Powered by Deep Web Technologies
Note: This page contains sample records for the topic "wind project developer" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


1

Great Plains Wind Energy Transmission Development Project  

SciTech Connect (OSTI)

In fiscal year 2005, the Energy & Environmental Research Center (EERC) received funding from the U.S. Department of Energy (DOE) to undertake a broad array of tasks to either directly or indirectly address the barriers that faced much of the Great Plains states and their efforts to produce and transmit wind energy at the time. This program, entitled Great Plains Wind Energy Transmission Development Project, was focused on the central goal of stimulating wind energy development through expansion of new transmission capacity or development of new wind energy capacity through alternative market development. The original task structure was as follows: Task 1 - Regional Renewable Credit Tracking System (later rescoped to Small Wind Turbine Training Center); Task 2 - Multistate Transmission Collaborative; Task 3 - Wind Energy Forecasting System; and Task 4 - Analysis of the Long-Term Role of Hydrogen in the Region. As carried out, Task 1 involved the creation of the Small Wind Turbine Training Center (SWTTC). The SWTTC, located Grand Forks, North Dakota, consists of a single wind turbine, the Endurance S-250, on a 105-foot tilt-up guyed tower. The S-250 is connected to the electrical grid on the 'load side' of the electric meter, and the power produced by the wind turbine is consumed locally on the property. Establishment of the SWTTC will allow EERC personnel to provide educational opportunities to a wide range of participants, including grade school through college-level students and the general public. In addition, the facility will allow the EERC to provide technical training workshops related to the installation, operation, and maintenance of small wind turbines. In addition, under Task 1, the EERC hosted two small wind turbine workshops on May 18, 2010, and March 8, 2011, at the EERC in Grand Forks, North Dakota. Task 2 involved the EERC cosponsoring and aiding in the planning of three transmission workshops in the midwest and western regions. Under Task 3, the EERC, in collaboration with Meridian Environmental Services, developed and demonstrated the efficacy of a wind energy forecasting system for use in scheduling energy output from wind farms for a regional electrical generation and transmission utility. With the increased interest at the time of project award in the production of hydrogen as a critical future energy source, many viewed hydrogen produced from wind-generated electricity as an attractive option. In addition, many of the hydrogen production-related concepts involve utilization of energy resources without the need for additional electrical transmission. For this reason, under Task 4, the EERC provided a summary of end uses for hydrogen in the region and focused on one end product in particular (fertilizer), including several process options and related economic analyses.

Brad G. Stevens, P.E.; Troy K. Simonsen; Kerryanne M. Leroux

2012-06-09T23:59:59.000Z

2

Advanced Wind Turbine Program Next Generation Turbine Development Project: June 17, 1997--April 30, 2005  

SciTech Connect (OSTI)

This document reports the technical results of the Next Generation Turbine Development Project conducted by GE Wind Energy LLC. This project is jointly funded by GE and the U.S. Department of Energy's National Renewable Energy Laboratory.The goal of this project is for DOE to assist the U.S. wind industry in exploring new concepts and applications of cutting-edge technology in pursuit of the specific objective of developing a wind turbine that can generate electricity at a levelized cost of energy of $0.025/kWh at sites with an average wind speed of 15 mph (at 10 m height).

GE Wind Energy, LLC

2006-05-01T23:59:59.000Z

3

Short-term Forecasting of Offshore Wind Farm Production Developments of the Anemos Project  

E-Print Network [OSTI]

Short-term Forecasting of Offshore Wind Farm Production ­ Developments of the Anemos Project J.a.brownsword@rl.ac.uk 6 Overspeed GmBH & Co.KG, 26129 Oldenburg, Germany Email: h.p.waldl@overspeed.de Key words: Offshore to the large dimensions of offshore wind farms, their electricity production must be known well in advance

Paris-Sud XI, Université de

4

Offshore Wind Technology Development Projects | Department of Energy  

Office of Environmental Management (EM)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) "of EnergyEnergyENERGY TAXBalanced ScorecardReactor TechnologyOFFICE: I Oak4SmallGeneralOffshore Wind »

5

Low Wind Speed Turbine Development Project Report: November 4, 2002 - December 31, 2006  

SciTech Connect (OSTI)

This report summarizes work conducted by Clipper Windpower under the DOE Low Wind Speed Turbine project. The objective of this project was to produce a wind turbine that can lower the cost of energy.

Mikhail, A.

2009-01-01T23:59:59.000Z

6

Barstow Wind Turbine Project  

Broader source: Energy.gov [DOE]

Presentation covers the Barstow Wind Turbine project for the Federal Utility Partnership Working Group (FUPWG) meeting, held on November 18-19, 2009.

7

Feasibility analysis of coordinated offshore wind project development in the U.S.  

E-Print Network [OSTI]

Wind energy is one of the cleanest and most available resources in the world, and advancements in wind technology are making it more cost effective. Though wind power is rapidly developing in many regions, its variable ...

Zhang, Mimi Q

2008-01-01T23:59:59.000Z

8

Coastal Ohio Wind Project  

SciTech Connect (OSTI)

The Coastal Ohio Wind Project intends to address problems that impede deployment of wind turbines in the coastal and offshore regions of Northern Ohio. The project evaluates different wind turbine designs and the potential impact of offshore turbines on migratory and resident birds by developing multidisciplinary research, which involves wildlife biology, electrical and mechanical engineering, and geospatial science. Firstly, the project conducts cost and performance studies of two- and three-blade wind turbines using a turbine design suited for the Great Lakes. The numerical studies comprised an analysis and evaluation of the annual energy production of two- and three-blade wind turbines to determine the levelized cost of energy. This task also involved wind tunnel studies of model wind turbines to quantify the wake flow field of upwind and downwind wind turbine-tower arrangements. The experimental work included a study of a scaled model of an offshore wind turbine platform in a water tunnel. The levelized cost of energy work consisted of the development and application of a cost model to predict the cost of energy produced by a wind turbine system placed offshore. The analysis found that a floating two-blade wind turbine presents the most cost effective alternative for the Great Lakes. The load effects studies showed that the two-blade wind turbine model experiences less torque under all IEC Standard design load cases considered. Other load effects did not show this trend and depending on the design load cases, the two-bladed wind turbine showed higher or lower load effects. The experimental studies of the wake were conducted using smoke flow visualization and hot wire anemometry. Flow visualization studies showed that in the downwind turbine configuration the wake flow was insensitive to the presence of the blade and was very similar to that of the tower alone. On the other hand, in the upwind turbine configuration, increasing the rotor blade angle of attack reduced the wake size and enhanced the vortices in the flow downstream of the turbine-tower compared with the tower alone case. Mean and rms velocity distributions from hot wire anemometer data confirmed that in a downwind configuration, the wake of the tower dominates the flow, thus the flow fields of a tower alone and tower-turbine combinations are nearly the same. For the upwind configuration, the mean velocity shows a narrowing of the wake compared with the tower alone case. The downwind configuration wake persisted longer than that of an upwind configuration; however, it was not possible to quantify this difference because of the size limitation of the wind tunnel downstream of the test section. The water tunnel studies demonstrated that the scale model studies could be used to adequately produce accurate motions to model the motions of a wind turbine platform subject to large waves. It was found that the important factors that affect the platform is whether the platform is submerged or surface piercing. In the former, the loads on the platform will be relatively reduced whereas in the latter case, the structure pierces the wave free surface and gains stiffness and stability. The other important element that affects the movement of the platform is depth of the sea in which the wind turbine will be installed. Furthermore, the wildlife biology component evaluated migratory patterns by different monitoring systems consisting of marine radar, thermal IR camera and acoustic recorders. The types of radar used in the project are weather surveillance radar and marine radar. The weather surveillance radar (1988 Doppler), also known as Next Generation Radar (NEXRAD), provides a network of weather stations in the US. Data generated from this network were used to understand general migratory patterns, migratory stopover habitats, and other patterns caused by the effects of weather conditions. At a local scale our marine radar was used to complement the datasets from NEXRAD and to collect additional monitoring parameters such as passage rates, flight paths, flight directi

Gorsevski, Peter; Afjeh, Abdollah; Jamali, Mohsin; Bingman, Verner

2014-04-04T23:59:59.000Z

9

Lower Sioux Wind Feasibility & Development  

SciTech Connect (OSTI)

This report describes the process and findings of a Wind Energy Feasibility Study (Study) conducted by the Lower Sioux Indian Community (Community). The Community is evaluating the development of a wind energy project located on tribal land. The project scope was to analyze the critical issues in determining advantages and disadvantages of wind development within the Community. This analysis addresses both of the Community's wind energy development objectives: the single turbine project and the Commerical-scale multiple turbine project. The main tasks of the feasibility study are: land use and contraint analysis; wind resource evaluation; utility interconnection analysis; and project structure and economics.

Minkel, Darin

2012-04-01T23:59:59.000Z

10

Hualapai Wind Project Feasibility Report  

SciTech Connect (OSTI)

The Hualapai Department of Planning and Economic Development, with funding assistance from the U.S. Department of Energy, Tribal Energy Program, with the aid of six consultants has completed the four key prerequisites as follows: 1. Identify the site area for development and its suitability for construction. 2. Determine the wind resource potential for the identified site area. 3. Determine the electrical transmission and interconnection feasibility to get the electrical power produced to the marketplace. 4. Complete an initial permitting and environmental assessment to determine the feasibility for getting the project permitted. Those studies indicated a suitable wind resource and favorable conditions for permitting and construction. The permitting and environmental study did not reveal any fatal flaws. A review of the best power sale opportunities indicate southern California has the highest potential for obtaining a PPA that may make the project viable. Based on these results, the recommendation is for the Hualapai Tribal Nation to move forward with attracting a qualified wind developer to work with the Tribe to move the project into the second phase - determining the reality factors for developing a wind project. a qualified developer will bid to a utility or negotiate a PPA to make the project viable for financing.

Davidson, Kevin [Hualapai Tribe] [Hualapai Tribe; Randall, Mark [Daystar Consulting] [Daystar Consulting; Isham, Tom [Power Engineers] [Power Engineers; Horna, Marion J [MJH Power Consulting LLC] [MJH Power Consulting LLC; Koronkiewicz, T [SWCA Environmental, Inc.] [SWCA Environmental, Inc.; Simon, Rich [V-Bar, LLC] [V-Bar, LLC; Matthew, Rojas [Squire Sanders Dempsey] [Squire Sanders Dempsey; MacCourt, Doug C. [Ater Wynne, LLP] [Ater Wynne, LLP; Burpo, Rob [First American Financial Advisors, Inc.] [First American Financial Advisors, Inc.

2012-12-20T23:59:59.000Z

11

Wind Energy Education and Outreach Project  

SciTech Connect (OSTI)

The purpose of Illinois State University??s wind project was to further the education and outreach of the university concerning wind energy. This project had three major components: to initiate and coordinate a Wind Working Group for the State of Illinois, to launch a Renewable Energy undergraduate program, and to develop the Center for Renewable Energy that will sustain the Illinois Wind Working Group and the undergraduate program.

David G. Loomis

2011-04-15T23:59:59.000Z

12

Wind Powering America's Wind for Schools Project: Summary Report  

SciTech Connect (OSTI)

This report provides an overview of the U.S. Department of Energy, Wind Powering America, Wind for Schools project. It outlines teacher-training activities and curriculum development; discusses the affiliate program that allows school districts and states to replicate the program; and contains reports that provide an update on activities and progress in the 11 states in which the Wind for Schools project operates.

Baring-Gould, I.; Newcomb, C.

2012-06-01T23:59:59.000Z

13

Offshore Wind Project Map  

Broader source: Energy.gov [DOE]

Image that shows the demonstration project site and developer headquarters for two funding opportunity announcements: the 2011 Grants for Technology Development and the 2011 Grants for Removing Market Barriers.

14

AWEA Wind Project Siting Seminar  

Broader source: Energy.gov [DOE]

The AWEA Wind Project Siting Seminar takes an in-depth look at the latest siting challenges and identify opportunities to reduce risks associated with the siting and operation of wind farms to...

15

2008 Wind Energy Projects, Wind Powering America (Poster)  

SciTech Connect (OSTI)

The Wind Powering America program produces a poster at the end of every calendar year that depicts new U.S. wind energy projects. The 2008 poster includes the following projects: Stetson Wind Farm in Maine; Dutch Hill Wind Farm in New York; Grand Ridge Wind Energy Center in Illinois; Hooper Bay, Alaska; Forestburg, South Dakota; Elbow Creek Wind Project in Texas; Glacier Wind Farm in Montana; Wray, Colorado; Smoky Hills Wind Farm in Kansas; Forbes Park Wind Project in Massachusetts; Spanish Fork, Utah; Goodland Wind Farm in Indiana; and the Tatanka Wind Energy Project on the border of North Dakota and South Dakota.

Not Available

2009-01-01T23:59:59.000Z

16

Workforce Development and Wind for Schools (Poster)  

SciTech Connect (OSTI)

As the United States dramatically expands wind energy deployment, the industry is faced with the need to quickly develop a skilled workforce and to address public acceptance. Wind Powering America's Wind for Schools project addresses these challenges. This poster, produced for the American Wind Energy Association's annual WINDPOWER conference, provides an overview of the project, including objectives, methods, and results.

Newcomb, C.; Baring-Gould, I.

2012-06-01T23:59:59.000Z

17

NREL Releases RFP for Distributed Wind Turbine Competitiveness Improvement Projects  

Broader source: Energy.gov [DOE]

In support of DOE's efforts to further develop distributed wind technology, NREL's National Wind Technology Center has released a Request for Proposal for the following Distributed Wind Turbine Competitiveness Improvement Projects on the Federal Business

18

Wind Economic Development (Postcard)  

SciTech Connect (OSTI)

The U.S. Department of Energy's Wind Powering America initiative provides information on the economic development benefits of wind energy. This postcard is a marketing piece that stakeholders can provide to interested parties; it will guide them to the economic development benefits section on the Wind Powering America website.

Not Available

2011-08-01T23:59:59.000Z

19

Searchlight Wind Energy Project DEIS Appendix A  

Broader source: Energy.gov (indexed) [DOE]

Searchlight Wind Energy Project DEIS Appendix A Page | A Appendix A: Public Scoping Report SCOPING SUMMARY REPORT SEARCHLIGHT WIND ENERGY PROJECT ENVIRONMENTAL IMPACT STATEMENT...

20

Wind for Schools: A Wind Powering America Project  

SciTech Connect (OSTI)

This brochure serves as an introduction to Wind Powering America's Wind for Schools Project, including a description of the project, the participants, funding sources, and the basic configurations of the project.

Not Available

2007-12-01T23:59:59.000Z

Note: This page contains sample records for the topic "wind project developer" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


21

Wind Development on Tribal Lands  

SciTech Connect (OSTI)

Background: The Rosebud Sioux Tribe (RST) is located in south central South Dakota near the Nebraska border. The nearest community of size is Valentine, Nebraska. The RST is a recipient of several Department of Energy grants, written by Distributed Generation Systems, Inc. (Disgen), for the purposes of assessing the feasibility of its wind resource and subsequently to fund the development of the project. Disgen, as the contracting entity to the RST for this project, has completed all the pre-construction activities, with the exception of the power purchase agreement and interconnection agreement, to commence financing and construction of the project. The focus of this financing is to maximize the economic benefits to the RST while achieving commercially reasonable rates of return and fees for the other parties involved. Each of the development activities required and its status is discussed below. Land Resource: The Owl Feather War Bonnet 30 MW Wind Project is located on RST Tribal Trust Land of approximately 680 acres adjacent to the community of St. Francis, South Dakota. The RST Tribal Council has voted on several occasions for the development of this land for wind energy purposes, as has the District of St. Francis. Actual footprint of wind farm will be approx. 50 acres. Wind Resource Assessment: The wind data has been collected from the site since May 1, 2001 and continues to be collected and analyzed. The latest projections indicate a net capacity factor of 42% at a hub height of 80 meters. The data has been collected utilizing an NRG 9300 Data logger System with instrumentation installed at 30, 40 and 65 meters on an existing KINI radio tower. The long-term annual average wind speed at 65-meters above ground level is 18.2 mph (8.1 mps) and 18.7 mph (8.4 mps) at 80-meters agl. The wind resource is excellent and supports project financing.

Ken Haukaas; Dale Osborn; Belvin Pete

2008-01-18T23:59:59.000Z

22

SAT-WIND project Final report  

E-Print Network [OSTI]

-2840 ISBN 87-550-3570-1 The SAT-WIND project `Winds from satellites for offshore and coastal wind energy) technologies for wind energy tools for wind resources and wind-indexing. The study area was the Danish Seas microwave polarimetric 223.3.1 History 3.3.2 Measurement principle 22 223.3.3 WindSat (passive microwave

23

Obtaining data for wind farm development and management: the EO-WINDFARM project  

E-Print Network [OSTI]

, there are huge wind resources and European companies are world leaders at converting it into electric power. Wind). That sector has a mean growth rate of 30% for the last two years. The total installed wind power capacity objective for 2010 in Europe amounts to 75 GW (EWEA, 2004). The total power currently installed (mid 2004

24

Northern Cheyenne Tribe Wind Energy Development Report  

SciTech Connect (OSTI)

Specific development objectives focused on the completion of all actions required to qualify a specfic project for financing and construction of a 30MW wind facility.

Belvin Pete; Distributed Generation Systems Inc; WEST, Inc; Michael S. Burney; Chris Bergen; Electrical Consultants, Inc; Terracon

2007-06-27T23:59:59.000Z

25

Wind for Schools Project Curriculum Brief (Fact Sheet)  

SciTech Connect (OSTI)

The U.S. Department of Energy's (DOE's) 20% Wind Energy by 2030 report recommends expanding education to ensure a trained workforce to meet the projected growth of the wind industry and deployment. Although a few U.S. higher education institutions offer wind technology education programs, most are found in community and technical colleges, resulting in a shortage of programs preparing highly skilled graduates for wind industry careers. Further, the United States lags behind Europe (which has more graduate programs in wind technology design and manufacturing) and is in danger of relinquishing the economic benefits of domestic production of wind turbines and related components and services to European countries. DOE's Wind Powering America initiative launched the Wind for Schools project to develop a wind energy knowledge base among future leaders of our communities, states, and nation while raising awareness about wind energy's benefits. This fact sheet provides an overview of wind energy curricula as it relates to the Wind for Schools project.

Not Available

2010-08-01T23:59:59.000Z

26

Wind for Schools: A Wind Powering America Project (Brochure)  

SciTech Connect (OSTI)

This brochure provides an overview of Wind Powering America's Wind for Schools Project, including a description of the project, the participants, funding sources, the basic configurations, and how interested parties can become involved.

Baring-Gould, I.

2009-08-01T23:59:59.000Z

27

Wind for Schools: A Wind Powering America Project (Alaska) (Brochure)  

SciTech Connect (OSTI)

This brochure provides an overview of Wind Powering America's Wind for Schools Project, including a description of the project, the participants, funding sources, the basic configurations, and how interested parties can become involved.

Not Available

2010-02-01T23:59:59.000Z

28

The Impact of Wind Development on County-Level Income and Employment: A Review of Methods and an Empirical Analysis (Fact Sheet). Wind And Water Power Program (WWPP).  

E-Print Network [OSTI]

development potential from wind power installations has beendevelopment potential of wind power projects, however,is whether new investment in wind power projects stimulates

Brown, Jason P.

2014-01-01T23:59:59.000Z

29

Wind-To-Hydrogen Energy Pilot Project  

SciTech Connect (OSTI)

WIND-TO-HYDROGEN ENERGY PILOT PROJECT: BASIN ELECTRIC POWER COOPERATIVE In an effort to address the hurdles of wind-generated electricity (specifically wind's intermittency and transmission capacity limitations) and support development of electrolysis technology, Basin Electric Power Cooperative (BEPC) conducted a research project involving a wind-to-hydrogen system. Through this effort, BEPC, with the support of the Energy & Environmental Research Center at the University of North Dakota, evaluated the feasibility of dynamically scheduling wind energy to power an electrolysis-based hydrogen production system. The goal of this project was to research the application of hydrogen production from wind energy, allowing for continued wind energy development in remote wind-rich areas and mitigating the necessity for electrical transmission expansion. Prior to expending significant funding on equipment and site development, a feasibility study was performed. The primary objective of the feasibility study was to provide BEPC and The U.S. Department of Energy (DOE) with sufficient information to make a determination whether or not to proceed with Phase II of the project, which was equipment procurement, installation, and operation. Four modes of operation were considered in the feasibility report to evaluate technical and economic merits. Mode 1 - scaled wind, Mode 2 - scaled wind with off-peak, Mode 3 - full wind, and Mode 4 - full wind with off-peak In summary, the feasibility report, completed on August 11, 2005, found that the proposed hydrogen production system would produce between 8000 and 20,000 kg of hydrogen annually depending on the mode of operation. This estimate was based on actual wind energy production from one of the North Dakota (ND) wind farms of which BEPC is the electrical off-taker. The cost of the hydrogen produced ranged from $20 to $10 per kg (depending on the mode of operation). The economic sensitivity analysis performed as part of the feasibility study showed that several factors can greatly affect, both positively and negatively, the "per kg" cost of hydrogen. After a September 15, 2005, meeting to evaluate the advisability of funding Phase II of the project DOE concurred with BEPC that Phase I results did warrant a "go" recommendation to proceed with Phase II activities. The hydrogen production system was built by Hydrogenics and consisted of several main components: hydrogen production system, gas control panel, hydrogen storage assembly and hydrogen-fueling dispenser The hydrogen production system utilizes a bipolar alkaline electrolyzer nominally capable of producing 30 Nm3/h (2.7 kg/h). The hydrogen is compressed to 6000 psi and delivered to an on-site three-bank cascading storage assembly with 80 kg of storage capacity. Vehicle fueling is made possible through a Hydrogenics-provided gas control panel and dispenser able to fuel vehicles to 5000 psi. A key component of this project was the development of a dynamic scheduling system to control the wind energy's variable output to the electrolyzer cell stacks. The dynamic scheduling system received an output signal from the wind farm, processed this signal based on the operational mode, and dispatched the appropriate signal to the electrolyzer cell stacks. For the study BEPC chose to utilize output from the Wilton wind farm located in central ND. Site design was performed from May 2006 through August 2006. Site construction activities were from August to November 2006 which involved earthwork, infrastructure installation, and concrete slab construction. From April - October 2007, the system components were installed and connected. Beginning in November 2007, the system was operated in a start-up/shakedown mode. Because of numerous issues, the start-up/shakedown period essentially lasted until the end of January 2008, at which time a site acceptance test was performed. Official system operation began on February 14, 2008, and continued through the end of December 2008. Several issues continued to prevent consistent operation, resulting in operation o

Ron Rebenitsch; Randall Bush; Allen Boushee; Brad G. Stevens; Kirk D. Williams; Jeremy Woeste; Ronda Peters; Keith Bennett

2009-04-24T23:59:59.000Z

30

Wind Forecast Improvement Project Southern Study Area Final Report...  

Office of Environmental Management (EM)

Wind Forecast Improvement Project Southern Study Area Final Report Wind Forecast Improvement Project Southern Study Area Final Report Wind Forecast Improvement Project Southern...

31

EIS-0470: Cape Wind Energy Project, Final General Conformity...  

Broader source: Energy.gov (indexed) [DOE]

70: Cape Wind Energy Project, Final General Conformity Determination EIS-0470: Cape Wind Energy Project, Final General Conformity Determination Cape Wind Energy Project, Final...

32

New England Wind Energy Education Project (NEWEEP)  

SciTech Connect (OSTI)

Project objective is to develop and disseminate accurate, objective information on critical wind energy issues impacting market acceptance of hundreds of land-based projects and vast off-shore wind developments proposed in the 6-state New England region, thereby accelerating the pace of wind installation from today's 140 MW towards the region's 20% by 2030 goals of 12,500 MW. Methodology: This objective will be accomplished by accumulating, developing, assembling timely, accurate, objective and detailed information representing the 'state of the knowledge' on critical wind energy issues impacting market acceptance, and widely disseminating such information. The target audience includes state agencies and local governments; utilities and grid operators; wind developers; agricultural and environmental groups and other NGOs; research organizations; host communities and the general public, particularly those in communities with planned or operating wind projects. Information will be disseminated through: (a) a series of topic-specific web conference briefings; (b) a one-day NEWEEP conference, back-to-back with a Utility Wind Interest Group one-day regional conference organized for this project; (c) posting briefing and conference materials on the New England Wind Forum (NEWF) web site and featuring the content on NEWF electronic newsletters distributed to an opt-in list of currently over 5000 individuals; (d) through interaction with and participation in Wind Powering America (WPA) state Wind Working Group meetings and WPA's annual All-States Summit, and (e) through the networks of project collaborators. Sustainable Energy Advantage, LLC (lead) and the National Renewable Energy Laboratory will staff the project, directed by an independent Steering Committee composed of a collaborative regional and national network of organizations. Major Participants - the Steering Committee: In addition to the applicants, the initial collaborators committing to form a Steering Committee consists of the Massachusetts Renewable Energy Trust; Maine Public Utilities Commission; New Hampshire office of Energy & Planning, the Connecticut Clean Energy Fund;, ISO New England; Utility Wind Interest Group; University of Massachusetts Wind Energy Center; Renewable Energy New England (a new partnership between the renewable energy industry and environmental public interest groups), and Lawrence Berkeley National Laboratory (conditionally). The Steering Committee will: (1) identify and prioritize topics of greatest interest or concern where detailed, objective and accurate information will advance the dialogue in the region; (2) identify critical outreach venues, influencers and experts; (3) direct and coordinate project staff; (4) assist project staff in planning briefings and conferences described below; (5) identify topics needing additional research or technical assistance and (6) identify and recruit additional steering committee members. Impacts/Benefits/Outcomes: By cutting through the clutter of competing and conflicting information on critical issues, this project is intended to encourage the market's acceptance of appropriately-sited wind energy generation.

Grace, Robert C.; Craddock, Kathryn A.; von Allmen, Daniel R.

2012-04-25T23:59:59.000Z

33

Wind Energy Workforce Development: A Roadmap to a Wind Energy Educational Infrastructure (Presentation)  

SciTech Connect (OSTI)

Wind Powering America national technical director Ian Baring-Gould made this presentation about workforce development in the wind energy industry to an audience at the American Wind Energy Association's annual WINDPOWER conference in Anaheim. The presentation outlines job projections from the 20% Wind Energy by 2030 report and steps to take at all levels of educational institutions to meet those projections.

Baring-Gould, I.

2011-05-01T23:59:59.000Z

34

Low Wind Speed Technology Phase I: Clipper Turbine Development Project; Clipper Windpower Technology, Inc.  

SciTech Connect (OSTI)

This fact sheet describes a subcontract with Clipper Windpower Technology, Inc. to develop a new turbine design that incorporates advanced elements.

Not Available

2006-03-01T23:59:59.000Z

35

INL Wind Farm Project Description Document  

SciTech Connect (OSTI)

The INL Wind Farm project proposes to install a 20 MW to 40 MW wind farm on government property, consisting of approximately ten to twenty full-sized (80-meter hub height) towers with 2 MW turbines, and access roads. This includes identifying the optimal turbine locations, building access roads, and pouring the tower foundations in preparation for turbine installation. The project successfully identified a location on INL lands with commercially viable wind resources (i.e., greater than 11 mph sustained winds) for a 20 to 40 MW wind farm. Additionally, the proposed Wind Farm was evaluated against other General Plant Projects, General Purpose Capital Equipment projects, and Line Item Construction Projects at the INL to show the relative importance of the proposed Wind Farm project.

Gary Siefert

2009-07-01T23:59:59.000Z

36

U.S. Offshore Wind Advanced Technology Demonstration Projects...  

Broader source: Energy.gov (indexed) [DOE]

Offshore Wind Advanced Technology Demonstration Projects Public Meeting Transcript for Offshore Wind Demonstrations U.S. Offshore Wind Advanced Technology Demonstration Projects...

37

Wind for Schools: Developing Education Programs to Train the Next Generation of the Wind Energy Workforce  

SciTech Connect (OSTI)

This paper provides an overview of the Wind for Schools project elements, including a description of host and collegiate school curricula developed for wind energy and the status of the current projects. The paper also provides focused information on how schools, regions, or countries can become involved or implement similar projects to expand the social acceptance and understanding of wind energy.

Baring-Gould, I.; Flowers, L.; Kelly, M.; Barnett, L.; Miles, J.

2009-08-01T23:59:59.000Z

38

GIS Method for Developing Wind Supply Curves  

SciTech Connect (OSTI)

This report describes work conducted by the National Renewable Energy Laboratory (NREL) as part of the Wind Technology Partnership (WTP) sponsored by the U.S. Environmental Protection Agency (EPA). This project has developed methods that the National Development and Reform Commission (NDRC) intends to use in the planning and development of China's 30 GW of planned capacity. Because of China's influence within the community of developing countries, the methods and the approaches here may help foster wind development in other countries.

Kline, D.; Heimiller, D.; Cowlin, S.

2008-06-01T23:59:59.000Z

39

Wind for Schools Project Power System Brief  

SciTech Connect (OSTI)

This fact sheet provides an overview of the system components of a Wind Powering America Wind for Schools project. Wind Powering America's (WPA's) Wind for Schools project uses a basic system configuration for each school project. The system incorporates a single SkyStream(TM) wind turbine, a 70-ft guyed tower, disconnect boxes at the base of the turbine and at the school, and an interconnection to the school's electrical system. A detailed description of each system component is provided in this document.

Not Available

2007-08-01T23:59:59.000Z

40

Colorado Highlands Wind Project, Western's RM Environment  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

by adding 11 wind turbine generators (WTGs) on approximately 1,200 acres of State and private land adjoining the eastern border of the existing Project. The electricity...

Note: This page contains sample records for the topic "wind project developer" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


41

Searchlight Wind Energy Project FEIS Appendix B  

Office of Environmental Management (EM)

Bird and Bat Conservation Strategy Searchlight BBCS i October 2012 Searchlight Wind Energy Project Bird and Bat Conservation Strategy Prepared for: Duke Energy Renewables 550...

42

Final Scientific Report - Wind Powering America State Outreach Project  

SciTech Connect (OSTI)

The goal of the Wind Powering America State Outreach Project was to facilitate the adoption of effective state legislation, policy, finance programs, and siting best practices to accelerate public acceptance and development of wind energy. This was accomplished by Clean Energy States Alliance (CESA) through provision of informational tools including reports and webinars as well as the provision of technical assistance to state leaders on wind siting, policy, and finance best practices, identification of strategic federal-state partnership activities for both onshore and offshore wind, and participation in regional wind development collaboratives. The Final Scientific Report - Wind Powering America State Outreach Project provides a summary of the objectives, activities, and outcomes of this project as accomplished by CESA over the period 12/1/2009 - 11/30/2011.

Sinclair, Mark; Margolis, Anne

2012-02-01T23:59:59.000Z

43

Ponnequin Wind Energy Project Weld County, Colorado  

SciTech Connect (OSTI)

The purpose of this environmental assessment (EA) is to provide the U.S. Department of Energy (DOE) and the public with information on potential environmental impacts associated with the development of the Ponnequin Wind Energy Project in Colorado. This EA and public comments received on it will be used in DOE`s deliberations on whether to release funding for the project. This document provides a detailed description of the proposed project and an assessment of potential impacts associated with its construction and operations. Resources and conditions considered in the analysis include streams; wetlands; floodplains; water quality; soils; vegetation; air quality; socioeconomic conditions; energy resources; noise; transportation; cultural resources; visual and land use resources; public health and safety; wildlife; threatened, endangered, and candidate species; and cumulative impacts. The analysis found that the project would have minimal impacts on these resources and conditions, and would not create impacts that exceed the significance criteria defined in this document. 90 refs., 5 figs.

NONE

1997-08-01T23:59:59.000Z

44

Wind Farm Monitoring at Lake Benton II Wind Power Project - Equipment Only: Cooperative Research and Development Final Report, CRADA Number CRD-08-275  

SciTech Connect (OSTI)

Long-term, high-resolution wind turbine and wind power plant output data are important to assess the impact of wind power on grid operations and to derive meaningful statistics for better understanding of the variability nature of wind power. These data are used for many research and analyses activities consistent with the Wind Program mission: Establish a database of long-term wind power similar to other long-term renewable energy resource databases (e.g. solar irradiance and hydrology); produce meaningful statistics about long-term variation of wind power, spatial and temporal diversity of wind power, and the correlation of wind power, other renewable energy resources, and utility load; provide high quality, realistic wind power output data for system operations impact studies and wind plant and forecasting model validation.

Gevorgian, V.

2014-06-01T23:59:59.000Z

45

Project Title: Residential wind turbine design Project Description: This project aims to  

E-Print Network [OSTI]

that wind is expected to come. Therefore it may be a good idea to consider a vertical-axis wind turbine of the conventional wind turbines use horizontal- axis configuration (see Fig. 1) and is aligned with the directionPROJECT 1: Project Title: Residential wind turbine design Project Description: This project aims

Muradoglu, Metin

46

Feasibility Study for a Hopi Utility-Scale Wind Project  

SciTech Connect (OSTI)

The goal of this project was to investigate the feasibility for the generation of energy from wind and to parallel this work with the development of a tribal utility organization capable of undertaking potential joint ventures in utility businesses and projects on the Hopi reservation. The goal of this project was to investigate the feasibility for the generation of energy from wind and to parallel this work with the development of a tribal utility organization capable of undertaking potential joint ventures in utility businesses and projects on the Hopi reservation. Wind resource assessments were conducted at two study sites on Hopi fee simple lands located south of the city of Winslow. Reports from the study were recently completed and have not been compared to any existing historical wind data nor have they been processed under any wind assessment models to determine the output performance and the project economics of turbines at the wind study sites. Ongoing analysis of the wind data and project modeling will determine the feasibility of a tribal utility-scale wind energy generation.

Kendrick Lomayestewa

2011-05-31T23:59:59.000Z

47

Wind Energy Research Project under the 6th Framework Programme Peter Hjuler Jensen, Ris National Laboratory,  

E-Print Network [OSTI]

UpWind Wind Energy Research Project under the 6th Framework Programme Peter Hjuler Jensen, Risø National Laboratory, Denmark 1. Abstract. The paper presents the until now largest EU wind energy research of the project and dissemination of results. 2. Objectives UpWind develops and verify substantially improved

48

Final Technical Report - Kotzebue Wind Power Project - Volume II  

SciTech Connect (OSTI)

The Kotzebue Wind Power Project is a joint undertaking of the U.S. Department of Energy (DOE); Kotzebue Electric Association (KEA); and the Alaska Energy Authority (AEA). The goal of the project is to develop, construct, and operate a wind power plant interconnected to a small isolated utility grid in an arctic climate in Northwest Alaska. The primary objective of KEAs wind energy program is to bring more affordable electricity and jobs to remote Alaskan communities. DOE funding has allowed KEA to develop a multi-faceted approach to meet these objectives that includes wind project planning and development, technology transfer, and community outreach. The first wind turbines were installed in the summer of 1997 and the newest turbines were installed in the spring of 2007. The total installed capacity of the KEA wind power project is 1.16 MW with a total of 17 turbines rated between 65 kW and 100 kW. The operation of the wind power plant has resulted in a wind penetration on the utility system in excess of 35% during periods of low loads. This document and referenced attachments are presented as the final technical report for the U.S. Department of Energy (DOE) grant agreement DE-FG36-97GO10199. Interim deliverables previously submitted are also referenced within this document and where reasonable to do so, specific sections are incorporated in the report or attached as appendices.

Rana Zucchi, Global Energy Concepts, LLC; Brad Reeve, Kotzebue Electric Association; DOE Project Officer - Doug Hooker

2007-10-31T23:59:59.000Z

49

Community Wind: Once Again Pushing the Envelope of Project Finance  

SciTech Connect (OSTI)

In the United States, the 'community wind' sector - loosely defined here as consisting of relatively small utility-scale wind power projects that sell power on the wholesale market and that are developed and owned primarily by local investors - has historically served as a 'test bed' or 'proving grounds' for up-and-coming wind turbine manufacturers that are trying to break into the U.S. wind power market. For example, community wind projects - and primarily those located in the state of Minnesota - have deployed the first U.S. installations of wind turbines from Suzlon (in 2003), DeWind (2008), Americas Wind Energy (2008) and later Emergya Wind Technologies (2010), Goldwind (2009), AAER/Pioneer (2009), Nordic Windpower (2010), Unison (2010), and Alstom (2011). Thus far, one of these turbine manufacturers - Suzlon - has subsequently achieved some success in the broader U.S. wind market as well. Just as it has provided a proving grounds for new turbines, so too has the community wind sector served as a laboratory for experimentation with innovative new financing structures. For example, a variation of one of the most common financing arrangements in the U.S. wind market today - the special allocation partnership flip structure (see Figure 1 in Section 2.1) - was first developed by community wind projects in Minnesota more than a decade ago (and is therefore sometimes referred to as the 'Minnesota flip' model) before being adopted by the broader wind market. More recently, a handful of community wind projects built over the past year have been financed via new and creative structures that push the envelope of wind project finance in the U.S. - in many cases, moving beyond the now-standard partnership flip structures involving strategic tax equity investors. These include: (1) a 4.5 MW project in Maine that combines low-cost government debt with local tax equity, (2) a 25.3 MW project in Minnesota using a sale/leaseback structure, (3) a 10.5 MW project in South Dakota financed by an intrastate offering of both debt and equity, (4) a 6 MW project in Washington state that taps into New Markets Tax Credits using an 'inverted' or 'pass-through' lease structure, and (5) a 9 MW project in Oregon that combines a variety of state and federal incentives and loans with unconventional equity from high-net-worth individuals. In most cases, these are first-of-their-kind structures that could serve as useful examples for other projects - both community and commercial wind alike. This report describes each of these innovative new financing structures in some detail, using a case-study approach. The purpose is twofold: (1) to disseminate useful information on these new financial structures, most of which are widely replicable; and (2) to highlight the recent policy changes - many of them temporary unless extended - that have facilitated this innovation. Although the community wind market is currently only a small sub-sector of the U.S. wind market - as defined here, less than 2% of the overall market at the end of 2009 (Wiser and Bolinger 2010) - its small size belies its relevance to the broader market. As such, the information provided in this report has relevance beyond its direct application to the community wind sector. The next two sections of this report briefly summarize how most community wind projects in the U.S. have been financed historically (i.e., prior to this latest wave of innovation) and describe the recent federal policy changes that have enabled a new wave of financial innovation to occur, respectively. Section 4 contains brief case studies of how each of the five projects mentioned above were financed, noting the financial significance of each. Finally, Section 5 concludes by distilling a number of general observations or pertinent lessons learned from the experiences of these five projects.

bolinger, Mark A.

2011-01-18T23:59:59.000Z

50

NREL Wind to Hydrogen Project: Renewable Hydrogen Production...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Wind to Hydrogen Project: Renewable Hydrogen Production for Energy Storage & Transportation NREL Wind to Hydrogen Project: Renewable Hydrogen Production for Energy Storage &...

51

EA-2004: Seneca Nation of Indians Wind Turbine Project, Cattaraugus...  

Energy Savers [EERE]

EA-2004: Seneca Nation of Indians Wind Turbine Project, Cattaraugus Territory, New York EA-2004: Seneca Nation of Indians Wind Turbine Project, Cattaraugus Territory, New York...

52

EIS-0470: Cape Wind Energy Project, Nantucket Sound, Offshore...  

Broader source: Energy.gov (indexed) [DOE]

0: Cape Wind Energy Project, Nantucket Sound, Offshore of Massachusetts EIS-0470: Cape Wind Energy Project, Nantucket Sound, Offshore of Massachusetts June 25, 2014 EIS-0470: Cape...

53

EA-2004: Seneca Nation of Indians Wind Turbine Project, Cattaraugus...  

Office of Environmental Management (EM)

of Indians Wind Turbine Project, Cattaraugus Territory, Chautauqua County, Irving, New York EA-2004: Seneca Nation of Indians Wind Turbine Project, Cattaraugus Territory,...

54

Wind Development on the Rosebud  

Broader source: Energy.gov [DOE]

Presentation covers the Wind Development on the Rosebud, given at the Spring 2010 Federal Utility Partnership Working Group (FUPWG) meeting in Rapid City, South Dakota.

55

Variables Affecting Economic Development of Wind Energy  

SciTech Connect (OSTI)

NREL's JEDI Wind model performed an analysis of wind-power-related economic development drivers. Economic development benefits for wind and coal were estimated using NREL's JEDI Wind and JEDI Coal models.

Lantz, E.; Tegen, S.

2008-07-01T23:59:59.000Z

56

Dynamic valuation model For wind development in regard to land value, proximity to transmission lines, and capacity factor  

E-Print Network [OSTI]

Developing a wind farm involves many variables that can make or break the success of a potential wind farm project. Some variables such as wind data (capacity factor, wind rose, wind speed, etc.) are readily available in ...

Nikandrou, Paul

2009-01-01T23:59:59.000Z

57

Developing Government Renewable Energy Projects  

SciTech Connect (OSTI)

The US Army Corps of Engineers has retained Idaho National Laboratory (INL) to conduct a study of past INL experiences and complete a report that identifies the processes that are needed for the development of renewable energy projects on government properties. The INL has always maintained expertise in power systems and applied engineering and INLs renewable energy experiences date back to the 1980s when our engineers began performing US Air Force wind energy feasibility studies and development projects. Over the last 20+ years of working with Department of Defense and other government agencies to study, design, and build government renewable projects, INL has experienced the dos and donts for being successful with a project. These compiled guidelines for government renewable energy projects could include wind, hydro, geothermal, solar, biomass, or a variety of hybrid systems; however, for the purpose of narrowing the focus of this report, wind projects are the main topic discussed throughout this report. It is our thought that a lot of what is discussed could be applied, possibly with some modifications, to other areas of renewable energy. It is also important to note that individual projects (regardless the type) vary to some degree depending on location, size, and need but in general these concepts and directions can be carried over to the majority of government renewable energy projects. This report focuses on the initial development that needs to occur for any project to be a successful government renewable energy project.

Kurt S. Myers; Thomas L. Baldwin; Jason W. Bush; Jake P. Gentle

2012-07-01T23:59:59.000Z

58

A Review of Wind Project Financing Structures in the USA  

SciTech Connect (OSTI)

The rapid pace of wind power development in the U.S. over the last decade has outstripped the ability of most project developers to provide adequate equity capital and make efficient use of project-related tax benefits. In response, the sector has created novel project financing structures that feature varying combinations of equity capital from project developers and third-party tax-oriented investors, and in some cases commercial debt. While their origins stem from variations in the financial capacity and business objectives of wind project developers, as well as the risk tolerances and objectives of equity and debt providers, each structure is, at its core, designed to manage project risk and allocate federal tax incentives to those entities that can use them most efficiently. This article surveys the six principal financing structures through which most new utility-scale wind projects (excluding utility-owned projects) in the U.S. have been financed from 1999 to the present. These structures include simple balance-sheet finance, several varieties of all-equity special allocation partnership 'flip' structures, and two leveraged structures. In addition to describing each structure's mechanics, the article also discusses its rationale for use, the types of investors that find it appealing and why, and its relative frequency of use in the market. The article concludes with a generalized summary of how a developer might choose one structure over another.

Bolinger, Mark A; Harper, John; Karcher, Matthew

2008-09-24T23:59:59.000Z

59

Session: Monitoring wind turbine project sites for avian impacts  

SciTech Connect (OSTI)

This third session at the Wind Energy and Birds/Bats workshop consisted of one presentation followed by a discussion/question and answer period. The focus of the session was on existing wind projects that are monitored for their impacts on birds and bats. The presentation given was titled ''Bird and Bat Fatality Monitoring Methods'' by Wally Erickson, West, Inc. Sections included protocol development and review, methodology, adjusting for scavenging rates, and adjusting for observer detection bias.

Erickson, Wally

2004-09-01T23:59:59.000Z

60

The Wind Forecast Improvement Project (WFIP): A Public/Private...  

Energy Savers [EERE]

The Wind Forecast Improvement Project (WFIP): A PublicPrivate Partnership for Improving Short Term Wind Energy Forecasts and Quantifying the Benefits of Utility Operations The...

Note: This page contains sample records for the topic "wind project developer" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


61

AWEA Wind Project Operations and Maintenance and Safety Seminar  

Office of Energy Efficiency and Renewable Energy (EERE)

The AWEA Wind Project O&M and Safety Seminar is designed for owners, operators, turbine manufactures, material suppliers, wind technicians, managers, supervisors, engineers, and occupational...

62

Wind Power Project Repowering: History, Economics, and Demand...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Wind Power Project Repowering: History, Economics, and Demand Wind Exchange Webinar Eric Lantz January 21, 2015 NRELPR-6A20-63591 2 Presentation Overview 1. Background - Concepts...

63

EA-1970: Fishermen's Energy LLC Offshore Wind Demonstration Project...  

Office of Environmental Management (EM)

to Fishermen's Atlantic City Windfarm, LLC to construct and operate up to six wind turbine generators, for an offshore wind demonstration project, approximately 2.8 nautical...

64

PowerJet Wind Turbine Project  

SciTech Connect (OSTI)

PROJECT OBJECTIVE The PowerJet wind turbine overcomes problems characteristic of the small wind turbines that are on the market today by providing reliable output at a wide range of wind speeds, durability, silent operation at all wind speeds, and bird-safe operation. Prime Energyâ??s objective for this project was to design and integrate a generator with an electrical controller and mechanical controls to maximize the generation of electricity by its wind turbine. The scope of this project was to design, construct and test a mechanical back plate to control rotational speed in high winds, and an electronic controller to maximize power output and to assist the base plate in controlling rotational speed in high winds. The test model will continue to operate beyond the time frame of the project, with the ultimate goal of manufacturing and marketing the PowerJet worldwide. Increased Understanding of Electronic & Mechanical Controls Integrated With Electricity Generator The PowerJet back plate begins to open as wind speed exceeds 13.5 mps. The pressure inside the turbine and the turbine rotational speed are held constant. Once the back plate has fully opened at approximately 29 mps, the controller begins pulsing back to the generator to limit the rotational speed of the turbine. At a wind speed in excess of 29 mps, the controller shorts the generator and brings the turbine to a complete stop. As the wind speed subsides, the controller releases the turbine and it resumes producing electricity. Data collection and instrumentation problems prevented identification of the exact speeds at which these events occur. However, the turbine, controller and generator survived winds in excess of 36 mps, confirming that the two over-speed controls accomplished their purpose. Technical Effectiveness & Economic Feasibility Maximum Electrical Output The output of electricity is maximized by the integration of an electronic controller and mechanical over-speed controls designed and tested during the course of this project. The output exceeds that of the PowerJetâ??s 3-bladed counterparts (see Appendix). Durability All components of the PowerJet turbine assemblyâ??including the electronic and mechanical controls designed, manufactured and field tested during the course of this projectâ??proved to be durable through severe weather conditions, with constant operation and no interruption in energy production. Low Cost Materials for the turbine, generator, tower, charge controllers and ancillary parts are available at reasonable prices. Fabrication of these parts is also readily available worldwide. The cost of assembling and installing the turbine is reduced because it has fewer parts and requires less labor to manufacture and assemble, making it competitively priced compared with turbines of similar output manufactured in the U.S. and Europe. The electronic controller is the unique part to be included in the turbine package. The controllers can be manufactured in reasonably-sized production runs to keep the cost below $250 each. The data logger and 24 sensors are for research only and will be unnecessary for the commercial product. Benefit To Public The PowerJet wind-electric system is designed for distributed wind generation in 3 and 4 class winds. This wind turbine meets DOEâ??s requirements for a quiet, durable, bird-safe turbine that eventually can be deployed as a grid-connected generator in urban and suburban settings. Results As described more fully below and illustrated in the Appendices, the goals and objectives outlined in 2060 SOPO were fully met. Electronic and mechanical controls were successfully designed, manufactured and integrated with the generator. The turbine, tower, controllers and generators operated without incident throughout the test period, surviving severe winter and summer weather conditions such as extreme temperatures, ice and sustained high winds. The electronic controls were contained in weather-proof electrical boxes and the elec

Bartlett, Raymond J

2008-11-30T23:59:59.000Z

65

Environmental assessment, expanded Ponnequin wind energy project, Weld County, Colorado  

SciTech Connect (OSTI)

The US Department of Energy (DOE) has considered a proposal from the State of Colorado, Office of Energy Conservation (OEC), for funding construction of the Expanded Ponnequin Wind Project in Weld County, Colorado. OEC plans to enter into a contracting arrangement with Public Service Company of Colorado (PSCo) for the completion of these activities. PSCo, along with its subcontractors and business partners, are jointly developing the Expanded Ponnequin Wind Project. The purpose of this Final Environmental Assessment (EA) is to provide DOE and the public with information on potential environmental impacts associated with the Expanded Ponnequin Wind Energy Project. This EA, and public comments received on it, were used in DOE`s deliberations on whether to release funding for the expanded project under the Commercialization Ventures Program.

NONE

1999-02-01T23:59:59.000Z

66

WINDExchange: School Wind Project Locations  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May JunDatastreamsmmcrcalgovInstrumentsrucLasDelivered energy consumption byAbout Printable Version Bookmark and Share AboutSchool Wind

67

WINDExchange: Wind for Schools Project  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May JunDatastreamsmmcrcalgovInstrumentsrucLasDelivered energy consumption byAbout Printable Version Bookmark and Wind Potential Capacity

68

GEOL 467/667/MAST 667 -GEOLOGICAL ASPECTS OF OFFSHORE WIND PROJECTS **TENTATIVE** COURSE SYLLABUS  

E-Print Network [OSTI]

GEOL 467/667/MAST 667 - GEOLOGICAL ASPECTS OF OFFSHORE WIND PROJECTS **TENTATIVE** COURSE SYLLABUS Description: Investigation of the geological and geotechnical aspects of offshore wind projects. Emphasis will be designed around geological and geotechnical topics that are relevant to the development of offshore wind

Firestone, Jeremy

69

PREDICTION OF WAVES, WAKES AND OFFSHORE WIND THE RESULTS OF THE POW'WOW PROJECT  

E-Print Network [OSTI]

PREDICTION OF WAVES, WAKES AND OFFSHORE WIND ­ THE RESULTS OF THE POW'WOW PROJECT Gregor Giebel: The POWWOW project (Prediction of Waves, Wakes and Offshore Wind, a EU Coordination Action) aimed to develop. Keywords: Wind resource, wave resource, offshore, short-term prediction, wakes 1 Introduction The nearly

Paris-Sud XI, Université de

70

Avian issues in wind development  

SciTech Connect (OSTI)

There is a lot of concern among wind supporters, I know, about Audubon`s position on wind power. There is concern that this is the wrong time to be critical, and the wrong time to be putting any doubts in investors` minds, and the wrong time to provide an excuse for utilities to stop buying windpower. The long-term future of biodiversity, including bird diversity, depends on development of renewable energy, and that will mean some wind development in the right places and with the right types of systems. For both the long-time survival of the wind industry and for protection of bird populations, Audubon cannot be quiet on this issue. To avoid mistakes that can kill the industry in the long run, expenditures for wind/avian research have to be increased way beyond their present scope. We are going to need about $5 million dollars per year, if we are to (1) understand the biology and physics of bird-wind plant interactions, (2) if we are to understand relevant bird flightpaths, and (3) if we are to design a strategy to protect bird populations.

Beyea, J. [National Audubon Society, New York, NY (United States)

1995-12-31T23:59:59.000Z

71

Cambridge Danehy Park Wind Turbine Preliminary Project Assessment  

E-Print Network [OSTI]

Cambridge Danehy Park Wind Turbine Preliminary Project Assessment Overview MIT Wind Energy Projects 4 / 25 2.5 / 25 Rated Wind Speed (m/s) 13 10 14.5 ~15 12 The above turbines were chosen to provide, several recent studies examining birds and wind turbines have observed that most birds usually avoid

72

EIS-0418: PrairieWinds Project, South Dakota  

Broader source: Energy.gov [DOE]

This EIS analyzes DOE's decision to approve the interconnection request from PrairieWinds for their South Dakota PrairieWinds Project, a 151.5-megawatt (MW) nameplate capacity wind powered generation facility, including 101 General Electric 1.5-MW wind turbine generators, electrical collector lines, collector substation, transmission line, communications system, and wind turbine service access roads.

73

Development of Regional Wind Resource and Wind Plant Output Datasets...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

50-47676 March 2010 Development of Regional Wind Resource and Wind Plant Output Datasets Final Subcontract Report 15 October 2007 - 15 March 2009 3TIER Seattle, Washington National...

74

Offshore wind project surges ahead in South Carolina | Department...  

Broader source: Energy.gov (indexed) [DOE]

wind project surges ahead in South Carolina Offshore wind project surges ahead in South Carolina October 12, 2010 - 10:00am Addthis Researchers pull buoys from waters off South...

75

Offshore Wind Project Surges Ahead in South Carolina | Department...  

Broader source: Energy.gov (indexed) [DOE]

Wind Project Surges Ahead in South Carolina Offshore Wind Project Surges Ahead in South Carolina October 13, 2010 - 11:21am Addthis Stephen Graff Former Writer & editor for Energy...

76

Wind Energy Career Development Program  

SciTech Connect (OSTI)

Saint Francis University has developed curriculum in engineering and in business that is meeting the needs of students and employers (Task 1) as well as integrating wind energy throughout the curriculum. Through a variety of approaches, the University engaged in public outreach and education that reached over 2,000 people annually (Task 2). We have demonstrated, through the success of these programs, that students are eager to prepare for emerging jobs in alternative energy, that employers are willing to assist in developing employees who understand the broader business and policy context of the industry, and that people want to learn about wind energy.

Gwen Andersen

2012-03-29T23:59:59.000Z

77

Lessons Learned: Milwaukees Wind Turbine Project  

Energy Savers [EERE]

City of Milwaukee: Wind Turbine Project Matt Howard, Environmental Sustainability Director Project Best Practices * Transparency and information * Find the most appropriate site -...

78

Wind Energy Leasing Handbook  

E-Print Network [OSTI]

Wind Energy Leasing Handbook Wind Energy Leasing Handbook E-1033 Oklahoma Cooperative Extension?..................................................................................................................... 31 What do wind developers consider in locating wind energy projects?............................................................................................ 37 How do companies and individuals invest in wind energy projects?....................................................................

Balasundaram, Balabhaskar "Baski"

79

EA-1581: Sand Hills Wind Project, Wyoming  

Broader source: Energy.gov [DOE]

The Bureau of Land Management, with DOEs Western Area Power Administration as a cooperating agency, was preparing this EA to evaluate the environmental impacts of a proposal to construct, operate, and maintain the Sand Hills Wind Energy Facility on private and federal lands in Albany County, Wyoming. If the proposed action had been implemented, Western would have interconnected the proposed facility to an existing transmission line. This project has been canceled.

80

Conception Wind Project | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Office of InspectorConcentratingRenewable Solutions LLC Jump to: navigation,Area (Keith, Et Al.,Conception Wind Project

Note: This page contains sample records for the topic "wind project developer" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


81

Condon Wind Project | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Office of InspectorConcentratingRenewable Solutions LLC Jump to: navigation,AreaHigh School Wind Project Jump

82

Development of Regional Wind Resource and Wind Plant Output Datasets for the Hawaiian Islands  

SciTech Connect (OSTI)

In March 2009, AWS Truepower was engaged by the National Renewable Energy Laboratory (NREL) to develop a set of wind resource and plant output data for the Hawaiian Islands. The objective of this project was to expand the methods and techniques employed in the Eastern Wind Integration and Transmission Study (EWITS) to include the state of Hawaii.

Manobianco, J.; Alonge, C.; Frank, J.; Brower, M.

2010-07-01T23:59:59.000Z

83

Overcoming Barriers to Wind Development in Appalachian Coal Country  

SciTech Connect (OSTI)

This research project synthesizes existing data and communication from experts to assess barriers to wind development in Pennsylvania, Maryland, West Virginia, Virginia, and Kentucky, and makes recommendations where feasible to reduce or eliminate those barriers.

Brent Bailey; Evan Hansen

2012-10-09T23:59:59.000Z

84

Environmental Assessment Expanded Ponnequin Wind Energy Project Weld County, Colorado  

SciTech Connect (OSTI)

The U.S.Department of Energy (DOE) has considered a proposal from the State of Colorado, Office of Energy Conservation (OEC), for funding construction of the Expanded Ponnequin Wind Project in Weld County, Colorado. OEC plans to enter into a contracting arrangement with Public Service Company of Colorado (PSCO) for the completion of these activities. PSCo, along with its subcontractors and business partners, are jointly developing the Expanded Ponnequin Wind Project. DOE completed an environmental assessment of the original proposed project in August 1997. Since then, the geographic scope and the design of the project changed, necessitating additional review of the project under the National Environmental Policy Act. The project now calls for the possible construction of up to 48 wind turbines on State and private lands. PSCo and its partners have initiated construction of the project on private land in Weld County, Colorado. A substation, access road and some wind turbines have been installed. However, to date, DOE has not provided any funding for these activities. DOE, through its Commercialization Ventures Program, has solicited applications for financial assistance from state energy offices, in a teaming arrangement with private-sector organizations, for projects that will accelerate the commercialization of emerging renewable energy technologies. The Commercialization Ventures Program was established by the Renewable Energy and Energy Efficiency Technology Competitiveness Act of 1989 (P.L. 101-218) as amended by the Energy Policy Act of 1992 (P.L. 102-486). The Program seeks to assist entry into the marketplace of newly emerging renewable energy technologies, or of innovative applications of existing technologies. In short, an emerging renewable energy technology is one which has already proven viable but which has had little or no operational experience. The Program is managed by the Department of Energy, Office of Energy Efficiency and Renewable Energy. The Federal action triggering the preparation of this EA is the need for DOE to decide whether to release the requested funding to support the construction of the Expanded Ponnequin Wind Project. The purpose of this Final Environmental Assessment (EA) is to provide DOE and the public with information on potential environmental impacts associated with the Expanded Ponnequin Wind Energy Project. This EA, and public comments received on it, were used in DOE's deliberations on whether to release funding for the expanded project under the Commercialization Ventures Program.

N /A

1999-03-02T23:59:59.000Z

85

Wind Energy Workforce Development: Engineering, Science, & Technology  

SciTech Connect (OSTI)

Broadly, this project involved the development and delivery of a new curriculum in wind energy engineering at the Pennsylvania State University; this includes enhancement of the Renewable Energy program at the Pennsylvania College of Technology. The new curricula at Penn State includes addition of wind energy-focused material in more than five existing courses in aerospace engineering, mechanical engineering, engineering science and mechanics and energy engineering, as well as three new online graduate courses. The online graduate courses represent a stand-alone Graduate Certificate in Wind Energy, and provide the core of a Wind Energy Option in an online intercollege professional Masters degree in Renewable Energy and Sustainability Systems. The Pennsylvania College of Technology erected a 10 kilowatt Xzeres wind turbine that is dedicated to educating the renewable energy workforce. The entire construction process was incorporated into the Renewable Energy A.A.S. degree program, the Building Science and Sustainable Design B.S. program, and other construction-related coursework throughout the School of Construction and Design Technologies. Follow-on outcomes include additional non-credit opportunities as well as secondary school career readiness events, community outreach activities, and public awareness postings.

Lesieutre, George A.; Stewart, Susan W.; Bridgen, Marc

2013-03-29T23:59:59.000Z

86

Job and Economic Development Impact (JEDI) Model: A User-Friendly Tool to Calculate Economic Impacts from Wind Projects; Preprint  

Wind Powering America (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data CenterFranconia, Virginia:FAQ < RAPID Jump to:SeadovCooperative JumpWilliamsonWoodsonCounty iscomfortNewsAffiliate ProjectsJob and

87

ACOUSTIC STUDY OF THE UD / GAMESA WIND TURBINE PROJECT  

E-Print Network [OSTI]

ACOUSTIC STUDY OF THE UD / GAMESA WIND TURBINE PROJECT LEWES, DELAWARE January 2009 #12;ACOUSTIC STUDY OF THE UNIVERSITY OF DELAWARE / GAMESA WIND TURBINE PROJECT LEWES, DELAWARE Prepared for SUMMARY The University of Delaware (UD), Lewes proposes to locate a Gamesa G90 2.0MW wind turbine

Firestone, Jeremy

88

Wind power development -Status and perspectives  

E-Print Network [OSTI]

Wind power development - Status and perspectives Poul Erik Morthorst Risoe National Laboratory for the development of wind power, contributing to the Macro Task E1 on pro- duction cost for fusion and alternative on the development of the production costs for wind power, limited to turbines connected to the public grid

89

Winds of change?: Projections of near-surface winds under climate change scenarios  

E-Print Network [OSTI]

a downscaling technique to generate probability distributions of wind speeds at sites in northern Europe on renewable energy resources including wind-power. 2. Data [4] Ten coupled Global Climate Models (GCMs) fromWinds of change?: Projections of near-surface winds under climate change scenarios S. C. Pryor,1 J

Pryor, Sara C.

90

NREL: Wind Research - Small Wind Turbine Development  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmosphericNuclear Security Administration the Contributions andData andFleet Test andField VerificationPossibleResearchSmall Wind

91

EA-1852: Cloud County Community College Wind Energy Project,...  

Energy Savers [EERE]

County Community College (CCCC) for a wind energy project. CCCC has installed three wind turbines and proposed to install a fourth turbine on their campus in Concordia, Kansas, for...

92

EIS-0374: Klondike III/ Bigelow Canyon Wind Integration Project, OR  

Broader source: Energy.gov [DOE]

This EIS analyzes BPA's decision to approve an interconnection requested by PPM Energy, Inc. (PPM) to integrate electrical power from their proposed Klondike III Wind roject (Wind Project) into the Federal Columbia River Transmission System (FCRTS).

93

Selawik Wind Project | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home5b9fcbce19 No revisionEnvReviewNonInvasiveExplorationUT-g Grant ofRichardton AbbeyARaft River, Idaho | OpenSelawik Wind Project

94

Snyder Wind Project | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home5b9fcbce19 No revisionEnvReviewNonInvasiveExplorationUT-g Grant ofRichardtonManagement,SmartestEnergy LtdSnyder Wind Project

95

Springview II Wind Project | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home5b9fcbce19 No revisionEnvReviewNonInvasiveExplorationUT-g GrantAtlas (PACA RegionSpringview II Wind Project Jump to: navigation,

96

Stateline Wind Energy Project | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home5b9fcbce19 No revisionEnvReviewNonInvasiveExplorationUT-g GrantAtlas (PACA RegionSpringviewName Stateline Wind Energy Project

97

Offshore Wind Projects | Department of Energy  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE: AlternativeEnvironment, SafetyWaterMaryAbout Us »Services »Energy About UsWind Projects

98

Gaines Cavern Wind Project | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home5b9fcbce19 No revision has beenFfe2fb55-352f-473b-a2dd-50ae8b27f0a6TheoreticalFuelCell Energy IncFOR EGSGWPSCavern Wind Project

99

Hackberry Wind Project | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home5b9fcbce19 No revision hasInformation Earth's Heat Jump to:Photon Place:Net JumpStrategy | OpenHackberry Wind Project Jump

100

Hoosier Wind Project | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home5b9fcbce19 No revision hasInformation Earth's Heat Jump to:PhotonHolyName Housing Cooperation JumpKongHoosier Wind Project

Note: This page contains sample records for the topic "wind project developer" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


101

Wind for Schools Project Power System Brief, Wind Powering America Fact Sheet Series  

SciTech Connect (OSTI)

Wind Powering America's (WPA's) Wind for Schools project uses a basic system configuration for each school project. The system incorporates a single SkyStream wind turbine, a 70-ft guyed tower, disconnect boxes at the base of the turbine and at the school, and an interconnection to the school's electrical system. This document provides a detailed description of each system component.

Baring-Gould, I.

2009-05-01T23:59:59.000Z

102

Hualapai Tribal Utility Development Project  

SciTech Connect (OSTI)

The first phase of the Hualapai Tribal Utility Development Project (Project) studied the feasibility of establishing a tribally operated utility to provide electric service to tribal customers at Grand Canyon West (see objective 1 below). The project was successful in completing the analysis of the energy production from the solar power systems at Grand Canyon West and developing a financial model, based on rates to be charged to Grand Canyon West customers connected to the solar systems, that would provide sufficient revenue for a Tribal Utility Authority to operate and maintain those systems. The objective to establish a central power grid over which the TUA would have authority and responsibility had to be modified because the construction schedule of GCW facilities, specifically the new air terminal, did not match up with the construction schedule for the solar power system. Therefore, two distributed systems were constructed instead of one central system with a high voltage distribution network. The Hualapai Tribal Council has not taken the action necessary to establish the Tribal Utility Authority that could be responsible for the electric service at GCW. The creation of a Tribal Utility Authority (TUA) was the subject of the second objective of the project. The second phase of the project examined the feasibility and strategy for establishing a tribal utility to serve the remainder of the Hualapai Reservation and the feasibility of including wind energy from a tribal wind generator in the energy resource portfolio of the tribal utility (see objective 2 below). It is currently unknown when the Tribal Council will consider the implementation of the results of the study. Objective 1 - Develop the basic organizational structure and operational strategy for a tribally controlled utility to operate at the Tribes tourism enterprise district, Grand Canyon West. Coordinate the development of the Tribal Utility structure with the development of the Grand Canyon West Power Project construction of the power infrastructure at Grand Canyon West. Develop the maintenance and operations capacity necessary to support utility operations. Develop rates for customers on the Grand Canyon West mini-grid sufficient for the tribal utility to be self-sustaining. Establish an implementation strategy for tribal utility service at Grand Canyon West Objective 2 - Develop a strategy for tribal utility takeover of electric service on the Reservation. Perform a cost analysis of Reservation electrical service. Develop an implementation strategy for tribal takeover of Reservation electrical service. Examine options and costs associated with integration of the Tribes wind resources.

Hualapai Tribal Nation

2008-05-25T23:59:59.000Z

103

Scoping and Framing Social Opposition to U.S. Wind Projects (Poster)  

SciTech Connect (OSTI)

Historical barriers to wind power include cost and reliability. However, rapid growth has increased the footprint of wind power in the United States, and some parts of the country have begun to observe conflicts between local communities and wind energy development. Thus, while questions of economic viability and the ability of grid operators to effectively manage wind energy have become less significant, community acceptance issues have emerged as a barrier to wind and associated transmission projects. Increasing community acceptance is likely to be a growing challenge as the wind industry seeks electricity sector penetration levels approaching 20%.

Lantz, E.; Flowers, L.

2010-05-01T23:59:59.000Z

104

Virginia Offshore Wind Development Authority (Virginia)  

Broader source: Energy.gov [DOE]

The Virginia Offshore Wind Development Authority is a public body, established for the purposes of facilitating, coordinating, and supporting the development, either by the Authority or by other...

105

ARE660 Wind Generator: Low Wind Speed Technology for Small Turbine Development  

SciTech Connect (OSTI)

This project is for the design of a wind turbine that can generate most or all of the net energy required for homes and small businesses in moderately windy areas. The purpose is to expand the current market for residential wind generators by providing cost effective power in a lower wind regime than current technology has made available, as well as reduce noise and improve reliability and safety. Robert W. Preus experience designing and/or maintaining residential wind generators of many configurations helped identify the need for an improved experience of safety for the consumer. Current small wind products have unreliable or no method of stopping the wind generator in fault or high wind conditions. Consumers and their neighbors do not want to hear their wind generators. In addition, with current technology, only sites with unusually high wind speeds provide payback times that are acceptable for the on-grid user. Abundant Renewable Energys (ARE) basic original concept for the ARE660 was a combination of a stall controlled variable speed small wind generator and automatic fail safe furling for shutdown. The stall control for a small wind generator is not novel, but has not been developed for a variable speed application with a permanent magnet alternator (PMA). The fail safe furling approach for shutdown has not been used to our knowledge.

Robert W. Preus; DOE Project Officer - Keith Bennett

2008-04-23T23:59:59.000Z

106

Webinar: Wind-to-Hydrogen Cost Modeling and Project Findings  

Broader source: Energy.gov [DOE]

Video recording and text version of the webinar titled, Wind-to-Hydrogen Cost Modeling and Project Findings, originally presented on January 17, 2013.

107

Wind-To-Hydrogen Project: Electrolyzer Capital Cost Study  

SciTech Connect (OSTI)

This study is being performed as part of the U.S. Department of Energy and Xcel Energy's Wind-to-Hydrogen Project (Wind2H2) at the National Renewable Energy Laboratory. The general aim of the project is to identify areas for improving the production of hydrogen from renewable energy sources. These areas include both technical development and cost analysis of systems that convert renewable energy to hydrogen via water electrolysis. Increased efficiency and reduced cost will bring about greater market penetration for hydrogen production and application. There are different issues for isolated versus grid-connected systems, however, and these issues must be considered. The manner in which hydrogen production is integrated in the larger energy system will determine its cost feasibility and energy efficiency.

Saur, G.

2008-12-01T23:59:59.000Z

108

Weather Incorporated for Needs Development (W.I.N.D.)  

SciTech Connect (OSTI)

The OSHA Power Generation Standard states that power generation employees shall be trained in specific applications of the standard that apply to individual job requirements. The intent of the project objective, then, is to create a tailored course that identifies standard requirements that apply to wind energy technicians.The purpose of this project is to develop an OSHA Power Generation Standard (1910.269) training course for both college based wind energy technician students and for continued workforce training of already employed wind technicians.

Paul Gunderson; Melinda Martin; Jay Johnson

2012-01-30T23:59:59.000Z

109

Agua Caliente Wind/Solar Project at Whitewater Ranch  

SciTech Connect (OSTI)

Agua Caliente Band of Cahuilla Indians (ACBCI) was awarded a grant by the Department of Energy (DOE) to study the feasibility of a wind and/or solar renewable energy project at the Whitewater Ranch (WWR) property of ACBCI. Red Mountain Energy Partners (RMEP) was engaged to conduct the study. The ACBCI tribal lands in the Coachella Valley have very rich renewable energy resources. The tribe has undertaken several studies to more fully understand the options available to them if they were to move forward with one or more renewable energy projects. With respect to the resources, the WWR property clearly has excellent wind and solar resources. The DOE National Renewable Energy Laboratory (NREL) has continued to upgrade and refine their library of resource maps. The newer, more precise maps quantify the resources as among the best in the world. The wind and solar technology available for deployment is also being improved. Both are reducing their costs to the point of being at or below the costs of fossil fuels. Technologies for energy storage and microgrids are also improving quickly and present additional ways to increase the wind and/or solar energy retained for later use with the network management flexibility to provide power to the appropriate locations when needed. As a result, renewable resources continue to gain more market share. The transitioning to renewables as the major resources for power will take some time as the conversion is complex and can have negative impacts if not managed well. While the economics for wind and solar systems continue to improve, the robustness of the WWR site was validated by the repeated queries of developers to place wind and/or solar there. The robust resources and improving technologies portends toward WWR land as a renewable energy site. The business case, however, is not so clear, especially when the potential investment portfolio for ACBCI has several very beneficial and profitable alternatives.

Hooks, Todd; Stewart, Royce

2014-12-16T23:59:59.000Z

110

Low Wind Speed Turbine Developments in Convoloid Gearing: Final Technical Report, June 2005 - October 2008  

SciTech Connect (OSTI)

This report presents the results of a study conducted by Genesis Partners LP as part of the United States Department of Energy Wind Energy Research Program to develop wind technology that will enable wind systems to compete in regions having low wind speeds. The purpose of the program is to reduce the cost of electricity from large wind systems in areas having Class 4 winds to 3 cents per kWh for onshore systems or 5 cents per kWh for offshore systems. This work builds upon previous activities under the WindPACT project, the Next Generation Turbine project, and Phase I of the Low Wind Speed Turbine (LWST) project. This project is concerned with the development of more cost-effective gearing for speed increasers for wind turbines.

Genesis Partners LP

2010-08-01T23:59:59.000Z

111

Offshore Wind Farm Layout Optimization (OWFLO) Project: Preliminary Results  

E-Print Network [OSTI]

Offshore Wind Farm Layout Optimization (OWFLO) Project: Preliminary Results Christopher N. Elkinton the layout of an offshore wind farm presents a significant engineering challenge. Most of the optimization literature to date has focused on land-based wind farms, rather than on offshore farms. Typically, energy

Massachusetts at Amherst, University of

112

Fast Verification of Wind Turbine Power Summary of Project Results  

E-Print Network [OSTI]

Fast Verification of Wind Turbine Power Curves: Summary of Project Results by: Cameron Brown ­ s equation on high frequency wind turbine measurement data sampled at one sample per second or more. The aim's Nordtank wind turbine at the Risø site, the practical application of this new method was tested

113

Advancing Development and Greenhouse Gas Reductions in Vietnam's Wind Sector  

SciTech Connect (OSTI)

Clean energy development is a key component of Vietnam's Green Growth Strategy, which establishes a target to reduce greenhouse gas (GHG) emissions from domestic energy activities by 20-30 percent by 2030 relative to a business-as-usual scenario. Vietnam has significant wind energy resources, which, if developed, could help the country reach this target while providing ancillary economic, social, and environmental benefits. Given Vietnam's ambitious clean energy goals and the relatively nascent state of wind energy development in the country, this paper seeks to fulfill two primary objectives: to distill timely and useful information to provincial-level planners, analysts, and project developers as they evaluate opportunities to develop local wind resources; and, to provide insights to policymakers on how coordinated efforts may help advance large-scale wind development, deliver near-term GHG emission reductions, and promote national objectives in the context of a low emission development framework.

Bilello, D.; Katz, J.; Esterly, S.; Ogonowski, M.

2014-09-01T23:59:59.000Z

114

Feasibility Study --Project Full Breeze By the Wind Energy Projects in Action (WEPA) Full Breeze Project team  

E-Print Network [OSTI]

Feasibility Study -- Project Full Breeze By the Wind Energy Projects in Action (WEPA) Full Breeze Department of Facilities approached the wind energy sub-community in the spring of 2009 to assist in a study

115

AWEA Wind Resource & Project Energy Assessment Seminar 2014 ...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Resource & Project Energy Assessment Seminar 2014 AWEA Wind Resource & Project Energy Assessment Seminar 2014 December 2, 2014 8:00AM EST to December 3, 2014 5:00PM EST Wyndham...

116

Sherrod Elementary Wind Project | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home5b9fcbce19 No revisionEnvReviewNonInvasiveExplorationUT-g Grant ofRichardton AbbeyARaftPadoma Wind Power DeveloperSherrod

117

EA-1902: Northern Wind Project, Roberts County, South Dakota  

Broader source: Energy.gov [DOE]

DOEs Western Area Power Administration is preparing an EA that evaluates the potential environmental impacts of the proposed Northern Wind Project in Summit, Roberts County, South Dakota. Additional information is available on the project webpage, http://www.wapa.gov/ugp/Environment/NorthernWindFarm.htm.

118

Danehy Park Wind Turbine Project Preliminary Assessment Report  

E-Print Network [OSTI]

Danehy Park Wind Turbine Project Preliminary Assessment Report Danehy Park Project Group Wind turbine. Katherine Dykes and Sungho Lee for their leadership, guidance, and feedback. #12;1 Introduction sensors were mounted is marked with a yellow star. #12;2 Turbine Evaluation Set This report evaluates

119

Wind Energy and Economic Development in Nebraska  

SciTech Connect (OSTI)

This fact sheet summarizes a recent report by the National Renewable Energy Laboratory (NREL), Economic Development Benefits from Wind Power in Nebraska: A Report for the Nebraska Energy Office, which focuses on the estimated economic development impacts in Nebraska from development and operation of wind power in the state as envisioned in the U.S. Department of Energy's (DOE's) report, 20% Wind Energy by 2030.

Lantz, E.

2009-06-01T23:59:59.000Z

120

New England Wind Forum: A Wind Powering America Project - Newsletter #6 - September 2010, (NEWF)  

SciTech Connect (OSTI)

Wind Powering America program launched the New England Wind Forum (NEWF) in 2005 to provide a single comprehensive source of up-to-date, Web-based information on a broad array of wind energy issues pertaining to New England. The NEWF newsletter provides New England stakeholders with updates on wind energy development in the region.

Grace, R.; Gifford, J.; Leeds, T.; Bauer, S.

2010-09-01T23:59:59.000Z

Note: This page contains sample records for the topic "wind project developer" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


121

EA-1782: University of Delaware Lewes Campus Onsite Wind Energy Project  

Broader source: Energy.gov [DOE]

The University of Delaware has constructed a wind turbine adjacent to its College of Earth, Ocean, and Environment campus in Lewes, Delaware. DOE proposed to provide the University a $1.43 million grant for this Wind Energy Project from funding provided in the Omnibus Appropriations Act of 2009 (Public Law 111-8) and an additional $1 million provided in the Energy and Water Development Appropriations Act of Fiscal Year 2010. This EA analyzed the potential environmental impacts of the University of Delawares Wind Energy Project at its Lewes campus and, for purposes of comparison, an alternative that assumes the wind turbine had not been constructed.

122

Energy Efficiency Project Development  

SciTech Connect (OSTI)

The International Utility Efficiency Partnerships, Inc. (IUEP) has been a leader among the industry groups that have supported voluntary initiatives to promote international energy efficiency projects and address global climate change. The IUEP maintains its leadership by both supporting international greenhouse gas (GHG) reduction projects under the auspices of the U.S. Department of Energy (DOE) and by partnering with U.S. and international organizations to develop and implement strategies and specific energy efficiency projects. The goals of the IUEP program are to (1) provide a way for U.S. industry to maintain a leadership role in international energy efficiency infrastructure projects; (2) identify international energy project development opportunities to continue its leadership in supporting voluntary market-based mechanisms to reduce GHG emissions; and (3) demonstrate private sector commitment to voluntary approaches to global climate issues. The IUEP is dedicated to identifying, promoting, managing, and assisting in the registration of international energy efficiency projects that result in demonstrated voluntary reductions of GHG emissions. This Final Technical Report summarizes the IUEP's work in identifying, promoting, managing, and assisting in development of these projects and IUEP's effort in creating international cooperative partnerships to support project development activities that develop and deploy technologies that (1) increase efficiency in the production, delivery and use of energy; (2) increase the use of cleaner, low-carbon fuels in processing products; and (3) capture/sequester carbon gases from energy systems. Through international cooperative efforts, the IUEP intends to strengthen partnerships for energy technology innovation and demonstration projects capable of providing cleaner energy in a cost-effective manner. As detailed in this report, the IUEP met program objectives and goals during the reporting period January 1, 2001 through December 31, 2002. At the request of the DOE, we have also included in this report additional activities during the reporting period January, 1999 through January, 2001. This additional information had been reported earlier in the Final Technical Reports that summarized activities undertaken in those earlier periods.

IUEP

2004-03-01T23:59:59.000Z

123

M. Bahrami ENSC 283 (S 11) Wind Turbine Project 1 ENSC 283 Project  

E-Print Network [OSTI]

and the vertical-axis wind turbine (VAWT) in Figure 2-b. The designation simply depends on the axis of rotationM. Bahrami ENSC 283 (S 11) Wind Turbine Project 1 ENSC 283 Project Assigned date: Feb. 23, 2011 family), but also important are those which extract energy form the fluid such as turbines. Wind turbines

Bahrami, Majid

124

Coastal Ohio Wind Project for Reduced Barriers to Deployment of Offshore Wind Energy  

SciTech Connect (OSTI)

The Coastal Ohio Wind Project was created to establish the viability of wind turbines on the coastal and offshore regions of Northern Ohio. The projects main goal was to improve operational unit strategies used for environmental impact assessment of offshore turbines on lake wildlife by optimizing and fusing data from the multi-instrument surveillance system and providing an engineering analysis of potential design/operational alternatives for offshore wind turbines. The project also developed a general economic model for offshore WTG deployment to quantify potential revenue losses due to wind turbine shutdown related to ice and avian issues. In a previous phase of this project (Award Number: DE-FG36-06GO86096), we developed a surveillance system that was used to collect different parameters such as passage rates, flight paths, flight directions, and flight altitudes of nocturnal migrating species, movements of birds and bats, and bird calls for assessing patterns and peak passage rates during migration. To derive such parameters we used thermal IR imaging cameras, acoustic recorders, and marine radar Furuno (XANK250), which was coupled with a XIR3000B digitizing card from Russell Technologies and open source radR processing software. The integration yielded a development of different computational techniques and methods, which we further developed and optimized as a combined surveillance system. To accomplish this task we implemented marine radar calibration, optimization of processing parameters, and fusion of the multi-sensor data in order to make inferences about the potential avian targets. The main goal of the data fusion from the multi-sensor environment was aimed at reduction of uncertainties while providing acceptable confidence levels with detailed information about the migration patterns. Another component comprised of an assessment of wind resources in a near lake environment and an investigation of the effectiveness of ice coating materials to mitigate adverse effects of ice formation on wind turbine structures. Firstly, a Zephir LiDAR system was acquired and installed at Woodlands School in Huron, Ohio, which is located near Lake Erie. Wind resource data were obtained at ten measurement heights, 200m, 150m, 100m, 80m, 60m, 40m, 38m, 30m, 20m, and 10m. The Woodlands Schools wind turbine anemometer also measured the wind speed at the hub height. These data were collected for approximately one year. The hub anemometer data correlated well with the LiDAR wind speed measurements at the same height. The data also showed that on several days different power levels were recorded by the turbine at the same wind speed as indicated by the hub anemometer. The corresponding LiDAR data showed that this difference can be attributed to variability in the wind over the turbine rotor swept area, which the hub anemometer could not detect. The observation suggests that single point hub wind velocity measurements are inadequate to accurately estimate the power generated by a turbine at all times since the hub wind speed is not a good indicator of the wind speed over the turbine rotor swept area when winds are changing rapidly. To assess the effectiveness of ice coatings to mitigate the impact of ice on turbine structures, a closed-loop icing research tunnel (IRT) was designed and constructed. By controlling the temperature, air speed, water content and liquid droplet size, the tunnel enabled consistent and repeatable ice accretion under a variety of conditions with temperatures between approximately 0C and -20C and wind speeds up to 40 miles per hour in the tunnels test section. The tunnels cooling unit maintained the tunnel temperature within 0.2C. The coatings evaluated in the study were Boyd Coatings Research Companys CRC6040R3, MicroPhase Coatings Inc.s PhaseBreak TP, ESL and Flex coatings. Similar overall performance was observed in all coatings tested in that water droplets form on the test articles beginning at the stagnation region and spreading in the downstream direction in time. When compari

Gorsevski, Peter; Afjeh, Abdollah; Jamali, Mohsin; Carroll, Michael

2014-04-09T23:59:59.000Z

125

New England Wind Forum: A Wind Powering America Project, Newsletter #5 -- January 2010, Wind and Hydropower Technologies Program (WHTP)  

SciTech Connect (OSTI)

Wind Powering America program launched the New England Wind Forum (NEWF) in 2005 to provide a single comprehensive source of up-to-date, Web-based information on a broad array of wind energy issues pertaining to New England. The NEWF newsletter provides New England stakeholders with updates on wind energy development in the region. In addition to regional updates, Issue #5 offers an interview with Angus King, former governor of Maine and co-founder of Independence Wind.

Grace, R. C.; Gifford, J.

2010-01-01T23:59:59.000Z

126

Klondike III/Biglow Canyon Wind Integration Project; Final Environmental Impact Statement, September 2006.  

SciTech Connect (OSTI)

BPA has been asked by PPM Energy, Inc. to interconnect 300 megawatts (MW) of electricity generated from the proposed Klondike III Wind Project to the Federal Columbia River Transmission System. Orion Energy LLC has also asked BPA to interconnect 400 MW of electricity from its proposed Biglow Canyon Wind Farm, located north and east of the proposed Klondike III Wind Project. (Portland General Electric recently bought the rights to develop the proposed Biglow Canyon Wind Farm from Orion Energy, LLC.) Both wind projects received Site Certificates from the Oregon Energy Facility Siting Council on June 30, 2006. To interconnect these projects, BPA would need to build and operate a 230-kV double-circuit transmission line about 12 miles long, expand one substation and build one new substation. The wind projects would require wind turbines, substation(s), access roads, and other facilities. Two routes for the transmission line are being considered. Both begin at PPM's Klondike Schoolhouse Substation then travel north (Proposed Action) or north and westerly (Middle Alternative) to a new BPA 230-kV substation next to BPA's existing John Day 500-kV Substation. BPA is also considering a No Action Alternative in which BPA would not build the transmission line and would not interconnect the wind projects. The proposed BPA and wind projects would be located on private land, mainly used for agriculture. If BPA decides to interconnect the wind projects, construction of the BPA transmission line and substation(s) could commence as early as the winter of 2006-07. Both wind projects would operate for much of each year for at least 20 years. The proposed projects would generally create no or low impacts. Wildlife resources and local visual resources are the only resources to receive an impact rating other than ''none'' or ''low''. The low to moderate impacts to wildlife are from the expected bird and bat mortality and the cumulative impact of this project on wildlife when combined with other proposed wind projects in the region. The low to high impacts to visual resources reflect the effect that the transmission line and the turbine strings from both wind projects would have on viewers in the local area, but this impact diminishes with distance from the project.

United States. Bonneville Power Administration

2006-09-01T23:59:59.000Z

127

Offshore Wind Jobs and Economic Development Impact: Four Regional Scenarios (Presentation)  

SciTech Connect (OSTI)

NREL's Jobs and Economic Development Impact (JEDI) Model for Offshore Wind, is a computer tool for studying the economic impacts of fixed-bottom offshore wind projects in the United States. This presentation provides the results of an analysis of four offshore wind development scenarios in the Southeast Atlantic, Great Lakes, Mid-Atlantic, and Gulf of Mexico regions.

Tegen, S.

2014-11-01T23:59:59.000Z

128

LEEDCo awarded $4 million to launch offshore wind development on Lake Erie  

E-Print Network [OSTI]

LEEDCo awarded $4 million to launch offshore wind development on Lake Erie By Teresa Dixon Murray in the United States, the Lake Erie Energy Development Corp. of Cleveland will launch an offshore wind, Democrat of Ohio, who has pushed for such alternative energy projects for years, said offshore wind could

Rollins, Andrew M.

129

Wind energy curriculum development at GWU  

SciTech Connect (OSTI)

A wind energy curriculum has been developed at the George Washington University, School of Engineering and Applied Science. Surveys of student interest and potential employers expectations were conducted. Wind industry desires a combination of mechanical engineering training with electrical engineering training. The curriculum topics and syllabus were tested in several graduate/undergraduate elective courses. The developed curriculum was then submitted for consideration.

Hsu, Stephen M [GWU

2013-06-08T23:59:59.000Z

130

EA-1611: Colorado Highlands Wind Project, Logan County, Colorado  

Broader source: Energy.gov [DOE]

DOEs Western Area Power Administration prepared an EA in 2009 to assess the potential environmental impacts of interconnecting the proposed Colorado Highlands Wind Project to Westerns transmission system. The EA analyzed a proposal for 60 wind turbine generators with a total output nameplate capacity of 90 megawatts (MW). Western is preparing a supplemental EA to assess the potential environmental impacts of the proposed expansion of the project by 11 wind turbine generators that would add approximately 20 MW. Additional information is available on the Western Area Power Administration webpage for this project.

131

New England Wind Forum: A Wind Powering America Project, Volume 1, Issue 4 -- May 2008 (Newsletter)  

SciTech Connect (OSTI)

The New England Wind Forum electronic newsletter summarizes the latest news in wind energy development activity, markets, education, and policy in the New England region. It also features an interview with a key figure influencing New England's wind energy development. Volume 1, Issue 4 features an interview with Brian Fairbank, president and CEO of Jiminy Peak Mountain Resort.

Grace, R. C.; Gifford, J.

2008-05-01T23:59:59.000Z

132

Searchlight Wind Energy Project FEIS Appendix F  

Office of Environmental Management (EM)

1996. The first empirical study specifically addressing the potential impact of wind turbines on property values was based on property values in Denmark in 1996. In this study,...

133

Development of Eastern Regional Wind Resource and Wind Plant Output Datasets: March 3, 2008 -- March 31, 2010  

SciTech Connect (OSTI)

The objective of this project was to provide wind resource inputs to the Eastern Wind Integration and Transmission Study.

Brower, M.

2009-12-01T23:59:59.000Z

134

OFFSHORE WIND FARM LAYOUT OPTIMIZATION (OWFLO) PROJECT: AN INTRODUCTION  

E-Print Network [OSTI]

OFFSHORE WIND FARM LAYOUT OPTIMIZATION (OWFLO) PROJECT: AN INTRODUCTION C. N. Elkinton* , J. F Governors Dr., Amherst, MA 01003, USA * celkinto@ecs.umass.edu ABSTRACT Optimizing the layout of an offshore focused on land-based wind farms, rather than on offshore farms. The conventional method used to lay out

Massachusetts at Amherst, University of

135

Wind Integration, Transmission, and Resource Assessment andCharacteri...  

Energy Savers [EERE]

& Publications Wind Integration, Transmission, and Resource Assessment and Characterization Projects Offshore Wind Projects Testing, Manufacturing, and Component Development...

136

EA-1610: Windy Hollow Wind Project, Laramie County, Wyoming  

Broader source: Energy.gov [DOE]

This EA will evaluate the environmental impacts of a proponent request to interconnect their proposed Windy Hollow Wind Project in Laramie County, Wyoming, to DOEs Western Area Power Administrations transmission system.

137

Moraine Wind Power Project | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home5b9fcbce19 No revision hasInformation Earth's HeatMexico: EnergyMithun Jump to:Moe WindMontMoraine II Wind Farm Jump to:Wind

138

New Report Highlights Trends in Offshore Wind with 14 Projects...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

the advanced stages of development- together representing nearly 4,900 megawatts (MW) of potential offshore wind energy capacity for the United States. Further, this year's report...

139

Three Offshore Wind Advanced Technology Demonstration Projects...  

Office of Environmental Management (EM)

commercial operation by 2017. Dominion Power will install two 6-MW direct-drive wind turbines off the coast of Virginia Beach on twisted jacket foundations designed by Keystone...

140

Wind Energy Development as an Economic Development Strategy for Rural Areas  

E-Print Network [OSTI]

Why does wind development make sense for rural areas? In many rural areas, utility scale wind energy developments can be a great way to expand and grow the economy through direct investment and job creation, in addition to significant potential spinoff development activities. Because of renewable state standards and incentives, including the Federal Production Tax Credit (PTC) and the Ohio SB 232 (which levels the playing field for wind projects by setting a property tax ceiling), more wind companies view Ohio as a new and exciting market for investment. Siting requirements for wind are also prevalent in Ohio, including good transmission lines and available land and wind resources. Ohio also has a skilled workforce that can construct and provide maintenance on wind systems as well as manufacture component parts for the industry. Utility Wind Basics Utility scale wind developments are large wind farms that generate 5 megawatts per hour or greater. They are governed by the Ohio Power Siting Board (OPSB) under provisions found in House Bill 562, 2008

Nancy Bowen-ellzey

Note: This page contains sample records for the topic "wind project developer" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


141

Final Project Report, Bristol Bay Native Corporation Wind and Hydroelectric Feasibility Study  

SciTech Connect (OSTI)

The Bristol Bay Native Corporation (BBNC) grant project focused on conducting nine wind resource studies in eight communities in the Bristol Bay region of southwest Alaska and was administered as a collaborative effort between BBNC, the Alaska Energy Authority, Alaska Village Electric Cooperative, Nushagak Electric Cooperative (NEC), Naknek Electric Association (NEA), and several individual village utilities in the region. BBNCs technical contact and the project manager for this study was Douglas Vaught, P.E., of V3 Energy, LLC, in Eagle River, Alaska. The Bristol Bay region of Alaska is comprised of 29 communities ranging in size from the hub community of Dillingham with a population of approximately 3,000 people, to a few Native Alaska villages that have a few tens of residents. Communities chosen for inclusion in this project were Dillingham, Naknek, Togiak, New Stuyahok, Kokhanok, Perryville, Clarks Point, and Koliganek. Selection criteria for conduction of wind resource assessments in these communities included population and commercial activity, utility interest, predicted Class 3 or better wind resource, absence of other sources of renewable energy, and geographical coverage of the region. Beginning with the first meteorological tower installation in October 2003, wind resource studies were completed at all sites with at least one year, and as much as two and a half years, of data. In general, the study results are very promising for wind power development in the region with Class 6 winds measured in Kokhanok; Class 4 winds in New Stuyahok, Clarks Point, and Koliganek; Class 3 winds in Dillingham, Naknek, and Togiak; and Class 2 winds in Perryville. Measured annual average wind speeds and wind power densities at the 30 meter level varied from a high of 7.87 meters per second and 702 watts per square meter in Kokhanok (Class 6 winds), to a low of 4.60 meters per second and 185 watts per square meter in Perryville (Class 2 winds).

Vaught, Douglas J.

2007-03-31T23:59:59.000Z

142

Secretary Chu Unveils 41 New Offshore Wind Power R&D Projects...  

Broader source: Energy.gov (indexed) [DOE]

Unveils 41 New Offshore Wind Power R&D Projects Secretary Chu Unveils 41 New Offshore Wind Power R&D Projects September 8, 2011 - 11:13am Addthis Chris Hart Offshore Wind Team...

143

Solano Wind Project Wind Farm | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home5b9fcbce19 No revisionEnvReviewNonInvasiveExplorationUT-g Grant ofRichardtonManagement,SmartestEnergynotSola60County WindI

144

An overview: Challenges in wind technology development  

SciTech Connect (OSTI)

Developing innovative wind turbine components and advanced turbine configurations is a primary focus for wind technology researchers. In their rush to bring these new components and systems to the marketplace, designers and developers should consider the lessons learned in the wind farms over the past 10 years. Experience has shown that a disciplined design approach is required that realistically accounts for the turbulence-induced loads, unsteady stall loading, and fatigue effects. This paper reviews past experiences and compares current modelling capabilities with experimental measurements in order to identify some of the knowledge gaps that challenge designers of advanced components and systems. 7 refs., 11 figs.

Thresher, R W; Hock, S M

1991-12-01T23:59:59.000Z

145

Expedited Permitting of Grid-Scale Wind Energy Development (Maine)  

Broader source: Energy.gov [DOE]

Maine's Expedited Permitting of Grid-Scale Wind Energy Development statue provides an expedited permitting pathway for proposed wind developments in certain designated locations, known as expedited...

146

SciTech Connect: Offshore Wind Jobs and Economic Development...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Offshore Wind Jobs and Economic Development Impact: Four Regional Scenarios (Presentation) Citation Details In-Document Search Title: Offshore Wind Jobs and Economic Development...

147

Chinas Wind Energy Development and Prediction.  

E-Print Network [OSTI]

??This thesis focuses on Chinas wind energy development, focusing on data pertaining to effects of wind energy development on economic, environmental, and social issues. It (more)

Wallin, Micah R.

2010-01-01T23:59:59.000Z

148

Research and Development Needs for Wind Systems Utilizing Controllable...  

Energy Savers [EERE]

Research and Development Needs for Wind Systems Utilizing Controllable Grid Simulators and Full Scale Hardware in the Loop Testing Research and Development Needs for Wind Systems...

149

A Comparative Analysis of Community Wind Power DevelopmentModels  

SciTech Connect (OSTI)

For years, farmers in the United States have looked with envy on their European counterparts ability to profitably farm the wind through ownership of distributed, utility-scale wind projects. Only within the past few years, however, has farmer- or community-owned windpower development become a reality in the United States. The primary hurdle to this type of development in the United States has been devising and implementing suitable business and legal structures that enable such projects to take advantage of tax-based federal incentives for windpower. This article discusses the limitations of such incentives in supporting farmer- or community-owned wind projects, describes four ownership structures that potentially overcome such limitations, and finally conducts comparative financial analysis on those four structures, using as an example a hypothetical 1.5 MW farmer-owned project located in the state of Oregon. We find that material differences in the competitiveness of each structure do exist, but that choosing the best structure for a given project will largely depend on the conditions at hand; e.g., the ability of the farmer(s) to utilize tax credits, preference for individual versus cooperative ownership, and the state and utility service territory in which the project will be located.

Bolinger, Mark; Wiser, Ryan; Wind, Tom; Juhl, Dan; Grace, Robert; West, Peter

2005-05-20T23:59:59.000Z

150

EIS-0441: Mohave County Wind Farm Project, Mohave County, Arizona  

Broader source: Energy.gov [DOE]

This EIS, prepared by the Bureau of Land Management with DOEs Western Area Power Administration as a cooperating agency, evaluated the environmental impacts of a proposed wind energy project on public lands in Mohave County, Arizona. Power generated by this project would tie to the electrical power grid through an interconnection to one of Westerns transmission lines.

151

Cedar Rapids Wind Project | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Office of InspectorConcentrating SolarElectricEnergyCTBarreis aCallahanWindSyracuse, NYCedar Creek Wind FarmPoint

152

Dakota Valley Wind Project | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Office of InspectorConcentratingRenewable Solutions LLC JumpCrow Lake Wind107 CX at North BrawleyDNADTE JumpWind

153

Omaha Wind Project | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home5b9fcbce19 No revision hasInformation Earth'sOklahoma/Geothermal < Oklahoma Jump to: navigation,Olene GapWindOmaha Wind

154

Highland Wind Project | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home5b9fcbce19 No revision hasInformation Earth's Heat Jump to:Photon Place:NetHealthHigganum, Connecticut:WindHighland Wind

155

Revealing the Hidden Value that the Federal Investment Tax Credit and Treasury Cash Grant Provide To Community Wind Projects  

SciTech Connect (OSTI)

Although the global financial crisis of 2008/2009 has slowed wind power development in general, the crisis has, in several respects, been a blessing in disguise for community wind project development in the United States. For xample, the crisis-induced slowdown in the broader commercial wind market has, for the first time since 2004, created slack in the supply chain, creating an opportunity for shovel-ready community wind projects to finally proceed towards onstruction. Many such projects had been forced to wait on the sidelines as the commercial wind boom of 2005-2008 consumed virtually all available resources needed to complete a wind project (e.g., turbines, cranes, contractors).

Bolinger, Mark A.

2009-12-14T23:59:59.000Z

156

EA-1992: Funding for Principle Power, Inc., for the WindFloat Pacific Offshore Wind Demonstration Project, offshore of Coos Bay, Oregon  

Broader source: Energy.gov [DOE]

Funding for Principle Power, Inc., for the WindFloat Pacific Offshore Wind Demonstration Project, offshore of Coos Bay, Oregon

157

Session: Pre-development project risk assessment  

SciTech Connect (OSTI)

This second session at the Wind Energy and Birds/Bats workshop consisted of two presentations followed by a discussion/question and answer period. The focus of the presentations was on the practices and methodologies used in the wind energy industry for assessing risk to birds and bats at candidate project sites. Presenters offered examples of pre-development siting evaluation requirements set by certain states. Presentation one was titled ''Practices and Methodologies and Initial Screening Tools'' by Richard Curry of Curry and Kerlinger, LLC. Presentation two was titled ''State of the Industry in the Pacific Northwest'' by Andy Linehan, CH2MHILL.

Curry, Richard; Linehan, Andy

2004-09-01T23:59:59.000Z

158

Wind Program Announces $2 Million to Develop and Field Test Wind...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Wind Program today announced 2 million in funding to advance technologies that address wind development's potential impacts on wildlife. This funding will help address...

159

U.S. Offshore Wind Manufacturing and Supply Chain Development  

SciTech Connect (OSTI)

The objective of the report is to provide an assessment of the domestic supply chain and manufacturing infrastructure supporting the U.S. offshore wind market. The report provides baseline information and develops a strategy for future development of the supply chain required to support projected offshore wind deployment levels. A brief description of each of the key chapters includes: Chapter 1: Offshore Wind Plant Costs and Anticipated Technology Advancements. Determines the cost breakdown of offshore wind plants and identifies technical trends and anticipated advancements in offshore wind manufacturing and construction. Chapter 2: Potential Supply Chain Requirements and Opportunities. Provides an organized, analytical approach to identifying and bounding the uncertainties associated with a future U.S. offshore wind market. It projects potential component-level supply chain needs under three demand scenarios and identifies key supply chain challenges and opportunities facing the future U.S. market as well as current suppliers of the nations land-based wind market. Chapter 3: Strategy for Future Development. Evaluates the gap or competitive advantage of adding manufacturing capacity in the U.S. vs. overseas, and evaluates examples of policies that have been successful . Chapter 4: Pathways for Market Entry. Identifies technical and business pathways for market entry by potential suppliers of large-scale offshore turbine components and technical services. The report is intended for use by the following industry stakeholder groups: (a) Industry participants who seek baseline cost and supplier information for key component segments and the overall U.S. offshore wind market (Chapters 1 and 2). The component-level requirements and opportunities presented in Section 2.3 will be particularly useful in identifying market sizes, competition, and risks for the various component segments. (b) Federal, state, and local policymakers and economic development agencies, to assist in identifying policies with low effort and high impact (Chapter 3). Section 3.3 provides specific policy examples that have been demonstrated to be effective in removing barriers to development. (c) Current and potential domestic suppliers in the offshore wind market, in evaluating areas of opportunity and understanding requirements for participation (Chapter 4). Section 4.4 provides a step-by-step description of the qualification process that suppliers looking to sell components into a future U.S. offshore wind market will need to follow.

Hamilton, Bruce Duncan [Navigant Consulting, Inc.

2013-02-22T23:59:59.000Z

160

Economic Development from Gigawatt-Scale Wind Deployment in Wyoming (Presentation)  

SciTech Connect (OSTI)

This presentation provides an overview of economic development in Wyoming from gigawatt-scale wind development and includes a discussion of project context, definitions and caveats, a deployment scenario, modeling inputs, results, and conclusions.

Lantz, E.

2011-05-23T23:59:59.000Z

Note: This page contains sample records for the topic "wind project developer" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


161

Session: Bat ecology related to wind development and lessons learned about impacts on bats from wind development  

SciTech Connect (OSTI)

This session at the Wind Energy and Birds/Bats workshop consisted of two paper presentations followed by a discussion/question and answer period. It was the first of the sessions to shift the focus to the issue of wind energy development's impacts specifically to bats. The presentations discussed lessons that have been learned regarding direct and indirect impacts on bats and strategies planned to address such issues. Presenters addressed what the existing science demonstrates about land-based wind turbine impacts on bats, including: mortality, avoidance, direct habitat impacts, species and numbers killed, per turbine rates/per MW generated, and impacts on threatened and endangered species. They discussed whether there is sufficient data for wind turbines and bat impacts for projects in the eastern US, especially on ridge tops. Finally, the subject of offshore impacts on bats was briefly addressed, including what lessons have been learned in Europe and how these can be applied in the U S. Paper one, by Greg Johnson, was titled ''A Review of Bat Impacts at Wind Farms in the US''. Paper two, by Thomas Kunz, was titled ''Wind Power: Bats and Wind Turbines''.

Johnson, Greg; Kunz, Thomas

2004-09-01T23:59:59.000Z

162

Century Wind Project Expansion | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Office of InspectorConcentrating SolarElectricEnergyCTBarreis aCallahanWindSyracuse,CER.png El CER es

163

Chamberlain Wind Project | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Office of InspectorConcentrating SolarElectricEnergyCTBarreis aCallahanWindSyracuse,CER.png El CERChai Energy

164

Facilitating Wind Development: The Importance of Electric Industry Structure  

SciTech Connect (OSTI)

This paper evaluates which wholesale elecricity market-structure characteristics best accommodate wind energy development.

Kirby, B.; Milligan, M.

2008-05-01T23:59:59.000Z

165

New England Wind Forum: A Wind Powering America Project; Volume 1, Issue 2 -- December 2006  

SciTech Connect (OSTI)

The New England Wind Forum electronic newsletter summarizes the latest news in wind energy development activity, markets, education, and policy in the New England region. It also features an interview with a key figure influencing New England's wind energy development. Volume 1, Issue 2 features an interview with John MacLeod of Hull Municipal Light Plant. Hull 2, a 1.8-MW Vestas turbine installed in the Town of Hull in Massachusetts in 2006, is the largest wind turbine in New England and the first U.S. installation on a capped landfill.

Grace, R. C.; Gifford, J.

2006-12-01T23:59:59.000Z

166

Potential for Development of Solar and Wind Resource in Bhutan  

SciTech Connect (OSTI)

With support from the U.S. Agency for International Development (USAID), the U.S. Department of Energy's National Renewable Energy Laboratory (NREL) produced maps and data of the wind and solar resources in Bhutan. The solar resource data show that Bhutan has an adequate resource for flat-plate collectors, with annual average values of global horizontal solar radiation ranging from 4.0 to 5.5 kWh/m2-day (4.0 to 5.5 peak sun hours per day). The information provided in this report may be of use to energy planners in Bhutan involved in developing energy policy or planning wind and solar projects, and to energy analysts around the world interested in gaining an understanding of Bhutan's wind and solar energy potential.

Gilman, P.; Cowlin, S.; Heimiller, D.

2009-09-01T23:59:59.000Z

167

Offshore Wind Jobs and Economic Development Impacts in the United...  

Broader source: Energy.gov (indexed) [DOE]

wind has tremendous potential in the United States as a clean, renewable source of electricity. This report uses the offshore wind Jobs and Economic Development Impacts (JEDI)...

168

Energy Research and Development Division FINAL PROJECT REPORT  

E-Print Network [OSTI]

Energy Research and Development Division FINAL PROJECT REPORT SUMMARY OF RECENT WIND INTEGRATION STUDIES Experience from 2007-2010 APRIL 2012 CEC-500-2013-124 Prepared for: California Energy Commission Prepared by: California Wind Energy Collaborative #12;PRIMARY AUTHOR(S): Phillip de Mello C.P. (Case) van

169

EIS-0333: Maiden Wind Farm Project, Benton and Yakima Counties, Washington  

Broader source: Energy.gov [DOE]

This EIS analyzes BPAs proposed action to execute power purchase and interconnection agreements for the purpose of acquiring up to 50 average megawatts (aMW) (up to about 200 MW) of the project developers proposed Maiden Wind Farm.

170

Victorville Wind Project | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home5b9fcbce19 NoPublic Utilities Address: 160 East 300 South Place: Salt Lake City, UtahResources/Full VersionVertigroViaWind

171

Casselman Wind Project | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Office of InspectorConcentrating SolarElectricEnergyCTBarreis aCallahanWind Farm Jump to:Case WesternCasper

172

Century Wind Project | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Office of InspectorConcentrating SolarElectricEnergyCTBarreis aCallahanWindSyracuse,CER.png El CER esMidAmerican Energy

173

Miller Schools Wind Project | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home5b9fcbce19 No revision hasInformation Earth's HeatMexico: Energy Resources JumpMicrelBirds Jump to:Wind Power.979942°

174

Montezuma Wind Project | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home5b9fcbce19 No revision hasInformation Earth's HeatMexico: EnergyMithun Jump to:Moe WindMont VistaMontezuma Hot

175

Sawtooth Wind Project | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home5b9fcbce19 No revisionEnvReviewNonInvasiveExplorationUT-g Grant ofRichardton AbbeyA Jump to: navigation,Savoonga Wind

176

Shiloh Wind Power Project | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home5b9fcbce19 No revisionEnvReviewNonInvasiveExplorationUT-g Grant ofRichardton AbbeyARaftPadoma Wind PowerHills

177

St. Olaf Wind Project | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home5b9fcbce19 No revisionEnvReviewNonInvasiveExplorationUT-g GrantAtlas (PACA RegionSpringview IISt. Mary's Wind Farm FacilityOlaf

178

Stateline Wind Project | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home5b9fcbce19 No revisionEnvReviewNonInvasiveExplorationUT-g GrantAtlas (PACA RegionSpringviewName Stateline Wind Energy

179

Wales Wind Energy Project | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home5b9fcbce19 NoPublic Utilities Address: 160 East 300 South Place: Salt Lake City,Division of OilGuyane8031909°,Wales Wind Energy

180

Dunlap Wind Energy Project | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home5b9fcbce19 No revision has beenFfe2fb55-352f-473b-a2dd-50ae8b27f0a6 No revision has TypeGeothermalII Wind

Note: This page contains sample records for the topic "wind project developer" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


181

Gary Wind Energy Project | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home5b9fcbce19 No revision has beenFfe2fb55-352f-473b-a2dd-50ae8b27f0a6TheoreticalFuelCell Energy IncFORTechnologyGammaGary Wind

182

Oak Glen Wind Project | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home5b9fcbce19 No revision hasInformation Earth's HeatMexico:CommunityNorthwest BasinOahu, Hawaii: Energy ResourcesOakWind

183

Hardscrabble Wind Power Project | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home5b9fcbce19 No revision hasInformation Earth's Heat Jump to:Photon Place:Net JumpStrategy |HammerfestHardscrabble Wind Power

184

Highmore Wind Energy Project | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home5b9fcbce19 No revision hasInformation Earth's Heat Jump to:Photon Place:NetHealthHigganum, Connecticut:WindHighlandis

185

Howard Wind Energy Project | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home5b9fcbce19 No revision hasInformation Earth's Heat Jump to:PhotonHolyName HousingIII Wind FarmWould You

186

Hyannis Wind Project | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home5b9fcbce19 No revision hasInformation Earth's Heat Jump to:PhotonHolyName HousingIII Wind FarmWouldOpenSchoolsHyRadixHyannis

187

KDOT Osborne Wind Project | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home5b9fcbce19 No revision hasInformation Earth's Heat JumpInc Place: EdenOverview JumpJessi3bl'sJustin,KDOT Osborne Wind

188

Final project report: High energy rotor development, test and evaluation  

SciTech Connect (OSTI)

Under the auspices of the {open_quotes}Government/Industry Wind Technology Applications Project{close_quotes} [{open_quotes}Letter of Interest{close_quotes} (LOI) Number RC-1-11101], Flo Wind Corp. has successfully developed, tested, and delivered a high-energy rotor upgrade candidate for their 19-meter Vertical Axis Wind Turbine. The project included the demonstration of the innovative extended height-to-diameter ratio concept, the development of a continuous span single-piece composite blade, the demonstration of a continuous blade manufacturing technique, the utilization of the Sandia National Laboratories developed SNLA 2150 natural laminar flow airfoil and the reuse of existing wind turbine and wind power plant infrastructure.

NONE

1996-09-01T23:59:59.000Z

189

Wind power and Wind power and  

E-Print Network [OSTI]

Wind power and the CDM #12; Wind power and the CDM Emerging practices in developing wind power 2005 Jyoti P. Painuly, Niels-Erik Clausen, Jørgen Fenhann, Sami Kamel and Romeo Pacudan #12; WIND POWER AND THE CDM Emerging practices in developing wind power projects for the Clean Development Mechanism Energy

190

EIS-0427: Grapevine Canyon Wind Project, Coconino County, Arizona  

Broader source: Energy.gov [DOE]

This EIS evaluates the environmental impacts of a proposed wind energy generation project in Coconino County, Arizona, on privately owned ranch lands and trust lands administered by the Arizona State Land Department. The proposed project includes a new transmission tie-line that would cross lands administered by Coconino National Forest and interconnect with DOEs Western Area Power Administrations existing Glen Canyon-Pinnacle Peak transmission lines.

191

Wind Power Project Repowering: History, Economics, and Demand (Presentation)  

SciTech Connect (OSTI)

This presentation summarizes a related NREL technical report and seeks to capture the current status of wind power project repowering in the U.S. and globally, analyze the economic and financial decision drivers that surround repowering, and to quantify the level and timing of demand for new turbine equipment to supply the repowering market.

Lantz, E.

2015-01-01T23:59:59.000Z

192

EA-1909: South Table Wind Farm Project, Kimball County, Nebraska  

Broader source: Energy.gov [DOE]

DOEs Western Area Power Administration is preparing this EA to evaluate the environmental impacts of interconnecting the proposed South Table Wind Project, which would generate approximately 60 megawatts from about 40 turbines, to Westerns existing Archer-Sidney 115-kV Transmission Line in Kimball County, Nebraska.

193

Systems Performance Analyses of Alaska Wind-Diesel Projects; St. Paul, Alaska (Fact Sheet)  

SciTech Connect (OSTI)

This fact sheet summarizes a systems performance analysis of the wind-diesel project in St. Paul, Alaska. Data provided for this project include load data, average wind turbine output, average diesel plant output, dump (controlling) load, average net capacity factor, average net wind penetration, estimated fuel savings, and wind system availability.

Baring-Gould, I.

2009-04-01T23:59:59.000Z

194

The Impact of Wind Power Projects on Residential Property Values in the United States: A Multi-Site Hedonic Analysis  

E-Print Network [OSTI]

such concern is the potential impact of wind energy projectshas investigated the potential impact of wind projects onassessment of the potential impact of wind facilities on the

Hoen, Ben

2010-01-01T23:59:59.000Z

195

29-11-061ETSAP Wind power in the EC RES2020 project  

E-Print Network [OSTI]

29-11-061ETSAP Wind power in the EC RES2020 project Wind power in technology-rich energy system of Stuttgart, Germany #12;29-11-062ETSAP Wind power in technology-rich energy system optimisation models 1 ­ Implementation of wind power in TIMES 3. Wind Power Integration in Liberalised Electricity Markets ­ EU 5th

196

WINDExchange: Wind for Schools Pilot Project Results  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmosphericNuclear SecurityTensile Strain Switched Ferromagnetism inS-4500IIVasudhaSurface.Laboratory in Golden,WIMapPilot Project

197

Fire Island Wind Project | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home5b9fcbce19 No revision has beenFfe2fb55-352f-473b-a2dd-50ae8b27f0a6Theoretical vs Actual Data LessonType.Countries |Project Jump

198

NREL: Wind Research - Field Verification Project  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmosphericNuclear Security Administration the Contributions andData andFleet Test andField Verification Project The mission of the

199

Wind-to-Hydrogen Cost Modeling and Project Findings (Text Version...  

Broader source: Energy.gov (indexed) [DOE]

Wind-to-Hydrogen Cost Modeling and Project Findings (Text Version) Wind-to-Hydrogen Cost Modeling and Project Findings (Text Version) Below is the text version of the webinar...

200

Economic Development Project Districts (Indiana)  

Broader source: Energy.gov [DOE]

Redevelopment commissions may petition legislative bodies to designate economic development project districts in cities with populations between 80,500 and 500,000. Such districts may be...

Note: This page contains sample records for the topic "wind project developer" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


201

EA-1966: Sunflower Wind Project, Hebron, North Dakota  

Broader source: Energy.gov [DOE]

Western Area Power Administration (Western) prepared an EA to evaluate potential environmental impacts of interconnecting a proposed 80 MW generating facility south of Hebron in Morton and Stark Counties, North Dakota. The proposed wind generating facility of 30-50 wind turbines encompassed approximately 9,000 acres. Ancillary facilities included an underground collection line system, a project substation, one mile of new transmission line, a new switchyard facility on the existing Dickinson-Mandan 230 kV line owned and operated by Western, one permanent meteorological tower, new access roads, and an operations and maintenance building.

202

Session: What can we learn from developed wind resource areas  

SciTech Connect (OSTI)

This session at the Wind Energy and Birds/Bats workshop was composed of two parts intended to examine what existing science tells us about wind turbine impacts at existing wind project sites. Part one dealt with the Altamont Wind Resource area, one of the older wind projects in the US, with a paper presented by Carl Thelander titled ''Bird Fatalities in the Altamont Pass Wind Resource Area: A Case Study, Part 1''. Questions addressed by the presenter included: how is avian habitat affected at Altamont and do birds avoid turbine sites; are birds being attracted to turbine strings; what factors contribute to direct impacts on birds by wind turbines at Altamont; how do use, behavior, avoidance and other factors affect risk to avian species, and particularly impacts those species listed as threatened, endangered, or of conservation concern, and other state listed species. The second part dealt with direct impacts to birds at new generation wind plants outside of California, examining such is sues as mortality, avoidance, direct habitat impacts from terrestrial wind projects, species and numbers killed per turbine rates/MW generated, impacts to listed threatened and endangered species, to USFWS Birds of Conservation Concern, and to state listed species. This session focused on newer wind project sites with a paper titled ''Bird Fatality and Risk at New Generation Wind Projects'' by Wally Erickson. Each paper was followed by a discussion/question and answer period.

Thelander, Carl; Erickson, Wally

2004-09-01T23:59:59.000Z

203

FEED-IN TARIFFS AND OFFSHORE WIND POWER DEVELOPMENT  

E-Print Network [OSTI]

FEED-IN TARIFFS AND OFFSHORE WIND POWER DEVELOPMENT Prepared by Jon Lilley, Blaise Sheridan, Dawn........................................................................................................................ 28 #12; 3 Feed-in Tariffs and Offshore Wind Power Development Prepared Pursuant to DOE Grant Em

Firestone, Jeremy

204

Sandia National Laboratories Develops Tool for Evaluating Wind...  

Broader source: Energy.gov (indexed) [DOE]

Develops Tool for Evaluating Wind Turbine-Radar Impacts Sandia National Laboratories Develops Tool for Evaluating Wind Turbine-Radar Impacts September 12, 2014 - 11:30am Addthis...

205

Grid Connectivity Research, Development & Demonstration Projects...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Connectivity Research, Development & Demonstration Projects Grid Connectivity Research, Development & Demonstration Projects 2013 DOE Hydrogen and Fuel Cells Program and Vehicle...

206

Regulatory Considerations for Developing Generation Projects...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Generation Projects on Federal Lands Regulatory Considerations for Developing Generation Projects on Federal Lands Presentation covers regulatory considerations for developing...

207

Concordia High School Wind Project | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Office of InspectorConcentratingRenewable Solutions LLC Jump to: navigation,AreaHigh School Wind Project Jump to:

208

Best Practices for Wind Energy Development in the Great Lakes Region  

SciTech Connect (OSTI)

This report offers a menu of 18 different, yet complementary, preferred practices and policies. The best practices cover all phases of the wind energy development process - from the policies that allow for wind development, to the sustainable operation of a wind project, to the best practices for decommissioning a spent turbine - including applications for offshore wind. Each best practice describes the opportunities and challenges (pros and cons), and offers a case example that illustrates how that best practice is being utilized by a particular jurisdiction or wind project. The practices described in this publication were selected by a diverse group of interests from the Great Lakes Wind Collaborative that included environmental groups, industry, academia, and federal, state and local government regulators. The practices were identified through a year-long process that included a literature review, online survey and interviews with individuals from the public, private and non-profit sectors. Optimally, a suite of these best practices would be applied in an appropriate combination to fit the conditions of a particular wind project or a set of wind projects within a given locality or region.

Pebbles, Victoria; Hummer, John; Haven, Celia

2011-07-19T23:59:59.000Z

209

Why Cogeneration Development Projects Fail  

E-Print Network [OSTI]

WHY CXXlENERATION DEVElDHmNT PROJECTS FAIL RALPH w. GRBBtMX>D Regional Manager Bbasco Services Incorporated Houston, Texas ABSTRACT Cogeneration projects that are organized by developers fail to reach fruition for reasons other than... the basic economical or technical sotmdness of the opportunity. Cogeneration developnent projects fail because of misunderstanding?by the host or other participants of their obligations, inadequate management support by the host organization, regulatory...

Greenwood, R. W.

210

Developments in Digital Cinema Projection  

E-Print Network [OSTI]

Developments in Digital Cinema Projection Barry Silverstein Projection Technology Manager Entertainment Imaging, Eastman Kodak 4pm, Wed., Nov. 1, 2006 Auditorium of the Center for Imaging Science George and color, the switch to Digital Technology. The Digital Cinema conversion process is just beginning. It has

Zanibbi, Richard

211

Jobs and Economic Development Impact (JEDI) Model: Offshore Wind User Reference Guide  

SciTech Connect (OSTI)

The Offshore Wind Jobs and Economic Development Impact (JEDI) model, developed by NREL and MRG & Associates, is a spreadsheet based input-output tool. JEDI is meant to be a user friendly and transparent tool to estimate potential economic impacts supported by the development and operation of offshore wind projects. This guide describes how to use the model as well as technical information such as methodology, limitations, and data sources.

Lantz, E.; Goldberg, M.; Keyser, D.

2013-06-01T23:59:59.000Z

212

Community Wind: Once Again Pushing the Envelope of Project Finance  

E-Print Network [OSTI]

Ormand (Oregon Trail Wind Farm, LLC). 2010. PersonalOrmand Hilderbrand (Oregon Trail Wind Farm, LLC); Joaquin17 4.5 PTu Wind Farm,

bolinger, Mark A.

2011-01-01T23:59:59.000Z

213

Development of Wind Turbines Prototyping Software Under Matlab/Simulink  

E-Print Network [OSTI]

204 1 Development of Wind Turbines Prototyping Software Under Matlab/Simulink® Through present the development of a wind turbine prototyping software under Matlab/Simulink® through and the end of 1999, around 75% of all new grid-connected wind turbines worldwide were installed in Europe [3

Paris-Sud XI, Université de

214

Contributed Paper Effects of Wind Energy Development on Nesting  

E-Print Network [OSTI]

Contributed Paper Effects of Wind Energy Development on Nesting Ecology of Greater Prairie 32611, U.S.A. Abstract: Wind energy is targeted to meet 20% of U.S. energy needs by 2030, but new sites for impacts of a wind energy development on the reproductive ecology of prairie-chickens in a 5-year study. We

Sandercock, Brett K.

215

Environmental assessment: Kotzebue Wind Installation Project, Kotzebue, Alaska  

SciTech Connect (OSTI)

The DOE is proposing to provide financial assistance to the Kotzebue Electric Association to expand its existing wind installation near Kotzebue, Alaska. Like many rural Alaska towns, Kotzebue uses diesel-powered generators to produce its electricity, the high cost of which is currently subsidized by the Alaska State government. In an effort to provide a cost effective and clean source of electricity, reduce dependence on diesel fuel, and reduce air pollutants, the DOE is proposing to fund an experimental wind installation to test commercially available wind turbines under Arctic conditions. The results would provide valuable information to other Alaska communities experiencing similar dependence on diesel-powered generators. The environmental assessment for the proposed wind installation assessed impacts to biological resources, land use, electromagnetic interference, coastal zone, air quality, cultural resources, and noise. It was determined that the project does not constitute a major Federal action significantly affecting the quality of the human environment. Therefore, the preparation of an environmental impact statement is not required, and DOE has issued a Finding of No Significant Impact.

NONE

1998-05-01T23:59:59.000Z

216

| | | | |Monday, July 16, 2012 Three Northeast Ohio offshore wind power projects  

E-Print Network [OSTI]

| | | | |Monday, July 16, 2012 Home Three Northeast Ohio offshore wind power projects secure federal money By SCOTT SUTTELL 1:52 pm, September 9, 2011 Three Northeast Ohio offshore wind power." Three Northeast Ohio offshore wind power projects secure federal money... http

Rollins, Andrew M.

217

Final Map Draft Comparison Report WIND ENERGY RESOURCE MODELING AND MEASUREMENT PROJECT  

E-Print Network [OSTI]

II Final Map Draft Comparison Report #12;WIND ENERGY RESOURCE MODELING AND MEASUREMENT PROJECT Tel: 978-749-9591 Fax: 978-749-9713 mbrower@awstruewind.com August 10, 2004 #12;2 WIND ENERGY RESOURCE issues. 1 Background In Task 2 of the project, five promising areas of the state for wind energy

218

Ex post analysis of economic impacts from wind power development in U.S. counties  

E-Print Network [OSTI]

Figure 1. Location of Wind Power Development in the UnitedFigure 4: Total Installed Wind Power Capacity (MW): 2000 -development impacts of wind power installations. References

Brown, Jason P

2014-01-01T23:59:59.000Z

219

EA-1903: Kansas State University Zond Wind Energy Project, Manhattan, Kansas  

Broader source: Energy.gov [DOE]

This EA evaluates the potential environmental impacts of a proposal to use Congressional Directed funds to develop the Great Plains Wind Energy Consortium aimed at increasing the penetration of wind energy via distributed wind power generation throughout the region.

220

Securing Clean, Domestic, Affordable Energy with Wind (Fact Sheet...  

Office of Environmental Management (EM)

research and development efforts. eerewindwater.pdf More Documents & Publications Wind Program Accomplishments Offshore Wind Projects Wind Program FY 2015 Budget At-A-Glance...

Note: This page contains sample records for the topic "wind project developer" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


221

EIS-0437: Interconnection of the Buffalo Ridge III Wind Project, Brookings and Deuel Counties, South Dakota  

Broader source: Energy.gov [DOE]

This EIS evaluates the environmental impacts of a proposal to interconnect the Heartland Wind, LLC, proposed Buffalo Ridge III Wind Project in Brookings and Deuel Counties, South Dakota, to DOEs Western Area Power Administration transmission system.

222

Mill Run Wind Power Project | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home5b9fcbce19 No revision hasInformation Earth's HeatMexico: Energy Resources JumpMicrelBirds Jump to:Wind Power Project Jump

223

Condon Wind Project phase II | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Office of InspectorConcentratingRenewable Solutions LLC Jump to: navigation,AreaHigh School Wind Project Jump to:phase

224

What Is a Small Community Wind Project? | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home5b9fcbce19 NoPublic Utilities Address: 160 East 300 South Place: SaltTroyer & AssociatesWestIL NumberPower Wind FarmProject?

225

Florence High School Wind Project | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home5b9fcbce19 No revision has beenFfe2fb55-352f-473b-a2dd-50ae8b27f0a6Theoretical vs Actual DataNext 25High School Wind Project

226

Hayes Center Public Schools Wind Project | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home5b9fcbce19 No revision hasInformation Earth's Heat Jump to:Photon Place:NetHealth Division | OpenReleaseWindProjectHay

227

Wind Energy Development and its Impacts on Wildlife  

E-Print Network [OSTI]

1 Wind Energy Development and its Impacts on Wildlife Carrie Lowe, M.S. Candidate UniversityOutline · Introduction · Wind energy in the U.S. I t ildlif· Impacts on wildlife · Guidelines · Future directions · References IntroductionIntroduction What is wind energy? · The process by which turbines convert the kinetic

Gray, Matthew

228

Potential Presence of Endangered Wildlife Species at the University of Delaware Wind Power Project Site  

E-Print Network [OSTI]

Potential Presence of Endangered Wildlife Species at the University of Delaware Wind Power Project wind power project site, we conducted an analysis of the suitability of habitat within the project of potential risk to the species. #12;Corn Snake ­ Fairly common in Delaware, but is not likely to be present

Firestone, Jeremy

229

Record of Decision for the Electrical Interconnection of the Windy Point Wind Energy Project.  

SciTech Connect (OSTI)

The Bonneville Power Administration (BPA) has decided to offer contract terms for interconnection of 250 megawatts (MW) of power to be generated by the proposed Windy Point Wind Energy Project (Wind Project) into the Federal Columbia River Transmission System (FCRTS). Windy Point Partners, LLC (WPP) propose to construct and operate the proposed Wind Project and has requested interconnection to the FCRTS. The Wind Project will be interconnected at BPA's Rock Creek Substation, which is under construction in Klickitat County, Washington. The Rock Creek Substation will provide transmission access for the Wind Project to BPA's Wautoma-John Day No.1 500-kilovolt (kV) transmission line. BPA's decision to offer terms to interconnect the Wind Project is consistent with BPA's Business Plan Final Environmental Impact Statement (BP EIS) (DOE/EIS-0183, June 1995), and the Business Plan Record of Decision (BP ROD, August 15, 1995). This decision thus is tiered to the BP ROD.

United States. Bonneville Power Administration.

2006-11-01T23:59:59.000Z

230

Wind Project Development | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Office of InspectorConcentrating SolarElectric Coop,SaveWhiskey Flats Geothermal Areaarticle is a stub. You canprovides

231

Workforce Development Wind Projects | Department of Energy  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE:YearRound-Up from theDepartment of Dept.|Sindhu Jagadamma Women @TelecomIllness |Worker

232

A comparative analysis of business structures suitable forfarmer-owned wind power projects in the United States  

SciTech Connect (OSTI)

For years, farmers in the United States have looked with envy on their European counterparts' ability to profitably farm the wind through ownership of distributed, utility-scale wind projects. Only within the past few years, however, has farmer- or community-owned wind power development become a reality in the United States. The primary hurdle to this type of development in the United States has been devising and implementing suitable business and legal structures that enable such projects to take advantage of tax-based federal incentives for wind power. This article discusses the limitations of such incentives in supporting farmer- or community-owned wind projects, describes four ownership structures that potentially overcome such limitations, and finally conducts comparative financial analysis on those four structures, using as an example a hypothetical 1.5 MW farmer-owned project located in the state of Oregon. We find that material differences in the competitiveness of each structure do exist, but that choosing the best structure for a given project will largely depend on the conditions at hand; e.g., the ability of the farmer(s) to utilize tax credits, preference for individual versus ''cooperative'' ownership, and the state and utility service territory in which the project will be located.

Bolinger, Mark; Wiser, Ryan

2004-11-11T23:59:59.000Z

233

EA-1812: Haxtun Wind Energy Project, Logan and Phillips County, Colorado  

Broader source: Energy.gov [DOE]

This EA evaluates the environmental impacts of a proposal to authorize the expenditure of Federal funding through the Community Renewable Energy Deployment Program to Phillips County for design, permitting, and construction of an approximately 30-megawatt wind energy project, known as Haxtun Wind Project, within Phillips and Logan counties in northeastern Colorado. The proposed project consists of 18 wind turbines that would interconnect to the Highline Electric Cooperative equipment inside Western Area Power Administration's Haxtun substation just south of the Town of Haxtun.

234

Wind-electric icemaking project: Analysis and dynamometer testing. Volume 1  

SciTech Connect (OSTI)

The wind/hybrid systems group at the National Renewable Energy Laboratory has been researching the most practical and cost-effective methods for producing ice from off-grid wind-electric power systems. The first phase of the project, conducted in 1993--1994, included full-scale dynamometer and field testing of two different electric ice makers directly connected to a permanent magnet alternator. The results of that phase were encouraging and the second phase of the project was launched in which steady-state and dynamic numerical models of these systems were developed and experimentally validated. The third phase of the project was the dynamometer testing of the North Star ice maker, which is powered by a 12-kilowatt Bergey Windpower Company, Inc., alternator. This report describes both the second and third project phases. Also included are detailed economic analyses and a discussion of the future prospects of wind-electric ice-making systems. The main report is contained in Volume 1. Volume 2 consists of the report appendices, which include the actual computer programs used in the analysis and the detailed test results.

Holz, R.; Gervorgian, V.; Drouilhet, S.; Muljadi, E.

1998-07-01T23:59:59.000Z

235

Wind-electric icemaking project: Analysis and dynamometer testing. Volume 2  

SciTech Connect (OSTI)

The wind/hybrid systems group at the National Renewable Energy Laboratory has been researching the most practical and cost-effective methods for producing ice from off-grid wind-electric power systems. The first phase of the project, conducted in 1993--1994, included full-scale dynamometer and field testing of two different electric ice makers directly connected to a permanent magnet alternator. The results of that phase were encouraging and the second phase of the project was launched in which steady-state and dynamic numerical models of these systems were developed and experimentally validated. The third phase of the project was the dynamometer testing of the North Star ice maker, which is powered by a 12-kilowatt Bergey Windpower Company, Inc., alternator. This report describes both the second and third project phases. Also included are detailed economic analyses and a discussion of the future prospects of wind-electric ice-making systems. The main report is contained in Volume 1. Volume 2 consists of the report appendices, which include the actual computer programs used in the analysis and the detailed test results.

Holz, R.; Gervorgian, V.; Drouilhet, S.; Muljadi, E.

1998-07-01T23:59:59.000Z

236

Determining Optimal Locations for New Wind Energy Development in Iowa.  

E-Print Network [OSTI]

??The purpose of this research is to generate the most accurate model possible for predicting locations most suitable for new wind energy development using a (more)

Mann, David

2011-01-01T23:59:59.000Z

237

Environmental Impacts of Wind Power Development on the Population...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

chickens. windpowerprairiechickens.pdf More Documents & Publications Sage-Grouse and Wind Energy: Biology, Habits, and Potential Effects from Development EIS-0485: Draft...

238

Assessment of Ports for Offshore Wind Development in the United...  

Broader source: Energy.gov (indexed) [DOE]

America, Inc. Page ii Document No. 700694-USPO-R-03 Assessment of Ports for Offshore Wind Development in the United States Issue: E Final CONTENTS EXECUTIVE SUMMARY...

239

Model Examines Cumulative Impacts of Wind Energy Development...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

an area that currently supports important populations of greater sage-grouse and has high wind energy development potential. This early model prototype demonstrated the utility of...

240

Energy Research and Development Division FINAL PROJECT REPORT  

E-Print Network [OSTI]

Energy Research and Development Division FINAL PROJECT REPORT ADVANCED CHARACTERIZATION OF WIND RESOURCES IN SELECTED FOCUS AREAS OF CALIFORNIA Prepared for: California Energy Commission Prepared by: AWS-06-024 Prepared for: California Energy Commission Mike Kane Contract Manager Linda Spiegel Office Manager Energy

Note: This page contains sample records for the topic "wind project developer" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


241

EA-1801: Granite Reliable Power Wind Park Project in Coos County...  

Broader source: Energy.gov (indexed) [DOE]

June 25, 2010 EA-1801: Final Environmental Impact Granite Reliable Power Wind Project, Coos County, New Hampshire July 23, 2010 EA-1801: Finding of No Significant Impact Granite...

242

RECIPIENT:City of Ann Arbor PROJECT TITLE: Ann Arbor Wind Generator  

Broader source: Energy.gov (indexed) [DOE]

Ann Arbor PROJECT TITLE: Ann Arbor Wind Generator " ) STATE: MI Funding Opportunity Announcement Number ProcurementInstrument Number NEPA Control Number CID Number DE-EE0000447...

243

NREL Wind to Hydrogen Project: Renewable Hydrogen Production for Energy Storage & Transportation (Presentation)  

SciTech Connect (OSTI)

Presentation about NREL's Wind to Hydrogen Project and producing renewable hydrogen for both energy storage and transporation, including the challenges, sustainable pathways, and analysis results.

Ramsden, T.; Harrison, K.; Steward, D.

2009-11-16T23:59:59.000Z

244

Department of Mechanical and Nuclear Engineering Spring 2011 Wind Tunnel Automation Project  

E-Print Network [OSTI]

PENNSTATE Department of Mechanical and Nuclear Engineering Spring 2011 Wind Tunnel Automation Project Phase II - Automated Bike Turret Mount Overview SYNERGE LLC is a consulting company working

Demirel, Melik C.

245

Digital Book Showcases Washington Wind Project | Department of...  

Broader source: Energy.gov (indexed) [DOE]

It will be one of the largest wind farms in the United States and supply energy for California municipalities. Addthis Related Articles Genoa Township, Mich., installed five wind...

246

Advanced Wind Energy Projects Test Facility Moving to Texas Tech...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

The Lubbock site will include an initial installation of two 225-kilowatt wind turbines and three anemometer towers, with the potential to expand to nine or more wind...

247

Community Wind: Once Again Pushing the Envelope of Project Finance  

E-Print Network [OSTI]

lease financing has been popular in the commercial solarlease financing in the wind sector due to wind powers greater inter-year variability relative to solar (

bolinger, Mark A.

2011-01-01T23:59:59.000Z

248

Economic Impacts of Wind Turbine Development in U.S. Counties  

E-Print Network [OSTI]

15 percent)). Cumulative wind turbine capacity installed inper capita income of wind turbine development (measured inour sample, cumulative wind turbine capacity on a per person

J., Brown

2012-01-01T23:59:59.000Z

249

Accelerating Offshore Wind Development | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

and support innovative offshore installations for commercial deployment by 2017. Offshore wind is a large, untapped energy resource, with the potential to generate 4,000 gigawatts...

250

WREF 2012: THE PAST AND FUTURE COST OF WIND ENERGY  

E-Print Network [OSTI]

wind resource where projects are located, transmission, grid integration,wind resource in which projects are located, as well as development, transmission, integration,

Wiser, Ryan

2013-01-01T23:59:59.000Z

251

COE projection for the modular WARP{trademark} wind power system for wind farms and electric utility power transmission  

SciTech Connect (OSTI)

Wind power has emerged as an attractive alternative source of electricity for utilities. Turbine operating experience from wind farms has provided corroborating data of wind power potential for electric utility application. Now, a patented modular wind power technology, the Toroidal Accelerator Rotor Platform (TARP{trademark}) Windframe{trademark}, forms the basis for next generation megawatt scale wind farm and/or distributed wind power plants. When arranged in tall vertically clustered TARP{trademark} module stacks, such power plant units are designated Wind Amplified Rotor Platform (WARP{trademark}) Systems. While heavily building on proven technology, these systems are projected to surpass current technology windmills in terms of performance, user-friendly operation and ease of maintenance. In its unique generation and transmission configuration, the WARP{trademark}-GT System combines both electricity generation through wind energy conversion and electric power transmission. Furthermore, environmental benefits include dramatically less land requirement, architectural appearance, lower noise and EMI/TV interference, and virtual elimination of bird mortality potential. Cost-of-energy (COE) is projected to be from under $0.02/kWh to less than $0.05/kWh in good to moderate wind resource sites.

Weisbrich, A.L. [ENECO, West Simsbury, CT (United States); Ostrow, S.L.; Padalino, J. [Raytheon Engineers and Constructors, New York, NY (United States)

1995-09-01T23:59:59.000Z

252

Wind for Schools (Poster)  

SciTech Connect (OSTI)

As the United States dramatically expands wind energy deployment, the industry is challenged with developing a skilled workforce and addressing public resistance. Wind Powering America's Wind for Schools project addresses these issues by developing Wind Application Centers (WACs) at universities; WAC students assist in implementing school wind turbines and participate in wind courses, by installing small wind turbines at community "host" schools, by implementing teacher training with interactive curricula at each host school. This poster provides an overview of the first two years of the Wind for Schools project, primarily supporting activities in Colorado, Kansas, Nebraska, South Dakota, Montana, and Idaho.

Baring-Gould, I.

2010-05-01T23:59:59.000Z

253

Evaluation of Advanced Wind Power Forecasting Models Results of the Anemos Project  

E-Print Network [OSTI]

1 Evaluation of Advanced Wind Power Forecasting Models ­ Results of the Anemos Project I. Martí1.kariniotakis@ensmp.fr Abstract An outstanding question posed today by end-users like power system operators, wind power producers or traders is what performance can be expected by state-of-the-art wind power prediction models. This paper

Paris-Sud XI, Université de

254

1 Energy Markets and Policy Group Energy Analysis Department The Impact of Wind Power Projects  

E-Print Network [OSTI]

1 Energy Markets and Policy Group · Energy Analysis Department The Impact of Wind Power Projects, Wind & Hydropower Technologies Program #12;2 Energy Markets and Policy Group · Energy Analysis Concerns for Wind Energy Fall Into Three Potential Categories 1. Area Stigma: Concern that rural areas

Firestone, Jeremy

255

After the wind resource and project site have been determined and the community outreach effort has  

E-Print Network [OSTI]

permit application. See the Fact Sheets on resource assessment and wind resource data for more: Technology Performance Impacts & Issues Siting Resource Assessment Wind Data Permitting Case Studies 1. 2. 3After the wind resource and project site have been determined and the community outreach effort has

Massachusetts at Amherst, University of

256

Valuation of wind energy projects and statistical analysis of wind power  

E-Print Network [OSTI]

As energy becomes an increasingly important issue for generations to come, it is crucial to develop tools for valuing and understanding energy projects from an economic perspective since ultimately only economically viable ...

Nanopoulos, Andrew

2012-01-01T23:59:59.000Z

257

Best Practices for Sustainable WInd Energy Development in the Great Lakes Region and Beyond  

SciTech Connect (OSTI)

This document offers a menu of 18 different, yet complimentary preferred practices and policies. The best practices cover all phases of the wind energy development process - from the policies that allow for wind development, to the sustainable operation of a wind project, to the best practices for decommissioning a spent turbine - including applications for offshore wind. The practices include those that have been previously tested and proven effective, as well as new practices that were identified by experts in the field as needed for future wind developments. Each best practice includes information about the opportunities and challenges (pros and cons), and offers a case example that illustrates how that best practice is being utilized by a particular jurisdiction or wind project. The practices described in this publication were selected by a diverse group of interests from the Great Lakes Wind Collaborative that included environmental groups, industry, and federal, state and local government regulators. They were identified through a year long process that included a literature review, online survey and interviews with individuals from the public, private and non-profit sectors.

Great Lakes Commission; Victoria Pebbles; John Hummer; Celia Haven

2011-07-19T23:59:59.000Z

258

Wind Energy Workforce Development: A Roadmap to a Sustainable Wind Industry (Poster)  

SciTech Connect (OSTI)

As the United States moves toward a vision of greatly expanded wind energy use as outlined in the U.S. Department of Energy's 20% Wind Energy by 2030 report, the need for skilled workers at all levels in the industry is repeatedly identified as a critical issue. This presentation is an overview of the educational infrastructure and expected industry needs to support the continued development of a vibrant U.S. wind industry through a discussion of the activities identified that must be put in place to train workers. The paper will also provide a framework to address issues raised from each of the education and industry sectors, identifying a roadmap for developing an educational infrastructure to support wind technology. The presentation will also provide an understanding of the available resources, materials, and programs available across the industry. This presentation provides an overview of the educational infrastructure and expected industry needs to support the continued development of a vibrant U.S. wind industry as part of a collaborative effort to develop a wind workforce roadmap. This presentation will provide 1) A review of needed programs to train workers for the wind industry; 2) An overview of the importance education will play if the nation is to expand wind energy (both in development and deployment terms) and a review of ongoing activities with a focus on federal efforts; 3) A review of the materials and resources available across the industry and a framework to address issues raised from each of the education and industry sectors.

Baring-Gould, I.; Kelly, M.

2010-05-01T23:59:59.000Z

259

Project Development and Finance: Capabilities (Fact Sheet)  

SciTech Connect (OSTI)

Capabilities overview of NREL's Project Finance and Development Group within the Deployment and Market Transformation Directorate.

Not Available

2013-01-01T23:59:59.000Z

260

An approach to the development and analysis of wind turbine control algorithms  

SciTech Connect (OSTI)

The objective of this project is to develop the capability of symbolically generating an analytical model of a wind turbine for studies of control systems. This report focuses on a theoretical formulation of the symbolic equations of motion (EOMs) modeler for horizontal axis wind turbines. In addition to the power train dynamics, a generic 7-axis rotor assembly is used as the base model from which the EOMs of various turbine configurations can be derived. A systematic approach to generate the EOMs is presented using d`Alembert`s principle and Lagrangian dynamics. A Matlab M file was implemented to generate the EOMs of a two-bladed, free yaw wind turbine. The EOMs will be compared in the future to those of a similar wind turbine modeled with the YawDyn code for verification. This project was sponsored by Sandia National Laboratories as part of the Adaptive Structures and Control Task. This is the final report of Sandia Contract AS-0985.

Wu, K.C.

1998-03-01T23:59:59.000Z

Note: This page contains sample records for the topic "wind project developer" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


261

Factors driving wind power development in the United States  

SciTech Connect (OSTI)

In the United States, there has been substantial recent growth in wind energy generating capacity, with growth averaging 24 percent annually during the past five years. About 1,700 MW of wind energy capacity was installed in 2001, while another 410 MW became operational in 2002. This year (2003) shows promise of significant growth with more than 1,500 MW planned. With this growth, an increasing number of states are experiencing investment in wind energy projects. Wind installations currently exist in about half of all U.S. states. This paper explores the key factors at play in the states that have achieved a substantial amount of wind energy investment. Some of the factors that are examined include policy drivers, such as renewable portfolio standards (RPS), federal and state financial incentives, and integrated resource planning; as well as market drivers, such as consumer demand for green power, natural gas price volatility, and wholesale market rules.

Bird, Lori A.; Parsons, Brian; Gagliano, Troy; Brown, Matthew H.; Wiser, Ryan H.; Bolinger, Mark

2003-05-15T23:59:59.000Z

262

Tribal Renewable Energy Advanced Course: Project Development...  

Broader source: Energy.gov (indexed) [DOE]

Process Tribal Renewable Energy Advanced Course: Project Development Process Watch the DOE Office of Indian Energy renewable energy course entitled "Tribal Renewable Energy Project...

263

Lessons Learned: Milwaukees Wind Turbine Project  

Office of Energy Efficiency and Renewable Energy (EERE)

U.S. Department of Energy Community and Renewable Energy Success Stories webinar series titled Wind Energy in Urban Environments. This presentation describes a mid-size wind turbine installation near downtown Milwaukee, Wisconsin.

264

Map of BPA wind interconnection projects - May 2009  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

5 Condon Wind MW 50 Kittitas Valley MW 108 Desert Claim MW 159 Wild Horse (PSE) 225 MW Columbia Wind MW150 Nine Canyon III MW 32 Nine Canyon III MW 63 Sand Ridge II MW 700 East...

265

DOE/NREL Advanced Wind Turbine Development Program  

SciTech Connect (OSTI)

The development of technologically advanced, high-efficiency wind turbines continues to be a high-priority activity of the US wind industry. The National Renewable Energy Laboratory (formerly the Solar Energy Research Institute), sponsored by the US Department of Energy (DOE), has initiated the Advanced Wind Turbine Program to assist the wind industry in the development of a new class of advanced wind turbines. The initial phase of the program focused on developing conceptual designs for near-term and advanced turbines. The goal of the second phase of this program is to use the experience gained over the last decade of turbine design and operation combined with the latest existing design tools to develop a turbine that will produce energy at $0.05 per kilowatt-hour (kWh) in a 5.8-m/s (13-mph) wind site. Three contracts have been awarded, and two more are under negotiation in the second phase. The third phase of the program will use new innovations and state-of-the-art wind turbine design technology to produce a turbine that will generate energy at $0.04/kWh in a 5.8-m/s wind site. Details of the third phase will be announced in early 1993.

Butterfield, C.P.; Smith, B.; Laxson, A.; Thresher, B. [National Renewable Energy Lab., Golden, CO (United States)] [National Renewable Energy Lab., Golden, CO (United States); Goldman, P. [USDOE Assistant Secretary for Conservation and Renewable Energy, Washington, DC (United States). Wind/Hydro/Ocean Technologies Div.] [USDOE Assistant Secretary for Conservation and Renewable Energy, Washington, DC (United States). Wind/Hydro/Ocean Technologies Div.

1993-05-01T23:59:59.000Z

266

Navajo-Hopi Land Commission Renewable Energy Development Project (NREP)  

SciTech Connect (OSTI)

The Navajo Hopi Land Commission Office (NHLCO), a Navajo Nation executive branch agency has conducted activities to determine capacity-building, institution-building, outreach and management activities to initiate the development of large-scale renewable energy - 100 megawatt (MW) or larger - generating projects on land in Northwestern New Mexico in the first year of a multi-year program. The Navajo Hopi Land Commission Renewable Energy Development Project (NREP) is a one year program that will develop and market a strategic business plan; form multi-agency and public-private project partnerships; compile site-specific solar, wind and infrastructure data; and develop and use project communication and marketing tools to support outreach efforts targeting the public, vendors, investors and government audiences.

Thomas Benally, Deputy Director,

2012-05-15T23:59:59.000Z

267

Development and Analysis of a Swept Blade Aeroelastic Model for a Small Wind Turbine (Presentation)  

SciTech Connect (OSTI)

As part of the U.S. Department-of-Energy-funded Competitiveness Improvement Project, the National Renewable Energy Laboratory (NREL) developed new capabilities for aeroelastic modeling of precurved and preswept blades for small wind turbines. This presentation covers the quest for optimized rotors, computer-aided engineering tools, a case study, and summary of the results.

Preus, R.; Damiani, R.; Lee, S.; Larwood, S.

2014-06-01T23:59:59.000Z

268

Session: Development and application of guidelines for siting, constructing, operating and monitoring wind turbines  

SciTech Connect (OSTI)

This session at the Wind Energy and Birds/Bats workshop consisted of two presentations followed by a discussion/question and answer period. The two papers were: 'Development and Application of USFWS Guidance for Site Evaluation, Siting, Construction, Operation and Monitoring of Wind Turbines' by Albert Manville and 'Wind Power in Washington State' by Greg Hueckel. The session provided a comparison of wind project guidelines developed by the U.S. Fish and Wildlife Service (USFWS) in May 2003 and the Washington State Department of Fish and Wildlife in August 2003. Questions addressed included: is there a need or desire for uniform national or state criteria; can other states learn from Washington State's example, or from the USFWS voluntary guidelines; should there be uniform requirements/guidelines/check-lists for the siting, operation, monitoring, and mitigation to prevent or minimize avian, bat, and other wildlife impacts.

Manville, Albert; Hueckel, Greg

2004-09-01T23:59:59.000Z

269

Klondike III/Biglow Canyon Wind Integration Project; Record of Decision, October 25, 2006.  

SciTech Connect (OSTI)

The Bonneville Power Administration (BPA) has decided to implement the Proposed Action identified in the Klondike III/Biglow Canyon Wind Integration Project Final Environmental Impact Statement (FEIS) (DOE/EIS-0374, September 2006). Under the Proposed Action, BPA will offer PPM Energy, Inc. (PPM) contract terms for interconnection of the proposed Klondike III Wind Project, located in Sherman County, Oregon, with the Federal Columbia River Transmission System (FCRTS). BPA will also offer Portland General Electric (PGE)1 contract terms for interconnection of its proposed Biglow Canyon Wind Farm, also located in Sherman County, Oregon, with the FCRTS, as proposed in the FEIS. To interconnect these wind projects, BPA will build and operate a 12-mile long, 230-kilovolt (kV) double-circuit transmission line between the wind projects and BPA's new 230-kV John Day Substation in Sherman County, Oregon. BPA will also expand its existing 500-kV John Day Substation.

United States. Bonneville Power Administration

2006-10-25T23:59:59.000Z

270

An overview of DOE`s wind turbine development programs  

SciTech Connect (OSTI)

The development of technologically advanced, higher efficiency wind turbines continues to be a high priority activity of the US wind industry. The United States Department of Energy (DOE) is conducting and sponsoring a range of programs aimed at assisting the wind industry with system design, development, and testing. The overall goal is to develop systems that can compete with conventional electric generation for $.05/kWh at 5.8 m/s (13 mph sites) by the mid-1990s and with fossil-fuel-based generators for $.04/kWh at 5.8 m/s sites by the year 2000. These goals will be achieved through several programs. The Value Engineered Turbine Program will promote the rapid development of US capability to manufacture wind turbines with known and well documented records of performance, cost, and reliability, to take advantage of near-term market opportunities. The Advanced Wind Turbine Program will assist US industry to develop and integrate innovative technologies into utility-grade wind turbines for the near-term (mid 1990s) and to develop a new generation of turbines for the year 2000. The collaborative Electric Power Research Institute (EPRI)/DOE Utility Wind Turbine Performance Verification Program will deploy and evaluate commercial-prototype wind turbines in typical utility operating environments, to provide a bridge between development programs currently underway and commercial purchases of utility-grade wind turbines. A number of collaborative efforts also will help develop a range of small systems optimized to work in a diesel hybrid environment to provide electricity for smaller non-grid-connected applications.

Laxson, A; Dodge, D; Flowers, L [National Renewable Energy Lab., Golden, CO (United States); Loose, R; Goldman, P [Dept. of Energy, Washington, DC (United States)

1993-09-01T23:59:59.000Z

271

Wind Research and Development | Department of Energy  

Energy Savers [EERE]

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious RankCombustion |Energyon ArmedWaste and Materials Disposition InformationWind Program As a follow up toWind

272

NREL Small Wind Turbine Test Project: Mariah Power's Windspire Wind Turbine Test Chronology  

SciTech Connect (OSTI)

This report presents a chronology of tests conducted at NREL's National Wind Technology Center on Mariah Power's Windspire 1.2-kW wind turbine and a letter of response from Mariah Power.

Huskey, A.; Forsyth, T.

2009-06-01T23:59:59.000Z

273

North Wind 4-kW wind-system development. Phase II. Fabrication and test  

SciTech Connect (OSTI)

This report presents the results of Phase II (testing and fabrication) of a program funded by the US Department of Energy to design, fabricate, and test a cost-effective wind system in the 3 to 6 kW class. During Phase II, using the design developed during Phase I, a prototype 4 kW machine was fabricated and tested in Waitsfield, Vermont. Several problems were encountered and subsequently analyzed. Design modifications, including the use of a larger alternator, are described. Test performed by North Wind and by Rockwell International (which monitored the program) demonstrated the predicted performance characteristics and the validity of the North Wind design.

Lynch, J.; Coleman, C.; Mayer, D.J.

1983-01-01T23:59:59.000Z

274

Tribal Energy Project Development Through ESCOs  

Broader source: Energy.gov [DOE]

Download presentation slides below for the Tribal Energy Project Development through Energy Service Companies (ESCOs) webinar on April 21, 2010.

275

FOUR ESSAYS ON OFFSHORE WIND POWER POTENTIAL, DEVELOPMENT, REGULATORY FRAMEWORK, AND INTEGRATION  

E-Print Network [OSTI]

FOUR ESSAYS ON OFFSHORE WIND POWER POTENTIAL, DEVELOPMENT, REGULATORY FRAMEWORK, AND INTEGRATION 2010 Amardeep Dhanju All Rights Reserved #12;FOUR ESSAYS ON OFFSHORE WIND POWER POTENTIAL, DEVELOPMENT

Firestone, Jeremy

276

Offshore Wind Market Acceleration Projects | Department of Energy  

Energy Savers [EERE]

on wildlife and the marine environment, and mitigating the impact of offshore wind turbines on radar and other communication and navigation equipment. The links below will...

277

Wind Energy and Spatial Technology  

E-Print Network [OSTI]

2/3/2011 1 Wind Energy and Spatial Technology Lori Pelech Why Wind Energy? A clean, renewable 2,600 tons of carbon emissions annually ­ The economy · Approximately 85,000 wind energy workers to Construct a Wind Farm... Geo-Spatial Components of Wind Farm Development Process Selecting a Project Site

Schweik, Charles M.

278

20% Wind Energy By 2030 Meeting The Challenges Proceedings of...  

Office of Environmental Management (EM)

from the Wind Manufacturing Workshop: Achieving 20% Wind Energy in the U.S. by 2030, May 2009 U.S. Offshore Wind Manufacturing and Supply Chain Development Offshore Wind Projects...

279

EA-1852: Cloud County Community College Wind Energy Project, Cloud County, Kansas  

Broader source: Energy.gov [DOE]

This EA was to evaluate the environmental impacts of a proposal to authorize the expenditure of federal funds by Cloud County Community College (CCCC) for a wind energy project. CCCC has installed three wind turbines and proposed to install a fourth turbine on their campus in Concordia, Kansas, for use in their wind energy training curriculum and to provide electricity for their campus. This EA has been canceled.

280

Tribal Renewable Energy Advanced Course: Project Development...  

Broader source: Energy.gov (indexed) [DOE]

Development and Financing Essentials Tribal Renewable Energy Advanced Course: Project Development and Financing Essentials Watch the DOE Office of Indian Energy advanced course...

Note: This page contains sample records for the topic "wind project developer" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


281

Data Collection for Current U.S. Wind Energy Projects: Component Costs, Financing, Operations, and Maintenance; January 2011 - September 2011  

SciTech Connect (OSTI)

DNV Renewables (USA) Inc. (DNV) used an Operations and Maintenance (O&M) Cost Model to evaluate ten distinct cost scenarios encountered under variations in wind turbine component failure rates. The analysis considers: (1) a Reference Scenario using the default part failure rates within the O&M Cost Model, (2) High Failure Rate Scenarios that increase the failure rates of three major components (blades, gearboxes, and generators) individually, (3) 100% Replacement Scenarios that model full replacement of these components over a 20 year operating life, and (4) Serial Failure Scenarios that model full replacement of blades, gearboxes, and generators in years 4 to 6 of the wind project. DNV selected these scenarios to represent a broad range of possible operational experiences. Also in this report, DNV summarizes the predominant financing arrangements used to develop wind energy projects over the past several years and provides summary data on various financial metrics describing those arrangements.

Martin-Tretton, M.; Reha, M.; Drunsic, M.; Keim, M.

2012-01-01T23:59:59.000Z

282

EA-1970: Fishermens Energy LLC Offshore Wind Demonstration Project, offshore Atlantic City, New Jersey  

Broader source: Energy.gov [DOE]

DOE is proposing to provide funding to Fishermens Energy LLC to construct and operate up to five 5.0 MW wind turbine generators, for an offshore wind demonstration project, approximately 2.8 nautical miles off the coast of Atlantic City, NJ. The proposed action includes a cable crossing from the turbines to an on-shore existing substation.

283

EA-1884: Invenergy Interconnection for the Wray Wind Energy Project, Town of Wray, Yuma County, CO  

Broader source: Energy.gov [DOE]

DOEs Western Area Power Administration is preparing this EA to evaluate the environmental impacts of interconnecting the proposed Wray Wind Energy Project, for approximately 90 megawatts of wind generation, to Westerns existing Wray Substation in Yuma County, Colorado.

284

Wind River Watershed Project; Volume I of III Reports A thru E, 1998 Annual Report.  

SciTech Connect (OSTI)

This report describes the ongoing efforts to document life history strategies of steelhead in the Wind River watershed and to formulate criteria for ranking restoration needs and proposed projects.

Connolly, Patrick J.

1999-11-01T23:59:59.000Z

285

EA-1923: Green Energy School Wind Turbine Project on Saipan, Commonwealth of the Northern Mariana Islands  

Broader source: Energy.gov [DOE]

This EA will evaluate the potential environmental impacts of a proposal to provide funding for the Green Energy School Project which partially consists of eight 20 kW wind turbines at the Saipan Southern High School.

286

EIS-0438: Interconnection of the Proposed Hermosa West Wind Farm Project, Albany County, Wyoming  

Broader source: Energy.gov [DOE]

After the applicant withdrew its request to interconnect the proposed Hermosa West Wind Farm Project with Western Area Power Administrations transmission system, Western cancelled preparation of an EIS to evaluate the potential environmental impacts of the proposal.

287

DEVELOPMENT OF MODIFIED WIND TURBINE: A PAST REVIEW  

E-Print Network [OSTI]

Wind energy represents a viable alternative, as it is a virtually endless resource. Through the next several decades, renewable energy technologies, thanks to their continually improving performance and cost, and growing recognition of their Environmental, economic and social values, will grow increasingly competitive with Traditional energy technologies, so that by the middle of the 21 st century, renewable Energy, in its various forms, should be supplying half of the worlds energy needs. In this paper various types of wind turbine are reviewed to understand and the development and modification of horizontal axis wind turbine and how more power can be generated compared to bare turbine of the same rotor blade diameter.

Rob Res; N R Deshmukh; S J Deshmukh; N R Deshmukh; S J Deshmukh

288

Offshore Wind Turbine Transportation & Installation Analyses Planning Optimal Marine Operations for Offshore Wind Projects.  

E-Print Network [OSTI]

?? Transportation and installation of offshore wind turbines (Tower, Nacelle and Rotor) is a complete process conducted over several phases, usually in sequence. There are (more)

Uraz, Emre

2011-01-01T23:59:59.000Z

289

TS Wind Power Developers | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Office of Inspector GeneralDepartmentAUDIT REPORTOpenWende NewSowitec do Brasil EnergiaSur deT-O Green EuropeTMETS Wind

290

EIS-0469: Proposed Wilton IV Wind Energy Center Project, Burleigh County, North Dakota  

Broader source: Energy.gov [DOE]

Western Area Power Administration is evaluating the potential environmental impacts of interconnecting NextEra Energy Resources proposed Wilton IV Wind Energy Center Project, near Bismarck, North Dakota, to Westerns existing Wilton/Baldwin substation and allowing NextEras existing wind projects in this area to operate above 50 annual MW. Western is preparing a Supplemental Draft EIS to address substantial changes to the proposal, including 30 turbine locations and 5 alternate turbine locations in Crofte Township.

291

START Renewable Energy Project Development Assistance  

Broader source: Energy.gov [DOE]

The DOE Office of Indian Energy is now accepting applications for the third round of the Strategic Technical Assistance Response Team (START) Renewable Energy Project Development Assistance Program to provide Tribes with technical assistance with furthering the development of community- and commercial-scale renewable energy projects. Applications are due May 1, 2015, and up to five projects will be selected in June 2015.

292

Rosebud Sioux Wind Energy Project | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home5b9fcbce19 No revisionEnvReviewNonInvasiveExplorationUT-g Grant ofRichardton Abbey Wind Farm ItRoscoe Wind Farm Jump to:Wind

293

Roth Rock Wind Power Project | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home5b9fcbce19 No revisionEnvReviewNonInvasiveExplorationUT-g Grant ofRichardton Abbey Wind Farm ItRoscoe Wind Owner Gestamp Wind

294

Assessment of Ports for Offshore Wind Development in the United States  

SciTech Connect (OSTI)

As offshore wind energy develops in the United States, port facilities will become strategic hubs in the offshore wind farm supply chain because all plant and transport logistics must transit through these facilities. Therefore, these facilities must provide suitable infrastructure to meet the specific requirements of the offshore wind industry. As a result, it is crucial that federal and state policy-makers and port authorities take effective action to position ports in the offshore wind value chain to take best advantage of their economic potential. The U.S. Department of Energy tasked the independent consultancy GL Garrad Hassan (GL GH) with carrying out a review of the current capability of U.S. ports to support offshore wind project development and an assessment of the challenges and opportunities related to upgrading this capability to support the growth of as many as 54 gigawatts of offshore wind installed in U.S. waters by 2030. The GL GH report and the open-access web-based Ports Assessment Tool resulting from this study will aid decision-makers in making informed decisions regarding the choice of ports for specific offshore projects, and the types of investments that would be required to make individual port facilities suitable to serve offshore wind manufacturing, installation and/or operations. The offshore wind industry in the United States is still in its infancy and this study finds that additional port facilities capable of supporting offshore wind projects are needed to meet the anticipated project build-out by 2030; however, no significant barriers exist to prevent the development of such facilities. Furthermore, significant port capabilities are in place today with purpose-build port infrastructure currently being built. While there are currently no offshore wind farms operating in the United States, much of the infrastructure critical to the success of such projects does exist, albeit in the service of other industries. This conclusion is based on GL GHs review of U.S. ports infrastructure and its readiness to support the development of proposed offshore wind projects in U.S. waters. Specific examples of facility costs and benefits are provided for five coastal regions (North Atlantic, South Atlantic, Gulf of Mexico, Great Lakes, and Pacific) around the country. GL GH began this study by identifying the logistical requirements of offshore wind ports to service offshore wind. This review was based on lessons learned through industry practice in Northern Europe. A web-based port readiness assessment tool was developed to allow a capability gap analysis to be conducted on existing port facilities based on the identified requirements. Cost models were added to the assessment tool, which allowed GL GH to estimate the total upgrade cost to a port over the period 2014-2030 based on a set of regional project build-out scenarios. Port fee information was gathered from each port allowing an estimate of the potential revenue to the port under this same set of scenarios. The comparison of these revenue and improvement cost figures provides an initial indication of the level of offshore wind port readiness. To facilitate a more in-depth infrastructure analysis, six ports from different geographic regions, with varied levels of interest and preparedness towards offshore wind, were evaluated by modeling a range of installation strategies and port use types to identify gaps in capability and potential opportunities for economic development. Commonalities, trends, and specific examples from these case studies are presented and provide a summary of the current state of offshore wind port readiness in the U.S. and also illustrate the direction some ports have chosen to take to prepare for offshore wind projects. For example, the land area required for wind turbine and foundation manufacturing is substantial, particularly due to the large size of offshore wind components. Also, the necessary bearing capacities of the quayside and storage area are typically greater for offshore wind components than for more conventiona

Elkinton, Chris [DNV GL] [DNV GL; Blatiak, Alicia; Ameen, Hafsa

2014-03-21T23:59:59.000Z

295

The Impact of Wind Power Projects on Residential Property Values in the United States: A Multi-Site Hedonic Analysis  

SciTech Connect (OSTI)

With wind energy expanding rapidly in the U.S. and abroad, and with an increasing number of communities considering wind power development nearby, there is an urgent need to empirically investigate common community concerns about wind project development. The concern that property values will be adversely affected by wind energy facilities is commonly put forth by stakeholders. Although this concern is not unreasonable, given property value impacts that have been found near high voltage transmission lines and other electric generation facilities, the impacts of wind energy facilities on residential property values had not previously been investigated thoroughly. The present research collected data on almost 7,500 sales of singlefamily homes situated within 10 miles of 24 existing wind facilities in nine different U.S. states. The conclusions of the study are drawn from eight different hedonic pricing models, as well as both repeat sales and sales volume models. The various analyses are strongly consistent in that none of the models uncovers conclusive evidence of the existence of any widespread property value impacts that might be present in communities surrounding wind energy facilities. Specifically, neither the view of the wind facilities nor the distance of the home to those facilities is found to have any consistent, measurable, and statistically significant effect on home sales prices. Although the analysis cannot dismiss the possibility that individual homes or small numbers of homes have been or could be negatively impacted, it finds that if these impacts do exist, they are either too small and/or too infrequent to result in any widespread, statistically observable impact.

Hoen, Ben; Wiser, Ryan; Cappers, Peter; Thayer, Mark; Sethi, Gautam

2009-12-02T23:59:59.000Z

296

Wind Power Development in the United States: Current Progress, Future Trends  

E-Print Network [OSTI]

Annual Report on U.S. Wind Power Installation, Cost, andWind Power Development in the United States: Current94720 Abstract: The U.S. wind power industry is in an era of

Wiser, Ryan H

2009-01-01T23:59:59.000Z

297

Tribal Renewable Energy Advanced Course: Project Development...  

Broader source: Energy.gov (indexed) [DOE]

Concepts Tribal Renewable Energy Advanced Course: Project Development Concepts Watch the DOE Office of Indian Energy renewable energy course entitled "Tribal Renewable Energy...

298

Rigby High School Wind Project | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home5b9fcbce19 No revisionEnvReviewNonInvasiveExplorationUT-g Grant ofRichardton Abbey Wind Farm Jump to:Sector WindRigby High

299

Rigby Midway School Wind Project | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home5b9fcbce19 No revisionEnvReviewNonInvasiveExplorationUT-g Grant ofRichardton Abbey Wind Farm Jump to:Sector WindRigby HighMidway

300

EA-1955: Campbell County Wind Project, Pollock, South Dakota  

Broader source: Energy.gov [DOE]

DOEs Western Area Power Administration (Western) is preparing an EA to analyze the potential environmental impacts of a proposal to interconnect, via a proposed new substation, a proposed Dakota Plains Energy, LLC, 99-megawatt wind farm near Pollock, South Dakota, to Westerns existing transmission line at that location.

Note: This page contains sample records for the topic "wind project developer" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


301

Introduction to Small-Scale Wind Energy Systems (Including RETScreen...  

Open Energy Info (EERE)

Programs DeploymentPrograms: Project Development This video teaches the viewer about wind turbines and RETscreen's wind...

302

Status of LMFBR development project in Japan  

SciTech Connect (OSTI)

Initiation of the LMFBR development project in Japan was decided by the Atomic Energy Commission of Japan in 1966. In 1967, the Power Reactor and Nuclear Fuel Development Corporation (PNC) was established to realize the project as a part of its tasks of a wide scope covering all the research and development activities concerning fuel cycle. In the present paper the status of experimental fast reactor (Joyo), which is the first milestone of the LMFBR project, prototype fast reactor (Monju) and R and D activities supporting the project including that for larger LMFBRs in the future is described.

Nagane, G.; Akebi, M.

1988-01-01T23:59:59.000Z

303

Observation Targeting for the Tehachapi Pass and Mid-Columbia Basin: WindSENSE Phase III Project Summary Report  

SciTech Connect (OSTI)

The overall goal of this multi-phased research project known as WindSENSE is to develop an observation system deployment strategy that would improve wind power generation forecasts. The objective of the deployment strategy is to produce the maximum benefit for 1- to 6-hour ahead forecasts of wind speed at hub-height ({approx}80 m). In Phase III of the project, the focus was on the Mid-Columbia Basin region which encompasses the Bonneville Power Administration (BPA) wind generation area shown in Figure 1 that includes Klondike, Stateline, and Hopkins Ridge wind plants. The typical hub height of a wind turbine is approximately 80-m above ground level (AGL). So it would seem that building meteorological towers in the region upwind of a wind generation facility would provide data necessary to improve the short-term forecasts for the 80-m AGL wind speed. However, this additional meteorological information typically does not significantly improve the accuracy of the 0- to 6-hour ahead wind power forecasts because processes controlling wind variability change from day-to-day and, at times, from hour-to-hour. It is also important to note that some processes causing significant changes in wind power production function principally in the vertical direction. These processes will not be detected by meteorological towers at off-site locations. For these reasons, it is quite challenging to determine the best type of sensors and deployment locations. To address the measurement deployment problem, Ensemble Sensitivity Analysis (ESA) was applied in the Phase I portion of the WindSENSE project. The ESA approach was initially designed to produce spatial fields that depict the sensitivity of a forecast metric to a set of prior state variables selected by the user. The best combination of variables and locations to improve the forecast was determined using the Multiple Observation Optimization Algorithm (MOOA) developed in Phase I. In Zack et al. (2010a), the ESA-MOOA approach was applied and evaluated for the wind plants in the Tehachapi Pass region for a period during the warm season. That research demonstrated that forecast sensitivity derived from the dataset was characterized by well-defined, localized patterns for a number of state variables such as the 80-m wind and the 25-m to 1-km temperature difference prior to the forecast time. The sensitivity patterns produced as part of the Tehachapi Pass study were coherent and consistent with the basic physical processes that drive wind patterns in the Tehachapi area. In Phase II of the WindSENSE project, the ESA-MOOA approach was extended and applied to the wind plants located in the Mid-Columbia Basin wind generation area of Washington-Oregon during the summer and to the Tehachapi Pass region during the winter. The objective of this study was to identify measurement locations and variables that have the greatest positive impact on the accuracy of wind forecasts in the 0- to 6-hour look-ahead periods for the two regions and to establish a higher level of confidence in ESA-MOOA for mesoscale applications. The detailed methodology and results are provided in separate technical reports listed in the publications section below. Ideally, the data assimilation scheme used in the Phase III experiments would have been based upon an ensemble Kalman filter (EnKF) that was similar to the ESA method used to diagnose the Mid-Columbia Basin sensitivity patterns in the previous studies. However, running an EnKF system at high resolution is impractical because of the very high computational cost. Thus, it was decided to use a three-dimensional variational (3DVAR) analysis scheme that is less computationally intensive. The objective of this task is to develop an observation system deployment strategy for the mid Columbia Basin (i.e. the BPA wind generation region) that is designed to produce the maximum benefit for 1- to 6-hour ahead forecasts of hub-height ({approx}80 m) wind speed with a focus on periods of large changes in wind speed. There are two tasks in the current project effort designed to validate

Hanley, D

2011-10-22T23:59:59.000Z

304

Project Development Specification for Valve Pit Manifold  

SciTech Connect (OSTI)

Establishes the performance, design development, and test requirements for the valve pit manifolds. The system engineering approach was used to develop this document in accordance with the guidelines laid out in the Systems Engineering Management Plan for Project W-314.

MCGREW, D.L.

2000-09-28T23:59:59.000Z

305

Office of Employee Development Operational Efficiency Project  

E-Print Network [OSTI]

Office of Employee Development Operational Efficiency Project Survey Summary from Supervisory Staff the University titled "Operational Efficiency Project." Its mandate was to gather information, evaluate current operations, review benchmarks and best practices, and develop organizational and/or cost saving alternatives

Huang, Jianyu

306

Session: Non-fatality and habitat impacts on birds from wind energy development  

SciTech Connect (OSTI)

This session at the Wind Energy and Birds/Bats workshop was consisted of one paper presentation followed by a discussion/question and answer period. The session focused on discussion of non-collision impacts of wind energy projects on birds, primarily impacts to habitat. The presentation included information about the impacts of habitat fragmentation, disturbance, and site avoidance from wind turbines, as well as from roads, transmission facilities, and other related construction at wind project sites. Whether birds habituate to the presence of turbines and the influence of regional factors were also addressed. The paper given by Dale Strickland was titled ''Overview of Non-Collision Related Impacts from Wind Projects''.

Strickland, Dale

2004-09-01T23:59:59.000Z

307

SciTech Connect: Offshore Wind Jobs and Economic Development...  

Office of Scientific and Technical Information (OSTI)

Technologies Office Country of Publication: United States Language: English Subject: 17 WIND ENERGY; 29 ENERGY PLANNING, POLICY AND ECONOMY OFFSHORE WIND JOBS; OFFSHORE WIND...

308

EA-1970: Fishermens Energy LLC Offshore Wind Demonstration Project, offshore Atlantic City, New Jersey  

Broader source: Energy.gov [DOE]

Draft EA: Public Comment Period Ends 04/03/15DOE is proposing to provide funding to Fishermens Atlantic City Windfarm, LLC to construct and operate up to six wind turbine generators, for an offshore wind demonstration project, approximately 2.8 nautical miles off the coast of Atlantic City, NJ. The proposed action includes a cable crossing from the turbines to an on-shore existing substation.

309

Regional Community Wind Conferences, Great Plains Windustry Project  

SciTech Connect (OSTI)

Windustry organized and produced five regional Community Wind Across America (CWAA) conferences in 2010 and 2011 and held two CWAA webinars in 2011 and 2012. The five conferences were offered in regions throughout the United States: Denver, Colorado ? October 2010 St. Paul, Minnesota ? November 2010 State College, Pennsylvania ? February 2011 Ludington, Michigan (co-located with the Michigan Energy Fair) June 2011 Albany, New York October 2011

Daniels, Lisa [Windustry

2013-02-28T23:59:59.000Z

310

EIS-0413: Searchlight Wind Energy Project, Searchlight, NV  

Broader source: Energy.gov [DOE]

The Department of the Interiors Bureau of Land Management, with DOEs Western Area Power Administration as a cooperating agency, is preparing this EIS to evaluate the environmental impacts of a proposal to construct and operate 156 wind turbine generators and related facilities on public lands surrounding the town of Searchlight, Nevada. The proposal includes a substation that would be operated by Western.

311

Centennial Wind Energy Project (2007) | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Office of InspectorConcentrating SolarElectricEnergyCTBarreis aCallahanWindSyracuse, NYCedar CreekCellennium6)

312

Central High School Wind Project | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Office of InspectorConcentrating SolarElectricEnergyCTBarreis aCallahanWindSyracuse, NYCedarCAPSCentral High School

313

Time frames for geothermal project development  

SciTech Connect (OSTI)

Geothermal development can generally be broken down into distinct phases: Exploration and Leasing; Project Development And Feasibility Studies; Well Field Development; Project Finance, Construction and Start-up Operations; and Commercial Operations. Each phase represents different levels of cost and risk and different types of management teams that are needed to assess and manage the project and associated risk. Orderly transitions of management at each major phase are needed. Exploration programs are largely science based, the primary focus of the science based investigations should be to: secure the lease position, and develop sufficient information to identify and characterize an economical geothermal resource. Project development specialists build on the exploration data to: pull together a project design, develop a detailed cost estimate; prepare an environmental assessment; and collect all data needed for project financing. Construction specialist build from the development phase to: develop detailed engineering, procure equipment and materials, schedule and manage the facilities construction programs, and start and test the power plant. Operations specialists take over from construction during start-up and are responsible for sustainable and reliable operations of the resource and power generation equipment over the life of the project.

McClain, David W.

2001-04-17T23:59:59.000Z

314

WINDExchange: Wind Economic Development Resources and Tools  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May JunDatastreamsmmcrcalgovInstrumentsrucLasDelivered energy consumption byAbout Printable Version Bookmark and ShareDevelopment Resources

315

Logan View Public Schools Wind Project | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home5b9fcbce19 No revision hasInformation Earth's Heat JumpInc Place:KeystoneSolarListLiveFuels Inc JumpLoess Hills Wind°,

316

Loup City High School Wind Project | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home5b9fcbce19 No revision hasInformation Earth's Heat JumpInc Place:KeystoneSolarListLiveFuelsLoup City High School Wind

317

Distributed connected wind farms (Smart Grid Project) (Limerick, Ireland) |  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home5b9fcbce19 NoPublic Utilities Address:011-DNA Jump to:52c8ff988c1Dering Harbor,Discount PowerEmerlingEnergyDistributed WindOpen

318

USD 393 Solomon High School Wind Project | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home5b9fcbce19 No revisionEnvReviewNonInvasiveExplorationUT-gTagusparkCalculator Jump to: navigation, searchSolomon High School Wind

319

Centennial Wind Energy Project (2006) | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Office of InspectorConcentrating SolarElectricEnergyCTBarreis aCallahanWindSyracuse, NYCedar CreekCellennium6) Facility

320

Montana State University Wind Project | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home5b9fcbce19 No revision hasInformation Earth's HeatMexico: EnergyMithun Jump to:Moe WindMont Vista Capital LLCFish, Name:MT

Note: This page contains sample records for the topic "wind project developer" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


321

Mount Wachusetts Community College Wind Project | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home5b9fcbce19 No revision hasInformation Earth's HeatMexico: EnergyMithun Jump to:Moe WindMontMoraineAbbey Jump to:

322

Mt. Edgecumbe High School Wind Project | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home5b9fcbce19 No revision hasInformation Earth's HeatMexico: EnergyMithun Jump to:Moe WindMontMoraineAbbeyIMozartEdgecumbe High

323

Solano Wind Project Phase I | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home5b9fcbce19 No revisionEnvReviewNonInvasiveExplorationUT-g Grant ofRichardtonManagement,SmartestEnergynotSola60County WindI Jump

324

Spotsylvania Career and Tech Center Wind Project | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home5b9fcbce19 No revisionEnvReviewNonInvasiveExplorationUT-g GrantAtlas (PACA Region -SonelgazSunbeltSpinning Spur WindSchoolCareer

325

St. Michael Indian School Wind Project | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home5b9fcbce19 No revisionEnvReviewNonInvasiveExplorationUT-g GrantAtlas (PACA RegionSpringview IISt. Mary's Wind Farm Facility

326

Story County Wind Project II | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home5b9fcbce19 No revisionEnvReviewNonInvasiveExplorationUT-g GrantAtlas (PACAOpen Energy InformationStony CreekCounty Wind

327

Superior Public Schools Wind Project | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home5b9fcbce19 No revisionEnvReviewNonInvasiveExplorationUT-g GrantAtlas (PACAOpenSummerside WindSolar EnergySuperior Farms

328

Western Illinois University Wind Project | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home5b9fcbce19 NoPublic Utilities Address: 160 East 300 South Place: SaltTroyer & AssociatesWestIL Number of Units 1 Wind

329

White Creek Wind Power Project | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home5b9fcbce19 NoPublic Utilities Address: 160 East 300 South Place: SaltTroyer & AssociatesWestILI Wind Farm FacilityArrow

330

Elkhorn Valley Public Schools Wind Project | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home5b9fcbce19 No revision has beenFfe2fb55-352f-473b-a2dd-50ae8b27f0a6 No revisionWind,Soils and RocksElement PowerElk831329°

331

Elkton Schools District Wind Project | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home5b9fcbce19 No revision has beenFfe2fb55-352f-473b-a2dd-50ae8b27f0a6 No revisionWind,Soils and RocksElement

332

Hope Street Academy Wind Project | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home5b9fcbce19 No revision hasInformation Earth's Heat Jump to:PhotonHolyName Housing Cooperation JumpKongHoosier Wind

333

Hydrogen Pilot Project Wind Farm | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home5b9fcbce19 No revision hasInformation Earth's Heat Jump to:PhotonHolyName HousingIII WindHybridsCar Co Place:Status In

334

Lamar Wind Energy Project I | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home5b9fcbce19 No revision hasInformation Earth's Heat JumpInc Place:Keystone Clean AirjoinLakeshore TechnicalLakotaLamar Wind

335

Community Wind: Once Again Pushing the Envelope of Project Finance  

E-Print Network [OSTI]

Energy Projects to Pair 1603 Grants with NMTCs Novogradaccash grant (the Section 1603 grant) in lieu of the PTC.The ITC and Section 1603 grant also reduce performance risk

bolinger, Mark A.

2011-01-01T23:59:59.000Z

336

Cambridge Project Development | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Office of InspectorConcentrating SolarElectricEnergyCTBarreis aCallahan Divide Wind EnergyEnergy Development LLC

337

GIS-based Multi-Criteria Analysis of Wind Farm Development Henning Sten Hansen  

E-Print Network [OSTI]

. Wind power is a popular and safe form of renewable energy, and in Europe, the demand for wind energy on the environment of traditional power- generating methods, especially coal and oil-fired power stations wind powerGIS-based Multi-Criteria Analysis of Wind Farm Development Henning Sten Hansen National

Hansen, René Rydhof

338

1 Introduction The development of wind energy use has led to  

E-Print Network [OSTI]

1 Introduction The development of wind energy use has led to a noticeable contribution in of electricity by wind energy acts as a negative load leading to an increase in fluctuations of net load patterns conventional reserves have to be kept ready to replace the wind energy share in case of decreasing wind speeds

Heinemann, Detlev

339

Win-Win for Wind and Wildlife: A Vision to Facilitate Sustainable Development  

E-Print Network [OSTI]

, North Dakota, United States of America Abstract Wind energy offers the potential to reduce carbon for the U.S. by 2030. We estimate there are ,7,700 GW of potential wind energy available across the U as development based solely on maximizing wind potential. Wind subsidies targeted at favoring low

Foresman, Kerry R.

340

EA-1985: Virginia Offshore Wind Technology Advancement Project (VOWTAP), 24 nautical miles offshore of Virginia Beach, Virginia  

Broader source: Energy.gov [DOE]

DOE is proposing to fund Virginia Electric and Power Company's Virginia Offshore Wind Technology Advancement Project (VOWTAP). The proposed VOWTAP project consists of design, construction and operation of a 12 megawatt offshore wind facility located approximately 24 nautical miles off the coast of Virginia Beach, VA on the Outer Continental Shelf.

Note: This page contains sample records for the topic "wind project developer" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


341

EIS-0462: Crowned Ridge Wind Energy Center Project, Grant and Codington Counties, South Dakota  

Broader source: Energy.gov [DOE]

This EIS analyzes DOE's decision to approve a grid interconnection request by NextEra Energy Resources for its proposed 150-megawatt (MW) Crowned Ridge Wind Energy Center Project with the Western Area Power Administration's existing Watertown Substation in Codington County, South Dakota.

342

Photovoltaic concentrator technology development project. Sixth project integration meeting  

SciTech Connect (OSTI)

Thirty-three abstracts and short papers are presented which describe the current status of research, development, and demonstration of concentrator solar cell technology. Solar concentrators discussed include the parabolic trough, linear focus Fresnel lens, point focus Fresnel lens, and the parabolic dish. Solar cells studied include silicon, GaAs, and AlGaAs. Research on multiple junction cells, combined photovoltaic/thermal collectors, back contact solar cells, and beam splitter modules is described. Concentrator solar cell demonstration programs are reported. Contractor status summaries are given for 33 US DOE concentrator solar cell contracts; a description of the project, project status, and key results to date is included. (WHK)

None

1980-10-01T23:59:59.000Z

343

Space use by female Greater Prairie-Chickens in response to wind energy development  

E-Print Network [OSTI]

Space use by female Greater Prairie-Chickens in response to wind energy development V. L. WINDER,1-Chickens in response to wind energy development. Ecosphere 5(1):3. http://dx.doi.org/10.1890/ ES13-00206.1 Abstract. Wind energy development is targeted to meet 20% of U.S. energy demand by 2030. In Kansas, optimal sites

Sandercock, Brett K.

344

Argonne National Laboratory Develops Extreme-Scale Wind Farm...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Wind Farm Simulation Capabilities October 1, 2013 - 3:42pm Addthis A wake of a wind turbine modeled by the actuator line model in Nek5000 A wake of a wind turbine modeled by the...

345

NREL Develops New Controls that Proactively Adapt to the Wind (Fact Sheet)  

SciTech Connect (OSTI)

Until now, wind turbine controls that reduce the impacts of wind gusts and turbulence were always reactive-responding to the wind rather than anticipating it. But with today's laser-based sensors that measure wind speed ahead of the turbine, researchers at the National Renewable Energy Laboratory (NREL) and their industry partners are developing more intelligent controls. The world's first field tests of these controls are currently underway at the National Wind Technology Center (NWTC) at NREL, with plans for future commercialization.

Not Available

2012-11-01T23:59:59.000Z

346

NREL Develops New Controls that Proactively Adapt to the Wind (Fact Sheet)  

SciTech Connect (OSTI)

Until now, wind turbine controls that reduce the impacts of wind gusts and turbulence were always reactive -- responding to the wind rather than anticipating it. But with today's laser-based sensors that measure wind speed ahead of the turbine, researchers at the National Renewable Energy Laboratory (NREL) and their industry partners are developing more intelligent controls. The world's first field tests of these controls are currently underway at the National Wind Technology Center (NWTC) at NREL, with plans for future commercialization.

Not Available

2012-10-01T23:59:59.000Z

347

Community small scale wind farms for New Zealand: a comparative study of Austrian development, with consideration for New Zealand's future wind energy development.  

E-Print Network [OSTI]

??In New Zealand, the development of wind energy is occurring predominantly at a large scale level with very little opportunity for local people to become (more)

Thomson, Grant

2008-01-01T23:59:59.000Z

348

EIS-0298: Telephone Flat Geothermal Development Project  

Broader source: Energy.gov [DOE]

This EIS is for a Plan of Operation (POO) for Development and Production; and for a POO for Utilization and Disposal for a proposed geothermal development project, including: a power plant, geothermal production and injection wellfield, ancillary facilities, and transmission line on the Modoc National Forest in Siskiyou and Modoc Counties, California.

349

Upcoming Funding Opportunity to Develop and Field Test Wind Energy...  

Energy Savers [EERE]

and operating wind energy facilities in locations with sensitive bat species. As wind energy continues to grow as a renewable source of energy for communities throughout...

350

Wind Projects Providing Hope for Penn. Workers | Department of Energy  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious RankCombustion |Energy Usage »of| Department ofDepartment ofAnnouncementAugust 30,PowerJune 17,Projects

351

From%laggard%to%leader:%% Explaining%offshore%wind%developments%in%  

E-Print Network [OSTI]

From%laggard%to%leader:%% Explaining%offshore%wind%developments%in% the%UK% Florian!laggard!to!leader:!Explaining! offshore!wind!developments!in!the!UK! Florian Kern1* , Adrian Smith1 , Chris Shaw1 , Rob Raven2 and Bram for publication in Energy Policy, 19 Feb 2014 Abstract Offshore wind technology has recently undergone rapid

Sussex, University of

352

Effects of wind energy development on survival of female greater prairie-chickens  

E-Print Network [OSTI]

Effects of wind energy development on survival of female greater prairie-chickens Virginia L of Florida, Gainesville, FL 32611, USA Summary 1. The potential effects of wind energy development on wildlife have received increased attention over the past decade. In Kansas, optimal sites for wind energy

Sandercock, Brett K.

353

AN EVALUATION OF THE WILDLIFE IMPACTS OF OFFSHORE WIND DEVELOPMENT RELATIVE TO FOSSIL FUEL  

E-Print Network [OSTI]

AN EVALUATION OF THE WILDLIFE IMPACTS OF OFFSHORE WIND DEVELOPMENT RELATIVE TO FOSSIL FUEL POWER. Jarvis All Rights Reserved #12;AN EVALUATION OF THE WILDLIFE IMPACTS OF OFFSHORE WIND DEVELOPMENT in offshore wind energy. I would also like to thank my committee members, Dr. Jeremy Firestone

Firestone, Jeremy

354

Manufacturing Development of the NCSX Modular Coil Windings  

SciTech Connect (OSTI)

The modular coils on the National Compact Stellarator Experiment (NCSX) present a number of significant engineering challenges due to their complex shapes, requirements for high dimensional accuracy and the high current density required in the modular coils due to space constraints. In order to address these challenges, an R&D program was established to develop the conductor, insulation scheme, manufacturing techniques, and procedures. A prototype winding named Twisted Racetrack Coil (TRC) was of particular importance in dealing with these challenges. The TRC included a complex shaped winding form, conductor, insulation scheme, leads and termination, cooling system and coil clamps typical of the modular coil design. Even though the TRC is smaller in size than a modular coil, its similar complex geometry provided invaluable information in developing the final design, metrology techniques and development of manufacturing procedures. In addition a discussion of the development of the copper rope conductor including "Keystoning" concerns; the epoxy impregnation system (VPI) plus the tooling and equipment required to manufacture the modular coils will be presented.

Chrzanowsk, J. H.; Fogarty, P. J.; Heitzenroeder, P. J.; Meighan, T.; Nelson, B.; Raftopoulos, S.; Williamson, D.

2005-09-27T23:59:59.000Z

355

Jobs and Economic Development Impacts from Small Wind: JEDI Model in the Works (Presentation)  

SciTech Connect (OSTI)

This presentation covers the National Renewable Energy Laboratory's role in economic impact analysis for wind power Jobs and Economic Development Impacts (JEDI) models, JEDI results, small wind JEDI specifics, and a request for information to complete the model.

Tegen, S.

2012-06-01T23:59:59.000Z

356

Definition of a 5-MW Reference Wind Turbine for Offshore System Development  

SciTech Connect (OSTI)

This report describes a three-bladed, upwind, variable-speed, variable blade-pitch-to-feather-controlled multimegawatt wind turbine model developed by NREL to support concept studies aimed at assessing offshore wind technology.

Jonkman, J.; Butterfield, S.; Musial, W.; Scott, G.

2009-02-01T23:59:59.000Z

357

Development of Direct-Use Projects: Preprint  

SciTech Connect (OSTI)

A geothermal direct-use project utilizes a natural resource, a flow of geothermal fluid at elevated temperatures, which is capable of providing heat and/or cooling to buildings, greenhouses, aquaculture ponds, and industrial processes. Geothermal utilization requires matching the varied needs of the user and characteristics of the resource in order to development a successful project. Each application is unique; guidelines are provided for the logical steps required to implement a project. Recommended temperature and flows are suggested for spas and pools, space and district heating, greenhouse and aquaculture pond heating, and industrial applications. Guidelines are provided for selecting the necessary equipment for successfully implementing a direct-use project, including downhole pumps, piping, heat exchangers, and heat convectors. Additionally, the relationship between temperature, flow rate, and the use of heat exchangers to provide heat to a space with hot water or hot air is provided for a number of applications, with suggested 'rules of thumb'.

Lund, J.

2011-01-01T23:59:59.000Z

358

U.S. Offshore Wind Advanced Technology Demonstration Projects Public Meeting Transcript for Offshore Wind Demonstrations  

Energy Savers [EERE]

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Office of Inspector GeneralDepartment of EnergyofProject is on Track |Weatherized BySolarBodman U.S. DEPARTMENT OF

359

Environmental Effects of Offshore Wind Development. Fiscal Year 2012 Progress Report  

SciTech Connect (OSTI)

Potential environmental effects of offshore wind (OSW) energy projects are not well understood, and regulatory agencies are required to make decisions in spite of substantial uncertainty about environmental impacts and their long-term consequences. An understanding of risks associated with interactions between OSW installations and aquatic receptors, including animals, habitats, and ecosystems, can help define key uncertainties and focus regulatory actions and scientific studies on interactions of most concern. To examine the environmental risks associated with OSW developments in the U.S. Pacific Northwest National Laboratory (PNNL) focused on the following four priority research areas in FY 2012: Environmental Risk Evaluation System (ERES) - Followed project developments on the two OSW projects that PNNL screened in FY 2011 for environmental consequence: Fishermens Energy off the coast of Atlantic City, NJ and LEEDCo. near Cleveland, OH in Lake Erie. Tethys - Developed a smart knowledge base which houses environmental research, data and information pertaining to OSW energy: Technical Assessment - Produced a new software to create an automated process of identifying and differentiating between flying organism such as birds and bats by using thermal imagery; and North Atlantic Right Whales - Developed an environmental risk management system to mitigate the impacts on North Atlantic Right Whales (NARW) during installation and piledriving stages of OSW developments. By identifying and addressing the highest priority environmental risks for OSW devices and associated installations the ERES process assists project proponents, regulators, and stakeholders to engage in the most efficient and effective siting and permitting pathways.

Copping, Andrea E.; Hanna, Luke A.; Butner, R. Scott; Carlson, Thomas J.; Halvorsen, Michele B.; Duberstein, Corey A.; Matzner, Shari; Whiting, Jonathan M.; Blake, Kara M.; Stavole, Jessica

2012-09-30T23:59:59.000Z

360

Development and Commissioning of a Small/Mid-Size Wind Turbine...  

Office of Scientific and Technical Information (OSTI)

Development and Commissioning of a SmallMid-Size Wind Turbine Test Facility: Preprint Re-direct Destination: This paper describes the development and commissioning tests of the...

Note: This page contains sample records for the topic "wind project developer" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


361

Hull Wind II: A Case Study of the Development of a Second Large Wind Turbine Installation in the Town of Hull, MA  

E-Print Network [OSTI]

; a capped landfill was chosen. Resource assessment took advantage of the Hull Wind I experience, nearby data made the wind power projects economically feasible; and a citizenry willing to participate actively for salt production. Hull's pursuit of modern wind power began more than 20 years ago, with the 1985

Massachusetts at Amherst, University of

362

START Program for Renewable Energy Project Development Assistance...  

Broader source: Energy.gov (indexed) [DOE]

Program for Renewable Energy Project Development Assistance START Program for Renewable Energy Project Development Assistance The Strategic Technical Assistance Response Team...

363

START Program for Renewable Energy Project Development Assistance...  

Office of Environmental Management (EM)

START Program for Renewable Energy Project Development Assistance - Round Three Application START Program for Renewable Energy Project Development Assistance - Round Three...

364

DOE and USCAR Announce $70 Million Project to Accelerate Development...  

Energy Savers [EERE]

Announce 70 Million Project to Accelerate Development of Lightweight, High-Strength Materials DOE and USCAR Announce 70 Million Project to Accelerate Development of Lightweight,...

365

START Program for Renewable Energy Project Development Assistance...  

Energy Savers [EERE]

Program for Renewable Energy Project Development Assistance Non-Disclosure Agreement START Program for Renewable Energy Project Development Assistance Non-Disclosure Agreement...

366

DOE Alaska Native Village Renewable Energy Project Development...  

Energy Savers [EERE]

Alaska Native Village Renewable Energy Project Development Workshop DOE Alaska Native Village Renewable Energy Project Development Workshop March 30, 2015 9:00AM AKDT to April 1,...

367

ISO launches a project committee to develop an International...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

launches a project committee to develop an International Standard for energy management ISO launches a project committee to develop an International Standard for energy management...

368

Executive Summit on Wind Research and Development | Department of Energy  

Energy Savers [EERE]

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Office of Inspector General Office of Audit|Department of Energy56Executive Summit on Wind Research and Development

369

Renewable Energy Project Development Assistance (Fact Sheet)  

SciTech Connect (OSTI)

This fact sheet provides information on the Tribes selected to receive assistance from the U.S. Department of Energy Office of Indian Energy 2013 Strategic Technical Assistance Response Team (START) Program, which provides technical expertise to support the development of next-generation energy projects on tribal lands.

Not Available

2013-07-01T23:59:59.000Z

370

Norfolk Public Schools Wind Project | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home5b9fcbce19 No revision hasInformation Earth's HeatMexico:Community Nominations open for $250,000DevelopmentNE

371

Federal Wind Energy Assistance through NREL (Fact Sheet)  

SciTech Connect (OSTI)

NREL assists with wind resource assessment and development activities initiated by federal agencies to facilitate distributed renewable energy projects at federal agency sites. This brief outlines the process for requesting NREL assistance with federal wind energy projects.

Not Available

2009-09-01T23:59:59.000Z

372

Wind Power Project Repowering: Financial Feasibility, Decision Drivers, and Supply Chain Effects  

SciTech Connect (OSTI)

As wind power facilities age, project owners are faced with plant end of life decisions. This report is intended to inform policymakers and the business community regarding the history, opportunities, and challenges associated with plant end of life actions, in particular repowering. Specifically, the report details the history of repowering, examines the plant age at which repowering becomes financially attractive, and estimates the incremental market investment and supply chain demand that might result from future U.S. repowering activities.

Lantz, E.; Leventhal, M.; Baring-Gould, I.

2013-12-01T23:59:59.000Z

373

New Report Shows Trend Toward Larger Offshore Wind Systems, with 11 Advanced Stage Projects Proposed in U.S. Waters  

Broader source: Energy.gov [DOE]

The Energy Department today released a new report showing progress for the U.S. offshore wind energy market in 2012, including the completion of two commercial lease auctions for federal Wind Energy Areas and 11 commercial-scale U.S. projects repre

374

Displacement of diesel fuel with wind energy in rural Alaskan villages. Final progress and project closeout report  

SciTech Connect (OSTI)

The basic concept behind this project was to construct a wind diesel hybrid power system which combines and maximizes the intermittent and variable energy output of wind turbine(s) with diesel generator(s) to provide continuous high quality electric power to weak isolated mini-grids.

Meiners, Dennis; Drouhilet, Steve; Reeve, Brad; Bergen, Matt

2002-03-11T23:59:59.000Z

375

DEVELOPMENT OF AN ULTRASONIC NDT SYSTEM FOR AUTOMATED IN-SITU INSPECTION OF WIND TURBINE BLADES  

E-Print Network [OSTI]

DEVELOPMENT OF AN ULTRASONIC NDT SYSTEM FOR AUTOMATED IN- SITU INSPECTION OF WIND TURBINE BLADES Abington, Cambridge, CB21 6AL, UK bic@brunel.ac.uk ABSTRACT It is crucial to maintain wind turbine blades. This work investigates using pulse-echo ultrasound to detect internal damages in wind turbine blades without

Boyer, Edmond

376

Developing a Practical Wind Tunnel Test Engineering Course for Undergraduate Aerospace Engineering Students  

E-Print Network [OSTI]

This thesis describes the development and assessment of an undergraduate wind tunnel test engineering course utilizing the 7ft by 10ft Oran W. Nicks Low Speed Wind Tunnel (LSWT). Only 5 other universities in the United States have a wind tunnel...

Recla, Benjamin Jeremiah

2013-04-19T23:59:59.000Z

377

Acoustic Array Development for Wind Turbine Noise Characterization  

SciTech Connect (OSTI)

This report discusses the design and use of a multi-arm, logarithmic spiral acoustic array by the National Renewable Energy Laboratory (NREL) for measurement and characterization of wind turbine-generated noise. The array was developed in collaboration with a team from the University of Colorado Boulder. This design process is a continuation of the elliptical array design work done by Simley. A description of the array system design process is presented, including array shape design, mechanical design, design of electronics and the data acquisition system, and development of post-processing software. System testing and calibration methods are detailed. Results from the initial data acquisition campaign are offered and discussed. Issues faced during this initial deployment of the array are presented and potential remedies discussed.

Buck, S.; Roadman, J.; Moriarty, P.; Palo, S.

2013-11-01T23:59:59.000Z

378

Hawaii energy strategy project 3: Renewable energy resource assessment and development program  

SciTech Connect (OSTI)

RLA Consulting (RLA) has been retained by the State of Hawaii Department of Business, Economic Development and Tourism (DBEDT) to conduct a Renewable Energy Resource Assessment and Development Program. This three-phase program is part of the Hawaii Energy Strategy (HES), which is a multi-faceted program intended to produce an integrated energy strategy for the State of Hawaii. The purpose of Phase 1 of the project, Development of a Renewable Energy Resource Assessment Plan, is to better define the most promising potential renewable energy projects and to establish the most suitable locations for project development in the state. In order to accomplish this goal, RLA has identified constraints and requirements for renewable energy projects from six different renewable energy resources: wind, solar, biomass, hydro, wave, and ocean thermal. These criteria were applied to areas with sufficient resource for commercial development and the results of Phase 1 are lists of projects with the most promising development potential for each of the technologies under consideration. Consideration of geothermal energy was added to this investigation under a separate contract with DBEDT. In addition to the project lists, a monitoring plan was developed with recommended locations and a data collection methodology for obtaining additional wind and solar data. This report summarizes the results of Phase 1. 11 figs., 22 tabs.

NONE

1995-11-01T23:59:59.000Z

379

Development and Deployment of an Advanced Wind Forecasting Technique  

E-Print Network [OSTI]

findings. Part 2 addresses how operators of wind power plants and power systems can incorporate advanced the output of advanced wind energy forecasts into decision support models for wind power plant and power and applications of power market simulation models around the world. Argonne's software tools are used extensively

Kemner, Ken

380

Comparison of Feed in Tariff, Quota and Auction Mechanisms to Support Wind Power Development  

E-Print Network [OSTI]

A comparison of policy instruments employed to support onshore wind projects suggests that in terms of capacity installed, policies adopted in Germany have been more effective than those adopted in the UK. Price comparisons have frequently...

Butler, Lucy; Neuhoff, Karsten

2006-03-14T23:59:59.000Z

Note: This page contains sample records for the topic "wind project developer" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


381

Wind Energy Management System Integration Project Incorporating Wind Generation and Load Forecast Uncertainties into Power Grid Operations  

SciTech Connect (OSTI)

The power system balancing process, which includes the scheduling, real time dispatch (load following) and regulation processes, is traditionally based on deterministic models. Since the conventional generation needs time to be committed and dispatched to a desired megawatt level, the scheduling and load following processes use load and wind power production forecasts to achieve future balance between the conventional generation and energy storage on the one side, and system load, intermittent resources (such as wind and solar generation) and scheduled interchange on the other side. Although in real life the forecasting procedures imply some uncertainty around the load and wind forecasts (caused by forecast errors), only their mean values are actually used in the generation dispatch and commitment procedures. Since the actual load and intermittent generation can deviate from their forecasts, it becomes increasingly unclear (especially, with the increasing penetration of renewable resources) whether the system would be actually able to meet the conventional generation requirements within the look-ahead horizon, what the additional balancing efforts would be needed as we get closer to the real time, and what additional costs would be incurred by those needs. In order to improve the system control performance characteristics, maintain system reliability, and minimize expenses related to the system balancing functions, it becomes necessary to incorporate the predicted uncertainty ranges into the scheduling, load following, and, in some extent, into the regulation processes. It is also important to address the uncertainty problem comprehensively, by including all sources of uncertainty (load, intermittent generation, generators forced outages, etc.) into consideration. All aspects of uncertainty such as the imbalance size (which is the same as capacity needed to mitigate the imbalance) and generation ramping requirement must be taken into account. The latter unique features make this work a significant step forward toward the objective of incorporating of wind, solar, load, and other uncertainties into power system operations. In this report, a new methodology to predict the uncertainty ranges for the required balancing capacity, ramping capability and ramp duration is presented. Uncertainties created by system load forecast errors, wind and solar forecast errors, generation forced outages are taken into account. The uncertainty ranges are evaluated for different confidence levels of having the actual generation requirements within the corresponding limits. The methodology helps to identify system balancing reserve requirement based on a desired system performance levels, identify system breaking points, where the generation system becomes unable to follow the generation requirement curve with the user-specified probability level, and determine the time remaining to these potential events. The approach includes three stages: statistical and actual data acquisition, statistical analysis of retrospective information, and prediction of future grid balancing requirements for specified time horizons and confidence intervals. Assessment of the capacity and ramping requirements is performed using a specially developed probabilistic algorithm based on a histogram analysis incorporating all sources of uncertainty and parameters of a continuous (wind forecast and load forecast errors) and discrete (forced generator outages and failures to start up) nature. Preliminary simulations using California Independent System Operator (California ISO) real life data have shown the effectiveness of the proposed approach. A tool developed based on the new methodology described in this report will be integrated with the California ISO systems. Contractual work is currently in place to integrate the tool with the AREVA EMS system.

Makarov, Yuri V.; Huang, Zhenyu; Etingov, Pavel V.; Ma, Jian; Guttromson, Ross T.; Subbarao, Krishnappa; Chakrabarti, Bhujanga B.

2010-09-01T23:59:59.000Z

382

Bird Movements and Behaviors in the Gulf Coast Region: Relation to Potential Wind-Energy Developments  

SciTech Connect (OSTI)

The purpose of this paper is to discuss the possible impacts of wind development to birds along the lower Gulf Coast, including both proposed near-shore and offshore developments. The report summarizes wind resources in Texas, discusses timing and magnitude of bird migration as it relates to wind development, reviews research that has been conducted throughout the world on near- and offshore developments, and provides recommendations for research that will help guide wind development that minimizes negative impacts to birds and other wildlife resources.

Morrison, M. L.

2006-06-01T23:59:59.000Z

383

Large-Scale Wind Training Program  

SciTech Connect (OSTI)

Project objective is to develop a credit-bearing wind technician program and a non-credit safety training program, train faculty, and purchase/install large wind training equipment.

Porter, Richard L. [Hudson Valley Community College

2013-07-01T23:59:59.000Z

384

Fast Charging Electric Vehicle Research & Development Project  

SciTech Connect (OSTI)

The research and development project supported the engineering, design and implementation of onroad Electric Vehicle (EV) charging technologies. It included development of potential solutions for DC fast chargers (DCFC) capable of converting high voltage AC power to the DC power required by EVs. Additional development evaluated solutions related to the packaging of power electronic components and enclosure design, as well as for the design and evaluation of EV charging stations. Research compared different charging technologies to identify optimum applications in a municipal fleet. This project collected EV usage data and generated a report demonstrating that EVs, when supported by adequate charging infrastructure, are capable of replacing traditional internal combustion vehicles in many municipal applications. The projects period of performance has demonstrated various methods of incorporating EVs into a municipal environment, and has identified three general categories for EV applications: ? Short Commute: Defined as EVs performing in limited duration, routine commutes. ? Long Commute: Defined as tasks that require EVs to operate in longer daily mileage patterns. ? Critical Needs: Defined as the need for EVs to be ready at every moment for indefinite periods. Together, the City of Charlottesville, VA (the City) and Aker Wade Power Technologies, LLC (Aker Wade) concluded that the EV has a viable position in many municipal fleets but with limited recommendation for use in Critical Needs applications such as Police fleets. The report also documented that, compared to internal combustion vehicles, BEVs have lower vehiclerelated greenhouse gas (GHG) emissions and contribute to a reduction of air pollution in urban areas. The enhanced integration of EVs in a municipal fleet can result in reduced demand for imported oil and reduced municipal operating costs. The conclusions indicated in the projects Engineering Report (see Attachment A) are intended to assist future implementation of electric vehicle technology. They are based on the cited research and on the empirical data collected and presented. The report is not expected to represent the entire operating conditions of any of the equipment under consideration within this project, and tested equipment may operate differently under other conditions.

Heny, Michael

2014-03-31T23:59:59.000Z

385

Economic Development Impact of 1,000 MW of Wind Energy in Texas  

SciTech Connect (OSTI)

Texas has approximately 9,727 MW of wind energy capacity installed, making it a global leader in installed wind energy. As a result of the significant investment the wind industry has brought to Texas, it is important to better understand the economic development impacts of wind energy in Texas. This report analyzes the jobs and economic impacts of 1,000 MW of wind power generation in the state. The impacts highlighted in this report can be used in policy and planning decisions and can be scaled to get a sense of the economic development opportunities associated with other wind scenarios. This report can also inform stakeholders in other states about the potential economic impacts associated with the development of 1,000 MW of new wind power generation and the relationships of different elements in the state economy.

Reategui, S.; Hendrickson, S.

2011-08-01T23:59:59.000Z

386

Renewable Energy Project Development and Financing: Facility...  

Broader source: Energy.gov (indexed) [DOE]

resource rich; solar dominates Southern CA Wind resource rich; not nearly as much solar Solar (photovoltaic PV or concentrating PV) strong, commercial Consensus Given facts,...

387

Sage-Grouse and Wind Energy: Biology, Habits, and Potential Effects from Development  

SciTech Connect (OSTI)

Proposed development of domestic energy resources, including wind energy, is expected to impact the sagebrush steppe ecosystem in the western United States. The greater sage-grouse relies on habitats within this ecosystem for survival, yet very little is known about how wind energy development may affect sage-grouse. The purpose of this report is to inform organizations of the impacts wind energy development could have on greater sage-grouse populations and identify information needed to fill gaps in knowledge.

Becker, James M.; Tagestad, Jerry D.; Duberstein, Corey A.; Downs, Janelle L.

2009-07-15T23:59:59.000Z

388

International project development -- Strategies for the future  

SciTech Connect (OSTI)

It seems everywhere one looks today the international power development markets look incredibly large. 150,000 MWs are needed in China, 50,000 MWs are needed in India, 15,000 MWs are needed in Indonesia, 25,000 MWs are needed in Brazil. The list goes on and on and according to current IPP ``mythology`` these markets offer potential projects providing ``huge`` internal rates of return on investment. Unfortunately, against this favorable market backdrop remain some irrefutable facts; (1) There is not enough fabrication capacity in the world to meet the current capacity addition requirements, (2) There is not enough debt capital in the world to finance all the required MWs, further portfolio considerations reduce this on a country-by-country basis. (3) There are not enough qualified development and operational personnel to develop, construct and manage all of these projects. This paper will attempt to cover the broad mosaic of issues relative to the international development market. The authors illuminate the risks that will help optimize development funds, and human resources as well as the issues surrounding construction and operations.

Gross, S.B.; Maynard, B.H. [Entergy Power Group, Little Rock, AR (United States)

1995-12-31T23:59:59.000Z

389

An Analysis of Wind Power Development in the Town of Hull, MA  

SciTech Connect (OSTI)

Over the past three decades the Town of Hull, MA has solidified its place in U.S. wind energy history through its leadership in community-based generation. This is illustrated by its commissioning of the first commercial-scale wind turbine on the Atlantic coastline, the first suburban-sited turbine in the continental United States, pursuit of community-based offshore wind, and its push toward creating an energy independent community. The town's history and demographics are briefly outlined, followed by experience in projects to provide wind power, including pre-construction and feasibility efforts, financial aspects, and market/industry factors.

Adams, Christopher

2013-06-30T23:59:59.000Z

390

Session: Why avian impacts are a concern in wind energy development  

SciTech Connect (OSTI)

This lunchtime session at the Wind Energy and Birds/Bats workshop consisted of one presentation followed by a discussion/question and answer period. The session provided a more detailed overview of the environmental community's perspective on wind power's impacts on birds. The presentation described how wind projects impact birds, detailing the species distribution of collisions at various sites around the US and discussing problems such as avoidance, habitat disturbance, and cumulative effects on populations. The presentation, ''Wind Turbines and Birds'', was given by Gerald Winegrad from the American Bird Conservancy.

Winegrad, Gerald

2004-09-01T23:59:59.000Z

391

Development of learning material to wind power courses.  

E-Print Network [OSTI]

??Wind power plants are more and more commonly used as power production units, which lead to an increased demand of educated personnel within the area. (more)

Bruhn, Kristin; Lorensson, Sofia

2009-01-01T23:59:59.000Z

392

NREL: Wind Research - NREL/DOE Develop Collaboration with Japan...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

challenges in the deployment of offshore wind energy, including an abundance of deep water and the need to design floating turbines capable of withstanding tropical weather...

393

Offshore Wind Jobs and Economic Development Impacts in the United...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Energy Laboratory (NREL) at www.nrel.govpublications. Executive Summary Offshore wind has tremendous potential in the United States as a clean, renewable source of...

394

Wind Energy in Indian Country: Turning to Wind for the Seventh Generation  

E-Print Network [OSTI]

Wind Energy in Indian Country: Turning to Wind for the Seventh Generation by Andrew D. Mills: ___________________________________________ Jane Stahlhut Date #12;Wind Energy in Indian Country A.D. Mills Abstract - ii - Abstract Utility-scale wind projects are increasingly being developed in rural areas of the United States. In the West

Kammen, Daniel M.

395

Colorado Wind Resource Map with 17 school locations for a potential pilot project  

Wind Powering America (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data CenterFranconia, Virginia:FAQ < RAPID Jump to:SeadovCooperative JumpWilliamsonWoodsonCounty iscomfortNewsAffiliate Projects TheWind An

396

NREL: Hydrogen and Fuel Cells Research - Wind-to-Hydrogen Project  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmosphericNuclear Security Administration the Contributions and Achievements ofLiz TorresSolectriaProjects PhotoWind-to-Hydrogen

397

Vindicator Lidar Assessment for Wind Turbine Feed-Forward Control Applications: Cooperative Research and Development Final Report, CRADA Number CRD-09-352  

SciTech Connect (OSTI)

Collaborative development and testing of feed-forward and other advanced wind turbine controls using a laser wind sensor.

Wright, A.

2014-01-01T23:59:59.000Z

398

Wind Speed Data Analysis using Wavelet Transform  

E-Print Network [OSTI]

AbstractRenewable energy systems are becoming a topic of great interest and investment in the world. In recent years wind power generation has experienced a very fast development in the whole world. For planning and successful implementations of good wind power plant projects, wind potential measurements are required. In these projects, of great importance is the effective choice of the micro location for wind potential measurements, installation of the measurement station with the appropriate measuring equipment, its maintenance and analysis of the gained data on wind potential characteristics. In this paper, a wavelet transform has been applied to analyze the wind speed data in the context of insight in the characteristics of the wind and the selection of suitable locations that could be the subject of a wind farm construction. This approach shows that it can be a useful tool in investigation of wind potential. KeywordsWind potential, Wind speed data, Wavelet transform.

S. Avdakovic; A. Lukac; A. Nuhanovic; M. Music

399

Assessment of the National Wind Coordinating Collaborative: Addressing Environmental and Siting Issues Associated with Wind Energy Development  

SciTech Connect (OSTI)

The National Wind Coordinating Collaborative (NWCC) is a consensus-based stakeholder group comprised of representatives from the utility, wind industry, environmental, consumer, regulatory, power marketer, agricultural, tribal, economic development, and state and federal government sectors. The purpose of the NWCC is to support the development of an environmentally, economically, and politically sustainable commercial market for wind power (NWCC 2010). The NWCC has been funded by the U.S. Department of Energy (DOE) since its inception in 1994. In order to evaluate the impact of the work of the NWCC and how this work aligns with DOEs strategic priorities, DOE tasked Pacific Northwest National Laboratory (PNNL) to conduct a series of informal interviews with a small sample of those involved with NWCC.

Van Cleve, Frances B.; States, Jennifer C.

2010-11-09T23:59:59.000Z

400

Sustainable Development and Kish Island Environment Protection, using Wind Energy  

E-Print Network [OSTI]

AbstractKish Islands in South of Iran is located in coastal water near Hormozgan Province. Based on the wind 3-hour statistics in Kish station, the mean annual windspeed in this Island is 8.6 knot (4.3 m/s). The maximum windspeed recorded in this stations 47 knot (23.5 m/s). In 45.7 percent of recorded times, windspeed has been Zero or less than 8 knot which is not suitable to use the wind energy. But in 54.3 percent of recorded times, windspeed has been more than 8 knot and suitable to use wind energy to run turbines. In 40.2 percent of recorded times, windspeed has been between 8 to 16 knot, in 13 percent of times between 16 to 24 knot and in 1 percent of times it has been higher than 24 knot. In this station, the direction of winds higher than 8 is west and wind direction in Kish station is stable in most times of the year.With regard to high speed and stable direction winds during the year and also shallow coasts near this is land, it is possible to build offshore wind farms near Kish Island and utilize wind energy produce the electricity required in this Island during most of the year.

Amir Gandomkar

Note: This page contains sample records for the topic "wind project developer" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


401

An Analysis of Wind Power Development in the Town of Hull, MA, Appendix 2: LaCapra Financial Study  

SciTech Connect (OSTI)

The financial analysis and summary results presented in this document represent a first cut at an economic assessment of the proposed Hull Offshore Wind Project. Wind turbine price increases have outpaced the materials and labor price pressures faced by nonrenewable power plant developers due to increased demands on a limited pool of turbine manufacturers and offshore installation companies. Moreover, given the size of the proposed offshore facility, it may be difficult to contract with turbine manufacturers and/or foundation companies given the size and scope of competing worldwide demand. The results described in this report assume that such conditions will not significantly impact the prices that will have to be received from the output of the project; rather, the project size may require as a prerequisite that Hull be able to piggyback on other offshore efforts. The financial estimates provided here necessarily feature a range due to uncertainty in a number of project assumptions as well as overall uncertainty in offshore wind costs. Nevertheless, taken together, the analysis provides a ballpark revenue requirement of approximately $157/MWh for the municipal financing option, with higher estimates possible assuming escalation in costs to levels higher than assumed here.

Adams, Christopher

2013-06-30T23:59:59.000Z

402

Energy Project Development, Finance, and Commissioning Resources...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Financing FEMP Sample RFP Documents. Other Resources: Energy Efficiency for Water-Wastewater Projects RFP Guidance Project Finance Innovative financing solutions that enable...

403

Renewable Energy Project Development and Financing: Commercial...  

Broader source: Energy.gov (indexed) [DOE]

Most costly for Tribedeveloper to acquire long-term ownership of project (large cash infusion year 7) * Tribedeveloper operates the project * Requires largest equity...

404

Offshore Coastal Wind Speed Gradients: issues for the design and development of large offshore windfarms  

E-Print Network [OSTI]

Offshore Coastal Wind Speed Gradients: issues for the design and development of large offshore@globalnet.co.uk · WEB SITE: www.multi-science.co.uk #12;Offshore Coastal Wind Speed Gradients: issues for the design and development of large offshore windfarms R.J. Barthelmie1,2, J. Badger3, S.C. Pryor2, C.B. Hasager3, M

Pryor, Sara C.

405

Commercial-Scale Renewable Energy Project Development and Finance...  

Broader source: Energy.gov (indexed) [DOE]

Commercial-Scale Renewable Energy Project Development and Finance Workshop Commercial-Scale Renewable Energy Project Development and Finance Workshop July 29, 2014 1:00PM MDT to...

406

A Comparative Analysis of Community Wind Power Development Models  

E-Print Network [OSTI]

Wisconsin Community Based Windpower Project Business Plan.of Oregon Presented at WINDPOWER 2005 May 18, 2005 Denver,Wisconsin Community Based Windpower Project Business Plan

Bolinger, Mark; Wiser, Ryan; Wind, Tom; Juhl, Dan; Grace, Robert; West, Peter

2005-01-01T23:59:59.000Z

407

Next Generation Short-Term Forecasting of Wind Power Overview of the ANEMOS Project.  

E-Print Network [OSTI]

of difficulties to the power system operation. This is due to the fluctuating nature of wind generation to the management of wind generation. Accurate and reliable forecasting systems of the wind production are widely

Boyer, Edmond

408

Project Profile: Development and Performance Evaluation of High...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Development and Performance Evaluation of High Temperature Concrete for Thermal Energy Storage for Solar Power Generation Project Profile: Development and Performance Evaluation of...

409

Project Profile: High-Temperature Solar Selective Coating Development...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Solar Selective Coating Development for Power Tower Receivers Project Profile: High-Temperature Solar Selective Coating Development for Power Tower Receivers Sandia National...

410

GRADUATE FACULTY-STUDENT PROJECT: School of Management Development Office: Marketing and Development Intern  

E-Print Network [OSTI]

GRADUATE FACULTY-STUDENT PROJECT: School of Management Development Office: Marketing at: Email address: Anticipated Graduation Date: GRADUATE FACULTY-STUDENT PROJECT: (Only graduate level students may be considered for this project) School of Management Development Office: Marketing

Suzuki, Masatsugu

411

South African SKA Project Human Capital Development Programme  

E-Print Network [OSTI]

D and MSc Project List 1. Radio Astronomy Science 1.1 Radio Astronomy Science - PhD topics Project Title Project Description Qualifications and Skills Required Link to MeerKAT and/ or SKA Science Supervisor (andSouth African SKA Project Human Capital Development Programme Call for applications for 2014 Ph

Jarrett, Thomas H.

412

RENEWABLE ENERGY FOR CLEAN AND SUSTAINABLE FUTURE: ASSESSMENT AND DEVELOPMENT STRATEGIES OF WIND  

E-Print Network [OSTI]

There is a substantial increase in energy demand in Turkey because of its growth of industrial development. Turkeys present energy resources are insufficient and the need for energy is growing rapidly. Turkey does not possess enough conventional fossil fuel reserves, but possesses rich renewable energy resources such as hydraulic, solar, geothermal and wind. Among all, wind energy seems to be the most suitable renewable energy resource for electricity production. This study is aimed to summarize the assessment and development strategies of wind power in Turkey. Considering the development of wind energy in the country, it may be concluded that the number of wind power plant installations will considerably increase in the future.

Power In Turkey; Afsin Gungor

413

Small Hydropower Research and Development Technology Project  

SciTech Connect (OSTI)

The objective of this work was to investigate, develop, and validate the next generation of small hydroturbine generator designs that maximize the energy transfer from flowing water to electrical power generation. What resulted from this effort was the design of a new technology hydroturbine that Near Space Systems (NSS) has named the Star*Stream Hydroturbine. Using a design that eliminates nearly all of the shortfalls of conventional hydroturbines, the Star*Stream Hydroturbine employs a new mechanical-to-electrical energy transfer hydro design that operates without lubrication of any kind, and does not introduce foreign chemicals or particulate matter from oil or drive shaft seal degradation into the hydro ecology. In its unique configuration, the Star*Stream Hydroturbine is nearly environmentally inert, without the negative aspects caused by interrupting the ecological continuity, i.e., disruptions to sedimentation, water quality, habitat changes, human displacement, fish migration, etc., - while it ensures dramatically reduced timeframes to project completion. While a remarkable reduction in LCOE resulting from application of the Star*Stream Hydroturbine technology has been the core achievement of the this effort, there have been numerous technological breakthroughs from the development effort.

Blackmore, Mo [Near Space Systems, Inc.] [Near Space Systems, Inc.

2013-12-06T23:59:59.000Z

414

Projecting human development and CO2 emissions  

E-Print Network [OSTI]

We estimate cumulative CO2 emissions during the period 2000 to 2050 from developed and developing countries based on the empirical relationship between CO2 per capita emissions (due to fossil fuel combustion and cement production) and corresponding HDI. In order to project per capita emissions of individual countries we make three assumptions which are detailed below. First, we use logistic regressions to fit and extrapolate the HDI on a country level as a function of time. This is mainly motivated by the fact that the HDI is bounded between 0 and 1 and that it decelerates as it approaches 1. Second, we employ for individual countries the correlations between CO2 per capita emissions and HDI in order to extrapolate their emissions. This is an ergodic assumption. Third, we let countries with incomplete data records evolve similarly as their close neighbors (in the emissions-HDI plane, see Fig. 1 in the main text) with complete time series of CO2 per capita emissions and HDI. Country-based emissions estimates a...

Costa, Lus; Kropp, Jrgen P

2012-01-01T23:59:59.000Z

415

Economic Development Benefits from Wind Energy in Nebraska: A Report for the Nebraska Energy Office (Revised)  

SciTech Connect (OSTI)

This report focuses on the economic development impacts estimated from building and operating 7,800 MW of new wind power in Nebraska. This level of development is on the scale envisioned in the Department of Energy (DOE) report 20% Wind Energy by 2030. A practical first step to building 7,800 of wind is completing 1,000 MW. We also include the estimated economic impacts to Nebraska from building 1,000 MW of wind power. Our primary analysis indicates that the development and construction of approximately 7,800 MW of wind energy in Nebraska by 2030 will support 20,600 to 36,500 annual full-time equivalents (AFTE). In addition, operating the full 7,800 MW of wind energy could support roughly 2,000 to 4,000 full-time workers throughout the operating life of the wind facilities (LFTE). Nebraska's economy is estimated to see an average annual boost in economic activity ranging from $140 million to $260 million solely from construction and development related activities between 2011 and 2030. An additional boost of $250 - $442 million annually is estimated from operating 7,800 MW of wind capacity.

Lantz, E.

2009-06-01T23:59:59.000Z

416

The development of a wind tunnel facility for the study of V/STOL noise  

E-Print Network [OSTI]

An open-jet wind tunnel operating within an anechoic chamber was developed for the purpose of the study of V/STOL noise mechanisms. An existing low-speed conventional hard-walled wind tunnel was modified to operate as an ...

Widnall, S. E.

1972-01-01T23:59:59.000Z

417

U.S. Department of Energy Wind and Water Power Program Funding...  

Office of Environmental Management (EM)

Development Projects. The breakdown of Wind Program funding is present- ed in a series of reports that showcase the projects funded in each of the six abovementioned areas. WIND...

418

Wind Turbine Blade Test Definition of the DeWind DW90 Rotor Blade: Cooperative Research and Development Final Report, CRADA Number CRD-09-326  

SciTech Connect (OSTI)

This CRADA was developed as a funds-in CRADA with DeWind to assess the suitability of facilities and equipment at the NWTC for performing certification blade testing on wind turbine blades made from advanced materials. DeWind produces a wind turbine blade which includes the use of high-strength and stiffness materials. NREL and DeWind had a mutual interest in defining the necessary facilities, equipment, and test methods for testing large wind turbine blades which incorporate advanced materials and adaptive structures, as the demands on test equipment and infrastructure are greater than current capabilities. Work under this CRADA would enable DeWind to verify domestic capability for certification-class static and fatigue testing, while NREL would be able to identify and develop specialized test capabilities based on the test requirements.

Hughes, S.

2012-05-01T23:59:59.000Z

419

NREL Improves System Efficiency and Increases Energy Transfer with Wind2H2 Project, Enabling Reduced Cost Electrolysis Production (Fact Sheet)  

SciTech Connect (OSTI)

This fact sheet describes NREL's accomplishments in improving energy transfer within a wind turbine-based hydrogen production system. Work was performed by the Wind2H2 Project team at the National Wind Technology Center in partnership with Xcel Energy.

Not Available

2010-11-01T23:59:59.000Z

420

Renewable Energy Project Development and Finance: Advanced Development...  

Broader source: Energy.gov (indexed) [DOE]

Most costly for Tribedeveloper to acquire long-term ownership of project (large cash infusion year 10) * Tribedeveloper operates the project * Requires largest equity...

Note: This page contains sample records for the topic "wind project developer" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


421

Project Information Form Project Title Advanced Energy Management Strategy Development for Plug-in Hybrid  

E-Print Network [OSTI]

,365 Total Project Cost $58,365 Agency ID or Contract Number DTRT13-G-UTC29 Start and End Dates April 1, 2014Project Information Form Project Title Advanced Energy Management Strategy Development for Plug ­ September 30, 2015 Brief Description of Research Project Plug-in hybrid vehicles (PHEVs) have great

California at Davis, University of

422

Innovation Project Development Jan 2013 1 Attributes of an Innovation Project  

E-Print Network [OSTI]

Innovation Project Development Jan 2013 1 Attributes of an Innovation Project Good projects the idea to act on the problem or opportunity To achieve the goals of the project, the team must, computers, materials and instrumentation. The cash award from the Innovation Council is most often used

Bertini, Robert L.

423

Wind Turbine R&D and Certification Services: Cooperative Research and Development Final Report, CRADA Number CRD-04-00147  

SciTech Connect (OSTI)

NREL and Underwriters Laboratories Inc. are developing a domestic certification program for the US wind and photovoltaic (PV) industry.

Link, H.

2011-02-01T23:59:59.000Z

424

MODEL REQUEST FOR PROPOSALS TO PROVIDE ENERGY AND OTHER ATTRIBUTES FROM AN OFFSHORE WIND POWER PROJECT  

SciTech Connect (OSTI)

This document provides a model RFP for new generation. The 'base' RFP is for a single-source offshore wind RFP. Required modifications are noted should a state or utility seek multi-source bids (e.g., all renewables or all sources). The model is premised on proposals meeting threshold requirements (e.g., a MW range of generating capacity and a range in terms of years), RFP issuer preferences (e.g., likelihood of commercial operation by a date certain, price certainty, and reduction in congestion), and evaluation criteria, along with a series of plans (e.g., site, environmental effects, construction, community outreach, interconnection, etc.). The Model RFP places the most weight on project risk (45%), followed by project economics (35%), and environmental and social considerations (20%). However, if a multi-source RFP is put forward, the sponsor would need to either add per-MWh technology-specific, life-cycle climate (CO2), environmental and health impact costs to bid prices under the 'Project Economics' category or it should increase the weight given to the 'Environmental and Social Considerations' category.

Jeremy Firestone; Dawn Kurtz Crompton

2011-10-22T23:59:59.000Z

425

Project Research and Development (PRD) scheme Guidance for Academic Applicants  

E-Print Network [OSTI]

1 Project Research and Development (PRD) scheme ­ Guidance for Academic Applicants Contents science and technology leadership in future Science and Technology Facility Council projects and gives and development projects which enable STFC to deliver the science programme objectives in the areas of particle

426

Project Research and Development (PRD) scheme Guidance for Applicants  

E-Print Network [OSTI]

1 Project Research and Development (PRD) scheme ­ Guidance for Applicants Contents Contents science and technology leadership in future Science and Technology Facility Council projects and gives and development projects which enable STFC to deliver the science programme objectives in the areas of particle

427

Energy Research and Development Division FINAL PROJECT REPORT  

E-Print Network [OSTI]

Energy Research and Development Division FINAL PROJECT REPORT SMART GRID ROADMAP FOR RENEWABLES INTEGRATION JULY 2013 CEC5002010029 Prepared for: California Energy Commission Prepared by: California Energy Commission Dave Michel Project Manager Mike Gravely Office Manager Energy Efficiency

428

Energy Research and Development Division FINAL PROJECT REPORT  

E-Print Network [OSTI]

Energy Research and Development Division FINAL PROJECT REPORT SMUD OFFPEAK OVERCOOLING PROJECT DECEMBER 2007 CEC5002013066 Prepared for: California Energy Commission Prepared by: Davis Energy Group #12; PREPARED BY: Primary Author(s): David Springer Davis Energy Group Davis, CA

429

Environmental Impacts of Wind Power Development on the Population Biology of Greater Prairie-Chickens  

SciTech Connect (OSTI)

Executive Summary 1. We investigated the impacts of wind power development on the demography, movements, and population genetics of Greater Prairie-Chickens (Tympanuchus cupido) at three sites in northcentral and eastern Kansas for a 7-year period. Only 1 of 3 sites was developed for wind power, the 201MW Meridan Way Wind Power Facility at the Smoky Hills site in northcentral Kansas. Our project report is based on population data for prairie chickens collected during a 2-year preconstruction period (2007-2008), a 3-year postconstruction period (2009-2011) and one final year of lek surveys (2012). Where relevant, we present preconstruction data from our field studies at reference sites in the northern Flint Hills (2007-2009) and southern Flint Hills (2006-2008). 2. We addressed seven potential impacts of wind power development on prairie chickens: lek attendance, mating behavior, use of breeding habitat, fecundity rates, natal dispersal, survival rates, and population numbers. Our analyses of pre- and postconstruction impacts are based on an analysis of covariance design where we modeled population performance as a function of treatment period, distance to eventual or actual site of the nearest wind turbine, and the interaction of these factors. Our demographic and movement data from the 6-year study period at the Smoky Hills site included 23 lek sites, 251 radio-marked females monitored for 287 bird-years, and 264 nesting attempts. Our genetic data were based on genotypes of 1,760 females, males and chicks that were screened with a set of 27 microsatellite markers that were optimized in the lab. 3. In our analyses of lek attendance, the annual probability of lek persistence during the preconstruction period was ~0.9. During the postconstruction period, distance to nearest turbine did not have a significant effect on the probability of lek persistence. However, the probability of lek persistence increased from 0.69 at 0 m to 0.89 at 30 km from turbines, and most abandoned lek sites were located <5 km from turbines. Probability of lek persistence was significantly related to habitat and number of males. Leks had a higher probability of persistence in grasslands than agricultural fields, and increased from ~0.2 for leks of 5 males, to >0.9 for leks of 10 or more males. Large leks in grasslands should be a higher priority for conservation. Overall, wind power development had a weak effect on the annual probability of lek persistence. 3. We used molecular methods to investigate the mating behavior of prairie chickens. The prevailing view for lek-mating grouse is that females mate once to fertilize the clutch and that conspecific nest parasitism is rare. We found evidence that females mate multiple times to fertilize the clutch (8-18% of broods, 4-38% of chicks) and will parasitize nests of other females during egg-laying (~17% of nests). Variable rates of parentage were highest in the fragmented landscapes at the Smoky Hills field site, and were lower at the Flint Hills field site. Comparisons of the pre- and postconstruction periods showed that wind energy development did not affect the mating behaviors of prairie chickens. 4. We examined use of breeding habitats by radio-marked females and conducted separate analyses for nest site selection, and movements of females not attending nests or broods. The landscape was a mix of native prairie and agricultural habitats, and nest site selection was not random because females preferred to nest in grasslands. Nests tended to be closer to turbines during the postconstruction period and there was no evidence of behavioral avoidance of turbines by females during nest site selection. Movements of females not attending nests or broods showed that females crossed the site of the wind power development at higher rates during the preconstruction period (20%) than the postconstruction period (11%), and that movements away from turbines were more frequent during the postconstruction period. Thus, wind power development appears to affect movements in breeding habitats but not nest site s

Sandercock, Brett K. [Kansas State University

2013-05-22T23:59:59.000Z

430

Automatic selection of tuning parameters in wind power prediction  

E-Print Network [OSTI]

Automatic selection of tuning parameters in wind power prediction Lasse Engbo Christiansen (lec Report number: IMM-Technical Report-2007-12 Project title: Intelligent wind power prediction systems PSO The wind power forecasting system developed at DTU - the Wind Power Prediction Tool (WPPT) - predicts

431

Development and testing of improved statistical wind power forecasting methods.  

SciTech Connect (OSTI)

Wind power forecasting (WPF) provides important inputs to power system operators and electricity market participants. It is therefore not surprising that WPF has attracted increasing interest within the electric power industry. In this report, we document our research on improving statistical WPF algorithms for point, uncertainty, and ramp forecasting. Below, we provide a brief introduction to the research presented in the following chapters. For a detailed overview of the state-of-the-art in wind power forecasting, we refer to [1]. Our related work on the application of WPF in operational decisions is documented in [2]. Point forecasts of wind power are highly dependent on the training criteria used in the statistical algorithms that are used to convert weather forecasts and observational data to a power forecast. In Chapter 2, we explore the application of information theoretic learning (ITL) as opposed to the classical minimum square error (MSE) criterion for point forecasting. In contrast to the MSE criterion, ITL criteria do not assume a Gaussian distribution of the forecasting errors. We investigate to what extent ITL criteria yield better results. In addition, we analyze time-adaptive training algorithms and how they enable WPF algorithms to cope with non-stationary data and, thus, to adapt to new situations without requiring additional offline training of the model. We test the new point forecasting algorithms on two wind farms located in the U.S. Midwest. Although there have been advancements in deterministic WPF, a single-valued forecast cannot provide information on the dispersion of observations around the predicted value. We argue that it is essential to generate, together with (or as an alternative to) point forecasts, a representation of the wind power uncertainty. Wind power uncertainty representation can take the form of probabilistic forecasts (e.g., probability density function, quantiles), risk indices (e.g., prediction risk index) or scenarios (with spatial and/or temporal dependence). Statistical approaches to uncertainty forecasting basically consist of estimating the uncertainty based on observed forecasting errors. Quantile regression (QR) is currently a commonly used approach in uncertainty forecasting. In Chapter 3, we propose new statistical approaches to the uncertainty estimation problem by employing kernel density forecast (KDF) methods. We use two estimators in both offline and time-adaptive modes, namely, the Nadaraya-Watson (NW) and Quantilecopula (QC) estimators. We conduct detailed tests of the new approaches using QR as a benchmark. One of the major issues in wind power generation are sudden and large changes of wind power output over a short period of time, namely ramping events. In Chapter 4, we perform a comparative study of existing definitions and methodologies for ramp forecasting. We also introduce a new probabilistic method for ramp event detection. The method starts with a stochastic algorithm that generates wind power scenarios, which are passed through a high-pass filter for ramp detection and estimation of the likelihood of ramp events to happen. The report is organized as follows: Chapter 2 presents the results of the application of ITL training criteria to deterministic WPF; Chapter 3 reports the study on probabilistic WPF, including new contributions to wind power uncertainty forecasting; Chapter 4 presents a new method to predict and visualize ramp events, comparing it with state-of-the-art methodologies; Chapter 5 briefly summarizes the main findings and contributions of this report.

Mendes, J.; Bessa, R.J.; Keko, H.; Sumaili, J.; Miranda, V.; Ferreira, C.; Gama, J.; Botterud, A.; Zhou, Z.; Wang, J. (Decision and Information Sciences); (INESC Porto)

2011-12-06T23:59:59.000Z

432

Stakeholder Engagement and Outreach Webinar: Jobs and Economic Development Impacts of Offshore Wind  

Office of Energy Efficiency and Renewable Energy (EERE)

Starting more than a year ago, NREL initiated work to expand the Jobs and Economic Development Impacts (JEDI) model to include fixed-bottom offshore wind technology. Following the completion of the...

433

Development and Verification of a Fully Coupled Simulator for Offshore Wind Turbines: Preprint  

SciTech Connect (OSTI)

This report outlines the development of an analysis tool capable of analyzing a variety of wind turbine, support platform, and mooring system configurations.The simulation capability was tested by model-to-model comparisons to ensure its correctness.

Jonkman, J. M.; Buhl, M. L. Jr.

2007-01-01T23:59:59.000Z

434

Wind Program Announces $2 Million to Develop and Field Test Wind Energy Bat  

Office of Environmental Management (EM)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) "of EnergyEnergyENERGYWomen Owned SmallOf TheViolations | Department ofEnergy Wind Power Today,

435

Permitting of Wind Energy Facilities: A Handbook  

SciTech Connect (OSTI)

This handbook has been written for individuals and groups involved in evaluating wind projects: decision-makers and agency staff at all levels of government, wind developers, interested parties and the public. Its purpose is to help stakeholders make permitting wind facility decisions in a manner which assures necessary environmental protection and responds to public needs.

NWCC Siting Work Group

2002-08-01T23:59:59.000Z

436

Second Wind Sonic Wind Profiler: Cooperative Research and Development Final Report, CRADA number CRD-08-00297  

SciTech Connect (OSTI)

Second Wind will deploy their Triton Sonic Wind Profiler at the National Wind Technology Center for the purposes of verification with measurements made by the NWTC 80 meter Meteorological tower.

Johnson, J. A.

2010-07-01T23:59:59.000Z

437

Use of synthetic aperture radar for offshore wind resource assessment and wind farm development in the UK  

E-Print Network [OSTI]

The UK has an abundant offshore wind resource with offshore wind farming set to grow rapidly over the coming years. Optimisation of energy production is of the utmost importance and accurate estimates of wind speed distributions are critical...

Cameron, Iain Dickson

2008-01-01T23:59:59.000Z

438

Position Description Project Manager, Office of Community and Economic Development  

E-Print Network [OSTI]

Position Description Project Manager, Office of Community and Economic Development Full will support all aspects of the success of CSU's Office of Community and Economic Development projects from to the Director and Assistant Director of the Community and Economic Development Office of Colorado State

439

Framework for Project Development in the Renewable Energy Sector  

SciTech Connect (OSTI)

The concepts, descriptions, diagrams, and acronyms developed and described herein are meant to provide a contextual framework as well as a systematic, repeatable process to assist a potential project sponsor in understanding and navigating early-stage project development. Professional project developers will recognize these concepts and hold them as intuitive and even obvious, though the fundamentals of this specialized field are rarely written down and defined as they are here.

Springer, R.

2013-02-01T23:59:59.000Z

440

Wind for Schools Portal Developer Resources | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Office of InspectorConcentrating SolarElectric Coop,SaveWhiskey Flats Geothermal Areaarticle is a stub.Wind)

Note: This page contains sample records for the topic "wind project developer" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


441

Reassessing Wind Potential Estimates for India: Economic and Policy Implications  

E-Print Network [OSTI]

Wind Project Performance,WindPower 2010, pp. 10-11. ErnestWind Project Performance,WindPower 2010, pp. 10- Table 6:

Phadke, Amol

2012-01-01T23:59:59.000Z

442

Energy Research and Development Division FINAL PROJECT REPORT  

E-Print Network [OSTI]

supplies, dry cooling systi Energy Research and Development Division FINAL PROJECT REPORT INLET AIR SPRAY COOLINGUse Energy Efficiency Renewable Energy Technologies Transportation Inlet Air Spray Cooling

443

2015 Project Development and Finance Workshop Agenda and Presentations  

Broader source: Energy.gov [DOE]

The Office of Indian Energy hosted three back-to-back Alaska Renewable Energy Project Development and Finance Workshops in Alaska.

444

Project Profile: Development and Productization of High-Efficiency...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Low-Cost Building-Integrated PV Shingles Using Monocrystalline Silicon Thin-Film Solar Cells Project Profile: Development and Productization of High-Efficiency, Low-Cost...

445

Developing Renewable Energy Projects Larger Than 10 MWs at Federal...  

Broader source: Energy.gov (indexed) [DOE]

Guide helps agency personnel navigate the complexities of developing large-scale renewable energy projects and assists them in attracting the necessary private capital to complete...

446

EA-1746: Blue Mountain Geothermal Development Project, Humboldt...  

Broader source: Energy.gov (indexed) [DOE]

December 3, 2007 EA-1746: Final Environmental Assessment Blue Mountain Geothermal Development Project April 26, 2010 EA-1746: Finding of No Significant Impact Blue Mountain...

447

Wind turbine control systems: Dynamic model development using system identification and the fast structural dynamics code  

SciTech Connect (OSTI)

Mitigating the effects of damaging wind turbine loads and responses extends the lifetime of the turbine and, consequently, reduces the associated Cost of Energy (COE). Active control of aerodynamic devices is one option for achieving wind turbine load mitigation. Generally speaking, control system design and analysis requires a reasonable dynamic model of {open_quotes}plant,{close_quotes} (i.e., the system being controlled). This paper extends the wind turbine aileron control research, previously conducted at the National Wind Technology Center (NWTC), by presenting a more detailed development of the wind turbine dynamic model. In prior research, active aileron control designs were implemented in an existing wind turbine structural dynamics code, FAST (Fatigue, Aerodynamics, Structures, and Turbulence). In this paper, the FAST code is used, in conjunction with system identification, to generate a wind turbine dynamic model for use in active aileron control system design. The FAST code is described and an overview of the system identification technique is presented. An aileron control case study is used to demonstrate this modeling technique. The results of the case study are then used to propose ideas for generalizing this technique for creating dynamic models for other wind turbine control applications.

Stuart, J.G.; Wright, A.D.; Butterfield, C.P.

1996-10-01T23:59:59.000Z

448

Technical and management support for the development of Small Wind Systems. Fiscal year 1980 annual report, October 1, 1979-September 30, 1980  

SciTech Connect (OSTI)

The status and achievements of a program for the development, testing, and commercialization of wind energy systems rated under 100 kilowatts are described. The organization structure and task definition used to promote the production, marketing, and acceptance of small systems are described, and the Work Breakdown Structure under which the program is organized is detailed. Reports are given which describe the status of contracts funded by the Federal Wind Energy Program and managed by the Rocky Flats Wind Systems Program. These project reports, sequenced according to the Department of Energy Work Breakdown Structure, name the principal investigators involved, and discuss achievements and progress made during Fiscal Year 1980. Of fourty-four projects, seven were completed during the Fiscal Year. The Work Breakdown Structure Index details the organization sequence.

Not Available

1981-08-01T23:59:59.000Z

449

Development of a Web-based Emissions Reduction Calculator for Green Power Purchases from Texas Wind Energy Providers  

E-Print Network [OSTI]

DEVELOPMENT OF A WEB-BASED, EMISSIONS REDUCTION CALCULATOR FOR GREEN POWER PURCHASES FROM TEXAS WIND ENERGY PROVIDERS Zi Liu, Ph.D. Research Engineer Jeff S. Haberl, Ph.D., P.E. Professor/Assc. Director Juan... that have been developed to calculate the emissions reductions from electricity provided by wind energy providers in the Texas ERCOT region, including an analysis of actual hourly wind power generated from a wind turbine in Randall County, Texas...

Liu, Z.; Baltazar-Cervantes, J. C.; Gilman, D.; Haberl, J.; Culp, C.

2005-01-01T23:59:59.000Z

450

Estimate of Extreme Wind, Wave, Surge, and Current Conditions Wilmington Canyon Integrated Design Project  

E-Print Network [OSTI]

1 Estimate of Extreme Wind, Wave, Surge, and Current Conditions for the Wilmington Canyon. In order to estimate loads during extreme wind and wave events, these events must be defined. The design. This paper does not treat wave spectral analysis, extreme wind shear, veer, clocking, turbulence intensity

Firestone, Jeremy

451

Conventional Hydropower Technologies, Wind And Water Power Program...  

Office of Environmental Management (EM)

Power for a Clean Energy Future (Fact Sheet), Wind and Water Power Program (WWPP) Hydropower Projects Environmental Impacts of Increased Hydroelectric Development at Existing Dams...

452

Business Continuity Project Project Summary: Develop Business Continuity Plans for all critical functional areas of  

E-Print Network [OSTI]

Business Continuity Project Project Summary: Develop Business Continuity Plans for all critical functional areas of the corporation. Project Requirements: Individual and Corporate plans that allow organization- · Integrate stand-by generator into plans- · Improve evacuation procedures- · Integrate other

453

Project Information Form Project Title The Development of Lifecycle Data for Hydrogen Fuel Production and  

E-Print Network [OSTI]

fuel providers to meet annual carbon intensity targets. These targets are based on carbon intensityProject Information Form Project Title The Development of Lifecycle Data for Hydrogen Fuel or organization) ARB $250,000 Total Project Cost $250,000 Agency ID or Contract Number DTRT13-G-UTC29 Start

California at Davis, University of

454

20% Wind Energy by 2030 - Chapter 2: Wind Turbine Technology...  

Office of Environmental Management (EM)

20% Wind Energy by 2030: Increasing Wind Energy's Contribution to U.S. Electricity Supply U.S. Offshore Wind Manufacturing and Supply Chain Development Wind Program Accomplishments...

455

2008 WIND TECHNOLOGIES MARKET REPORT  

SciTech Connect (OSTI)

The U.S. wind industry experienced a banner year in 2008, again surpassing even optimistic growth projections from years past. At the same time, the last year has been one of upheaval, with the global financial crisis impacting near-term growth prospects for the wind industry, and with federal policy changes enacted to push the industry towards continued aggressive expansion. This rapid pace of development has made it difficult to keep up with trends in the marketplace. Yet, the need for timely, objective information on the industry and its progress has never been greater. This report - the third of an ongoing annual series - attempts to meet this need by providing a detailed overview of developments and trends in the U.S. wind power market, with a particular focus on 2008. As with previous editions, this report begins with an overview of key wind power installation-related trends: trends in wind capacity growth in the U.S., how that growth compares to other countries and generation sources, the amount and percentage of wind in individual states and serving specific utilities, and the quantity of proposed wind capacity in various interconnection queues in the United States. Next, the report covers an array of wind industry trends, including developments in turbine manufacturer market share, manufacturing and supply-chain investments, wind turbine and wind project size, project financing developments, and trends among wind power developers, project owners, and power purchasers. The report then turns to a discussion of wind project price, cost, and performance trends. In so doing, it reviews the price of wind power in the United States, and how those prices compare to the cost of fossil-fueled generation, as represented by wholesale power prices. It also describes trends in installed wind project costs, wind turbine transaction prices, project performance, and operations and maintenance expenses. Next, the report examines other policy and market factors impacting the domestic wind power market, including federal and state policy drivers, transmission issues, and grid integration. Finally, the report concludes with a preview of possible near- to medium-term market developments. This version of the Annual Report updates data presented in the previous editions, while highlighting key trends and important new developments from 2008. New to this edition is an executive summary of the report and an expanded final section on near- to medium-term market development. The report concentrates on larger-scale wind applications, defined here as individual turbines or projects that exceed 50 kW in size. The U.S. wind power sector is multifaceted, however, and also includes smaller, customer-sited wind turbines used to power the needs of residences, farms, and businesses. Data on these applications are not the focus of this report, though a brief discussion on Distributed Wind Power is provided on page 4. Much of the data included in this report were compiled by Berkeley Lab, and come from a variety of sources, including the American Wind Energy Association (AWEA), the Energy Information Administration (EIA), and the Federal Energy Regulatory Commission (FERC). The Appendix provides a summary of the many data sources used in the report. Data on 2008 wind capacity additions in the United States are based on information provided by AWEA; some minor adjustments to those data may be expected. In other cases, the data shown here represent only a sample of actual wind projects installed in the United States; furthermore, the data vary in quality. As such, emphasis should be placed on overall trends, rather than on individual data points. Finally, each section of this document focuses on historical market information, with an emphasis on 2008; with the exception of the final section, the report does not seek to forecast future trends.

Wiser, Ryan H.; Bolinger, Mark; Barbose, G.; Mills, A.; Rosa, A.; Porter, K.; Fink, S.; Tegen, S.; Musial, W.; Oteri, F.; Heimiller, D.; Rberts, B.; Belyeu, K.; Stimmel, R.

2009-07-15T23:59:59.000Z

456

Landowners and Wind Energy Development | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data CenterFranconia, Virginia: Energy Resources Jump to:46 - 429Lacey, Washington:Lakeville, MN) Jump to:LamarJump to:LancoLandowners and Wind

457

Wind Development Found to Increase County-Level Personal Income |  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE:YearRound-Up from theDepartment of Dept.| WEATHERIZATION5 | EnergyMayDepartment of Energy Wind

458

EIS-0470: U.S. Department of Energy Loan Guarantee for the Cape Wind Energy Project on the Outer Continental Shelf off Massachusetts, Nantucket Sound  

Broader source: Energy.gov [DOE]

The DOE Loan Programs Office is proposing to offer a loan guarantee to Cape Wind Associates, LLC for the construction and start-up of the Cape Wind Energy Project in Nantucket Sound, offshore of Massachusetts. The proposed Cape Wind Energy Project would consist of up to 130, 3.6-MW turbine generators, in an area of roughly 25-square miles, and would include 12.5 miles of 115-kilovolt submarine transmission cable and an electric service platform. To inform DOE's decision regarding a loan guarantee, DOE adopted the Department of the Interiors 2009 Final Cape Wind Energy Project EIS, in combination with two Cape Wind Environmental Assessments dated May 2010 and April 2011 (per 40 CFR 1506.4), as a DOE Final EIS (DOE/EIS-0470). The adequacy of the Department of the Interior final EIS adopted by DOE is the subject of a judicial action. This project is inactive.

459

The Great Plains Wind Power Test Facility  

SciTech Connect (OSTI)

This multi-year, multi-faceted project was focused on the continued development of a nationally-recognized facility for the testing, characterization, and improvement of grid-connected wind turbines, integrated wind-water desalination systems, and related educational and outreach topics. The project involved numerous faculty and graduate students from various engineering departments, as well as others from the departments of Geosciences (in particular the Atmospheric Science Group) and Economics. It was organized through the National Wind Institute (NWI), which serves as an intellectual hub for interdisciplinary and transdisciplinary research, commercialization and education related to wind science, wind energy, wind engineering and wind hazard mitigation at Texas Tech University (TTU). Largely executed by an academic based team, the project resulted in approximately 38 peer-reviewed publications, 99 conference presentations, the development/expansion of several experimental facilities, and two provisional patents.

Schroeder, John

2014-01-31T23:59:59.000Z

460

Environmental impact assessment of the Dulang oilfield development project  

SciTech Connect (OSTI)

The authors discuss an environmental impact assessment (EIA) of the Dulang Oilfield Development Project, conducted to determine whether the project could proceed in a safe and environmentally acceptable manner. This is the first EIA for an offshore oilfield in Malaysian waters, and was conducted in anticipation of the Environmental Quality (Prescribed Activities) (Environmental Impact Assessment Order(1987)) which requires an EIA to be conducted for major oil and gas field development projects.

Hasan, M.N. (U. Kebangsaan Malaysia (MY)); (Ismail, M.Y. (Petronas Cangali Sdn. Bhd. (MY)))

1988-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "wind project developer" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


461

Energy Research and Development Division FINAL PROJECT REPORT  

E-Print Network [OSTI]

Energy Research and Development Division FINAL PROJECT REPORT DEVELOPMENT OF STEAM5002013092AP Prepared for: California Energy Commission Prepared by: University of California #12 Energy Commission David Effross Contract Manager Linda Spiegel Office Manager Energy Generation Research

462

Energy Research and Development Division FINAL PROJECT REPORT  

E-Print Network [OSTI]

Energy Research and Development Division FINAL PROJECT REPORT Developing5002013109 Prepared for: California Energy Commission Prepared by: Growpro Inc #12; Prepared by Waimauku, New Zealand Contract Number: PIR-07-001 Prepared for: California Energy Commission Abolghasem

463

Energy Research and Development Division FINAL PROJECT REPORT  

E-Print Network [OSTI]

Energy Research and Development Division FINAL PROJECT REPORT DEVELOPMENT Energy Commission Prepared by: Lawrence Berkeley National Laboratory #12; PREPARED BY: Primary-09-010 Prepared for: California Energy Commission Matthew Fung Contract Manager Virginia Lew Office Manager Energy

464

Access Framework: Model Text (November 2011): An Act to Establish a Framework for Development of Offshore Wind Power  

SciTech Connect (OSTI)

The model offshore wind power legislation focused on two aspects: compensation for use of ocean space and environmental assessment. In particular, the model legislation recommends the adoption of a rent and royalty scheme that is premised on high rent and low royalties in order to stimulate qualified bids from developers who are motivated to begin production as early as possible and to discourage sham bidding. The model legislation also includes a provision that sets royalties at a lower rate in the early years of project operation, and that provides states with the discretion to waive or defer rent and/or royalties for a period of time to meet the goals and objectives of energy independence, job creation, reduced emissions of conventional pollutants and greenhouse gases and increased state requirements for electricity from renewable sources. The environmental impact assessment (EIA) is structured to provide a systematic and interdisciplinary evaluation of the potential positive and negative life-cycle effects of a proposed offshore wind project on the physical, biological, cultural and socio-economic attributes of the project.

Jeremy Firestone; Dawn Kurtz Crompton

2011-10-22T23:59:59.000Z

465

Distributed Wind Energy in Idaho  

SciTech Connect (OSTI)

Project Objective: This project is a research and development program aimed at furthering distributed wind technology. In particular, this project addresses some of the barriers to distributed wind energy utilization in Idaho. Background: At its core, the technological challenge inherent in Wind Energy is the transformation of a highly variable form of energy to one which is compatible with the commercial power grid or another useful application. A major economic barrier to the success of distributed wind technology is the relatively high capital investment (and related long payback periods) associated with wind turbines. This project will carry out fundamental research and technology development to address both the technological and economic barriers. â?¢ Active drive train control holds the potential to improve the overall efficiency of a turbine system by allowing variable speed turbine operation while ensuring a tight control of generator shaft speed, thus greatly simplifying power conditioning. â?¢ Recent blade aerodynamic advancements have been focused on large, utility-scale wind turbine generators (WTGs) as opposed to smaller WTGs designed for distributed generation. Because of Reynolds Number considerations, blade designs do not scale well. Blades which are aerodynamically optimized for distributed-scale WTGs can potentially reduce the cost of electricity by increasing shaft-torque in a given wind speed. â?¢ Grid-connected electric generators typically operate at a fixed speed. If a generator were able to economically operate at multiple speeds, it could potentially convert more of the windâ??s energy to electricity, thus reducing the cost of electricity. This research directly supports the stated goal of the Wind and Hydropower Technologies Program for Distributed Wind Energy Technology: By 2007, reduce the cost of electricity from distributed wind systems to 10 to 15 cents/kWh in Class 3 wind resources, the same level that is currently achievable in Class 5 winds.

Gardner, John; Ferguson, James; Ahmed-Zaid, Said; Johnson, Kathryn; Haynes, Todd; Bennett, Keith

2009-01-31T23:59:59.000Z

466

Alternative Energy Provides a Second Wind  

E-Print Network [OSTI]

This report provides information for communities and other interested stakeholders about the development of wind energy at former mining sites. Local governments, residents and organizations may be interested in creating renewable energy resources and new economic opportunities at these sites. The report describes the mechanics of wind energy, details the various wind technology options, explores wind energys environmental, economic and social impacts at mining sites, and provides case studies and next steps to help get projects in place.

unknown authors

467

Altered structural development and accelerated succession from intermediate-scale wind disturbance in Quercus stands on the  

E-Print Network [OSTI]

. Logistic regression revealed an increasing probability of mortality during wind disturbance with increasingAltered structural development and accelerated succession from intermediate-scale wind disturbance Structure Succession Wind a b s t r a c t Natural disturbances play important roles in shaping the structure

Hart, Justin

468

Wind-Power Development in Germany and the U.S.: Multiple Streams, Advocacy Coalitions, and Turning Points  

E-Print Network [OSTI]

Wind-Power Development in Germany and the U.S.: Multiple Streams, Advocacy Coalitions, and Turning). Of the various forms of renewable energy, wind-generated electricity has a unique set of advantages, which make especially large. Wind power produces relatively low levels of environmental damage over its life cycle (like

Qiu, Weigang

469

Applications of Systems Engineering to the Research, Design, and Development of Wind Energy Systems  

SciTech Connect (OSTI)

This paper surveys the landscape of systems engineering methods and current wind modeling capabilities to assess the potential for development of a systems engineering to wind energy research, design, and development. Wind energy has evolved from a small industry in a few countries to a large international industry involving major organizations in the manufacturing, development, and utility sectors. Along with this growth, significant technology innovation has led to larger turbines with lower associated costs of energy and ever more complex designs for all major subsystems - from the rotor, hub, and tower to the drivetrain, electronics, and controls. However, as large-scale deployment of the technology continues and its contribution to electricity generation becomes more prominent, so have the expectations of the technology in terms of performance and cost. For the industry to become a sustainable source of electricity, innovation in wind energy technology must continue to improve performance and lower the cost of energy while supporting seamless integration of wind generation into the electric grid without significant negative impacts on local communities and environments. At the same time, issues associated with wind energy research, design, and development are noticeably increasing in complexity. The industry would benefit from an integrated approach that simultaneously addresses turbine design, plant design and development, grid interaction and operation, and mitigation of adverse community and environmental impacts. These activities must be integrated in order to meet this diverse set of goals while recognizing trade-offs that exist between them. While potential exists today to integrate across different domains within the wind energy system design process, organizational barriers such as different institutional objectives and the importance of proprietary information have previously limited a system level approach to wind energy research, design, and development. To address these challenges, NREL has embarked on an initiative to evaluate how methods of systems engineering can be applied to the research, design and development of wind energy systems. Systems engineering is a field within engineering with a long history of research and application to complex technical systems in domains such as aerospace, automotive, and naval architecture. As such, the field holds potential for addressing critical issues that face the wind industry today. This paper represents a first step for understanding this potential through a review of systems engineering methods as applied to related technical systems. It illustrates how this might inform a Wind Energy Systems Engineering (WESE) approach to the research, design, and development needs for the future of the industry. Section 1 provides a brief overview of systems engineering and wind as a complex system. Section 2 describes these system engineering methods in detail. Section 3 provides an overview of different types of design tools for wind energy with emphasis on NREL tools. Finally, Section 4 provides an overview of the role and importance of software architecture and computing to the use of systems engineering methods and the future development of any WESE programs. Section 5 provides a roadmap of potential research integrating systems engineering research methodologies and wind energy design tools for a WESE framework.

Dykes, K.; Meadows, R.; Felker, F.; Graf, P.; Hand, M.; Lunacek, M.; Michalakes, J.; Moriarty, P.; Musial, W.; Veers, P.

2011-12-01T23:59:59.000Z

470

Wind-To-Hydrogen Project: Operational Experience, Performance Testing, and Systems Integration  

SciTech Connect (OSTI)

The Wind2H2 system is fully functional and continues to gather performance data. In this report, specifications of the Wind2H2 equipment (electrolyzers, compressor, hydrogen storage tanks, and the hydrogen fueled generator) are summarized. System operational experience and lessons learned are discussed. Valuable operational experience is shared through running, testing, daily operations, and troubleshooting the Wind2H2 system and equipment errors are being logged to help evaluate the reliability of the system.

Harrison, K. W.; Martin, G. D.; Ramsden, T. G.; Kramer, W. E.; Novachek, F. J.

2009-03-01T23:59:59.000Z

471

Eastern Wind Integration and Transmission Study: Executive Summary and Project Overview (Revised)  

SciTech Connect (OSTI)

EWITS was designed to answer questions about technical issues related to a 20% wind energy scenario for electric demand in the Eastern Interconnection.

EnerNex Corporation; The Midwest ISO; Ventyx

2011-02-01T23:59:59.000Z

472

Wind Integration Datasets from the National Renewable Energy Laboratory (NREL)  

DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

The Wind Integration Datasets provide time-series wind data for 2004, 2005, and 2006. They are intended to be used by energy professionals such as transmission planners, utility planners, project developers, and university researchers, helping them to perform comparisons of sites and estimate power production from hypothetical wind plants. NREL cautions that the information from modeled data may not match wind resource information shown on NREL;s state wind maps as they were created for different purposes and using different methodologies.

473

EA-1939: Reese Technology Center Wind and Battery Integration Project, Lubbock County, TX  

Broader source: Energy.gov [DOE]

This EA will evaluate the potential environmental impacts of a proposal by the Center for Commercialization of Electric Technologies to demonstrate battery technology integration with wind generated electricity by deploying and evaluating utility-scale lithium battery technology to improve grid performance and thereby aid in the integration of wind generation into the local electricity supply.

474

Avian interactions with wind energy facilities: A summary  

SciTech Connect (OSTI)

Currently, wind energy plants have been constructed or plans are being developed for projects in at least 13 states within the United States, also Canada, Sweden, Denmark, Germany, Netherlands, United Kingdom, Spain and Scotland (EPRI 1994, Winkelman 1994). Approximately, 16,000 wind turbines currently operate in California, making this area the largest concentration of wind energy development in the world. Notwithstanding its positive social values, wind energy has been shown to cause avian mortalities. Since the 1970`s many studies have been done to understand the interaction between wind energy development and birds. However our knowledge and understanding of bird interactions with wind energy development is incomplete.

Colson, E.W. [Colson & Associates, Alamo, CA (United States)

1995-12-31T23:59:59.000Z

475

Texas Tech University is poised to take a leadership role in the development of wind power systems through research, economic development, job creation and education.  

E-Print Network [OSTI]

of wind power systems through research, economic development, job creation and education. Congressionally. The money will be used to create applications that will integrate wind energy into municipal power grids the variable power supplied by wind with water pumping and desalination facilities. Community colleges

Gelfond, Michael

476

Energy Research and Development Division FINAL PROJECT REPORT  

E-Print Network [OSTI]

Energy Research and Development Division FINAL PROJECT REPORT Integrated CHP Using UltraLow NOx Supplemental Firing MARCH 2013 CEC5002013043 Prepared for: California Energy://www.gastechnology.org Contract Number: PNG-07-006 Prepared for: California Energy Commission Gail Wiggett Project Manager Linda

477

"The cream on the pudding..." : An analysis of the Clean Development Mechanism in the Indian wind power sector.  

E-Print Network [OSTI]

??The thesis examines the effects of the Clean Development Mechanism (CDM), a flexible mechanism under the Kyoto Protocol, on the Indian wind power sector. Indian (more)

Turkanovic, Zlata

2010-01-01T23:59:59.000Z

478

NREL Wind Turbine Blade Structural Testing of the Modular Wind Energy MW45 Blade: Cooperative Research and Development Final Report, CRADA Number CRD-09-354  

SciTech Connect (OSTI)

This CRADA was a purely funds-in CRADA with Modular Wind Energy (MWE). MWE had a need to perform full-scale testing of a 45-m wind turbine blade. NREL/NWTC provided the capabilities, facilities, and equipment to test this large-scale MWE wind turbine blade. Full-scale testing is required to demonstrate the ability of the wind turbine blade to withstand static design load cases and demonstrate the fatigue durability. Structural testing is also necessary to meet international blade testing certification requirements. Through this CRADA, MWE would obtain test results necessary for product development and certification, and NREL would benefit by working with an industrial partner to better understand the unique test requirements for wind turbine blades with advanced structural designs.

Hughes, S.

2012-05-01T23:59:59.000Z

479

Aquantis Ocean Current Turbine Development Project Report  

SciTech Connect (OSTI)

The Aquantis Current Plane (C-Plane) technology developed by Dehlsen Associates, LLC (DA) and Aquantis, Inc. is an ocean current turbine designed to extract kinetic energy from ocean currents. The technology is capable of achieving competitively priced base-load, continuous, and reliable power generation from a source of renewable energy not before possible in this scale or form.

Fleming, Alex J.

2014-08-23T23:59:59.000Z

480

Washoe Wisk'e'em Project  

SciTech Connect (OSTI)

The Washoe Tribe Wiskem Project (Project) was a Congressionally Directed Project identified for funding in the Energy and Water Development and Related Agencies Appropriations Act, 2010. The Project focused on installing up to four small vertical wind turbines at designated locations on Tribal lands to offset energy costs for the Tribe. The Washoe Tribe will use and analyze data collected from the wind turbines to better understand the wind resource.

Tara Hess-McGeown

2012-03-26T23:59:59.000Z

Note: This page contains sample records for the topic "wind project developer" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


481

Energy Research and Development Division FINAL PROJECT REPORT  

E-Print Network [OSTI]

Energy Research and Development Division FINAL PROJECT REPORT Demonstration: California Energy Commission Prepared by: Electric Power Research Institute #12; Prepared by: Primary: California Energy Commission Jamie Patterson Contract Manager Fernando Pina Office Manager Energy Efficiency

482

Energy Research and Development Division FINAL PROJECT REPORT  

E-Print Network [OSTI]

Energy Research and Development Division FINAL PROJECT REPORT ASSESSMENT OF LARVAL Coastal Boundary Layer Flow SEPTEMBER 2007 CEC5002013049 Prepared for: California Energy Commission Energy Commission Joe O'Hagan Contract Manager Linda Spiegel Office Manager Energy Generation Research

483

Energy Research and Development Division FINAL PROJECT REPORT  

E-Print Network [OSTI]

Energy Research and Development Division FINAL PROJECT REPORT ENERGYEFFICIENT Energy Commission Prepared by: Lawrence Berkeley National Laboratory #12; PREPARED BY: Primary.lbl.gov Contract Number: 500-06-053 Prepared for: California Energy Commission Paul Roggensack Contract Manager

484

Energy Research and Development Division DRAFT PROJECT REPORT  

E-Print Network [OSTI]

Energy Research and Development Division DRAFT PROJECT REPORT NATURAL GAS ENERGY EFFICIENCY IN BUILDINGS Roadmap for Future Research Prepared for: California Energy Commission Prepared by: DNV KEMA Energy & Sustainability MARCH 2014 CEC5002014036D #12; PREPARED BY

485

Energy Research and Development Division FINAL PROJECT REPORT  

E-Print Network [OSTI]

Energy Research and Development Division FINAL PROJECT REPORT SAIC SOLAR DISH CONCENTRATOR WITH STIRLING ENGINE DECEMBER 2007 CEC5002013068 Prepared for: California Energy Commission: 500-00-034-15 Prepared for: California Energy Commission Hassan Mohammed Contract Manager Linda

486

Energy Research and Development Division FINAL PROJECT REPORT  

E-Print Network [OSTI]

Energy Research and Development Division FINAL PROJECT REPORT HYBRID SOLAR LIGHTING5002013067 Prepared for: California Energy Commission Prepared by: Oakridge National Laboratory Insert-04-034-18 Prepared for: California Energy Commission Hassan Mohammed Contract Manager Linda Speigel Office Manager

487

Energy Research and Development Division FINAL PROJECT REPORT  

E-Print Network [OSTI]

Energy Research and Development Division FINAL PROJECT REPORT AUTOMATED ROOFTOP CEC5002013042 Prepared for: California Energy Commission Prepared by: Lawrence Berkeley National Energy Commission Brad Meister Contract Manager Virginia Lew Office Manager Energy Efficiency Research

488

Energy Research and Development Division FINAL PROJECT REPORT  

E-Print Network [OSTI]

Energy Research and Development Division FINAL PROJECT REPORT A SEASONAL DECEMBER 2011 CEC5002013035 Prepared for: California Energy Commission Prepared by: Lawrence Berkeley National Laboratory Berkeley, CA 96270 Contract Number: 500-02-004 Prepared for: California Energy

489

Energy Research and Development Division FINAL PROJECT REPORT  

E-Print Network [OSTI]

Energy Research and Development Division FINAL PROJECT REPORT AN ASSESSMENT: California Energy Commission Prepared by: University of California, Davis #12; PREPARED BY: Primary Number: 500-01-016 Prepared for: California Energy Commission Prab Sethi Contract Manager Linda Spiegel

490

Energy Research and Development Division FINAL PROJECT REPORT  

E-Print Network [OSTI]

Energy Research and Development Division FINAL PROJECT REPORT ENERGYEFFICIENT HIGHTECH BUILDINGS DECEMBER 2008 CEC5002013062 Prepared for: California Energy Commission Prepared by-06-053 Prepared for: California Energy Commission Paul Roggensack Contract Manager Virginia Lew Office Manager

491

Energy Research and Development Division FINAL PROJECT REPORT  

E-Print Network [OSTI]

and Dean Fennell at the Energy Information Administration; Larry Hunsaker, Marc Vayssieres, and Webster Energy Research and Development Division FINAL PROJECT REPORT CALIFORNIA ENERGY BALANCE UPDATE AND DECOMPOSITION ANALYSIS FOR THE INDUSTRY AND BUILDING SECTORS APRIL 2013

492

Energy Research and Development Division FINAL PROJECT REPORT  

E-Print Network [OSTI]

are either present or past employees of Solazyme, Inc. #12;2 PREFACE The California Energy Commission Energy Research and Development Division FINAL PROJECT REPORT PRODUCTION OF SOLADIESEL RD® FROM CELLULOSIC FEEDSTOCKS JULY 2011 CEC5002013019 Prepared for: California Energy

493

Energy Research and Development Division FINAL PROJECT REPORT  

E-Print Network [OSTI]

Energy Research and Development Division FINAL PROJECT REPORT LIGHTING CALIFORNIA'S FUTURE RetrofitIntegrated Classroom Lighting System (RICLS) Prepared for: California Energy Commission Managed by: Architectural Energy Corporation Prepared by: Finelite Inc. FEBRUARY 2013 CEC

494

Energy Research and Development Division FINAL PROJECT REPORT  

E-Print Network [OSTI]

Energy Research and Development Division FINAL PROJECT REPORT GREENGUIDE FOR SUSTAINABLE ENERGY EFFICIENT REFRIGERATED STORAGE FACILITIES MARCH 2013 CEC-500-2013-145 Prepared for: California Energy for: California Energy Commission Anish Gautam Contract Manager Virginia Lew Office Manager Energy

495

Energy Research and Development Division FINAL PROJECT REPORT  

E-Print Network [OSTI]

Energy Research and Development Division FINAL PROJECT REPORT PRELIMINARY ESTIMATES5002013051 Prepared for: California Energy Commission Prepared by: Lawrence Berkeley National Laboratory: 500-99-013 Prepared for: California Energy Commission Steve Ghadiri Contract Manager Fernando Piña

496

Energy Research and Development Division FINAL PROJECT REPORT  

E-Print Network [OSTI]

Energy Research and Development Division FINAL PROJECT REPORT EMISSIONS REDUCTIONS FROM RENEWABLE ENERGY AND ENERGY EFFICIENCY IN CALIFORNIA AIR QUALITY MANAGEMENT DISTRICTS DECEMBER 2011 CEC5002013047 Prepared for: California Energy Commission Prepared by: Synapse Energy

497

Energy Research and Development Division FINAL PROJECT REPORT  

E-Print Network [OSTI]

Energy Research and Development Division FINAL PROJECT REPORT ENERGY for: California Energy Commission Prepared by: San Diego State Research Foundation #12: California Energy Commission Raquel Kravitz Program Manager Fernando Pina Office Manager Energy Systems

498

Energy Research and Development Division FINAL PROJECT REPORT  

E-Print Network [OSTI]

Energy Research and Development Division FINAL PROJECT REPORT PLANNING ALTERNATIVE5002013021 Prepared for: California Energy Commission Prepared by: Facet Decision Systems, Inc. #12-08-030 Prepared for: California Energy Commission Linda Spiegel Contract Manager Linda Spiegel Office Manager

499

Energy Research and Development Division FINAL PROJECT REPORT  

E-Print Network [OSTI]

Energy Research and Development Division FINAL PROJECT REPORT Technology MARCH 2013 CEC5002012077 Prepared for: California Energy Commission Prepared by: Heschong Mahone-03-026 Prepared for: California Energy Commission Kristy Chew Contract Manager Fernando Pina Office Manager Energy

500

Energy Research and Development Division FINAL PROJECT REPORT  

E-Print Network [OSTI]

Energy Research and Development Division FINAL PROJECT REPORT COMMERCIALIZING ZERO ENERGY NEW HOME COMMUNITIES Appendices MARCH 2010 CEC5002014007AP Prepared for: California Energy SunPower Corporation Contract Number: 500-04-022 Prepared for: California Energy Commission Golam