least $and wind’s competitive position among generation resources.

  15. Economic and technical impacts of wind variability and intermittency on long-term generation expansion planning

    E-Print Network [OSTI]

    Paristech 2009 Submitted to the Engineering Systems Division in partial fulfillment of the requirements to the Engineering Systems Division on May 6, 2011 in partial fulfillment of the requirements for the Degree of the U.S. I aggregate an hourly dataset of load and wind resource in eleven regions in order to capture

  16. Models Datasets

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOEThe Bonneville PowerCherries 82981-1cnHighandSWPA / SPRA /Ml'. William HirstLong-Term Market Penetration of

  17. Analyzing the Effects of Temporal Wind Patterns on the Value ofWind-Generated Electricity at Different Sites in California and theNorthwest

    SciTech Connect (OSTI)

    Fripp, Matthias; Wiser, Ryan

    2006-05-31T23:59:59.000Z

    Wind power production varies on a diurnal and seasonal basis. In this report, we use wind speed data modeled by TrueWind Solutions, LLC (now AWS Truewind) to assess the effects of wind timing on the value of electric power from potential wind farm locations in California and the Northwest. (Data from this dataset are referred to as ''TrueWind data'' throughout this report.) The intra-annual wind speed variations reported in the TrueWind datasets have not previously been used in published work, however, so we also compare them to a collection of anemometer wind speed measurements and to a limited set of actual wind farm production data. The research reported in this paper seeks to answer three specific questions: (1) How large of an effect can the temporal variation of wind power have on the value of wind in different wind resource areas? (2) Which locations are affected most positively or negatively by the seasonal and diurnal timing of wind speeds? (3) How compatible are wind resources in the Northwest and California with wholesale power prices and loads in either region? The latter question is motivated by the fact that wind power projects in the Northwest could sell their output into California (and vice versa), and that California has an aggressive renewable energy policy that may ultimately yield such imports. Based on our research, we reach three key conclusions. (1) Temporal patterns have a moderate impact on the wholesale market value of wind power and a larger impact on the capacity factor during peak hours. The best-timed wind power sites have a wholesale market value that is up to 4 percent higher than the average market price, while the worst-timed sites have a market value that is up to 11 percent below the average market price. The best-timed wind sites could produce as much as 30-40 percent more power during peak hours than they do on average during the year, while the worst timed sites may produce 30-60 percent less power during peak hours. (2) Northwestern markets appear to be well served by Northwestern wind and poorly served by California wind; results are less clear for California markets. Both the modeled TrueWind data and the anemometer data indicate that many Northwestern wind sites are reasonably well-matched to the Northwest's historically winter-peaking wholesale electricity prices and loads, while most California sites are poorly matched to these prices and loads. However, the TrueWind data indicate that most California and Northwestern wind sites are poorly matched to California's summer-afternoon-peaking prices and loads, while the anemometer data suggest that many of these same sites are well matched to California's wholesale prices and loads. (3) TrueWind and anemometer data agree about wind speeds in most times and places, but disagree about California's summer afternoon wind speeds: The TrueWind data indicate that wind speeds at sites in California's coastal mountains and some Northwestern locations dip deeply during summer days and stay low through much of the afternoon. In contrast, the anemometer data indicate that winds at these sites begin to rise during the afternoon and are relatively strong when power is needed most. At other times and locations, the two datasets show good agreement. This disagreement may be due in part to time-varying wind shear between the anemometer heights (20-25m) and the TrueWind reference height (50m or 70m), but may also be due to modeling errors or data collection inconsistencies.

  18. Datasets - OpenEI Datasets

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are being directedAnnualPropertyd8c-a9ae-f8521cbb8489 No revision hasda62829c05b No revision hasDatabus - QSubmit Order

  19. Recent Wind Resource Characterization Activities at the National Renewable Energy Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level:Energy: Grid Integration Redefining What's PossibleRadiation Protection Radiation ProtectionRaisingRecent Publications

  20. Robi, Robichaud, Wind Technologies and Evolving Opportunities

    Broader source: Energy.gov (indexed) [DOE]

    RPS * Wind Technology Overview * Larger Rotors * Taller Towers * Improved Controls * Wind Resource * Improved Assessment 2 Innova+on for Our Energy Future National Wind Technology...

  1. Wavelet Analysis for Wind Fields Estimation

    E-Print Network [OSTI]

    Leite, Gladeston C.

    2013-01-01T23:59:59.000Z

    resource assessment and wind farm development in the UK. Inevaluation of oil spills and wind farms. Keywords: SAR; Winddata to characterize wind farms and their potential energy

  2. Impact of Transmission on Resource Adequacy in Systems with Wind and Solar Power: Preprint

    SciTech Connect (OSTI)

    Ibanez, E.; Milligan, M.

    2012-02-01T23:59:59.000Z

    Variable generation is on track to become a significant contributor to electric power systems worldwide. Thus, it is important to analyze the effect that renewables will have on the reliability of systems. In this paper we present a new tool being implemented at the National Renewable Energy Laboratory, which allows the inclusion of variable generation in the power system resource adequacy. The tool is used to quantify the potential contribution of transmission to reliability in highly interconnected systems and an example is provided using the Western Interconnection footprint.

  3. Energy Department Releases New Land-Based/Offshore Wind Resource Map |

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page onYouTube YouTube Note: Since the YouTube|6721 Federal RegisterHydrogen and FuelDefense as PartFramework |

  4. North Carolina/Wind Resources/Full Version | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are beingZealand Jump to: navigation, searchOfRoseConcerns Jumpsource History View New Pages Recent Changes

  5. North Dakota/Wind Resources/Full Version | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are beingZealand Jump to: navigation, searchOfRoseConcerns Jumpsource History View New Pages RecentI

  6. U.S. Virgin Islands Wind Resources Update 2014 | Department of Energy

    Energy Savers [EERE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are being directedAnnual Siteof Energy 2, 2015 -Helicopter Accident atConference |Energy Road Map: AnalysisU.S.

  7. WINDExchange: Puerto Rico and U.S. Virgin Islands 50-Meter Wind Resource

    Wind Powering America (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov YouKizildere IRaghuraji Agro IndustriesTownDells, Wisconsin:Deployment Activities Printable80 m 01-APR-2011Map Maps

  8. Rhode Island/Wind Resources/Full Version | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are beingZealand Jump to:Ezfeedflag JumpID-f < RAPID‎ | RoadmapRenewableGeothermalsource History View

  9. China Resources Wind Power Development Co Ltd Hua Run | Open Energy

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are being directedAnnual Siteof Energy 2,AUDIT REPORTEnergy Offshore Place: SpainGuajirugroSolar companyChinaCLP

  10. New York/Wind Resources/Full Version | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are beingZealand Jump to: navigation, searchOfRoseConcerns Jump to:Neppelsource History View New Pages

  11. South Carolina/Wind Resources/Full Version | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are beingZealand Jump to:Ezfeedflag JumpID-f < RAPID‎SolarCity Corp Jumpsource History View New

  12. File:Sri Lanka Wind Resource Map.pdf | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are8COaBulkTransmissionSitingProcess.pdf Jump to:ar-80m.pdf Jump to:Original RuleSection106examplereport.pdfSolar

  13. Assessment of solar and wind energy resources in Ethiopia. I. Solar energy

    SciTech Connect (OSTI)

    Drake, F.; Mulugetta, Y. [Univ. of Leeds (United Kingdom)] [Univ. of Leeds (United Kingdom)

    1996-09-01T23:59:59.000Z

    This paper describes how data from a variety of sources are merged to present new countrywide maps of the solar energy distribution over Ethiopia. The spatial coverage of stations with radiation data was found to be unsatisfactory for the purpose of a countrywide solar energy assessment exercise. Therefore, radiation had to be predicted from sunshine hours by employing empirical models. Using data from seven stations in Ethiopia, linear and quadratic correlation relationships between monthly mean daily solar radiation and sunshine hours per day have been developed. These regional models show a distinct improvement over previously employed countrywide models. To produce a national solar-energy distribution profile, a spatial extension of the radiation/sunshine relationships had to be carried out. To do this, the intercepts(a) and slopes(b) of each of the seven linear regression equations and another six from previous studies, completed in neighbouring Sudan, Kenya and Yemen, were used to interpolate the corresponding values to areas between them. Subsequent to these procedures, 142 stations providing only sunshine data were assigned their `appropriate` a and b values to estimate the amount of solar radiation received, which was then used to produce annual and monthly solar radiation distribution maps for Ethiopia. The results show that in all regions solar energy is an abundant resource. 19 refs., 11 figs., 4 tabs.

  14. Wind: wind power density GIS data at 50m above ground and 1km...

    Open Energy Info (EERE)

    GIS ... Dataset Activity Stream Wind: wind power density GIS data at 50m above ground and 1km resolution for Ghana from NREL (Abstract):  Raster GIS data, exported as BIL...

  15. Final Report, Wind Power Resource Assessment on the Warm Springs Reservation Tribal Lands, Report No. DOE/GO/12103

    SciTech Connect (OSTI)

    Jim Manion, Warm Springs Power & Water Enterprises; David McClain, McClain & Associates; HDR Engineering; Dr. Stel Walker, Oregon State University

    2007-09-10T23:59:59.000Z

    This report concludes a five-year assessment of wind energy potential on the Confederated Tribes of Warm Springs Reservation of Oregon lands.

  16. Wind energy bibliography

    SciTech Connect (OSTI)

    None

    1995-05-01T23:59:59.000Z

    This bibliography is designed to help the reader search for information on wind energy. The bibliography is intended to help several audiences, including engineers and scientists who may be unfamiliar with a particular aspect of wind energy, university researchers who are interested in this field, manufacturers who want to learn more about specific wind topics, and librarians who provide information to their clients. Topics covered range from the history of wind energy use to advanced wind turbine design. References for wind energy economics, the wind energy resource, and environmental and institutional issues related to wind energy are also included.

  17. Wind Climatology Literature Review Jake Crouch October 12, 2010

    E-Print Network [OSTI]

    Wind Climatology Literature Review Jake Crouch ­ October 12, 2010 The National Centers and climate forecast models and to monitor atmospheric phenomenon such as atmospheric winds, temperature dataset, including atmospheric winds, and set a precedent for using the dataset in a climate monitoring

  18. Forward Wind Farm | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are being directedAnnualPropertyd8c-a9ae-f8521cbb8489Information HydroFontana,datasetWind Farm Jump to: navigation,

  19. Fox Islands Wind Project | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are being directedAnnualPropertyd8c-a9ae-f8521cbb8489Information HydroFontana,datasetWind Farm JumpPhaseIslands

  20. Franklin County Wind LLC | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are being directedAnnualPropertyd8c-a9ae-f8521cbb8489Information HydroFontana,datasetWind Farm JumpPhaseIslandsLLC

  1. Franklin County Wind Project | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are being directedAnnualPropertyd8c-a9ae-f8521cbb8489Information HydroFontana,datasetWind Farm

  2. Marengo II Wind Farm | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are beingZealand Jump to: navigation, searchOfRose Bend < MHKconvertersourcesource History ViewDatasetsII Wind Farm

  3. Marengo Wind Farm | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are beingZealand Jump to: navigation, searchOfRose Bend < MHKconvertersourcesource History ViewDatasetsII Wind

  4. Cleveland Bay Wind Farm | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are being directedAnnualProperty EditCalifornia:PowerCER.png El CER esDatasetCity ofClarkEnergy - QPowerClermontWind

  5. Solar and Wind Energy Resource Assessment (SWERA) Data from the National Renewable Energy Library and the United Nations Environment Program (UNEP)

    DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

    The SWERA Programme provides easy access to credible renewable energy data to stimulate investment in, and development of, renewable energy technologies. The Solar and Wind Energy Resource Assessment (SWERA) started in 2001 to advance the large-scale use of renewable energy technologies by increasing the availability and accessibility of high-quality solar and wind resource information. SWERA began as a pilot project with funding from the Global Environment Facility (GEF) and managed by the United Nations Environment Programme's (UNEP) Division of Technology, Industry and Economics (DTIE) in collaboration with more than 25 partners around the world. With the success of the project in 13 pilot countries SWERA expanded in 2006 into a full programme. Its expanded mission is to provide high quality information on renewable energy resources for countries and regions around the world, along with the tools needed to apply these data in ways that facilitate renewable energy policies and investments.[from the SWERA Guide at http://swera.unep.net/index.php?id=sweraguide_chp1] DOE and, in particular, the National Renewable Energy Laboratory, has been a functioning partner from the beginning. NREL was part of the original technical team involved in mapping, database, and GIS activities. Solar, wind, and meteorological data for selected countries can be accessed through a variety of different tools and interfaces.

  6. Wind energy: Program overview, FY 1992

    SciTech Connect (OSTI)

    Not Available

    1993-06-01T23:59:59.000Z

    The DOE Wind Energy Program assists utilities and industry in developing advanced wind turbine technology to be economically competitive as an energy source in the marketplace and in developing new markets and applications for wind systems. This program overview describes the commercial development of wind power, wind turbine development, utility programs, industry programs, wind resources, applied research in wind energy, and the program structure.

  7. GPS RINEX Files - Datasets - OpenEI Datasets

    Open Energy Info (EERE)

    Relationship Dataset Dataset extent Map data OpenStreetMap contributors Tiles by MapQuest License Creative Commons Attribution 4.0 Open Data Author University of...

  8. Surprise Valley water geochmical data - Datasets - OpenEI Datasets

    Open Energy Info (EERE)

    Relationship Dataset Dataset extent Map data OpenStreetMap contributors Tiles by MapQuest License Creative Commons Attribution 4.0 Open Data Author Lawrence...

  9. Resources

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742EnergyOnItemResearch > TheNuclear Press ReleasesIn the InorganicResources Resources Policies,

  10. Resources

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level:Energy: Grid Integration Redefining What's PossibleRadiation Protection TechnicalResonant Soft X-Ray Scattering of0 Resource ProgramResources

  11. Welcome - OpenEI Datasets

    Open Energy Info (EERE)

    Search for a topic or click on a statistic to dive into our datasets. This is a featured section Placeholder OpenEI Datasets statistics 1k datasets 2 organizations 0 related items...

  12. SciTech Connect: Guide to Using the WIND Toolkit Validation Code

    Office of Scientific and Technical Information (OSTI)

    Toolkit Validation Code In response to the U.S. Department of Energy's goal of using 20% wind energy by 2030, the Wind Integration National Dataset (WIND) Toolkit was created to...

  13. Wind Power: How Much, How Soon, and At What Cost?

    E-Print Network [OSTI]

    Wiser, Ryan H

    2010-01-01T23:59:59.000Z

    on U.S. Wind Power Installation, Cost, and Performanceaccess the nation's lowest-cost wind resources can be builtpressure on installed wind project costs while the industry

  14. RELIABILITY OF WIND POWER FROM DISPERSED SITES: A PRELIMINARY ASSESSMENT

    E-Print Network [OSTI]

    Kahn, E.

    2011-01-01T23:59:59.000Z

    Coincidence of Demand and Wind Resource Diurnal PowerOutput Variations for Three Wind Regimes List of TablesCAPACITY CREDIT FOR WIND ARRAYS: THE PROBLEM . . . . . . .

  15. Enabling Wind Power Nationwide

    Office of Environmental Management (EM)

    including natural gas, and competing renewable power resources such as solar photovoltaics. Figure 4-3. Wind turbine hub height trends in Germany from 2007 to 2014 Source:...

  16. Building a market for small wind: The break-even turnkey cost of residential wind systems in the United States

    E-Print Network [OSTI]

    Edwards, Jennifer L.; Wiser, Ryan; Bolinger, Mark; Forsyth, Trudy

    2004-01-01T23:59:59.000Z

    Break-Even Turnkey Cost of Residential Wind Systems in theaggregate installed cost of a small wind system that couldand wind resource class, (2) significant cost reductions

  17. The KAMM/WAsP Numerical Wind Atlas A powerful ingredient for wind energy planning

    E-Print Network [OSTI]

    etc. §§ Legislation Master plans EIA GUIDELINES APPROVALS #12;Outline · Wind resource mapping for Environmental Prediction and National Center for Atmospheric Research (USA), United States Geological Survey. National scale wind resource overview · Input: numerical wind atlas database (large domains) · Output

  18. Resources

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742EnergyOnItemResearch > TheNuclear Press ReleasesIn the Inorganic

  19. Reassessing Wind Potential Estimates for India: Economic and Policy Implications

    E-Print Network [OSTI]

    Phadke, Amol

    2012-01-01T23:59:59.000Z

    Report of Wind Energy Resource Assessment in China. Chinaindependent 3 party wind resource assessment of at least awind_june07.pdf for Wind Resource Assessment and mapping for

  20. Wind energy information guide

    SciTech Connect (OSTI)

    NONE

    1996-04-01T23:59:59.000Z

    This book is divided into nine chapters. Chapters 1--8 provide background and annotated references on wind energy research, development, and commercialization. Chapter 9 lists additional sources of printed information and relevant organizations. Four indices provide alphabetical access to authors, organizations, computer models and design tools, and subjects. A list of abbreviations and acronyms is also included. Chapter topics include: introduction; economics of using wind energy; wind energy resources; wind turbine design, development, and testing; applications; environmental issues of wind power; institutional issues; and wind energy systems development.

  1. Searchlight Wind Energy Project FEIS Appendix E

    Office of Environmental Management (EM)

    June 2, 2009 District Las Vegas Field Office Resource Area Activity (program) Proposed Wind Generation SECTION A. PROJECT INFORMATION 1. Project Name Searchlight Wind Project 4....

  2. Wind Energy at NREL's National Wind Technology Center

    SciTech Connect (OSTI)

    None

    2010-01-01T23:59:59.000Z

    It is a pure, plentiful natural resource. Right now wind is in high demand and it holds the potential to transform the way we power our homes and businesses. NREL is at the forefront of wind energy research and development. NREL's National Wind Technology Center (NWTC) is a world-class facility dedicated to accelerating and deploying wind technology.

  3. Wind Energy at NREL's National Wind Technology Center

    ScienceCinema (OSTI)

    None

    2013-05-29T23:59:59.000Z

    It is a pure, plentiful natural resource. Right now wind is in high demand and it holds the potential to transform the way we power our homes and businesses. NREL is at the forefront of wind energy research and development. NREL's National Wind Technology Center (NWTC) is a world-class facility dedicated to accelerating and deploying wind technology.

  4. Fowler, California: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are being directedAnnualPropertyd8c-a9ae-f8521cbb8489Information HydroFontana,datasetWind Farm JumpPhase

  5. Fredericksburg, Virginia: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are being directedAnnualPropertyd8c-a9ae-f8521cbb8489Information HydroFontana,datasetWindFreEner-g

  6. Wind Power

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level:Energy: Grid Integration Redefining What'sis Taking Over OurThe Iron SpinPrincetonUsingWhat is abig world of tinyWind Industry SoarsWind

  7. Fact Sheet: Tehachapi Wind Energy Storage Project (October 2012...

    Broader source: Energy.gov (indexed) [DOE]

    Wind Resource Area because it is one of the largest wind resource areas in the world. Electricity Delivery & Energy Reliability Energy Storage Program Southern California...

  8. DOE Announces Webinars on an Offshore Wind Economic Impacts Model...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    an Offshore Wind Economic Impacts Model, Resources for Tribal Energy Efficiency Projects, and More DOE Announces Webinars on an Offshore Wind Economic Impacts Model, Resources for...

  9. Natural Gas Resources of the Greater Green River and Wind River Basins of Wyoming (Assessing the Technology Needs of Sub-economic Resources, Phase I: Greater Green River and Wind river Basins, Fall 2002)

    SciTech Connect (OSTI)

    Boswell, Ray; Douds, Ashley; Pratt, Skip; Rose, Kelly; Pancake, Jim; Bruner, Kathy (EG& G Services) [EG& G Services; Kuuskraa, Vello; Billingsley, Randy (Advanced Resources International) [Advanced Resources International

    2003-02-28T23:59:59.000Z

    In 2000, NETL conducted a review of the adequacy of the resource characterization databases used in its Gas Systems Analysis Model (GSAM). This review indicated that the most striking deficiency in GSAM’s databases was the poor representation of the vast resource believed to exist in low-permeability sandstone accumulations in western U.S. basins. The model’s databases, which are built primarily around the United States Geological Survey (USGS) 1995 National Assessment (for undiscovered resources), reflected an estimate of the original-gas-inplace (OGIP) only in accumulations designated “technically-recoverable” by the USGS –roughly 3% to 4% of the total estimated OGIP of the region. As these vast remaining resources are a prime target of NETL programs, NETL immediately launched an effort to upgrade its resource characterizations. Upon review of existing data, NETL concluded that no existing data were appropriate sources for its modeling needs, and a decision was made to conduct new, detailed log-based, gas-in-place assessments.

  10. Fowler Ridge II Wind Farm | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are being directedAnnualPropertyd8c-a9ae-f8521cbb8489Information HydroFontana,datasetWind Farm Jump

  11. Fowler Ridge Wind Farm Phase I (Clipper) | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are being directedAnnualPropertyd8c-a9ae-f8521cbb8489Information HydroFontana,datasetWind Farm JumpPhase I

  12. Fowler Ridge Wind Farm Phase I (Vestas) | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are being directedAnnualPropertyd8c-a9ae-f8521cbb8489Information HydroFontana,datasetWind Farm JumpPhase IFowler

  13. Wind energy and SAR wind mapping Charlotte Hasager(2) and merete christiansen(1)

    E-Print Network [OSTI]

    offshore wind farms are operating and more are in construction. Thus the study is focussed on an area is ongoing, and the series of wind maps are used for investigation of offshore wind resources. In wind energy the siting of a wind farm is dependent upon reliable information about the wind climate within the area

  14. Organizations - OpenEI Datasets

    Open Energy Info (EERE)

    ernateenergypromotioncentre Alternate Energy Promotion Centre 1 Dataset View Alternate Energy Promotion Centre alternativefuelsdatacenter Alternative Fuels Data Center 1...

  15. Revisiting the 'Buy versus Build' decision for publicly owned utilities in California considering wind and geothermal resources

    SciTech Connect (OSTI)

    Bolinger, Mark; Wiser, Ryan; Golove, William

    2001-10-01T23:59:59.000Z

    The last two decades have seen a dramatic increase in the market share of independent, non-utility generators (NUGs) relative to traditional, utility-owned generation assets. Accordingly, the ''buy versus build'' decision facing utilities--i.e., whether a utility should sign a power purchase agreement (PPA) with a NUG, or develop and own the generation capacity itself--has gained prominence in the industry. Specific debates have revolved around the relative advantages of, the types of risk created by, and the regulatory incentives favoring each approach. Very little of this discussion has focused specifically on publicly owned electric utilities, however, perhaps due to the belief that public power's tax-free financing status leaves little space in which NUGs can compete. With few exceptions (Wiser and Kahn 1996), renewable sources of supply have received similarly scant attention in the buy versus build debate. In this report, we revive the ''buy versus build'' debate and apply it to the two sectors of the industry traditionally underrepresented in the discussion: publicly owned utilities and renewable energy. Contrary to historical treatment, this debate is quite relevant to public utilities and renewables because publicly owned utilities are able to take advantage of some renewable energy incentives only in a ''buy'' situation, while others accrue only in a ''build'' situation. In particular, possible economic advantages of public utility ownership include: (1) the tax-free status of publicly owned utilities and the availability of low-cost debt, and (2) the renewable energy production incentive (REPI) available only to publicly owned utilities. Possible economic advantages to entering into a PPA with a NUG include: (1) the availability of federal tax credits and accelerated depreciation schedules for certain forms of NUG-owned renewable energy, and (2) the California state production incentives available to NUGs but not utilities. This report looks at a publicly owned utility's decision to buy or build new renewable energy capacity--specifically wind or geothermal power--in California. To examine the economic aspects of this decision, we modified and updated a 20-year financial cash-flow model to assess the levelized cost of electricity under four supply options: (1) public utility ownership of new geothermal capacity, (2) public utility ownership of new wind capacity, (3) a PPA for new geothermal capacity, and (4) a PPA for new wind capacity.

  16. dataset | OpenEI Community

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are being directedAnnualProperty Edit withTianlinPapersWindey Wind Home Rmckeel's picturecontest Homedataset Home

  17. datasets | OpenEI Community

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are being directedAnnualProperty Edit withTianlinPapersWindey Wind Home Rmckeel's picturecontest Homedataset

  18. Advanced controls for floating wind turbines

    E-Print Network [OSTI]

    Casanovas, Carlos (Casanovas Bermejo)

    2014-01-01T23:59:59.000Z

    Floating Offshore Wind Turbines (FOWT) is a technology that stands to spearhead the rapid growth of the offshore wind energy sector and allow the exploration of vast high quality wind resources over coastal and offshore ...

  19. Sandia Energy - Sandia Wind Energy in the News

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Sandia Wind Energy in the News Home Stationary Power Energy Conversion Efficiency Wind Energy Resources Sandia Wind Energy in the News Sandia Wind Energy in the NewsTara...

  20. Wind: wind power density maps at 50 m above ground and 1km resolution...

    Open Energy Info (EERE)

    PDF maps of Eastern China wind mapping. (Purpose): To provide information on the wind resource potential in eastern China. Includes maps of full mapping region, and 15...

  1. Commercial Scale Wind Incentive Program

    Broader source: Energy.gov [DOE]

    Energy Trust of Oregon’s Commercial Scale Wind offering provides resources and cash incentives to help communities, businesses land owners, and government entities install wind turbine systems up...

  2. How Do Wind and Solar Power Affect Grid Operations: The Western Wind and Solar Integration Study

    SciTech Connect (OSTI)

    Lew, D.; Milligan, M.; Jordan, G.; Freeman, L.; Miller, N.; Clark, K.; Piwko, R.

    2009-01-01T23:59:59.000Z

    The Western Wind and Solar Integration Study is one of the largest regional wind and solar integration studies to date, examining the operational impact of up to 35% wind, photovoltaics, and concentrating solar power on the WestConnect grid in Arizona, Colorado, Nevada, New Mexico, and Wyoming. This paper reviews the scope of the study, the development of wind and solar datasets, and the results to date on three scenarios.

  3. Effects of Temporal Wind Patterns on the Value of Wind-Generated Electricity at Different Sites in California and the Northwest

    E-Print Network [OSTI]

    Fripp, Matthias; Wiser, Ryan

    2006-01-01T23:59:59.000Z

    1992). “Capacity credit of wind power in the Netherlands. ”modeling as a tool for wind resource assessment andBurton, T. , et al. (2001). Wind Energy Handbook, John

  4. U.S. Wind Manufacturing: Taller Hub Heights to Access Higher...

    Broader source: Energy.gov (indexed) [DOE]

    U.S. Wind Manufacturing: Taller Hub Heights to Access Higher Wind Resources and Lower Cost of Energy U.S. Wind Manufacturing: Taller Hub Heights to Access Higher Wind Resources and...

  5. Buildings Performance Database - Datasets - OpenEI Datasets

    Open Energy Info (EERE)

    data. The platform enables users to perform statistical analysis on an anonymous dataset of tens of thousands of commercial and residential buildings from across the country....

  6. Massive Datasets in Astronomy

    E-Print Network [OSTI]

    Robert J. Brunner; S. George Djorgovski; Thomas A. Prince; Alex S. Szalay

    2001-06-26T23:59:59.000Z

    Astronomy has a long history of acquiring, systematizing, and interpreting large quantities of data. Starting from the earliest sky atlases through the first major photographic sky surveys of the 20th century, this tradition is continuing today, and at an ever increasing rate. Like many other fields, astronomy has become a very data-rich science, driven by the advances in telescope, detector, and computer technology. Numerous large digital sky surveys and archives already exist, with information content measured in multiple Terabytes, and even larger, multi-Petabyte data sets are on the horizon. Systematic observations of the sky, over a range of wavelengths, are becoming the primary source of astronomical data. Numerical simulations are also producing comparable volumes of information. Data mining promises to both make the scientific utilization of these data sets more effective and more complete, and to open completely new avenues of astronomical research. Technological problems range from the issues of database design and federation, to data mining and advanced visualization, leading to a new toolkit for astronomical research. This is similar to challenges encountered in other data-intensive fields today. These advances are now being organized through a concept of the Virtual Observatories, federations of data archives and services representing a new information infrastructure for astronomy of the 21st century. In this article, we provide an overview of some of the major datasets in astronomy, discuss different techniques used for archiving data, and conclude with a discussion of the future of massive datasets in astronomy.

  7. Wind Energy Benefits, Wind Powering America (WPA) (Fact Sheet)

    SciTech Connect (OSTI)

    Not Available

    2011-04-01T23:59:59.000Z

    This fact sheet outlines the top 10 benefits of wind energy, including cost, water savings, job creation, indigenous resource, and low operating costs.

  8. The Cost of Transmission for Wind Energy: A Review of Transmission Planning Studies

    E-Print Network [OSTI]

    Mills, Andrew D.

    2009-01-01T23:59:59.000Z

    in Systems with Wind Generation. DTI Centre for DistributedCost Resource Plan Wind Generation. Xcel Energy http://the Development of Wind Powered Generation in Southwestern

  9. Synoptic and local influences on boundary layer processes, with an application to California wind power

    E-Print Network [OSTI]

    Mansbach, David K.

    2010-01-01T23:59:59.000Z

    3.4.2 Wind roses . . . . . . . .Figure 5.5: Downscaled wind speed changes and componentin?uences on California’s wind energy resource. Part 1:

  10. Small Wind Information (Postcard)

    SciTech Connect (OSTI)

    Not Available

    2011-08-01T23:59:59.000Z

    The U.S. Department of Energy's Wind Powering America initiative maintains a website section devoted to information about small wind turbines for homeowners, ranchers, and small businesses. This postcard is a marketing piece that stakeholders can provide to interested parties; it will guide them to this online resource.

  11. Wind Energy Benefits (Fact Sheet)

    SciTech Connect (OSTI)

    Not Available

    2015-01-01T23:59:59.000Z

    This fact sheet outlines the top 10 benefits of wind energy, including cost, water savings, job creation, indigenous resource, and low operating costs.

  12. Wind Energy Benefits, Wind Powering America (WPA) (Fact Sheet), Wind And Water Power Program (WWPP)

    Broader source: Energy.gov [DOE]

    This fact sheet outlines the top 10 benefits of wind energy, including cost, water savings, job creation, indigenous resource, and low operating costs.

  13. WIND ENERGY Wind Energ. (2014)

    E-Print Network [OSTI]

    Peinke, Joachim

    2014-01-01T23:59:59.000Z

    loads from the wind inflow through rotor aerodynamics, drive train and power electronics is stillWIND ENERGY Wind Energ. (2014) Published online in Wiley Online Library (wileyonlinelibrary wind inflow conditions M. R. Luhur, J. Peinke, J. Schneemann and M. Wächter ForWind-Center for Wind

  14. Wind Powering America Podcasts, Wind Powering America (WPA)

    SciTech Connect (OSTI)

    Not Available

    2012-04-01T23:59:59.000Z

    Wind Powering America and the National Association of Farm Broadcasters produce a series of radio interviews featuring experts discussing wind energy topics. The interviews are aimed at a rural stakeholder audience and are available as podcasts. On the Wind Powering America website, you can access past interviews on topics such as: Keys to Local Wind Energy Development Success, What to Know about Installing a Wind Energy System on Your Farm, and Wind Energy Development Can Revitalize Rural America. This postcard is a marketing piece that stakeholders can provide to interested parties; it will guide them to this online resource for podcast episodes.

  15. Ris-R-1239(EN) Wind Energy Department

    E-Print Network [OSTI]

    .3 Numerical wind tunnel 10 3.4 Modal analysis of wind turbine blades 11 3.5 Aeroelastic stability 12 4 43 12 The Wind Turbine Blade Testing Centre (Sparkćr Centre) 44 12.1 Fatigue blade tests 45 12 of wind turbines; prediction of wind loads and wind resources as well as methods to determine

  16. Challenges in Predicting Power Output from Offshore Wind Farms

    E-Print Network [OSTI]

    Pryor, Sara C.

    Challenges in Predicting Power Output from Offshore Wind Farms R. J. Barthelmie1 and S. C. Pryor2 Abstract: Offshore wind energy is developing rapidly in Europe and the trend is towards large wind farms an offshore wind farm, accurate assessment of the wind resource/power output from the wind farm is a necessity

  17. Sandia National Laboratories: Solar Resource Assessment

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    * Solar Resource Assessment Comments are closed. Renewable Energy Wind Energy Wind Plant Optimization Test Site Operations & Maintenance Safety: Test Facilities Capital Equipment...

  18. Franklin County, Kentucky: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are being directedAnnualPropertyd8c-a9ae-f8521cbb8489Information HydroFontana,datasetWind FarmKentucky: Energy

  19. Franklin County, Ohio: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are being directedAnnualPropertyd8c-a9ae-f8521cbb8489Information HydroFontana,datasetWind FarmKentucky: EnergyOhio:

  20. Frederick County, Maryland: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are being directedAnnualPropertyd8c-a9ae-f8521cbb8489Information HydroFontana,datasetWindFreEner-g Jump

  1. Wind Integration

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office of ScienceandMesa del SolStrengtheningWildfires may contribute more to global warmingGlobal »Wind

  2. Wind Power

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742EnergyOnItemResearch >Internship Program TheSiteEurekaWeekly UserWhat's New Today aboutWind

  3. West Winds Wind Farm | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are beingZealand Jump to:Ezfeedflag JumpID-fTri GlobalJump to: navigation,Goff,Holt WindInformationWestWinds Wind

  4. The Political Economy of Wind Power in China

    E-Print Network [OSTI]

    Swanson, Ryan Landon

    2011-01-01T23:59:59.000Z

    solar panels are too expensive to install domestically, China‘China,? as Chinese wind resources are abundant and wind power is cheaper than solar

  5. Obama Administration Hosts Great Lakes Offshore Wind Workshop...

    Office of Environmental Management (EM)

    wind development in the Great Lakes closer to fruition." "The country's vast offshore wind resources have the potential to dramatically reduce America's dependence on fossil...

  6. Effects of Temporal Wind Patterns on the Value of Wind-Generated Electricity in California and the Northwest

    E-Print Network [OSTI]

    Wiser, Ryan H

    2008-01-01T23:59:59.000Z

    and S. Bretz, "Wind Generation in the Future Competitiveenergy sources, wind power generation I. I NTRODUCTION Windwind alone. Index Terms—energy resources, power generation

  7. Brady's Geothermal Field Seismic Network Metadata - Datasets...

    Open Energy Info (EERE)

    Relationship Dataset Dataset extent Map data OpenStreetMap contributors Tiles by MapQuest License Creative Commons Attribution 4.0 Open Data Author University of...

  8. Form:Dataset | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are being directedAnnualPropertyd8c-a9ae-f8521cbb8489Information HydroFontana,dataset name below to add to the

  9. Ris National Laboratory Wind Energy Department

    E-Print Network [OSTI]

    and the wind power density 36 (Troen & Petersen, 1989). In screening for potential offshore wind 37farm sitesRisø National Laboratory Postprint Wind Energy Department Year 2006 Paper: www.risoe.dk/rispubl/art/2006_96.pdf Wind resource assessment from C-band SAR Merete Bruun Christiansen a, Wolfgang Koch b

  10. Wind: wind power density maps at 50m above ground and 1km resolution...

    Open Energy Info (EERE)

    density for Ghana. (Purpose):HTMLREMOVEDHTMLREMOVEDTo provide information on the wind resource potential in Ghana. Data and Resources Download MapsZIP Download Maps More...

  11. Wind: wind power density maps at 50 m above ground and 1km resolution...

    Open Energy Info (EERE)

    density for Cuba. (Purpose):HTMLREMOVEDHTMLREMOVEDTo provide information on the wind resource potential in Cuba. Data and Resources Download MapsZIP Download Maps More...

  12. Northerly surface wind events over the eastern North Pacific Ocean : spatial distribution, seasonality, atmospheric circulation, and forcing

    E-Print Network [OSTI]

    Taylor, Stephen V.

    2006-01-01T23:59:59.000Z

    D. (2005), California Wind Resources, CEC publication # CEC-level inversions with surface wind and temperature at PointD. W. Stuart (1986), Mesoscale wind variability near Point

  13. Fully coupled dynamic analysis of a floating wind turbine system

    E-Print Network [OSTI]

    Withee, Jon E

    2004-01-01T23:59:59.000Z

    The use of wind power is in a period of rapid growth worldwide and wind energy systems have emerged as a promising technology for utilizing offshore wind resources for the large scale generation of electricity. Drawing ...

  14. Commonwealth Wind Commercial Wind Program

    Broader source: Energy.gov [DOE]

    Through the Commonwealth Wind Incentive Program – Commercial Wind Initiative the Massachusetts Clean Energy Center (MassCEC) offers site assessment grants of services, feasibility study grants, a...

  15. Modeling, Analysis, and Control of Demand Response Resources

    E-Print Network [OSTI]

    Mathieu, Johanna L.

    2013-01-01T23:59:59.000Z

    balancing, especially important in power systems with high penetrations of intermittent renewable resources like wind

  16. Modeling, Analysis, and Control of Demand Response Resources

    E-Print Network [OSTI]

    Mathieu, Johanna L.

    2012-01-01T23:59:59.000Z

    balancing, especially important in power systems with high penetrations of intermittent renewable resources like wind

  17. Airborne Wind Turbine

    SciTech Connect (OSTI)

    None

    2010-09-01T23:59:59.000Z

    Broad Funding Opportunity Announcement Project: Makani Power is developing an Airborne Wind Turbine (AWT) that eliminates 90% of the mass of a conventional wind turbine and accesses a stronger, more consistent wind at altitudes of near 1,000 feet. At these altitudes, 85% of the country can offer viable wind resources compared to only 15% accessible with current technology. Additionally, the Makani Power wing can be economically deployed in deep offshore waters, opening up a resource which is 4 times greater than the entire U.S. electrical generation capacity. Makani Power has demonstrated the core technology, including autonomous launch, land, and power generation with an 8 meter wingspan, 20 kW prototype. At commercial scale, Makani Power aims to develop a 600 kW, 28 meter wingspan product capable of delivering energy at an unsubsidized cost competitive with coal, the current benchmark for low-cost power.

  18. Wind Generation Feasibility Study in Bethel, AK

    SciTech Connect (OSTI)

    Tom Humphrey, YKHC; Lance Kincaid, EMCOR Energy & Technologies

    2004-07-31T23:59:59.000Z

    This report studies the wind resources in the Yukon-Kuskokwim Health Corporation (YKHC) region, located in southwestern Alaska, and the applicability of wind generation technologies to YKHC facilities.

  19. Nebraska Statewide Wind Integration Study: Executive Summary

    SciTech Connect (OSTI)

    EnerNex Corporation, Knoxville, Tennessee; Ventyx, Atlanta, Georgia; Nebraska Power Association, Lincoln, Nebraska

    2010-03-01T23:59:59.000Z

    Wind generation resources in Nebraska will play an increasingly important role in the environmental and energy security solutions for the state and the nation. In this context, the Nebraska Power Association conducted a state-wide wind integration study.

  20. Guide to Using the WIND Toolkit Validation Code

    SciTech Connect (OSTI)

    Lieberman-Cribbin, W.; Draxl, C.; Clifton, A.

    2014-12-01T23:59:59.000Z

    In response to the U.S. Department of Energy's goal of using 20% wind energy by 2030, the Wind Integration National Dataset (WIND) Toolkit was created to provide information on wind speed, wind direction, temperature, surface air pressure, and air density on more than 126,000 locations across the United States from 2007 to 2013. The numerical weather prediction model output, gridded at 2-km and at a 5-minute resolution, was further converted to detail the wind power production time series of existing and potential wind facility sites. For users of the dataset it is important that the information presented in the WIND Toolkit is accurate and that errors are known, as then corrective steps can be taken. Therefore, we provide validation code written in R that will be made public to provide users with tools to validate data of their own locations. Validation is based on statistical analyses of wind speed, using error metrics such as bias, root-mean-square error, centered root-mean-square error, mean absolute error, and percent error. Plots of diurnal cycles, annual cycles, wind roses, histograms of wind speed, and quantile-quantile plots are created to visualize how well observational data compares to model data. Ideally, validation will confirm beneficial locations to utilize wind energy and encourage regional wind integration studies using the WIND Toolkit.

  1. Lower Sioux Wind Feasibility & Development

    SciTech Connect (OSTI)

    Minkel, Darin

    2012-04-01T23:59:59.000Z

    This report describes the process and findings of a Wind Energy Feasibility Study (Study) conducted by the Lower Sioux Indian Community (Community). The Community is evaluating the development of a wind energy project located on tribal land. The project scope was to analyze the critical issues in determining advantages and disadvantages of wind development within the Community. This analysis addresses both of the Community's wind energy development objectives: the single turbine project and the Commerical-scale multiple turbine project. The main tasks of the feasibility study are: land use and contraint analysis; wind resource evaluation; utility interconnection analysis; and project structure and economics.

  2. Models and Datasets

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOEThe Bonneville PowerCherries 82981-1cnHighandSWPA / SPRA /Ml'. William HirstLong-Term Market Penetration

  3. Wind | Department of Energy

    Energy Savers [EERE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are being directed off Energy.gov. Are you sureReportsofDepartmentSeries |Attacksof EnergyWhenWindWind ResearchWind

  4. Wind Powering America Initiative (Fact Sheet)

    SciTech Connect (OSTI)

    Not Available

    2011-01-01T23:59:59.000Z

    The U.S. Department of Energy's Wind Powering America initiative engages in technology market acceptance, barrier reduction, and technology deployment support activities. This fact sheet outlines ways in which the Wind Powering America team works to reduce barriers to appropriate wind energy deployment, primarily by focusing on six program areas: workforce development, communications and outreach, stakeholder analysis and resource assessment, wind technology technical support, wind power for Native Americans, and federal sector support and collaboration.

  5. Soil Quality Information Sheet Rangeland Soil Quality--Wind Erosion

    E-Print Network [OSTI]

    and to be blown away. A cover of plants disrupts the force of the wind. Soils are more susceptible to wind erosionSoil Quality Information Sheet Rangeland Soil Quality--Wind Erosion USDA, Natural Resources Conservation Service May 2001 Rangeland Sheet 10 What is wind erosion? Wind erosion is the physical wearing

  6. WIND ENERGY Wind Energ. (2014)

    E-Print Network [OSTI]

    2014-01-01T23:59:59.000Z

    in the near wake. In conclusion, WiTTS performs satisfactorily in the rotor region of wind turbine wakes under neutral stability. Copyright © 2014 John Wiley & Sons, Ltd. KEYWORDS wind turbine wake; wake model; self in wind farms along several rows and columns. Because wind turbines generate wakes that propagate downwind

  7. Ex post analysis of economic impacts from wind power development in U.S. counties

    E-Print Network [OSTI]

    Brown, Jason P

    2014-01-01T23:59:59.000Z

    2011) Figure 1. Location of Wind Power Development in theUnited States Figure 2: U.S. Wind Resource Map (Source:Resource Potential for Wind Capacity (Power Class 3-7, MW)

  8. NREL GIS Data: Global Offshore Wind - Datasets - OpenEI Datasets

    Open Energy Info (EERE)

    bleenergylaboratorynrel National Renewable Energy Laboratory (NREL) There is no description for this organization Social Google+ Twitter Facebook License License Not Specified...

  9. Comparison of wind stress algorithms, datasets and oceanic power input

    E-Print Network [OSTI]

    Yuan, Shaoyu

    2009-01-01T23:59:59.000Z

    If the ocean is in a statistically steady state, energy balance is a strong constraint, suggesting that the energy input into the world ocean is dissipated simultaneously at the same rate. Energy conservation is one of the ...

  10. Articles about Resource Assessment and Characterization

    Broader source: Energy.gov [DOE]

    Stories about resource assessment and characterization featured by the U.S. Department of Energy (DOE) Wind Program.

  11. Naval Station Newport Wind Resource Assessment. A Study Prepared in Partnership with the Environmental Protection Agency for the RE-Powering America's Land Initiative: Siting Renewable Energy on Potentially Contaminated Land and Mine Sites, and The Naval Facilities Engineering Service Center

    SciTech Connect (OSTI)

    Robichaud, R.; Fields, J.; Roberts, J. O.

    2012-02-01T23:59:59.000Z

    The U.S. Environmental Protection Agency (EPA) launched the RE-Powering America's Land initiative to encourage development of renewable energy (RE) on potentially contaminated land and mine sites. EPA is collaborating with the U.S. Department of Energy's (DOE's) National Renewable Energy Laboratory (NREL) to evaluate RE options at Naval Station (NAVSTA) Newport in Newport, Rhode Island where multiple contaminated areas pose a threat to human health and the environment. Designated a superfund site on the National Priorities List in 1989, the base is committed to working toward reducing the its dependency on fossil fuels, decreasing its carbon footprint, and implementing RE projects where feasible. The Naval Facilities Engineering Service Center (NFESC) partnered with NREL in February 2009 to investigate the potential for wind energy generation at a number of Naval and Marine bases on the East Coast. NAVSTA Newport was one of several bases chosen for a detailed, site-specific wind resource investigation. NAVSTA Newport, in conjunction with NREL and NFESC, has been actively engaged in assessing the wind resource through several ongoing efforts. This report focuses on the wind resource assessment, the estimated energy production of wind turbines, and a survey of potential wind turbine options based upon the site-specific wind resource.

  12. Diablo Winds Wind Farm | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are being directedAnnualPropertyd8c-a9ae-f8521cbb8489 No revision hasda62829c05bGabbs TypeWinds Wind Farm Jump to:

  13. PoroTomo Subtask 3.5 GPS Data Analysis - Datasets - OpenEI Datasets

    Open Energy Info (EERE)

    Relationship Dataset Dataset extent Map data OpenStreetMap contributors Tiles by MapQuest License Creative Commons Attribution 4.0 Open Data Author University of...

  14. Porotomo Subtask 3.4 Raw Data - Datasets - OpenEI Datasets

    Open Energy Info (EERE)

    Relationship Dataset Dataset extent Map data OpenStreetMap contributors Tiles by MapQuest License Creative Commons Attribution 4.0 Open Data Author University of...

  15. Modelling international wind energy diffusion: Are the patterns of induced diffusion `S'

    E-Print Network [OSTI]

    Feigon, Brooke

    Modelling international wind energy diffusion: Are the patterns of induced diffusion `S' shaped datasets, the paper explores the patterns of international wind energy diffusion in OECD countries. The model employed in the paper predicted that wind energy, as a complex and expensive innovation, would

  16. Wind Farm

    Office of Energy Efficiency and Renewable Energy (EERE)

    The wind farm in Greensburg, Kansas, was completed in spring 2010, and consists of ten 1.25 megawatt (MW) wind turbines that supply enough electricity to power every house, business, and municipal...

  17. CgWind: A high-order accurate simulation tool for wind turbines and wind farms

    SciTech Connect (OSTI)

    Chand, K K; Henshaw, W D; Lundquist, K A; Singer, M A

    2010-02-22T23:59:59.000Z

    CgWind is a high-fidelity large eddy simulation (LES) tool designed to meet the modeling needs of wind turbine and wind park engineers. This tool combines several advanced computational technologies in order to model accurately the complex and dynamic nature of wind energy applications. The composite grid approach provides high-quality structured grids for the efficient implementation of high-order accurate discretizations of the incompressible Navier-Stokes equations. Composite grids also provide a natural mechanism for modeling bodies in relative motion and complex geometry. Advanced algorithms such as matrix-free multigrid, compact discretizations and approximate factorization will allow CgWind to perform highly resolved calculations efficiently on a wide class of computing resources. Also in development are nonlinear LES subgrid-scale models required to simulate the many interacting scales present in large wind turbine applications. This paper outlines our approach, the current status of CgWind and future development plans.

  18. Wind: wind power density GIS data at 50m above ground and 1km...

    Open Energy Info (EERE)

    file, 50 m wind power density for eastern China. (Purpose): To provide information on the wind resource potential in eastern China. Values range from 0 to 3079 Wm2. (Supplemental...

  19. Wind Energy

    Broader source: Energy.gov [DOE]

    Presentation covers wind energy at the Federal Utility Partnership Working Group (FUPWG) meeting, held on November 18-19, 2009.

  20. Articles about Distributed Wind | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    and is poised for future growth that could double the capacity of renewable electricity generation from resources like wind power by 2020. March 31, 2014 PNNL Reports Distributed...

  1. Importance of Second-Order Difference-Frequency Wave-Diffraction Forces in the Validation of a Fast Semi-Submersible Floating Wind Turbine Model: Preprint

    SciTech Connect (OSTI)

    Couling, A. J.; Goupee, A. J.; Robertson, A. N.; Jonkman, J. M.

    2013-06-01T23:59:59.000Z

    To better access the abundant offshore wind resource, efforts across the world are being undertaken to develop and improve floating offshore wind turbine technologies. A critical aspect of creating reliable, mature floating wind turbine technology is the development, verification, and validation of efficient computer-aided-engineering (CAE) tools that can be relied upon in the design process. The National Renewable Energy Laboratory (NREL) has created a comprehensive, coupled analysis CAE tool for floating wind turbines, FAST, which has been verified and utilized in numerous floating wind turbine studies. Several efforts are currently underway that leverage the extensive 1/50th-scale DeepCwind wind/wave basin model test dataset, obtained at the Maritime Research Institute Netherlands (MARIN) in 2011, to validate the floating platform functionality of FAST to complement its already validated aerodynamic and structural simulation capabilities. In this paper, further work is undertaken to continue this validation. In particular, the ability of FAST to replicate global response behaviors associated with dynamic wind forces, second-order difference-frequency wave-diffraction forces and their interaction with one another are investigated.

  2. Effects of Temporal Wind Patterns on the Value of Wind-Generated Electricity at Different Sites in California and the Northwest

    E-Print Network [OSTI]

    Fripp, Matthias; Wiser, Ryan

    2006-01-01T23:59:59.000Z

    et al. (1998). Wind Generation in the Future Competitivegeneration system, as well as computational resources that would make it prohibitive for estimating the capacity value of wind

  3. 20% Wind Energy by 2030 - Chapter 3: Manufacturing, Materials...

    Energy Savers [EERE]

    3: Manufacturing, Materials, and Resources Summary Slides 20% Wind Energy by 2030 - Chapter 3: Manufacturing, Materials, and Resources Summary Slides Summary Slides for Chapter 3:...

  4. Index of /datasets/files/39/pub

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are beingZealand Jump to: navigation, search OpenEIHesperia,IDGWP WindSatelliteInSAR Jump to:Efficiencypub [ICO] Name

  5. Index of /datasets/files/41/pub

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are beingZealand Jump to: navigation, search OpenEIHesperia,IDGWP WindSatelliteInSAR Jump to:Efficiencypub [ICO] Name/

  6. Coupled Dynamic Analysis of Large-Scale Mono-Column Offshore Wind Turbine with a Single Tether Hinged in Seabed

    E-Print Network [OSTI]

    Chen, Jieyan

    2012-10-19T23:59:59.000Z

    The increased interest in the offshore wind resource in both industry and academic and the extension of the wind field where offshore wind turbine can be deployed has stimulated quite a number of offshore wind turbines concepts. This thesis presents...

  7. Coupled Dynamic Analysis of Large-Scale Mono-Column Offshore Wind Turbine with a Single Tether Hinged in Seabed 

    E-Print Network [OSTI]

    Chen, Jieyan

    2012-10-19T23:59:59.000Z

    The increased interest in the offshore wind resource in both industry and academic and the extension of the wind field where offshore wind turbine can be deployed has stimulated quite a number of offshore wind turbines concepts. This thesis presents...

  8. Ris-PhD-27(EN) Wind Energy Applications of Synthetic

    E-Print Network [OSTI]

    winds in offshore wind resource assessment. Firstly, wind wakes behind two large offshore wind farms farming 3 2.1 Horns Rev and Nysted offshore wind farms 4 3 Synthetic aperture radar 6 3.1 Imaging geometry in offshore wind energy planning as a supplement to on site measurements, which are costly and sparse

  9. Exploring wind energy potential off the California coast Qingfang Jiang,1

    E-Print Network [OSTI]

    Jacobson, Mark

    ., California offshore wind energy potential, submitted to Wind Energy, 2008]. Com- pared with wind farms over land, offshore wind farms have a number of advantages. Offshore wind turbines pose less threat potential over land around the world, offshore wind energy resources are largely unexplored, in part because

  10. Offshore Wind Energy Market Overview (Presentation)

    SciTech Connect (OSTI)

    Baring-Gould, I.

    2013-07-01T23:59:59.000Z

    This presentation describes the current international market conditions regarding offshore wind, including the breakdown of installation costs, how to reduce costs, and the physical siting considerations considered when planning offshore wind construction. The presentation offers several examples of international existing and planned offshore wind farm sites and compares existing international offshore resources with U.S. resources. The presentation covers future offshore wind trends and cites some challenges that the United States must overcome before it will be able to fully develop offshore wind sites.

  11. Previous Wind Power Announcements (generation/wind)

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level:Energy: Grid Integration Redefining What's Possible forPortsmouth/Paducah ProjectPRE-AWARDenergyEnergytransmission-rates Sign In About |Wind

  12. Wind Energy Ordinances (Fact Sheet)

    SciTech Connect (OSTI)

    Not Available

    2010-08-01T23:59:59.000Z

    Due to increasing energy demands in the United States and more installed wind projects, rural communities and local governments with limited or no experience with wind energy now have the opportunity to become involved in this industry. Communities with good wind resources may be approached by entities with plans to develop the resource. Although these opportunities can create new revenue in the form of construction jobs and land lease payments, they also create a new responsibility on the part of local governments to create ordinances to regulate wind turbine installations. Ordinances are laws, often found within municipal codes that provide various degrees of control to local governments. These laws cover issues such as zoning, traffic, consumer protection, and building codes. Wind energy ordinances reflect local needs and wants regarding wind turbines within county or city lines and aid the development of safe facilities that will be embraced by the community. Since 2008 when the National Renewable Energy Laboratory released a report on existing wind energy ordinances, many more ordinances have been established throughout the United States, and this trend is likely to continue in the near future as the wind energy industry grows. This fact sheet provides an overview of elements found in typical wind energy ordinances to educate state and local government officials, as well as policy makers.

  13. Engineering innovation to reduce wind power COE

    SciTech Connect (OSTI)

    Ammerman, Curtt Nelson [Los Alamos National Laboratory

    2011-01-10T23:59:59.000Z

    There are enough wind resources in the US to provide 10 times the electric power we currently use, however wind power only accounts for 2% of our total electricity production. One of the main limitations to wind use is cost. Wind power currently costs 5-to-8 cents per kilowatt-hour, which is more than twice the cost of electricity generated by burning coal. Our Intelligent Wind Turbine LDRD Project is applying LANL's leading-edge engineering expertise in modeling and simulation, experimental validation, and advanced sensing technologies to challenges faced in the design and operation of modern wind turbines.

  14. Wind Power Amercia Final Report

    SciTech Connect (OSTI)

    Brian Spangler, Kathi Montgomery and Paul Cartwright

    2012-01-30T23:59:59.000Z

    The objective of this grant was to further the development of Montana�¢����s vast wind resources for small, medium and large scale benefits to Montana and the nation. This was accomplished through collaborative work with wind industry representatives, state and local governments, the agricultural community and interested citizens. Through these efforts DEQ was able to identify development barriers, educate and inform citizens as well as participate in regional and national dialogue that will spur the development of wind resources.

  15. To users of the Western Wind Dataset: We have run into some issues on the wind dataset. For many uses of the dataset

    E-Print Network [OSTI]

    % in the Westconnect footprint (AZ, WY, CO, NV, NM) and 20% in the rest of WECC. If you #12;use this forecast data

  16. High Winds Wind Farm | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are beingZealand Jump to: navigation, search OpenEIHesperia, California: Energy Resources JumpSheldon Energy Wind

  17. NREL: Wind Research - Small Wind Turbine Development

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level:Energy: Grid Integration Redefining What's Possible for Renewable Energy: GridTruck Platooning Testing Photofrom U.S.6Site Wind ResourceSmall

  18. Sandia National Laboratories: Wind

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Wind Grid System Planning for Wind: Wind Generator Modeling On June 11, 2014, in Wind generation continues to dominate the interconnection queues and the need for generic,...

  19. The Cost of Transmission for Wind Energy: A Review of Transmission Planning Studies

    SciTech Connect (OSTI)

    Mills, Andrew D.; Wiser, Ryan; Porter, Kevin

    2009-02-02T23:59:59.000Z

    The rapid development of wind power that the United States has experienced over the last several years has been coupled with a growing concern that wind development will require substantial additions to the nation's transmission infrastructure. Transmission is particularly important for wind power due to the locational dependence of wind resources, the relatively low capacity factor of wind plants, and the mismatch between the short lead time to build a new wind project and the longer lead time often needed to plan, permit, and construct transmission. It is clear that institutional issues related to transmission planning, siting, and cost allocation will pose major obstacles to accelerated wind power deployment, but also of concern is the potential cost of this infrastructure build out. Simply put, how much extra cost will society bear to deliver wind power to load centers? Without an answer to this question, there can be no consensus on whether or not the cost of developing transmission for wind will be a major barrier to further wind deployment, or whether the institutional barriers to transmission expansion are likely to be of more immediate concern. In this report, we review a sample of 40 detailed transmission studies that have included wind power. These studies cover a broad geographic area, and were completed from 2001-2008. Our primary goal in reviewing these studies is to develop a better understanding of the transmission costs needed to access growing quantities of wind generation. A secondary goal is to gain a better appreciation of the differences in transmission planning approaches in order to identify those methodologies that seem most able to estimate the incremental transmission costs associated with wind development. Finally, we hope that the resulting dataset and discussion might be used to inform the assumptions, methods, and results of higher-level assessment models that are sometimes used to estimate the cost of wind deployment (e.g. NEMS and WinDS). The authors and general location of the 40 detailed transmission studies included in our review are illustrated in Figure ES-1. As discussed in the body of the report, these studies vary considerably in scope, authorship, objectives, methodology, and tools. Though we recognize this diversity and are cognizant that comparisons among these studies are therefore somewhat inappropriate, we nonetheless emphasize such simple comparisons in this report. We do so in order to improve our understanding of the range of transmission costs needed to access greater quantities of wind, and to highlight some of the drivers of those costs. In so doing, we gloss over many important details and differences among the studies in our sample. In emphasizing simple comparisons, our analysis focuses primarily on the unit cost of transmission implied by each of the studies. The unit cost of transmission for wind in $/kW terms on a capacity-weighted basis is estimated by simply dividing the total transmission cost in a study by the total amount of incremental generation capacity (wind and non-wind) modeled in that study. In so doing, this metric assumes that within any individual study all incremental generation capacity imposes transmission costs in proportion to its nameplate capacity rating. The limitations to this approach are described in some detail in the body of the report.

  20. CKBGroup/2013 Workshop and Resources | Open Energy Information

    Open Energy Info (EERE)

    Get Involved Help Apps Datasets Community Login | Sign Up Search Page Edit History Facebook icon Twitter icon CKBGroup2013 Workshop and Resources < CKBGroup Jump to:...

  1. Winds of Education

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are beingZealand Jump to:Ezfeedflag JumpID-fTriWildcat 1 Wind Project Jump to:Wilson HotWalkersWindridge Wind Farm

  2. Wind Vision: Impacts

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office of ScienceandMesa del SolStrengtheningWildfires may contribute more to globalWindWind Vision: Impacts

  3. Wind | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE: Alternative JC3 RSS SeptemberRenewableAbout Key ActivitiesWhy EnergyWindPeer06 WindScience &

  4. Wind: wind power density maps at 50 m above ground and 400m resolution...

    Open Energy Info (EERE)

    maps of Sri Lanka (Purpose):HTMLREMOVEDHTMLREMOVEDTo provide information on the wind resource potential within Sri Lanka, with supplemental information on political...

  5. Wind: wind power density GIS data at 50m above ground and 400m...

    Open Energy Info (EERE)

    density for Sri Lanka (Purpose):HTMLREMOVEDHTMLREMOVEDTo provide information on the wind resource potential within Sri Lanka and selected offshore areas (Supplemental...

  6. Wind: wind power density GIS data at 50m above ground and 1km...

    Open Energy Info (EERE)

    IMAGEGRID command. (Purpose):HTMLREMOVEDHTMLREMOVEDTo provide information on the wind resource potential in Cuba. Values range from 0 to 547. (Supplemental Information):...

  7. Wind: wind power density GIS data at 50m above ground and 1km...

    Open Energy Info (EERE)

    for Central America (Purpose):HTMLREMOVEDHTMLREMOVEDTo provide information on the wind resource potential within the following countries in Central America: Belize, El...

  8. Wind: wind power density maps at 50m above ground and 1km resolution...

    Open Energy Info (EERE)

    of Central America. (Purpose):HTMLREMOVEDHTMLREMOVEDTo provide information on the wind resource potential within the following countries in Central America: Belize, El...

  9. Distributed Wind Energy in Idaho

    SciTech Connect (OSTI)

    Gardner, John; Ferguson, James; Ahmed-Zaid, Said; Johnson, Kathryn; Haynes, Todd; Bennett, Keith

    2009-01-31T23:59:59.000Z

    Project Objective: This project is a research and development program aimed at furthering distributed wind technology. In particular, this project addresses some of the barriers to distributed wind energy utilization in Idaho. Background: At its core, the technological challenge inherent in Wind Energy is the transformation of a highly variable form of energy to one which is compatible with the commercial power grid or another useful application. A major economic barrier to the success of distributed wind technology is the relatively high capital investment (and related long payback periods) associated with wind turbines. This project will carry out fundamental research and technology development to address both the technological and economic barriers. � Active drive train control holds the potential to improve the overall efficiency of a turbine system by allowing variable speed turbine operation while ensuring a tight control of generator shaft speed, thus greatly simplifying power conditioning. � Recent blade aerodynamic advancements have been focused on large, utility-scale wind turbine generators (WTGs) as opposed to smaller WTGs designed for distributed generation. Because of Reynolds Number considerations, blade designs do not scale well. Blades which are aerodynamically optimized for distributed-scale WTGs can potentially reduce the cost of electricity by increasing shaft-torque in a given wind speed. � Grid-connected electric generators typically operate at a fixed speed. If a generator were able to economically operate at multiple speeds, it could potentially convert more of the wind�s energy to electricity, thus reducing the cost of electricity. This research directly supports the stated goal of the Wind and Hydropower Technologies Program for Distributed Wind Energy Technology: By 2007, reduce the cost of electricity from distributed wind systems to 10 to 15 cents/kWh in Class 3 wind resources, the same level that is currently achievable in Class 5 winds.

  10. Offshore Wind Power USA

    Broader source: Energy.gov [DOE]

    The Offshore Wind Power USA conference provides the latest offshore wind market updates and forecasts.

  11. Feasibility analysis of coordinated offshore wind project development in the U.S.

    E-Print Network [OSTI]

    Zhang, Mimi Q

    2008-01-01T23:59:59.000Z

    Wind energy is one of the cleanest and most available resources in the world, and advancements in wind technology are making it more cost effective. Though wind power is rapidly developing in many regions, its variable ...

  12. Wind Energy Leasing Handbook

    E-Print Network [OSTI]

    Balasundaram, Balabhaskar "Baski"

    Wind Energy Leasing Handbook Wind Energy Leasing Handbook E-1033 Oklahoma Cooperative Extension?..................................................................................................................... 31 What do wind developers consider in locating wind energy projects?............................................................................................ 37 How do companies and individuals invest in wind energy projects?....................................................................

  13. Meteorological aspects of siting large wind turbines

    SciTech Connect (OSTI)

    Hiester, T.R.; Pennell, W.T.

    1981-01-01T23:59:59.000Z

    This report, which focuses on the meteorological aspects of siting large wind turbines (turbines with a rated output exceeding 100 kW), has four main goals. The first is to outline the elements of a siting strategy that will identify the most favorable wind energy sites in a region and that will provide sufficient wind data to make responsible economic evaluations of the site wind resource possible. The second is to critique and summarize siting techniques that were studied in the Department of Energy (DOE) Wind Energy Program. The third goal is to educate utility technical personnel, engineering consultants, and meteorological consultants (who may have not yet undertaken wind energy consulting) on meteorological phenomena relevant to wind turbine siting in order to enhance dialogues between these groups. The fourth goal is to minimize the chances of failure of early siting programs due to insufficient understanding of wind behavior.

  14. Diamond Willow Wind (08) Wind Farm | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are being directedAnnualPropertyd8c-a9ae-f8521cbb8489 No revision hasda62829c05bGabbs TypeWinds Wind Farm8) Wind Farm

  15. Lake Michigan Offshore Wind Feasibility Assessment

    SciTech Connect (OSTI)

    Boezaart, Arnold [GVSU; Edmonson, James [GVSU; Standridge, Charles [GVSU; Pervez, Nahid [GVSU; Desai, Neel [University of Michigan; Williams, Bruce [University of Delaware; Clark, Aaron [GVSU; Zeitler, David [GVSU; Kendall, Scott [GVSU; Biddanda, Bopi [GVSU; Steinman, Alan [GVSU; Klatt, Brian [Michigan State University; Gehring, J. L. [Michigan State University; Walter, K. [Michigan State University; Nordman, Erik E. [GVSU

    2014-06-30T23:59:59.000Z

    The purpose of this project was to conduct the first comprehensive offshore wind assessment over Lake Michigan and to advance the body of knowledge needed to support future commercial wind energy development on the Great Lakes. The project involved evaluation and selection of emerging wind measurement technology and the permitting, installation and operation of the first mid-lake wind assessment meteorological (MET) facilities in Michigan’s Great Lakes. In addition, the project provided the first opportunity to deploy and field test floating LIDAR and Laser Wind Sensor (LWS) technology, and important research related equipment key to the sitting and permitting of future offshore wind energy development in accordance with public participation guidelines established by the Michigan Great Lakes Wind Council (GLOW). The project created opportunities for public dialogue and community education about offshore wind resource management and continued the dialogue to foster Great Lake wind resource utilization consistent with the focus of the GLOW Council. The technology proved to be effective, affordable, mobile, and the methods of data measurement accurate. The public benefited from a substantial increase in knowledge of the wind resources over Lake Michigan and gained insights about the potential environmental impacts of offshore wind turbine placements in the future. The unique first ever hub height wind resource assessment using LWS technology over water and development of related research data along with the permitting, sitting, and deployment of the WindSentinel MET buoy has captured public attention and has helped to increase awareness of the potential of future offshore wind energy development on the Great Lakes. Specifically, this project supported the acquisition and operation of a WindSentinel (WS) MET wind assessment buoy, and associated research for 549 days over multiple years at three locations on Lake Michigan. Four research objectives were defined for the project including to: 1) test and validate floating LIDAR technology; 2) collect and access offshore wind data; 3) detect and measure bird and bat activity over Lake Michigan; 4) conduct an over water sound propagation study; 5) prepare and offer a college course on offshore energy, and; 6) collect other environmental, bathometric, and atmospheric data. Desk-top research was performed to select anchorage sites and to secure permits to deploy the buoy. The project also collected and analyzed data essential to wind industry investment decision-making including: deploying highly mobile floating equipment to gather offshore wind data; correlating offshore wind data with conventional on-shore MET tower data; and performing studies that can contribute to the advancement and deployment of offshore wind technologies. Related activities included: • Siting, permitting, and deploying an offshore floating MET facility; • Validating the accuracy of floating LWS using near shoreline cup anemometer MET instruments; • Assessment of laser pulse technology (LIDAR) capability to establish hub height measurement of wind conditions at multiple locations on Lake Michigan; • Utilizing an extended-season (9-10 month) strategy to collect hub height wind data and weather conditions on Lake Michigan; • Investigation of technology best suited for wireless data transmission from distant offshore structures; • Conducting field-validated sound propagation study for a hypothetical offshore wind farm from shoreline locations; • Identifying the presence or absence of bird and bat species near wind assessment facilities; • Identifying the presence or absence of benthic and pelagic species near wind assessment facilities; All proposed project activities were completed with the following major findings: • Floating Laser Wind Sensors are capable of high quality measurement and recordings of wind resources. The WindSentinel presented no significant operational or statistical limitations in recording wind data technology at a at a high confidence level as compared to traditional an

  16. Federal Wind Energy Assistance through NREL (Fact Sheet)

    SciTech Connect (OSTI)

    Not Available

    2009-09-01T23:59:59.000Z

    NREL assists with wind resource assessment and development activities initiated by federal agencies to facilitate distributed renewable energy projects at federal agency sites. This brief outlines the process for requesting NREL assistance with federal wind energy projects.

  17. Wind Power: How Much, How Soon, and At What Cost?

    E-Print Network [OSTI]

    Wiser, Ryan H

    2010-01-01T23:59:59.000Z

    www.nrel,gov/analysis/winds/ WinDS as needed at costs thatwind resource class, excluding the PTC as well as transmission and integration costs •Source: Derived from US DOE (2008) The analysis

  18. DOE Announces Webinars on Wind Energy and Property Values, the...

    Broader source: Energy.gov (indexed) [DOE]

    Wind Energy and Property Values, the Best of the Clean Cities Tools and Resources, and More DOE Announces Webinars on Wind Energy and Property Values, the Best of the Clean Cities...

  19. Nebraska Statewide Wind Integration Study: April 2008 - January 2010

    SciTech Connect (OSTI)

    EnerNex Corporation, Knoxville, Tennessee; Ventyx, Atlanta, Georgia; Nebraska Power Association, Lincoln, Nebraska

    2010-03-01T23:59:59.000Z

    Wind generation resources in Nebraska will play an increasingly important role in the environmental and energy security solutions for the state and the nation. In this context, the Nebraska Power Association conducted a state-wide wind integration study.

  20. Northwest Distributed/Community Wind Workgroup Meeting- Seattle

    Broader source: Energy.gov [DOE]

    As part of the DOE's Northwest Wind Resource and Action Center, Northwest SEED will facilitate a workgroup meeting for stakeholders involved in the distributed and community wind sector in the...

  1. Improved diagnostic model for estimating wind energy

    SciTech Connect (OSTI)

    Endlich, R.M.; Lee, J.D.

    1983-03-01T23:59:59.000Z

    Because wind data are available only at scattered locations, a quantitative method is needed to estimate the wind resource at specific sites where wind energy generation may be economically feasible. This report describes a computer model that makes such estimates. The model uses standard weather reports and terrain heights in deriving wind estimates; the method of computation has been changed from what has been used previously. The performance of the current model is compared with that of the earlier version at three sites; estimates of wind energy at four new sites are also presented.

  2. Visualization Fusion: Hurricane Isabel Dataset Naeem Shareef

    E-Print Network [OSTI]

    Crawfis, Roger

    Visualization Fusion: Hurricane Isabel Dataset Ming Jiang Naeem Shareef Caixia Zhang Roger Crawfis in developing visualization techniques for the Hurricane Isabel dataset is to engender better understand- ing of the underlying physical phenomenon. We want the visualization to produce novel insights into how a hurricane

  3. Commercial and Industrial Base Intermittent Resource Management Pilot

    E-Print Network [OSTI]

    Kiliccote, Sila

    2011-01-01T23:59:59.000Z

    der Sluis, S. M. 2008. Cold Storage of Wind Energy – Nightvariable renewable resources, cold storage set points may be

  4. Wind Development on Tribal Lands

    SciTech Connect (OSTI)

    Ken Haukaas; Dale Osborn; Belvin Pete

    2008-01-18T23:59:59.000Z

    Background: The Rosebud Sioux Tribe (RST) is located in south central South Dakota near the Nebraska border. The nearest community of size is Valentine, Nebraska. The RST is a recipient of several Department of Energy grants, written by Distributed Generation Systems, Inc. (Disgen), for the purposes of assessing the feasibility of its wind resource and subsequently to fund the development of the project. Disgen, as the contracting entity to the RST for this project, has completed all the pre-construction activities, with the exception of the power purchase agreement and interconnection agreement, to commence financing and construction of the project. The focus of this financing is to maximize the economic benefits to the RST while achieving commercially reasonable rates of return and fees for the other parties involved. Each of the development activities required and its status is discussed below. Land Resource: The Owl Feather War Bonnet 30 MW Wind Project is located on RST Tribal Trust Land of approximately 680 acres adjacent to the community of St. Francis, South Dakota. The RST Tribal Council has voted on several occasions for the development of this land for wind energy purposes, as has the District of St. Francis. Actual footprint of wind farm will be approx. 50 acres. Wind Resource Assessment: The wind data has been collected from the site since May 1, 2001 and continues to be collected and analyzed. The latest projections indicate a net capacity factor of 42% at a hub height of 80 meters. The data has been collected utilizing an NRG 9300 Data logger System with instrumentation installed at 30, 40 and 65 meters on an existing KINI radio tower. The long-term annual average wind speed at 65-meters above ground level is 18.2 mph (8.1 mps) and 18.7 mph (8.4 mps) at 80-meters agl. The wind resource is excellent and supports project financing.

  5. Winding Trail 

    E-Print Network [OSTI]

    Unknown

    2011-09-05T23:59:59.000Z

    During the past decade, the demand for clean renewable energy continues to rise drastically in Europe, the US, and other countries. Wind energy in the ocean can possibly be one of those future renewable clean energy sources as long...

  6. Wind Gallery | Department of Energy

    Energy Savers [EERE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are being directedAnnual Siteof Energy 2, 2015Visiting Strong, Smart,Department EFFICIENCY MEASURES *WindWindWind

  7. Wind Power on Native American Lands: Process and Progress (Poster)

    SciTech Connect (OSTI)

    Jimenez, A.; Flowers, L.; Gough, R.; Taylor, R.

    2005-05-01T23:59:59.000Z

    The United States is home to more than 700 American Indian tribes and Native Alaska villages and corporations located on 96 million acres. Many of these tribes and villages have excellent wind resources that could be commercially developed to meet their electricity needs or for electricity export. The Wind Powering America program engages Native Americans in wind energy development. This poster describes the process and progress of Wind Powering America's involvement with Native American wind energy projects.

  8. Effects of Temporal Wind Patterns on the Value of Wind-Generated Electricity in California and the Northwest

    E-Print Network [OSTI]

    Wiser, Ryan H

    2008-01-01T23:59:59.000Z

    Wind Farm Production: We used hourly power production data from the Altamont, Tehachapi and San GorgonioSan Gorgonio resource areas, we also show the effects calculated using the total output from all wind farms

  9. New Facility to Shed Light on Offshore Wind Resource (Fact Sheet), Highlights in Research & Development, NREL (National Renewable Energy Laboratory)

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office of Science (SC)Integrated CodesTransparency VisitSilverNephelineNeuralNew AdvancesNewNewEnergyAs a

  10. Wind Energy Benefits, Wind Powering America (WPA) (Fact Sheet...

    Broader source: Energy.gov (indexed) [DOE]

    Energy Benefits, Wind Powering America (WPA) (Fact Sheet), Wind And Water Power Program (WWPP) Wind Energy Benefits, Wind Powering America (WPA) (Fact Sheet), Wind And Water Power...

  11. Wind Vision Wind Farm | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are beingZealand Jump to:Ezfeedflag JumpID-fTriWildcat 1 Wind Project Jump to:Wilson Hot

  12. Prairie Winds Wind Farm | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are beingZealand Jump to: navigation,Pillar Group BV Jump to: navigation,Power Rental MarketEthanol LLC JumpWinds ND

  13. Coastal Ohio Wind Project

    SciTech Connect (OSTI)

    Gorsevski, Peter; Afjeh, Abdollah; Jamali, Mohsin; Bingman, Verner

    2014-04-04T23:59:59.000Z

    The Coastal Ohio Wind Project intends to address problems that impede deployment of wind turbines in the coastal and offshore regions of Northern Ohio. The project evaluates different wind turbine designs and the potential impact of offshore turbines on migratory and resident birds by developing multidisciplinary research, which involves wildlife biology, electrical and mechanical engineering, and geospatial science. Firstly, the project conducts cost and performance studies of two- and three-blade wind turbines using a turbine design suited for the Great Lakes. The numerical studies comprised an analysis and evaluation of the annual energy production of two- and three-blade wind turbines to determine the levelized cost of energy. This task also involved wind tunnel studies of model wind turbines to quantify the wake flow field of upwind and downwind wind turbine-tower arrangements. The experimental work included a study of a scaled model of an offshore wind turbine platform in a water tunnel. The levelized cost of energy work consisted of the development and application of a cost model to predict the cost of energy produced by a wind turbine system placed offshore. The analysis found that a floating two-blade wind turbine presents the most cost effective alternative for the Great Lakes. The load effects studies showed that the two-blade wind turbine model experiences less torque under all IEC Standard design load cases considered. Other load effects did not show this trend and depending on the design load cases, the two-bladed wind turbine showed higher or lower load effects. The experimental studies of the wake were conducted using smoke flow visualization and hot wire anemometry. Flow visualization studies showed that in the downwind turbine configuration the wake flow was insensitive to the presence of the blade and was very similar to that of the tower alone. On the other hand, in the upwind turbine configuration, increasing the rotor blade angle of attack reduced the wake size and enhanced the vortices in the flow downstream of the turbine-tower compared with the tower alone case. Mean and rms velocity distributions from hot wire anemometer data confirmed that in a downwind configuration, the wake of the tower dominates the flow, thus the flow fields of a tower alone and tower-turbine combinations are nearly the same. For the upwind configuration, the mean velocity shows a narrowing of the wake compared with the tower alone case. The downwind configuration wake persisted longer than that of an upwind configuration; however, it was not possible to quantify this difference because of the size limitation of the wind tunnel downstream of the test section. The water tunnel studies demonstrated that the scale model studies could be used to adequately produce accurate motions to model the motions of a wind turbine platform subject to large waves. It was found that the important factors that affect the platform is whether the platform is submerged or surface piercing. In the former, the loads on the platform will be relatively reduced whereas in the latter case, the structure pierces the wave free surface and gains stiffness and stability. The other important element that affects the movement of the platform is depth of the sea in which the wind turbine will be installed. Furthermore, the wildlife biology component evaluated migratory patterns by different monitoring systems consisting of marine radar, thermal IR camera and acoustic recorders. The types of radar used in the project are weather surveillance radar and marine radar. The weather surveillance radar (1988 Doppler), also known as Next Generation Radar (NEXRAD), provides a network of weather stations in the US. Data generated from this network were used to understand general migratory patterns, migratory stopover habitats, and other patterns caused by the effects of weather conditions. At a local scale our marine radar was used to complement the datasets from NEXRAD and to collect additional monitoring parameters such as passage rates, flight paths, flight directi

  14. A REAL OPTIONS OPTIMIZATION MODEL TO MEET AVAILABILITY REQUIREMENTS FOR OFFSHORE WIND TURBINES

    E-Print Network [OSTI]

    Sandborn, Peter

    wind farm with prognostic capabilities. Alternative energy sources such as offshore wind turbines-based maintenance. This is especially important for offshore wind farms that require non- traditional resources for a Typical Baseline Offshore Wind Project [2] Wind farms are capital intensive projects, and the economics

  15. Session: Poster Session + Poster Award + Scientific Award + Excellent young wind doctor award (PO.72) Track: Technical

    E-Print Network [OSTI]

    -term forecasting of wind power and wind resource assessment including offshore wakes in large wind farms. In both offshore wakes in large wind farms. For this, it is necessary to be able to evaluate state benchmarking exercises. The POWWOW project (Prediction of Waves, Wakes and Offshore Wind, a EU Coordination

  16. FEASIBILITY OF WIND TO SERVE UPPER SKAGIT'S BOW HILL TRIBAL LANDS AND FEASIBILITY UPDATE FOR RESIDENTIAL RENEWABLE ENERGY.

    SciTech Connect (OSTI)

    RICH, LAUREN

    2013-09-30T23:59:59.000Z

    A two year wind resource assessment was conducted to determine the feasibility of developing a community scale wind generation system for the Upper Skagit Indian Tribe?s Bow Hill land base, and the project researched residential wind resource technologies to determine the feasibility of contributing renewable wind resource to the mix of energy options for our single and multi-family residential units.

  17. Spatial and Temporal Patterns of Global Onshore Wind Speed Distribution

    SciTech Connect (OSTI)

    Zhou, Yuyu; Smith, Steven J.

    2013-09-09T23:59:59.000Z

    Wind power, a renewable energy source, can play an important role in electrical energy generation. Information regarding wind energy potential is important both for energy related modeling and for decision-making in the policy community. While wind speed datasets with high spatial and temporal resolution are often ultimately used for detailed planning, simpler assumptions are often used in analysis work. An accurate representation of the wind speed frequency distribution is needed in order to properly characterize wind energy potential. Using a power density method, this study estimated global variation in wind parameters as fitted to a Weibull density function using NCEP/CFSR reanalysis data. The estimated Weibull distribution performs well in fitting the time series wind speed data at the global level according to R2, root mean square error, and power density error. The spatial, decadal, and seasonal patterns of wind speed distribution were then evaluated. We also analyzed the potential error in wind power estimation when a commonly assumed Rayleigh distribution (Weibull k = 2) is used. We find that the assumption of the same Weibull parameter across large regions can result in substantial errors. While large-scale wind speed data is often presented in the form of average wind speeds, these results highlight the need to also provide information on the wind speed distribution.

  18. Energy 101: Wind Turbines

    ScienceCinema (OSTI)

    None

    2013-05-29T23:59:59.000Z

    See how wind turbines generate clean electricity from the power of the wind. Highlighted are the various parts and mechanisms of a modern wind turbine.

  19. WIND DATA REPORT Mattapoisett

    E-Print Network [OSTI]

    Massachusetts at Amherst, University of

    WIND DATA REPORT Mattapoisett Mattapoisett, Massachusetts December 1, 2006 ­ February 28, 2007...................................................................................................................... 9 Wind Speed Time Series........................................................................................................... 10 Wind Speed Distributions

  20. Energy 101: Wind Turbines

    SciTech Connect (OSTI)

    None

    2011-01-01T23:59:59.000Z

    See how wind turbines generate clean electricity from the power of the wind. Highlighted are the various parts and mechanisms of a modern wind turbine.