Powered by Deep Web Technologies
Note: This page contains sample records for the topic "wind program designed" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


1

Commonwealth Wind Incentive Program – Micro Wind Initiative  

Energy.gov (U.S. Department of Energy (DOE))

Through the Commonwealth Wind Incentive Program – Micro Wind Initiative the Massachusetts Clean Energy Center (MassCEC) offers rebates of up to $4/W with a maximum of $130,000 for design and...

2

Wind for Schools Affiliate Programs: Wind and Hydropower Technologies Program (Fact Sheet)  

DOE Green Energy (OSTI)

The U.S. Department of Energy's (DOE's) Wind for Schools program is designed to raise awareness about the benefits of wind energy while simultaneously developing a wind energy knowledge base in future leaders of our communities, states, and nation. To accommodate the many stakeholders who are interested in the program, a Wind for Schools affiliate program has been implemented. This document describes the affiliate program and how interested schools may participate.

Not Available

2009-12-01T23:59:59.000Z

3

Wind Power Today: Federal Wind Program Highlights  

DOE Green Energy (OSTI)

Wind Power Today is an annual publication that provides an overview of the wind research conducted under the U.S. Department of Energy's Wind and Hydropower Technologies Program. The purpose of Wind Power Today is to show how DOE supports wind turbine research and deployment in hopes of furthering the advancement of wind technologies that produce clean, low-cost, reliable energy. Content objectives include: educate readers about the advantages and potential for widespread deployment of wind energy; explain the program's objectives and goals; describe the program's accomplishments in research and application; examine the barriers to widespread deployment; describe the benefits of continued research and development; facilitate technology transfer; and attract cooperative wind energy projects with industry.

Not Available

2005-04-01T23:59:59.000Z

4

Wind energy: Program overview, FY 1992  

DOE Green Energy (OSTI)

The DOE Wind Energy Program assists utilities and industry in developing advanced wind turbine technology to be economically competitive as an energy source in the marketplace and in developing new markets and applications for wind systems. This program overview describes the commercial development of wind power, wind turbine development, utility programs, industry programs, wind resources, applied research in wind energy, and the program structure.

Not Available

1993-06-01T23:59:59.000Z

5

Establishing a Comprehensive Wind Energy Program  

SciTech Connect

This project was directed at establishing a comprehensive wind energy program in Indiana, including both educational and research components. A graduate/undergraduate course ME-514 - Fundamentals of Wind Energy has been established and offered and an interactive prediction of VAWT performance developed. Vertical axis wind turbines for education and research have been acquired, instrumented and installed on the roof top of a building on the Calumet campus and at West Lafayette (Kepner Lab). Computational Fluid Dynamics (CFD) calculations have been performed to simulate these urban wind environments. Also, modal dynamic testing of the West Lafayette VAWT has been performed and a novel horizontal axis design initiated. The 50-meter meteorological tower data obtained at the Purdue Beck Agricultural Research Center have been analyzed and the Purdue Reconfigurable Micro Wind Farm established and simulations directed at the investigation of wind farm configurations initiated. The virtual wind turbine and wind turbine farm simulation in the Visualization Lab has been initiated.

Fleeter, Sanford [Purdue University

2012-09-30T23:59:59.000Z

6

NREL: Wind Research - Last Call: Illinois Wind for Schools Program...  

NLE Websites -- All DOE Office Websites (Extended Search)

Last Call: Illinois Wind for Schools Program Accepting Applications February 25, 2013 Now in its second year, the Illinois Wind for Schools (ILWFS) program is accepting...

7

Wind Program: Program Plans, Implementation, and Results  

NLE Websites -- All DOE Office Websites (Extended Search)

Wind Program Wind Program HOME ABOUT RESEARCH & DEVELOPMENT DEPLOYMENT FINANCIAL OPPORTUNITIES INFORMATION RESOURCES NEWS EVENTS EERE » Wind Program » About Key Activities Plans, Implementation, & Results Budget Contacts Plans, Implementation, and Results Here you'll find an overview of the Wind Program and links to its program planning, implementation, and results documents. This list summarizes the program's wind power research, development, and demonstration activities. Read more about: Overview Learn more about this EERE Office. Plans Discover the plans, budgets, and analyses that set the direction of office priorities and activities. Implementation Find out how the office controls, implements, and adjusts its plans and manages its activities. Results Learn about the technological, commercial, and other outputs and outcomes

8

Commonwealth Wind Commercial Wind Program | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

and business planning) Through the Commonwealth Wind Incentive Program - Commercial Wind Initiative the Massachusetts Clean Energy Center (MassCEC) offers site assessment...

9

Wind Program: Stakeholder Engagement and Outreach  

Wind Powering America (EERE)

Outreach Outreach Printable Version Bookmark and Share The Stakeholder Engagement and Outreach initiative of the U.S. Department of Energy's Wind Program is designed to educate, engage, and enable critical stakeholders to make informed decisions about how wind energy contributes to the U.S. electricity supply. Highlights Resources Wind Resource Maps State Activities What activities are happening in my state? AK AL AR AZ CA CO CT DC DE FL GA HI IA ID IL IN KS KY LA MA MD ME MI MN MO MS MT NC ND NE NH NJ NM NV NY OH OK OR PA RI SC SD TN TX UT VA VT WA WI WV WY Installed wind capacity maps. Features A image of a house with a residential-scale small wind turbine. Small Wind for Homeowners, Farmers, and Businesses Stakeholder Engagement & Outreach Projects

10

DOE Wind Program Update: June 4, 2006;  

SciTech Connect

The DOE Wind Program Update provides WindPower Conference attendees with information about recent DOE events, including Assistant Secretary Karsner, a wind turbine blade test facility CRADA, and 2005 Wind Energy Award recipients.

2006-06-01T23:59:59.000Z

11

Wind energy systems: program summary  

Science Conference Proceedings (OSTI)

The Federal Wind Energy Program (FWEP) was initiated to provide focus, direction and funds for the development of wind power. Each year a summary is prepared to provide the American public with an overview of government sponsored activities in the FWEP. This program summary describes each of the Department of Energy's (DOE) current wind energy projects initiated or renewed during FY 1979 (October 1, 1978 through September 30, 1979) and reflects their status as of April 30, 1980. The summary highlights on-going research, development and demonstration efforts and serves as a record of progress towards the program objectives. It also provides: the program's general management structure; review of last year's achievements; forecast of expected future trends; documentation of the projects conducted during FY 1979; and list of key wind energy publications.

None

1980-05-01T23:59:59.000Z

12

Wind Power Today, 2010, Wind and Water Power Program (WWPP)  

SciTech Connect

Wind Power Today is an annual publication that provides an overview of the wind energy research conducted by the U.S. Department of Energy Wind and Water Power Program.

2010-05-01T23:59:59.000Z

13

Commonwealth Wind Commercial Wind Program | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Commercial Wind Program Commercial Wind Program Commonwealth Wind Commercial Wind Program < Back Eligibility Agricultural Commercial Construction Fed. Government Industrial Institutional Local Government Multi-Family Residential Municipal Utility Nonprofit Rural Electric Cooperative Schools State Government Tribal Government Savings Category Wind Buying & Making Electricity Maximum Rebate Public Entities: $100,000 Non-Public Entities: $67,000 Program Info Funding Source Massachusetts Renewable Energy Trust Start Date 05/2011 Expiration Date 08/01/2013 State Massachusetts Program Type State Grant Program Rebate Amount Varies depending on applicant type (public vs. non-public) and grant type (site assessment, feasibility study, onsite wind monitoring, acoustic studies, and business planning)

14

Federal Wind Energy Research Program  

SciTech Connect

The Office of Program Analysis (OPA) undertook an assessment of 55 research projects sponsored by the Federal Wind Energy Research Program. This report summarizes the results of that review. In accordance with statue and policy guidance, the program's research has targeted the sciences of wind turbine dynamics and the development of advanced components and systems. Wind turbine research has focused on atmospheric fluid dynamics, aerodynamics, and structural dynamics. Rating factors including project scientific and technical merit, appropriateness and level of innovation of the technical approach, quality of the project team, productivity, and probable impact on the program's mission. Each project was also given an overall evaluation supported with written comments. 1 fig.

1991-10-01T23:59:59.000Z

15

The Federal Advanced Wind Turbine Program  

SciTech Connect

The development of technologically advanced, higher efficiency wind turbines has been identified as a high priority activity by the US wind industry. The Department of Energy's Wind Energy Program has begun a multi-year development program aimed at assisting the wind industry with the design, development, and testing of advanced wind turbine systems that can compete with conventional electric generation for $0.05/kWh at 13 mph sites by the mid-1990s and with fossil-fuel-based generators for $0.04/kWh at 13 mph sites by the year 2000. The development plan consists of four phases: (1) Conceptual Design Studies; (2) Near-Term Product Development; (3) Next Generation Technology Integration and Design, and (4) Next- Generation Technology Development and Testing. The Conceptual Design Studies were begun in late 1990, and are scheduled for completion in the Spring of 1992. Preliminary results from these analyses are very promising and indicate that the goals stated above are technically feasible. This paper includes a brief summary of the Conceptual Design Studies and presents initial plans for the follow-on activities. 3 refs., 4 figs.

Hock, S M; Thresher, R W [National Renewable Energy Lab., Golden, CO (United States); Goldman, P R [USDOE, Washington, DC (United States)

1991-12-01T23:59:59.000Z

16

The Federal Advanced Wind Turbine Program  

DOE Green Energy (OSTI)

The development of technologically advanced, higher efficiency wind turbines has been identified as a high priority activity by the US wind industry. The Department of Energy`s Wind Energy Program has begun a multi-year development program aimed at assisting the wind industry with the design, development, and testing of advanced wind turbine systems that can compete with conventional electric generation for $0.05/kWh at 13 mph sites by the mid-1990s and with fossil-fuel-based generators for $0.04/kWh at 13 mph sites by the year 2000. The development plan consists of four phases: (1) Conceptual Design Studies; (2) Near-Term Product Development; (3) Next Generation Technology Integration and Design, and (4) Next- Generation Technology Development and Testing. The Conceptual Design Studies were begun in late 1990, and are scheduled for completion in the Spring of 1992. Preliminary results from these analyses are very promising and indicate that the goals stated above are technically feasible. This paper includes a brief summary of the Conceptual Design Studies and presents initial plans for the follow-on activities. 3 refs., 4 figs.

Hock, S.M.; Thresher, R.W. [National Renewable Energy Lab., Golden, CO (United States); Goldman, P.R. [USDOE, Washington, DC (United States)

1991-12-01T23:59:59.000Z

17

Commonwealth Wind Incentive Program - Micro Wind Initiative | Department  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Commonwealth Wind Incentive Program - Micro Wind Initiative Commonwealth Wind Incentive Program - Micro Wind Initiative Commonwealth Wind Incentive Program - Micro Wind Initiative < Back Eligibility Commercial Fed. Government Industrial Institutional Local Government Multi-Family Residential Nonprofit Residential Schools State Government Tribal Government Savings Category Wind Buying & Making Electricity Maximum Rebate Public Projects: up to 4/W with maximum of $130,000 Non-Public Projects: up to 5.20/W with a maximum of $100,000 Program Info Funding Source Massachusetts Renewable Energy Trust Fund Start Date 4/1/2005 State Massachusetts Program Type State Rebate Program Rebate Amount Capacity-based Rebate = Rated Capacity (kW) * 460 +3200 Estimated Performance Rebate = Expected Production * 2.8 * (Rated Capacity^-0.29)

18

EERE: Wind Program Home Page  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

wind projects and offshore wind resource potential. Offshore Wind R&D DOE makes strategic research & deployment investments to launch domestic offshore wind industry....

19

Wind Energy Career Development Program  

Science Conference Proceedings (OSTI)

Saint Francis University has developed curriculum in engineering and in business that is meeting the needs of students and employers (Task 1) as well as integrating wind energy throughout the curriculum. Through a variety of approaches, the University engaged in public outreach and education that reached over 2,000 people annually (Task 2). We have demonstrated, through the success of these programs, that students are eager to prepare for emerging jobs in alternative energy, that employers are willing to assist in developing employees who understand the broader business and policy context of the industry, and that people want to learn about wind energy.

Gwen Andersen

2012-03-29T23:59:59.000Z

20

Wind Powering America Program Overview (Fact Sheet)  

DOE Green Energy (OSTI)

This fact sheet provides an overview of the U.S. Department of Energy's Wind Powering America Program.

Not Available

2008-04-01T23:59:59.000Z

Note: This page contains sample records for the topic "wind program designed" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


21

Parametric design of floating wind turbines  

E-Print Network (OSTI)

As the price of energy increases and wind turbine technology matures, it is evident that cost effective designs for floating wind turbines are needed. The next frontier for wind power is the ocean, yet development in near ...

Tracy, Christopher (Christopher Henry)

2007-01-01T23:59:59.000Z

22

NANA Wind Resource Assessment Program Final Report  

DOE Green Energy (OSTI)

NANA Regional Corporation (NRC) of northwest Alaska is located in an area with abundant wind energy resources. In 2007, NRC was awarded grant DE-FG36-07GO17076 by the US Department of Energy's Tribal Energy Program for funding a Wind Resource Assessment Project (WRAP) for the NANA region. The NANA region, including Kotzebue Electric Association (KEA) and Alaska Village Electric Cooperative (AVEC) have been national leaders at developing, designing, building, and operating wind-diesel hybrid systems in Kotzebue (starting in 1996) and Selawik (2002). Promising sites for the development of new wind energy projects in the region have been identified by the WRAP, including Buckland, Deering, and the Kivalina/Red Dog Mine Port Area. Ambler, Shungnak, Kobuk, Kiana, Noorvik & Noatak were determined to have poor wind resources at sites in or very near each community. However, all five of these communities may have better wind resources atop hills or at sites with slightly higher elevations several miles away.

Jay Hermanson

2010-09-23T23:59:59.000Z

23

NREL: Education Programs - Illinois Wind for Schools Program...  

NLE Websites -- All DOE Office Websites (Extended Search)

Illinois Wind for Schools Program Selects Partner Schools May 6, 2013 The Illinois Wind for Schools program has selected six partner school districts for the 2013-2014 school year....

24

Wind for Schools Project Curriculum Brief (Fact Sheet), Wind And Water Power Program (WWPP)  

Wind Powering America (EERE)

Introduction Introduction The U.S. Department of Energy's (DOE's) 20% Wind Energy by 2030 report recommends expanding educa- tion to ensure a trained workforce to meet the projected growth of the wind industry and deployment. Although a few U.S. higher education institu- tions offer wind technology education programs, most are found in community and technical colleges, resulting in a shortage of programs preparing highly skilled graduates for wind industry careers. Further, the United States lags behind Europe (which has more gradu- ate programs in wind technology design and manufacturing) and is in danger of relinquishing the economic benefits of domestic production of wind turbines and related components and services to European countries. DOE's Wind Powering America initia-

25

NREL: Education Programs - Wind for Schools Program Impacting Nation's  

NLE Websites -- All DOE Office Websites (Extended Search)

for Schools Program Impacting Nation's Renewable Energy Future for Schools Program Impacting Nation's Renewable Energy Future February 28, 2013 Audio with Dan McGuire, Nebraska Wind for Schools Program Consultant (MP3 4.7 MB). Download Windows Media Player. Time: 00:05:03. The U.S. Department of Energy, Wind Powering America, and the National Renewable Energy Laboratory launched the Wind for Schools Program in 2006. These groups identified six priority states for the program-and Nebraska was one of those states. Nebraska Wind for Schools Program Consultant Dan McGuire says the program has three primary goals. First, to engage rural school teachers and students in wind energy education. Second, to equip college students with wind energy education and in wind energy applications to provide interested, equipped engineers for the growing U.S. wind industry. And

26

Commonwealth Wind Incentive Program - Micro Wind Initiative...  

Open Energy Info (EERE)

Clean Energy Analysis Low Emission Development Strategies Oil & Gas Smart Grid Solar U.S. OpenLabs Utilities Water Wind Page Actions View form View source History View...

27

Commonwealth Wind Commercial Wind Program (Massachusetts) | Open...  

Open Energy Info (EERE)

Development Strategies Oil & Gas Smart Grid Solar U.S. OpenLabs Utilities Water Wind Page Actions View form View source History View New Pages Recent Changes All Special...

28

Sales Tax Exemption for Wind Energy Business Designated High Impact  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Sales Tax Exemption for Wind Energy Business Designated High Impact Sales Tax Exemption for Wind Energy Business Designated High Impact Business Sales Tax Exemption for Wind Energy Business Designated High Impact Business < Back Eligibility Commercial Savings Category Wind Buying & Making Electricity Program Info Start Date 07/01/2009 State Illinois Program Type Sales Tax Incentive Rebate Amount 100% exemption of Retailers' Occupation Tax for building materials incorporated into the facility Provider Illinois Department of Commerce and Economic Opportunity A business establishing a new wind power facility in Illinois that will not be located in an Enterprise Zone* may be eligible for designation as a "High Impact Business." After receiving the designation, the facility is entitled to a full exemption of the state sales tax (6.25%) and any

29

DOE/NREL Advanced Wind Turbine Development Program  

DOE Green Energy (OSTI)

The development of technologically advanced, high-efficiency wind turbines continues to be a high-priority activity of the US wind industry. The National Renewable Energy Laboratory (formerly the Solar Energy Research Institute), sponsored by the US Department of Energy (DOE), has initiated the Advanced Wind Turbine Program to assist the wind industry in the development of a new class of advanced wind turbines. The initial phase of the program focused on developing conceptual designs for near-term and advanced turbines. The goal of the second phase of this program is to use the experience gained over the last decade of turbine design and operation combined with the latest existing design tools to develop a turbine that will produce energy at $0.05 per kilowatt-hour (kWh) in a 5.8-m/s (13-mph) wind site. Three contracts have been awarded, and two more are under negotiation in the second phase. The third phase of the program will use new innovations and state-of-the-art wind turbine design technology to produce a turbine that will generate energy at $0.04/kWh in a 5.8-m/s wind site. Details of the third phase will be announced in early 1993.

Butterfield, C.P.; Smith, B.; Laxson, A.; Thresher, B. [National Renewable Energy Lab., Golden, CO (United States); Goldman, P. [USDOE Assistant Secretary for Conservation and Renewable Energy, Washington, DC (United States). Wind/Hydro/Ocean Technologies Div.

1993-05-01T23:59:59.000Z

30

Applications: Wind turbine and blade design  

E-Print Network (OSTI)

Capability Applications: Wind turbine and blade design optimization Energy production enhancement Summary: As the wind energy industry works to provide the infra- structure necessary for wind turbine develops a means to aug- ment power production with wind-derived energy. Turbines have become massive

31

WIND ENERGY PROGRAM - Home - Energy Innovation Portal  

Wind Energy Program Investment Philosophy Since the ’80s, DOE has used cost-shared partnerships to work with businesses DOE partnership has encouraged development ...

32

Field verification program for small wind turbines  

DOE Green Energy (OSTI)

In 1999 Windward Engineering (Windward) was awarded a Cooperative Agreement under the Field Verification Program with the Department of Energy (DOE) to install two Whisper H40 wind turbines, one at the NREL National Wind Technology Center (NWTC) and one at a test site near Spanish Fork, Utah. After installation, the turbine at the NWTC was to be operated, maintained, and monitored by NREL while the turbine in Spanish Fork was to be administered by Windward. Under this award DOE and Windward defined the primary objectives of the project as follows: (1) Determine and demonstrate the reliability and energy production of a furling wind turbine at a site where furling will be a very frequent event and extreme gusts can be expected during the duration of the tests. (2) Make engineering measurements and conduct limited computer modeling of the furling behavior to improve the industry understanding of the mechanics and nature of furling. We believe the project has achieved these objectives. The turbine has operated for approximately three and a half years. We have collected detailed engineering data approximately 75 percent of that time. Some of these data were used in an ADAMS model validation that highlighted the accuracies and inaccuracies of the computer modeling for a passively furling wind turbine. We also presented three papers at the American Wind Energy Association (AWEA) Windpower conferences in 2001, 2002, and 2003. These papers addressed the following three topics: (a) general overview of the project [1], (b) furling operation during extreme wind events [2], and (c) extrapolation of extreme (design) loads [3]. We believe these papers have given new insight into the mechanics and nature of furling and have set the stage for future research. In this final report we will highlight some of the more interesting aspects of the project as well as summarize the data for the entire project. We will also present information on the installation of the turbines as well as the findings from the post-test inspection of the turbine.

Windward Engineering, LLC

2003-11-30T23:59:59.000Z

33

Wind Energy Education and Training Programs (Postcard)  

SciTech Connect

As the United States dramatically expands wind energy deployment, the industry is challenged with developing a skilled workforce to support it. The Wind Powering America website features a map of wind energy education and training program locations at community colleges, universities, and other institutions in the United States. The map includes links to contacts and program details. This postcard is a marketing piece that stakeholders can provide to interested parties; it will guide them to this online resource for wind energy education and training programs episodes.

Not Available

2012-07-01T23:59:59.000Z

34

Wind Turbine Design Innovations Drive Industry Transformation...  

NLE Websites -- All DOE Office Websites (Extended Search)

Wind Turbine Design Innovations Drive Industry Transformation For more than 20 years, the National Renewable Energy Laboratory (NREL) has helped GE and its predecessors achieve...

35

The Economic Optimization of Wind Turbine Design .  

E-Print Network (OSTI)

??This thesis studies the optimization of a variable speed, three blade, horizontal-axis wind turbine. The design parameters considered are the rotor diameter, hub height and… (more)

Schmidt, Michael Frank

2007-01-01T23:59:59.000Z

36

NREL: Education Programs - Last Call: Illinois Wind for Schools...  

NLE Websites -- All DOE Office Websites (Extended Search)

Last Call: Illinois Wind for Schools Program Accepting Applications February 25, 2013 Now in its second year, the Illinois Wind for Schools (ILWFS) program is accepting...

37

Solar and Wind Energy Rebate Program | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Solar and Wind Energy Rebate Program Solar and Wind Energy Rebate Program Eligibility Commercial Fed. Government Industrial Local Government Nonprofit Residential Schools State...

38

Wind Energy Program overview, Fiscal year 1993  

Science Conference Proceedings (OSTI)

Wind energy research has two goals: (1) to gain a fundamental understanding of the interactions between wind and wind turbines; and (2) to develop the basic design tools required to develop advanced technologies. A primary objective of applied research activities is to develop sophisticated computer codes and integrate them into the design, testing, and evaluation of advanced components and systems, Computer models have become a necessary and integral part of developing new high-tech wind energy systems. A computer-based design strategy allows designers to model different configurations and explore new designs before building expensive hardware. DOE works closely with utilities and the wind industry in setting its applied research agenda. As soon as research findings become available, the national laboratories transfer the information to industry through workshops, conferences, and publications.

Not Available

1994-05-01T23:59:59.000Z

39

Federal Energy Management Program: Wind Energy Resources and Technologies  

NLE Websites -- All DOE Office Websites (Extended Search)

Wind Energy Wind Energy Resources and Technologies to someone by E-mail Share Federal Energy Management Program: Wind Energy Resources and Technologies on Facebook Tweet about Federal Energy Management Program: Wind Energy Resources and Technologies on Twitter Bookmark Federal Energy Management Program: Wind Energy Resources and Technologies on Google Bookmark Federal Energy Management Program: Wind Energy Resources and Technologies on Delicious Rank Federal Energy Management Program: Wind Energy Resources and Technologies on Digg Find More places to share Federal Energy Management Program: Wind Energy Resources and Technologies on AddThis.com... Energy-Efficient Products Technology Deployment Renewable Energy Federal Requirements Renewable Resources & Technologies Solar

40

An overview of DOE`s wind turbine development programs  

DOE Green Energy (OSTI)

The development of technologically advanced, higher efficiency wind turbines continues to be a high priority activity of the US wind industry. The United States Department of Energy (DOE) is conducting and sponsoring a range of programs aimed at assisting the wind industry with system design, development, and testing. The overall goal is to develop systems that can compete with conventional electric generation for $.05/kWh at 5.8 m/s (13 mph sites) by the mid-1990s and with fossil-fuel-based generators for $.04/kWh at 5.8 m/s sites by the year 2000. These goals will be achieved through several programs. The Value Engineered Turbine Program will promote the rapid development of US capability to manufacture wind turbines with known and well documented records of performance, cost, and reliability, to take advantage of near-term market opportunities. The Advanced Wind Turbine Program will assist US industry to develop and integrate innovative technologies into utility-grade wind turbines for the near-term (mid 1990s) and to develop a new generation of turbines for the year 2000. The collaborative Electric Power Research Institute (EPRI)/DOE Utility Wind Turbine Performance Verification Program will deploy and evaluate commercial-prototype wind turbines in typical utility operating environments, to provide a bridge between development programs currently underway and commercial purchases of utility-grade wind turbines. A number of collaborative efforts also will help develop a range of small systems optimized to work in a diesel hybrid environment to provide electricity for smaller non-grid-connected applications.

Laxson, A; Dodge, D; Flowers, L [National Renewable Energy Lab., Golden, CO (United States); Loose, R; Goldman, P [Dept. of Energy, Washington, DC (United States)

1993-09-01T23:59:59.000Z

Note: This page contains sample records for the topic "wind program designed" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


41

Cooperative field test program for wind systems  

DOE Green Energy (OSTI)

The objectives of the Federal Wind Energy Program, managed by the US Department of Energy (DOE), are (1) to assist industry and utilities in achieving a multi-regional US market penetration of wind systems, and (2) to establish the United States as the world leader in the development of advanced wind turbine technology. In 1984, the program conducted a series of planning workshops with representatives from the wind energy industry to obtain input on the Five-Year Research Plan then being prepared by DOE. One specific suggestion that came out of these meetings was that the federal program should conduct cooperative research tests with industry to enhance the technology transfer process. It was also felt that the active involvement of industry in DOE-funded research would improve the state of the art of wind turbine technology. DOE established the Cooperative Field Test Program (CFTP) in response to that suggestion. This program was one of the first in DOE to feature joint industry-government research test teams working toward common objectives.

Bollmeier, W.S. II; Dodge, D.M.

1992-03-01T23:59:59.000Z

42

Semi-annual report of the Wind Characteristics Program Element for the period July 1977 through December 1977  

DOE Green Energy (OSTI)

Within the Federal Wind Energy Program, the Wind Characteristics Program Element (WCPE) is a service element established to provide the appropriate wind characteristics information to those involved in energy program planning, design and evaluation of wind energy conversion systems (WECS), selection of sites for the installation of WECS, and the operation of WECS. The program contributions are to consist of reliable estimates of wind characteristics pertinent to WECS design, effective analyses and methods for the determination of wind energy potential over large areas, dependable and cost-effective methodologies for the siting of WECS, and descriptions of the day-to-day variability and predictability of wind energy for WECS operations. To accomplish these goals, the WCPE has been divided into four technical program areas: wind characteristics for design and performance evaluation; mesoscale wind characteristics; development of siting methodologies; and wind characteristics for WECS operations.

Elderkin, C.E.; Wendell, L.L.

1978-01-01T23:59:59.000Z

43

Commercial Scale Wind Incentive Program | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Commercial Scale Wind Incentive Program Commercial Scale Wind Incentive Program Commercial Scale Wind Incentive Program < Back Eligibility Agricultural Commercial Local Government Nonprofit Residential Schools State Government Savings Category Wind Buying & Making Electricity Maximum Rebate Project Development Assistance: $40,000 Program Info State Oregon Program Type State Rebate Program Rebate Amount Varies Provider Energy Trust of Oregon Energy Trust of Oregon's Commercial Scale Wind offering provides resources and cash incentives to help communities, businesses land owners, and government entities install wind turbine systems up to 20 megawatts (MW) in capacity. Projects may consist of a single turbine or a small group of turbines. A variety of ownership models are allowed. Incentive programs

44

Wind Power Today: Building a New Energy Future, Wind and Hydropower Technologies Program 2009 (Brochure)  

DOE Green Energy (OSTI)

Wind Power Today is an annual publication that provides an overview of the wind energy research conducted by the U.S. Department of Energy Wind and Hydropower Technologies Program.

Not Available

2009-04-01T23:59:59.000Z

45

Students Learn about Wind Power First-Hand through Wind for Schools Program  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Learn about Wind Power First-Hand through Wind for Schools Learn about Wind Power First-Hand through Wind for Schools Program Students Learn about Wind Power First-Hand through Wind for Schools Program February 18, 2011 - 3:48pm Addthis JMU student Greg Miller shows Northumberland students how the blades of a wind turbine work | courtesy of Virginia Center for Wind Energy JMU student Greg Miller shows Northumberland students how the blades of a wind turbine work | courtesy of Virginia Center for Wind Energy April Saylor April Saylor Former Digital Outreach Strategist, Office of Public Affairs What will the project do? Wind for Schools raises awareness in rural America about the benefits of wind energy while simultaneously developing a wind energy knowledge base in communities across the nation. For years, Jenny Christman tried to find a way to get a wind turbine to

46

NREL: Education Programs - KidWind Project and Wind Education...  

NLE Websites -- All DOE Office Websites (Extended Search)

KidWind Project and Wind Education in the Classroom: Wind Powering America Lessons Learned July 1, 2013 Integrating wind energy curricula into the classroom can seem like a...

47

Discussion of “Ultimate Wind Load Design Gust Wind Speeds ...  

Science Conference Proceedings (OSTI)

... Ind. Aerodyn., 97(3–4), 120–131. Peterka, JA (2001). “Database of peak gust wind speeds, Texas Tech/ CSU.” Extreme winds and wind effects on ...

2013-08-19T23:59:59.000Z

48

Wind Turbine Design Cost and Scaling Model  

NLE Websites -- All DOE Office Websites (Extended Search)

Wind Turbine Design Cost Wind Turbine Design Cost and Scaling Model L. Fingersh, M. Hand, and A. Laxson Technical Report NREL/TP-500-40566 December 2006 NREL is operated by Midwest Research Institute ● Battelle Contract No. DE-AC36-99-GO10337 Wind Turbine Design Cost and Scaling Model L. Fingersh, M. Hand, and A. Laxson Prepared under Task No. WER6.0703 Technical Report NREL/TP-500-40566 December 2006 National Renewable Energy Laboratory 1617 Cole Boulevard, Golden, Colorado 80401-3393 303-275-3000 * www.nrel.gov Operated for the U.S. Department of Energy Office of Energy Efficiency and Renewable Energy by Midwest Research Institute * Battelle Contract No. DE-AC36-99-GO10337 NOTICE This report was prepared as an account of work sponsored by an agency of the United States government.

49

Lattice Tower Design of Offshore Wind Turbine Support Structures.  

E-Print Network (OSTI)

??Optimal design of support structure including foundation and turbine tower is among the most critical challenges for offshore wind turbine. With development of offshore wind… (more)

Gong, W.

2011-01-01T23:59:59.000Z

50

Wind for Schools: Developing Educational Programs to Train the Next Generation of Wind Energy Experts (Poster)  

DOE Green Energy (OSTI)

As the world moves toward a vision of expanded wind energy, the industry is faced with the challenges of obtaining a skilled workforce and addressing local wind development concerns. Wind Powering America's Wind for Schools Program works to address these issues. The program installs small wind turbines at community "host" schools while developing wind application centers at higher education institutions. Teacher training with interactive and interschool curricula is implemented at each host school, while students at the universities assist in implementing the host school systems while participating in other wind course work. This poster provides an overview of the program's objectives, goals, approach, and results.

Baring-Gould, I.; Flowers, L.; Kelly, M.; Miles, J.

2009-05-01T23:59:59.000Z

51

Energy Trust - Small Wind Incentive Program (Oregon) State Rebate...  

Open Energy Info (EERE)

Data Page Edit with form History Share this page on Facebook icon Twitter icon Energy Trust - Small Wind Incentive Program (Oregon) State Rebate Program This is the...

52

Advanced wind turbine design studies: Advanced conceptual study. Final report  

DOE Green Energy (OSTI)

In conjunction with the US Department of Energy and the National Renewable Energy Laboratory`s Advanced Wind Turbine Program, the Atlantic Orient Corporation developed preliminary designs for the next generation of wind turbines. These 50 kW and 350 kW turbines are based upon the concept of simplicity. By adhering to a design philosophy that emphasizes simplicity, we project that these turbines will produce energy at extremely competitive rates which will unlock the potential of wind energy domestically and internationally. The program consisted of three distinct phases. First, we evaluated the operational history of the Enertech 44 series wind turbines. As a result of this evaluation, we developed, in the second phase, a preliminary design for a new 50 kW turbine for the near-term market. In the third phase, we took a clean-sheet-of-paper approach to designing a 350 kW turbine focused on the mid-1990s utility market that incorporated past experience and advanced technology.

Hughes, P.; Sherwin, R. [Atlantic Orient Corp., Norwich, VT (United States)

1994-08-01T23:59:59.000Z

53

Programmed design of ship forms  

Science Conference Proceedings (OSTI)

This paper describes a new category of CAD applications devoted to the definition and parameterization of hull forms, called programmed design. Programmed design relies on two prerequisites. The first one is a product model with a variety of types large ... Keywords: CAD language, Hull form, Parametric design, Product model, Programmed design

A. Rodríguez; L. Fernández-Jambrina

2012-07-01T23:59:59.000Z

54

Design of wind farm layout for maximum wind energy capture Andrew Kusiak*, Zhe Song  

E-Print Network (OSTI)

Design of wind farm layout for maximum wind energy capture Andrew Kusiak*, Zhe Song Intelligent sources of alternative energy. The construction of wind farms is destined to grow in the U.S., possibly twenty-fold by the year 2030. To maximize the wind energy capture, this paper presents a model for wind

Kusiak, Andrew

55

NREL: Education Programs - U.S. Department of Energy, Wind Program...  

NLE Websites -- All DOE Office Websites (Extended Search)

U.S. Department of Energy, Wind Program Initiates Inaugural National Collegiate Wind Competition January 8, 2013 The U.S. Department of Energy's (DOE's) National Renewable Energy...

56

NREL: Education Programs - Wind Applications Center Valuable Resource for  

NLE Websites -- All DOE Office Websites (Extended Search)

Applications Center Valuable Resource for Wind for Schools Partners Applications Center Valuable Resource for Wind for Schools Partners March 14, 2013 Audio with Jerry Hudgins, Nebraska Wind Applications Center Director and Joel Jacobs, Nebraska Wind Applications Center Associate Director (MP3 3.6 MB). Download Windows Media Player. Time: 00:03:58. The Wind for Schools Program was launched in 2006 by the U.S. Department of Energy, Wind Powering America, and the National Renewable Energy Laboratory. Six states were chosen as priorities for the program, and one of those states was Nebraska. The University of Nebraska-Lincoln houses the Wind Applications Center, which is the resource for K-12 partner schools in the program in Nebraska. Wind Applications Center Director Jerry Hudgins says wind is a fantastic resource in Nebraska, lending itself to renewable energy generation,

57

New England Wind Forum: A Wind Powering America Project, Newsletter #5 -- January 2010, Wind and Hydropower Technologies Program (WHTP)  

DOE Green Energy (OSTI)

Wind Powering America program launched the New England Wind Forum (NEWF) in 2005 to provide a single comprehensive source of up-to-date, Web-based information on a broad array of wind energy issues pertaining to New England. The NEWF newsletter provides New England stakeholders with updates on wind energy development in the region. In addition to regional updates, Issue #5 offers an interview with Angus King, former governor of Maine and co-founder of Independence Wind.

Grace, R. C.; Gifford, J.

2010-01-01T23:59:59.000Z

58

Kansas wind program stimulates rural economy | Department of...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

- 11:38am Addthis Joshua DeLung What will the project do? Students in the Wind for Schools program gain not only practical knowledge in wind turbine technologies, but also they...

59

Long Island Power Authority - Wind Energy Rebate Program | Department of  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Long Island Power Authority - Wind Energy Rebate Program Long Island Power Authority - Wind Energy Rebate Program Long Island Power Authority - Wind Energy Rebate Program < Back Eligibility Agricultural Commercial Fed. Government Industrial Institutional Local Government Nonprofit Residential Schools State Government Savings Category Wind Buying & Making Electricity Maximum Rebate Lesser of 60% of installed cost or values below: Residential: $56,000 Commercial: $135,600 Gov't, School, Non-profit: $200,000 Program Info Funding Source LIPA Efficiency Long Island Program Start Date January 2009 State New York Program Type Utility Rebate Program Rebate Amount Varies by sector and system size Provider Long Island Power Authority '''''Note: The program web site listed above is for the residential wind energy program; however, LIPA also offers

60

Department of Energy Awards $43 Million to Spur Offshore Wind Energy, Wind Program Newsletter, September 2011 Edition (Brochure)  

DOE Green Energy (OSTI)

EERE Wind Program Quarterly Newsletter - September 2011. In September, the U.S. Department of Energy announced that it will award $43 million over the next five years to 41 projects across 20 states to speed technical innovations, lower costs, and shorten the timeline for deploying offshore wind energy systems. The projects will advance wind turbine design tools and hardware, improve information about U.S. offshore wind resources, and accelerate the deployment of offshore wind by reducing market barriers such as supply chain development, transmission and infrastructure. The projects announced in September focus on approaches to advancing offshore technology and removing market barriers to responsible offshore wind energy deployment. Funding is subject to Congressional appropriations.

Not Available

2011-09-01T23:59:59.000Z

Note: This page contains sample records for the topic "wind program designed" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


61

Community Solar and Wind Grant Program | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Community Solar and Wind Grant Program Community Solar and Wind Grant Program Community Solar and Wind Grant Program < Back Eligibility Commercial Institutional Local Government Multi-Family Residential Nonprofit Schools State Government Savings Category Solar Buying & Making Electricity Wind Maximum Rebate $250,000 Program Info Funding Source Renewable Energy Resources Trust Fund Start Date 09/2011 Expiration Date 04/08/2013 State Illinois Program Type State Grant Program Rebate Amount Business Solar Thermal: 30% of project costs Government and Nonprofit Solar Thermal: 40% of project costs Business PV: $1.50/watt or 25% of project costs Government and Nonprofit PV: $2.60/watt or 40% of project costs Business Wind: $1.70/watt or 30% of project costs Government and Nonprofit Wind: $2.60/watt or 40% of project costs

62

National Renewable Energy Laboratory program on lightning risk and wind turbine generator protection  

DOE Green Energy (OSTI)

This paper will describe the NREL program for addressing lightning protection for wind turbines. A test program will begin this summer at the Central and South West Services Inc. (CSW) wind farm near Fort Davis, Texas, to assess lightning risk, the frequency of lightning strikes on wind turbines compared to risk assessment predictions, and the effectiveness of some protection techniques. A Web page will be assembled to provide resources for designers and operators and feedback for issues as they arise. Also, a database of lightning events (and corresponding damage) will be collected to assist in maturing the understanding of wind turbine lightning protection.

Muljadi, E. [National Renewable Energy Lab., Golden, CO (United States); McNiff, B. [McNiff Light Industry, Blue Hill, ME (United States)

1997-09-01T23:59:59.000Z

63

Alternative Design Study Report: WindPACT Advanced Wind Turbine Drive Train Designs Study; November 1, 2000 -- February 28, 2002  

DOE Green Energy (OSTI)

This report presents the Phase I results of the National Renewable Energy Laboratory's (NREL's) WindPACT (Wind Partnership for Advanced Component Technologies) Advanced Wind Turbine Drive Train Designs Study. Global Energy Concepts, LLC performed this work under a subcontract with NREL. The purpose of the WindPACT project is to identify technology improvements that will enable the cost of energy (COE) from wind turbines to be reduced. Other parts of the WindPACT project have examined blade and logistics scaling, balance-of-station costs, and rotor design. This study was designed to investigate innovative drive train designs.

Poore, R.; Lettenmaier, T.

2003-08-01T23:59:59.000Z

64

Commercial Scale Wind Incentive Program (Oregon) | Open Energy...  

Open Energy Info (EERE)

State Government Eligible Technologies Wind Active Incentive Yes Implementing Sector StateTerritory Energy Category Renewable Energy Incentive Programs Amount Varies Eligible...

65

NREL: Wind Research - U.S. Department of Energy Wind Program...  

NLE Websites -- All DOE Office Websites (Extended Search)

U.S. Department of Energy Wind Program Initiates Regional Resource Centers October 30, 2013 The U.S. Department of Energy's (DOE's) National Renewable Energy Laboratory (NREL)...

66

Better Buildings Neighborhood Program: Step 4: Design the Financing Program  

NLE Websites -- All DOE Office Websites (Extended Search)

: Design : Design the Financing Program to someone by E-mail Share Better Buildings Neighborhood Program: Step 4: Design the Financing Program on Facebook Tweet about Better Buildings Neighborhood Program: Step 4: Design the Financing Program on Twitter Bookmark Better Buildings Neighborhood Program: Step 4: Design the Financing Program on Google Bookmark Better Buildings Neighborhood Program: Step 4: Design the Financing Program on Delicious Rank Better Buildings Neighborhood Program: Step 4: Design the Financing Program on Digg Find More places to share Better Buildings Neighborhood Program: Step 4: Design the Financing Program on AddThis.com... Getting Started Driving Demand Financing Assess the Market Define Finance Program Objectives Identify & Engage Financial Partners

67

New England Wind Forum: A Wind Powering America Project - Newsletter #6 - September 2010, (NEWF), Wind and Water Power Program (WWPP)  

Wind Powering America (EERE)

6 - September 2010 6 - September 2010 WIND AND WATER POWER PROGRAM PIX 16204 New England and Northeast Look to the Horizon...and Beyond, for Offshore Wind In early December, Boston hosted the American Wind Energy Association's second annual Offshore Wind Project Workshop. U.S. and European offshore wind stakeholders convened to discuss the emerging U.S. offshore wind industry and provided evidence of a significant increase in activity along the Atlantic Coast from the Carolinas to Maine. The wind power industry and policymakers are looking to offshore for long-term growth, driven by aggressive policy goals, economic develop- ment opportunities, a finite set of attractive land-based wind sites, and immense wind energy potential at a modest distance from major population centers.

68

Kansas wind program stimulates rural economy | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Kansas wind program stimulates rural economy Kansas wind program stimulates rural economy Kansas wind program stimulates rural economy December 9, 2009 - 11:38am Addthis Joshua DeLung What will the project do? Students in the Wind for Schools program gain not only practical knowledge in wind turbine technologies, but also they get hands-on experience installing turbines statewide. During an economic downturn, it's always a struggle for recent college graduates to find jobs and a place to put down roots amid a tightening workforce. Fortunately for students who visit the Southeast Kansas Education Service Center in Girard - known as Greenbush to locals - a project called Wind for Schools has set up shop. The vocational school in Girard, where students visit on field trips from their regular schools, now

69

Electric Power Research Institute Utility Wind Turbine Verification Program  

Science Conference Proceedings (OSTI)

This report provides an overview of the DOE EPRI Wind Turbine Verification Program (TVP) and the Turbine Verification and Technology Transfer Projects funded by the program between 1994 and 2004.

2008-12-22T23:59:59.000Z

70

Wind Energy Multiyear Program Plan for 2007-2012  

DOE Green Energy (OSTI)

The purpose of this document is to provide an overview of the DOE Wind Energy Program and to describe the near and long-term goals and strategies for achieving the program's mission.

Not Available

2007-08-01T23:59:59.000Z

71

Wind Energy Multiyear Program Plan for 2007-2012  

SciTech Connect

The purpose of this document is to provide an overview of the DOE Wind Energy Program and to describe the near and long-term goals and strategies for achieving the program's mission.

2007-08-01T23:59:59.000Z

72

Wind Developer's Perspective on Incorporating Wind in Cap and Trade Program  

Wind Powering America (EERE)

Developer's Perspective Developer's Perspective on Incorporating Wind in Cap & Trade Programs January 12, 2006 Kevin Rackstraw Clipper Windpower, Inc. Clipper Windpower, Inc. 301/263 301/263- -0028 0028 krackstraw@clipperwind.com krackstraw@clipperwind.com About Clipper Windpower * Founded by James Dehlsen, a wind energy pioneer and recognized world leader in the wind industry, and founder of the company that is now GE Wind * Team is one of the most experienced in the business * Both a developer of wind projects and manufacturer of large wind turbines * Over $1.5 billion of wind projects developed * Another $4 billion of wind projects in the development pipeline Motivations * Emissions reduction claims: * In cap and trade states, neither we nor our marketers can state that we reduce capped emissions w/out allowances

73

An evolutionary environment for wind turbine blade design  

Science Conference Proceedings (OSTI)

The aerodynamic design of wind turbine blades is carried out by means of evolutionary techniques within an automatic design environment based on evolution. A simple, fast, and robust aerodynamic simulator is embedded in the design environment to predict ...

V. Díaz Casás; F. Lopez Peña; A. Lamas; R. J. Duro

2005-06-01T23:59:59.000Z

74

On-Site Small Wind Incentive Program | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

On-Site Small Wind Incentive Program On-Site Small Wind Incentive Program On-Site Small Wind Incentive Program < Back Eligibility Agricultural Commercial Fed. Government Industrial Institutional Local Government Nonprofit Residential Schools State Government Savings Category Wind Buying & Making Electricity Maximum Rebate Lesser of $400,000 per site/customer or 50% of installed cost of system Program Info Funding Source RPS surcharge Start Date 01/01/2012 Expiration Date 12/31/2015 State New York Program Type State Rebate Program Rebate Amount First 10,000 kWh of expected annual energy production: $3.50/annual kWh Next 115,000 kWh of expected annual energy production: $1.00/annual kWh Energy production greater than 125,000 kWh: $0.30/annual kWh Provider New York State Energy Research and Development Authority

75

An evolutive algorithm for wind farm optimal design  

Science Conference Proceedings (OSTI)

An evolutive algorithm for the optimal design of wind farms is presented. The algorithm objective is to optimize the profits given an investment on a wind farm. Net present value will be used as a figure of the revenue. To work out this figure, several ... Keywords: Evolutive algorithm, Genetic algorithm, Optimization, Wind farms

José Castro Mora; José M. Calero Barón; Jesús M. Riquelme Santos; Manuel Burgos Payán

2007-10-01T23:59:59.000Z

76

NREL Wind Site Entrance Building: Design Review and Recommendations  

DOE Green Energy (OSTI)

Report giving review of the NREL Wind Site Guard Post Entrance building design and recommendations for improvement for greater energy savings and backup power.

Ault, R.; Torcellini, P.; Van Geet, O.

2003-06-01T23:59:59.000Z

77

Database-assisted design for wind: basic concepts and ...  

Science Conference Proceedings (OSTI)

... wind design information, while DAD tools seek to ... of peak gust speeds recorded at weather stations and ... would be a useful tool allowing standards ...

2013-08-19T23:59:59.000Z

78

Annual report of the Wind Characteristics Program Element, July 1978-September 1979  

DOE Green Energy (OSTI)

As a service element within the Federal Wind Energy Program, the Wind Characteristics Program Element (WCPE) is established to provide the appropriate wind characteristics information to those involved in: the design and evaluation of wind energy conversion systems (WECS); energy program planning; selecting sites for WECS installation; and the operation of WECS. To effectively produce the information needed in these four categories, the WCPE, for which the Pacific Northwest Laboratory (PNL) has the responsibility for management and technical assistance, has been divided into four technical program areas. During this reporting period PNL was also assigned the management responsibility for the data collection at the US Department of Energy's (DOE's) candidate sites, as well as the task of providing technical assistance to DOE evaluation and site selection panels for new candidate sites.

Wendell, L.L.; Barchet, W.R.; Connell, J.R.; Miller, A.H.; Pennell, W.T.; Renne, D.S.

1980-05-01T23:59:59.000Z

79

SERI Advanced and Innovative Wind-Energy-Concepts Program  

SciTech Connect

In 1978 the Solar Energy Research Institute (SERI) was given the responsibility of managing the Advanced and Innovative Wind Energy Concepts (AIWEC) Task by the US Department of Energy (DOE). The objective of this program has been to determine the technical and economic potential of advanced wind energy concepts. Assessment and R and D efforts in the AIWEC program have included theoretical performance analyses, wind tunnel testing, and/or costing studies. Concepts demonstrating sufficient potential undergo prototype testing in a Proof-of-Concept research phase. Several concepts, such as the Dynamic Inducer, the Diffuser Augmented wind Turbine, the Electrofluid Dynamic Wind-Driven Generator, the Passive Cyclic Pitch concept, and higher performance airfoil configurations for vertical axis wind turbines, have recently made significant progress. The latter has currently reached the Proof-of-Concept phase. The present paper provides an overview of the technical progress and current status of these concepts.

Mitchell, R.L.; Jacobs, E.W.

1983-06-01T23:59:59.000Z

80

Wind and Geothermal Incentives Program | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

You are here You are here Home » Wind and Geothermal Incentives Program Wind and Geothermal Incentives Program < Back Eligibility Commercial Industrial Local Government Nonprofit Residential Schools Savings Category Buying & Making Electricity Wind Maximum Rebate Manufacturer loans: 35,000 per job created within 3 years Manufacturer grants: 5,000 per job created within 3 years Loans for geothermal systems: 3 per square foot of space served up to 5 million; also limited to 50% of eligible costs for residential systems. Loans for wind energy production projects: 5 million Grants for wind energy production projects: 1 million Grants for feasibility studies: 50% of cost up to 175,000 Loan guarantee grants: Up to 75% of deficient funds up to 5 million Program Info Funding Source

Note: This page contains sample records for the topic "wind program designed" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


81

Design of Wind Power Generator's Vane which Based on Computer  

Science Conference Proceedings (OSTI)

In this paper, we have mainly analyzed the relationship between virtual prototype and concurrent design. Then we have concluded the model of virtual prototype and simulation method which based on field object. We also have studied the design of wind ... Keywords: Vanes of wind power generator, Physical Prototype, Digital prototype, Virtual Prototype, Aerodynamics

Rui Chang; Yiming He

2011-03-01T23:59:59.000Z

82

Design of wind turbines with Ultra-High Performance Concrete  

E-Print Network (OSTI)

Ultra-High Performance Concrete (UHPC) has proven an asset for bridge design as it significantly reduces costs. However, UHPC has not been applied yet to wind turbine technology. Design codes do not propose any recommendations ...

Jammes, François-Xavier

2009-01-01T23:59:59.000Z

83

Incorporating Wind Generation in Cap and Trade Programs  

DOE Green Energy (OSTI)

Cap and trade programs are increasingly being used to reduce emissions from electricity generation in the United States. Cap and trade programs primarily target emitting generators, but programs have also included renewable generators, such as wind generators. States cite several reasons why they have considered the policy option of including renewable generators in cap and trade programs: to provide an incentive for lower-emitting generation, to achieve emissions reductions in non-capped pollutants, and to gain local economic benefits associated with renewable energy projects. The U.S. Environmental Protection Agency also notes these rationales for considering this policy alternative, and the National Association of Regulatory Commissioners (NARUC) passed a resolution supporting the inclusion of renewable energy in cap and trade programs. This report explores why states consider this policy option, what participation could mean for wind generators, and how wind generation can most effectively be included in state, federal, and regional cap and trade programs.

Bluestein, J.; Salerno, E.; Bird, L.; Vimmerstedt, L.

2006-07-01T23:59:59.000Z

84

WIND TURBINE BLADE DESIGN BASED ON DURABILITY AND DAMAGE TOLERANCE  

DOE Green Energy (OSTI)

The objective of the program was to demonstrate and verify Certification-by-Analysis (CBA) capability for wind turbine blades made from advanced lightweight composite materials. The approach integrated durability and damage tolerance analysis with robust design and virtual testing capabilities to deliver superior, durable, low weight, low cost, long life, and reliable wind blade design. The GENOA durability and life prediction software suite was be used as the primary simulation tool. First, a micromechanics-based computational approach was used to assess the durability of composite laminates with ply drop features commonly used in wind turbine applications. Ply drops occur in composite joints and closures of wind turbine blades to reduce skin thicknesses along the blade span. They increase localized stress concentration, which may cause premature delamination failure in composite and reduced fatigue service life. Durability and damage tolerance (D&DT) were evaluated utilizing a multi-scale micro-macro progressive failure analysis (PFA) technique. PFA is finite element based and is capable of detecting all stages of material damage including initiation and propagation of delamination. It assesses multiple failure criteria and includes the effects of manufacturing anomalies (i.e., void, fiber waviness). Two different approaches have been used within PFA. The first approach is Virtual Crack Closure Technique (VCCT) PFA while the second one is strength-based. Constituent stiffness and strength properties for glass and carbon based material systems were reverse engineered for use in D&DT evaluation of coupons with ply drops under static loading. Lamina and laminate properties calculated using manufacturing and composite architecture details matched closely published test data. Similarly, resin properties were determined for fatigue life calculation. The simulation not only reproduced static strength and fatigue life as observed in the test, it also showed composite damage and fracture modes that resemble those reported in the tests. The results show that computational simulation can be relied on to enhance the design of tapered composite structures such as the ones used in turbine wind blades. A computational simulation for durability, damage tolerance (D&DT) and reliability of composite wind turbine blade structures in presence of uncertainties in material properties was performed. A composite turbine blade was first assessed with finite element based multi-scale progressive failure analysis to determine failure modes and locations as well as the fracture load. D&DT analyses were then validated with static test performed at Sandia National Laboratories. The work was followed by detailed weight analysis to identify contribution of various materials to the overall weight of the blade. The methodology ensured that certain types of failure modes, such as delamination progression, are contained to reduce risk to the structure. Probabilistic analysis indicated that composite shear strength has a great influence on the blade ultimate load under static loading. Weight was reduced by 12% with robust design without loss in reliability or D&DT. Structural benefits obtained with the use of enhanced matrix properties through nanoparticles infusion were also assessed. Thin unidirectional fiberglass layers enriched with silica nanoparticles were applied to the outer surfaces of a wind blade to improve its overall structural performance and durability. The wind blade was a 9-meter prototype structure manufactured and tested subject to three saddle static loading at Sandia National Laboratory (SNL). The blade manufacturing did not include the use of any nano-material. With silica nanoparticles in glass composite applied to the exterior surfaces of the blade, the durability and damage tolerance (D&DT) results from multi-scale PFA showed an increase in ultimate load of the blade by 9.2% as compared to baseline structural performance (without nano). The use of nanoparticles lead to a delay in the onset of delamination. Load-displacement relati

Galib Abumeri; Frank Abdi (PhD)

2012-02-16T23:59:59.000Z

85

NREL: Wind Research - Design Review and Analysis  

NLE Websites -- All DOE Office Websites (Extended Search)

Computer-Aided Engineering Systems Engineering Controls Analysis Testing Utility Grid Integration Assessment Wind Resource Assessment Projects Facilities Research Staff Working...

86

Incorporating Wind Generation in Cap and Trade Programs  

Wind Powering America (EERE)

Incorporating Wind Generation in Incorporating Wind Generation in Cap and Trade Programs Joel Bluestein Energy and Environmental Analysis, Inc. Elizabeth Salerno American Wind Energy Association Lori Bird and Laura Vimmerstedt National Renewable Energy Laboratory Technical Report NREL/TP-500-40006 July 2006 Incorporating Wind Generation in Cap and Trade Programs Joel Bluestein Energy and Environmental Analysis, Inc. Elizabeth Salerno American Wind Energy Association Lori Bird and Laura Vimmerstedt National Renewable Energy Laboratory Prepared under Task No. WER6 6006 Technical Report NREL/TP-500-4006 July 2006 National Renewable Energy Laboratory 1617 Cole Boulevard, Golden, Colorado 80401-3393 303-275-3000 * www.nrel.gov Operated for the U.S. Department of Energy Office of Energy Efficiency and Renewable Energy

87

Community Solar and Wind Grant Program  

Energy.gov (U.S. Department of Energy (DOE))

The Illinois Department of Commerce and Economic Opportunity (DCEO) is offering grants for community-scale solar and wind projects located in Illinois. Eligible businesses can apply for up to 30%...

88

Where Are We Now: The U.S. Department of Energy Makes Strides to Advance Offshore Wind in the United States, Wind Program Newsletter: October 2012 Edition (Newsletter)  

DOE Green Energy (OSTI)

This newsletter describes the U.S. Department of Energy Wind Program's recent wind energy research and development efforts.

Not Available

2012-12-01T23:59:59.000Z

89

Wind resource assessment handbook: Fundamentals for conducting a successful monitoring program  

Science Conference Proceedings (OSTI)

This handbook presents industry-accepted guidelines for planning and conducting a wind resource measurement program to support a wind energy feasibility initiative. These guidelines, which are detailed and highly technical, emphasize the tasks of selecting, installing, and operating wind measurement equipment, as well as collecting and analyzing the associated data, once one or more measurement sites are located. The handbook's scope encompasses state-of-the-art measurement and analysis techniques at multiple heights on tall towers (e.g., 40 m) for a measurement duration of at least one year. These guidelines do not represent every possible method of conducting a quality wind measurement program, but they address the most important elements based on field-proven experience. The intended audience for this handbook is any organization or individual who desires the planning framework and detailed procedures for conducting a formally structured wind measurement program. Personnel from the management level to field technicians will find this material applicable. The organizational aspects of a measurement program, including the setting of clear program objectives and designing commensurate measurement and quality assurance plans, all of which are essential to ensuring the program's successful outcome, are emphasized. Considerable attention is also given to the details of actually conducting the measurement program in its many aspects, from selecting instrumentation that meets minimum performance standards to analyzing and reporting on the collected data. 5 figs., 15 tabs.

Bailey, B.H.; McDonald, S.L.; Bernadett, D.W.; Markus, M.J.; Elsholz, K.V. [AWS Scientific, Inc., Albany, NY (US)

1997-04-01T23:59:59.000Z

90

Advanced Control Design for Wind Turbines; Part I: Control Design, Implementation, and Initial Tests  

SciTech Connect

The purpose of this report is to give wind turbine engineers information and examples of the design, testing through simulation, field implementation, and field testing of advanced wind turbine controls.

Wright, A. D.; Fingersh, L. J.

2008-03-01T23:59:59.000Z

91

Reference wind speed distributions and height profiles for wind turbine design and performance evaluation applications. [USA  

DOE Green Energy (OSTI)

The purpose of this report is to provide a set of reference or standard values of wind profiles, wind speed distributions and their effects on wind turbine performance for engineering design applications. Based on measured Weibull distribution parameters, representative average, low, and high variance data are given for height profiles of mean, 25 percentile, and 75 percentile wind speeds; and for wind speed probability density (velocity frequency) functions and cumulative probability (velocity duration) functions at selected heights. Results of a sensitivity analysis of the dependence of wind turbine performance parameters on cut-in speed, and rated speed for various mean wind and wind variance regimes are also presented. Wind turbine performance is expressed in terms of capacity factor (ratio of mean power output to rated power) and recovery factor (ratio of mean energy output to energy theoretically available in the wind). The representative high, mean, and low variance cases were determined from calculated Weibull distributions at 140 sites across the Continental U.S., and all of the representative functions are evaluated at mean wind speeds of 4, 5, 6, 7, and 8 m/s at standard 10 m level.

Justus, C.G.; Hargraves, W.R.; Mikhail, A.

1976-08-01T23:59:59.000Z

92

Wind and Geothermal Incentives Program | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Schools Schools Savings Category Buying & Making Electricity Wind Maximum Rebate Manufacturer loans: 35,000 per job created within 3 years Manufacturer grants: 5,000 per job created within 3 years Loans for geothermal systems: 3 per square foot of space served up to 5 million Loans for wind energy production projects: 5 million Grants for wind energy production projects: 1 million Grants for feasibility studies: 50% of cost up to 175,000 Loan guarantee grants: Up to 75% of deficient funds up to 5 million Program Info Funding Source Alternative Energy Investment Fund (state-issued bonds) Start Date January 2009 State Pennsylvania Program Type State Grant Program Rebate Amount Varies by project, but program generally requires matching funds at least equivalent to DCED funding

93

FULL-SCALE, WIND TUNNEL AND CFD WIND ENGINEERING STUDIES A variety of methods can be used to obtain wind engineering design information. These include  

E-Print Network (OSTI)

FULL-SCALE, WIND TUNNEL AND CFD WIND ENGINEERING STUDIES A variety of methods can be used to obtain wind engineering design information. These include codes of practice, full-scale, wind tunnel are listed in the table below: Table 1. Relative advantages and disadvantages of wind engineering techniques

Savory, Eric

94

Successful Rural Wind Program in Peru | Open Energy Information  

Open Energy Info (EERE)

Successful Rural Wind Program in Peru Successful Rural Wind Program in Peru Jump to: navigation, search Name Bringing electricity to the Andes Agency/Company /Organization Soluciones Practicas - NGO Partner Deutsche Welle Sector Energy Focus Area Wind Topics Co-benefits assessment, - Energy Access Resource Type Video Website http://www.dw-world.de/dw/0,,1 Country Peru UN Region South America Many villages in the remote northern highlands of Peru are not connected to the electricity grid. Alternative energy sources are proving a big help. The aid organization "Soluciones Practicas" has installed micro wind turbines in many villages in the Cajamarca region that provide several thousand people with a daily electricity supply. It's helping boost their educational chances, improve communication and facilitate the setting up of

95

Cooperative field test program for wind systems. Final report  

DOE Green Energy (OSTI)

The objectives of the Federal Wind Energy Program, managed by the US Department of Energy (DOE), are (1) to assist industry and utilities in achieving a multi-regional US market penetration of wind systems, and (2) to establish the United States as the world leader in the development of advanced wind turbine technology. In 1984, the program conducted a series of planning workshops with representatives from the wind energy industry to obtain input on the Five-Year Research Plan then being prepared by DOE. One specific suggestion that came out of these meetings was that the federal program should conduct cooperative research tests with industry to enhance the technology transfer process. It was also felt that the active involvement of industry in DOE-funded research would improve the state of the art of wind turbine technology. DOE established the Cooperative Field Test Program (CFTP) in response to that suggestion. This program was one of the first in DOE to feature joint industry-government research test teams working toward common objectives.

Bollmeier, W.S. II; Dodge, D.M.

1992-03-01T23:59:59.000Z

96

Small Wind Incentive Program | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Information Start Date 2007 Oregon Program Type State Rebate Program Rebate Amount 5kWh estimated AEO for systems with estimated annual energy output of 9,500 kWh or less...

97

Design and fabrication of a composite wind turbine blade  

SciTech Connect

This paper describes the design considerations leading to the innovative combination of materials used for the MOD-I wind turbine generator rotor and the fabrication processes which were required to accomplish it.

Brown, R.A. (Boeing Engineering and Construction, Seattle, WA); Haley, R.G.

1980-01-01T23:59:59.000Z

98

Sandia wind program FY94 annual operating plan  

SciTech Connect

This document presents the objectives, accomplishments and activity plan for the Sandia Wind Energy Technology Program. The status of the current program is summarized and the planned FY94 activities are defined. Appendices detailing the cost, performance and schedule associated with these activities are also included. Funding requirements are given for several scenarios in order to reflect the impact of funding variability on program progress.

Dodd, H.M.

1993-10-01T23:59:59.000Z

99

Federal Energy Management Program: Product Designation Process  

NLE Websites -- All DOE Office Websites (Extended Search)

Product Product Designation Process to someone by E-mail Share Federal Energy Management Program: Product Designation Process on Facebook Tweet about Federal Energy Management Program: Product Designation Process on Twitter Bookmark Federal Energy Management Program: Product Designation Process on Google Bookmark Federal Energy Management Program: Product Designation Process on Delicious Rank Federal Energy Management Program: Product Designation Process on Digg Find More places to share Federal Energy Management Program: Product Designation Process on AddThis.com... Energy-Efficient Products Federal Requirements Covered Product Categories Product Designation Process Low Standby Power Energy & Cost Savings Calculators Model Acquisitions Language Working Group Resources

100

Puerto Rico - State Energy Program - Wind Energy Rebate Program...  

Open Energy Info (EERE)

Clean Energy Analysis Low Emission Development Strategies Oil & Gas Smart Grid Solar U.S. OpenLabs Utilities Water Wind Page Actions View form View source History View...

Note: This page contains sample records for the topic "wind program designed" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


101

Wind and Geothermal Incentives Program | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Savings Category Savings Category Buying & Making Electricity Wind Maximum Rebate Manufacturer loans: 35,000 per job created within 3 years Manufacturer grants: 5,000 per job created within 3 years Loans for geothermal systems: 3 per square foot of space served up to 5 million Loans for wind energy production projects: 5 million Grants for wind energy production projects: 1 million Grants for feasibility studies: 50% of cost up to 175,000 Loan guarantee grants: Up to 75% of deficient funds up to 5 million Program Info Funding Source Alternative Energy Investment Fund (state issued bonds) Start Date January 2009 State Pennsylvania Program Type Industry Recruitment/Support Rebate Amount Varies by project, but program generally requires matching funds at least equivalent to DCED funding

102

Residential Retrofit Program Design Guide  

NLE Websites -- All DOE Office Websites (Extended Search)

Technical Assistance Program Technical Assistance Program Residential Retrofit Program Design Guide May 2011 This work has been performed by the Vermont Energy Investment Corporation (VEIC) and Energy Futures Group (EFG), under the Contract No. 4200000341 with Oak Ridge National Laboratory which is managed by UT-Battelle, LLC under Contract with the US Department of Energy No. DE-AC05-00OR22725. This document was prepared in collaboration with a partnership of companies under this contract. The partnership is led by the Vermont Energy Investment Corporation (VEIC), and includes the following companies: American Council for an Energy Efficient Economy (ACEEE), Energy Futures Group (EFG), Midwest Energy Efficiency Alliance (MEEA), Northwest Energy Efficiency Alliance (NEEA), Northeast Energy Efficiency Partnership (NEEP), Natural

103

The EPRI/DOE Utility Wind Turbine Performance Verification Program  

DOE Green Energy (OSTI)

In 1992, the Electric Power Research Institute (EPRI) and the US Department of Energy (DOE) initiated the Utility Wind Turbine Performance Verification Program (TVP). This paper provides an overview of the TVP, its purpose and goals, and the participating utility projects. Improved technology has significantly reduced the cost of energy from wind turbines since the early 1980s. In 1992, turbines were producing electricity for about $0.07--$0.09/kilowatt-hour (kWh) (at 7 m/s [16 mph sites]), compared with more than $0.30/kWh in 1980. Further technology improvements were expected to lower the cost of energy from wind turbines to $0.05/kWh. More than 17,000 wind turbines, totaling more than 1,500 MW capacity, were installed in the US, primarily in California and Hawaii. The better wind plants had availabilities above 95%, capacity factors exceeding 30%, and operation and maintenance costs of $0.01/kWh. However, despite improving technology, EPRI and DOE recognized that utility use of wind turbines was still largely limited to turbines installed in California and Hawaii during the 1980s. Wind resource assessments showed that other regions of the US, particularly the Midwest, had abundant wind resources. EPRI and DOE sought to provide a bridge from utility-grade turbine development programs under way to commercial purchases of the wind turbines. The TVP was developed to allow utilities to build and operate enough candidate turbines to gain statistically significant operating and maintenance data.

Calvert, S.; Goldman, P. [Department of Energy, Washington, DC (United States); DeMeo, E.; McGowin, C. [Electric Power Research Inst., Palo Alto, CA (United States); Smith, B.; Tromly, K. [National Renewable Energy Lab., Golden, CO (United States)

1997-01-01T23:59:59.000Z

104

Design of a 3 kW wind turbine generator with thin airfoil blades  

SciTech Connect

Three blades of a 3 kW prototype wind turbine generator were designed with thin airfoil and a tip speed ratio of 3. The wind turbine has been controlled via two control methods: the variable pitch angle and by regulation of the field current of the generator and examined under real wind conditions. The characteristics of the thin airfoil, called ''Seven arcs thin airfoil'' named so because the airfoil is composed of seven circular arcs, are analyzed with the airfoil design and analysis program XFOIL. The thin airfoil blade is designed and calculated by blade element and momentum theory. The performance characteristics of the machine such as rotational speed, generator output as well as stability for wind speed changes are described. In the case of average wind speeds of 10 m/s and a maximum of 19 m/s, the automatically controlled wind turbine ran safely through rough wind conditions and showed an average generator output of 1105 W and a power coefficient 0.14. (author)

Ameku, Kazumasa; Nagai, Baku M.; Roy, Jitendro Nath [Faculty of Mechanical Engineering, University of the Ryukyus, 1 Senbaru, Nishihara-cho, Okinawa 903-0213 (Japan)

2008-09-15T23:59:59.000Z

105

New England Wind Forum: A Wind Powering America Project, Newsletter #5 -- January 2010, Wind and Hydropower Technologies Program (WHTP)  

Wind Powering America (EERE)

5 - January 2010 5 - January 2010 Two 600-kW wind turbines were installed on Deer Island in August 2009 next to the wastewater treatment facility's anaerobic digesters. Due to their proximity to Logan Airport, these generators were installed on unusually short 32-meter towers. WIND AND HYDROPOWER TECHNOLOGIES PROGRAM continued on page 2 > Kathryn Craddock, Sustainable Energy Advantage, LLC/PIX16710 Wind Projects Sprout Throughout New England NEWF is pleased to provide you with its fifth edition of the electronic NEWF newsletter. This newsletter provides updates on a broad range of project proposals and policy initiatives across New England during the funding hiatus...consider it a "catch-up" double issue. In past newsletters, we've relied on wind farm photo-simulations, photos of early construction

106

Wind Atlas Analysis and Application Program (WAsP) | Open Energy  

Open Energy Info (EERE)

Wind Atlas Analysis and Application Program (WAsP) Wind Atlas Analysis and Application Program (WAsP) Jump to: navigation, search Tool Summary Name: Wind Atlas Analysis and Application Program (WAsP) Agency/Company /Organization: Risoe DTU Sector: Energy Focus Area: Renewable Energy, Wind Topics: GHG inventory, Resource assessment Resource Type: Maps, Software/modeling tools User Interface: Desktop Application Website: www.wasp.dk/ Cost: Paid Wind Atlas Analysis and Application Program (WAsP) Screenshot References: WAsP[1] Background "WAsP is a PC program for predicting wind climates, wind resources and power productions from wind turbines and wind farms. The predictions are based on wind data measured at stations in the same region. The program includes a complex terrain flow model, a roughness change model and a model

107

Good, Better, Best: Designing a Designation Program for Solar | Department  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Good, Better, Best: Designing a Designation Program for Solar Good, Better, Best: Designing a Designation Program for Solar Good, Better, Best: Designing a Designation Program for Solar December 4, 2012 - 4:00pm Addthis The Energy Department is gathering input on solar designation programs that could one day help consumers recognize the best products and services that the solar industry has to offer. | Photo by Dennis Schroeder/NREL. The Energy Department is gathering input on solar designation programs that could one day help consumers recognize the best products and services that the solar industry has to offer. | Photo by Dennis Schroeder/NREL. Minh Le Minh Le Program Manager, Solar Program How can I participate? To provide input for the Designation Program for Solar Energy Stakeholders Request for Information (RFI), submit your feedback.

108

Proceedings of the vertical axis wind turbine (VAWT) design technology seminar for industry  

Science Conference Proceedings (OSTI)

The objective of the Vertical Axis Wind Turbine (VAWT) Program at Sandia National Laboratories is to develop technology that results in economical, industry-produced, and commercially marketable wind energy systems. The purpose of the VAWT Design Technology Seminar or Industry was to provide for the exchange of the current state-of-the-art and predictions for future VAWT technology. Emphasis was placed on technology transfer on Sandia's technical developments and on defining the available analytic and design tools. Separate abstracts are included for presented papers.

Johnston, S.F. Jr. (ed.)

1980-08-01T23:59:59.000Z

109

WindPACT Turbine Rotor Design, Specific Rating Study; Period of Performance: June 29, 2000--March 1, 2003  

DOE Green Energy (OSTI)

In 2000, the National Renewable Energy Laboratory (NREL) launched the Wind Partnerships for Advanced Component Technologies (WindPACT) program to examine ways in which the cost of wind energy could be reduced a further 30%. One element of the WindPACT program has been a series of design studies aimed at each of the major subsystems of the wind turbine to study the effect of scale and of alternative design approaches. The WindPACT Turbine Rotor Design Study was carried out by Global Energy Concepts, LLC, (GEC) on behalf of NREL, and the final report was delivered in June 2002. The study examined what configuration and design changes in the rotor would reduce the overall cost of energy. The objectives of this report are to use the 1.5-MW baseline configuration from the earlier WindPACT Rotor Design Study to examine the effect of different power ratings and to identify an optimum specific rating; to examine the effect of different maximum tip speeds on overall cost of energy (COE); to examine the role of different wind regimes on the optimum specific rating; and to examine how the optimum specific rating may be affected by introducing more advanced blade designs.

Malcolm, D. J.; Hansen, A. C.

2003-11-01T23:59:59.000Z

110

Millville Wind Turbine Generator: failure analysis and corrective design modification  

DOE Green Energy (OSTI)

Fatigue cracks in the blade skins of the Millville Wind Turbine Generator were fractographically analyzed. It is believed they were caused by large flapwise deflections during a wind storm on December 4, 1978. The deflections caused the skin to buckle, which initiated rapidly growing fatigue cracks. Propagation continued to the leading edge, moving radially inward and outward along the leading edge radius. Communication between Rockwell and Millville resulted in a modified blade design which incorporates several corrective techniques.

Waldon, C.A.; Carr, M.J.; Grotzky, V.K.

1979-07-01T23:59:59.000Z

111

Design studies for twist-coupled wind turbine blades.  

SciTech Connect

This study presents results obtained for four hybrid designs of the Northern Power Systems (NPS) 9.2-meter prototype version of the ERS-100 wind turbine rotor blade. The ERS-100 wind turbine rotor blade was designed and developed by TPI composites. The baseline design uses e-glass unidirectional fibers in combination with {+-}45-degree and random mat layers for the skin and spar cap. This project involves developing structural finite element models of the baseline design and carbon hybrid designs with and without twist-bend coupling. All designs were evaluated for a unit load condition and two extreme wind conditions. The unit load condition was used to evaluate the static deflection, twist and twist-coupling parameter. Maximum deflections and strains were determined for the extreme wind conditions. Linear and nonlinear buckling loads were determined for a tip load condition. The results indicate that carbon fibers can be used to produce twist-coupled designs with comparable deflections, strains and buckling loads to the e-glass baseline.

Valencia, Ulyses (Wichita State University, Wichita, KS); Locke, James (Wichita State University, Wichita, KS)

2004-06-01T23:59:59.000Z

112

U.S. Department of Energy Wind and Hydropower Technologies: Top 10 Program Accomplishments  

DOE Green Energy (OSTI)

This brochure describes the top ten accompishments of the DOE Wind Energy Program during the past 30 years.

Not Available

2008-05-01T23:59:59.000Z

113

The U.S. Department of Energy Wind Turbine Development Program  

Science Conference Proceedings (OSTI)

The development of technologically-advanced wind turbines continues to be a high priority of the US wind industry. The United States Department of Energy (DOE) is sponsoring a range of projects that assist the wind industry to design, develop, and test new wind turbines. The overall goal is to develop turbines that can compete with conventional electric generation with a cost of energy (COE) of 5 cents/kWh at 5.8 m/s (13 mph sites) by the mid-1990s and with a cost of energy of 4 cents/kWh or less at 5.8 m/s sites by the year 2000. These goals will be supported through the DOE Turbine Development Program. The Turbine Development Program uses a two-path approach. The first path assists US industry to develop and integrate innovative technologies into utility-grade wind turbines for the near-term (mid-1990s). The second path assists industry to develop a new generation of turbines for the year 2000. This paper describes present and planned projects under the Turbine Development Program.

Link, H.; Laxson, A.; Smith, B. [National Renewable Energy Lab., Golden, CO (United States); Goldman, P. [Dept. of Energy, Washington, DC (United States)

1995-03-01T23:59:59.000Z

114

Design Assistance Program | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Design Assistance Program Design Assistance Program Design Assistance Program < Back Eligibility Commercial Construction Industrial Installer/Contractor Multi-Family Residential Savings Category Heating & Cooling Commercial Heating & Cooling Heating Home Weatherization Commercial Weatherization Sealing Your Home Cooling Manufacturing Other Heat Pumps Appliances & Electronics Commercial Lighting Lighting Insulation Design & Remodeling Water Heating Windows, Doors, & Skylights Solar Program Info Funding Source Focus On Energy Program State Wisconsin Program Type State Rebate Program Rebate Amount Design: $0.012 - $0.015/kWh saved Construction: $0.09/kWh saved and $0.55/therm saved Provider Focus on Energy The Focus on Energy Design Assistance Program provides design professionals, builders and developers of new buildings with whole building

115

Design of resource to backbone transmission for a high wind penetration future.  

E-Print Network (OSTI)

??In a high wind penetration future, transmission must be designed to integrate groups of new wind farms with a high capacity inter-regional ``backbone" transmission system.… (more)

Slegers, James Michael

2013-01-01T23:59:59.000Z

116

Where Are We Now: The U.S. Department of Energy Makes Strides to Advance Offshore Wind in the United States, Wind Program Newsletter: October 2012 Edition (Newsletter)  

SciTech Connect

This newsletter describes the U.S. Department of Energy Wind Program's recent wind energy research and development efforts.

2012-12-01T23:59:59.000Z

117

Applications of Systems Engineering to the Research, Design, and Development of Wind Energy Systems  

DOE Green Energy (OSTI)

This paper surveys the landscape of systems engineering methods and current wind modeling capabilities to assess the potential for development of a systems engineering to wind energy research, design, and development. Wind energy has evolved from a small industry in a few countries to a large international industry involving major organizations in the manufacturing, development, and utility sectors. Along with this growth, significant technology innovation has led to larger turbines with lower associated costs of energy and ever more complex designs for all major subsystems - from the rotor, hub, and tower to the drivetrain, electronics, and controls. However, as large-scale deployment of the technology continues and its contribution to electricity generation becomes more prominent, so have the expectations of the technology in terms of performance and cost. For the industry to become a sustainable source of electricity, innovation in wind energy technology must continue to improve performance and lower the cost of energy while supporting seamless integration of wind generation into the electric grid without significant negative impacts on local communities and environments. At the same time, issues associated with wind energy research, design, and development are noticeably increasing in complexity. The industry would benefit from an integrated approach that simultaneously addresses turbine design, plant design and development, grid interaction and operation, and mitigation of adverse community and environmental impacts. These activities must be integrated in order to meet this diverse set of goals while recognizing trade-offs that exist between them. While potential exists today to integrate across different domains within the wind energy system design process, organizational barriers such as different institutional objectives and the importance of proprietary information have previously limited a system level approach to wind energy research, design, and development. To address these challenges, NREL has embarked on an initiative to evaluate how methods of systems engineering can be applied to the research, design and development of wind energy systems. Systems engineering is a field within engineering with a long history of research and application to complex technical systems in domains such as aerospace, automotive, and naval architecture. As such, the field holds potential for addressing critical issues that face the wind industry today. This paper represents a first step for understanding this potential through a review of systems engineering methods as applied to related technical systems. It illustrates how this might inform a Wind Energy Systems Engineering (WESE) approach to the research, design, and development needs for the future of the industry. Section 1 provides a brief overview of systems engineering and wind as a complex system. Section 2 describes these system engineering methods in detail. Section 3 provides an overview of different types of design tools for wind energy with emphasis on NREL tools. Finally, Section 4 provides an overview of the role and importance of software architecture and computing to the use of systems engineering methods and the future development of any WESE programs. Section 5 provides a roadmap of potential research integrating systems engineering research methodologies and wind energy design tools for a WESE framework.

Dykes, K.; Meadows, R.; Felker, F.; Graf, P.; Hand, M.; Lunacek, M.; Michalakes, J.; Moriarty, P.; Musial, W.; Veers, P.

2011-12-01T23:59:59.000Z

118

Data Analytics Methods in Wind Turbine Design and Operations  

E-Print Network (OSTI)

This dissertation develops sophisticated data analytic methods to analyze structural loads on, and power generation of, wind turbines. Wind turbines, which convert the kinetic energy in wind into electrical power, are operated within stochastic environments. To account for the influence of environmental factors, we employ a conditional approach by modeling the expectation or distribution of response of interest, be it the structural load or power output, conditional on a set of environmental factors. Because of the different nature associated with the two types of responses, our methods also come in different forms, conducted through two studies. The first study presents a Bayesian parametric model for the purpose of estimating the extreme load on a wind turbine. The extreme load is the highest stress level that the turbine structure would experience during its service lifetime. A wind turbine should be designed to resist such a high load to avoid catastrophic structural failures. To assess the extreme load, turbine structural responses are evaluated by conducting field measurement campaigns or performing aeroelastic simulation studies. In general, data obtained in either case are not sufficient to represent various loading responses under all possible weather conditions. An appropriate extrapolation is necessary to characterize the structural loads in a turbine’s service life. This study devises a Bayesian spline method for this extrapolation purpose and applies the method to three sets of load response data to estimate the corresponding extreme loads at the roots of the turbine blades. In the second study, we propose an additive multivariate kernel method as a new power curve model, which is able to incorporate a variety of environmental factors in addition to merely the wind speed. In the wind industry, a power curve refers to the functional relationship between the power output generated by a wind turbine and the wind speed at the time of power generation. Power curves are used in practice for a number of important tasks including predicting wind power production and assessing a turbine’s energy production efficiency. Nevertheless, actual wind power data indicate that the power output is affected by more than just wind speed. Several other environmental factors, such as wind direction, air density, humidity, turbulence intensity, and wind shears, have potential impact. Yet, in industry practice, as well as in the literature, current power curve models primarily consider wind speed and, with comparatively less frequency, wind speed and direction. Our model provides, conditional on a given environmental condition, both the point estimation and density estimation of the power output. It is able to capture the nonlinear relationships between environmental factors and wind power output, as well as the high-order inter- action effects among some of the environmental factors. To illustrate the application of the new power curve model, we conduct case studies that demonstrate how the new method can help with quantifying the benefit of vortex generator installation, advising pitch control adjustment, and facilitating the diagnosis of faults.

Lee, Giwhyun

2013-08-01T23:59:59.000Z

119

Design of Control System for Wind Turbine Electric Pitch  

Science Conference Proceedings (OSTI)

The operating principle of an electric pitch system of wind turbine is introduced in this paper, and three-phase PMSM (permanent magnetism synchronous motor) is chosen as the executive motor of the proposed system. TMS320F2812 is designed as the core ... Keywords: electric pitch, servo-control, PMSM, vector control, DSP

Yongwei Li; Shuxia Liu; Jiazhong Wang; Hongbo Zhang; Zhiping Lu

2009-04-01T23:59:59.000Z

120

RELIABILITY BASED DESIGN OF FIXED FOUNDATION WIND TURBINES  

SciTech Connect

Recent analysis of offshore wind turbine foundations using both applicable API and IEC standards show that the total load demand from wind and waves is greatest in wave driven storms. Further, analysis of overturning moment loads (OTM) reveal that impact forces exerted by breaking waves are the largest contributor to OTM in big storms at wind speeds above the operating range of 25 m/s. Currently, no codes or standards for offshore wind power generators have been adopted by the Bureau of Ocean Energy Management Regulation and Enforcement (BOEMRE) for use on the Outer Continental Shelf (OCS). Current design methods based on allowable stress design (ASD) incorporate the uncertainty in the variation of loads transferred to the foundation and geotechnical capacity of the soil and rock to support the loads is incorporated into a factor of safety. Sources of uncertainty include spatial and temporal variation of engineering properties, reliability of property measurements applicability and sufficiency of sampling and testing methods, modeling errors, and variability of estimated load predictions. In ASD these sources of variability are generally given qualitative rather than quantitative consideration. The IEC 61400‐3 design standard for offshore wind turbines is based on ASD methods. Load and resistance factor design (LRFD) methods are being increasingly used in the design of structures. Uncertainties such as those listed above can be included quantitatively into the LRFD process. In LRFD load factors and resistance factors are statistically based. This type of analysis recognizes that there is always some probability of failure and enables the probability of failure to be quantified. This paper presents an integrated approach consisting of field observations and numerical simulation to establish the distribution of loads from breaking waves to support the LRFD of fixed offshore foundations.

Nichols, R.

2013-10-14T23:59:59.000Z

Note: This page contains sample records for the topic "wind program designed" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


121

Federal Energy Management Program: Wind Energy Resources and...  

NLE Websites -- All DOE Office Websites (Extended Search)

Wind Energy Resources and Technologies Photo of multiple wind turbines stand on green space in front of a mountain backdrop. The Department of Energy tests wind turbine...

122

Using partial safety factors in wind turbine design and testing  

DOE Green Energy (OSTI)

This paper describes the relationship between wind turbine design and testing in terms of the certification process. An overview of the current status of international certification is given along with a description of limit-state design basics. Wind turbine rotor blades are used to illustrate the principles discussed. These concepts are related to both International Electrotechnical Commission and Germanischer Lloyd design standards, and are covered using schematic representations of statistical load and material strength distributions. Wherever possible, interpretations of the partial safety factors are given with descriptions of their intended meaning. Under some circumstances, the authors` interpretations may be subjective. Next, the test-load factors are described in concept and then related to the design factors. Using technical arguments, it is shown that some of the design factors for both load and materials must be used in the test loading, but some should not be used. In addition, some test factors not used in the design may be necessary for an accurate test of the design. The results show that if the design assumptions do not clearly state the effects and uncertainties that are covered by the design`s partial safety factors, outside parties such as test labs or certification agencies could impose their own meaning on these factors.

Musial, W.D.; Butterfield, C.

1997-09-01T23:59:59.000Z

123

The Programmer's Apprentice: A Program Design Scenario  

E-Print Network (OSTI)

A scenario is used to illustrate the capabilities of a proposed Design Apprentice, focussing on the area of detailed, low-level design. Given a specification, the Design Apprentice will be able to make many of the design decisions needed to synthesize the required program. The Design Apprentice will also be able to detect various kinds of contradictions and omissions in a specifica- tion.

Charles Rich; Richard C. Waters

1987-01-01T23:59:59.000Z

124

Innovative Design Approaches for Large Wind Turbine Blades  

SciTech Connect

The primary goal of the WindPACT Blade System Design Study (BSDS) was investigation and evaluation of design and manufacturing issues for wind turbine blades in the one to ten megawatt size range. The initial project task was to assess the fundamental physical and manufacturing issues that govern and constrain large blades and entails three basic elements: (1) a parametric scaling study to assess blade structure using current technology, (2) an economic study of the cost to manufacture, transport, and install large blades, and (3) identification of promising innovative design approaches that show potential for overcoming fundamental physical and manufacturing constraints. This report discusses several innovative design approaches and their potential for blade cost reduction. During this effort we reviewed methods for optimizing the blade cross-section to improve structural and manufacturing characteristics. We also analyzed and compared a number of composite materials and evaluated their relative merits for use in large wind turbine blades in the range from 30 meters to 70 meters. The results have been summarized in dimensional and non-dimensional format to aid in interpretation. These results build upon earlier parametric and blade cost studies, which were used as a guide for the innovative design approaches explored here.

ASHWILL, THOMAS D.

2003-03-01T23:59:59.000Z

125

Annual report of the Wind Characteristics Program Element, October 1979-September 1980  

DOE Green Energy (OSTI)

This annual report briefly describes the technical progress within each segment of the WCPE from October 1979 through September 1980. It includes the progress accomplished directly by the Pacific Northwest Laboratory (PNL) and by subcontractors funded directly by DOE or through PNL. To expedite the management of the activities to produce the required information, the WCPE has been divided into three program areas: Wind Energy Prospecting, Support for Design and Operations, and Site Evaluation. Accomplishments in each of these program areas provide a highlight of WCPE activities in FY 1980.

Wendell, L.L.; Barchet, W.R.; Connell, J.R.; Miller, A.H.; Pennell, W.T.; Renne, D.S.

1981-09-01T23:59:59.000Z

126

GCFR shielding design and supporting experimental programs  

SciTech Connect

The shielding for the conceptual design of the gas-cooled fast breeder reactor (GCFR) is described, and the component exposure design criteria which determine the shield design are presented. The experimental programs for validating the GCFR shielding design methods and data (which have been in existence since 1976) are also discussed.

Perkins, R.G.; Hamilton, C.J.; Bartine, D.

1980-05-01T23:59:59.000Z

127

NREL: Wind Research - Offshore Design Tools and Methods  

NLE Websites -- All DOE Office Websites (Extended Search)

Design Tools and Methods Design Tools and Methods Graphic of a modular depiction of the FAST tool, which includes aerodynamics, hydrodynamics, control and electrical system dynamics, and structural dynamics modules. NREL's CAE Tool, FAST, and its Sub-Modules Illustration of wind turbines in various environments including land-based, shallow water (0-30m), transitional depth (30-60m), and deep water floating (greater than 60m). FAST has the capability of modeling a wide range of offshore wind system configurations including shallow water, transitional depth, and floating systems. With DOE's support, NREL has developed and maintains a robust, open-source, modular computer-aided engineering (CAE) tool, known as FAST. It has state-of-the-art capabilities for full dynamic system simulation over a

128

Variable-Speed Wind System Design : Final Report.  

SciTech Connect

Almost from the onset of the development of wind energy conversion systems (WECS), it was known that variable-speed operation of the turbine would maximize energy capture. This study was commissioned to assess the cost, efficiency gain, reduction of the cost of energy (COE), and other operating implications of converting the existing hardware of a modern fixed-speed wind energy conversion system to variable-speed operation. The purpose of this study was to develop a preliminary design for the hardware required to allow variable-speed operation using a doubly-fed generator with an existing fixed-speed wind turbine design. The turbine selected for this study is the AWT-26 designed and built by Advanced Wind Turbines Inc. of Redmond, Washington. The lowest projected COE using this variable-speed generation system is projected to be $0.0499/kWh, compared to the lowest possible COE with fixed-speed generation which is projected to be $0.0546/kWh. This translates into a 8.6% reduction of the COE using this variable-speed generation option. The preliminary system design has advanced to where the printed circuit boards can be physically laid out based on the schematics and the system software can be written based on the control flow-charts. The core of hardware and software has been proven to be successful in earlier versions of VSG systems. The body of this report presents the results of the VSWG system development. Operation under normal and fault conditions is described in detail, the system performance for variable-speed operation is estimated and compared to the original fixed-speed system performance, and specifications for all system components (generator, power electronic converter, and system controller) are given. Costs for all components are estimated, and incremental system cost is compared to incremental energy production. Finally, operational features of the VSWG which are not available in the existing FSWG system are outlined.

Lauw, Hinan K.; Weigand, Claus H.; Marckx, Dallas A.; Electronic Power Conditioning, Inc.

1993-10-01T23:59:59.000Z

129

Study on Aerodynamic Design of Horizontal Axis Wind Turbine Generator System  

Science Conference Proceedings (OSTI)

In this paper the choosing principles of design parameters and multi-airfoils in horizontal axis wind turbine (HAWT) generator system aerodynamic design are introduced. On the basis of the comparison analysis of wind turbine aerodynamic design method ... Keywords: Schmitz, airfoil, partial load, horizontal axis wind turbine (HAWT), blade tip speed ratio (BTSR)

Li Dong; Mingfu Liao; Yingfeng Li; Xiaoping Song; Ke Xu

2009-10-01T23:59:59.000Z

130

NIST BUILDING SCIENCE SERIES 180 Database-Assisted Design for Wind  

E-Print Network (OSTI)

framework for analysis and design of buildings for wind loads that makes direct use of pressure timeNIST BUILDING SCIENCE SERIES 180 Database-Assisted Design for Wind: Concepts, Software Database-Assisted Design for Wind: Concepts, Software, and Examples for Rigid and Flexible Buildings Joseph

Magee, Joseph W.

131

Wind Powering America Anemometer Loan Program: A Retrospective  

DOE Green Energy (OSTI)

This white paper details the history, mechanics, status, and impact of the Native American Anemometer Loan Program (ALP) conducted by the U.S. Department of Energy's Wind Powering America (WPA) initiative. Originally conceived in 2000 and terminated (as a WPA activity) at the end of FY 2011, the ALP has resulted in the installation of anemometers at 90 locations. In addition, the ALP provided support for the installation of anemometers at 38 additional locations under a related ALP administered by the Western Area Power Administration.

Jimenez, T.

2013-05-01T23:59:59.000Z

132

Blade System Design Studies Volume I: Composite Technologies for Large Wind Turbine Blades  

DOE Green Energy (OSTI)

As part of the U.S. Department of Energy's Wind Partnerships for Advanced Component Technologies (WindPACT) program, Global Energy Concepts LLC (GEC) is performing a study concerning innovations in materials, processes and structural configurations for application to wind turbine blades in the multi-megawatt range. The project team for this work includes experts in all areas of wind turbine blade design, analysis, manufacture, and testing. Constraints to cost-effective scaling-up of the current commercial blade designs and manufacturing methods are identified, including self-gravity loads, transportation, and environmental considerations. A trade-off study is performed to evaluate the incremental changes in blade cost, weight, and stiffness for a wide range of composite materials, fabric types, and manufacturing processes. Fiberglass/carbon fiber hybrid blades are identified as having a promising combination of cost, weight, stiffness and fatigue resistance. Vacuum-assisted resin transfer molding, resin film infision, and pre-impregnated materials are identified as having benefits in reduced volatile emissions, higher fiber content, and improved laminate quality relative to the baseline wet lay-up process. Alternative structural designs are identified, including jointed configurations to facilitate transportation. Based on the results to date, recommendations are made for further evaluation and testing under this study to verify the predicted material and structural performance.

GRIFFIN, DAYTON A.; ASHWILL, THOMAS D.

2002-07-01T23:59:59.000Z

133

Blade System Design Studies Volume I: Composite Technologies for Large Wind Turbine Blades  

SciTech Connect

As part of the U.S. Department of Energy's Wind Partnerships for Advanced Component Technologies (WindPACT) program, Global Energy Concepts LLC (GEC) is performing a study concerning innovations in materials, processes and structural configurations for application to wind turbine blades in the multi-megawatt range. The project team for this work includes experts in all areas of wind turbine blade design, analysis, manufacture, and testing. Constraints to cost-effective scaling-up of the current commercial blade designs and manufacturing methods are identified, including self-gravity loads, transportation, and environmental considerations. A trade-off study is performed to evaluate the incremental changes in blade cost, weight, and stiffness for a wide range of composite materials, fabric types, and manufacturing processes. Fiberglass/carbon fiber hybrid blades are identified as having a promising combination of cost, weight, stiffness and fatigue resistance. Vacuum-assisted resin transfer molding, resin film infision, and pre-impregnated materials are identified as having benefits in reduced volatile emissions, higher fiber content, and improved laminate quality relative to the baseline wet lay-up process. Alternative structural designs are identified, including jointed configurations to facilitate transportation. Based on the results to date, recommendations are made for further evaluation and testing under this study to verify the predicted material and structural performance.

GRIFFIN, DAYTON A.; ASHWILL, THOMAS D.

2002-07-01T23:59:59.000Z

134

Wind turbine trailing-edge aerodynamic brake design  

DOE Green Energy (OSTI)

This report describes the design of a centrifugally actuated aerodynamic-overspeed device for a horizontal-axis wind turbine. The device will meet the following criteria; (1) It will be effective for airfoil angles of attack 0{degrees} to 45{degrees}. (2) It will be stowed inside the blade profile prior to deployment. (3) It will be capable of offsetting the positive torque produced by the overall blade. (4) Hinge moments will be minimized to lower actuator loads and cost. (5) It will be evaluated as a potential power modulating active rotor-control system. A literature review of aerodynamic braking devices was conducted. Information from the literature review was used to conceptualize the most effective devices for subsequent testing and design. Wind-tunnel test data for several braking devices are presented in this report. Using the data for the most promising configuration, a preliminary design was developed for a MICON 65/13 wind turbine with Phoenix 7.9-m rotor blades.

Quandt, G.

1996-01-01T23:59:59.000Z

135

Learn About the Energy Department's Latest Wind Energy R&D Efforts, Its Accomplishments, and Funding Opportunities, Wind Program Newsletter: June 2012 Edition (Newsletter)  

DOE Green Energy (OSTI)

The EERE Wind Program Newsletter is a quarterly publication that describes the Department of Energy's current research and development efforts.

Not Available

2012-06-01T23:59:59.000Z

136

Development of a 2-kilowatt high-reliability wind machine. Phase I. Design and analysis. Volume II. Technical report  

Science Conference Proceedings (OSTI)

A high reliability wind machine rated for 2 kW at 9 m/s has been designed to be cost-effective for remote site use. To meet or exceed environmental conditions as specified in Contract PF64410F, the resulting design defines a rugged, relatively simple wind machine. Rigorous fatigue analysis for structural components and development of redundant systems for electrical components led to an expected mean time between failures of 12.35 years. Approximately one year into the research and development program a completed design meeting contract stipulations is being submitted to the contract buyer. The design is for a horizontal axis, down-wind machine with two wooden blades spanning 5 meters diameter. Positive rotor speed control is accomplished through a centrifugally governed variable pitch stalling rotor. Design merits have been confirmed through dynamic truck testing.

Drake, W.; Clews, H.; Cordes, J.; Johnson, B.; Murphy, P.

1980-01-01T23:59:59.000Z

137

Development of a 2-kilowatt high-reliability wind machine. Phase I. Design and analysis. Volume I. Executive summary  

Science Conference Proceedings (OSTI)

A high reliability wind machine rated for 2 kW at 9 m/s has been designed to be cost-effective for remote site use. To meet or exceed environmental conditions as specified in Contract PF64410F, the resulting design defines a rugged, relatively simple wind machine. Rigorous fatigue analysis for structural components and development of redundant systems for electrical components led to an expected mean time between failures of 12.35 years. Approximately one year into the research and development program, a completed design meeting contract stipulations is being submitted to the contract buyer. The design is for a horizontal axis, down-wind machine with two wooden blades spanning 5 meters diameter. Positive rotor speed control is accomplished through a centrifugally governed variable pitch, stalling rotor. Design merits have been confirmed through dynamic truck testing.

Drake, W.; Clews, H.; Cordes, J.; Johnson, B.; Murphy, P.

1980-01-01T23:59:59.000Z

138

Design of Light Weight Structure for Wind Turbine Tower by Using ...  

Science Conference Proceedings (OSTI)

This paper reports a new design scheme of light weight structure for wind turbine tower. This design scheme is based on the integration of the nano-structured ...

139

New Battery Design Could Help Solar and Wind Power the Grid ...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Field Sites Power Marketing Administration Other Agencies You are here Home New Battery Design Could Help Solar and Wind Power the Grid New Battery Design Could Help Solar...

140

Conceptual design. Final report: TFE Verification Program  

DOE Green Energy (OSTI)

This report documents the TFE Conceptual Design, which provided the design guidance for the TFE Verification program. The primary goals of this design effort were: (1) establish the conceptual design of an in-core thermionic reactor for a 2 Mw(e) space nuclear power system with a 7-year operating lifetime; (2) demonstrate scalability of the above concept over the output power range of 500 kW(e) to 5 MW(e); and (3) define the TFE which is the basis for the 2 MW (e) reactor design. This TFE specification provided the basis for the test program. These primary goals were achieved. The technical approach taking in the conceptual design effort is discussed in Section 2, and the results are discussed in Section 3. The remainder of this introduction draws a perspective on the role that this conceptual design task played in the TFE Verification Program.

Not Available

1994-03-01T23:59:59.000Z

Note: This page contains sample records for the topic "wind program designed" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


141

Lighting program design: New opportunities for profits  

SciTech Connect

The increased activity by State`s to adopt codes and standards is creating new challenges for the design and implementation of lighting programs for commercial new construction. The regulatory environment is also requiring that transaction costs are minimized for these programs. Recent work done by the Illuminating Engineers Society for the new ASHRA-E/IES Standard 90.1-1989R provides a new technical basis for the development of component based lighting programs. Component based programs offer advantages over design assistance programs. They include the ease of marketing, higher market penetration rate, and the promotion of specific cost-effective technologies. The proposed approach also overcomes problems with current component based programs including defining the baseline, free ridership, and difficulties in performing impact evaluations. By addressing these problems, lighting programs for new buildings will continue to be one of the most cost-effective new construction programs for most utilities. The basic concept is to combine two activities that are shaping the national energy picture into a program design strategy. The national activities are the Energy Policy Act of 1992 and the development of the next generation of ASHRAE/IES Standard 90.1. The approach uses the prescriptive criteria in Standard 90.1 to develop savings thresholds for program participation. The savings thresholds are then associated with lighting component technologies to determine eligibility criteria for each component. Combining the prescriptive criteria with component savings is the key to the approach.

Johnson, J.A.; Jones, C.C.

1995-03-01T23:59:59.000Z

142

Enertech 15-kW wind-system development: Phase I. Design and analysis. Volume I. Executive summary  

Science Conference Proceedings (OSTI)

A utility interfaced wind machine rated for 15 kW at 9 m/s (20.1 mph) has been designed to be cost effective in 5.4 m/s (12 mph) average wind sites. Approximately 18 months into the research and development program a completed design meeting contract specifications was submitted to the buyer. The design is for a horizontal axis, down wind machine which features three fixed pitch wood-epoxy blades and free yaw. Rotor diameter is 44 feet (13.4 meters). Unit shutdown is provided by an electrohydraulic brake. Blade tip brakes provide back-up rotor overspeed protection. Design merits have been verified through dynamic truck testing of a prototype unit.

Not Available

1981-09-01T23:59:59.000Z

143

Enertech 15-kW wind-system development. Phase I. Design and Analysis. Volume II. Technical report  

SciTech Connect

A utility interfaced wind machine rated for 15 kW at 9 m/s (20.1 mph) has been designed to be cost effective in 5.4 m/s (12 mph) average wind sites. Approximately 18 months into the research and development program a completed design meeting contract specifications was submitted to the buyer. The design is for a horizontal axis, down wind machine which features three fixed pitch wood-epoxy blades and free yaw. Rotor diameter is 44 feet (13.4 meters). Unit shutdown is provided by an electrohydraulic brake. Blade tip brakes provide back-up rotor overspeed protection. Design merits have been verified through dynamic truck testing of a prototype unit.

Dodge, D.M. (ed.)

1981-09-01T23:59:59.000Z

144

Program design in file structures [by students  

Science Conference Proceedings (OSTI)

The importance of emphasizing design in programming stems from the desire to train students in thinking more about solving the problem than programming the problem. Although sitting in front of the computer causes the student to think that he or she ...

S. A. Mengel; D. A. Tappan

1995-11-01T23:59:59.000Z

145

State of the Art in Floating Wind Turbine Design Tools  

SciTech Connect

This paper presents an overview of the simulation codes available to the offshore wind industry that are capable of performing integrated dynamic calculations for floating offshore wind turbines.

Cordle, A.; Jonkman, J.

2011-10-01T23:59:59.000Z

146

Innovative design approaches for large wind turbine blades : final report.  

SciTech Connect

The goal of the Blade System Design Study (BSDS) was investigation and evaluation of design and manufacturing issues for wind turbine blades in the one to ten megawatt size range. A series of analysis tasks were completed in support of the design effort. We began with a parametric scaling study to assess blade structure using current technology. This was followed by an economic study of the cost to manufacture, transport and install large blades. Subsequently we identified several innovative design approaches that showed potential for overcoming fundamental physical and manufacturing constraints. The final stage of the project was used to develop several preliminary 50m blade designs. The key design impacts identified in this study are: (1) blade cross-sections, (2) alternative materials, (3) IEC design class, and (4) root attachment. The results show that thick blade cross-sections can provide a large reduction in blade weight, while maintaining high aerodynamic performance. Increasing blade thickness for inboard sections is a key method for improving structural efficiency and reducing blade weight. Carbon/glass hybrid blades were found to provide good improvements in blade weight, stiffness, and deflection when used in the main structural elements of the blade. The addition of carbon resulted in modest cost increases and provided significant benefits, particularly with respect to deflection. The change in design loads between IEC classes is quite significant. Optimized blades should be designed for each IEC design class. A significant portion of blade weight is related to the root buildup and metal hardware for typical root attachment designs. The results show that increasing the number of blade fasteners has a positive effect on total weight, because it reduces the required root laminate thickness.

2004-05-01T23:59:59.000Z

147

NREL: Education Programs - Wind for Schools Project Funding Case Studies  

NLE Websites -- All DOE Office Websites (Extended Search)

Wind for Schools Project Funding Case Studies Wind for Schools Project Funding Case Studies August 26, 2013 The Wind for Schools project is part of the U.S. Department of Energy's (DOE's) Wind Powering America initiative. Since 2005, DOE provided funding for Wind Applications Centers in 11 Wind for Schools states, introducing teachers, students, and communities to wind energy applications and benefits. This Wind for Schools funding supported the project; it was not used to purchase turbines and equipment. Individual school champions emerged to find local funding mechanisms to purchase and install their turbines. On October 1, 2013, DOE will no longer fund the project; therefore, we feel that it is important to document the funding sources utilized by these states to purchase and install Wind for Schools project turbines. (1) By

148

NAWIG News: The Quarterly Newsletter of the Native American Wind Interest Group, Fall 2008, Wind & Hydropower Technologies Program (Brochure)  

SciTech Connect

As part of its Native American outreach, DOE?s Wind Powering America program produces a newsletter to present Native American wind information, including projects, interviews with pioneers, issues, WPA activities, and related events. This issue features an interview with Dave Danz, a tribal planner for the Grand Portage Band of Chippewa in northeastern Minnesota, and a feature on the new turbine that powers the KILI radio station on the Pine Ridge Reservation.

2008-09-01T23:59:59.000Z

149

Simulation model for wind energy storage systems. Volume III. Program descriptions. [SIMWEST CODE  

DOE Green Energy (OSTI)

The effort developed a comprehensive computer program for the modeling of wind energy/storage systems utilizing any combination of five types of storage (pumped hydro, battery, thermal, flywheel and pneumatic). An acronym for the program is SIMWEST (Simulation Model for Wind Energy Storage). The level of detail of SIMWEST is consistent with a role of evaluating the economic feasibility as well as the general performance of wind energy systems. The software package consists of two basic programs and a library of system, environmental, and load components. Volume III, the SIMWEST program description contains program descriptions, flow charts and program listings for the SIMWEST Model Generation Program, the Simulation program, the File Maintenance program and the Printer Plotter program. Volume III generally would not be required by SIMWEST user.

Warren, A.W.; Edsinger, R.W.; Burroughs, J.D.

1977-08-01T23:59:59.000Z

150

NREL: Education Programs - Wind for Schools Project Enters 2013...  

NLE Websites -- All DOE Office Websites (Extended Search)

Wind for Schools Project Enters 2013 with 124 Turbine Installations March 29, 2013 This past winter, NREL hosted the Sixth Annual Wind for Schools Summit. Forty-six attendees...

151

NREL: Education Programs - Wind for Schools Project Enters 2013...  

NLE Websites -- All DOE Office Websites (Extended Search)

Enters 2013 with 124 Turbine Installations and Lessons to Share: A Wind Powering America Success Story January 28, 2013 On January 14-15, 2013, Wind Powering America hosted its...

152

NREL: Education Programs - Wind for Schools Project Gains Traction...  

NLE Websites -- All DOE Office Websites (Extended Search)

January 29, 2013 Pennsylvania is one area where the U.S. Department of Energy Wind Powering America Wind for Schools project is seeing big impact thanks to several projects...

153

Optimal Design of Hybrid Energy System with PV/ Wind Turbine/ Storage: A Case Study  

E-Print Network (OSTI)

Optimal Design of Hybrid Energy System with PV/ Wind Turbine/ Storage: A Case Study Rui Huang development of photovoltaic (PV), wind turbine and battery technologies, hybrid energy system has received of the hybrid energy system that consists of PV arrays, wind turbines and battery storage and use that to define

Low, Steven H.

154

Chaninik Wind Group Wind Heat Smart Grids Final Report  

DOE Green Energy (OSTI)

Final report summarizes technology used, system design and outcomes for US DoE Tribal Energy Program award to deploy Wind Heat Smart Grids in the Chaninik Wind Group communities in southwest Alaska.

Meiners, Dennis [Technical Contact

2013-06-29T23:59:59.000Z

155

Wind for Schools: Developing Education Programs to Train the Next Generation of the Wind Energy Workforce  

DOE Green Energy (OSTI)

This paper provides an overview of the Wind for Schools project elements, including a description of host and collegiate school curricula developed for wind energy and the status of the current projects. The paper also provides focused information on how schools, regions, or countries can become involved or implement similar projects to expand the social acceptance and understanding of wind energy.

Baring-Gould, I.; Flowers, L.; Kelly, M.; Barnett, L.; Miles, J.

2009-08-01T23:59:59.000Z

156

Control design and analysis of doubly-fed induction generator in wind power application.  

E-Print Network (OSTI)

??The work presented in this thesis includes control system design, analysis and grid synchronization of a DFIG (doubly-fed induction generator) driven by a wind turbine… (more)

Mazari, Shukul

2009-01-01T23:59:59.000Z

157

Design and Dynamic Modeling of the Support Structure for a 10 MW Offshore Wind Turbine.  

E-Print Network (OSTI)

?? This thesis presents two designs of tension-leg-platforms (TLP) support structures for the 10 MW reference wind turbine being developed by the Norwegian Research Centre… (more)

Crozier, Aina

2011-01-01T23:59:59.000Z

158

The Investigation of Newly Designed Transformer Windings with Reduced Thickness of Oil-Impregnated Paper Insulation.  

E-Print Network (OSTI)

??For determining the insulation dimensions, Smit Transformers uses a so called “design curve”. As the oil-impregnated paper insulation of the windings has been improved, a… (more)

Singuran, A.I.

2012-01-01T23:59:59.000Z

159

Designing Industrial DSM Programs that Work  

E-Print Network (OSTI)

There are many reasons why industrial customers do not implement all cost-effective efficiency measures on their own. Utility demand side management (DSM) programs can help overcome some of these barriers. DSM programs provide an opportunity for utilities to reduce the cost of providing energy services while helping customers to reduce their energy bills and thereby increase profit margins and competitiveness. A review of utility experience with industrial DSM programs shows that some types of programs work much better than other types. Successful efforts include both custom and prescriptive components that show an understanding of the customers perspective, use marketing that is personal and user-friendly, provide flexibility, and include financial incentives. Among the less successful programs are programs that do not address customer needs, including information-only, loan, and shared savings programs. A number of other program approaches are largely untested and merit further experimentation. Based on these findings, we recommend that utilities and industrial customers work together to design DSM programs that serve the needs of industrial customers.

Nadel, S. M.; Jordan, J. A.

1994-04-01T23:59:59.000Z

160

Strengthening Americas Energy Security with Offshore Wind (Fact Sheet) (Revised), Wind And Water Power Program (WWPP)  

NLE Websites -- All DOE Office Websites (Extended Search)

crane mounted on a barge designed for offshore crane mounted on a barge designed for offshore wind turbine installation lifts a rotor into place. Photo courtesy of © DOTI 2009-alpha ventus Offshore wind energy is a clean, domestic, renewable resource that can help the United States meet its critical energy, environmental, and economic challenges. By generating electricity from offshore wind turbines, the nation can reduce its greenhouse gas emissions, diversify its energy supply, provide cost-competitive electricity to key coastal regions, and help revitalize key sectors of its economy, including manufacturing. However, realizing these benefits will require overcoming key barriers to the development and deployment of offshore wind technology, including its relatively high cost of energy, technical challenges surrounding installation and

Note: This page contains sample records for the topic "wind program designed" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


161

Designing Environmentally Safe Refrigerants Using Mathematical Programming  

E-Print Network (OSTI)

Computer aided molecular design is a strategy in which a set of structural groups are systematically combined to form molecules with desired properties. In this paper, a mathematical programming based approach to computer aided molecular design is presented. Using a set of structural groups, the problem is formulated as a mixed integer nonlinear program in which discrete variables represent the number of each type of structural groups present in the candidate compound. The augmentedpenalty /outer-approximation algorithm is used to solve the MINLP to obtain compound(s) with an optimum value of an appropriate performance index such that molecular structural constraints, physical property constraints and process design limitations are met. With the current renewed interest in the environment, the suggested approach is applied to refrigerant design with an environmental constraint. The results indicate the viability of this approach. INTRODUCTION The chemical industry is constantly explo...

Amit P. Duvedi; Luke E. K. Achenie; Copyright Amit Duvedi; Luke Achenie

1996-01-01T23:59:59.000Z

162

Wind Powering America: Wind Energy Videos  

DOE Data Explorer (OSTI)

Wind Powering America is a nationwide initiative designed to increase the use of wind energy across the United States by working with regional stakeholders. A list of videos developed by and for the program includes interviews, short news clips, and documentary-like programs.

163

Systematic Controller Design Methodology for Variable-Speed Wind Turbines  

DOE Green Energy (OSTI)

Variable-speed, horizontal axis wind turbines use blade-pitch control to meet specified objectives for three operational regions. This paper provides a guide for controller design for the constant power production regime. A simple, rigid, non-linear turbine model was used to systematically perform trade-off studies between two performance metrics. Minimization of both the deviation of the rotor speed from the desired speed and the motion of the actuator is desired. The robust nature of the proportional-integral-derivative controller is illustrated, and optimal operating conditions are determined. Because numerous simulation runs may be completed in a short time, the relationship between the two opposing metrics is easily visualized.

Hand, M. M.; Balas, M. J.

2002-02-01T23:59:59.000Z

164

Extended tension leg platform design for offshore wind turbine systems  

E-Print Network (OSTI)

The rise of reliable wind energy application has become a primary alternative to conventional fossil fuel power plants in the United States and around the world. The feasibility of building large scale wind farms has become ...

Parker, Nicholas W. (Nicholas William)

2007-01-01T23:59:59.000Z

165

Designing Electricity Markets with Large Shares of Wind Power  

E-Print Network (OSTI)

-time (RT) prices in Iowa (MEC interface), May 11­17, 2009. MISO NYISO PJM ERCOT CAISO Wind Power Capacity) and PJM have already introduced rules for mandatory real-time bidding and control of wind power

Kemner, Ken

166

Addendum to a proposal to NSF to sponsor a vertical-axis wind turbine research program  

SciTech Connect

Information is presented concerning the performance evaluation of a 15 foot-diameter test bed Darrieus rotor, Darrieus rotor wind tunnel tests, Savonius rotor wind tunnel tests, blade manufacturing techniques for 15 foot-diameter and 35 foot-diameter wind turbines, static and dynamic structural analysis, production prototype design of a 15 foot-diameter turbine, production prototype design of 35 foot-diameter turbine, and aerodynamic performance studies.

Blackwell, B.F.; Feltz, L.V.; Rightley, E.C.

1974-11-01T23:59:59.000Z

167

Sustainable Design | Building Energy Codes Program  

NLE Websites -- All DOE Office Websites (Extended Search)

Sustainable Design Sustainable Design Session 5 of a seven-part webcast series presented by the Department of Energy's Federal Energy Management Program to help federal agencies comply with the requirements of ASHRAE Standard 90.1-2004. The Sustainable Design webcast provides an overview of sustainable design federal requirements and strategies. Sustainable design principles and practices are well established and can be applied at some level to any project to reduce the environmental impact and operational cost of a building, while increasing occupant satisfaction. The requirements within Executive Order 13423, the Energy Policy Act of 2005, and the Energy Independence and Security Act of 2007 are driving the federal sector to be leaders in sustainable design. Estimated Length:

168

DOE Science Showcase - Wind Power  

Office of Scientific and Technical Information (OSTI)

DOE Science Showcase - Wind Power DOE Science Showcase - Wind Power Wind Powering America Wind Powering America is a nationwide initiative of the U.S. Department of Energy's Wind Program designed to educate, engage, and enable critical stakeholders to make informed decisions about how wind energy contributes to the U.S. electricity supply. Wind Power Research Results in DOE Databases IEA Wind Task 26: The Past and Future Cost of Wind Energy, Work Package 2, Energy Citations Database NREL Triples Previous Estimates of U.S. Wind Power Potential, Energy Citations Database Dynamic Models for Wind Turbines and Wind Power Plants, DOE Information Bridge 2012 ARPA-E Energy Innovation Summit: Profiling General Compression: A River of Wind, ScienceCinema, multimedia Solar and Wind Energy Resource Assessment (SWERA) Data from the

169

Demonstration of wind turbine. Final technical report at grant program  

Science Conference Proceedings (OSTI)

Proposal F-602 is a demonstration of a commercially available wind-electric device - an Enertech Corp. Series 1800 model wind turbine. The demonstration site selected was the New Directions school campus, a public school facility, in Sarasota, Florida. During testing, an investigation of the wind power potential for the area was undertaken. In addition, negotiations with the Florida Power and Light Company for parallel operation of the wind system (utility interface), were initiated. An Operating Agreement contract is now pending approval by the Sarasota County School Board. The results to date, of this site's wind power potential, have been well below computational expectancies based upon wind speed data for the area. Analysis will continue, to determine the cause of the windplant's low net output.

Pendola, W. Jr.

1982-06-01T23:59:59.000Z

170

Candidate wind-turbine-generator site summarized meteorological data for December 1976-December 1981. [Program WIND listed  

DOE Green Energy (OSTI)

Summarized hourly meteorological data for 16 of the original 17 candidate and wind turbine generator sites collected during the period from December 1976 through December 1981 are presented. The data collection program at some individual sites may not span this entire period, but will be contained within the reporting period. The purpose of providing the summarized data is to document the data collection program and provide data that could be considered representative of long-term meteorological conditions at each site. For each site, data are given in eight tables and a topographic map showing the location of the meteorological tower and turbine, if applicable. Use of information from these tables, along with information about specific wind turbines, should allow the user to estimate the potential for long-term average wind energy production at each site.

Sandusky, W.F.; Renne, D.S.; Hadley, D.L.

1982-09-01T23:59:59.000Z

171

Program on Technology Innovation: Materials Degradation in Wind Turbines  

Science Conference Proceedings (OSTI)

The materials used for the construction of wind turbine systems can affect the economics of these systems for a variety of reasons. For instance, improvements in such materials properties as strength, stiffness, and fatigue life can lead to more efficient and more reliable wind turbines and to reductions in operation and maintenance costs. This report provides a comprehensive summary of the state of knowledge of materials used in major wind turbine components for both land-based and offshore applications...

2006-08-09T23:59:59.000Z

172

NREL Software Aids Offshore Wind Turbine Designs (Fact Sheet)  

DOE Green Energy (OSTI)

NREL researchers are supporting offshore wind power development with computer models that allow detailed analyses of both fixed and floating offshore wind turbines. While existing computer-aided engineering (CAE) models can simulate the conditions and stresses that a land-based wind turbine experiences over its lifetime, offshore turbines require the additional considerations of variations in water depth, soil type, and wind and wave severity, which also necessitate the use of a variety of support-structure types. NREL's core wind CAE tool, FAST, models the additional effects of incident waves, sea currents, and the foundation dynamics of the support structures.

Not Available

2013-10-01T23:59:59.000Z

173

Wind Turbine Verification Project Experience: 1999: U.S. Department of Energy - EPRI Wind Turbine Verification Program  

Science Conference Proceedings (OSTI)

EPRI and the U.S. Department of Energy (DOE) initiated the Turbine Verification Program (TVP) in 1992 to evaluate prototype advanced wind turbines and to provide a bridge from development programs to commercial purchases. This report provides an overview and comparisons of site and operating experiences at the seven TVP projects in Ft. Davis, Texas; Searsburg, Vermont; Kotzebue, Alaska; Glenmore, Wisconsin; Algona, Iowa; Springview, Nebraska; and Big Spring, Texas. The lessons learned throughout the prog...

2000-12-12T23:59:59.000Z

174

Learn About the Energy Department's Latest Wind Energy R&D Efforts, Its Accomplishments, and Funding Opportunities, Wind Program Newsletter: June 2012 Edition (Newsletter)  

SciTech Connect

The EERE Wind Program Newsletter is a quarterly publication that describes the Department of Energy's current research and development efforts.

2012-06-01T23:59:59.000Z

175

Wind load design methods for ground-based heliostats and parabolic dish collectors  

DOE Green Energy (OSTI)

The purpose of this design method is to define wind loads on flat heliostat and parabolic dish collectors in a simplified form. Wind loads are defined for both mean and peak loads accounting for the protective influence of upwind collectors, wind protective fences, or other wind-blockage elements. The method used to define wind loads was to generalize wind load data obtained during tests on model collectors, heliostats or parabolic dishes, placed in a modeled atmospheric wind in a boundary-layer wind-tunnel at Colorado State University. For both heliostats and parabolic dishes, loads are reported for solitary collectors and for collectors as elements of a field. All collectors were solid with negligible porosity; thus the effects of porosity in the collectors is not addressed.

Peterka, J.A.; Derickson, R.G. (Colorado State Univ., Fort Collins, CO (United States). Fluid Dynamics and Diffusion Lab.)

1992-09-01T23:59:59.000Z

176

NREL: Wind Research - U.S. Department of Energy, Wind Program...  

NLE Websites -- All DOE Office Websites (Extended Search)

and Technology Technology Transfer Technology Deployment Energy Systems Integration Wind Research Search More Search Options Site Map Printable Version U.S. Department of...

177

Design and construction of vertical axis wind turbines using dual-layer vacuum-forming  

E-Print Network (OSTI)

How does one visualize wind? Is it the way trees bend in a strong gust or the way smoke is carried in a breeze? What if wind could be visualized using design, technology, and light? This thesis documents the design of a ...

Carper, Christopher T

2010-01-01T23:59:59.000Z

178

Determination of fault operation dynamical constraints for the design of wind turbine DFIG drives  

Science Conference Proceedings (OSTI)

This paper presents an efficient design tool for the estimation of the transient electromagnetic peak torque and transient rotor over-voltages of wind turbines (WT) doubly-fed induction generators (DFIG) during severe fault conditions on the grid side. ... Keywords: Dynamical constraint, Integrated design, Non-linear optimization, Wind turbine

Davide Aguglia; Philippe Viarouge; René Wamkeue; Jérôme Cros

2010-10-01T23:59:59.000Z

179

A Space-Based Point Design for Global Coherent Doppler Wind Lidar  

E-Print Network (OSTI)

An end-to-end point design, including lidar, orbit, scanning, atmospheric, and data processing parameters, for space-based global profiling of atmospheric wind will be presented. The point design attempts to match the recent NASA/NOAA draft science requirements for wind measurement.

Profiling Matched To; Michael J. Kavaya; G. David Emmitt; Rod G. Frehlich; Farzin Amzajerdian; Upendra N. Singh

2002-01-01T23:59:59.000Z

180

Standards for Municipal Small Wind Regulations and Small Wind Model Wind  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Standards for Municipal Small Wind Regulations and Small Wind Model Standards for Municipal Small Wind Regulations and Small Wind Model Wind Ordinance Standards for Municipal Small Wind Regulations and Small Wind Model Wind Ordinance < Back Eligibility Agricultural Commercial Fed. Government Industrial Institutional Local Government Nonprofit Residential Schools State Government Tribal Government Utility Savings Category Wind Buying & Making Electricity Program Info State New Hampshire Program Type Solar/Wind Permitting Standards In July 2008, New Hampshire enacted legislation designed to prevent municipalities from adopting ordinances or regulations that place unreasonable limits or hinder the performance of wind energy systems up to 100 kilowatts (kW) in capacity. Such wind turbines must be used primarily to produce energy for on-site consumption. The law identifies a several

Note: This page contains sample records for the topic "wind program designed" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


181

On-Site Small Wind Incentive Program (New York) | Open Energy...  

Open Energy Info (EERE)

paid directly to the owner of the wind system. Instead, they are paid to eligible installers that have been approved to participate in this program, but the entire incentive...

182

ADVANCED COMPOSITE WIND TURBINE BLADE DESIGN BASED ON DURABILITY AND DAMAGE TOLERANCE  

Science Conference Proceedings (OSTI)

The objective of the program was to demonstrate and verify Certification-by-Analysis (CBA) capability for wind turbine blades made from advanced lightweight composite materials. The approach integrated durability and damage tolerance analysis with robust design and virtual testing capabilities to deliver superior, durable, low weight, low cost, long life, and reliable wind blade design. The GENOA durability and life prediction software suite was be used as the primary simulation tool. First, a micromechanics-based computational approach was used to assess the durability of composite laminates with ply drop features commonly used in wind turbine applications. Ply drops occur in composite joints and closures of wind turbine blades to reduce skin thicknesses along the blade span. They increase localized stress concentration, which may cause premature delamination failure in composite and reduced fatigue service life. Durability and damage tolerance (D&DT) were evaluated utilizing a multi-scale micro-macro progressive failure analysis (PFA) technique. PFA is finite element based and is capable of detecting all stages of material damage including initiation and propagation of delamination. It assesses multiple failure criteria and includes the effects of manufacturing anomalies (i.e., void, fiber waviness). Two different approaches have been used within PFA. The first approach is Virtual Crack Closure Technique (VCCT) PFA while the second one is strength-based. Constituent stiffness and strength properties for glass and carbon based material systems were reverse engineered for use in D&DT evaluation of coupons with ply drops under static loading. Lamina and laminate properties calculated using manufacturing and composite architecture details matched closely published test data. Similarly, resin properties were determined for fatigue life calculation. The simulation not only reproduced static strength and fatigue life as observed in the test, it also showed composite damage and fracture modes that resemble those reported in the tests. The results show that computational simulation can be relied on to enhance the design of tapered composite structures such as the ones used in turbine wind blades. A computational simulation for durability, damage tolerance (D&DT) and reliability of composite wind turbine blade structures in presence of uncertainties in material properties was performed. A composite turbine blade was first assessed with finite element based multi-scale progressive failure analysis to determine failure modes and locations as well as the fracture load. D&DT analyses were then validated with static test performed at Sandia National Laboratories. The work was followed by detailed weight analysis to identify contribution of various materials to the overall weight of the blade. The methodology ensured that certain types of failure modes, such as delamination progression, are contained to reduce risk to the structure. Probabilistic analysis indicated that composite shear strength has a great influence on the blade ultimate load under static loading. Weight was reduced by 12% with robust design without loss in reliability or D&DT. Structural benefits obtained with the use of enhanced matrix properties through nanoparticles infusion were also assessed. Thin unidirectional fiberglass layers enriched with silica nanoparticles were applied to the outer surfaces of a wind blade to improve its overall structural performance and durability. The wind blade was a 9-meter prototype structure manufactured and tested subject to three saddle static loading at Sandia National Laboratory (SNL). The blade manufacturing did not include the use of any nano-material. With silica nanoparticles in glass composite applied to the exterior surfaces of the blade, the durability and damage tolerance (D&DT) results from multi-scale PFA showed an increase in ultimate load of the blade by 9.2% as compared to baseline structural performance (without nano). The use of nanoparticles lead to a delay in the onset of delamination. Load-displacement relati

Galib Abumeri; Frank Abdi (PhD)

2012-02-16T23:59:59.000Z

183

Wind Energy Ordinances (Fact Sheet), Wind And Water Power Program (WWPP)  

Wind Powering America (EERE)

With increasing energy demands in the With increasing energy demands in the United States and more installed wind projects, rural communities and local governments with limited or no experi- ence with wind energy are now becom- ing involved. Communities with good wind resources are increasingly likely to be approached by entities with plans to develop wind projects. These opportunities can create new revenue in the form of construction jobs and land lease payments. They also create a new responsibility on the part of local governments to regulate wind turbine installations through ordinances. Ordinances, often found within munici- pal codes, provide various degrees of control to local governments. These laws cover issues such as zoning, traffic, con- sumer protection, and building codes.

184

NREL: Wind Research - NWTC and Industry Partners Design a Leading...  

NLE Websites -- All DOE Office Websites (Extended Search)

and a high-efficiency power converter. Illustration by Josh Bauer, NREL The National Wind Technology Center (NWTC) at the National Renewable Energy Laboratory (NREL), along with...

185

Federal Energy Management Program: Business Case for Sustainable Design in  

NLE Websites -- All DOE Office Websites (Extended Search)

Business Case for Business Case for Sustainable Design in Federal Facilities to someone by E-mail Share Federal Energy Management Program: Business Case for Sustainable Design in Federal Facilities on Facebook Tweet about Federal Energy Management Program: Business Case for Sustainable Design in Federal Facilities on Twitter Bookmark Federal Energy Management Program: Business Case for Sustainable Design in Federal Facilities on Google Bookmark Federal Energy Management Program: Business Case for Sustainable Design in Federal Facilities on Delicious Rank Federal Energy Management Program: Business Case for Sustainable Design in Federal Facilities on Digg Find More places to share Federal Energy Management Program: Business Case for Sustainable Design in Federal Facilities on

186

Design Optimisation Of An Offshore Wind Energy Converter By Means Of Tailored Dynamics  

E-Print Network (OSTI)

Tailoring the dynamics of an offshore wind energy converter can offer an effective design optimisation during the successive stages of the design process. Concerning the particular problem of fatigue due to combined wind and wave loading two simplified approaches are proposed and demonstrated which are well suited for the early design stages when integrated, non-linear time domain simulations are too cumbersome. This enables the use of standard design tools from the wind energy and offshore technology communities by superposition of separate analyses of hydrodynamic fatigue in the frequency domain and aerodynamic fatigue in the time domain.

M. Kühn

1999-01-01T23:59:59.000Z

187

Designing plant layouts with toxic releases based on wind statistics  

Science Conference Proceedings (OSTI)

A model to optimize the process plant layout problem is formulated in this paper. The model includes statistical information related to the wind in the site where the plant will be installed. This information is typically collected and stored in databases ... Keywords: Monte Carlo method, dispersion models, layout, uncertainty, wind effect

Richart Vázquez-Román; Jin-Han Lee; Seungho Jung; M. Sam Mannan

2008-08-01T23:59:59.000Z

188

Community Solar and Wind Grant Program | Open Energy Information  

Open Energy Info (EERE)

Clean Energy Analysis Low Emission Development Strategies Oil & Gas Smart Grid Solar U.S. OpenLabs Utilities Water Wind Page Actions View form View source History View New...

189

Solar and Wind Energy Rebate Program (Illinois) | Open Energy...  

Open Energy Info (EERE)

Clean Energy Analysis Low Emission Development Strategies Oil & Gas Smart Grid Solar U.S. OpenLabs Utilities Water Wind Page Actions View form View source History View New...

190

Residential Small Wind Rebate Program (Minnesota) | Open Energy...  

Open Energy Info (EERE)

Development Strategies Oil & Gas Smart Grid Solar U.S. OpenLabs Utilities Water Wind Page Actions View form View source History View New Pages Recent Changes All Special...

191

Local Small Wind Rebate Programs (Colorado) | Open Energy Information  

Open Energy Info (EERE)

Development Strategies Oil & Gas Smart Grid Solar U.S. OpenLabs Utilities Water Wind Page Actions View form View source History View New Pages Recent Changes All Special...

192

Commercial Small Wind Rebate Program (Minnesota) | Open Energy...  

Open Energy Info (EERE)

Development Strategies Oil & Gas Smart Grid Solar U.S. OpenLabs Utilities Water Wind Page Actions View form View source History View New Pages Recent Changes All Special...

193

Computational design and analysis of flatback airfoil wind tunnel experiment.  

DOE Green Energy (OSTI)

A computational fluid dynamics study of thick wind turbine section shapes in the test section of the UC Davis wind tunnel at a chord Reynolds number of one million is presented. The goals of this study are to validate standard wind tunnel wall corrections for high solid blockage conditions and to reaffirm the favorable effect of a blunt trailing edge or flatback on the performance characteristics of a representative thick airfoil shape prior to building the wind tunnel models and conducting the experiment. The numerical simulations prove the standard wind tunnel corrections to be largely valid for the proposed test of 40% maximum thickness to chord ratio airfoils at a solid blockage ratio of 10%. Comparison of the computed lift characteristics of a sharp trailing edge baseline airfoil and derived flatback airfoils reaffirms the earlier observed trend of reduced sensitivity to surface contamination with increasing trailing edge thickness.

Mayda, Edward A. (University of California, Davis, CA); van Dam, C.P. (University of California, Davis, CA); Chao, David D. (University of California, Davis, CA); Berg, Dale E.

2008-03-01T23:59:59.000Z

194

8/10/2010 1 DOE Offshore Wind RFI Response: DEOA-EE0000385, DOE Offshore Wind Program, Input Requested for  

E-Print Network (OSTI)

onshore wind and other renewable energy sources including solar, geothermal, biomass, and small hydro-Losique, Program Manager, Wind and Water Power Program (WWPP) Office of Energy Efficiency and Renewable Energy U.S. Department of Energy (DOE) Dear Mr. Beaudry-Losique, Staff of the California Energy Commission provide

Islam, M. Saif

195

Tower Design Load Verification on a 1-kW Wind Turbine: Preprint  

DOE Green Energy (OSTI)

Wind turbine testing at the National Wind Technology Center (NWTC) has been done to characterize both tower top loads and thrust loads for small wind turbines, which is part of an ongoing effort to model and predict small wind turbine behavior and the resulting stresses imposed on the supporting tower. To these ends, a 1-kW furling wind turbine mounted on a 10-meter tower was instrumented and monitored via a data acquisition system for nearly a year. This test was conducted to verify the design loads as predicted by the simple design equations provided in the draft revision of the International Electrotechnical Commission (IEC) Small Wind Turbine Safety Standard 61400-02 CDV (hereafter called ''the draft Standard''). Data were captured for several operating conditions covered by the draft Standard. This paper addresses the collected data and what conclusions can be made from it.

Prascher, D.; Huskey, A.

2004-11-01T23:59:59.000Z

196

US Department of Energy wind turbine candidate site program: the regulatory process  

DOE Green Energy (OSTI)

Sites selected in 1979 as tentative sites for installation of a demonstration MOD-2 turbine are emphasized. Selection as a candidate site in this program meant that the US Department of Energy (DOE) designated the site as eligible for a DOE-purchased and installed meteorological tower. The regulatory procedures involved in the siting and installation of these meteorological towers at the majority of the candidate sites are examined. An attempt is also made, in a preliminary fashion, to identify the legal and regulatory procedures that would be required to put up a turbine at each of these candidate sites. The information provided on each of these sites comes primarily from utility representatives, supplemented by conversations with state and local officials. The major findings are summarized on the following: federal requirements, state requirements, local requirements, land ownership, wind rights, and public attitudes.

Greene, M.R.; York, K.R.

1982-06-01T23:59:59.000Z

197

California Wind Energy Forecasting Program Description and Status - 2000: California Energy Commission--EPRI Wind Energy Forecasting Program  

Science Conference Proceedings (OSTI)

The modern era of wind power began in the early 1980s when the first large installations of modern wind turbines were installed in California. The industry has grown rapidly in recent years and, at the end of 1999, the total installed wind capacity was 13.4 gigawatts (GW) worldwide and 2.5 GW in the U.S., of which about 1.6 GW is operating in California. Deregulation of the California electricity markets in 1998 created a challenge for the California investor-owned utilitiies and the owners and operators...

2000-12-18T23:59:59.000Z

198

State Energy Efficiency Design Program | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Energy Efficiency Design Program Energy Efficiency Design Program State Energy Efficiency Design Program < Back Eligibility State Government Savings Category Heating & Cooling Home Weatherization Construction Commercial Weatherization Commercial Heating & Cooling Design & Remodeling Program Info State Oregon Program Type Energy Standards for Public Buildings Provider Oregon Department of Energy Oregon's State Energy Efficiency Design Program (SEED) was originally established in 1991. This program, codified in state law, directs state agencies to work with the Oregon Department of Energy to ensure cost-effective energy conservation measures (ECMs) are included in new construction projects and major renovations to public buildings. Leased buildings are also required to be more energy efficient.

199

WindPACT Turbine Design Scaling Studies: Technical Area 4 -- Balance-of-Station Cost  

SciTech Connect

DOE's Wind Partnerships for Advanced Component Technologies (WindPACT) program explores the most advanced wind-generating technologies for improving reliability and decreasing energy costs. The first step in the WindPact program is a scaling study to bound the optimum sizes for wind turbines, to define size limits for certain technologies, and to scale new technologies. The program is divided into four projects: Composite Blades for 80-120-meter Rotors; Turbine, Rotor, and Blade Logistics; Self-Erecting Tower and Nacelle Feasibility; and Balance-of-Station Cost. This report discusses balance-of-station costs, which includes the electrical power collector system, wind turbine foundations, communications and controls, meteorological equipment, access roadways, crane pads, and the maintenance building. The report is based on a conceptual 50-megawatt (MW) wind farm site near Mission, South Dakota. Cost comparisons are provided for four sizes of wind turbines: 750 kilowatt (kW), 2.5 MW, 5.0 MW, and 10.0 MW.

Shafer, D. A.; Strawmyer, K. R.; Conley, R. M.; Guidinger J. H.; Wilkie, D. C.; Zellman, T. F.

2001-07-24T23:59:59.000Z

200

Stakeholder Engagement and Outreach: Collegiate Wind Competition  

Wind Powering America (EERE)

Wind for Schools Project Wind for Schools Project Collegiate Wind Competition School Project Locations Education & Training Programs Curricula & Teaching Materials Resources Collegiate Wind Competition The U.S. Department of Energy (DOE) Collegiate Wind Competition challenges undergraduate students from multiple disciplines to design and construct a lightweight wind turbine. The students will investigate innovative wind energy concepts; gain experience designing, building, and testing a wind turbine to perform according to a customized, market data-derived business plan; and increase their knowledge of wind industry barriers. Illustration with a summary of the Collegiate Wind Competition and its principal contests. Challenging collegiate teams to design and construct a lightweight, transportable wind turbine to power small electric devices. Build and test a wind turbine, present on wind energy topics, and deliver a cohesive business plan.

Note: This page contains sample records for the topic "wind program designed" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


201

PARAMETRIC MODELS FOR ESTIMATING WIND TURBINE FATIGUE LOADS FOR DESIGN  

E-Print Network (OSTI)

. Veers2 Steven R. Winterstein3 1 Department of Civil Engineering, University of Texas at Austin, Austin, TX 78712 2 Sandia National Laboratories, Wind Energy Technology Department, Albuquerque, NM 87185

Sweetman, Bert

202

Changes related to "FloDesign Wind Turbine Corporation" | Open...  

Open Energy Info (EERE)

Policies International Clean Energy Analysis Low Emission Development Strategies Oil & Gas Smart Grid Solar U.S. OpenLabs Utilities Water Wind View New Pages Recent Changes All...

203

FloDesign Wind Turbine Corporation | Open Energy Information  

Open Energy Info (EERE)

Policies International Clean Energy Analysis Low Emission Development Strategies Oil & Gas Smart Grid Solar U.S. OpenLabs Utilities Water Wind Page Actions View form View source...

204

Cooperative field test program for wind energy systems: Effects of precipitation on wind turbine performance  

Science Conference Proceedings (OSTI)

The purpose of this research is to examine the effect of precipitation on wind turbine performance. This study will be conducted at the Whisky Run windfarm on the southern Oregon coast. Precipitation has been shown to cause significant degradation in the performance of the MOD-O wind turbine by Corrigan and DeMiglio (1985), who found performance reductions of up to 20% for light rainfall, 30% for moderate rainfall and 36% for snow and drizzle. There are several penalties due to rainfall, but it appears that most of the performance degradation is due to rain induced roughness. The Whisky Run windfarm receives around 60 inches of rain per year most of which occurs from October through April. During the summer months drizzle is an occasional weather phenomena. Pacific Wind Energy (PWE) and Pacific Power and Light (PP L) propose to examine the effect of precipitation on wind turbine performance. The Whisky Run windfarm is unique among windfarms because the power sales contract is set up such that the wind farm is considered a research project and the participants have agreed to engage in research that will benefit the industry. PP L will be providing all of the instrumentation except for the recording rate of rain gage. PWE will be performing the analysis of the data and project management.

Not Available

1986-01-06T23:59:59.000Z

205

Design of control system for hydraulic lifting platform with jack-up wind-power installation vessel  

Science Conference Proceedings (OSTI)

Jack-up wind-power installation vessel is the most important tool in construction of wind farm. And the control system for hydraulic lifting platform is the key point of jack-up wind-power installation vessel. Therefore the design of the control system ... Keywords: hydraulic control, hydraulic lifting platform, programmable logic controller, wind-power

Xuejin Yang; Dingfang Chen; Mingwang Dong; Taotao Li

2012-11-01T23:59:59.000Z

206

Unit commitment with wind power generation: integrating wind forecast uncertainty and stochastic programming.  

DOE Green Energy (OSTI)

We present a computational framework for integrating the state-of-the-art Weather Research and Forecasting (WRF) model in stochastic unit commitment/energy dispatch formulations that account for wind power uncertainty. We first enhance the WRF model with adjoint sensitivity analysis capabilities and a sampling technique implemented in a distributed-memory parallel computing architecture. We use these capabilities through an ensemble approach to model the uncertainty of the forecast errors. The wind power realizations are exploited through a closed-loop stochastic unit commitment/energy dispatch formulation. We discuss computational issues arising in the implementation of the framework. In addition, we validate the framework using real wind speed data obtained from a set of meteorological stations. We also build a simulated power system to demonstrate the developments.

Constantinescu, E. M.; Zavala, V. M.; Rocklin, M.; Lee, S.; Anitescu, M. (Mathematics and Computer Science); (Univ. of Chicago); (New York Univ.)

2009-10-09T23:59:59.000Z

207

Generating Parallel Programs from the Wavefront Design Pattern  

Science Conference Proceedings (OSTI)

Object-oriented programming, design patterns, and frameworks are common techniques that have been used to reduce the complexity of sequential programming. We have applied these techniques to the more difficult domain of parallel programming. This paper ...

John Anvik; Steve MacDonald; Duane Szafron; Jonathan Schaeffer; Steven Bromling; Kai Tan

2002-04-01T23:59:59.000Z

208

SOFTWARE QUALITY & SYSTEMS ENGINEERING PROGRAM: Software Design...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

SYSTEMS ENGINEERING PROGRAM: Requirements Management Checklist SOFTWARE QUALITY & SYSTEMS ENGINEERING PROGRAM: Project Tracking Checklist Energy.gov Careers & Internships Policy &...

209

Preliminary design and viability consideration of external, shroud-based stators in wind turbine generators  

E-Print Network (OSTI)

Horizontal-axis wind turbine designs often included gearboxes or large direct-drive generators to compensate for the low peripheral speeds of the turbine hub. To take advantage of high blade tip speeds, an alternative ...

Shoemaker-Trejo, Nathaniel (Nathaniel Joseph)

2012-01-01T23:59:59.000Z

210

New Battery Design Could Help Solar and Wind Power the Grid | Department of  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Battery Design Could Help Solar and Wind Power the Grid Battery Design Could Help Solar and Wind Power the Grid New Battery Design Could Help Solar and Wind Power the Grid April 24, 2013 - 4:20pm Addthis NEWS MEDIA CONTACT (202) 586-4940 WASHINGTON - Researchers from the U.S. Department of Energy's (DOE) SLAC National Accelerator Laboratory and Stanford University have designed a low-cost, long-life "flow" battery that could enable solar and wind energy to become major suppliers to the electrical grid. The research, led by Yi Cui, a Stanford associate professor and member of the Stanford Institute for Materials and Energy Sciences, is a product of the new Joint Center for Energy Storage Research (JCESR), a DOE Energy Innovation Hub. Led by Argonne National Laboratory, with SLAC as major partner, JCESR is one of five such Hubs created by the Department to

211

Wind Turbine Design Using A Free-wake Vortex Method With Winglet Application.  

E-Print Network (OSTI)

??Wind turbine blades are traditionally designed with blade element momentum theory (BEMT). This method is incapable of accurately analyzing non-conventional or non-planar blade planforms. Modern… (more)

Maniaci, David

2013-01-01T23:59:59.000Z

212

Wind Turbine Design Guideline DG03: Yaw and Pitch Rolling Bearing Life  

DOE Green Energy (OSTI)

This report describes the design criteria, calculation methods, and applicable standards recommended for use in performance and life analyses of ball and roller (rolling) bearings for yaw and pitch motion support in wind turbine applications. The formulae presented here for rolling bearing analytical methods and bearing-life ratings are consistent with methods in current use by wind turbine designers and rolling-bearing manufacturers.

Harris, T.; Rumbarger, J. H.; Butterfield, C. P.

2009-12-01T23:59:59.000Z

213

Environmentally Sound Design and Recycling of Future Wind Power Systems  

E-Print Network (OSTI)

national expenditure on wind power related research 6. Other renewable source of energy (other than hydro Energy Research Programme (EFP) #12;Foresight methodologies Conditions: · Low uncertainty · Short time + extrapolation (BTM's World Market Update) · Cost of energy Experience curves · Size of machines Extrapolation

214

Design, Analysis, and Learning Control of a Robotic Wind Turbine J. Zico Kolter, Zachary Jackowski, Russ Tedrake*  

E-Print Network (OSTI)

. Second, we note that single turbine installations are be- coming rather uncommon: most commercial windDesign, Analysis, and Learning Control of a Robotic Wind Turbine J. Zico Kolter, Zachary Jackowski, and improvements to wind turbine design and control can have a significant impact on energy sustainability

Jackson, Daniel

215

Long Island Power Authority - Wind Energy Rebate Program (New...  

Open Energy Info (EERE)

has furnished a customer checklist on the program web site to help guide consumers and installers through the rebate process. Prospective applicants should consult this...

216

WindPACT Turbine Design Scaling Studies Technical Area 2: Turbine, Rotor and Blade Logistics  

SciTech Connect

Through the National Renewable Energy Laboratory (NREL), the United States Department of Energy (DOE) implemented the Wind Partnership for Advanced Component Technologies (WindPACT) program. This program will explore advanced technologies that may reduce the cost of energy (COE) from wind turbines. The initial step in the WindPACT program is a series of preliminary scaling studies intended to determine the optimum sizes for future turbines, help define sizing limits for certain critical technologies, and explore the potential for advanced technologies to contribute to reduced COE as turbine scales increase. This report documents the results of Technical Area 2-Turbine Rotor and Blade Logistics. For this report, we investigated the transportation, assembly, and crane logistics and costs associated with installation of a range of multi-megawatt-scale wind turbines. We focused on using currently available equipment, assembly techniques, and transportation system capabilities and limitations to hypothetically transport and install 50 wind turbines at a facility in south-central South Dakota.

Smith, K.

2001-07-16T23:59:59.000Z

217

Federal Energy Management Program: FEMP Designated Product: Water-Cooled  

NLE Websites -- All DOE Office Websites (Extended Search)

FEMP Designated FEMP Designated Product: Water-Cooled Ice Machines to someone by E-mail Share Federal Energy Management Program: FEMP Designated Product: Water-Cooled Ice Machines on Facebook Tweet about Federal Energy Management Program: FEMP Designated Product: Water-Cooled Ice Machines on Twitter Bookmark Federal Energy Management Program: FEMP Designated Product: Water-Cooled Ice Machines on Google Bookmark Federal Energy Management Program: FEMP Designated Product: Water-Cooled Ice Machines on Delicious Rank Federal Energy Management Program: FEMP Designated Product: Water-Cooled Ice Machines on Digg Find More places to share Federal Energy Management Program: FEMP Designated Product: Water-Cooled Ice Machines on AddThis.com... Energy-Efficient Products Federal Requirements

218

Development of an 8 kW wind turbine generator for residential type applications. Phase I: design and analysis. Volume II. Technical report  

SciTech Connect

This Phase I summary report contains a description of the 8 kW wind energy conversion system developed by the United Technologies Research Center (UTRC) for the Department of Energy. The wind turbine employs the UTRC Bearingless Rotor Concept in conjunction with a passive pendulum control system which controls blade pitch for start-up, efficient power generation, and high-speed survivability. The report contains a summary of the experimental and analytical programs in support of design efforts. These supporting programs include materials tests, a wind tunnel program, and aeroelastic analyses to evaluate system stability. An estimate is also made of the projected manufacturing cost of the system if produced in quantity.

Cheney, M.C.

1979-06-25T23:59:59.000Z

219

Iowa / Nebraska Distributed Wind Generation Projects First and Second-Year Operating Experience: 1999-2001: U.S. Department of Energ y - EPRI Wind Turbine Verification Program  

Science Conference Proceedings (OSTI)

The Wind Turbine Verification Program (TVP) is a collaborative effort of the U.S. Department of Energy (DOE), EPRI, and host utilities to develop, construct, and operate wind power plants. This report describes the first- and second-year operating experience at the 2.25-MW Iowa Distributed Wind Generation Project (IDWGP) in Algona, Iowa, and the 1.5-MW Nebraska Distributed Wind Generation Project (NDWGP) in Springview, Nebraska. The lessons learned in both projects will be valuable to other utilities pla...

2001-12-03T23:59:59.000Z

220

Wind for Schools: Developing Educational Programs to Train a New Workforce and the Next Generation of Wind Energy Experts (Poster)  

DOE Green Energy (OSTI)

As the United States dramatically expands wind energy deployment, the industry is challenged with developing a skilled workforce and addressing public resistance. Wind Powering America's Wind for Schools project addresses these issues by: Developing Wind Application Centers (WACs) at universities; installing small wind turbines at community "host" schools; and implementing teacher training with interactive curricula at each host school.

Flowers, L.; Baring-Gould, I.

2010-04-01T23:59:59.000Z

Note: This page contains sample records for the topic "wind program designed" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


221

Conceptual design of an electrofluid dynamic wind energy system. A subcontract final report  

SciTech Connect

This report contains a conceptual design of the electrofluid dynamic (EFD) wind-driven generator and performance estimates used to select the electrode spacing and other parameters. Various spacings and tube sizes in different wind fields were considered to assess the effects of different parameters. Although a detailed stress analysis was not done, preliminary estimates indicate that the tower design will withstand head-on winds in excess of 100 mph (44 m/s) without damage. Many opportunities appear to exist to cut the cost of an EFD wind-driven generator. Maintenance and downtime on this wind-driven generator should be less than for a conventional system with many units having rotating parts. The EFD wind-driven generator also does not require additional power conditioning for long-line power transmission. It should be possible to produce EFD wind driven-generators that are cost competitive with other methods of producing a high-voltage dc power, once a charging system is developed.

Minardi, J.E.; Lawson, M.O.

1984-05-01T23:59:59.000Z

222

EERE: Wind  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

EERE: Buildings The U.S. Department of Energy funds R&D to develop wind energy. Learn about the DOE Wind Program, how to use wind energy and get financial incentives, and access...

223

End-user mashup programming: through the design lens  

Science Conference Proceedings (OSTI)

Programming has recently become more common among ordinary end users of computer systems. We believe that these end-user programmers are not just coders but also designers, in that they interlace making design decisions with coding rather than treating ... Keywords: design, end-user programming, mashups

Jill Cao; Yann Riche; Susan Wiedenbeck; Margaret Burnett; Valentina Grigoreanu

2010-04-01T23:59:59.000Z

224

Constructing uniform designs: A heuristic integer programming method  

Science Conference Proceedings (OSTI)

In this paper, the wrap-around L"2-discrepancy (WD) of asymmetrical design is represented as a quadratic form, thus the problem of constructing a uniform design becomes a quadratic integer programming problem. By the theory of optimization, some theoretic ... Keywords: Quadratic integer programming, Simulated annealing, Uniform design, Wrap-around L2-discrepancy

Yong-Dao Zhou; Kai-Tai Fang; Jian-Hui Ning

2012-04-01T23:59:59.000Z

225

High speed air pneumatic wind shield wiping design  

E-Print Network (OSTI)

In this creative design process a number of designs were constructed, implemented and tested in order to assess the feasibility of using high speed to create a curtain to repel the rain from the automobile windshield instead ...

Heyward, Moses A

2005-01-01T23:59:59.000Z

226

WindPACT Rotor Design Study: Hybrid Tower Design; Period of Performance: 29 June 2000 -- 28 February 2004  

DOE Green Energy (OSTI)

The cost of a wind turbine tower can represent as much as 20% of the cost of an entire megawatt-scale horizontal axis wind turbine (HAWT) and as much as 10% of the total cost of energy. The tower is a major cost component, and its design is important: Its structural properties are key to the response of the rotor; its height determines the wind regime that the rotor experiences; it allows access to the turbine nacelle and rotor; and it houses components of the electrical connection and the control and protection systems. Most large wind turbines installed in the United States use self-supporting steel tubular towers. The diameter of these tubes is limited by the size that can be transported by road (approximately 4.3 m). The base dimensions of a truss tower are not restrained by this limit, but trusses may require more maintenance. Guyed tube towers have been used, but they represent additional foundation costs and inconvenience. Addressing these limitations may lead to an alternative that avoids the problems. For this reason, the WindPACT Rotor Design Study was modified to include a study of a hybrid tower to determine the technical and economic feasibility of such a design.

Malcolm, D. J.

2004-04-01T23:59:59.000Z

227

The Programmer's Apprentice: A Program Design Scenario  

E-Print Network (OSTI)

A scenario is used to illustrate the capabilities of a proposed Design Apprentice, focussing on the area of detailed, low-level design. Given a specification, the Design Apprentice will be able to make many of the ...

Rich, Charles

1987-11-01T23:59:59.000Z

228

Optimal Design of Electrical Machines: Mathematical Programming ...  

E-Print Network (OSTI)

for the same problem of the design of an electrical machine without slot. ... tion, inverse problem, design, electrical machine ..... trade-off situation arises.

229

Utility Green Pricing Programs: Design, Implementation, and Consumer...  

NLE Websites -- All DOE Office Websites (Extended Search)

Green Pricing Programs: Design, Implementation, and Consumer Response February 2004 * NRELTP-620-35618 Lori Bird, Blair Swezey, and Jrn Aabakken National Renewable Energy...

230

Designing an H-rotor type Wind Turbine for Operation on Amundsen-Scott South Pole Station.  

E-Print Network (OSTI)

?? This thesis focuses on designing the turbine, tower structure and generator for an H-rotor type wind turbine. The produced power will be used for… (more)

Wahl, Mats

2007-01-01T23:59:59.000Z

231

Table-top training program design  

SciTech Connect

This handbook establishes general training program guidelines for training personnel in developing training for operation, maintenance, and technical support personnel at DOE nuclear facilities.

NONE

1995-04-01T23:59:59.000Z

232

DOE Hydrogen Program Record 5011 - Hydrogen Potential from Solar and Wind Resources  

NLE Websites -- All DOE Office Websites (Extended Search)

DOE Hydrogen Program Record Record #: 5011 Date: December 15, 2005 Title: Hydrogen Potential from Solar and Wind Resources Items: - Data/resource maps indicate that the potential exists to use wind and solar resources to produce more than 15 times the amount of hydrogen needed to displace the petroleum used by light duty vehicles in 2040. - About one billion metric tons of hydrogen could be produced by renewable electrolysis annually, based upon solar and wind resource potential. - The other three solar pathways - thermochemical, photoelectrochemical, and photobiological - would have similar or possibly higher productivity per unit of land area. Data: Figure 1: Hydrogen Potential from Solar Resources Note: Map shows total kilograms of hydrogen per county, normalized by

233

Sandia Vertical-Axis Wind Turbine Program. Technical quarterly report, July--September 1976. [USA  

DOE Green Energy (OSTI)

This quarterly report describes the activities of the Sandia Laboratories' Vertical-Axis Wind Turbine (VAWT) project during the period July to September 1976, transitional quarter of fiscal year 1976. Included are the highlights of the quarter; review of the status of general design efforts in the areas of aerodynamics, structures, and testing.

Grover, R.D.; Veneruso, A.F. (eds.)

1977-06-01T23:59:59.000Z

234

Labs21 sustainable design programming checklist version 1.0  

SciTech Connect

This checklist of sustainable design objectives and strategies can be used in the programming and conceptual design phases of a laboratory project. It includes the following: (1) Brief descriptions of each objective and strategy. (2) Metrics for each objective. This checklist is primarily to be used by owners, architects and engineers during the programming and conceptual design phase of a project. It is especially appropriate for use in design charrettes. The strategies and metrics can be included as requirements in the programming document or can be identified for further analysis or consideration during the design development phase. This checklist is hierarchically organized into design areas, objectives for each design area, and strategies and metrics for each objective. The design areas generally correspond to the design areas of the LEED(TM) rating system from the U.S. Green Building Council.

Mathew, Paul; Greenberg, Steve

2005-01-07T23:59:59.000Z

235

Wind for Schools Project Curriculum Brief (Fact Sheet)  

SciTech Connect

The U.S. Department of Energy's (DOE's) 20% Wind Energy by 2030 report recommends expanding education to ensure a trained workforce to meet the projected growth of the wind industry and deployment. Although a few U.S. higher education institutions offer wind technology education programs, most are found in community and technical colleges, resulting in a shortage of programs preparing highly skilled graduates for wind industry careers. Further, the United States lags behind Europe (which has more graduate programs in wind technology design and manufacturing) and is in danger of relinquishing the economic benefits of domestic production of wind turbines and related components and services to European countries. DOE's Wind Powering America initiative launched the Wind for Schools project to develop a wind energy knowledge base among future leaders of our communities, states, and nation while raising awareness about wind energy's benefits. This fact sheet provides an overview of wind energy curricula as it relates to the Wind for Schools project.

Not Available

2010-08-01T23:59:59.000Z

236

Characterization of wind technology progress  

SciTech Connect

US DOE`s Wind Energy Program, NREL, and Sandia periodically re-evaluate the state of wind technology. Since 1995 marked the conclusion of a number of DOE-supported advanced turbine design efforts, and results from the next major round of research are expected near the latter part of the century, this paper discusses future trends for domestic wind farm applications (bulk power), incorporating recent turbine research efforts under different market assumptions from previous DOE estimates. Updated cost/performance projections are presented along with underlying assumptions and discussions of potential alternative wind turbine design paths. Issues on market valuation of wind technology in a restructured electricity market are also discussed.

Cadogan, J B [USDOE, Washington, DC (United States); Parsons, B [National Renewable Energy Lab., Golden, CO (United States); Cohen, J M; Johnson, B L [Princeton Economic Research, Inc., Rockville, MD (United States)

1996-07-01T23:59:59.000Z

237

WindPACT Turbine Rotor Design Study: June 2000--June 2002 (Revised)  

NLE Websites -- All DOE Office Websites (Extended Search)

WindPACT Turbine Rotor WindPACT Turbine Rotor Design Study June 2000 - June 2002 D.J. Malcolm Global Energy Concepts, LLC Kirkland, Washington A.C. Hansen Windward Engineering Salt Lake City, Utah Subcontract Report NREL/SR-500-32495 Revised April 2006 WindPACT Turbine Rotor Design Study June 2000 - June 2002 D.J. Malcolm Global Energy Concepts, LLC Kirkland, Washington A.C. Hansen Windward Engineering Salt Lake City, Utah NREL Technical Monitor: A. Laxson Prepared under Subcontract No. YAT-0-30213-01 Subcontract Report NREL/SR-500-32495 Revised April 2006 National Renewable Energy Laboratory 1617 Cole Boulevard, Golden, Colorado 80401-3393 303-275-3000 * www.nrel.gov Operated for the U.S. Department of Energy Office of Energy Efficiency and Renewable Energy by Midwest Research Institute * Battelle

238

A modular programming language for engineering design  

E-Print Network (OSTI)

We introduce a new universal model of computation called MDPL that generalizes other functional models like the lambda calculus and combinatory logic. This model leads naturally to a new type of programming language that ...

Coffee, Thomas Merritt

2008-01-01T23:59:59.000Z

239

Using computational tools to factor wind into architectural environment design  

E-Print Network (OSTI)

, as documented by Allard [7], CIBSE [8] and Linden [9]. These manual methods are generally very simple and can, as illustrated by Carrilho-da- Graça et al. [20]. According to CIBSE [8], natural ventilation can be classified in buildings: a design handbook, London: James & James Ltd., 1998. [8] CIBSE Natural ventilation in non

Chen, Qingyan "Yan"

240

Federal Energy Management Program: Energy Efficiency Design Standards for  

NLE Websites -- All DOE Office Websites (Extended Search)

Design Standards for New Federal Commercial and Multi-Family High-Rise Design Standards for New Federal Commercial and Multi-Family High-Rise Residential Buildings to someone by E-mail Share Federal Energy Management Program: Energy Efficiency Design Standards for New Federal Commercial and Multi-Family High-Rise Residential Buildings on Facebook Tweet about Federal Energy Management Program: Energy Efficiency Design Standards for New Federal Commercial and Multi-Family High-Rise Residential Buildings on Twitter Bookmark Federal Energy Management Program: Energy Efficiency Design Standards for New Federal Commercial and Multi-Family High-Rise Residential Buildings on Google Bookmark Federal Energy Management Program: Energy Efficiency Design Standards for New Federal Commercial and Multi-Family High-Rise Residential Buildings on Delicious

Note: This page contains sample records for the topic "wind program designed" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


241

The integrated design of a permanent-magnet generator for small wind energy conversion system  

Science Conference Proceedings (OSTI)

This paper presents the integrated design, analysis and performance test of a 1.4 kW, radial-flux, permanent-magnet generator applied to small wind energy conversion system (WECS). In a small WECS, the three major components, i.e., turbine, generator ...

Min-Fu Hsieh; Yu-Han Yeh

2012-12-01T23:59:59.000Z

242

Effective Ancillary Services Market Designs on High Wind Power Penetration Systems: Preprint  

DOE Green Energy (OSTI)

This paper focuses on how the ancillary service market designs are implemented and how they may require changes on systems with greater penetrations of variable renewable energy suppliers, in particular wind power. Ancillary services markets have been developed in many of the restructured power system regions throughout the world. Ancillary services include the services that support the provision of energy to support power system reliability. The ancillary services markets are tied tightly to the design of the energy market and to the physics of the system and therefore careful consideration of power system economics and engineering must be considered in their design. This paper focuses on how the ancillary service market designs are implemented and how they may require changes on systems with greater penetrations of variable renewable energy suppliers, in particular wind power.

Ela, E.; Kirby, B.; Navid, N.; Smith, J. C.

2011-12-01T23:59:59.000Z

243

Lessons Learned at the Iowa and Nebraska Public Power Wind Projects: U.S. Department of Energy - EPRI Wind Turbine Verification Prog ram, American Public Power Association DEED Program  

Science Conference Proceedings (OSTI)

This report describes lessons learned during project development and initial operation of three wind projects owned by public utilities in Iowa and Nebraska. Two are distributed wind generation projects installed in the fall of 1998 as part of the U.S. Department of Energy - EPRI Wind Turbine Verification Program (TVP) in Algona, Iowa, and Springview, Nebraska. The third is Waverly Light and Power's (WLP) Wind Energy Deployment Project installed in early 1999 as part of the 259-turbine Storm Lake Wind Po...

2000-11-30T23:59:59.000Z

244

Wind Turbine Control Design to Reduce Capital Costs: 7 January 2009 - 31 August 2009  

DOE Green Energy (OSTI)

This report first discusses and identifies which wind turbine components can benefit from advanced control algorithms and also presents results from a preliminary loads case analysis using a baseline controller. Next, it describes the design, implementation, and simulation-based testing of an advanced controller to reduce loads on those components. The case-by-case loads analysis and advanced controller design will help guide future control research.

Darrow, P. J.

2010-01-01T23:59:59.000Z

245

Design Reconstitution Program Plan and procedures for K Basins  

SciTech Connect

This document establishes a systematic program to establish, organize, and document the design basis and design requirement information for the K Basins where existing design information is inadequate. The Design Reconstitution Program involves identifying and retrieving design information from identified source documents; evaluating, verifying, and validating the design information; resolving discrepancies; regenerating missing critical design information; and preparing and issuing a summary document of the design information. Upon completion, the design requirements shall be evaluated with the facility as-found configuration to verify the adequacy of appropriate design requirements with the as-found configuration and to document and resolve any discovered discrepancies. Once the design requirement (design analysis, calculation, design basis) comparison is made and discrepancies resolved (dispositioned, implemented, and incorporated as required), the as-found condition of a drawing then becomes an as-built drawing that is released into the engineering release system. This as-built drawing is then the accurate accounting of the field configuration that is consistent with the design requirements (recovered through the design reconstitution program) and is used with high confidence to make valid engineering, operational, and maintenance decisions.

Laney, T.

1995-01-12T23:59:59.000Z

246

NAWIG News: The Quarterly Newsletter of the Native American Wind Interest Group, Fall 2008, Wind & Hydropower Technologies Program (Brochure)  

Wind Powering America (EERE)

Using the Power of the Wind Using the Power of the Wind An Interview with Dave Danz Dave Danz has been a tribal planner since 1978 and a planner with the Grand Portage Band of Chippewa in northeast Minnesota since 2006. He is, as he puts it, "A white guy in Indian Country with no background in wind energy." Until recently, that is. A Minnesota Department of Commerce study con cluded that the north shore of Lake Superior did not have a wind

247

Hanford Site waste tank farm facilities design reconstitution program plan  

SciTech Connect

Throughout the commercial nuclear industry the lack of design reconstitution programs prior to the mid 1980`s has resulted in inadequate documentation to support operating facilities configuration changes or safety evaluations. As a result, many utilities have completed or have ongoing design reconstitution programs and have discovered that without sufficient pre-planning their program can be potentially very expensive and may result in end-products inconsistent with the facility needs or expectations. A design reconstitution program plan is developed here for the Hanford waste tank farms facility as a consequence of the DOE Standard on operational configuration management. This design reconstitution plan provides for the recovery or regeneration of design requirements and basis, the compilation of Design Information Summaries, and a methodology to disposition items open for regeneration that were discovered during the development of Design Information Summaries. Implementation of this plan will culminate in an end-product of about 30 Design Information Summary documents. These documents will be developed to identify tank farms facility design requirements and design bases and thereby capture the technical baselines of the facility. This plan identifies the methodology necessary to systematically recover documents that are sources of design input information, and to evaluate and disposition open items or regeneration items discovered during the development of the Design Information Summaries or during the verification and validation processes. These development activities will be governed and implemented by three procedures and a guide that are to be developed as an outgrowth of this plan.

Vollert, F.R.

1994-09-06T23:59:59.000Z

248

Federal Energy Management Program: Product Designation Process  

NLE Websites -- All DOE Office Websites (Extended Search)

Designation Process Training Available Graphic of the eTraining logo Energy-Efficient Federal Purchasing: This intermediate FEMP eTraining course offers hands-on learning on...

249

The Design of Multivariate Field Programs  

Science Conference Proceedings (OSTI)

Development of a methodology for the optimal placement of multivariate sensors as an aid in the design of geophysical field experiments is shown. The optimal placement methodology relies on spatial correlation estimates, interpolation error ...

Kenneth W. Johnson

1988-04-01T23:59:59.000Z

250

Field Verification Program for Small Wind Turbines: Quarterly Report for January-March 2001; 1st Quarter, Issue No.4  

DOE Green Energy (OSTI)

This newsletter provides a brief overview of the Field Verification Program for Small Wind Turbines conducted out of the NWTC and a description of current activities. The newsletter also contains case studies of current projects.

Forsyth, T.; Cardinal, J.

2001-10-30T23:59:59.000Z

251

Mechanical Design, Analysis, and Testing of a Two-Bladed Wind Turbine Hub  

DOE Green Energy (OSTI)

Researchers at the National Wind Technology Center (NWTC) in Golden, Colorado, began performing the Unsteady Aerodynamics Experiment in 1993 to better understand the unsteady aerodynamics and structural responses of horizontal-axis wind turbines. The experiment consists of an extensively instrumented, downwind, three-bladed, 20-kilowatt wind turbine. In May 1995, I received a request from the NWTC to design a two-bladed hub for the experiment. For my thesis, I present the results of the mechanical design, analysis, and testing of the hub. The hub I designed is unique because it runs in rigid, teetering, or independent blade-flapping modes. In addition, the design is unusual because it uses two servomotors to pitch the blades independently. These features are used to investigate new load reduction, noise reduction, blade pitch optimization, and yaw control techniques for two-bladed turbines. I used a methodology by G. Phal and W. Bietz to design the hub. The hub meets all the performance specifications except that it achieves only 90% of the specified teeter range. In my thesis, I focus on the analysis and testing of the hub body. I performed solid-mechanics calculations, ran a finite-element analysis simulation, and experimentally investigated the structural integrity of the hub body.

Cotrell, J.

2002-06-01T23:59:59.000Z

252

Systems Engineering Applications to Wind Energy Research, Design, and Development (Poster)  

DOE Green Energy (OSTI)

Over the last few decades, wind energy has evolved into a large international industry involving major players in the manufacturing, construction, and utility sectors. Coinciding with the industry's growth, significant innovation in the technology has resulted in larger turbines with lower associated costs of energy and more complex designs in all subsystems. However, as the deployment of the technology grows, and its role within the electricity sector becomes more prominent, so has the expectations of the technology in terms of performance, reliability, and cost. The industry currently partitions its efforts into separate paths for turbine design, plant design and development, grid interaction and operation, and mitigation of adverse community and environmental impacts. These activities must be integrated to meet a diverse set of goals while recognizing trade-offs between them. To address these challenges, the National Renewable Energy Laboratory (NREL) has embarked on the Wind Energy Systems Engineering (WESE) initiative to use methods of systems engineering in the research, design, and development of wind energy systems. Systems engineering is a field that has a long history of application to complex technical systems. The work completed to date represents a first step in understanding this potential. It reviews systems engineering methods as applied to related technical systems and illustrates how these methods can be combined in a WESE framework to meet the research, design, and development needs for the future of the industry.

Dykes, K.; Damiani, R.; Felker, F.; Graf, P.; Hand, M.; Meadows, R.; Musial, W.; Moriarty, P.; Ning, A.; Scott, G.; Sirnivas, S.; Veers, P.

2012-06-01T23:59:59.000Z

253

Design Considerations for Monopile Founded Offshore Wind Turbines Subject to Breaking Waves  

E-Print Network (OSTI)

The majority of offshore wind farms utilize monopile substructures. As these wind farms are typically located in water depths less than 30 meters, the effect of breaking waves on these structures is of great concern to design engineers. This research investigation examines many of the practical considerations and alternative ways of estimating breaking wave forces. A survey of existing European wind farms is used to establish a realistic range of basic design parameters. Based upon this information a parametric study was pursued and a series of realistic design scenarios were evaluated. Comparisons include the sensitivity to the wave force model as well as to analytical and numerical wave theories used to evaluate the wave kinematics. In addition, the effect of different kinematics stretching techniques for linear waves is addressed. Establishing whether the bathymetry will induce spilling or plunging wave breaking is critical. Spilling wave breaking can be addressed using existing wave and wave force theories; however for plunging wave breaking an additional impact force must be introduced. Dimensionless design curves are used to display pertinent trends across the full range of design cases considered. This research study provides insight into the evaluation of the maximum breaking wave forces and overturning moment for both spilling and plunging breaking waves as a function of bottom slope.

Owens, Garrett 1987-

2012-12-01T23:59:59.000Z

254

Structural Composites Industries 4 kilowatt wind system development. Phase I: design and analysis, technical report  

DOE Green Energy (OSTI)

A 4 kW small wind energy conversion system (SWECS) has been designed for residential applications in which relatively low (10 mph) mean annual wind speeds prevail. The objectives were to develop such a machine to produce electrical energy at 6 cents per kWh while operating in parallel with a utility grid or auxiliary generator. The Phase I effort began in November, 1979 and was carried through the Final Design Review in February 1981. During this period extensive trade, optimization and analytical studies were performed in an effort to provide the optimum machine to best meet the objectives. Certain components, systems and manufacturing processes were tested and evaluated and detail design drawings were produced. The resulting design is a 31-foot diameter horizontal axis downwind machine rated 5.7 kW and incorporating the following unique features: Composite Blades; Free-Standing Composite Tower; Torque-Actuated Blade Pitch Control. The design meets or exceeds all contract requirements except that for cost of energy. The target 6 cents per kWh will be achieved in a mean wind speed slightly below 12 mph instead of the specified 10 mph.

Malkine, N.; Bottrell, G.; Weingart, O.

1981-05-01T23:59:59.000Z

255

Comparison of Projections to Actual Performance in the DOE-EPRI Wind Turbine Verification Program  

DOE Green Energy (OSTI)

As part of the US Department of Energy/Electric Power Research Institute (DOE-EPRI) Wind Turbine Verification Program (TVP), Global Energy Concepts (GEC) worked with participating utilities to develop a set of performance projections for their projects based on historical site atmospheric conditions, turbine performance data, operation and maintenance (O and M) strategies, and assumptions about various energy losses. After a preliminary operation period at each project, GEC compared the actual performance to projections and evaluated the accuracy of the data and assumptions that formed the performance projections. This paper presents a comparison of 1999 power output, turbine availability, and other performance characteristics to the projections for TVP projects in Texas, Vermont, Iowa, Nebraska, Wisconsin, and Alaska. Factors that were overestimated or underestimated are quantified. Actual wind speeds are compared to projections based on long-term historical measurements. Turbine power curve measurements are compared with data provided by the manufacturers, and loss assumptions are evaluated for accuracy. Overall, the projects performed well, particularly new commercial turbines in the first few years of operation. However, some sites experienced below average wind resources and greater than expected losses. The TVP project owners successfully developed and constructed wind power plants that are now in full commercial operation, serving a total of approximately 12,000 households.

Rhoads, H.; VandenBosche, J.; McCoy, T.; Compton, A. (Global Energy Concepts, LLC); Smith, B. (National Renewable Energy Laboratory)

2000-09-11T23:59:59.000Z

256

ProgramTopics System & Application Design | Open Energy Information  

Open Energy Info (EERE)

Jump to: navigation, search A list of all pages that have property "ProgramTopics" with value "System & Application Design" ADVISOR (ADvanced VehIcle SimulatOR) + Carbon Dioxide...

257

Advanced Energy Design Guides | Building Energy Codes Program  

NLE Websites -- All DOE Office Websites (Extended Search)

Energy Design Guides Session 6 of a seven-part webcast series presented by the U.S. Department of Energy's (DOE's) Federal Energy Management Program to help federal agencies comply...

258

Impacts of Large Amounts of Wind Power on Design and Operation of Power Systems, Results of IEA Collaboration  

SciTech Connect

There are a multitude of studies completed and ongoing related to the cost of wind integration. However, the results are not easy to compare. An international forum for exchange of knowledge of power system impacts of wind power has been formed under the IEA Implementing Agreement on Wind Energy. IEA WIND R and D Task 25 on 'Design and Operation of Power Systems with Large Amounts of Wind Power' produced a state-of-the-art report in October 2007, where the most relevant wind-power grid integration studies were analyzed, especially regarding methodologies and input data. This paper summarizes the results from 18 case studies, with discussion on differences in methodology as well as issues that have been identified to impact the cost of wind integration.

Holttinen, H.; Meibom, P.; Orths, A.; O'Malley, M.; Ummels, B. C.; Tande, J. O.; Estanqueiro, A.; Gomez, E.; Smith, J. C.; Ela, E.

2008-01-01T23:59:59.000Z

259

Purpose-designed Crop Plants for Biofuels BIOENERGY PROGRAM  

E-Print Network (OSTI)

Purpose-designed Crop Plants for Biofuels BIOENERGY PROGRAM The Texas AgriLife Research Center for the biofuels industry. This program recognizes that the ideal combination of traits required for an economically and energetically sustainable biofuels industry does not yet exist in a single plant spe- cies

260

Power Quality of Distributed Wind Projects in the Turbine Verification Program  

DOE Green Energy (OSTI)

The Electric Power Research Institute/U.S. Department of Energy (EPRI/DOE) Turbine Verification Program (TVP) includes four distributed wind generation projects connected to utility distribution feeders located in Algona, Iowa; Springview, Nebraska; Glenmore, Wisconsin; and Kotzebue, Alaska. The TVP has undertaken power quality measurements at each project to assess the impact that power quality has on the local utility grids. The measurements and analysis were guided by the draft IEC 61400-21 standard for power quality testing of wind turbines. The power quality characteristics measured include maximum power, distribution feeder voltage regulation, reactive power, and harmonics. This paper describes the approach to the measurements, the unique electrical system features of the four projects, and an assessment of measured power quality relative to limits prescribed by standards. It also gives anecdotal stories from each project regarding the impact of power quality on the respective distribution feeders.

Green, J; VandenBosche, J.; Lettenmaier, T.; Randall, G; Wind, T

2001-09-13T23:59:59.000Z

Note: This page contains sample records for the topic "wind program designed" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


261

Design of State-Space-Based Control Algorithms for Wind Turbine Speed Regulation: Preprint  

DOE Green Energy (OSTI)

Control can improve the performance of wind turbines by enhancing energy capture and reducing dynamic loads.At the National Renewable Energy Laboratory, we are beginning to design control algorithms for regulation of turbine speed and power using state-space control designs. In this paper, we describe the design of such a control algorithm for regulation of rotor speed in full-load operation (region 3) for a two-bladed wind turbine. We base our control design on simple linear models of a turbine, which contain rotor and generator rotation, drivetrain torsion, and rotor flap degrees of freedom (first mode only). We account for wind-speed fluctuations using disturbance-accommodating control. We show the capability of these control schemes to stabilize the modeled turbine modes via pole placement while using state estimation to reduce the number of turbine measurements that are needed for these control algorithms. We incorporate these controllers into the FAST-AD code and show simulation results for various conditions. Finally, we report conclusions to this work and outline future studies.

Wright, A.; Balas, M.

2002-01-01T23:59:59.000Z

262

Structural Composites Industries 4-kilowatt wind-system development. Phase I. Design and analysis executive summary  

DOE Green Energy (OSTI)

A 4 kW small wind energy conversion system (SWECS) has been designed for residential applications in which relatively low (10 mph) mean annual wind speeds prevail. The objectives were to develop such a machinee to produce electrical energy at 6 cents per kWh while operating in parallel with a utility grid or auxiliary generator. Extensive trade, optimization and analytical studies were performed in an effort to provide the optimum machine to best meet the objectives. Certain components, systems and manufacturing processes were tested and evaluated and detail design drawings were produced. The resulting design is a 31-foot diameter horizontal axis downwind machine rated 5.7 kW and incorporating composite blades; free-standing composite tower; and torque-actuated blade pitch control. The design meets or exceeds all contract requirements except that for cost of energy. The target 6 cents per kWh will be achieved in a mean wind speed slightly below 12 mph instead of the specified 10 mph.

Malkine, N.; Bottrell, G.; Weingart, O.

1981-05-01T23:59:59.000Z

263

Wind Industry Training for Our Military Veterans | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Wind Industry Training for Our Military Veterans Wind Industry Training for Our Military Veterans Wind Industry Training for Our Military Veterans May 31, 2012 - 4:43pm Addthis Gemini's Wind Turbine Tower Rescue courses provide wind technicians with training in safety at height, emergency escape systems and rescue. This course is designed to prepare wind technicians with the knowledge and emergency procedures specific to wind turbines. | Photo by Claudia Trevizo. Gemini's Wind Turbine Tower Rescue courses provide wind technicians with training in safety at height, emergency escape systems and rescue. This course is designed to prepare wind technicians with the knowledge and emergency procedures specific to wind turbines. | Photo by Claudia Trevizo. Debbie Schultheis Technical Project Officer, Wind and Water Power Program

264

Wind Industry Training for Our Military Veterans | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Wind Industry Training for Our Military Veterans Wind Industry Training for Our Military Veterans Wind Industry Training for Our Military Veterans May 31, 2012 - 4:43pm Addthis Gemini's Wind Turbine Tower Rescue courses provide wind technicians with training in safety at height, emergency escape systems and rescue. This course is designed to prepare wind technicians with the knowledge and emergency procedures specific to wind turbines. | Photo by Claudia Trevizo. Gemini's Wind Turbine Tower Rescue courses provide wind technicians with training in safety at height, emergency escape systems and rescue. This course is designed to prepare wind technicians with the knowledge and emergency procedures specific to wind turbines. | Photo by Claudia Trevizo. Debbie Schultheis Technical Project Officer, Wind and Water Power Program

265

Wind Pressure Resistance of Walls with Exterior Rigid Foam: Structural Performance Testing and Development of Design Specifications  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Wind Pressure Resistance of Wind Pressure Resistance of Walls with Exterior Rigid Foam: Structural Performance Testing and Development of Design Specifications Building America Stakeholder Meeting February 2012 2 Gaps and Barriers  Wind pressure resistance of multi- layered walls with exterior rigid foam * Performance characteristics * Capacity * Limitations * Design method * Design specification 3 Market Implications  Walls with exterior rigid foam  2012 IECC - Climate Zones 3 and higher  Wall systems:  Claddings and their attachments  Interior finishes  Air sealing, air barriers  Cavity insulation 4 Research Tasks  Laboratory Testing of Wall Assemblies under dynamic wind pressures at the NAHB Research Center  NAHB/DOE/ACC  Laboratory Testing of a One-story House in IBHS Wind Tunnel Facility

266

Interactive computer program for optimal designs of longitudinal cohort studies  

Science Conference Proceedings (OSTI)

Many large scale longitudinal cohort studies have been carried out or are ongoing in different fields of science. Such studies need a careful planning to obtain the desired quality of results with the available resources. In the past, a number of researches ... Keywords: Cohort designs, Computer program, D-optimal, Longitudinal studies, Optimal design, Relative efficiency

Fetene B. Tekle; Frans E. S. Tan; Martijn P. F. Berger

2009-05-01T23:59:59.000Z

267

Improved Load Plan Design Through Integer Programming Based Local Search  

Science Conference Proceedings (OSTI)

We present integer programming models of the service network design problem faced by less-than-truckload LTL freight transportation carriers and a solution approach for the large-scale instances that result in practical applications. To accurately represent ... Keywords: freight transportation, heuristic search, network design

Alan Erera, Michael Hewitt, Martin Savelsbergh, Yang Zhang

2013-08-01T23:59:59.000Z

268

Advanced Control Design and Field Testing for Wind Turbines at the National Renewable Energy Laboratory: Preprint  

DOE Green Energy (OSTI)

Utility-scale wind turbines require active control systems to operate at variable rotational speeds. As turbines become larger and more flexible, advanced control algorithms become necessary to meet multiple objectives such as speed regulation, blade load mitigation, and mode stabilization. At the same time, they must maximize energy capture. The National Renewable Energy Laboratory has developed control design and testing capabilities to meet these growing challenges.

Hand, M. M.; Johnson, K. E.; Fingersh, L. J.; Wright, A. D.

2004-05-01T23:59:59.000Z

269

UNDERSTANDING AND DESIGNING ENERGY-EFFICIENCY PROGRAMS FOR DATA CENTERS  

NLE Websites -- All DOE Office Websites (Extended Search)

UNDERSTANDING AND DESIGNING UNDERSTANDING AND DESIGNING ENERGY-EFFICIENCY PROGRAMS FOR DATA CENTERS The U.S. Environmental Protection Agency (EPA) is providing this guide to help inform energy efficiency program administrators about opportunities to save energy in data centers, and to share emerging practices for program design and implementation based on the experiences of recent data center programs. WHY DATA CENTERS? Data centers consume up to 50 times the electricity of standard office space. 1 In 2010, between 1.7% and 2.2% of the total electricity use in the United States was consumed by data centers. United States data center electricity use nearly doubled between 2000 and 2005, and increased by approximately 36% between 2005 and 2010. Despite some recent efficiency gains, data centers remain a

270

Stakeholder Engagement and Outreach: How Do I Get Wind Power?  

Wind Powering America (EERE)

Education Education Printable Version Bookmark and Share Learn About Wind About Wind Power Locating Wind Power Getting Wind Power Installed Wind Capacity Wind for Schools Project Collegiate Wind Competition School Project Locations Education & Training Programs Curricula & Teaching Materials Resources How do I get Wind Power? Learn how you can own, partner with, host, and support wind power. Construct A Wind Project On Your Own Land There are wind turbines designed for everyone from residential homeowners to utilities, and from private to corporate use. Small wind turbines can be bought with cash, and commercial-scale projects can be financed. To learn more about small projects, such as those for a home or ranch or business that are less than or equal to 100 kilowatts (kW), see the small wind

271

Design of a Power Oscillation Damper for DFIG-based Wind Energy Conversion System Using Modified Particle Swarm Optimizer  

Science Conference Proceedings (OSTI)

This paper presents a method to design a Power Oscillation Damper (POD) for Double-Fed Induction Generator (DFIG) based Wind Energy Conversion System (WECS), operating with voltage control loop. Based on eigen values information from Small Signal Stability ... Keywords: Computational Intelligence, double fed induction generator, power oscillation damper, modified particle swarm optimizer, small signal stability analysis, wind energy conversion system

Huazhang Huang; C. Y. Chung

2012-05-01T23:59:59.000Z

272

Small Wind Innovation Zone and Model Ordinance | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Small Wind Innovation Zone and Model Ordinance Small Wind Innovation Zone and Model Ordinance Small Wind Innovation Zone and Model Ordinance < Back Eligibility Institutional Local Government Schools State Government Utility Savings Category Wind Buying & Making Electricity Program Info State Iowa Program Type Solar/Wind Permitting Standards Provider Iowa League of Cities In May 2009, the Iowa legislature created the Small Wind Innovation Zone Program, which allows any city, county, or other political subdivision to create small wind innovation zones that promote small wind production. In order to qualify for the designation, the city must adopt the Small Wind Innovation Zone Model Ordinance and also establish an expedited approval process for small wind energy systems. System owners must also enter into a

273

Designing a Thermal Energy Storage Program for Electric Utilities  

E-Print Network (OSTI)

Electric utilities are looking at thermal energy storage technology as a viable demand side management (DSM) option. In order for this DSM measure to be effective, it must be incorporated into a workable, well-structured utility program. This paper describes a methodology to design a successful thermal energy storage program for electric utilities. The design process is addressed beginning with the market research phase. The research includes information obtained from utilities having successful thermal storage programs. In addition, information is gathered from interviews with local architects and engineers, air conditioning contractors and potential thermal energy storage customers. From this information a marketing plan is developed that addresses the target market, market penetration, promotional methods, incentive types and levels, internal and external training requirements and optimal organizational structure. The marketing plan also includes various rate structures, program procedures and evaluation techniques. In addition to the marketing plan, several case histories are addressed.

Niehus, T. L.

1994-01-01T23:59:59.000Z

274

Policy and Program Design Toolkit | Open Energy Information  

Open Energy Info (EERE)

Policy and Program Design Toolkit Policy and Program Design Toolkit (Redirected from Gateway:International/Policy and Program Design) Jump to: navigation, search Stage 3 LEDS Home Introduction to Framework Assess current country plans, policies, practices, and capacities Develop_BAU Stage 4: Prioritizing and Planning for Actions Begin execution of implementation plans 1.0. Organizing the LEDS Process 1.1. Institutional Structure for LEDS 1.2. Workplan to Develop the LEDS 1.3. Roles and responsibilities to develop LEDS 2.1. Assess current country plans, policies, practices, and capacities 2.2. Compile lessons learned and good practices from ongoing and previous sustainable development efforts in the country 2.3. Assess public and private sector capacity to support initiatives 2.4. Assess and improve the national GHG inventory and other

275

The use of carbon fibers in wind turbine blade design: A SERI-8 blade example  

DOE Green Energy (OSTI)

The benefit of introducing carbon fibers in a wind turbine blade was evaluated. The SERI-8 wind turbine blade was used as a baseline for study. A model of the blade strength and stiffness properties was created using the 3D-Beam code; the predicted geometry and structural properties were validated against available data and static test results. Different enhanced models, which represent different volumes of carbon fibers in the blade, were also studied for two design options: with and without bend-twist coupling. Studies indicate that hybrid blades have excellent structural properties compared to the all-glass SERI-8 blade. Recurring fabrication costs were also included in the study. The cost study highlights the importance of the labor-cost to material-cost ratio in the cost benefits and penalties of fabrication of a hybrid glass and carbon blade.

ONG,CHENG-HUAT; TSAI,STEPHEN W.

2000-03-01T23:59:59.000Z

276

FORMERLY USED SITES REMEDIAL ACTION PROGRAM DESIGNATION SUMMARY  

Office of Legacy Management (LM)

USED SITES USED SITES REMEDIAL ACTION PROGRAM DESIGNATION SUMMARY FOR ALBA CRAFT LABORATORY OXFORD, OHIO October 1, 1992 U.S. DEPARTMENT OF ENERGY OFFICE OF ENVIRONMENTAL RESTORATION Designation Summary Alba Craft Laboratory. Oxford CONTENTS INTRODUCTION .......... . . ..................... 1 BACKGROUND Site Function ......................... Site Description ..................... 1 Owner History ................. .. 2 Radiological History and Status............ 2 Authority Review .................... .. 3 DESIGNATION DETERMINATION ........ ....... 3 REFERENCES . ............ .... . 3 Designation Summary Alba Craft Laboratory, Oxford INTRODUCTION The Department of Energy (DOE), Office of Environmental Restoration, has reviewed the past activities of the Atomic Energy Commission (AEC) at the

277

Status of Offshore Wind Energy Projects, Policies and Programs in the United States  

SciTech Connect

This paper provides the status of the offshore wind energy project proposals in the United States and describes strategic issues faced by the U.S. wind industry.

Musial, W.; Ram, B.

2008-01-01T23:59:59.000Z

278

A Progress Report on the Characterization and Modeling of a Very Flexible Wind Turbine Design  

DOE Green Energy (OSTI)

The combination of increasing turbine rotor diameters and the desire to achieve long lifetimes has placed increased emphasis on understanding the response of flexible turbine structures in a turbulent inflow environment. One approach to increase fatigue lifetimes has been to design structures that can either shed or adequately absorb turbulent loads through the use of flexible rotors and support towers, and hubs and nacelles that exhibit multiple degrees of angular freedom. The inevitable result in such designs is a substantial increase in dynamic complexity. In order to develop a sufficient knowledge of such concepts, extensive measurements coupled with detailed analytical simulations of a flexible turbine design are required. The Wind Eagle 300 turbine, with its lightweight flexible rotor and hub, meets these criteria and is currently being investigated. In this paper we discuss a few early results from our recently completed field measurement effort. We found that the turbine rotor response was dominated by a once-per-revolution oscillation that was responsible for large cyclic variations in the output power. The available evidence points to a rotor imbalance related to structural differences in one of the blades and misalignment of the pitch angles. We also compared the variation in mean out-of-plane bending loads with wind speed with a conventional rigid hub design.

Kelley, N. D.; Wright, A. D.; Osgood, R. M.

1998-11-02T23:59:59.000Z

279

Baltimore County - Wind Ordinance | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Baltimore County - Wind Ordinance Eligibility Agricultural Residential Savings For Wind Buying & Making Electricity Program Information Maryland Program Type Siting and...

280

Talbot County - Wind Ordinance | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

- Wind Ordinance Eligibility Commercial Residential Savings For Wind Buying & Making Electricity Program Information Maryland Program Type Siting & Permitting This ordinance...

Note: This page contains sample records for the topic "wind program designed" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


281

Labs21 sustainable design programming checklist version 1.0  

E-Print Network (OSTI)

commissioning Energy - Supply Objective: Maximize renewable energy use Strategies: Photovoltaic Systems Wind turbines

Mathew, Paul; Greenberg, Steve

2005-01-01T23:59:59.000Z

282

2009 Wind Technologies Market Report  

NLE Websites -- All DOE Office Websites (Extended Search)

PROGRAM 2 Presentation Overview * Introduction to 2009 edition of U.S. wind energy market report * Wind installation trends * Wind industry trends * Price, cost, and...

283

Model Design for Transmission Congestion Management Based on Fuzzy Programming  

Science Conference Proceedings (OSTI)

Based on data collected previously on the electricity market of the East China, we use stepwise regression method to find the approximate expression of the active power flow of each power sets on East China’s certain electrical network. Then classified ... Keywords: electrical network, transmission congestion management, fuzzy programming, multiobjective optimization, model design

Yu Zhao; Bo Zhao; Chunjie Qi

2009-01-01T23:59:59.000Z

284

Energy Analysis Department Designing PV Incentive Programs to  

E-Print Network (OSTI)

Energy Analysis Department Designing PV Incentive Programs to Promote Performance: A Review to undersized wiring) Maintenance Cleaning, tree-trimming Repair/replacement of failed components #12;Energy of Current Practice Galen Barbose, Ryan Wiser, Mark Bolinger Lawrence Berkeley National Laboratory #12;Energy

285

An investigation of design alternatives for 328-ft (100-m) tall wind turbine towers.  

E-Print Network (OSTI)

??As wind turbines are continued to be placed at higher elevations, the need for taller wind turbine towers becomes necessary. However, there are multiple challenges… (more)

Lewin, Thomas James

2010-01-01T23:59:59.000Z

286

Review of Operation and Maintenance Experience in the DOE-EPRI Wind Turbine Verification Program  

DOE Green Energy (OSTI)

All the projects within the US Department of Energy (DOE) Electrical Power Research Institute (EPRI) Wind Turbine Verification Program (TVP) are now in operation. As a result, the emphasis of the owners and operators has shifted from installation and commissioning to a focus on optimizing the operation and maintenance (O and M) activities of the projects. Each project utilizes a unique strategy for performing O and M. O and M personnel for projects in Searsburg, Vermont; Glenmore, Wisconsin; Algona, Iowa; Springview, Nebraska; Kotzebue, Alaska; and Big Spring, Texas include on-site vendor representatives, dedicated utility personnel, and utility personnel who split their time between the wind turbines and other utility responsibilities. Each project has its own set of priorities for balancing turbine availability against safety, minimizing overtime pay, and other utility responsibilities. Various strategies have also been employed to ensure access to tools and spare parts. This paper compares and contrasts the various O and M strategies at TVP projects and reviews the causes of turbine downtime and the frequency and duration of faults.

Conover, K.; VandenBosche, J.; Rhoads, H. (Global Energy Concepts, LLC); Smith, B. (National Renewable Energy Laboratory)

2000-09-05T23:59:59.000Z

287

Using a collision model to design safer wind turbine rotors for birds  

Science Conference Proceedings (OSTI)

A mathematical model for collisions between birds and propeller-type turbine rotors identifies the variables that can be manipulated to reduce the probability that birds will collide with the rotor. This study defines a safety index--the clearance power density--that allows rotors of different sizes and designs to be compared in terms of the amount of wind energy converted to electrical energy per bird collision. The collision model accounts for variations in wind speed during the year and shows that for model rotors with simple, one-dimensional blades, the safety index increases in proportion to rotor diameter, and variable speed rotors have higher safety indexes than constant speed rotors. The safety index can also be increased by enlarging the region near the center of the rotor hub where the blades move slowly enough for birds to avoid them. Painting the blades to make them more visible might have this effect. Model rotors with practical designs can have safety indexes an order of magnitude higher than those for model rotors typical of the constant speeds rotors in common use today. This finding suggests that redesigned rotors could have collision rates with birds perhaps an order of magnitude lower than today`s rotors, with no reduction in the production of wind power. The empirical data that exist for collisions between raptors, such as hawks and eagles, and rotors are consistent with the model: the numbers of raptor carcasses found beneath large variable speed rotors, relative to the numbers found under small constant speed rotors, are in the proportions predicted by the collision model rather than in proportion to the areas swept by the rotor blades. However, uncontrolled variables associated with these data prevent a stronger claim of support for the model.

Tucker, V.A. [Duke Univ., Durham, NC (United States). Dept. of Zoology

1996-11-01T23:59:59.000Z

288

HEXOS—Humidity Exchange Over the Sea A Program for Research on Water-Vapor and Droplet Fluxes from Sea of Air at Moderate to High Wind Speeds  

Science Conference Proceedings (OSTI)

HEXOS is an international program for the study of evaporation and spray-droplet flux from sea to air. The program includes measurements in the field at moderate-to-high wind speeds, wind-tunnel studies, instrument development, boundary-layer ...

Kristina B. Katsaros; Stuart D. Smith; Wiebe A. Oost

1987-05-01T23:59:59.000Z

289

Preliminary design and economic investigations of diffuser-augmented wind turbines (DAWT). Executive summary. Final report  

DOE Green Energy (OSTI)

A preferred design and configuration approach for the DAWT innovative wind energy conversion system is suggested. A preliminary economic assessment is made for limited production rates of units between 5 and 150 kW rated output. Nine point designs are used to arrive at the conclusions regarding best construction material for the diffuser and busbar cost of electricity (COE). It is estimated that for farm and REA cooperative end users, the COE can range between 2 and 3.5 cents/kWh for sites with annual average wind speeds of 16 and 12 mph (25.7 and 19.3 km/h) respectively, and 150 kW rated units. No tax credits are included in these COE figures. For commercial end users of these 150 kW units, the COE ranges between 4.0 and 6.5 cents/kWh for 16 and 12 mph sites. These estimates in 1971 dollars are lower than DOE goals set in 1978 for the rating size and end applications. Recommendations are made for future activities to maintain steady, systematic progress toward mature development of the DAWT.

Foreman, K.M.

1981-12-01T23:59:59.000Z

290

Preliminary design and economic investigations of Diffuser-Augmented Wind Turbines (DAWT)  

DOE Green Energy (OSTI)

A preferred design and configuration approach is suggested for the DAWT innovative wind energy conversion system. A preliminary economic asessment is made for limited production rates of units between 5 and 150 kw rated output. Nine point designs are used to arrive at the conclusions regarding best construction material for the diffuser and busbar cost of electricity (COE). It is estimated that for farm and REA cooperative end users, the COE can range between 2 and 3.5 cents/kWh for sites with annual average wind speeds of 16 and 12 mph (25.7 and 19.3 km/h) respectively, and 150 kW rated units. No tax credits are included in these COE figures. For commercial end users of these 150 kW units the COE ranges between 4.0 and 6.5 cents/kWh for 16 and 12 mph sites. These estimates in 1979 dollars are lower than DOE goals set in 1978 for the rating size and end applications. Recommendations are made for future activities to maintain steady, systematic progress toward mature development of the DAWT.

Foreman, K.M.

1981-12-01T23:59:59.000Z

291

Wind Energy (Revision). Federal Energy Management Program: Renewable Energy Technologies for Federal Facilities (Fact sheet)  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

From Coast to Coast, Wind Turbines Are Generating Electricity From Coast to Coast, Wind Turbines Are Generating Electricity Wind is caused by the earth's r o t a h and by air-pressure differences from uneven heating of the earth's surface. The energy of the wind is widely dis- tributed geographically and relatively concentrated, and it has a long history o f use as an energy source. In general, wind-energy resources are best along coastlines, at elevated sites in hilly ter- rain, and in the Great Plains, although usable wind resources are available in every state. The U.S. Department of Energy W E ) has compiled anatlas contain- ing wind-resource maps for the entire world. These reports--available through the National Renewable Energy Laboratory-pre vide wind data that help to predict the performance of wind turbines at virtually

292

Wind Powering America Newsletter (Postcard)  

DOE Green Energy (OSTI)

Wind Powering America is a nationwide initiative of the U.S. Department of Energy's Wind Program designed to educate, engage, and enable critical stakeholders to make informed decisions about how wind energy contributes to the U.S. electricity supply. As part of Wind Powering America's outreach efforts, the team publishes a biweekly e-newsletter. This postcard is a marketing piece that stakeholders can provide to interested parties; it will guide them to the a website page at which they can sign up for the e-newsletter.

Not Available

2012-08-01T23:59:59.000Z

293

The design of new wind power controller based on Superconducting Magnetic Energy Storage  

Science Conference Proceedings (OSTI)

The fluctuation and intermittent with wind power output, as a key factor to connect a large-scale wind power system to grid, which result s in an adverse impact on the power system continues to grow. In order to reduce the net stability impact of the ... Keywords: Wind Farm, Superconducting Magnetic Energy Storage, Wind Power, Applied Superconductivity

Zhou Xue-Song; Quan Bo; Ma You-Jie; Wu Le

2010-08-01T23:59:59.000Z

294

Hydrogen Storage in Wind Turbine Towers: Cost Analysis and Conceptual Design; Preprint  

Science Conference Proceedings (OSTI)

Low-cost hydrogen storage is recognized as a cornerstone of a renewables-hydrogen economy. Modern utility-scale wind turbine towers are typically conical steel structures that, in addition to supporting the rotor, could be used to store hydrogen. The most cost-effective hydrogen tower design would use substantially all of its volume for hydrogen storage and be designed at its crossover pressure. An 84-m tall hydrogen tower for a 1.5-MW turbine would cost an additional $84,000 (beyond the cost of the conventional tower) and would store 950 kg of hydrogen. The resulting incremental storage cost of $88/kg is approximately 30% of that for conventional pressure vessels.

Kottenstette, R.; Cotrell, J.

2003-09-01T23:59:59.000Z

295

Structural Testing of 9 m Carbon Fiber Wind Turbine Research Blades: Preprint  

DOE Green Energy (OSTI)

This paper outlines the results of tests conducted on three 9-m carbon fiber wind turbine blades designed through a research program initiated by Sandia National Laboratories.

Paquette, J.; van Dam, J.; Hughes, S.

2007-01-01T23:59:59.000Z

296

Utility Green Pricing Programs: Design, Implementation, and Consumer Response  

DOE Green Energy (OSTI)

The term green pricing refers to programs offered by utilities in traditionally regulated electricity markets, which allow customers to support the development of renewable energy sources by paying a small premium on their electric bills. Since the introduction of the concept in the United States, the number of unique utility green pricing programs has expanded from just a few programs in 1993 to more than 90 in 2002. About 10% of U.S. utilities offered a green pricing option to about 26 million consumers by the end of 2002. This report provides: (1) aggregate industry data on consumer response to utility programs, which indicate the collective impact of green pricing on renewable energy development nationally; and (2) market data that can be used by utilities as a benchmark for gauging the relative success of their green pricing programs. Specifically, the paper presents current data and trends in consumer response to green pricing, as measured by renewable energy sales, participants, participation rates, and new renewable energy capacity supported. It presents data on various aspects of program design and implementation, such as product pricing, ownership of supplies, retention rates, marketing costs, the effectiveness of marketing techniques, and methods of enrolling and providing value to customers.

Bird, L.; Swezey, B.; Aabakken, J.

2004-02-01T23:59:59.000Z

297

CR mammography: Design and implementation of a quality control program  

SciTech Connect

Despite the recent acquisition of significant quantities of computed radiography CR equipment for mammography, Mexican regulations do not specify the performance requirements for digital systems such as those of CR type. The design of a quality control program QCP specific for CR mammography systems was thus considered relevant. International protocols were taken as reference to define tests, procedures and acceptance criteria. The designed QCP was applied in three CR mammography facilities. Important deficiencies in spatial resolution, noise, image receptor homogeneity, artifacts and breast thickness compensation were detected.

Moreno-Ramirez, A.; Brandan, M. E.; Villasenor-Navarro, Y.; Galvan, H. A.; Ruiz-Trejo, C. [Instituto de Fisica, Universidad Nacional Autonoma de Mexico, DF 04510 (Mexico); Departamento de Radiodiagnostico, Instituto Nacional de Cancerologia, DF 14080 (Mexico); Instituto de Fisica, Universidad Nacional Autonoma de Mexico, DF 04510 (Mexico)

2012-10-23T23:59:59.000Z

298

SOLCOST-PASSIVE solar energy design program: User's Guide  

DOE Green Energy (OSTI)

The SOLCOST-PASSIVE solar energy design program is a public domain interactive computer design tool intended for use by non-thermal specialists to size passive solar systems with a methodology based on the Los Alamos Solar Load Ratio method. A life cycle savings analysis is included in the program. An overview of SOLCOST-PASSIVE capabilities and the Solar Load Ratio method which it is based on is presented. A detailed guide to the SOLCOST-PASSIVE input parameters is given. Sample problems showing typical execution sessions and the resulting SOLCOST-PASSIVE output are included. Appendices A thru D provide details on the SLR method and the life cycle savings methodology of SOLCOST-PASSIVE. (MHR)

Not Available

1980-09-01T23:59:59.000Z

299

WindPACT Turbine Design Scaling Studies Technical Area 1-Composite Blades for 80- to 120-Meter Rotor  

SciTech Connect

The United States Department of Energy (DOE) through the National Renewable Energy Laboratory (NREL) implemented the Wind Partnership for Advanced Component Technologies (WindPACT) program. As part of the WindPACT program, Global Energy Concepts, LLC (GEC), was awarded contract number YAM-0-30203-01 to examine Technical Area 1-Blade Scaling, Technical Area 2-Turbine Rotor and Blade Logistics, and Technical Area 3-Self-Erecting Towers. This report documents the results of GEC's Technical Area 1-Blade Scaling. The primary objectives of the Blade-Scaling Study are to assess the scaling of current materials and manufacturing technologies for blades of 40 to 60 meters in length, and to develop scaling curves of estimated cost and mass for rotor blades in that size range.

Griffin, D.A.

2001-04-30T23:59:59.000Z

300

Central Wind Power Forecasting Programs in North America by Regional Transmission Organizations and Electric Utilities  

DOE Green Energy (OSTI)

The report addresses the implementation of central wind power forecasting by electric utilities and regional transmission organizations in North America.

Porter, K.; Rogers, J.

2009-12-01T23:59:59.000Z

Note: This page contains sample records for the topic "wind program designed" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


301

Feed-pump hydraulic performance and design improvement, Phase I: research program design. Final report  

Science Conference Proceedings (OSTI)

As a result of prior EPRI-sponsored studies, it was concluded that a research program should be designed and implemented to provide an improved basis for the design, procurement, testing, and operation of large feed pumps with increased reliability and stability over the full range of operating conditions. This two-volume report contains a research plan which is based on a review of the present state of the art and which defines the necessary R and D program and estimates the benefits and costs of the program. The recommended research program consists of 30 interrelated tasks. It is designed to perform the needed research; to verify the results; to develop improved components; and to publish computer-aided design methods, pump specification guidelines, and a troubleshooting manual. Most of the technology proposed in the research plan is applicable to nuclear power plants as well as to fossil-fired plants. This volume contains appendixes on pump design, cavitation damage, performance testing, hydraulics, two-phase flow in pumps, flow stability, and rotor dynamics.

Brown, W.H.; Gopalakrishnan, S.; Fehlau, R.; Thompson, W.E.; Wilson, D.G.

1982-03-01T23:59:59.000Z

302

North Wind 4-kW wind-system development. Phase II. Fabrication and test  

DOE Green Energy (OSTI)

This report presents the results of Phase II (testing and fabrication) of a program funded by the US Department of Energy to design, fabricate, and test a cost-effective wind system in the 3 to 6 kW class. During Phase II, using the design developed during Phase I, a prototype 4 kW machine was fabricated and tested in Waitsfield, Vermont. Several problems were encountered and subsequently analyzed. Design modifications, including the use of a larger alternator, are described. Test performed by North Wind and by Rockwell International (which monitored the program) demonstrated the predicted performance characteristics and the validity of the North Wind design.

Lynch, J.; Coleman, C.; Mayer, D.J.

1983-01-01T23:59:59.000Z

303

Distributed Wind Energy in Idaho  

SciTech Connect

Project Objective: This project is a research and development program aimed at furthering distributed wind technology. In particular, this project addresses some of the barriers to distributed wind energy utilization in Idaho. Background: At its core, the technological challenge inherent in Wind Energy is the transformation of a highly variable form of energy to one which is compatible with the commercial power grid or another useful application. A major economic barrier to the success of distributed wind technology is the relatively high capital investment (and related long payback periods) associated with wind turbines. This project will carry out fundamental research and technology development to address both the technological and economic barriers. � Active drive train control holds the potential to improve the overall efficiency of a turbine system by allowing variable speed turbine operation while ensuring a tight control of generator shaft speed, thus greatly simplifying power conditioning. � Recent blade aerodynamic advancements have been focused on large, utility-scale wind turbine generators (WTGs) as opposed to smaller WTGs designed for distributed generation. Because of Reynolds Number considerations, blade designs do not scale well. Blades which are aerodynamically optimized for distributed-scale WTGs can potentially reduce the cost of electricity by increasing shaft-torque in a given wind speed. � Grid-connected electric generators typically operate at a fixed speed. If a generator were able to economically operate at multiple speeds, it could potentially convert more of the wind�s energy to electricity, thus reducing the cost of electricity. This research directly supports the stated goal of the Wind and Hydropower Technologies Program for Distributed Wind Energy Technology: By 2007, reduce the cost of electricity from distributed wind systems to 10 to 15 cents/kWh in Class 3 wind resources, the same level that is currently achievable in Class 5 winds.

Gardner, John; Ferguson, James; Ahmed-Zaid, Said; Johnson, Kathryn; Haynes, Todd; Bennett, Keith

2009-01-31T23:59:59.000Z

304

Utility Conservation Programs: A Regulatory and Design Framework  

E-Print Network (OSTI)

Investing in opportunities to conserve electricity is frequently very economic to the energy user. Often, it also is in society's, ratepayers', or a utility's economic interest to promote this conservation by the utility providing a financial incentive to the customer for the investment. Such a conservation program, whether undertaken by a utility on its own initiative or required by a public service commission, raises several issues of public policy that must be carefully examined. First, a regulatory framework is necessary to ensure compatibility between the design of a conservation program and its stated goals. At times, regulatory policies inconsistent with the stated goal of a conservation program have been applied. Second, constraints that necessitate the utility offering less than the theoretical maximum amount of a financial incentive under the applicable regulatory policy need to be recognized. Finally, a methodology to assess the induced impacts of the conservation program is necessary to evaluate the program's cost-effectiveness under any of the chosen regulatory policies.

Norland, D. L.; Wolf, J. L.

1986-06-01T23:59:59.000Z

305

WindPACT Turbine Design Scaling Studies: Technical Area 4ƒBalance-of-Station Cost  

NLE Websites -- All DOE Office Websites (Extended Search)

1 * NREL/SR-500-29950 1 * NREL/SR-500-29950 D.A. Shafer, K.R. Strawmyer, R.M. Conley, J.H. Guidinger, D.C. Wilkie, and T.F. Zellman With assistance from D.W. Bernadett Commonwealth Associates, Inc. Jackson, Michigan WindPACT Turbine Design Scaling Studies: Technical Area 4- Balance-of-Station Cost 21 March 2000-15 March 2001 National Renewable Energy Laboratory 1617 Cole Boulevard Golden, Colorado 80401-3393 NREL is a U.S. Department of Energy Laboratory Operated by Midwest Research Institute * * * * Battelle * * * * Bechtel Contract No. DE-AC36-99-GO10337 July 2001 * NREL/SR-500-29950 WindPACT Turbine Desing Scaling Studies: Technical Area 4- Balance-of-Station Cost 21 March 2000-15 March 2001 D.A. Shafer, K.R. Strawmyer, R.M. Conley, J.H. Guidinger, D.C. Wilkie, and T.F. Zellman

306

Model Wind Ordinance | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

You are here You are here Home » Model Wind Ordinance Model Wind Ordinance < Back Eligibility Agricultural Commercial Fed. Government Industrial Institutional Local Government Nonprofit Residential Schools State Government Utility Savings Category Wind Buying & Making Electricity Program Info State North Carolina Program Type Solar/Wind Permitting Standards Provider North Carolina Department of Commerce ''Note: This model ordinance was designed to provide guidance to local governments that wish to develop their own siting rules for wind turbines. While it was developed as part of a cooperative effort involving several state agencies, the model itself has no legal or regulatory authority.'' In July, 2008 the North Carolina Wind Working Group, a coalition of state government, non-profit and wind industry organizations, published a model

307

Deferring design pattern decisions and automating structural pattern changes using a design-pattern-based programming system  

Science Conference Proceedings (OSTI)

In the design phase of software development, the designer must make many fundamental design decisions concerning the architecture of the system. Incorrect decisions are relatively easy and inexpensive to fix if caught during the design process, but the ... Keywords: Design patterns, design decisions, object-oriented frameworks, parallel programming, software maintenance

Steve MacDonald; Kai Tan; Jonathan Schaeffer; Duane Szafron

2009-04-01T23:59:59.000Z

308

Systematic approach for PID controller design for pitch-regulated, variable-speed wind turbines  

DOE Green Energy (OSTI)

Variable-speed, horizontal axis wind turbines use blade-pitch control to meet specified objectives for three regions of operation. This paper focuses on controller design for the constant power production regime. A simple, rigid, non-linear turbine model was used to systematically perform trade-off studies between two performance metrics. Minimization of both the deviation of the rotor speed from the desired speed and the motion of the actuator is desired. The robust nature of the proportional-integral-derivative (PID) controller is illustrated, and optimal operating conditions are determined. Because numerous simulation runs may be completed in a short time, the relationship of the two opposing metrics is easily visualized. 2 refs., 9 figs.

Hand, M.M. [National Renewable Energy Lab., Golden, CO (United States); Balas, M.J. [Univ. of Colorado, Boulder, CO (United States). Dept. of Aerospace Engineering Sciences

1997-11-01T23:59:59.000Z

309

Design and operation of power systems with large amounts of wind power  

E-Print Network (OSTI)

Production”has been formed in IEA Wind. The R&D task will collect and share information on the experience gained and the studies made on power system impacts of wind power, and review methodologies, tools and data used. This paper outlines the power system impacts of wind power, the national studies published and ongoing and describes the goals of the international collaboration. There are dozens of studies made and ongoing related to cost of wind integration, however, the results are not easy to compare. An indepth review of the studies is needed to draw conclusions on the range of integration costs for wind power. Stateofthe art review process will seek for reasons behind the wide range of results for costs of wind integration –definitions for wind penetration, reserves and costs; different power system and load characteristics and operational rules; underlying assumptions on variability of wind etc. 1

Hannele Holttinen; Peter Meibom; Cornel Ensslin; Lutz Hofmann; John Mccann; Jan Pierik; John Olav T

2009-01-01T23:59:59.000Z

310

Wind Power Today  

SciTech Connect

Wind Power Today is an annual publication that provides an overview of the wind energy research conducted by the U.S. Department of Energy Wind and Hydropower Technologies Program.

2006-05-01T23:59:59.000Z

311

Wind Power Today  

DOE Green Energy (OSTI)

Wind Power Today is an annual publication that provides an overview of the wind energy research conducted by the U.S. Department of Energy Wind and Hydropower Technologies Program.

Not Available

2007-05-01T23:59:59.000Z

312

Modeling and design of control system for variable speed wind turbine in all operating region  

Science Conference Proceedings (OSTI)

In order to get the maximum power from the wind, the variable-speed wind turbine should run at different speed when wind speed changes. In this paper a control system is introduced to get this purpose base on establishing the three-mass model of the ... Keywords: doubly-fed induction generator (DFIG), feed-forward compensator, loop-shaping, pitch controller, speed controller, three-mass model, wind turbine

Wu Dingguo; Wang Zhixin

2008-05-01T23:59:59.000Z

313

Modeling and controller design of a wind energy conversion system with matrix converter  

Science Conference Proceedings (OSTI)

In order to meet increasing power demand, taking into account economical and environmental factors, wind energy conversion is gradually gaining interest as a suitable source of renewable energy. In this paper, The modeling of the Wind Energy Conversion ... Keywords: FCC, PWM, SPVM, WECS, induction generator, matrix converter CSCF, power control, variable speed, wind turbine

Y. S. Rao; A. J. laxmi; K. M. S. N. Krishna

2011-02-01T23:59:59.000Z

314

DOE Science Showcase - Wind Power | OSTI, US Dept of Energy, Office of  

Office of Scientific and Technical Information (OSTI)

Science Showcase - Wind Power Science Showcase - Wind Power Wind Powering America is a nationwide initiative of the U.S. Department of Energy's Wind Program designed to educate, engage, and enable critical stakeholders to make informed decisions about how wind energy contributes to the U.S. electricity supply. Wind Power Research Results in DOE Databases IEA Wind Task 26: The Past and Future Cost of Wind Energy, Work Package 2, Energy Citations Database NREL Triples Previous Estimates of U.S. Wind Power Potential, Energy Citations Database Dynamic Models for Wind Turbines and Wind Power Plants, DOE Information Bridge 2012 ARPA-E Energy Innovation Summit: Profiling General Compression: A River of Wind, ScienceCinema, multimedia Solar and Wind Energy Resource Assessment (SWERA) Data from the

315

Modeling the Long-Term Market Penetration of Wind in the United States  

DOE Green Energy (OSTI)

This paper presents an overview of the Wind Deployment Systems Model (WinDS). WinDS is a multiregional, multitime-period, Geographic Information System (GIS), and linear programming model of capacity expansion in the electric sector of the United States. WinDS is designed to address the principal market issues related to the penetration of wind energy technologies into the electric sector. These principal market issues include access to and cost of transmission, and the intermittency of wind power. WinDS addresses these issues through a highly discretized regional structure, explicit accounting for the variability in wind output over time, and consideration of ancillary services requirements and costs.

Short, W.; Blair, N.; Heimiller, D.; Singh, V.

2003-07-01T23:59:59.000Z

316

Design of a self-regulating composite bearingless blade wind turbine. Final report, October 15, 1976-August 15, 1977  

DOE Green Energy (OSTI)

A study was undertaken to design a 40-ft diameter wind turbine employing the UTRC/ERDA Self-Regulating Composite Bearingless Rotor (CBR) concept. The CBR concept was developed at United Technologies for rotary wing applications and is now in use on Sikorsky helicopters. The concept was further developed for wind turbine applications at UTRC under an ERDA contract in 1975-76. Successful wind tunnel tests were conducted during that contract, which demonstrated the self-starting and self-regulating features. The latest contract was to design a 40-ft system in the 5 kW - 15 kW power range. This effort included performance tradeoff studies, stress analyses of the blade and tower structure, a stability investigation, and engineering drawings of the complete system. However an overall cost analysis was not performed in this study.

Spierings, P.A.M.; Cheney, M.C.

1978-01-01T23:59:59.000Z

317

Guidebook for Farmstead Demand-Side Management (DSM) program design  

SciTech Connect

The acceptance and growth of Demand-Side Management (DSM) continues to increase in the US. According to latest estimates, total expenditures on electric utility DSM programs now exceed $1.2 billion annually, with these investments ranging from 1 to 5 percent of a utility's gross revenues. In addition, due to increasing environmental concerns and the high cost of new capacity, these expenditure levels are expected to increase. While the vast majority of these DSM programs are directed at the more traditional residential, commercial and industrial market sectors, significant opportunities still exist. One market segment that has not been the focus of attention but a critical sector from an economic development perspective for marry utilities -- is the agricultural and farmstead market. Although the total number of farms in the United States decreased by approximately 5 percent between 1985 and 1989, the land dedicated to farming still accounts for over 995 million acres. Furthermore, the total value of farm output in the United States has been steadily increasing since 1986. The limited penetration of energy efficiency measures in farmsteads provides an excellent opportunity for utilities to expand their DSM programming efforts to capture this non-traditional'' market segment, and at the same time assist farms in increasing their efficiency and competitiveness. In marry states, and, in particular New York State, agriculture plays a major economic role. The importance of farms not only from a utility perspective but also from a state and federal perspective cannot be overstated. As such, utilities are in a unique position to facilitate farmstead DSM technology investments in an effort to benefit the farmer (and his profitability), the utility, the state and the country. This guidebook is designed to provide the framework for agricultural demand planning, including market assessment, technology assessment, market penetration analysis and program design.

Rose, M.; Camera, R.K.

1992-02-21T23:59:59.000Z

318

WindPACT Turbine Rotor Design Study: June 2000--June 2002 (Revised)  

SciTech Connect

This report presents the results of the turbine rotor study completed by Global Energy Concepts (GEC) as part of the U.S. Department of Energy's WindPACT (Wind Partnership for Advanced Component Technologies) project. The purpose of the WindPACT project is to identify technology improvements that will enable the cost of energy from wind turbines to fall to a target of 3.0 cents/kilowatt-hour in low wind speed sites. The study focused on different rotor configurations and the effect of scale on those rotors.

Malcolm, D. J.; Hansen, A. C.

2006-04-01T23:59:59.000Z

319

WindPACT Turbine Rotor Design Study: June 2000--June 2002 (Revised)  

DOE Green Energy (OSTI)

This report presents the results of the turbine rotor study completed by Global Energy Concepts (GEC) as part of the U.S. Department of Energy's WindPACT (Wind Partnership for Advanced Component Technologies) project. The purpose of the WindPACT project is to identify technology improvements that will enable the cost of energy from wind turbines to fall to a target of 3.0 cents/kilowatt-hour in low wind speed sites. The study focused on different rotor configurations and the effect of scale on those rotors.

Malcolm, D. J.; Hansen, A. C.

2006-04-01T23:59:59.000Z

320

CALCULATING EMISSIONS REDUCTIONS FROM RENEWABLE ENERGY PROGRAMS AND ITS APPLICATION TO THE WIND FARMS IN THE TEXAS ERCOT REGION  

E-Print Network (OSTI)

In August 2008 the Texas State Legislature required adding 5,880 MW of generating capacity from renewable energy technologies by 2015, and 500 MW from non-wind renewables. This legislation also required the Public Utility Commission (PUC) to establish a target of 10,000 MW of installed renewable capacity by 2025, and required the Texas Commission on Environmental Quality (TCEQ) to develop a methodology for computing emission reductions from renewable energy initiatives and the associated credits. In this legislation the Energy Systems Laboratory is required to assist the TCEQ to quantify emission reduction credits from energy efficiency and renewable energy programs. To satisfy these requirements the ESL has been developing and refining a method to calculate annually creditable emissions reductions from wind and other renewable energy resources for the TCEQ. This paper provides a detailed description of an improved methodology developed to calculate the emissions reductions from electricity provided by a wind farm. Details are presented for the wind farm Sweetwater I (Abilene) as well as results from the application of this procedure to all the wind energy providers in the Texas ERCOT region in 2006.

Liu, Z.; Haberl, J.; Baltazar, J. C.; Culp, C.; Yazdani, B.; Chandrasekaran, V.

2008-12-01T23:59:59.000Z

Note: This page contains sample records for the topic "wind program designed" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


321

Analyzing the Deployment of Large Amounts of Offshore Wind to Design an Offshore Transmission Grid in the United States: Preprint  

DOE Green Energy (OSTI)

This paper revisits the results from the U.S. Department of Energy's '20% Wind Energy By 2030' study, which envisioned that 54 GW of offshore wind would be installed by said year. The analysis is conducted using the Regional Energy Deployment System (ReEDS), a capacity expansion model developed by the National Renewable Energy Laboratory. The model is used to optimize the deployment of the 54 GW of wind capacity along the coasts and lakes of the United States. The graphical representation of the results through maps will be used to provide a qualitative description for planning and designing an offshore grid. ReEDS takes into account many factors in the process of siting offshore wind capacity, such as the quality of the resource, capital and O&M costs, interconnection costs, or variability metrics (wind capacity value, forecast error, expected curtailment). The effect of these metrics in the deployment of offshore wind will be analyzed through examples in the results.

Ibanez, E.; Mai, T.; Coles, L.

2012-09-01T23:59:59.000Z

322

Analyzing the Deployment of Large Amounts of Offshore Wind to Design an Offshore Transmission Grid in the United States: Preprint  

SciTech Connect

This paper revisits the results from the U.S. Department of Energy's '20% Wind Energy By 2030' study, which envisioned that 54 GW of offshore wind would be installed by said year. The analysis is conducted using the Regional Energy Deployment System (ReEDS), a capacity expansion model developed by the National Renewable Energy Laboratory. The model is used to optimize the deployment of the 54 GW of wind capacity along the coasts and lakes of the United States. The graphical representation of the results through maps will be used to provide a qualitative description for planning and designing an offshore grid. ReEDS takes into account many factors in the process of siting offshore wind capacity, such as the quality of the resource, capital and O&M costs, interconnection costs, or variability metrics (wind capacity value, forecast error, expected curtailment). The effect of these metrics in the deployment of offshore wind will be analyzed through examples in the results.

Ibanez, E.; Mai, T.; Coles, L.

2012-09-01T23:59:59.000Z

323

Central Wind Forecasting Programs in North America by Regional Transmission Organizations and Electric Utilities: Revised Edition  

DOE Green Energy (OSTI)

The report and accompanying table addresses the implementation of central wind power forecasting by electric utilities and regional transmission organizations in North America. The first part of the table focuses on electric utilities and regional transmission organizations that have central wind power forecasting in place; the second part focuses on electric utilities and regional transmission organizations that plan to adopt central wind power forecasting in 2010. This is an update of the December 2009 report, NREL/SR-550-46763.

Rogers, J.; Porter, K.

2011-03-01T23:59:59.000Z

324

Advanced Wind Turbine Program Next Generation Turbine Development Project: June 17, 1997--April 30, 2005  

Science Conference Proceedings (OSTI)

This document reports the technical results of the Next Generation Turbine Development Project conducted by GE Wind Energy LLC. This project is jointly funded by GE and the U.S. Department of Energy's National Renewable Energy Laboratory.The goal of this project is for DOE to assist the U.S. wind industry in exploring new concepts and applications of cutting-edge technology in pursuit of the specific objective of developing a wind turbine that can generate electricity at a levelized cost of energy of $0.025/kWh at sites with an average wind speed of 15 mph (at 10 m height).

GE Wind Energy, LLC

2006-05-01T23:59:59.000Z

325

1E Wind Energy Program: Technical Information and Outreach Support Final Technical Report  

DOE Green Energy (OSTI)

A U.S. consensus-based collaborative formed in 1994, the National Wind Coordinating Committee (NWCC) identifies issues that affect the use of wind power, establishes dialogue among key stakeholders, and catalyzes appropriate activities to support the development of environmentally, economically, and politically sustainable commercial markets for wind power. NWCC members include representatives from electric utilities and support organizations, state legislatures, state utility commissions, consumer advocacy offices, wind equipment suppliers and developers, green power marketers, environmental organizations, agriculture and economic development organizations, and state and federal agencies.

Arnold, Abigail

2006-03-09T23:59:59.000Z

326

DOE Hydrogen and Fuel Cells Program Record 5012a: Well-to-Wheels Analyses for Solar and Wind Hydrogen Production  

NLE Websites -- All DOE Office Websites (Extended Search)

DOE Hydrogen and Fuel Cells Program Record DOE Hydrogen and Fuel Cells Program Record Record #: 5012a Date: December 21, 2005 Title: Well-to-Wheels Analyses for Solar & Wind Hydrogen Production Originator: Roxanne Garland Approved by: JoAnn Milliken Date: January 6, 2006 Item: This record explains the basis for the differences between the analyses of well-to-wheels energy use and greenhouse gas emissions conducted via Argonne National Laboratory's GREET Model, cited in the U.S. Department of Energy's Solar and Wind Technologies for Hydrogen Production Report to Congress, 1 and those conducted by the National Research Council, cited in the report The Hydrogen Economy: Opportunities, Costs, Barriers, and R&D Needs. 2 Well-to-Wheels Energy Use and Greenhouse Gas Emissions - Argonne National

327

SOLCOST-PHOTOVOLTAIC solar energy design program: User's Guide  

DOE Green Energy (OSTI)

The SOLCOST-PHOTOVOLTAIC solar energy design program is a public domain interactive computer design tool intended for use by non-solar specialists to predict the long term performance for photovoltaic systems. A life cycle cost analysis is included in the program along with the ERDA-EPRI standard economic analysis which predicts levelized busbar energy costs for the photovoltaic system assuming ownership by an electric utility. SOLCOST-PV currently can evaluate flat plate arrays and concentrating arrays which use Fresnel lenses and passive cooling. The methodology could easily be extended to include all the known types of concentrators, however the scope of the version 1.0 activity was limited to only the flat plate and the passive Fresnel concentrators. An overview of the SOLCOST-PV capabilities and methodology is given. A detailed guide to the SOLCOST-PV input parameters is included, and examples showing typical interactive execution sessions and the resulting SOLCOST-PV output are presented. Appendices A and B provide additional information on the SOLCOST-PV analysis.

Not Available

1980-10-01T23:59:59.000Z

328

NREL: Wind Research - Providing Incentives to Help Grow Small...  

NLE Websites -- All DOE Office Websites (Extended Search)

Providing Incentives to Help Grow Small Wind: Wind Powering America Lessons Learned February 25, 2013 Wind Powering America asked Mark Mayhew, small wind program manager for the...

329

Pages that link to "FloDesign Wind Turbine Corporation" | Open...  

Open Energy Info (EERE)

Policies International Clean Energy Analysis Low Emission Development Strategies Oil & Gas Smart Grid Solar U.S. OpenLabs Utilities Water Wind Page Actions View source History...

330

Design and Analysis of a Wind Energy Harvesting Circuit Using Piezoelectric Polymers.  

E-Print Network (OSTI)

?? This thesis investigates a relatively new method for harvesting wind energy by using flexible piezoelectric polymers with additional sails to increase their ability to… (more)

Thornton, Jameson J

2011-01-01T23:59:59.000Z

331

Wind powering America: Colorado  

DOE Green Energy (OSTI)

This fact sheet contains information about green power programs in Colorado and a description of the Ponnequin Wind Farm.

O'Dell, K.

2000-04-03T23:59:59.000Z

332

Big Spring Wind Power Project Third- Through Fifth-Year Operating Experience: 2001-2004: U.S. Department of Energy-EPRI Wind Turbine Verification Program  

Science Conference Proceedings (OSTI)

This report describes the third-, fourth-, and fifth-year operating experience at the 34-MW Big Spring Wind Power Plant near Big Spring, Texas. The project consists of 42 Vestas V47 wind turbines installed on 65-m (213-ft) towers and four Vestas V66 wind turbines installed on 80-m (262-ft) towers. Lessons learned in the project will be valuable to other utilities and wind power developers planning similar wind power projects.

2004-10-25T23:59:59.000Z

333

Big Spring Wind Power Project Second-Year Operating Experience: 2000-2001: U.S. Department of Energy - EPRI Wind Turbine Verificatio n Program  

Science Conference Proceedings (OSTI)

This report describes second-year operating experience at the 34 MW Big Spring Wind Power Plant near Big Spring, Texas. The project consists of 42 Vestas V47 wind turbines installed on 65-meter (213-foot) towers and 4 Vestas V66 wind turbines installed on 80-meter (262-foot) towers. The lessons learned in the project will be valuable to other utilities and wind power developers planning similar wind power projects.

2001-12-06T23:59:59.000Z

334

Policy and Program Design Toolkit | Open Energy Information  

Open Energy Info (EERE)

source source History View New Pages Recent Changes All Special Pages Semantic Search/Querying Get Involved Help Apps Datasets Community Login | Sign Up Search Page Edit History Facebook icon Twitter icon » Policy and Program Design Toolkit Jump to: navigation, search Stage 3 LEDS Home Introduction to Framework Assess current country plans, policies, practices, and capacities Develop_BAU Stage 4: Prioritizing and Planning for Actions Begin execution of implementation plans 1.0. Organizing the LEDS Process 1.1. Institutional Structure for LEDS 1.2. Workplan to Develop the LEDS 1.3. Roles and responsibilities to develop LEDS 2.1. Assess current country plans, policies, practices, and capacities 2.2. Compile lessons learned and good practices from ongoing and previous sustainable development efforts in the country

335

A decision support technique for the design of hybrid solar-wind power systems  

SciTech Connect

This paper presents a decision support technique to help decision makers study the influencing factors in the design of a hybrid solar-wind power system (HSWPS) for grid-linked applications. These factors relate mainly to political and social conditions, and to technical advances and economics. The Analytic Hierarchy Process (AHP) is used to quantify the various divergencies of opinions, practices and events that lead to confusion and uncertainties in planning HSWPS. The trade-off/risk method is used to generate multiple plans under 16 different futures and obtain the corresponding trade-off curves. Unlike the traditional 2-D simulation, a novel modeling of a trade-off surface in 3-D space is presented where the knee set is determined using the minimum distance approach. Robust and inferior plans are segregated based on their frequent occurrence din the conditional decision set of each future and hedging analysis to reduce risk is performed in order to assign alternative options in case risky futures occur.

Chedid, R.; Akiki, H. [American Univ. of Beirut, New York, NY (United States). Dept. of Electrical and Computer Engineering] [American Univ. of Beirut, New York, NY (United States). Dept. of Electrical and Computer Engineering; Rahman, S. [Virginia Polytechnic Inst. and State Univ., Blacksburg, VA (United States). Center for Energy and the Global Environment] [Virginia Polytechnic Inst. and State Univ., Blacksburg, VA (United States). Center for Energy and the Global Environment

1998-03-01T23:59:59.000Z

336

Integrative modeling and novel particle swarm-based optimal design of wind farms  

Science Conference Proceedings (OSTI)

To meet the energy needs of the future, while seeking to decrease our carbon footprint, a greater penetration of sustainable energy resources such as wind energy is necessary. However, a consistent growth of wind energy (especially in the wake of unfortunate ...

Souma Chowdhury / Achille Messac

2012-01-01T23:59:59.000Z

337

Advanced Turbine Systems (ATS) program conceptual design and product development  

SciTech Connect

Achieving the Advanced Turbine Systems (ATS) goals of 60% efficiency, single-digit NO{sub x}, and 10% electric power cost reduction imposes competing characteristics on the gas turbine system. Two basic technical issues arise from this. The turbine inlet temperature of the gas turbine must increase to achieve both efficiency and cost goals. However, higher temperatures move in the direction of increased NO{sub x} emission. Improved coatings and materials technologies along with creative combustor design can result in solutions to achieve the ultimate goal. GE`s view of the market, in conjunction with the industrial and utility objectives, requires the development of Advanced Gas Turbine Systems which encompass two potential products: a new aeroderivative combined-cycle system for the industrial market, and a combined-cycle system for the utility sector that is based on an advanced frame machine. The GE Advanced Gas Turbine Development program is focused on two specific products: (1) a 70 MW class industrial gas turbine based on the GE90 core technology utilizing an innovative air cooling methodology; (2) a 200 MW class utility gas turbine based on an advanced Ge heavy-duty machine utilizing advanced cooling and enhancement in component efficiency. Both of these activities required the identification and resolution of technical issues critical to achieving ATS goals. The emphasis for the industrial ATS was placed upon innovative cycle design and low emission combustion. The emphasis for the utility ATS was placed on developing a technology base for advanced turbine cooling, while utilizing demonstrated and planned improvements in low emission combustion. Significant overlap in the development programs will allow common technologies to be applied to both products. GE Power Systems is solely responsible for offering GE products for the industrial and utility markets.

1996-08-31T23:59:59.000Z

338

Wind energy manual  

E-Print Network (OSTI)

Objectives: The course introduces principles of wind power production, design of wind turbines, location and design of wind farms, control of turbines and wind farms, predictive modeling, diagnostics, operations and maintenance, condition monitoring, health monitoring and of turbine components and systems, wind farm performance optimization, and integration of wind power with a grid. The modeling and analysis aspect of the topics discussed in the class will be illustrated with examples and case studies. Textbook: References:

A. Vieira; Da Rosa; Fundamentals Renewable; Energy Processes; San Diego; Jacob Kirpes; Small Wind

2013-01-01T23:59:59.000Z

339

NREL: Wind Research - News Release Archives  

NLE Websites -- All DOE Office Websites (Extended Search)

2 2 September 25, 2012 Wind Energy Research Institutes Join Forces at the Inaugural Meeting of the North American Wind Energy Academy The North American Wind Energy Academy held its inaugural meeting August 7-9, 2012, at the University of Massachusetts Amherst. The meeting drew 92 participants from 17 states and Canada, including 22 universities, eight commercial companies, and four government laboratories. September 25, 2012 DOE Wind Program Funds University of Wisconsin-Madison Wind Workforce Development Efforts: A Wind Powering America Success Story The University of Wisconsin-Madison was awarded an Energy Department workforce development grant in July 2010 to develop a series of continuing education short courses focused on civil design and construction for wind

340

Mid-Size Wind Energy Grant Program (Maryland) | Open Energy Informatio...  

Open Energy Info (EERE)

Development Strategies Oil & Gas Smart Grid Solar U.S. OpenLabs Utilities Water Wind Page Actions View form View source History View New Pages Recent Changes All Special...

Note: This page contains sample records for the topic "wind program designed" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


341

Advanced Energy Design Guides | Building Energy Codes Program  

NLE Websites -- All DOE Office Websites (Extended Search)

Compliance Regulations Resource Center Advanced Energy Design Guides The Advanced Energy Design Guides (AEDGs) are a series of publications designed to provide recommendations for...

342

NEW HAMPSHIRE 4-H HORSE PROGRAM Cover Design Contest 2013  

E-Print Network (OSTI)

promotion. State 4-H Office Address: Rhiannon Beauregard, Program Coordinator UNH Cooperative Extension

New Hampshire, University of

343

Northern Power Systems WindPACT Drive Train Alternative Design Study Report: April 12, 2001 to January 31, 2005  

NLE Websites -- All DOE Office Websites (Extended Search)

October 2004 * NREL/SR-500-35524 October 2004 * NREL/SR-500-35524 G. Bywaters, V. John, J. Lynch, P. Mattila, G. Norton, and J. Stowell Northern Power Systems M. Salata General Dynamics Electric Boat O. Labath Gear Consulting Services of Cincinnati A. Chertok and D. Hablanian TIAX Northern Power Systems WindPACT Drive Train Alternative Design Study Report April 12, 2001 to January 31, 2005 National Renewable Energy Laboratory 1617 Cole Boulevard, Golden, Colorado 80401-3393 303-275-3000 * www.nrel.gov Operated for the U.S. Department of Energy Office of Energy Efficiency and Renewable Energy by Midwest Research Institute * Battelle Contract No. DE-AC36-99-GO10337 Revised October 2004 * NREL/SR-500-35524 Northern Power Systems WindPACT Drive Train Alternative Design Study Report

344

WindPACT Turbine Design Scaling Studies Technical Area 1ŒComposite Blades for 80- to 120-Meter Rotor  

NLE Websites -- All DOE Office Websites (Extended Search)

1 * NREL/SR-500-29492 1 * NREL/SR-500-29492 Dayton A. Griffin Global Energy Concepts Kirkland, Washington WindPACT Turbine Design Scaling Studies Technical Area 1-Composite Blades for 80- to 120-Meter Rotor March 21, 2000 - March 15, 2001 National Renewable Energy Laboratory 1617 Cole Boulevard Golden, Colorado 80401-3393 NREL is a U.S. Department of Energy Laboratory Operated by Midwest Research Institute * * * * Battelle * * * * Bechtel Contract No. DE-AC36-99-GO10337 April 2001 * NREL/SR-500-29492 WindPACT Turbine Design Scaling Studies Technical Area 1-Composite Blades for 80- to 120-Meter Rotor March 21, 2000 - March 15, 2001 Dayton A. Griffin Global Energy Concepts Kirkland, Washington NREL Technical Monitor: Alan Laxson Prepared under Subcontract No. YAM-0-30203-01 National Renewable Energy Laboratory

345

WindPACT Turbine Design Scaling Studies Technical Area 3ŒSelf-Erecting Tower and Nacelle Feasibility  

NLE Websites -- All DOE Office Websites (Extended Search)

1 * NREL/SR-500-29493 1 * NREL/SR-500-29493 Global Energy Concepts, LLC Kirkland, Washington WindPACT Turbine Design Scaling Studies Technical Area 3-Self-Erecting Tower and Nacelle Feasibility March 2000-March 2001 National Renewable Energy Laboratory 1617 Cole Boulevard Golden, Colorado 80401-3393 NREL is a U.S. Department of Energy Laboratory Operated by Midwest Research Institute * * * * Battelle * * * * Bechtel Contract No. DE-AC36-99-GO10337 May 2001 * NREL/SR-500-29493 WindPACT Turbine Design Scaling Studies Technical Area 3-Self-Erecting Tower and Nacelle Feasibility March 2000-March 2001 Global Energy Concepts, LLC Kirkland, Washington NREL Technical Monitor: Alan Laxson Prepared under Subcontract No. YAM-0-30203-01 National Renewable Energy Laboratory 1617 Cole Boulevard

346

New England Wind Forum: Wind Power Economics  

Wind Powering America (EERE)

State Activities Projects in New England Building Wind Energy in New England Wind Resource Wind Power Technology Economics Cost Components Determining Factors Influencing Wind Economics in New England How does wind compare to the cost of other electricity options? Markets Siting Policy Technical Challenges Issues Small Wind Large Wind Newsletter Perspectives Events Quick Links to States CT MA ME NH RI VT Bookmark and Share Wind Power Economics Long-Term Cost Trends Since the first major installations of commercial-scale wind turbines in the 1980s, the cost of energy from wind power projects has decreased substantially due to larger turbine generators, towers, and rotor lengths; scale economies associated with larger projects; improvements in manufacturing efficiency, and technological advances in turbine generator and blade design. These technological advances have allowed for higher generating capacities per turbine and more efficient capture of wind, especially at lower wind speeds.

347

A hybrid evolutionary programming approach for optimal worst case tolerance design of magnetic devices  

Science Conference Proceedings (OSTI)

This paper presents a hybrid evolutionary programming approach to solve the worst case tolerance design problem (WCTDP) in magnetic devices. The hybrid algorithm is formed by a basic evolutionary programming approach, mixed with a gradient-guided local ... Keywords: Evolutionary programming, Hybrid algorithms, Tolerance analysis, Tolerance design

Sancho Salcedo-Sanz; Angel M. PéRez-Bellido; Emilio G. Ortiz-GarcíA; Jose A. Portilla-Figueras; Silvia JiméNez-FernáNdez

2012-08-01T23:59:59.000Z

348

NREL: Wind Research - Case Study: Burke Mountain Wind Turbine...  

NLE Websites -- All DOE Office Websites (Extended Search)

composting program, and encouraging visitors to recycle whenever possible. Wind Powering America verified the following wind turbine project facts with Hannah Collins from...

349

Covariance statistics of turbulence velocity components for wind-energy-conversion system design-homogeneous, isotropic case  

DOE Green Energy (OSTI)

When designing a wind energy converison system (WECS), it may be necessary to take into account the distribution of wind across the disc of rotation. The specific engineering applications include structural strength, fatigue, and control. This wind distribution consists of two parts, namely that associated with the mean wind profile and that associated with the turbulence velocity fluctuation field. The work reported herein is aimed at the latter, namely the distribution of turbulence velocity fluctuations across the WECS disk of rotation. A theory is developed for the two-time covariance matrix for turbulence velocity vector components for wind energy conversion system (WECS) design. The theory is developed for homogeneous and iotropic turbulance with the assumption that Taylor's hypothesis is valid. The Eulerian turbulence velocity vector field is expanded about the hub of the WECS. Formulae are developed for the turbulence velocity vector component covariance matrix following the WECS blade elements. It is shown that upon specification of the turbulence energy spectrum function and the WECS rotation rate, the two-point, two-time covariance matrix of the turbulent flow relative to the WECS bladed elements is determined. This covariance matrix is represented as the sum of nonstationary and stationary contributions. Generalized power spectral methods are used to obtain two-point, double frequency power spectral density functions for the turbulent flow following the blade elements. The Dryden turbulence model is used to demonstrate the theory. A discussion of linear system response analysis is provided to show how the double frequency turbulence spectra might be used to calculate response spectra of a WECS to turbulent flow. Finally the spectrum of the component of turbulence normal to the WECS disc of rotation, following the blade elements, is compared with experimental results.

Fichtl, G.H.

1983-09-01T23:59:59.000Z

350

NREL: Wind Research - Small Wind Turbine Webinars  

NLE Websites -- All DOE Office Websites (Extended Search)

Small Wind Turbine Webinars Small Wind Turbine Webinars Here you will find webinars about small wind turbines that NREL hosted. Introducing WindLease(tm): Making Wind Energy Affordable NREL and the American Solar Energy Society (ASES) Wind Division co-hosted this webinar. (Text Version.) Date: August 1, 2013 Run Time: 40 minutes Joe Hess, VP of Business Development at United Wind, described United Wind's WindQuote and WindLease Program and explained the process from the dealer's and consumer's perspective. Texas Renewable Energy Industries Association NREL and the American Solar Energy Society (ASES) Wind Division co-hosted this webinar. (Text Version). Date: March 7, 2013 Run Time: 1 hour Russel Smith, Texas Renewable Energy Industries Association executive director and co-founder, provided an overview of the trade association

351

Modeling and Controller Design of a Wind Energy Conversion System Including a Matrix Converter.  

E-Print Network (OSTI)

??In this thesis, a grid-connected wind-energy converter system including a matrix converter is proposed. The matrix converter, as a power electronic converter, is used to… (more)

Barakati, Seyed Masoud

2008-01-01T23:59:59.000Z

352

Tennessee Valley Authority Buffalo Mountain Wind Power Project Development: U.S. Department of Energy - EPRI Wind Turbine Verificati on Program  

Science Conference Proceedings (OSTI)

This report describes the development experience at the Tennessee Valley Authority (TVA) Buffalo Mountain Wind Power Project located near Oliver Springs, Tennessee. The lessons learned from the project will be valuable to other utilities or companies planning similar wind projects.

2003-03-24T23:59:59.000Z

353

Stakeholder Engagement and Outreach: State Wind Activities  

Wind Powering America (EERE)

Federal, Federal, State, & Local Printable Version Bookmark and Share Economic Development Policy Public Lands Public Power Regional Activities State Activities State Lands Siting State Wind Activities The U.S. map below summarizes Wind Powering America's state activities as of February 2010, which include Wind Working Groups, validated wind maps, anemometer loan programs, small wind guides, Wind for Schools Wind Applications Centers, exhibits, and workshops or webcasts. To read more state-specific news, click on a state. You can also view an enlarged map or print the state wind activities map. U.S. map showing Wind Powering America's activities in each state. Washington has an inactive/evolved wind working group, validated wind map, and a small wind guide. Exhibits have been displayed. Oregon has a wind working group, validated wind map, small wind guide, an anemometer loan program, and has had workshops or Webcasts. California has an inactive/evolved wind working group and valided wind map. Exhibits have been displayed. Idaho has an inactive/evolved wind working group, validated wind map, small wind guide, an anemometer loan program, has had workshops or Webcasts, exhibits have been displayed, and it has a Wind for Schools Wind Applications Center. Nevada has a wind working group, validated wind map, a small wind guide, an anemometer loan program, and has had workshops or Webcasts and exhibits. Montana has a wind working group, validated wind map, small wind guide, an anemometer loan program, and has had workshops or Webcasts, exhibits have been displayed, and it has a Wind for Schools Wind Applications Center. Wyoming has a wind working group, validated wind map, small wind guide, anemometer loan program, and has had workshops or Webcasts and exhibits. Utah has a wind working group, validated wind map, a small wind guide, an anemometer loan program, and has had workshops or Webcasts. Arizona has a wind working group, validated wind map, small wind guide, an anemometer loan program, has had workshops or Webcasts, and exhibits have been displayed. Colorado has a wind working group, a validated wind map, small wind guide, an anemometer loan program, has had workshops or Webcasts, exhibits have been displayed, and it has a Wind for Schools Wind Applications Center. New Mexico has a wind working group, validated wind map, small wind guide, an anemometer loan program, has had workshops or Webcasts, and exhibits have been displayed. North Dakota has a wind working group, validated wind map, small wind guide, an anemometer loan program, and has had workshops or Webcasts and exhibits. South Dakota has a wind working group, a validated wind map, small wind guide, an anemometer loan program, has had workshops or Webcasts, exhibits have been displayed, and it has a Wind for Schools Wind Applications Center. Nebraska has a wind working group, a validated wind map, a small wind guide, has had workshops or Webcasts, exhibits have been displayed, and it has a Wind for Schools Wind Applications Center. Kansas has a wind working group, a validated wind map, a small wind guide, has had workshops or Webcasts, exhibits have been displayed, and it has a Wind for Schools Wind Applications Center. Oklahoma has a wind working group, validated wind map, small wind guide, an anemometer loan program, and has had workshops or Webcasts. Texas currently does not have any Wind Powering America activities. Minnesota has a small wind guide. Iowa has a small wind guide and has had exhibits. Missouri has a wind working group, validated wind map, small wind guide, an anemometer loan program, and has had workshops or Webcasts. Arkansas has a wind working group, validated wind map, and workshops or Webcasts. Lousiana currently does not have any Wind Powering America activities. Mississippi currently does not have any Wind Powering America activities. Alabama currently does not have any Wind Powering America activities. Georgia has a wind working group, a validated wind map, and has had workshops or Webcasts. Florida currently does not have any Wind Powering America activities. South Carolina has a wind working group. Alaska has a wind working group, validated wind map, an anemometer loan program, has had workshops or Webcasts, and it has a Wind for Schools Wind Applications Center. Hawaii has a wind working group, validated wind map, a small wind guide, and has had exhibits. Puerto Rico has a validated wind map and a planned wind working group. Wisconsin has a wind working group, a small wind guide, an anemometer loan program, and has had workshops or Webcasts. Illinois has a wind working group, validated wind map, a small wind guide, and has had workshops or Webcasts. Michigan has a wind working group, validated wind map, a small wind guide, an anemometer loan program, and has had workshops or Webcasts and exhibits. Indiana has a wind working group, a validated wind map, a small wind guide, and has had workshops or Webcasts and exhibits. Kentucky has a wind working group and a validated wind map. Tennessee has a wind working group, a validated wind map, small wind guide, anemometer loan program, and has had workshops or Webcasts. North Carolina has a wind working group, validated wind map, a small wind guide, an anemometer loan program, has had workshops or Webcasts, exhibits have been displayed, and it has a Wind for Schools Wind Applications Center. Virginia has a wind working group, a validated wind map, a small wind guide, an anemometer loan program, has had workshops or Webcasts, exhibits have been displayed, and it has a Wind for Schools Wind Applications Center. West Virginia has a wind working group, a validated wind map, and has had workshops or Webcasts. Ohio has a wind working group, validated wind map, a small wind guide, an anemometer loan program, and has had workshops or Webcasts. Maryland has a wind working group, a validated wind map, a small wind guide, and an anemometer loan program. Pennsylvania has a wind working group, a validated wind map, small wind guide, an anemometer loan program, has had workshops or Webcasts, and it has a Wind for Schools Wind Applications Center. Delaware has a validated wind map and a small wind guide. New Jersey has a wind working group, validated wind map, a small wind guide, an anemometer loan program, and has had workshops or Webcasts. Connecticut has a wind working group and a validated wind map. New York has a small wind guide. Vermont has a validated wind map and a small wind guide. Massachusetts has a wind working group, validated wind map, a small wind guide, an anemometer loan program, and has had exhibits. New Hampshire has a validated wind map and small wind guide. Maine has a wind working group, validated wind map, small wind guide, an anemometer loan program, and has had workshops or Webcasts. Rhode Island has a validated wind map and small wind guide. The U.S. Virgin Islands have a validated wind map.

354

Kotzebue Electric Association Wind Power Project First-Year Operating Experience: 1999-2000: U.S. Department of Energy - EPRI Wind T urbine Verification Program  

Science Conference Proceedings (OSTI)

Although much of western Alaska has abundant wind resources, wind energy technology has not been widely deployed in the state, and utilities rely primarily on diesel fuel for energy generation. Kotzebue Electric Association is pioneering the application of wind energy technology in combination with the existing diesel generation in the remote communities in Northwest Alaska. This report describes the first-year operating experience at the 0.66-MW Kotzebue Electric Association (KEA) wind power project nea...

2000-12-13T23:59:59.000Z

355

Wisconsin Low Wind Speed Turbine Project First- and Second-Year Operating Experience: 1998-2000: U.S. Department of Energy-EPRI Wind Turbine Verification Program  

Science Conference Proceedings (OSTI)

The 1.2 MW Low Wind Speed Turbine Project (LWSTP) -- installed in Glenmore, Wisconsin, in early 1998 -- was the first commercial-scale wind project in Wisconsin. This report describes the first- and second-year operating experience at the LWSTP. The lessons learned in the project will be valuable to other utilities planning similar wind power projects, particularly in cold-weather, moderate wind resource areas.

2000-12-15T23:59:59.000Z

357

Wind energy bibliography  

DOE Green Energy (OSTI)

This bibliography is designed to help the reader search for information on wind energy. The bibliography is intended to help several audiences, including engineers and scientists who may be unfamiliar with a particular aspect of wind energy, university researchers who are interested in this field, manufacturers who want to learn more about specific wind topics, and librarians who provide information to their clients. Topics covered range from the history of wind energy use to advanced wind turbine design. References for wind energy economics, the wind energy resource, and environmental and institutional issues related to wind energy are also included.

None

1995-05-01T23:59:59.000Z

358

2011 Wind Technologies Market Report  

NLE Websites -- All DOE Office Websites (Extended Search)

PROGRAM 2 Presentation Overview * Introduction to current edition of U.S. wind energy market report * Wind Energy Market Trends - Installation trends - Industry trends - Cost...

359

NREL: Wind Research - @NWTC Newsletter  

NLE Websites -- All DOE Office Websites (Extended Search)

publications. Spring 2013 Issue Project and Program Updates Shedding Light on Offshore Wind Resources DOE Kicks Off Inaugural Collegiate Wind Competition Minimal Impacts Could...

360

Estimation of wind characteristics at potential wind energy conversion sites. Volume 2. Appendices  

DOE Green Energy (OSTI)

Data are presented concerning climatology development methodology programs; dual station wind correlation analyses; and the candidate site wind climatologies.

Howard, S. M.; Chen, P. C.

1978-03-01T23:59:59.000Z

Note: This page contains sample records for the topic "wind program designed" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


361

Green Mountain Power Wind Power Project Third-Year Operating Experience: 1999-2000: U.S. Department of Energy-EPRI Wind Turbine Veri fication Program  

Science Conference Proceedings (OSTI)

The 6.05-MW Green Mountain Power (GMP) wind power project is located on top of a wooded ridge in the Green Mountains of southern Vermont near the town of Searsburg. This report describes the third-year operating experience at the GMP wind project. The lessons learned in the project will be valuable to other utilities planning similar wind power projects.

2000-12-07T23:59:59.000Z

362

Program on Technology Innovation: Bat Detection and Shutdown System for Utility-Scale Wind Turbines  

Science Conference Proceedings (OSTI)

Although development of renewable energy sources is generally believed to be a sound environmental decision, wind power development has been criticized for posing potential threats to bats. The objective of this project is to develop and deploy an ultrasonic microphone array on a wind turbine. The array will detect bats near the turbine upon which it is deployed and automatically curtail operations when bats are detected in or near the rotor-swept area. The first two objectives of this project were to se...

2010-11-12T23:59:59.000Z

363

2008 Wind Energy Projects, Wind Powering America (Poster)  

SciTech Connect

The Wind Powering America program produces a poster at the end of every calendar year that depicts new U.S. wind energy projects. The 2008 poster includes the following projects: Stetson Wind Farm in Maine; Dutch Hill Wind Farm in New York; Grand Ridge Wind Energy Center in Illinois; Hooper Bay, Alaska; Forestburg, South Dakota; Elbow Creek Wind Project in Texas; Glacier Wind Farm in Montana; Wray, Colorado; Smoky Hills Wind Farm in Kansas; Forbes Park Wind Project in Massachusetts; Spanish Fork, Utah; Goodland Wind Farm in Indiana; and the Tatanka Wind Energy Project on the border of North Dakota and South Dakota.

2009-01-01T23:59:59.000Z

364

ILC Polarized Electron Source Design and R&D Program  

Science Conference Proceedings (OSTI)

The R and D program for the ILC electron focuses on three areas. These are the source drive laser system, the electron gun and photo cathodes necessary to produce a highly polarized electron beam. Currently, the laser system and photo cathode development take place at SLAC's 'ILC Injector Test facility', which is an integrated lab (laser and gun) that allows the production of the electron beam and is equipped with a set of diagnostics, necessary to characterize the source performance. Development of the ILC electron gun takes place at Jefferson Lab, where advanced concepts and technologies for HV DC electron guns for polarized beams are being developed. The goal is to combine both efforts at one facility to demonstrate an electron beam with ILC specifications, which are electron beam charge and polarization as well as the cathode's lifetime. The source parameters are summarized in Table 1. The current schematic design of the ILC central complex is depicted in Figure 1. The electron and positron sources are located and laid out approximately symmetric on either side of the damping rings.

Brachmann, A.; Sheppard, J.; Zhou, F.; Poelker, M.; /SLAC

2012-04-06T23:59:59.000Z

365

Radwaste assessment program for nuclear station modifications by design engineering  

SciTech Connect

Radwaste burial for Duke Power Company's (DPC's) seven nuclear units has become a complicated and costly process. Burial costs are based on overall volume, surcharges for radioactivity content and weight of containers, truck and cask rental, driver fees, and state fees and taxes. Frequently, radwaste costs can be as high as $500 per drum. Additionally, DPC is limited on the total burial space allocated for each plant each year. The thrust of this program is to reduce radwaste volumes needing burial at either Barnwell, South Carolina, or Richland, Washington. A limited number of options are available at our sites: (a) minimization of radwaste volume production, (b) segregation of contamination and noncontaminated trash, (c) decontamination of small hardware, (d) volume reduction of compatible trash, (e) incineration of combustible trash (available at Oconee in near future), and (f) burial of below-regulatory-concern very low level waste on site. Frequently, costs can be reduced by contracting services outside the company, i.e., supercompaction, decontamination, etc. Information about radwaste volumes, activities, and weight, however, must be provided to the nuclear production department (NPD) radwaste group early in the nuclear station modification (NSM) process to determine the most cost-effective method of processing radwaste. In addition, NSM radwaste costs are needed for the NPD NSM project budget. Due to the advanced planning scope of this budget, NSM construction costs must be estimated during the design-phase proposal.

Eble, R.G.

1988-01-01T23:59:59.000Z

366

New England Wind Forum: Historic Wind Development in New England: Wrap Up  

Wind Powering America (EERE)

Wrap Up Wrap Up Remote Power in Isolated Electric Systems Additional installations of earlier-generation wind turbines occurred at Cuttyhunk Island, MA (a 200-kW WTG turbine operated as part of a wind-diesel installation), and Block Island, RI, which hosted one of the first four 200-kW MOD-OA units developed under the Department of Energy's large wind research program. Small Wind Turbine Manufacturing Vermont was a hotbed for early small-machine manufacturers. North Wind (now Northern Power Systems) and Enertech won two of the first contracts awarded by the Department of Energy wind research program for small-machine design. NPS still survives as a successful business today, while Enertech was succeeded by Atlantic Orient, which in turn has taken on new life in Canada as Entegrity. (Other companies, such as Astral Wilcon and Pinson Energy in Massachusetts, are no longer in business.)

367

Applications: Operational wind turbines  

E-Print Network (OSTI)

Capability Applications: Operational wind turbines Benefits: Optimize wind turbine performance Summary: Researchers at the Los Alamos National Laboratory (LANL) Intelligent Wind Turbine Program are developing a multi-physics modeling approach for the analysis of wind turbines in the presence of realistic

368

Labs21 sustainable design programming checklist version 1.0  

E-Print Network (OSTI)

for all ventilation fans at design conditions divided byof fan and pump energy required to achieve the design towerdivided by the total design flow of all the fans. Objective:

Mathew, Paul; Greenberg, Steve

2005-01-01T23:59:59.000Z

369

Reactive power control of grid-connected wind farm based on adaptive dynamic programming  

E-Print Network (OSTI)

of wind farm with doubly fed induction generators (DFIG). Specifically, we investigate the on-cage induction generator, permanent magnet synchronous generator and doubly fed induction generator (DFIG). DFIG of DFIG are high efficiency, flexible control and low investment. The stator of DFIG is directly connected

He, Haibo

370

Native American Support Programs Task Force Changing Winds: Service to Native American Students  

E-Print Network (OSTI)

in whitebark pine krummholz in the alpine treeline ecotone east of the Continental Divide on the Blackfeet; Divide Peak (48u679N, 113u389W), situated on the border of the Blackfeet Indian Reservation and Glacier increasingly wind-exposed farther away from the base of the actual peak. Locations east of the Continental

Maxwell, Bruce D.

371

Wind for Schools Project Curriculum Brief (Fact Sheet)  

SciTech Connect

The U.S. Department of Energy's (DOE's) 20% Wind Energy by 2030 report recommends expanding education to ensure a trained workforce to meet the projected growth of the wind industry and deployment. Although a few U.S. higher education institutions offer wind technology education programs, most are found in community and technical colleges, resulting in a shortage of programs preparing highly skilled graduates for wind industry careers. Further, the United States lags behind Europe (which has more graduate programs in wind technology design and manufacturing) and is in danger of relinquishing the economic benefits of domestic production of wind turbines and related components and services to European countries. DOE's Wind Powering America initiative launched the Wind for Schools project to develop a wind energy knowledge base among future leaders of our communities, states, and nation while raising awareness about wind energy's benefits. This fact sheet provides an overview of wind energy curricula as it relates to the Wind for Schools project.

2010-08-01T23:59:59.000Z

372

Phase Calculation and its Use in Alloy Design Program for Nickel ...  

Science Conference Proceedings (OSTI)

PHASE CALCULATION AND ITS USE. IN ALLOY DESIGN PROGRAM FOR NICKEL-BASE SUPERALLOYS. H. Harada, K. Ohno, T. Yamagata,. T. Yokokawa

373

Fish schooling as a basis for vertical axis wind turbine farm design  

E-Print Network (OSTI)

Most wind farms consist of horizontal axis wind turbines (HAWTs) due to the high power coefficient (mechanical power output divided by the power of the free-stream air through the turbine cross-sectional area) of an isolated turbine. However when in close proximity to neighbouring turbines, HAWTs suffer from a reduced power coefficient. In contrast, previous research on vertical axis wind turbines (VAWTs) suggests that closely-spaced VAWTs may experience only small decreases (or even increases) in an individual turbine's power coefficient when placed in close proximity to neighbours, thus yielding much higher power outputs for a given area of land. A potential flow model of inter-VAWT interactions is developed to investigate the effect of changes in VAWT spatial arrangement on the array performance coefficient, which compares the expected average power coefficient of turbines in an array to a spatially-isolated turbine. A geometric arrangement based on the configuration of shed vortices in the wake of schooli...

Whittlesey, Robert W; Dabiri, John O

2010-01-01T23:59:59.000Z

374

Wind Power Ltd | Open Energy Information  

Open Energy Info (EERE)

Power Ltd Place Wickam Market, United Kingdom Sector Wind energy Product Conducting research into alternative, large scale wind turbine design. References Wind Power Ltd1...

375

Pitt County - Wind Energy Systems Ordinance | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Pitt County - Wind Energy Systems Ordinance Pitt County - Wind Energy Systems Ordinance Pitt County - Wind Energy Systems Ordinance < Back Eligibility Commercial Residential Savings Category Wind Buying & Making Electricity Program Info State North Carolina Program Type Solar/Wind Permitting Standards Provider Pitt County The Pitt County Board of Commissioners adopted amendments to the county zoning ordinance in March 2010 which classify wind energy systems as an accessory use and establish siting and permitting requirements for their installation. The ordinance applies to small to medium systems designed primarily for on-site use in conjunction with a principal dwelling unit or business. The ordinance does not apply to utility scale systems. '''Blade Clearance:''' Wind turbine blades may not be closer than 15 feet

376

Modeling Occurrences of Non-VFR Weather: A Case Study for Design of Flight Instruction Programs  

Science Conference Proceedings (OSTI)

Objective methods in which climatology is considered are needed in the design of flight instruction programs. Weather conditions less than the minimum (LM) thresholds designated for Minimum Instructional Visual Flight Rules (MIVFR) were defined ...

Thomas Q. Carney; Robert F. Dale

1981-05-01T23:59:59.000Z

377

Designation Order No. 00-11.00 to the Executive Director of Loan Programs and Director of the Loan Program Guarantee  

Directives, Delegations, and Requirements

Designate each of the Executive Director of Loan Programs and the Director of the Loan Guarantee Program, as the Secretary of Energy's designee, as the term is ...

2010-04-30T23:59:59.000Z

378

Marine & Hydrokinetic Technologies (Fact Sheet), Wind And Water Power Program (WWPP)  

NLE Websites -- All DOE Office Websites (Extended Search)

Water Power Program Water Power Program supports the development of advanced water power devices that capture energy from waves, tides, ocean currents, rivers, streams, and ocean thermal gradients. The program works to promote the development and deployment of these new tech- nologies, known as marine and hydrokinetic technologies, to assess the potential extractable energy from rivers, estuaries, and coastal waters, and to help industry harness this renew- able, emissions-free resource to generate environmentally sustainable and cost-effective electricity. The program's research and development efforts fall under two categories: Technology Development and Market Acceleration. Technology Development The Water Power Program works with industry partners, universities, and the Department of Energy's national

379

The Influence of the Sensor Design on Wind Measurements with Sonic Anemometer Systems  

Science Conference Proceedings (OSTI)

Responses of Kaijo Denki TR-61A, TR-61B, and TR-61C; Solent Research/Gill; and METEK USA-1 sonic anemometer systems have been examined in a wind tunnel investigation. To determine their characteristics the anemometers were turned for 360° and ...

A. Wieser; F. Fiedler; U. Corsmeier

2001-10-01T23:59:59.000Z

380

Environmental Impacts and Siting of Wind Projects  

Energy.gov (U.S. Department of Energy (DOE))

The Wind Program works to remove barriers to wind power deployment and to increase the acceptance of wind power technologies by addressing siting and environmental issues. Wind power is a renewable...

Note: This page contains sample records for the topic "wind program designed" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


381

Energy Basics: Wind Turbines  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Photo of a crane lifting the blades onto a wind turbine that reads 'U.S. Department of Energy, NREL.' You can learn more about horizontal axis turbines from the EERE Wind Program's...

382

Advanced Airfoils for Wind Turbines: Office of Power Technologies (OPT) Success Stories Series Fact Sheet  

NLE Websites -- All DOE Office Websites (Extended Search)

Program Program Office of Geothermal and Wind Technologies Blades are where the turbine meets the wind. Turbine blades take advantage of aero- dynamics to extract the wind's energy, which can then be converted to useful electricity. Airfoils-the cross-sectional shape of the blades-determine the aerodynamic forces on blades. They are key to blade design. In the seventies, the young and fast-growing U.S. wind industry used airfoil designs from airplane wings to design turbine blades because those airfoil designs were widely available, and engineers understood how they performed on aircraft. Airfoils specifically designed for wind turbines did not yet exist. The industry quickly learned, however, how harsh the operating environment is for wind turbines as compared to that for airplanes.

383

On the design of effective learning materials for supporting self-directed learning of programming  

Science Conference Proceedings (OSTI)

This paper reports on the action research that studies how to implement self-directed learning of programming in the academic context. Based on our findings from the previous steps with this research agenda, we focus on the design of learning materials. ... Keywords: cognitive load theory, functional programming, programming education, self-direction

Ville Tirronen; Ville Isomöttönen

2012-11-01T23:59:59.000Z

384

Wind powering America: Vermont  

DOE Green Energy (OSTI)

Wind resources in the state of Vermont show great potential for wind energy development according to the wind resource assessment conducted by the state, its utilities, and NREL. This fact sheet provides a brief description of the resource assessment and a link to the resulting wind resource map produced by NREL. The fact sheet also provides a description of the state's net metering program, its financial incentives, and green power programs as well as a list of contacts for more information.

NREL

2000-04-11T23:59:59.000Z

385

Wind powering America: Kansas  

DOE Green Energy (OSTI)

Wind resources in the state of Kansas show great potential for wind energy development according to the wind resource assessment conducted by the Kansas Electric Utilities Research Program, UWIG, and DOE. This fact sheet provides a brief description of the resource assessment and description of the state's new educational wind kiosk as well as its green power program and financial incentives available for the development of renewable energy technologies. A list of contacts for more information is also included.

NREL

2000-04-11T23:59:59.000Z

386

NREL: Wind Research - Offshore Wind Research  

NLE Websites -- All DOE Office Websites (Extended Search)

Offshore Wind Research Offshore Wind Research Photo of a European offshore wind farm. Early progress in European Offshore Wind Energy over the last decade provides a glimpse into the vast potential of the global offshore resource. For more than eight years, NREL has worked with the Department of Energy to become an international leader in offshore wind energy research. Capabilities NREL's offshore wind capabilities focus on critical areas that reflect the long-term needs of the offshore wind energy industry and the U.S. Department of Energy including: Offshore Design Tools and Methods Offshore Standards and Testing Energy Analysis of Offshore Systems Offshore Wind Resource Characterization Grid Integration of Offshore Wind Key Research NREL documented the status of offshore wind energy in the United States in

387

Northern Power Systems WindPACT Drive Train Alternative Design Study Report; Period of Performance: April 12, 2001 to January 31, 2005  

DOE Green Energy (OSTI)

The National Renewable Energy Laboratory (NREL) Wind Partnerships for Advanced Component Technologies (WindPACT) project seeks to advance wind turbine technology by exploring innovative concepts in drivetrain design. A team led by Northern Power Systems (Northern) of Waitsfield, Vermont, was chosen to perform this work. Conducted under subcontract YCX-1-30209-02, project objectives are to identify, design, and test a megawatt (MW)-scale drivetrain with the lowest overall life cycle cost. The project entails three phases: preliminary study of alternative drivetrain designs (Phase I), detailed design development (Phase II), and proof of concept fabrication and test (Phase III). This report summarizes the results of the preliminary design study (Phase I).

Bywaters, G.; John, V.; Lynch, J.; Mattila, P.; Norton, G.; Stowell, J.; Salata, M.; Labath, O.; Chertok, A.; Hablanian, D.

2004-10-01T23:59:59.000Z

388

Federal Tax Incentives for PV: Potential Implications for Program Design  

E-Print Network (OSTI)

than purchase price • In cases where PV programs providethe purchase price in an arms-length transaction Most PVprice, the grant is still considered to be from the PV

Wiser, Ryan; Bolinger, Mark

2006-01-01T23:59:59.000Z

389

Designing a unified programming model for heterogeneous machines  

Science Conference Proceedings (OSTI)

While high-efficiency machines are increasingly embracing heterogeneous architectures and massive multithreading, contemporary mainstream programming languages reflect a mental model in which processing elements are homogeneous, concurrency is limited, ...

Michael Garland; Manjunath Kudlur; Yili Zheng

2012-11-01T23:59:59.000Z

390

Wind power today  

DOE Green Energy (OSTI)

This publication highlights initiatives of the US DOE`s Wind Energy Program. 1997 yearly activities are also very briefly summarized. The first article describes a 6-megawatt wind power plant installed in Vermont. Another article summarizes technical advances in wind turbine technology, and describes next-generation utility and small wind turbines in the planning stages. A village power project in Alaska using three 50-kilowatt turbines is described. Very brief summaries of the Federal Wind Energy Program and the National Wind Technology Center are also included in the publication.

NONE

1998-04-01T23:59:59.000Z

391

Stakeholder Engagement and Outreach: Learn About Wind  

Wind Powering America (EERE)

About Wind Power Locating Wind Power Getting Wind Power Installed Wind Capacity Wind for Schools Project Collegiate Wind Competition School Project Locations Education & Training Programs Curricula & Teaching Materials Resources Learn About Wind Learn about how wind energy generates power; where the best wind resources are; how you can own, host, partner with, and support wind power; and how and where wind energy has increased over the past decade. What Is Wind Power? Learn about how wind energy generates power, about wind turbine sizes and how wind turbines work, and how wind energy can be used. Also read examples of financial and business decisions. Where Is Wind Power? Go to maps to see the wind resource for utility-, community-, and residential-scale wind development. Or, see how much energy wind projects

392

A computer program to analyze cogeneration plant heat balances and equipment design  

Science Conference Proceedings (OSTI)

This paper describes a computer program designed to calculate and analyze cogeneration plant heat balances and equipment and to plot heat balance diagrams. For normal design point conditions, the program calculates gas turbine performance, designs a heat recovery boiler to suit the process requirements, calculates a steam turbine performance and deaerator balance to complete the cycle. In addition, the program will calculate off-design performance for a supplementary firing option or for changes in ambient conditions, gas turbine part load or process conditions.

Stewart, J.C.; Hsun, C.F.

1987-01-01T23:59:59.000Z

393

Kotzebue Electric Association Wind Power Project Third-Year Operating Experience: 2001-2002: U.S. Department of Energy - EPRI Wind T urbine Verification Program  

Science Conference Proceedings (OSTI)

This report describes the third-year operating experience and expansion of the 0.76-MW Kotzebue Electric Association (KEA) wind power project near Kotzebue, Alaska. The lessons learned in the project will be valuable to other utilities planning similar wind power projects.

2002-12-13T23:59:59.000Z

394

Kotzebue Electric Association Wind Power Project Second-Year Operating Experience: 2000-2001: U.S. Department of Energy-EPRI Wind Tu rbine Verification Program  

Science Conference Proceedings (OSTI)

This report describes the second-year operating experience at the 0.66-MW Kotzebue Electric Association (KEA) wind power project near Kotzebue, Alaska. Lessons learned in the project will be valuable to other utilities planning similar wind power projects.

2001-11-30T23:59:59.000Z

395

Wisconsin Low Wind Speed Turbine Project Third-Year Operating Experience: 2000-2001: U.S. Department of Energy - EPRI Wind Turbine V erification Program  

Science Conference Proceedings (OSTI)

This report describes the third-year operating experience at the 1.2-MW Low Wind Speed Turbine Project (LWSTP) in Glenmore, Wisconsin. The lessons learned in the project will be valuable to other utilities planning similar wind power projects.

2001-12-06T23:59:59.000Z

396

Kotzebue Electric Association Wind Power Project Fourth-Year Operating Experience: 2002-2003: U.S. Department of Energy - EPRI Wind Turbine Verification Program  

Science Conference Proceedings (OSTI)

This report describes the fourth-year operating experience and expansion of the 0.76 MW Kotzebue Electric Association (KEA) wind power project near Kotzebue, Alaska. The lessons learned in the project will be valuable to other utilities planning similar wind power projects.

2003-12-15T23:59:59.000Z

397

Low Wind Speed Technology Phase I: Evaluation of Design and Construction Approaches for Economical Hybrid Steel/Concrete Wind Turbine Towers; BERGER/ABAM Engineers Inc.  

DOE Green Energy (OSTI)

This fact sheet describes a subcontract with BERGER/ABAM Engineers Inc. to study the economic feasibility of concrete and hybrid concrete/steel wind turbine towers.

Not Available

2006-03-01T23:59:59.000Z

398

Wind energy | Open Energy Information  

Open Energy Info (EERE)

(Redirected from Wind) (Redirected from Wind) Jump to: navigation, search Wind energy is a form of solar energy.[1] Wind energy (or wind power) describes the process by which wind is used to generate electricity. Wind turbines convert the kinetic energy in the wind into mechanical power. A generator can convert mechanical power into electricity[2]. Mechanical power can also be utilized directly for specific tasks such as pumping water. The US DOE developed a short wind power animation that provides an overview of how a wind turbine works and describes the wind resources in the United States. Contents 1 Wind Energy Basics 1.1 Equation for Wind Power 2 DOE Wind Programs and Information 3 Worldwide Installed Capacity 3.1 United States Installed Capacity 4 Wind Farm Development 4.1 Land Requirements

399

Wind Power Today and Tomorrow  

DOE Green Energy (OSTI)

Wind Power Today and Tomorrow is an annual publication that provides an overview of the wind research conducted under the U.S. Department of Energy's Wind and Hydropower Technologies Program. The purpose of Wind Power Today and Tomorrow is to show how DOE supports wind turbine research and deployment in hopes of furthering the advancement of wind technologies that produce clean, low-cost, reliable energy. Content objectives include: educate readers about the advantages and potential for widespread deployment of wind energy; explain the program's objectives and goals; describe the program's accomplishments in research and application; examine the barriers to widespread deployment; describe the benefits of continued research and development; facilitate technology transfer; and attract cooperative wind energy projects with industry. This 2003 edition of the program overview also includes discussions about wind industry growth in 2003, how DOE is taking advantage of low wind speed region s through advancing technology, and distributed applications for small wind turbines.

Not Available

2004-03-01T23:59:59.000Z

400

Conventional Hydropower Technologies (Fact Sheet), Wind And Water Power Program (WWPP)  

NLE Websites -- All DOE Office Websites (Extended Search)

Water Power Water Power Program supports the development of technologies that harness the nation's renewable hydropower resources to generate environmentally sustainable and cost-effective electricity. Most conventional hydropower plants use a diver- sion structure, such as a dam, to capture water's potential energy via a turbine for electricity generation. The program's conventional hydropower activities focus on increasing generating capacity and efficiency at existing hydroelectric facilities, adding hydroelectric generating capacity to exist- ing non-powered dams, adding new low impact hydropower, increasing advanced pumped-storage hydropower capacity, and reducing potential environmental impacts of conven- tional hydropower production. The program's research and

Note: This page contains sample records for the topic "wind program designed" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


401

Using DOE Industrial Energy Audit Data for Utility Program Design  

E-Print Network (OSTI)

The U.S. Department of Energy (DOE), Energy Analysis and Diagnostic Center Program has offered no-cost energy conservation audits to industrial plants since 1976. The EADC program has maintained a database of detailed plant and audit information since 1980. In 1992, DOE and Baltimore Gas & Electric Company (BG&E) agreed to conduct a joint demonstration project in which the EADC database would be used to assist BG&E in planning demand-side management (DSM) programs for its industrial customers. BG&E identified a variety of useful applications of the database including: estimating conservation potential, identifying conservation measures for inclusion in programs, target marketing of industries, projecting DSM program impacts, and focusing implementation efforts. Over the course of the project, BG&E identified a variety of strengths and limitations associated with the database when used for utility planning. To encourage the use of the data by other utilities and interested parties, DOE is preparing an EADC database package for general distribution in April 1993.

Glaser, C. J.; Packard, C. P.; Parfomak, P.

1993-03-01T23:59:59.000Z

402

Signal Postprocessing and Reflectivity Calibration of the Atmospheric Radiation Measurement Program 915-MHz Wind Profilers  

Science Conference Proceedings (OSTI)

The Department of Energy Atmospheric Radiation Measurement (ARM) Program has recently initiated a new research avenue toward a better characterization of the transition from cloud to precipitation. Dual-wavelength techniques applied to millimeter-...

Frédéric Tridon; Alessandro Battaglia; Pavlos Kollias; Edward Luke; Christopher R. Williams

2013-06-01T23:59:59.000Z

403

Energy Efficiency & Renewable Energy eere.energy.gov Program Name or Ancillary Text eere.energy.gov  

E-Print Network (OSTI)

Energy Efficiency & Renewable Energy eere.energy.gov 1 Program Name or Ancillary Text eereAnnualCapacityAdditions(GW) Other non-Renewable Coal Gas (non-CCGT) Gas (CCGT) Other Renewable Wind 43% wind 42% wind 34% wind18% wind 12% wind 2% wind 3% wind 1% wind 4% wind 0% wind 25% wind #12;WIND AND WATER POWER PROGRAM 8 China

404

Web Design and Web Development Certification Program CORE COURSES FOR BOTH CERTIFICATES (exams required for completion)  

E-Print Network (OSTI)

Web Design and Web Development Certification Program CORE COURSES FOR BOTH CERTIFICATES (exams) (1-day) Introduction to Web Design & Development: Workflow That Works (4-day) HTML & CSS (2-day completion of exam, PS2 can be substituted) (3-day) *Web Graphics & Interface Design Using Photo

Duong, Timothy Q.

405

Advanced Turbine Systems Program: Conceptual design and product development  

SciTech Connect

Objective is to provide the conceptual design and product development plant for an ultra high efficiency, environmentally superior, and cost competitive industrial gas turbine system to be commercialized by the year 2000 (secondary objective is to begin early development of technologies critical to the success of ATS). This report addresses the remaining 7 of the 9 subtasks in Task 8, Design and Test of Critical Components: catalytic combustion, recuperator, high- temperature turbine disc, advanced control system, and ceramic materials.

1996-12-31T23:59:59.000Z

406

A Discrete Gust Model for Use in the Design of Wind Energy Conversion Systems  

Science Conference Proceedings (OSTI)

Discrete gust models, although idealizations of actual atmospheric conditions, are useful for engineering design. For fatigue design, these models must be representative of the conditions a structure or vehicle will experience on a continuous ...

Walter Frost; Robert E. Turner

1982-06-01T23:59:59.000Z

407

Wind Powering America - New Jersey  

DOE Green Energy (OSTI)

This fact sheet describes the wind energy deployment efforts and green power programs in the state of New Jersey.

O'Dell, K.

2000-10-13T23:59:59.000Z

408

Efficient System Design and Sustainable Finance for China's Village Electrification Program: Preprint  

DOE Green Energy (OSTI)

This paper describes a joint effort of the Institute for Electrical Engineering of the Chinese Academy of Sciences (IEE), and the U.S. National Renewable Energy Laboratory (NREL) to support China's rural electrification program. This project developed a design tool that provides guidelines both for off-grid renewable energy system designs and for cost-based tariff and finance schemes to support them. This tool was developed to capitalize on lessons learned from the Township Electrification Program that preceded the Village Electrification Program. We describe the methods used to develop the analysis, some indicative results, and the planned use of the tool in the Village Electrification Program.

Ma, S.; Yin, H.; Kline, D. M.

2006-08-01T23:59:59.000Z

409

Efficient System Design and Sustainable Finance for China's Village Electrification Program: Preprint  

SciTech Connect

This paper describes a joint effort of the Institute for Electrical Engineering of the Chinese Academy of Sciences (IEE), and the U.S. National Renewable Energy Laboratory (NREL) to support China's rural electrification program. This project developed a design tool that provides guidelines both for off-grid renewable energy system designs and for cost-based tariff and finance schemes to support them. This tool was developed to capitalize on lessons learned from the Township Electrification Program that preceded the Village Electrification Program. We describe the methods used to develop the analysis, some indicative results, and the planned use of the tool in the Village Electrification Program.

Ma, S.; Yin, H.; Kline, D. M.

2006-08-01T23:59:59.000Z

410

Sandia Vertical-Axis Wind Turbine Program. Technical quarterly report, October--December 1975  

DOE Green Energy (OSTI)

Information is presented concerning: review of the status of general design efforts in the areas of aerodynamics, structures, systems analysis, and testing; summary of preliminary design details of the proposed 17-m turbine/60-kW generator system for power grid application; and structural analysis and operational test results for the existing 5-m turbine.

Banas, J.F.; Sullivan, W.N. (eds.)

1976-04-01T23:59:59.000Z

411

Strengthening America's Energy Security with Offshore Wind (Fact Sheet) (Revised)  

DOE Green Energy (OSTI)

This fact sheet provides a brief description of offshore wind energy development in the U.S. and DOE's Wind Program offshore wind R&D activities.

Not Available

2012-04-01T23:59:59.000Z

412

TFE design package final report, TFE Verification Program  

DOE Green Energy (OSTI)

The program objective is to demonstrate the technology readiness of a TFE suitable for use as the basic element in a thermionic reactor with electric power output in the 0.5 to 5.0 MW(e) range, and a full-power life of 7 years. A TFE for a megawatt class system is described. Only six cells are considered for simplicity; a megawatt class TFE would have many more cells, the exact number dependent on optimization trade studies.

Not Available

1994-06-01T23:59:59.000Z

413

Early Site Permit Demonstration Program: Station design alternatives report  

SciTech Connect

This report provides the results of investigating the basis for including Station Design Alternatives (SDAs) in the regulatory guidance given for nuclear plant environmental reports (ERs), explains approaches or processes for evaluating SDAs at the early site permit (ESP) stage, and applies one of the processes to each of the ten systems or subsystems considered as SDAS. The key objective o this report s to demonstrate an adequate examination of alternatives can be performed without the extensive development f design data. The report discusses the Composite Suitability Approach and the Established Cutoff Approach in evaluating station design alternatives and selects one of these approaches to evaluate alternatives for each of the plant or station that were considered. Four types of ALWRs have been considered due to the availability of extensive plant data: System 80+, AP600, Advanced Boiling Reactor (ABWR), and Simplified Boiling Water Reactor (SBWR). This report demonstrates the feasibility of evaluating station design alternatives when reactor design detail has not been determined, quantitatively compares the potential ental impacts of alternatives, and focuses the ultimate selection of a alternative on cost and applicant-specific factors. The range of alternatives system is deliberately limited to a reasonable number to demonstrate the or to the three most commonly used at operating plants.

Not Available

1993-03-01T23:59:59.000Z

414

Strategy for Designing DSM Program after the Restructuring in Korea  

E-Print Network (OSTI)

To maintain supply adequacy and mitigate price volatility in electricity market, the necessity for obtaining demandside resource is increasing and obtaining demand-side resource is set as a priority of electricity policy. For this purpose, we introduce a new DSM mechanism and program development strategies based on customer response and electricity industry efficiency. Especially we introduced DLC(Direct Load Control) technology via two-way communication scheme for large customer. This DLC program targets interruptible load that covers large customer in commercial and industrial sector. This program can retain demand reserve that does not interrupt process in plant or business along with real-time monitoring load condition of end-use and interrupt load by pre-determined procedures, if necessary. This analysis shows that electricity boiler, pump, blower, HVAC can save energy during some time. In addition, developing system to monitor end-use load and interconnecting it with MOS(Market Operation System) should be established as infrastructure in DSM.

Rhee, C.; Lee, K.; Jo, I.

2002-01-01T23:59:59.000Z

415

Introduction to Small-Scale Wind Energy Systems (Including RETScreen Case  

Open Energy Info (EERE)

Introduction to Small-Scale Wind Energy Systems (Including RETScreen Case Introduction to Small-Scale Wind Energy Systems (Including RETScreen Case Study) (Webinar) Jump to: navigation, search Tool Summary LAUNCH TOOL Name: Introduction to Small-Scale Wind Energy Systems (Including RETScreen Case Study) (Webinar) Focus Area: Renewable Energy Topics: System & Application Design Website: www.leonardo-energy.org/webinar-introduction-small-scale-wind-energy-s Equivalent URI: cleanenergysolutions.org/content/introduction-small-scale-wind-energy- Language: English Policies: Deployment Programs DeploymentPrograms: Project Development This video teaches the viewer about wind turbines and RETscreen's wind module, which can be used to project the cost and production of a wind

416

A Local AFOS MOS Program (LAMP) and its Application to Wind Prediction  

Science Conference Proceedings (OSTI)

The Techniques Development Laboratory has a project called the local AFOS MOS Program (LAMP). Its purpose is the development of a system which can produce at any hour of the day in a Weather Service Forecast Office (WSFO) environment Model Output ...

Harry R. Glahn; David A. Unger

1986-07-01T23:59:59.000Z

417

Primer: The DOE Wind Energy Program's Approach to Calculating Cost of Energy: July 9, 2005 - July 8, 2006  

SciTech Connect

This report details the methodology used by DOE to calculate levelized cost of wind energy and demonstrates the variation in COE estimates due to different financing assumptions independent of wind generation technology.

George, K.; Schweizer, T.

2008-01-01T23:59:59.000Z

418

Cape Verde Archipelago Wind Farm | Open Energy Information  

Open Energy Info (EERE)

Archipelago Wind Farm Archipelago Wind Farm Jump to: navigation, search Name Cape Verde Archipelago Wind Farm Agency/Company /Organization African Development Bank Sector Energy Focus Area Renewable Energy, Wind Topics Finance, Market analysis, Background analysis Website http://www.europa-eu-un.org/ar Program Start 2010 Country Cape Verde UN Region Western Africa References Cape Verde Archipelago Wind Farm[1] Summary "The European Investment Bank (EIB) and African Development Bank (AfDB) agreed to provide EUR 45 million to design, build and operate onshore wind farms on four islands in the Cape Verde archipelago. This will be the first large scale wind project in Africa and the first renewable energy public private partnership in sub-Saharan Africa. The project will provide over 28MW of electricity generating capacity and help

419

Wind energy information guide  

DOE Green Energy (OSTI)

This book is divided into nine chapters. Chapters 1--8 provide background and annotated references on wind energy research, development, and commercialization. Chapter 9 lists additional sources of printed information and relevant organizations. Four indices provide alphabetical access to authors, organizations, computer models and design tools, and subjects. A list of abbreviations and acronyms is also included. Chapter topics include: introduction; economics of using wind energy; wind energy resources; wind turbine design, development, and testing; applications; environmental issues of wind power; institutional issues; and wind energy systems development.

NONE

1996-04-01T23:59:59.000Z

420

Passive solar design calculations with the DOE-2 computer program  

DOE Green Energy (OSTI)

The DOE-2 computer program has been modified to improve modeling of passive-solar buildings by the addition of the custom weighting-factor method. The thermal-load and air-temperature calculation procedure in DOE-2 are described. Assumptions inherent in the use of American Society of Heating, Refrigerating, and Air-Conditioning Engineers (ASHRAE) precalculated and the custom weighting factors are discussed. Calculated results from DOE-2 are compared with measured heat-extraction rates and air temperatures for four buildings. These comparisons indicate that DOE-2 can accurately model direct-gain passive buildings and can treat night-ventilative cooling and water walls in an approximate manner.

Kerrisk, J.F.; Moore, J.E.; Schnurr, N.M.; Hunn, B.D.

1980-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "wind program designed" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


421

Field verification program for small wind turbines, Block Island, Rhode Island. Quarterly report for the period October to December 1999  

SciTech Connect

The proposal is to install and monitor five 10-kW residential wind turbines on 25-meter towers on Block Island, which has excellent wind resources and high electricity costs. The harsh environment will provide an opportunity for accelerated reliability testing of an enhanced wind turbine and other equipment.

Henry G. duPont

2000-01-01T23:59:59.000Z

422

An Overview of the Ciao Multiparadigm Language and Program Development Environment and Its Design Philosophy  

Science Conference Proceedings (OSTI)

We describe some of the novel aspects and motivations behind the design and implementation of the Ciao multiparadigm programming system. An important aspect of Ciao is that it provides the programmer with a large number of useful features from different ...

Manuel V. Hermenegildo; Francisco Bueno; Manuel Carro; Pedro López; José F. Morales; German Puebla

2008-06-01T23:59:59.000Z

423

A comprehensive evaluation of the MIT Bachelor of Science in Art and Design program  

E-Print Network (OSTI)

The purpose of this thesis was to conduct a survey that would determine the source of MIT Department of Architecture undergraduate dissatisfaction with the Bachelor of Science in Art and Design (BSAD) degree program. It ...

Most, Jennifer L

2000-01-01T23:59:59.000Z

424

Attempt to develop an ''intelligent'' lens design program  

SciTech Connect

We are developing a Lens Design Program intended to operate without user intervention, and to improve its performace with repeated usage. The methodology and current status will be discussed in this paper. 5 refs., 6 figs.

Viswanathan, V.K.; Bohachevsky, I.O.; Cotter, T.P.

1985-01-01T23:59:59.000Z

425

Pile design using wave equation analysis program application in offshore wind farm  

E-Print Network (OSTI)

Pile driving has been of interest to geotechnical engineers for a very long time. Originally, empirical pile driving formulae were used to interpret pile displacements caused by a hammer blow. Smith (1960) proposed a ...

Chauhan, Siddharth

2008-01-01T23:59:59.000Z

426

Solar house design program validation. Progress report No. 1  

DOE Green Energy (OSTI)

It is important that the designer of solar heating and/or cooling systems be able to perform rapid and approximate calculations for determining the size of the various components that constitute a solar heating and/or cooling system. These approximation techniques may be used to provide quick checks against more detailed analyses to ensure against possible gross errors, and may also be used to provide information to a potential client. (WDM)

Winn, C B

1975-01-01T23:59:59.000Z

427

The local energy indicator: designing for wind and solar energy systems in the home  

Science Conference Proceedings (OSTI)

This paper proposes and investigates the area of local energy for interactive systems design. We characterize local energy in terms of three themes: contextuality, seasonality, and visibility/tangibility. Here we focus on two specific local energy ... Keywords: design, energy, local energy, sustainability

James Pierce; Eric Paulos

2012-06-01T23:59:59.000Z

428

Use of program GEOTHM to design and optimize geothermal power cycles  

SciTech Connect

The Lawrence Berkeley Laboratory program GEOTHM has been under development for nearly two years. GEOTHM will design and optimize a wide variety of thermodynamic cycles. The most recent improvements in the GEOTHM program are included. These improvements include: a model for concentrated saline brines and a single step cycle optimization process. Geothermal power cycles are given as examples.

Pines, H.S.; Green, M.A.

1976-06-01T23:59:59.000Z

429

Summary and accomplishments of the ORNL program for nuclear piping design criteria  

SciTech Connect

The ORNL Piping Program was defined and established to develop basic information on the structure behavior of nuclear power plant piping components and to prepare this information in forms suitable for use in design codes and standards. Charts are presented showing the percentage completion of the various program tasks. (DG)

Greenstreet, W.L.

1975-11-01T23:59:59.000Z

430

Advanced turbine systems program conceptual design and product development. Annual report, August 1994--July 1995  

SciTech Connect

Objective of the ATS program is to develop ultra-high efficiency, environmentally superior, and cost-competitive gas turbine systems for base-load application in utility, independent power producer, and industrial markets. This report discusses the major accomplishments achieved during the second year of the ATS Phase 2 program, particularly the design and test of critical components.

1994-10-01T23:59:59.000Z

431

Cooperative field test program for wind energy systems: Effects of precipitation on wind turbine performance. Detailed test plan and quality assurance plan  

SciTech Connect

The purpose of this research is to examine the effect of precipitation on wind turbine performance. This study will be conducted at the Whisky Run windfarm on the southern Oregon coast. Precipitation has been shown to cause significant degradation in the performance of the MOD-O wind turbine by Corrigan and DeMiglio (1985), who found performance reductions of up to 20% for light rainfall, 30% for moderate rainfall and 36% for snow and drizzle. There are several penalties due to rainfall, but it appears that most of the performance degradation is due to rain induced roughness. The Whisky Run windfarm receives around 60 inches of rain per year most of which occurs from October through April. During the summer months drizzle is an occasional weather phenomena. Pacific Wind Energy (PWE) and Pacific Power and Light (PP&L) propose to examine the effect of precipitation on wind turbine performance. The Whisky Run windfarm is unique among windfarms because the power sales contract is set up such that the wind farm is considered a research project and the participants have agreed to engage in research that will benefit the industry. PP&L will be providing all of the instrumentation except for the recording rate of rain gage. PWE will be performing the analysis of the data and project management.

Not Available

1986-01-06T23:59:59.000Z

432

DEVELOPMENT OF OPTIMUM DESIGN CONFIGURATION AND PERFORMANCE FOR VERTICAL AXIS WIND TURBINE  

E-Print Network (OSTI)

report was prepared as a result of work sponsored by the California Energy Commission (Commission). It does not necessarily represent the views of the Commission, its employees, or the state of California. The Commission, the state of California, its employees, contractors, and subcontractors make no warranty, express or implied, and assume no legal liability for the information in this report; nor does any party represent that the use of this information will not infringe upon privately owned rights. This report has not been approved or disapproved by the Commission nor has the Commission passed upon the accuracy or adequacy of the information in this report. PREFACE The Public Interest Energy Research (PIER) Program supports public interest energy research and development that will help improve the quality of life in California by bringing environmentally safe, affordable and reliable energy services and products to the marketplace. The PIER Program, managed by the California Energy Commission (Commission), annually awards up to $62 million of which $2 million/year is allocated to the Energy Innovation Small Grant (EISG) Program for grants. The EISG Program is administered by the San Diego State

Hamid R. Rahai; Eisg Awardee

2001-01-01T23:59:59.000Z

433

Designing PV Incentive Programs to Promote Performance: A Reviewof Current Practice  

SciTech Connect

Increasing levels of financial support for customer-sited photovoltaic (PV) systems, provided through publicly-funded incentive programs, has heightened concerns about the long-term performance of these systems. Given the barriers that customers face to ensuring that their PV systems perform well, and the responsibility that PV incentive programs bear to ensure that public funds are prudently spent, these programs should, and often do, play a critical role in ensuring that PV systems receiving incentives perform well. To provide a point of reference for assessing the current state of the art, and to inform program design efforts going forward, we examine the approaches to encouraging PV system performance used by 32 prominent PV incentive programs in the U.S. We identify eight general strategies or groups of related strategies that these programs have used to address performance issues, and highlight important differences in the implementation of these strategies among programs.

Barbose, Galen; Wiser, Ryan; Bolinger, Mark

2007-06-01T23:59:59.000Z

434

Model-based design of an ultra high performance concrete support structure for a wind turbine  

E-Print Network (OSTI)

A support tower is the main structure which would support rotor, power transmission and control systems, and elevates the rotating blades above the earth boundary layer. A successful design should ensure safe, efficient ...

Wang, Zheng, M. Eng. Massachusetts Institute of Technology

2007-01-01T23:59:59.000Z

435

DESIGN AND MODELING OF DISPATCHABLE HEAT STORAGE IN WIND/DIESEL SYSTEMS  

E-Print Network (OSTI)

been proposed and implemented (Hunter and Elliot, 1994; Drouilhet, 1999). Most of the designs involve). The authors also wish to thank Leo Roy for his efforts to motivate the project. 7.0 REFERENCES Drouilhet, S

Massachusetts at Amherst, University of

436

Multi-Objective Capacity Planning of a Pv-Wind-Diesel-Battery Hybrid Power System  

E-Print Network (OSTI)

A new solution methodology of the capacity design problem of a PV-Wind-Diesel-Battery Hybrid Power System (HPS) is presented. The problem is formulated as a Linear Programming (LP) model with two objectives: minimizing ...

Saif, A.

437

A programming environment for the design of complex high speed ASICs  

Science Conference Proceedings (OSTI)

A C++ based programming environment for the design of complex high speed ASICs is presented. The design of a 75 Kgate DECT transceiv er is used as a driv er example. Compact descriptions, combined with efficient sim ulationand syn thesis strategies are ... Keywords: congestion, global routing, quadratic placement, relaxed pins, routing models, supply-demand

Patrick Schaumont; Serge Vernalde; Luc Rijnders; Marc Engels; Ivo Bolsens

1998-05-01T23:59:59.000Z

438

Two Controlled Experiments Assessing the Usefulness of Design Pattern Documentation in Program Maintenance  

E-Print Network (OSTI)

Using design patterns is claimed to improve programmer productivity and software quality. Such improvements may manifest both at construction time (in faster and better program design) and at maintenance time (in faster and more accurate program comprehension). This paper focuses on the maintenance context and reports on experimental tests of the following question: Does it help the maintainer if the design patterns in the program code are documented explicitly (using source code comments), compared to a well-commented pro- gram without explicit reference to design patterns? Subjects performed maintenance tasks on two programs ranging from 360 to 560 LOC including comments. Both programs contained design patterns. The controlled variable was whether the use of de- sign patterns was documented explicitly or not. The experiments thus tested whether pattern com- ment lines (PCL) help during maintenance if pat- terns are relevant and sufficient program comments are already present. It turns out that this question is a challenge for the experimental methodology: a setup leading to relevant results is quite difficult to find. We discuss these issues in detail and suggest a general approach to such situations.

Lutz Prechelt; Barbara Unger; Michael Philippsen; Walter Tichy

2001-01-01T23:59:59.000Z

439

District cooling engineering & design program. Final technical report  

SciTech Connect

Phoenix, Arizona is located in the Sonoran desert. Daytime temperatures typically rise to over 100 F during the three summer months. Average and peak temperatures have tended to rise over recent decades. This is generally attributed to what is known as the heat island effect, due to an increase in heat absorbing concrete and a decrease in irrigated farmland in the area. Phoenix is the eighth largest city in the US with a population of just over one million (1,000,000). The metropolitan area is one of the fastest growing in the nation. Over the last ten years its population has increased by over 40%. It is not an exaggeration to say the general availability of refrigerated air conditioning, both for buildings and automobiles has been an important factor enabling growth. The cost of operating public buildings has risen significantly in the last decade. In fiscal year 92/93 the City of Phoenix had energy expenses of over thirty four million dollars ($34,000,000). Because the City was planning a major new construction project, a new high-rise City Hall, it was decided to study and then optimize the design and selection of building systems to minimize long term owning and operating costs. The City Hall was to be constructed in downtown Phoenix. Phoenix presently owns other buildings in the area. A number of large cooling systems serving groups of buildings are currently operating in the Phoenix area. The City requested that the design consultants analyze the available options and present recommendations to the City`s engineering staff.

Not Available

1994-03-01T23:59:59.000Z

440

Searchlight Wind Energy Project FEIS Appendix E  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

June 2, 2009 District Las Vegas Field Office Resource Area Activity (program) Proposed Wind Generation SECTION A. PROJECT INFORMATION 1. Project Name Searchlight Wind Project 4....

Note: This page contains sample records for the topic "wind program designed" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


441

Wind Energy Systems Exemption | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Systems Exemption Wind Energy Systems Exemption Eligibility Commercial Industrial Utility Savings For Wind Buying & Making Electricity Maximum Rebate None Program Information Start...

442

AN IBM 7090 FORTRAN PROGRAM FOR ASME UNFIRED PRESSURE VESSEL DESIGN AND PRELIMINARY COST ESTIMATION  

SciTech Connect

An IBM 7090 FORTRAN program was written for the preliminary design and cost estimation of unfired pressure vessels with or without a jacket. Both vessel and jacket designs conform to the 1959 ASME Boiler and Pressure Vessel Code, Section VIII, Unfired Pressure Vessels. Vessels and jackets from 5 in. pipe through 84 in. o.d. and 1/4 in. through 1 1/2 in. in metal thickness may be designed by this program as written. Total vessel cost is the sum of metal and fabrication costs, each on a weight basis. (auth)

Prince, C.E.; Milford, R.P.

1962-10-17T23:59:59.000Z

443

A Methodology for Calculating Emissions Reductions from Renewable Energy Programs and Its Application to the Wind Farms in the Texas ERCOT Region  

E-Print Network (OSTI)

Recently Texas Legislature required adding 5,880 MW of generating capacity from renewable energy technologies by 2015, and 500 MW from non-wind renewables. This legislation also required the Public Utility Commission (PUC) to establish a target of 10,000 MW of installed renewable capacity by 2025, and required Texas Commission on Environmental Quality (TCEQ) to develop a methodology for computing emissions reductions from renewable energy initiatives and the associated credits. In this legislation the Energy Systems Laboratory was to assist the TCEQ to quantify emissions reductions credits from energy efficiency and renewable energy programs. To satisfy these requirements the ESL has been developing and refining a method to annually calculate creditable emissions reductions from wind and other renewable energy resources for the TCEQ. This paper provides a detailed description of the methodology developed to calculate the emissions reductions from electricity provided by a wind farm. Details are presented for the wind farm Sweetwater I as well as results from the application of this procedure to all the wind energy providers in the Texas ERCOT region.

Culp, C.; Haberl, J. S.; Liu, Z.; Subbarao, K.; Baltazar-Cervantes, J. C.; Yazdani, B.

2007-12-01T23:59:59.000Z

444

Wind Access and Permitting Law | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Access and Permitting Law Wind Access and Permitting Law < Back Eligibility Residential Savings Category Wind Buying & Making Electricity Program Info State Delaware Program Type...

445

Introduction to Small-Scale Wind Energy Systems (Including RETScreen...  

Open Energy Info (EERE)

Programs DeploymentPrograms: Project Development This video teaches the viewer about wind turbines and RETscreen's wind...

446

Solar and Wind Contractor Licensing | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Heating Program Information Louisiana Program Type SolarWind Contractor Licensing All solar and wind energy installations must be performed by a contractor duly licensed by and...

447

A Kind of Innovative Design Methodology of Wind Turbine Blade Based on Natural Structure  

Science Conference Proceedings (OSTI)

Based on the mid axis pattern configuration, the topology adaption of the plant leaf vein is discussed in the first place., Secondly, combined with the blade principal stress field distribution cases, the adaptive design is applied in the blade structure ... Keywords: adaptation, blade, hybrid composites, mid axis pattern, stress field

Wangyu Liu; Jiaxing Gong; Xifeng Liu; Xin Zhang

2009-05-01T23:59:59.000Z

448

NREL: Wind Research - Projects  

NLE Websites -- All DOE Office Websites (Extended Search)

Projects Projects NREL's wind energy research and development projects focus on reducing the cost of wind technology and expanding access to wind energy sites. Our specialized technical expertise, comprehensive design and analysis tools, and unique testing facilities help industry overcome challenges to bringing new wind technology to the marketplace. Some of these success stories are described in NREL's Wind R&D Success Stories. We also work closely with universities and other national laboratories supporting fundamental research in wind technologies, including aerodynamics, aeroacoustics, and material sciences essential in the development of new blade technologies and advanced controls, power electronics, and testing to further refine drivetrain topology.

449

Designation Order No. 00-12.00 to the Executive Director of Loan Programs and Director of the Advanced Technology Vehicles Manufacturing Incentive Program  

Directives, Delegations, and Requirements

Secretary or Energy designates each of the Executive Director of Loan Programs and the Director of the Advanced Technology Vehicles Manufacturing Incentive ...

2010-04-30T23:59:59.000Z

450

PRISM; The plant design concept for the U. S. advanced liquid metal reactor program  

SciTech Connect

The US program for development of an advanced liquid metal reactor (ALMR) is proceeding into a new phase of focused design development. This new phase started at the beginning of 1989; its objective is to complete the conceptual design of the US ALMR, with supporting key feature tests, sufficiently to enter a more detailed design phase and subsequent construction of a prototype reactor plant. A project goal is to demonstrate by actual performance of the reactor its passive, inherent safety features and thereby provide the technical basis for certification of the design by the Nuclear Regulatory Commission (NRC). This paper reports on the PRISM (power reactor inherently safe module) reactor concept which in combination with the IFR (integral fast reactor) metal fuel cycle being developed by Argonne National Laboratory, was selected by DOE in 1988 as the reference design for the US ALMR program.

Berglund, R.C.; Tippets, F.E. (GE Nuclear Energy, Advance Nuclear Technology, San Jose, CA (US))

1989-01-01T23:59:59.000Z

451

2011 Grants for Offshore Wind Power | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Offshore Wind Power 2011 Grants for Offshore Wind Power 2011 Grants for Offshore Wind Power Addthis Browse By Topic TOPICS Energy Efficiency ---Home Energy Audits --Design &...

452

Solar and Wind Easements and Local Option Rights Laws | Department of  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Local Option Rights Laws Local Option Rights Laws Solar and Wind Easements and Local Option Rights Laws < Back Eligibility Commercial Fed. Government Industrial Local Government Nonprofit Residential Schools State Government Savings Category Heating & Cooling Commercial Heating & Cooling Solar Heating Buying & Making Electricity Water Heating Wind Program Info State Nebraska Program Type Solar/Wind Access Policy Provider Nebraska Energy Office Nebraska's solar and wind easement provisions allow property owners to create binding solar and wind easements for the purpose of protecting and maintaining proper access to sunlight and wind. Originally designed only to apply to solar, the laws were revised in March 1997 (Bill 140) to include wind. Counties and municipalities are permitted to develop zoning

453

DOE-HDBK-1086-95; Table-Top Training Program Design  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

86-95 86-95 April 1995 DOE HANDBOOK TABLE-TOP TRAINING PROGRAM DESIGN U.S. Department of Energy FSC-6910 Washington, D.C. 20585 DISTRIBUTION STATEMENT A. Approved for public release; distribution is unlimited. ERRATA SHEET No. 1 DOE-HDBK-1086-95 Table-Top Training Program Design Page/Section Change Page iii, FOREWORD Delete reference to DOE 5480.18B, Nuclear Facility Training Accreditation Program, and update preparing organization from EH-31 to EH-53 Page 3, Section 2.1.2 Delete reference to DOE 5480.18B, Nuclear Facility Training Accreditation Program. Concluding Material The Preparing Activity was updated from EH-31 to EH-53. This document has been reproduced directly from the best available copy. Available to DOE and DOE contractors from the Office of Scientific and

454

Model Wind Ordinance for Local Governments | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Ordinance for Local Governments Ordinance for Local Governments Model Wind Ordinance for Local Governments < Back Eligibility Agricultural Commercial Fed. Government Industrial Institutional Local Government Nonprofit Schools State Government Savings Category Wind Buying & Making Electricity Program Info State Pennsylvania Program Type Solar/Wind Permitting Standards Provider Pennsylvania Department of Environmental Protection Note: This model ordinance was designed to provide guidance to local governments that wish to develop their own siting rules for wind turbines. While it was developed as part of a cooperative effort involving several state agencies, the model itself has no legal or regulatory authority. In 2006, Pennsylvania developed a model local ordinance for wind energy facilities through a collaborative effort involving several state

455

Model Wind Energy Facility Ordinance | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Energy Facility Ordinance Energy Facility Ordinance Model Wind Energy Facility Ordinance < Back Eligibility Agricultural Commercial Fed. Government Industrial Institutional Local Government Nonprofit Residential Schools State Government Savings Category Wind Buying & Making Electricity Program Info State Maine Program Type Solar/Wind Permitting Standards Provider Land Use Planning Note: This model ordinance was designed to provide guidance to local governments that wish to develop their own siting rules for wind turbines. While it was developed as part of a cooperative effort involving several state agencies, the model itself has no legal or regulatory authority. In 2008, the Governor's Task Force on Wind Power Development issued its final report. One of the Task Force's recommendations was that the State

456

Guidance for Local Wind Energy Ordinances | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

You are here You are here Home » Guidance for Local Wind Energy Ordinances Guidance for Local Wind Energy Ordinances < Back Eligibility Agricultural Commercial Fed. Government Industrial Institutional Local Government Nonprofit Residential Schools State Government Tribal Government Savings Category Wind Buying & Making Electricity Program Info State New York Program Type Solar/Wind Permitting Standards Provider New York State Energy Research and Development Authority Note: The documents described in this summary were designed to provide guidance to local governments that wish to develop their own siting rules for wind turbines. While they were developed under contract with the New York State Energy Research and Development Authority (NYSERDA), a state agency, none of the documents themselves have any legal or regulatory

457

Tribal Energy Program  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

AK AK Project Title AK-TEP-NATIVE VILLAGE OF EYAK Location: Tribal NATIVE VILLAGE OF EYAK American Recovery and Reinvestment Act: Proposed Action or Project Description The Native Village of Eyak proposes to support the feasibility phase of a proposed Wind Project (with a proposed capacity of 1.5 to 2.0 MW). Activities proposed include improving wind data maps, learning from other existing wind projects, public education and awareness, and project design and permitting. Mobile anemometer kits (10-meter) would be purchased to verify current resource maps and improve them with additional data collection, and install three 30-meter towers to collect data. Other existing wind projects would be researched to use the best known methods from these sites. Wind program meetings would be

458

Update of wind resource assessment activities at NREL  

DOE Green Energy (OSTI)

The goal of the wind resource assessment activity at the National Renewable Energy Laboratory (NREL) is to improve the characterization of the wind resource for regions where there are market opportunities for U.S. wind energy technology. A variety of wind resource assessment activities have recently been undertaken at NREL in support of this effort. The major tasks during the past year include aiding the establishment of new wind measurement programs in the United States, the development of updated comprehensive meteorological and geographical data bases to be used for resource assessments in the United States and abroad, and designing progressive wind resource mapping tools to facilitate products used in support of emerging markets.

Elliott, D L; Schwartz, M N

1996-07-01T23:59:59.000Z

459

Energy Secretary Hails University of Maine's Wind Research | Department of  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Hails University of Maine's Wind Research Hails University of Maine's Wind Research Energy Secretary Hails University of Maine's Wind Research June 16, 2010 - 10:51am Addthis Stephen Graff Former Writer & editor for Energy Empowers, EERE Energy Secretary Steven Chu praised the University of Maine on Monday, calling the school's offshore wind technology program "truly impressive." Secretary Chu visited the university's Orono campus to learn more about its 10-year plan to design and deploy deepwater wind technology, an effort that could pave the way for the first floating commercial wind farm in the United States. "It's part of the leadership Maine has shown in going toward a sustainable economy," Chu told the university's newspaper. Invited by Maine Sen. Susan Collins, Chu was given a tour of the

460

Modeling, analysis, control and design application guidelines of doubly fed induction generator (DFIG) for wind power applications.  

E-Print Network (OSTI)

??Double Fed Induction Generators (DFIG) has been widely used for the past two decades in large wind farms. However, there are many open-ended problems yet… (more)

Masaud, Tarek

2013-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "wind program designed" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


461

Offshore Wind Research (Fact Sheet), National Wind Technology Center (NWTC)  

NLE Websites -- All DOE Office Websites (Extended Search)

Offshore Offshore Wind Research The National Renewable Energy Laboratory is internationally recognized for offshore wind energy research and development (R&D). Its experience and capabilities cover a wide spectrum of wind energy disciplines. NREL's offshore wind R&D efforts focus on critical areas that address the long-term needs of the offshore wind energy industry and the Department of Energy (DOE). R&D efforts include: * Developing offshore design tools and methods * Collaborating with international partners * Testing offshore systems and developing standards * Conducting economic analyses * Characterizing offshore wind resources * Identifying and mitigating offshore wind grid integration challenges and barriers NREL documented the status of offshore wind energy in the United

462

Reduced Form of Detailed Modeling of Wind Transmission and Intermittency for Use in Other Models: Preprint  

Science Conference Proceedings (OSTI)

This paper, to accompany the corresponding poster, presents reduced-form outputs from the Wind Deployment Systems Model (WinDS) that can be implemented in other models with less- detailed wind power modeling capabilities. Other models will be able to use the reduced-form results to improve the accuracy of the wind power portion of their models. WinDS is a multiregional, multitime-period, Geographic Information System (GIS) and linear programming model of capacity expansion in the electric sector of the United States. WinDS is designed to address the market issues related to the penetration of wind power into the electric sector. These principal market issues include the geographic dependency of the resource, access to and cost of transmission, and the intermittency of wind power.

Blair, N.; Short, W.; Heimiller, D.

2005-05-01T23:59:59.000Z

463

Projected Impact of Federal Policies on U.S. Wind Market Potential: Preprint  

DOE Green Energy (OSTI)

This report discusses the potential for solar-powered agricultural irrigation pumps in the San Joaquin Valley and how these applications could improve the region's air This paper presents results from the Wind Deployment Systems Model (WinDS) for several potential energy policy cases. WinDS is a multiregional, multitime-period, Geographic Information System (GIS), and linear programming model of capacity expansion in the electric sector of the United States. WinDS is designed to address the principal market issues related to the penetration of wind energy technologies into the electric sector. These principal market issues include access to and cost of transmission, and the intermittency of wind power. WinDS has been used to model the impact of various policy initiatives, including a wind production tax credit (PTC) and a renewable portfolio standard (RPS).

Short, W.; Blair, N.; Heimiller, D.

2004-03-01T23:59:59.000Z

464

Solar and Wind Easements | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Solar and Wind Easements Solar and Wind Easements Solar and Wind Easements < Back Eligibility Commercial Fed. Government Industrial Local Government Nonprofit Residential Schools State Government Savings Category Heating & Cooling Commercial Heating & Cooling Solar Heating Buying & Making Electricity Water Heating Wind Program Info State Montana Program Type Solar/Wind Access Policy Provider Montana Department of Environmental Quality Montana's solar and wind easement provisions allow property owners to create solar and wind easements for the purpose of protecting and maintaining proper access to sunlight and wind. Solar easements should be negotiated with neighboring property owners. Montana's solar easement law was enacted in 1979; the wind easement law was originally enacted in 1983.

465

Wind Energy Workforce Development: Engineering, Science, & Technology  

SciTech Connect

Broadly, this project involved the development and delivery of a new curriculum in wind energy engineering at the Pennsylvania State University; this includes enhancement of the Renewable Energy program at the Pennsylvania College of Technology. The new curricula at Penn State includes addition of wind energy-focused material in more than five existing courses in aerospace engineering, mechanical engineering, engineering science and mechanics and energy engineering, as well as three new online graduate courses. The online graduate courses represent a stand-alone Graduate Certificate in Wind Energy, and provide the core of a Wind Energy Option in an online intercollege professional Masters degree in Renewable Energy and Sustainability Systems. The Pennsylvania College of Technology erected a 10 kilowatt Xzeres wind turbine that is dedicated to educating the renewable energy workforce. The entire construction process was incorporated into the Renewable Energy A.A.S. degree program, the Building Science and Sustainable Design B.S. program, and other construction-related coursework throughout the School of Construction and Design Technologies. Follow-on outcomes include additional non-credit opportunities as well as secondary school career readiness events, community outreach activities, and public awareness postings.

Lesieutre, George A.; Stewart, Susan W.; Bridgen, Marc

2013-03-29T23:59:59.000Z

466

ANALYSIS OF THE PERFORMANCE AND COST EFFECTIVENESS OF NINE SMALL WIND ENERGY CONVERSION SYSTEMS FUNDED BY THE DOE SMALL GRANTS PROGRAM  

E-Print Network (OSTI)

B. Dawley, I. Wind Energy Conversion System Monitoring &ment of Wind Energy Conversion Systems, Los AlamosCommerical Wind Energy Conversion System Monitoring and

Kay, J.

2009-01-01T23:59:59.000Z

467

ANALYSIS OF THE PERFORMANCE AND COST EFFECTIVENESS OF NINE SMALL WIND ENERGY CONVERSION SYSTEMS FUNDED BY THE DOE SMALL GRANTS PROGRAM  

E-Print Network (OSTI)

AND COST EFFECTIVENESS OF NINE SMALL WIND ENERGY CONVERSIONAND COST EFFECTIVENESS OF NINE SMALL WIND ENERGY CONVERSIONscale wind energy commer- is high capital costs per unit of

Kay, J.

2009-01-01T23:59:59.000Z

468

Benefits of the IEA Wind Co-operation Wind  

E-Print Network (OSTI)

energy is changing the generation mix 1. Wind energy development brings national benefits 2. IEA Wind activities support national programs by sharing information and joint research resultsWind energy is part of the global economy 1. Worldwide, new wind energy installations in 2010 represented an investment of 47.3 billion € (65 billion USD) 2. More than 500,000 people are currently employed in the wind industry Source: GWEC1995

unknown authors

2001-01-01T23:59:59.000Z

469

Wind Easements | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Wind Easements Wind Easements Wind Easements < Back Eligibility Agricultural Fed. Government Institutional Local Government Nonprofit Residential Schools State Government Tribal Government Savings Category Wind Buying & Making Electricity Program Info State North Dakota Program Type Solar/Wind Access Policy North Dakota allows property owners to grant an easement that ensures adequate exposure of a wind-energy system to the wind. The easement runs with the land benefited and burdened, and terminates upon the conditions stated in the easement. The statutes authorizing the creation of wind easements include several provisions to protect property owners. For example, a wind easement may not make the property owner liable for any property tax associated with the wind-energy system or other equipment

470

SYNCH: A program for design and analysis of synchrotrons and beamlines -- user`s guide  

Science Conference Proceedings (OSTI)

SYNCH is a computer program for use in the design and analysis of synchrotrons, storage rings, and beamlines. It has a large repertoire of commands that can be accessed in a flexible way. The input statements and the results of the calculations they invoke are saved in an internal database so that this information may be shared by other statements. SYNCH is the first accelerator program to organize its input in the form of a language. The statements, which resemble sentences, provide a natural way of describing lattices and invoking relevant calculations. The organization of the program is modular, so that it has been possible to expand its capabilities progressively.

Garren, A.A.; Kenney, A.S.; Courant, E.D.; Russell, A.D.; Syphers, M.J.

1993-12-31T23:59:59.000Z

471

Designing PV Incentive Programs to Promote Performance: A Reviewof Current Practice in the U.S.  

Science Conference Proceedings (OSTI)

In the U.S., the increasing financial support for customer-sited photovoltaic (PV) systems provided through publicly-funded incentive programs has heightened concerns about the long-term performance of these systems. Given the barriers that customers face to ensuring that their PV systems perform well, and the responsibility that PV incentive programs bear to ensure that public funds are prudently spent, these programs should, and often do, play a critical role in addressing PV system performance. To provide a point of reference for assessing the current state of the art, and to inform program design efforts going forward, we examine the approaches to encouraging PV system performance used by 32 prominent PV incentive programs in the U.S. We identify eight general strategies or groups of related strategies that these programs have used to address factors that affect performance, and describe key implementation details. Based on this review, we then offer recommendations for how PV incentive programs can be effectively designed to mitigate potential performance issues.

Barbose, Galen; Wiser, Ryan; Bolinger, Mark

2006-10-06T23:59:59.000Z