Powered by Deep Web Technologies
Note: This page contains sample records for the topic "wind program designed" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


1

Wind Program News  

Broader source: Energy.gov (indexed) [DOE]

eerewindwind-program-news en EERE Leadership Celebrates Offshore Wind in Maine http:energy.goveerearticleseere-leadership-celebrates-offshore-wind-maine

2

Wind Program: WINDExchange  

Wind Powering America (EERE)

Version Bookmark and Share WINDExchange logo WINDExchange is the U.S. Department of Energy (DOE) Wind Program's platform for disseminating credible information about wind...

3

Wind Turbine Blade Design  

K-12 Energy Lesson Plans and Activities Web site (EERE)

Blade engineering and design is one of the most complicated and important aspects of modern wind turbine technology. Engineers strive to design blades that extract as much energy from the wind as possible throughout a range of wind speeds and gusts, yet are still durable, quiet and cheap. A variety of ideas for building turbines and teacher handouts are included in this document and at the Web site.

4

Wind energy: Program overview, FY 1992  

SciTech Connect (OSTI)

The DOE Wind Energy Program assists utilities and industry in developing advanced wind turbine technology to be economically competitive as an energy source in the marketplace and in developing new markets and applications for wind systems. This program overview describes the commercial development of wind power, wind turbine development, utility programs, industry programs, wind resources, applied research in wind energy, and the program structure.

Not Available

1993-06-01T23:59:59.000Z

5

Design Wind Speed  

Science Journals Connector (OSTI)

Wind is characterized by various different parameters. They include the following items: (1) wind speed, such as the mean wind speed and maximum instantaneous wind speed; (2) wind direction such as the azimuth di...

Yozo Fujino; Kichiro Kimura; Hiroshi Tanaka

2012-01-01T23:59:59.000Z

6

Women of Wind Energy Honor Wind Program Researchers | Department...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Women of Wind Energy Honor Wind Program Researchers Women of Wind Energy Honor Wind Program Researchers August 1, 2013 - 2:54pm Addthis This is an excerpt from the Second Quarter...

7

Wind Program: Program Plans, Implementation, and Results  

Office of Environmental Management (EM)

Hydropower Technologies Program Technology Review (Deep Dive) for Under Secretaries Johnson and Koonin September 4, 2009 presentation highlighting the Wind and Hydropower...

8

WIND POWER PROGRAM WIND PROGRAM ACCOMPLISHMENTS U.S. Department...  

Office of Environmental Management (EM)

Many of these innovations have been incorporated by industry into modern commercial wind turbines. * Advanced airfoils led to new turbine blade designs that produced 30% more...

9

Wind Program: Program Plans, Implementation, and Results  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Wind Program Wind Program HOME ABOUT RESEARCH & DEVELOPMENT DEPLOYMENT FINANCIAL OPPORTUNITIES INFORMATION RESOURCES NEWS EVENTS EERE » Wind Program » About Key Activities Plans, Implementation, & Results Budget Contacts Plans, Implementation, and Results Here you'll find an overview of the Wind Program and links to its program planning, implementation, and results documents. This list summarizes the program's wind power research, development, and demonstration activities. Read more about: Overview Learn more about this EERE Office. Plans Discover the plans, budgets, and analyses that set the direction of office priorities and activities. Implementation Find out how the office controls, implements, and adjusts its plans and manages its activities. Results Learn about the technological, commercial, and other outputs and outcomes

10

Conceptual Design of a 50--100 MW Electron Beam Accelerator System for the National Hypersonic Wind Tunnel Program  

SciTech Connect (OSTI)

The National Hypersonic Wind Tunnel program requires an unprecedented electron beam source capable of 1--2 MeV at a beam power level of 50--100 MW. Direct-current electron accelerator technology can readily generate high average power beams to approximately 5 MeV at output efficiencies greater than 90%. However, due to the nature of research and industrial applications, there has never been a requirement for a single module with an output power exceeding approximately 500 kW. Although a 50--100 MW module is a two-order extrapolation from demonstrated power levels, the scaling of accelerator components appears reasonable. This paper presents an evaluation of component and system issues involved in the design of a 50--100 MW electron beam accelerator system with precision beam transport into a high pressure flowing air environment.

SCHNEIDER,LARRY X.

2000-06-01T23:59:59.000Z

11

Wind Power Today, 2010, Wind and Water Power Program (WWPP) ...  

Office of Environmental Management (EM)

& Publications Wind Program Accomplishments Final Report DE-EE0005380 - Assessment of Offshore Wind Farm Effects on Sea Surface, Subsurface and Airborne Electronic Systems A...

12

Wind Program: Stakeholder Engagement and Outreach  

Wind Powering America (EERE)

Outreach Outreach Printable Version Bookmark and Share The Stakeholder Engagement and Outreach initiative of the U.S. Department of Energy's Wind Program is designed to educate, engage, and enable critical stakeholders to make informed decisions about how wind energy contributes to the U.S. electricity supply. Highlights Resources Wind Resource Maps State Activities What activities are happening in my state? AK AL AR AZ CA CO CT DC DE FL GA HI IA ID IL IN KS KY LA MA MD ME MI MN MO MS MT NC ND NE NH NJ NM NV NY OH OK OR PA RI SC SD TN TX UT VA VT WA WI WV WY Installed wind capacity maps. Features A image of a house with a residential-scale small wind turbine. Small Wind for Homeowners, Farmers, and Businesses Stakeholder Engagement & Outreach Projects

13

Wind Program: Publications  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

pres Details Bookmark & Share View Related Product Thumbnail Image 2014 Offshore Wind Market and Economic Analysis The objective of this report is to provide a...

14

Developing Integrated National Design Standards for Offshore Wind Plants  

Broader source: Energy.gov [DOE]

The DOE Wind Program and the National Renewable Energy Laboratory recently published a report that summarizes the regulations, standards, and guidelines for the design and operation of offshore wind projects in the United States.

15

Wind energy systems: program summary  

SciTech Connect (OSTI)

The Federal Wind Energy Program (FWEP) was initiated to provide focus, direction and funds for the development of wind power. Each year a summary is prepared to provide the American public with an overview of government sponsored activities in the FWEP. This program summary describes each of the Department of Energy's (DOE) current wind energy projects initiated or renewed during FY 1979 (October 1, 1978 through September 30, 1979) and reflects their status as of April 30, 1980. The summary highlights on-going research, development and demonstration efforts and serves as a record of progress towards the program objectives. It also provides: the program's general management structure; review of last year's achievements; forecast of expected future trends; documentation of the projects conducted during FY 1979; and list of key wind energy publications.

None

1980-05-01T23:59:59.000Z

16

Commonwealth Wind Commercial Wind Program | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

Commercial Wind Program Commercial Wind Program Commonwealth Wind Commercial Wind Program < Back Eligibility Agricultural Commercial Construction Fed. Government Industrial Institutional Local Government Multi-Family Residential Municipal Utility Nonprofit Rural Electric Cooperative Schools State Government Tribal Government Savings Category Wind Buying & Making Electricity Maximum Rebate Public Entities: $100,000 Non-Public Entities: $67,000 Program Info Funding Source Massachusetts Renewable Energy Trust Start Date 05/2011 Expiration Date 08/01/2013 State Massachusetts Program Type State Grant Program Rebate Amount Varies depending on applicant type (public vs. non-public) and grant type (site assessment, feasibility study, onsite wind monitoring, acoustic studies, and business planning)

17

Wind Program Newsletter: October 2014 Edition (Newsletter)  

SciTech Connect (OSTI)

The U.S. Department of Energy's Wind Program Newsletter, supported by the EERE Wind and Water Power Technologies office, highlights the Wind Program's key activities, events, and funding opportunities.

Not Available

2014-10-01T23:59:59.000Z

18

The Federal Advanced Wind Turbine Program  

SciTech Connect (OSTI)

The development of technologically advanced, higher efficiency wind turbines has been identified as a high priority activity by the US wind industry. The Department of Energy's Wind Energy Program has begun a multi-year development program aimed at assisting the wind industry with the design, development, and testing of advanced wind turbine systems that can compete with conventional electric generation for $0.05/kWh at 13 mph sites by the mid-1990s and with fossil-fuel-based generators for $0.04/kWh at 13 mph sites by the year 2000. The development plan consists of four phases: (1) Conceptual Design Studies; (2) Near-Term Product Development; (3) Next Generation Technology Integration and Design, and (4) Next- Generation Technology Development and Testing. The Conceptual Design Studies were begun in late 1990, and are scheduled for completion in the Spring of 1992. Preliminary results from these analyses are very promising and indicate that the goals stated above are technically feasible. This paper includes a brief summary of the Conceptual Design Studies and presents initial plans for the follow-on activities. 3 refs., 4 figs.

Hock, S M; Thresher, R W [National Renewable Energy Lab., Golden, CO (United States); Goldman, P R [USDOE, Washington, DC (United States)

1991-12-01T23:59:59.000Z

19

The Federal Advanced Wind Turbine Program  

SciTech Connect (OSTI)

The development of technologically advanced, higher efficiency wind turbines has been identified as a high priority activity by the US wind industry. The Department of Energy`s Wind Energy Program has begun a multi-year development program aimed at assisting the wind industry with the design, development, and testing of advanced wind turbine systems that can compete with conventional electric generation for $0.05/kWh at 13 mph sites by the mid-1990s and with fossil-fuel-based generators for $0.04/kWh at 13 mph sites by the year 2000. The development plan consists of four phases: (1) Conceptual Design Studies; (2) Near-Term Product Development; (3) Next Generation Technology Integration and Design, and (4) Next- Generation Technology Development and Testing. The Conceptual Design Studies were begun in late 1990, and are scheduled for completion in the Spring of 1992. Preliminary results from these analyses are very promising and indicate that the goals stated above are technically feasible. This paper includes a brief summary of the Conceptual Design Studies and presents initial plans for the follow-on activities. 3 refs., 4 figs.

Hock, S.M.; Thresher, R.W. [National Renewable Energy Lab., Golden, CO (United States); Goldman, P.R. [USDOE, Washington, DC (United States)

1991-12-01T23:59:59.000Z

20

Wind Program Manufacturing Research Advances Processes and Reduces Costs  

Broader source: Energy.gov [DOE]

Knowing that reducing the overall cost of wind energy begins on the factory floor, the Wind Program supports R&D efforts and funding opportunities that integrate new designs, materials, and advanced techniques into the manufacturing process, making wind a more affordable source of renewable energy for communities nationwide.

Note: This page contains sample records for the topic "wind program designed" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


21

Commonwealth Wind Incentive Program - Micro Wind Initiative | Department  

Broader source: Energy.gov (indexed) [DOE]

Commonwealth Wind Incentive Program - Micro Wind Initiative Commonwealth Wind Incentive Program - Micro Wind Initiative Commonwealth Wind Incentive Program - Micro Wind Initiative < Back Eligibility Commercial Fed. Government Industrial Institutional Local Government Multi-Family Residential Nonprofit Residential Schools State Government Tribal Government Savings Category Wind Buying & Making Electricity Maximum Rebate Public Projects: up to 4/W with maximum of $130,000 Non-Public Projects: up to 5.20/W with a maximum of $100,000 Program Info Funding Source Massachusetts Renewable Energy Trust Fund Start Date 4/1/2005 State Massachusetts Program Type State Rebate Program Rebate Amount Capacity-based Rebate = Rated Capacity (kW) * 460 +3200 Estimated Performance Rebate = Expected Production * 2.8 * (Rated Capacity^-0.29)

22

Large-Scale Wind Training Program  

SciTech Connect (OSTI)

Project objective is to develop a credit-bearing wind technician program and a non-credit safety training program, train faculty, and purchase/install large wind training equipment.

Porter, Richard L. [Hudson Valley Community College

2013-07-01T23:59:59.000Z

23

Wind Powering America Program Overview (Fact Sheet)  

SciTech Connect (OSTI)

This fact sheet provides an overview of the U.S. Department of Energy's Wind Powering America Program.

Not Available

2008-04-01T23:59:59.000Z

24

Parametric design of floating wind turbines  

E-Print Network [OSTI]

As the price of energy increases and wind turbine technology matures, it is evident that cost effective designs for floating wind turbines are needed. The next frontier for wind power is the ocean, yet development in near ...

Tracy, Christopher (Christopher Henry)

2007-01-01T23:59:59.000Z

25

NANA Wind Resource Assessment Program Final Report  

SciTech Connect (OSTI)

NANA Regional Corporation (NRC) of northwest Alaska is located in an area with abundant wind energy resources. In 2007, NRC was awarded grant DE-FG36-07GO17076 by the US Department of Energy's Tribal Energy Program for funding a Wind Resource Assessment Project (WRAP) for the NANA region. The NANA region, including Kotzebue Electric Association (KEA) and Alaska Village Electric Cooperative (AVEC) have been national leaders at developing, designing, building, and operating wind-diesel hybrid systems in Kotzebue (starting in 1996) and Selawik (2002). Promising sites for the development of new wind energy projects in the region have been identified by the WRAP, including Buckland, Deering, and the Kivalina/Red Dog Mine Port Area. Ambler, Shungnak, Kobuk, Kiana, Noorvik & Noatak were determined to have poor wind resources at sites in or very near each community. However, all five of these communities may have better wind resources atop hills or at sites with slightly higher elevations several miles away.

Jay Hermanson

2010-09-23T23:59:59.000Z

26

Wind for Schools Project Curriculum Brief (Fact Sheet), Wind And Water Power Program (WWPP)  

Wind Powering America (EERE)

Introduction Introduction The U.S. Department of Energy's (DOE's) 20% Wind Energy by 2030 report recommends expanding educa- tion to ensure a trained workforce to meet the projected growth of the wind industry and deployment. Although a few U.S. higher education institu- tions offer wind technology education programs, most are found in community and technical colleges, resulting in a shortage of programs preparing highly skilled graduates for wind industry careers. Further, the United States lags behind Europe (which has more gradu- ate programs in wind technology design and manufacturing) and is in danger of relinquishing the economic benefits of domestic production of wind turbines and related components and services to European countries. DOE's Wind Powering America initia-

27

Estimation of the Design Wind Speed  

Science Journals Connector (OSTI)

The modern approach to the specification of the design wind speed favours the explicit format which directly presents the design value of the wind speed instead of hiding the value behind the product of the chara...

Michael Kasperski

2013-01-01T23:59:59.000Z

28

Sales Tax Exemption for Wind Energy Business Designated High Impact  

Broader source: Energy.gov (indexed) [DOE]

Sales Tax Exemption for Wind Energy Business Designated High Impact Sales Tax Exemption for Wind Energy Business Designated High Impact Business Sales Tax Exemption for Wind Energy Business Designated High Impact Business < Back Eligibility Commercial Savings Category Wind Buying & Making Electricity Program Info Start Date 07/01/2009 State Illinois Program Type Sales Tax Incentive Rebate Amount 100% exemption of Retailers' Occupation Tax for building materials incorporated into the facility Provider Illinois Department of Commerce and Economic Opportunity A business establishing a new wind power facility in Illinois that will not be located in an Enterprise Zone* may be eligible for designation as a "High Impact Business." After receiving the designation, the facility is entitled to a full exemption of the state sales tax (6.25%) and any

29

Wind Program Newsletter: Third Quarter 2012  

Broader source: Energy.gov [DOE]

In less than two years, the Wind Program is well on its way down the path laid out by the National Offshore Wind Strategy. In 2011, U.S. Department of Energy (DOE) announced 41 projects in the...

30

NREL: Education Programs - Wind for Schools Program Impacting Nation's  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

for Schools Program Impacting Nation's Renewable Energy Future for Schools Program Impacting Nation's Renewable Energy Future February 28, 2013 Audio with Dan McGuire, Nebraska Wind for Schools Program Consultant (MP3 4.7 MB). Download Windows Media Player. Time: 00:05:03. The U.S. Department of Energy, Wind Powering America, and the National Renewable Energy Laboratory launched the Wind for Schools Program in 2006. These groups identified six priority states for the program-and Nebraska was one of those states. Nebraska Wind for Schools Program Consultant Dan McGuire says the program has three primary goals. First, to engage rural school teachers and students in wind energy education. Second, to equip college students with wind energy education and in wind energy applications to provide interested, equipped engineers for the growing U.S. wind industry. And

31

DOE/NREL Advanced Wind Turbine Development Program  

SciTech Connect (OSTI)

The development of technologically advanced, high-efficiency wind turbines continues to be a high-priority activity of the US wind industry. The National Renewable Energy Laboratory (formerly the Solar Energy Research Institute), sponsored by the US Department of Energy (DOE), has initiated the Advanced Wind Turbine Program to assist the wind industry in the development of a new class of advanced wind turbines. The initial phase of the program focused on developing conceptual designs for near-term and advanced turbines. The goal of the second phase of this program is to use the experience gained over the last decade of turbine design and operation combined with the latest existing design tools to develop a turbine that will produce energy at $0.05 per kilowatt-hour (kWh) in a 5.8-m/s (13-mph) wind site. Three contracts have been awarded, and two more are under negotiation in the second phase. The third phase of the program will use new innovations and state-of-the-art wind turbine design technology to produce a turbine that will generate energy at $0.04/kWh in a 5.8-m/s wind site. Details of the third phase will be announced in early 1993.

Butterfield, C.P.; Smith, B.; Laxson, A.; Thresher, B. [National Renewable Energy Lab., Golden, CO (United States)] [National Renewable Energy Lab., Golden, CO (United States); Goldman, P. [USDOE Assistant Secretary for Conservation and Renewable Energy, Washington, DC (United States). Wind/Hydro/Ocean Technologies Div.] [USDOE Assistant Secretary for Conservation and Renewable Energy, Washington, DC (United States). Wind/Hydro/Ocean Technologies Div.

1993-05-01T23:59:59.000Z

32

2014 Wind Program Peer Review Report  

Broader source: Energy.gov [DOE]

The Wind Program Peer Review Meeting was held March 24-28, 2014 in Arlington, VA. Principle investigators from the Energy Department, National Laboratories, academic, and industry representatives presented the progress of their DOE-funded research. This report documents the formal, rigorous evaluation process and findings of nine independent reviewers who examined the technical, scientific, and business results of Wind Program funded projects, as well as the productivity and management effectiveness of the Wind Program itself.

33

Wind Program | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

upcoming events, funding opportunities, and recent publications. Read more 2014 Offshore Wind Market and Economic Analysis Performed by Navigant 2014 Offshore Wind Market and...

34

Design and implementation of wind energy system in Saudi Arabia  

Science Journals Connector (OSTI)

Abstract This paper introduces an accurate procedure to choose the best site from many sites and suitable wind turbines for these sites depending on the minimum price of kWh generated (Energy Cost Figure(ECF)) from wind energy system. In this paper a new proposed computer program has been introduced to perform all the calculations and optimization required to accurately design the wind energy system and matching between sites and wind turbines. Some of cost calculations of energy methods have been introduced and compared to choose the most suitable method. The data for five sites in Saudi Arabia and hundred wind turbines have been used to choose the best site and the optimum wind turbine for each site. These sites are Yanbo, Dhahran, Dhulom, Riyadh, and Qaisumah. One hundred wind turbines have been used to choose the best one for each site. This program is built in a generic form which allows it to be used with unlimited number of sites and wind turbines in all over the world. The program is written by using Visual Fortran and it is verified with simple calculation in Excel. The paper showed that the best site is Dhahran and the suitable wind turbine for this site is KMW-ERNO with 5.85Cents/kWh. The worst site to install wind energy system is Riyadh with minimum price of kWh of 12.81Cents/kWh in case of using GE Energy 2 wind turbine.

Ali M. Eltamaly

2013-01-01T23:59:59.000Z

35

Wind Program R&D Newsletter  

Broader source: Energy.gov [DOE]

This U.S. Department of Energy Wind Program Newsletter provides recent news about the program's R&D projects, its accomplishments, upcoming events, funding opportunities, and recent publications.

36

Wind Program Newsletter: Second Quarter 2013  

Broader source: Energy.gov [DOE]

This archived edition of the U.S. Department of Energy Wind Program R&D Newsletter, which was published on July 1, 2013, provides information about the program's research and development projects, its accomplishments, and funding opportunities.

37

Wind Program Peer Reviews | Department of Energy  

Office of Environmental Management (EM)

Peer Reviews Wind Program Peer Reviews All programs within the U.S. Department of Energy's (DOE) Office of Energy Efficiency and Renewable Energy (EERE) are required to undertake...

38

Wind Program Newsletter: Second Quarter 2011  

Broader source: Energy.gov [DOE]

This archived edition of the U.S. Department of Energy Wind Program R&D Newsletter, which was published on May 20, 2011, provides information about the program's research and development projects, its accomplishments, and funding opportunities.

39

Wind Program Announces $2 Million to Develop and Field Test Wind...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Announces 2 Million to Develop and Field Test Wind Energy Bat Impact Minimization Technologies Wind Program Announces 2 Million to Develop and Field Test Wind Energy Bat Impact...

40

Wind Program | Department of Energy  

Energy Savers [EERE]

Project (CIP) that aims to help U.S. manufacturers of small and mid-sized wind turbines. Read more 2014 Offshore Wind Market and Economic Analysis Performed by Navigant...

Note: This page contains sample records for the topic "wind program designed" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


41

2014 Wind Program Peer Review Report Cover | Department of Energy  

Office of Environmental Management (EM)

2014 Wind Program Peer Review Report Cover 2014 Wind Program Peer Review Report Cover 2014 Wind Program Peer Review Report.JPG More Documents & Publications 2014 Water Power Peer...

42

Wind Program Contacts and Organization | Department of Energy  

Energy Savers [EERE]

Program Contacts and Organization Wind Program Contacts and Organization The Wind and Water Power Technologies Office within the U.S. Department of Energy's (DOE's) Office of...

43

Wind and Water Power Program Realignment | Department of Energy  

Office of Environmental Management (EM)

agencies, local communities, and research and development consortia. U.S. Department of Energy Wind Power Program Organization U.S. Department of Energy Wind Power Program...

44

Subscribe to Wind Program News Updates | Department of Energy  

Office of Environmental Management (EM)

News Subscribe to Wind Program News Updates Subscribe to Wind Program News Updates The Office of Energy Efficiency and Renewable Energy (EERE) offers multiple news services that...

45

Intelligent Wind Turbine Program - Energy Innovation Portal  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

further straining the limits of current design standards. As a result, modern wind turbines, having a design lifespan of 20 years, typically fail 2.6 times per year during...

46

SMART Wind Turbine Rotor: Design and Field Test | Department...  

Energy Savers [EERE]

Design and Field Test SMART Wind Turbine Rotor: Design and Field Test This report documents the design, fabrication, and testing of the SMART Wind Turbine Rotor. This work...

47

Wind Program Newsletter: Second Quarter 2012 | Department of...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

with Wind Program staff. More. In the News Energy Department Releases New Land-BasedOffshore Wind Resource Map Wind Powering America's Wind for Schools Team Honored with Wirth...

48

DOE Wind Program to Host Booth at Offshore WINDPOWER | Department...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

DOE Wind Program to Host Booth at Offshore WINDPOWER DOE Wind Program to Host Booth at Offshore WINDPOWER September 12, 2014 - 10:16am Addthis The Department of Energy's Wind...

49

Federal Energy Management Program: Wind Energy Resources and Technologies  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Wind Energy Wind Energy Resources and Technologies to someone by E-mail Share Federal Energy Management Program: Wind Energy Resources and Technologies on Facebook Tweet about Federal Energy Management Program: Wind Energy Resources and Technologies on Twitter Bookmark Federal Energy Management Program: Wind Energy Resources and Technologies on Google Bookmark Federal Energy Management Program: Wind Energy Resources and Technologies on Delicious Rank Federal Energy Management Program: Wind Energy Resources and Technologies on Digg Find More places to share Federal Energy Management Program: Wind Energy Resources and Technologies on AddThis.com... Energy-Efficient Products Technology Deployment Renewable Energy Federal Requirements Renewable Resources & Technologies Solar

50

Sandia National Laboratories: New Wind Turbine Blade Design  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

ClimateECEnergyNew Wind Turbine Blade Design New Wind Turbine Blade Design More Energy with Less Weight ATLAS II Data Acquisition System New Wind Turbine Blade Design On May 18,...

51

Spatial Variation and Interpolation of Wind Speed Statistics and Its Implication in Design Wind Load.  

E-Print Network [OSTI]

??Consideration of wind load is important for design of engineered structures. Codification of wind load for structural design requires the estimation of the quantiles or (more)

Ye, Wei

2013-01-01T23:59:59.000Z

52

Assessment of Offshore Wind System Design, Safety, and Operation...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Assessment of Offshore Wind System Design, Safety, and Operation Standards Assessment of Offshore Wind System Design, Safety, and Operation Standards The U.S. Department of...

53

Cooperative field test program for wind systems  

SciTech Connect (OSTI)

The objectives of the Federal Wind Energy Program, managed by the US Department of Energy (DOE), are (1) to assist industry and utilities in achieving a multi-regional US market penetration of wind systems, and (2) to establish the United States as the world leader in the development of advanced wind turbine technology. In 1984, the program conducted a series of planning workshops with representatives from the wind energy industry to obtain input on the Five-Year Research Plan then being prepared by DOE. One specific suggestion that came out of these meetings was that the federal program should conduct cooperative research tests with industry to enhance the technology transfer process. It was also felt that the active involvement of industry in DOE-funded research would improve the state of the art of wind turbine technology. DOE established the Cooperative Field Test Program (CFTP) in response to that suggestion. This program was one of the first in DOE to feature joint industry-government research test teams working toward common objectives.

Bollmeier, W.S. II; Dodge, D.M.

1992-03-01T23:59:59.000Z

54

Securing Clean, Domestic, Affordable Energy with Wind (Fact Sheet), Wind Program (WP)  

Broader source: Energy.gov [DOE]

This fact sheet provides a brief description of the Wind Energy Market and describes the U.S. Department of Energy's Wind Program research and development efforts.

55

Wind Program Announces $2 Million to Develop and Field Test Wind Energy Bat Impact Minimization Technologies  

Broader source: Energy.gov [DOE]

EERE's Wind Program announced $2 million in funding to advance technologies that address wind developments potential impacts on wildlife.

56

Wind Program Newsletter: First Quarter 2012 | Department of Energy  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Turbines in U.S. Waters Will Soon Spin Wind into Electricity DOE releases Offshore Demonstration Project Solicitation The U.S. Department of Energy Wind Program is...

57

Commercial Scale Wind Incentive Program | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

Commercial Scale Wind Incentive Program Commercial Scale Wind Incentive Program Commercial Scale Wind Incentive Program < Back Eligibility Agricultural Commercial Local Government Nonprofit Residential Schools State Government Savings Category Wind Buying & Making Electricity Maximum Rebate Project Development Assistance: $40,000 Program Info State Oregon Program Type State Rebate Program Rebate Amount Varies Provider Energy Trust of Oregon Energy Trust of Oregon's Commercial Scale Wind offering provides resources and cash incentives to help communities, businesses land owners, and government entities install wind turbine systems up to 20 megawatts (MW) in capacity. Projects may consist of a single turbine or a small group of turbines. A variety of ownership models are allowed. Incentive programs

58

1Design limits and solutions for very large wind turbines Design limits and solutions for very large wind turbines  

E-Print Network [OSTI]

#12;#12;1Design limits and solutions for very large wind turbines UpWind Design limits and solutions for very large wind turbines A 20 MW turbine is feasible March 2011 Supported by: #12;March 20112 Photo:Nordex #12;3Design limits and solutions for very large wind turbines Contents 1. UpWind: Summary

Leu, Tzong-Shyng "Jeremy"

59

Wind Program Manufacturing Research Advances Processes and Reduces...  

Energy Savers [EERE]

being installed for a 2-MW wind turbine. Knowing that reducing the overall cost of wind energy begins on the factory floor, the Department of Energy's (DOE's) Wind Program...

60

Students Learn about Wind Power First-Hand through Wind for Schools Program  

Broader source: Energy.gov (indexed) [DOE]

Learn about Wind Power First-Hand through Wind for Schools Learn about Wind Power First-Hand through Wind for Schools Program Students Learn about Wind Power First-Hand through Wind for Schools Program February 18, 2011 - 3:48pm Addthis JMU student Greg Miller shows Northumberland students how the blades of a wind turbine work | courtesy of Virginia Center for Wind Energy JMU student Greg Miller shows Northumberland students how the blades of a wind turbine work | courtesy of Virginia Center for Wind Energy April Saylor April Saylor Former Digital Outreach Strategist, Office of Public Affairs What will the project do? Wind for Schools raises awareness in rural America about the benefits of wind energy while simultaneously developing a wind energy knowledge base in communities across the nation. For years, Jenny Christman tried to find a way to get a wind turbine to

Note: This page contains sample records for the topic "wind program designed" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


61

NREL Assesses National Design Standards for Offshore Wind (Fact...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

summarizes regulations, standards, and guidelines for the design and operation of offshore wind projects in the United States. In 2012, the American Wind Energy Association...

62

Wind Turbine Design Cost and Scaling Model  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Wind Turbine Design Cost Wind Turbine Design Cost and Scaling Model L. Fingersh, M. Hand, and A. Laxson Technical Report NREL/TP-500-40566 December 2006 NREL is operated by Midwest Research Institute ● Battelle Contract No. DE-AC36-99-GO10337 Wind Turbine Design Cost and Scaling Model L. Fingersh, M. Hand, and A. Laxson Prepared under Task No. WER6.0703 Technical Report NREL/TP-500-40566 December 2006 National Renewable Energy Laboratory 1617 Cole Boulevard, Golden, Colorado 80401-3393 303-275-3000 * www.nrel.gov Operated for the U.S. Department of Energy Office of Energy Efficiency and Renewable Energy by Midwest Research Institute * Battelle Contract No. DE-AC36-99-GO10337 NOTICE This report was prepared as an account of work sponsored by an agency of the United States government.

63

Wind Program to Host Exhibit Booth at AWEA's Offshore WINDPOWER...  

Energy Savers [EERE]

Wind Program to Host Exhibit Booth at AWEA's Offshore WINDPOWER Wind Program to Host Exhibit Booth at AWEA's Offshore WINDPOWER October 1, 2012 - 11:15am Addthis This is an excerpt...

64

Wind for Schools: Developing Educational Programs to Train the Next Generation of Wind Energy Experts (Poster)  

SciTech Connect (OSTI)

As the world moves toward a vision of expanded wind energy, the industry is faced with the challenges of obtaining a skilled workforce and addressing local wind development concerns. Wind Powering America's Wind for Schools Program works to address these issues. The program installs small wind turbines at community "host" schools while developing wind application centers at higher education institutions. Teacher training with interactive and interschool curricula is implemented at each host school, while students at the universities assist in implementing the host school systems while participating in other wind course work. This poster provides an overview of the program's objectives, goals, approach, and results.

Baring-Gould, I.; Flowers, L.; Kelly, M.; Miles, J.

2009-05-01T23:59:59.000Z

65

Advanced wind turbine design studies: Advanced conceptual study. Final report  

SciTech Connect (OSTI)

In conjunction with the US Department of Energy and the National Renewable Energy Laboratory`s Advanced Wind Turbine Program, the Atlantic Orient Corporation developed preliminary designs for the next generation of wind turbines. These 50 kW and 350 kW turbines are based upon the concept of simplicity. By adhering to a design philosophy that emphasizes simplicity, we project that these turbines will produce energy at extremely competitive rates which will unlock the potential of wind energy domestically and internationally. The program consisted of three distinct phases. First, we evaluated the operational history of the Enertech 44 series wind turbines. As a result of this evaluation, we developed, in the second phase, a preliminary design for a new 50 kW turbine for the near-term market. In the third phase, we took a clean-sheet-of-paper approach to designing a 350 kW turbine focused on the mid-1990s utility market that incorporated past experience and advanced technology.

Hughes, P.; Sherwin, R. [Atlantic Orient Corp., Norwich, VT (United States)] [Atlantic Orient Corp., Norwich, VT (United States)

1994-08-01T23:59:59.000Z

66

Design of wind farm layout for maximum wind energy capture Andrew Kusiak*, Zhe Song  

E-Print Network [OSTI]

Design of wind farm layout for maximum wind energy capture Andrew Kusiak*, Zhe Song Intelligent sources of alternative energy. The construction of wind farms is destined to grow in the U.S., possibly twenty-fold by the year 2030. To maximize the wind energy capture, this paper presents a model for wind

Kusiak, Andrew

67

Residential Retrofit Program Design Guide  

Broader source: Energy.gov [DOE]

This Residential Retrofit Program Design Guide focuses on the key elements and design characteristics of building and maintaining a successful residential retrofit program.

68

Extreme wind climate modeling of some locations in India for the specification of the design wind speed of structures  

Science Journals Connector (OSTI)

The wind load on a structure is proportional to the square of the wind speed. Extreme wind climate modeling should be required for specifying the design wind speed of structures. Extreme wind speeds for a storm t...

Arnab Sarkar; Navneet Kumar; Debojyoti Mitra

2014-06-01T23:59:59.000Z

69

New England Wind Forum: A Wind Powering America Project, Newsletter #5 -- January 2010, Wind and Hydropower Technologies Program (WHTP)  

SciTech Connect (OSTI)

Wind Powering America program launched the New England Wind Forum (NEWF) in 2005 to provide a single comprehensive source of up-to-date, Web-based information on a broad array of wind energy issues pertaining to New England. The NEWF newsletter provides New England stakeholders with updates on wind energy development in the region. In addition to regional updates, Issue #5 offers an interview with Angus King, former governor of Maine and co-founder of Independence Wind.

Grace, R. C.; Gifford, J.

2010-01-01T23:59:59.000Z

70

NREL Assesses National Design Standards for Offshore Wind (Fact Sheet)  

SciTech Connect (OSTI)

Report summarizes regulations, standards, and guidelines for the design and operation of offshore wind projects in the United States.

Not Available

2014-06-01T23:59:59.000Z

71

Improved methodology for design of low wind speed specific wind turbine blades  

Science Journals Connector (OSTI)

Abstract The majority of wind power is currently produced on high wind speed sites, and the standard design of wind turbine blades has evolved to be structurally efficient under these conditions. Recently, sites with lower quality wind resources have begun to be considered for new wind farms. This study confirms the expectation that the standard high wind speed design process results in less efficient structures when used for low wind speed conditions, and that a low wind speed specific design process is able to yield structural improvements. A comparative structural analysis of generic blades from high and low wind speed turbines quantifies the differences in structural performance between high and low wind speed blades, and indicates the ways in which the standard design process should be modified to suit a low wind speed specific design. An improved design method specifically for low wind speed blades is proposed, with more emphasis on stiffness than in the standard high wind speed design. The improved design process results in a lighter and cheaper blade than the conventionally designed one, whilst still fulfilling the design requirements.

R.H. Barnes; E.V. Morozov; K. Shankar

2015-01-01T23:59:59.000Z

72

NREL: Education Programs - Wind Applications Center Valuable Resource for  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Applications Center Valuable Resource for Wind for Schools Partners Applications Center Valuable Resource for Wind for Schools Partners March 14, 2013 Audio with Jerry Hudgins, Nebraska Wind Applications Center Director and Joel Jacobs, Nebraska Wind Applications Center Associate Director (MP3 3.6 MB). Download Windows Media Player. Time: 00:03:58. The Wind for Schools Program was launched in 2006 by the U.S. Department of Energy, Wind Powering America, and the National Renewable Energy Laboratory. Six states were chosen as priorities for the program, and one of those states was Nebraska. The University of Nebraska-Lincoln houses the Wind Applications Center, which is the resource for K-12 partner schools in the program in Nebraska. Wind Applications Center Director Jerry Hudgins says wind is a fantastic resource in Nebraska, lending itself to renewable energy generation,

73

Department of Energy Awards $43 Million to Spur Offshore Wind Energy, Wind Program Newsletter, September 2011 Edition (Brochure)  

SciTech Connect (OSTI)

EERE Wind Program Quarterly Newsletter - September 2011. In September, the U.S. Department of Energy announced that it will award $43 million over the next five years to 41 projects across 20 states to speed technical innovations, lower costs, and shorten the timeline for deploying offshore wind energy systems. The projects will advance wind turbine design tools and hardware, improve information about U.S. offshore wind resources, and accelerate the deployment of offshore wind by reducing market barriers such as supply chain development, transmission and infrastructure. The projects announced in September focus on approaches to advancing offshore technology and removing market barriers to responsible offshore wind energy deployment. Funding is subject to Congressional appropriations.

Not Available

2011-09-01T23:59:59.000Z

74

NREL: Wind Research - U.S. Department of Energy Wind Program...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

U.S. Department of Energy Wind Program Announces New Round of Funding for 2016 Collegiate Wind Competition October 30, 2014 The U.S. Department of Energy's (DOE's) National...

75

Letter from the Wind Program Director, Third Quarter 2013 edition...  

Energy Savers [EERE]

5, 2014 - 11:27am Addthis Head and shoulder photograph of Jose Zayas In this year's offshore wind edition of the Wind Program Newsletter, the U.S. Department of Energy (DOE) and...

76

Articles about Wind Program Funding | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

the U.S. Department of Energy (DOE) Wind Program. September 12, 2014 2011 DOE Funded Offshore Wind Project Updates In 2011, DOE awarded 43 million to 41 projects across 20 states...

77

Forecastability as a Design Criterion in Wind Resource Assessment: Preprint  

SciTech Connect (OSTI)

This paper proposes a methodology to include the wind power forecasting ability, or 'forecastability,' of a site as a design criterion in wind resource assessment and wind power plant design stages. The Unrestricted Wind Farm Layout Optimization (UWFLO) methodology is adopted to maximize the capacity factor of a wind power plant. The 1-hour-ahead persistence wind power forecasting method is used to characterize the forecastability of a potential wind power plant, thereby partially quantifying the integration cost. A trade-off between the maximum capacity factor and the forecastability is investigated.

Zhang, J.; Hodge, B. M.

2014-04-01T23:59:59.000Z

78

Long Island Power Authority - Wind Energy Rebate Program | Department of  

Broader source: Energy.gov (indexed) [DOE]

Long Island Power Authority - Wind Energy Rebate Program Long Island Power Authority - Wind Energy Rebate Program Long Island Power Authority - Wind Energy Rebate Program < Back Eligibility Agricultural Commercial Fed. Government Industrial Institutional Local Government Nonprofit Residential Schools State Government Savings Category Wind Buying & Making Electricity Maximum Rebate Lesser of 60% of installed cost or values below: Residential: $56,000 Commercial: $135,600 Gov't, School, Non-profit: $200,000 Program Info Funding Source LIPA Efficiency Long Island Program Start Date January 2009 State New York Program Type Utility Rebate Program Rebate Amount Varies by sector and system size Provider Long Island Power Authority '''''Note: The program web site listed above is for the residential wind energy program; however, LIPA also offers

79

SMART Wind Turbine Rotor: Design and Field Test  

Broader source: Energy.gov [DOE]

Design and field test results from the SMART Rotor project, a wind turbine rotor with integrated trailing-edge flaps designed for active control of the rotor aerodynamics.

80

Community Solar and Wind Grant Program | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

Community Solar and Wind Grant Program Community Solar and Wind Grant Program Community Solar and Wind Grant Program < Back Eligibility Commercial Institutional Local Government Multi-Family Residential Nonprofit Schools State Government Savings Category Solar Buying & Making Electricity Wind Maximum Rebate $250,000 Program Info Funding Source Renewable Energy Resources Trust Fund Start Date 09/2011 Expiration Date 04/08/2013 State Illinois Program Type State Grant Program Rebate Amount Business Solar Thermal: 30% of project costs Government and Nonprofit Solar Thermal: 40% of project costs Business PV: $1.50/watt or 25% of project costs Government and Nonprofit PV: $2.60/watt or 40% of project costs Business Wind: $1.70/watt or 30% of project costs Government and Nonprofit Wind: $2.60/watt or 40% of project costs

Note: This page contains sample records for the topic "wind program designed" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


81

Conventional Hydropower Technologies, Wind And Water Power Program...  

Office of Environmental Management (EM)

Power for a Clean Energy Future (Fact Sheet), Wind and Water Power Program (WWPP) Hydropower Projects Environmental Impacts of Increased Hydroelectric Development at Existing Dams...

82

PARAMETRIC MODELS FOR ESTIMATING WIND TURBINE FATIGUE LOADS FOR DESIGN  

E-Print Network [OSTI]

loads. #12;2 INTRODUCTION Design constraints for wind turbine structures fall into either extreme load1 PARAMETRIC MODELS FOR ESTIMATING WIND TURBINE FATIGUE LOADS FOR DESIGN Lance Manuel1 Paul S, TX 78712 2 Sandia National Laboratories, Wind Energy Technology Department, Albuquerque, NM 87185

Sweetman, Bert

83

Wind Program Budget | Department of Energy  

Office of Environmental Management (EM)

and addressed; collaboration with Federal agencies on mitigating the effects of wind turbines on long range surveillance and terminal radars; and next-generation wind...

84

Wind Program Accomplishments | Department of Energy  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

performance, lower costs, and accelerate deployment of wind technologies on land and offshore. Wind Accomplishments.pdf More Documents & Publications Securing Clean, Domestic,...

85

Sandia National Laboratories: DOE Wind Program  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Modeling & Simulation, Energy, News, News & Events, Partnership, Renewable Energy, Wind Energy The DOE and Sandia are working toward a better integration of new wind...

86

New England Wind Forum: A Wind Powering America Project - Newsletter #6 - September 2010, (NEWF), Wind and Water Power Program (WWPP)  

Wind Powering America (EERE)

6 - September 2010 6 - September 2010 WIND AND WATER POWER PROGRAM PIX 16204 New England and Northeast Look to the Horizon...and Beyond, for Offshore Wind In early December, Boston hosted the American Wind Energy Association's second annual Offshore Wind Project Workshop. U.S. and European offshore wind stakeholders convened to discuss the emerging U.S. offshore wind industry and provided evidence of a significant increase in activity along the Atlantic Coast from the Carolinas to Maine. The wind power industry and policymakers are looking to offshore for long-term growth, driven by aggressive policy goals, economic develop- ment opportunities, a finite set of attractive land-based wind sites, and immense wind energy potential at a modest distance from major population centers.

87

Modelling of offshore wind turbine wakes with the wind farm program FLaP  

E-Print Network [OSTI]

Modelling of offshore wind turbine wakes with the wind farm program FLaP Bernhard Lange(1) , Hans been extended to improve the description of wake development in offshore conditions, especially the low from the Danish offshore wind farm Vindeby. Vertical wake profiles and mean turbulence intensities

Heinemann, Detlev

88

Wind Program FY 2015 Budget At-A-Glance  

Office of Energy Efficiency and Renewable Energy (EERE)

The Wind Program, part of the Wind and Water Power Technologies Office, accelerates U.S. deployment of clean, affordable, and reliable domestic wind power through research, development, and demonstration. These advanced technology investments directly contribute to the goals for the United States to double renewable electricity generation again by 2020 and to achieve 80% of its electricity from clean, carbon?free energy sources by 2035 by reducing costs and increasing performance of wind energy systems. Wind power currently provides more than 4% of the nations electricity, and more wind?powered electricity generation capacity was installed in the United States in 2012 than that of any other power source.

89

Sandia National Laboratories: Wind Turbine Blade Design  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Facilities, News, News & Events, Partnership, Renewable Energy, SWIFT, Systems Analysis, Wind Energy David Maniaci (in Sandia's Wind Energy Technologies Dept.) traveled to...

90

Kansas wind program stimulates rural economy | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

Kansas wind program stimulates rural economy Kansas wind program stimulates rural economy Kansas wind program stimulates rural economy December 9, 2009 - 11:38am Addthis Joshua DeLung What will the project do? Students in the Wind for Schools program gain not only practical knowledge in wind turbine technologies, but also they get hands-on experience installing turbines statewide. During an economic downturn, it's always a struggle for recent college graduates to find jobs and a place to put down roots amid a tightening workforce. Fortunately for students who visit the Southeast Kansas Education Service Center in Girard - known as Greenbush to locals - a project called Wind for Schools has set up shop. The vocational school in Girard, where students visit on field trips from their regular schools, now

91

Wind Program R&D Newsletter: Fourth Quarter 2013  

Broader source: Energy.gov [DOE]

This archived U.S. Department of Energy Wind Program R&D Newsletter provides information about the program's research and development projects, its accomplishments, and funding opportunities from the fourth quarter of 2013.

92

Letter from the Wind Program Director: Fourth Quarter 2013 |...  

Energy Savers [EERE]

A program-funded project at the University of Maine became the first grid connected offshore wind turbine in the United States. The program also launched its newest initiative,...

93

Wind Power Career Chat, Wind And Water Power Program (WWPP)  

Wind Powering America (EERE)

Rackstraw Developer, Rackstraw Consulting LLC 1. How did you become interested in wind energy? I wanted to work in a "green" technology, and I happened to see a job posting to...

94

15 - Offshore environmental loads and wind turbine design: impact of wind, wave, currents and ice  

Science Journals Connector (OSTI)

Abstract: In order to design offshore wind turbines, an engineer must understand the environmental loads that are imposed on the structure. This chapter describes the wind, wave, current and ice loading phenomena and how to translate the environmental characteristics to design loads against which the structure must be designed.

J. Van Der Tempel; N.F.B. Diepeveen; W.E. De Vries; D. Cerda Salzmann

2011-01-01T23:59:59.000Z

95

An evolutive algorithm for wind farm optimal design  

Science Journals Connector (OSTI)

An evolutive algorithm for the optimal design of wind farms is presented. The algorithm objective is to optimize the profits given an investment on a wind farm. Net present value will be used as a figure of the revenue. To work out this figure, several ... Keywords: Evolutive algorithm, Genetic algorithm, Optimization, Wind farms

Jos Castro Mora; Jos M. Calero Barn; Jess M. Riquelme Santos; Manuel Burgos Payn

2007-10-01T23:59:59.000Z

96

Wind Developer's Perspective on Incorporating Wind in Cap and Trade Program  

Wind Powering America (EERE)

Developer's Perspective Developer's Perspective on Incorporating Wind in Cap & Trade Programs January 12, 2006 Kevin Rackstraw Clipper Windpower, Inc. Clipper Windpower, Inc. 301/263 301/263- -0028 0028 krackstraw@clipperwind.com krackstraw@clipperwind.com About Clipper Windpower * Founded by James Dehlsen, a wind energy pioneer and recognized world leader in the wind industry, and founder of the company that is now GE Wind * Team is one of the most experienced in the business * Both a developer of wind projects and manufacturer of large wind turbines * Over $1.5 billion of wind projects developed * Another $4 billion of wind projects in the development pipeline Motivations * Emissions reduction claims: * In cap and trade states, neither we nor our marketers can state that we reduce capped emissions w/out allowances

97

Wind Program Newsletter: First Quarter 2013  

Broader source: Energy.gov [DOE]

I write this letter to you during a very exciting time for the wind energy industry. As reported by AWEA earlier this year, 2012 proved to be another record-setting year for wind energy. More.

98

Wind Program Newsletter: Fourth Quarter 2011  

Broader source: Energy.gov [DOE]

The Department of Energy (DOE) and the University of Minnesota celebrated the installation of a 2.5-MW wind turbine at the Universitys new Eolos Wind Energy Research Station in Rosemount,...

99

Supercomputer Helps Design Wind Turbines | ornl.gov  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Supercomputer Helps Design Wind Turbines January 16, 2014 Since 2005, scientists at Oak Ridge National Laboratory have been researching, developing and testing materials in...

100

Design and Commissioning of a Wind Tunnel for Integrated Physical...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Physical and Chemical Measurements of PM Dispersing Plume of Heavy Duty Diesel Truck Design and Commissioning of a Wind Tunnel for Integrated Physical and Chemical Measurements...

Note: This page contains sample records for the topic "wind program designed" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


101

Residential Retrofit Program Design Guide Overview Transcript...  

Broader source: Energy.gov (indexed) [DOE]

Residential Retrofit Program Design Guide Overview Transcript.doc Residential Retrofit Program Design Guide Overview Transcript.doc Residential Retrofit Program Design Guide...

102

Wind turbine aerodynamics: analysis and design  

Science Journals Connector (OSTI)

In this paper, the classical work on wind turbine is reviewed, starting from the ground work of Rankine and Froude, then revisiting the minimum energy condition of Betz, and applying modern computing techniques to build codes, based on the vortex model of Goldstein that are both fast and reliable. Such numerical simulations can be used to help analyse and design modern wind turbines in regimes where the flow is attached. Much of the work has been developed under the impulsion of General Electric whose support is gratefully acknowledged. The vortex model has reached a mature state which includes capabilities to model unsteady flows due to yaw, tower interference and earth boundary layer as well as flows past rotors with advanced blade tips that have sweep and/or winglets. When separation occurs on the blades, a higher fidelity model is presented, called the hybrid method, which consists in coupling a Navier-Stokes solver with the vortex model, the Navier-Stokes code solving the near blade flow whereas the vortex model convects the circulation to the far field without dissipation and allows for accurate representation of the induced velocities. Further development of the vortex model includes its coupling with a blade structural model to perform aeroelasticity studies.

Jean-Jacques Chattot

2011-01-01T23:59:59.000Z

103

On-Site Small Wind Incentive Program | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

On-Site Small Wind Incentive Program On-Site Small Wind Incentive Program On-Site Small Wind Incentive Program < Back Eligibility Agricultural Commercial Fed. Government Industrial Institutional Local Government Nonprofit Residential Schools State Government Savings Category Wind Buying & Making Electricity Maximum Rebate Lesser of $400,000 per site/customer or 50% of installed cost of system Program Info Funding Source RPS surcharge Start Date 01/01/2012 Expiration Date 12/31/2015 State New York Program Type State Rebate Program Rebate Amount First 10,000 kWh of expected annual energy production: $3.50/annual kWh Next 115,000 kWh of expected annual energy production: $1.00/annual kWh Energy production greater than 125,000 kWh: $0.30/annual kWh Provider New York State Energy Research and Development Authority

104

Better Buildings Neighborhood Program: Step 4: Design the Financing Program  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

: Design : Design the Financing Program to someone by E-mail Share Better Buildings Neighborhood Program: Step 4: Design the Financing Program on Facebook Tweet about Better Buildings Neighborhood Program: Step 4: Design the Financing Program on Twitter Bookmark Better Buildings Neighborhood Program: Step 4: Design the Financing Program on Google Bookmark Better Buildings Neighborhood Program: Step 4: Design the Financing Program on Delicious Rank Better Buildings Neighborhood Program: Step 4: Design the Financing Program on Digg Find More places to share Better Buildings Neighborhood Program: Step 4: Design the Financing Program on AddThis.com... Getting Started Driving Demand Financing Assess the Market Define Finance Program Objectives Identify & Engage Financial Partners

105

Design of overhead transmission lines subject to localized high intensity wind.  

E-Print Network [OSTI]

??Wind loading considered in the design of overhead transmission lines is based on extreme values of synoptic wind, i.e. boundary layer wind originating from largescale (more)

Langlois, Sbastien, 1981-

2007-01-01T23:59:59.000Z

106

Wind and Geothermal Incentives Program | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

You are here You are here Home » Wind and Geothermal Incentives Program Wind and Geothermal Incentives Program < Back Eligibility Commercial Industrial Local Government Nonprofit Residential Schools Savings Category Buying & Making Electricity Wind Maximum Rebate Manufacturer loans: 35,000 per job created within 3 years Manufacturer grants: 5,000 per job created within 3 years Loans for geothermal systems: 3 per square foot of space served up to 5 million; also limited to 50% of eligible costs for residential systems. Loans for wind energy production projects: 5 million Grants for wind energy production projects: 1 million Grants for feasibility studies: 50% of cost up to 175,000 Loan guarantee grants: Up to 75% of deficient funds up to 5 million Program Info Funding Source

107

Wind Program News | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

has selected seven projects that will accelerate the commercialization of innovative offshore wind technologies in the United States. Each project will receive up to 4 million...

108

Wind Program News | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

farms, and ranches. October 23, 2013 New Report Shows Trend Toward Larger Offshore Wind Systems, with 11 Advanced Stage Projects Proposed in U.S. Waters The Energy...

109

Wind Program News | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

SBIR research grants, engaging students in energy, and more. November 27, 2013 Energy Deputy Secretary Daniel Poneman speaks at the Clemson University Wind Turbine...

110

Design of wind turbines with Ultra-High Performance Concrete  

E-Print Network [OSTI]

Ultra-High Performance Concrete (UHPC) has proven an asset for bridge design as it significantly reduces costs. However, UHPC has not been applied yet to wind turbine technology. Design codes do not propose any recommendations ...

Jammes, Franois-Xavier

2009-01-01T23:59:59.000Z

111

U.S. Department of Energy Wind Program Announces New Round of...  

Office of Environmental Management (EM)

U.S. Department of Energy Wind Program Announces New Round of Funding for 2016 Collegiate Wind Competition U.S. Department of Energy Wind Program Announces New Round of Funding for...

112

Incorporating Wind Generation in Cap and Trade Programs  

Wind Powering America (EERE)

Incorporating Wind Generation in Incorporating Wind Generation in Cap and Trade Programs Joel Bluestein Energy and Environmental Analysis, Inc. Elizabeth Salerno American Wind Energy Association Lori Bird and Laura Vimmerstedt National Renewable Energy Laboratory Technical Report NREL/TP-500-40006 July 2006 Incorporating Wind Generation in Cap and Trade Programs Joel Bluestein Energy and Environmental Analysis, Inc. Elizabeth Salerno American Wind Energy Association Lori Bird and Laura Vimmerstedt National Renewable Energy Laboratory Prepared under Task No. WER6 6006 Technical Report NREL/TP-500-4006 July 2006 National Renewable Energy Laboratory 1617 Cole Boulevard, Golden, Colorado 80401-3393 303-275-3000 * www.nrel.gov Operated for the U.S. Department of Energy Office of Energy Efficiency and Renewable Energy

113

Wind Program News | Department of Energy  

Office of Environmental Management (EM)

of skilled workers, the Energy Department has developed a - "Wind Career Map," a web-based tool that highlights the broad range of careers and required skill sets across...

114

Wind resource assessment handbook: Fundamentals for conducting a successful monitoring program  

SciTech Connect (OSTI)

This handbook presents industry-accepted guidelines for planning and conducting a wind resource measurement program to support a wind energy feasibility initiative. These guidelines, which are detailed and highly technical, emphasize the tasks of selecting, installing, and operating wind measurement equipment, as well as collecting and analyzing the associated data, once one or more measurement sites are located. The handbook's scope encompasses state-of-the-art measurement and analysis techniques at multiple heights on tall towers (e.g., 40 m) for a measurement duration of at least one year. These guidelines do not represent every possible method of conducting a quality wind measurement program, but they address the most important elements based on field-proven experience. The intended audience for this handbook is any organization or individual who desires the planning framework and detailed procedures for conducting a formally structured wind measurement program. Personnel from the management level to field technicians will find this material applicable. The organizational aspects of a measurement program, including the setting of clear program objectives and designing commensurate measurement and quality assurance plans, all of which are essential to ensuring the program's successful outcome, are emphasized. Considerable attention is also given to the details of actually conducting the measurement program in its many aspects, from selecting instrumentation that meets minimum performance standards to analyzing and reporting on the collected data. 5 figs., 15 tabs.

Bailey, B.H.; McDonald, S.L.; Bernadett, D.W.; Markus, M.J.; Elsholz, K.V. [AWS Scientific, Inc., Albany, NY (US)

1997-04-01T23:59:59.000Z

115

Advanced Control Design for Wind Turbines; Part I: Control Design, Implementation, and Initial Tests  

SciTech Connect (OSTI)

The purpose of this report is to give wind turbine engineers information and examples of the design, testing through simulation, field implementation, and field testing of advanced wind turbine controls.

Wright, A. D.; Fingersh, L. J.

2008-03-01T23:59:59.000Z

116

International Effort Advances Offshore Wind Turbine Design Codes  

Broader source: Energy.gov [DOE]

For the past several years, DOE's National Renewable Energy Laboratory has teamed with the Fraunhofer Institute for Wind Energy and Energy System Technology in Germany to lead an international effort under the International Energy Agencys Task 30 to improve the tools used to design offshore wind energy systems.

117

WINDExchange: Wind Energy Education and Training Programs  

Wind Powering America (EERE)

energy program or training class to this list, please email WINDExchange and include the Web address of your program. We will notify you when your program has been added....

118

Wind and Geothermal Incentives Program | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

Schools Schools Savings Category Buying & Making Electricity Wind Maximum Rebate Manufacturer loans: 35,000 per job created within 3 years Manufacturer grants: 5,000 per job created within 3 years Loans for geothermal systems: 3 per square foot of space served up to 5 million Loans for wind energy production projects: 5 million Grants for wind energy production projects: 1 million Grants for feasibility studies: 50% of cost up to 175,000 Loan guarantee grants: Up to 75% of deficient funds up to 5 million Program Info Funding Source Alternative Energy Investment Fund (state-issued bonds) Start Date January 2009 State Pennsylvania Program Type State Grant Program Rebate Amount Varies by project, but program generally requires matching funds at least equivalent to DCED funding

119

Airfoil family design for large offshore wind turbine blades  

Science Journals Connector (OSTI)

Wind turbine blades size has scaled-up during last years due to wind turbine platform increase especially for offshore applications. The EOLIA project 2007-2010 (Spanish Goverment funded project) was focused on the design of large offshore wind turbines for deep waters. The project was managed by ACCIONA Energia and the wind turbine technology was designed by ACCIONA Windpower. The project included the design of a wind turbine airfoil family especially conceived for large offshore wind turbine blades, in the order of 5MW machine. Large offshore wind turbines suffer high extreme loads due to their size, in addition the lack of noise restrictions allow higher tip speeds. Consequently, the airfoils presented in this work are designed for high Reynolds numbers with the main goal of reducing blade loads and mantainig power production. The new airfoil family was designed in collaboration with CENER (Spanish National Renewable Energy Centre). The airfoil family was designed using a evolutionary algorithm based optimization tool with different objectives, both aerodynamic and structural, coupled with an airfoil geometry generation tool. Force coefficients of the designed airfoil were obtained using the panel code XFOIL in which the boundary layer/inviscid flow coupling is ineracted via surface transpiration model. The desing methodology includes a novel technique to define the objective functions based on normalizing the functions using weight parameters created from data of airfoils used as reference. Four airfoils have been designed, here three of them will be presented, with relative thickness of 18%, 21%, 25%, which have been verified with the in-house CFD code, Wind Multi Block WMB, and later validated with wind tunnel experiments. Some of the objectives for the designed airfoils concern the aerodynamic behavior (high efficiency and lift, high tangential coefficient, insensitivity to rough conditions, etc.), others concern the geometry (good for structural design, compatibility for the different airfoil family members, etc.) and with the ultimate objective that the airfoils will reduce the blade loads. In this paper the whole airfoil design process and the main characteristics of the airfoil family are described. Some force coefficients for the design Reynolds number are also presented. The new designed airfoils have been studied with computational calculations (panel method code and CFD) and also in a wind tunnel experimental campaign. Some of these results will be also presented in this paper.

B Mndez; X Munduate; U San Miguel

2014-01-01T23:59:59.000Z

120

Successful Rural Wind Program in Peru | Open Energy Information  

Open Energy Info (EERE)

Successful Rural Wind Program in Peru Successful Rural Wind Program in Peru Jump to: navigation, search Name Bringing electricity to the Andes Agency/Company /Organization Soluciones Practicas - NGO Partner Deutsche Welle Sector Energy Focus Area Wind Topics Co-benefits assessment, - Energy Access Resource Type Video Website http://www.dw-world.de/dw/0,,1 Country Peru UN Region South America Many villages in the remote northern highlands of Peru are not connected to the electricity grid. Alternative energy sources are proving a big help. The aid organization "Soluciones Practicas" has installed micro wind turbines in many villages in the Cajamarca region that provide several thousand people with a daily electricity supply. It's helping boost their educational chances, improve communication and facilitate the setting up of

Note: This page contains sample records for the topic "wind program designed" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


121

Cooperative field test program for wind systems. Final report  

SciTech Connect (OSTI)

The objectives of the Federal Wind Energy Program, managed by the US Department of Energy (DOE), are (1) to assist industry and utilities in achieving a multi-regional US market penetration of wind systems, and (2) to establish the United States as the world leader in the development of advanced wind turbine technology. In 1984, the program conducted a series of planning workshops with representatives from the wind energy industry to obtain input on the Five-Year Research Plan then being prepared by DOE. One specific suggestion that came out of these meetings was that the federal program should conduct cooperative research tests with industry to enhance the technology transfer process. It was also felt that the active involvement of industry in DOE-funded research would improve the state of the art of wind turbine technology. DOE established the Cooperative Field Test Program (CFTP) in response to that suggestion. This program was one of the first in DOE to feature joint industry-government research test teams working toward common objectives.

Bollmeier, W.S. II; Dodge, D.M.

1992-03-01T23:59:59.000Z

122

Wind Energy Benefits, Wind Powering America (WPA) (Fact Sheet), Wind And Water Power Program (WWPP)  

Broader source: Energy.gov [DOE]

This fact sheet outlines the top 10 benefits of wind energy, including cost, water savings, job creation, indigenous resource, and low operating costs.

123

Integrating Experimental Design Into Your Program  

Broader source: Energy.gov [DOE]

This presentation, given through the DOE's Technical Assitance Program (TAP), exaplin how you can integrate experimental design into your program.

124

Wind and Geothermal Incentives Program | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

Savings Category Savings Category Buying & Making Electricity Wind Maximum Rebate Manufacturer loans: 35,000 per job created within 3 years Manufacturer grants: 5,000 per job created within 3 years Loans for geothermal systems: 3 per square foot of space served up to 5 million Loans for wind energy production projects: 5 million Grants for wind energy production projects: 1 million Grants for feasibility studies: 50% of cost up to 175,000 Loan guarantee grants: Up to 75% of deficient funds up to 5 million Program Info Funding Source Alternative Energy Investment Fund (state issued bonds) Start Date January 2009 State Pennsylvania Program Type Industry Recruitment/Support Rebate Amount Varies by project, but program generally requires matching funds at least equivalent to DCED funding

125

New England Wind Forum: A Wind Powering America Project, Newsletter #5 -- January 2010, Wind and Hydropower Technologies Program (WHTP)  

Wind Powering America (EERE)

5 - January 2010 5 - January 2010 Two 600-kW wind turbines were installed on Deer Island in August 2009 next to the wastewater treatment facility's anaerobic digesters. Due to their proximity to Logan Airport, these generators were installed on unusually short 32-meter towers. WIND AND HYDROPOWER TECHNOLOGIES PROGRAM continued on page 2 > Kathryn Craddock, Sustainable Energy Advantage, LLC/PIX16710 Wind Projects Sprout Throughout New England NEWF is pleased to provide you with its fifth edition of the electronic NEWF newsletter. This newsletter provides updates on a broad range of project proposals and policy initiatives across New England during the funding hiatus...consider it a "catch-up" double issue. In past newsletters, we've relied on wind farm photo-simulations, photos of early construction

126

The EPRI/DOE Utility Wind Turbine Performance Verification Program  

SciTech Connect (OSTI)

In 1992, the Electric Power Research Institute (EPRI) and the US Department of Energy (DOE) initiated the Utility Wind Turbine Performance Verification Program (TVP). This paper provides an overview of the TVP, its purpose and goals, and the participating utility projects. Improved technology has significantly reduced the cost of energy from wind turbines since the early 1980s. In 1992, turbines were producing electricity for about $0.07--$0.09/kilowatt-hour (kWh) (at 7 m/s [16 mph sites]), compared with more than $0.30/kWh in 1980. Further technology improvements were expected to lower the cost of energy from wind turbines to $0.05/kWh. More than 17,000 wind turbines, totaling more than 1,500 MW capacity, were installed in the US, primarily in California and Hawaii. The better wind plants had availabilities above 95%, capacity factors exceeding 30%, and operation and maintenance costs of $0.01/kWh. However, despite improving technology, EPRI and DOE recognized that utility use of wind turbines was still largely limited to turbines installed in California and Hawaii during the 1980s. Wind resource assessments showed that other regions of the US, particularly the Midwest, had abundant wind resources. EPRI and DOE sought to provide a bridge from utility-grade turbine development programs under way to commercial purchases of the wind turbines. The TVP was developed to allow utilities to build and operate enough candidate turbines to gain statistically significant operating and maintenance data.

Calvert, S.; Goldman, P. [Department of Energy, Washington, DC (United States); DeMeo, E.; McGowin, C. [Electric Power Research Inst., Palo Alto, CA (United States); Smith, B.; Tromly, K. [National Renewable Energy Lab., Golden, CO (United States)

1997-01-01T23:59:59.000Z

127

NIST BUILDING SCIENCE SERIES 180 Database-Assisted Design for Wind  

E-Print Network [OSTI]

climatological information on extreme wind speeds and their direction-dependence can be used in conjunction; aerodynamics; extreme winds; database-assisted design; structural dynamics; wind directionality; wind forcesNIST BUILDING SCIENCE SERIES 180 Database-Assisted Design for Wind: Concepts, Software

128

Wind Atlas Analysis and Application Program (WAsP) | Open Energy  

Open Energy Info (EERE)

Wind Atlas Analysis and Application Program (WAsP) Wind Atlas Analysis and Application Program (WAsP) Jump to: navigation, search Tool Summary Name: Wind Atlas Analysis and Application Program (WAsP) Agency/Company /Organization: Risoe DTU Sector: Energy Focus Area: Renewable Energy, Wind Topics: GHG inventory, Resource assessment Resource Type: Maps, Software/modeling tools User Interface: Desktop Application Website: www.wasp.dk/ Cost: Paid Wind Atlas Analysis and Application Program (WAsP) Screenshot References: WAsP[1] Background "WAsP is a PC program for predicting wind climates, wind resources and power productions from wind turbines and wind farms. The predictions are based on wind data measured at stations in the same region. The program includes a complex terrain flow model, a roughness change model and a model

129

MIT System Design and Management Program  

E-Print Network [OSTI]

MIT System Design and Management Program MIT System Design and Management Program Leadership, innovation, systems thinking #12;MIT System Design and Management Program #12;about MIT The mission of MIT of leaders, MIT's System Design and Management Program (SDM) educates mid-career technical professionals

de Weck, Olivier L.

130

Web-based Tool for Preliminary Assessment of Wind Power Plant Design  

E-Print Network [OSTI]

Web-based Tool for Preliminary Assessment of Wind Power Plant Design Daniela Borissova1 and Ivan. Designing of reliable and cost-effective industrial wind power plant is a prerequisite for the effective use of wind power as an alternative resource. The design of a wind power plant includes the determination

Mustakerov, Ivan

131

AIAA-2004-0502 A COMPARISON OF WIND TURBINE DESIGN LOADS IN DIFFERENT  

E-Print Network [OSTI]

in the gross wind environment and in the extreme response given wind conditions to establish nominal designAIAA-2004-0502 1 A COMPARISON OF WIND TURBINE DESIGN LOADS IN DIFFERENT ENVIRONMENTS USING INVERSE, Austin, TX 78712 ABSTRACT* The influence of turbulence conditions on the design loads for wind turbines

Manuel, Lance

132

Federal Energy Management Program: Product Designation Process  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Product Product Designation Process to someone by E-mail Share Federal Energy Management Program: Product Designation Process on Facebook Tweet about Federal Energy Management Program: Product Designation Process on Twitter Bookmark Federal Energy Management Program: Product Designation Process on Google Bookmark Federal Energy Management Program: Product Designation Process on Delicious Rank Federal Energy Management Program: Product Designation Process on Digg Find More places to share Federal Energy Management Program: Product Designation Process on AddThis.com... Energy-Efficient Products Federal Requirements Covered Product Categories Product Designation Process Low Standby Power Energy & Cost Savings Calculators Model Acquisitions Language Working Group Resources

133

Optimizing the Design of a Wind Farm Collection Network  

E-Print Network [OSTI]

the same time and whose energy must be collected and distributed through an existing electrical network in the exploitation of wind energy. We formulate this problem as a mixed in- teger programming problem, relate an important role in the planning of large systems, especially in the fields of telecommunications

Hertz, Alain

134

The U.S. Department of Energy Wind Turbine Development Program  

SciTech Connect (OSTI)

The development of technologically-advanced wind turbines continues to be a high priority of the US wind industry. The United States Department of Energy (DOE) is sponsoring a range of projects that assist the wind industry to design, develop, and test new wind turbines. The overall goal is to develop turbines that can compete with conventional electric generation with a cost of energy (COE) of 5 cents/kWh at 5.8 m/s (13 mph sites) by the mid-1990s and with a cost of energy of 4 cents/kWh or less at 5.8 m/s sites by the year 2000. These goals will be supported through the DOE Turbine Development Program. The Turbine Development Program uses a two-path approach. The first path assists US industry to develop and integrate innovative technologies into utility-grade wind turbines for the near-term (mid-1990s). The second path assists industry to develop a new generation of turbines for the year 2000. This paper describes present and planned projects under the Turbine Development Program.

Link, H.; Laxson, A.; Smith, B. [National Renewable Energy Lab., Golden, CO (United States); Goldman, P. [Dept. of Energy, Washington, DC (United States)

1995-03-01T23:59:59.000Z

135

Water Power for a Clean Energy Future (Fact Sheet), Wind and Water Power Program (WWPP)  

Broader source: Energy.gov [DOE]

This fact sheet provides an overview of the Department of Energy's Wind and Water Power Program's water power research activities.

136

U.S. Department of Energy Wind and Hydropower Technologies: Top 10 Program Accomplishments  

SciTech Connect (OSTI)

This brochure describes the top ten accompishments of the DOE Wind Energy Program during the past 30 years.

Not Available

2008-05-01T23:59:59.000Z

137

Residential Retrofit Program Design Guide  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Technical Assistance Program Technical Assistance Program Residential Retrofit Program Design Guide May 2011 This work has been performed by the Vermont Energy Investment Corporation (VEIC) and Energy Futures Group (EFG), under the Contract No. 4200000341 with Oak Ridge National Laboratory which is managed by UT-Battelle, LLC under Contract with the US Department of Energy No. DE-AC05-00OR22725. This document was prepared in collaboration with a partnership of companies under this contract. The partnership is led by the Vermont Energy Investment Corporation (VEIC), and includes the following companies: American Council for an Energy Efficient Economy (ACEEE), Energy Futures Group (EFG), Midwest Energy Efficiency Alliance (MEEA), Northwest Energy Efficiency Alliance (NEEA), Northeast Energy Efficiency Partnership (NEEP), Natural

138

Final environmental impact report for the California Energy Commission Solar Program and Wind Program  

SciTech Connect (OSTI)

This Final Environmental Impact Report analyzes the California Energy Commission's Solar Program and Wind Program. The Solar Program is not expected to have any significant environmental effects. The assembly of solar systems will require the manufacture of certain component materials such as steel, aluminum, glass, copper, fiberglass insulation and polyurethane insulation. With the exception of copper and aluminum, all the materials can be manufactured in California. The air quality impacts associated with the production of these materials are insignificant and, in most cases, are more than offset by reduced emissions from decreased electrical generation and natural gas consumption. There are no expected water quality impacts associated with the production of the materials. The Solar Program will also have socioeconomic effects. The purchase price of some new housing will increase as a result of installing solar systems. The Solar Program will have a positive effect on employment, increasing the number of jobs available in both the manufacturing and installation of solar systems. The Wind Program has a near-term goal of 500 megawatts of wind generated electricity on line in California by 1985. Potential sites for wind development from a wind resource standpoint, occur in the desert and mountains where strong, persistent winds occur. The siting of a specified number of wind turbines may pose potential environmental impacts, but these effects are mitigable. The most substantial concern is the need for scattered wind turbines over a given area. Construction impacts from turbine pad leveling, access roads and transmission corridors could be considerable. Conflicts with existing and future land use may also occur. Operational effects include minor changes in microclimate, bird collisions with the turbine blades, noise, increased off-road vehicle use, aesthetics and radio and television wave interference.

Not Available

1980-05-01T23:59:59.000Z

139

Integrating Experimental Design into Your Program  

Broader source: Energy.gov [DOE]

How you can use experimental design in energy efficiency programs in order to make them the most successful and cost-effective programs that they can be.

140

Good, Better, Best: Designing a Designation Program for Solar | Department  

Broader source: Energy.gov (indexed) [DOE]

Good, Better, Best: Designing a Designation Program for Solar Good, Better, Best: Designing a Designation Program for Solar Good, Better, Best: Designing a Designation Program for Solar December 4, 2012 - 4:00pm Addthis The Energy Department is gathering input on solar designation programs that could one day help consumers recognize the best products and services that the solar industry has to offer. | Photo by Dennis Schroeder/NREL. The Energy Department is gathering input on solar designation programs that could one day help consumers recognize the best products and services that the solar industry has to offer. | Photo by Dennis Schroeder/NREL. Minh Le Minh Le Program Manager, Solar Program How can I participate? To provide input for the Designation Program for Solar Energy Stakeholders Request for Information (RFI), submit your feedback.

Note: This page contains sample records for the topic "wind program designed" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


141

Ris-R-Report Grid fault and design-basis for wind turbines -  

E-Print Network [OSTI]

Risø-R-Report Grid fault and design-basis for wind turbines - Final report Anca D. Hansen, Nicolaos and design-basis for wind turbines - Final report Division: Wind Energy Division Risø-R-1714(EN) January 2010-basis for wind turbines". The objective of this project has been to assess and analyze the consequences

142

Reactive power control of grid-connected wind farm based on adaptive dynamic programming  

E-Print Network [OSTI]

is widely used in the wind power system for its advantages over other two types [5]. The characteristicsReactive power control of grid-connected wind farm based on adaptive dynamic programming Yufei Tang Wind farm Power system Adaptive control a b s t r a c t Optimal control of large-scale wind farm has

He, Haibo

143

Advanced Materials by Design: Programable Transient Electronics...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Advanced Materials by Design: Programable Transient Electronics Transient materials is an emerging area of materials design with the key attribute being the ability to physically...

144

Design Assistance Program | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

Design Assistance Program Design Assistance Program Design Assistance Program < Back Eligibility Commercial Construction Industrial Installer/Contractor Multi-Family Residential Savings Category Heating & Cooling Commercial Heating & Cooling Heating Home Weatherization Commercial Weatherization Sealing Your Home Cooling Manufacturing Other Heat Pumps Appliances & Electronics Commercial Lighting Lighting Insulation Design & Remodeling Water Heating Windows, Doors, & Skylights Solar Program Info Funding Source Focus On Energy Program State Wisconsin Program Type State Rebate Program Rebate Amount Design: $0.012 - $0.015/kWh saved Construction: $0.09/kWh saved and $0.55/therm saved Provider Focus on Energy The Focus on Energy Design Assistance Program provides design professionals, builders and developers of new buildings with whole building

145

Testing Small Wind Turbine Generators: Design of a Driving Dynamometer Stephen Rehmeyer Pepe  

E-Print Network [OSTI]

Testing Small Wind Turbine Generators: Design of a Driving Dynamometer by Stephen Rehmeyer Pepe Sc, Berkeley Spring 2007 #12;Testing Small Wind Turbine Generators: Design of a Driving Dynamometer Copyright c 2007 by Stephen Rehmeyer Pepe #12;Abstract Testing Small Wind Turbine Generators: Design of a Driving

Kammen, Daniel M.

146

NREL: Wind Research - Offshore Design Tools and Methods  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Design Tools and Methods Design Tools and Methods Graphic of a modular depiction of the FAST tool, which includes aerodynamics, hydrodynamics, control and electrical system dynamics, and structural dynamics modules. NREL's CAE Tool, FAST, and its Sub-Modules Illustration of wind turbines in various environments including land-based, shallow water (0-30m), transitional depth (30-60m), and deep water floating (greater than 60m). FAST has the capability of modeling a wide range of offshore wind system configurations including shallow water, transitional depth, and floating systems. With DOE's support, NREL has developed and maintains a robust, open-source, modular computer-aided engineering (CAE) tool, known as FAST. It has state-of-the-art capabilities for full dynamic system simulation over a

147

Wind turbine trailing-edge aerodynamic brake design  

SciTech Connect (OSTI)

This report describes the design of a centrifugally actuated aerodynamic-overspeed device for a horizontal-axis wind turbine. The device will meet the following criteria; (1) It will be effective for airfoil angles of attack 0{degrees} to 45{degrees}. (2) It will be stowed inside the blade profile prior to deployment. (3) It will be capable of offsetting the positive torque produced by the overall blade. (4) Hinge moments will be minimized to lower actuator loads and cost. (5) It will be evaluated as a potential power modulating active rotor-control system. A literature review of aerodynamic braking devices was conducted. Information from the literature review was used to conceptualize the most effective devices for subsequent testing and design. Wind-tunnel test data for several braking devices are presented in this report. Using the data for the most promising configuration, a preliminary design was developed for a MICON 65/13 wind turbine with Phoenix 7.9-m rotor blades.

Quandt, G.

1996-01-01T23:59:59.000Z

148

Development of a 2-kilowatt high-reliability wind machine. Phase I. Design and analysis. Volume I. Executive summary  

SciTech Connect (OSTI)

A high reliability wind machine rated for 2 kW at 9 m/s has been designed to be cost-effective for remote site use. To meet or exceed environmental conditions as specified in Contract PF64410F, the resulting design defines a rugged, relatively simple wind machine. Rigorous fatigue analysis for structural components and development of redundant systems for electrical components led to an expected mean time between failures of 12.35 years. Approximately one year into the research and development program, a completed design meeting contract stipulations is being submitted to the contract buyer. The design is for a horizontal axis, down-wind machine with two wooden blades spanning 5 meters diameter. Positive rotor speed control is accomplished through a centrifugally governed variable pitch, stalling rotor. Design merits have been confirmed through dynamic truck testing.

Drake, W.; Clews, H.; Cordes, J.; Johnson, B.; Murphy, P.

1980-01-01T23:59:59.000Z

149

Development of a 2-kilowatt high-reliability wind machine. Phase I. Design and analysis. Volume II. Technical report  

SciTech Connect (OSTI)

A high reliability wind machine rated for 2 kW at 9 m/s has been designed to be cost-effective for remote site use. To meet or exceed environmental conditions as specified in Contract PF64410F, the resulting design defines a rugged, relatively simple wind machine. Rigorous fatigue analysis for structural components and development of redundant systems for electrical components led to an expected mean time between failures of 12.35 years. Approximately one year into the research and development program a completed design meeting contract stipulations is being submitted to the contract buyer. The design is for a horizontal axis, down-wind machine with two wooden blades spanning 5 meters diameter. Positive rotor speed control is accomplished through a centrifugally governed variable pitch stalling rotor. Design merits have been confirmed through dynamic truck testing.

Drake, W.; Clews, H.; Cordes, J.; Johnson, B.; Murphy, P.

1980-01-01T23:59:59.000Z

150

Baseline Design of a Hurricane-Resilient Wind Turbine (Poster)  

SciTech Connect (OSTI)

Under U.S. Department of Energy-sponsored research FOA 415, the National Renewable Energy Laboratory led a team of research groups to produce a complete design of a large wind turbine system to be deployable in the western Gulf of Mexico region. As such, the turbine and its support structure would be subjected to hurricane-loading conditions. Among the goals of this research was the exploration of advanced and innovative configurations that would help decrease the levelized cost of energy (LCOE) of the design, and the expansion of the basic IEC design load cases (DLCs) to include hurricane environmental conditions. The wind turbine chosen was a three-bladed, downwind, direct-drive, 10-MW rated machine. The rotor blade was optimized based on an IEC load suite analysis. The drivetrain and nacelle components were scaled up from a smaller sized turbine using industry best practices. The tubular steel tower was sized using ultimate load values derived from the rotor optimization analysis. The substructure is an innovative battered and raked jacket structure. The innovative turbine has also been modeled within an aero-servo-hydro-elastic tool, and future papers will discuss results of the dynamic response analysis for select DLCs. Although multiple design iterations could not be performed because of limited resources in this study, and are left to future research, the obtained data will offer a good indication of the expected LCOE for large offshore wind turbines to be deployed in subtropical U.S. waters, and the impact design innovations can have on this value.

Damiani, R.; Robertson, A.; Schreck, S.; Maples, B.; Anderson, M.; Finucane, Z.; Raina, A.

2014-10-01T23:59:59.000Z

151

Mooring Line Modelling and Design Optimization of Floating Offshore Wind Turbines  

E-Print Network [OSTI]

Mooring Line Modelling and Design Optimization of Floating Offshore Wind Turbines by Matthew Thomas Mooring Line Modelling and Design Optimization of Floating Offshore Wind Turbines by Matthew Thomas Jair was coupled to the floating wind turbine simulator FAST. The results of the comparison study indicate the need

Victoria, University of

152

V2G Technology for Designing Active Filter System to Improve Wind Power Quality  

E-Print Network [OSTI]

V2G Technology for Designing Active Filter System to Improve Wind Power Quality F. R. Islam, H. R factor correction and harmonics current compensation. Index Terms--PHEVs, V2G, Wind Power, Battery Scheme to design active filter is proposed here to improve the quality of wind power output. Harmonics is one

Pota, Himanshu Roy

153

Enertech 15-kW wind-system development: Phase I. Design and analysis. Volume I. Executive summary  

SciTech Connect (OSTI)

A utility interfaced wind machine rated for 15 kW at 9 m/s (20.1 mph) has been designed to be cost effective in 5.4 m/s (12 mph) average wind sites. Approximately 18 months into the research and development program a completed design meeting contract specifications was submitted to the buyer. The design is for a horizontal axis, down wind machine which features three fixed pitch wood-epoxy blades and free yaw. Rotor diameter is 44 feet (13.4 meters). Unit shutdown is provided by an electrohydraulic brake. Blade tip brakes provide back-up rotor overspeed protection. Design merits have been verified through dynamic truck testing of a prototype unit.

Not Available

1981-09-01T23:59:59.000Z

154

Enertech 15-kW wind-system development. Phase I. Design and Analysis. Volume II. Technical report  

SciTech Connect (OSTI)

A utility interfaced wind machine rated for 15 kW at 9 m/s (20.1 mph) has been designed to be cost effective in 5.4 m/s (12 mph) average wind sites. Approximately 18 months into the research and development program a completed design meeting contract specifications was submitted to the buyer. The design is for a horizontal axis, down wind machine which features three fixed pitch wood-epoxy blades and free yaw. Rotor diameter is 44 feet (13.4 meters). Unit shutdown is provided by an electrohydraulic brake. Blade tip brakes provide back-up rotor overspeed protection. Design merits have been verified through dynamic truck testing of a prototype unit.

Dodge, D.M. (ed.)

1981-09-01T23:59:59.000Z

155

Articles about Wind Program Analysis | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

Management (BOEM) will lease the seabed on the outer continental shelf for offshore wind farms. March 31, 2014 Model Examines Cumulative Impacts of Wind Energy Development on...

156

Wind Program Newsletter: Third Quarter 2013 | Department of Energy  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Extreme-Scale Wind Farm Simulation Capabilities New Report: Integrating More Wind and Solar Reduces Utilities' Carbon Emissions and Fuel Costs Funding Opportunities Request for...

157

WINDExchange: Wind Resource Maps and Anemometer Loan Program...  

Wind Powering America (EERE)

to help homeowners, communities, states and regions consider and plan for wind energy deployment. Read about the available wind maps for utility-, community-, and...

158

Optimizing the Design of a Hybrid Solar-Wind Power Plant to meet Variable Power Demand  

Science Journals Connector (OSTI)

Not enough studies have been done on operating the two most available and renewable energy sources, sun and wind energy, alongside one another. A complementary ... presents an optimal design for a hybrid solar-wind

K. Mousa; A. Diabat

2011-01-01T23:59:59.000Z

159

SHM BASED SYSTEM DESIGN OFA WIND TURBINE TOWER USING A MODAL SENSITIVITY BASED BAYES DETECTOR  

E-Print Network [OSTI]

SHM BASED SYSTEM DESIGN OFA WIND TURBINE TOWER USING A MODAL SENSITIVITY BASED BAYES DETECTOR Mads of the NREL 5MW wind turbine tower subjected to bending fatigue and horizontal circumferential cracking

Boyer, Edmond

160

Financing Program Design and Implementation Considerations  

Broader source: Energy.gov [DOE]

Designing and implementing clean energy financing programs takes more than simply identifying applicablefinancing structures and implementing them. State and local governments should also take...

Note: This page contains sample records for the topic "wind program designed" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


161

Aspects Regarding Design of Wind Power Plants Foundation System  

Science Journals Connector (OSTI)

During the past years wind power plants projects have become very important all over ... must be calculated for dynamic loads, especially wind charge. The article present the particularities of the wind power plants

Vasile Farcas; Nicoleta Ilies

2014-01-01T23:59:59.000Z

162

Stanford University Sustainable Design & Construction Program  

E-Print Network [OSTI]

March 14, 2014 Y2E2 Building, Room 292E 473 Via Ortega, Stanford, CA 94305 #12;Sustainable DesignStanford University Sustainable Design & Construction Program 2014-2015 Admitted Student Open House for sophisticated structural/construction engineers " Support Design-Build Firms, Design Firms, Construction Firms

Prinz, Friedrich B.

163

NREL: Education Programs - Wind for Schools Project Funding Case Studies  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Wind for Schools Project Funding Case Studies Wind for Schools Project Funding Case Studies August 26, 2013 The Wind for Schools project is part of the U.S. Department of Energy's (DOE's) Wind Powering America initiative. Since 2005, DOE provided funding for Wind Applications Centers in 11 Wind for Schools states, introducing teachers, students, and communities to wind energy applications and benefits. This Wind for Schools funding supported the project; it was not used to purchase turbines and equipment. Individual school champions emerged to find local funding mechanisms to purchase and install their turbines. On October 1, 2013, DOE will no longer fund the project; therefore, we feel that it is important to document the funding sources utilized by these states to purchase and install Wind for Schools project turbines. (1) By

164

Role of Design Standards in Wind Plant Optimization (Presentation)  

SciTech Connect (OSTI)

When a turbine is optimized, it is done within the design constraints established by the objective criteria in the international design standards used to certify a design. Since these criteria are multifaceted, it is a challenging task to conduct the optimization, but it can be done. The optimization is facilitated by the fact that a standard turbine model is subjected to standard inflow conditions that are well characterized in the standard. Examples of applying these conditions to rotor optimization are examined. In other cases, an innovation may provide substantial improvement in one area, but be challenged to impact all of the myriad design load cases. When a turbine is placed in a wind plant, the challenge is magnified. Typical design practice optimizes the turbine for stand-alone operation, and then runs a check on the actual site conditions, including wakes from all nearby turbines. Thus, each turbine in a plant has unique inflow conditions. The possibility of creating objective and consistent inflow conditions for turbines within a plant, for used in optimization of the turbine and the plant, are examined with examples taken from LES simulation.

Veers, P.; Churchfield, M.; Lee, S.; Moon, J.; Larsen, G.

2013-10-01T23:59:59.000Z

165

Instrument Design Simulations for Synthetic Aperture Microwave Radiometric Imaging of Wind Speed and  

E-Print Network [OSTI]

Instrument Design Simulations for Synthetic Aperture Microwave Radiometric Imaging of Wind Speed, US Abstract -- The measurement of peak winds in hurricanes is critical to forecasting intensity in radiative transfer modeling for hurricane force winds and large incidence angles are required for HIRad

Ruf, Christopher

166

ENERGY FOR SUSTAINABILITY: HIGHLY COMPLIANT FLOATING OFFSHORE WIND TURBINES: FEASIBILITY ASSESSMENT THROUGH THEORY, SIMULATION AND DESIGN  

E-Print Network [OSTI]

A-1 ENERGY FOR SUSTAINABILITY: HIGHLY COMPLIANT FLOATING OFFSHORE WIND TURBINES: FEASIBILITY ASSESSMENT THROUGH THEORY, SIMULATION AND DESIGN Hundreds of wind turbines have been installed in the oceans surrounding Europe, and plans are in place for offshore developments in the US. Locating these wind turbines

Sweetman, Bert

167

Conceptual Design of Floating Wind Turbines with Large-Amplitude Motion  

E-Print Network [OSTI]

of spar-type floating offshore wind turbines is investigated in detail. Three conceptual designs based for siting offshore wind turbines beyond sight of land, where waters tend to be deeper, and use of floating importance. The first full-scale offshore floating wind turbine in the world, Hywind, has been installed

Sweetman, Bert

168

Soft computing based optimum parameter design of PID controller in rotor speed control of wind turbines  

Science Journals Connector (OSTI)

Sensitivity and robustness is the primary issue while designing the controller for large non-linear systems such as offshore wind turbines. The main goal of this study is a novel soft computing based approach in controlling the rotor speed of wind turbine. ... Keywords: bacteria foraging optimization algorithm, optimization, particle swarm optimization, proportional-integral-derivative controller, wind turbines

R. Manikandan; Nilanjan Saha

2011-12-01T23:59:59.000Z

169

DOE Science Showcase - Wind Power  

Office of Scientific and Technical Information (OSTI)

DOE Science Showcase - Wind Power DOE Science Showcase - Wind Power Wind Powering America Wind Powering America is a nationwide initiative of the U.S. Department of Energy's Wind Program designed to educate, engage, and enable critical stakeholders to make informed decisions about how wind energy contributes to the U.S. electricity supply. Wind Power Research Results in DOE Databases IEA Wind Task 26: The Past and Future Cost of Wind Energy, Work Package 2, Energy Citations Database NREL Triples Previous Estimates of U.S. Wind Power Potential, Energy Citations Database Dynamic Models for Wind Turbines and Wind Power Plants, DOE Information Bridge 2012 ARPA-E Energy Innovation Summit: Profiling General Compression: A River of Wind, ScienceCinema, multimedia Solar and Wind Energy Resource Assessment (SWERA) Data from the

170

Improving WRF-ARW Wind Speed Predictions using Genetic Programming  

Science Journals Connector (OSTI)

Numerical weather prediction models can produce wind speed forecasts at a very high space resolution. ... that GP is able to successfully downscale the wind speed predictions, reducing significantly the inherent ...

Giovanna Martinez-Arellano; Lars Nolle

2012-01-01T23:59:59.000Z

171

Conceptual design. Final report: TFE Verification Program  

SciTech Connect (OSTI)

This report documents the TFE Conceptual Design, which provided the design guidance for the TFE Verification program. The primary goals of this design effort were: (1) establish the conceptual design of an in-core thermionic reactor for a 2 Mw(e) space nuclear power system with a 7-year operating lifetime; (2) demonstrate scalability of the above concept over the output power range of 500 kW(e) to 5 MW(e); and (3) define the TFE which is the basis for the 2 MW (e) reactor design. This TFE specification provided the basis for the test program. These primary goals were achieved. The technical approach taking in the conceptual design effort is discussed in Section 2, and the results are discussed in Section 3. The remainder of this introduction draws a perspective on the role that this conceptual design task played in the TFE Verification Program.

Not Available

1994-03-01T23:59:59.000Z

172

Strengthening Americas Energy Security with Offshore Wind (Fact Sheet) (Revised), Wind And Water Power Program (WWPP)  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

crane mounted on a barge designed for offshore crane mounted on a barge designed for offshore wind turbine installation lifts a rotor into place. Photo courtesy of © DOTI 2009-alpha ventus Offshore wind energy is a clean, domestic, renewable resource that can help the United States meet its critical energy, environmental, and economic challenges. By generating electricity from offshore wind turbines, the nation can reduce its greenhouse gas emissions, diversify its energy supply, provide cost-competitive electricity to key coastal regions, and help revitalize key sectors of its economy, including manufacturing. However, realizing these benefits will require overcoming key barriers to the development and deployment of offshore wind technology, including its relatively high cost of energy, technical challenges surrounding installation and

173

Tailoring UNITY to Distributed Program Design ?  

E-Print Network [OSTI]

Tailoring UNITY to Distributed Program Design ? Michel Charpentier, Mamoun Filali, Philippe Mauran. As a general framework, UNITY does not offer any specific facility for the design of distributed systems to help the design of distributed systems in UNITY. 1 Introduction UNITY is intended to be a general

Charpentier, Michel

174

Tailoring UNITY to Distributed Program Design  

E-Print Network [OSTI]

Tailoring UNITY to Distributed Program Design Michel Charpentier, Mamoun Filali, Philippe Mauran, G. As a general framework, UNITY does not offer any specific facility for the design of distributed systems to help the design of distributed systems in UNITY. 1 Introduction UNITY is intended to be a general

Grigoras, .Romulus

175

Extended tension leg platform design for offshore wind turbine systems  

E-Print Network [OSTI]

The rise of reliable wind energy application has become a primary alternative to conventional fossil fuel power plants in the United States and around the world. The feasibility of building large scale wind farms has become ...

Parker, Nicholas W. (Nicholas William)

2007-01-01T23:59:59.000Z

176

Standards for Municipal Small Wind Regulations and Small Wind Model Wind  

Broader source: Energy.gov (indexed) [DOE]

Standards for Municipal Small Wind Regulations and Small Wind Model Standards for Municipal Small Wind Regulations and Small Wind Model Wind Ordinance Standards for Municipal Small Wind Regulations and Small Wind Model Wind Ordinance < Back Eligibility Agricultural Commercial Fed. Government Industrial Institutional Local Government Nonprofit Residential Schools State Government Tribal Government Utility Savings Category Wind Buying & Making Electricity Program Info State New Hampshire Program Type Solar/Wind Permitting Standards In July 2008, New Hampshire enacted legislation designed to prevent municipalities from adopting ordinances or regulations that place unreasonable limits or hinder the performance of wind energy systems up to 100 kilowatts (kW) in capacity. Such wind turbines must be used primarily to produce energy for on-site consumption. The law identifies a several

177

Shallow Water Offshore Wind Optimization for the Great Lakes (DE-FOA-0000415) Final Report: A Conceptual Design for Wind Energy in the Great Lakes  

SciTech Connect (OSTI)

The primary objective of the project was to develop a innovative Gravity Base Foundation (GBF) concepts, including fabrication yards, launching systems and installation equipment, for a 500MW utility scale project in the Great Lakes (Lake Erie). The goal was to lower the LCOE by 25%. The project was the first to investigate an offshore wind project in the Great Lakes and it has furthered the body of knowledge for foundations and installation methods within Lake Erie. The project collected historical geotechnical information for Lake Erie and also used recently obtained data from the LEEDCo Icebreaker Project (FOA DE-EE0005989) geotechnical program to develop the conceptual designs. Using these data-sets, the project developed design wind and wave conditions from actual buoy data in order to develop a concept that would de-risk a project using a GBF. These wind and wave conditions were then utilized to create reference designs for various foundations specific to installation in Lake Erie. A project partner on the project (Weeks Marine) provided input for construction and costing the GBF fabrication and installation. By having a marine contractor with experience with large marine projects as part of the team provides credibility to the LCOE developed by NREL. NREL then utilized the design and construction costing information as part of the LCOE model. The report summarizes the findings of the project. Developed a cost model and baseline LCOE Documented Site Conditions within Lake Erie Developed Fabrication, Installation and Foundations Innovative Concept Designs Evaluated LCOE Impact of Innovations Developed Assembly line Rail System for GBF Construction and Staging Developed Transit-Inspired Foundation Designs which incorporated: Semi-Floating Transit with Supplemental Pontoons Barge mounted Winch System Developed GBF with Penetration Skirt Developed Integrated GBF with Turbine Tower Developed Turbine, Plant Layout and O&M Strategies The report details lowering LCOE by 22.3% and identified additional strategies that could further lower LCOE when building an utility scale wind farm in the Great Lakes.

Wissemann, Chris [Freshwater Wind I, LLC] [Freshwater Wind I, LLC; White, Stanley M [Stanley White Engineering LLC] [Stanley White Engineering LLC

2014-02-28T23:59:59.000Z

178

Calculator program speeds rod pump design  

SciTech Connect (OSTI)

Matching sucker rod pump characteristics to a specific application is greatly simplified with this program, intended for use with an HP-41CV hand-held computer. The user inputs application data and the program calculates all necessary design criteria, including Mill's acceleration factor, peak and minimum polish rod loads and horsepower required. Sample calculations are provided, together with a thorough discussion of special design considerations involved in huff-and-puff applications.

Engineer, R.; Davis, C.L.

1984-02-01T23:59:59.000Z

179

Design and construction of vertical axis wind turbines using dual-layer vacuum-forming  

E-Print Network [OSTI]

How does one visualize wind? Is it the way trees bend in a strong gust or the way smoke is carried in a breeze? What if wind could be visualized using design, technology, and light? This thesis documents the design of a ...

Carper, Christopher T

2010-01-01T23:59:59.000Z

180

Determination of fault operation dynamical constraints for the design of wind turbine DFIG drives  

Science Journals Connector (OSTI)

This paper presents an efficient design tool for the estimation of the transient electromagnetic peak torque and transient rotor over-voltages of wind turbines (WT) doubly-fed induction generators (DFIG) during severe fault conditions on the grid side. ... Keywords: Dynamical constraint, Integrated design, Non-linear optimization, Wind turbine

Davide Aguglia; Philippe Viarouge; Ren Wamkeue; Jrme Cros

2010-10-01T23:59:59.000Z

Note: This page contains sample records for the topic "wind program designed" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


181

Demonstration of wind turbine. Final technical report at grant program  

SciTech Connect (OSTI)

Proposal F-602 is a demonstration of a commercially available wind-electric device - an Enertech Corp. Series 1800 model wind turbine. The demonstration site selected was the New Directions school campus, a public school facility, in Sarasota, Florida. During testing, an investigation of the wind power potential for the area was undertaken. In addition, negotiations with the Florida Power and Light Company for parallel operation of the wind system (utility interface), were initiated. An Operating Agreement contract is now pending approval by the Sarasota County School Board. The results to date, of this site's wind power potential, have been well below computational expectancies based upon wind speed data for the area. Analysis will continue, to determine the cause of the windplant's low net output.

Pendola, W. Jr.

1982-06-01T23:59:59.000Z

182

One Optimal Sizing Method for Designing Hybrid Solar-Wind-Diesel Power Generation Systems  

Science Journals Connector (OSTI)

This paper recommended an optimal design model for designing stand-alone hybrid solar-wind-diesel systems. The optimum configuration ensures that the annualized cost of the systems is minimized while satisfying t...

Zhou Wei; Yang Hongxing

2009-01-01T23:59:59.000Z

183

Wind Program Newsletter: Third Quarter 2011 | Department of Energy  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Newsletter: Third Quarter 2011 Department of Energy Awards 43 Million to Spur Offshore Wind Energy In the News Current R&D Funding Opportunities Recent Publications...

184

ADVANCED COMPOSITE WIND TURBINE BLADE DESIGN BASED ON DURABILITY AND DAMAGE TOLERANCE  

SciTech Connect (OSTI)

The objective of the program was to demonstrate and verify Certification-by-Analysis (CBA) capability for wind turbine blades made from advanced lightweight composite materials. The approach integrated durability and damage tolerance analysis with robust design and virtual testing capabilities to deliver superior, durable, low weight, low cost, long life, and reliable wind blade design. The GENOA durability and life prediction software suite was be used as the primary simulation tool. First, a micromechanics-based computational approach was used to assess the durability of composite laminates with ply drop features commonly used in wind turbine applications. Ply drops occur in composite joints and closures of wind turbine blades to reduce skin thicknesses along the blade span. They increase localized stress concentration, which may cause premature delamination failure in composite and reduced fatigue service life. Durability and damage tolerance (D&DT) were evaluated utilizing a multi-scale micro-macro progressive failure analysis (PFA) technique. PFA is finite element based and is capable of detecting all stages of material damage including initiation and propagation of delamination. It assesses multiple failure criteria and includes the effects of manufacturing anomalies (i.e., void, fiber waviness). Two different approaches have been used within PFA. The first approach is Virtual Crack Closure Technique (VCCT) PFA while the second one is strength-based. Constituent stiffness and strength properties for glass and carbon based material systems were reverse engineered for use in D&DT evaluation of coupons with ply drops under static loading. Lamina and laminate properties calculated using manufacturing and composite architecture details matched closely published test data. Similarly, resin properties were determined for fatigue life calculation. The simulation not only reproduced static strength and fatigue life as observed in the test, it also showed composite damage and fracture modes that resemble those reported in the tests. The results show that computational simulation can be relied on to enhance the design of tapered composite structures such as the ones used in turbine wind blades. A computational simulation for durability, damage tolerance (D&DT) and reliability of composite wind turbine blade structures in presence of uncertainties in material properties was performed. A composite turbine blade was first assessed with finite element based multi-scale progressive failure analysis to determine failure modes and locations as well as the fracture load. D&DT analyses were then validated with static test performed at Sandia National Laboratories. The work was followed by detailed weight analysis to identify contribution of various materials to the overall weight of the blade. The methodology ensured that certain types of failure modes, such as delamination progression, are contained to reduce risk to the structure. Probabilistic analysis indicated that composite shear strength has a great influence on the blade ultimate load under static loading. Weight was reduced by 12% with robust design without loss in reliability or D&DT. Structural benefits obtained with the use of enhanced matrix properties through nanoparticles infusion were also assessed. Thin unidirectional fiberglass layers enriched with silica nanoparticles were applied to the outer surfaces of a wind blade to improve its overall structural performance and durability. The wind blade was a 9-meter prototype structure manufactured and tested subject to three saddle static loading at Sandia National Laboratory (SNL). The blade manufacturing did not include the use of any nano-material. With silica nanoparticles in glass composite applied to the exterior surfaces of the blade, the durability and damage tolerance (D&DT) results from multi-scale PFA showed an increase in ultimate load of the blade by 9.2% as compared to baseline structural performance (without nano). The use of nanoparticles lead to a delay in the onset of delamination. Load-displacement relati

Galib Abumeri; Frank Abdi (PhD)

2012-02-16T23:59:59.000Z

185

Design of a wind turbine-generator system considering the conformability to wind velocity fluctuations  

SciTech Connect (OSTI)

The conformability of the rated power output of the wind turbine-generator system and of the wind turbine type to wind velocity fluctuations are investigated with a simulation model. The authors examine three types of wind turbines: the Darrieus-Savonius hybrid, the Darrieus proper and the Propeller. These systems are mainly operated at a constant tip speed ratio, which refers to a maximum power coefficient points. As a computed result of the net extracting power, the Darrieus turbine proper has little conformability to wind velocity fluctuations because of its output characteristics. As for the other turbines, large-scale systems do not always have an advantage over small-scale systems as the effect of its dynamic characteristics. Furthermore, it is confirmed that the net extracting power of the Propeller turbine, under wind direction fluctuation, is much reduced when compared with the hybrid wind turbine. Thus, the authors conclude that the appropriate rated power output of the system exists with relation to the wind turbine type for each wind condition.

Wakui, Tetsuya; Hashizume, Takumi; Outa, Eisuke

1999-07-01T23:59:59.000Z

186

Wind Energy Ordinances (Fact Sheet), Wind And Water Power Program (WWPP)  

Wind Powering America (EERE)

With increasing energy demands in the With increasing energy demands in the United States and more installed wind projects, rural communities and local governments with limited or no experi- ence with wind energy are now becom- ing involved. Communities with good wind resources are increasingly likely to be approached by entities with plans to develop wind projects. These opportunities can create new revenue in the form of construction jobs and land lease payments. They also create a new responsibility on the part of local governments to regulate wind turbine installations through ordinances. Ordinances, often found within munici- pal codes, provide various degrees of control to local governments. These laws cover issues such as zoning, traffic, con- sumer protection, and building codes.

187

International Effort Advances Offshore Wind Turbine Design Codes...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

with the Fraunhofer Institute for Wind Energy and Energy System Technology (IWES) in Germany to lead an international effort under the International Energy Agency's (IEA) Task 30...

188

Stakeholder Engagement and Outreach: Collegiate Wind Competition  

Wind Powering America (EERE)

Wind for Schools Project Wind for Schools Project Collegiate Wind Competition School Project Locations Education & Training Programs Curricula & Teaching Materials Resources Collegiate Wind Competition The U.S. Department of Energy (DOE) Collegiate Wind Competition challenges undergraduate students from multiple disciplines to design and construct a lightweight wind turbine. The students will investigate innovative wind energy concepts; gain experience designing, building, and testing a wind turbine to perform according to a customized, market data-derived business plan; and increase their knowledge of wind industry barriers. Illustration with a summary of the Collegiate Wind Competition and its principal contests. Challenging collegiate teams to design and construct a lightweight, transportable wind turbine to power small electric devices. Build and test a wind turbine, present on wind energy topics, and deliver a cohesive business plan.

189

The impacts of stochastic programming and demand response on wind integration  

Science Journals Connector (OSTI)

Wind imposes costs on power systems due to uncertainty and variability of real-time resource availability. Stochastic programming and demand response are offered as two possible solutions to ... although both wil...

Seyed Hossein Madaeni; Ramteen Sioshansi

2013-06-01T23:59:59.000Z

190

How to Design and Market Energy Efficiency Programs to Specific...  

Broader source: Energy.gov (indexed) [DOE]

How to Design and Market Energy Efficiency Programs to Specific Neighborhoods How to Design and Market Energy Efficiency Programs to Specific Neighborhoods This presentation, given...

191

Design and operation of internal dosimetry programs  

SciTech Connect (OSTI)

The proposed revision to USNRC 10 CFR 20 and the USDOE Order 5480.11 require intakes of radioactive material to be evaluated. Radiation dose limits are based on the sum of effective dose equivalent from intakes and the whole body dose from external sources. These significant changes in the regulations will require, at a minimum, a complete review of personnel monitoring programs to determine their adequacy. In this session we will review a systematic method of designing a routine personnel monitoring program that will comply with the requirements of the new regulations. Specific questions discussed are: (a) What are the goals and objectives of a routine personnel monitoring program (b) When is a routine personnel monitoring program required (c) What are the required capabilities of the routine personnel monitoring program (d) What should be done with the information generated in a personnel monitoring program Specific recommendations and interpretations are given in the session. 5 refs., 3 figs., 33 tabs.

LaBone, T.R.

1991-01-01T23:59:59.000Z

192

Wind Energy Benefits, Wind Powering America (WPA) (Fact Sheet...  

Broader source: Energy.gov (indexed) [DOE]

Energy Benefits, Wind Powering America (WPA) (Fact Sheet), Wind And Water Power Program (WWPP) Wind Energy Benefits, Wind Powering America (WPA) (Fact Sheet), Wind And Water Power...

193

Design of a 6-DoF Robotic Platform for Wind Tunnel Tests of Floating Wind Turbines  

Science Journals Connector (OSTI)

Abstract Sophisticated computational aero-hydro-elastic tools are being developed for simulating the dynamics of Floating Offshore Wind Turbines (FOWTs). The reliabilty of such prediction tools for designers requires experimental validation. To this end, due to the lack of a large amount of full scale data available, scale tests represent a remarkable tool. Moreover, due to the combined aerodynamic and hydrodynamic contributions to the dynamics of FOWTs, experimental tests should take into account both. This paper presents the design process of a 6-Degrees-of-Freedom robot for simulating the dynamics of \\{FOWTs\\} in wind tunnel scale experiments, as a complementary approach with respect to ocean wind-wave basin scale tests. Extreme events were considered for the definition of the robot requirements and performance. A general overview on the possible design solutions is reported, then the machine architecture as well as the kinematic and dynamic analysis is discussed. Also a motion task related to a 5-MW Floating Offshore Wind Turbine nominal operating condition was considered and then the ability of the robot to reproduce such motions verified in terms of maximum displacements, forces and power, to be within the design boundaries.

I. Bayati; M. Belloli; D. Ferrari; F. Fossati; H. Giberti

2014-01-01T23:59:59.000Z

194

Improving Design Methods for Fixed-Foundation Offshore Wind Energy Systems  

Broader source: Energy.gov [DOE]

The design basis for an offshore wind farm establishes the conditions, needs, and requirements to be taken into account in designing the facility. To address design knowledge gaps and facilitate safe deployment of U.S. offshore wind projects in areas along the U.S. Atlantic Coast, DOE is funding research by a team consisting of DOE's Savannah River National Laboratory, Coastal Carolina University, MMI Engineering, and DOE's National Renewable Energy Laboratory.

195

EIS-0255: Kenetech/Pacificorp Wind Power Program  

Broader source: Energy.gov [DOE]

This EIS analyzes BPA's proposed agreement with Sea West Corporation, a wind developer, of San Diego, California, to install additional turbines at the Wyoming Windpower Plant in Carbon County, Wyoming.

196

Letter from the Wind Program Director: Fall 2014 | Department...  

Broader source: Energy.gov (indexed) [DOE]

of funding that will help establish some of the country's first grid-connected offshore wind projects by 2017. These projects, located off the coasts of New Jersey, Oregon,...

197

Applying Value Sensitive Design (VSD) to Wind Turbines and Wind Parks: An Exploration  

Science Journals Connector (OSTI)

Community acceptance still remains a challenge for wind energy projects. The most popular explanation for local ... motivations/attitudes, or their behavior during project implementation. This paper proposes a th...

Ilse Oosterlaken

2014-04-01T23:59:59.000Z

198

Design Considerations for Monopile Founded Offshore Wind Turbines Subject to Breaking Waves  

E-Print Network [OSTI]

DESIGN CONSIDERATIONS FOR MONOPILE FOUNDED OFFSHORE WIND TURBINES SUBJECT TO BREAKING WAVES A Thesis by GARRETT REESE OWENS Submitted to the Office of Graduate Studies of Texas A&M University in partial fulfillment... Farms ...... 4 Figure 2 Overview of Offshore Wind Turbine Terminology................................. 7 Figure 3 Overturning Moment as a Function of Water Depth ............................... 10 Figure 4 Types of Breaking Waves...

Owens, Garrett Reese 1987-

2012-11-26T23:59:59.000Z

199

Sustainable Design | Building Energy Codes Program  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Sustainable Design Sustainable Design Session 5 of a seven-part webcast series presented by the Department of Energy's Federal Energy Management Program to help federal agencies comply with the requirements of ASHRAE Standard 90.1-2004. The Sustainable Design webcast provides an overview of sustainable design federal requirements and strategies. Sustainable design principles and practices are well established and can be applied at some level to any project to reduce the environmental impact and operational cost of a building, while increasing occupant satisfaction. The requirements within Executive Order 13423, the Energy Policy Act of 2005, and the Energy Independence and Security Act of 2007 are driving the federal sector to be leaders in sustainable design. Estimated Length:

200

Design and analysis of environmental monitoring programs  

E-Print Network [OSTI]

Design and analysis of environmental monitoring programs Søren Lophaven Kongens Lyngby 2004 IMM­PHD­2004­138 #12; Technical University of Denmark Informatics and Mathematical Modelling Building 321, DK they could equally well be applied within areas such as soil and air pollution. #12; ii #12; Resum??e Denne Ph

Note: This page contains sample records for the topic "wind program designed" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


201

Design and analysis of environmental monitoring programs  

E-Print Network [OSTI]

Design and analysis of environmental monitoring programs Søren Lophaven Kongens Lyngby 2004 IMM-PHD-2004-138 #12;Technical University of Denmark Informatics and Mathematical Modelling Building 321, DK they could equally well be applied within areas such as soil and air pollution. #12;ii #12;Resum´e Denne Ph

202

Program assists steam drive design project  

SciTech Connect (OSTI)

A new program for the HP-41CV programmable calculator will compute all parameters required for a steam drive project design. The Marx and Langenheim model assumptions are used to solve a more advanced version of the Myhill and Stegemeier model. Also, the Mandl and Volek model assuptions are used to compute the size of the steam zone.

Mendez, A.A.

1984-08-27T23:59:59.000Z

203

Unit commitment with wind power generation: integrating wind forecast uncertainty and stochastic programming.  

SciTech Connect (OSTI)

We present a computational framework for integrating the state-of-the-art Weather Research and Forecasting (WRF) model in stochastic unit commitment/energy dispatch formulations that account for wind power uncertainty. We first enhance the WRF model with adjoint sensitivity analysis capabilities and a sampling technique implemented in a distributed-memory parallel computing architecture. We use these capabilities through an ensemble approach to model the uncertainty of the forecast errors. The wind power realizations are exploited through a closed-loop stochastic unit commitment/energy dispatch formulation. We discuss computational issues arising in the implementation of the framework. In addition, we validate the framework using real wind speed data obtained from a set of meteorological stations. We also build a simulated power system to demonstrate the developments.

Constantinescu, E. M.; Zavala, V. M.; Rocklin, M.; Lee, S.; Anitescu, M. (Mathematics and Computer Science); (Univ. of Chicago); (New York Univ.)

2009-10-09T23:59:59.000Z

204

Preliminary design and viability consideration of external, shroud-based stators in wind turbine generators  

E-Print Network [OSTI]

Horizontal-axis wind turbine designs often included gearboxes or large direct-drive generators to compensate for the low peripheral speeds of the turbine hub. To take advantage of high blade tip speeds, an alternative ...

Shoemaker-Trejo, Nathaniel (Nathaniel Joseph)

2012-01-01T23:59:59.000Z

205

New Battery Design Could Help Solar and Wind Power the Grid | Department of  

Broader source: Energy.gov (indexed) [DOE]

Battery Design Could Help Solar and Wind Power the Grid Battery Design Could Help Solar and Wind Power the Grid New Battery Design Could Help Solar and Wind Power the Grid April 24, 2013 - 4:20pm Addthis NEWS MEDIA CONTACT (202) 586-4940 WASHINGTON - Researchers from the U.S. Department of Energy's (DOE) SLAC National Accelerator Laboratory and Stanford University have designed a low-cost, long-life "flow" battery that could enable solar and wind energy to become major suppliers to the electrical grid. The research, led by Yi Cui, a Stanford associate professor and member of the Stanford Institute for Materials and Energy Sciences, is a product of the new Joint Center for Energy Storage Research (JCESR), a DOE Energy Innovation Hub. Led by Argonne National Laboratory, with SLAC as major partner, JCESR is one of five such Hubs created by the Department to

206

Wind Turbine Design Using A Free-wake Vortex Method With Winglet Application.  

E-Print Network [OSTI]

??Wind turbine blades are traditionally designed with blade element momentum theory (BEMT). This method is incapable of accurately analyzing non-conventional or non-planar blade planforms. Modern (more)

Maniaci, David

2013-01-01T23:59:59.000Z

207

On Assessing the Accuracy of Offshore Wind Turbine Reliability-Based Design Loads from the Environmental Contour Method  

E-Print Network [OSTI]

On Assessing the Accuracy of Offshore Wind Turbine Reliability-Based Design Loads from to derive design loads for an active stall-regulated offshore wind turbine. Two different Danish offshore contour method; wind turbine; offshore; reliability. INTRODUCTION Inverse reliability techniques

Manuel, Lance

208

Federal Energy Management Program: Business Case for Sustainable Design in  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Business Case for Business Case for Sustainable Design in Federal Facilities to someone by E-mail Share Federal Energy Management Program: Business Case for Sustainable Design in Federal Facilities on Facebook Tweet about Federal Energy Management Program: Business Case for Sustainable Design in Federal Facilities on Twitter Bookmark Federal Energy Management Program: Business Case for Sustainable Design in Federal Facilities on Google Bookmark Federal Energy Management Program: Business Case for Sustainable Design in Federal Facilities on Delicious Rank Federal Energy Management Program: Business Case for Sustainable Design in Federal Facilities on Digg Find More places to share Federal Energy Management Program: Business Case for Sustainable Design in Federal Facilities on

209

Optimal Controller Design of a Wind Turbine with Doubly Fed Induction Generator for Small Signal Stability Enhancement  

Science Journals Connector (OSTI)

Multi-objective optimal controller design of a doubly fed induction generator (DFIG) wind turbine system using Differential Evolution ( ... this chapter. A detailed mathematical model of DFIG wind turbine with a ...

Lihui Yang; Guang Ya Yang; Zhao Xu; Zhao Yang Dong; Yusheng Xue

2010-01-01T23:59:59.000Z

210

State Energy Efficiency Design Program | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

Energy Efficiency Design Program Energy Efficiency Design Program State Energy Efficiency Design Program < Back Eligibility State Government Savings Category Heating & Cooling Home Weatherization Construction Commercial Weatherization Commercial Heating & Cooling Design & Remodeling Program Info State Oregon Program Type Energy Standards for Public Buildings Provider Oregon Department of Energy Oregon's State Energy Efficiency Design Program (SEED) was originally established in 1991. This program, codified in state law, directs state agencies to work with the Oregon Department of Energy to ensure cost-effective energy conservation measures (ECMs) are included in new construction projects and major renovations to public buildings. Leased buildings are also required to be more energy efficient.

211

How to Design and Market Energy Efficiency Programs to Specific...  

Broader source: Energy.gov (indexed) [DOE]

How to Design and Market Energy Efficiency Programs to Specific Neighborhoods Future Funding: Effective Models for Leveraging Public Funds Energy Efficiency Rebate Programs 101...

212

Sensitivity Analysis of Wind Plant Performance to Key Turbine Design Parameters: A Systems Engineering Approach; Preprint  

SciTech Connect (OSTI)

This paper introduces the development of a new software framework for research, design, and development of wind energy systems which is meant to 1) represent a full wind plant including all physical and nonphysical assets and associated costs up to the point of grid interconnection, 2) allow use of interchangeable models of varying fidelity for different aspects of the system, and 3) support system level multidisciplinary analyses and optimizations. This paper describes the design of the overall software capability and applies it to a global sensitivity analysis of wind turbine and plant performance and cost. The analysis was performed using three different model configurations involving different levels of fidelity, which illustrate how increasing fidelity can preserve important system interactions that build up to overall system performance and cost. Analyses were performed for a reference wind plant based on the National Renewable Energy Laboratory's 5-MW reference turbine at a mid-Atlantic offshore location within the United States.

Dykes, K.; Ning, A.; King, R.; Graf, P.; Scott, G.; Veers, P.

2014-02-01T23:59:59.000Z

213

Federal Tax Incentives for PV: Potential Implications for Program Design  

E-Print Network [OSTI]

C. Herig. 2004. Are Solar Rebates and Grants for HomeownersDesign: Overall Findings Rebate Levels: New/expandedProgram Design Rebate levels Rebate differentiation

Wiser, Ryan; Bolinger, Mark

2006-01-01T23:59:59.000Z

214

Optimal design and techno-economic analysis of a hybrid solarwind power generation system  

Science Journals Connector (OSTI)

Solar energy and wind energy are the two most viable renewable energy resources in the world. Good compensation characters are usually found between solar energy and wind energy. This paper recommend an optimal design model for designing hybrid solarwind systems employing battery banks for calculating the system optimum configurations and ensuring that the annualized cost of the systems is minimized while satisfying the custom required loss of power supply probability (LPSP). The five decision variables included in the optimization process are the PV module number, PV module slope angle, wind turbine number, wind turbine installation height and battery capacity. The proposed method has been applied to design a hybrid system to supply power for a telecommunication relay station along south-east coast of China. The research and project monitoring results of the hybrid project were reported, good complementary characteristics between the solar and wind energy were found, and the hybrid system turned out to be able to perform very well as expected throughout the year with the battery over-discharge situations seldom occurred.

Hongxing Yang; Zhou Wei; Lou Chengzhi

2009-01-01T23:59:59.000Z

215

Optimal Design of Electrical Machines: Mathematical Programming ...  

E-Print Network [OSTI]

global heating up of the winding is rather roughly modeled by Ech (function of current electric ...... Electric Machines and Power Systems, pages. 7192, 1992.

2012-06-06T23:59:59.000Z

216

Assessment of Offshore Wind System Design, Safety, and Operation...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

return period for extreme design conditions. The API standards, started by the oil and gas industry 60 years ago, are the governing standards for design safety and operation in...

217

About the DOE Wind Program | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

energy is a clean, domestic power source that requires little to no water and creates no air pollution when compared to more traditional energy sources. The Program works to...

218

Designing PV Incentive Programs to Promote System Performance: A Review of Current Practice  

E-Print Network [OSTI]

of PV Energy Production System Conversion Solar EnergySolar & Small Wind Incentive Program Washington Renewable Energy Productionof actual energy production. Two programs, LADWPs Solar

Barbose, Galen; Wiser, Ryan; Bolinger, Mark

2006-01-01T23:59:59.000Z

219

20% Wind Energy by 2030 - Chapter 2: Wind Turbine Technology...  

Office of Environmental Management (EM)

20% Wind Energy by 2030: Increasing Wind Energy's Contribution to U.S. Electricity Supply U.S. Offshore Wind Manufacturing and Supply Chain Development Wind Program Accomplishments...

220

Wind diesel design and the role of short term flywheel energy storage  

Science Journals Connector (OSTI)

Wind diesel hybrid systems can often provide a cost effective solution to electricity supply in many rural and grid remote applications. The potential market for such stand alone systems is vast. The sizing and design of these systems to suite a given application is non-trivial. Design principles for wind diesel systems are presented with stress placed on the role of short term energy storage. It is shown that flywheels are the most appropriate form of energy storage. A user-friendly software package to help engineers design wind diesel systems has been developed over the last three years with support from the CEC's JOULE programme. The modelling and software development was undertaken cooperatively by several EEC and EFTA countries. An brief introduction to the software, which models both logistic and dynamic aspects of system operation, is provided and there is a discussion of its validation.

D.G. Infield

1994-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "wind program designed" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


221

Design of stand-alone brackish water desalination wind energy system for Jordan  

SciTech Connect (OSTI)

More than 100 underground water wells drilled in Jordan are known to have brackish water with total desolved solids (TDS) over 1500 ppm but not greater than 4000 ppm. The world standard for potable water limits the TDS count to 500 ppm in addition to being free from live microorganisms or dangerous mineral and organic substances. A reverse osmosis desalination scheme powered by a stand-alone wind energy converter (WEC) is proposed to produce fresh water water from wells located in potentially high-wind sites. The purpose of this study if to present the main design parameters and economic estimates of a wind-assisted RO system using a diesel engine as the baseline energy source and an electric wind turbine for the wind energy source. It is found that brackish water pumping and desalinating using WECs costs 0.67 to 1.16 JD/m[sup 3] (JD = Jordanian Dinar, 1US$ = 0.68 JD), which is less than using conventional diesel engines especially in remote areas. In addition, the wind-reverse osmosis system becomes more economically feasible for higher annual production rates or in good wind regimes.

Habali, S.M.; Saleh, I.A.

1994-06-01T23:59:59.000Z

222

U.S. Department of Energy Wind and Water Power Program Funding...  

Energy Savers [EERE]

wind turbines. The Cyber Wind Facility will model the impacts of complex wind and wave dynamics on wind turbine structures and energy performance, enabling developers to...

223

Offshore Wind Projects | Department of Energy  

Office of Environmental Management (EM)

Offshore Wind Projects Offshore Wind Projects This report covers the Wind and Water Power Program's offshore wind energy projects from fiscal years 2006 to 2014. Offshore Wind...

224

Wind for Schools Project Curriculum Brief (Fact Sheet)  

SciTech Connect (OSTI)

The U.S. Department of Energy's (DOE's) 20% Wind Energy by 2030 report recommends expanding education to ensure a trained workforce to meet the projected growth of the wind industry and deployment. Although a few U.S. higher education institutions offer wind technology education programs, most are found in community and technical colleges, resulting in a shortage of programs preparing highly skilled graduates for wind industry careers. Further, the United States lags behind Europe (which has more graduate programs in wind technology design and manufacturing) and is in danger of relinquishing the economic benefits of domestic production of wind turbines and related components and services to European countries. DOE's Wind Powering America initiative launched the Wind for Schools project to develop a wind energy knowledge base among future leaders of our communities, states, and nation while raising awareness about wind energy's benefits. This fact sheet provides an overview of wind energy curricula as it relates to the Wind for Schools project.

Not Available

2010-08-01T23:59:59.000Z

225

CFD-based design load analysis of 5MW offshore wind turbine  

Science Journals Connector (OSTI)

The structure and aerodynamic loads acting on NREL 5MW reference wind turbine blade are calculated and analyzed based on advanced Computational Fluid Dynamics (CFD) and unsteady Blade Element Momentum (BEM). A detailed examination of the six force components has been carried out (three force components and three moment components). Structure load (gravity and inertia load) and aerodynamic load have been obtained by additional structural calculations (CFD or BEM respectively ). In CFD method the Reynolds Average Navier-Stokes approach was applied to solve the continuity equation of mass conservation and momentum balance so that the complex flow around wind turbines was modeled. Written in C programming language a User Defined Function (UDF) code which defines transient velocity profile according to the Extreme Operating Gust condition was compiled into commercial FLUENT package. Furthermore the unsteady BEM with 3D stall model has also adopted to investigate load components on wind turbine rotor. The present study introduces a comparison between advanced CFD and unsteady BEM for determining load on wind turbine rotor. Results indicate that there are good agreements between both present methods. It is importantly shown that six load components on wind turbine rotor is significant effect under Extreme Operating Gust (EOG) condition. Using advanced CFD and additional structural calculations this study has succeeded to construct accuracy numerical methodology to estimate total load of wind turbine that compose of aerodynamic load and structure load.

T. T. Tran; G. J. Ryu; Y. H. Kim; D. H. Kim

2012-01-01T23:59:59.000Z

226

Federal Energy Management Program: FEMP Designated Product: Water-Cooled  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

FEMP Designated FEMP Designated Product: Water-Cooled Ice Machines to someone by E-mail Share Federal Energy Management Program: FEMP Designated Product: Water-Cooled Ice Machines on Facebook Tweet about Federal Energy Management Program: FEMP Designated Product: Water-Cooled Ice Machines on Twitter Bookmark Federal Energy Management Program: FEMP Designated Product: Water-Cooled Ice Machines on Google Bookmark Federal Energy Management Program: FEMP Designated Product: Water-Cooled Ice Machines on Delicious Rank Federal Energy Management Program: FEMP Designated Product: Water-Cooled Ice Machines on Digg Find More places to share Federal Energy Management Program: FEMP Designated Product: Water-Cooled Ice Machines on AddThis.com... Energy-Efficient Products Federal Requirements

227

World-Unique Wind Facilities Designed to protect us from storms, harness the power of wind and  

E-Print Network [OSTI]

connectivity and solar- and wind-distributed nodes, as well as green energy policy and implementation and develop sustainable cities, the Wind Engineering, Energy and the Environment (WindEEE) Institute, while evaluating energy potential and damage risks. About the WindEEE Institute · The world's most

Denham, Graham

228

Towards greener horizontal-axis wind turbines: analysis of carbon emissions, energy and costs at the early design stage  

Science Journals Connector (OSTI)

Abstract This paper describes the development of a quantitative analysis system as a platform for rapidly estimate energy, costs and carbon emission to facilitate the comparison of different wind turbine concept designs. This system aimed specifically at wind turbine manufacturing processes due to the fact that a large proportion of the environmental, costs and energy impacts would occur at this stage. The proposed method supports an initial assessment of multiple design concepts which allows the selection and development of a greener wind turbine. The developed system enables concept design of commercial wind turbine towers of hub heights between 44 and 135m. The method supports an accurate estimation in regards to the dimension, energy consumed, maximum power output, costs and carbon emission in the early design phases of a wind turbine. As a result of the development, the proposed approach could potentially be used to minimise the carbon footprints of major engineering projects such as wind farms.

Raymond Aso; Wai Ming Cheung

2015-01-01T23:59:59.000Z

229

WindPACT Turbine Rotor Design Study: June 2000--June 2002 (Revised)  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

WindPACT Turbine Rotor WindPACT Turbine Rotor Design Study June 2000 - June 2002 D.J. Malcolm Global Energy Concepts, LLC Kirkland, Washington A.C. Hansen Windward Engineering Salt Lake City, Utah Subcontract Report NREL/SR-500-32495 Revised April 2006 WindPACT Turbine Rotor Design Study June 2000 - June 2002 D.J. Malcolm Global Energy Concepts, LLC Kirkland, Washington A.C. Hansen Windward Engineering Salt Lake City, Utah NREL Technical Monitor: A. Laxson Prepared under Subcontract No. YAT-0-30213-01 Subcontract Report NREL/SR-500-32495 Revised April 2006 National Renewable Energy Laboratory 1617 Cole Boulevard, Golden, Colorado 80401-3393 303-275-3000 * www.nrel.gov Operated for the U.S. Department of Energy Office of Energy Efficiency and Renewable Energy by Midwest Research Institute * Battelle

230

DOE Hydrogen Program Record 5011 - Hydrogen Potential from Solar and Wind Resources  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

DOE Hydrogen Program Record Record #: 5011 Date: December 15, 2005 Title: Hydrogen Potential from Solar and Wind Resources Items: - Data/resource maps indicate that the potential exists to use wind and solar resources to produce more than 15 times the amount of hydrogen needed to displace the petroleum used by light duty vehicles in 2040. - About one billion metric tons of hydrogen could be produced by renewable electrolysis annually, based upon solar and wind resource potential. - The other three solar pathways - thermochemical, photoelectrochemical, and photobiological - would have similar or possibly higher productivity per unit of land area. Data: Figure 1: Hydrogen Potential from Solar Resources Note: Map shows total kilograms of hydrogen per county, normalized by

231

New Battery Design Could Help Solar and Wind Power the Grid  

Broader source: Energy.gov [DOE]

Researchers from the U.S. Department of Energys (DOE) SLAC National Accelerator Laboratory and Stanford University have designed a low-cost, long-life flow battery that could enable solar and wind energy to become major suppliers to the electrical grid.

232

Effective Ancillary Services Market Designs on High Wind Power Penetration Systems: Preprint  

SciTech Connect (OSTI)

This paper focuses on how the ancillary service market designs are implemented and how they may require changes on systems with greater penetrations of variable renewable energy suppliers, in particular wind power. Ancillary services markets have been developed in many of the restructured power system regions throughout the world. Ancillary services include the services that support the provision of energy to support power system reliability. The ancillary services markets are tied tightly to the design of the energy market and to the physics of the system and therefore careful consideration of power system economics and engineering must be considered in their design. This paper focuses on how the ancillary service market designs are implemented and how they may require changes on systems with greater penetrations of variable renewable energy suppliers, in particular wind power.

Ela, E.; Kirby, B.; Navid, N.; Smith, J. C.

2011-12-01T23:59:59.000Z

233

A new design of wind tower for passive ventilation in buildings to reduce energy consumption in windy regions  

Science Journals Connector (OSTI)

Abstract In todays world, the significance of energy and energy conservation is a common knowledge. Wind towers can save the electrical energy used to provide thermal comfort during the warm months of the year, especially during the peak hours. In this paper, we propose a new design for wind towers. The proposed wind towers are installed on top of the buildings, in the direction of the maximum wind speed in the region. If the desired wind speed is accessible in several directions, additional wind towers can be installed in several positions. The proposed wind tower can also rotate and set itself in the direction of the maximum wind speed. In the regions where the wind speed is low, to improve the efficiency of the system a solar chimney or a one-sided wind tower can be installed in another part of the building in the opposite direction. Using transparent materials in the manufacturing of the proposed wind towers improves the use of natural light inside the building. The major advantage of wind towers is that they are passive systems requiring no energy for operation. Also, wind towers reduce electrical energy consumption and environmental pollution.

A.R. Dehghani-sanij; M. Soltani; K. Raahemifar

2015-01-01T23:59:59.000Z

234

Industrial Energy Efficiency: Designing Effective State Programs...  

Office of Environmental Management (EM)

State Programs for the Industrial Sector This report provides state regulators, utilities, and other program administrators an overview of the spectrum of U.S. industrial...

235

NAWIG News: The Quarterly Newsletter of the Native American Wind Interest Group, Fall 2008, Wind & Hydropower Technologies Program (Brochure)  

Wind Powering America (EERE)

Using the Power of the Wind Using the Power of the Wind An Interview with Dave Danz Dave Danz has been a tribal planner since 1978 and a planner with the Grand Portage Band of Chippewa in northeast Minnesota since 2006. He is, as he puts it, "A white guy in Indian Country with no background in wind energy." Until recently, that is. A Minnesota Department of Commerce study con cluded that the north shore of Lake Superior did not have a wind

236

Concept Design Verification of a Semi-submersible Floating Wind Turbine Using Coupled Simulations  

Science Journals Connector (OSTI)

Abstract A concept design has been made of a GustoMSC Tri-Floater semi-submersible equipped with the NREL 5MW reference wind turbine. To capture the interaction between wind loads on the pitch controlled rotor and motions of the floating structure, aero- hydro-servo-elastic simulations have been performed using Ansys AQWA coupled to PHATAS. Based on the simulation results, it is concluded that the Tri-Floater design meets the requirements regarding motions, accelerations and mooring loads. Furthermore, it is shown that uncoupled frequency domain analysis can be applied to assess the wave frequency component of the global motion response in early design stages, where computationally demanding coupled analyses are less practical.

Fons Huijs; Rogier de Bruijn; Feike Savenije

2014-01-01T23:59:59.000Z

237

Best Practices in the Design of Utility Solar Programs  

Broader source: Energy.gov [DOE]

This presentation summarizes the introductory information provided by NREL during the Best Practices in the Design of Utility Solar Programs Webinar on September 27, 2012.

238

Wind Industry Training for Our Military Veterans | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

Wind Industry Training for Our Military Veterans Wind Industry Training for Our Military Veterans Wind Industry Training for Our Military Veterans May 31, 2012 - 4:43pm Addthis Gemini's Wind Turbine Tower Rescue courses provide wind technicians with training in safety at height, emergency escape systems and rescue. This course is designed to prepare wind technicians with the knowledge and emergency procedures specific to wind turbines. | Photo by Claudia Trevizo. Gemini's Wind Turbine Tower Rescue courses provide wind technicians with training in safety at height, emergency escape systems and rescue. This course is designed to prepare wind technicians with the knowledge and emergency procedures specific to wind turbines. | Photo by Claudia Trevizo. Debbie Schultheis Technical Project Officer, Wind and Water Power Program

239

Wind Industry Training for Our Military Veterans | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

Wind Industry Training for Our Military Veterans Wind Industry Training for Our Military Veterans Wind Industry Training for Our Military Veterans May 31, 2012 - 4:43pm Addthis Gemini's Wind Turbine Tower Rescue courses provide wind technicians with training in safety at height, emergency escape systems and rescue. This course is designed to prepare wind technicians with the knowledge and emergency procedures specific to wind turbines. | Photo by Claudia Trevizo. Gemini's Wind Turbine Tower Rescue courses provide wind technicians with training in safety at height, emergency escape systems and rescue. This course is designed to prepare wind technicians with the knowledge and emergency procedures specific to wind turbines. | Photo by Claudia Trevizo. Debbie Schultheis Technical Project Officer, Wind and Water Power Program

240

Innovative Power?Augmentation?Guide?Vane Design of Wind?Solar Hybrid Renewable Energy Harvester for Urban High Rise Application  

Science Journals Connector (OSTI)

To generate greater quantities of energy from wind the most efficient solution would be by increasing the wind speed. Also due to the decreasing number of economic wind energy sites there are plans to place wind turbines closer to populated areas. To site wind turbines out from rural areas the current problems of wind turbines need to be resolved especially visual impact poor starting behaviour in low wind speeds noise and danger caused by blade failure. In this paper a patented wind?solar hybrid renewable energy harvester is introduced. It is a compact system that integrates and optimizes several green elements and can be built on the top (or between upper levels) of high rise buildings or structures. This system can be used in remote and urban areas particularly at locations where the wind speed is lower and more turbulent. It overcomes the inferior aspect on the low wind speed by guiding and increasing the speed of the high altitude free?stream wind through fixed or yaw?able power?augmentation?guide?vane (PAGV) before entering the wind turbine (straight?bladed vertical axis wind turbine VAWT in this project) at center portion. PAGV is a new and innovative design where its appearance or outer design can be blended into the building architecture without negative visual impact. From the studies it is shown that the wind speed increment in the PAGV can be produced according to the Bernoullis principle. Computational fluid dynamics (CFD) simulation is used to optimize the geometry of the PAGV and the simulation results demonstrated the technical possibility of this innovative concept. The PAGV replaces the free air?stream from wind by multiple channels of speed?increased and directional?controlled air?stream. With the PAGV this lift?type VAWT can be self?started and its size can be reduced for a given power output. The design is also safer since the VAWT is enclosed by the PAGV. By integrating the PAGV with the VAWT (the diameter and height of PAGV are 2 times larger than the VAWTs) the predicted power generated (at free?stream wind speed ?=?3.5? m / s ) is 1.25 times higher than the VAWT that has the same size as the PAGV. This new wind energy generation configuration should generate interest in the international market even for regions with weaker winds. The correlation between CFD simulation and wind tunnel test will be carried out and reported elsewhere.

Chong Wen Tong; M. Z. Zainon; Poh Sin Chew; Soo Chun Kui; Wee Seng Keong; Pan Kok Chen

2010-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "wind program designed" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


241

Utility Green Pricing Programs: Design, Implementation, and  

E-Print Network [OSTI]

of Energy's (U.S. DOE) Office of Energy Efficiency and Renewable Energy (EERE). The authors thank Ryan Wiser editorial support. The authors also acknowledge the support of the EERE technology programs and of David McAndrew, EERE program manager. Finally, the authors thank the many utility green pricing program managers who

242

Stakeholder Engagement and Outreach: How Do I Get Wind Power?  

Wind Powering America (EERE)

Education Education Printable Version Bookmark and Share Learn About Wind About Wind Power Locating Wind Power Getting Wind Power Installed Wind Capacity Wind for Schools Project Collegiate Wind Competition School Project Locations Education & Training Programs Curricula & Teaching Materials Resources How do I get Wind Power? Learn how you can own, partner with, host, and support wind power. Construct A Wind Project On Your Own Land There are wind turbines designed for everyone from residential homeowners to utilities, and from private to corporate use. Small wind turbines can be bought with cash, and commercial-scale projects can be financed. To learn more about small projects, such as those for a home or ranch or business that are less than or equal to 100 kilowatts (kW), see the small wind

243

Wind Pressure Resistance of Walls with Exterior Rigid Foam: Structural Performance Testing and Development of Design Specifications  

Broader source: Energy.gov (indexed) [DOE]

Wind Pressure Resistance of Wind Pressure Resistance of Walls with Exterior Rigid Foam: Structural Performance Testing and Development of Design Specifications Building America Stakeholder Meeting February 2012 2 Gaps and Barriers  Wind pressure resistance of multi- layered walls with exterior rigid foam * Performance characteristics * Capacity * Limitations * Design method * Design specification 3 Market Implications  Walls with exterior rigid foam  2012 IECC - Climate Zones 3 and higher  Wall systems:  Claddings and their attachments  Interior finishes  Air sealing, air barriers  Cavity insulation 4 Research Tasks  Laboratory Testing of Wall Assemblies under dynamic wind pressures at the NAHB Research Center  NAHB/DOE/ACC  Laboratory Testing of a One-story House in IBHS Wind Tunnel Facility

244

Designing Industrial DSM Programs that Work  

E-Print Network [OSTI]

.5% $0.021 BPA ConlMod Program 100% 2.5% $0.006 BPA Energy Savings Plan 26% 0.8% $0.007 Puget Power Industrial Conservation Program 5% 2.0% $0.026 UI Energy Blueprint 60% 0.1 % $0.035 ... Number of participating customers divided by number... (POO) Industrial Lighting Incentive Pilot Program. From 1985 through 1988, the Bonneville Power Administration (BPA) funded a lighting efficiency pilot program which served industrial and warehousing facilities in the Clark PUD service territory...

Nadel, S. M.; Jordan, J. A.

245

Table-top training program design  

SciTech Connect (OSTI)

This handbook establishes general training program guidelines for training personnel in developing training for operation, maintenance, and technical support personnel at DOE nuclear facilities.

NONE

1995-04-01T23:59:59.000Z

246

SiC's Potential Impact on the Design of Wind Generation System , Leon M. Tolbert1,2  

E-Print Network [OSTI]

is that SiC devices would reduce substantially the cost of energy of large wind turbines that use power with the fixed voltage and frequency of the grid. SiC- based power devices have several advantages, includingSiC's Potential Impact on the Design of Wind Generation System Hui Zhang1 , Leon M. Tolbert1

Tolbert, Leon M.

247

Design of a Power Oscillation Damper for DFIG-based Wind Energy Conversion System Using Modified Particle Swarm Optimizer  

Science Journals Connector (OSTI)

This paper presents a method to design a Power Oscillation Damper (POD) for Double-Fed Induction Generator (DFIG) based Wind Energy Conversion System (WECS), operating with voltage control loop. Based on eigen values information from Small Signal Stability ... Keywords: Computational Intelligence, double fed induction generator, power oscillation damper, modified particle swarm optimizer, small signal stability analysis, wind energy conversion system

Huazhang Huang; C. Y. Chung

2012-05-01T23:59:59.000Z

248

Small Wind Innovation Zone and Model Ordinance | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

Small Wind Innovation Zone and Model Ordinance Small Wind Innovation Zone and Model Ordinance Small Wind Innovation Zone and Model Ordinance < Back Eligibility Institutional Local Government Schools State Government Utility Savings Category Wind Buying & Making Electricity Program Info State Iowa Program Type Solar/Wind Permitting Standards Provider Iowa League of Cities In May 2009, the Iowa legislature created the Small Wind Innovation Zone Program, which allows any city, county, or other political subdivision to create small wind innovation zones that promote small wind production. In order to qualify for the designation, the city must adopt the Small Wind Innovation Zone Model Ordinance and also establish an expedited approval process for small wind energy systems. System owners must also enter into a

249

Federal Energy Management Program: Energy Efficiency Design Standards for  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Design Standards for New Federal Commercial and Multi-Family High-Rise Design Standards for New Federal Commercial and Multi-Family High-Rise Residential Buildings to someone by E-mail Share Federal Energy Management Program: Energy Efficiency Design Standards for New Federal Commercial and Multi-Family High-Rise Residential Buildings on Facebook Tweet about Federal Energy Management Program: Energy Efficiency Design Standards for New Federal Commercial and Multi-Family High-Rise Residential Buildings on Twitter Bookmark Federal Energy Management Program: Energy Efficiency Design Standards for New Federal Commercial and Multi-Family High-Rise Residential Buildings on Google Bookmark Federal Energy Management Program: Energy Efficiency Design Standards for New Federal Commercial and Multi-Family High-Rise Residential Buildings on Delicious

250

Special Issues for Program Design and Evaluation for Industrial Energy Programs  

E-Print Network [OSTI]

Designing energy efficiency programs that include serving industrial customers, and evaluating them, carries with it a set of challenges. A summary view from prior efficiency program evaluations will be presented that examines these challenges, how...

Megdal, L.

2007-01-01T23:59:59.000Z

251

A modular programming language for engineering design  

E-Print Network [OSTI]

We introduce a new universal model of computation called MDPL that generalizes other functional models like the lambda calculus and combinatory logic. This model leads naturally to a new type of programming language that ...

Coffee, Thomas Merritt

2008-01-01T23:59:59.000Z

252

Extending Programming Environments to Support Architectural Design  

E-Print Network [OSTI]

a system expands to include many instances of these abstractions, it becomes desirable to aggregate them Tektronics, and the Turbo environ­ ments from Borland such as that for Prolog [1]. A well known programming

Holt, Richard C.

253

Pumping station design for a pumped-storage wind-hydro power plant  

Science Journals Connector (OSTI)

This work presents a numerical study of the optimum sizing and design of a pumping station unit in a hybrid wind-hydro plant. The standard design that consists of a number of identical pumps operating in parallel is examined in comparison with two other configurations, using one variable-speed pump or an additional set of smaller jockey pumps. The aim is to reduce the amount of the wind generated energy that cannot be transformed to hydraulic energy due to power operation limits of the pumps and the resulting step-wise operation of the pumping station. The plant operation for a period of one year is simulated by a comprehensive evaluation algorithm, which also performs a detailed economic analysis of the plant using dynamic evaluation methods. A preliminary study of the entire plant sizing is carried out at first using an optimization tool based on evolutionary algorithms. The performance of the three examined pumping station units is then computed and analyzed in a comparative study. The results reveal that the use of a variable-speed pump constitutes the most effective and profitable solution, and its superiority is more pronounced for less dispersed wind power potential.

John S. Anagnostopoulos; Dimitris E. Papantonis

2007-01-01T23:59:59.000Z

254

Advanced Hydraulic Wind Energy  

Science Journals Connector (OSTI)

The Jet Propulsion Laboratory, California Institute of Technology, has developed a novel advanced hydraulic wind energy design, which has up to 23% performance improvement over conventional wind turbine and conventional hydraulic wind energy systems ... Keywords: wind, tide, energy, power, hydraulic

Jack A. Jones; Allan Bruce; Adrienne S. Lam

2013-04-01T23:59:59.000Z

255

A fuzzy chance-constrained program for unit commitment problem considering demand response, electric vehicle and wind power  

Science Journals Connector (OSTI)

Abstract As a form of renewable and low-carbon energy resource, wind power is anticipated to play an essential role in the future energy structure. Whereas, its features of time mismatch with power demand and uncertainty pose barriers for the power system to utilize it effectively. Hence, a novel unit commitment model is proposed in this paper considering demand response and electric vehicles, which can promote the exploitation of wind power. On the one hand, demand response and electric vehicles have the feasibility to change the load demand curve to solve the mismatch problem. On the other hand, they can serve as reserve for wind power. To deal with the unit commitment problem, authors use a fuzzy chance-constrained program that takes into account the wind power forecasting errors. The numerical study shows that the model can promote the utilization of wind power evidently, making the power system operation more eco-friendly and economical.

Ning Zhang; Zhaoguang Hu; Xue Han; Jian Zhang; Yuhui Zhou

2015-01-01T23:59:59.000Z

256

The use of carbon fibers in wind turbine blade design: A SERI-8 blade example  

SciTech Connect (OSTI)

The benefit of introducing carbon fibers in a wind turbine blade was evaluated. The SERI-8 wind turbine blade was used as a baseline for study. A model of the blade strength and stiffness properties was created using the 3D-Beam code; the predicted geometry and structural properties were validated against available data and static test results. Different enhanced models, which represent different volumes of carbon fibers in the blade, were also studied for two design options: with and without bend-twist coupling. Studies indicate that hybrid blades have excellent structural properties compared to the all-glass SERI-8 blade. Recurring fabrication costs were also included in the study. The cost study highlights the importance of the labor-cost to material-cost ratio in the cost benefits and penalties of fabrication of a hybrid glass and carbon blade.

ONG,CHENG-HUAT; TSAI,STEPHEN W.

2000-03-01T23:59:59.000Z

257

U.S. Department of Energy Wind and Water Power Program Funding...  

Broader source: Energy.gov (indexed) [DOE]

Energy Authority will use modeling and analysis to determine the best performing wind energy systems for Alaska. This project includes upgrading the HOMER wind-diesel-solar...

258

U.S. Department of Energy Wind and Water Power Program Funding...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Technologies Office Funding in the United States: MARINE AND HYDROKINETIC ENERGY PROJECTS Fiscal Years 2008 - 2014 WIND AND WATER POWER TECHNOLOGIES OFFICE WIND AND WATER POWER...

259

Purpose-designed Crop Plants for Biofuels BIOENERGY PROGRAM  

E-Print Network [OSTI]

Purpose-designed Crop Plants for Biofuels BIOENERGY PROGRAM The Texas AgriLife Research Center for the biofuels industry. This program recognizes that the ideal combination of traits required for an economically and energetically sustainable biofuels industry does not yet exist in a single plant spe- cies

260

Ultimate and accidental limit state design for mooring systems of floating offshore wind turbines  

Science Journals Connector (OSTI)

Abstract The paper deals with the catenary mooring system design for tri-floater floating offshore wind turbines. Both ultimate (ULS) and accidental (ALS) limit states are examined, under 50 and 1 year return period environmental loads. Both power production and parked wind turbine conditions are analysed; for the former the ULS is applied, for the latter both ULS and ALS are considered. The platform static demand is assessed in terms of turbine thrust, wind, current and wave steady drift forces. The dynamic offset is determined considering both wave and low-frequency motions. Mooring patterns with 6, 9 and 12 chain cable and steel wire rope lines are considered. Water depth incidence is examined in the range between 50 and 300m and the mooring system is dimensioned so that the relevant weight is determined. The Dutch tri-floater is assumed as reference structure and three candidate sites in the Southern Mediterranean Sea are considered. It is found that platform admissible offset and line pattern significantly influence the mooring system weight; obtained results show that 9 and 12 line configurations are the necessary choice and the mooring line weight is independent of water depth between 100 and 200m, while increases out of this range.

G. Benassai; A. Campanile; V. Piscopo; A. Scamardella

2014-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "wind program designed" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


261

Conceptual design for an electron-beam heated hypersonic wind tunnel  

SciTech Connect (OSTI)

There is a need for hypersonic wind-tunnel testing at about mach 10 and above using natural air and simulating temperatures and pressures which are prototypic of flight at 50 km altitude or below. With traditional wind-tunnel techniques, gas cooling during expansion results in exit temperatures which are too low. Miles, et al., have proposed overcoming this difficulty by heating the air with a laser beam as it expands in the wind-tunnel nozzle. This report discusses an alternative option of using a high-power electron beam to heat the air as it expands. In the e-beam heating concept, the electron beam is injected into the wind-tunnel nozzle near the exit and then is guided upstream toward the nozzle throat by a strong axial magnetic field. The beam deposits most of its power in the dense air near the throat where the expansion rate is greatest. A conceptual design is presented for a large-scale system which achieves Mach 14 for 0.1 seconds with an exit diameter of 2.8 meters. It requires 450 MW of electron beam power (5 MeV at 90 A). The guiding field is 500 G for most of the transport length and increases to 100 kG near the throat to converge the beam to a 1.0-cm diameter. The beam generator is a DC accelerator using a Marx bank (of capacitors) and a diode stack with a hot cathode. 14 refs. 38 figs., 9 tabs.

Lipinski, R.J.; Kensek, R.P.

1997-07-01T23:59:59.000Z

262

Wind energy  

Science Journals Connector (OSTI)

Wind energy is rapidly growing. In 2006 the installed generating capacity in the world increased by 25%, a growth rate which has more or less been sustained during the last decade. And there is no reason to believe that this growth will slow significantly in the coming years. For example, the United Kingdom's goal for installed wind turbines by 2020 is 33GW up from 2GW in 2006, an average annual growth rate of 22% over that period. More than half of all turbines are installed in Europe, but United States, India and lately China are also rapidly growing markets. The cradle of modern wind energy was set by innovative blacksmiths in rural Denmark. Now the wind provides more than 20% of the electrical power in Denmark, the industry has professionalized and has close ties with public research at universities. This focus issue is concerned with research in wind energy. The main purposes of research in wind energy are to: decrease the cost of power generated by the wind; increase the reliability and predictability of the energy source; investigate and reduce the adverse environmental impact of massive deployment of wind turbines; build research based educations for wind energy engineers. This focus issue contains contributions from several fields of research. Decreased costs cover a very wide range of activities from aerodynamics of the wind turbine blades, optimal site selection for the turbines, optimization of the electrical grid and power market for a fluctuating source, more efficient electrical generators and gears, and new materials and production techniques for turbine manufacturing. The United Kingdom recently started the construction of the London Array, a 1GW off-shore wind farm east of London consisting of several hundred turbines. To design such a farm optimally it is necessary to understand the chaotic and very turbulent flow downwind from a turbine, which decreases the power production and increases the mechanical loads on other nearby turbines. Also addressed within the issue is how much conventional power production can be replaced by the ceaseless wind, with the question of how Greece's target of 29% renewables by 2020 is to be met efficiently. Other topics include an innovative way to determine the power curve of a turbine experimentally more accurately, the use of fluid dynamics tools to investigate the implications of placing vortex generators on wind turbine blades (thereby possibly improving their efficiency) and a study of the perception of wind turbine noise. It turns out that a small but significant fraction of wind turbine neighbours feel that turbine generated noise impairs their ability to rest. The annoyance is correlated with a negative attitude towards the visual impact on the landscape, but what is cause and effect is too early to say. As mentioned there is a rush for wind turbines in many countries. However, this positive development for the global climate is currently limited by practical barriers. One bottleneck is the difficulties for the sub-suppliers of gears and other parts to meet the demand. Another is the difficulties to meet the demand for engineers specialized in wind. For that reason the Technical University of Denmark (DTU) recently launched the world's first Wind Energy Masters Program. Here and elsewhere in the world of wind education and research we should really speed up now, as our chances of contributing to emission free energy production and a healthier global climate have never been better. Focus on Wind Energy Contents The articles below represent the first accepted contributions and further additions will appear in the near future. Wind turbineslow level noise sources interfering with restoration? EjaPedersen andKerstin PerssonWaye On the effect of spatial dispersion of wind power plants on the wind energy capacity credit in Greece GeorgeCaralis, YiannisPerivolaris, KonstantinosRados andArthourosZervos Large-eddy simulation of spectral coherence in a wind turbine wake AJimenez, ACrespo, EMigoya andJGarcia How to improve the estimation of

Jakob Mann; Jens Nrkr Srensen; Poul-Erik Morthorst

2008-01-01T23:59:59.000Z

263

Design and performance evaluation of a unity power factor converter for wind energy conversion systems.  

E-Print Network [OSTI]

??Wind turbine driven Permanent Magnet Synchronous Generators (PMSG) find increasing applications due to their numerous advantages. Small scale stand-alone wind energy systems are receiving considerable (more)

Nirnaya Sarangan.

2012-01-01T23:59:59.000Z

264

An investigation of design alternatives for 328-ft (100-m) tall wind turbine towers.  

E-Print Network [OSTI]

??As wind turbines are continued to be placed at higher elevations, the need for taller wind turbine towers becomes necessary. However, there are multiple challenges (more)

Lewin, Thomas James

2010-01-01T23:59:59.000Z

265

Visual robot programming: linking design, simulation, and fabrication  

Science Journals Connector (OSTI)

In the creative industry, architects and designers have to realize complex, prototypical projects without the profit margins or the economy of scale of other industries. One of the core enablers of such processes are fluid and efficient workflows that ... Keywords: design feedback, parametric simulation, robotic fabrication, visual programming

Johannes Braumann, Sigrid Brell-Cokcan

2014-04-01T23:59:59.000Z

266

The Impact of Wind Development on County-Level Income and Employment: A Review of Methods and an Empirical Analysis (Fact Sheet). Wind And Water Power Program (WWPP).  

E-Print Network [OSTI]

development potential from wind power installations has beendevelopment potential of wind power projects, however,is whether new investment in wind power projects stimulates

Brown, Jason P.

2014-01-01T23:59:59.000Z

267

UNDERSTANDING AND DESIGNING ENERGY-EFFICIENCY PROGRAMS FOR DATA CENTERS  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

UNDERSTANDING AND DESIGNING UNDERSTANDING AND DESIGNING ENERGY-EFFICIENCY PROGRAMS FOR DATA CENTERS The U.S. Environmental Protection Agency (EPA) is providing this guide to help inform energy efficiency program administrators about opportunities to save energy in data centers, and to share emerging practices for program design and implementation based on the experiences of recent data center programs. WHY DATA CENTERS? Data centers consume up to 50 times the electricity of standard office space. 1 In 2010, between 1.7% and 2.2% of the total electricity use in the United States was consumed by data centers. United States data center electricity use nearly doubled between 2000 and 2005, and increased by approximately 36% between 2005 and 2010. Despite some recent efficiency gains, data centers remain a

268

Using a collision model to design safer wind turbine rotors for birds  

SciTech Connect (OSTI)

A mathematical model for collisions between birds and propeller-type turbine rotors identifies the variables that can be manipulated to reduce the probability that birds will collide with the rotor. This study defines a safety index--the clearance power density--that allows rotors of different sizes and designs to be compared in terms of the amount of wind energy converted to electrical energy per bird collision. The collision model accounts for variations in wind speed during the year and shows that for model rotors with simple, one-dimensional blades, the safety index increases in proportion to rotor diameter, and variable speed rotors have higher safety indexes than constant speed rotors. The safety index can also be increased by enlarging the region near the center of the rotor hub where the blades move slowly enough for birds to avoid them. Painting the blades to make them more visible might have this effect. Model rotors with practical designs can have safety indexes an order of magnitude higher than those for model rotors typical of the constant speeds rotors in common use today. This finding suggests that redesigned rotors could have collision rates with birds perhaps an order of magnitude lower than today`s rotors, with no reduction in the production of wind power. The empirical data that exist for collisions between raptors, such as hawks and eagles, and rotors are consistent with the model: the numbers of raptor carcasses found beneath large variable speed rotors, relative to the numbers found under small constant speed rotors, are in the proportions predicted by the collision model rather than in proportion to the areas swept by the rotor blades. However, uncontrolled variables associated with these data prevent a stronger claim of support for the model.

Tucker, V.A. [Duke Univ., Durham, NC (United States). Dept. of Zoology

1996-11-01T23:59:59.000Z

269

North Wind 4-kW wind-system development. Phase II. Fabrication and test  

SciTech Connect (OSTI)

This report presents the results of Phase II (testing and fabrication) of a program funded by the US Department of Energy to design, fabricate, and test a cost-effective wind system in the 3 to 6 kW class. During Phase II, using the design developed during Phase I, a prototype 4 kW machine was fabricated and tested in Waitsfield, Vermont. Several problems were encountered and subsequently analyzed. Design modifications, including the use of a larger alternator, are described. Test performed by North Wind and by Rockwell International (which monitored the program) demonstrated the predicted performance characteristics and the validity of the North Wind design.

Lynch, J.; Coleman, C.; Mayer, D.J.

1983-01-01T23:59:59.000Z

270

Preliminary design and economic investigations of Diffuser-Augmented Wind Turbines (DAWT)  

SciTech Connect (OSTI)

A preferred design and configuration approach is suggested for the DAWT innovative wind energy conversion system. A preliminary economic asessment is made for limited production rates of units between 5 and 150 kw rated output. Nine point designs are used to arrive at the conclusions regarding best construction material for the diffuser and busbar cost of electricity (COE). It is estimated that for farm and REA cooperative end users, the COE can range between 2 and 3.5 cents/kWh for sites with annual average wind speeds of 16 and 12 mph (25.7 and 19.3 km/h) respectively, and 150 kW rated units. No tax credits are included in these COE figures. For commercial end users of these 150 kW units the COE ranges between 4.0 and 6.5 cents/kWh for 16 and 12 mph sites. These estimates in 1979 dollars are lower than DOE goals set in 1978 for the rating size and end applications. Recommendations are made for future activities to maintain steady, systematic progress toward mature development of the DAWT.

Foreman, K.M.

1981-12-01T23:59:59.000Z

271

Design and optimization of piezoelectric impact-based micro wind energy harvester for wireless sensor network  

Science Journals Connector (OSTI)

Abstract The purpose of the current study is to design and optimize a piezoelectric impact-based micro wind energy harvester (PIMWEH) as a power source for wireless sensor networks. First, using new PIMWEH design, numerical simulation, and experimental comparison analysis, we determined the most durable PIMWEH shape for application as a power source of WSNs. The experimental results show that the optimized PIMWEH generated 2.8 mW (RMS value) and did not crack within 40h. Second, to supply power for sensor operation, we performed an experiment using a rectifying circuit, an ACDC converter, and an electrical charger. The experimental results show a pure DC voltage signal of 3.3V, and the output power was 1.0 mW (3.1 mW/cm3). A charging energy of 0.845J was obtained in 24min. Third, we calculated the efficiency of the PIMWEH to evaluate its performance. Using a three-step energy conversion process (using wind turbine, PZT, and LTC3588-1), an overall PIMWEH power conversion efficiency of 3.2% was obtained. For one day, the PIMWEH could supply power that is 6263 to 25055 times the power requirement of a commercialized ZigBee transmission. In addition, transmitting signals at intervals from 3.4 to 13 s was made possible.

Hyun Jun Jung; Yooseob Song; Seong Kwang Hong; Chan Ho Yang; Sung Joo Hwang; Se Yeong Jeong; Tae Hyun Sung

2014-01-01T23:59:59.000Z

272

Distributed Wind Energy in Idaho  

SciTech Connect (OSTI)

Project Objective: This project is a research and development program aimed at furthering distributed wind technology. In particular, this project addresses some of the barriers to distributed wind energy utilization in Idaho. Background: At its core, the technological challenge inherent in Wind Energy is the transformation of a highly variable form of energy to one which is compatible with the commercial power grid or another useful application. A major economic barrier to the success of distributed wind technology is the relatively high capital investment (and related long payback periods) associated with wind turbines. This project will carry out fundamental research and technology development to address both the technological and economic barriers. â?¢ Active drive train control holds the potential to improve the overall efficiency of a turbine system by allowing variable speed turbine operation while ensuring a tight control of generator shaft speed, thus greatly simplifying power conditioning. â?¢ Recent blade aerodynamic advancements have been focused on large, utility-scale wind turbine generators (WTGs) as opposed to smaller WTGs designed for distributed generation. Because of Reynolds Number considerations, blade designs do not scale well. Blades which are aerodynamically optimized for distributed-scale WTGs can potentially reduce the cost of electricity by increasing shaft-torque in a given wind speed. â?¢ Grid-connected electric generators typically operate at a fixed speed. If a generator were able to economically operate at multiple speeds, it could potentially convert more of the windâ??s energy to electricity, thus reducing the cost of electricity. This research directly supports the stated goal of the Wind and Hydropower Technologies Program for Distributed Wind Energy Technology: By 2007, reduce the cost of electricity from distributed wind systems to 10 to 15 cents/kWh in Class 3 wind resources, the same level that is currently achievable in Class 5 winds.

Gardner, John; Ferguson, James; Ahmed-Zaid, Said; Johnson, Kathryn; Haynes, Todd; Bennett, Keith

2009-01-31T23:59:59.000Z

273

Structure and Design a Finance Program with Loan Loss Reserve Funds  

Broader source: Energy.gov [DOE]

The process for structuring and designing a finance program with a loan loss reserve (LLR) fund typically includes research and preparing a finance program design document.

274

HEXOSHumidity Exchange Over the Sea A Program for Research on Water-Vapor and Droplet Fluxes from Sea of Air at Moderate to High Wind Speeds  

Science Journals Connector (OSTI)

HEXOS is an international program for the study of evaporation and spray-droplet flux from sea to air. The program includes measurements in the field at moderate-to-high wind speeds, wind-tunnel studies, instrument development, boundary-layer ...

Kristina B. Katsaros; Stuart D. Smith; Wiebe A. Oost

1987-05-01T23:59:59.000Z

275

Wind Energy (Revision). Federal Energy Management Program: Renewable Energy Technologies for Federal Facilities (Fact sheet)  

Broader source: Energy.gov (indexed) [DOE]

From Coast to Coast, Wind Turbines Are Generating Electricity From Coast to Coast, Wind Turbines Are Generating Electricity Wind is caused by the earth's r o t a h and by air-pressure differences from uneven heating of the earth's surface. The energy of the wind is widely dis- tributed geographically and relatively concentrated, and it has a long history o f use as an energy source. In general, wind-energy resources are best along coastlines, at elevated sites in hilly ter- rain, and in the Great Plains, although usable wind resources are available in every state. The U.S. Department of Energy W E ) has compiled anatlas contain- ing wind-resource maps for the entire world. These reports--available through the National Renewable Energy Laboratory-pre vide wind data that help to predict the performance of wind turbines at virtually

276

Model Wind Ordinance | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

You are here You are here Home » Model Wind Ordinance Model Wind Ordinance < Back Eligibility Agricultural Commercial Fed. Government Industrial Institutional Local Government Nonprofit Residential Schools State Government Utility Savings Category Wind Buying & Making Electricity Program Info State North Carolina Program Type Solar/Wind Permitting Standards Provider North Carolina Department of Commerce ''Note: This model ordinance was designed to provide guidance to local governments that wish to develop their own siting rules for wind turbines. While it was developed as part of a cooperative effort involving several state agencies, the model itself has no legal or regulatory authority.'' In July, 2008 the North Carolina Wind Working Group, a coalition of state government, non-profit and wind industry organizations, published a model

277

Computer program design for land treatment systems  

SciTech Connect (OSTI)

Municipal Sludge Land Application expert System (MuSLAXS)is as expert system developed for site assessment and design analysis of municipal sludge application on agricultural land. The system has knowledge on the technical and regulatory aspects of sludge land application and understanding of soil-plant systems for South Carolina. It can be effectively used outside South Carolina with modifications to incorporate specific regulations on land treatment and soil and crop database. A database supports this expert system and provides appropriate default values for sludge and soil characteristics, and fertilizer recommendations for crops commonly grown in South Carolina. Information on the sludge characteristics is gathered from the user, if it is available, or it is retrieved from the sludge database. Based on the recommendations by the EPA and the expert, a list of 22 constituents, for which the sludge should be analyzed is developed. This list includes: total solids, volatile solids, total nitrogen (TNK), ammonia-nitrogen, organic-nitrogen, phosphorus, potassium, sulfur, cadmium, copper, lead, nickel, zinc, PCBs, calcium, magnesium, chromium, boron, arsenic, aluminum, cobalt, and molybdenum.

White, R.K. (Clemson Univ. SC (USA)); Jantrania, A.

1989-10-01T23:59:59.000Z

278

[1] DS/EN 61400-1: 2005. Wind turbines, part 1: Design requirements, 2005. [2] Andrew Delaney. Blowing up a storm. European Power News, 31, 2006.  

E-Print Network [OSTI]

[1] DS/EN 61400-1: 2005. Wind turbines, part 1: Design requirements, 2005. [2] Andrew Delaney loads of wind turbines. In Proceedings of the American Control Conference, Philadelphia, Pennsylvania, Fernando D. Bianchi, Hernán De Battista. Wind Turbine Control Systems. Springer, 2007. [6] H. Ganander

Pedersen, Henrik C.

279

Wind Power Today  

SciTech Connect (OSTI)

Wind Power Today is an annual publication that provides an overview of the wind energy research conducted by the U.S. Department of Energy Wind and Hydropower Technologies Program.

Not Available

2006-05-01T23:59:59.000Z

280

Wind Power Today  

SciTech Connect (OSTI)

Wind Power Today is an annual publication that provides an overview of the wind energy research conducted by the U.S. Department of Energy Wind and Hydropower Technologies Program.

Not Available

2007-05-01T23:59:59.000Z

Note: This page contains sample records for the topic "wind program designed" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


281

FORMERLY USED SITES REMEDIAL ACTION PROGRAM DESIGNATION SUMMARY  

Office of Legacy Management (LM)

USED SITES USED SITES REMEDIAL ACTION PROGRAM DESIGNATION SUMMARY FOR ALBA CRAFT LABORATORY OXFORD, OHIO October 1, 1992 U.S. DEPARTMENT OF ENERGY OFFICE OF ENVIRONMENTAL RESTORATION Designation Summary Alba Craft Laboratory. Oxford CONTENTS INTRODUCTION .......... . . ..................... 1 BACKGROUND Site Function ......................... Site Description ..................... 1 Owner History ................. .. 2 Radiological History and Status............ 2 Authority Review .................... .. 3 DESIGNATION DETERMINATION ........ ....... 3 REFERENCES . ............ .... . 3 Designation Summary Alba Craft Laboratory, Oxford INTRODUCTION The Department of Energy (DOE), Office of Environmental Restoration, has reviewed the past activities of the Atomic Energy Commission (AEC) at the

282

Policy and Program Design Toolkit | Open Energy Information  

Open Energy Info (EERE)

Policy and Program Design Toolkit Policy and Program Design Toolkit (Redirected from Gateway:International/Policy and Program Design) Jump to: navigation, search Stage 3 LEDS Home Introduction to Framework Assess current country plans, policies, practices, and capacities Develop_BAU Stage 4: Prioritizing and Planning for Actions Begin execution of implementation plans 1.0. Organizing the LEDS Process 1.1. Institutional Structure for LEDS 1.2. Workplan to Develop the LEDS 1.3. Roles and responsibilities to develop LEDS 2.1. Assess current country plans, policies, practices, and capacities 2.2. Compile lessons learned and good practices from ongoing and previous sustainable development efforts in the country 2.3. Assess public and private sector capacity to support initiatives 2.4. Assess and improve the national GHG inventory and other

283

Utility Conservation Programs: A Regulatory and Design Framework  

E-Print Network [OSTI]

UTILITY CONSERVATION PROGRAMS: A REGULATORY AND DESIGN FRAMEWORK*+ Douglas L. Norland James L. Wolf Alliance to Save Energy Washington, D.C. ABSTRACT Investing in opportunities to conserve electricity is frequently very economic... to the energy user. Often, it also is in society's, rate payers', or a utility's economic interest to promote this conservation by the utility providing a financial incentive to the customer for the invest ment. Such a conservation program, whether under...

Norland, D. L.; Wolf, J. L.

284

WindPACT Turbine Design Scaling Studies: Technical Area 4ƒBalance-of-Station Cost  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

1 * NREL/SR-500-29950 1 * NREL/SR-500-29950 D.A. Shafer, K.R. Strawmyer, R.M. Conley, J.H. Guidinger, D.C. Wilkie, and T.F. Zellman With assistance from D.W. Bernadett Commonwealth Associates, Inc. Jackson, Michigan WindPACT Turbine Design Scaling Studies: Technical Area 4- Balance-of-Station Cost 21 March 2000-15 March 2001 National Renewable Energy Laboratory 1617 Cole Boulevard Golden, Colorado 80401-3393 NREL is a U.S. Department of Energy Laboratory Operated by Midwest Research Institute * * * * Battelle * * * * Bechtel Contract No. DE-AC36-99-GO10337 July 2001 * NREL/SR-500-29950 WindPACT Turbine Desing Scaling Studies: Technical Area 4- Balance-of-Station Cost 21 March 2000-15 March 2001 D.A. Shafer, K.R. Strawmyer, R.M. Conley, J.H. Guidinger, D.C. Wilkie, and T.F. Zellman

285

Investment Decisions Under Uncertainty Using Stochastic Dynamic Programming: A Case Study of Wind Power  

Science Journals Connector (OSTI)

The present paper adopts a real options approach to value wind power investments under uncertainty. Flexibility arises from the possibility to defer the construction of a wind farm until more information is av...

Klaus Vogstad; Trine Krogh Kristoffersen

2010-01-01T23:59:59.000Z

286

DOE Science Showcase - Wind Power | OSTI, US Dept of Energy, Office of  

Office of Scientific and Technical Information (OSTI)

Science Showcase - Wind Power Science Showcase - Wind Power Wind Powering America is a nationwide initiative of the U.S. Department of Energy's Wind Program designed to educate, engage, and enable critical stakeholders to make informed decisions about how wind energy contributes to the U.S. electricity supply. Wind Power Research Results in DOE Databases IEA Wind Task 26: The Past and Future Cost of Wind Energy, Work Package 2, Energy Citations Database NREL Triples Previous Estimates of U.S. Wind Power Potential, Energy Citations Database Dynamic Models for Wind Turbines and Wind Power Plants, DOE Information Bridge 2012 ARPA-E Energy Innovation Summit: Profiling General Compression: A River of Wind, ScienceCinema, multimedia Solar and Wind Energy Resource Assessment (SWERA) Data from the

287

Central Wind Power Forecasting Programs in North America by Regional Transmission Organizations and Electric Utilities  

SciTech Connect (OSTI)

The report addresses the implementation of central wind power forecasting by electric utilities and regional transmission organizations in North America.

Porter, K.; Rogers, J.

2009-12-01T23:59:59.000Z

288

WINDExchange: Wind Basics and Education  

Wind Powering America (EERE)

locate higher education and training programs. Learn about Wind Learn about how wind energy generates power; where the best wind resources are; how you can get wind power; and...

289

The Wind at Our Backs  

Science Journals Connector (OSTI)

...uncertainty that chills U.S. wind farm development. He...serious challenge of siting wind turbines in the United States...a community college wind training program, and...and the nation's first offshore wind project near Nantucket...

Dan Reicher

2012-05-11T23:59:59.000Z

290

Wind Turbine Tribology Seminar  

Broader source: Energy.gov [DOE]

Wind turbine reliability issues are often linked to failures of contacting components, such as bearings, gears, and actuators. Therefore, special consideration to tribological design in wind...

291

Effect of Tip-Speed Constraints on the Optimized Design of a Wind Turbine  

SciTech Connect (OSTI)

This study investigates the effect of tip-velocity constraints on system levelized cost of energy (LCOE). The results indicate that a change in maximum tip speed from 80 to 100~m/s could produce a 32% decrease in gearbox weight (a 33% reduction in cost) which would result in an overall reduction of 1%-9% in system LCOE depending on the design approach. Three 100~m/s design cases were considered including a low tip-speed ratio/high-solidity rotor design, a high tip-speed ratio/ low-solidity rotor design, and finally a flexible blade design in which a high tip-speed ratio was used along with removing the tip deflection constraint on the rotor design. In all three cases, the significant reduction in gearbox weight caused by the higher tip-speed and lower overall gear ratio was counterbalanced by increased weights for the rotor and/or other drivetrain components and the tower. As a result, the increased costs of either the rotor or drivetrain components offset the overall reduction in turbine costs from down-sizing the gearbox. Other system costs were not significantly affected, whereas energy production was slightly reduced in the 100~m/s case low tip-speed ratio case and increased in the high tip-speed ratio case. This resulted in system cost of energy reductions moving from the 80~m/s design to the 100~m/s designs of 1.2% for the low tip-speed ratio, 4.6% for the high tip-speed ratio, and 9.5% for the final flexible case (the latter result is optimistic because the impact of deflection of the flexible blade on power production was not modeled). Overall, the results demonstrate that there is a trade-off in system design between the maximum tip velocity and the overall wind plant cost of energy, and there are many trade-offs within the overall system in designing a turbine for a high maximum tip velocity.

Dykes, K.; Resor, B.; Platt, A.; Guo, Y.; Ning, A.; King, R.; Parsons, T.; Petch, D.; Veers, P.

2014-10-01T23:59:59.000Z

292

Designing Effective Incentives to Drive Residential Retrofit Program Participation (Text Version)  

Broader source: Energy.gov [DOE]

Transcript of the webinar, "Designing Effective Incentives to Drive Residential Retrofit Program Participation."

293

EGUN: An electron optics and gun design program  

SciTech Connect (OSTI)

The name EGUN has become commonly associated with the program also known as the SLAC Electron Trajectory Program. This document is an updated version of SLAC-226, published in 1979. The program itself has had substantial upgrading since then, but only a few new features are of much concern to the user. Most of the improvements are internal and are intended to improve speed or accuracy. EGUN is designed to compute trajectories of charged particles in electrostatic and magnetostatic fields, including the effects of space charge and self-magnetic fields. Starting options include Child's Law conditions on cathodes of various shapes, as well as used specified initial conditions. Either rectangular or cylindrical symmetry may be used. In the new jargon, the program is a 2-1/2 dimension code meaning 2-D in all fields and 3-D in all particle motion. A Poisson's Equation Solver is used to find the electrostatic fields by using difference equations derived from the boundary conditions. Magnetic fields are to be specified externally, by the user, by using one of several methods including data from another program or arbitrary configurations of coils. This edition of the documentation also covers the program EGN87c, which is a recently developed version of EGUN designed to be used on the newer models of personal computers, small main frames, work stations, etc. The EGN87c program uses the programming language C which is very transportable so the program should operate on any system that supports C. Plotting routines for most common PC monitors are included, and the capability to make hard copy plots on dot-matrix printer-plotters is provided. 18 refs., 7 figs.

Herrmannsfeldt, W.B.

1988-10-01T23:59:59.000Z

294

Breeder Spent Fuel Handling Program multipurpose cask design basis document  

SciTech Connect (OSTI)

The Breeder Spent Fuel Handling (BSFH) Program multipurpose cask Design Basis Document defines the performance requirements essential to the development of a legal weight truck cask to transport FFTF spent fuel from reactor to a reprocessing facility and the resultant High Level Waste (HLW) to a repository. 1 ref.

Duckett, A.J.; Sorenson, K.B.

1985-09-01T23:59:59.000Z

295

THETIS: AN ANSI C PROGRAMMING ENVIRONMENT DESIGNED FOR INTRODUCTORY USE  

E-Print Network [OSTI]

THETIS: AN ANSI C PROGRAMMING ENVIRONMENT DESIGNED FOR INTRODUCTORY USE Stephen N. Freund and Eric compilers, particularly those used for languages like ANSI C that have extensive commercial applicability to adopt ANSI C as the language of instruction for its CS l/CS2 sequence, most of the affected

Freund, Stephen N.

296

Analyzing the Deployment of Large Amounts of Offshore Wind to Design an Offshore Transmission Grid in the United States: Preprint  

SciTech Connect (OSTI)

This paper revisits the results from the U.S. Department of Energy's '20% Wind Energy By 2030' study, which envisioned that 54 GW of offshore wind would be installed by said year. The analysis is conducted using the Regional Energy Deployment System (ReEDS), a capacity expansion model developed by the National Renewable Energy Laboratory. The model is used to optimize the deployment of the 54 GW of wind capacity along the coasts and lakes of the United States. The graphical representation of the results through maps will be used to provide a qualitative description for planning and designing an offshore grid. ReEDS takes into account many factors in the process of siting offshore wind capacity, such as the quality of the resource, capital and O&M costs, interconnection costs, or variability metrics (wind capacity value, forecast error, expected curtailment). The effect of these metrics in the deployment of offshore wind will be analyzed through examples in the results.

Ibanez, E.; Mai, T.; Coles, L.

2012-09-01T23:59:59.000Z

297

Competitive Wind Grants (Vermont)  

Broader source: Energy.gov [DOE]

The Clean Energy Development Fund Board will offer a wind grant program beginning October 1, 2013. The grant program will replace the wind incentives that were originally part of the [http:/...

298

Campus Recreation Graphic Design Internship The Campus Recreation Graphic Design Internship program is designed to enhance your  

E-Print Network [OSTI]

Campus Recreation Graphic Design Internship The Campus Recreation Graphic Design Internship program the needs of the intern/practicum students, UML Campus Recreation experiences are flexible. Positions and a positive attitude. All intern/practicum students are representatives of the Department of Campus Recreation

Massachusetts at Lowell, University of

299

A Methodology for Calculating Emissions Reductions from Renewable Energy Programs and its Application to the Wind Farms in the Texas ERCOT Region  

E-Print Network [OSTI]

1 Energy Systems Laboratory 1 A METHODOLOGY FOR CALCULATING EMISSIONS REDUCTIONS FROM RENEWABLE ENERGY PROGRAMS AND ITS APPLICATION TO THE WIND FARMS IN THE TEXAS ERCOT REGION Zi Liu, Jeff Haberl, Juan-Carlos Baltazar, Kris Subbarao, Charles... on Sweetwater I Wind Farm Capacity Factor Analysis Application to All Wind Farms Uncertainty Analysis Emissions Reduction Summary Energy Systems Laboratory 3 SUMMARYEMISSIONS REDUCTION UNCERTAINTY ANALYSIS APPLICATIONMETHODOLOGYINTRODUCTION Background...

Liu, Z.; Haberl, J.; Baltazar, J. C.; Subbarao, K.; Culp, C.; Yazdani, B.

300

Central Wind Forecasting Programs in North America by Regional Transmission Organizations and Electric Utilities: Revised Edition  

SciTech Connect (OSTI)

The report and accompanying table addresses the implementation of central wind power forecasting by electric utilities and regional transmission organizations in North America. The first part of the table focuses on electric utilities and regional transmission organizations that have central wind power forecasting in place; the second part focuses on electric utilities and regional transmission organizations that plan to adopt central wind power forecasting in 2010. This is an update of the December 2009 report, NREL/SR-550-46763.

Rogers, J.; Porter, K.

2011-03-01T23:59:59.000Z

Note: This page contains sample records for the topic "wind program designed" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


301

Feed-pump hydraulic performance and design improvement, Phase I: research program design. Final report  

SciTech Connect (OSTI)

As a result of prior EPRI-sponsored studies, it was concluded that a research program should be designed and implemented to provide an improved basis for the design, procurement, testing, and operation of large feed pumps with increased reliability and stability over the full range of operating conditions. This two-volume report contains a research plan which is based on a review of the present state of the art and which defines the necessary R and D program and estimates the benefits and costs of the program. The recommended research program consists of 30 interrelated tasks. It is designed to perform the needed research; to verify the results; to develop improved components; and to publish computer-aided design methods, pump specification guidelines, and a troubleshooting manual. Most of the technology proposed in the research plan is applicable to nuclear power plants as well as to fossil-fired plants. This volume discusses the design, performance and failures of feed pumps, and recommendations for research on pump dynamics, design, and specifications.

Brown, W.H.; Gopalakrishnan, S.; Fehlau, R.; Thompson, W.E.; Wilson, D.G.

1982-03-01T23:59:59.000Z

302

U.S. Department of Energy Wind and Water Power Program Funding...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Amount Funding Source Project Location The Pennsylvania State University A High Performance Computing "Cyber Wind Facility" for Turbine-Platform- Wake Interactions with the...

303

U.S. Department of Energy Wind and Water Power Program Funding...  

Energy Savers [EERE]

the intake maintenance device, minimizing the need for burning debris, and thus reducing air pollution. continued > WIND AND WATER POWER TECHNOLOGIES OFFICE 4 Table 1: FY 2008 -...

304

U.S. Department of Energy Wind and Water Power Program Funding...  

Office of Environmental Management (EM)

fixed and portable laboratory teaching systems to teach generation of electricity from solar and wind to students, as well as to the general public; and continued development of...

305

B61-12 Life Extension Program Undergoes First Full-Scale Wind...  

National Nuclear Security Administration (NNSA)

Undergoes First Full-Scale Wind Tunnel Test | National Nuclear Security Administration People Mission Managing the Stockpile Preventing Proliferation Powering the Nuclear Navy...

306

DOE Hydrogen and Fuel Cells Program Record 5012a: Well-to-Wheels Analyses for Solar and Wind Hydrogen Production  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

DOE Hydrogen and Fuel Cells Program Record DOE Hydrogen and Fuel Cells Program Record Record #: 5012a Date: December 21, 2005 Title: Well-to-Wheels Analyses for Solar & Wind Hydrogen Production Originator: Roxanne Garland Approved by: JoAnn Milliken Date: January 6, 2006 Item: This record explains the basis for the differences between the analyses of well-to-wheels energy use and greenhouse gas emissions conducted via Argonne National Laboratory's GREET Model, cited in the U.S. Department of Energy's Solar and Wind Technologies for Hydrogen Production Report to Congress, 1 and those conducted by the National Research Council, cited in the report The Hydrogen Economy: Opportunities, Costs, Barriers, and R&D Needs. 2 Well-to-Wheels Energy Use and Greenhouse Gas Emissions - Argonne National

307

Design of Wind Turbines in an Area with Tropical Cyclones Niels-Erik Clausen, niels-erik.clausen@risoe.dk, Sren Ott, Niels-Jacob Tarp-Johansen, Per Nrgrd and  

E-Print Network [OSTI]

Design of Wind Turbines in an Area with Tropical Cyclones Niels-Erik Clausen, niels and cost of wind turbines is influenced by a combination of fatigue and extreme loads and the applied design codes. In general wind turbines are designed for 20 years of operation using design standards

308

NREL: Wind Research - News Release Archives  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

2 2 September 25, 2012 Wind Energy Research Institutes Join Forces at the Inaugural Meeting of the North American Wind Energy Academy The North American Wind Energy Academy held its inaugural meeting August 7-9, 2012, at the University of Massachusetts Amherst. The meeting drew 92 participants from 17 states and Canada, including 22 universities, eight commercial companies, and four government laboratories. September 25, 2012 DOE Wind Program Funds University of Wisconsin-Madison Wind Workforce Development Efforts: A Wind Powering America Success Story The University of Wisconsin-Madison was awarded an Energy Department workforce development grant in July 2010 to develop a series of continuing education short courses focused on civil design and construction for wind

309

CR mammography: Design and implementation of a quality control program  

SciTech Connect (OSTI)

Despite the recent acquisition of significant quantities of computed radiography CR equipment for mammography, Mexican regulations do not specify the performance requirements for digital systems such as those of CR type. The design of a quality control program QCP specific for CR mammography systems was thus considered relevant. International protocols were taken as reference to define tests, procedures and acceptance criteria. The designed QCP was applied in three CR mammography facilities. Important deficiencies in spatial resolution, noise, image receptor homogeneity, artifacts and breast thickness compensation were detected.

Moreno-Ramirez, A.; Brandan, M. E.; Villasenor-Navarro, Y.; Galvan, H. A.; Ruiz-Trejo, C. [Instituto de Fisica, Universidad Nacional Autonoma de Mexico, DF 04510 (Mexico); Departamento de Radiodiagnostico, Instituto Nacional de Cancerologia, DF 14080 (Mexico); Instituto de Fisica, Universidad Nacional Autonoma de Mexico, DF 04510 (Mexico)

2012-10-23T23:59:59.000Z

310

Calculations allow program to design pipelines for waxy crude--  

SciTech Connect (OSTI)

This article reports that calculations have been derived which will permit writing of a computer program for design of a pipeline handling Newtonian, pseudoplastic, or yield-pseudoplastic crudes. Statistical analysis was used to find out the variation of rheological behavior with operating temperatures and wax content in various Saudi oils. The evaluation was carried out at a statistical confidence level of 95%. Experimental data were correlated with respect to power-law and Herschel-Bulkey law. The pipeline design calculations were carried out through a computer program. The friction factor was determined from Torrance's correlation and Dodge and Metzner correlation for yield-pseudoplastic and pseudoplastic fluids, respectively. The frictional pressure drop was calculated from Darcy-Weisbach equation.

Al-Fariss, T.F.; Desouky, S.E.M. (King Saud Univ., Riyadh, (SA))

1990-01-08T23:59:59.000Z

311

Quality engineering process for the Program Design Phase of a generic software life cycle  

E-Print Network [OSTI]

Quality engineering process for the Program Design Phase of a generic software life cycle Witold.georgiadou@mdx.ac.uk Abstract This paper presents the design of a quality engineering process applicable in the program design place between the program designer and the software quality engineer. The paper also discusses

Suryn, Witold

312

New England Wind Forum: Wind Power Economics  

Wind Powering America (EERE)

State Activities Projects in New England Building Wind Energy in New England Wind Resource Wind Power Technology Economics Cost Components Determining Factors Influencing Wind Economics in New England How does wind compare to the cost of other electricity options? Markets Siting Policy Technical Challenges Issues Small Wind Large Wind Newsletter Perspectives Events Quick Links to States CT MA ME NH RI VT Bookmark and Share Wind Power Economics Long-Term Cost Trends Since the first major installations of commercial-scale wind turbines in the 1980s, the cost of energy from wind power projects has decreased substantially due to larger turbine generators, towers, and rotor lengths; scale economies associated with larger projects; improvements in manufacturing efficiency, and technological advances in turbine generator and blade design. These technological advances have allowed for higher generating capacities per turbine and more efficient capture of wind, especially at lower wind speeds.

313

Securing Clean, Domestic, Affordable Energy with Wind (Fact Sheet...  

Office of Environmental Management (EM)

research and development efforts. eerewindwater.pdf More Documents & Publications Wind Program Accomplishments Offshore Wind Projects Wind Program FY 2015 Budget At-A-Glance...

314

Design And Development Of Small Wind Energy Systems Is A Soft Path For Power Generation And Environment Conservation For Off Grid Applications In India.  

E-Print Network [OSTI]

ABSTRACT: This paper describes the design a new evolving electrical power generation system with small wind turbine. Which offer solutions to meet local energy requirements of a specific location. Energy conservation decreases energy requirements, promotes energy efficiency and facilitates development of renewable. Wind energy dominates as an immediate viable cost effective option which promotes energy conservation and avoids equivalent utilization of fossil fuels and avoids million ton of green house gas emission causing ozone depletion and other environmental impacts like global warming. This paper gives an over view about the current status and a possible development for small wind turbines for off grid applications in India. KEY WORDS: wind energy, wind power generation system, wind sensor, Energy resources, and wind

unknown authors

315

NREL: Wind Research - Small Wind Turbine Webinars  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Small Wind Turbine Webinars Small Wind Turbine Webinars Here you will find webinars about small wind turbines that NREL hosted. Introducing WindLease(tm): Making Wind Energy Affordable NREL and the American Solar Energy Society (ASES) Wind Division co-hosted this webinar. (Text Version.) Date: August 1, 2013 Run Time: 40 minutes Joe Hess, VP of Business Development at United Wind, described United Wind's WindQuote and WindLease Program and explained the process from the dealer's and consumer's perspective. Texas Renewable Energy Industries Association NREL and the American Solar Energy Society (ASES) Wind Division co-hosted this webinar. (Text Version). Date: March 7, 2013 Run Time: 1 hour Russel Smith, Texas Renewable Energy Industries Association executive director and co-founder, provided an overview of the trade association

316

Wind energy bibliography  

SciTech Connect (OSTI)

This bibliography is designed to help the reader search for information on wind energy. The bibliography is intended to help several audiences, including engineers and scientists who may be unfamiliar with a particular aspect of wind energy, university researchers who are interested in this field, manufacturers who want to learn more about specific wind topics, and librarians who provide information to their clients. Topics covered range from the history of wind energy use to advanced wind turbine design. References for wind energy economics, the wind energy resource, and environmental and institutional issues related to wind energy are also included.

None

1995-05-01T23:59:59.000Z

317

A Computer Program Development for Sizing Stand-alone Photovoltaic-Wind Hybrid Systems  

Science Journals Connector (OSTI)

Abstract The exhaustion and all the drawbacks of fossil fuels are the main elements that led to the development and use of new alternativesfor power generation based on renewable energy,amongthem: photovoltaic energy systems, windenergy systems and their combination in a hybrid photovoltaic-wind system. In this paper we proposed a sizing approach of stand-alone Photovoltaic-Wind systems which is evaluated by the development of a computer applicationbased essentially on Loss of Power Supply Probability (LPSP) algorithmto provide an optimal technical-economic configuration. An example of a PV-Wind plant sizing is presented and discussed.

H. Belmili; M.F. Almi; B.Bendib; S. Bolouma

2013-01-01T23:59:59.000Z

318

Stakeholder Engagement and Outreach: State Wind Activities  

Wind Powering America (EERE)

Federal, Federal, State, & Local Printable Version Bookmark and Share Economic Development Policy Public Lands Public Power Regional Activities State Activities State Lands Siting State Wind Activities The U.S. map below summarizes Wind Powering America's state activities as of February 2010, which include Wind Working Groups, validated wind maps, anemometer loan programs, small wind guides, Wind for Schools Wind Applications Centers, exhibits, and workshops or webcasts. To read more state-specific news, click on a state. You can also view an enlarged map or print the state wind activities map. U.S. map showing Wind Powering America's activities in each state. Washington has an inactive/evolved wind working group, validated wind map, and a small wind guide. Exhibits have been displayed. Oregon has a wind working group, validated wind map, small wind guide, an anemometer loan program, and has had workshops or Webcasts. California has an inactive/evolved wind working group and valided wind map. Exhibits have been displayed. Idaho has an inactive/evolved wind working group, validated wind map, small wind guide, an anemometer loan program, has had workshops or Webcasts, exhibits have been displayed, and it has a Wind for Schools Wind Applications Center. Nevada has a wind working group, validated wind map, a small wind guide, an anemometer loan program, and has had workshops or Webcasts and exhibits. Montana has a wind working group, validated wind map, small wind guide, an anemometer loan program, and has had workshops or Webcasts, exhibits have been displayed, and it has a Wind for Schools Wind Applications Center. Wyoming has a wind working group, validated wind map, small wind guide, anemometer loan program, and has had workshops or Webcasts and exhibits. Utah has a wind working group, validated wind map, a small wind guide, an anemometer loan program, and has had workshops or Webcasts. Arizona has a wind working group, validated wind map, small wind guide, an anemometer loan program, has had workshops or Webcasts, and exhibits have been displayed. Colorado has a wind working group, a validated wind map, small wind guide, an anemometer loan program, has had workshops or Webcasts, exhibits have been displayed, and it has a Wind for Schools Wind Applications Center. New Mexico has a wind working group, validated wind map, small wind guide, an anemometer loan program, has had workshops or Webcasts, and exhibits have been displayed. North Dakota has a wind working group, validated wind map, small wind guide, an anemometer loan program, and has had workshops or Webcasts and exhibits. South Dakota has a wind working group, a validated wind map, small wind guide, an anemometer loan program, has had workshops or Webcasts, exhibits have been displayed, and it has a Wind for Schools Wind Applications Center. Nebraska has a wind working group, a validated wind map, a small wind guide, has had workshops or Webcasts, exhibits have been displayed, and it has a Wind for Schools Wind Applications Center. Kansas has a wind working group, a validated wind map, a small wind guide, has had workshops or Webcasts, exhibits have been displayed, and it has a Wind for Schools Wind Applications Center. Oklahoma has a wind working group, validated wind map, small wind guide, an anemometer loan program, and has had workshops or Webcasts. Texas currently does not have any Wind Powering America activities. Minnesota has a small wind guide. Iowa has a small wind guide and has had exhibits. Missouri has a wind working group, validated wind map, small wind guide, an anemometer loan program, and has had workshops or Webcasts. Arkansas has a wind working group, validated wind map, and workshops or Webcasts. Lousiana currently does not have any Wind Powering America activities. Mississippi currently does not have any Wind Powering America activities. Alabama currently does not have any Wind Powering America activities. Georgia has a wind working group, a validated wind map, and has had workshops or Webcasts. Florida currently does not have any Wind Powering America activities. South Carolina has a wind working group. Alaska has a wind working group, validated wind map, an anemometer loan program, has had workshops or Webcasts, and it has a Wind for Schools Wind Applications Center. Hawaii has a wind working group, validated wind map, a small wind guide, and has had exhibits. Puerto Rico has a validated wind map and a planned wind working group. Wisconsin has a wind working group, a small wind guide, an anemometer loan program, and has had workshops or Webcasts. Illinois has a wind working group, validated wind map, a small wind guide, and has had workshops or Webcasts. Michigan has a wind working group, validated wind map, a small wind guide, an anemometer loan program, and has had workshops or Webcasts and exhibits. Indiana has a wind working group, a validated wind map, a small wind guide, and has had workshops or Webcasts and exhibits. Kentucky has a wind working group and a validated wind map. Tennessee has a wind working group, a validated wind map, small wind guide, anemometer loan program, and has had workshops or Webcasts. North Carolina has a wind working group, validated wind map, a small wind guide, an anemometer loan program, has had workshops or Webcasts, exhibits have been displayed, and it has a Wind for Schools Wind Applications Center. Virginia has a wind working group, a validated wind map, a small wind guide, an anemometer loan program, has had workshops or Webcasts, exhibits have been displayed, and it has a Wind for Schools Wind Applications Center. West Virginia has a wind working group, a validated wind map, and has had workshops or Webcasts. Ohio has a wind working group, validated wind map, a small wind guide, an anemometer loan program, and has had workshops or Webcasts. Maryland has a wind working group, a validated wind map, a small wind guide, and an anemometer loan program. Pennsylvania has a wind working group, a validated wind map, small wind guide, an anemometer loan program, has had workshops or Webcasts, and it has a Wind for Schools Wind Applications Center. Delaware has a validated wind map and a small wind guide. New Jersey has a wind working group, validated wind map, a small wind guide, an anemometer loan program, and has had workshops or Webcasts. Connecticut has a wind working group and a validated wind map. New York has a small wind guide. Vermont has a validated wind map and a small wind guide. Massachusetts has a wind working group, validated wind map, a small wind guide, an anemometer loan program, and has had exhibits. New Hampshire has a validated wind map and small wind guide. Maine has a wind working group, validated wind map, small wind guide, an anemometer loan program, and has had workshops or Webcasts. Rhode Island has a validated wind map and small wind guide. The U.S. Virgin Islands have a validated wind map.

319

This is a preprint of the following article, which is available from http://mdolab.engin.umich.edu/content/ multidisciplinary-design-optimization-offshore-wind-turbines-minimum-levelized-cost-energy. The published  

E-Print Network [OSTI]

://mdolab.engin.umich.edu/content/ multidisciplinary-design-optimization-offshore-wind-turbines-minimum-levelized-cost-energy. The published article.A.M. van Kuik. Multidisciplinary Design Optimization of Offshore Wind Turbines for Minimum Levelized Cost of Energy. Renewable Energy (In press), 2014 Multidisciplinary Design Optimization of Offshore Wind Turbines

Papalambros, Panos

320

2008 Wind Energy Projects, Wind Powering America (Poster)  

SciTech Connect (OSTI)

The Wind Powering America program produces a poster at the end of every calendar year that depicts new U.S. wind energy projects. The 2008 poster includes the following projects: Stetson Wind Farm in Maine; Dutch Hill Wind Farm in New York; Grand Ridge Wind Energy Center in Illinois; Hooper Bay, Alaska; Forestburg, South Dakota; Elbow Creek Wind Project in Texas; Glacier Wind Farm in Montana; Wray, Colorado; Smoky Hills Wind Farm in Kansas; Forbes Park Wind Project in Massachusetts; Spanish Fork, Utah; Goodland Wind Farm in Indiana; and the Tatanka Wind Energy Project on the border of North Dakota and South Dakota.

Not Available

2009-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "wind program designed" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


321

WindPACT Turbine Design Scaling Studies Technical Area 1ŒComposite Blades for 80- to 120-Meter Rotor  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

1 * NREL/SR-500-29492 1 * NREL/SR-500-29492 Dayton A. Griffin Global Energy Concepts Kirkland, Washington WindPACT Turbine Design Scaling Studies Technical Area 1-Composite Blades for 80- to 120-Meter Rotor March 21, 2000 - March 15, 2001 National Renewable Energy Laboratory 1617 Cole Boulevard Golden, Colorado 80401-3393 NREL is a U.S. Department of Energy Laboratory Operated by Midwest Research Institute * * * * Battelle * * * * Bechtel Contract No. DE-AC36-99-GO10337 April 2001 * NREL/SR-500-29492 WindPACT Turbine Design Scaling Studies Technical Area 1-Composite Blades for 80- to 120-Meter Rotor March 21, 2000 - March 15, 2001 Dayton A. Griffin Global Energy Concepts Kirkland, Washington NREL Technical Monitor: Alan Laxson Prepared under Subcontract No. YAM-0-30203-01 National Renewable Energy Laboratory

322

WindPACT Turbine Design Scaling Studies Technical Area 3ŒSelf-Erecting Tower and Nacelle Feasibility  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

1 * NREL/SR-500-29493 1 * NREL/SR-500-29493 Global Energy Concepts, LLC Kirkland, Washington WindPACT Turbine Design Scaling Studies Technical Area 3-Self-Erecting Tower and Nacelle Feasibility March 2000-March 2001 National Renewable Energy Laboratory 1617 Cole Boulevard Golden, Colorado 80401-3393 NREL is a U.S. Department of Energy Laboratory Operated by Midwest Research Institute * * * * Battelle * * * * Bechtel Contract No. DE-AC36-99-GO10337 May 2001 * NREL/SR-500-29493 WindPACT Turbine Design Scaling Studies Technical Area 3-Self-Erecting Tower and Nacelle Feasibility March 2000-March 2001 Global Energy Concepts, LLC Kirkland, Washington NREL Technical Monitor: Alan Laxson Prepared under Subcontract No. YAM-0-30203-01 National Renewable Energy Laboratory 1617 Cole Boulevard

323

Northern Power Systems WindPACT Drive Train Alternative Design Study Report: April 12, 2001 to January 31, 2005  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

October 2004 * NREL/SR-500-35524 October 2004 * NREL/SR-500-35524 G. Bywaters, V. John, J. Lynch, P. Mattila, G. Norton, and J. Stowell Northern Power Systems M. Salata General Dynamics Electric Boat O. Labath Gear Consulting Services of Cincinnati A. Chertok and D. Hablanian TIAX Northern Power Systems WindPACT Drive Train Alternative Design Study Report April 12, 2001 to January 31, 2005 National Renewable Energy Laboratory 1617 Cole Boulevard, Golden, Colorado 80401-3393 303-275-3000 * www.nrel.gov Operated for the U.S. Department of Energy Office of Energy Efficiency and Renewable Energy by Midwest Research Institute * Battelle Contract No. DE-AC36-99-GO10337 Revised October 2004 * NREL/SR-500-35524 Northern Power Systems WindPACT Drive Train Alternative Design Study Report

324

New England Wind Forum: Historic Wind Development in New England: Wrap Up  

Wind Powering America (EERE)

Wrap Up Wrap Up Remote Power in Isolated Electric Systems Additional installations of earlier-generation wind turbines occurred at Cuttyhunk Island, MA (a 200-kW WTG turbine operated as part of a wind-diesel installation), and Block Island, RI, which hosted one of the first four 200-kW MOD-OA units developed under the Department of Energy's large wind research program. Small Wind Turbine Manufacturing Vermont was a hotbed for early small-machine manufacturers. North Wind (now Northern Power Systems) and Enertech won two of the first contracts awarded by the Department of Energy wind research program for small-machine design. NPS still survives as a successful business today, while Enertech was succeeded by Atlantic Orient, which in turn has taken on new life in Canada as Entegrity. (Other companies, such as Astral Wilcon and Pinson Energy in Massachusetts, are no longer in business.)

325

E-Print Network 3.0 - advanced design program Sample Search Results  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

program Search Powered by Explorit Topic List Advanced Search Sample search results for: advanced design program Page: << < 1 2 3 4 5 > >> 1 CSP 551: Advanced UNIX Programming W....

326

Modelling and design of an eddy current coupling for slip-synchronous permanent magnet wind generators.  

E-Print Network [OSTI]

??ENGLISH ABSTRACT: Slip-synchronous permanent magnet generators (SS-PMG) is a recently proposed direct-grid connected direct-drive generator topology for wind power applications. It combines a permanent magnet (more)

Mouton, Zac

2013-01-01T23:59:59.000Z

327

Simulation of Wind-Vector Estimation Design Evaluation of Microwave Scatterometer -  

Science Journals Connector (OSTI)

One of several representative features of the microwave scatterometer(SCAT), which has been being developed by NASDA since 1979, is in its higher capability of wind alias removal by providing three differently mo...

Masanobu Shimada; Masao Sasanuma

1985-01-01T23:59:59.000Z

328

Design and Development of Controller for Stand-Alone Wind Driven Self-excited Induction Generator  

Science Journals Connector (OSTI)

The 3-? self-excited induction generator driven by wind energy source is suitable ... capacitance required for self-excitation of 3-? induction generator is taken up in this work and...

M. Sathyakala; M. Arutchelvi

2013-01-01T23:59:59.000Z

329

Performance-based serviceability design optimization of wind sensitive tall buildings.  

E-Print Network [OSTI]

??Recent trends towards developing increasingly taller and irregularly-shaped buildings have led to slender complex structures that are highly sensitive and susceptible to wind-induced deflection and (more)

Huang, Mingfeng

2008-01-01T23:59:59.000Z

330

The Design Complexity of Program Undo Support in a General Purpose  

E-Print Network [OSTI]

Design Complexity of Program Undo Hardware overhead 12 Avg. 4.5% overhead 0 1000 2000 3000 4000 5000 6000;Radu Teodorescu - University of Illinois Design Complexity of Program Undo Lines of code 14 0 500 1000The Design Complexity of Program Undo Support in a General Purpose Processor Radu Teodorescu

Torrellas, Josep

331

Design guidelines for H-Darrieus wind turbines: Optimization of the annual energy yield  

Science Journals Connector (OSTI)

Abstract H-Darrieus wind turbines are gaining popularity in the wind energy market, particularly as they are thought to represent a suitable solution even in unconventional installation areas. To promote the diffusion of this technology, industrial manufacturers are continuously proposing new and appealing exterior solutions, coupled with tempting rated-power offers. The actual operating conditions of a rotor over a year can be, however, very different from the nominal one and strictly dependent on the features of the installation site. Based on these considerations, a turbine optimization oriented to maximize the annual energy yield, instead of the maximum power, is thought to represent a more interesting solution. With this goal in mind, 21,600 test cases of H-Darrieus rotors were compared on the basis of their energy-yield capabilities for different annual wind distributions in terms of average speed. The wind distributions were combined with the predicted performance maps of the rotors obtained with a specifically developed numerical code based on a Blade Element Momentum (BEM) approach. The influence on turbine performance of the cut-in speed was accounted for, as well as the limitations due to structural loads (i.e. maximum rotational speed and maximum wind velocity). The analysis, carried out in terms of dimensionless parameters, highlighted the aerodynamic configurations able to ensure the largest annual energy yield for each wind distribution and set of aerodynamic constraints.

Alessandro Bianchini; Giovanni Ferrara; Lorenzo Ferrari

2015-01-01T23:59:59.000Z

332

Pitt County - Wind Energy Systems Ordinance | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

Pitt County - Wind Energy Systems Ordinance Pitt County - Wind Energy Systems Ordinance Pitt County - Wind Energy Systems Ordinance < Back Eligibility Commercial Residential Savings Category Wind Buying & Making Electricity Program Info State North Carolina Program Type Solar/Wind Permitting Standards Provider Pitt County The Pitt County Board of Commissioners adopted amendments to the county zoning ordinance in March 2010 which classify wind energy systems as an accessory use and establish siting and permitting requirements for their installation. The ordinance applies to small to medium systems designed primarily for on-site use in conjunction with a principal dwelling unit or business. The ordinance does not apply to utility scale systems. '''Blade Clearance:''' Wind turbine blades may not be closer than 15 feet

333

The Cost of Transmission for Wind Energy: A Review of Transmission Planning Studies  

E-Print Network [OSTI]

2006. Transmission and Wind Energy: Capturing the Prevailingand Renewable Energy (Wind & Hydropower Technologiesand Renewable Energy Wind & Hydropower Technologies Program

Mills, Andrew D.

2009-01-01T23:59:59.000Z

334

Sandia National Laboratories: Offshore Wind  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

EnergyOffshore Wind Offshore Wind Sandia executes several projects in support of the DOE Offshore Wind program, which address unique R&D needs related to offshore siting and, in...

335

NREL: Wind Research - Offshore Wind Research  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Offshore Wind Research Offshore Wind Research Photo of a European offshore wind farm. Early progress in European Offshore Wind Energy over the last decade provides a glimpse into the vast potential of the global offshore resource. For more than eight years, NREL has worked with the Department of Energy to become an international leader in offshore wind energy research. Capabilities NREL's offshore wind capabilities focus on critical areas that reflect the long-term needs of the offshore wind energy industry and the U.S. Department of Energy including: Offshore Design Tools and Methods Offshore Standards and Testing Energy Analysis of Offshore Systems Offshore Wind Resource Characterization Grid Integration of Offshore Wind Key Research NREL documented the status of offshore wind energy in the United States in

336

Identification of airfoil characteristics for optimum wind turbine performance / b  

E-Print Network [OSTI]

combine to determine how much power output is obtained. Oi' specific interest in this study is the influence of airi'oil section characteristics on horizontal axis wind turbine (HAWT) performance. By identifying these characteristics, better selection... characteristics f' or HAWT airfoil design or selection. EFFECT OF AIRFOIL CHARACTERISTICS ON INTEGRATED TURBINE PERFORMANCE Wind Turbine Performance Com uter Pro ram An existing horizontal axis wind turbine (HAWT) performance computer program" was modified f...

Miller, Leonard Scott

1983-01-01T23:59:59.000Z

337

Advanced Airfoils for Wind Turbines: Office of Power Technologies (OPT) Success Stories Series Fact Sheet  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Program Program Office of Geothermal and Wind Technologies Blades are where the turbine meets the wind. Turbine blades take advantage of aero- dynamics to extract the wind's energy, which can then be converted to useful electricity. Airfoils-the cross-sectional shape of the blades-determine the aerodynamic forces on blades. They are key to blade design. In the seventies, the young and fast-growing U.S. wind industry used airfoil designs from airplane wings to design turbine blades because those airfoil designs were widely available, and engineers understood how they performed on aircraft. Airfoils specifically designed for wind turbines did not yet exist. The industry quickly learned, however, how harsh the operating environment is for wind turbines as compared to that for airplanes.

338

Evolutionary Test Program Induction for Microprocessor Design Verification Fulvio Corno, Gianluca Cumani, Matteo Sonza Reorda, Giovanni Squillero  

E-Print Network [OSTI]

Evolutionary Test Program Induction for Microprocessor Design Verification Fulvio Corno, Gianluca is an assembly program able to maximize a predefined verification metric. Design verification of on-chip

Fernandez, Thomas

339

Wind power today  

SciTech Connect (OSTI)

This publication highlights initiatives of the US DOE`s Wind Energy Program. 1997 yearly activities are also very briefly summarized. The first article describes a 6-megawatt wind power plant installed in Vermont. Another article summarizes technical advances in wind turbine technology, and describes next-generation utility and small wind turbines in the planning stages. A village power project in Alaska using three 50-kilowatt turbines is described. Very brief summaries of the Federal Wind Energy Program and the National Wind Technology Center are also included in the publication.

NONE

1998-04-01T23:59:59.000Z

340

European Wind Energy Conference Exhibition  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

European Wind Energy Conference & Exhibition 2009 Parc Chanot, Marseille, France 16-19 March 2009 ACTIVE AERODYNAMIC BLADE CONTROL DESIGN FOR LOAD REDUCTION ON LARGE WIND TURBINES...

Note: This page contains sample records for the topic "wind program designed" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


341

Modal testing of advanced wind turbine systems  

SciTech Connect (OSTI)

The US Department of Energy (DOE), in conjunction with the US wind industry, is supporting the development of technology for advanced, higher efficiency wind energy conversion systems. Under the Advanced Wind Turbine (AAWT) Program, the DOE, through the National Renewable Energy Laboratory (NREL), will assist US industry in incorporating advanced wind turbine technology into utility-grade wind turbines. As part of the AWT Program, NREL is conducting a range of activities aimed at assisting the wind industry with system design analysis and testing. One major activity is NREL`s Full System Model Testing (FSMT) task. In 1993 and 1994, NREL`s FSMT team conducted model surveys on several wind turbine systems developed by industry, including Atlantic Orient Corporation`s AOC 15/50, R. Lynette and Associates` AWT-26 P1, and Carter Wind Turbines Incorporated`s CWT-300. This paper describes how these model surveys were carried out and how industry and NREL wind researchers used the experimental results to validate their analytical models.

Osgood, R.M. [National Renewable Energy Laboratory, Golden, CO (United States). National Wind Technology Center

1995-09-01T23:59:59.000Z

342

Stakeholder Engagement and Outreach: Learn About Wind  

Wind Powering America (EERE)

About Wind Power Locating Wind Power Getting Wind Power Installed Wind Capacity Wind for Schools Project Collegiate Wind Competition School Project Locations Education & Training Programs Curricula & Teaching Materials Resources Learn About Wind Learn about how wind energy generates power; where the best wind resources are; how you can own, host, partner with, and support wind power; and how and where wind energy has increased over the past decade. What Is Wind Power? Learn about how wind energy generates power, about wind turbine sizes and how wind turbines work, and how wind energy can be used. Also read examples of financial and business decisions. Where Is Wind Power? Go to maps to see the wind resource for utility-, community-, and residential-scale wind development. Or, see how much energy wind projects

343

Policy and Program Design Toolkit | Open Energy Information  

Open Energy Info (EERE)

source source History View New Pages Recent Changes All Special Pages Semantic Search/Querying Get Involved Help Apps Datasets Community Login | Sign Up Search Page Edit History Facebook icon Twitter icon » Policy and Program Design Toolkit Jump to: navigation, search Stage 3 LEDS Home Introduction to Framework Assess current country plans, policies, practices, and capacities Develop_BAU Stage 4: Prioritizing and Planning for Actions Begin execution of implementation plans 1.0. Organizing the LEDS Process 1.1. Institutional Structure for LEDS 1.2. Workplan to Develop the LEDS 1.3. Roles and responsibilities to develop LEDS 2.1. Assess current country plans, policies, practices, and capacities 2.2. Compile lessons learned and good practices from ongoing and previous sustainable development efforts in the country

344

Wind energy | Open Energy Information  

Open Energy Info (EERE)

(Redirected from Wind) (Redirected from Wind) Jump to: navigation, search Wind energy is a form of solar energy.[1] Wind energy (or wind power) describes the process by which wind is used to generate electricity. Wind turbines convert the kinetic energy in the wind into mechanical power. A generator can convert mechanical power into electricity[2]. Mechanical power can also be utilized directly for specific tasks such as pumping water. The US DOE developed a short wind power animation that provides an overview of how a wind turbine works and describes the wind resources in the United States. Contents 1 Wind Energy Basics 1.1 Equation for Wind Power 2 DOE Wind Programs and Information 3 Worldwide Installed Capacity 3.1 United States Installed Capacity 4 Wind Farm Development 4.1 Land Requirements

345

Marine & Hydrokinetic Technologies (Fact Sheet), Wind And Water Power Program (WWPP)  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Water Power Program Water Power Program supports the development of advanced water power devices that capture energy from waves, tides, ocean currents, rivers, streams, and ocean thermal gradients. The program works to promote the development and deployment of these new tech- nologies, known as marine and hydrokinetic technologies, to assess the potential extractable energy from rivers, estuaries, and coastal waters, and to help industry harness this renew- able, emissions-free resource to generate environmentally sustainable and cost-effective electricity. The program's research and development efforts fall under two categories: Technology Development and Market Acceleration. Technology Development The Water Power Program works with industry partners, universities, and the Department of Energy's national

346

Designing for the Future: The New Open Suite of Programs and Peer Review Process  

E-Print Network [OSTI]

Designing for the Future: The New Open Suite of Programs and Peer Review Process Questions and Answers 1 Rationale 1. If the changes to the Open Suite of Programs and peer review process are successful, what will CIHR have achieved? Our goal in designing the new Open Suite of Programs and peer review

Charette, André

347

Step 4: Design the Financing Program | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

a revolving loan fund. Over time, however, strong programs progress and become self-sustaining. Program metrics, such as reserve rates indexed to the maturity of loans and...

348

Designing Effective State Programs for the Industrial Sector...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Effective State Programs for the Industrial Sector provides state regulators, utilities, and other program administrators with an overview of U.S. industrial energy...

349

Low Wind Speed Technology Phase I: Evaluation of Design and Construction Approaches for Economical Hybrid Steel/Concrete Wind Turbine Towers; BERGER/ABAM Engineers Inc.  

SciTech Connect (OSTI)

This fact sheet describes a subcontract with BERGER/ABAM Engineers Inc. to study the economic feasibility of concrete and hybrid concrete/steel wind turbine towers.

Not Available

2006-03-01T23:59:59.000Z

350

NREL: Wind Research - Offshore Wind Research  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

standards Third-party design verification of innovative floating and fixed-bottom wind turbines NREL's standards and testing capabilities address the need to validate our...

351

Assessing the Impacts of Reduced Noise Operations of Wind Turbines on Neighbor Annoyance: A Preliminary Analysis in Vinalhaven, Maine  

E-Print Network [OSTI]

Renewable Energy (Wind & Hydropower Technologies Program) ofRenewable Energy Wind & Hydropower Technologies Program U.S.Renewable Energy (Wind & Hydropower Technologies Program) of

Hoen, Ben

2010-01-01T23:59:59.000Z

352

Wind energy information guide  

SciTech Connect (OSTI)

This book is divided into nine chapters. Chapters 1--8 provide background and annotated references on wind energy research, development, and commercialization. Chapter 9 lists additional sources of printed information and relevant organizations. Four indices provide alphabetical access to authors, organizations, computer models and design tools, and subjects. A list of abbreviations and acronyms is also included. Chapter topics include: introduction; economics of using wind energy; wind energy resources; wind turbine design, development, and testing; applications; environmental issues of wind power; institutional issues; and wind energy systems development.

NONE

1996-04-01T23:59:59.000Z

353

Introduction to Small-Scale Wind Energy Systems (Including RETScreen Case  

Open Energy Info (EERE)

Introduction to Small-Scale Wind Energy Systems (Including RETScreen Case Introduction to Small-Scale Wind Energy Systems (Including RETScreen Case Study) (Webinar) Jump to: navigation, search Tool Summary LAUNCH TOOL Name: Introduction to Small-Scale Wind Energy Systems (Including RETScreen Case Study) (Webinar) Focus Area: Renewable Energy Topics: System & Application Design Website: www.leonardo-energy.org/webinar-introduction-small-scale-wind-energy-s Equivalent URI: cleanenergysolutions.org/content/introduction-small-scale-wind-energy- Language: English Policies: Deployment Programs DeploymentPrograms: Project Development This video teaches the viewer about wind turbines and RETscreen's wind module, which can be used to project the cost and production of a wind

354

Proceedings from the Wind Manufacturing Workshop: Achieving 20% Wind Energy in the U.S. by 2030, May 2009  

Broader source: Energy.gov [DOE]

Proceedings from the August 27-28, 2008 Wind Manufacturing Workshop held by the Wind and Hydropower Technologies Program

355

Q-Winds satellite hurricane wind retrievals and H*Wind comparisons  

E-Print Network [OSTI]

tailored to extreme wind events. Because of this and precipitation effects, scatterometers have failed/passive scatterometer retrieval algorithm designed specifically for extreme wind events, hereafter identified1 Q-Winds satellite hurricane wind retrievals and H*Wind comparisons Pet Laupattarakasem and W

Hennon, Christopher C.

356

Cape Verde Archipelago Wind Farm | Open Energy Information  

Open Energy Info (EERE)

Archipelago Wind Farm Archipelago Wind Farm Jump to: navigation, search Name Cape Verde Archipelago Wind Farm Agency/Company /Organization African Development Bank Sector Energy Focus Area Renewable Energy, Wind Topics Finance, Market analysis, Background analysis Website http://www.europa-eu-un.org/ar Program Start 2010 Country Cape Verde UN Region Western Africa References Cape Verde Archipelago Wind Farm[1] Summary "The European Investment Bank (EIB) and African Development Bank (AfDB) agreed to provide EUR 45 million to design, build and operate onshore wind farms on four islands in the Cape Verde archipelago. This will be the first large scale wind project in Africa and the first renewable energy public private partnership in sub-Saharan Africa. The project will provide over 28MW of electricity generating capacity and help

357

Conventional Hydropower Technologies (Fact Sheet), Wind And Water Power Program (WWPP)  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Water Power Water Power Program supports the development of technologies that harness the nation's renewable hydropower resources to generate environmentally sustainable and cost-effective electricity. Most conventional hydropower plants use a diver- sion structure, such as a dam, to capture water's potential energy via a turbine for electricity generation. The program's conventional hydropower activities focus on increasing generating capacity and efficiency at existing hydroelectric facilities, adding hydroelectric generating capacity to exist- ing non-powered dams, adding new low impact hydropower, increasing advanced pumped-storage hydropower capacity, and reducing potential environmental impacts of conven- tional hydropower production. The program's research and

358

Molding and filament winding of spatially graded material properties through computational design  

E-Print Network [OSTI]

Three-dimensional printing and computational design have enabled designers to spatially vary material properties in objects. Nevertheless, this technology has current limitations that include material durability, cost and ...

Gonzalez Uribe, Carlos David

2014-01-01T23:59:59.000Z

359

A Discrete Gust Model for Use in the Design of Wind Energy Conversion Systems  

Science Journals Connector (OSTI)

Discrete gust models, although idealizations of actual atmospheric conditions, are useful for engineering design. For fatigue design, these models must be representative of the conditions a structure or vehicle will experience on a continuous ...

Walter Frost; Robert E. Turner

1982-06-01T23:59:59.000Z

360

ILC Polarized Electron Source Design and R&D Program  

SciTech Connect (OSTI)

The R and D program for the ILC electron focuses on three areas. These are the source drive laser system, the electron gun and photo cathodes necessary to produce a highly polarized electron beam. Currently, the laser system and photo cathode development take place at SLAC's 'ILC Injector Test facility', which is an integrated lab (laser and gun) that allows the production of the electron beam and is equipped with a set of diagnostics, necessary to characterize the source performance. Development of the ILC electron gun takes place at Jefferson Lab, where advanced concepts and technologies for HV DC electron guns for polarized beams are being developed. The goal is to combine both efforts at one facility to demonstrate an electron beam with ILC specifications, which are electron beam charge and polarization as well as the cathode's lifetime. The source parameters are summarized in Table 1. The current schematic design of the ILC central complex is depicted in Figure 1. The electron and positron sources are located and laid out approximately symmetric on either side of the damping rings.

Brachmann, A.; Sheppard, J.; Zhou, F.; Poelker, M.; /SLAC

2012-04-06T23:59:59.000Z

Note: This page contains sample records for the topic "wind program designed" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


361

Designing Effective State Programs for the Industrial Sector- New SEE Action Publication  

Broader source: Energy.gov [DOE]

The SEE Action report "Industrial Energy Efficiency: Designing Effective State Programs for the Industrial Sector" provides state regulators, utilities, and other program administrators with an overview of U.S. industrial energy efficiency programs delivered by a variety of entities. The report assesses some of the key features of programs that have helped lead to success in generating increased energy savings and identifies new emerging directions in programs that might benefit from additional research and cross-discussion to promote adoption.

362

GCRA review and appraisal of HTGR reactor-core-design program. [HTGR-SC, -R, -NHSDR  

SciTech Connect (OSTI)

The reactor-core-design program has as its principal objective and responsibility the design and resolution of major technical issues for the reactor core and core components on a schedule consistent with the plant licensing and construction program. The task covered in this review includes three major design areas: core physics, core thermal and hydraulic performance fuel element design, and in-core fuel performance evaluation.

Not Available

1980-09-01T23:59:59.000Z

363

Annual Report on U.S. Wind Power Installation, Cost, and Performance Trends: 2006  

E-Print Network [OSTI]

of the U.S. DOEs Wind & Hydropower Technologies Program. Weand Renewable Energy (Wind & Hydropower Technologies ProgramManager Office of Wind and Hydropower Technologies Energy

2008-01-01T23:59:59.000Z

364

Multi-Objective Capacity Planning of a Pv-Wind-Diesel-Battery Hybrid Power System  

E-Print Network [OSTI]

A new solution methodology of the capacity design problem of a PV-Wind-Diesel-Battery Hybrid Power System (HPS) is presented. The problem is formulated as a Linear Programming (LP) model with two objectives: minimizing ...

Saif, A.

365

CALCULATING EMISSIONS REDUCTIONS FROM RENEWABLE ENERGY PROGRAMS AND ITS APPLICATION TO THE WIND FARMS IN THE TEXAS ERCOT REGION  

E-Print Network [OSTI]

farm. Details are presented for the wind farm Sweetwater I (Abilene) as well as results from the application of this procedure to all the wind energy providers in the Texas ERCOT region in 2006....

Liu, Z.; Haberl, J.; Baltazar, J. C.; Culp, C.; Yazdani, B.; Chandrasekaran, V.

366

NREL: Wind Research - Projects  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Projects Projects NREL's wind energy research and development projects focus on reducing the cost of wind technology and expanding access to wind energy sites. Our specialized technical expertise, comprehensive design and analysis tools, and unique testing facilities help industry overcome challenges to bringing new wind technology to the marketplace. Some of these success stories are described in NREL's Wind R&D Success Stories. We also work closely with universities and other national laboratories supporting fundamental research in wind technologies, including aerodynamics, aeroacoustics, and material sciences essential in the development of new blade technologies and advanced controls, power electronics, and testing to further refine drivetrain topology.

367

InterIor DesIgn CERTIFICATE PROGRAM  

E-Print Network [OSTI]

sketchUp Your Design 12 hours, $325 Learn to build computer generated models of interior spaces with ease in this hands-on opportunity to utilize Google SketchUp to convey your design ideas and boost your design and developing interior spaces in detail. Google SketchUp is a free download at www.sketchup.google.com. topics

Fork, Richard

368

Wind Integration, Transmission, and Resource Assessment and Characterization Projects  

Broader source: Energy.gov [DOE]

This report covers the Wind and Water Power Programs Wind Integration, Transmission, and Resource Assessment and Characterization Projects from FY 2006 to FY 2014.

369

DOE Announces Webinars on Economic Impacts of Offshore Wind,...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Economic Impacts of Offshore Wind, Clean Energy Financing Programs, and More DOE Announces Webinars on Economic Impacts of Offshore Wind, Clean Energy Financing Programs, and More...

370

Utility-Scale Wind Turbines | Open Energy Information  

Open Energy Info (EERE)

Utility-Scale Wind Turbines Jump to: navigation, search Field testing of a wind turbine drivetraintower damper using advanced design and validation techniques at the National Wind...

371

Towards a Methodology for the Design of Abstract Machines for Logic Programming Languages  

E-Print Network [OSTI]

of Warren's Abstract Machine. The paper complements previous work of P. Kursawe who reconstructed several for the design of abstract machines and intermediate languages. Much of that work is due to M. Wand who designedTowards a Methodology for the Design of Abstract Machines for Logic Programming Languages Ulf

Zhao, Yuxiao

372

Strategy for Designing DSM Program after the Restructuring in Korea  

E-Print Network [OSTI]

introduce a new DSM mechanism and program development strategies based on customer response and electricity industry efficiency. Especially we introduced DLC(Direct Load Control) technology via two-way communication scheme for large customer. This DLC...

Rhee, C.; Lee, K.; Jo, I.

2002-01-01T23:59:59.000Z

373

How to Design and Market Energy Efficiency Programs to Specific...  

Broader source: Energy.gov (indexed) [DOE]

had our AmeriCorp member participate in the EEE summit, which was the cities 3rd annual energy efficiency program that brought together leaders within the communities to talk...

374

Designing a Thermal Energy Storage Program for Electric Utilities  

E-Print Network [OSTI]

Electric utilities are looking at thermal energy storage technology as a viable demand side management (DSM) option. In order for this DSM measure to be effective, it must be incorporated into a workable, well-structured utility program. This paper...

Niehus, T. L.

1994-01-01T23:59:59.000Z

375

Solar and Wind Easements and Local Option Rights Laws | Department of  

Broader source: Energy.gov (indexed) [DOE]

Local Option Rights Laws Local Option Rights Laws Solar and Wind Easements and Local Option Rights Laws < Back Eligibility Commercial Fed. Government Industrial Local Government Nonprofit Residential Schools State Government Savings Category Heating & Cooling Commercial Heating & Cooling Solar Heating Buying & Making Electricity Water Heating Wind Program Info State Nebraska Program Type Solar/Wind Access Policy Provider Nebraska Energy Office Nebraska's solar and wind easement provisions allow property owners to create binding solar and wind easements for the purpose of protecting and maintaining proper access to sunlight and wind. Originally designed only to apply to solar, the laws were revised in March 1997 (Bill 140) to include wind. Counties and municipalities are permitted to develop zoning

376

Market Segmentation and Energy Efficiency Program Design | Department...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Design Describe the existing state of market segmentation among California's electric utilities, with an emphasis on the investor-owned utilities. Author: Steve J. Moss Market...

377

Chapter 2 Offshore Wind Power Stations  

Science Journals Connector (OSTI)

Publisher Summary This chapter presents the historical background and development of offshore wind power stations. As early as 1890, windmills were put to work to produce electricity and more than 50,000 mills were in use in the United States alone in the twenties and thirties. Their decline was precipitated by the Rural Electrification Program. According to the San Francisco based Transaction Energy Projects Institute, offshore windmills could generate all the electrical power needed by northern California. Ocean winds have of course provided energy to windmills for centuries. In 1976, a study was commissioned by the (U.S.) Energy Research and Development Administration to ascertain and assess the economic value of offshore multi units aiming at identification and classification of area offshore types, assessing utility requirements for offshore power systems. It includes developing installation concepts including various floating and bottom-mounted designs, assessing current WECS (wind energy converter systems) for use in offshore environments, assessing various electric transmission and hydrogen delivery concepts, and performing an economic assessment, providing tradeoffs for variables such as distance offshore, climate, bottom and wave characteristics and average wave velocities. It is suggested that high wind velocity sites must be identified because the energy flow increases with the cube of the wind velocity; the kinetic energy of the wind passing through the area swept by the blades of a turbine is the energy available to that wind turbine. An average wind speed distribution is required.

1993-01-01T23:59:59.000Z

378

Offshore Wind Research (Fact Sheet), National Wind Technology Center (NWTC)  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Offshore Offshore Wind Research The National Renewable Energy Laboratory is internationally recognized for offshore wind energy research and development (R&D). Its experience and capabilities cover a wide spectrum of wind energy disciplines. NREL's offshore wind R&D efforts focus on critical areas that address the long-term needs of the offshore wind energy industry and the Department of Energy (DOE). R&D efforts include: * Developing offshore design tools and methods * Collaborating with international partners * Testing offshore systems and developing standards * Conducting economic analyses * Characterizing offshore wind resources * Identifying and mitigating offshore wind grid integration challenges and barriers NREL documented the status of offshore wind energy in the United

379

Design and fabrication of a stress-managed Nb3Sn wind and react dipole  

E-Print Network [OSTI]

A new approach to high-field dipole design is being developed at Texas A&M University. The goal of the development is to facilitate the use of high-field conductors (Nb3 and Bi-2212) and to manage Lorentz stress and magnetization so that field...

Noyes, Patrick Daniel

2007-09-17T23:59:59.000Z

380

Model Wind Energy Facility Ordinance | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

Energy Facility Ordinance Energy Facility Ordinance Model Wind Energy Facility Ordinance < Back Eligibility Agricultural Commercial Fed. Government Industrial Institutional Local Government Nonprofit Residential Schools State Government Savings Category Wind Buying & Making Electricity Program Info State Maine Program Type Solar/Wind Permitting Standards Provider Land Use Planning Note: This model ordinance was designed to provide guidance to local governments that wish to develop their own siting rules for wind turbines. While it was developed as part of a cooperative effort involving several state agencies, the model itself has no legal or regulatory authority. In 2008, the Governor's Task Force on Wind Power Development issued its final report. One of the Task Force's recommendations was that the State

Note: This page contains sample records for the topic "wind program designed" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


381

Guidance for Local Wind Energy Ordinances | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

You are here You are here Home » Guidance for Local Wind Energy Ordinances Guidance for Local Wind Energy Ordinances < Back Eligibility Agricultural Commercial Fed. Government Industrial Institutional Local Government Nonprofit Residential Schools State Government Tribal Government Savings Category Wind Buying & Making Electricity Program Info State New York Program Type Solar/Wind Permitting Standards Provider New York State Energy Research and Development Authority Note: The documents described in this summary were designed to provide guidance to local governments that wish to develop their own siting rules for wind turbines. While they were developed under contract with the New York State Energy Research and Development Authority (NYSERDA), a state agency, none of the documents themselves have any legal or regulatory

382

Model Wind Ordinance for Local Governments | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

Ordinance for Local Governments Ordinance for Local Governments Model Wind Ordinance for Local Governments < Back Eligibility Agricultural Commercial Fed. Government Industrial Institutional Local Government Nonprofit Schools State Government Savings Category Wind Buying & Making Electricity Program Info State Pennsylvania Program Type Solar/Wind Permitting Standards Provider Pennsylvania Department of Environmental Protection Note: This model ordinance was designed to provide guidance to local governments that wish to develop their own siting rules for wind turbines. While it was developed as part of a cooperative effort involving several state agencies, the model itself has no legal or regulatory authority. In 2006, Pennsylvania developed a model local ordinance for wind energy facilities through a collaborative effort involving several state

383

Energy Secretary Hails University of Maine's Wind Research | Department of  

Broader source: Energy.gov (indexed) [DOE]

Hails University of Maine's Wind Research Hails University of Maine's Wind Research Energy Secretary Hails University of Maine's Wind Research June 16, 2010 - 10:51am Addthis Stephen Graff Former Writer & editor for Energy Empowers, EERE Energy Secretary Steven Chu praised the University of Maine on Monday, calling the school's offshore wind technology program "truly impressive." Secretary Chu visited the university's Orono campus to learn more about its 10-year plan to design and deploy deepwater wind technology, an effort that could pave the way for the first floating commercial wind farm in the United States. "It's part of the leadership Maine has shown in going toward a sustainable economy," Chu told the university's newspaper. Invited by Maine Sen. Susan Collins, Chu was given a tour of the

384

ELECTRICAL ENGINEERING TECHNOLOGY PROGRAM EET 331 ELECTRONIC DESIGN  

E-Print Network [OSTI]

LABORATORY EXPERIENCE: ELECTRONIC THERMOMETER SECTION 1: Design the circuit Using a LM34 as a temperature sensor, Operational Amplifiers and passive components, design an electronic thermometer thermometer has to allow for positive and negative temperatures. ELECTRONIC THERMOMETER Temp. °F Temp. °C

Lozano-Nieto, Albert

385

Coordinated controller design of grid connected DFIG based wind turbine using response surface methodology and NSGA II  

Science Journals Connector (OSTI)

Abstract This paper presents a novel design procedure for the coordinated tuning of rotor side converter (RSC) and grid side converter (GSC) controllers of doubly fed induction generator (DFIG) wind turbine system. The RSC and GSC controller parameters are determined by simultaneously optimizing the controller performance indices. The performance indices considered are maximum peak overshoot (MPOS?), settling time (Tss?) of the generator speed and the maximum peak overshoot (MPOSVdc), maximum peak undershoot (MPUSVdc) and settling time (TssVdc) of DC link voltage. The coordinated controller design is carried out in two steps. First step is to arrive at the analytical expression that relates the performance indices and the controller parameters. This is achieved using response surface methodology (RSM) thereby saving significant computational time. In the second step the determination of controller parameters is posed as a constrained multiobjective optimization problem. The constrained multiobjective optimization problem is solved using NSGAII (nondominated sorting genetic algorithm II). The proposed methodology is tested on a sample system with DFIG based WECS. Simulation results demonstrate the effectiveness of the proposed methodology.

Sharon Ravichandran; R.P. Kumudinidevi; S.G. Bharathidasan; V. Evangelin Jeba

2014-01-01T23:59:59.000Z

386

Wind Easements | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

Wind Easements Wind Easements Wind Easements < Back Eligibility Agricultural Fed. Government Institutional Local Government Nonprofit Residential Schools State Government Tribal Government Savings Category Wind Buying & Making Electricity Program Info State North Dakota Program Type Solar/Wind Access Policy North Dakota allows property owners to grant an easement that ensures adequate exposure of a wind-energy system to the wind. The easement runs with the land benefited and burdened, and terminates upon the conditions stated in the easement. The statutes authorizing the creation of wind easements include several provisions to protect property owners. For example, a wind easement may not make the property owner liable for any property tax associated with the wind-energy system or other equipment

387

Projected Impact of Federal Policies on U.S. Wind Market Potential: Preprint  

SciTech Connect (OSTI)

This report discusses the potential for solar-powered agricultural irrigation pumps in the San Joaquin Valley and how these applications could improve the region's air This paper presents results from the Wind Deployment Systems Model (WinDS) for several potential energy policy cases. WinDS is a multiregional, multitime-period, Geographic Information System (GIS), and linear programming model of capacity expansion in the electric sector of the United States. WinDS is designed to address the principal market issues related to the penetration of wind energy technologies into the electric sector. These principal market issues include access to and cost of transmission, and the intermittency of wind power. WinDS has been used to model the impact of various policy initiatives, including a wind production tax credit (PTC) and a renewable portfolio standard (RPS).

Short, W.; Blair, N.; Heimiller, D.

2004-03-01T23:59:59.000Z

388

Solar and Wind Easements | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

Solar and Wind Easements Solar and Wind Easements Solar and Wind Easements < Back Eligibility Commercial Fed. Government Industrial Local Government Nonprofit Residential Schools State Government Savings Category Heating & Cooling Commercial Heating & Cooling Solar Heating Buying & Making Electricity Water Heating Wind Program Info State Montana Program Type Solar/Wind Access Policy Provider Montana Department of Environmental Quality Montana's solar and wind easement provisions allow property owners to create solar and wind easements for the purpose of protecting and maintaining proper access to sunlight and wind. Solar easements should be negotiated with neighboring property owners. Montana's solar easement law was enacted in 1979; the wind easement law was originally enacted in 1983.

389

Distributed Wind | Department of Energy  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

used by the Wind Program to characterize them as distributed: Proximity to End-Use: Wind turbines that are installed at or near the point of end-use for the purposes of meeting...

390

A Language for Chemical Plant Design and Simulation Programs  

Science Journals Connector (OSTI)

......would have been a major task. This project is being carried out using the Science...executive program. The programmer is at liberty to use identifiers local to a routine...Report ESL-R-304. M.I.T. Project DSR 74994. SHANNON, P. T. et......

P. T. Cameron

1969-02-01T23:59:59.000Z

391

Using DOE Industrial Energy Audit Data for Utility Program Design  

E-Print Network [OSTI]

since 1980. In 1992, DOE and Baltimore Gas & Electric Company (BG&E) agreed to conduct a joint demonstration project in which the EADC database would be used to assist BG&E in planning demand-side management (DSM) programs for its industrial customers...

Glaser, C. J.; Packard, C. P.; Parfomak, P.

392

New England Wind Forum: Markets  

Wind Powering America (EERE)

Markets Markets Selling Wind Power Wind generators interconnected directly to the transmission or distribution grid, or sized in excess of the load of a host end-user, interact with either well-developed or developing markets for the products produced by wind generators: electricity and generation attributes. Buying Wind Power Individuals, companies, institutions, and governments throughout New England have a number of opportunities to buying wind power or support the development of wind power. The links below take you to information on opportunities and guidance for buying wind power in New England. Motivations for Buying Wind Power Buying Wind Power Resources and Tools for Large Energy Users Printable Version Skip footer navigation to end of page. New England Wind Forum Home | Wind Program Home | EERE Home | U.S. Department of Energy

393

Collegiate Wind Competition | Open Energy Information  

Open Energy Info (EERE)

college students from multiple disciplines to design and construct a lightweight wind turbine. The students will investigate innovative wind energy concepts; gain...

394

Design and implementation of a 6 kW wind powered water heater controller with PI control.  

E-Print Network [OSTI]

??In our quest to use more renewable energy to reduce our dependence on non-renewable fuels man has been harnessing wind, solar and hydro energy for (more)

Lutchman, Ritesh

2005-01-01T23:59:59.000Z

395

Early Site Permit Demonstration Program: Station design alternatives report  

SciTech Connect (OSTI)

This report provides the results of investigating the basis for including Station Design Alternatives (SDAs) in the regulatory guidance given for nuclear plant environmental reports (ERs), explains approaches or processes for evaluating SDAs at the early site permit (ESP) stage, and applies one of the processes to each of the ten systems or subsystems considered as SDAS. The key objective o this report s to demonstrate an adequate examination of alternatives can be performed without the extensive development f design data. The report discusses the Composite Suitability Approach and the Established Cutoff Approach in evaluating station design alternatives and selects one of these approaches to evaluate alternatives for each of the plant or station that were considered. Four types of ALWRs have been considered due to the availability of extensive plant data: System 80+, AP600, Advanced Boiling Reactor (ABWR), and Simplified Boiling Water Reactor (SBWR). This report demonstrates the feasibility of evaluating station design alternatives when reactor design detail has not been determined, quantitatively compares the potential ental impacts of alternatives, and focuses the ultimate selection of a alternative on cost and applicant-specific factors. The range of alternatives system is deliberately limited to a reasonable number to demonstrate the or to the three most commonly used at operating plants.

Not Available

1993-03-01T23:59:59.000Z

396

2015 Young Leader Scholarship Program The MACA Young Leader Scholarship Program (MACA YLSP) is designed to expose future  

E-Print Network [OSTI]

(MACA YLSP) is designed to expose future agriculturalists to the crop protection industry and future will be top-potential collegiate sophomores or juniors with an educational focus on agriculture. Candidates will notify the 13 universities via their ag school's career services office via email announcing the program

Isaacs, Rufus

397

Advanced turbine systems program conceptual design and product development. Annual report, August 1994--July 1995  

SciTech Connect (OSTI)

Objective of the ATS program is to develop ultra-high efficiency, environmentally superior, and cost-competitive gas turbine systems for base-load application in utility, independent power producer, and industrial markets. This report discusses the major accomplishments achieved during the second year of the ATS Phase 2 program, particularly the design and test of critical components.

NONE

1994-10-01T23:59:59.000Z

398

PWR's xenon oscillation control through a fuzzy expert system automatically designed by means of genetic programming  

Science Journals Connector (OSTI)

This work proposes the use of genetic programming (GP) for automatic design of a fuzzy expert system aimed to provide the control of axial xenon oscillations in pressurized water reactors (PWRs). The control methodology is based on three axial offsets ... Keywords: Axial xenon oscillations control, Fuzzy logic, Genetic programming

Roberto P. Domingos; Gustavo H. F. Caldas; Cludio M. N. A. Pereira; Roberto Schirru

2003-12-01T23:59:59.000Z

399

Development of the program EOD for design in electron and ion microscopy  

Science Journals Connector (OSTI)

The paper surveys new features of the EOD program, a complete workplace for the design of electron and ion microscopes. The extensions of the program for space charge computations, interaction with gases in the specimen chamber and misalignments are handled as plug-ins, keeping the program as a single unit. The current status of the tolerancing plug-in is described in more detail.

J. Zlmal; B. Lencov

2011-01-01T23:59:59.000Z

400

Wind derivatives: hedging wind risk:.  

E-Print Network [OSTI]

??Wind derivatives are financial contracts that can be used to hedge or mitigate wind risk. In this thesis, the focus was on pricing these wind (more)

Hoyer, S.A.

2013-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "wind program designed" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


401

NSTX Program Overview andNSTX Program Overview and NSTX Upgrade Physics Design ProgressNSTX Upgrade Physics Design Progress  

E-Print Network [OSTI]

size and cost for PMI R&D High neutron flux at small size and cost for testing fusion nuclear) Science Facility ITER NSTX NSTX-U ST-based Fusion Nuclear Science (FNS) Facility #12;NSTXNSTX NSTX Program the current, control plasma profiles · High fnon-inductive 70% in NSTX (FW+NBI+BS), 100% NI + J(r) control

Princeton Plasma Physics Laboratory

402

NREL: Wind Research - Publications  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Publications Publications The NREL wind research program develops publications about its R&D activities in wind energy technologies. Below you'll find links to recently published publications, links to the NREL Avian Literature and Publications Databases, and information about the Technical Library at the National Wind Technology Center (NWTC). The NWTC's quarterly newsletter, @NWTC, contains articles on current wind energy research projects and highlights the latest reports, papers, articles, and events published or sponsored by NREL. Subscribe to @NWTC. Selected Publications Featured Publication Large-scale Offshore Wind Power in the United States: Assessment of Opportunities and Barriers Here are some selected NWTC publications: 2011 Cost of Wind Energy Review Built-Environment Wind Turbine Roadmap

403

NREL: Wind Research - WindPACT  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

WindPACT WindPACT The Wind Partnerships for Advanced Component Technology (WindPACT) studies were conducted to assist industry by testing innovative components, such as advanced blades and drivetrains, to lower the cost of energy. Specific goals included: Foster technological advancements to reduce the cost of wind energy Determine probable size ranges of advanced utility-scale turbines over the next decade for U.S. application Evaluate advanced concepts that are necessary to achieve objectives of cost and size for future turbines Identify and solve technological hurdles that may block industry from taking advantage of promising technology Design, fabricate, and test selected advanced components to prove their viability Support wind industry through transfer of technology from

404

Automated Design Methodology for Mechatronic Systems Using Bond Graphs and Genetic Programming  

E-Print Network [OSTI]

, allow free composition, and are efficient for classification and analysis of models, allowing rapidAutomated Design Methodology for Mechatronic Systems Using Bond Graphs and Genetic Programming University, zhangbai@egr.msu.edu Abstract This paper suggests an automated design methodology

Fernandez, Thomas

405

New England Wind Forum: Interviews with Wind Industry Stakeholders and  

Wind Powering America (EERE)

Small Wind Small Wind Large Wind Newsletter Perspectives Events Quick Links to States CT MA ME NH RI VT Bookmark and Share Interviews With Wind Industry Stakeholders and Pioneers in New England The New England Wind Forum will interview different stakeholders actively shaping the wind power landscape in New England and wind pioneers to examine how they have laid the groundwork for today's New England wind energy market. Stephan Wollenburg, Green Energy Program Director of Energy Consumers Alliance of New England January 2013 A Panel of Seven Offer Insight into the Evolving Drivers and Challenges Facing Wind Development in New England June 2011 John Norden, Manager of Renewable Resource Integration, Independent System Operator-New England September 2010 Angus King, Former Governor of Maine and Co-Founder of Independence Wind

406

Project plan: Procedure system design for the Rocky Flats Plant Emergency Preparedness Program  

SciTech Connect (OSTI)

This procedure system is being designed for the Rocky Flats Plant Emergency Preparedness Program (EPP) to: assess the procedural needs of the Emergency Preparedness Program in light of the existing Rocky Flats Plant policies, plans, procedures, and applicable DOE orders; design the structure of the Emergency Preparedness Program procedural system based on the classes of procedures needed, the types of procedures (procedures vs job outline), the sections of procedures required, and the timetable for procedure maintenance; develop boiler plate formats for the various authors in writing the necessary standardized procedures; develop a list of all the necessary procedures that must be produced for Emergency Preparedness Program; and provide consistency for department-wide activities relating to the quality control in writing, distribution, and revising procedures for Emergency Preparedness Program. 23 refs., 18 figs.

Hodgin, C.R.; Brown-Strattan, M.

1989-10-01T23:59:59.000Z

407

Wind Powering America's Wind for Schools Team Honored with Wirth...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

NREL manages the program, funds the wind application centers through subcontracts, and trains teachers and community facilitators that work with the K-12 schools to build community...

408

Tribal Energy Program  

Broader source: Energy.gov (indexed) [DOE]

AK AK Project Title AK-TEP-NATIVE VILLAGE OF EYAK Location: Tribal NATIVE VILLAGE OF EYAK American Recovery and Reinvestment Act: Proposed Action or Project Description The Native Village of Eyak proposes to support the feasibility phase of a proposed Wind Project (with a proposed capacity of 1.5 to 2.0 MW). Activities proposed include improving wind data maps, learning from other existing wind projects, public education and awareness, and project design and permitting. Mobile anemometer kits (10-meter) would be purchased to verify current resource maps and improve them with additional data collection, and install three 30-meter towers to collect data. Other existing wind projects would be researched to use the best known methods from these sites. Wind program meetings would be

409

NREL: Wind Research - Research Staff  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Research Staff Research Staff Here you will find contact information for NREL's research and support staff at the National Wind Technology Center. To learn more about us and our expertise, view our organizational charts and read the staff's biographies. Below is a listing of the research and support staff at the National Wind Technology Center. View organizational charts. Lab Program Manager, Wind and Water Power Program Brian Smith Program Integration, Wind and Water Power Program Elise DeGeorge Albert LiVecchi Dana Scholbrock Teresa Thadison Director, National Wind Technology Center Fort Felker, Center Director Laura Davis Kim Domenico Deputy Center Director, National Wind Technology Center Jim Green, Acting Research Fellow Bob Thresher Chief Engineer Paul Veers Wind Technology Research and Development

410

NREL: Wind Research - Gaia-Wind's 11 Kilowatt Wind Turbine Testing and  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Gaia-Wind's 11 Kilowatt Wind Turbine Testing and Results Gaia-Wind's 11 Kilowatt Wind Turbine Testing and Results A video of Gaia-Wind's 11-kW wind turbine. Text Version As part of the National Renewable Energy Laboratory and U.S. Department of Energy (NREL/DOE) Independent Testing project, NREL tested Gaia-Wind's 11-kilowatt (kW) small wind turbine at the National Wind Technology Center (NWTC). Gaia-Wind's turbine is a three-phase induction generator that operates at 480 volts. The turbine's downwind rotor has a 13-meter diameter, and its tower is 18 meters tall. The two-bladed, oversized rotor is designed for low to moderate wind speeds. Testing Summary The summary of the tests is below with the final reports. Cumulative Energy Production 6/11/2008: 210; 6/13/2008: 528; 6/16/2008: 716; 6/18/2008: 731; 6/19/2008:

411

WindPACT Turbine Design Scaling Studies Technical Area 2: Turbine, Rotor, and Blade Logistics; March 27, 2000 to December 31, 2000  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

1 * NREL/SR-500-29439 1 * NREL/SR-500-29439 Kevin Smith Global Energy Concepts LLC Kirkland, Washington WindPACT Turbine Design Scaling Studies Technical Area 2: Turbine, Rotor, and Blade Logistics March 27, 2000 to December 31, 2000 National Renewable Energy Laboratory 1617 Cole Boulevard Golden, Colorado 80401-3393 NREL is a U.S. Department of Energy Laboratory Operated by Midwest Research Institute * * * * Battelle * * * * Bechtel Contract No. DE-AC36-99-GO10337 June 2001 * NREL/SR-500-29439 WindPACT Turbine Design Scaling Studies Technical Area 2: Turbine, Rotor, and Blade Logistics March 27, 2000 to December 31, 2000 Kevin Smith Global Energy Concepts LLC Kirkland, Washington NREL Technical Monitor: Alan Laxson Prepared under Subcontract No. YAM-0-30203-01 National Renewable Energy Laboratory

412

Energy in the Wind  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Provi and BP Energy in the Wind - Exploring Basic Electrical Concepts by Modeling Wind Turbines Curriculum: Wind Power (simple machines, aerodynamics, weather/climatology, leverage, mechanics, atmospheric pressure, and energy resources/transformations) Grade Level: High School Small groups: 2 students Time: Introductory packet will take 2-3 periods. Scientific investigation will take 2-3 periods. (45-50 minute periods) Summary: Students explore basic electrical concepts. Students are introduced to electrical concepts by using a hand held generator utilizing a multimeter, modeling, and designing a wind turbine in a wind tunnel (modifications are given if a wind tunnel is not available). Students investigate how wind nergy is used as a renewable energy resource. e

413

Sandia National Laboratories: Wind  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

scale. The SWiFT site is managed and operated by Sandia National Laboratories for the DOE Wind Program. In a separate, ... Sandia Has Signed a Memorandum of Understanding with...

414

Wind Turbine Towers Establish New Height Standards and Reduce Cost of Wind Energy  

Office of Energy Efficiency and Renewable Energy (EERE)

Case study that summarizes the Wind Tower Systems and its Space Frame tower. Describes their new wind tower design and explains how DOE funding made this possible.

415

Structural Analyses of Wind Turbine Tower for 3 kW Horizontal Axis Wind Turbine.  

E-Print Network [OSTI]

?? Structure analyses of a steel tower for Cal Poly's 3 kW small wind turbine is presented. First, some general design aspects of the wind (more)

Gwon, Tae gyun (Tom)

2011-01-01T23:59:59.000Z

416

Guide for Operational Configuration Management Program including the adjunct programs of design reconstitution and material condition and aging management. Part 2  

SciTech Connect (OSTI)

This standard presents program criteria and implementation guidance for an operational configuration management program for DOE nuclear and non-nuclear facilities. This Part 2 includes chapters on implementation guidance for operational configuration management, implementation guidance for design reconstitution, and implementation guidance for material condition and aging management. Appendices are included on design control, examples of design information, conduct of walkdowns, and content of design information summaries.

Not Available

1993-11-01T23:59:59.000Z

417

Digitally mediated design : using computer programming to develop a personal design process  

E-Print Network [OSTI]

This thesis is based on the proposal that the current system of architectural design education confuses product and process. Students are assessed through, and therefore concentrate on, the former whilst the latter is left ...

Yakeley, Megan (Megan Webster), 1966-

2000-01-01T23:59:59.000Z

418

DOE-HDBK-1086-95; Table-Top Training Program Design  

Broader source: Energy.gov (indexed) [DOE]

86-95 86-95 April 1995 DOE HANDBOOK TABLE-TOP TRAINING PROGRAM DESIGN U.S. Department of Energy FSC-6910 Washington, D.C. 20585 DISTRIBUTION STATEMENT A. Approved for public release; distribution is unlimited. ERRATA SHEET No. 1 DOE-HDBK-1086-95 Table-Top Training Program Design Page/Section Change Page iii, FOREWORD Delete reference to DOE 5480.18B, Nuclear Facility Training Accreditation Program, and update preparing organization from EH-31 to EH-53 Page 3, Section 2.1.2 Delete reference to DOE 5480.18B, Nuclear Facility Training Accreditation Program. Concluding Material The Preparing Activity was updated from EH-31 to EH-53. This document has been reproduced directly from the best available copy. Available to DOE and DOE contractors from the Office of Scientific and

419

Green Communities Grant Program | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

Green Communities Grant Program Green Communities Grant Program Green Communities Grant Program < Back Eligibility Local Government Savings Category Bioenergy Commercial Heating & Cooling Manufacturing Buying & Making Electricity Energy Sources Solar Heating & Cooling Heating Water Heating Wind Maximum Rebate Custom incentive, amount will vary Program Info Funding Source Regional Greenhouse Gas Initiative (RGGI) Start Date 03/2010 Expiration Date 01/21/2013 State Massachusetts Program Type State Grant Program Rebate Amount Custom incentive, amount will vary Provider Massachusetts Department of Energy Resources Note: The Green Communities Grant Program is no longer accepting applications. The deadline to receive official designation as a Green Community was October 30, 2012. For designated communities, the grant

420

Session: Offshore wind  

SciTech Connect (OSTI)

This session at the Wind Energy and Birds/Bats workshop consisted of two presentations. Due to time constraints, a discussion period was not possible. The session addressed the current state of offshore wind energy development. The first presentation ''Monitoring Program and Results: Horns Rev and Nysted'' by Jette Gaarde summarized selected environmental studies conducted to date at operating offshore wind turbine projects in Denmark and lessons from other offshore wind developments in Europe. Wildlife impacts studies from the Danish sites focused on birds, fish, and mammals. The second presentation ''What has the U.S. Wind Industry Learned from the European Example'' by Bonnie Ram provided an update on current permit applications for offshore wind developments in the U.S. as well as lessons that may be drawn from the European experience.

Gaarde, Jette; Ram, Bonnie

2004-09-01T23:59:59.000Z

Note: This page contains sample records for the topic "wind program designed" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


421

SYNCH: A program for design and analysis of synchrotrons and beamlines -- user`s guide  

SciTech Connect (OSTI)

SYNCH is a computer program for use in the design and analysis of synchrotrons, storage rings, and beamlines. It has a large repertoire of commands that can be accessed in a flexible way. The input statements and the results of the calculations they invoke are saved in an internal database so that this information may be shared by other statements. SYNCH is the first accelerator program to organize its input in the form of a language. The statements, which resemble sentences, provide a natural way of describing lattices and invoking relevant calculations. The organization of the program is modular, so that it has been possible to expand its capabilities progressively.

Garren, A.A.; Kenney, A.S.; Courant, E.D.; Russell, A.D.; Syphers, M.J.

1993-12-31T23:59:59.000Z

422

Collegiate Wind Competition Turbines go Blade-to-Blade in Wind...  

Office of Environmental Management (EM)

- 5:11pm Addthis This wind tunnel constructed by NREL engineers will test the small wind turbines designed by 10 university teams competing in DOE's Collegiate Wind Competition....

423

SOLCOST - Version 3. 0. Solar energy design program for non-thermal specialists  

SciTech Connect (OSTI)

The SOLCOST solar energy design program is a public domain computerized design tool intended for use by non-thermal specialists to size solar systems with a methodology based on life cycle cost. An overview of SOLCOST capabilities and options is presented. A detailed guide to the SOLCOST input parameters is included. Sample problems showing typical imput decks and resulting SOLCOST output sheets are given. Details of different parts of the analysis are appended. (MHR)

Not Available

1980-05-01T23:59:59.000Z

424

NREL's Wind R&D Success Stories, National Wind Technology Center (NWTC) (Fact Sheet)  

SciTech Connect (OSTI)

Wind energy research, development, and deployment have reduced the cost of large and small wind turbine technologies, increased wind energy system reliability and operability, lowered risk by validating performance and design, increased the understanding of the true impacts of wind energy on the U.S. electrical infrastructure, and expanded wind energy markets. A synopsis of research conducted on utility-scale wind turbines, small wind turbines, software, components, market development and grid integration are detailed.

Not Available

2010-01-01T23:59:59.000Z

425

WIND ENERGY Wind Energ. (2014)  

E-Print Network [OSTI]

WIND ENERGY Wind Energ. (2014) Published online in Wiley Online Library (wileyonlinelibrary Correspondence M. Wächter, ForWind-Center for Wind Energy Research, Institute of Physics, Carl Von Ossietzky on the operation of wind energy converters (WECs) imposing different risks especially in terms of highly dynamic

Peinke, Joachim

426

Verification Process of Behavioral Consistency between Design and Implementation programs of pSET using HW-CBMC  

E-Print Network [OSTI]

Diagrams Programming Language ex) ANSI-C Implementation #12;Introduction (cont'd) · POSAFE-Q Software) to design a program of PLCs · The pSET uses the ANSI-C program to implement its design · The automatic code generator generates ANSI-C program with the FBDs 5 FBDs Editing ANSI-C code Download PLC pSET editor #12

427

Computational wind engineering using finite element package ADINA  

E-Print Network [OSTI]

Design of tall and long span structures is governed by the wind forces. Inadequate research in the field of wind dynamics has forced engineers to rely on design codes or wind tunnel tests for sufficient data. The present ...

Bajoria, Ankur

2008-01-01T23:59:59.000Z

428

Upcoming Funding Opportunity for Technology Incubator for Wind Energy Innovations  

Broader source: Energy.gov [DOE]

On March 12, 2014 EEREs Wind Program announced a Notice of Intent to issue a funding opportunity entitled "Technology Incubator for Wind Energy Innovations."

429

Securing Clean, Domestic, Affordable Energy with Wind (Fact Sheet)  

SciTech Connect (OSTI)

This fact sheet provides a brief description of the Wind Energy Market and describes the U.S. Department of Energy's Wind Program research and development efforts.

Not Available

2012-10-01T23:59:59.000Z

430

Wind Turbine System State Awareness - Energy Innovation Portal  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Program are developing a multi-physics modeling approach for the analysis of wind turbines in the presence of realistic wind loading. DescriptionResearchers at the Los...

431

Wind Powering America: FY09 Activities Summary (Book)  

SciTech Connect (OSTI)

The Wind Powering America FY09 Activities Summary reflects the accomplishments of state Wind Working Groups, WPA programs at the National Renewable Energy Laboratory, and partner organizations.

Not Available

2010-03-01T23:59:59.000Z

432

wind energy  

National Nuclear Security Administration (NNSA)

5%2A en Pantex to Become Wind Energy Research Center http:nnsa.energy.govfieldofficesnponpopressreleasespantex-become-wind-energy-research-center

433

PhD Program in Bioengineering and Curriculum Advanced Robotics and Robotic Design  

E-Print Network [OSTI]

1 PhD Program in Bioengineering and Robotics Curriculum Advanced Robotics and Robotic Design...................................................................2 2. ROBOTICS FOR INTERVENTION ....................................ERRORE. IL SEGNALIBRO NON ? ...................................................................................................4 5. DEVELOPMENT AND CONTROL OF A NOVEL ROBOTIC MANIPULATOR BASED ON THE VARIABLE PHYSICAL DAMPING

Robbiano, Lorenzo

434

Wildfire ignition resistant home design(WIRHD) program: Full-scale testing and demonstration final report.  

SciTech Connect (OSTI)

The primary goal of the Wildfire ignition resistant home design(WIRHD) program was to develop a home evaluation tool that could assess the ignition potential of a structure subjected to wildfire exposures. This report describes the tests that were conducted, summarizes the results, and discusses the implications of these results with regard to the vulnerabilities to homes and buildings.

Quarles, Stephen, L.; Sindelar, Melissa

2011-12-13T23:59:59.000Z

435

The Design Complexity of Program Undo Support in a General-Purpose Processor  

E-Print Network [OSTI]

of hardware overhead, rough develop- ment time, and lines of code; and Section 4 concludes. 2 ImplementationThe Design Complexity of Program Undo Support in a General-Purpose Processor Radu Teodorescu on collision-free syn- chronization [7, 10], speculation on the values of in- validated cache lines [5

Torrellas, Josep

436

Calculation program for design of windows in residential buildings Ins Palma Santos and Svend Svendsen*  

E-Print Network [OSTI]

sustainable buildings at the Department of Civil Engineering at the Technical University of Denmark1 Calculation program for design of windows in residential buildings Inês Palma Santos and Svend Svendsen* Department of Civil Engineering, Brovej, Building 118, Technical University of Denmark, DK-2800

437

Wind Turbine Blockset General Overview  

E-Print Network [OSTI]

Wind Turbine Blockset in Saber General Overview and Description of the Models Florin Iov, Adrian Turbine Blockset in Saber Abstract. This report presents a new developed Saber Toolbox for wind turbine, optimize and design wind turbines". The report provides a quick overview of the Saber and then explains

438

SPRING 2014 wind energy's impact  

E-Print Network [OSTI]

SPRING 2014 wind energy's impact on birds, bats......... 2-3 school news........... 4-5 alumni news measurable benefits reaped by the use of wind energy. But, it is a fact: all energy sources, alternative Interactions with Offshore Wind Energy Facilities," involves the design, deployment and testing

Tullos, Desiree

439

Distributed Solar Incentive Programs: Recent Experience and Best Practices for Design and Implementation  

SciTech Connect (OSTI)

Based on lessons from recent program experience, this report explores best practices for designing and implementing incentives for small and mid-sized residential and commercial distributed solar energy projects. The findings of this paper are relevant to both new incentive programs as well as those undergoing modifications. The report covers factors to consider in setting and modifying incentive levels over time, differentiating incentives to encourage various market segments, administrative issues such as providing equitable access to incentives and customer protection. It also explores how incentive programs can be designed to respond to changing market conditions while attempting to provide a longer-term and stable environment for the solar industry. The findings are based on interviews with program administrators, regulators, and industry representatives as well as data from numerous incentive programs nationally, particularly the largest and longest-running programs. These best practices consider the perspectives of various stakeholders and the broad objectives of reducing solar costs, encouraging long-term market viability, minimizing ratepayer costs, and protecting consumers.

Bird, L.; Reger, A.; Heeter, J.

2012-12-01T23:59:59.000Z

440

Collegiate Wind Competition Engages Tomorrow's Wind Energy Innovators  

Broader source: Energy.gov [DOE]

A new competition is channeling undergraduate ingenuity into small-scale wind energy solutions. The inaugural DOE Collegiate Wind Competition challenges 10 teams of undergraduate students to design and construct a lightweight, transportable wind turbine to power small electronic devices. The 2014 DOE Collegiate Wind Competition will be held May 57 in Las Vegas, Nevada, at the Mandalay Bay Convention Center concurrently with the AWEA WINDPOWER 2014 Conference & Exhibition.

Note: This page contains sample records for the topic "wind program designed" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


441

NREL: Wind Research - Facilities  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Facilities Facilities Our facilities are designed to meet the wind industry's critical research needs with state-of-the-art design and testing facilities. NREL's unique and highly versatile facilities at the National Wind Technology Center offer research and analysis of wind turbine components and prototypes rated from 400 watts to 3 megawatts. Satellite facilities support the growth of wind energy development across the United States. National Wind Technology Center Facilities Our facilities are contained within a 305-acre area that comprises field test sites, test laboratories, industrial high-bay work areas, machine shops, electronics and instrumentation laboratories, and office areas. In addition, there are hundreds of test articles and supporting components such as turbines, meteorological towers, custom test apparatus, test sheds,

442

ANALYSIS OF THE PERFORMANCE AND COST EFFECTIVENESS OF NINE SMALL WIND ENERGY CONVERSION SYSTEMS FUNDED BY THE DOE SMALL GRANTS PROGRAM  

E-Print Network [OSTI]

tax SIR Private after-tax SIR IX: Wind Electricity in thetax SIR Private after-tax SIR V: Wind Electricity Generationtax SIR Private after-tax SIR VI: Wind Electricity at the

Kay, J.

2009-01-01T23:59:59.000Z

443

ANALYSIS OF THE PERFORMANCE AND COST EFFECTIVENESS OF NINE SMALL WIND ENERGY CONVERSION SYSTEMS FUNDED BY THE DOE SMALL GRANTS PROGRAM  

E-Print Network [OSTI]

W.R. (May 1977), Wind Energy tics for Large Arrays Statis-land-use related permits. Wind Energy Report (May 1981) p.2.R. Cappelli, B. Dawley, I. Wind Energy Conversion System

Kay, J.

2009-01-01T23:59:59.000Z

444

Wind turbine | Open Energy Information  

Open Energy Info (EERE)

turbine turbine Jump to: navigation, search Dictionary.png Wind turbine: A machine that converts wind energy to mechanical energy; typically connected to a generator to produce electricity. Other definitions:Wikipedia Reegle Contents 1 Types of Wind Turbines 1.1 Vertical Axis Wind Turbines 1.2 Horizontal Axis Wind Turbines 2 Wind Turbine Sizes 3 Components of a Wind Turbine 4 References Types of Wind Turbines There are two basic wind turbine designs: those with a vertical axis (sometimes referred to as VAWTs) and those with a horizontal axis (sometimes referred to as HAWTs). There are several manufacturers of vertical axis turbines, but they have not penetrated the "utility scale" (100 kW capacity and larger) market to the same degree as horizontal axis turbines.[1]

445

Universal System Benefits Program | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

Universal System Benefits Program Universal System Benefits Program Universal System Benefits Program < Back Eligibility Commercial General Public/Consumer Industrial Institutional Residential Utility Savings Category Buying & Making Electricity Heating & Cooling Commercial Heating & Cooling Solar Heating Water Heating Wind Program Info State Montana Program Type Public Benefits Fund Provider Montana Public Service Commission Montana established the Universal System Benefits Program (USBP) in 1997 as part of its restructuring legislation. The USBP supports cost-effective energy conservation, low-income customer weatherization, renewable-energy projects and applications, research and development programs related to energy conservation and renewables, market transformation designed to encourage competitive markets for public purpose programs, and low-income

446

2011 Art & Science of Service Conference 1 The Long and Winding Road to a Course on Service System Design  

E-Print Network [OSTI]

2011 Art & Science of Service Conference 1 The Long and Winding Road to a Course on Service Abstract The "Service System" concept has rapidly emerged as a foundational concept in service science and pedagogical approaches in the evolution of the current course. Some key success factors for a course

Glushko, Robert J.

447

ECOWAS Clean Energy Gateway-Policy/ProgramDesign | Open Energy Information  

Open Energy Info (EERE)

ECOWAS Clean Energy Gateway-Policy/ProgramDesign ECOWAS Clean Energy Gateway-Policy/ProgramDesign Jump to: navigation, search Economic Community of West African States (ECOWAS) Clean Energy Gateway Home | About | News | Links | Help | Countries Benin | Burkina Faso | Cape Verde | Gambia | Ghana | Guinea| Guinea-Bissau | Ivory Coast | Liberia | Mali | Niger | Nigeria | Senegal | Sierra Leone | Togo Countries ECREEE light.JPG FBenin.png FBurkinaFaso.png FCapeVerde.png FGambia.png FGhana.png FGuinea.png FGuinea-Bissau.png Benin Burkina Faso Cape Verde Gambia Ghana Guinea Guinea-Bissau FIvoryCoast.png FLiberia.png FMali.png FNiger.png FNigeria.png FSenegal.png FSierraLeone.png FTogo.png Ivory Coast Liberia Mali Niger Nigeria Senegal Sierra Leone Togo Background → Design → Implementation →

448

New England Wind Forum: Buying Wind Power  

Wind Powering America (EERE)

Buying Wind Power Buying Wind Power On this page find information about: Green Marketing Renewable Energy Certificates Green Pricing Green Marketing Green power marketing refers to selling green power in the competitive marketplace, in which multiple suppliers and service offerings exist. In states that have established retail competition, customers may be able to purchase green power from a competitive supplier. Connecticut Connecticut Clean Energy Options Beginning in April 2005, Connecticut's two investor-owned utilities, Connecticut Light and Power and United Illuminating, began to offer a simple, affordable program to their customers for purchasing clean energy such as wind power. In late 2006, stakeholders started to explore a new offering that would convey the price stability of wind energy (and other renewable energy resources) to Connecticut consumers. This new offering is still under development.

449

ANALYSIS OF THE PERFORMANCE AND COST EFFECTIVENESS OF NINE SMALL WIND ENERGY CONVERSION SYSTEMS FUNDED BY THE DOE SMALL GRANTS PROGRAM  

E-Print Network [OSTI]

cost city probably overstates the value of wind energy.wind energy conversion system in the South Bronx in New York City.

Kay, J.

2009-01-01T23:59:59.000Z

450

InDesign CS 5 -Posters Adobe InDesign CS 5 TM is a powerful desktop publishing program. In addition to creating  

E-Print Network [OSTI]

InDesign CS 5 - Posters Adobe InDesign CS 5 TM is a powerful desktop publishing program for composing posters. In this course you will learn the basics of creating posters with InDesign CS 5 . Planning the poster Check with event or conference staff for exact size specifications and what type

Aalberts, Daniel P.

451

PAVAN: an atmospheric-dispersion program for evaluating design-basis accidental releases of radioactive materials from nuclear power stations  

SciTech Connect (OSTI)

This report provides a user's guide for the NRC computer program, PAVAN, which is a program used by the US Nuclear Regulatory Commission to estimate downwind ground-level air concentrations for potential accidental releases of radioactive material from nuclear facilities. Such an assessment is required by 10 CFR Part 100 and 10 CFR Part 50. The program implements the guidance provided in Regulatory Guide 1.145, Atmospheric Dispersion Models for Potential Accident Consequence Assessments at Nuclear Power Plants. Using joint frequency distributions of wind direction and wind speed by atmospheric stability, the program provides relative air concentration (X/Q) values as functions of direction for various time periods at the exclusion area boundary (EAB) and the outer boundary of the low population zone (LPZ). Calculations of X/Q values can be made for assumed ground-level releases (e.g., through building penetrations and vents) or elevated releases from free-standing stacks. Various options may be selected by the user. They can account for variation in the location of release points, additional plume dispersion due to building wakes, plume meander under low wind speed conditions, and adjustments to consider non-straight trajectories. It computes an effective plume height using the physical release height which can be reduced by inputted terrain features. It cannot handle multiple emission sources. A description of the main program and all subroutines is provided. Also included as appendices are a complete listing of the program and two test cases with the required data inputs and the resulting program outputs.

Bander, T.J.

1982-11-01T23:59:59.000Z

452

Model As-of Right Zoning Ordinance or Bylaw: Allowing Use of Wind Energy  

Broader source: Energy.gov (indexed) [DOE]

You are here You are here Home » Model As-of Right Zoning Ordinance or Bylaw: Allowing Use of Wind Energy Facilities Model As-of Right Zoning Ordinance or Bylaw: Allowing Use of Wind Energy Facilities < Back Eligibility Agricultural Commercial Fed. Government Industrial Institutional Local Government Nonprofit Residential Schools State Government Savings Category Wind Buying & Making Electricity Program Info State Massachusetts Program Type Solar/Wind Permitting Standards Note: This model ordinance was designed to provide guidance to local governments seeking to develop their own siting rules for wind turbines. While it was developed as part of a cooperative effort involving several state agencies, the model itself has no legal or regulatory authority. In 2007, the Massachusetts Department of Energy Resources (DOER) and the

453

EA-1812: Haxtun Wind Energy Project, Logan and Phillips County, Colorado |  

Broader source: Energy.gov (indexed) [DOE]

12: Haxtun Wind Energy Project, Logan and Phillips County, 12: Haxtun Wind Energy Project, Logan and Phillips County, Colorado EA-1812: Haxtun Wind Energy Project, Logan and Phillips County, Colorado Summary This EA evaluates the environmental impacts of a proposal to authorize the expenditure of Federal funding through the Community Renewable Energy Deployment Program to Phillips County for design, permitting, and construction of an approximately 30-megawatt wind energy project, known as Haxtun Wind Project, within Phillips and Logan counties in northeastern Colorado. The proposed project consists of 18 wind turbines that would interconnect to the Highline Electric Cooperative equipment inside Western Area Power Administration's Haxtun substation just south of the Town of Haxtun. Public Comment Opportunities No public comment opportunities available at this time.

454

Optimum propeller wind turbines  

SciTech Connect (OSTI)

The Prandtl-Betz-Theodorsen theory of heavily loaded airscrews has been adapted to the design of propeller windmills which are to be optimized for maximum power coefficient. It is shown that the simpler, light-loading, constant-area wake assumption can generate significantly different ''optimum'' performance and geometry, and that it is therefore not appropriate to the design of propeller wind turbines when operating in their normal range of high-tip-speed-to-wind-speed ratio. Design curves for optimum power coefficient are presented and an example of the design of a typical two-blade optimum rotor is given.

Sanderson, R.J.; Archer, R.D.

1983-11-01T23:59:59.000Z

455

Wind Energy  

Broader source: Energy.gov (indexed) [DOE]

FUPWG Meeting FUPWG Meeting NREL is a national laboratory of the U.S. Department of Energy Office of Energy Efficiency and Renewable Energy operated by the Alliance for Sustainable Energy, LLC Robi Robichaud November 18, 2009 Topics Introduction Review of the Current Wind Market Drivers for Wind Development Siting g Issues Wind Resource Assessment Wind Characteristics Wind Power Potential Basic Wind Turbine Theory Basic Wind Turbine Theory Types of Wind Turbines Facts About Wind Siting Facts About Wind Siting Wind Performance 1. United States: MW 1 9 8 2 1 9 8 3 1 9 8 4 1 9 8 5 1 9 8 6 1 9 8 7 1 9 8 8 1 9 8 9 1 9 9 0 1 9 9 1 1 9 9 2 1 9 9 3 1 9 9 4 1 9 9 5 1 9 9 6 1 9 9 7 1 9 9 8 1 9 9 9 2 0 0 0 2 0 0 1 2 0 0 2 2 0 0 3 2 0 0 4 2 0 0 5 2 0 0 6 2 0 0 7 2 0 0 8 Current Status of the Wind Industry Total Global Installed Wind Capacity Total Global Installed Wind Capacity Total Global Installed Wind Capacity

456

Graduate Studies in Biomedical Sciences The graduate program in Biomedical Sciences is designed to provide a multidisciplinary educational and  

E-Print Network [OSTI]

Graduate Studies in Biomedical Sciences The graduate program in Biomedical Sciences is designed of the faculty. PhD Program Mission The mission of the Doctoral Program in Biomedical Sciences (DBMS caliber research in the biomedical sciences, contribute to the advancement of science, uphold

457

Probabilistic fatigue methodology and wind turbine reliability  

SciTech Connect (OSTI)

Wind turbines subjected to highly irregular loadings due to wind, gravity, and gyroscopic effects are especially vulnerable to fatigue damage. The objective of this study is to develop and illustrate methods for the probabilistic analysis and design of fatigue-sensitive wind turbine components. A computer program (CYCLES) that estimates fatigue reliability of structural and mechanical components has been developed. A FORM/SORM analysis is used to compute failure probabilities and importance factors of the random variables. The limit state equation includes uncertainty in environmental loading, gross structural response, and local fatigue properties. Several techniques are shown to better study fatigue loads data. Common one-parameter models, such as the Rayleigh and exponential models are shown to produce dramatically different estimates of load distributions and fatigue damage. Improved fits may be achieved with the two-parameter Weibull model. High b values require better modeling of relatively large stress ranges; this is effectively done by matching at least two moments (Weibull) and better by matching still higher moments. For this purpose, a new, four-moment {open_quotes}generalized Weibull{close_quotes} model is introduced. Load and resistance factor design (LRFD) methodology for design against fatigue is proposed and demonstrated using data from two horizontal-axis wind turbines. To estimate fatigue damage, wind turbine blade loads have been represented by their first three statistical moments across a range of wind conditions. Based on the moments {mu}{sub 1}{hor_ellipsis}{mu}{sub 3}, new {open_quotes}quadratic Weibull{close_quotes} load distribution models are introduced. The fatigue reliability is found to be notably affected by the choice of load distribution model.

Lange, C.H. [Stanford Univ., CA (United States)

1996-05-01T23:59:59.000Z

458

Wind Resource Map: Mexico | Open Energy Information  

Open Energy Info (EERE)

Wind Resource Map: Mexico Wind Resource Map: Mexico Jump to: navigation, search Tool Summary LAUNCH TOOL Name: Wind Resource Map: Mexico Focus Area: Renewable Energy Topics: Potentials & Scenarios Website: www.altestore.com/howto/Reference-Materials/Wind-Resource-Map-Mexico/a Equivalent URI: cleanenergysolutions.org/content/wind-resource-map-mexico,http://clean Language: English Policies: Deployment Programs DeploymentPrograms: Technical Assistance This is on-shore wind resource map for rural power applications in Mexico. The map can be used to aid in appropriate siting of wind power installations. Please note that the wind speed classes are taken at 30 m (100 feet [ft]), instead of the usual 10 m (33 ft). Each wind power class should span two power densities. For example, Wind Power Class = 3

459

HTGR process heat program design and analysis. Semiannual progress report, October 1, 1979-March 28, 1980  

SciTech Connect (OSTI)

This report summarizes the results of concept design studies implemented at General Atomic Company (GA) during the first half of FY-80. The studies relate to a plant design for an 842-MW(t) High-Temperature Gas-Cooled Reactor utilizing an intermediate helium heat transfer loop to provide high temperature thermal energy for the production of hydrogen or synthesis gas (H/sub 2/ + CO) by steam-reforming a light hydrocarbon. Basic carbon sources may be coal, residual oil, or oil shale. Work tasks conducted during this period included the 842-MW(t) plant concept design and cost estimate for an 850/sup 0/C reactor outlet temperature. An assessment of the main-loop cooling shutdown system is reported. Major component cost models were prepared and programmed into the Process Heat Reactor Evaluation and Design (PHRED) code.

Not Available

1980-10-01T23:59:59.000Z

460

Wind turbine reliability : understanding and minimizing wind turbine operation and maintenance costs.  

SciTech Connect (OSTI)

Wind turbine system reliability is a critical factor in the success of a wind energy project. Poor reliability directly affects both the project's revenue stream through increased operation and maintenance (O&M) costs and reduced availability to generate power due to turbine downtime. Indirectly, the acceptance of wind-generated power by the financial and developer communities as a viable enterprise is influenced by the risk associated with the capital equipment reliability; increased risk, or at least the perception of increased risk, is generally accompanied by increased financing fees or interest rates. Cost of energy (COE) is a key project evaluation metric, both in commercial applications and in the U.S. federal wind energy program. To reflect this commercial reality, the wind energy research community has adopted COE as a decision-making and technology evaluation metric. The COE metric accounts for the effects of reliability through levelized replacement cost and unscheduled maintenance cost parameters. However, unlike the other cost contributors, such as initial capital investment and scheduled maintenance and operating expenses, costs associated with component failures are necessarily speculative. They are based on assumptions about the reliability of components that in many cases have not been operated for a complete life cycle. Due to the logistical and practical difficulty of replacing major components in a wind turbine, unanticipated failures (especially serial failures) can have a large impact on the economics of a project. The uncertainty associated with long-term component reliability has direct bearing on the confidence level associated with COE projections. In addition, wind turbine technology is evolving. New materials and designs are being incorporated in contemporary wind turbines with the ultimate goal of reducing weight, controlling loads, and improving energy capture. While the goal of these innovations is reduction in the COE, there is a potential impact on reliability whenever new technologies are introduced. While some of these innovations may ultimately improve reliability, in the short term, the technology risks and the perception of risk will increase. The COE metric used by researchers to evaluate technologies does not address this issue. This paper outlines the issues relevant to wind turbine reliability for wind turbine power generation projects. The first sections describe the current state of the industry, identify the cost elements associated with wind farm O&M and availability and discuss the causes of uncertainty in estimating wind turbine component reliability. The latter sections discuss the means for reducing O&M costs and propose O&M related research and development efforts that could be pursued by the wind energy research community to reduce COE.

Not Available

2004-11-01T23:59:59.000Z

Note: This page contains sample records for the topic "wind program designed" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


461

New England Wind Forum: New England Wind Energy Education Project  

Wind Powering America (EERE)

Webinars Webinars Conference Historic Wind Development in New England State Activities Projects in New England Building Wind Energy in New England Newsletter Perspectives Events Quick Links to States CT MA ME NH RI VT Bookmark and Share New England Wind Energy Education Project The New England Wind Energy Education Project (NEWEEP) is designed to complement the New England Wind Forum website and newsletter as a comprehensive source of objective information on wind energy issues in the New England region. The project, funded by the U.S. Department of Energy's (DOE's) former Wind Powering America Initiative under a 2-year grant, began as an eight-part webinar series and a conference. The NEWEEP webinar series provides the public with objective information to allow informed decisions about proposed wind energy projects throughout the New England region.

462

Wind Powering America Webinar: Wind Power Economics: Past, Present, and  

Broader source: Energy.gov (indexed) [DOE]

Wind Powering America Webinar: Wind Power Economics: Past, Present, Wind Powering America Webinar: Wind Power Economics: Past, Present, and Future Trends Wind Powering America Webinar: Wind Power Economics: Past, Present, and Future Trends November 23, 2011 - 1:43pm Addthis Wind turbine prices in the United States have declined, on average, by nearly one-third since 2008, after doubling from 2002 through 2008. Over this entire period, the average nameplate capacity rating, hub height, and rotor swept area of turbines installed in the United States have increased significantly, while other design improvements have also boosted turbine energy production. In combination, these various trends have had a significant-and sometimes surprising-impact on the levelized cost of energy delivered by wind projects. This webinar will feature three related presentations that explore these

463

Articles about Wind Siting | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

about Wind Siting RSS Below are stories about siting featured by the U.S. Department of Energy (DOE) Wind Program. September 12, 2014 Sandia National Laboratories Develops Tool...

464

Land-use Policy and Program Design Toolkit | Open Energy Information  

Open Energy Info (EERE)

Land-use Policy and Program Design Toolkit Land-use Policy and Program Design Toolkit Jump to: navigation, search Stage 4 LEDS Home Introduction to Framework Assess current country plans, policies, practices, and capacities Develop_BAU Stage 4: Prioritizing and Planning for Actions Begin execution of implementation plans 1.0. Organizing the LEDS Process 1.1. Institutional Structure for LEDS 1.2. Workplan to Develop the LEDS 1.3. Roles and responsibilities to develop LEDS 2.1. Assess current country plans, policies, practices, and capacities 2.2. Compile lessons learned and good practices from ongoing and previous sustainable development efforts in the country 2.3. Assess public and private sector capacity to support initiatives 2.4. Assess and improve the national GHG inventory and other economic and resource data as needed for LEDS development

465

Wind Powering America Initiative (Fact Sheet)  

SciTech Connect (OSTI)

The U.S. Department of Energy's Wind Powering America initiative engages in technology market acceptance, barrier reduction, and technology deployment support activities. This fact sheet outlines ways in which the Wind Powering America team works to reduce barriers to appropriate wind energy deployment, primarily by focusing on six program areas: workforce development, communications and outreach, stakeholder analysis and resource assessment, wind technology technical support, wind power for Native Americans, and federal sector support and collaboration.

Not Available

2011-01-01T23:59:59.000Z

466

Co-Designing Sustainable Communities: The Identification and Incorporation of Social Performance Metrics in Native American Sustainable Housing and Renewable Energy System Design  

E-Print Network [OSTI]

conceptual design features wind and power solar generationand a roof mounted wind power generation system. Ofthat there was enough wind power potential to install wind

Shelby, Ryan

2013-01-01T23:59:59.000Z

467

Design and Implementation of an International Training Program on Repository Development and Management  

SciTech Connect (OSTI)

Korea Hydro and Nuclear Power Co., Ltd. (KHNP) is an electric company in the Republic of Korea with twenty operational nuclear power plants and eight additional units that are either planned or currently under construction. Regulations require that KHNP manage the radioactive waste generated by their nuclear power plants. In the course of planning low, intermediate, and high level waste storage facilities, KHNP sought interaction with an acknowledged expert in the field of radioactive waste management and, consequently, contacted Sandia National Laboratories (SNL). KHNP has contracted with SNL to provide a year long training program on repository science. This paper discusses the design of the curriculum, specific plans for execution of the training program, and recommendations for smooth implementation of international training programs. (authors)

Vugrin, K.W. [Sandia National Laboratories Carlsbad Programs Group, Performance Assessment and Decision Analysis Department, Carlsbad, NM (United States); Twitchell, Ch.A. [Sandia National Laboratories, Carlsbad Programs Group, Center Business Operations Department, Carlsbad, NM (United States)

2008-07-01T23:59:59.000Z

468

Advanced turbine systems program conceptual design and product development: Quarterly report, November 1993--January 1994  

SciTech Connect (OSTI)

This report describes progress made in the advanced turbine systems program conceptual design and product development. The topics of the report include selection of the Allison GFATS, castcool technology development for industrial engines test plan and schedule, code development and background gathering phase for the ultra low NOx combustion technology task, active turbine clearance task, and water vapor/air mixture cooling of turbine vanes task.

NONE

1995-01-01T23:59:59.000Z

469

Economic Development Incentive Program (Massachusetts) | Department of  

Broader source: Energy.gov (indexed) [DOE]

Economic Development Incentive Program (Massachusetts) Economic Development Incentive Program (Massachusetts) Economic Development Incentive Program (Massachusetts) < Back Eligibility Agricultural Commercial Construction Fuel Distributor Industrial Installer/Contractor Institutional Investor-Owned Utility Municipal/Public Utility Nonprofit Retail Supplier Systems Integrator Transportation Utility Savings Category Alternative Fuel Vehicles Hydrogen & Fuel Cells Buying & Making Electricity Water Home Weatherization Solar Wind Program Info State Massachusetts Program Type Corporate Tax Incentive Provider Office of Business Development The Economic Development Incentive Program (EDIP) is a tax incentive program designed to foster job creation and stimulate business growth throughout the Commonwealth. Participating companies may receive state and

470

Offshore Wind Research (Fact Sheet)  

SciTech Connect (OSTI)

This 2-page fact sheet describes NREL's offshore wind research and development efforts and capabilities. The National Renewable Energy Laboratory is internationally recognized for offshore wind energy research and development (R&D). Its experience and capabilities cover a wide spectrum of wind energy disciplines. NREL's offshore wind R&D efforts focus on critical areas that address the long-term needs of the offshore wind energy industry and the Department of Energy (DOE). R&D efforts include: (1) Developing offshore design tools and methods; (2) Collaborating with international partners; (3) Testing offshore systems and developing standards; (4) Conducting economic analyses; (5) Characterizing offshore wind resources; and (6) Identifying and mitigating offshore wind grid integration challenges and barriers. NREL has developed and maintains a robust, open-source, modular computer-aided engineering (CAE) tool, known as FAST. FAST's state-of-the-art capabilities provide full dynamic system simulation for a range of offshore wind systems. It models the coupled aerodynamic, hydrodynamic, control system, and structural response of offshore wind systems to support the development of innovative wind technologies that are reliable and cost effective. FAST also provides dynamic models of wind turbines on offshore fixed-bottom systems for shallow and transitional depths and floating-platform systems in deep water, thus enabling design innovation and risk reduction and facilitating higher performance designs that will meet DOE's cost of energy, reliability, and deployment objectives.

Not Available

2011-10-01T23:59:59.000Z

471

Wind Powering America: Document Not Found  

Wind Powering America (EERE)

navigation to main content. U.S. Department of Energy Energy Efficiency and Renewable Energy navigation to main content. U.S. Department of Energy Energy Efficiency and Renewable Energy Wind Powering America Document Not Found This is a temporary URL for the U.S. Department of Energy's Wind Powering America website. Either this page does not reside on this temporary server or it does not actually exist. You may try to find it using the search engine. Your page may be located at this URL Illinois 50-Meter Wind Resource Map Indiana 50-Meter Wind Resource Map Missouri 50-Meter Wind Resource Map New Jersey 50-Meter Wind Resource Map Ohio 50-Meter Wind Resource Map New England Wind Projects Wind Energy for Schools - Project Locations Wind Energy Educational Programs and Training You may also find this page by manually navigating to it via Wind Powering

472

New England Wind Forum: A Wind Powering America Project - Newsletter #6 - September 2010, (NEWF)  

SciTech Connect (OSTI)

Wind Powering America program launched the New England Wind Forum (NEWF) in 2005 to provide a single comprehensive source of up-to-date, Web-based information on a broad array of wind energy issues pertaining to New England. The NEWF newsletter provides New England stakeholders with updates on wind energy development in the region.

Grace, R.; Gifford, J.; Leeds, T.; Bauer, S.

2010-09-01T23:59:59.000Z

473

The Economic Impact of Wind Power on Ercot Regulation Market.  

E-Print Network [OSTI]

??U.S. wind power generation has grown rapidly in the last decade due to government policies designed to reduce pollution. Although wind power does not contribute (more)

Zheng, Bin

2013-01-01T23:59:59.000Z

474

AWEA Wind Project Operations and Maintenance and Safety Seminar  

Broader source: Energy.gov [DOE]

The AWEA Wind Project O&M and Safety Seminar is designed for owners, operators, turbine manufactures, material suppliers, wind technicians, managers, supervisors, engineers, and occupational...

475

Introduction to Small-Scale Wind Energy Systems (Including RETScreen...  

Open Energy Info (EERE)

Application Design Website: www.leonardo-energy.orgwebinar-introduction-small-scale-wind-energy-s Equivalent URI: cleanenergysolutions.orgcontentintroduction-small-scale-wind-en...

476

10 Colleges to Compete in First Collegiate Wind Competition ...  

Office of Environmental Management (EM)

for undergraduate college students of multiple disciplines to investigate innovative wind energy concepts; gain experience designing, building, and testing a wind turbine to...

477

Hour-by-Hour Cost Modeling of Optimized Central Wind-Based Water Electrolysis Production - DOE Hydrogen and Fuel Cells Program FY 2012 Annual Progress Report  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

3 3 FY 2012 Annual Progress Report DOE Hydrogen and Fuel Cells Program Genevieve Saur (Primary Contact), Chris Ainscough. National Renewable Energy Laboratory (NREL) 15013 Denver West Parkway Golden, CO 80401-3305 Phone: (303) 275-3783 Email: genevieve.saur@nrel.gov DOE Manager HQ: Erika Sutherland Phone: (202) 586-3152 Email: Erika.Sutherland@ee.doe.gov Project Start Date: October 1, 2010 Project End Date: Project continuation and direction determined annually by DOE Fiscal Year (FY) 2012 Objectives Corroborate recent wind electrolysis cost studies using a * more detailed hour-by-hour analysis. Examine consequences of different system configuration * and operation for four scenarios, at 42 sites in five

478

Wind shear for large wind turbine generators at selected tall tower sites  

SciTech Connect (OSTI)

The objective of the study described in this report is to examine the nature of wind shear profiles and their variability over the height of large horizontal-axis wind turbines and to provide information on wind shear relevant to the design and opertion of large wind turbines. Wind turbine fatigue life and power quality are related through the forcing functions on the blade to the shapes of the wind shear profiles and their fluctuations over the disk of rotation.

Elliott, D.L.

1984-04-01T23:59:59.000Z

479

Wind power: executive summary on research on network wind power over the Pacific Northwest. Progress report, October 1979-September 1980  

SciTech Connect (OSTI)

This research in FY80 is composed of six primary tasks. These tasks include data collection and analysis, wind flow studies around an operational wind turbine generator (WTG), kite anemometer calibration, wind flow analysis and prediction, the Klickitat County small wind energy conversion system (SWECS) program, and network wind power analysis. The data collection and analysis task consists of four sections, three of which deal with wind flow site surveys and the fourth with collecting and analyzing wind data from existing data stations.

Baker, R.W.; Hewson, E.W.

1980-10-01T23:59:59.000Z

480

Wind for Schools: A Wind Powering America Project (Brochure)  

Wind Powering America (EERE)

for Schools: for Schools: A Wind Powering America Project Donna Berry - Utah State University/PIX13969 2 2 What is the Wind for Schools Project? Energy is largely taken for granted within our society, but that perception is changing as the economic and environmental impacts of our current energy supply structure are more widely understood. The U.S. Department of Energy's (DOE's) Wind Powering America program (at the National Renewable Energy Laboratory) sponsors the Wind for Schools Project to raise awareness in rural America about the benefits of wind energy while simultaneously developing a wind energy knowledge base in future leaders of our communities, states, and nation. A wind turbine located at a school provides students and teachers with a physical example of how communities can take

Note: This page contains sample records for the topic "wind program designed" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


481

Stakeholder Engagement and Outreach: Wind Basics and Education  

Wind Powering America (EERE)

Wind Basics and Education Wind Basics and Education Learn about wind power, the Wind for Schools project and curricula, and locate higher education and training programs. Learn about Wind Learn about how wind energy generates power; where the best wind resources are; how you can get wind power; and how and where wind energy has increased over the past decade. Wind for Schools Project Wind Powering America's Wind for Schools project, which began in 2005 and ended in September 2013, worked to promote wind industry workforce development by focusing on K-12 and university educators and students to counter the trend of reduced numbers of U.S. students entering science and engineering fields. The project also raised awareness in rural America about the benefits of wind energy through wind energy curricula and on-site

482

PROGRESS OF WIND ENERGY TECHNOLOGY  

E-Print Network [OSTI]

This paper provides an overview of the progress of wind energy technology, along with the current status of wind power worldwide. Over the period of 2000-2012 grid-connected installed wind power has increased by a factor of more than 16. Due to the fast growth in wind market, wind turbine technology has developed different design approaches during this period. In addition to this, issues such as power grid integration, environmental impact, and economics are studied and discussed briefly in this paper, as well.

Bar?? zerdem

483

Wind Easements | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

Wind Easements Wind Easements Wind Easements < Back Eligibility Agricultural Fed. Government Institutional Local Government Nonprofit Residential Schools State Government Tribal Government Savings Category Wind Buying & Making Electricity Program Info State South Dakota Program Type Solar/Wind Access Policy Provider S.D. Energy Management Office Any South Dakota property owner may grant a wind easement with the same effect as a conveyance of an interest in real property. Easements must be established in writing, and must be filed, recorded and indexed in the office of the register of deeds of the county in which they are granted. The maximum term of an easement is 50 years. Any payments associated with an easement must be made on an annual basis to the owner of the real property. An easement must include the following information:

484

Wind Mills  

Science Journals Connector (OSTI)

Over 5,000 years ago, the ancient Egyptians used wind to sail ships on the Nile River. While the proliferation of water mills was in full swing, windmills appeared to harness more inanimate energy by employing wind

J. S. Rao

2011-01-01T23:59:59.000Z

485

Wind Farm  

Office of Energy Efficiency and Renewable Energy (EERE)

The wind farm in Greensburg, Kansas, was completed in spring 2010, and consists of ten 1.25 megawatt (MW) wind turbines that supply enough electricity to power every house, business, and municipal...

486

Wind Power  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Wind Power As the accompanying map of New Mexico shows, the best wind power generation potential near WIPP is along the Delaware Mountain ridge line of the southern Guadalupe...

487

Wind Power  

Science Journals Connector (OSTI)

For off-shore wind energy, it is not economically profitable to locate wind turbines in waters with depths larger than about 40m. For this reason, some floating turbine prototypes are being tested, which can be ...

Ricardo Guerrero-Lemus; Jos Manuel Martnez-Duart

2013-01-01T23:59:59.000Z

488

List of Wind Incentives | Open Energy Information  

Open Energy Info (EERE)

List of Wind Incentives List of Wind Incentives Jump to: navigation, search The following contains the list of 1937 Wind Incentives. CSV (rows 1-500) CSV (rows 501-1000) CSV (rows 1001-1500) CSV (rows 1501-1937) Incentive Incentive Type Place Applicable Sector Eligible Technologies Active AEP Ohio - Renewable Energy Credit (REC) Purchase Program (Ohio) Performance-Based Incentive Ohio Agricultural Commercial Fed. Government Industrial Institutional Local Government Nonprofit Residential Schools State Government Photovoltaics Wind energy Yes AEP Ohio - Renewable Energy Technology Program (Ohio) Utility Rebate Program Ohio Agricultural Commercial Fed. Government Industrial Institutional Local Government Nonprofit Residential Schools State Government Photovoltaics Wind energy Yes

489

Residential Wind Power  

E-Print Network [OSTI]

Figure 3. Wind Generators in Iowa 2 Figure 4. State Wind Power Capacity 2007 Figure 5. Annual average wind resource estimates in the contiguous United States (http://rredc.nrel.gov) Figure 6. SkyStream Design Overview Figure 7... crisis that raises crude oil prices hampering the price at the pump or commodity production and transportation. Many people do not even take the time to think about the impact to daily life that power and changes within the market play on their lives...

Willis, Gary

2011-12-16T23:59:59.000Z

490

Enterprise Zone Program (Alabama) | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

Alabama) Alabama) Enterprise Zone Program (Alabama) < Back Eligibility Commercial Construction Industrial Savings Category Alternative Fuel Vehicles Hydrogen & Fuel Cells Buying & Making Electricity Water Home Weatherization Solar Wind Program Info State Alabama Program Type Enterprise Zone Provider Alabama Department of Economic and Community Affairs The Enterprise Zone Program provides certain tax incentives to corporations, partnerships and proprietorships that locate or expand within designated Enterprise Zones. In addition to state-level tax incentives, businesses may also receive local tax and non-tax incentives for locating or expanding within a designated Enterprise Zone. Section 5 of the Alabama Enterprise Zone Program offers the following tax incentives: Credit based

491

SciTech Connect: Design and experimental results for the S809...  

Office of Scientific and Technical Information (OSTI)

Language: English Subject: 17 WIND ENERGY; AIRFOILS; PERFORMANCE TESTING; DESIGN; WIND TURBINES; WIND POWER INDUSTRY; DRAG HORIZONTAL-AXIS WIND-TURBINE AIRFOIL Word Cloud More...

492

Wind energy  

Science Journals Connector (OSTI)

...is approximately 4.5-6.01 for onshore wind farms. The price for offshore wind farms is estimated to be 50% higher. For comparison...visually intrusive. The visual impact of offshore wind farms quickly diminishes with distance and 10km...

2007-01-01T23:59:59.000Z

493

Chinook winds.  

Science Journals Connector (OSTI)

...of south-easterly winds, which blow over the...Ocean, from which the winds come, can at this season...freezing-point. The wind well known in the Alps as the foehn is another example of...result is complicated by local details; regions of...

George M. Dawson

1886-01-08T23:59:59.000Z

494

LIDAR Wind Speed Measurements of Evolving Wind Fields  

SciTech Connect (OSTI)

Light Detection and Ranging (LIDAR) systems are able to measure the speed of incoming wind before it interacts with a wind turbine rotor. These preview wind measurements can be used in feedforward control systems designed to reduce turbine loads. However, the degree to which such preview-based control techniques can reduce loads by reacting to turbulence depends on how accurately the incoming wind field can be measured. Past studies have assumed Taylor's frozen turbulence hypothesis, which implies that turbulence remains unchanged as it advects downwind at the mean wind speed. With Taylor's hypothesis applied, the only source of wind speed measurement error is distortion caused by the LIDAR. This study introduces wind evolution, characterized by the longitudinal coherence of the wind, to LIDAR measurement simulations to create a more realistic measurement model. A simple model of wind evolution is applied to a frozen wind field used in previous studies to investigate the effects of varying the intensity of wind evolution. LIDAR measurements are also evaluated with a large eddy simulation of a stable boundary layer provided by the National Center for Atmospheric Research. Simulation results show the combined effects of LIDAR errors and wind evolution for realistic turbine-mounted LIDAR measurement scenarios.

Simley, E.; Pao, L. Y.

2012-07-01T23:59:59.000Z

495

Requirements for Wind Development | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

Requirements for Wind Development Requirements for Wind Development Requirements for Wind Development < Back Eligibility Commercial Construction Industrial Installer/Contractor Utility Savings Category Wind Buying & Making Electricity Program Info State Oklahoma Program Type Solar/Wind Permitting Standards In 2010, Oklahoma passed HB 2973, known as The Oklahoma Wind Energy Development Act. The bill becomes effective January 1, 2011. The Act provides sets rules for owners of wind energy facilities related to decommissioning, payments, and insurance. * Within one year of abandonment of a project, equipment from wind energy facilities must be removed and the land must be returned to its condition prior to the facility construction, except for roads. * After 15 years of operation, wind energy facility owners must file an

496

Stakeholder Engagement and Outreach: Utility-Scale Land-Based 80-Meter Wind  

Wind Powering America (EERE)

Maps & Data Maps & Data Printable Version Bookmark and Share Utility-Scale Land-Based Maps Wind Resource Potential Offshore Maps Community-Scale Maps Residential-Scale Maps Anemometer Loan Programs & Data Utility-Scale Land-Based 80-Meter Wind Maps The U.S. Department of Energy provides an 80-meter (m) height, high-resolution wind resource map for the United States with links to state wind maps. States, utilities, and wind energy developers use utility-scale wind resource maps to locate and quantify the wind resource, identifying potentially windy sites within a fairly large region and determining a potential site's economic and technical viability. A wind resource map of the United States. Washington wind map and resources. Oregon wind map and resources. California wind map and resources. Idaho wind map and resources. Nevada wind map and resources. Arizona wind map and resources. Utah wind map and resources. Montana wind map and resources. Wyoming wind map and resources. North Dakota wind map and resources. South Dakota wind map and resources. Nebraska wind map and resources. Colorado wind map and resources. New Mexico wind map and resources. Kansas wind map and resources. Oklahoma wind map and resources. Texas wind map and resources. Minnesota wind map and resources. Iowa wind map and resources. Missouri wind map and resources. Arkansas wind map and resources. Lousiana wind map and resources. Wisconsin wind map and resources. Michigan wind map and resources. Michigan wind map and resources. Illinois wind map and resources. Indiana wind map and resources. Ohio wind map and resources. Kentucky wind map and resources. Tennessee wind map and resources. Mississippi wind map and resources. Alabama wind map and resources. Georgia wind map and resources. Florida wind map and resources. South Carolina wind map and resources. North Carolina wind map and resources. West Virginia wind map and resources. Virginia wind map and resources. Maryland wind map and resources. Pennsylvania wind map and resources. Delaware wind map and resources. New Jersey wind map and resources. New York wind map and resources. Maine wind map and resources. Vermont wind map and resources. New Hampshire wind map and resources. Massachusetts wind map and resources. Rhode Island wind map and resources. Connecticut wind map and resources. Alaska wind map and resources. Hawaii wind map and resources.

497

Argonne National Laboratory Develops Extreme-Scale Wind Farm...  

Office of Environmental Management (EM)

studies of complex flow and wind turbine interactions in large land-based and offshore wind farms that will improve wind plant design and reduce the levelized cost of energy....

498

Dynamic analysis of a 5 megawatt offshore floating wind turbine  

E-Print Network [OSTI]

wind turbine. Rating Control Rotor Radius Rated Wind Speed Towerwind turbine is used in this design, however there are slight modifications of the tower.of the tower. Figure 2.3: NREL 5 MW Reference Wind Turbine [

Harriger, Evan Michael

2011-01-01T23:59:59.000Z

499

Design  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Design Design of a Multithreaded Barnes-Hut Algorithm for Multicore Clusters Technical Report Junchao Zhang and Babak Behzad Department of Computer Science, University of Illinois at Urbana-Champaign {jczhang, bbehza2}@illinois.edu Marc Snir Department of Computer Science, University of Illinois at Urbana-Champaign and MCS Division, Argonne National Laboratory snir@anl.gov Abstract We describe in this paper an implementation of the Barnes-Hut al- gorithm on multicore clusters. Based on a partitioned global ad- dress space (PGAS) library, the design integrates intranode mul- tithreading and internode one-sided communication, exemplifying a PGAS + X programming style. Within a node, the computation is decomposed into tasks (subtasks), and multitasking is used to hide network latency. We study the tradeoffs between locality in private caches and locality in shared caches

500

Towers for Offshore Wind Turbines  

Science Journals Connector (OSTI)

Increasing energy demand coupled with pollution free production of energy has found a viable solution in wind energy. Land based windmills have been utilized for power generation for more than two thousand years. In modern times wind generated power has become popular in many countries. Offshore wind turbines are being used in a number of countries to tap the energy from wind over the oceans and convert to electric energy. The advantages of offshore wind turbines as compared to land are that offshore winds flow at higher speed than onshore winds and the more available space. In some land based settings for better efficiency turbines are separated as much as 10 rotor diameters from each other. In offshore applications where only two wind directions are likely to predominate the distances between the turbines arranged in a line can be shortened to as little as two or four rotor diameters. Today more than a dozen offshore European wind facilities with turbine ratings of 450 kw to 3.6 MW exist offshore in very shallow waters of 5 to 12 m. Compared to onshore wind turbines offshore wind turbines are bigger and the tower height in offshore are in the range of 60 to 80 m. The water depths in oceans where offshore turbines can be located are within 30 m. However as the distance from land increases the costs of building and maintaining the turbines and transmitting the power back to shore also increase sharply. The objective of this paper is to review the parameters of design for the maximum efficiency of offshore wind turbines and to develop types offshore towers to support the wind turbines. The methodology of design of offshore towers to support the wind turbine would be given and the environmental loads for the design of the towers would be calculated for specific cases. The marine corrosion on the towers and the methods to control the corrosion also would be briefly presented. As the wind speeds tend to increase with distance from the shore turbines build father offshore will be able to capture more wind energy. Currently two types of towers are considered. Cylindrical tubular structures and truss type structures. But truss type structures have less weight and flexibility in design. The construction of the offshore towers to harness the wind energy is also presented. The results will include the calculation of wind and wave forces on the tower and the design details for the tower.

V. J. Kurian; S. P. Narayanan; C. Ganapathy

2010-01-01T23:59:59.000Z