National Library of Energy BETA

Sample records for wind project commercial

  1. Adams Wind Project | Open Energy Information

    Open Energy Info (EERE)

    Wind Project Jump to: navigation, search Name Adams Wind Project Facility Adams Wind Project Sector Wind energy Facility Type Commercial Scale Wind Facility Status In Service...

  2. Wildcat 1 Wind Project | Open Energy Information

    Open Energy Info (EERE)

    Wildcat 1 Wind Project Jump to: navigation, search Name Wildcat 1 Wind Project Facility Wildcat 1 Wind Project Sector Wind energy Facility Type Commercial Scale Wind Facility...

  3. Springview II Wind Project | Open Energy Information

    Open Energy Info (EERE)

    Springview II Wind Project Jump to: navigation, search Name Springview II Wind Project Facility Springview II Wind Project Sector Wind energy Facility Type Commercial Scale Wind...

  4. Shiloh Wind Power Project | Open Energy Information

    Open Energy Info (EERE)

    Wind Power Project Jump to: navigation, search Name Shiloh Wind Power Project Facility Shiloh Wind Power Project Sector Wind energy Facility Type Commercial Scale Wind Facility...

  5. Fenton Wind Power Project | Open Energy Information

    Open Energy Info (EERE)

    Wind Power Project Jump to: navigation, search Name Fenton Wind Power Project Facility Fenton Wind Power Project Sector Wind energy Facility Type Commercial Scale Wind Facility...

  6. Madison Wind Power Project | Open Energy Information

    Open Energy Info (EERE)

    Wind Power Project Jump to: navigation, search Name Madison Wind Power Project Facility Madison Wind Power Project Sector Wind energy Facility Type Commercial Scale Wind Facility...

  7. Somerset Wind Power Project | Open Energy Information

    Open Energy Info (EERE)

    Wind Power Project Jump to: navigation, search Name Somerset Wind Power Project Facility Somerset Wind Power Project Sector Wind energy Facility Type Commercial Scale Wind Facility...

  8. Moraine Wind Power Project | Open Energy Information

    Open Energy Info (EERE)

    Wind Power Project Jump to: navigation, search Name Moraine Wind Power Project Facility Moraine Wind Power Project Sector Wind energy Facility Type Commercial Scale Wind Facility...

  9. Fenner Wind Power Project | Open Energy Information

    Open Energy Info (EERE)

    Wind Power Project Jump to: navigation, search Name Fenner Wind Power Project Facility Fenner Wind Power Project Sector Wind energy Facility Type Commercial Scale Wind Facility...

  10. Don Sneve Wind Project | Open Energy Information

    Open Energy Info (EERE)

    Sneve Wind Project Jump to: navigation, search Name Don Sneve Wind Project Facility Don Sneve Wind Project Sector Wind energy Facility Type Commercial Scale Wind Facility Status In...

  11. Dunlap Wind Energy Project | Open Energy Information

    Open Energy Info (EERE)

    Dunlap Wind Energy Project Jump to: navigation, search Name Dunlap Wind Energy Project Facility Dunlap Wind Energy Project Sector Wind energy Facility Type Commercial Scale Wind...

  12. Condon Wind Project | Open Energy Information

    Open Energy Info (EERE)

    Condon Wind Project Jump to: navigation, search Name Condon Wind Project Facility Condon Wind Project Sector Wind energy Facility Type Commercial Scale Wind Facility Status In...

  13. Highmore Wind Energy Project | Open Energy Information

    Open Energy Info (EERE)

    Highmore Wind Energy Project Jump to: navigation, search Name Highmore Wind Energy Project Facility Highmore Wind Energy Project Sector Wind energy Facility Type Commercial Scale...

  14. Stateline Wind Energy Project | Open Energy Information

    Open Energy Info (EERE)

    Energy Project Jump to: navigation, search Name Stateline Wind Energy Project Facility Stateline Wind Energy Project Sector Wind energy Facility Type Commercial Scale Wind Facility...

  15. Kotzebue Wind Project II | Open Energy Information

    Open Energy Info (EERE)

    II Jump to: navigation, search Name Kotzebue Wind Project II Facility Kotzebue Wind Project Sector Wind energy Facility Type Commercial Scale Wind Facility Status In Service Owner...

  16. Tatanka Wind Project II | Open Energy Information

    Open Energy Info (EERE)

    II Jump to: navigation, search Name Tatanka Wind Project II Facility Tatanka Wind Project Sector Wind energy Facility Type Commercial Scale Wind Facility Status In Service Owner...

  17. Highland Wind Project | Open Energy Information

    Open Energy Info (EERE)

    Jump to: navigation, search Name Highland Wind Project Facility Highland Wind Project Sector Wind energy Facility Type Commercial Scale Wind Facility Status In Service...

  18. Chamberlain Wind Project | Open Energy Information

    Open Energy Info (EERE)

    to: navigation, search Name Chamberlain Wind Project Facility Chamberlain Wind Project Sector Wind energy Facility Type Commercial Scale Wind Facility Status In Service Owner...

  19. Wild Horse Wind Power Project | Open Energy Information

    Open Energy Info (EERE)

    Wind Power Project Jump to: navigation, search Name Wild Horse Wind Power Project Facility Wild Horse Wind Power Project Sector Wind energy Facility Type Commercial Scale Wind...

  20. Mill Run Wind Power Project | Open Energy Information

    Open Energy Info (EERE)

    Run Wind Power Project Jump to: navigation, search Name Mill Run Wind Power Project Facility Mill Run Wind Power Project Sector Wind energy Facility Type Commercial Scale Wind...

  1. Wapsipinicon Wind Project | Open Energy Information

    Open Energy Info (EERE)

    navigation, search Name Wapsipinicon Wind Project Facility Wapsipinicon Wind Sector Wind energy Facility Type Commercial Scale Wind Facility Status In Service Owner EnXco...

  2. White Creek Wind Power Project | Open Energy Information

    Open Energy Info (EERE)

    Creek Wind Power Project Jump to: navigation, search Name White Creek Wind Power Project Facility White Creek Wind Power Project Sector Wind energy Facility Type Commercial Scale...

  3. Buffalo Ridge II Wind Power Project | Open Energy Information

    Open Energy Info (EERE)

    II Wind Power Project Jump to: navigation, search Name Buffalo Ridge II Wind Power Project Facility Buffalo Ridge II Wind Power Project Sector Wind energy Facility Type Commercial...

  4. Condon Wind Project phase II | Open Energy Information

    Open Energy Info (EERE)

    Project phase II Jump to: navigation, search Name Condon Wind Project phase II Facility Condon Wind Project phase II Sector Wind energy Facility Type Commercial Scale Wind Facility...

  5. Omaha Wind Project | Open Energy Information

    Open Energy Info (EERE)

    Wind Project Sector Wind energy Facility Type Commercial Scale Wind Facility Status In Service Owner Omaha Public Power District Developer Omaha Public Power District Energy...

  6. Kotzebue Wind Project Phase II & III | Open Energy Information

    Open Energy Info (EERE)

    II & III Jump to: navigation, search Name Kotzebue Wind Project Phase II & III Facility Kotzebue Wind Project Phase II & III Sector Wind energy Facility Type Commercial Scale Wind...

  7. Solano Wind Project- phase II | Open Energy Information

    Open Energy Info (EERE)

    search Name Solano Wind Project- phase II Facility Solano Wind Project- phase II Sector Wind energy Facility Type Commercial Scale Wind Facility Status In Service Owner...

  8. Lamar Wind Energy Project II | Open Energy Information

    Open Energy Info (EERE)

    II Jump to: navigation, search Name Lamar Wind Energy Project II Facility Lamar Wind Energy Project Sector Wind energy Facility Type Commercial Scale Wind Facility Status In...

  9. Centennial Wind Energy Project (2006) | Open Energy Information

    Open Energy Info (EERE)

    6) Jump to: navigation, search Name Centennial Wind Energy Project (2006) Facility Centennial Wind Energy Project (2006) Sector Wind energy Facility Type Commercial Scale Wind...

  10. Lamar Wind Energy Project I | Open Energy Information

    Open Energy Info (EERE)

    I Jump to: navigation, search Name Lamar Wind Energy Project I Facility Lamar Wind Energy Project Sector Wind energy Facility Type Commercial Scale Wind Facility Status In Service...

  11. Lamar Wind Energy Project III | Open Energy Information

    Open Energy Info (EERE)

    III Jump to: navigation, search Name Lamar Wind Energy Project III Facility Lamar Wind Energy Project Sector Wind energy Facility Type Commercial Scale Wind Facility Status In...

  12. Centennial Wind Energy Project (2007) | Open Energy Information

    Open Energy Info (EERE)

    7) Jump to: navigation, search Name Centennial Wind Energy Project (2007) Facility Centennial Wind Energy Project (2007) Sector Wind energy Facility Type Commercial Scale Wind...

  13. Transmission Commercial Project Integration

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Projects Expand Projects Skip navigation links Ancillary and Control Area Services (ACS) Practices Forum Attachment K Commercial Business Process Improvement (CBPI) Customer...

  14. Colorado Green Wind Power Project | Open Energy Information

    Open Energy Info (EERE)

    Jump to: navigation, search Name Colorado Green Wind Power Project Facility Colorado Green Sector Wind energy Facility Type Commercial Scale Wind Facility Status In Service...

  15. Environmental Wind Projects

    Broader source: Energy.gov [DOE]

    This report covers the Wind and Water Power Technologies Office’s environmental wind projects from fiscal years 2006 to 2015.

  16. Wyoming Wind Power Project (generation/wind)

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Wind Power > Generation Hydro Power Wind Power Monthly GSP BPA White Book Dry Year Tools Firstgov Wyoming Wind Power Project (Foote Creek Rim I and II) Thumbnail image of wind...

  17. Wind Energy Projects | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Wind Energy Projects Wind Energy Projects Wind Energy Projects Wind Energy Projects Wind Energy Projects Wind Energy Projects Wind Energy Projects Wind Energy Projects Wind Energy Projects Wind Energy Projects Wind Energy Projects Wind Energy Projects WIND ENERGY 4 PROJECTS in 5 LOCATIONS 1,025 MW GENERATION CAPACITY 2,190,000 MWh PROJECTED ANNUAL GENERATION * 1,225,000 METRIC TONS OF CO2 EMISSIONS PREVENTED ANNUALLY ALL FIGURES AS OF MARCH 2015 * Calculated using the project's and NREL

  18. Palmetto Wind Research Project | Open Energy Information

    Open Energy Info (EERE)

    Wind Research Project Jump to: navigation, search Name Palmetto Wind Research Project Facility Palmetto Wind Research Project Sector Wind energy Facility Type Offshore Wind...

  19. Howard Wind Energy Project | Open Energy Information

    Open Energy Info (EERE)

    Wind Energy Project Jump to: navigation, search Name Howard Wind Energy Project Facility Howard Wind Energy Project Sector Wind energy Facility Type Community Wind Facility Status...

  20. Wales Wind Energy Project | Open Energy Information

    Open Energy Info (EERE)

    Wales Wind Energy Project Jump to: navigation, search Name Wales Wind Energy Project Facility Wales Wind Energy Project Sector Wind energy Facility Type Small Scale Wind Facility...

  1. Bayonne Wind Energy Project | Open Energy Information

    Open Energy Info (EERE)

    Bayonne Wind Energy Project Jump to: navigation, search Name Bayonne Wind Energy Project Facility Bayonne Wind Energy Project Sector Wind energy Facility Type Community Wind...

  2. Gary Wind Energy Project | Open Energy Information

    Open Energy Info (EERE)

    Gary Wind Energy Project Jump to: navigation, search Name Gary Wind Energy Project Facility Gary Wind Energy Project Sector Wind energy Facility Type Small Scale Wind Facility...

  3. Cape Wind Project | Open Energy Information

    Open Energy Info (EERE)

    Project Jump to: navigation, search Name Cape Wind Project Facility Cape Wind Sector Wind energy Facility Type Offshore wind Facility Status Proposed Owner Cape Wind Developer Cape...

  4. INL Wind Farm Project Description Document

    SciTech Connect (OSTI)

    Gary Siefert

    2009-07-01

    The INL Wind Farm project proposes to install a 20 MW to 40 MW wind farm on government property, consisting of approximately ten to twenty full-sized (80-meter hub height) towers with 2 MW turbines, and access roads. This includes identifying the optimal turbine locations, building access roads, and pouring the tower foundations in preparation for turbine installation. The project successfully identified a location on INL lands with commercially viable wind resources (i.e., greater than 11 mph sustained winds) for a 20 to 40 MW wind farm. Additionally, the proposed Wind Farm was evaluated against other General Plant Projects, General Purpose Capital Equipment projects, and Line Item Construction Projects at the INL to show the relative importance of the proposed Wind Farm project.

  5. WINDExchange: Wind for Schools Project

    Wind Powering America (EERE)

    Participant Roles & Responsibilities Affiliate Projects Pilot Project Results Project Funding School Project Locations Education & Training Programs Curricula & Teaching Materials Resources Wind for Schools Project The U.S. Department of Energy funds the Wind for Schools project, which helps develop a future wind energy workforce by engaging students at higher education institutions to join Wind Application Centers and serve as project consultants for small wind turbine

  6. Hardscrabble Wind Power Project | Open Energy Information

    Open Energy Info (EERE)

    Hardscrabble Wind Power Project Jump to: navigation, search Name Hardscrabble Wind Power Project Facility Hardscrabble Wind Power Project Sector Wind energy Facility Type...

  7. Conception Wind Project | Open Energy Information

    Open Energy Info (EERE)

    Wind energy Facility Type Commercial Scale Wind Facility Status In Service Owner Wind Capital GroupJohn Deere Capital Developer Wind Capital GroupJohn Deere Capital Energy...

  8. Kotzebue Wind Project III | Open Energy Information

    Open Energy Info (EERE)

    Kotzebue Wind Project III Facility Kotzebue Wind Project Sector Wind energy Facility Type Small Scale Wind Facility Status In Service Owner Kotzebue Elec. Assoc. Developer Kotzebue...

  9. CAES Wind Project | Open Energy Information

    Open Energy Info (EERE)

    Wind Project Jump to: navigation, search Name CAES Wind Project Facility CAES Sector Wind energy Facility Type Community Wind Location ID Coordinates 43.522243, -112.053963...

  10. Workforce Development Wind Projects | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Workforce Development Wind Projects Workforce Development Wind Projects This report covers the Wind and Water Power Technologies Office's workforce development wind projects from fiscal years 2008 to 2014. PDF icon Workforce Development Wind Projects.pdf More Documents & Publications Testing, Manufacturing, and Component Development Projects Wind Integration, Transmission, and Resource Assessment and Characterization Projects Environmental Wind Projects

  11. Coastal Ohio Wind Project

    SciTech Connect (OSTI)

    Gorsevski, Peter; Afjeh, Abdollah; Jamali, Mohsin; Bingman, Verner

    2014-04-04

    The Coastal Ohio Wind Project intends to address problems that impede deployment of wind turbines in the coastal and offshore regions of Northern Ohio. The project evaluates different wind turbine designs and the potential impact of offshore turbines on migratory and resident birds by developing multidisciplinary research, which involves wildlife biology, electrical and mechanical engineering, and geospatial science. Firstly, the project conducts cost and performance studies of two- and three-blade wind turbines using a turbine design suited for the Great Lakes. The numerical studies comprised an analysis and evaluation of the annual energy production of two- and three-blade wind turbines to determine the levelized cost of energy. This task also involved wind tunnel studies of model wind turbines to quantify the wake flow field of upwind and downwind wind turbine-tower arrangements. The experimental work included a study of a scaled model of an offshore wind turbine platform in a water tunnel. The levelized cost of energy work consisted of the development and application of a cost model to predict the cost of energy produced by a wind turbine system placed offshore. The analysis found that a floating two-blade wind turbine presents the most cost effective alternative for the Great Lakes. The load effects studies showed that the two-blade wind turbine model experiences less torque under all IEC Standard design load cases considered. Other load effects did not show this trend and depending on the design load cases, the two-bladed wind turbine showed higher or lower load effects. The experimental studies of the wake were conducted using smoke flow visualization and hot wire anemometry. Flow visualization studies showed that in the downwind turbine configuration the wake flow was insensitive to the presence of the blade and was very similar to that of the tower alone. On the other hand, in the upwind turbine configuration, increasing the rotor blade angle of attack reduced the wake size and enhanced the vortices in the flow downstream of the turbine-tower compared with the tower alone case. Mean and rms velocity distributions from hot wire anemometer data confirmed that in a downwind configuration, the wake of the tower dominates the flow, thus the flow fields of a tower alone and tower-turbine combinations are nearly the same. For the upwind configuration, the mean velocity shows a narrowing of the wake compared with the tower alone case. The downwind configuration wake persisted longer than that of an upwind configuration; however, it was not possible to quantify this difference because of the size limitation of the wind tunnel downstream of the test section. The water tunnel studies demonstrated that the scale model studies could be used to adequately produce accurate motions to model the motions of a wind turbine platform subject to large waves. It was found that the important factors that affect the platform is whether the platform is submerged or surface piercing. In the former, the loads on the platform will be relatively reduced whereas in the latter case, the structure pierces the wave free surface and gains stiffness and stability. The other important element that affects the movement of the platform is depth of the sea in which the wind turbine will be installed. Furthermore, the wildlife biology component evaluated migratory patterns by different monitoring systems consisting of marine radar, thermal IR camera and acoustic recorders. The types of radar used in the project are weather surveillance radar and marine radar. The weather surveillance radar (1988 Doppler), also known as Next Generation Radar (NEXRAD), provides a network of weather stations in the US. Data generated from this network were used to understand general migratory patterns, migratory stopover habitats, and other patterns caused by the effects of weather conditions. At a local scale our marine radar was used to complement the datasets from NEXRAD and to collect additional monitoring parameters such as passage rates, flight paths, flight directions, and flight altitudes of nocturnal migrating species. Our work focused on the design and development of custom built marine radar that used t-bar and parabolic dish antennas. The marine radar used in the project was Furuno (XANK250) which was coupled with a XIR3000B digitizing card from Russell Technologies for collection of the radar data. The radar data was processed by open source radR processing software using different computational techniques and methods. Additional data from thermal IR imaging cameras were collected to detect heat emitted from objects and provide information on movements of birds and bats, data which we used for different animal flight behavior analysis. Lastly, the data from the acoustic recorders were used to provide the number of bird calls for assessing patterns and peak passage rates during migration. The development of the geospatial database included collection of different data sources that are used to support offshore wind turbine development. Many different data sets were collected and organized using initial version of web-based repository software tools that can accommodate distribution of rectified pertinent data sets such as the lake depth, lake bottom engineering parameters, extent of ice, navigation pathways, wind speed, important bird habitats, fish efforts and other layers that are relevant for supporting robust offshore wind turbine developments. Additional geospatial products developed during the project included few different prototypes for offshore wind farm suitability which can involve different stakeholders and participants for solving complex planning problems and building consensus. Some of the prototypes include spatial decision support system (SDSS) for collaborative decision making, a web-based Participatory Geographic Information System (PGIS) framework for evaluating importance of different decision alternatives using different evaluation criteria, and an Android application for collection of field data using mobile and tablet devices . In summary, the simulations of two- and three-blade wind turbines suggested that two-bladed machines could produce comparable annual energy as the three-blade wind turbines but have a lighter tower top weight, which leads to lower cost of energy. In addition, the two-blade rotor configuration potentially costs 20% less than a three blade configuration that produces the same power at the same site. The cost model analysis predicted a potential cost savings of approximately 15% for offshore two-blade wind turbines. The foundation design for a wind turbine in Lake Erie is likely to be driven by ice loads based on the currently available ice data and ice mechanics models. Hence, for Lake Eire, the cost savings will be somewhat smaller than the other lakes in the Great Lakes. Considering the size of cranes and vessels currently available in the Great Lakes, the cost optimal wind turbine size should be 3 MW, not larger. The surveillance data from different monitoring systems suggested that bird and bat passage rates per hour were comparable during heavy migrations in both spring and fall seasons while passage rates were significantly correlated to wind directions and wind speeds. The altitude of migration was higher during heavy migrations and higher over water relative to over land. Notable portions of migration on some spring nights occurred parallel the shoreline, often moving perpendicular to southern winds. The birds approaching the Western basin have a higher propensity to cross than birds approaching the Central basin of Lake Erie and as such offshore turbine development might be a better option further east towards Cleveland than in the Western basin. The high stopover density was more strongly associated with migration volume the following night rather than the preceding night. The processed mean scalar wind speeds with temporal resolutions as fine as 10-minute intervals near turbine height showed that August is the month with the weakest winds while December is the month, which typically has the strongest winds. The ice data suggests that shallow western basin of Lake Erie has higher ice cover duration many times exceeding 90 days during some winters.

  12. WINDExchange: Funding School Wind Projects

    Wind Powering America (EERE)

    Funding School Wind Projects Funding school wind installations can be challenging, but many schools have successfully secured funding to install turbines and implement curricula. The following examples of methods used to fund Wind for Schools projects may be useful for anyone researching funding wind turbine installations at schools; also see the Wind for Schools Funding Spreadsheet for more examples of school turbine costs and mechanisms utilized to fund the projects. Photo of children in front

  13. Orme School Wind Project | Open Energy Information

    Open Energy Info (EERE)

    - Yankton School District Wind Project

  14. Offshore Wind Projects | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Projects Offshore Wind Projects This report covers the Wind and Water Power Program's offshore wind energy projects from fiscal years 2006 to 2016. PDF icon Offshore Wind Energy Projects 2006-2016 More Documents & Publications Testing, Manufacturing, and Component Development Projects Wind Integration, Transmission, and Resource Assessment and Characterization Projects Environmental Wind Projects

  15. Hyannis Wind Project | Open Energy Information

    Open Energy Info (EERE)

    Project Jump to: navigation, search Name Hyannis Wind Project Facility Hyannis Sector Wind energy Facility Type Community Wind Location NE Coordinates 41.998692,...

  16. AWEA Wind Project Siting Seminar

    Broader source: Energy.gov [DOE]

    The AWEA Wind Project Siting Seminar takes an in-depth look at the latest siting challenges and identify opportunities to reduce risks associated with the siting and operation of wind farms to...

  17. 2008 Wind Energy Projects, Wind Powering America (Poster)

    SciTech Connect (OSTI)

    Not Available

    2009-01-01

    The Wind Powering America program produces a poster at the end of every calendar year that depicts new U.S. wind energy projects. The 2008 poster includes the following projects: Stetson Wind Farm in Maine; Dutch Hill Wind Farm in New York; Grand Ridge Wind Energy Center in Illinois; Hooper Bay, Alaska; Forestburg, South Dakota; Elbow Creek Wind Project in Texas; Glacier Wind Farm in Montana; Wray, Colorado; Smoky Hills Wind Farm in Kansas; Forbes Park Wind Project in Massachusetts; Spanish Fork, Utah; Goodland Wind Farm in Indiana; and the Tatanka Wind Energy Project on the border of North Dakota and South Dakota.

  18. Searchlight Wind Energy Project FEIS Appendix E

    Office of Environmental Management (EM)

    ... Proposed Wind Generation SECTION A. PROJECT INFORMATION 1. Project Name Searchlight Wind Energy Project 4. Location Township... 5. Location Sketch 2. Key Observation Point ...

  19. AWEA Wind Resource & Project Energy Assessment

    Broader source: Energy.gov [DOE]

    Join the wind industry's leading owners, project developers, and wind assessors as they share latest challenges facing the wind resource assessment community. During this technical event you will...

  20. Sherrod Elementary Wind Project | Open Energy Information

    Open Energy Info (EERE)

    search Name Sherrod Elementary Wind Project Facility Sherrod Elementary Sector Wind energy Facility Type Community Wind Location AK Coordinates 61.648163,...

  1. Dakota Valley Wind Project | Open Energy Information

    Open Energy Info (EERE)

    Jump to: navigation, search Name Dakota Valley Wind Project Facility Dakota Valley Sector Wind energy Facility Type Community Wind Location SD Coordinates 42.548355, -96.524841...

  2. KDOT Osborne Wind Project | Open Energy Information

    Open Energy Info (EERE)

    Jump to: navigation, search Name KDOT Osborne Wind Project Facility KDOT Osborne Sector Wind energy Facility Type Community Wind Location KS Coordinates 39.456077, -98.695613...

  3. Greenbush Kansas Wind Project | Open Energy Information

    Open Energy Info (EERE)

    navigation, search Name Greenbush Kansas Wind Project Facility Greenbush Kansas Sector Wind energy Facility Type Community Wind Location KS Coordinates 37.51403, -94.987839...

  4. KDOT Grainfield Wind Project | Open Energy Information

    Open Energy Info (EERE)

    to: navigation, search Name KDOT Grainfield Wind Project Facility KDOT Grainfield Sector Wind energy Facility Type Community Wind Location KS Coordinates 39.11006, -100.468124...

  5. Northumberland Schools Wind Project | Open Energy Information

    Open Energy Info (EERE)

    search Name Northumberland Schools Wind Project Facility Northumberland Schools Sector Wind energy Facility Type Community Wind Location VA Coordinates 37.917591, -76.473579...

  6. Miller Schools Wind Project | Open Energy Information

    Open Energy Info (EERE)

    to: navigation, search Name Miller Schools Wind Project Facility Miller Schools Sector Wind energy Facility Type Community Wind Location SD Coordinates 44.521069, -98.979942...

  7. Smoky Valley Wind Project | Open Energy Information

    Open Energy Info (EERE)

    Jump to: navigation, search Name Smoky Valley Wind Project Facility Smoky Valley Sector Wind energy Facility Type Community Wind Location KS Coordinates 38.578766, -97.683563...

  8. Cedar Rapids Wind Project | Open Energy Information

    Open Energy Info (EERE)

    Jump to: navigation, search Name Cedar Rapids Wind Project Facility Cedar Rapids Sector Wind energy Facility Type Community Wind Location NE Coordinates 41.562199, -98.148048...

  9. Kit Carson Wind Project | Open Energy Information

    Open Energy Info (EERE)

    Jump to: navigation, search Name Kit Carson Wind Project Facility Kit Carson Sector Wind energy Facility Type Community Wind Facility Status In Service Address 102 W 5th...

  10. Pantex Plant Wind Project | Open Energy Information

    Open Energy Info (EERE)

    Sector Wind energy Facility Type Commercial Scale Wind Facility Status Under Construction Owner Pantex Developer Siemens Energy Purchaser Pantex Plant Location Amarillo TX...

  11. Offshore Wind Technology Development Projects | Department of...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Technology Development Projects Offshore Wind Technology Development Projects The Wind ... more robustly (i.e., requiring less maintenance) than land-based turbines due to the ...

  12. Wessington Springs Wind Project | Open Energy Information

    Open Energy Info (EERE)

    - Yankton School District Wind Project

  13. Continuous Reliability Enhancement for Wind project

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    ... SunShot Grand Challenge: Regional Test Centers Continuous Reliability Enhancement for Wind project HomeTag:Continuous Reliability Enhancement for Wind project The CREW public ...

  14. Community Renewable Energy Deployment: Haxtun Wind Project |...

    Open Energy Info (EERE)

    Haxtun Wind Project Jump to: navigation, search Name Community Renewable Energy Deployment: Haxtun Wind Project AgencyCompany Organization US Department of Energy Focus Area...

  15. Students' Clean Tech Projects: Driving Commercial Success | Department of

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Energy Students' Clean Tech Projects: Driving Commercial Success Students' Clean Tech Projects: Driving Commercial Success October 6, 2011 - 3:20pm Addthis UCSD Ph.D. candidate (structural engineering) and von Liebig Fellow Arun Manohar demonstrates unique Enhanced Infrared Thermography algorithm to identify structural defects in composite wind turbine plates. | Image Courtesy of the San Diego Renewable Energy Fellowship. UCSD Ph.D. candidate (structural engineering) and von Liebig Fellow

  16. NREL Readies New Wind Turbine Drivetrain for Commercialization | Department

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    of Energy Readies New Wind Turbine Drivetrain for Commercialization NREL Readies New Wind Turbine Drivetrain for Commercialization May 18, 2015 - 3:52pm Addthis Illustration of a wind turbine drivetrain with a transparent case that shows the internal gears. In February, engineers at the U.S. Department of Energy's (DOE's) National Renewable Energy Laboratory (NREL) assembled the innovative, medium-speed, medium-voltage wind turbine drivetrain that was the result of a study funded by DOE's

  17. West Holt Wind Project | Open Energy Information

    Open Energy Info (EERE)

    Project Jump to: navigation, search Name West Holt Wind Project Facility West Holt Sector Wind energy Facility Type Community Wind Location NE Coordinates 42.540997, -98.978706...

  18. Kittitas Valley Wind Power Project | Open Energy Information

    Open Energy Info (EERE)

    Valley Wind Power Project Jump to: navigation, search Name Kittitas Valley Wind Power Project Facility Kittitas Valley Wind Power Project Sector Wind energy Facility Type...

  19. Michigan Offshore Wind Pilot Project | Open Energy Information

    Open Energy Info (EERE)

    Michigan Offshore Wind Pilot Project Jump to: navigation, search Name Michigan Offshore Wind Pilot Project Facility Michigan Offshore Wind Pilot Project Sector Wind energy Facility...

  20. Armenia Mountain Wind Energy Project | Open Energy Information

    Open Energy Info (EERE)

    Armenia Mountain Wind Energy Project Jump to: navigation, search Name Armenia Mountain Wind Energy Project Facility Armenia Mountain Wind Energy Project Sector Wind energy Facility...

  1. Bluegrass Ridge Wind Energy Project | Open Energy Information

    Open Energy Info (EERE)

    Bluegrass Ridge Wind Energy Project Jump to: navigation, search Name Bluegrass Ridge Wind Energy Project Facility Bluegrass Ridge Wind Energy Project Sector Wind energy Facility...

  2. Rosebud Sioux Wind Energy Project | Open Energy Information

    Open Energy Info (EERE)

    Sioux Wind Energy Project Jump to: navigation, search Name Rosebud Sioux Wind Energy Project Facility Rosebud Sioux Wind Energy Project Sector Wind energy Facility Type Community...

  3. Hydrogen Pilot Project Wind Farm | Open Energy Information

    Open Energy Info (EERE)

    Pilot Project Wind Farm Jump to: navigation, search Name Hydrogen Pilot Project Wind Farm Facility Hydrogen Pilot Project Sector Wind energy Facility Type Small Scale Wind Facility...

  4. Wind for Schools: A Wind Powering America Project (Alaska) (Brochure)

    SciTech Connect (OSTI)

    Not Available

    2010-02-01

    This brochure provides an overview of Wind Powering America's Wind for Schools Project, including a description of the project, the participants, funding sources, the basic configurations, and how interested parties can become involved.

  5. Wind for Schools: A Wind Powering America Project (Brochure)

    SciTech Connect (OSTI)

    Baring-Gould, I.

    2009-08-01

    This brochure provides an overview of Wind Powering America's Wind for Schools Project, including a description of the project, the participants, funding sources, the basic configurations, and how interested parties can become involved.

  6. WINDExchange: School Wind Project Locations

    Wind Powering America (EERE)

    School Wind Project Locations Tips for Using the Google Map On top of the Google Map, use the Country, State, Project Status, and Project Type dropdown lists to filter projects. Along the left margin, use the zooming meter to zoom in or out of your view. In the top left corner, click Reset View to reset all the filters and zooming. Click on Map, Satellite, and Terrain to view the map three different ways. Click and drag the map to move it around. Use the right scroll bar to view the project

  7. Offshore Wind Project Map

    Broader source: Energy.gov [DOE]

    Image that shows the demonstration project site and developer headquarters for two funding opportunity announcements: the 2011 Grants for Technology Development and the 2011 Grants for Removing Market Barriers.

  8. Northern Cheyenne Tribe - Wind Power Project

    Broader source: Energy.gov (indexed) [DOE]

    Northern Cheyenne Tribe Wind Power Project Program Review 2006 Ingrid Gardner Project Overview * Project began in 2002 * Sole decision maker and final authority NORTHERN ...

  9. Hualapai Wind Project Feasibility Report

    SciTech Connect (OSTI)

    Davidson, Kevin; Randall, Mark; Isham, Tom; Horna, Marion J; Koronkiewicz, T; Simon, Rich; Matthew, Rojas; MacCourt, Doug C.; Burpo, Rob

    2012-12-20

    The Hualapai Department of Planning and Economic Development, with funding assistance from the U.S. Department of Energy, Tribal Energy Program, with the aid of six consultants has completed the four key prerequisites as follows: 1. Identify the site area for development and its suitability for construction. 2. Determine the wind resource potential for the identified site area. 3. Determine the electrical transmission and interconnection feasibility to get the electrical power produced to the marketplace. 4. Complete an initial permitting and environmental assessment to determine the feasibility for getting the project permitted. Those studies indicated a suitable wind resource and favorable conditions for permitting and construction. The permitting and environmental study did not reveal any fatal flaws. A review of the best power sale opportunities indicate southern California has the highest potential for obtaining a PPA that may make the project viable. Based on these results, the recommendation is for the Hualapai Tribal Nation to move forward with attracting a qualified wind developer to work with the Tribe to move the project into the second phase - determining the reality factors for developing a wind project. a qualified developer will bid to a utility or negotiate a PPA to make the project viable for financing.

  10. Large Commercial Wind Exemption and Alternative Taxes

    Broader source: Energy.gov [DOE]

    The alternative taxation method has two components. The first component is an annual tax equal to $3 per kilowatt (kW) of capacity of the wind farm, prorated according to when the wind farm begins...

  11. Commercialization and Project Management PIA, Golden Field Office...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Commercialization and Project Management PIA, Golden Field Office Commercialization and Project Management PIA, Golden Field Office Commercialization and Project Management PIA, ...

  12. Chaninik Wind Group- 2010 Project

    Broader source: Energy.gov [DOE]

    The goals of this project are to reduce the consumption of fossil fuel by 40% in four Lower Kuskokwim Alaska villages and use wind energy to displace 200,000 gallons of diesel fuel, 70,000 of which is now being used to generate power, and 130,000 of which will be captured and stored for use as heat.

  13. Wind Forecasting Improvement Project | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Forecasting Improvement Project Wind Forecasting Improvement Project October 3, 2011 - 12:12pm Addthis This is an excerpt from the Third Quarter 2011 edition of the Wind Program R&D Newsletter. In July, the Department of Energy launched a $6 million project with the National Oceanic and Atmospheric Administration (NOAA) and private partners to improve wind forecasting. Wind power forecasting allows system operators to anticipate the electrical output of wind plants and adjust the electrical

  14. Kumeyaay Wind Power Project | Open Energy Information

    Open Energy Info (EERE)

    energy Facility Type Commercial Scale Wind Facility Status In Service Owner Babcock & Brown Developer Superior Renewable Energy Energy Purchaser San Diego Gas & Electric Location...

  15. Casselman Wind Project | Open Energy Information

    Open Energy Info (EERE)

    energy Facility Type Commercial Scale Wind Facility Status In Service Owner Iberdrola Renewables Developer PPM Energy Inc Energy Purchaser First Energy Corp. Location Somerset...

  16. Dispersed Project Wind Farm | Open Energy Information

    Open Energy Info (EERE)

    energy Facility Type Commercial Scale Wind Facility Status In Service Developer Northern Alternative Energy Energy Purchaser Xcel Energy Location Lincoln County MN Coordinates...

  17. Wind Forecast Improvement Project Southern Study Area Final Report...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Wind Forecast Improvement Project Southern Study Area Final Report Wind Forecast Improvement Project Southern Study Area Final Report PDF icon Wind Forecast Improvement Project ...

  18. Stratton Middle and High School Wind Project | Open Energy Information

    Open Energy Info (EERE)

    - Yankton School District Wind Project

  19. Central High School Wind Project | Open Energy Information

    Open Energy Info (EERE)

    - Northwestern High School Wind Project

  20. Crawford Public Schools Wind Project | Open Energy Information

    Open Energy Info (EERE)

    - Yankton School District Wind Project

  1. Elkhorn Valley Public Schools Wind Project | Open Energy Information

    Open Energy Info (EERE)

    - Yankton School District Wind Project

  2. Logan View Public Schools Wind Project | Open Energy Information

    Open Energy Info (EERE)

    - Northwestern High School Wind Project

  3. Shelley High School Wind Project | Open Energy Information

    Open Energy Info (EERE)

    - Yankton School District Wind Project

  4. USD 376 Sterling High School Wind Project | Open Energy Information

    Open Energy Info (EERE)

    - Yankton School District Wind Project

  5. Spotsylvania Career and Tech Center Wind Project | Open Energy...

    Open Energy Info (EERE)

    - Yankton School District Wind Project

  6. Bancroft-Rosalie Public Schools Wind Project | Open Energy Information

    Open Energy Info (EERE)

    - Yankton School District Wind Project

  7. Thomas Middle School Wind Project | Open Energy Information

    Open Energy Info (EERE)

    - Yankton School District Wind Project

  8. Leupp Schools Inc Wind Project 3 | Open Energy Information

    Open Energy Info (EERE)

    - Yankton School District Wind Project

  9. Santa Fe Trail High School Wind Project | Open Energy Information

    Open Energy Info (EERE)

    - Yankton School District Wind Project

  10. Lewistown High Schools Wind Project | Open Energy Information

    Open Energy Info (EERE)

    - Northwestern High School Wind Project

  11. Diller-Odell High School Wind Project | Open Energy Information

    Open Energy Info (EERE)

    - Yankton School District Wind Project

  12. Luray High School Wind Project | Open Energy Information

    Open Energy Info (EERE)

    - Northwestern High School Wind Project

  13. Rigby Midway School Wind Project | Open Energy Information

    Open Energy Info (EERE)

    - Yankton School District Wind Project

  14. Thomas Harrison Middle School Wind Project | Open Energy Information

    Open Energy Info (EERE)

    - Yankton School District Wind Project

  15. Mullen High School Wind Project | Open Energy Information

    Open Energy Info (EERE)

    - Yankton School District Wind Project

  16. Mesa County Valley Wind Project | Open Energy Information

    Open Energy Info (EERE)

    - Yankton School District Wind Project

  17. Norfolk Public Schools Wind Project | Open Energy Information

    Open Energy Info (EERE)

    - Yankton School District Wind Project

  18. Northwestern High School Wind Project | Open Energy Information

    Open Energy Info (EERE)

    - Yankton School District Wind Project

  19. Florence High School Wind Project | Open Energy Information

    Open Energy Info (EERE)

    - Yankton School District Wind Project

  20. Dilcon Community School Inc Wind Project | Open Energy Information

    Open Energy Info (EERE)

    - Yankton School District Wind Project

  1. Grand Ridge Elementary Wind Project | Open Energy Information

    Open Energy Info (EERE)

    - Yankton School District Wind Project

  2. Townsend School District Wind Project | Open Energy Information

    Open Energy Info (EERE)

    - Yankton School District Wind Project

  3. Kansas State University Wind Project | Open Energy Information

    Open Energy Info (EERE)

    - Northwestern High School Wind Project

  4. Loup City High School Wind Project | Open Energy Information

    Open Energy Info (EERE)

    - Yankton School District Wind Project

  5. Williams Elementary and Middle School Wind Project | Open Energy...

    Open Energy Info (EERE)

    - Yankton School District Wind Project

  6. Flagler Public School Wind Project | Open Energy Information

    Open Energy Info (EERE)

    - Yankton School District Wind Project

  7. Northern Arizona University ARD Wind Project | Open Energy Information

    Open Energy Info (EERE)

    - Yankton School District Wind Project

  8. Park County RE2 Wind Project | Open Energy Information

    Open Energy Info (EERE)

    - Northwestern High School Wind Project

  9. Hayes Center Public Schools Wind Project | Open Energy Information

    Open Energy Info (EERE)

    - Yankton School District Wind Project

  10. Creighton Public Schools Wind Project | Open Energy Information

    Open Energy Info (EERE)

    - Yankton School District Wind Project

  11. USD 384 Blue Valley Wind Project | Open Energy Information

    Open Energy Info (EERE)

    - Yankton School District Wind Project

  12. Nederland High School Wind Project | Open Energy Information

    Open Energy Info (EERE)

    - Yankton School District Wind Project

  13. Hope Street Academy Wind Project | Open Energy Information

    Open Energy Info (EERE)

    - Yankton School District Wind Project

  14. Illini Central CUSD 189 Wind Project | Open Energy Information

    Open Energy Info (EERE)

    - Northwestern High School Wind Project

  15. St. Michael Indian School Wind Project | Open Energy Information

    Open Energy Info (EERE)

    - Yankton School District Wind Project

  16. Clover Hill High School Wind Project | Open Energy Information

    Open Energy Info (EERE)

    - Yankton School District Wind Project

  17. Avery County High School Wind Project | Open Energy Information

    Open Energy Info (EERE)

    - Yankton School District Wind Project

  18. Leupp Schools Inc Wind Project 2 | Open Energy Information

    Open Energy Info (EERE)

    - Yankton School District Wind Project

  19. Bloomfield Public Schools Wind Project | Open Energy Information

    Open Energy Info (EERE)

    - Yankton School District Wind Project

  20. USD 373 Walton Rural Life Wind Project | Open Energy Information

    Open Energy Info (EERE)

    - Yankton School District Wind Project

  1. Ferndale High School Wind Project | Open Energy Information

    Open Energy Info (EERE)

    - Yankton School District Wind Project

  2. Concordia High School Wind Project | Open Energy Information

    Open Energy Info (EERE)

    - Yankton School District Wind Project

  3. Cherry Valley Elementary School Wind Project | Open Energy Information

    Open Energy Info (EERE)

    - Yankton School District Wind Project

  4. Northern Arizona University SHRM Wind Project | Open Energy Informatio...

    Open Energy Info (EERE)

    - Yankton School District Wind Project

  5. Jefferson West High School Wind Project | Open Energy Information

    Open Energy Info (EERE)

    - Yankton School District Wind Project

  6. Elkton Schools District Wind Project | Open Energy Information

    Open Energy Info (EERE)

    - Northwestern High School Wind Project

  7. Pretty Prairie High School Wind Project | Open Energy Information

    Open Energy Info (EERE)

    - Yankton School District Wind Project

  8. Offshore Wind Research, Development, and Deployment Projects | Department

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    of Energy Offshore Wind Research, Development, and Deployment Projects Offshore Wind Research, Development, and Deployment Projects Offshore Wind Research, Development, and Deployment Projects

  9. Super Wind Project Pvt Ltd | Open Energy Information

    Open Energy Info (EERE)

    Project Pvt Ltd Jump to: navigation, search Name: Super Wind Project Pvt. Ltd. Place: Pune, Maharashtra, India Zip: 411001 Sector: Wind energy Product: Pune-based wind project...

  10. Northern Arizona University Wind Projects | Open Energy Information

    Open Energy Info (EERE)

    Wind Projects Jump to: navigation, search Northern Arizona University ARD Wind Project Northern Arizona University SHRM Wind Project Retrieved from "http:en.openei.orgw...

  11. Northern Arizona University Wind Projects | Open Energy Information

    Open Energy Info (EERE)

    Northern Arizona University Wind Projects (Redirected from Northern Arizona University Wind Project) Jump to: navigation, search Northern Arizona University ARD Wind Project...

  12. Commonwealth Wind Commercial Wind Program | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    depending on applicant type (public vs. non-public) and grant type (site assessment, feasibility study, onsite wind monitoring, acoustic studies, business planning, and...

  13. Searchlight Wind Energy Project FEIS Appendix B

    Office of Environmental Management (EM)

    ... is to prescribe methods to help prevent and manage the spread of noxious weeds during and following construction of the Searchlight Wind Energy Project in Clark County (Project). ...

  14. Commercial Wind Energy Property Valuation | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    kW Depreciation: Up to 70% of the trended real property cost basis Summary Prior to 2007, wind energy devices generating electricity for commercial sale were assessed differently...

  15. Property Tax Assessment for Commercial Wind Farms

    Broader source: Energy.gov [DOE]

    In 2010, S.B. 918 consolidated and amended property tax assessment laws in Pennsylvania. The provisions governing the assessment of wind energy facilities were relocated at this time, but not cha...

  16. WINDExchange: Wind for Schools Affiliate Projects

    Wind Powering America (EERE)

    Wind for Schools Affiliate Projects Although the Wind for Schools project is supported in a limited number of states, Wind for Schools affiliate projects allow K-12 schools or state-based programs to leverage existing materials to implement activities in their areas. On this page, you will find information about affiliate projects for individual K-12 schools and for states. Affiliate projects do not receive financial support from the U.S. Department of Energy and the National Renewable Energy

  17. Shree Jai Brahmanvel Bundled Wind Project | Open Energy Information

    Open Energy Info (EERE)

    Maharashtra, India Zip: 441 614 Sector: Wind energy Product: Gondia-based SPV for wind project development. References: Shree Jai Brahmanvel Bundled Wind Project1 This article...

  18. PA Sangli Bundled Wind Project | Open Energy Information

    Open Energy Info (EERE)

    PA Sangli Bundled Wind Project Jump to: navigation, search Name: PA Sangli Bundled Wind Project Place: Maharashtra, India Zip: 416115 Sector: Wind energy Product:...

  19. Watauga High School Wind Energy Project | Open Energy Information

    Open Energy Info (EERE)

    Energy Project Jump to: navigation, search Name Watauga High School Wind Energy Project Facility Watauga High School Sector Wind energy Facility Type Community Wind Facility Status...

  20. Wind for Schools Project Power System Brief, Wind Powering America Fact Sheet Series

    Wind Powering America (EERE)

    Wind Powering America Fact Sheet Series Energy Efficiency & Renewable Energy Wind for Schools Project Power System Brief Wind for Schools Project Power System Brief Wind for Schools Project Power System Brief This fact sheet provides an overview of the system components of a Wind Powering America Wind for Schools project. Wind Powering America's (WPA's) Wind for Schools project uses a basic system configuration for each school project. The system incorporates a single SkyStream(tm) wind

  1. Wind Powering America's Wind for Schools Project: Summary Report

    SciTech Connect (OSTI)

    Baring-Gould, I.; Newcomb, C.

    2012-06-01

    This report provides an overview of the U.S. Department of Energy, Wind Powering America, Wind for Schools project. It outlines teacher-training activities and curriculum development; discusses the affiliate program that allows school districts and states to replicate the program; and contains reports that provide an update on activities and progress in the 11 states in which the Wind for Schools project operates.

  2. Project materials [Commercial High Performance Buildings Project

    SciTech Connect (OSTI)

    2001-01-01

    The Consortium for High Performance Buildings (ChiPB) is an outgrowth of DOE'S Commercial Whole Buildings Roadmapping initiatives. It is a team-driven public/private partnership that seeks to enable and demonstrate the benefit of buildings that are designed, built and operated to be energy efficient, environmentally sustainable, superior quality, and cost effective.

  3. Wind Energy Education and Outreach Project

    SciTech Connect (OSTI)

    David G. Loomis

    2011-04-15

    The purpose of Illinois State University’s wind project was to further the education and outreach of the university concerning wind energy. This project had three major components: to initiate and coordinate a Wind Working Group for the State of Illinois, to launch a Renewable Energy undergraduate program, and to develop the Center for Renewable Energy that will sustain the Illinois Wind Working Group and the undergraduate program.

  4. Companies Selected for Small Wind Turbine Project

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Companies Selected for Small Wind Turbine Project For more information contact: Terry Monrad (303) 972-9246 Golden, Colo., Nov. 27, 1996 -- In an effort to develop cost-effective, low-maintenance wind turbine systems, the Department of Energy's National Renewable Energy Laboratory (NREL) has selected four companies to participate in the Small Wind Turbine Project. The four companies are Windlite Co., Mountain View, Calif.; World Power Technologies, Duluth, Minn.; Cannon/Wind Eagle Corp.,

  5. Wind Project Development | Open Energy Information

    Open Energy Info (EERE)

    hosting a wind farm on their property. It briefly addresses key factors in this decision. Springer, R. (2013). A Framework for Project Development in the Renewable Energy Sector....

  6. Searchlight Wind Energy Project FEIS Appendix B

    Office of Environmental Management (EM)

    Searchlight BBCS i October 2012 Searchlight Wind Energy Project Bird and Bat Conservation Strategy Prepared for: Duke Energy Renewables 550 South Tryon Street Charlotte, North ...

  7. Searchlight Wind Energy Project FEIS Appendix A

    Office of Environmental Management (EM)

    2: Notice of Availability and Publications SEARCHLIGHT WIND ENERGY PROJECT DRAFT ENVIRONMENTAL IMPACT STATEMENT PUBLIC MEETING ANNOUNCEMENT The Bureau of Land Management (BLM) is...

  8. NREL: Wind Research - Field Verification Project

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    testing, and field verification needed to fully develop advanced wind energy technologies that lead the world in cost-effectiveness and reliability. The project, completed...

  9. Kotzebue Wind Project 2012 | Open Energy Information

    Open Energy Info (EERE)

    W 1,800,000,000 mW 0.0018 GW Number of Units 2 Commercial Online Date 2012 Wind Turbine Manufacturer EWT Americas References AWEA 2012 Market Report1 Loading map......

  10. Wildcat Wind Project | Open Energy Information

    Open Energy Info (EERE)

    W 27,300,000,000 mW 0.0273 GW Number of Units 13 Commercial Online Date 2012 Wind Turbine Manufacturer Suzlon References AWEA 2012 Market Report1 Loading map......

  11. 2014 Commercial-Scale Renewable Energy Project Development and...

    Office of Environmental Management (EM)

    4 Commercial-Scale Renewable Energy Project Development and Finance Workshop Agenda and Presentations 2014 Commercial-Scale Renewable Energy Project Development and Finance ...

  12. Commercial-Scale Project Development and Finance Workshop Agenda...

    Energy Savers [EERE]

    Commercial-Scale Project Development and Finance Workshop Agenda and Presentations: Colorado Commercial-Scale Project Development and Finance Workshop Agenda and Presentations: ...

  13. 2013 Commercial-Scale Tribal Renewable Energy Project Development...

    Energy Savers [EERE]

    Commercial-Scale Tribal Renewable Energy Project Development and Finance Workshop Presentations and Agenda 2013 Commercial-Scale Tribal Renewable Energy Project Development and ...

  14. Community Wind: Once Again Pushing the Envelope of Project Finance

    SciTech Connect (OSTI)

    bolinger, Mark A.

    2011-01-18

    In the United States, the 'community wind' sector - loosely defined here as consisting of relatively small utility-scale wind power projects that sell power on the wholesale market and that are developed and owned primarily by local investors - has historically served as a 'test bed' or 'proving grounds' for up-and-coming wind turbine manufacturers that are trying to break into the U.S. wind power market. For example, community wind projects - and primarily those located in the state of Minnesota - have deployed the first U.S. installations of wind turbines from Suzlon (in 2003), DeWind (2008), Americas Wind Energy (2008) and later Emergya Wind Technologies (2010), Goldwind (2009), AAER/Pioneer (2009), Nordic Windpower (2010), Unison (2010), and Alstom (2011). Thus far, one of these turbine manufacturers - Suzlon - has subsequently achieved some success in the broader U.S. wind market as well. Just as it has provided a proving grounds for new turbines, so too has the community wind sector served as a laboratory for experimentation with innovative new financing structures. For example, a variation of one of the most common financing arrangements in the U.S. wind market today - the special allocation partnership flip structure (see Figure 1 in Section 2.1) - was first developed by community wind projects in Minnesota more than a decade ago (and is therefore sometimes referred to as the 'Minnesota flip' model) before being adopted by the broader wind market. More recently, a handful of community wind projects built over the past year have been financed via new and creative structures that push the envelope of wind project finance in the U.S. - in many cases, moving beyond the now-standard partnership flip structures involving strategic tax equity investors. These include: (1) a 4.5 MW project in Maine that combines low-cost government debt with local tax equity, (2) a 25.3 MW project in Minnesota using a sale/leaseback structure, (3) a 10.5 MW project in South Dakota financed by an intrastate offering of both debt and equity, (4) a 6 MW project in Washington state that taps into New Markets Tax Credits using an 'inverted' or 'pass-through' lease structure, and (5) a 9 MW project in Oregon that combines a variety of state and federal incentives and loans with unconventional equity from high-net-worth individuals. In most cases, these are first-of-their-kind structures that could serve as useful examples for other projects - both community and commercial wind alike. This report describes each of these innovative new financing structures in some detail, using a case-study approach. The purpose is twofold: (1) to disseminate useful information on these new financial structures, most of which are widely replicable; and (2) to highlight the recent policy changes - many of them temporary unless extended - that have facilitated this innovation. Although the community wind market is currently only a small sub-sector of the U.S. wind market - as defined here, less than 2% of the overall market at the end of 2009 (Wiser and Bolinger 2010) - its small size belies its relevance to the broader market. As such, the information provided in this report has relevance beyond its direct application to the community wind sector. The next two sections of this report briefly summarize how most community wind projects in the U.S. have been financed historically (i.e., prior to this latest wave of innovation) and describe the recent federal policy changes that have enabled a new wave of financial innovation to occur, respectively. Section 4 contains brief case studies of how each of the five projects mentioned above were financed, noting the financial significance of each. Finally, Section 5 concludes by distilling a number of general observations or pertinent lessons learned from the experiences of these five projects.

  15. Simran Wind Project P Ltd | Open Energy Information

    Open Energy Info (EERE)

    Simran Wind Project P Ltd Jump to: navigation, search Name: Simran Wind Project (P) Ltd. Place: Pune, Maharashtra, India Zip: 411001 Sector: Wind energy Product: Pune-based wind...

  16. Offshore Wind Energy Projects, Fiscal Years 2006-2014

    SciTech Connect (OSTI)

    None, None

    2014-04-01

    This report covers the Wind and Water Power Technologies Office's Offshore Wind Energy Projects from 2006 to 2014.

  17. Auburn-Washburn Wind Project | Open Energy Information

    Open Energy Info (EERE)

    to: navigation, search Name Auburn-Washburn Wind Project Facility Auburn-Washburn Sector Wind energy Facility Type Community Wind Owner Auburn-Washburn School District Address...

  18. Wolverine Creek Wind Farm | Open Energy Information

    Open Energy Info (EERE)

    Jump to: navigation, search Name Wolverine Creek Wind Farm Facility Wolverine Creek Wind Energy Project Sector Wind energy Facility Type Commercial Scale Wind Facility Status In...

  19. WINDExchange: Wind for Schools Pilot Project Results

    Wind Powering America (EERE)

    Pilot Project Results The Colorado pilot project launched in 2006. Lessons learned during this exercise helped to identify the key elements of a successful Wind for Schools project. This page summarizes these elements, which can be helpful for others planning school turbine installations. Identify a Champion A project cannot succeed without a local project champion, an individual, or group to keep the key players in the community informed, cooperating, and moving toward project goals. The

  20. Commercialization and Project Management PIA, Golden Field Office |

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Department of Energy Commercialization and Project Management PIA, Golden Field Office Commercialization and Project Management PIA, Golden Field Office Commercialization and Project Management PIA, Golden Field Office PDF icon Commercialization and Project Management PIA, Golden Field Office More Documents & Publications Integrated Safety Management Workshop Registration, PIA, Idaho National Laboratory Occupational Medicine - Assistant PIA, Idaho National Laboratory Manchester Software

  1. TidGen Power System Commercialization Project

    SciTech Connect (OSTI)

    Sauer, Christopher R.; McEntee, Jarlath

    2013-12-30

    ORPC Maine, LLC, a wholly-owned subsidiary of Ocean Renewable Power Company, LLC (collectively ORPC), submits this Final Technical Report for the TidGen® Power System Commercialization Project (Project), partially funded by the U.S. Department of Energy (DE-EE0003647). The Project was built and operated in compliance with the Federal Energy Regulatory Commission (FERC) pilot project license (P-12711) and other permits and approvals needed for the Project. This report documents the methodologies, activities and results of the various phases of the Project, including design, engineering, procurement, assembly, installation, operation, licensing, environmental monitoring, retrieval, maintenance and repair. The Project represents a significant achievement for the renewable energy portfolio of the U.S. in general, and for the U.S. marine hydrokinetic (MHK) industry in particular. The stated Project goal was to advance, demonstrate and accelerate deployment and commercialization of ORPC’s tidal-current based hydrokinetic power generation system, including the energy extraction and conversion technology, associated power electronics, and interconnection equipment capable of reliably delivering electricity to the domestic power grid. ORPC achieved this goal by designing, building and operating the TidGen® Power System in 2012 and becoming the first federally licensed hydrokinetic tidal energy project to deliver electricity to a power grid under a power purchase agreement in North America. Located in Cobscook Bay between Eastport and Lubec, Maine, the TidGen® Power System was connected to the Bangor Hydro Electric utility grid at an on-shore station in North Lubec on September 13, 2012. ORPC obtained a FERC pilot project license for the Project on February 12, 2012 and the first Maine Department of Environmental Protection General Permit issued for a tidal energy project on January 31, 2012. In addition, ORPC entered into a 20-year agreement with Bangor Hydro Electric Company on January 1, 2013 for up to 5 megawatts at a price of $215/MWh, escalating at 2.0% per year.

  2. Session: Wind industry project development

    SciTech Connect (OSTI)

    Gray, Tom; Enfield, Sam

    2004-09-01

    This first session at the Wind Energy and Birds/Bats workshop consisted of two presentations followed by a question and answer period. The session was intended to provide a general overview of wind energy product development, from the industry's perspective. Tom Gray of AWEA presented a paper titled ''State of the Wind Energy Industry in 2004'', highlighting improved performance and lower cost, efforts to address avian impacts, a status of wind energy in comparison to other energy-producing sources, and ending on expectations for the near future. Sam Enfield of Atlantic Renewable Energy Corporation presented a paper titled ''Key Factors for Consideration in Wind Plant Siting'', highlighting factors that wind facility developers must consider when choosing a site to build wind turbines and associated structures. Factors covered include wind resources available, ownership and land use patterns, access to transmission lines, accessibility and environmental impacts. The question and answer sum mary included topics related to risk taking, research and development, regulatory requirements, and dealing with utilities.

  3. Ponderosa High School Wind Project | Open Energy Information

    Open Energy Info (EERE)

    - Yankton School District Wind Project

  4. Juneau School District Wind Project | Open Energy Information

    Open Energy Info (EERE)

    - Yankton School District Wind Project

  5. Skyline High School Wind Project | Open Energy Information

    Open Energy Info (EERE)

    - Yankton School District Wind Project

  6. Montana State University Wind Project | Open Energy Information

    Open Energy Info (EERE)

    - Yankton School District Wind Project

  7. Eudora High School Wind Project | Open Energy Information

    Open Energy Info (EERE)

    - Yankton School District Wind Project

  8. Western Illinois University Wind Project | Open Energy Information

    Open Energy Info (EERE)

    - Yankton School District Wind Project

  9. Pocatello Community Charter School Wind Project | Open Energy...

    Open Energy Info (EERE)

    - Elkton Schools District Wind Project

  10. Walsh High School Wind Project | Open Energy Information

    Open Energy Info (EERE)

    - Yankton School District Wind Project

  11. USD 440 Halstead Schools Wind Project | Open Energy Information

    Open Energy Info (EERE)

    - Yankton School District Wind Project

  12. Norris Public Schools Wind Project | Open Energy Information

    Open Energy Info (EERE)

    - Yankton School District Wind Project

  13. Little Singer Community School Wind Project | Open Energy Information

    Open Energy Info (EERE)

    - Yankton School District Wind Project

  14. Flinthills Tech College Wind Project | Open Energy Information

    Open Energy Info (EERE)

    - Yankton School District Wind Project

  15. Leupp Schools Inc Wind Project 1 | Open Energy Information

    Open Energy Info (EERE)

    - Yankton School District Wind Project

  16. Watauga High School Wind Project | Open Energy Information

    Open Energy Info (EERE)

    - Yankton School District Wind Project

  17. Rigby High School Wind Project | Open Energy Information

    Open Energy Info (EERE)

    - Yankton School District Wind Project

  18. Grassfield High School Wind Project | Open Energy Information

    Open Energy Info (EERE)

    - Yankton School District Wind Project

  19. Memorial Middle School Wind Project | Open Energy Information

    Open Energy Info (EERE)

    - Yankton School District Wind Project

  20. Appanoose Elementary School Wind Project | Open Energy Information

    Open Energy Info (EERE)

    - Yankton School District Wind Project

  1. USD 393 Solomon High School Wind Project | Open Energy Information

    Open Energy Info (EERE)

    - Yankton School District Wind Project

  2. USD 307 Ell-Saline Wind Project | Open Energy Information

    Open Energy Info (EERE)

    - Yankton School District Wind Project

  3. Wellington Middle School Wind Project | Open Energy Information

    Open Energy Info (EERE)

    - Yankton School District Wind Project

  4. North Wilkes Middle and High School Wind Project | Open Energy...

    Open Energy Info (EERE)

    - Yankton School District Wind Project

  5. Burlington High School Wind Project | Open Energy Information

    Open Energy Info (EERE)

    - Yankton School District Wind Project

  6. McKenna Charter School Wind Project | Open Energy Information

    Open Energy Info (EERE)

    - Yankton School District Wind Project

  7. USD 375 Circle High School Wind Project | Open Energy Information

    Open Energy Info (EERE)

    - Yankton School District Wind Project

  8. Superior Public Schools Wind Project | Open Energy Information

    Open Energy Info (EERE)

    - Yankton School District Wind Project

  9. USD 345 Seaman High School Wind Project | Open Energy Information

    Open Energy Info (EERE)

    - Yankton School District Wind Project

  10. Meridian Public Schools Wind Project | Open Energy Information

    Open Energy Info (EERE)

    - Yankton School District Wind Project

  11. Henley Middle School Wind Project | Open Energy Information

    Open Energy Info (EERE)

    - Yankton School District Wind Project

  12. Jerome Middle School Wind Project | Open Energy Information

    Open Energy Info (EERE)

    - Yankton School District Wind Project

  13. Yankton School District Wind Project | Open Energy Information

    Open Energy Info (EERE)

    - Yankton School District Wind Project

  14. Southeast Community College Wind Project | Open Energy Information

    Open Energy Info (EERE)

    - Yankton School District Wind Project

  15. Alleghany High School Wind Project | Open Energy Information

    Open Energy Info (EERE)

    - Yankton School District Wind Project

  16. Mt. Edgecumbe High School Wind Project | Open Energy Information

    Open Energy Info (EERE)

    - Yankton School District Wind Project

  17. Gilpin County School Wind Project | Open Energy Information

    Open Energy Info (EERE)

    - Yankton School District Wind Project

  18. Hastings Public Schools Wind Project | Open Energy Information

    Open Energy Info (EERE)

    - Elkton Schools District Wind Project

  19. Oshkosh Public Schools Wind Project | Open Energy Information

    Open Energy Info (EERE)

    - Yankton School District Wind Project

  20. Pleasanton Public Schools Wind Project | Open Energy Information

    Open Energy Info (EERE)

    - Yankton School District Wind Project

  1. EIS-0470: Cape Wind Energy Project, Nantucket Sound, Offshore...

    Energy Savers [EERE]

    0: Cape Wind Energy Project, Nantucket Sound, Offshore of Massachusetts EIS-0470: Cape Wind Energy Project, Nantucket Sound, Offshore of Massachusetts June 25, 2014 EIS-0470: Cape ...

  2. Distributed connected wind farms (Smart Grid Project) | Open...

    Open Energy Info (EERE)

    Distributed connected wind farms (Smart Grid Project) Jump to: navigation, search Project Name Distributed connected wind farms Country Ireland Headquarters Location Kerry, Ireland...

  3. EA-1970: Fishermen's Energy LLC Offshore Wind Demonstration Project...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    0: Fishermen's Energy LLC Offshore Wind Demonstration Project, offshore Atlantic City, New Jersey EA-1970: Fishermen's Energy LLC Offshore Wind Demonstration Project, offshore ...

  4. U.S. Offshore Wind Advanced Technology Demonstration Projects...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Advanced Technology Demonstration Projects Public Meeting Transcript for Offshore Wind Demonstrations U.S. Offshore Wind Advanced Technology Demonstration Projects Public Meeting ...

  5. Aerogel commercialization pilot project. Final program report

    SciTech Connect (OSTI)

    NONE

    1996-02-13

    Aerogels are extremely light weight, high surface area, very insulative materials that offer many potential improvements to commercial products. Aerogels have been the subject of extensive research at Department of Energy Laboratories and have been considered one of the technology most ready for commercialization. However, commercialization of the technology had been difficult for the National Laboratories since end users were not interested in the high temperature and high pressure chemical processes involved in manufacturing the raw material. Whereas, Aerojet as a supplier of rocket fuels, specialty chemicals and materials had the manufacturing facilities and experience to commercially produce aerogel-type products. Hence the TRP provided a link between the technology source (National Laboratories), the manufacturing (Aerojet) and the potential end users (other TRP partners). The program successfully produced approximately 500 ft{sup 2} of organic aerogel but failed to make significant quantities of silica aerogel. It is significant that this production represents both the largest volume and biggest pieces of organic aerogel ever produced. Aerogels, available from this program, when tested in several prototype commercial products were expected to improve the products performance, but higher than expected projected production costs for large scale manufacture of aerogels has limited continued commercial interest from these partners. Aerogels do, however, offer potential as a specialty material for some high value technology and defense products.

  6. Wind Projects Providing Hope for Penn. Workers

    Broader source: Energy.gov [DOE]

    The Recovery Act made three large-scale wind projects possible, putting 79 laid-off employees back on the job and making it possible for Gamesa to hire 50 additional workers at its other Pennsylvania locations.

  7. EA-1824: Record Hill Wind Project in Roxbury, ME | Department...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    4: Record Hill Wind Project in Roxbury, ME EA-1824: Record Hill Wind Project in Roxbury, ME July 1, 2011 EA-1824: Final Environmental Assessment Loan Guarantee to Record Hill Wind,...

  8. A Review of Wind Project Financing Structures in the USA

    SciTech Connect (OSTI)

    Bolinger, Mark A; Harper, John; Karcher, Matthew

    2008-09-24

    The rapid pace of wind power development in the U.S. over the last decade has outstripped the ability of most project developers to provide adequate equity capital and make efficient use of project-related tax benefits. In response, the sector has created novel project financing structures that feature varying combinations of equity capital from project developers and third-party tax-oriented investors, and in some cases commercial debt. While their origins stem from variations in the financial capacity and business objectives of wind project developers, as well as the risk tolerances and objectives of equity and debt providers, each structure is, at its core, designed to manage project risk and allocate federal tax incentives to those entities that can use them most efficiently. This article surveys the six principal financing structures through which most new utility-scale wind projects (excluding utility-owned projects) in the U.S. have been financed from 1999 to the present. These structures include simple balance-sheet finance, several varieties of all-equity special allocation partnership 'flip' structures, and two leveraged structures. In addition to describing each structure's mechanics, the article also discusses its rationale for use, the types of investors that find it appealing and why, and its relative frequency of use in the market. The article concludes with a generalized summary of how a developer might choose one structure over another.

  9. New England Wind Forum: A Wind Powering America Project Volume 1, Issue 4 -- May 2008

    SciTech Connect (OSTI)

    2009-02-26

    Newsletter featuring the latest developments throughout New England in wind power policy, project development, and markets.

  10. New England Wind Forum: A Wind Powering America Project, Volume 1, Issue 1 -- January 2006

    SciTech Connect (OSTI)

    2009-02-26

    Newsletter featuring the latest developments throughout New England in wind power policy, project development, and markets.

  11. New England Wind Forum: A Wind Powering America Project, Volume 1, Issue 2 -- December 2006

    SciTech Connect (OSTI)

    2009-02-26

    Newsletter featuring the latest developments throughout New England in wind power policy, project development, and markets.

  12. New England Wind Forum: A Wind Powering America Project Volume 1, Issue 3 -- October 2007

    SciTech Connect (OSTI)

    2009-02-26

    Newsletter featuring the latest developments throughout New England in wind power policy, project development, and markets.

  13. EIS-0470: Cape Wind Energy Project, Nantucket Sound, Offshore of

    Energy Savers [EERE]

    Massachusetts | Department of Energy 0: Cape Wind Energy Project, Nantucket Sound, Offshore of Massachusetts EIS-0470: Cape Wind Energy Project, Nantucket Sound, Offshore of Massachusetts June 25, 2014 EIS-0470: Cape Wind Energy Project, Final General Conformity Determination Cape Wind Energy Project, Final General Conformity Determination, June 23, 2014 December 21, 2012 EIS-0470: Final Environmental Impact Statement Cape Wind Energy Project, Nantucket Sound, MA December 31, 2012 EIS-0470:

  14. Renewable Energy Project Development and Financing: Commercial Scale

    Energy Savers [EERE]

    Commercial Scale Detailed Hypothetical Example of How to Sell the Power and to Whom Course Outline What we will cover...  About the DOE Office of Indian Energy Education Initiative  Commercial-Scale Process: Hypothetical Example - Project development and financing concepts - Project development and financing process and decision points - Commercial project as an investment - How to pay for commercial project  Additional Information and Resources 2 Introduction The U.S. Department of

  15. Great Plains Wind Energy Transmission Development Project

    SciTech Connect (OSTI)

    Brad G. Stevens, P.E.; Troy K. Simonsen; Kerryanne M. Leroux

    2012-06-09

    In fiscal year 2005, the Energy & Environmental Research Center (EERC) received funding from the U.S. Department of Energy (DOE) to undertake a broad array of tasks to either directly or indirectly address the barriers that faced much of the Great Plains states and their efforts to produce and transmit wind energy at the time. This program, entitled Great Plains Wind Energy Transmission Development Project, was focused on the central goal of stimulating wind energy development through expansion of new transmission capacity or development of new wind energy capacity through alternative market development. The original task structure was as follows: Task 1 - Regional Renewable Credit Tracking System (later rescoped to Small Wind Turbine Training Center); Task 2 - Multistate Transmission Collaborative; Task 3 - Wind Energy Forecasting System; and Task 4 - Analysis of the Long-Term Role of Hydrogen in the Region. As carried out, Task 1 involved the creation of the Small Wind Turbine Training Center (SWTTC). The SWTTC, located Grand Forks, North Dakota, consists of a single wind turbine, the Endurance S-250, on a 105-foot tilt-up guyed tower. The S-250 is connected to the electrical grid on the 'load side' of the electric meter, and the power produced by the wind turbine is consumed locally on the property. Establishment of the SWTTC will allow EERC personnel to provide educational opportunities to a wide range of participants, including grade school through college-level students and the general public. In addition, the facility will allow the EERC to provide technical training workshops related to the installation, operation, and maintenance of small wind turbines. In addition, under Task 1, the EERC hosted two small wind turbine workshops on May 18, 2010, and March 8, 2011, at the EERC in Grand Forks, North Dakota. Task 2 involved the EERC cosponsoring and aiding in the planning of three transmission workshops in the midwest and western regions. Under Task 3, the EERC, in collaboration with Meridian Environmental Services, developed and demonstrated the efficacy of a wind energy forecasting system for use in scheduling energy output from wind farms for a regional electrical generation and transmission utility. With the increased interest at the time of project award in the production of hydrogen as a critical future energy source, many viewed hydrogen produced from wind-generated electricity as an attractive option. In addition, many of the hydrogen production-related concepts involve utilization of energy resources without the need for additional electrical transmission. For this reason, under Task 4, the EERC provided a summary of end uses for hydrogen in the region and focused on one end product in particular (fertilizer), including several process options and related economic analyses.

  16. BA Tirunelveli Bundled Wind Project | Open Energy Information

    Open Energy Info (EERE)

    Chhattisgarh, India Zip: 492001 Sector: Wind energy Product: Raipur-based SPV for wind project development. Coordinates: 20.38971, 76.15055 Show Map Loading map......

  17. AWEA Wind Project Operations and Maintenance and Safety Seminar

    Broader source: Energy.gov [DOE]

    The AWEA Wind Project O&M and Safety Seminar is designed for owners, operators, turbine manufactures, material suppliers, wind technicians, managers, supervisors, engineers, and occupational...

  18. AWEA Wind Project O&M and Safety Seminar

    Broader source: Energy.gov [DOE]

    The AWEA Wind Project O&M and Safety Seminar is where leading owners, operators, turbine manufacturers, material suppliers, wind technicians, managers, supervisors, engineers, and occupational...

  19. Offshore Wind Market Acceleration Projects | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    of offshore wind technology research, development, and demonstration projects. Offshore Wind Energy Resources and the Environment Establishing environmental parameters is an...

  20. New England Wind Energy Education Project (NEWEEP)

    SciTech Connect (OSTI)

    Grace, Robert C.; Craddock, Kathryn A.; von Allmen, Daniel R.

    2012-04-25

    Project objective is to develop and disseminate accurate, objective information on critical wind energy issues impacting market acceptance of hundreds of land-based projects and vast off-shore wind developments proposed in the 6-state New England region, thereby accelerating the pace of wind installation from today's 140 MW towards the region's 20% by 2030 goals of 12,500 MW. Methodology: This objective will be accomplished by accumulating, developing, assembling timely, accurate, objective and detailed information representing the 'state of the knowledge' on critical wind energy issues impacting market acceptance, and widely disseminating such information. The target audience includes state agencies and local governments; utilities and grid operators; wind developers; agricultural and environmental groups and other NGOs; research organizations; host communities and the general public, particularly those in communities with planned or operating wind projects. Information will be disseminated through: (a) a series of topic-specific web conference briefings; (b) a one-day NEWEEP conference, back-to-back with a Utility Wind Interest Group one-day regional conference organized for this project; (c) posting briefing and conference materials on the New England Wind Forum (NEWF) web site and featuring the content on NEWF electronic newsletters distributed to an opt-in list of currently over 5000 individuals; (d) through interaction with and participation in Wind Powering America (WPA) state Wind Working Group meetings and WPA's annual All-States Summit, and (e) through the networks of project collaborators. Sustainable Energy Advantage, LLC (lead) and the National Renewable Energy Laboratory will staff the project, directed by an independent Steering Committee composed of a collaborative regional and national network of organizations. Major Participants - the Steering Committee: In addition to the applicants, the initial collaborators committing to form a Steering Committee consists of the Massachusetts Renewable Energy Trust; Maine Public Utilities Commission; New Hampshire office of Energy & Planning, the Connecticut Clean Energy Fund;, ISO New England; Utility Wind Interest Group; University of Massachusetts Wind Energy Center; Renewable Energy New England (a new partnership between the renewable energy industry and environmental public interest groups), and Lawrence Berkeley National Laboratory (conditionally). The Steering Committee will: (1) identify and prioritize topics of greatest interest or concern where detailed, objective and accurate information will advance the dialogue in the region; (2) identify critical outreach venues, influencers and experts; (3) direct and coordinate project staff; (4) assist project staff in planning briefings and conferences described below; (5) identify topics needing additional research or technical assistance and (6) identify and recruit additional steering committee members. Impacts/Benefits/Outcomes: By cutting through the clutter of competing and conflicting information on critical issues, this project is intended to encourage the market's acceptance of appropriately-sited wind energy generation.

  1. NREL: Distributed Grid Integration - Wind2Battery Project

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Wind2Battery Project photo of the Wind2Battery site near Luverne, Minnesota. Wind2Battery site near Luverne, Minnesota. Courtesy of Xcel Energy NREL is working with Xcel Energy to ...

  2. AWEA Wind Project O&M and Safety Conference 2016

    Broader source: Energy.gov [DOE]

    The American Wind Energy Association Wind Project O&M and Safety Conference is where leading owners, operators, turbine manufacturers, material suppliers, wind technicians, managers,...

  3. NREL Releases RFP for Distributed Wind Turbine Competitiveness Improvement Projects

    Broader source: Energy.gov [DOE]

    In support of DOE's efforts to further develop distributed wind technology, NREL's National Wind Technology Center has released a Request for Proposal for the following Distributed Wind Turbine Competitiveness Improvement Projects on the Federal Business

  4. Hopi Tribe - Utility-Scale Wind Project and Sustainability Program

    Energy Savers [EERE]

    Hopi Wind Project HCAPP ( Hopi Clean Air Project Hopi Clean Air Project) staff Jefferson James, Project Manager & Randy Selestewa, Energy/Utility Specialist Feasibility Study for a Hopi Utility Feasibility Study for a Hopi Utility - - Scale Wind Scale Wind Project Project MET at Hopi MET at Hopi 12.5 miles north east of Hotevilla Village 50 meter MET tower collecting data from the wind Wind Energy Can Benefit The Hopi Tribe Wind Energy Can Benefit The Hopi Tribe New Economic Development New

  5. Environmental Impacts and Siting of Wind Projects | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Environmental Impacts and Siting of Wind Projects Environmental Impacts and Siting of Wind Projects A trained falcon, equipped with a GPS and a VHF tracker, gathers radar data that is helping scientists improve bird detection technologies at wind facilities. A trained falcon, equipped with a GPS and a VHF tracker, gathers radar data that is helping scientists improve bird detection technologies at wind facilities. The Wind Program works to remove barriers to wind power deployment and to increase

  6. Energy Department Offers Conditional Commitment to Cape Wind Offshore Wind Generation Project

    Broader source: Energy.gov [DOE]

    The Department of Energy today announced the first step toward issuing a $150 million loan guarantee to support the construction of the Cape Wind offshore wind project with a conditional commitment to Cape Wind Associates, LLC.

  7. Tribal Renewable Energy Advanced Course: Commercial Scale Project

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Development | Department of Energy Commercial Scale Project Development Tribal Renewable Energy Advanced Course: Commercial Scale Project Development Watch the DOE Office of Indian Energy advanced course presentation entitled "Tribal Renewable Energy Project Development and Financing: Commercial Scale" by clicking on the .swf link below. You can also download a PDF of the PowerPoint slides. This course provides in-depth information on the project development and financing process

  8. EIS-0418: PrairieWinds Project, South Dakota

    Broader source: Energy.gov [DOE]

    This EIS analyzes DOE's decision to approve the interconnection request from PrairieWinds for their South Dakota PrairieWinds Project, a 151.5-megawatt (MW) nameplate capacity wind powered generation facility, including 101 General Electric 1.5-MW wind turbine generators, electrical collector lines, collector substation, transmission line, communications system, and wind turbine service access roads.

  9. Linkages from DOE's Wind Energy Program to Commercial Renewable Power Generation

    Broader source: Energy.gov [DOE]

    This report discusses linkages from the U.S. Department of Energy's Wind Energy Program research and development to commercial renewable power generation.

  10. New Report Shows Trend Toward Larger Offshore Wind Systems, with 11 Advanced Stage Projects Proposed in U.S. Waters

    Broader source: Energy.gov [DOE]

    The Energy Department today released a new report showing progress for the U.S. offshore wind energy market in 2012, including the completion of two commercial lease auctions for federal Wind Energy Areas and 11 commercial-scale U.S. projects repre

  11. Wind for Schools Project Curriculum Brief (Fact Sheet)

    SciTech Connect (OSTI)

    Not Available

    2010-08-01

    The U.S. Department of Energy's (DOE's) 20% Wind Energy by 2030 report recommends expanding education to ensure a trained workforce to meet the projected growth of the wind industry and deployment. Although a few U.S. higher education institutions offer wind technology education programs, most are found in community and technical colleges, resulting in a shortage of programs preparing highly skilled graduates for wind industry careers. Further, the United States lags behind Europe (which has more graduate programs in wind technology design and manufacturing) and is in danger of relinquishing the economic benefits of domestic production of wind turbines and related components and services to European countries. DOE's Wind Powering America initiative launched the Wind for Schools project to develop a wind energy knowledge base among future leaders of our communities, states, and nation while raising awareness about wind energy's benefits. This fact sheet provides an overview of wind energy curricula as it relates to the Wind for Schools project.

  12. Shoshone Tribe of the Wind River Reservation- 2006 Project

    Broader source: Energy.gov [DOE]

    The tribe will determine the feasibility of developing a commercial wind facility on the reservation to maximize the economic benefits and create employment for tribal members.

  13. Wind Turbine Scaling Enables Projects to Reach New Heights |...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Turbine Scaling Enables Projects to Reach New Heights Wind Turbine Scaling Enables Projects to Reach New Heights August 18, 2014 - 9:42am Addthis Turbines at the National Wind ...

  14. Pantex signing ceremony kicks off wind farm project | National...

    National Nuclear Security Administration (NNSA)

    signing ceremony kicks off wind farm project Tuesday, January 28, 2014 - 1:48pm U.S. ... at the Pantex Plant Thursday to make their mark on an important wind project at the Plant. ...

  15. Project Profile: Commercial Development of an Advanced Linear...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Commercial Development of an Advanced Linear-Fresnel-Based CSP Concept Project Profile: Commercial Development of an Advanced Linear-Fresnel-Based CSP Concept SkyFuel logo SkyFuel, ...

  16. N.A.T.I.V.E. District Kayenta Wind Project 1 | Open Energy Information

    Open Energy Info (EERE)

    - Yankton School District Wind Project

  17. Papillion-LaVista South High School Wind Project | Open Energy...

    Open Energy Info (EERE)

    - Northwestern High School Wind Project

  18. N.A.T.I.V.E. District Kayenta Wind Project 3 | Open Energy Information

    Open Energy Info (EERE)

    - Yankton School District Wind Project

  19. U.S. Department of Energy Wind and Water Power Program Funding in the United States: Conventional Hydropower Projects, FY 2008 … FY 2010

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    OFFSHORE WIND PROJECTS Fiscal Years 2006 - 2016 WIND AND WATER POWER TECHNOLOGIES OFFICE WIND AND WATER POWER TECHNOLOGIES OFFICE WIND AND WATER POWER TECHNOLOGIES OFFICE 1 Introduction Wind and Water Power Technologies Office The Wind and Water Power Technologies Office (WWPTO), within the U.S Department of Energy's (DOE's) Office of Energy Efficiency and Renewable Energy (EERE), supports the development, deployment, and commercialization of wind and water power technologies. WWPTO works with a

  20. Wind-To-Hydrogen Energy Pilot Project

    SciTech Connect (OSTI)

    Ron Rebenitsch; Randall Bush; Allen Boushee; Brad G. Stevens; Kirk D. Williams; Jeremy Woeste; Ronda Peters; Keith Bennett

    2009-04-24

    WIND-TO-HYDROGEN ENERGY PILOT PROJECT: BASIN ELECTRIC POWER COOPERATIVE In an effort to address the hurdles of wind-generated electricity (specifically wind's intermittency and transmission capacity limitations) and support development of electrolysis technology, Basin Electric Power Cooperative (BEPC) conducted a research project involving a wind-to-hydrogen system. Through this effort, BEPC, with the support of the Energy & Environmental Research Center at the University of North Dakota, evaluated the feasibility of dynamically scheduling wind energy to power an electrolysis-based hydrogen production system. The goal of this project was to research the application of hydrogen production from wind energy, allowing for continued wind energy development in remote wind-rich areas and mitigating the necessity for electrical transmission expansion. Prior to expending significant funding on equipment and site development, a feasibility study was performed. The primary objective of the feasibility study was to provide BEPC and The U.S. Department of Energy (DOE) with sufficient information to make a determination whether or not to proceed with Phase II of the project, which was equipment procurement, installation, and operation. Four modes of operation were considered in the feasibility report to evaluate technical and economic merits. Mode 1 - scaled wind, Mode 2 - scaled wind with off-peak, Mode 3 - full wind, and Mode 4 - full wind with off-peak In summary, the feasibility report, completed on August 11, 2005, found that the proposed hydrogen production system would produce between 8000 and 20,000 kg of hydrogen annually depending on the mode of operation. This estimate was based on actual wind energy production from one of the North Dakota (ND) wind farms of which BEPC is the electrical off-taker. The cost of the hydrogen produced ranged from $20 to $10 per kg (depending on the mode of operation). The economic sensitivity analysis performed as part of the feasibility study showed that several factors can greatly affect, both positively and negatively, the "per kg" cost of hydrogen. After a September 15, 2005, meeting to evaluate the advisability of funding Phase II of the project DOE concurred with BEPC that Phase I results did warrant a "go" recommendation to proceed with Phase II activities. The hydrogen production system was built by Hydrogenics and consisted of several main components: hydrogen production system, gas control panel, hydrogen storage assembly and hydrogen-fueling dispenser The hydrogen production system utilizes a bipolar alkaline electrolyzer nominally capable of producing 30 Nm3/h (2.7 kg/h). The hydrogen is compressed to 6000 psi and delivered to an on-site three-bank cascading storage assembly with 80 kg of storage capacity. Vehicle fueling is made possible through a Hydrogenics-provided gas control panel and dispenser able to fuel vehicles to 5000 psi. A key component of this project was the development of a dynamic scheduling system to control the wind energy's variable output to the electrolyzer cell stacks. The dynamic scheduling system received an output signal from the wind farm, processed this signal based on the operational mode, and dispatched the appropriate signal to the electrolyzer cell stacks. For the study BEPC chose to utilize output from the Wilton wind farm located in central ND. Site design was performed from May 2006 through August 2006. Site construction activities were from August to November 2006 which involved earthwork, infrastructure installation, and concrete slab construction. From April - October 2007, the system components were installed and connected. Beginning in November 2007, the system was operated in a start-up/shakedown mode. Because of numerous issues, the start-up/shakedown period essentially lasted until the end of January 2008, at which time a site acceptance test was performed. Official system operation began on February 14, 2008, and continued through the end of December 2008. Several issues continued to prevent consistent operation, resulting in operation of the system in fits and starts. During the operational period, three ramp tests were performed on the electrolyzer cell stacks to evaluate cell stack degradation, if present. In addition, from December 23 - 30 2008, the hydrogen system was operated using Mode 1 protocol. From February 14, 2008 - December 31, 2008, the system produced a total of just less than 26,000,000 liters (2320 kg), including approximately 3,300,000 liters (295 kg) of hydrogen during Mode 1 operation. Unfortunately, the chronic shutdown issues prevented consistent operation and, therefore, did not allow for any accurate economic analysis as originally intended. With that said, much valuable experience was gained in the form of "lessons learned," and the project served as an extremely valuable platform for educating the public.

  1. Project Reports for Chaninik Wind Group- 2010 Project

    Broader source: Energy.gov [DOE]

    The goals of this project are to reduce the consumption of fossil fuel by 40% in four Lower Kuskokwim Alaska villages and use wind energy to displace 200,000 gallons of diesel fuel, 70,000 of which is now being used to generate power, and 130,000 of which will be captured and stored for use as heat.

  2. EIS-0441: Mohave County Wind Farm Project, Mohave County, Arizona...

    Office of Environmental Management (EM)

    as a cooperating agency, evaluated the environmental impacts of a proposed wind energy project on public lands in Mohave County, Arizona. Power generated by this project...

  3. Commercial-Scale Renewable Energy Projects - Considerations and...

    Office of Environmental Management (EM)

    Ute Mountain Ute Tribe COMMERCIAL SCALE RENEWABLE ENERGY PROJECTS CONSIDERATIONS AND TRANSMISSION POTENTIAL Scott Clow Environmental Programs Director DOE-WAPA Webinar March 30, ...

  4. Commercial-Scale Renewable Energy Project Development Workshop...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Workshop: Colorado Commercial-Scale Renewable Energy Project Development Workshop: Colorado July 29, 2014 - 9:52am Addthis July 29-31, 2014 Golden, Colorado National Renewable ...

  5. Tribal Renewable Energy Advanced Course: Commercial Scale Project...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Tribal Renewable Energy Advanced Course: Commercial Scale Project Development Watch the DOE Office of Indian Energy advanced course presentation entitled "Tribal Renewable Energy ...

  6. Commercial-Scale Renewable Energy Project Development and Finance Workshop

    Broader source: Energy.gov [DOE]

    Agenda for the Office of Indian Energy Commercial-Scale Renewable Energy Project Development and Finance Workshop July 9-11.

  7. 20 MW Maibarara Geothermal Power Project Starts Commercial Operations...

    Open Energy Info (EERE)

    02092014 DOI Not Provided Check for DOI availability: http:crossref.org Online Internet link for 20 MW Maibarara Geothermal Power Project Starts Commercial Operations...

  8. EA-1581: Sand Hills Wind Project, Wyoming

    Broader source: Energy.gov [DOE]

    The Bureau of Land Management, with DOE’s Western Area Power Administration as a cooperating agency, was preparing this EA to evaluate the environmental impacts of a proposal to construct, operate, and maintain the Sand Hills Wind Energy Facility on private and federal lands in Albany County, Wyoming. If the proposed action had been implemented, Western would have interconnected the proposed facility to an existing transmission line. This project has been canceled.

  9. Renewable Energy Project Development and Financing: Commercial...

    Office of Environmental Management (EM)

    About the DOE Office of Indian Energy Education Initiative Commercial-Scale ... 2 Introduction The U.S. Department of Energy (DOE) Office of Indian Energy Policy and ...

  10. Commercial-Scale Project Development and Finance Workshop: Colorado...

    Energy Savers [EERE]

    Project Development and Finance Workshop: Colorado Commercial-Scale Project Development and Finance Workshop: Colorado September 1, 2015 - 12:00pm Addthis Sept. 1-3, 2015 Golden, ...

  11. Upcoming Funding Opportunity for Wind Forecasting Improvement Project in

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Complex Terrain | Department of Energy for Wind Forecasting Improvement Project in Complex Terrain Upcoming Funding Opportunity for Wind Forecasting Improvement Project in Complex Terrain February 12, 2014 - 10:47am Addthis On February 11, 2014 the Wind Program announced a Notice of Intent to issue a funding opportunity entitled "Wind Forecasting Improvement Project in Complex Terrain." By researching the physical processes that take place in complex terrain, this funding would

  12. 2011 DOE Funded Offshore Wind Project Updates | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    2011 DOE Funded Offshore Wind Project Updates 2011 DOE Funded Offshore Wind Project Updates September 12, 2014 - 10:52am Addthis For the past few years, much of the U.S. Department of Energy's (DOE's) Wind Program research and development efforts have been focused on accelerating the development and deployment of offshore wind energy technology. In 2011, DOE awarded $43 million to 41 projects across 20 states to speed technical innovations, lower costs, and shorten the timeline for deploying

  13. AWEA Wind Resource & Project Energy Assessment Conference | Department of

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Energy Resource & Project Energy Assessment Conference AWEA Wind Resource & Project Energy Assessment Conference September 27, 2016 8:00AM CDT to September 28, 2016 5:00PM CDT Minneapolis, MN Join the wind industry's leading owners, project developers, and wind assessors as they share latest challenges facing the wind resource assessment community. During this technical event you will explore the industry's needs, focus on state-of-the-art techniques and technologies, and provide

  14. Commercial-Scale Renewable Energy Project Development Workshop: Colorado |

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Department of Energy Workshop: Colorado Commercial-Scale Renewable Energy Project Development Workshop: Colorado July 29, 2014 - 9:52am Addthis July 29-31, 2014 Golden, Colorado National Renewable Energy Laboratory The Office of Indian Energy hosted a Commercial-Scale Renewable Energy Project Development and Finance Workshop July 29-31, 2014, at the National Renewable Energy Laboratory in Golden, Colorado. Download the agenda and presentations. Addthis Related Articles Commercial-Scale

  15. Commercial Building Energy Efficiency Education Project

    SciTech Connect (OSTI)

    2013-01-13

    The primary objective of this grant is to educate the public about carbon emissions and the energy-saving and job-related benefits of commercial building energy efficiency. investments in Illinois.

  16. Revealing the Hidden Value that the Federal Investment Tax Credit and Treasury Cash Grant Provide To Community Wind Projects

    SciTech Connect (OSTI)

    Bolinger, Mark A.

    2009-12-14

    Although the global financial crisis of 2008/2009 has slowed wind power development in general, the crisis has, in several respects, been a blessing in disguise for community wind project development in the United States. For xample, the crisis-induced slowdown in the broader commercial wind market has, for the first time since 2004, created slack in the supply chain, creating an opportunity for shovel-ready community wind projects to finally proceed towards onstruction. Many such projects had been forced to wait on the sidelines as the commercial wind boom of 2005-2008 consumed virtually all available resources needed to complete a wind project (e.g., turbines, cranes, contractors).

  17. Wind for Schools Project Power System Brief, Wind Powering America Fact Sheet Series

    SciTech Connect (OSTI)

    Baring-Gould, I.

    2009-05-01

    Wind Powering America's (WPA's) Wind for Schools project uses a basic system configuration for each school project. The system incorporates a single SkyStream wind turbine, a 70-ft guyed tower, disconnect boxes at the base of the turbine and at the school, and an interconnection to the school's electrical system. This document provides a detailed description of each system component.

  18. EIS-0374: Klondike III/ Bigelow Canyon Wind Integration Project, OR

    Broader source: Energy.gov [DOE]

    This EIS analyzes BPA's decision to approve an interconnection requested by PPM Energy, Inc. (PPM) to integrate electrical power from their proposed Klondike III Wind roject (Wind Project) into the Federal Columbia River Transmission System (FCRTS).

  19. U.S. Department of Energy Wind and Water Power Program Funding in the United States: Conventional Hydropower Projects, FY 2008 … FY 2010

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Technologies Office Funding in the United States: HYDROPOWER PROJECTS Fiscal Years 2008 - 2015 WIND AND WATER POWER TECHNOLOGIES OFFICE WIND AND WATER POWER TECHNOLOGIES OFFICE WIND AND WATER POWER TECHNOLOGIES OFFICE 1 Introduction Wind and Water Power Technologies Office The Wind and Water Power Technologies Office (WWPTO), within the U.S. Department of Energy's (DOE's) Office of Energy Efficiency and Renewable Energy (EERE), supports the development, deployment, and commercialization of wind

  20. U.S. Department of Energy Wind and Water Power Program Funding in the United States: Conventional Hydropower Projects, FY 2008 … FY 2010

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    MARINE AND HYDROKINETIC ENERGY PROJECTS Fiscal Years 2008 - 2015 WIND AND WATER POWER TECHNOLOGIES OFFICE WIND AND WATER POWER TECHNOLOGIES OFFICE 2 WIND AND WATER POWER TECHNOLOGIES OFFICE 1 Introduction Wind and Water Power Technologies Office The Wind and Water Power Technologies Office (WWPTO), within the U.S. Department of Energy's (DOE's) Office of Energy Efficiency and Renewable Energy (EERE), supports the development, deployment, and commercialization of wind and water power

  1. Commercial-Scale Project Development and Finance Workshop: Colorado |

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Department of Energy Project Development and Finance Workshop: Colorado Commercial-Scale Project Development and Finance Workshop: Colorado September 1, 2015 - 12:00pm Addthis Sept. 1-3, 2015 Golden, Colorado National Renewable Energy Laboratory The DOE Office of Indian Energy hosted a Commercial-Scale Renewable Energy Project Development and Finance Workshop on Sept. 1-3, 2015, at the National Renewable Energy Laboratory in Golden, Colorado. Download workshop agenda and presentations.

  2. Offshore Wind Advanced Technology Demonstration Projects | Department of

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Energy Advanced Technology Demonstration Projects Offshore Wind Advanced Technology Demonstration Projects With roughly 80% of the U.S. electricity demand originating from coastal states, offshore wind is a crucial renewable resource to be incorporated in the country's clean energy mix. Designed to reduce the cost of offshore wind energy through the development and deployment of innovative technologies, the Department of Energy has selected three Offshore Wind Advanced Technology

  3. Searchlight Wind Energy Project FEIS Appendix A

    Office of Environmental Management (EM)

    Statement Public Meetings February 21 - 23, 2012 * An approximately 200 megawatt wind energy facility and associated infrastructure proposed by Searchlight Wind Energy, LLC * ...

  4. Project Reports for Shoshone Tribe of the Wind River Reservation- 2006 Project

    Broader source: Energy.gov [DOE]

    The tribe will determine the feasibility of developing a commercial wind facility on the reservation to maximize the economic benefits and create employment for tribal members.

  5. Three Offshore Wind Advanced Technology Demonstration Projects Receive

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Phase 2 Funding | Department of Energy Offshore Wind Advanced Technology Demonstration Projects Receive Phase 2 Funding Three Offshore Wind Advanced Technology Demonstration Projects Receive Phase 2 Funding September 11, 2014 - 3:16pm Addthis The U.S. Department of Energy (DOE) awarded additional funding to three of the seven projects from the Offshore Wind Advanced Technology Demonstration Funding Opportunity. Dominion Virginia Power, Fishermen's Energy of New Jersey, and Principle Power

  6. Fact Sheet: Tehachapi Wind Energy Storage Project (May 2014) | Department

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    of Energy Tehachapi Wind Energy Storage Project (May 2014) Fact Sheet: Tehachapi Wind Energy Storage Project (May 2014) The Tehachapi Wind Energy Storage Project (TSP) Battery Energy Storage System (BESS) consists of an 8 MW-4 hour (32 MWh) lithium-ion battery and a smart inverter system that is cutting-edge in scale and application. Southern California Edison (SCE) will test the BESS for 24 months to determine its capability and effectiveness to support 13 operational users. For more

  7. EA-1902: Northern Wind Project, Roberts County, South Dakota...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    available on the project webpage, http:www.wapa.govugpEnvironmentNorthernWindFarm.htm. Public Comment Opportunities None available at this time. Documents Available for...

  8. EWIS European wind integration study (Smart Grid Project) (Czech...

    Open Energy Info (EERE)

    Czech Republic) Jump to: navigation, search Project Name EWIS European wind integration study Country Czech Republic Coordinates 49.817493, 15.472962 Loading map......

  9. EA-1985: Virginia Offshore Wind Technology Advancement Project...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    EA-1985: Virginia Offshore Wind Technology Advancement Project (VOWTAP), 24 nautical miles ... (OCS EISEA BOEM 2014-1000 and DOEEA-1985). http:www.boem.govVOWTAP PUBLIC ...

  10. EWIS European wind integration study (Smart Grid Project) (Germany...

    Open Energy Info (EERE)

    Germany) Jump to: navigation, search Project Name EWIS European wind integration study Country Germany Coordinates 51.165691, 10.451526 Loading map... "minzoom":false,"mapping...

  11. EWIS European wind integration study (Smart Grid Project) (France...

    Open Energy Info (EERE)

    France) Jump to: navigation, search Project Name EWIS European wind integration study Country France Coordinates 45.897655, 2.021484 Loading map... "minzoom":false,"mappingser...

  12. Wind-To-Hydrogen Project: Electrolyzer Capital Cost Study

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    2008 Technical Report Wind-To-Hydrogen Project: NREL... H271.3730 National Renewable Energy Laboratory 1617 Cole ... hydrogen on a scale much greater than current production. ...

  13. EWIS European wind integration study (Smart Grid Project) (Spain...

    Open Energy Info (EERE)

    Spain) Jump to: navigation, search Project Name EWIS European wind integration study Country Spain Coordinates 40.522152, -4.163818 Loading map... "minzoom":false,"mappingserv...

  14. EWIS European wind integration study (Smart Grid Project) (United...

    Open Energy Info (EERE)

    United Kingdom) Jump to: navigation, search Project Name EWIS European wind integration study Country United Kingdom Coordinates 55.378052, -3.435973 Loading map......

  15. EWIS European wind integration study (Smart Grid Project) (Denmark...

    Open Energy Info (EERE)

    search Project Name EWIS European wind integration study Country Denmark Coordinates 56.26392, 9.501785 Loading map... "minzoom":false,"mappingservice":"googlemaps3","type...

  16. World Energy Projection System Plus Model Documentation: Commercial Model

    Reports and Publications (EIA)

    2011-01-01

    This report documents the objectives, analytical approach and development of the World Energy Projection System Plus (WEPS ) Commercial Model. It also catalogues and describes critical assumptions, computational methodology, parameter estimation techniques, and model source code.

  17. Commercial-Scale Renewable Energy Project Development and Finance Workshop:

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Colorado | Department of Energy and Finance Workshop: Colorado Commercial-Scale Renewable Energy Project Development and Finance Workshop: Colorado July 9, 2013 - 5:27pm Addthis July 9-11, 2013 Golden, Colorado National Renewable Energy Laboratory The Office of Indian Energy hosted a Commercial-Scale Renewable Energy Project Development and Finance Workshop July 9-11 at the National Renewable Energy Laboratory in Golden, Colorado. Twenty participants from 13 Tribes took part in this training

  18. Hallmark Project Commercialization of the Secure SCADA Communications

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Protocol, a cryptographic security solution for device-to-device communication | Department of Energy Project Commercialization of the Secure SCADA Communications Protocol, a cryptographic security solution for device-to-device communication Hallmark Project Commercialization of the Secure SCADA Communications Protocol, a cryptographic security solution for device-to-device communication Increased connectivity and automation in the control systems that manage the nation's energy

  19. MHK Projects/Portugal Pre Commercial Pilot Project | Open Energy...

    Open Energy Info (EERE)

    AWS Ocean Energy formerly Oceanergia Project Technology *MHK TechnologiesArchimedes Wave Swing Project Licensing Environmental Monitoring and Mitigation Efforts See...

  20. Community Wind Handbook/What Is a Small Community Wind Project...

    Open Energy Info (EERE)

    Specifications * Submit Permit Applications * Find an Installer * Purchase Equipment * Plan for Maintenance What Is a Small Community Wind Project? Three Excel 10S turbines on...

  1. Final Project Report, Bristol Bay Native Corporation Wind and Hydroelectric Feasibility Study

    SciTech Connect (OSTI)

    Vaught, Douglas J.

    2007-03-31

    The Bristol Bay Native Corporation (BBNC) grant project focused on conducting nine wind resource studies in eight communities in the Bristol Bay region of southwest Alaska and was administered as a collaborative effort between BBNC, the Alaska Energy Authority, Alaska Village Electric Cooperative, Nushagak Electric Cooperative (NEC), Naknek Electric Association (NEA), and several individual village utilities in the region. BBNCs technical contact and the project manager for this study was Douglas Vaught, P.E., of V3 Energy, LLC, in Eagle River, Alaska. The Bristol Bay region of Alaska is comprised of 29 communities ranging in size from the hub community of Dillingham with a population of approximately 3,000 people, to a few Native Alaska villages that have a few tens of residents. Communities chosen for inclusion in this project were Dillingham, Naknek, Togiak, New Stuyahok, Kokhanok, Perryville, Clarks Point, and Koliganek. Selection criteria for conduction of wind resource assessments in these communities included population and commercial activity, utility interest, predicted Class 3 or better wind resource, absence of other sources of renewable energy, and geographical coverage of the region. Beginning with the first meteorological tower installation in October 2003, wind resource studies were completed at all sites with at least one year, and as much as two and a half years, of data. In general, the study results are very promising for wind power development in the region with Class 6 winds measured in Kokhanok; Class 4 winds in New Stuyahok, Clarks Point, and Koliganek; Class 3 winds in Dillingham, Naknek, and Togiak; and Class 2 winds in Perryville. Measured annual average wind speeds and wind power densities at the 30 meter level varied from a high of 7.87 meters per second and 702 watts per square meter in Kokhanok (Class 6 winds), to a low of 4.60 meters per second and 185 watts per square meter in Perryville (Class 2 winds).

  2. Wind Energy 101 Webinar Series Part 5: Project Development and...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Energy 101 Webinar Series Part 5: Project Development and Siting Wind Energy 101 Webinar Series Part 5: Project Development and Siting August 6, 2015 2:00PM to 3:00PM EDT During...

  3. NREL Distributes Wind Competitiveness Improvement Project Round Four

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Funding - News Releases | NREL NREL Distributes Wind Competitiveness Improvement Project Round Four Funding May 13, 2016 The Energy Department's (DOE) National Renewable Energy Laboratory (NREL) is awarding four subcontracts under the fourth round of funding through DOE's Distributed Wind Competitiveness Improvement Project (CIP). The CIP aims to help manufacturers of small and mid-size wind turbines improve their turbine design and manufacturing processes while reducing costs and improving

  4. Energy Department Announces Innovative Offshore Wind Energy Projects |

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Department of Energy Innovative Offshore Wind Energy Projects Energy Department Announces Innovative Offshore Wind Energy Projects May 7, 2014 - 2:05pm Addthis NEWS MEDIA CONTACT (202) 586-4940 WASHINGTON -- As a part of the Administration's all-of-the-above energy strategy, the Energy Department today announced the selection of three pioneering offshore wind demonstrations to receive up to $47 million each over the next four years to deploy innovative, grid-connected systems in federal and

  5. EA-1902: Northern Wind Project, Roberts County, South Dakota

    Broader source: Energy.gov [DOE]

    DOE’s Western Area Power Administration is preparing an EA that evaluates the potential environmental impacts of the proposed Northern Wind Project in Summit, Roberts County, South Dakota. Additional information is available on the project webpage, http://www.wapa.gov/ugp/Environment/NorthernWindFarm.htm.

  6. Wind for Schools Project Curriculum Brief (Fact Sheet), Wind And Water Power Program (WWPP)

    Wind Powering America (EERE)

    Introduction The U.S. Department of Energy's (DOE's) 20% Wind Energy by 2030 report recommends expanding educa- tion to ensure a trained workforce to meet the projected growth of the wind industry and deployment. Although a few U.S. higher education institu- tions offer wind technology education programs, most are found in community and technical colleges, resulting in a shortage of programs preparing highly skilled graduates for wind industry careers. Further, the United States lags behind

  7. Searchlight Wind Energy Project FEIS Appendix C

    Office of Environmental Management (EM)

    C Page | C 19B Appendix C: BLM Wind Energy Development Program Policies and BMPs A-1 ATTACHMENT A BLM WIND ENERGY DEVELOPMENT PROGRAM POLICIES AND BEST MANAGEMENT PRACTICES (BMPS) ...

  8. AWEA Wind Project Siting Seminar 2015

    Broader source: Energy.gov [DOE]

    As the wind industry has grown and evolved, the scope and complexity of siting and environmental compliance issues has evolved and increased, and now affects all phases of a wind facility's life...

  9. U.S. Department of Energy Wind and Water Power Program Funding in the United States: Conventional Hydropower Projects, FY 2008 … FY 2010

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Wind Integration, Transmission, and Resource Assessment and Characterization Projects Fiscal Years 2006 - 2014 WIND PROGRAM 1 Photo from NREL Introduction Wind and Water Power Technologies Office The Wind and Water Power Technologies Office (WWPTO), within the U.S. Department of Energy's (DOE's) Office of Energy Efficiency and Renewable Energy (EERE), supports the development, deployment, and commercial- ization of wind and water power technologies. WWPTO works with a variety of stakeholders to

  10. U.S. Department of Energy Wind and Water Power Program Funding in the United States: Conventional Hydropower Projects, FY 2008 … FY 2010

    Energy Savers [EERE]

    Wind Integration, Transmission, and Resource Assessment and Characterization Projects Fiscal Years 2006 - 2014 WIND PROGRAM 1 Photo from NREL Introduction Wind and Water Power Technologies Office The Wind and Water Power Technologies Office (WWPTO), within the U.S. Department of Energy's (DOE's) Office of Energy Efficiency and Renewable Energy (EERE), supports the development, deployment, and commercial- ization of wind and water power technologies. WWPTO works with a variety of stakeholders to

  11. Final Scientific Report - Wind Powering America State Outreach Project

    SciTech Connect (OSTI)

    Sinclair, Mark; Margolis, Anne

    2012-02-01

    The goal of the Wind Powering America State Outreach Project was to facilitate the adoption of effective state legislation, policy, finance programs, and siting best practices to accelerate public acceptance and development of wind energy. This was accomplished by Clean Energy States Alliance (CESA) through provision of informational tools including reports and webinars as well as the provision of technical assistance to state leaders on wind siting, policy, and finance best practices, identification of strategic federal-state partnership activities for both onshore and offshore wind, and participation in regional wind development collaboratives. The Final Scientific Report - Wind Powering America State Outreach Project provides a summary of the objectives, activities, and outcomes of this project as accomplished by CESA over the period 12/1/2009 - 11/30/2011.

  12. Feasibility Study for a Hopi Utility-Scale Wind Project

    SciTech Connect (OSTI)

    Kendrick Lomayestewa

    2011-05-31

    The goal of this project was to investigate the feasibility for the generation of energy from wind and to parallel this work with the development of a tribal utility organization capable of undertaking potential joint ventures in utility businesses and projects on the Hopi reservation. The goal of this project was to investigate the feasibility for the generation of energy from wind and to parallel this work with the development of a tribal utility organization capable of undertaking potential joint ventures in utility businesses and projects on the Hopi reservation. Wind resource assessments were conducted at two study sites on Hopi fee simple lands located south of the city of Winslow. Reports from the study were recently completed and have not been compared to any existing historical wind data nor have they been processed under any wind assessment models to determine the output performance and the project economics of turbines at the wind study sites. Ongoing analysis of the wind data and project modeling will determine the feasibility of a tribal utility-scale wind energy generation.

  13. South Dakota PrairieWinds Project Executive Summary Executive Summary

    Office of Environmental Management (EM)

    PrairieWinds Project Executive Summary Executive Summary This executive summary is included in the beginning of the Draft Environmental Impact Statement (DEIS) for the South Dakota PrairieWinds Project (Proposed Project) and is also intended to serve as a stand-alone document to provide a summary of the information contained within the full text version of the DEIS. For additional information on the topics contained within this summary please see the DEIS. S.1 INTRODUCTION Basin Electric Power

  14. South Dakota PrairieWinds Project

    Office of Environmental Management (EM)

    Department of Energy South Carolina Opens Nation's Largest Wind Drivetrain Testing Facility South Carolina Opens Nation's Largest Wind Drivetrain Testing Facility November 21, 2013 - 11:03am Addthis NEWS MEDIA CONTACT (202) 586-4940 NORTH CHARLESTON, S.C. - Today, U.S. Deputy Secretary of Energy Daniel Poneman joined with officials from Clemson University to dedicate the nation's largest and one of the world's most advanced wind energy testing facilities in North Charleston, S.C. Led by

  15. KIBSD Wind Project | Open Energy Information

    Open Energy Info (EERE)

    energy Facility Type Community Wind Facility Status In Service Owner KIBSD Address 722 Mill Bay Rd. Location Kodiak Island Borough, Alaska Zip 99615 Coordinates 57.793468,...

  16. Wind Project Permitting | Open Energy Information

    Open Energy Info (EERE)

    Development Code Beta Version 1.5. Accessed March 29, 2013. The model code presents strategies to remove obstacles, create incentives, and enact standards to encourage wind...

  17. Gaines Cavern Wind Project | Open Energy Information

    Open Energy Info (EERE)

    ess":"","icon":"","group":"","inlineLabel":"","visitedicon":"" References "AWEA-US-Wind-Industry-Market-Reports" Retrieved from "http:en.openei.orgwindex.php?titleGaine...

  18. EA-1611: Colorado Highlands Wind Project, Logan County, Colorado

    Broader source: Energy.gov [DOE]

    DOE’s Western Area Power Administration prepared an EA in 2009 to assess the potential environmental impacts of interconnecting the proposed Colorado Highlands Wind Project to Western’s transmission system. The EA analyzed a proposal for 60 wind turbine generators with a total output nameplate capacity of 90 megawatts (MW). Western prepared a supplemental EA to assess the potential environmental impacts of the proposed expansion of the project by 11 wind turbine generators that would add approximately 20 MW. Additional information is available on the Western Area Power Administration webpage for this project.

  19. N.A.T.I.V.E. District Kayenta Wind Project 2 | Open Energy Information

    Open Energy Info (EERE)

    - Yankton School District Wind Project

  20. Final Technical Report - Kotzebue Wind Power Project - Volume II

    SciTech Connect (OSTI)

    Rana Zucchi, Global Energy Concepts, LLC; Brad Reeve, Kotzebue Electric Association; DOE Project Officer - Doug Hooker

    2007-10-31

    The Kotzebue Wind Power Project is a joint undertaking of the U.S. Department of Energy (DOE); Kotzebue Electric Association (KEA); and the Alaska Energy Authority (AEA). The goal of the project is to develop, construct, and operate a wind power plant interconnected to a small isolated utility grid in an arctic climate in Northwest Alaska. The primary objective of KEA’s wind energy program is to bring more affordable electricity and jobs to remote Alaskan communities. DOE funding has allowed KEA to develop a multi-faceted approach to meet these objectives that includes wind project planning and development, technology transfer, and community outreach. The first wind turbines were installed in the summer of 1997 and the newest turbines were installed in the spring of 2007. The total installed capacity of the KEA wind power project is 1.16 MW with a total of 17 turbines rated between 65 kW and 100 kW. The operation of the wind power plant has resulted in a wind penetration on the utility system in excess of 35% during periods of low loads. This document and referenced attachments are presented as the final technical report for the U.S. Department of Energy (DOE) grant agreement DE-FG36-97GO10199. Interim deliverables previously submitted are also referenced within this document and where reasonable to do so, specific sections are incorporated in the report or attached as appendices.

  1. West Winds Wind Farm | Open Energy Information

    Open Energy Info (EERE)

    Winds Wind Farm Jump to: navigation, search Name West Winds Wind Farm Facility West Winds Sector Wind energy Facility Type Commercial Scale Wind Facility Status In Service Owner...

  2. EA-1610: Windy Hollow Wind Project, Laramie County, Wyoming

    Broader source: Energy.gov [DOE]

    This EA will evaluate the environmental impacts of a proponent request to interconnect their proposed Windy Hollow Wind Project in Laramie County, Wyoming, to DOE’s Western Area Power Administration’s transmission system.

  3. QER- Comment of Oceti Sakowin Sioux Wind Power Project

    Broader source: Energy.gov [DOE]

    Dear Secretariat: Attached please find the Comments of the Oceti Sakowin Sioux Wind Power Project, for inclusion in the record of the QER. If any questions, please direct to the undersigned.

  4. 2013 Commercial-Scale Tribal Renewable Energy Project Development and Finance Workshop Presentations and Agenda

    Broader source: Energy.gov [DOE]

    Presentations from the 2013 Commercial-Scale Tribal Renewable Energy Project Development and Finance Workshop

  5. Three Offshore Wind Advanced Technology Demonstration Projects...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Dominion Virginia Power, Fishermen's Energy of New Jersey, and Principle Power will each ... Dominion Power will install two 6-MW direct-drive wind turbines off the coast of Virginia ...

  6. Wind Project Siting Tools | Open Energy Information

    Open Energy Info (EERE)

    and Lucille Packard Foundation, is working with BLM, CDFG, and USFWS to develop a science-based regional planning framework for the high wind resource region of the eastern...

  7. Searchlight Wind Energy Project FEIS Appendix A

    Office of Environmental Management (EM)

    ... (and associated ECP) is being requested is between the FWS and Searchlight Wind Energy, LLC. Federal Agency Comments |11 Section 4.17 Cumulative Impacts Analysis has been updated. ...

  8. NREL: Hydrogen and Fuel Cells Research - Wind-to-Hydrogen Project

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    coal, oil, and natural gas. System Components The Wind2H2 project uses two wind turbine technologies: a Northern Power Systems 100-kW wind turbine and a Bergey 10-kW wind turbine. ...

  9. U.S. Department of Energy Wind and Water Power Program Funding in the United States: Conventional Hydropower Projects, FY 2008 … FY 2010

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Workforce Development Projects Report Fiscal Years 2008 - 2014 WIND PROGRAM 1 Introduction Wind and Water Power Technologies Office The Wind and Water Power Technologies Office (WWPTO), within the U.S. Department of Energy's (DOE's) Office of Energy Efficiency and Renewable Energy (EERE), supports the development, deployment, and commercialization of wind and water power technologies. WWPTO works with a variety of stakeholders to identify and support research and development (R&D) efforts

  10. Wind Powering Americas Wind for Schools Project: Summary Report

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Powering America's Wind for Schools Project Summary Report I. Baring-Gould and C. Newcomb Management Report NREL/MP-7A20-51180 June 2012 NREL is a national laboratory of the U.S. Department of Energy, Office of Energy Efficiency & Renewable Energy, operated by the Alliance for Sustainable Energy, LLC. National Renewable Energy Laboratory 15013 Denver West Parkway Golden, Colorado 80401 303-275-3000 * www.nrel.gov Contract No. DE-AC36-08GO28308 Wind Powering America's Wind for Schools Project

  11. South Dakota Geothermal Commercialization Project. Final report, July 1979-October 1985

    SciTech Connect (OSTI)

    Wegman, S.

    1985-01-01

    This report describes the activities of the South Dakota Energy Office in providing technical assistance, planning, and commercialization projects for geothermal energy. Projects included geothermal prospect identification, area development plans, and active demonstration/commercialization projects. (ACR)

  12. EA-1824: Record Hill Wind Project in Roxbury, ME | Department of Energy

    Energy Savers [EERE]

    4: Record Hill Wind Project in Roxbury, ME EA-1824: Record Hill Wind Project in Roxbury, ME July 1, 2011 EA-1824: Final Environmental Assessment Loan Guarantee to Record Hill Wind, LLC for Construction of a Wind Energy Project in Roxbury, Maine July 11, 2011 EA-1824: Finding of No Significant Impact Loan Guarantee to Record Hill Wind, LLC, for the Record Hill Wind Project, Maine

  13. EA-1801: Granite Reliable Power Wind Park Project in Coos County, NH |

    Energy Savers [EERE]

    Department of Energy 01: Granite Reliable Power Wind Park Project in Coos County, NH EA-1801: Granite Reliable Power Wind Park Project in Coos County, NH June 25, 2010 EA-1801: Final Environmental Impact Granite Reliable Power Wind Project, Coos County, New Hampshire July 23, 2010 EA-1801: Finding of No Significant Impact Granite Reliable Power Wind Project, Coos County, New Hampshire

  14. Project acceleration : making the leap from pilot to commercialization.

    SciTech Connect (OSTI)

    Borneo, Daniel R.

    2010-05-01

    Since the energy storage technology market is in a relatively emergent phase, narrowing the gap between pilot project status and commercialization is fundamental to the accelerating of this innovative market space. This session will explore regional market design factors to facilitate the storage enterprise. You will also hear about: quantifying transmission and generation efficiency enhancements; resource planning for storage; and assessing market mechanisms to accelerate storage adoption regionally.

  15. EA-1992: Funding for Principle Power, Inc., for the WindFloat Pacific Offshore Wind Demonstration Project, offshore of Coos Bay, Oregon

    Broader source: Energy.gov [DOE]

    Funding for Principle Power, Inc., for the WindFloat Pacific Offshore Wind Demonstration Project, offshore of Coos Bay, Oregon

  16. EA-1825: Limon Wind Project, Lincoln County, Colorado

    Broader source: Energy.gov [DOE]

    DOE’s Western Area Power Administration is preparing this EA to evaluate the environmental impacts of a proposal to interconnect the proposed Limon Wind Project, in Lincoln County, Colorado, to Western’s transmission grid. NOTE: Proponent has postponed development of the project and withdrawn its interconnection requeest with WAPA.

  17. EIS-0441: Mohave County Wind Farm Project, Mohave County, Arizona

    Broader source: Energy.gov [DOE]

    This EIS, prepared by the Bureau of Land Management with DOE’s Western Area Power Administration as a cooperating agency, evaluated the environmental impacts of a proposed wind energy project on public lands in Mohave County, Arizona. Power generated by this project would tie to the electrical power grid through an interconnection to one of Western’s transmission lines.

  18. Digital Book Showcases Washington Wind Project

    Broader source: Energy.gov [DOE]

    "The New American Farm" chronicles the stages of the Windy Flats/Windy Point project, from prospecting to harvest.

  19. Commercial Buildings Partnerships - Overview of Higher Education Projects

    SciTech Connect (OSTI)

    Parrish, Kristen; Robinson, Alastair; Regnier, Cindy

    2013-02-01

    The Commercial Building Partnership (CBP), a public/private, cost-shared program sponsored by the U.S. Department of Energy (DOE), paired selected commercial building owners and operators with representatives of DOE, its national laboratories, and private-sector technical experts. These teams explored energy-saving measures across building systems including some considered too costly or technologically challenging and used advanced energy modeling to achieve peak whole-building performance. Modeling results were then included in new construction or retrofit designs to achieve significant energy reductions. CBP design goals aimed to achieve 50 percent energy savings compared to ANSI/ASHRAE/IES Standard 90.1-2004 for new construction, while retrofits are designed to consume at least 30 percent less energy than either Standard 90.1-2004 or current consumption. After construction and commissioning of the project, laboratory staff continued to work with partners to collect and analyze data for verification of the actual energy reduction. CBP projects represent diverse building types in commercial real estate, including lodging, grocery, retail, higher education, office, and warehouse/storage facilities. Partners also commit to replicating low-energy technologies and strategies from their CBP projects throughout their building portfolios. As a result of CBP projects, five sector overviews (Lodging, Food Sales, General Merchandise, Higher Education, Offices) were created to capture successful strategies and recommended energy efficiency measures that could broadly be applied across these sectors. These overviews are supplemented with individual case studies providing specific details on the decision criteria, modeling results, and lessons learned on specific projects. Sector overviews and CBP case studies will also be updated to reflect verified data and replication strategies as they become available.

  20. EIS-0183: Shepherds Flat Wind Project in Gilliam and Morrow counties, OR |

    Energy Savers [EERE]

    Windy Point Wind Energy Project The Bonneville Power Administration (BPA) has decided to offer contract terms for interconnection of 250 megawatts (MW) of power to be generated by the proposed Windy Point Wind Energy Project (Wind Project) into the Federal Columbia River Transmission System (FCRTS). Windy Point Partners, LLC (WPP) propose to construct and operate the proposed Wind Project and has requested interconnection to the FCRTS.1 The Wind Project will be interconnected at BPA's Rock Creek

  1. Systems Performance Analyses of Alaska Wind-Diesel Projects; Selawik, Alaska (Fact Sheet)

    SciTech Connect (OSTI)

    Baring-Gould, I.

    2009-04-01

    This fact sheet summarizes a systems performance analysis of the wind-diesel project in Selawik, Alaska. Data provided for this project include community load data, wind turbine output, diesel plant output, thermal load data, average wind speed, average net capacity factor, optimal net capacity factor based on Alaska Energy Authority wind data, average net wind penetration, and estimated fuel savings.

  2. Systems Performance Analyses of Alaska Wind-Diesel Projects; Kotzebue, Alaska (Fact Sheet)

    SciTech Connect (OSTI)

    Baring-Gould, I.

    2009-04-01

    This fact sheet summarizes a systems performance analysis of the wind-diesel project in Kotzebue, Alaska. Data provided for this project include wind turbine output, average wind speed, average net capacity factor, and optimal net capacity factor based on Alaska Energy Authority wind data, estimated fuel savings, and wind system availability.

  3. Feasibility Study for a Hopi Utility-Scale Wind Project

    Energy Savers [EERE]

    Slide 1 October 19, 2005 Feasibility Study for a Hopi Utility-Scale Wind Project Slide 2 WIND ENERGY CAN BENEFIT HOPI TRIBE New Economic Development * Electricity export sales create new revenues for Nation (lease royalties and equity return on investment) * Potentially fund rural electrification and smaller off-grid renewable applications * Contracting work in development and construction phases * New jobs Environmental * No air pollution or toxic emissions * Virtually no water use * Low land

  4. Session: Monitoring wind turbine project sites for avian impacts

    SciTech Connect (OSTI)

    Erickson, Wally

    2004-09-01

    This third session at the Wind Energy and Birds/Bats workshop consisted of one presentation followed by a discussion/question and answer period. The focus of the session was on existing wind projects that are monitored for their impacts on birds and bats. The presentation given was titled ''Bird and Bat Fatality Monitoring Methods'' by Wally Erickson, West, Inc. Sections included protocol development and review, methodology, adjusting for scavenging rates, and adjusting for observer detection bias.

  5. EA-1777: Lincoln Electric's Wind Energy Project in Euclid, OH

    Broader source: Energy.gov [DOE]

    Lincoln Electric proposes to construct and operate a 2.5 MW single turbine wind energy project at Lincoln Electric’s World Headquarters facility located at 22800 Saint Clair Avenue, Euclid, Ohio. The wind turbine would provide 2.5 MW of renewable energy to fulfill up to ten percent (10%) of the Lincoln Electric Headquarters’ annual electricity demand and help to reduce greenhouse gas emissions.

  6. U.S. Offshore Wind Advanced Technology Demonstration Projects Public Meeting Transcript for Offshore Wind Demonstrations

    Energy Savers [EERE]

    U.S. DEPARTMENT OF ENERGY OFFICE OF ENERGY EFFICIENCY AND RENEWABLE ENERGY WIND AND WATER POWER PROGRAM + + + + + U.S. OFFSHORE WIND: ADVANCED TECHNOLOGY DEMONSTRATION PROJECTS + + + + + PUBLIC MEETING + + + + + TUESDAY FEBRUARY 7, 2012 + + + + + The Public Meeting Convened in Ballroom C & D of the L'Enfant Plaza Hotel, 480 L'Enfant Plaza, S.W., Washington, D.C., at 9:30 a.m., Jose Zayas, Program Manager, presiding. PRESENT : JOSE ZAYAS, Program Manager, Wind and Water Power Program, Office

  7. Prairie Winds Wind Farm | Open Energy Information

    Open Energy Info (EERE)

    Wind Farm Jump to: navigation, search Name Prairie Winds Wind Farm Facility Prairie Winds Sector Wind energy Facility Type Commercial Scale Wind Facility Status In Service Owner...

  8. 2014 Commercial-Scale Renewable Energy Project Development and Finance

    Energy Savers [EERE]

    2014 Collegiate Wind Competition Photos 2014 Collegiate Wind Competition Photos First place team Penn State with their trophy 1 of 19 First place team Penn State with their trophy Pennsylvania State University was selected as the first place overall winner and People's Choice winner of the Collegiate Wind Competition 2014. Photo from U.S. Department of Energy. Date taken: 2014-05-07 18:17 The Collegiate Wind Competition trophies 2 of 19 The Collegiate Wind Competition trophies Collegiate Wind

  9. Regional Test Centers Project Expands U.S. Small Wind Certification...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Regional Test Centers Project Expands U.S. Small Wind Certification Testing Capability ... partners to establish small wind Regional Test Centers (RTCs) to conduct tests on small ...

  10. Wind Integration, Transmission, and Resource Assessment and Characterization Projects, Fiscal Years 2006-2014

    SciTech Connect (OSTI)

    None, None

    2014-04-01

    This report covers the Wind and Water Power Technologies Office's Wind Integration, Transmission, and Resource Assessment and Characterization Projects from 2006 to 2014.

  11. EIS-0427: Grapevine Canyon Wind Project, Coconino County, Arizona

    Broader source: Energy.gov [DOE]

    This EIS evaluates the environmental impacts of a proposed wind energy generation project in Coconino County, Arizona, on privately owned ranch lands and trust lands administered by the Arizona State Land Department. The proposed project includes a new transmission tie-line that would cross lands administered by Coconino National Forest and interconnect with DOE’s Western Area Power Administration’s existing Glen Canyon-Pinnacle Peak transmission lines.

  12. EA-1909: South Table Wind Farm Project, Kimball County, Nebraska

    Broader source: Energy.gov [DOE]

    DOE’s Western Area Power Administration is preparing this EA to evaluate the environmental impacts of interconnecting the proposed South Table Wind Project, which would generate approximately 60 megawatts from about 40 turbines, to Western’s existing Archer-Sidney 115-kV Transmission Line in Kimball County, Nebraska.

  13. Wind Power Project Repowering: History, Economics, and Demand (Presentation)

    SciTech Connect (OSTI)

    Lantz, E.

    2015-01-01

    This presentation summarizes a related NREL technical report and seeks to capture the current status of wind power project repowering in the U.S. and globally, analyze the economic and financial decision drivers that surround repowering, and to quantify the level and timing of demand for new turbine equipment to supply the repowering market.

  14. The Wind Forecast Improvement Project (WFIP): A Public/Private Partnership

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    for Improving Short Term Wind Energy Forecasts and Quantifying the Benefits of Utility Operations | Department of Energy The Wind Forecast Improvement Project (WFIP): A Public/Private Partnership for Improving Short Term Wind Energy Forecasts and Quantifying the Benefits of Utility Operations The Wind Forecast Improvement Project (WFIP): A Public/Private Partnership for Improving Short Term Wind Energy Forecasts and Quantifying the Benefits of Utility Operations The Wind Forecast Improvement

  15. New Report Shows Domestic Offshore Wind Industry Potential, 21 Projects Planned in U.S. Waters

    Broader source: Energy.gov [DOE]

    The Energy Department today released a new report showing strong progress for the U.S. offshore wind market—including the start of construction of the nation’s first commercial-scale offshore wind...

  16. WindSENSE Project Summary: FY2009-2011

    SciTech Connect (OSTI)

    Kamath, C

    2011-09-25

    Renewable resources, such as wind and solar, are providing an increasingly larger percentage of our energy needs. To successfully integrate these intermittent resources into the power grid while maintaining its reliability, we need to better understand the characteristics and predictability of the variability associated with these power generation resources. WindSENSE, a three year project at Lawrence Livermore National Laboratory, considered the problem of scheduling wind energy on the grid from the viewpoint of the control room operator. Our interviews with operators at Bonneville Power Administration (BPA), Southern California Edison (SCE), and California Independent System Operator (CaISO), indicated several challenges to integrating wind power generation into the grid. As the percentage of installed wind power has increased, the variable nature of the generation has become a problem. For example, in the Bonneville Power Administration (BPA) balancing area, the installed wind capacity has increased from 700 MW in 2006-2007 to over 1300 MW in 2008 and more than 2600 MW in 2009. To determine the amount of energy to schedule for the hours ahead, operators typically use 0-6 hour ahead forecasts, along with the actual generation in the previous hours and days. These forecasts are obtained from numerical weather prediction (NWP) simulations or based on recent trends in wind speed in the vicinity of the wind farms. However, as the wind speed can be difficult to predict, especially in a region with complex terrain, the forecasts can be inaccurate. Complicating matters are ramp events, where the generation suddenly increases or decreases by a large amount in a short time (Figure 1, right panel). These events are challenging to predict, and given their short duration, make it difficult to keep the load and the generation balanced. Our conversations with BPA, SCE, and CaISO indicated that control room operators would like (1) more accurate wind power generation forecasts for use in scheduling and (2) additional information that can be exploited when the forecasts do not match the actual generation. To achieve this, WindSENSE had two areas of focus: (1) analysis of historical data for better insights, and (2) observation targeting for improved forecasts. The goal was to provide control room operators with an awareness of wind conditions and energy forecasts so they can make well-informed scheduling decisions, especially in the case of extreme events such as ramps.

  17. Systems Performance Analyses of Alaska Wind-Diesel Projects; Kasigluk, Alaska (Fact Sheet)

    SciTech Connect (OSTI)

    Baring-Gould, I.

    2009-04-01

    This fact sheet summarizes a systems performance analysis of the wind-diesel project in Kasigluk, Alaska. Data provided for this project include community load data, average wind turbine output, average diesel plant output, thermal load data, average net capacity factor, average net wind penetration, estimated fuel savings, and wind system availability.

  18. Systems Performance Analyses of Alaska Wind-Diesel Projects; St. Paul, Alaska (Fact Sheet)

    SciTech Connect (OSTI)

    Baring-Gould, I.

    2009-04-01

    This fact sheet summarizes a systems performance analysis of the wind-diesel project in St. Paul, Alaska. Data provided for this project include load data, average wind turbine output, average diesel plant output, dump (controlling) load, average net capacity factor, average net wind penetration, estimated fuel savings, and wind system availability.

  19. EA-1966: Sunflower Wind Project, Hebron, North Dakota

    Broader source: Energy.gov [DOE]

    Western Area Power Administration (Western) prepared an EA to evaluate potential environmental impacts of interconnecting a proposed 80 MW generating facility south of Hebron in Morton and Stark Counties, North Dakota. The proposed wind generating facility of 30-50 wind turbines encompassed approximately 9,000 acres. Ancillary facilities included an underground collection line system, a project substation, one mile of new transmission line, a new switchyard facility on the existing Dickinson-Mandan 230 kV line owned and operated by Western, one permanent meteorological tower, new access roads, and an operations and maintenance building.

  20. Low Wind Speed Turbine Development Project Report: November 4, 2002 - December 31, 2006

    SciTech Connect (OSTI)

    Mikhail, A.

    2009-01-01

    This report summarizes work conducted by Clipper Windpower under the DOE Low Wind Speed Turbine project. The objective of this project was to produce a wind turbine that can lower the cost of energy.

  1. EA-1801: Granite Reliable Power Wind Park Project in Coos County...

    Office of Environmental Management (EM)

    01: Granite Reliable Power Wind Park Project in Coos County, NH EA-1801: Granite Reliable Power Wind Park Project in Coos County, NH June 25, 2010 EA-1801: Final Environmental ...

  2. Suzlon Project VII | Open Energy Information

    Open Energy Info (EERE)

    Project VII Sector Wind energy Facility Type Commercial Scale Wind Facility Status In Service Owner Suzlon Developer Suzlon Energy Purchaser QF on SPP Location Dumas TX...

  3. The Wind Forecast Improvement Project (WFIP). A Public-Private Partnership Addressing Wind Energy Forecast Needs

    SciTech Connect (OSTI)

    Wilczak, James M.; Finley, Cathy; Freedman, Jeff; Cline, Joel; Bianco, L.; Olson, J.; Djalaova, I.; Sheridan, L.; Ahlstrom, M.; Manobianco, J.; Zack, J.; Carley, J.; Benjamin, S.; Coulter, R. L.; Berg, Larry K.; Mirocha, Jeff D.; Clawson, K.; Natenberg, E.; Marquis, M.

    2015-10-30

    The Wind Forecast Improvement Project (WFIP) is a public-private research program, the goals of which are to improve the accuracy of short-term (0-6 hr) wind power forecasts for the wind energy industry and then to quantify the economic savings that accrue from more efficient integration of wind energy into the electrical grid. WFIP was sponsored by the U.S. Department of Energy (DOE), with partners that include the National Oceanic and Atmospheric Administration (NOAA), private forecasting companies (WindLogics and AWS Truepower), DOE national laboratories, grid operators, and universities. WFIP employed two avenues for improving wind power forecasts: first, through the collection of special observations to be assimilated into forecast models to improve model initial conditions; and second, by upgrading NWP forecast models and ensembles. The new observations were collected during concurrent year-long field campaigns in two high wind energy resource areas of the U.S. (the upper Great Plains, and Texas), and included 12 wind profiling radars, 12 sodars, 184 instrumented tall towers and over 400 nacelle anemometers (provided by private industry), lidar, and several surface flux stations. Results demonstrate that a substantial improvement of up to 14% relative reduction in power root mean square error (RMSE) was achieved from the combination of improved NOAA numerical weather prediction (NWP) models and assimilation of the new observations. Data denial experiments run over select periods of time demonstrate that up to a 6% relative improvement came from the new observations. The use of ensemble forecasts produced even larger forecast improvements. Based on the success of WFIP, DOE is planning follow-on field programs.

  4. Cisco Wind Energy Wind Farm | Open Energy Information

    Open Energy Info (EERE)

    Cisco Wind Energy Wind Farm Jump to: navigation, search Name Cisco Wind Energy Wind Farm Facility Cisco Wind Energy Sector Wind energy Facility Type Commercial Scale Wind Facility...

  5. Pre-construction Activities for Phase 1 of Shu'luuk Wind Project

    SciTech Connect (OSTI)

    Connolly, Michael

    2015-07-01

    Final Report on pre-construction activities grant for the Shu'luuk Wind project on the Campo Indian Reservation

  6. Agua Caliente Wind/Solar Project at Whitewater Ranch

    SciTech Connect (OSTI)

    Hooks, Todd; Stewart, Royce

    2014-12-16

    Agua Caliente Band of Cahuilla Indians (ACBCI) was awarded a grant by the Department of Energy (DOE) to study the feasibility of a wind and/or solar renewable energy project at the Whitewater Ranch (WWR) property of ACBCI. Red Mountain Energy Partners (RMEP) was engaged to conduct the study. The ACBCI tribal lands in the Coachella Valley have very rich renewable energy resources. The tribe has undertaken several studies to more fully understand the options available to them if they were to move forward with one or more renewable energy projects. With respect to the resources, the WWR property clearly has excellent wind and solar resources. The DOE National Renewable Energy Laboratory (NREL) has continued to upgrade and refine their library of resource maps. The newer, more precise maps quantify the resources as among the best in the world. The wind and solar technology available for deployment is also being improved. Both are reducing their costs to the point of being at or below the costs of fossil fuels. Technologies for energy storage and microgrids are also improving quickly and present additional ways to increase the wind and/or solar energy retained for later use with the network management flexibility to provide power to the appropriate locations when needed. As a result, renewable resources continue to gain more market share. The transitioning to renewables as the major resources for power will take some time as the conversion is complex and can have negative impacts if not managed well. While the economics for wind and solar systems continue to improve, the robustness of the WWR site was validated by the repeated queries of developers to place wind and/or solar there. The robust resources and improving technologies portends toward WWR land as a renewable energy site. The business case, however, is not so clear, especially when the potential investment portfolio for ACBCI has several very beneficial and profitable alternatives.

  7. Sicangu Lakota Oyate, Hihan Sapa Wapaha, Tate Woilagyapi Project - 30 MW Wind Energy Facility

    Energy Savers [EERE]

    Sicangu Lakota Oyate (Rosebud Sioux Tribe) Hihan Sapa Wapaha Tate Woilagyapi Project (Owl Feather War Bonnet Wind Project) 30 MW Wind Energy Facility Phil Two Eagle, Director Ken Haukaas, Project Manager Resource Development Office Dale Osborn, President Distributed Generation Systems, Inc. (DISGEN) www.disgenonline.com Sicangu Lakota Oyate (Rosebud Sioux Tribe) Hihan Sapa Wapaha Tate Woilagyapi Project (Owl Feather War Bonnet Wind Project) Project Objectives 1. Complete all the development

  8. The T-REX valley wind intercomparison project

    SciTech Connect (OSTI)

    Schmidli, J; Billings, B J; Burton, R; Chow, F K; De Wekker, S; Doyle, J D; Grubisic, V; Holt, T R; Jiang, Q; Lundquist, K A; Ross, A N; Sheridan, P; Vosper, S; Whiteman, C D; Wyszogrodzki, A A; Zaengl, G; Zhong, S

    2008-08-07

    An accurate simulation of the evolution of the atmospheric boundary layer is very important, as the evolution of the boundary layer sets the stage for many weather phenomena, such as deep convection. Over mountain areas the evolution of the boundary layer is particularly complex, due to the nonlinear interaction between boundary layer turbulence and thermally-induced mesoscale wind systems, such as the slope and valley winds. As the horizontal resolution of operational forecasts progresses to finer and finer resolution, more and more of the thermally-induced mesoscale wind systems can be explicitly resolved, and it is very timely to document the current state-of-the-art of mesoscale models at simulating the coupled evolution of the mountain boundary layer and the valley wind system. In this paper we present an intercomparison of valley wind simulations for an idealized valley-plain configuration using eight state-of-the-art mesoscale models with a grid spacing of 1 km. Different sets of three-dimensional simulations are used to explore the effects of varying model dynamical cores and physical parameterizations. This intercomparison project was conducted as part of the Terrain-induced Rotor Experiment (T-REX; Grubisic et al., 2008).

  9. Table 18. Total Delivered Commercial Energy Consumption, Projected vs. Actual

    U.S. Energy Information Administration (EIA) Indexed Site

    Total Delivered Commercial Energy Consumption, Projected vs. Actual Projected (quadrillion Btu) 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 AEO 1994 6.8 6.9 6.9 7.0 7.1 7.1 7.2 7.2 7.3 7.3 7.4 7.4 7.4 7.5 7.5 7.5 7.5 7.6 AEO 1995 6.9 6.9 7.0 7.0 7.0 7.1 7.1 7.1 7.1 7.1 7.2 7.2 7.2 7.2 7.3 7.3 7.3 AEO 1996 7.1 7.2 7.2 7.3 7.3 7.4 7.4 7.5 7.6 7.6 7.7 7.7 7.8 7.9 8.0 8.0 8.1 8.2 8.2 AEO 1997 7.4 7.4 7.4 7.5 7.5 7.6 7.7 7.7 7.8 7.8 7.9 7.9

  10. Commercial

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    of the Commercial Incentive Pilot Program (CIPP). Final Impact Evaluation Report. Cambridge Systematics. (1292) Commercial Incentives Pilot Program (CIPP) Database for the...

  11. Wind-To-Hydrogen Project: Electrolyzer Capital Cost Study

    SciTech Connect (OSTI)

    Saur, G.

    2008-12-01

    This study is being performed as part of the U.S. Department of Energy and Xcel Energy's Wind-to-Hydrogen Project (Wind2H2) at the National Renewable Energy Laboratory. The general aim of the project is to identify areas for improving the production of hydrogen from renewable energy sources. These areas include both technical development and cost analysis of systems that convert renewable energy to hydrogen via water electrolysis. Increased efficiency and reduced cost will bring about greater market penetration for hydrogen production and application. There are different issues for isolated versus grid-connected systems, however, and these issues must be considered. The manner in which hydrogen production is integrated in the larger energy system will determine its cost feasibility and energy efficiency.

  12. Caithness Shephards Flat: The Largest Wind Farm Project in the World |

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Department of Energy Caithness Shephards Flat: The Largest Wind Farm Project in the World Caithness Shephards Flat: The Largest Wind Farm Project in the World October 12, 2010 - 5:04pm Addthis Andy Oare Andy Oare Former New Media Strategist, Office of Public Affairs What does this project do? Wind farm project is projected to employ over 400 people in construction phase. It is expected to produce 845 megawatt wind-powered electrical generation, or enough wind energy to supply 235,000 homes.

  13. Maine Deploys First U.S. Commercial, Grid-Connected Tidal Energy Project |

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Department of Energy Deploys First U.S. Commercial, Grid-Connected Tidal Energy Project Maine Deploys First U.S. Commercial, Grid-Connected Tidal Energy Project July 24, 2012 - 1:12pm Addthis NEWS MEDIA CONTACT (202) 586-4940 WASHINGTON -- Today, Energy Secretary Steven Chu recognized the nation's first commercial, grid-connected tidal energy project off the coast of Eastport, Maine. Leveraging a $10 million investment from the Energy Department, Ocean Renewable Power Company (ORPC) will

  14. Secretary Chu Unveils 41 New Offshore Wind Power R&D Projects | Department

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    of Energy Unveils 41 New Offshore Wind Power R&D Projects Secretary Chu Unveils 41 New Offshore Wind Power R&D Projects September 8, 2011 - 11:13am Addthis Chris Hart Offshore Wind Team Lead, Wind & Water Power Program The $43 million dollars in offshore wind funding Secretary Chu announced today is part of a coordinated federal strategy to put the nation's wind resources to work and support innovation and jobs throughout the United States. The projects represent investments in

  15. First Commercial, Grid-Connected, Hydrokinetic Tidal Energy Project in

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Exponential Growth for Geothermal Energy | Department of Energy Commercial Success for Enhanced Geothermal Systems (EGS) Spells Exponential Growth for Geothermal Energy First Commercial Success for Enhanced Geothermal Systems (EGS) Spells Exponential Growth for Geothermal Energy April 15, 2013 - 1:50pm Addthis Nevada-based industry partner Ormat Technologies leveraged DOE funds to deploy the nation's first commercial EGS at Desert Peak, Nevada. photo courtesy of Ormat Nevada-based industry

  16. Coastal Ohio Wind Project for Reduced Barriers to Deployment of Offshore Wind Energy

    SciTech Connect (OSTI)

    Gorsevski, Peter; Afjeh, Abdollah; Jamali, Mohsin; Carroll, Michael

    2014-04-09

    The Coastal Ohio Wind Project was created to establish the viability of wind turbines on the coastal and offshore regions of Northern Ohio. The project’s main goal was to improve operational unit strategies used for environmental impact assessment of offshore turbines on lake wildlife by optimizing and fusing data from the multi-instrument surveillance system and providing an engineering analysis of potential design/operational alternatives for offshore wind turbines. The project also developed a general economic model for offshore WTG deployment to quantify potential revenue losses due to wind turbine shutdown related to ice and avian issues. In a previous phase of this project (Award Number: DE-FG36-06GO86096), we developed a surveillance system that was used to collect different parameters such as passage rates, flight paths, flight directions, and flight altitudes of nocturnal migrating species, movements of birds and bats, and bird calls for assessing patterns and peak passage rates during migration. To derive such parameters we used thermal IR imaging cameras, acoustic recorders, and marine radar Furuno (XANK250), which was coupled with a XIR3000B digitizing card from Russell Technologies and open source radR processing software. The integration yielded a development of different computational techniques and methods, which we further developed and optimized as a combined surveillance system. To accomplish this task we implemented marine radar calibration, optimization of processing parameters, and fusion of the multi-sensor data in order to make inferences about the potential avian targets. The main goal of the data fusion from the multi-sensor environment was aimed at reduction of uncertainties while providing acceptable confidence levels with detailed information about the migration patterns. Another component comprised of an assessment of wind resources in a near lake environment and an investigation of the effectiveness of ice coating materials to mitigate adverse effects of ice formation on wind turbine structures. Firstly, a Zephir LiDAR system was acquired and installed at Woodlands School in Huron, Ohio, which is located near Lake Erie. Wind resource data were obtained at ten measurement heights, 200m, 150m, 100m, 80m, 60m, 40m, 38m, 30m, 20m, and 10m. The Woodlands School’s wind turbine anemometer also measured the wind speed at the hub height. These data were collected for approximately one year. The hub anemometer data correlated well with the LiDAR wind speed measurements at the same height. The data also showed that on several days different power levels were recorded by the turbine at the same wind speed as indicated by the hub anemometer. The corresponding LiDAR data showed that this difference can be attributed to variability in the wind over the turbine rotor swept area, which the hub anemometer could not detect. The observation suggests that single point hub wind velocity measurements are inadequate to accurately estimate the power generated by a turbine at all times since the hub wind speed is not a good indicator of the wind speed over the turbine rotor swept area when winds are changing rapidly. To assess the effectiveness of ice coatings to mitigate the impact of ice on turbine structures, a closed-loop icing research tunnel (IRT) was designed and constructed. By controlling the temperature, air speed, water content and liquid droplet size, the tunnel enabled consistent and repeatable ice accretion under a variety of conditions with temperatures between approximately 0°C and -20°C and wind speeds up to 40 miles per hour in the tunnel’s test section. The tunnel’s cooling unit maintained the tunnel temperature within ±0.2°C. The coatings evaluated in the study were Boyd Coatings Research Company’s CRC6040R3, MicroPhase Coatings Inc.’s PhaseBreak TP, ESL and Flex coatings. Similar overall performance was observed in all coatings tested in that water droplets form on the test articles beginning at the stagnation region and spreading in the downstream direction in time. When comparing ice accumulation characteristics for the four coatings tested, for ice thickness during accumulation the CRC6040R3 had the least, followed by the ESL, Flex, and TP. However, when comparing the coatings’ ability to reduce ice adhesion, the Flex showed the highest adhesion reduction, followed by the ESL, TP and CRC 6040R3 coatings. The ice accumulated on the Flex coated surface shed under gravity when rotated 90 degrees following the tests while the other coatings required application of varying degrees of force to remove the ice. In conclusion, the ice coatings tested were not sufficient in preventing ice accumulation on all surfaces. However, Flex coating shows promise in mitigating ice on the rotor blades under the gravitational and centrifugal forces. Only the effect of gravity in shedding the ice was considered in this study. Further research will be needed to evaluate this coating on rotating blades in the icing tunnel to characterize its effectiveness. Lastly, the development of economic feasibility models used existing approaches adapted for offshore deployment in marine settings to one more suitable for Lake Erie deployment. Two different wind turbine models were tested and dynamic return on investment (ROI) model scenarios were generated. For the purpose of estimating power generation three bladed wind turbines of 3 MW capacity were selected including Model1- Leitwind LTW101-3.000-kW and Model2-Vostro V90-3.0 MW. The analysis were based on the revenue aspect of decision making of deploying wind turbines in the Ohio coastal region. The installation cost, maintenance and operational aspects were disregarded due to unavailability of data. The adjusted varying price (residential and industrial sector) and projected future price of electricity in different years suggested that the Leitwind model could generate $32.4 million of revenue in 25 years if the supply electricity is in the residential sector, while it would be $14.7million if the supply is in the industrial sector. For the Vostro model these figures are $28.6 million for residential sector and $12.9 million for industrial sector for 25 years.

  17. EIS-0437: Interconnection of the Buffalo Ridge III Wind Project, Brookings and Deuel Counties, South Dakota

    Broader source: Energy.gov [DOE]

    This EIS evaluates the environmental impacts of a proposal to interconnect the Heartland Wind, LLC, proposed Buffalo Ridge III Wind Project in Brookings and Deuel Counties, South Dakota, to DOE’s Western Area Power Administration transmission system.

  18. Energy Department Awards $4.5 Million for Innovative Wind Power R&D Projects

    Broader source: Energy.gov [DOE]

    The Energy Department today announced $4.5 million for four projects to help increase deployment of innovative wind power technologies by optimizing the operation, boosting efficiency, and improving the environmental performance of wind energy systems.

  19. Map: Projected Growth of the Wind Industry From Now Until 2050...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Wind Vision See the projected growth of the wind industry over the next 35 years. Select a Year 2000 2010 2013 2020 2030 2050 All units are in gigawatts (GW). Only states with ...

  20. 41 Offshore Wind Power R&D Projects Receive Energy Department Funding |

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Department of Energy 1 Offshore Wind Power R&D Projects Receive Energy Department Funding 41 Offshore Wind Power R&D Projects Receive Energy Department Funding September 7, 2011 - 3:02pm Addthis Department of Energy Awards $43 Million to speed technical innovations, lower costs, and shorten the timeline for deploying offshore wind energy systems. Applicant Location DOE Award Description U.S. Offshore Wind: Technology Development Funding Opportunity Modeling & Analysis Design

  1. Wind Power Partners '94 Wind Farm | Open Energy Information

    Open Energy Info (EERE)

    4 Wind Farm Jump to: navigation, search Name Wind Power Partners '94 Wind Farm Facility Wind Power Partners '94 Sector Wind energy Facility Type Commercial Scale Wind Facility...

  2. Wethersfield Wind Power Wind Farm | Open Energy Information

    Open Energy Info (EERE)

    Wethersfield Wind Power Wind Farm Jump to: navigation, search Name Wethersfield Wind Power Wind Farm Facility Wethersfield Wind Power Sector Wind energy Facility Type Commercial...

  3. Stetson Wind Expansion Wind Farm | Open Energy Information

    Open Energy Info (EERE)

    Stetson Wind Expansion Wind Farm Jump to: navigation, search Name Stetson Wind Expansion Wind Farm Facility Stetson Wind Expansion Sector Wind energy Facility Type Commercial Scale...

  4. Commercial

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    a large efficiency program in Commercial and Industrial Lighting. BPA continues to invest in improving the lighting program as a critical component to achieving regional...

  5. Danielson Wind | Open Energy Information

    Open Energy Info (EERE)

    Wind Jump to: navigation, search Name Danielson Wind Facility Danielson Wind Sector Wind energy Facility Type Commercial Scale Wind Facility Status In Service Developer Juhl Wind...

  6. Kawailoa Wind | Open Energy Information

    Open Energy Info (EERE)

    Wind Jump to: navigation, search Name Kawailoa Wind Facility Kawailoa Wind Sector Wind energy Facility Type Commercial Scale Wind Facility Status In Service Owner First Wind...

  7. Palouse Wind | Open Energy Information

    Open Energy Info (EERE)

    Wind Jump to: navigation, search Name Palouse Wind Facility Palouse Wind Sector Wind energy Facility Type Commercial Scale Wind Facility Status In Service Owner First Wind...

  8. Harbor Wind | Open Energy Information

    Open Energy Info (EERE)

    Wind Jump to: navigation, search Name Harbor Wind Facility Harbor Wind Sector Wind energy Facility Type Commercial Scale Wind Facility Status In Service Owner Harbor Wind LLC...

  9. Kahuku Wind | Open Energy Information

    Open Energy Info (EERE)

    Kahuku Wind Jump to: navigation, search Name Kahuku Wind Facility Kahuku Wind Sector Wind energy Facility Type Commercial Scale Wind Facility Status In Service Owner First Wind...

  10. Bravo Wind | Open Energy Information

    Open Energy Info (EERE)

    Bravo Wind Jump to: navigation, search Name Bravo Wind Facility Bravo Wind Sector Wind energy Facility Type Commercial Scale Wind Facility Status Proposed Developer Bravo Wind LLC...

  11. Auwahi Wind | Open Energy Information

    Open Energy Info (EERE)

    Auwahi Wind Jump to: navigation, search Name Auwahi Wind Facility Auwahi Wind Sector Wind energy Facility Type Commercial Scale Wind Facility Status In Service Owner BP Wind Energy...

  12. Sheffield Wind | Open Energy Information

    Open Energy Info (EERE)

    Wind Jump to: navigation, search Name Sheffield Wind Facility Sheffield Wind Sector Wind energy Facility Type Commercial Scale Wind Facility Status In Service Owner First Wind...

  13. Rollins Wind | Open Energy Information

    Open Energy Info (EERE)

    Wind Jump to: navigation, search Name Rollins Wind Facility Rollins Wind Sector Wind energy Facility Type Commercial Scale Wind Facility Status In Service Owner First Wind...

  14. New Report Shows Domestic Offshore Wind Industry Potential, 21...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Report Shows Domestic Offshore Wind Industry Potential, 21 Projects Planned in U.S. Waters ... first commercial-scale offshore wind farm, one of 21 projects totaling 15,650 ...

  15. Record of Decision for the Electrical Interconnection of the Windy Point Wind Energy Project.

    SciTech Connect (OSTI)

    United States. Bonneville Power Administration.

    2006-11-01

    The Bonneville Power Administration (BPA) has decided to offer contract terms for interconnection of 250 megawatts (MW) of power to be generated by the proposed Windy Point Wind Energy Project (Wind Project) into the Federal Columbia River Transmission System (FCRTS). Windy Point Partners, LLC (WPP) propose to construct and operate the proposed Wind Project and has requested interconnection to the FCRTS. The Wind Project will be interconnected at BPA's Rock Creek Substation, which is under construction in Klickitat County, Washington. The Rock Creek Substation will provide transmission access for the Wind Project to BPA's Wautoma-John Day No.1 500-kilovolt (kV) transmission line. BPA's decision to offer terms to interconnect the Wind Project is consistent with BPA's Business Plan Final Environmental Impact Statement (BP EIS) (DOE/EIS-0183, June 1995), and the Business Plan Record of Decision (BP ROD, August 15, 1995). This decision thus is tiered to the BP ROD.

  16. Hardin-Hilltop Wind Project | Open Energy Information

    Open Energy Info (EERE)

    Community wind Developer Community wind Energy Purchaser Alliant Location Greene County IA Coordinates 42.086204, -94.349999 Show Map Loading map... "minzoom":false,"mappings...

  17. Offshore Wind Project Surges Ahead in South Carolina

    Broader source: Energy.gov [DOE]

    The Center for Marine and Wetland Studies studies wind speed data from buoys, which have been measuring wind speed and direction for the past year.

  18. The Wind Forecast Improvement Project (WFIP): A Public/Private...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Partnership for Improving Short Term Wind Energy Forecasts and Quantifying the Benefits ... Partnership for Improving Short Term Wind Energy Forecasts and Quantifying the Benefits ...

  19. EA-1750: Smart Grid, Center for Commercialization of Electric Technology, Technology Solutions for Wind Integration in ERCOT, Houston, Texas

    Broader source: Energy.gov [DOE]

    This EA evaluates the potential environmental impacts of providing a financial assistance grant under the American Recovery and Reinvestment Act of 2009 to the Center for Commercialization of Electric Technology to facilitate the development and demonstration of a multi-faceted, synergistic approach to managing fluctuations in wind power within the Electric Reliability Council of Texas transmission grid.

  20. New Report Highlights Trends in Offshore Wind with 14 Projects Currently In

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Advanced Stages of Development | Department of Energy Highlights Trends in Offshore Wind with 14 Projects Currently In Advanced Stages of Development New Report Highlights Trends in Offshore Wind with 14 Projects Currently In Advanced Stages of Development September 3, 2014 - 10:57am Addthis The Energy Department today released a new report showing progress for the U.S. offshore wind energy market over the past year, including two projects that have moved into the initial stages of

  1. DOE and NREL Issue Sources Sought for Wind for Schools Project

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Sustainability Plan | Department of Energy DOE and NREL Issue Sources Sought for Wind for Schools Project Sustainability Plan DOE and NREL Issue Sources Sought for Wind for Schools Project Sustainability Plan January 12, 2016 - 12:55pm Addthis The National Renewable Energy Laboratory (NREL), in collaboration with the U.S. Department of Energy (DOE), today issued a formal notice of intent for organizations interested in developing a Sustainability Plan for the Wind for Schools project. This

  2. EA-1812: Haxtun Wind Energy Project, Logan and Phillips County, Colorado

    Broader source: Energy.gov [DOE]

    This EA evaluates the environmental impacts of a proposal to authorize the expenditure of Federal funding through the Community Renewable Energy Deployment Program to Phillips County for design, permitting, and construction of an approximately 30-megawatt wind energy project, known as Haxtun Wind Project, within Phillips and Logan counties in northeastern Colorado. The proposed project consists of 18 wind turbines that would interconnect to the Highline Electric Cooperative equipment inside Western Area Power Administration's Haxtun substation just south of the Town of Haxtun.

  3. NREL Wind to Hydrogen Project: Renewable Hydrogen Production for Energy Storage & Transportation (Presentation)

    SciTech Connect (OSTI)

    Ramsden, T.; Harrison, K.; Steward, D.

    2009-11-16

    Presentation about NREL's Wind to Hydrogen Project and producing renewable hydrogen for both energy storage and transporation, including the challenges, sustainable pathways, and analysis results.

  4. DOE Announces Nearly $14 Million to go to 28 New Wind Energy Projects |

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Department of Energy 4 Million to go to 28 New Wind Energy Projects DOE Announces Nearly $14 Million to go to 28 New Wind Energy Projects July 16, 2009 - 12:00am Addthis WASHINGTON - U.S. Department of Energy Secretary Steven Chu today announced the selection of 28 new wind energy projects for up to $13.8 million in funding - including $12.8 million in Recovery Act funds. These projects will help address market and deployment challenges including wind turbine research and testing and

  5. DOE Selects 53 New Projects Focused on Wind Energy for up to $8.5 Million |

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Department of Energy 53 New Projects Focused on Wind Energy for up to $8.5 Million DOE Selects 53 New Projects Focused on Wind Energy for up to $8.5 Million May 6, 2009 - 12:00am Addthis WASHINGTON, DC - U.S. Department of Energy (DOE) Secretary Steven Chu today announced selection of 53 new wind energy projects for up to $8.5 million in total DOE funding. These projects will help begin to address market and deployment challenges identified in DOE's 2008 report: "20% Wind Energy by

  6. Wind Energy 101 Webinar Series Part 5: Project Development and Siting

    Broader source: Energy.gov [DOE]

    During this webinar, gain a better understanding of the various phases wind projects, the development timeline and siting process.  Session will include:

  7. Microsoft Word - FFLF Wind Project EA 11 Feb 2010 rev4 FINAL...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    ... and control energy costs now that rate caps ... The project would involve construction, operation, and eventual removal of 2 GE wind ... Routine maintenance of the turbines would be ...

  8. Want to Finance a Wind Farm Project in Your Community? Try Crowdfunding

    Broader source: Energy.gov [DOE]

    East River Electric Cooperative, a supplier of electric power for rural areas of South Dakota and Minnesota, used a novel approach to financing a wind farm project.

  9. Wind and Solar Data Projections from the U.S. Energy Information...

    U.S. Energy Information Administration (EIA) Indexed Site

    Full report Wind and Solar Data Projections from the U.S. Energy Information Administration: Past Performance and Planned Enhancements Release date: March 22, 2016 Summary EIA's ...

  10. Testing, Manufacturing, and Component Development Projects for Utility-Scale and Distributed Wind Energy, Fiscal Years 2006-2014

    SciTech Connect (OSTI)

    None, None

    2014-04-01

    This report covers the Wind and Water Power Technologies Office's Testing, Manufacturing, and Component Development Projects for Utility-Scale and Distributed Wind Energy from 2006 to 2014.

  11. New England Wind Forum: A Wind Powering America Project, Newsletter #5 -- January 2010, Wind and Hydropower Technologies Program (WHTP)

    SciTech Connect (OSTI)

    Grace, R. C.; Gifford, J.

    2010-01-01

    Wind Powering America program launched the New England Wind Forum (NEWF) in 2005 to provide a single comprehensive source of up-to-date, Web-based information on a broad array of wind energy issues pertaining to New England. The NEWF newsletter provides New England stakeholders with updates on wind energy development in the region. In addition to regional updates, Issue #5 offers an interview with Angus King, former governor of Maine and co-founder of Independence Wind.

  12. Scoping and Framing Social Opposition to U.S. Wind Projects (Poster)

    SciTech Connect (OSTI)

    Lantz, E.; Flowers, L.

    2010-05-01

    Historical barriers to wind power include cost and reliability. However, rapid growth has increased the footprint of wind power in the United States, and some parts of the country have begun to observe conflicts between local communities and wind energy development. Thus, while questions of economic viability and the ability of grid operators to effectively manage wind energy have become less significant, community acceptance issues have emerged as a barrier to wind and associated transmission projects. Increasing community acceptance is likely to be a growing challenge as the wind industry seeks electricity sector penetration levels approaching 20%.

  13. New England Wind Forum: A Wind Powering America Project - Newsletter #6 - September 2010, (NEWF)

    SciTech Connect (OSTI)

    Grace, R.; Gifford, J.; Leeds, T.; Bauer, S.

    2010-09-01

    Wind Powering America program launched the New England Wind Forum (NEWF) in 2005 to provide a single comprehensive source of up-to-date, Web-based information on a broad array of wind energy issues pertaining to New England. The NEWF newsletter provides New England stakeholders with updates on wind energy development in the region.

  14. EA-1939: Reese Technology Center Wind and Battery Integration Project, Lubbock County, TX

    Broader source: Energy.gov [DOE]

    This EA will evaluate the potential environmental impacts of a proposal by the Center for Commercialization of Electric Technologies to demonstrate battery technology integration with wind generated electricity by deploying and evaluating utility-scale lithium battery technology to improve grid performance and thereby aid in the integration of wind generation into the local electricity supply.

  15. DOE and NREL Issue Sources Sought for Wind for Schools Project...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    to not only study wind energy in the classroom but also to engage in hands-on project installation and management of the host K-12 school turbine projects within their state. ...

  16. Linkages from DOE's Wind Energy Program R&D to Commercial Renewable Power Generation

    SciTech Connect (OSTI)

    Rosalie, Ruegg; Thomas, Patrick

    2009-09-01

    The report compares wind energy technology and markets for the pre- and post-DOE Wind Energy Program as a backdrop for the investigation of linkages from the Program to downstream developments.

  17. Energy Department Announces New Projects to Help Protect Wildlife at Wind

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Energy Plants | Department of Energy New Projects to Help Protect Wildlife at Wind Energy Plants Energy Department Announces New Projects to Help Protect Wildlife at Wind Energy Plants April 14, 2015 - 1:08pm Addthis The Energy Department today announced more than $1.75 million for five projects that will develop and demonstrate technologies to reduce the potential impacts of wind farms on sensitive bat species. A current challenge facing wind energy developers in the United States is how to

  18. Advanced Wind Turbine Program Next Generation Turbine Development Project: June 17, 1997--April 30, 2005

    SciTech Connect (OSTI)

    GE Wind Energy, LLC

    2006-05-01

    This document reports the technical results of the Next Generation Turbine Development Project conducted by GE Wind Energy LLC. This project is jointly funded by GE and the U.S. Department of Energy's National Renewable Energy Laboratory.The goal of this project is for DOE to assist the U.S. wind industry in exploring new concepts and applications of cutting-edge technology in pursuit of the specific objective of developing a wind turbine that can generate electricity at a levelized cost of energy of $0.025/kWh at sites with an average wind speed of 15 mph (at 10 m height).

  19. Cherokee Nation Enterprises - Wind Development

    Energy Savers [EERE]

    Businesses Tribal Energy Program 2008 November 18, 2008 HEROKEE C N E R G ATION NERGY by ENEWABLE ENERATION Wind Farm Project Location Wind Speeds Measured for 4 Years at Chilocco. . . Class III Commercial Wind! ROI in less than 6 years $672+ Million Net Income for 25 yrs. ONLY if we own 100% Precise Project Management *Vendor Reliability *Knowledgeable Personnel *Timetables and Schedule Mgmt. Risk Management Risk Management Risk Management Investment vs. Expenses (Revenue for 2007) GAMING WIND

  20. Lessons Learned: Milwaukee’s Wind Turbine Project

    Broader source: Energy.gov [DOE]

    U.S. Department of Energy Community and Renewable Energy Success Stories webinar series titled Wind Energy in Urban Environments. This presentation describes a mid-size wind turbine installation near downtown Milwaukee, Wisconsin.

  1. Federal Loan Guarantees for Projects that Manufacture Commercial Technology Renewable Energy Systems and Components: August 10, 2010

    Broader source: Energy.gov [DOE]

    Federal Loan Guarantees for Projects that Manufacture Commercial Technology Renewable Energy Systems and Components: August 10, 2010

  2. Ocean Renewable Power Co (ORPC) (TRL 7 8 System)- TidGen (TM) Power System Commercialization Project

    Broader source: Energy.gov [DOE]

    Ocean Renewable Power Co (ORPC) (TRL 7 8 System) - TidGen (TM) Power System Commercialization Project

  3. AWEA Wind Resource & Project Energy Assessment Seminar 2014

    Broader source: Energy.gov [DOE]

    Wind resource assessment from the outside looking in: How are we doing, what are we delivering, and is it working?

  4. COMMERCIALIZING

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    COMMERCIALIZING TECHNOLOGIES & CREATING JOBS Our location in the SS&TP plays a vital role in our ability to leverage the deep domain expertise of Sandia. Our proximity to the Labs has facilitated teaming with them on Small Business Innovation Research (SBIR) and Small Business Technology Transfer (STTR) efforts that develop cutting-edge technology in the areas of precision pointing and inertial measurement." Dan Gillings President Applied Technology Associates NMSBA reduced my

  5. NREL Small Wind Turbine Test Project: Mariah Power's Windspire Wind Turbine Test Chronology

    SciTech Connect (OSTI)

    Huskey, A.; Forsyth, T.

    2009-06-01

    This report presents a chronology of tests conducted at NREL's National Wind Technology Center on Mariah Power's Windspire 1.2-kW wind turbine and a letter of response from Mariah Power.

  6. Offshore Wind Energy Permitting: A Survey of U.S. Project Developers

    SciTech Connect (OSTI)

    Van Cleve, Frances B.; Copping, Andrea E.

    2010-11-30

    The U.S. Department of Energy (DOE) has adopted a goal to generate 20% of the nation’s electricity from wind power by 2030. Achieving this “20% Wind Scenario” in 2030 requires acceleration of the current rate of wind project development. Offshore wind resources contribute substantially to the nation’s wind resource, yet to date no offshore wind turbines have been installed in the U.S. Progress developing offshore wind projects has been slowed by technological challenges, uncertainties about impacts to the marine environment, siting and permitting challenges, and viewshed concerns. To address challenges associated with siting and permitting, Pacific Northwest National Laboratory (PNNL) surveyed offshore wind project developers about siting and project development processes, their experience with the environmental permitting process, and the role of coastal and marine spatial planning (CMSP) in development of the offshore wind industry. Based on the responses to survey questions, we identify several priority recommendations to support offshore wind development. Recommendations also include considerations for developing supporting industries in the U.S. and how to use Coastal and Marine Spatial Planning (CMSP) to appropriately consider ocean energy among existing ocean uses. In this report, we summarize findings, discuss the implications, and suggest actions to improve the permitting and siting process.

  7. Klondike III/Biglow Canyon Wind Integration Project; Final Environmental Impact Statement, September 2006.

    SciTech Connect (OSTI)

    United States. Bonneville Power Administration

    2006-09-01

    BPA has been asked by PPM Energy, Inc. to interconnect 300 megawatts (MW) of electricity generated from the proposed Klondike III Wind Project to the Federal Columbia River Transmission System. Orion Energy LLC has also asked BPA to interconnect 400 MW of electricity from its proposed Biglow Canyon Wind Farm, located north and east of the proposed Klondike III Wind Project. (Portland General Electric recently bought the rights to develop the proposed Biglow Canyon Wind Farm from Orion Energy, LLC.) Both wind projects received Site Certificates from the Oregon Energy Facility Siting Council on June 30, 2006. To interconnect these projects, BPA would need to build and operate a 230-kV double-circuit transmission line about 12 miles long, expand one substation and build one new substation. The wind projects would require wind turbines, substation(s), access roads, and other facilities. Two routes for the transmission line are being considered. Both begin at PPM's Klondike Schoolhouse Substation then travel north (Proposed Action) or north and westerly (Middle Alternative) to a new BPA 230-kV substation next to BPA's existing John Day 500-kV Substation. BPA is also considering a No Action Alternative in which BPA would not build the transmission line and would not interconnect the wind projects. The proposed BPA and wind projects would be located on private land, mainly used for agriculture. If BPA decides to interconnect the wind projects, construction of the BPA transmission line and substation(s) could commence as early as the winter of 2006-07. Both wind projects would operate for much of each year for at least 20 years. The proposed projects would generally create no or low impacts. Wildlife resources and local visual resources are the only resources to receive an impact rating other than ''none'' or ''low''. The low to moderate impacts to wildlife are from the expected bird and bat mortality and the cumulative impact of this project on wildlife when combined with other proposed wind projects in the region. The low to high impacts to visual resources reflect the effect that the transmission line and the turbine strings from both wind projects would have on viewers in the local area, but this impact diminishes with distance from the project.

  8. New England Wind Forum: A Wind Powering America Project, Volume 1, Issue 4 -- May 2008 (Newsletter)

    SciTech Connect (OSTI)

    Grace, R. C.; Gifford, J.

    2008-05-01

    The New England Wind Forum electronic newsletter summarizes the latest news in wind energy development activity, markets, education, and policy in the New England region. It also features an interview with a key figure influencing New England's wind energy development. Volume 1, Issue 4 features an interview with Brian Fairbank, president and CEO of Jiminy Peak Mountain Resort.

  9. Economic Development Impacts of Community Wind Projects. A Review and Empirical Evaluation

    SciTech Connect (OSTI)

    Lantz, E.; Tegen, S.

    2009-04-01

    "Community wind" refers to a class of wind energy ownership structures. The extent of local ownership may range from a small minority share to full ownership by persons in the immediate area surrounding the wind project site. Potential project owners include local farmers, businesses, Native American tribes, universities, cooperatives, or any other local entity seeking to invest in wind energy. The opposite of community wind is an "absentee" project, in which ownership is completely removed from the state and community surrounding the facility. Thus, there is little or no ongoing direct financial benefit to state and local populations aside from salaries for local repair technicians, local property tax payments, and land lease payments. In recent years, the community wind sector has been inhibited by manufacturers' preference for larger turbine orders. This often puts smaller community wind developers and projects at a competitive disadvantage. However, state policies specifically supporting community wind may become a more influential market factor as turbines are now more readily available given manufacturer ramp-ups and the slow-down in the industry that has accompanied the recent economic and financial crises. This report examines existing literature to provide an overview of economic impacts resulting from community wind projects, compares results, and explains variability.

  10. Economic Development Impacts of Community Wind Projects: A Review and Empirical Evaluation; Preprint

    SciTech Connect (OSTI)

    Lantz, E.; Tegen, S.

    2009-04-01

    'Community wind' refers to a class of wind energy ownership structures. The extent of local ownership may range from a small minority share to full ownership by persons in the immediate area surrounding the wind project site. Potential project owners include local farmers, businesses, Native American tribes, universities, cooperatives, or any other local entity seeking to invest in wind energy. The opposite of community wind is an 'absentee' project, in which ownership is completely removed from the state and community surrounding the facility. Thus, there is little or no ongoing direct financial benefit to state and local populations aside from salaries for local repair technicians, local property tax payments, and land lease payments. In recent years, the community wind sector has been inhibited by manufacturers' preference for larger turbine orders. This often puts smaller community wind developers and projects at a competitive disadvantage. However, state policies specifically supporting community wind may become a more influential market factor as turbines are now more readily available given manufacturer ramp-ups and the slow-down in the industry that has accompanied the recent economic and financial crises. This report examines existing literature to provide an overview of economic impacts resulting from community wind projects, compares results, and explains variability.

  11. Optimizing Installation, Operation, and Maintenance at Offshore Wind Projects in the United States

    Broader source: Energy.gov [DOE]

    For the United States to ensure that the substantial rollout of offshore wind energy projects envisioned by the DOE is carried out in an efficient and cost-effective manner, it is important to observe the current and emerging practices in the international offshore wind energy industry. In this manner, the United States can draw from the experience already gained around the world, combined with experience from the sizeable U.S. land-based wind industry, to develop a strong offshore wind sector. The work detailed in this report will support that learning curve by enabling optimization of the cost-effectiveness of installation, operation, and maintenance activities for offshore wind farms.

  12. Klondike III/Biglow Canyon Wind Integration Project; Record of Decision, October 25, 2006.

    SciTech Connect (OSTI)

    United States. Bonneville Power Administration

    2006-10-25

    The Bonneville Power Administration (BPA) has decided to implement the Proposed Action identified in the Klondike III/Biglow Canyon Wind Integration Project Final Environmental Impact Statement (FEIS) (DOE/EIS-0374, September 2006). Under the Proposed Action, BPA will offer PPM Energy, Inc. (PPM) contract terms for interconnection of the proposed Klondike III Wind Project, located in Sherman County, Oregon, with the Federal Columbia River Transmission System (FCRTS). BPA will also offer Portland General Electric (PGE)1 contract terms for interconnection of its proposed Biglow Canyon Wind Farm, also located in Sherman County, Oregon, with the FCRTS, as proposed in the FEIS. To interconnect these wind projects, BPA will build and operate a 12-mile long, 230-kilovolt (kV) double-circuit transmission line between the wind projects and BPA's new 230-kV John Day Substation in Sherman County, Oregon. BPA will also expand its existing 500-kV John Day Substation.

  13. MODEL REQUEST FOR PROPOSALS TO PROVIDE ENERGY AND OTHER ATTRIBUTES FROM AN OFFSHORE WIND POWER PROJECT

    SciTech Connect (OSTI)

    Jeremy Firestone; Dawn Kurtz Crompton

    2011-10-22

    This document provides a model RFP for new generation. The 'base' RFP is for a single-source offshore wind RFP. Required modifications are noted should a state or utility seek multi-source bids (e.g., all renewables or all sources). The model is premised on proposals meeting threshold requirements (e.g., a MW range of generating capacity and a range in terms of years), RFP issuer preferences (e.g., likelihood of commercial operation by a date certain, price certainty, and reduction in congestion), and evaluation criteria, along with a series of plans (e.g., site, environmental effects, construction, community outreach, interconnection, etc.). The Model RFP places the most weight on project risk (45%), followed by project economics (35%), and environmental and social considerations (20%). However, if a multi-source RFP is put forward, the sponsor would need to either add per-MWh technology-specific, life-cycle climate (CO2), environmental and health impact costs to bid prices under the 'Project Economics' category or it should increase the weight given to the 'Environmental and Social Considerations' category.

  14. DOE-Funded Project Develops Safer Access to Offshore Wind Turbine Platforms

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    | Department of Energy DOE-Funded Project Develops Safer Access to Offshore Wind Turbine Platforms DOE-Funded Project Develops Safer Access to Offshore Wind Turbine Platforms September 10, 2015 - 6:21pm Addthis More than 4,000 gigawatts of estimated gross offshore wind potential lies off the U.S. coastline-that's more than four times the current generation capacity of the United States. With the coastal and Great Lakes states consuming nearly 80% of our nation's electricity, offshore wind

  15. EA-1782: University of Delaware Lewes Campus Onsite Wind Energy Project

    Broader source: Energy.gov [DOE]

    The University of Delaware has constructed a wind turbine adjacent to its College of Earth, Ocean, and Environment campus in Lewes, Delaware. DOE proposed to provide the University a $1.43 million grant for this Wind Energy Project from funding provided in the Omnibus Appropriations Act of 2009 (Public Law 111-8) and an additional $1 million provided in the Energy and Water Development Appropriations Act of Fiscal Year 2010. This EA analyzed the potential environmental impacts of the University of Delaware’s Wind Energy Project at its Lewes campus and, for purposes of comparison, an alternative that assumes the wind turbine had not been constructed.

  16. Garnet Wind | Open Energy Information

    Open Energy Info (EERE)

    Wind Jump to: navigation, search Name Garnet Wind Facility Garnet Wind Sector Wind energy Facility Type Commercial Scale Wind Facility Status In Service Owner Azusa Light & Water...

  17. Lime Wind | Open Energy Information

    Open Energy Info (EERE)

    Wind Jump to: navigation, search Name Lime Wind Facility Lime Wind Sector Wind energy Facility Type Commercial Scale Wind Facility Status In Service Owner Joseph Millworks Inc...

  18. Pacific Wind | Open Energy Information

    Open Energy Info (EERE)

    Wind Jump to: navigation, search Name Pacific Wind Facility Pacific Wind Sector Wind energy Facility Type Commercial Scale Wind Facility Status In Service Owner enXco Developer...

  19. Galactic Wind | Open Energy Information

    Open Energy Info (EERE)

    Wind Jump to: navigation, search Name Galactic Wind Facility Galactic Wind Sector Wind energy Facility Type Commercial Scale Wind Facility Status In Service Owner Epic Systems...

  20. Rockland Wind | Open Energy Information

    Open Energy Info (EERE)

    Wind Jump to: navigation, search Name Rockland Wind Facility Rockland Wind Sector Wind energy Facility Type Commercial Scale Wind Facility Status In Service Developer Ridgeline...

  1. Willmar Wind | Open Energy Information

    Open Energy Info (EERE)

    Wind Jump to: navigation, search Name Willmar Wind Facility Willmar Wind Sector Wind energy Facility Type Commercial Scale Wind Facility Status In Service Owner Willmar...

  2. EWIS European wind integration study (Smart Grid Project) (Netherlands...

    Open Energy Info (EERE)

    of wind generation developers. The study will use results from detailed network and market models of the European transmission system for scenarios representing immediate and...

  3. EWIS European wind integration study (Smart Grid Project) (Greece...

    Open Energy Info (EERE)

    of wind generation developers. The study will use results from detailed network and market models of the European transmission system for scenarios representing immediate and...

  4. EWIS European wind integration study (Smart Grid Project) (Austria...

    Open Energy Info (EERE)

    of wind generation developers. The study will use results from detailed network and market models of the European transmission system for scenarios representing immediate and...

  5. EWIS European wind integration study (Smart Grid Project) (Poland...

    Open Energy Info (EERE)

    of wind generation developers. The study will use results from detailed network and market models of the European transmission system for scenarios representing immediate and...

  6. EWIS European wind integration study (Smart Grid Project) | Open...

    Open Energy Info (EERE)

    of wind generation developers. The study will use results from detailed network and market models of the European transmission system for scenarios representing immediate and...

  7. EWIS European wind integration study (Smart Grid Project) (Portugal...

    Open Energy Info (EERE)

    of wind generation developers. The study will use results from detailed network and market models of the European transmission system for scenarios representing immediate and...

  8. EWIS European wind integration study (Smart Grid Project) (Ireland...

    Open Energy Info (EERE)

    of wind generation developers. The study will use results from detailed network and market models of the European transmission system for scenarios representing immediate and...

  9. Virginia Offshore Wind Technology Advancement Project on the...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    ... the purposes of constructing, servicing, or ... collisions with wind farm structures, oil ... as a conservative indicator of the noise level at which there is the ...

  10. Big Wind Power Project (Lanai) | Open Energy Information

    Open Energy Info (EERE)

    :"","icon":"","group":"","inlineLabel":"","visitedicon":"" References "Wind Energy Data and Information Gateway (WENDI)" Retrieved from "http:en.openei.orgw...

  11. Big Horn Wind Power Project | Open Energy Information

    Open Energy Info (EERE)

    :"","icon":"","group":"","inlineLabel":"","visitedicon":"" References "Wind Energy Data and Information Gateway (WENDI)" Retrieved from "http:en.openei.orgw...

  12. North Dakota Company Wins Praise for Wind Projects | Department...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    | Photo courtesy of Basin Electric Power Cooperative Stephen Graff Former Writer & editor for Energy Empowers, EERE Wind energy is taking off in the Dakotas, contributing ...

  13. Wind Projects on Native American Lands | Open Energy Information

    Open Energy Info (EERE)

    Native American Wind Issues Need for Energy Self-Sufficiency Although often rich in natural resources, Native American communities are the poorest in America. Their communities...

  14. NREL Wind to Hydrogen Project: Renewable Hydrogen Production...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Hour-by-Hour Cost Modeling of Optimized Central Wind-Based Water Electrolysis Production Hydrogen Production by Polymer Electrolyte Membrane (PEM) Electrolysis-Spotlight on Giner ...

  15. Roth Rock Wind Power Project | Open Energy Information

    Open Energy Info (EERE)

    Wind North America Developer Synergics Energy Purchaser Delmarva Power Location South of Red House MD Coordinates 39.30105, -79.458032 Show Map Loading map......

  16. Advanced Wind Energy Projects Test Facility Moving to Texas Tech...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    ... Technology Center, offers the collaboration a 35-year history in wind science research. ... by selling the energy produced will go toward scholarships and research grants for ...

  17. What Is a Small Community Wind Project? | Open Energy Information

    Open Energy Info (EERE)

    energy costs. References "U.S. Department of Energy. 2012 Market Report on Wind Technologies in Distributed Applications" Retrieved from "http:en.openei.orgw...

  18. Evaluation of Aeroelastically Tailored Small Wind Turbine Blades Final Project Report

    SciTech Connect (OSTI)

    Griffin, Dayton A.

    2005-09-29

    Evaluation of Aeroelastically Tailored Small Wind Turbine Blades Final Report Global Energy Concepts, LLC (GEC) has performed a conceptual design study concerning aeroelastic tailoring of small wind turbine blades. The primary objectives were to evaluate ways that blade/rotor geometry could be used to enable cost-of-energy reductions by enhancing energy capture while constraining or mitigating blade costs, system loads, and related component costs. This work builds on insights developed in ongoing adaptive-blade programs but with a focus on application to small turbine systems with isotropic blade material properties and with combined blade sweep and pre-bending/pre-curving to achieve the desired twist coupling. Specific goals of this project are to: (A) Evaluate and quantify the extent to which rotor geometry can be used to realize load-mitigating small wind turbine rotors. Primary aspects of the load mitigation are: (1) Improved overspeed safety affected by blades twisting toward stall in response to speed increases. (2) Reduced fatigue loading affected by blade twisting toward feather in response to turbulent gusts. (B) Illustrate trade-offs and design sensitivities for this concept. (C) Provide the technical basis for small wind turbine manufacturers to evaluate this concept and commercialize if the technology appears favorable. The SolidWorks code was used to rapidly develop solid models of blade with varying shapes and material properties. Finite element analyses (FEA) were performed using the COSMOS code modeling with tip-loads and centripetal accelerations. This tool set was used to investigate the potential for aeroelastic tailoring with combined planform sweep and pre-curve. An extensive matrix of design variables was investigated, including aerodynamic design, magnitude and shape of planform sweep, magnitude and shape of blade pre-curve, material stiffness, and rotor diameter. The FEA simulations resulted in substantial insights into the structural response of these blades. The trends were used to identify geometries and rotor configurations that showed the greatest promise for achieving beneficial aeroelastic response. The ADAMS code was used to perform complete aeroelastic simulations of selected rotor configurations; however, the results of these simulations were not satisfactory. This report documents the challenges encountered with the ADAMS simulations and presents recommendations for further development of this concept for aeroelastically tailored small wind turbine blades.

  19. Wind Integration

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Wind Generation - ScheduledActual Balancing Reserves - Deployed Near Real-time Wind Animation Wind Projects under Review Growth Forecast Fact Sheets Working together to address...

  20. EngenuitySC Commercialization and Entrepreneurial Training Project

    SciTech Connect (OSTI)

    Hughes, Meghan; Hutton, Katherine R

    2012-12-31

    A team led by EngenuitySC has performed education and outreach on development of advanced energy markets that will enable wider use of clean energy technologies. This report details the efforts that have made significant advances to improve the market place through education, outreach, and increased communications between industry members. The project resulted in two self-funded industry clusters known as the Fuel Cell Collaborative and NuHub. This project has focused on building and strengthening the leading clean energy clusters in South Carolina: nuclear energy and fuel cell technologies. For the nuclear industry, a new cluster was developed that is now known as NuHub. This cluster has already engaged over 25 nuclear industry leaders or suppliers, four public sector partners, six community economic development foundations, and nearly ten academic partners in a 175 mile radius between Augusta, Georgia and Charlotte, North Carolina. Our outreach has touched over 2,000 stakeholders through the website alone, not including the public audiences and members of the business community reached through news stories and releases that were distributed to over 620 print and online publications. NuHub has established a formal leadership structure, developed subcommittees to focus on industry issues, instituted educational programs for the workforce, and created an industry funding structure that will sustain the industry cluster and mission. NuHub has participated in a wide-variety of community building and outreach activities since its formation under this grant. In the two years since its creation in 2010, we have initiated efforts focused in four main areas that correlate with the four NuHub subcommittees including: innovation, workforce development, industry engagement, and marketing and communications. NuHub successfully raised over $160,000 in both public and private funding, which has supported work to grow the cluster and engage partners including NuScale, Fluor, and Holtec International for research about deployment of advanced small modular reactor (SMR) technologies. The workforce training efforts from NuHub have focused on assisting existing industry to fill positions needed to construct and operate new nuclear plants being built at the VC Summer plant in Jenkinsville, SC and at Plant Votgle in Augusta, Georgia ?¢???? both of whom are constructing the first nuclear reactors (Westinghouse AP 1000 units), to be built in over 30 years. This includes a partnership with Midlands Technical College to train reactor operators and the development of training facilities to support workforce development activities. It is anticipated that approximately 70 students a year will be trained through these programs in the next five years, and it will be expanded to meet new industry needs.

  1. Crow Lake Wind | Open Energy Information

    Open Energy Info (EERE)

    Wind Jump to: navigation, search Name Crow Lake Wind Facility Crow Lake Wind Sector Wind energy Facility Type Commercial Scale Wind Facility Status In Service Owner Prairie Winds...

  2. Webinar: Wind-to-Hydrogen Cost Modeling and Project Findings | Department

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    of Energy Wind-to-Hydrogen Cost Modeling and Project Findings Webinar: Wind-to-Hydrogen Cost Modeling and Project Findings Below is the text version of the webinar titled "Wind-to-Hydrogen Cost Modeling and Project Findings," originally presented on January 17, 2013. In addition to this text version of the audio, you can access the presentation slides. Moderator: Welcome to today's second attempt at the webinar given by NREL today. So we appreciate you guys that were patient with

  3. Maine Project Launches First Grid-Connected Offshore Wind Turbine in the

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    U.S. | Department of Energy Project Launches First Grid-Connected Offshore Wind Turbine in the U.S. Maine Project Launches First Grid-Connected Offshore Wind Turbine in the U.S. May 31, 2013 - 11:00am Addthis News Media Contact (202) 586-4940 WASHINGTON - The Energy Department today recognized the nation's first grid-connected offshore floating wind turbine prototype off the coast of Castine, Maine. Led by the University of Maine, this project represents the first concrete-composite floating

  4. Final Report on the Nikolski Wind-Diesel Project Wind Installation

    Energy Savers [EERE]

    ... rapidly increasing costs for 5 Final Report ... The Nikolski-specific wind-diesel power plant operations and maintenance manuals were ... maintenance, and operation under the Nikolski ...

  5. EA-1852: Cloud County Community College Wind Energy Project, Cloud County, Kansas

    Broader source: Energy.gov [DOE]

    This EA was to evaluate the environmental impacts of a proposal to authorize the expenditure of federal funds by Cloud County Community College (CCCC) for a wind energy project. CCCC has installed three wind turbines and proposed to install a fourth turbine on their campus in Concordia, Kansas, for use in their wind energy training curriculum and to provide electricity for their campus. This EA has been canceled.

  6. EA-1884: Invenergy Interconnection for the Wray Wind Energy Project, Town of Wray, Yuma County, CO

    Broader source: Energy.gov [DOE]

    DOE’s Western Area Power Administration is preparing this EA to evaluate the environmental impacts of interconnecting the proposed Wray Wind Energy Project, for approximately 90 megawatts of wind generation, to Western’s existing Wray Substation in Yuma County, Colorado.

  7. EA-1970: Fishermen’s Energy LLC Offshore Wind Demonstration Project, offshore Atlantic City, New Jersey

    Broader source: Energy.gov [DOE]

    DOE is proposing to provide funding to Fishermen’s Atlantic City Windfarm, LLC to construct and operate up to six wind turbine generators, for an offshore wind demonstration project, approximately 2.8 nautical miles off the coast of Atlantic City, NJ. The proposed action includes a cable crossing from the turbines to an on-shore existing substation.

  8. Funding Opportunity Announcement for Wind Forecasting Improvement Project in Complex Terrain

    Broader source: Energy.gov [DOE]

    On April 4, 2014 the U.S. Department of Energy announced a $2.5 million funding opportunity entitled “Wind Forecasting Improvement Project in Complex Terrain.” By researching the physical processes...

  9. EA-1923: Green Energy School Wind Turbine Project on Saipan, Commonwealth of the Northern Mariana Islands

    Broader source: Energy.gov [DOE]

    This EA will evaluate the potential environmental impacts of a proposal to provide funding for the Green Energy School Project which partially consists of eight 20 kW wind turbines at the Saipan Southern High School.

  10. EIS-0438: Interconnection of the Proposed Hermosa West Wind Farm Project, Albany County, Wyoming

    Broader source: Energy.gov [DOE]

    After the applicant withdrew its request to interconnect the proposed Hermosa West Wind Farm Project with Western Area Power Administration’s transmission system, Western cancelled preparation of an EIS to evaluate the potential environmental impacts of the proposal.

  11. EA-2004: The Seneca Nation Wind Turbine Project, Cattaraugus...

    Broader source: Energy.gov (indexed) [DOE]

    Seneca Nation of Indians, to design, permit, and construct up to a 2.0-megawatt wind turbine on Tribal common lands in the Cattaraugus Territory, New York. The turbine would be...

  12. EA-2004: Seneca Nation of Indians Wind Turbine Project, Cattaraugus...

    Broader source: Energy.gov (indexed) [DOE]

    funding to the Seneca Nation of Indians, to design, permit, and construct a 1.7-megawatt wind turbine on Tribal common lands in the Cattaraugus Territory, New York. The turbine...

  13. Wind and Solar Data Projections from the Energy Information Administration: Past Performance and Planned Enhancements

    U.S. Energy Information Administration (EIA) Indexed Site

    Wind and Solar Data and Projections from the U.S. Energy Information Administration: Past Performance and Ongoing Enhancements March 2016 Independent Statistics & Analysis www.eia.gov U.S. Department of Energy Washington, DC 20585 U.S. Energy Information Administration | Wind and Solar Projections from the U.S. Energy Information Administration: Past Performance and Planned Enhancements 1 This report was prepared by the U.S. Energy Information Administration (EIA), the statistical and

  14. Distributed connected wind farms (Smart Grid Project) (Limerick...

    Open Energy Info (EERE)

    address":"","icon":"","group":"","inlineLabel":"","visitedicon":"" Display map Period Ma y 2009 Apr 2012 References EU Smart Grid Projects Map1 Overview This project comprises...

  15. WINDExchange: How Do I Get Wind Power?

    Wind Powering America (EERE)

    How do I get Wind Power? Learn how you can own, partner with, host, and support wind power. Construct A Wind Project On Your Own Land There are wind turbines designed for everyone from residential homeowners to utilities, and from private to corporate use. Small wind turbines can be bought with cash, and commercial-scale projects can be financed. To learn more about small projects, such as those for a home or ranch or business that are less than or equal to 100 kilowatts (kW), see the small wind

  16. Michigan Wind II Wind Farm | Open Energy Information

    Open Energy Info (EERE)

    II Wind Farm Jump to: navigation, search Name Michigan Wind II Wind Farm Facility Michigan Wind II Wind Farm Sector Wind energy Facility Type Commercial Scale Wind Facility Status...

  17. Metro Wind LLC Wind Farm | Open Energy Information

    Open Energy Info (EERE)

    Wind LLC Wind Farm Jump to: navigation, search Name Metro Wind LLC Wind Farm Facility Metro Wind LLC Sector Wind energy Facility Type Commercial Scale Wind Facility Status In...

  18. JD Wind 6 Wind Farm | Open Energy Information

    Open Energy Info (EERE)

    JD Wind 6 Wind Farm Jump to: navigation, search Name JD Wind 6 Wind Farm Facility JD Wind 6 Sector Wind energy Facility Type Commercial Scale Wind Facility Status In Service Owner...

  19. JD Wind 7 Wind Farm | Open Energy Information

    Open Energy Info (EERE)

    JD Wind 7 Wind Farm Jump to: navigation, search Name JD Wind 7 Wind Farm Facility JD Wind 7 Sector Wind energy Facility Type Commercial Scale Wind Facility Status In Service Owner...

  20. Small Buildings Small Portfolio Commercial Upstream Incentive Project: Regional Roll-Out- 2014 BTO Peer Review

    Broader source: Energy.gov [DOE]

    Presenter: Todd Levin, Argonne National Laboratory To cost-effectively spur energy efficiency improvements in the small buildings and small portfolios (SBSP) sector, this project is evaluating how to expand commercial upstream incentive approaches to a level that will be nationally replicated.

  1. Commercial-Scale Project Development and Finance Workshop Agenda and Presentations: Colorado

    Broader source: Energy.gov [DOE]

    Download the agenda and available presentations from guest speakers at the DOE Office of Indian Energy's Commercial-Scale Tribal Renewable Energy Project Development and Finance workshop held Sept. 1-3, 2015, at the National Renewable Energy Laboratory in Golden, Colorado.

  2. Mountaineer Commercial Scale Carbon Capture and Storage Project Topical Report: Preliminary Public Design Report

    SciTech Connect (OSTI)

    Guy Cerimele

    2011-09-30

    This Preliminary Public Design Report consolidates for public use nonproprietary design information on the Mountaineer Commercial Scale Carbon Capture & Storage project. The report is based on the preliminary design information developed during the Phase I - Project Definition Phase, spanning the time period of February 1, 2010 through September 30, 2011. The report includes descriptions and/or discussions for: (1) DOE's Clean Coal Power Initiative, overall project & Phase I objectives, and the historical evolution of DOE and American Electric Power (AEP) sponsored projects leading to the current project; (2) Alstom's Chilled Ammonia Process (CAP) carbon capture retrofit technology and the carbon storage and monitoring system; (3) AEP's retrofit approach in terms of plant operational and integration philosophy; (4) The process island equipment and balance of plant systems for the CAP technology; (5) The carbon storage system, addressing injection wells, monitoring wells, system monitoring and controls logic philosophy; (6) Overall project estimate that includes the overnight cost estimate, cost escalation for future year expenditures, and major project risks that factored into the development of the risk based contingency; and (7) AEP's decision to suspend further work on the project at the end of Phase I, notwithstanding its assessment that the Alstom CAP technology is ready for commercial demonstration at the intended scale.

  3. Accelerating Offshore Wind Development | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Offshore Wind Development Accelerating Offshore Wind Development December 12, 2012 - 2:15pm Addthis Matthew Loveless Matthew Loveless Data Integration Specialist, Office of Public Affairs What does this project do? The 2012 investments support innovative offshore installations for commercial deployment by 2017. The 2011 grants were targeted at projects that aim to either improve the technology used for offshore wind generation or remove the market barriers to offshore wind generation. View the

  4. Offshore wind project surges ahead in South Carolina

    Broader source: Energy.gov [DOE]

    Researchers from Coastal Carolina University, working alongside Clemson University, Savannah River National Laboratory and the University of South Carolina, started collecting wind speeds, as well as current, wave and other oceanographic information, in July 2009 from near the coast to as far as 12 miles off shore.

  5. Pilot project for a commercial buildings Energy Analysis and Diagnostic Center (EADC) program. Final report

    SciTech Connect (OSTI)

    Capehart, B.L.

    1996-02-01

    Commercial energy use costs businesses around $70 billion annually. Many of these businesses are small and medium sized organizations that do not have the resources to help themselves, or to pay for professional engineering services to help reduce their energy costs and improve their economic competitiveness. Energy cost reduction actions with payback times of around two years could save the commercial sector 15--20%, or $10--$15 billion per year. This project was initially intended to evaluate the feasibility of performing commercial energy audits as an adjunct to the industrial audit program run by the US Department of Energy Industrial Office. This program is housed in 30 universities throughout the United States. Formerly known as Energy Analysis and Diagnostic Centers (EADC`s), the university programs are now called Industrial Assessment Centers (IAC`s) to reflect their expansion from energy use analyses to include waste and productivity analyses. The success of the EADC/IAC program in helping the manufacturing sector provides an excellent model for a similar program in the commercial buildings sector. This project has investigated using the EADC/IAC approach to performing energy audits for the commercial sector, and has determined that such an approach is feasible and cost effective.

  6. Brazos Wind Ranch Wind Farm | Open Energy Information

    Open Energy Info (EERE)

    Sector Wind energy Facility Type Commercial Scale Wind Facility Status In Service Owner Shell Wind EnergyMitsui Developer Cielo Wind PowerOrion Energy Energy Purchaser Green...

  7. U.S. Offshore Wind Advanced Technology Demonstration Projects Public Meeting Transcript for Offshore Wind Demonstrations

    Broader source: Energy.gov [DOE]

    Provides an account of the proceedings of public meeting DE-FOA-0000659 on February 7, 2012 in Washington, DC Contains discussion of the draft financial opportunity announcement DE-FOA-0000410-DRAFT Includes information on offshore wind and the national strategy of the U.S. Department of Energy

  8. EIS-0413: Searchlight Wind Energy Project, Searchlight, NV

    Broader source: Energy.gov [DOE]

    The Department of the Interiors Bureau of Land Management, with DOEs Western Area Power Administration as a cooperating agency, is preparing this EIS to evaluate the environmental impacts of a proposal to construct and operate 156 wind turbine generators and related facilities on public lands surrounding the town of Searchlight, Nevada. The proposal includes a substation that would be operated by Western.

  9. Regional Community Wind Conferences, Great Plains Windustry Project

    SciTech Connect (OSTI)

    Daniels, Lisa [Windustry

    2013-02-28

    Windustry organized and produced five regional Community Wind Across America (CWAA) conferences in 2010 and 2011 and held two CWAA webinars in 2011 and 2012. The five conferences were offered in regions throughout the United States: Denver, Colorado ? October 2010 St. Paul, Minnesota ? November 2010 State College, Pennsylvania ? February 2011 Ludington, Michigan (co-located with the Michigan Energy Fair) June 2011 Albany, New York October 2011

  10. Community Wind Handbook/Research Project Economics & Financing...

    Open Energy Info (EERE)

    * Submit Permit Applications * Find an Installer * Purchase Equipment * Plan for Maintenance Research Project Economics & Financing Generally defined as the amount of time it...

  11. Spanish Fork Wind Farm | Open Energy Information

    Open Energy Info (EERE)

    Fork Wind Farm Jump to: navigation, search Name Spanish Fork Wind Farm Facility Spanish Fork Wind Farm Sector Wind energy Facility Type Commercial Scale Wind Facility Status In...

  12. Sigel Wind Park | Open Energy Information

    Open Energy Info (EERE)

    Sigel Wind Park Jump to: navigation, search Name Sigel Wind Park Facility Sigel Wind Park Sector Wind energy Facility Type Commercial Scale Wind Facility Status In Service Owner...

  13. Minden Wind Park | Open Energy Information

    Open Energy Info (EERE)

    Minden Wind Park Jump to: navigation, search Name Minden Wind Park Facility Minden Wind Park Sector Wind energy Facility Type Commercial Scale Wind Facility Status In Service Owner...

  14. Fossil Gulch Wind Park | Open Energy Information

    Open Energy Info (EERE)

    Gulch Wind Park Jump to: navigation, search Name Fossil Gulch Wind Park Facility Fossil Gulch Wind Park Sector Wind energy Facility Type Commercial Scale Wind Facility Status In...

  15. Criterion Wind Park | Open Energy Information

    Open Energy Info (EERE)

    Criterion Wind Park Jump to: navigation, search Name Criterion Wind Park Facility Criterion Wind Park Sector Wind energy Facility Type Commercial Scale Wind Facility Status In...

  16. Golden Valley Wind Park | Open Energy Information

    Open Energy Info (EERE)

    Wind Park Jump to: navigation, search Name Golden Valley Wind Park Facility Golden Valley Wind Park Sector Wind energy Facility Type Commercial Scale Wind Facility Status In...

  17. Desert Wind Power | Open Energy Information

    Open Energy Info (EERE)

    Wind Power Jump to: navigation, search Name Desert Wind Power Facility Desert Wind Power Sector Wind energy Facility Type Commercial Scale Wind Facility Status Proposed Developer...

  18. Montfort Wind Farm | Open Energy Information

    Open Energy Info (EERE)

    Montfort Wind Farm Jump to: navigation, search Name Montfort Wind Farm Facility Montfort Wind Farm Sector Wind energy Facility Type Commercial Scale Wind Facility Status In Service...

  19. Charlestown Wind Turbine | Open Energy Information

    Open Energy Info (EERE)

    Charlestown Wind Turbine Jump to: navigation, search Name Charlestown Wind Turbine Facility Charlestown Wind Turbine Sector Wind energy Facility Type Commercial Scale Wind Facility...

  20. Gray County Wind Farm | Open Energy Information

    Open Energy Info (EERE)

    Gray County Wind Farm Jump to: navigation, search Name Gray County Wind Farm Facility Gray County Wind Farm Sector Wind energy Facility Type Commercial Scale Wind Facility Status...