Powered by Deep Web Technologies
Note: This page contains sample records for the topic "wind profiler demo" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


1

The Influence of Turbulence and Vertical Wind Profile in Wind Turbine Power Curve  

Science Journals Connector (OSTI)

To identify the influence of turbulence and vertical wind profile in wind turbine performance, wind speed measurements at different heights have been ... equipment, specifically a pulsed wave one. The wind profil...

A. Honrubia; A. Vigueras-Rodríguez…

2012-01-01T23:59:59.000Z

2

MODELLING THE VERTICAL WIND SPEED AND TURBULENCE INTENSITY PROFILES AT PROSPECTIVE OFFSHORE WIND FARM SITES  

E-Print Network [OSTI]

MODELLING THE VERTICAL WIND SPEED AND TURBULENCE INTENSITY PROFILES AT PROSPECTIVE OFFSHORE WIND for conditions important for offshore wind energy utilisation are compared and tested: Four models tested with data from the offshore field measurement Rødsand by extrapolating the measured 10 m wind

Heinemann, Detlev

3

Dynamic Response of Floating Wind Turbines.  

E-Print Network [OSTI]

?? In this thesis the extreme values of tension in the mooring lines on Hywind Demo is investigated. Hywind Demo is a floating wind turbine… (more)

Neuenkirchen Godø, Sjur

2013-01-01T23:59:59.000Z

4

Distributed Array of GPS Receivers for 3D Wind Profile Determination in Wind Farms  

E-Print Network [OSTI]

Distributed Array of GPS Receivers for 3D Wind Profile Determination in Wind Farms Derek Chen to pursue further graduate studies. His research interests are in autonomous systems, remote sensing presentation awards at ION GNSS conferences. ABSTRACT Wind energy is currently one of the fastest growing

Gao, Grace Xingxin

5

Models of Forbidden Line Emission Profiles from Axisymmetric Stellar Winds  

E-Print Network [OSTI]

A number of strong infrared forbidden lines have been observed in several evolved Wolf-Rayet star winds, and these are important for deriving metal abundances and testing stellar evolution models. In addition, because these optically thin lines form at large radius in the wind, their resolved profiles carry an imprint of the asymptotic structure of the wind flow. This work presents model forbidden line profile shapes formed in axisymmetric winds. It is well-known that an optically thin emission line formed in a spherical wind expanding at constant velocity yields a flat-topped emission profile shape. Simulated forbidden lines are produced for a model stellar wind with an axisymmetric density distribution that treats the latitudinal ionization self-consistently and examines the influence of the ion stage on the profile shape. The resulting line profiles are symmetric about line centre. Within a given atomic species, profile shapes can vary between centrally peaked, doubly peaked, and approximately flat-topped in appearance depending on the ion stage (relative to the dominant ion) and viewing inclination. Although application to Wolf-Rayet star winds is emphasized, the concepts are also relevant to other classes of hot stars such as luminous blue variables and Be/B[e] stars.

Richard Ignace; Adam Brimeyer

2006-05-10T23:59:59.000Z

6

Theoretical X-ray Line Profiles from Colliding Wind Binaries  

E-Print Network [OSTI]

We present theoretical X-ray line profiles from a range of model colliding wind systems. In particular, we investigate the effects of varying the stellar mass-loss rates, the wind speeds, and the viewing orientation. We find that a wide range of theoretical line profile shapes is possible, varying with orbital inclination and phase. At or near conjunction, the lines have approximately Gaussian profiles, with small widths (HWHM ~ 0.1 v_infty) and definite blue- or redshifts (depending on whether the star with the weaker wind is in front or behind). When the system is viewed at quadrature, the lines are generally much broader (HWHM ~ v_infty), flat-topped and unshifted. Local absorption can have a major effect on the observed profiles - in systems with mass-loss rates of a few times 10^{-6} Msol/yr the lower energy lines (E wind of the primary. The orbital variation ...

Henley, D B; Pittard, J M

2003-01-01T23:59:59.000Z

7

Doppler Radar Wind Profiles Iwan Holleman (holleman@knmi.nl)  

E-Print Network [OSTI]

is required before it can be presented to users or assimilated into numerical weather prediction (NWP) models Institute (KNMI), The Netherlands ABSTRACT Doppler weather radars can be employed to determine wind profiles profiles has been performed at KNMI. The verification results indicate that weather radars can provide high

Stoffelen, Ad

8

Second Wind Sonic Wind Profiler: Cooperative Research and Development Final Report, CRADA number CRD-08-00297  

SciTech Connect (OSTI)

Second Wind will deploy their Triton Sonic Wind Profiler at the National Wind Technology Center for the purposes of verification with measurements made by the NWTC 80 meter Meteorological tower.

Johnson, J. A.

2010-07-01T23:59:59.000Z

9

Doppler Lidar–Based Wind-Profile Measurement System for Offshore Wind-Energy and Other Marine Boundary Layer Applications  

Science Journals Connector (OSTI)

Accurate measurement of wind speed profiles aloft in the marine boundary layer is a difficult challenge. The development of offshore wind energy requires accurate information on wind speeds above the surface at least at the levels occupied by ...

Yelena L. Pichugina; Robert M. Banta; W. Alan Brewer; Scott P. Sandberg; R. Michael Hardesty

2012-02-01T23:59:59.000Z

10

Theoretical X-ray Line Profiles from Colliding Wind Binaries  

E-Print Network [OSTI]

We present theoretical X-ray line profiles from a range of model colliding wind systems. In particular, we investigate the effects of varying the stellar mass-loss rates, the wind speeds, and the viewing orientation. We find that a wide range of theoretical line profile shapes is possible, varying with orbital inclination and phase. At or near conjunction, the lines have approximately Gaussian profiles, with small widths (HWHM ~ 0.1 v_\\infty) and definite blue- or redshifts (depending on whether the star with the weaker wind is in front or behind). When the system is viewed at quadrature, the lines are generally much broader (HWHM ~ v_\\infty), flat-topped and unshifted. Local absorption can have a major effect on the observed profiles - in systems with mass-loss rates of a few times 10^{-6} Msol/yr the lower energy lines (E wind of the primary. The orbital variation of the line widths and shifts is reduced in a low inclination binary. The extreme case is a binary with i = 0 degrees, for which we would expect no line profile variation.

D. B. Henley; I. R. Stevens; J. M. Pittard

2003-06-23T23:59:59.000Z

11

[NeII] emission line profiles from photoevaporative disc winds  

E-Print Network [OSTI]

I model profiles of the [NeII] forbidden emission line at 12.81um, emitted by photoevaporative winds from discs around young, solar-mass stars. The predicted line luminosities (~ 1E-6 Lsun) are consistent with recent data, and the line profiles vary significantly with disc inclination. Edge-on discs show broad (30-40km/s) double-peaked profiles, due to the rotation of the disc, while in face-on discs the structure of the wind results in a narrower line (~10km/s) and a significant blue-shift (5-10km/s). These results suggest that observations of [NeII] line profiles can provide a direct test of models of protoplanetary disc photoevaporation.

R. D. Alexander

2008-09-01T23:59:59.000Z

12

915-MHz Radar Wind Profiler (915RWP) Handbook  

SciTech Connect (OSTI)

The 915 MHz radar wind profiler/radio acoustic sounding system (RWP/RASS) measures wind profiles and backscattered signal strength between (nominally) 0.1 km and 5 km and virtual temperature profiles between 0.1 km and 2.5 km. It operates by transmitting electromagnetic energy into the atmosphere and measuring the strength and frequency of backscattered energy. Virtual temperatures are recovered by transmitting an acoustic signal vertically and measuring the electromagnetic energy scattered from the acoustic wavefront. Because the propagation speed of the acoustic wave is proportional to the square root of the virtual temperature of the air, the virtual temperature can be recovered by measuring the Doppler shift of the scattered electromagnetic wave.

Coulter, R

2005-01-01T23:59:59.000Z

13

CFD Numerical Simulation of Vortex-Induced Vibration of a Stay Cable under a Wind Profile  

Science Journals Connector (OSTI)

VIV (Vortex-induced vibration) of a stay cable subjected to a wind profile is numerically simulated through combining CFD ... numerical model. Under a profile of mean wind speed, unsteady aerodynamic lift coeffic...

Wenli Chen; Hui Li

2009-01-01T23:59:59.000Z

14

Influence of Thermal Stratification on Wind Profiles for Heights up to 140 m  

E-Print Network [OSTI]

.energiemeteorologie.de The vertical wind speed profile has to be know for many wind power applications. Although the large effect speeds are not measured or predicted in the hubheight of the wind turbine. For the vertical trans stratification of the boundary layer has also an important influence on the vertical wind speed profile. Only

Heinemann, Detlev

15

Window Daylighting Demo  

Broader source: Energy.gov (indexed) [DOE]

Window Daylighting Demo: Window Daylighting Demo: Accelerated Deployment of Daylighting and Shading Systems Stephen Selkowitz Lawrence Berkeley National Laboratory seselkowitz@lbl.gov 510-486-5064 April 4, 2013 2 | Building Technologies Office eere.energy.gov Purpose & Objectives Problem Statement: * Façade has large energy impacts. Cooling and lighting average ~ 40% of energy use in commercial buildings and often >50% in peak electric demand. * Many glazing/shading/daylighting options exist, but selecting the "best" solution is

16

Window Daylighting Demo  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Window Daylighting Demo: Window Daylighting Demo: Accelerated Deployment of Daylighting and Shading Systems Stephen Selkowitz Lawrence Berkeley National Laboratory seselkowitz@lbl.gov 510-486-5064 April 4, 2013 2 | Building Technologies Office eere.energy.gov Purpose & Objectives Problem Statement: * Façade has large energy impacts. Cooling and lighting average ~ 40% of energy use in commercial buildings and often >50% in peak electric demand. * Many glazing/shading/daylighting options exist, but selecting the "best" solution is

17

Quality Control and Verification of Weather Radar Wind Profiles IWAN HOLLEMAN  

E-Print Network [OSTI]

- tions of the vertical velocity, which is a sum of the vertical wind velocity and the hydrometeor fall. 1986). Profiles of wind speed and direction, hydrometeor fall speed, and divergence have been obtainedQuality Control and Verification of Weather Radar Wind Profiles IWAN HOLLEMAN Royal Netherlands

Stoffelen, Ad

18

ARM - Evaluation Product - Derived Wind Profiles from Doppler...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

the radial velocity data; the amplitude, phase and offset of the sinusoid determine the wind speed, wind direction and vertical velocity, respectively. The derived winds are...

19

Measurements of Wind Speed, Direction, and Vertical Profiles in an Evergreen Forest in Central Cambodia  

Science Journals Connector (OSTI)

The wind characteristics of speed, direction, and vertical profile were studied ... Thom Province, Cambodia. Three seasonal patterns of wind speeds and directions were identified. The first occurred ... , as well...

Koji Tamai; Akira Shimizu…

2007-01-01T23:59:59.000Z

20

Numerical simulation of wind resonance of a circular profile by means of the vortex element method  

Science Journals Connector (OSTI)

The problem regarding the numerical simulation of a circular profile motion in a ... element method is used. The phenomenon of wind resonance has been examined. The investigation has...

I. K. Marchevskii; O. I. Ivanov

2009-10-01T23:59:59.000Z

Note: This page contains sample records for the topic "wind profiler demo" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


21

Ris-PhD-Report Sensing the wind profile  

E-Print Network [OSTI]

for wind speed measurements performed at either sites. The wind speed measurements are averaged for several to scale the wind speed with the surface friction velocity, whereas at Horns Rev a new scaling is added deviate from the logarithmic wind prole, but agree better with the wind speed measurements. The length

22

Influences of offshore environmental conditions on wind shear profile parameters in Nantucket Sound  

E-Print Network [OSTI]

Influences of offshore environmental conditions on wind shear profile parameters in Nantucket Sound@ecs.umass.edu ABSTRACT Simultaneous wind resource and oceanographic data are available from an offshore monitoring tower how oceanographic data can be used to aid offshore wind resource assessment evaluations. This study

Massachusetts at Amherst, University of

23

Comparison of Wake Model Simulations with Offshore Wind Turbine Wake Profiles Measured by Sodar  

Science Journals Connector (OSTI)

This paper gives an evaluation of most of the commonly used models for predicting wind speed decrease (wake) downstream of a wind turbine. The evaluation is based on six experiments where free-stream and wake wind speed profiles were measured ...

R. J. Barthelmie; G. C. Larsen; S. T. Frandsen; L. Folkerts; K. Rados; S. C. Pryor; B. Lange; G. Schepers

2006-07-01T23:59:59.000Z

24

Impact of Wind Generation Variability on Voltage Profile of Radial Power Systems  

Science Journals Connector (OSTI)

This paper provides the results of a study conducted to assess the impacts of the "wind generation variability" on the voltage profile in a small-scale radial power system. The power network has been modeled using one of the well-known simulation programs ... Keywords: Wind Generation, Voltage Profile, Power Grids, Voltage Impacts, Minimum Singular Value, SSV index

M. O. Alruwaili; M. Y. Vaziri; S. Vadhva; S. Vaziri

2013-04-01T23:59:59.000Z

25

A wind profiler trajectory tool for air quality transport applications Allen B. White,1,2  

E-Print Network [OSTI]

A wind profiler trajectory tool for air quality transport applications Allen B. White,1,2 Christoph pollution meteorology. In several recent air quality field campaigns, networks of wind profiling Doppler the International Consortium for Research on Transport and Transformation air quality experiment conducted during

Goldstein, Allen

26

Security demo at Sunport October 13  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Security demo at Sunport Security demo at Sunport October 13 The tool distinguishes potential-threat liquids from the harmless shampoos and sodas a regular traveler might take...

27

Classification of Vertical Wind Speed Profiles Observed Above a Sloping Forest at Nighttime Using the Bulk Richardson Number  

Science Journals Connector (OSTI)

Wind speed profiles above a forest canopy relate to ... atmosphere. Many studies have reported that vertical wind speed profiles above a relatively flat forest can ... be classified by a stability index developed...

Hikaru Komatsu; Norifumi Hotta; Koichiro Kuraji…

2005-05-01T23:59:59.000Z

28

Merged and corrected 915 MHz Radar Wind Profiler moments  

DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

The radar wind profiler (RWP) present at the SGP central facility operates at 915 MHz and was reconfigured in early 2011, to collect key sets of measurements for precipitation and boundary layer studies. The RWP is configured to run in two main operating modes: a precipitation (PR) mode with frequent vertical observations and a boundary layer (BL) mode that is similar to what has been traditionally applied to RWPs. To address issues regarding saturation of the radar signal, range resolution and maximum range, the RWP PR mode is set to operate with two different pulse lengths, termed as short pulse (SP) and long pulse (LP). Please refer to the RWP handbook (Coulter, 2012) for further information. Data from the RWP PR-SP and PR-LP modes have been extensively used to study deep precipitating clouds, especially their dynamical structure as the RWP data does not suffer from signal attenuation during these conditions (Giangrande et al., 2013). Tridon et al. (2013) used the data collected during the Mid-latitude Continental Convective Cloud Experiment (MC3E) to improve the estimation of noise floor of the RWP recorded Doppler spectra.

Jonathan Helmus,Virendra Ghate, Frederic Tridon

29

Unexpected vertical wind speed profiles in the boundary layer over the southern North Sea  

Science Journals Connector (OSTI)

Abstract Shallow atmospheric internal boundary layers over the southern part of the North Sea are common. Analysis of one year of meteorological data from the FINO1 research platform in the German Bight reveals that vertical wind speed profiles frequently do not conform to the expected modified logarithmic profile of Monin–Obukhov similarity theory. The wind profiles are mostly characterized by local maxima or kinks within the first 100 m over the sea surface. The data reveals the most frequent occurrence of a single maximum, but multiple maxima are often present, and there are sometimes even reversed profiles with the wind speed decreasing with height. The expected modified logarithmic profile occurs for a minority of cases. The evidence suggests the frequent presence of internal boundary layers that propagate from coastal land masses that surround the North Sea. A census of vertical wind speed profiles is presented that shows how different inflection states are linked with wind speed and atmospheric stability. The kinks are most prevalent in the upper part of the measurement range near the 100 m hub height of modern offshore the wind turbines, so that internal boundary layers represent a possible concern for the offshore wind energy industry in the North Sea region.

Anthony J. Kettle

2014-01-01T23:59:59.000Z

30

Estimation of sector roughness lengths and the effect on prediction of the vertical wind speed profile  

Science Journals Connector (OSTI)

An estimate of roughness length is required by some atmospheric models and is also used in the logarithmic profile to determine the increase of wind speed with height under neutral conditions. The choice ... thei...

R. J. Barthelmie; J. P. Palutikof; T. D. Davies

1993-10-01T23:59:59.000Z

31

Impact of airborne Doppler wind lidar profiles on numerical simulations of a tropical cyclone  

E-Print Network [OSTI]

Click Here for Full Article Impact of airborne Doppler wind lidar profiles on numerical simulations Regional Campaign (TPARC) field experiment in 2008, an airborne Doppler wind lidar (DWL) was onboard the U measurements on the numerical simulation of Typhoon Nuri (2008) in its formation phase. With an advanced

Pu, Zhaoxia

32

An investigation into the contamination of WSR-88D VAD wind profile output by migrating birds  

E-Print Network [OSTI]

The VAD Wind Profile (VWP), a time-height display of winds computed by the National Weather Service's WSR-88D radar, is known on occasion to have errors at night during the fall and spring seasons. Several studies, such Haro and Gauthreaux (1998...

Schulze, Karl Werner

2004-09-30T23:59:59.000Z

33

The radial temperature profile of the solar wind John D. Richardson  

E-Print Network [OSTI]

The radial temperature profile of the solar wind John D. Richardson Center for Space Research, Massachusetts Institute of Technology, Cambridge, Massachusetts, USA Charles W. Smith Bartol Research Institute but do not account for the smaller scale (few AU) temperature variations. At 1 AU, the solar wind

Richardson, John

34

X-RAY EMISSION LINE PROFILES FROM WIND CLUMP BOW SHOCKS IN MASSIVE STARS  

SciTech Connect (OSTI)

The consequences of structured flows continue to be a pressing topic in relating spectral data to physical processes occurring in massive star winds. In a preceding paper, our group reported on hydrodynamic simulations of hypersonic flow past a rigid spherical clump to explore the structure of bow shocks that can form around wind clumps. Here we report on profiles of emission lines that arise from such bow shock morphologies. To compute emission line profiles, we adopt a two-component flow structure of wind and clumps using two 'beta' velocity laws. While individual bow shocks tend to generate double-horned emission line profiles, a group of bow shocks can lead to line profiles with a range of shapes with blueshifted peak emission that depends on the degree of X-ray photoabsorption by the interclump wind medium, the number of clump structures in the flow, and the radial distribution of the clumps. Using the two beta law prescription, the theoretical emission measure and temperature distribution throughout the wind can be derived. The emission measure tends to be power law, and the temperature distribution is broad in terms of wind velocity. Although restricted to the case of adiabatic cooling, our models highlight the influence of bow shock effects for hot plasma temperature and emission measure distributions in stellar winds and their impact on X-ray line profile shapes. Previous models have focused on geometrical considerations of the clumps and their distribution in the wind. Our results represent the first time that the temperature distribution of wind clump structures are explicitly and self-consistently accounted for in modeling X-ray line profile shapes for massive stars.

Ignace, R. [Department of Physics and Astronomy, East Tennessee State University, Johnson City, TN 37614 (United States); Waldron, W. L. [Eureka Scientific Inc., 2452 Delmer Street, Oakland, CA 94602 (United States); Cassinelli, J. P. [Department of Astronomy, University of Wisconsin-Madison, Madison, WI 53711 (United States); Burke, A. E., E-mail: ignace@etsu.edu, E-mail: wwaldron@satx.rr.com, E-mail: cassinelli@astro.wisc.edu, E-mail: burke.alexander@gmail.com [990 Washington Street 317, Dedham, MA 02026 (United States)

2012-05-01T23:59:59.000Z

35

Wind profile above the surface boundary layer S.-E. Gryning (1), E. Batchvarova (2) and B. Brmmer (3)  

E-Print Network [OSTI]

Wind profile above the surface boundary layer S.-E. Gryning (1), E. Batchvarova (2) and B. Brümmer in predictions of the wind profile in the lowest hundreds me- ters of the atmosphere, being connected to the general increase in height of structures such as bridges, high houses and wind turbines. The hub height

36

An Autonomous Doppler Sodar Wind Profiling System PHILIP S. ANDERSON, RUSSELL S. LADKIN, AND IAN A. RENFREW  

E-Print Network [OSTI]

An Autonomous Doppler Sodar Wind Profiling System PHILIP S. ANDERSON, RUSSELL S. LADKIN, AND IAN A form 27 September 2004) ABSTRACT An autonomous Doppler sodar wind profiling system has been designed panels, and two vertical axis wind generators, plus charging control and isolation circuitry. The sodar

Renfrew, Ian

37

Q. J. R. Meteorol. Soc. (2003), 129, pp. 30793098 doi: 10.1256/qj. Simulation of Wind Profiles from a Space-borne Doppler Wind Lidar  

E-Print Network [OSTI]

Q. J. R. Meteorol. Soc. (2003), 129, pp. 3079­3098 doi: 10.1256/qj. Simulation of Wind Profiles on numerical weather prediction and climate processes. This paper describes the simulation of Aeolus LOS wind from a Space-borne Doppler Wind Lidar By G.J. MARSEILLE and A. STOFFELEN KNMI, The Netherlands

Stoffelen, Ad

38

Energy Expenditure Estimation DEMO Application  

E-Print Network [OSTI]

of accelerometry. An average smart phone contains an inertial sensor and today we hardly leave our home without itEnergy Expenditure Estimation DEMO Application Bozidara Cvetkovi´c1,2 , Simon Kozina1,2 , Bostjan://www.mps.si Abstract. The paper presents two prototypes for the estimation of hu- man energy expenditure during normal

LuÂ?trek, Mitja

39

Concept of spinsonde for multi-cycle measurement of vertical wind profile of tropical cyclones  

E-Print Network [OSTI]

Tropical cyclones and cyclogenesis are active areas of research. Chute-operated dropsondes jointly developed by NASA and NCAR are capable of acquiring high resolution vertical wind profile of tropical cyclones. This paper proposes a chute-free vertical retardation technique (termed as spinsonde) that can accurately measure vertical wind profile. Unlike the expendable dropsondes, the spinsonde allows multi-cycle measurement to be performed within a single flight. Proof of principle is demonstrated using a simulation software and results indicate that the GPS ground speed correlates with the wind speeds to within +/-5 km/h. This technique reduces flying weight and increases payload capacity by eliminating bulky chutes. Maximum cruising speed (Vh) achieved by the spinsonde UAV is 372 km/h.

Poh, Chung-How

2014-01-01T23:59:59.000Z

40

Wind-wind collision in the eta Carinae binary system - III. The HeII 4686 line profile  

E-Print Network [OSTI]

We modeled the HeII 4686 line profiles observed in the eta Carinae binary system close to the 2003.5 spectroscopic event, assuming that they were formed in the shocked gas that flows at both sides of the contact surface formed by wind-wind collision. We used a constant flow velocity and added turbulence in the form of a gaussian velocity distribution. We allowed emission from both the primary and secondary shocks but introduced infinite opacity at the contact surface, implying that only the side of the contact cone visible to the observer contributed to the line profile. Using the orbital parameters of the binary system derived from the 7 mm light curve during the last spectroscopic event (Paper II) we were able to reproduce the line profiles obtained with the HST at different epochs, as well as the line mean velocities obtained with ground based telescopes. A very important feature of our model is that the line profile depends on the inclination of the orbital plane; we found that to explain the latitude dependent mean velocity of the line, scattered into the line of sight by the Homunculus, the orbit inclination should be close to 90 degrees, meaning that it does not lie in the Homunculus equatorial plane, as usually assumed. This inclination, together with the relative position of the stars during the spectroscopic events, allowed us to explain most of the observational features, like the variation of the Purple Haze with the orbital phase, and to conciliate the X-ray absorption with the postulated shell effect used to explain the optical and UV light curves.

Z. Abraham; D. Falceta-Goncalves

2007-03-27T23:59:59.000Z

Note: This page contains sample records for the topic "wind profiler demo" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


41

A study of clear-air turbulence from detailed wind profiles over Cape Kennedy, Florida  

E-Print Network [OSTI]

and Panofsky (oa. cit. ) derived a CAT Index (I) which is proportional to the energy of the vertical component of turbulence. This expression is given by 2 I = (AV) (I - Ri/Ri . ) where QV is the magnitude of the vector difference in wind velocity over a... and energy to be felt as CAT could be generated. They analyzed 17 FPS-16 radar/Jimsphere wind profiles under conditions of weak anticyclonic flow. From their analysis, they estimated a functional relationship between Ri and the thickness, L, of the layer...

Blackburn, James Harvey

2012-06-07T23:59:59.000Z

42

EV Project: Solar-Assisted Charging Demo  

Broader source: Energy.gov (indexed) [DOE]

Melissa Lapsa 2014 DOE Vehicle Technologies Office Review Presentation EV Project - Solar- Assisted Charging Demo VSS138 2014 U.S. DOE Hydrogen Program and Vehicle Technologies...

43

Computational fluid dynamics study of wind turbine blade profiles at low Reynolds numbers for various angles of attack  

Science Journals Connector (OSTI)

Airfoil data are rarely available for Angles Of Attack (AOA) over the entire range of ±180°. This is unfortunate for the wind turbine designers because wind turbine airfoils do operate over this entire range. In this paper an attempt is made to study the lift and drag forces on a wind turbine blade at various sections and the effect of angle of attack on these forces. Aerodynamic simulations of the steady flow past two-dimensional wind-turbine blade-profiles developed by the National Renewable Energy Laboratory (NREL) at low Reynolds number will be performed. The aerodynamic simulation will be performed using Computational Fluid Dynamics (CFD) techniques. The governing equations used in the simulations are the Reynolds-Average-Navier-Stokes (RANS) equations. The simulations at different wind speeds will be performed on the S809 and the S826 blade profiles. The S826 blade profile is considered in this study because it is the most suitable blade profile for the wind conditions in Egypt in the site of Gulf El-Zayt on the red sea. Lift and drag forces along with the angle of attack are the important parameters in a wind turbine system. These parameters determine the efficiency of the wind turbine. The lift and drag forces are computed over the entire range of AOA of ±180° at low Reynolds numbers. The results of the analysis showed that the AOA between 3° and 8° have high Lift/Drag ratio regardless of the wind speed and the blade profile. The numerical results are compared with wind tunnel measurements at the available limited range of the angle of attack. In addition the numerical results are compared with the results obtained from the equations developed by Viterna and Janetzke for deep stall. The comparisons showed that the used CFD code can accurately predict the aerodynamic loads on the wind-turbine blades.

2012-01-01T23:59:59.000Z

44

DEMO Project Goals | National Nuclear Security Administration  

National Nuclear Security Administration (NNSA)

DEMO Project Goals | National Nuclear Security Administration DEMO Project Goals | National Nuclear Security Administration Our Mission Managing the Stockpile Preventing Proliferation Powering the Nuclear Navy Emergency Response Recapitalizing Our Infrastructure Continuing Management Reform Countering Nuclear Terrorism About Us Our Programs Our History Who We Are Our Leadership Our Locations Budget Our Operations Media Room Congressional Testimony Fact Sheets Newsletters Press Releases Speeches Events Social Media Video Gallery Photo Gallery NNSA Archive Federal Employment Apply for Our Jobs Our Jobs Working at NNSA Blog DEMO Project Goals Home > About Us > Our Operations > Management and Budget > Human Resources > Pay-banding > DEMO Project Goals DEMO Project Goals The goals of this demonstration project are to Improve hiring by allowing NNSA to compete more effectively for high

45

Demo Links | National Nuclear Security Administration  

National Nuclear Security Administration (NNSA)

Demo Links | National Nuclear Security Administration Demo Links | National Nuclear Security Administration Our Mission Managing the Stockpile Preventing Proliferation Powering the Nuclear Navy Emergency Response Recapitalizing Our Infrastructure Continuing Management Reform Countering Nuclear Terrorism About Us Our Programs Our History Who We Are Our Leadership Our Locations Budget Our Operations Media Room Congressional Testimony Fact Sheets Newsletters Press Releases Speeches Events Social Media Video Gallery Photo Gallery NNSA Archive Federal Employment Apply for Our Jobs Our Jobs Working at NNSA Blog Demo Links Home > About Us > Our Operations > Management and Budget > Human Resources > Pay-banding > Demo Links Demo Links Federal Register Notices July 31, 2008: Federal Register Notice This is a link to a PDF document.

46

Four-Dimensional Assimilation of Multitime Wind Profiles over a Single Station and Numerical Simulation of a Mesoscale Convective  

E-Print Network [OSTI]

on the numerical simulation of the convective initiation and evolution. Besides the wind fields, the structureFour-Dimensional Assimilation of Multitime Wind Profiles over a Single Station and Numerical Simulation of a Mesoscale Convective System Observed during IHOP_2002 LEI ZHANG AND ZHAOXIA PU Department

Pu, Zhaoxia

47

Beyond ITER: Neutral beams for DEMO  

E-Print Network [OSTI]

In the development of magnetically confined fusion as an economically sustainable power source, ITER is currently under construction. Beyond ITER is the DEMO programme in which the physics and engineering aspects of a future fusion power plant will be demonstrated. DEMO will produce net electrical power. The DEMO programme will be outlined and the role of neutral beams for heating and current drive will be described. In particular, the importance of the efficiency of neutral beam systems in terms of injected neutral beam power compared to wallplug power will be discussed. Options for improving this efficiency including advanced neutralisers and energy recovery are discussed.

McAdams, R

2013-01-01T23:59:59.000Z

48

Impact of Increasing Distributed Wind Power and Wind Turbine Siting on Rural Distribution Feeder Voltage Profiles: Preprint  

SciTech Connect (OSTI)

Many favorable wind energy resources in North America are located in remote locations without direct access to the transmission grid. Building transmission lines to connect remotely-located wind power plants to large load centers has become a barrier to increasing wind power penetration in North America. By connecting utility-sized megawatt-scale wind turbines to the distribution system, wind power supplied to consumers could be increased greatly. However, the impact of including megawatt-scale wind turbines on distribution feeders needs to be studied. The work presented here examined the impact that siting and power output of megawatt-scale wind turbines have on distribution feeder voltage. This is the start of work to present a general guide to megawatt-scale wind turbine impact on the distribution feeder and finding the amount of wind power that can be added without adversely impacting the distribution feeder operation, reliability, and power quality.

Allen, A.; Zhang, Y. C.; Hodge, B. M.

2013-09-01T23:59:59.000Z

49

A Seven-Year Wind Profiler–Based Climatology of the Windward Barrier Jet along California’s Northern Sierra Nevada  

Science Journals Connector (OSTI)

This wind profiler–based study highlights key characteristics of the barrier jet along the windward slope of California’s Sierra Nevada. Between 2000 and 2007 roughly 10% of 100 000 hourly wind profiles, recorded at two sites, satisfied the ...

Paul J. Neiman; Ellen M. Sukovich; F. Martin Ralph; Mimi Hughes

2010-04-01T23:59:59.000Z

50

PSO (FU 2101) Ensemble-forecasts for wind power  

E-Print Network [OSTI]

PSO (FU 2101) Ensemble-forecasts for wind power Analysis of the Results of an On-line Wind Power Ensemble- forecasts for wind power (FU2101) a demo-application producing quantile forecasts of wind power correct) quantile forecasts of the wind power production are generated by the application. However

51

EFFECTS OF AN ACCRETION DISK WIND ON THE PROFILE OF THE BALMER EMISSION LINES FROM ACTIVE GALACTIC NUCLEI  

SciTech Connect (OSTI)

We explore the connection between active galactic nuclei (AGNs) with single- and double-peaked broad Balmer emission lines by using models dealing with radiative transfer effects through a disk wind. Our primary goal is to assess the applicability of the Murray and Chiang model by making an extensive and systematic comparison of the model predictions with data. In the process, we also verify the original derivation and evaluate the importance of general relativistic effects. As the optical depth through the emission layer increases, the peaks of a double-peaked profile move closer and eventually merge, producing a single peak. The properties of the emission line profile depend as sensitively on the geometric parameters of the line-emitting portion of the disk as they do on the disk-wind parameters. Using a parameter range that encompasses the expected characteristics of the broad-line regions in AGNs, we construct a database of model profiles and measure a set of diagnostic properties. Comparisons of the model profiles with emission lines from a subset of Sloan digital Sky Survey quasars show that observed lines are consistent with moderately large optical depth in the disk wind and a range of disk inclinations i {approx}< 45 Degree-Sign . Including relativistic effects is necessary to produce the asymmetries of observed line profiles.

Flohic, Helene M. L. G. [Departamento de Astronomia, Universidad de Chile, Camino El Observatorio, 1515, Las Condes, Santiago (Chile); Eracleous, Michael [Department of Astronomy and Astrophysics and Center for Gravitational Wave Physics, The Pennsylvania State University, 525 Davey Lab, University Park, PA 16802 (United States); Bogdanovic, Tamara, E-mail: flohic@das.uchile.cl, E-mail: mce@astro.psu.edu, E-mail: tamarab@astro.umd.edu [Department of Astronomy, University of Maryland, 1204 CSS Building 224, College Park, MD 20742 (United States)

2012-07-10T23:59:59.000Z

52

COMPARATIVE ASSESSMENT OF MATERIAL PERFORMANCE IN DEMO  

E-Print Network [OSTI]

for sufficient time. Reliable estimates of component lifetimes are an important part of power plant design The basic DEMO design used in the present study is a 1.8 GW device (2.2 GW total thermal power ­ including simulation models and capabilities to assess material performance under the neutron irradiation conditions

53

"MBUF Demo" "Mn Road Fee Test"  

E-Print Network [OSTI]

(40 mpg) Electric Vehicle (non-gas powered) State Tax * Federal Tax ** State Tax * Federal Tax"MBUF Demo" "Mn Road Fee Test" "IntelliDrive Connected Vehicles for Safety, Mobility and User Fee Overview Six Months In-Vehicle Data Collection Participant Recruited Equipment Deployed First Odometer

Minnesota, University of

54

Lidar-Measured Wind Profiles: The Missing Link in the Global Observing System  

Science Journals Connector (OSTI)

The three-dimensional global wind field is the most important remaining measurement needed to accurately assess the dynamics of the atmosphere. Wind information in the tropics, high latitudes, and stratosphere is particularly deficient. Furthermore, only ...

Wayman E. Baker; Robert Atlas; Carla Cardinali; Amy Clement; George D. Emmitt; Bruce M. Gentry; R. Michael Hardesty; Erland Källén; Michael J. Kavaya; Rolf Langland; Zaizhong Ma; Michiko Masutani; Will McCarty; R. Bradley Pierce; Zhaoxia Pu; Lars Peter Riishojgaard; James Ryan; Sara Tucker; Martin Weissmann; James G. Yoe

2014-04-01T23:59:59.000Z

55

Combining a monostatic sodar with a radar wind profiler and RASS in a power plant pollution study  

SciTech Connect (OSTI)

A single-beam monostatic sodar, radar wind profiler, radio acoustic sounding system (RASS), and in situ sensors mounted on a 100-m tower were used to acquire meteorological data in the vicinity of a coal burning power plant in a northern Thailand valley. These data were used to examine the atmospheric processes that are responsible for fumigation of high concentrations of sulfur dioxide to the surface on a near daily basis during the cool season.

Crescenti, G.H.; Templeman, B.D.; Gaynor, J.E.

1995-05-01T23:59:59.000Z

56

A Study on the Effect of Nudging on Long-Term Boundary Layer Profiles of Wind and Weibull Distribution Parameters in a Rural Coastal Area  

Science Journals Connector (OSTI)

By use of 1 yr of measurements performed with a wind lidar up to 600-m height, in combination with a tall meteorological tower, the impact of nudging on the simulated wind profile at a flat coastal site (Høvsøre) in western Denmark using the ...

S.-E. Gryning; E. Batchvarova; R. Floors

2013-05-01T23:59:59.000Z

57

Y-12 demos former utilities and maintenance facility | National...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

demos former utilities and maintenance facility | National Nuclear Security Administration Facebook Twitter Youtube Flickr RSS People Mission Managing the Stockpile Preventing...

58

Assimilation of wind profiler observations and its impact on three-dimensional transport of ozone over the Southeast Korean Peninsula  

Science Journals Connector (OSTI)

Abstract In order to investigate the impact of data assimilation on the assessment of ozone concentration in inland regions in the eastern area of the Korean Peninsula, several numerical experiments have been carried out using the Weather Research and Forecasting (WRF) model to estimate atmospheric circulations and the Community Multiscale Air Quality (CMAQ) model to assess air quality. Observations of wind that are assimilated into the modeling system are obtained from a wind profiler located at Changwon (CW), which is an urbanized coastal region in the Korean Peninsula. The simulated wind and temperature that is related to a well-developed sea breeze circulation are more consistent with observations in the experiment with dada assimilation than that without the assimilation. The ozone concentrations at both the coastal area of CW and the inland region of DG are well reproduced in the simulation with application of profiler data assimilation. Results from experiments without data assimilation are less realistic than that from the experiment with data assimilation. However, the improvement in simulation of meteorological variables and ozone concentration due to data assimilation is greater in the inland area than in the coastal area, where the wind profiler is located. The ozone concentration in CW changes only over a limited area and below the altitude of 1 km with a maximum change of 25 ppb. In contrast, the simulated ozone concentration in DG has been improved from the ground to upper levels of the planetary boundary layer (PBL), despite the fact that the observations are collected and assimilated into the model at the coastal region. Based on the results of process analysis, we find that the horizontal and vertical transportation of ozone related to the sea-breeze is more important than the local contribution of chemical production in determining the ozone concentration over the inland area. Therefore, observations of wind profiles in the coastal area and assimilation of these observations into the modeling system are important in our modeling study to assess the ozone concentration in inland areas. The assimilation of observations can greatly improve the model performance in both circulation simulation and ozone concentration simulation.

Soon-Young Park; Soon-Hwan Lee; Hwa Woon Lee

2014-01-01T23:59:59.000Z

59

X-RAY EMISSION-LINE PROFILE MODELING OF O STARS: FITTING A SPHERICALLY SYMMETRIC ANALYTIC WIND-SHOCK MODEL TO THE CHANDRA SPECTRUM OF PUPPIS  

E-Print Network [OSTI]

X-RAY EMISSION-LINE PROFILE MODELING OF O STARS: FITTING A SPHERICALLY SYMMETRIC ANALYTIC WIND Received 2002 November 22; accepted 2003 March 17 ABSTRACT X-ray emission-line profiles provide the most. INTRODUCTION The nature of the copious soft X-ray emission from hot stars has been a long-standing controversy

Cohen, David

60

The Cambridge University Multimedia Document Retrieval Demo System  

E-Print Network [OSTI]

The Cambridge University Multimedia Document Retrieval Demo System A.Tuerk , S.E. Johnson , P University Multimedia Document Retrieval Demo System is a web based application that allows the user to query on text documents of various formats (e.g. html). Since there is an increasing amount of audio data

Drummond, Tom

Note: This page contains sample records for the topic "wind profiler demo" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


61

The Cambridge University Multimedia Document Retrieval Demo System  

E-Print Network [OSTI]

The Cambridge University Multimedia Document Retrieval Demo System A.Tuerk y , S.E. Johnson y , P Multimedia Document Retrieval Demo System is a web based application that allows the user to query a database documents of various formats (e.g. html). Since there is an increasing amount of audio data containing

Drummond, Tom

62

Fast wave current drive in DEMO  

SciTech Connect (OSTI)

The ability to non-inductively drive a large fraction of the toroidal plasma current in magnetically confined plasmas is an essential requirement for steady state fusion reactors such as DEMO. Besides neutral beam injection (NBI), electron-cyclotron resonance heating (ECRH) and lower hybrid wave heating (LH), ion-cyclotron resonance heating (ICRH) is a promising candidate to drive current, in particular at the high temperatures expected in fusion plasmas. In this paper, the current drive (CD) efficiencies calculated with coupled ICRF wave / CD numerical codes for the DEMO-1 design case (R{sub 0}=9m, B{sub 0}=6.8T, a{sub p}=2.25m) [1] are presented. It will be shown that although promising CD efficiencies can be obtained in the usual ICRF frequency domain (20-100MHz) by shifting the dominant ion-cyclotron absorption layers to the high-field side, operation at higher frequencies (100-300MHz) has a stronger CD potential, provided the parasitic RF power absorption of the alpha particles can be minimized.

Lerche, E.; Van Eestera, D.; Messiaen, A. [Association EURATOM-Belgian State, LPP-ERM/KMS, TEC partner, Brussels (Belgium); Franke, T. [Max-Planck-Institut für Plasmaphysik, EURATOM-Assoziation, Garching (Germany); Collaboration: EFDA-PPPT Contributors

2014-02-12T23:59:59.000Z

63

The Influence of Meridional Shear on Planetary Waves. Part 1: Nonsingular Wind Profiles  

Science Journals Connector (OSTI)

Using a simple separable model in which the mean wind U(y) is assumed to be a function of latitude only, those effects of latitudinal shear which do not depend on the vanishing of U(y) are examined for planetary waves in the middle atmosphere (...

John P. Boyd

1982-04-01T23:59:59.000Z

64

Evolution of pulsar high-energy pulse profiles due to geodetic precession in the striped wind model  

E-Print Network [OSTI]

Geodetic precession has been observed directly in the double pulsar system PSR J0737-3039. Its rate has even been measured and is in agreement with predictions of general relativity. Very recently, the double pulsar has been detected in X-rays and gamma-rays. This opens up the hope to observe geodetic precession in the high-energy pulse profile of this system. Unfortunately the geometric configuration of the binary renders unlikely any detection of such an effect. Nevertheless, this precession should be present in other relativistic binaries or double neutron star systems containing at least one X-ray or gamma-ray pulsar.}{In this paper we compute the variation of the high-energy pulse profile expected from this geodetic motion according to the striped wind model. We compare our results with two-pole caustic and outer gap emission patterns.}{We show that for a sufficient misalignment between the orbital angular momentum and the spin angular momentum, significant change in the pulse profile due to geodetic pre...

Petri, J

2014-01-01T23:59:59.000Z

65

Accretion disk wind in the AGN broad-line region: Spectroscopically resolved line profile variations in Mrk110  

E-Print Network [OSTI]

Detailed line profile variability studies of the narrow line Seyfert 1 galaxy Mrk110 are presented. We obtained the spectra in a variability campaign carried out with the 9.2m Hobby-Eberly Telescope at McDonald Observatory. The integrated Balmer and Helium (HeI,II) emission lines are delayed by 3 to 33 light days to the optical continuum variations respectively. The outer wings of the line profiles respond much faster to continuum variations than the central regions. The comparison of the observed profile variations with model calculations of different velocity fields indicates an accretion disk structure of the broad line emitting region in Mrk110. Comparing the velocity-delay maps of the different emission lines among each other a clear radial stratification in the BLR can be recognized. Furthermore, delays of the red line wings are slightly shorter than those of the blue wings. This indicates an accretion disk wind in the BLR of Mrk110. We determine a central black hole mass of M = $1.8\\cdot10^{7} M_{\\odot}$. Because of the poorly known inclination angle of the accretion disk this is a lower limit only.

W. Kollatschny

2003-06-19T23:59:59.000Z

66

Impact of High Wind Penetration on the Voltage Profile of Distribution Systems  

E-Print Network [OSTI]

that the inclusion of squirrel cage induction generator (SCIG) does not have a large influence on transient stability to the inability of induction generator to support the reactive power. So, the main objective of this study generation on the voltage profile in distribution systems have been presented. The analysis is carried out

Pota, Himanshu Roy

67

Diabatic wind speed profiles in coastal regions: Comparison of an internal boundary layer (IBL) model with observations  

Science Journals Connector (OSTI)

A model is presented to transform wind speed observations at a single height over sea ... of 100 m). Only moderate and strong winds from the sea are considered, which are particularly important for wind energy ap...

A. C. M. Beljaars; A. A. M. Holtslag; W. C. Turkenburg

1990-04-01T23:59:59.000Z

68

The Cambridge University Multimedia Document Retrieval Demo System  

E-Print Network [OSTI]

The Cambridge University Multimedia Document Retrieval Demo System A.Tuerky, S.E. Johnsony, P:==svr-www.eng.cam.ac.uk=research=projects=Multimedia Document Retrieval 1 System Description The CU-MDR Demo [3] is a web based application that allows the user-line. The system downloads the audio track of British and American news broadcasts from the Internet once a day

Drummond, Tom

69

The Cambridge University Multimedia Document Retrieval Demo System  

E-Print Network [OSTI]

The Cambridge University Multimedia Document Retrieval Demo System A.Tuerk, S.E. Johnson, P://svr-www.eng.cam.ac.uk/research/projects/Multimedia Document Retrieval 1 System Description The CU-MDR Demo [3] is a web based application that allows the user-line. The system downloads the audio track of British and American news broadcasts from the Internet once a day

Drummond, Tom

70

Progress in Developing the K-DEMO Device Configuration  

SciTech Connect (OSTI)

K-DEMO is being studied by South Korean researchers as a follow-on to ITER and the next step toward the construction of a commercial fusion power plant. The K-DEMO mission defines a staged approach targeting operation with an initial testing phase for plasma facing components and critical operating systems to be followed by a second phase which centers on upgrading the in-vessel components for operation at 200 to 600 MWe with a planned 70% availability.

Brown, Tom

2013-06-27T23:59:59.000Z

71

Analysis of mixing layer heights inferred from radiosonde, wind profiler, airborne lidar, airborne microwave temperature profiler, and in-situ aircraft data during the Texas 2000 air quality study in Houston, TX  

E-Print Network [OSTI]

by wind profilers at the Wharton (WH), Liberty (LB), Houston Southwest (HSW), Ellington (EL), and LaMarque (LM) sites.................................................................. 93 18 Skew-T of WH radiosonde data at 1100 UTC...), Houston Southwest (HSW), Ellington (EL), and LaMarque (LM) sites ....................................... 97 21 The ML height distribution at 1600 UTC around the city of Houston...

Smith, Christina Lynn

2005-08-29T23:59:59.000Z

72

National Geothermal Data System Demo 01-28-14 | Department of...  

Energy Savers [EERE]

National Geothermal Data System Demo 01-28-14 National Geothermal Data System Demo 01-28-14 ngds-webinar-azgs.pdf More Documents & Publications How to Utilize the National...

73

Demo of below ground site that once held the Plutonium Recycle...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Demo of below ground site that once held the Plutonium Recycle Test Reactor at Hanford Demo of below ground site that once held the Plutonium Recycle Test Reactor at Hanford...

74

System analysis study for Korean fusion DEMO reactor  

Science Journals Connector (OSTI)

A conceptual design study for a steady-state Korean fusion DEMO reactor (K-DEMO) has been initiated. Two peculiar features need to be noted. First, the major radius is designed to be just below 6.5 m, considering practical engineering feasibilities. But still, high magnetic field at the plasma center around 8 T is expected to be achieved by using current state-of-the-art high performance Nb3Sn strand technology. Second, a two-stage development plan is being considered. In the first stage, K-DEMO will demonstrate a net electricity generation but will also act as a component test facility. Then, after a major upgrade, K-DEMO is expected to show a net electric generation on the order of 300 MWe and the competitiveness in cost of electricity (COE). Feasibility of such a practical, near-future demonstration reactor is studied in this paper, based on a zero dimensional system analysis code study. It was shown that a net electric generation on the order of 300 MWe can be achieved below the optimistic ?N limit of 5. The elongation of K-DEMO is around 1.8 with single null configuration. Detailed optimization process and the resultant various plasma parameters are described.

Jun Ho Yeom; Keeman Kim; Young Seok Lee; Hyoung Chan Kim; Sangjun Oh; Kihak Im; Charles Kessel

2013-01-01T23:59:59.000Z

75

NREL: Transmission Grid Integration - Wind Integration Datasets  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Wind Integration Datasets The Wind Integration Datasets provide energy professionals with a consistent set of wind profiles for the eastern United States and the western United...

76

Cyprus Smart metering demo (Smart Grid Project) | Open Energy Information  

Open Energy Info (EERE)

Cyprus Smart metering demo (Smart Grid Project) Cyprus Smart metering demo (Smart Grid Project) Jump to: navigation, search Project Name Cyprus Smart metering demo Country Cyprus Coordinates 35.126411°, 33.429859° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":35.126411,"lon":33.429859,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

77

Estimated global ocean wind power potential from QuikSCAT observations, accounting for turbine characteristics and siting  

E-Print Network [OSTI]

observations, vertical wind speed profile estimation giventhe wind speed profile is reduced, increasing vertical windvertical wind shear with respect to surface layer stability. Wind speeds

Capps, Scott B; Zender, Charles S

2010-01-01T23:59:59.000Z

78

Wind Career Map: Resource List  

Broader source: Energy.gov [DOE]

The following resources were used in the development of the Wind Career Map, associated job profile information, or are potential resources for interested Wind Career Map viewers.

79

Cost effective path to DEMO University of Washington  

E-Print Network [OSTI]

1 Cost effective path to DEMO By Tom Jarboe University of Washington To Fusion Power Associates December 14, 2011 #12;2 Outline · Maximizing the development-cost benefit from ITER knowledge · Getting on cost effective path · Requirements of smaller scale experiment · Cost problems are helped

80

PUBLISHED VERSION Diagnostics for machine protection of DEMO  

E-Print Network [OSTI]

as Protection of Investment) addresses both the risks to plant (to avoid costly repair or replacementPUBLISHED VERSION Diagnostics for machine protection of DEMO Felton R © 2014 UNITED KINGDOM ATOMIC Reactor Diagnostics: Proceedings of the International Conference, 9-13 September 2013, Villa Monastero

Note: This page contains sample records for the topic "wind profiler demo" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


81

Demo Abstract: MARVEL: Multiple Antenna based Relative Vehicle Localizer  

E-Print Network [OSTI]

to install especially on existing vehicles and exhibit a tradeoff between accuracy and cost. Similarly, usingDemo Abstract: MARVEL: Multiple Antenna based Relative Vehicle Localizer Dong Li , Tarun Bansal , Zhixue Lu and Prasun Sinha Department of Computer Science and Engineering The Ohio State University

Sinha, Prasun

82

Demo 2: Integrated Communications for Underwater Operations By Dale Green  

E-Print Network [OSTI]

Demo 2: Integrated Communications for Underwater Operations By Dale Green Teledyne Benthos Inc. New forms of navigation aids for underwater vehicles are enabled through the use of acoustic communications for accomplishing these navigation functions simultaneously with a variety of communications functions. Each

Zhou, Shengli

83

Smart Wires Demo March 17, 2004 REVISED  

Broader source: Energy.gov (indexed) [DOE]

Intelligent Power Infrastructure Consortium Intelligent Power Infrastructure Consortium Smart Wires Dynamically Controllable Grid Assets Prof. Deepak Divan Associate Director, Strategic Energy Institute Director, Intelligent Power Infrastructure Consortium School of Electrical Engineering Georgia Institute of Technology 777 Atlantic Drive NW deepak.divan@ece.gatech.edu Atlanta, GA 2 Power Delivery - Major Challenge for Sustainable Energy * Wind at price parity with natural gas, retail price parity imminent for solar PV. Binding RPS mandates of 10-40% in 27 states. * To meet current reliability standards, new solar/wind plants need energy storage, back-up fossil plants & spinning reserve. * EVs require spinning reserve and back-up generation. * Excessive new T&D buildout with RPS and EVs to meet energy

84

Similarity Equations for Wind and Temperature Profiles in the Radix Layer, at the Bottom of the Convective Boundary Layer  

Science Journals Connector (OSTI)

In the middle of the convective boundary layer, also known as the mixed layer, is a relatively thick region where wind speed and potential temperature are nearly uniform with height. Below this uniform layer (UL), wind speed decreases to zero at ...

Edi Santoso; Roland Stull

2001-06-01T23:59:59.000Z

85

Optimal sizing and location of SVC devices for improvement of voltage profile in distribution network with dispersed photovoltaic and wind power plants  

Science Journals Connector (OSTI)

Abstract Intermittent power generation of wind turbines and photovoltaic plants creates voltage disturbances in power distribution networks which may not be acceptable to the consumers. To control the deviations of the nodal voltages, it is necessary to use fast dynamic control of the reactive power in the distribution network. Implementation of the power electronic devices, such as Static Var Compensator (SVC), enables effective dynamic state as well as a static state of the nodal voltage control in the distribution network. This paper analyzed optimal sizing and location of SVC devices by using genetic algorithm, to improve nodal voltages profile in a distribution network with dispersed photovoltaic and wind power plants. Practical application of the developed methodology was tested on an example of a real distribution network.

Aleksandar Savi?; Željko ?uriši?

2014-01-01T23:59:59.000Z

86

The Response of Wind-Wave Spectra to Changing Winds. Part I: Increasing Winds  

Science Journals Connector (OSTI)

Continuous time series of wind profiles and wind waves under growing conditions, recorded at Shirahama Oceanographic Tower Station and discussed by Kawai, Okada and Toba, have been reanalysed for this study of the response of one-dimensional wind-...

Yoshiaki Toba; Kozo Okada; Ian S. F. Jones

1988-09-01T23:59:59.000Z

87

Wind Energy Markets, 2. edition  

SciTech Connect (OSTI)

The report provides an overview of the global market for wind energy, including a concise look at wind energy development in key markets including installations, government incentives, and market trends. Topics covered include: an overview of wind energy including the history of wind energy production and the current market for wind energy; key business drivers of the wind energy market; barriers to the growth of wind energy; key wind energy trends and recent developments; the economics of wind energy, including cost, revenue, and government subsidy components; regional and national analyses of major wind energy markets; and, profiles of key wind turbine manufacturers.

NONE

2007-11-15T23:59:59.000Z

88

Analysis of Alongwind Tall Building Response to Transient Nonstationary Winds  

E-Print Network [OSTI]

where the mean wind speed is characterized by a time-invariant vertical profile and a single time of time varying mean wind speed, mean wind speed vertical profile, and spatial correlation of wind flows in terms of its unique mean wind speed vertical profile, rapid time varying mean wind speed

Chen, Xinzhong

89

Copy of FINAL SG Demo Project List 11 13 09-External.xls | Department...  

Office of Environmental Management (EM)

Copy of FINAL SG Demo Project List 11 13 09-External.xls More Documents & Publications Smart Grid Regional and Energy Storage Demonstration Projects: Awards Energy Storage...

90

E-Print Network 3.0 - ac transit demos Sample Search Results  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Streaming Application Summary: , United Kingdom Email: bocek--hecht--hausheer--stiller@ifi.uzh.ch, yehia@comp.lancs.ac.uk Abstract... --This demo shows the CompactPSH...

91

SunLine Expands Horizons with Fuel Cell Bus Demo. Hydrogen, Fuel...  

Broader source: Energy.gov (indexed) [DOE]

Expands Horizons with Fuel Cell Bus Demo. Hydrogen, Fuel Cells & Infrastructure Technologies Program, Fuel Cell Bus Demonstration Projects (Fact Sheet). SunLine Expands Horizons...

92

DOE Science Showcase - Wind Power  

Office of Scientific and Technical Information (OSTI)

DOE Science Showcase - Wind Power DOE Science Showcase - Wind Power Wind Powering America Wind Powering America is a nationwide initiative of the U.S. Department of Energy's Wind Program designed to educate, engage, and enable critical stakeholders to make informed decisions about how wind energy contributes to the U.S. electricity supply. Wind Power Research Results in DOE Databases IEA Wind Task 26: The Past and Future Cost of Wind Energy, Work Package 2, Energy Citations Database NREL Triples Previous Estimates of U.S. Wind Power Potential, Energy Citations Database Dynamic Models for Wind Turbines and Wind Power Plants, DOE Information Bridge 2012 ARPA-E Energy Innovation Summit: Profiling General Compression: A River of Wind, ScienceCinema, multimedia Solar and Wind Energy Resource Assessment (SWERA) Data from the

94

Pre-conceptual Design Assessment of DEMO Remote Maintenance  

E-Print Network [OSTI]

EDFA, as part of the Power Plant Physics and Technology programme, has been working on the pre-conceptual design of a Demonstration Power Plant (DEMO). As part of this programme, a review of the remote maintenance strategy considered maintenance solutions compatible with expected environmental conditions, whilst showing potential for meeting the plant availability targets. A key finding was that, for practical purposes, the expected radiation levels prohibit the use of complex remote handling operations to replace the first wall. In 2012/13, these remote maintenance activities were further extended, providing an insight into the requirements, constraints and challenges. In particular, the assessment of blanket and divertor maintenance, in light of the expected radiation conditions and availability, has elaborated the need for a very different approach from that of ITER. This activity has produced some very informative virtual reality simulations of the blanket segments and pipe removal that are exceptionally ...

Loving, A; Sykes, N; Iglesias, D; Coleman, M; Thomas, J; Harman, J; Fischer, U; Sanz, J; Siuko, M; Mittwollen, M; others,

2013-01-01T23:59:59.000Z

95

ARM - Instrument - wpdn  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

govInstrumentswpdn govInstrumentswpdn Documentation WPDN : XDC documentation ARM Data Discovery Browse Data Comments? We would love to hear from you! Send us a note below or call us at 1-888-ARM-DATA. Send Instrument : Wind Profiler Demo Network (WPDN) Instrument Categories Atmospheric Profiling General Overview Data from an array of wind profilers are provided from NOAA's Forecast Systems Laboratory (FSL) Demonstration Division . These data include wind profiles, spectral moments, RASS temperature profiles, GPS, and surface observations. Output Datastreams 06fslwpdnmet : Wind Profiler Demo Network (WPDN): 6-min meteorological data 06fslwpdnrass : Wind Profiler Demo Network (WPDN): 6-min RASS data 06wpdnmmts : Wind Profiler Demo Network (WPDN): 6-min wind moments 60fslwpdnmet : Wind Profiler Demo Network (WPDN): meteorology data,

96

Deputy Secretary Daniel Poneman's Remarks at demosEUROPA Event in Warsaw,  

Broader source: Energy.gov (indexed) [DOE]

demosEUROPA Event in demosEUROPA Event in Warsaw, Poland - As Prepared for Delivery Deputy Secretary Daniel Poneman's Remarks at demosEUROPA Event in Warsaw, Poland - As Prepared for Delivery September 28, 2011 - 12:00pm Addthis Thank you, Ambassador Feinstein, for the introduction. And thank you to demosEUROPA and President Pawel Swieboda for hosting today's event. We are here today to talk about the future - our collective future - and how we can work together to achieve our shared energy goals. I am reminded of the dramatic moments when the whole world was watching the Gdańsk shipyards. Now, we can look back at those events with the patina of historical inevitability, but at the time, the outcome was much less evident. As a global community, we watched this battle for freedom unfold

97

A Study on the Site Plot Plan and Building Schematics of a Fusion DEMO Plant  

Science Journals Connector (OSTI)

DEMO and Next-Step Facilities / Proceedings of the Twentieth Topical Meeting on the Technology of Fusion Energy (TOFE-2012) (Part 2) Nashville, Tennessee, August 27-31, 2012

Hyuck Jong Kim; Changwoo Park; Yong-su Kim; Gyunyoung Heo; Jong Kyung Kim; Chang-ho Shin

98

Cn2 and wind profiler method to quantify the frozen flow decay using wide-field laser guide stars adaptive optics  

E-Print Network [OSTI]

We use spatio-temporal cross-correlations of slopes from five Shack-Hartmann wavefront sensors to analyse the temporal evolution of the atmospheric turbulence layers at different altitudes. The focus is on the verification of the frozen flow assumption. The data is coming from the Gemini South Multi-Conjugate Adaptive Optics System (GeMS). First, the Cn2 and wind profiling technique is presented. This method provides useful information for the AO system operation such as the number of existing turbulence layers, their associated velocities, altitudes and strengths and also a mechanism to estimate the dome seeing contribution to the total turbulence. Next, by identifying the turbulence layers we show that it is possible to estimate the rate of decay in time of the correlation among turbulence measurements. We reduce on-sky data obtained during 2011, 2012 and 2013 campaigns and the first results suggest that the rate of temporal de-correlation can be expressed in terms of a single parameter that is independent ...

Guesalaga, Andrés; Cortes, Angela; Béchet, Clémentine; Guzmán, Dani

2014-01-01T23:59:59.000Z

99

Optimization of Sodar Wind Profile Measurements in Low-Humidity Climates at High Altitudes: Cooperative Research and Development Final Report, CRADA number CRD-07-00246  

SciTech Connect (OSTI)

The assessment of potential wind energy sites in the region of the U.S. from the Rocky Mountains westward.

Kelley, N.

2010-07-01T23:59:59.000Z

100

Wind shear for large wind turbine generators at selected tall tower sites  

SciTech Connect (OSTI)

The objective of the study described in this report is to examine the nature of wind shear profiles and their variability over the height of large horizontal-axis wind turbines and to provide information on wind shear relevant to the design and opertion of large wind turbines. Wind turbine fatigue life and power quality are related through the forcing functions on the blade to the shapes of the wind shear profiles and their fluctuations over the disk of rotation.

Elliott, D.L.

1984-04-01T23:59:59.000Z

Note: This page contains sample records for the topic "wind profiler demo" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


101

Current generation by helicons and lower hybrid waves in modern tokamaks and reactors ITER and DEMO. Scenarios, modeling and antennae  

SciTech Connect (OSTI)

The innovative concept and 3D full-wave code modeling the off-axis current drive by radio-frequency (RF) waves in large-scale tokamaks, ITER and DEMO, for steady-state operation with high efficiency is proposed. The scheme uses the helicon radiation (fast magnetosonic waves at high (20-40) ion cyclotron frequency harmonics) at frequencies of 500-700 MHz propagating in the outer regions of the plasmas with a rotational transform. It is expected that the current generated by helicons, in conjunction with the bootstrap current, ensure the maintenance of a given value of the total current in the stability margin q(0) {>=} 2 and q(a) {>=} 4, and will help to have regimes with a negative magnetic shear and internal transport barrier to ensure stability at high normalized plasma pressure {beta}{sub N} > 3 (the so-called advanced scenarios) of interest for the commercial reactor. Modeling with full-wave three-dimensional codes PSTELION and STELEC showed flexible control of the current profile in the reactor plasmas of ITER and DEMO, using multiple frequencies, the positions of the antennae and toroidal wave slow down. Also presented are the results of simulations of current generation by helicons in the DIII-D, T-15MD, and JT-60AS tokamaks. Commercially available continuous-wave klystrons of the MW/tube range are promising for commercial stationary fusion reactors. The compact antennae of the waveguide type are proposed, and an example of a possible RF system for today's tokamaks is given. The advantages of the scheme (partially tested at lower frequencies in tokamaks) are a significant decline in the role of parametric instabilities in the plasma periphery, the use of electrically strong resonator-waveguide type antennae, and substantially greater antenna-plasma coupling.

Vdovin, V. L., E-mail: vdov@nfi.kiae.ru [National Research Centre 'Kurchatov Institute,' (Russian Federation)

2013-02-15T23:59:59.000Z

102

Designed for: Ocean Observing Demo: A collaboration between  

E-Print Network [OSTI]

off of Fire Island, NY. The Wave Glider records data on the wind, water temperature and salinity pressure, temperature and sound velocity. The Wave Glider is an autonomous ocean observing platform

103

Call for Student Demos and Posters on Unmanned Aerial Systems AIAA workshop on "Airborne Networks and Communications"  

E-Print Network [OSTI]

Call for Student Demos and Posters on Unmanned Aerial Systems AIAA workshop on "Airborne Networks, this workshop will also include a session on student posters and demonstrations of unmanned aerial vehicles. Undergraduate and graduate students whose posters and demos are selected for presentation will be provided

Namuduri, Kamesh

104

Wind Blog | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

August 6, 2013 August 6, 2013 Our latest Infographic highlights key findings from the 2012 Wind Technologies Market Report. | Infographic by Sarah Gerrity. America's Wind Industry Reaches Record Highs Sharing key findings from two new Energy Department reports that highlight the record growth of America's wind industry. August 5, 2013 Wind Industry Soars to New Heights Watch the video as Jose Zayas, Director of the Wind and Water Power Technologies Office, highlights the latest wind industry trends in the 2012 Wind Technologies Market Report. August 16, 2012 Wind Energy In America: Supporting Our Manufacturers Profiling success stories of the American wind industry. August 14, 2012 A Banner Year for the U.S. Wind Industry

105

Prediction of wind speed profiles for short-term forecasting in the offshore environment R.J. Barthelmie and G. Giebel  

E-Print Network [OSTI]

in the forecast wind speed/power output might be anticipated using a directional rather than a constant bias for the calibration phase. A further advantage is that statistical techniques can predict power output directly rather than having to take the additional step of predicting power output from wind speed through the power

106

Plug-In Demo Charges up Clean Cities Coalitions | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

Plug-In Demo Charges up Clean Cities Coalitions Plug-In Demo Charges up Clean Cities Coalitions Plug-In Demo Charges up Clean Cities Coalitions January 27, 2011 - 4:07pm Addthis Dennis A. Smith Director, National Clean Cities The closest most people get to a vehicle before it is offered to the general public is seeing it on TV or at an auto show. But five fortunate Clean Cities coordinators were able to test Toyota's plug-in hybrid electric vehicle (PHEV) as part of the demonstration project for the PHEV Prius, which is expected to be released in 2012. Clean Cities is an initiative in the Department's Vehicle Technologies Program that is focused on reducing petroleum use in transportation - which makes this demonstration a perfect fit. A PHEV Prius can run for up to 13 miles on all-electric power before

107

Plug-In Demo Charges up Clean Cities Coalitions | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

Plug-In Demo Charges up Clean Cities Coalitions Plug-In Demo Charges up Clean Cities Coalitions Plug-In Demo Charges up Clean Cities Coalitions January 27, 2011 - 4:07pm Addthis Dennis A. Smith Director, National Clean Cities The closest most people get to a vehicle before it is offered to the general public is seeing it on TV or at an auto show. But five fortunate Clean Cities coordinators were able to test Toyota's plug-in hybrid electric vehicle (PHEV) as part of the demonstration project for the PHEV Prius, which is expected to be released in 2012. Clean Cities is an initiative in the Department's Vehicle Technologies Program that is focused on reducing petroleum use in transportation - which makes this demonstration a perfect fit. A PHEV Prius can run for up to 13 miles on all-electric power before

108

The Wind Integration National Dataset (WIND) toolkit (Presentation)  

SciTech Connect (OSTI)

Regional wind integration studies require detailed wind power output data at many locations to perform simulations of how the power system will operate under high penetration scenarios. The wind datasets that serve as inputs into the study must realistically reflect the ramping characteristics, spatial and temporal correlations, and capacity factors of the simulated wind plants, as well as being time synchronized with available load profiles.As described in this presentation, the WIND Toolkit fulfills these requirements by providing a state-of-the-art national (US) wind resource, power production and forecast dataset.

Caroline Draxl: NREL

2014-01-01T23:59:59.000Z

109

Wind derivatives: hedging wind risk:.  

E-Print Network [OSTI]

??Wind derivatives are financial contracts that can be used to hedge or mitigate wind risk. In this thesis, the focus was on pricing these wind… (more)

Hoyer, S.A.

2013-01-01T23:59:59.000Z

110

Global ocean wind power sensitivity to surface layer stability  

E-Print Network [OSTI]

observa- tions, vertical wind speed profile estimation givenspeed differences compared to over the Gulf Stream, 80 m wind power is relatively smaller because of reduced verticalvertical momentum transfer over the Gulf Stream and North Atlantic Current results in sub-logarithmic wind profiles, reduced 80 – 10 m wind speed

Capps, Scott B; Zender, Charles S

2009-01-01T23:59:59.000Z

111

Demo Abstract: Toward Data-driven Demand-Response Optimization in a Campus Microgrid  

E-Print Network [OSTI]

Demo Abstract: Toward Data-driven Demand-Response Optimization in a Campus Microgrid Yogesh Simmhan-driven demand response optimization (DR) in the USC campus microgrid, as part of the Los An- geles Smart Grid of this project is to investigate techniques for demand-response optimization (DR) ­ cur- tailing the electricity

Prasanna, Viktor K.

112

Importance to DEMO of the Quasi-Axisymmetric Extension of Tokamak Operating Space  

E-Print Network [OSTI]

1 Importance to DEMO of the Quasi-Axisymmetric Extension of Tokamak Operating Space Allen Boozer, Columbia University Quasi-axisymmetric (QA) shaping allows tokamak control that is not possible with pure, a conventional tokamak, to large while preserving the good trajectory confinement. Addresses a large fraction

Princeton Plasma Physics Laboratory

113

Demo Abstract: Wireless Sensor Network for Substation Monitoring: Design and Deployment  

E-Print Network [OSTI]

Demo Abstract: Wireless Sensor Network for Substation Monitoring: Design and Deployment Asis-Transmissions & Substations 9625 Research Drive Charlotte, NC 28262 {lvanderz,birodriguez} @epri.com Ralph McKosky, Joseph in a substation for monitoring the health of power subsystems such as circuit breakers, trans- formers

Nasipuri, Asis

114

MATLAB Resources 1. MATLAB Help: Video Tutorials/Demos on Specific Topics and Features  

E-Print Network [OSTI]

MATLAB Resources 1. MATLAB Help: Video Tutorials/Demos on Specific Topics and Features 2. MathWorks Website: Interactive MATLAB & Simulink Based Tutorials (http://www.mathworks.com/academia/student_center/tutorials/) Strongly Recommended: Interactive MATLAB Tutorial 3. MathWorks Recorded Webinars (http

Walker, Homer F.

115

Thermo-mechanical analysis of a DEMO divertor under the EFREMOV test conditions  

E-Print Network [OSTI]

Thermo-mechanical analysis of a DEMO divertor under the EFREMOV test conditions Igor Simonovski as a boundary condition in a thermo-mechanical analysis of the divertor. The analysis is performed for a number to Fusion Engineering and Design May 11, 2009 #12;Key words: thermo-mechanical analysis, divertor, He

Cizelj, Leon

116

Demo Abstract: ThermoSense: Thermal Array Sensor Networks in Building Management  

E-Print Network [OSTI]

the heating, cooling, ventilation and lighting of a building to optimize energy usage. Categories and Subject-Based Ap- plication Systems]: Real-time and embedded systems 1. INTRODUCTION Energy usage has increasedDemo Abstract: ThermoSense: Thermal Array Sensor Networks in Building Management Varick L. Erickson

Cerpa, Alberto E.

117

Live Demo: Spiking ratSLAM: Rat Hippocampus Cells in Spiking Neural Hardware  

E-Print Network [OSTI]

complex mazes and remember the location of home and food, rats take advantage a cells in the hippocampusLive Demo: Spiking ratSLAM: Rat Hippocampus Cells in Spiking Neural Hardware F. Galluppi l , J Abstract-We will demonstrate a model of rat hippocampus place, grid and Border cells implemented

Kuehnlenz, Kolja

118

Demo Abstract: Energy Transference for Sensornets Affan A. Syed Young Cho John Heidemann  

E-Print Network [OSTI]

Demo Abstract: Energy Transference for Sensornets Affan A. Syed Young Cho John Heidemann USC continuous monitoring, 24x7, at remote, inaccessible locations making energy man- agement a critical part of most sensornets. The sensornet research community has explored energy conservation and energy

Heidemann, John

119

Demo Abstract: Energy Transference for Sensornets ISI Technical Report ISI-TR-2010-669  

E-Print Network [OSTI]

Demo Abstract: Energy Transference for Sensornets ISI Technical Report ISI-TR-2010-669 November, inaccessible locations making energy man- agement a critical part of most sensornets. The sensornet research community has explored energy conservation and energy harvesting to address this problem of long-lived sen

Heidemann, John

120

Laboratory experiments as demos and projects in the underwater acoustics and sonar course  

Science Journals Connector (OSTI)

Underwater Acoustics and Sonar (SP411) is a 3?h course that is typically offered to Midshipmen in their senior year. General science majors take the course in the fall while the oceanography majors enroll in the spring. A sprinkling of physics electrical engineers ocean engineers and systems majors also populate the course (totaling ?110 students/yr). Since this course is offered without a lab the ‘‘in?class’’ experience has been enhanced with the development (over many years) of our demo carts which surround the classroom. Although Friday is our major ‘‘demo day ’’ demos are performed throughout the week. They motivate the students’ ‘‘out?of?class’’ experimental projects. Demos include: (a) waves on slinkies; (b) Fourier analysis of tones in noise homemade musical instruments; (c) harmonic synthesis; (d) receiver operating characteristics from processed signals in noise; (e) two?element and loudspeaker beam patterns; (f) sound speed versus temperature in water; (g) target strength versus angle of a model sub; (h) Ref. coef. from an Al/water interface; (i) PC?IMAT (interactive multisensor analysis training) simulations of array steering ray tracing active sonar propagation loss; and (j) FM detection and Doppler effects. Students get involved with the measurements have fun and their understanding of underwater sound is greatly enhanced.

Elizabeth L. Simmons; Murray S. Korman

1999-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "wind profiler demo" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


121

Depth profiling ambient noise in the deep ocean  

E-Print Network [OSTI]

al. , 2005). The vertical profile of wind speed over the seavertical directionality…………… Depth-dependence of wind speedVertical noise directional density function versus depth. 93 Measured and acoustically estimated wind speeds.

Barclay, David Readshaw

2011-01-01T23:59:59.000Z

122

Berkshire Wind Power Cooperative | Open Energy Information  

Open Energy Info (EERE)

Wind Power Cooperative Wind Power Cooperative Jump to: navigation, search Name Berkshire Wind Power Cooperative Place Holyoke, Massachusetts Sector Wind energy Product The Berkshire Wind Power Cooperative Corp. is a municipal cooperative of 14 Massachusetts municipal utilities and the Massachusetts Municipal Wholesale Electric Co. (MMWEC) invovled in the development of wind farms. References Berkshire Wind Power Cooperative[1] LinkedIn Connections CrunchBase Profile No CrunchBase profile. Create one now! This article is a stub. You can help OpenEI by expanding it. Berkshire Wind Power Cooperative is a company located in Holyoke, Massachusetts . References ↑ "Berkshire Wind Power Cooperative" Retrieved from "http://en.openei.org/w/index.php?title=Berkshire_Wind_Power_Cooperative&oldid=342679

123

Utility Wind Interest Group | Open Energy Information  

Open Energy Info (EERE)

Wind Interest Group Wind Interest Group Jump to: navigation, search Name Utility Wind Interest Group Place Reston, Virginia Zip VI 20195 Sector Wind energy Product The Utility Wind Interest Group (UWIG) is a non-profit corporation whose mission is to accelerate the appropriate integration of wind power into the electric system. References Utility Wind Interest Group[1] LinkedIn Connections CrunchBase Profile No CrunchBase profile. Create one now! This article is a stub. You can help OpenEI by expanding it. Utility Wind Interest Group is a company located in Reston, Virginia . References ↑ "Utility Wind Interest Group" Retrieved from "http://en.openei.org/w/index.php?title=Utility_Wind_Interest_Group&oldid=352690" Categories: Clean Energy Organizations

124

Alta Wind Energy Center | Open Energy Information  

Open Energy Info (EERE)

Alta Wind Energy Center Alta Wind Energy Center Address 10315 Oak Creek Road Place Mojave, California Zip 93501 Sector Wind energy Phone number 1-877-4WI-ND88 (1-877-494-6388) Website http://altawindenergycenter.co Region Southern CA Area References Alta Wind Energy Center[1] LinkedIn Connections CrunchBase Profile No CrunchBase profile. Create one now! The Alta Wind Energy Center (AWEC) is located in the heart of one of the most proven wind resources in the United States - the Tehachapi-Mojave Wind Resource Area. Terra-Gen is developing the AWEC, California's largest wind energy project, adjacent to existing wind projects between the towns of Mojave and Tehachapi. Due to a welcoming community and the participation of a diverse group of landowners (private and public, local and non-local,

125

AEP Wind Energy LLC | Open Energy Information  

Open Energy Info (EERE)

Wind Energy LLC Wind Energy LLC Jump to: navigation, search Name AEP Wind Energy LLC Place Dallas, Texas Zip 75266 1064 Sector Wind energy Product AEP Wind Energy LLC is a project developer in the wind industry. It is an affiliate of American Electric Power. References AEP Wind Energy LLC[1] LinkedIn Connections CrunchBase Profile No CrunchBase profile. Create one now! This article is a stub. You can help OpenEI by expanding it. AEP Wind Energy LLC is a company located in Dallas, Texas . References ↑ "AEP Wind Energy LLC" Retrieved from "http://en.openei.org/w/index.php?title=AEP_Wind_Energy_LLC&oldid=341822" Categories: Clean Energy Organizations Companies Organizations Stubs What links here Related changes Special pages Printable version Permanent link

126

Wind Mills and Transmission System Interaction.  

E-Print Network [OSTI]

??This thesis report focuses on different kinds of power system disturbances and their impact on voltage profile at the point of wind power connection. The… (more)

Akwarandu, John

2006-01-01T23:59:59.000Z

127

Physics analyses on the core plasma properties in the helical fusion DEMO reactor FFHR-d1  

Science Journals Connector (OSTI)

Physics assessments on magnetohydrodynamics equilibrium, neoclassical transport and alpha particle confinement have been carried out for the helical fusion DEMO reactor FFHR-d1, using radial profiles extrapolated from the Large Helical Device. Large Shafranov shift is foreseen in FFHR-d1 due to its high-beta property. This leads to deterioration in neoclassical transport and alpha particle confinement. Plasma position control using vertical magnetic field has been examined and shown to be effective for Shafranov shift mitigation. In particular, in the high-aspect-ratio configuration, it is possible to keep the magnetic surfaces similar to those in vacuum with high central beta of ~8% by applying a proper vertical magnetic field. As long as the Shafranov shift is mitigated, the neoclassical heat loss can be kept at a level compatible with the alpha heating power. The alpha particle loss can also be kept at a low level if the loss boundary of alpha particles is on the blanket surface and the plasma position control is properly applied. The lost positions of alpha particles are localized around the divertor region that is located behind the blanket in FFHR-d1.

J. Miyazawa; Y. Suzuki; S. Satake; R. Seki; Y. Masaoka; S. Murakami; M. Yokoyama; Y. Narushima; M. Nunami; T. Goto; C. Suzuki; I. Yamada; R. Sakamoto; H. Yamada; A. Sagara; the FFHR Design Group

2014-01-01T23:59:59.000Z

128

Fuxin Union Wind Power Co Ltd formerly known as Liaoning Zhangwu Xiehe Wind  

Open Energy Info (EERE)

Ltd formerly known as Liaoning Zhangwu Xiehe Wind Ltd formerly known as Liaoning Zhangwu Xiehe Wind Power Co Ltd Jump to: navigation, search Name Fuxin Union Wind Power Co Ltd (formerly known as Liaoning Zhangwu Xiehe Wind Power Co Ltd) Place Liaoning Province, China Sector Wind energy Product JV between CWP Development (a wholly-owned subsidiary of Wind Power) and Shenzhen KWC set up to develop, construct and operate wind power facilities. References Fuxin Union Wind Power Co Ltd (formerly known as Liaoning Zhangwu Xiehe Wind Power Co Ltd)[1] LinkedIn Connections CrunchBase Profile No CrunchBase profile. Create one now! This article is a stub. You can help OpenEI by expanding it. Fuxin Union Wind Power Co Ltd (formerly known as Liaoning Zhangwu Xiehe Wind Power Co Ltd) is a company located in Liaoning Province, China .

129

Datang Jilin Wind Power Stockholding Co Ltd Formerly Jilin Noble Wind Power  

Open Energy Info (EERE)

Stockholding Co Ltd Formerly Jilin Noble Wind Power Stockholding Co Ltd Formerly Jilin Noble Wind Power Stockholding Co Ltd Jump to: navigation, search Name Datang Jilin Wind Power Stockholding Co Ltd(Formerly Jilin Noble Wind Power Stockholding Co Ltd) Place Changchun, Jilin Province, China Sector Wind energy Product Wind farm developer. References Datang Jilin Wind Power Stockholding Co Ltd(Formerly Jilin Noble Wind Power Stockholding Co Ltd)[1] LinkedIn Connections CrunchBase Profile No CrunchBase profile. Create one now! This article is a stub. You can help OpenEI by expanding it. Datang Jilin Wind Power Stockholding Co Ltd(Formerly Jilin Noble Wind Power Stockholding Co Ltd) is a company located in Changchun, Jilin Province, China . References ↑ "[ Datang Jilin Wind Power Stockholding Co Ltd(Formerly Jilin

130

WIND ENERGY Wind Energ. (2014)  

E-Print Network [OSTI]

WIND ENERGY Wind Energ. (2014) Published online in Wiley Online Library (wileyonlinelibrary Correspondence M. Wächter, ForWind-Center for Wind Energy Research, Institute of Physics, Carl Von Ossietzky on the operation of wind energy converters (WECs) imposing different risks especially in terms of highly dynamic

Peinke, Joachim

131

Maglev Wind Turbine Technologies | Open Energy Information  

Open Energy Info (EERE)

Maglev Wind Turbine Technologies Maglev Wind Turbine Technologies Jump to: navigation, search Name Maglev Wind Turbine Technologies Place Sierra Vista, Arizona Zip 85635 Sector Wind energy Product The new company employs magnetic levitation (Maglev) technology in its wind turbines, which it says will have a longer life span, be cheaper to build, and produce 1GW of energy each. References Maglev Wind Turbine Technologies[1] LinkedIn Connections CrunchBase Profile No CrunchBase profile. Create one now! This article is a stub. You can help OpenEI by expanding it. Maglev Wind Turbine Technologies is a company located in Sierra Vista, Arizona . References ↑ "Maglev Wind Turbine Technologies" Retrieved from "http://en.openei.org/w/index.php?title=Maglev_Wind_Turbine_Technologies&oldid=348578"

132

CPV Wind Ventures LLC | Open Energy Information  

Open Energy Info (EERE)

CPV Wind Ventures LLC CPV Wind Ventures LLC Jump to: navigation, search Name CPV Wind Ventures LLC Place Silver Spring, Maryland Zip 20910 Sector Wind energy Product Wind power project developer. References CPV Wind Ventures LLC[1] LinkedIn Connections CrunchBase Profile No CrunchBase profile. Create one now! This article is a stub. You can help OpenEI by expanding it. CPV Wind Ventures LLC is a company located in Silver Spring, Maryland . References ↑ "CPV Wind Ventures LLC" Retrieved from "http://en.openei.org/w/index.php?title=CPV_Wind_Ventures_LLC&oldid=343959" Categories: Clean Energy Organizations Companies Organizations Stubs What links here Related changes Special pages Printable version Permanent link Browse properties 429 Throttled (bot load) Error 429 Throttled (bot load)

133

Padoma Wind Power LLC | Open Energy Information  

Open Energy Info (EERE)

Padoma Wind Power LLC Padoma Wind Power LLC Jump to: navigation, search Name Padoma Wind Power LLC Place La Jolla, California Zip 92037 Sector Wind energy Product A wind energy consulting and development company. References Padoma Wind Power LLC[1] LinkedIn Connections CrunchBase Profile No CrunchBase profile. Create one now! This article is a stub. You can help OpenEI by expanding it. Padoma Wind Power LLC is a company located in La Jolla, California . References ↑ "Padoma Wind Power LLC" Retrieved from "http://en.openei.org/w/index.php?title=Padoma_Wind_Power_LLC&oldid=349559" Categories: Clean Energy Organizations Companies Organizations Stubs What links here Related changes Special pages Printable version Permanent link Browse properties 429 Throttled (bot load)

134

Cowal Wind Energy Ltd | Open Energy Information  

Open Energy Info (EERE)

Cowal Wind Energy Ltd Cowal Wind Energy Ltd Jump to: navigation, search Name Cowal Wind Energy Ltd Place Flintshire, Wales, United Kingdom Zip CH7 4EW Sector Wind energy Product Wind Farm developer with its office in north Wales. References Cowal Wind Energy Ltd[1] LinkedIn Connections CrunchBase Profile No CrunchBase profile. Create one now! This article is a stub. You can help OpenEI by expanding it. Cowal Wind Energy Ltd is a company located in Flintshire, Wales, United Kingdom . References ↑ "Cowal Wind Energy Ltd" Retrieved from "http://en.openei.org/w/index.php?title=Cowal_Wind_Energy_Ltd&oldid=343949" Categories: Clean Energy Organizations Companies Organizations Stubs What links here Related changes Special pages Printable version Permanent link Browse properties

135

wind energy  

National Nuclear Security Administration (NNSA)

5%2A en Pantex to Become Wind Energy Research Center http:nnsa.energy.govfieldofficesnponpopressreleasespantex-become-wind-energy-research-center

136

Development of an object-oriented dynamics simulator for a LFR DEMO  

SciTech Connect (OSTI)

A control-oriented dynamics simulator for a Generation IV Lead-cooled Fast Reactor (LFR) demonstrator (DEMO) has been developed aimed at providing a flexible, simple and fast-running tool allowing to perform design-basis transient and stability analyses, and to lay the foundations for the study of the system control strategy. For such purposes, a model representing a compromise between accuracy and straightforwardness has been necessarily sought, and in this view an object-oriented approach based on the Modelica language has been adopted. The reactor primary and secondary systems have been implemented by assembling both component models already available in a specific thermal-hydraulic library, and ad hoc developed nuclear component models suitably modified according to the specific DEMO configuration. The resulting overall plant simulator, incorporating also the balance of plant, consists in the following essential parts: core, integrated steam generator/primary pump block, cold and hot legs, primary coolant cold pool, turbine, heat sink, secondary coolant pump. Afterwards, the reactor response to typical transient initiators has been investigated: feedwater mass flow rate and temperature enhancement, turbine admission valve coefficient variation, increase of primary coolant mass flow rate, and transient of overpower have been simulated; results have been compared with the outcomes of analogous analyses performed by employing a lumped-parameter DEMO plant model. (authors)

Ponciroli, R.; Bortot, S.; Lorenzi, S.; Cammi, A. [Politecnico di Milano, Dept. of Energy, CeSNEF-Nuclear Engineering Div., via Ponzio 34/3, 20133 Milano (Italy)

2012-07-01T23:59:59.000Z

137

Wind Structure in the Atmospheric Boundary Layer  

Science Journals Connector (OSTI)

13 May 1971 research-article Wind Structure in the Atmospheric Boundary Layer...semi-empirical laws for the variation of mean wind speed with height and for the statistical...provide some useful ordering of the mean wind profile characteristics in relation to...

1971-01-01T23:59:59.000Z

138

Offshore Wind Turbine Wakes Measured by Sodar  

Science Journals Connector (OSTI)

A ship-mounted sodar was used to measure wind turbine wakes in an offshore wind farm in Denmark. The wake magnitude and vertical extent were determined by measuring the wind speed profile behind an operating turbine, then shutting down the ...

R. J. Barthelmie; L. Folkerts; F. T. Ormel; P. Sanderhoff; P. J. Eecen; O. Stobbe; N. M. Nielsen

2003-04-01T23:59:59.000Z

139

HeWind Co Ltd ZheJiang Huayi Wind Energy Development | Open Energy  

Open Energy Info (EERE)

HeWind Co Ltd ZheJiang Huayi Wind Energy Development HeWind Co Ltd ZheJiang Huayi Wind Energy Development Jump to: navigation, search Name HeWind Co Ltd (ZheJiang Huayi Wind Energy Development) Place Yueqing, Zhejiang Province, China Zip 325600 Sector Wind energy Product A company that develops wind farm and produces wind turbines. References HeWind Co Ltd (ZheJiang Huayi Wind Energy Development)[1] LinkedIn Connections CrunchBase Profile No CrunchBase profile. Create one now! This article is a stub. You can help OpenEI by expanding it. HeWind Co Ltd (ZheJiang Huayi Wind Energy Development) is a company located in Yueqing, Zhejiang Province, China . References ↑ "HeWind Co Ltd (ZheJiang Huayi Wind Energy Development)" Retrieved from "http://en.openei.org/w/index.php?title=HeWind_Co_Ltd_ZheJiang_Huayi_Wind_Energy_Development&oldid=3465

140

Materials R&D for a timely DEMO: Key findings and recommendations of the EU Roadmap Materials Assessment Group  

Science Journals Connector (OSTI)

Abstract The findings of the EU Fusion Programme's ‘Materials Assessment Group’ (MAG), assessing readiness of Structural, Plasma Facing (PF) and High Heat Flux (HHF) materials for DEMO, are discussed. These are incorporated into the EU Fusion Power Roadmap [1], with a decision to construct DEMO in the early 2030s. The methodology uses project-based and systems-engineering approaches, the concept of Technology Readiness Levels, and considers lessons learned from Fission reactor material development. ‘Baseline’ materials are identified for each DEMO role, and the DEMO mission risks analysed from the known limitations, or unknown properties, associated with each baseline material. R&D programmes to address these risks are developed. The DEMO assessed has a phase I with a ‘starter blanket’: the blanket must withstand ?2 MW yr m?2 fusion neutron flux (equivalent to ?20 dpa front-wall steel damage). The baseline materials all have significant associated risks, so development of ‘Risk Mitigation Materials’ (RMM) is recommended. The R&D programme has parallel development of the baseline and RMM, up to ‘down-selection’ points to align with decisions on the DEMO blanket and divertor engineering definition. ITER licensing experience is used to refine the issues for materials nuclear testing, and arguments are developed to optimise scope of materials tests with fusion neutron (‘14 MeV’) spectra before DEMO design finalisation. Some 14  MeV testing is still essential, and the Roadmap requires deployment of a ?30 dpa (steels) testing capability by 2026. Programme optimisation by the pre-testing with fission neutrons on isotopically- or chemically-doped steels and with ion-beams is discussed along with the minimum 14 MeV testing programme, and the key role which fundamental and mission-oriented modelling can play in orienting the research.

Derek Stork; Pietro Agostini; Jean-Louis Boutard; Derek Buckthorpe; Eberhard Diegele; Sergei L. Dudarev; Colin English; Gianfranco Federici; Mark R. Gilbert; Sehila Gonzalez; Angel Ibarra; Christian Linsmeier; Antonella Li Puma; Gabriel Marbach; Lee W. Packer; Baldev Raj; Michael Rieth; Min Quang Tran; David J. Ward; Steven J. Zinkle

2014-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "wind profiler demo" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


141

Wind Energy  

Broader source: Energy.gov (indexed) [DOE]

FUPWG Meeting FUPWG Meeting NREL is a national laboratory of the U.S. Department of Energy Office of Energy Efficiency and Renewable Energy operated by the Alliance for Sustainable Energy, LLC Robi Robichaud November 18, 2009 Topics Introduction Review of the Current Wind Market Drivers for Wind Development Siting g Issues Wind Resource Assessment Wind Characteristics Wind Power Potential Basic Wind Turbine Theory Basic Wind Turbine Theory Types of Wind Turbines Facts About Wind Siting Facts About Wind Siting Wind Performance 1. United States: MW 1 9 8 2 1 9 8 3 1 9 8 4 1 9 8 5 1 9 8 6 1 9 8 7 1 9 8 8 1 9 8 9 1 9 9 0 1 9 9 1 1 9 9 2 1 9 9 3 1 9 9 4 1 9 9 5 1 9 9 6 1 9 9 7 1 9 9 8 1 9 9 9 2 0 0 0 2 0 0 1 2 0 0 2 2 0 0 3 2 0 0 4 2 0 0 5 2 0 0 6 2 0 0 7 2 0 0 8 Current Status of the Wind Industry Total Global Installed Wind Capacity Total Global Installed Wind Capacity Total Global Installed Wind Capacity

142

Offshore winds using remote sensing techniques  

Science Journals Connector (OSTI)

Ground-based remote sensing instruments can observe winds at different levels in the atmosphere where the wind characteristics change with height: the range of heights where modern turbine rotors are operating. A six-month wind assessment campaign has been made with a LiDAR (Light Detection And Ranging) and a SoDAR (Sound Detection and Ranging) on the transformer/platform of the world's largest offshore wind farm located at the West coast of Denmark to evaluate their ability to observe offshore winds. The high homogeneity and low turbulence levels registered allow the comparison of LiDAR and SoDAR with measurements from cups on masts surrounding the wind farm showing good agreement for both the mean wind speed and the longitudinal component of turbulence. An extension of mean wind speed profiles from cup measurements on masts with LiDAR observations results in a good match for the free sectors at different wind speeds. The log-linear profile is fitted to the extended profiles (averaged over all stabilities and roughness lengths) and the deviations are small. Extended profiles of turbulence intensity are also shown for different wind speeds up to 161 m. Friction velocities and roughness lengths calculated from the fitted log-linear profile are compared with the Charnock model which seems to overestimate the sea roughness for the free sectors.

Alfredo Peña; Charlotte Bay Hasager; Sven-Erik Gryning; Michael Courtney; Ioannis Antoniou; Torben Mikkelsen; Paul Sørensen

2007-01-01T23:59:59.000Z

143

High frequency fast wave current drive for DEMO  

SciTech Connect (OSTI)

A steady-state tokamak reactor (SSTR) requires a high efficiency current drive system, from plug to driven mega-amps. RF systems working in the ion-cyclotron range of frequencies (ICRF) have high efficiency from plug to antenna but a limited current drive (CD) efficiency and centrally peaked CD profiles. The latter feature is not adequate for a SSTR where the current should be sufficiently broad to keep the central safety factor (possibly significantly) above 1. In addition, the fact that the fast wave (FW) is evanescent at the edge limits coupling, requiring high voltage operation, which makes the system dependent on plasma edge properties and prone to arcing, reducing its reliability. A possible way to overcome these weaknesses is to operate at higher frequency (10 times or more the cyclotron frequency). The advantages are: (1) The coupling can be much better (waves propagate in vacuum) if the parallel refractive index n{sub ||} is kept below one, (2) The FW group velocity tends to align to the magnetic field, so the power circumnavigates the magnetic axis and can drive off-axis current, (3) Due to the latter property, n{sub ||} can be upshifted along the wave propagation path, allowing low n{sub ||} launch (hence good coupling, large CD efficiency) with ultimately good electron absorption (which requires higher n{sub ||}. Note however that the n{sub ||} upshift is a self-organized feature, that electron absorption is in competition with {alpha}-particle absorption and that uncoupling of the FW from the lower hybrid resonance at the edge requires n{sub ||} slightly above one. The latter possibly counterproductive features might complicate the picture. The different aspects of this potentially attractive off-axis FWCD scheme are discussed.

Koch, R.; Lerche, E.; Van Eester, D. [LPP/ERM-KMS, Association 'EURATOM-Belgian State', 1000 Brussels, TEC Partner (Belgium); Nightingale, M. [Culham Centre for Fusion Energy, Abingdon OX14 3DB (United Kingdom)

2011-12-23T23:59:59.000Z

144

TradeWind Energy LLC | Open Energy Information  

Open Energy Info (EERE)

TradeWind Energy LLC TradeWind Energy LLC Jump to: navigation, search Name TradeWind Energy LLC Place Lenexa, Kansas Zip 66214 Sector Renewable Energy, Wind energy Product TradeWind Energy is a developer of renewable energy in Kansas and the surrounding midwestern states. It develops large-scale wind energy projects. Enel North America is a strategic partner for TradeWind and has taken an equity stake in the company. References TradeWind Energy LLC[1] LinkedIn Connections CrunchBase Profile No CrunchBase profile. Create one now! This article is a stub. You can help OpenEI by expanding it. TradeWind Energy LLC is a company located in Lenexa, Kansas . References ↑ "TradeWind Energy LLC" Retrieved from "http://en.openei.org/w/index.php?title=TradeWind_Energy_LLC&oldid=352361

145

Modelling of offshore wind turbine wakes with the wind farm program FLaP  

E-Print Network [OSTI]

Modelling of offshore wind turbine wakes with the wind farm program FLaP Bernhard Lange(1) , Hans been extended to improve the description of wake development in offshore conditions, especially the low from the Danish offshore wind farm Vindeby. Vertical wake profiles and mean turbulence intensities

Heinemann, Detlev

146

Wind Mills  

Science Journals Connector (OSTI)

Over 5,000 years ago, the ancient Egyptians used wind to sail ships on the Nile River. While the proliferation of water mills was in full swing, windmills appeared to harness more inanimate energy by employing wind

J. S. Rao

2011-01-01T23:59:59.000Z

147

Wind Farm  

Office of Energy Efficiency and Renewable Energy (EERE)

The wind farm in Greensburg, Kansas, was completed in spring 2010, and consists of ten 1.25 megawatt (MW) wind turbines that supply enough electricity to power every house, business, and municipal...

148

Wind Power  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Wind Power As the accompanying map of New Mexico shows, the best wind power generation potential near WIPP is along the Delaware Mountain ridge line of the southern Guadalupe...

149

Wind Power  

Science Journals Connector (OSTI)

For off-shore wind energy, it is not economically profitable to locate wind turbines in waters with depths larger than about 40 m. For this reason, some floating turbine prototypes are being tested, which can be ...

Ricardo Guerrero-Lemus; José Manuel Martínez-Duart

2013-01-01T23:59:59.000Z

150

Wind energy  

Science Journals Connector (OSTI)

...is approximately 4.5-6.01 for onshore wind farms. The price for offshore wind farms is estimated to be 50% higher. For comparison...visually intrusive. The visual impact of offshore wind farms quickly diminishes with distance and 10km...

2007-01-01T23:59:59.000Z

151

‘Chinook winds.’  

Science Journals Connector (OSTI)

...of south-easterly winds, which blow over the...Ocean, from which the winds come, can at this season...freezing-point. The wind well known in the Alps as the foehn is another example of...result is complicated by local details; regions of...

George M. Dawson

1886-01-08T23:59:59.000Z

152

Upper Air Wind Measurements by Weather Radar Iwan Holleman, Henk Benschop, and Jitze van der Meulen  

E-Print Network [OSTI]

or assimilated into numerical weather prediction (NWP) models. Un- der the assumption of a linear wind field background statistics of the weather radar wind profiles against the Hirlam NWP model are at least as good of the VVP wind profiles against the Hirlam NWP model demonstrate the high quality of weather radar wind

Stoffelen, Ad

153

DeWind Technick | Open Energy Information  

Open Energy Info (EERE)

Technick Technick Jump to: navigation, search Name DeWind Technick Place Lübeck, Germany Zip D - 23569 Sector Wind energy Product Wind energy converters occupy a central part of future energy supply. They are clean, safe and economical. References DeWind Technick[1] LinkedIn Connections CrunchBase Profile No CrunchBase profile. Create one now! This article is a stub. You can help OpenEI by expanding it. DeWind Technick is a company located in Lübeck, Germany . References ↑ "[ DeWind Technick]" Retrieved from "http://en.openei.org/w/index.php?title=DeWind_Technick&oldid=344216" Categories: Clean Energy Organizations Companies Organizations Stubs What links here Related changes Special pages Printable version Permanent link Browse properties

154

Bluewater Wind LLC | Open Energy Information  

Open Energy Info (EERE)

LLC LLC Jump to: navigation, search Name Bluewater Wind LLC Place New York, New York Zip 10018 Sector Wind energy Product New York-based offshore wind farm developer and operator. References Bluewater Wind LLC[1] LinkedIn Connections CrunchBase Profile No CrunchBase profile. Create one now! This article is a stub. You can help OpenEI by expanding it. Bluewater Wind LLC is a company located in New York, New York . References ↑ "Bluewater Wind LLC" Retrieved from "http://en.openei.org/w/index.php?title=Bluewater_Wind_LLC&oldid=342944" Categories: Clean Energy Organizations Companies Organizations Stubs What links here Related changes Special pages Printable version Permanent link Browse properties 429 Throttled (bot load) Error 429 Throttled (bot load)

155

Wind Blog  

Broader source: Energy.gov (indexed) [DOE]

wind-blog Office of Energy Efficiency & Renewable wind-blog Office of Energy Efficiency & Renewable Energy Forrestal Building 1000 Independence Avenue, SW Washington, DC 20585 en Two Facilities, One Goal: Advancing America's Wind Industry http://energy.gov/eere/articles/two-facilities-one-goal-advancing-america-s-wind-industry wind-industry" class="title-link">Two Facilities, One Goal: Advancing America's Wind Industry

156

Lessons learnt from ITER safety & licensing for DEMO and future nuclear fusion facilities  

E-Print Network [OSTI]

One of the strong motivations for pursuing the development of fusion energy is its potentially low environmental impact and very good safety performance. But this safety and environmental potential can only be fully realized by careful design choices. For DEMO and other fusion facilities that will require nuclear licensing, S&E objectives and criteria should be set at an early stage and taken into account when choosing basic design options and throughout the design process. Studies in recent decades of the safety of fusion power plant concepts give a useful basis on which to build the S&E approach and to assess the impact of design choices. The experience of licensing ITER is of particular value, even though there are some important differences between ITER and DEMO. The ITER project has developed a safety case, produced a preliminary safety report and had it examined by the French nuclear safety authorities, leading to the licence to construct the facility. The key technical issues that arose during ...

Taylor, Neill

2013-01-01T23:59:59.000Z

157

Xi an Nordex Wind Turbine Co Ltd aka Xi an Weide Wind Power Equipment Co  

Open Energy Info (EERE)

Xi an Nordex Wind Turbine Co Ltd aka Xi an Weide Wind Power Equipment Co Xi an Nordex Wind Turbine Co Ltd aka Xi an Weide Wind Power Equipment Co Ltd Jump to: navigation, search Name Xi'an Nordex Wind Turbine Co Ltd (aka Xi'an Weide Wind Power Equipment Co Ltd) Place Xi An, Shaanxi Province, China Zip 710021 Sector Wind energy Product Subsidiary of Xiâ€(tm)an Aero-Engine that manufactures its 600kW wind turbines in Xi An, China. References Xi'an Nordex Wind Turbine Co Ltd (aka Xi'an Weide Wind Power Equipment Co Ltd)[1] LinkedIn Connections CrunchBase Profile No CrunchBase profile. Create one now! This article is a stub. You can help OpenEI by expanding it. Xi'an Nordex Wind Turbine Co Ltd (aka Xi'an Weide Wind Power Equipment Co Ltd) is a company located in Xi An, Shaanxi Province, China . References ↑ "[ Xi'an Nordex Wind Turbine Co Ltd (aka Xi'an Weide Wind

158

Sunshine Arizona Wind Energy LLC | Open Energy Information  

Open Energy Info (EERE)

Wind Energy LLC Wind Energy LLC Jump to: navigation, search Name Sunshine Arizona Wind Energy LLC Place Flagstaff, Arizona Zip 86001 Sector Wind energy Product Formed to develop the Sunshine Wind Park. A partnership of local, Northern Arizona investors, Foresight Wind Energy and Windfinders. References Sunshine Arizona Wind Energy LLC[1] LinkedIn Connections CrunchBase Profile No CrunchBase profile. Create one now! This article is a stub. You can help OpenEI by expanding it. Sunshine Arizona Wind Energy LLC is a company located in Flagstaff, Arizona . References ↑ "Sunshine Arizona Wind Energy LLC" Retrieved from "http://en.openei.org/w/index.php?title=Sunshine_Arizona_Wind_Energy_LLC&oldid=351846" Categories: Clean Energy Organizations Companies

159

Iskra Wind Turbine Manufacturers Ltd | Open Energy Information  

Open Energy Info (EERE)

Iskra Wind Turbine Manufacturers Ltd Iskra Wind Turbine Manufacturers Ltd Jump to: navigation, search Name Iskra Wind Turbine Manufacturers Ltd Place Nottingham, United Kingdom Sector Wind energy Product Iskra manufactures and markets the AT5-1 home-sized wind turbine rated at 5.3 kW, suitable for low wind speeds. References Iskra Wind Turbine Manufacturers Ltd[1] LinkedIn Connections CrunchBase Profile No CrunchBase profile. Create one now! This article is a stub. You can help OpenEI by expanding it. Iskra Wind Turbine Manufacturers Ltd is a company located in Nottingham, United Kingdom . References ↑ "Iskra Wind Turbine Manufacturers Ltd" Retrieved from "http://en.openei.org/w/index.php?title=Iskra_Wind_Turbine_Manufacturers_Ltd&oldid=347129" Categories: Clean Energy Organizations

160

Energy age wind ltd Co KG | Open Energy Information  

Open Energy Info (EERE)

age wind ltd Co KG age wind ltd Co KG Jump to: navigation, search Name energy-age-wind ltd & Co. KG Place Telgte, Germany Zip 48291 Sector Wind energy Product Energy-age-wind aims to develop small scale vertical-axis wind turbines. References energy-age-wind ltd & Co. KG[1] LinkedIn Connections CrunchBase Profile No CrunchBase profile. Create one now! This article is a stub. You can help OpenEI by expanding it. energy-age-wind ltd & Co. KG is a company located in Telgte, Germany . References ↑ "energy-age-wind ltd & Co. KG" Retrieved from "http://en.openei.org/w/index.php?title=Energy_age_wind_ltd_Co_KG&oldid=344826" Categories: Clean Energy Organizations Companies Organizations Stubs What links here Related changes Special pages Printable version

Note: This page contains sample records for the topic "wind profiler demo" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


161

Jilin CWP Milestone Wind Power Investment Limited | Open Energy Information  

Open Energy Info (EERE)

CWP Milestone Wind Power Investment Limited CWP Milestone Wind Power Investment Limited Jump to: navigation, search Name Jilin CWP-Milestone Wind Power Investment Limited Place Baicheng, Jilin Province, China Sector Wind energy Product JV between Top Well (a wholly-owned subsidiary of Wind Power) and Shenzhen KWC set up to develop, construct and operate wind power facilities in China. References Jilin CWP-Milestone Wind Power Investment Limited[1] LinkedIn Connections CrunchBase Profile No CrunchBase profile. Create one now! This article is a stub. You can help OpenEI by expanding it. Jilin CWP-Milestone Wind Power Investment Limited is a company located in Baicheng, Jilin Province, China . References ↑ "Jilin CWP-Milestone Wind Power Investment Limited" Retrieved from "http://en.openei.org/w/index.php?title=Jilin_CWP_Milestone_Wind_Power_Investment_Limited&oldid=347495"

162

Jilin Taihe Wind Power Limited | Open Energy Information  

Open Energy Info (EERE)

Taihe Wind Power Limited Taihe Wind Power Limited Jump to: navigation, search Name Jilin Taihe Wind Power Limited Place Zhenlai, Jilin Province, China Sector Wind energy Product Top Well and Tianjin DH entered into a contract to establish a joint venture in Zhenlai, in Chinaâ€(tm)s Jilin province to develop a 50MW wind farm in the area under the name Jilin Taihe Wind Power Limited. References Jilin Taihe Wind Power Limited[1] LinkedIn Connections CrunchBase Profile No CrunchBase profile. Create one now! This article is a stub. You can help OpenEI by expanding it. Jilin Taihe Wind Power Limited is a company located in Zhenlai, Jilin Province, China . References ↑ "Jilin Taihe Wind Power Limited" Retrieved from "http://en.openei.org/w/index.php?title=Jilin_Taihe_Wind_Power_Limited&oldid=347531

163

Load Reduction of Floating Wind Turbines using Tuned Mass Dampers.  

E-Print Network [OSTI]

??Offshore wind turbines have the potential to be an important part of the United States' energy production profile in the coming years. In order to… (more)

Stewart, Gordon M

2012-01-01T23:59:59.000Z

164

A collaboration opportunity for next step tokamaks: ITER and DEMO (specifically a next generation diagnostic: the pulsed polarimetry technique)  

E-Print Network [OSTI]

A collaboration opportunity for next step tokamaks: ITER and DEMO (specifically a next generation and developing diagnostic technique and propose it to the FESAC International Collaboration Panel as a topic for collaborative international research. The diagnostic is a remote sensing technique with potential for measuring

165

Wind Power Forecasting  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Retrospective Reports 2011 Smart Grid Wind Integration Wind Integration Initiatives Wind Power Forecasting Wind Projects Email List Self Supplied Balancing Reserves Dynamic...

166

Wind turbine  

SciTech Connect (OSTI)

The improvement in a wind turbine comprises providing a tower with a freely liftable mount and adapting a nacelle which is fitted with a propeller windwheel consisting of a plurality of rotor blades and provided therein with means for conversion of wind energy to be shifted onto said mount attached to the tower. In case of a violent wind storm, the nacelle can be lowered down to the ground to protect the rotor blades from breakage due to the force of the wind. Required maintenance and inspection of the nacelle and replacement of rotor blades can be safely carried out on the ground.

Abe, M.

1982-01-19T23:59:59.000Z

167

Wind Powering America: Wind Events  

Wind Powering America (EERE)

calendar.asp Lists upcoming wind calendar.asp Lists upcoming wind power-related events. en-us julie.jones@nrel.gov (Julie Jones) http://www.windpoweringamerica.gov/images/wpa_logo_sm.jpg Wind Powering America: Wind Events http://www.windpoweringamerica.gov/calendar.asp Pennsylvania Wind for Schools Educator Workshop https://www.regonline.com/builder/site/Default.aspx?EventID=1352684 http://www.windpoweringamerica.gov/filter_detail.asp?itemid=4068 Wed, 4 Dec 2013 00:00:00 MST 2014 Joint Action Workshop http://www.windpoweringamerica.gov/filter_detail.asp?itemid=3996 http://www.windpoweringamerica.gov/filter_detail.asp?itemid=3996 Mon, 21 Oct 2013 00:00:00 MST AWEA Wind Project Operations and Maintenance and Safety Seminar http://www.windpoweringamerica.gov/filter_detail.asp?itemid=4009 http://www.windpoweringamerica.gov/filter_detail.asp?itemid=4009 Mon, 21

168

NETL: News Release - Florida Demo Tames High Sulfur Coal: Delivers Power at  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

March 11, 2005 March 11, 2005 Florida Demo Tames High Sulfur Coal: Delivers Power at Very Low Emissions Shows that New Technology Cuts Pollutants to Fractions of Federal Clean Air Limits JACKSONVILLE, FL - Recent tests with one of the nation's mid- to high-sulfur coals have further verified that a new electric generation technology in its first large-scale utility demonstration here is one of the world's cleanest coal-based power plants. This city's municipal utility JEA logged the achievement at its Northside Generating Station using Illinois No. 6 coal in a 300 megawatt demonstration of circulating fluidized bed (CFB) combustion, which is the largest application yet of the new form in the United States. It almost triples the size of a previous demonstration and scales up the technology to the sizes preferred for adding new plants and replacing old ones, also called repowering.

169

Latest results of NEXT-DEMO, the prototype of the NEXT 100 double beta decay experiment  

E-Print Network [OSTI]

NEXT-DEMO is a 1:4.5 scale prototype of the NEXT100 detector, a high-pressure xenon gas TPC that will search for the neutrinoless double beta decay of $^{136}$Xe. X-ray energy depositions produced by the de-excitation of Xenon atoms after the interaction of gamma rays from radioactive sources have been used to characterize the response of the detector obtaining the spatial calibration needed for close-to-optimal energy resolution. Our result, 5.5% FWHM at 30 keV, extrapolates to 0.6% FWHM at the Q value of $^{136}$Xe. Additionally, alpha decays from radon have been used to measure several detection properties and parameters of xenon gas such as electron-ion recombination, electron drift velocity, diffusion and primary scintillation light yield. Alpha spectroscopy is also used to quantify the activity of radon inside the detector, a potential source of background for most double beta decay experiments.

Serra, L; Martin-Albo, J; Sorel, M; Gomez-Cadenas, J J

2014-01-01T23:59:59.000Z

170

Datang Chifeng Saihanba Wind Power Co Ltd | Open Energy Information  

Open Energy Info (EERE)

Saihanba Wind Power Co Ltd Saihanba Wind Power Co Ltd Jump to: navigation, search Name Datang Chifeng Saihanba Wind Power Co Ltd Place Chifeng, Inner Mongolia Autonomous Region, China Zip 24000 Sector Wind energy Product This subsidiary of China Datang Corporation develops and owns several wind projects in the Inner Mongolia Autonomous Region of China. References Datang Chifeng Saihanba Wind Power Co Ltd[1] LinkedIn Connections CrunchBase Profile No CrunchBase profile. Create one now! This article is a stub. You can help OpenEI by expanding it. Datang Chifeng Saihanba Wind Power Co Ltd is a company located in Chifeng, Inner Mongolia Autonomous Region, China . References ↑ "Datang Chifeng Saihanba Wind Power Co Ltd" Retrieved from "http://en.openei.org/w/index.php?title=Datang_Chifeng_Saihanba_Wind_Power_Co_Ltd&oldid=344087

171

Zhejiang Windey Wind Generating Engineering | Open Energy Information  

Open Energy Info (EERE)

Windey Wind Generating Engineering Windey Wind Generating Engineering Jump to: navigation, search Name Zhejiang Windey Wind Generating Engineering Place Zhejiang Province, China Zip 313200 Sector Wind energy Product Engaged in the marketing, technical development of wind turbines, quality control, assembly and after sales service. References Zhejiang Windey Wind Generating Engineering[1] LinkedIn Connections CrunchBase Profile No CrunchBase profile. Create one now! This article is a stub. You can help OpenEI by expanding it. Zhejiang Windey Wind Generating Engineering is a company located in Zhejiang Province, China . References ↑ "Zhejiang Windey Wind Generating Engineering" Retrieved from "http://en.openei.org/w/index.php?title=Zhejiang_Windey_Wind_Generating_Engineering&oldid=353509"

172

Guangdong Mingyang Wind Power Technology Co Ltd | Open Energy Information  

Open Energy Info (EERE)

Mingyang Wind Power Technology Co Ltd Mingyang Wind Power Technology Co Ltd Jump to: navigation, search Name Guangdong Mingyang Wind Power Technology Co Ltd Place Zhongshan City, Guangdong Province, China Sector Wind energy Product Subsidiary of privately owned Guangdong Mingyang Electric that manufacturers 1.5MW wind turbines. References Guangdong Mingyang Wind Power Technology Co Ltd[1] LinkedIn Connections CrunchBase Profile No CrunchBase profile. Create one now! This article is a stub. You can help OpenEI by expanding it. Guangdong Mingyang Wind Power Technology Co Ltd is a company located in Zhongshan City, Guangdong Province, China . References ↑ "Guangdong Mingyang Wind Power Technology Co Ltd" Retrieved from "http://en.openei.org/w/index.php?title=Guangdong_Mingyang_Wind_Power_Technology_Co_Ltd&oldid=346230

173

Hangtian Longyuan Benxi Wind Power Co Ltd | Open Energy Information  

Open Energy Info (EERE)

Hangtian Longyuan Benxi Wind Power Co Ltd Hangtian Longyuan Benxi Wind Power Co Ltd Jump to: navigation, search Name Hangtian Longyuan (Benxi) Wind Power Co Ltd Place Liaoning Province, China Sector Wind energy Product A joint venture established for a 24.65MW wind farm in Benxi, Liaoning Province. References Hangtian Longyuan (Benxi) Wind Power Co Ltd[1] LinkedIn Connections CrunchBase Profile No CrunchBase profile. Create one now! This article is a stub. You can help OpenEI by expanding it. Hangtian Longyuan (Benxi) Wind Power Co Ltd is a company located in Liaoning Province, China . References ↑ "[ Hangtian Longyuan (Benxi) Wind Power Co Ltd]" Retrieved from "http://en.openei.org/w/index.php?title=Hangtian_Longyuan_Benxi_Wind_Power_Co_Ltd&oldid=346369" Categories: Clean Energy Organizations

174

WindPower Innovations Inc | Open Energy Information  

Open Energy Info (EERE)

WindPower Innovations Inc WindPower Innovations Inc Jump to: navigation, search Name WindPower Innovations Inc Place Queen Creek, Arizona Zip 85142 Sector Wind energy Product Arizona-based company focused on refurbishment and repair of wind turbine gearboxes. References WindPower Innovations Inc[1] LinkedIn Connections CrunchBase Profile No CrunchBase profile. Create one now! This article is a stub. You can help OpenEI by expanding it. WindPower Innovations Inc is a company located in Queen Creek, Arizona . References ↑ "WindPower Innovations Inc" Retrieved from "http://en.openei.org/w/index.php?title=WindPower_Innovations_Inc&oldid=353107" Categories: Clean Energy Organizations Companies Organizations Stubs What links here Related changes Special pages Printable version

175

Highland New Wind Development LLC | Open Energy Information  

Open Energy Info (EERE)

Wind Development LLC Wind Development LLC Jump to: navigation, search Name Highland New Wind Development LLC Place Virginia Sector Wind energy Product Developer of the 39MW Allegheny Mountain wind project in western Virginia. References Highland New Wind Development LLC[1] LinkedIn Connections CrunchBase Profile No CrunchBase profile. Create one now! This article is a stub. You can help OpenEI by expanding it. Highland New Wind Development LLC is a company located in Virginia . References ↑ "Highland New Wind Development LLC" Retrieved from "http://en.openei.org/w/index.php?title=Highland_New_Wind_Development_LLC&oldid=346536" Categories: Clean Energy Organizations Companies Organizations Stubs What links here Related changes Special pages Printable version

176

Shenyang Tianrui Wind Equipments Sales Company Co Ltd | Open Energy  

Open Energy Info (EERE)

Tianrui Wind Equipments Sales Company Co Ltd Tianrui Wind Equipments Sales Company Co Ltd Jump to: navigation, search Name Shenyang Tianrui Wind Equipments Sales Company Co., Ltd. Place Liaoning Province, China Sector Wind energy Product Lianoning Province-based JV responsible for the marketing and sales of the wind components made by Shenyang Tianxiang. References Shenyang Tianrui Wind Equipments Sales Company Co., Ltd.[1] LinkedIn Connections CrunchBase Profile No CrunchBase profile. Create one now! This article is a stub. You can help OpenEI by expanding it. Shenyang Tianrui Wind Equipments Sales Company Co., Ltd. is a company located in Liaoning Province, China . References ↑ "Shenyang Tianrui Wind Equipments Sales Company Co., Ltd." Retrieved from "http://en.openei.org/w/index.php?title=Shenyang_Tianrui_Wind_Equipments_Sales_Company_Co_Ltd&oldid=35092

177

Naturener USA LLC formerly Great Plains Wind Energy | Open Energy  

Open Energy Info (EERE)

LLC formerly Great Plains Wind Energy LLC formerly Great Plains Wind Energy Jump to: navigation, search Name Naturener USA, LLC (formerly Great Plains Wind & Energy) Place San Francisco, California Zip 94111 Sector Wind energy Product Developer of a wind farm in Montana, has been sold to Naturener S.A. References Naturener USA, LLC (formerly Great Plains Wind & Energy)[1] LinkedIn Connections CrunchBase Profile No CrunchBase profile. Create one now! This article is a stub. You can help OpenEI by expanding it. Naturener USA, LLC (formerly Great Plains Wind & Energy) is a company located in San Francisco, California . References ↑ "Naturener USA, LLC (formerly Great Plains Wind & Energy)" Retrieved from "http://en.openei.org/w/index.php?title=Naturener_USA_LLC_formerly_Great_Plains_Wind_Energy&oldid=3491

178

SGPL Sangli Nandurbar and Dhule Bundled Wind Project | Open Energy  

Open Energy Info (EERE)

SGPL Sangli Nandurbar and Dhule Bundled Wind Project SGPL Sangli Nandurbar and Dhule Bundled Wind Project Jump to: navigation, search Name SGPL Sangli, Nandurbar and Dhule Bundled Wind Project Place Maharashtra, India Sector Wind energy Product Maharashtra-based SPV involved in wind project development. References SGPL Sangli, Nandurbar and Dhule Bundled Wind Project[1] LinkedIn Connections CrunchBase Profile No CrunchBase profile. Create one now! This article is a stub. You can help OpenEI by expanding it. SGPL Sangli, Nandurbar and Dhule Bundled Wind Project is a company located in Maharashtra, India . References ↑ "[ SGPL Sangli, Nandurbar and Dhule Bundled Wind Project]" Retrieved from "http://en.openei.org/w/index.php?title=SGPL_Sangli_Nandurbar_and_Dhule_Bundled_Wind_Project&oldid=350794

179

TMA Global Wind Energy Systems | Open Energy Information  

Open Energy Info (EERE)

TMA Global Wind Energy Systems TMA Global Wind Energy Systems Jump to: navigation, search Name TMA Global Wind Energy Systems Place Cheyenne, Wyoming Zip 82001 Sector Wind energy Product Involved in the development, manufacture, and marketing of vertical axis wind energy turbines and hybrid energy systems. References TMA Global Wind Energy Systems[1] LinkedIn Connections CrunchBase Profile No CrunchBase profile. Create one now! This article is a stub. You can help OpenEI by expanding it. TMA Global Wind Energy Systems is a company located in Cheyenne, Wyoming . References ↑ "TMA Global Wind Energy Systems" Retrieved from "http://en.openei.org/w/index.php?title=TMA_Global_Wind_Energy_Systems&oldid=352301" Categories: Clean Energy Organizations Companies Organizations

180

Hebei Yeelong Wind Power Equipment Manufacturing Co Ltd | Open Energy  

Open Energy Info (EERE)

Yeelong Wind Power Equipment Manufacturing Co Ltd Yeelong Wind Power Equipment Manufacturing Co Ltd Jump to: navigation, search Name Hebei Yeelong Wind Power Equipment Manufacturing Co Ltd Place Hebei Province, China Sector Wind energy Product China-based wind turbine equipment manufacturer. References Hebei Yeelong Wind Power Equipment Manufacturing Co Ltd[1] LinkedIn Connections CrunchBase Profile No CrunchBase profile. Create one now! This article is a stub. You can help OpenEI by expanding it. Hebei Yeelong Wind Power Equipment Manufacturing Co Ltd is a company located in Hebei Province, China . References ↑ "[ Hebei Yeelong Wind Power Equipment Manufacturing Co Ltd]" Retrieved from "http://en.openei.org/w/index.php?title=Hebei_Yeelong_Wind_Power_Equipment_Manufacturing_Co_Ltd&oldid=346424

Note: This page contains sample records for the topic "wind profiler demo" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


181

CS Wind Tech Co Ltd | Open Energy Information  

Open Energy Info (EERE)

CS Wind Tech Co Ltd CS Wind Tech Co Ltd Jump to: navigation, search Name CS Wind Tech Co Ltd Place Lianyungang, China Zip 222049 Sector Wind energy Product China-based wind turbine tower maker, a subsidiary of Korea's CS Corporation. References CS Wind Tech Co Ltd[1] LinkedIn Connections CrunchBase Profile No CrunchBase profile. Create one now! This article is a stub. You can help OpenEI by expanding it. CS Wind Tech Co Ltd is a company located in Lianyungang, China . References ↑ "CS Wind Tech Co Ltd" Retrieved from "http://en.openei.org/w/index.php?title=CS_Wind_Tech_Co_Ltd&oldid=343989" Categories: Clean Energy Organizations Companies Organizations Stubs What links here Related changes Special pages Printable version Permanent link Browse properties 429 Throttled (bot load)

182

Baoding Tianwei Wind Power Blade Co Ltd | Open Energy Information  

Open Energy Info (EERE)

Tianwei Wind Power Blade Co Ltd Tianwei Wind Power Blade Co Ltd Jump to: navigation, search Name Baoding Tianwei Wind Power Blade Co Ltd Place Hebei Province, China Sector Wind energy Product Wind turbine blade maker. References Baoding Tianwei Wind Power Blade Co Ltd[1] LinkedIn Connections CrunchBase Profile No CrunchBase profile. Create one now! This article is a stub. You can help OpenEI by expanding it. Baoding Tianwei Wind Power Blade Co Ltd is a company located in Hebei Province, China . References ↑ "Baoding Tianwei Wind Power Blade Co Ltd" Retrieved from "http://en.openei.org/w/index.php?title=Baoding_Tianwei_Wind_Power_Blade_Co_Ltd&oldid=342529" Categories: Clean Energy Organizations Companies Organizations Stubs What links here Related changes Special pages

183

Guohua AES Huanghua Wind Power Co Ltd | Open Energy Information  

Open Energy Info (EERE)

Huanghua Wind Power Co Ltd Huanghua Wind Power Co Ltd Jump to: navigation, search Name Guohua AES (Huanghua) Wind Power Co Ltd Place Huanghua, Hebei Province, China Sector Wind energy Product The developer of the 1GW Huanghua Wind Farm in Hebei Province in China. It is a joint venture of Guohua Energy Investment and AES. References Guohua AES (Huanghua) Wind Power Co Ltd[1] LinkedIn Connections CrunchBase Profile No CrunchBase profile. Create one now! This article is a stub. You can help OpenEI by expanding it. Guohua AES (Huanghua) Wind Power Co Ltd is a company located in Huanghua, Hebei Province, China . References ↑ "Guohua AES (Huanghua) Wind Power Co Ltd" Retrieved from "http://en.openei.org/w/index.php?title=Guohua_AES_Huanghua_Wind_Power_Co_Ltd&oldid=34630

184

Jilin Sanyuan Wind Energy Co | Open Energy Information  

Open Energy Info (EERE)

Sanyuan Wind Energy Co Sanyuan Wind Energy Co Jump to: navigation, search Name Jilin Sanyuan Wind Energy Co. Place Jilin Province, China Sector Wind energy Product A joint-venture established for the development of a 100MW wind farm in Jilin Province totalling USD 97.44 References Jilin Sanyuan Wind Energy Co.[1] LinkedIn Connections CrunchBase Profile No CrunchBase profile. Create one now! This article is a stub. You can help OpenEI by expanding it. Jilin Sanyuan Wind Energy Co. is a company located in Jilin Province, China . References ↑ "Jilin Sanyuan Wind Energy Co." Retrieved from "http://en.openei.org/w/index.php?title=Jilin_Sanyuan_Wind_Energy_Co&oldid=347528" Categories: Clean Energy Organizations Companies Organizations Stubs What links here Related changes

185

Danish Wind Turbine Owners Association | Open Energy Information  

Open Energy Info (EERE)

Owners Association Owners Association Jump to: navigation, search Name Danish Wind Turbine Owners' Association Place Aarhus C, Denmark Zip DK-8000 Sector Wind energy Product Danish Wind Turbine Ownersâ€(tm) Association is a non-profit, independent association overseeing wind turbine ownersâ€(tm) mutual interests regarding the authorities, political decision-makers, utilities and wind turbine manufacturers. References Danish Wind Turbine Owners' Association[1] LinkedIn Connections CrunchBase Profile No CrunchBase profile. Create one now! This article is a stub. You can help OpenEI by expanding it. Danish Wind Turbine Owners' Association is a company located in Aarhus C, Denmark . References ↑ "Danish Wind Turbine Owners' Association" Retrieved from "http://en.openei.org/w/index.php?title=Danish_Wind_Turbine_Owners_Association&oldid=344068

186

Erlianhot Changfeng Xiehe Wind Power Development Co Ltd | Open Energy  

Open Energy Info (EERE)

Erlianhot Changfeng Xiehe Wind Power Development Co Ltd Erlianhot Changfeng Xiehe Wind Power Development Co Ltd Jump to: navigation, search Name Erlianhot Changfeng Xiehe Wind Power Development Co Ltd Place Inner Mongolia Autonomous Region, China Sector Wind energy Product Erlianhot-based wind project developer. It is a JV between Tianjin DH Power Investment and China WindPower Group. References Erlianhot Changfeng Xiehe Wind Power Development Co Ltd[1] LinkedIn Connections CrunchBase Profile No CrunchBase profile. Create one now! This article is a stub. You can help OpenEI by expanding it. Erlianhot Changfeng Xiehe Wind Power Development Co Ltd is a company located in Inner Mongolia Autonomous Region, China . References ↑ "[ Erlianhot Changfeng Xiehe Wind Power Development Co Ltd]" Retrieved from

187

Qixia Rulin Wind Power Development Co Ltd | Open Energy Information  

Open Energy Info (EERE)

Qixia Rulin Wind Power Development Co Ltd Qixia Rulin Wind Power Development Co Ltd Jump to: navigation, search Name Qixia Rulin Wind Power Development Co. Ltd. Place Qixia City, Shandong Province, China Zip 265300 Sector Wind energy Product Local wind project developer based in Qixia, Shandong province, China. References Qixia Rulin Wind Power Development Co. Ltd.[1] LinkedIn Connections CrunchBase Profile No CrunchBase profile. Create one now! This article is a stub. You can help OpenEI by expanding it. Qixia Rulin Wind Power Development Co. Ltd. is a company located in Qixia City, Shandong Province, China . References ↑ "Qixia Rulin Wind Power Development Co. Ltd." Retrieved from "http://en.openei.org/w/index.php?title=Qixia_Rulin_Wind_Power_Development_Co_Ltd&oldid=350125

188

Wyoming Wind Power Project (generation/wind)  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Wind Power > Generation Hydro Power Wind Power Monthly GSP BPA White Book Dry Year Tools Firstgov Wyoming Wind Power Project (Foote Creek Rim I and II) Thumbnail image of wind...

189

Offshore Wind Power USA  

Broader source: Energy.gov [DOE]

The Offshore Wind Power USA conference provides the latest offshore wind market updates and forecasts.

190

offshore wind farm  

Science Journals Connector (OSTI)

offshore wind farm, wind farm [‘Wind park’ which one may find on the ... engineers and should not be used. A wind farm consists of a network of wind turbines] ? Windkraftanlage f, Windpark m; Offshore

2014-08-01T23:59:59.000Z

191

Wind Energy Leasing Handbook  

E-Print Network [OSTI]

Wind Energy Leasing Handbook Wind Energy Leasing Handbook E-1033 Oklahoma Cooperative Extension?..................................................................................................................... 31 What do wind developers consider in locating wind energy projects?............................................................................................ 37 How do companies and individuals invest in wind energy projects?....................................................................

Balasundaram, Balabhaskar "Baski"

192

Design Wind Speed  

Science Journals Connector (OSTI)

Wind is characterized by various different parameters. They include the following items: (1) wind speed, such as the mean wind speed and maximum instantaneous wind speed; (2) wind direction such as the azimuth di...

Yozo Fujino; Kichiro Kimura; Hiroshi Tanaka

2012-01-01T23:59:59.000Z

193

Wind Powering America: New England Wind Forum  

Wind Powering America (EERE)

About the New England Wind Forum About the New England Wind Forum New England Wind Energy Education Project Historic Wind Development in New England State Activities Projects in New England Building Wind Energy in New England Wind Resource Wind Power Technology Economics Markets Siting Policy Technical Challenges Issues Small Wind Large Wind Newsletter Perspectives Events Quick Links to States CT MA ME NH RI VT Bookmark and Share The New England Wind Forum was conceived in 2005 as a platform to provide a single, comprehensive and objective source of up-to-date, Web-based information on a broad array of wind-energy-related issues pertaining to New England. The New England Wind Forum provides information to wind energy stakeholders through Web site features, periodic newsletters, and outreach activities. The New England Wind Forum covers the most frequently discussed wind energy topics.

194

Optimal Bidding Strategies for Wind Power Producers with Meteorological Forecasts  

E-Print Network [OSTI]

Optimal Bidding Strategies for Wind Power Producers with Meteorological Forecasts Antonio that the inherent variability in wind power generation and the related difficulty in predicting future generation profiles, raise major challenges to wind power integration into the electricity grid. In this work we study

Giannitrapani, Antonello

195

Potential wind power generation in South Egypt  

Science Journals Connector (OSTI)

Egypt is one of the developing countries. The production of electricity in Egypt is basically on petroleum, natural gas, hydro-power and wind energy. The objective of this work to prove the availability of sufficient wind potential in the wide area of deep south Egypt for the operation of wind turbines there. Nevertheless, it gives in general an approximate profile which is useful to the wind parks design for this area. The data used in the calculation are published and analyzed for the first time. The diagrams of the measured wind data for three meteorological stations over a period of two years (wind speed, frequency, direction), wind shear coefficient, the mean monthly and annual wind speed profile for every location are presented. Monthly Weibull parameters, standard deviation and coefficient of variation have been statistically discussed. A comparison of the rose diagrams shows that the wind speed is more persistent and blow over this region of Egypt in two main sectors N and NNW with long duration of frequencies from 67% to 87% over the year with an average wind speed in the range 6.8–7.9 m/s at the three stations. Evaluation of monthly wind energy density at 10 m height by two different methods was carried out. And the final diagram for every site shows no significant difference between them. The annual natural wind energies at 70 m A.G.L. lie between 333 and 377 W/m2 for Dakhla South and Kharga stations, respectively, which is similar to the inland wind potential of Vindeby (Denmark) and some European countries. These results indicate that Kharga and Dakhla South locations are new explored sites for future wind power generation projects.

Ahmed Shata Ahmed

2012-01-01T23:59:59.000Z

196

Wind News  

Broader source: Energy.gov (indexed) [DOE]

news Office of Energy Efficiency & Renewable news Office of Energy Efficiency & Renewable Energy Forrestal Building 1000 Independence Avenue, SW Washington, DC 20585 en New Report Shows Trend Toward Larger Offshore Wind Systems, with 11 Advanced Stage Projects Proposed in U.S. Waters http://energy.gov/eere/articles/new-report-shows-trend-toward-larger-offshore-wind-systems-11-advanced-stage-projects wind-systems-11-advanced-stage-projects" class="title-link">New Report Shows Trend Toward Larger Offshore Wind Systems, with 11 Advanced Stage Projects Proposed in U.S. Waters

197

Wind energy  

Science Journals Connector (OSTI)

Wind energy is rapidly growing. In 2006 the installed generating capacity in the world increased by 25%, a growth rate which has more or less been sustained during the last decade. And there is no reason to believe that this growth will slow significantly in the coming years. For example, the United Kingdom's goal for installed wind turbines by 2020 is 33 GW up from 2 GW in 2006, an average annual growth rate of 22% over that period. More than half of all turbines are installed in Europe, but United States, India and lately China are also rapidly growing markets. The cradle of modern wind energy was set by innovative blacksmiths in rural Denmark. Now the wind provides more than 20% of the electrical power in Denmark, the industry has professionalized and has close ties with public research at universities. This focus issue is concerned with research in wind energy. The main purposes of research in wind energy are to: decrease the cost of power generated by the wind; increase the reliability and predictability of the energy source; investigate and reduce the adverse environmental impact of massive deployment of wind turbines; build research based educations for wind energy engineers. This focus issue contains contributions from several fields of research. Decreased costs cover a very wide range of activities from aerodynamics of the wind turbine blades, optimal site selection for the turbines, optimization of the electrical grid and power market for a fluctuating source, more efficient electrical generators and gears, and new materials and production techniques for turbine manufacturing. The United Kingdom recently started the construction of the London Array, a 1 GW off-shore wind farm east of London consisting of several hundred turbines. To design such a farm optimally it is necessary to understand the chaotic and very turbulent flow downwind from a turbine, which decreases the power production and increases the mechanical loads on other nearby turbines. Also addressed within the issue is how much conventional power production can be replaced by the ceaseless wind, with the question of how Greece's target of 29% renewables by 2020 is to be met efficiently. Other topics include an innovative way to determine the power curve of a turbine experimentally more accurately, the use of fluid dynamics tools to investigate the implications of placing vortex generators on wind turbine blades (thereby possibly improving their efficiency) and a study of the perception of wind turbine noise. It turns out that a small but significant fraction of wind turbine neighbours feel that turbine generated noise impairs their ability to rest. The annoyance is correlated with a negative attitude towards the visual impact on the landscape, but what is cause and effect is too early to say. As mentioned there is a rush for wind turbines in many countries. However, this positive development for the global climate is currently limited by practical barriers. One bottleneck is the difficulties for the sub-suppliers of gears and other parts to meet the demand. Another is the difficulties to meet the demand for engineers specialized in wind. For that reason the Technical University of Denmark (DTU) recently launched the world's first Wind Energy Masters Program. Here and elsewhere in the world of wind education and research we should really speed up now, as our chances of contributing to emission free energy production and a healthier global climate have never been better. Focus on Wind Energy Contents The articles below represent the first accepted contributions and further additions will appear in the near future. Wind turbines—low level noise sources interfering with restoration? Eja Pedersen and Kerstin Persson Waye On the effect of spatial dispersion of wind power plants on the wind energy capacity credit in Greece George Caralis, Yiannis Perivolaris, Konstantinos Rados and Arthouros Zervos Large-eddy simulation of spectral coherence in a wind turbine wake A Jimenez, A Crespo, E Migoya and J Garcia How to improve the estimation of

Jakob Mann; Jens Nørkær Sørensen; Poul-Erik Morthorst

2008-01-01T23:59:59.000Z

198

Amplitude modulation of wind turbine noise  

E-Print Network [OSTI]

Due to swish and thump amplitude modulation, the noise of wind turbines cause more annoyance than other environmental noise of the same average level. The wind shear accounts for the thump modulation (van den Berg effect). Making use of the wind speed measurements at the hub height, as well as at the top and the bottom of the rotor disc (Fig.1), the non-standard wind profile is applied. It causes variations in the A-weighted sound pressure level, LpA. The difference between the maximum and minimum of LpA characterizes thump modulation (Fig.2).

Makarewicz, Rufin

2013-01-01T23:59:59.000Z

199

Wind Energy Benefits, Wind Powering America (WPA) (Fact Sheet...  

Broader source: Energy.gov (indexed) [DOE]

Energy Benefits, Wind Powering America (WPA) (Fact Sheet), Wind And Water Power Program (WWPP) Wind Energy Benefits, Wind Powering America (WPA) (Fact Sheet), Wind And Water Power...

200

China Longyuan Wind Power Co Ltd | Open Energy Information  

Open Energy Info (EERE)

China Longyuan Wind Power Co Ltd China Longyuan Wind Power Co Ltd Place China Sector Wind energy Product Wind farm development subsidiary of Longyuan Electricity Power Group and Xiongya Investment. References China Longyuan Wind Power Co Ltd[1] LinkedIn Connections CrunchBase Profile No CrunchBase profile. Create one now! This article is a stub. You can help OpenEI by expanding it. China Longyuan Wind Power Co Ltd is a company located in China . References ↑ "China Longyuan Wind Power Co Ltd" Retrieved from "http://en.openei.org/w/index.php?title=China_Longyuan_Wind_Power_Co_Ltd&oldid=343509" Categories: Clean Energy Organizations Companies Organizations Stubs What links here Related changes Special pages Printable version Permanent link Browse properties 429 Throttled (bot load)

Note: This page contains sample records for the topic "wind profiler demo" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


201

Chinese Wind Energy Equipment Association CWEEA | Open Energy Information  

Open Energy Info (EERE)

Equipment Association CWEEA Equipment Association CWEEA Jump to: navigation, search Name Chinese Wind Energy Equipment Association (CWEEA) Place Beijing, Beijing Municipality, China Zip 100825 Sector Wind energy Product Association representing Chinese wind energy equipment makers, including organisations engaged in wind turbine assembly and component sub-assemblies. References Chinese Wind Energy Equipment Association (CWEEA)[1] LinkedIn Connections CrunchBase Profile No CrunchBase profile. Create one now! This article is a stub. You can help OpenEI by expanding it. Chinese Wind Energy Equipment Association (CWEEA) is a company located in Beijing, Beijing Municipality, China . References ↑ "Chinese Wind Energy Equipment Association (CWEEA)" Retrieved from "http://en.openei.org/w/index.php?title=Chinese_Wind_Energy_Equipment_Association_CWEEA&oldid=343566"

202

Advanced Wind Energy Systems AWES | Open Energy Information  

Open Energy Info (EERE)

AWES AWES Jump to: navigation, search Name Advanced Wind Energy Systems (AWES) Place Toms River, New Jersey Sector Wind energy Product Advanced Wind Energy Systems (AWES) was formed in 2006 to commercialize the novel wind turbine energy capture technologies invented by Frank McClintic, AWES founder and Chief Designer. References Advanced Wind Energy Systems (AWES)[1] LinkedIn Connections CrunchBase Profile No CrunchBase profile. Create one now! This article is a stub. You can help OpenEI by expanding it. Advanced Wind Energy Systems (AWES) is a company located in Toms River, New Jersey . References ↑ "Advanced Wind Energy Systems (AWES)" Retrieved from "http://en.openei.org/w/index.php?title=Advanced_Wind_Energy_Systems_AWES&oldid=341809

203

Simultaneous Retreival of Surface Wind Speed and Rain Rate using Radar and Radiometer Measurements  

E-Print Network [OSTI]

to simultaneously retrieve the vertical profile of precipitation and the near-surface wind speed. ResultsSimultaneous Retreival of Surface Wind Speed and Rain Rate using Radar and Radiometer Measurements simultaneously estimates the over ocean near-surface wind speed and rain rate profile using data from a 10.7 GHz

Ruf, Christopher

204

Description of the Columbia Basin Wind Energy Study (CBWES)  

SciTech Connect (OSTI)

The purpose of this Technical Report is to provide background information about the Columbia Basin Wind Energy Study (CBWES). This study, which was supported by the U.S. Department of Energy’s Wind and Water Power Program, was conducted from 16 November 2010 through 21 March 2012 at a field site in northeastern Oregon. The primary goal of the study was to provide profiles of wind speed and wind direction over the depth of the boundary layer in an operating wind farm located in an area of complex terrain. Measurements from propeller and vane anemometers mounted on a 62 m tall tower, Doppler Sodar, and Radar Wind Profiler were combined into a single data product to provide the best estimate of the winds above the site during the first part of CBWES. An additional goal of the study was to provide measurements of Turbulence Kinetic Energy (TKE) near the surface. To address this specific goal, sonic anemometers were mounted at two heights on the 62 m tower on 23 April 2011. Prior to the deployment of the sonic anemometers on the tall tower, a single sonic anemometer was deployed on a short tower 3.1 m tall that was located just to the south of the radar wind profiler. Data from the radar wind profiler, as well as the wind profile data product are available from the Atmospheric Radiation Measurements (ARM) Data Archive (http://www.arm.gov/data/campaigns). Data from the sonic anemometers are available from the authors.

Berg, Larry K.; Pekour, Mikhail S.; Nelson, Danny A.

2012-10-01T23:59:59.000Z

205

NREL: Wind Research - Wind Resource Assessment  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Wind Resource Assessment Wind Resource Assessment A map of the United States is color-coded to indicate the high winds at 80 meters. This map shows the wind resource at 80 meters for both land-based and offshore wind resources in the United States. Correct estimation of the energy available in the wind can make or break the economics of wind plant development. Wind mapping and validation techniques developed at the National Wind Technology Center (NWTC) along with collaborations with U.S. companies have produced high-resolution maps of the United States that provide wind plant developers with accurate estimates of the wind resource potential. State Wind Maps International Wind Resource Maps Dynamic Maps, GIS Data, and Analysis Tools Due to the existence of special use airspace (SUA) (i.e., military airspace

206

New England Wind Forum: Wind Power Technology  

Wind Powering America (EERE)

Wind Power Technology Wind Power Technology Modern wind turbines have become sophisticated power plants while the concept of converting wind energy to electrical energy remains quite simple. Follow these links to learn more about the science behind wind turbine technology. Wind Power Animation An image of a scene from the wind power animation. The animation shows how moving air rotates a wind turbine's blades and describes how the internal components work to produce electricity. It shows small and large wind turbines and the differences between how they are used, as stand alone or connected to the utility grid. How Wind Turbines Work Learn how wind turbines make electricity; what are the types, sizes, and applications of wind turbines; and see an illustration of the components inside a wind turbine.

207

2011 Wind Technologies Market Report  

E-Print Network [OSTI]

that includes wind turbine towers. 2011 Wind TechnologiesSets Other Wind Turbine Components Towers Wind-Poweredselected wind turbine components includes towers as well as

Bolinger, Mark

2013-01-01T23:59:59.000Z

208

2010 Wind Technologies Market Report  

E-Print Network [OSTI]

that includes wind turbine towers. 2010 Wind TechnologiesImports : Other Wind Turbine Components Towers Wind-Poweredselected wind turbine components includes towers as well as

Wiser, Ryan

2012-01-01T23:59:59.000Z

209

National Offshore Wind Energy Grid Interconnection Study  

SciTech Connect (OSTI)

The National Offshore Wind Energy Grid Interconnection Study (NOWEGIS) considers the availability and potential impacts of interconnecting large amounts of offshore wind energy into the transmission system of the lower 48 contiguous United States. A total of 54GW of offshore wind was assumed to be the target for the analyses conducted. A variety of issues are considered including: the anticipated staging of offshore wind; the offshore wind resource availability; offshore wind energy power production profiles; offshore wind variability; present and potential technologies for collection and delivery of offshore wind energy to the onshore grid; potential impacts to existing utility systems most likely to receive large amounts of offshore wind; and regulatory influences on offshore wind development. The technologies considered the reliability of various high-voltage ac (HVAC) and high-voltage dc (HVDC) technology options and configurations. The utility system impacts of GW-scale integration of offshore wind are considered from an operational steady-state perspective and from a regional and national production cost perspective.

Daniel, John P. [ABB Inc; Liu, Shu [ABB Inc; Ibanez, Eduardo [National Renewable Energy Laboratory; Pennock, Ken [AWS Truepower; Reed, Greg [University of Pittsburgh; Hanes, Spencer [Duke Energy

2014-07-30T23:59:59.000Z

210

Energy 101: Wind Turbines  

ScienceCinema (OSTI)

See how wind turbines generate clean electricity from the power of the wind. Highlighted are the various parts and mechanisms of a modern wind turbine.

None

2013-05-29T23:59:59.000Z

211

Balancing of Wind Power.  

E-Print Network [OSTI]

?? In the future, renewable energy share, especially wind power share, in electricity generation is expected to increase. Due to nature of the wind, wind… (more)

Ülker, Muhammed Akif

2011-01-01T23:59:59.000Z

212

Energy 101: Wind Turbines  

SciTech Connect (OSTI)

See how wind turbines generate clean electricity from the power of the wind. Highlighted are the various parts and mechanisms of a modern wind turbine.

None

2011-01-01T23:59:59.000Z

213

WINDExchange: Learn About Wind  

Wind Powering America (EERE)

Curricula & Teaching Materials Resources Learn About Wind Learn about how wind energy generates power; where the best wind resources are; how you can own, host, partner...

214

Wind power and Wind power and  

E-Print Network [OSTI]

Wind power and the CDM #12; Wind power and the CDM Emerging practices in developing wind power 2005 Jyoti P. Painuly, Niels-Erik Clausen, Jørgen Fenhann, Sami Kamel and Romeo Pacudan #12; WIND POWER AND THE CDM Emerging practices in developing wind power projects for the Clean Development Mechanism Energy

215

MODULAR MULTI-LEVEL CONVERTER BASED HVDC SYSTEM FOR GRID CONNECTION OF OFFSHORE WIND  

E-Print Network [OSTI]

MODULAR MULTI-LEVEL CONVERTER BASED HVDC SYSTEM FOR GRID CONNECTION OF OFFSHORE WIND POWER PLANT U off-shore wind power plants. The MMC consists of a large number of simple voltage sourced converter offshore wind power plants (WPP) because they offer higher energy yield due to a superior wind profile

Chaudhary, Sanjay

216

Lidars in Wind Energy Jakob Mann, Ferhat Bingl, Torben Mikkelsen, Ioannis Antoniou, Mike  

E-Print Network [OSTI]

Lidars in Wind Energy Jakob Mann, Ferhat Bingöl, Torben Mikkelsen, Ioannis Antoniou, Mike Courtney, Gunner Larsen, Ebba Dellwik Juan Jose Trujillo* and Hans E. Jørgensen Wind Energy Department Risø of the presentation · Introduction to wind energy · Accurate profiles of the mean wind speed · Wakes behind turbines

217

Characterisation of NEXT-DEMO using xenon K$_?$ X-rays  

E-Print Network [OSTI]

The NEXT experiment aims to observe the neutrinoless double beta decay of $^{136}$Xe in a high pressure gas TPC using electroluminescence (EL) to amplify the signal from ionization. Understanding the response of the detector is imperative in achieving a consistent and well understood energy measurement. The abundance of xenon k-shell x-ray emission during data taking has been identified as a multitool for the characterisation of the fundamental parameters of the gas as well as the equalisation of the response of the detector. The NEXT-DEMO prototype is a ~1.5 kg volume TPC filled with natural xenon. It employs an array of 19 PMTs as an energy plane and of 256 SiPMs as a tracking plane with the TPC light tube and SiPM surfaces being coated with tetraphenyl butadiene (TPB) which acts as a wavelength shifter for the VUV scintillation light produced by xenon. This paper presents the measurement of the properties of the drift of electrons in the TPC, the effects of the EL production region, and the extraction of position dependent correction constants using K$_{\\alpha}$ X-ray deposits. These constants were used to equalise the response of the detector to deposits left by gammas from $^{22}$Na.

NEXT Collaboration; D. Lorca; J. Martín-Albo; A. Laing; P. Ferrario; J. J. Gómez-Cadenas; V. Álvarez; F. I. G. Borges; M. Camargo; S. Cárcel; S. Cebrián; A. Cervera; C. A. N. Conde; T. Dafni; J. Díaz; R. Esteve; L. M. P. Fernandes; A. L. Ferreira; E. D. C. Freitas; V. M. Gehman; A. Goldschmidt; H. Gómez; D. González-Díaz; R. M. Gutiérrez; J. Hauptman; J. A. Hernando Morata; D. C. Herrera; I. G. Irastorza; L. Labarga; I. Liubarsky; M. Losada; G. Luzón; A. Marí; G. Martínez-Lema; A. Martínez; T. Miller; F. Monrabal; M. Monserrate; C. M. B. Monteiro; F. J. Mora; L. M. Moutinho; J. Muñoz Vidal; M. Nebot-Guinot; D. Nygren; C. A. B. Oliveira; J. Pérez; J. L. Pérez Aparicio; J. Renner; L. Ripoll; A. Rodríguez; J. Rodríguez; F. P. Santos; J. M. F. dos Santos; L. Seguí; L. Serra; D. Shuman; A. Simón; C. Sofka; M. Sorel; J. F. Toledo; J. Torrent; Z. Tsamalaidze; J. F. C. A. Veloso; R. Webb; J. T. White; N. Yahlali

2014-11-05T23:59:59.000Z

218

New England Wind Forum: Wind Power Economics  

Wind Powering America (EERE)

State Activities Projects in New England Building Wind Energy in New England Wind Resource Wind Power Technology Economics Cost Components Determining Factors Influencing Wind Economics in New England How does wind compare to the cost of other electricity options? Markets Siting Policy Technical Challenges Issues Small Wind Large Wind Newsletter Perspectives Events Quick Links to States CT MA ME NH RI VT Bookmark and Share Wind Power Economics Long-Term Cost Trends Since the first major installations of commercial-scale wind turbines in the 1980s, the cost of energy from wind power projects has decreased substantially due to larger turbine generators, towers, and rotor lengths; scale economies associated with larger projects; improvements in manufacturing efficiency, and technological advances in turbine generator and blade design. These technological advances have allowed for higher generating capacities per turbine and more efficient capture of wind, especially at lower wind speeds.

219

New England Wind Forum: Large Wind  

Wind Powering America (EERE)

Small Wind Small Wind Large Wind Newsletter Perspectives Events Quick Links to States CT MA ME NH RI VT Bookmark and Share Large Wind When establishing wind farms, wind energy developers generally approach landowners where they want to build. Interest in wind farms is frequently spurred by external pressures such as tax and other financial incentives and legislative mandates. Since each situation is influenced by local policies and permitting, we can only provide general guidance to help you learn about the process of installing wind turbines. Publications Wind Project Development Process Permitting of Wind Energy Facilities: A Handbook. (August 2002). National Wind Coordinating Collaborative. Landowner Frequently Asked Questions and Answers. (August 2003). "State Wind Working Group Handbook." pp. 130-133.

220

NREL: Wind Research - International Wind Resource Maps  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

projections of wind resources worldwide. This allows for more accurate siting of wind turbines and has led to the recognition of higher class winds in areas where none were...

Note: This page contains sample records for the topic "wind profiler demo" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


221

Advanced Hydraulic Wind Energy  

Science Journals Connector (OSTI)

The Jet Propulsion Laboratory, California Institute of Technology, has developed a novel advanced hydraulic wind energy design, which has up to 23% performance improvement over conventional wind turbine and conventional hydraulic wind energy systems ... Keywords: wind, tide, energy, power, hydraulic

Jack A. Jones; Allan Bruce; Adrienne S. Lam

2013-04-01T23:59:59.000Z

222

WINDExchange: Wind Economic Development  

Wind Powering America (EERE)

help you analyze the economics of a small wind electric system and decide whether wind energy will work for you. Wind Energy Finance Online Calculator Wind Energy Finance developed...

223

Exploiting Wind Versus Coal  

Science Journals Connector (OSTI)

...be offset with turbine mass production...of installed turbines, more than the...Denmark have wind parks offshore, where winds...of installed turbines, more than the...Denmark have wind parks offshore, where winds...

Mark Z. Jacobson; Gilbert M. Masters

2001-08-24T23:59:59.000Z

224

DOE Science Showcase - Wind Power | OSTI, US Dept of Energy, Office of  

Office of Scientific and Technical Information (OSTI)

Science Showcase - Wind Power Science Showcase - Wind Power Wind Powering America is a nationwide initiative of the U.S. Department of Energy's Wind Program designed to educate, engage, and enable critical stakeholders to make informed decisions about how wind energy contributes to the U.S. electricity supply. Wind Power Research Results in DOE Databases IEA Wind Task 26: The Past and Future Cost of Wind Energy, Work Package 2, Energy Citations Database NREL Triples Previous Estimates of U.S. Wind Power Potential, Energy Citations Database Dynamic Models for Wind Turbines and Wind Power Plants, DOE Information Bridge 2012 ARPA-E Energy Innovation Summit: Profiling General Compression: A River of Wind, ScienceCinema, multimedia Solar and Wind Energy Resource Assessment (SWERA) Data from the

225

A study of wind speed modification and internal boundary-layer heights in a coastal region  

Science Journals Connector (OSTI)

Wind profile data within the first two kilometres of a coast have been used to study the wind field modification downstream of this surface discontinuity. The land area is generally very flat, having an overal...

Hans Bergström; Per-Erik Johansson; Ann-Sofi Smedman

1988-03-01T23:59:59.000Z

226

Development of All-fiber Coherent Doppler Lidar to Measure Atmosphere Wind Speed  

Science Journals Connector (OSTI)

An all-fiber pulsed coherent Doppler lidar is developed to measure wind profiles. The maximum horizontal and vertical range for wind speed is 4.2km and 2km with speed accuracy of...

Liu, Jiqiao; Chen, Weibiao; Zhu, Xiaopeng

227

NREL: Wind Research - Wind Energy Videos  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Wind Energy Videos The National Wind Technology Center (NWTC) is pleased to offer video presentations of its world-class capabilities, facilities, research areas, and personnel. As...

228

wind power station  

Science Journals Connector (OSTI)

wind power station [It may consist of just one wind turbine or a network of windmills] ? Windkraftanlage

2014-08-01T23:59:59.000Z

229

U.S. Wind Power Development  

SciTech Connect (OSTI)

The report provides an overview of domestic wind power development which provides an understanding of where the industry stands today, how it got there, and where it is going. The advent of state renewable portfolio standards and the 3-year renewal of the production tax credit have driven wind power to record levels. A key objective of the report is to provide a comprehensive view of what is behind these developments, so that industry participants can take advantage of the opportunity offered by wind power. Topics covered include: overview of U.S. wind power including its history, current status, and future prospects; business drivers of the U.S. wind power market; barriers to the growth of the U.S. wind power market; keys to successful wind power project development; economics of U.S. wind power, including cost, revenue, and government subsidy components; analysis of key state markets for wind power development; and, profiles of major U.S. wind power project developers.

NONE

2007-11-15T23:59:59.000Z

230

National Clean Fuels Inc National Wind Solutions Inc | Open Energy  

Open Energy Info (EERE)

Clean Fuels Inc National Wind Solutions Inc Clean Fuels Inc National Wind Solutions Inc Jump to: navigation, search Name National Clean Fuels Inc (National Wind Solutions Inc) Place San Antonio, Texas Zip 78230 Product Texas-based consultancy that works with clean technology developers, or with public utilities in their strategic and procurement plans for alternative energy contracts. References National Clean Fuels Inc (National Wind Solutions Inc)[1] LinkedIn Connections CrunchBase Profile No CrunchBase profile. Create one now! This article is a stub. You can help OpenEI by expanding it. National Clean Fuels Inc (National Wind Solutions Inc) is a company located in San Antonio, Texas . References ↑ "National Clean Fuels Inc (National Wind Solutions Inc)" Retrieved from "http://en.openei.org/w/index.php?title=National_Clean_Fuels_Inc_National_Wind_Solutions_Inc&oldid=349061"

231

Powered by Renewables formerly Nevada Wind | Open Energy Information  

Open Energy Info (EERE)

formerly Nevada Wind formerly Nevada Wind Jump to: navigation, search Name Powered by Renewables (formerly Nevada Wind) Place Las Vegas, Nevada Zip 89102 Sector Renewable Energy Product PBR develops, manages and sells utility-scale renewable energy projects. References Powered by Renewables (formerly Nevada Wind)[1] LinkedIn Connections CrunchBase Profile No CrunchBase profile. Create one now! This article is a stub. You can help OpenEI by expanding it. Powered by Renewables (formerly Nevada Wind) is a company located in Las Vegas, Nevada . References ↑ "Powered by Renewables (formerly Nevada Wind)" Retrieved from "http://en.openei.org/w/index.php?title=Powered_by_Renewables_formerly_Nevada_Wind&oldid=349890" Categories: Clean Energy Organizations Companies

232

Heilongjiang Fulong Wind Power Co Ltd | Open Energy Information  

Open Energy Info (EERE)

Power Co Ltd Power Co Ltd Jump to: navigation, search Name Heilongjiang Fulong Wind Power Co., Ltd. Place Fujin, Heilongjiang Province, China Zip 156100 Sector Wind energy Product Fujin-based developer of wind farms. References Heilongjiang Fulong Wind Power Co., Ltd.[1] LinkedIn Connections CrunchBase Profile No CrunchBase profile. Create one now! This article is a stub. You can help OpenEI by expanding it. Heilongjiang Fulong Wind Power Co., Ltd. is a company located in Fujin, Heilongjiang Province, China . References ↑ "Heilongjiang Fulong Wind Power Co., Ltd." Retrieved from "http://en.openei.org/w/index.php?title=Heilongjiang_Fulong_Wind_Power_Co_Ltd&oldid=346434" Categories: Clean Energy Organizations Companies Organizations Stubs What links here

233

Wind Energy Systems Technologies LLC WEST | Open Energy Information  

Open Energy Info (EERE)

LLC WEST LLC WEST Jump to: navigation, search Name Wind Energy Systems Technologies LLC (WEST) Place New Iberia, Louisiana Sector Wind energy Product Wants to install wind turbines on abandoned Gulf of Mexico oil and natural gas platforms to generate electric power for both homes and secondary recovery efforts. References Wind Energy Systems Technologies LLC (WEST)[1] LinkedIn Connections CrunchBase Profile No CrunchBase profile. Create one now! This article is a stub. You can help OpenEI by expanding it. Wind Energy Systems Technologies LLC (WEST) is a company located in New Iberia, Louisiana . References ↑ "Wind Energy Systems Technologies LLC (WEST)" Retrieved from "http://en.openei.org/w/index.php?title=Wind_Energy_Systems_Technologies_LLC_WEST&oldid=353071

234

China Wind Systems formerly Green Power Malex | Open Energy Information  

Open Energy Info (EERE)

Green Power Malex Green Power Malex Jump to: navigation, search Name China Wind Systems (formerly Green Power/Malex) Place Wuxi, Jiangsu Province, China Sector Wind energy Product Manufacturer of precision-forged rolled rings and machinery with applications for the wind power industry. References China Wind Systems (formerly Green Power/Malex)[1] LinkedIn Connections CrunchBase Profile No CrunchBase profile. Create one now! This article is a stub. You can help OpenEI by expanding it. China Wind Systems (formerly Green Power/Malex) is a company located in Wuxi, Jiangsu Province, China . References ↑ "China Wind Systems (formerly Green Power/Malex)" Retrieved from "http://en.openei.org/w/index.php?title=China_Wind_Systems_formerly_Green_Power_Malex&oldid=343554

235

Green Wind Energy formerly Solund Invest | Open Energy Information  

Open Energy Info (EERE)

Solund Invest Solund Invest Jump to: navigation, search Name Green Wind Energy (formerly Solund Invest) Place DK-3460 Birkerød, Denmark Zip DK-3460 Sector Wind energy Product Danish investment company specializing in structuring and selling wind turbine projects in Denmark and abroad to private investors. References Green Wind Energy (formerly Solund Invest)[1] LinkedIn Connections CrunchBase Profile No CrunchBase profile. Create one now! This article is a stub. You can help OpenEI by expanding it. Green Wind Energy (formerly Solund Invest) is a company located in DK-3460 Birkerød, Denmark . References ↑ "[ Green Wind Energy (formerly Solund Invest)]" Retrieved from "http://en.openei.org/w/index.php?title=Green_Wind_Energy_formerly_Solund_Invest&oldid=346065"

236

American Wind Energy Association AWEA | Open Energy Information  

Open Energy Info (EERE)

AWEA AWEA Jump to: navigation, search Name American Wind Energy Association (AWEA) Place Washington DC, Washington, DC Zip 20001 Sector Wind energy Product Advocates the development of wind energy as a reliable, environmentally superior energy alternative in the United States and around the world. References American Wind Energy Association (AWEA)[1] LinkedIn Connections CrunchBase Profile No CrunchBase profile. Create one now! This article is a stub. You can help OpenEI by expanding it. American Wind Energy Association (AWEA) is a company located in Washington DC, Washington, DC . References ↑ "American Wind Energy Association (AWEA)" Retrieved from "http://en.openei.org/w/index.php?title=American_Wind_Energy_Association_AWEA&oldid=342136

237

NREL: Wind Research - Small Wind Turbine Webinars  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Small Wind Turbine Webinars Small Wind Turbine Webinars Here you will find webinars about small wind turbines that NREL hosted. Introducing WindLease(tm): Making Wind Energy Affordable NREL and the American Solar Energy Society (ASES) Wind Division co-hosted this webinar. (Text Version.) Date: August 1, 2013 Run Time: 40 minutes Joe Hess, VP of Business Development at United Wind, described United Wind's WindQuote and WindLease Program and explained the process from the dealer's and consumer's perspective. Texas Renewable Energy Industries Association NREL and the American Solar Energy Society (ASES) Wind Division co-hosted this webinar. (Text Version). Date: March 7, 2013 Run Time: 1 hour Russel Smith, Texas Renewable Energy Industries Association executive director and co-founder, provided an overview of the trade association

238

New England Wind Forum: Small Wind  

Wind Powering America (EERE)

Wind for Schools Project Funding Case Studies: Thomas Harrison Middle School, Virginia Wind for Schools Project Funding Case Studies: Thomas Harrison Middle School, Virginia August 26, 2013 Workshop Explores Information's Role in Wind Project Siting: A Wind Powering America Success Story November 19, 2012 More News Subscribe to News Updates Events Renewable Energy Market Update Webinar January 29, 2014 Strategic Energy Planning: Webinar February 26, 2014 Introduction to Wind Systems March 10, 2014 More Events Publications 2012 Market Report on Wind Technologies in Distributed Applications August 12, 2013 More Publications Features Sign up for the New England Wind Forum Newsletter. New England Wind Forum About the New England Wind Forum New England Wind Energy Education Project Historic Wind Development in New England State Activities Projects in New England

239

NREL: Wind Research - Small Wind Turbine Development  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Small Wind Turbine Development Small Wind Turbine Development A photo of Southwest Windpower's Skystream wind turbine in front of a home. PIX14936 Southwest Windpower's Skystream wind turbine. A photo of the Endurance wind turbine. PIX15006 The Endurance wind turbine. A photo of the Atlantic Orient Corporation 15/50 wind turbine at the National Wind Technology Center. PIX07301 The Atlantic Orient Corporation 15/50 wind turbine at the National Wind Technology Center. NREL supports continued market expansion of small wind turbines by funding manufacturers through competitive solicitations (i.e., subcontracts and/or grants) to refine prototype systems leading to commercialization. Learn more about the turbine development projects below. Skystream NREL installed and tested an early prototype of this turbine at the

240

Lidar-based Research and Innovation at DTU Wind Energy – a Review  

Science Journals Connector (OSTI)

As wind turbines during the past decade have increased in size so have the challenges met by the atmospheric boundary-layer meteorologists and the wind energy society to measure and characterize the huge-volume wind fields surpassing and driving them. At the DTU Wind Energy test site "Østerild" for huge wind turbines, the hub-height of a recently installed 8 MW Vestas V164 turbine soars 143 meters up above the ground, and its rotor of amazing 164 meters in diameter make the turbine tips flicker 225 meters into the sky. Following the revolution in photonics-based telecommunication at the turn of the Millennium new fibre-based wind lidar technologies emerged and DTU Wind Energy, at that time embedded within Rise National Laboratory, began in collaboration with researchers from wind lidar companies to measure remote sensed wind profiles and turbulence structures within the atmospheric boundary layer with the emerging, at that time new, all-fibre-based 1.55 ? coherent detection wind lidars. Today, ten years later, DTU Wind Energy routinely deploys ground-based vertical profilers instead of met masts for high-precision measurements of mean wind profiles and turbulence profiles. At the departments test site "Høvsøre" DTU Wind Energy also routinely calibrate and accredit wind lidar manufactures wind lidars. Meanwhile however, new methodologies for power curve assessment based on ground-based and nacelle based lidars have also emerged. For improving the turbines power curve assessments and for advancing their control with feed-forward wind measurements experience has also been gained with wind lidars installed on turbine nacelles and integrated into the turbines rotating spinners. A new mobile research infrastructure WindScanner.dk has also emerged at DTU Wind Energy. Wind and turbulence fields are today scanned from sets of three simultaneously in space and time synchronized scanning lidars. One set consists of three fast scanning continuous-wave based wind lidars (short-range system), and another consisting of three synchronized pulsed wind lidar systems (long-range system). Today, wind lidar profilers and WindScanners are routinely deployed and operated during field tests and measurement campaigns. Lidars have been installed and operated from ground, on offshore platforms, and also as scanning lidars integrated in operating turbines. As a result, wind profiles and also detailed 3D scanning of wind and turbulence fields have been achieved: 1) of the free wind aloft, 2) over complex terrain, 3) at coastal ranges with land-sea interfaces, 4) offshore, 5) in turbine inflow induction zone, and 6) of the complex and turbulent flow fields in the wakes inside wind parks.

T Mikkelsen

2014-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "wind profiler demo" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


241

Z:\\gis553s12\\lab5\\demo\\grid2poly.py Wednesday, January 18, 2012 4:49 PM # Create a square quadrat (polygon) dataset based on the input feature class.  

E-Print Network [OSTI]

Z:\\gis553s12\\lab5\\demo\\grid2poly.py Wednesday, January 18, 2012 4:49 PM # Create a square quadrat.env.workspace + "/" + inputpoint desc = arcpy.Describe(inputfull) -1- #12;Z:\\gis553s12\\lab5\\demo\\grid2poly.py Wednesday, January 18

Hung, I-Kuai

242

The poster and demo session of CPSWeek 2011 will be held at 5:00PM on Tuesday in the Grand Foyer. Dinner will be served starting at 6:30PM on the fourth floor, but presenters are invited to attend their posters and  

E-Print Network [OSTI]

1 The poster and demo session of CPSWeek 2011 will be held at 5:00PM on Tuesday in the Grand Foyer their posters and demos until 6:45PM. All presentations are listed at the end of this document. Each presentation has an ID number, which is assigned to a specific poster easel and/or demo table to be found

Liberzon, Daniel

243

Influence of refraction on wind turbine noise  

E-Print Network [OSTI]

A semi-empirical method is applied to calculate the time-average sound level of wind turbine noise generation and propagation. Both are affected by wind shear refraction. Under upwind conditions the partially ensonified zone separates the fully ensonified zone (close to the turbine) and the shadow zone (far away from the turbine). Refraction is described in terms of the wind speed linear profile fitted to the power law profile. The rotating blades are treated as a two-dimensional circular source in the vertical plane. Inside the partially ensonified zone the effective A-weighted sound power decreases to zero when the receiver moves from the turbine toward the shadow zone. The presented results would be useful in practical applications to give a quick estimate of the effect of refraction on wind turbine noise.

Makarewicz, Rufin

2013-01-01T23:59:59.000Z

244

Urat Rear Banner Jihe Orient Wind Energy Co Ltd | Open Energy Information  

Open Energy Info (EERE)

Urat Rear Banner Jihe Orient Wind Energy Co Ltd Urat Rear Banner Jihe Orient Wind Energy Co Ltd Jump to: navigation, search Name Urat Rear Banner Jihe Orient Wind Energy Co Ltd Place Inner Mongolia Autonomous Region, China Sector Wind energy Product Urat Rear Banner Jihe Orient Wind Energy was established by Beijing Keval-East Technology Development in 2006 to develop wind power projects. References Urat Rear Banner Jihe Orient Wind Energy Co Ltd[1] LinkedIn Connections CrunchBase Profile No CrunchBase profile. Create one now! This article is a stub. You can help OpenEI by expanding it. Urat Rear Banner Jihe Orient Wind Energy Co Ltd is a company located in Inner Mongolia Autonomous Region, China . References ↑ "Urat Rear Banner Jihe Orient Wind Energy Co Ltd" Retrieved from "http://en.openei.org/w/index.php?title=Urat_Rear_Banner_Jihe_Orient_Wind_Energy_Co_Ltd&oldid=352581

245

NREL: Wind Research - Offshore Wind Research  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Offshore Wind Research Offshore Wind Research Photo of a European offshore wind farm. Early progress in European Offshore Wind Energy over the last decade provides a glimpse into the vast potential of the global offshore resource. For more than eight years, NREL has worked with the Department of Energy to become an international leader in offshore wind energy research. Capabilities NREL's offshore wind capabilities focus on critical areas that reflect the long-term needs of the offshore wind energy industry and the U.S. Department of Energy including: Offshore Design Tools and Methods Offshore Standards and Testing Energy Analysis of Offshore Systems Offshore Wind Resource Characterization Grid Integration of Offshore Wind Key Research NREL documented the status of offshore wind energy in the United States in

246

NREL: Wind Research - Site Wind Resource Characteristics  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Site Wind Resource Characteristics Site Wind Resource Characteristics A graphic showing the location of National Wind Technology Center and its wind power class 2. Click on the image to view a larger version. Enlarge image This graphic shows the wind power class at the National Wind Technology Center. You can download a printable copy. The National Wind Technology Center (NWTC) is on the Great Plains just miles from the Rocky Mountains. The site is flat and covered with short grasses. The terrain and lack of obstructions make the site highly suitable for testing wind turbines. Take a tour of the NWTC and its facilities to better understand its location and layout. Another prime feature of the NWTC is the strong directionality of the wind - most of the strong winds come within a few degrees of 285°. West of

247

Wind Technologies & Evolving Opportunities (Presentation)  

SciTech Connect (OSTI)

This presentation covers opportunities for wind technology; wind energy market trends; an overview of the National Wind Technology Center near Boulder, Colorado; wind energy price and cost trends; wind turbine technology improvements; and wind resource characterization improvements.

Robichaud, R.

2014-07-01T23:59:59.000Z

248

Acoustic wind and wind?shear measuring system  

Science Journals Connector (OSTI)

An acoustic wind?profiling system designed to detect hazardous wind?shear conditions in the airport environment has been developed during the past four years. The system installed at Dulles International Airport consists of a vertically pointed transmitter surrounded by three receivers 290?m distant and separated by 120° in azimuth. Electronically steered receiver beams track the upward propagating transmitted tone burst and collect the scatteredacoustic signals. The Doppler frequency shift of the returns is analyzed digitally to determine the horizontal wind at 20 height levels in 30?m increments. Unique design features of the system such as the steered receiver antenna are described. A one?leg prototype of the Dulles system was installed and tested at Table Mountain near Boulder CO. Winds measured by the prototype acoustic system compared well with those determined by an FM?CW radar and a balloon?borne anemometer. Noisegenerated by rain and surface winds exceeding 16 m sec?1 proved to be the major limitations for the acoustic system. Preliminary results from the Dulles system are also presented.

P. A. Mandics; D. W. Beran

1976-01-01T23:59:59.000Z

249

An Exploration of Wind Energy & Wind Turbines | Department of...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

An Exploration of Wind Energy & Wind Turbines An Exploration of Wind Energy & Wind Turbines Below is information about the student activitylesson plan from your search. Grades...

250

A National Offshore Wind Strategy: Creating an Offshore Wind...  

Broader source: Energy.gov (indexed) [DOE]

A National Offshore Wind Strategy: Creating an Offshore Wind Energy Industry in the United States A National Offshore Wind Strategy: Creating an Offshore Wind Energy Industry in...

251

20% Wind Energy by 2030 - Chapter 2: Wind Turbine Technology...  

Office of Environmental Management (EM)

20% Wind Energy by 2030: Increasing Wind Energy's Contribution to U.S. Electricity Supply U.S. Offshore Wind Manufacturing and Supply Chain Development Wind Program Accomplishments...

252

Wind pro?le assessment for wind power purposes.  

E-Print Network [OSTI]

??Preliminary estimation of wind speed at the wind turbine hub height is critically important when planning new wind farms. Wind turbine power output is proportional… (more)

Sointu, Iida

2014-01-01T23:59:59.000Z

253

Collegiate Wind Competition Engages Tomorrow's Wind Energy Innovators...  

Office of Environmental Management (EM)

Collegiate Wind Competition Engages Tomorrow's Wind Energy Innovators Collegiate Wind Competition Engages Tomorrow's Wind Energy Innovators January 6, 2014 - 10:00am Addthis 2014...

254

Wind for Schools Project Power System Brief, Wind Powering America...  

Wind Powering America (EERE)

Wind Powering America Fact Sheet Series Energy Efficiency & Renewable Energy Wind for Schools Project Power System Brief Wind for Schools Project Power System Brief Wind for...

255

2009 Wind Technologies Market Report  

E-Print Network [OSTI]

Prepared for the Utility Wind Integration Group. Arlington,Arizona Public Service Wind Integration Cost Impact Study.an Order Revising the Wind Integration Rate for Wind Powered

Wiser, Ryan

2010-01-01T23:59:59.000Z

256

2010 Wind Technologies Market Report  

E-Print Network [OSTI]

2010. SPP WITF Wind Integration Study. Little Rock,an Order Revising the Wind Integration Rate for Wind PoweredPacifiCorp. 2010. 2010 Wind Integration Study. Portland,

Wiser, Ryan

2012-01-01T23:59:59.000Z

257

2011 Wind Technologies Market Report  

E-Print Network [OSTI]

and K. Porter. 2011. Wind Power and Electricity Markets.41 6. Wind Power Priceat Various Levels of Wind Power Capacity Penetration Wind

Bolinger, Mark

2013-01-01T23:59:59.000Z

258

Sandia National Laboratories: Wind Resources  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

EnergyWind Resources Wind Resources Comments are closed. Renewable Energy Wind Energy Wind Plant Optimization Test Site Operations & Maintenance Safety: Test Facilities Capital...

259

Sandia National Laboratories: wind energy  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Wind Energy Manufacturing Lab Helps Engineers Improve Wind Power On November 15, 2011, in Energy, News, Partnership, Renewable Energy, Wind Energy Researchers at the Wind Energy...

260

Wind Energy | Department of Energy  

Office of Environmental Management (EM)

Wind Energy Wind Energy Below are resources for Tribes on wind energy technologies. 2012 Market Report on Wind Technologies in Distributed Applications Includes a breakdown of...

Note: This page contains sample records for the topic "wind profiler demo" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


261

NREL: Wind Research - Small Wind Turbine Research  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Small Wind Turbine Research Small Wind Turbine Research The National Renewable Energy Laboratory and U.S. Department of Energy (NREL/DOE) Small Wind Project's objectives are to reduce barriers to wind energy expansion, stabilize the market, and expand the number of small wind turbine systems installed in the United States. "Small wind turbine" refers to a turbine smaller than or equal to 100 kilowatts (kW). "Distributed wind" includes small and midsize turbines (100 kW through 1 megawatt [MW]). Since 1996, NREL's small wind turbine research has provided turbine testing, turbine development, and prototype refinement leading to more commercially available small wind turbines. Work is conducted under the following areas. You can also learn more about state and federal policies

262

Wind Vision Wind Farm | Open Energy Information  

Open Energy Info (EERE)

Wind Farm Wind Farm Jump to: navigation, search Name Wind Vision Wind Farm Facility Wind Vision Sector Wind energy Facility Type Commercial Scale Wind Facility Status In Service Owner Wind Vision Developer Wind Vision Location St. Ansgar IA Coordinates 43.348224°, -92.888816° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":43.348224,"lon":-92.888816,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

263

High Winds Wind Farm | Open Energy Information  

Open Energy Info (EERE)

Winds Wind Farm Winds Wind Farm Jump to: navigation, search Name High Winds Wind Farm Facility High Winds Sector Wind energy Facility Type Commercial Scale Wind Facility Status In Service Owner NextEra Energy Resources Developer NextEra Energy Resources Energy Purchaser PPM Energy Inc Location Solano County CA Coordinates 38.124844°, -121.764915° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":38.124844,"lon":-121.764915,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

264

Q. J. R. Meteorol. Soc. (2004), 130, pp. 120 Using mesocale model winds for correcting wind-drift errors in radar  

E-Print Network [OSTI]

the vertical shear of the horizontal wind. We assume the shear and the fall speed in the layer are constant rain because of the low fall speed of around 1 m s-1. Sampling these wind-induced fall streak patterns vertical profile of reflectivity shear fall streak wind drift 1. Introduction Operational radars around

Reading, University of

265

On the Vertical Decay Rate of the Maximum Tangential Winds in Tropical Cyclones DANIEL P. STERN* AND DAVID S. NOLAN  

E-Print Network [OSTI]

On the Vertical Decay Rate of the Maximum Tangential Winds in Tropical Cyclones DANIEL P. STERN independent of both the maximum wind speed and the radius of maximum winds (RMW). This can be seen winds change with height. Above 2-km height, vertical profiles of Vmaxnorm are nearly independent

Nolan, David S.

266

Wind pump systems  

Science Journals Connector (OSTI)

The application of wind mills for water pumping is of lesser importance ... it is useful to discuss this type of wind energy application in a wind energy book targeted at development and planning...

Prof. Dr.-Ing. Robert Gasch; Prof. Dr.-Ing. Jochen Twele

2012-01-01T23:59:59.000Z

267

NREL: Wind Research - Testing  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

the National Wind Technology Center (NWTC) support the installation and testing of wind turbines that range in size from 400 watts to 5.0 megawatts. Engineers provide wind...

268

Fixed Offshore Wind Turbines  

Science Journals Connector (OSTI)

In this chapter, a perspective of offshore wind farms, applied concepts for fixed offshore wind turbines, and related statistics are given. One example of a large wind farm, which is successfully operating, is st...

Madjid Karimirad

2014-01-01T23:59:59.000Z

269

Wind Power Today  

SciTech Connect (OSTI)

Wind Power Today is an annual publication that provides an overview of the wind energy research conducted by the U.S. Department of Energy Wind and Hydropower Technologies Program.

Not Available

2006-05-01T23:59:59.000Z

270

Wind Power Today  

SciTech Connect (OSTI)

Wind Power Today is an annual publication that provides an overview of the wind energy research conducted by the U.S. Department of Energy Wind and Hydropower Technologies Program.

Not Available

2007-05-01T23:59:59.000Z

271

Large-eddy simulation of offshore wind farm  

Science Journals Connector (OSTI)

A hybrid numerical capability is developed for the simulation of offshore wind farms in which large-eddy simulation is performed for the wind turbulence and a potential flow based method is used for the simulation of the ocean wave field. The wind and wave simulations are dynamically coupled. The effect of wind turbines on the wind field is represented by an actuator disk model. This study focuses on the effect of wind-seas and the turbine motion is treated as negligibly small. A variety of fully-developed and fetch-limited wind-sea conditions and turbine spacings are considered in the study. Statistical analyses are performed for the simulation results with a focus on the mean wind profile kinetic energy budget in the wind field and the wind turbine power extraction rate. The results indicate that the waves have appreciable effect on the wind farm performance. The wind turbines obtain a higher wind power extraction rate under the fully developed wind-sea condition compared with that under the fetch-limited condition. This higher extraction rate is caused by the faster propagating waves and the lower sea-surface resistance on the wind when the wind-seas are fully developed. The wave-induced difference can be as high as 8% with the commonly used turbine spacing in commercial land-based wind farms s x = 7 (with s x being the ratio of streamwise turbine spacing to the turbine diameter). Such level of difference is noteworthy considering the previous understanding that direct wave-induced disturbance to the wind field decays exponentially away from wave surface.

2014-01-01T23:59:59.000Z

272

Wind farm noise  

Science Journals Connector (OSTI)

Arrays of small wind turbines recently coined as “wind farms” offer several advantages over single larger wind turbines producing the same electrical power. Noise source characteristics of wind farms are also different from those associated with a single wind turbine. One?third octave band noise measurements from 2 Hz to 10 kHz have been made and will be compared to measurements of noise produced by a single large wind turbine. [J. R. Balombin Technical Memorandum 81486.

Gregory C. Tocci; Brion G. Koning

1981-01-01T23:59:59.000Z

273

W2E Wind To Energy GmbH | Open Energy Information  

Open Energy Info (EERE)

E Wind To Energy GmbH E Wind To Energy GmbH Jump to: navigation, search Name W2E Wind To Energy GmbH Place Germany Sector Wind energy Product German technology provider of wind turbines. References W2E Wind To Energy GmbH[1] LinkedIn Connections CrunchBase Profile No CrunchBase profile. Create one now! This article is a stub. You can help OpenEI by expanding it. W2E Wind To Energy GmbH is a company located in Germany . References ↑ "W2E Wind To Energy GmbH" Retrieved from "http://en.openei.org/w/index.php?title=W2E_Wind_To_Energy_GmbH&oldid=352903" Categories: Clean Energy Organizations Companies Organizations Stubs What links here Related changes Special pages Printable version Permanent link Browse properties 429 Throttled (bot load) Error 429 Throttled (bot load)

274

Harbin Hafei Winwind Wind Power Equipment Co Ltd | Open Energy Information  

Open Energy Info (EERE)

Hafei Winwind Wind Power Equipment Co Ltd Hafei Winwind Wind Power Equipment Co Ltd Jump to: navigation, search Name Harbin Hafei-Winwind Wind Power Equipment Co Ltd Place Harbin, Heilongjiang Province, China Zip 150060 Sector Services, Wind energy Product Manufacturer of wind turbines. Provides installation and after-sale services and technology support. References Harbin Hafei-Winwind Wind Power Equipment Co Ltd[1] LinkedIn Connections CrunchBase Profile No CrunchBase profile. Create one now! This article is a stub. You can help OpenEI by expanding it. Harbin Hafei-Winwind Wind Power Equipment Co Ltd is a company located in Harbin, Heilongjiang Province, China . References ↑ "Harbin Hafei-Winwind Wind Power Equipment Co Ltd" Retrieved from "http://en.openei.org/w/index.php?title=Harbin_Hafei_Winwind_Wind_Power_Equipment_Co_Ltd&oldid=346385"

275

Inner Mongolia Bayannao er Fuhui Wind Power Co Ltd | Open Energy  

Open Energy Info (EERE)

Bayannao er Fuhui Wind Power Co Ltd Bayannao er Fuhui Wind Power Co Ltd Jump to: navigation, search Name Inner Mongolia Bayannao'er Fuhui Wind Power Co Ltd Place Inner Mongolia Autonomous Region, China Sector Wind energy Product Wind project developer in China that has two projects in portfolio. References Inner Mongolia Bayannao'er Fuhui Wind Power Co Ltd[1] LinkedIn Connections CrunchBase Profile No CrunchBase profile. Create one now! This article is a stub. You can help OpenEI by expanding it. Inner Mongolia Bayannao'er Fuhui Wind Power Co Ltd is a company located in Inner Mongolia Autonomous Region, China . References ↑ "[ Inner Mongolia Bayannao'er Fuhui Wind Power Co Ltd]" Retrieved from "http://en.openei.org/w/index.php?title=Inner_Mongolia_Bayannao_er_Fuhui_Wind_Power_Co_Ltd&oldid=346931

276

Helix Wind Inc formerly ClearView Acquisitions | Open Energy Information  

Open Energy Info (EERE)

Helix Wind Inc formerly ClearView Acquisitions Helix Wind Inc formerly ClearView Acquisitions Jump to: navigation, search Name Helix Wind Inc. (formerly ClearView Acquisitions) Place San Diego, California Zip 92113 Sector Wind energy Product California-based manufacturer of small scale wind turbines. References Helix Wind Inc. (formerly ClearView Acquisitions)[1] LinkedIn Connections CrunchBase Profile No CrunchBase profile. Create one now! This article is a stub. You can help OpenEI by expanding it. Helix Wind Inc. (formerly ClearView Acquisitions) is a company located in San Diego, California . References ↑ "Helix Wind Inc. (formerly ClearView Acquisitions)" Retrieved from "http://en.openei.org/w/index.php?title=Helix_Wind_Inc_formerly_ClearView_Acquisitions&oldid=346471"

277

NREL: Wind Research - Offshore Wind Resource Characterization  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Offshore Wind Resource Characterization Offshore Wind Resource Characterization Map of the United States, showing the wind potential of offshore areas across the country. Enlarge image US offshore wind speed estimates at 90-m height NREL scientists and engineers are leading efforts in resource mapping, remote sensor measurement and development, and forecasting that are essential for the development of offshore wind. Resource Mapping For more than 15 years, NREL's meteorologists, engineers, and Geographic Information System experts have led the production of wind resource characterization maps and reports used by policy makers, private industry, and other government organizations to inform and accelerate the development of wind energy in the United States. Offshore wind resource data and mapping has strategic uses. As with terrestrial developments, traditional

278

NREL: Wind Research - Midsize Wind Turbine Research  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Midsize Wind Turbine Research Midsize Wind Turbine Research To facilitate the development and commercialization of midsize wind turbines (turbines with a capacity rating of more than 100 kW up to 1 MW), the U.S. Department of Energy (DOE) and NREL launched the Midsize Wind Turbine Development Project. In its latest study, NREL determined that there is a substantial market for midsize wind turbines. One of the most significant barriers to the midsize turbine market is the lack of turbines available for deployment; there are few midsize turbines on the market today. The objectives of the Midsize Wind Turbine Development Project are to reduce the barriers to wind energy expansion by filling an existing domestic technology gap; facilitate partnerships; accelerate maturation of existing U.S. wind energy businesses; and incorporate process improvement

279

Diablo Winds Wind Farm | Open Energy Information  

Open Energy Info (EERE)

Diablo Winds Wind Farm Diablo Winds Wind Farm Facility Diablo Winds Wind Farm Sector Wind energy Facility Type Commercial Scale Wind Facility Status In Service Owner NextEra Energy Resources Developer NextEra Energy Resources Energy Purchaser Pacific Gas & Electric Co Location Altamont Pass CA Coordinates 37.7347°, -121.652° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":37.7347,"lon":-121.652,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

280

Wind for Schools (Poster)  

SciTech Connect (OSTI)

As the United States dramatically expands wind energy deployment, the industry is challenged with developing a skilled workforce and addressing public resistance. Wind Powering America's Wind for Schools project addresses these issues by developing Wind Application Centers (WACs) at universities; WAC students assist in implementing school wind turbines and participate in wind courses, by installing small wind turbines at community "host" schools, by implementing teacher training with interactive curricula at each host school. This poster provides an overview of the first two years of the Wind for Schools project, primarily supporting activities in Colorado, Kansas, Nebraska, South Dakota, Montana, and Idaho.

Baring-Gould, I.

2010-05-01T23:59:59.000Z

Note: This page contains sample records for the topic "wind profiler demo" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


281

Wind Turbine Tribology Seminar  

Broader source: Energy.gov [DOE]

Wind turbine reliability issues are often linked to failures of contacting components, such as bearings, gears, and actuators. Therefore, special consideration to tribological design in wind...

282

Wind energy bibliography  

SciTech Connect (OSTI)

This bibliography is designed to help the reader search for information on wind energy. The bibliography is intended to help several audiences, including engineers and scientists who may be unfamiliar with a particular aspect of wind energy, university researchers who are interested in this field, manufacturers who want to learn more about specific wind topics, and librarians who provide information to their clients. Topics covered range from the history of wind energy use to advanced wind turbine design. References for wind energy economics, the wind energy resource, and environmental and institutional issues related to wind energy are also included.

None

1995-05-01T23:59:59.000Z

283

Northern Wind Farm  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

a draft environmental assessment (EA) on the proposed interconnection of the Northern Wind Farm (Project) in Roberts County, near the city of Summit, South Dakota. Northern Wind,...

284

Wind Program News  

Broader source: Energy.gov (indexed) [DOE]

eerewindwind-program-news en EERE Leadership Celebrates Offshore Wind in Maine http:energy.goveerearticleseere-leadership-celebrates-offshore-wind-maine

285

British wind band music.  

E-Print Network [OSTI]

??I have chosen to be assessed as an interpreter and conductor of British wind band music from the earliest writings for wind band up to,… (more)

Jones, GO

2005-01-01T23:59:59.000Z

286

WINDExchange: Wind Energy Ordinances  

Wind Powering America (EERE)

Wind Energy Ordinances Federal, state, and local regulations govern many aspects of wind energy development. The exact nature of the project and its location will largely drive the...

287

Wind Program: WINDExchange  

Wind Powering America (EERE)

Version Bookmark and Share WINDExchange logo WINDExchange is the U.S. Department of Energy (DOE) Wind Program's platform for disseminating credible information about wind...

288

WINDExchange: Siting Wind Turbines  

Wind Powering America (EERE)

Wind Wildlife Institute (AWWI) facilitates timely and responsible development of wind energy, while protecting wildlife and wildlife habitat. AWWI was created and is sustained by...

289

WINDExchange: Collegiate Wind Competition  

Wind Powering America (EERE)

& Teaching Materials Resources Collegiate Wind Competition The U.S. Department of Energy (DOE) Collegiate Wind Competition challenges interdisciplinary teams of undergraduate...

290

ARM - Wind Chill Calculations  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

FAQ Just for Fun Meet our Friends Cool Sites Teachers Teachers' Toolbox Lesson Plans Wind Chill Calculations Wind Chill is the apparent temperature felt on the exposed human...

291

Module Handbook Specialisation Wind Energy  

E-Print Network [OSTI]

of Wind Turbines Module name: Wind potential, Aerodynamics & Loading of Wind Turbines Section Classes Evaluation of Wind Energy Potential Wind turbine Aerodynamics Static and dynamic Loading of Wind turbines Wind turbine Aerodynamics Static and dynamic Loading of Wind turbines Credit points 8 CP

Habel, Annegret

292

Sandia National Laboratories: Wind Energy  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

specialprogramsslide5 windplantoptslide4 rotorinnovationslide3 offshorewindslide2 Materialsslide1 Wind Energy Wind Plant Optimization Materials,...

293

People Profiles  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

What Is NIF? How NIF Works Seven Wonders Beamline NIF Construction Who Works for NIF & PS? People Profiles Management Awards Honors Fellows Who Partners with NIF? FAQs Visit Us...

294

Large-eddy simulation of a wind turbine wake in turbulent  

E-Print Network [OSTI]

Large-eddy simulation of a wind turbine wake in turbulent neutral shear flow Shengbai Xie, Cristina-similar velocity profile existing in the wake after a wind turbine? How does the wake influence the vertical? Motivation #12; Large-eddy simulation for turbulent flow field Actuator-line model for wind turbine ui

Firestone, Jeremy

295

The stellar wind cycles and planetary radio emission of the Boo system  

Science Journals Connector (OSTI)

......temperature) and wind velocity profiles is...Value Stellar mass M (Mo) 1...magnetic field maps used in this...namely that the wind mass-loss rate...value. The wind outflowing...where is the velocity vector in...reconstructed maps used here......

A. A. Vidotto; R. Fares; M. Jardine; J.-F. Donati; M. Opher; C. Moutou; C. Catala; T. I. Gombosi

2012-07-11T23:59:59.000Z

296

West Winds Wind Farm | Open Energy Information  

Open Energy Info (EERE)

West Winds Wind Farm West Winds Wind Farm Facility West Winds Sector Wind energy Facility Type Commercial Scale Wind Facility Status In Service Owner Caithness Developer SeaWest Energy Purchaser Southern California Edison/PacifiCorp Location San Gorgonio CA Coordinates 33.9095°, -116.734° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":33.9095,"lon":-116.734,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

297

Howard County- Wind Ordinance  

Broader source: Energy.gov [DOE]

This ordinance sets up provisions for allowing small wind energy systems in various zoning districts.

298

WIND DATA REPORT Ragged Mt Maine  

E-Print Network [OSTI]

...................................................................................................................... 8 Wind Speed Time Series............................................................................................................. 9 Wind Speed Distributions........................................................................................................... 9 Monthly Average Wind Speeds

Massachusetts at Amherst, University of

299

Wind Powering America  

Wind Powering America (EERE)

These news items are notable additions These news items are notable additions to the Wind Powering America Web site. The Wind Powering America Web site reports recent national and state wind market changes by cataloging wind activities such as wind resource maps, small wind consumer's guides, local wind workshops, news articles, and publications in the areas of policy, public power, small wind, Native Americans, agricultural sector, economic development, public lands, and schools. en-us julie.jones@nrel.gov (Julie Jones) http://www.windpoweringamerica.gov/images/wpa_logo_sm.jpg Wind Powering America http://www.windpoweringamerica.gov/ Nominate an Electric Cooperative for Wind Power Leadership Award by January 15 http://www.windpoweringamerica.gov/filter_detail.asp?itemid=4076 http://www.windpoweringamerica.gov/filter_detail.asp?itemid=4076 Mon, 16

300

New England Wind Forum: New England Wind Resources  

Wind Powering America (EERE)

New England Wind Forum About the New England Wind Forum New England Wind Energy Education Project Historic Wind Development in New England State Activities Projects in New England Building Wind Energy in New England Wind Resources Wind Power Technology Economics Markets Siting Policy Technical Challenges Issues Small Wind Large Wind Newsletter Perspectives Events Quick Links to States CT MA ME NH RI VT Bookmark and Share New England Wind Resources Go to the Vermont wind resource map. Go to the New Hampshire wind resource map. Go to the Maine wind resource map. Go to the Massachusetts wind resource map. Go to the Connecticut wind resource map. Go to the Rhode Island wind resource map. New England Wind Resource Maps Wind resources maps of Connecticut, Massachusetts, Maine, New Hampshire, Rhode Island, and Vermont.

Note: This page contains sample records for the topic "wind profiler demo" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


301

Wind Resource Maps (Postcard)  

SciTech Connect (OSTI)

The U.S. Department of Energy's Wind Powering America initiative provides high-resolution wind maps and estimates of the wind resource potential that would be possible from development of the available windy land areas after excluding areas unlikely to be developed. This postcard is a marketing piece that stakeholders can provide to interested parties; it will guide them to Wind Powering America's online wind energy resource maps.

Not Available

2011-07-01T23:59:59.000Z

302

Wind energy offers considerable promise; the wind itself is free,  

E-Print Network [OSTI]

Wind energy offers considerable promise; the wind itself is free, wind power is clean. One of these sources, wind energy, offers considerable promise; the wind itself is free, wind power is clean, and it is virtually inexhaustible. In recent years, research on wind energy has accelerated

Langendoen, Koen

303

SPECIES PROFILE New Hampshire Wildlife Action PlanA-276  

E-Print Network [OSTI]

SPECIES PROFILE New Hampshire Wildlife Action PlanA-276 Federal Listing: Not listed State Listing caused by direct solar insolation and benefit from the cooling effects of wind caused by evaporative, as well as benefits from the cooling effects of wind. Eastern Red Bat Lasiurus borealis Roost trees

New Hampshire, University of

304

American Wind Power Hydrogen LLC | Open Energy Information  

Open Energy Info (EERE)

LLC LLC Jump to: navigation, search Name American Wind Power & Hydrogen LLC Place New York, New York Zip 10022 Sector Hydro, Hydrogen, Vehicles Product AWP&H is a hydrogen transportation system integrator focused on hydrogen infrastructure, electrolysis, and hydrogen fueled internal combustion engine vehicles. References American Wind Power & Hydrogen LLC[1] LinkedIn Connections CrunchBase Profile No CrunchBase profile. Create one now! This article is a stub. You can help OpenEI by expanding it. American Wind Power & Hydrogen LLC is a company located in New York, New York . References ↑ "American Wind Power & Hydrogen LLC" Retrieved from "http://en.openei.org/w/index.php?title=American_Wind_Power_Hydrogen_LLC&oldid=342137"

305

Henan Mingdu Wind Power Co Ltd aka He Nan Ming Du Feng Dian Limited Company  

Open Energy Info (EERE)

Henan Mingdu Wind Power Co Ltd aka He Nan Ming Du Feng Dian Limited Company Henan Mingdu Wind Power Co Ltd aka He Nan Ming Du Feng Dian Limited Company Jump to: navigation, search Name Henan Mingdu Wind Power Co Ltd (aka He Nan Ming Du Feng Dian Limited Company) Place Jiaozuo, Henan Province, China Sector Wind energy Product Wind turbine blades provider. References Henan Mingdu Wind Power Co Ltd (aka He Nan Ming Du Feng Dian Limited Company)[1] LinkedIn Connections CrunchBase Profile No CrunchBase profile. Create one now! This article is a stub. You can help OpenEI by expanding it. Henan Mingdu Wind Power Co Ltd (aka He Nan Ming Du Feng Dian Limited Company) is a company located in Jiaozuo, Henan Province, China . References ↑ "[ Henan Mingdu Wind Power Co Ltd (aka He Nan Ming Du Feng Dian Limited Company)]" Retrieved from

306

Surface wind speed distributions| Implications for climate and wind power.  

E-Print Network [OSTI]

?? Surface constituent and energy fluxes, and wind power depend non-linearly on wind speed and are sensitive to the tails of the wind distribution. Until… (more)

Capps, Scott Blair

2010-01-01T23:59:59.000Z

307

NREL: Wind Research - WindPACT  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

WindPACT WindPACT The Wind Partnerships for Advanced Component Technology (WindPACT) studies were conducted to assist industry by testing innovative components, such as advanced blades and drivetrains, to lower the cost of energy. Specific goals included: Foster technological advancements to reduce the cost of wind energy Determine probable size ranges of advanced utility-scale turbines over the next decade for U.S. application Evaluate advanced concepts that are necessary to achieve objectives of cost and size for future turbines Identify and solve technological hurdles that may block industry from taking advantage of promising technology Design, fabricate, and test selected advanced components to prove their viability Support wind industry through transfer of technology from

308

Wind | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

Wind Wind Wind America is home to one of the largest and fastest growing wind markets in the world. Watch the video to learn more about the latest trends in the U.S. wind power market and join us this Thursday, August 8 at 3 pm ET for a Google+ Hangout on wind energy in America. The United States is home to one of the largest and fastest growing wind markets in the world. To stay competitive in this sector, the Energy Department invests in wind projects, both on land and offshore, to advance technology innovations, create job opportunities and boost economic growth. Moving forward, the U.S. wind industry remains a critical part of the Energy Department's all-of-the-above energy strategy to cut carbon pollution, diversify our energy economy and bring the next-generation of

309

NAWIG News: The Quarterly Newsletter of the Native American Wind Interest Group, Fall 2009  

SciTech Connect (OSTI)

As part of its Native American outreach, DOE's Wind Powering America program has initiated a NAWIG newsletter to present Native American wind information, including projects, interviews with pioneers, issues, WPA activities, and related events. It is our hope that this newsletter will both inform and elicit comments and input on wind development in Indian Country. This issue profiles the Campo Band Wind Project in California and a feature on the Cheyenne River Sioux Tribe's plans for a 100- to 125-MW project.

Not Available

2009-09-01T23:59:59.000Z

310

NAWIG News: The Quarterly Newsletter of the Native American Wind Interest Group, Spring 2009  

SciTech Connect (OSTI)

As part of its Native American outreach, DOE's Wind Powering America program has initiated a NAWIG newsletter to present Native American wind information, including projects, interviews with pioneers, issues, WPA activities, and related events. It is our hope that this newsletter will both inform and elicit comments and input on wind development in Indian Country. This issue profiles the Banner Wind Project in Nome, Alaska, and a new Native project in Kansas.

Not Available

2009-01-01T23:59:59.000Z

311

Offshore Wind Projects | Department of Energy  

Office of Environmental Management (EM)

Offshore Wind Projects Offshore Wind Projects This report covers the Wind and Water Power Program's offshore wind energy projects from fiscal years 2006 to 2014. Offshore Wind...

312

NREL: Wind Research - Offshore Wind Research  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

standards Third-party design verification of innovative floating and fixed-bottom wind turbines NREL's standards and testing capabilities address the need to validate our...

313

2012 Wind Technologies Market Report  

E-Print Network [OSTI]

Colorado: Xcel Energy. 2012 Wind Technologies Market ReportOperator. 2012 Wind Technologies Market Report Chadbourne &Power Company. 2012 Wind Technologies Market Report EnerNex

Wiser, Ryan

2014-01-01T23:59:59.000Z

314

2011 Wind Technologies Market Report  

E-Print Network [OSTI]

2010. SPP WITF Wind Integration Study. Little Rock,GE Energy. 2011a. Oahu Wind Integration Study Final Report.PacifiCorp. 2010. 2010 Wind Integration Study. Portland,

Bolinger, Mark

2013-01-01T23:59:59.000Z

315

NREL: Wind Research - @NWTC Newsletter  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

NREL Investigates the Logistics of Transporting and Installing Bigger, Taller Wind Turbines NREL Plays Founding, Developmental Role in Major Wind Journal Boosting Wind Plant...

316

2012 Wind Technologies Market Report  

E-Print Network [OSTI]

Department of Energy (DOE). 2008. 20% Wind Energy by2030: Increasing Wind Energy’s Contribution to U.S.Integrating Midwest Wind Energy into Southeast Electricity

Wiser, Ryan

2014-01-01T23:59:59.000Z

317

Sandia National Laboratories: Wind Power  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Wind Energy Staff On March 24, 2011, in Wind Energy On November 10, 2010, in Wind Plant Opt. Rotor Innovation Materials, Reliability & Standards Siting & Barrier Mitigation...

318

Sandia National Laboratories: wind manufacturing  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

manufacturing Wind Energy Manufacturing Lab Helps Engineers Improve Wind Power On November 15, 2011, in Energy, News, Partnership, Renewable Energy, Wind Energy Researchers at the...

319

NREL: Wind Research - Projects  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Projects Projects NREL's wind energy research and development projects focus on reducing the cost of wind technology and expanding access to wind energy sites. Our specialized technical expertise, comprehensive design and analysis tools, and unique testing facilities help industry overcome challenges to bringing new wind technology to the marketplace. Some of these success stories are described in NREL's Wind R&D Success Stories. We also work closely with universities and other national laboratories supporting fundamental research in wind technologies, including aerodynamics, aeroacoustics, and material sciences essential in the development of new blade technologies and advanced controls, power electronics, and testing to further refine drivetrain topology.

320

Wind power today  

SciTech Connect (OSTI)

This publication highlights initiatives of the US DOE`s Wind Energy Program. 1997 yearly activities are also very briefly summarized. The first article describes a 6-megawatt wind power plant installed in Vermont. Another article summarizes technical advances in wind turbine technology, and describes next-generation utility and small wind turbines in the planning stages. A village power project in Alaska using three 50-kilowatt turbines is described. Very brief summaries of the Federal Wind Energy Program and the National Wind Technology Center are also included in the publication.

NONE

1998-04-01T23:59:59.000Z

Note: This page contains sample records for the topic "wind profiler demo" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


321

Wind Power Career Chat  

SciTech Connect (OSTI)

This document will teach students about careers in the wind energy industry. Wind energy, both land-based and offshore, is expected to provide thousands of new jobs in the next several decades. Wind energy companies are growing rapidly to meet America's demand for clean, renewable, and domestic energy. These companies need skilled professionals. Wind power careers will require educated people from a variety of areas. Trained and qualified workers manufacture, construct, operate, and manage wind energy facilities. The nation will also need skilled researchers, scientists, and engineers to plan and develop the next generation of wind energy technologies.

Not Available

2011-01-01T23:59:59.000Z

322

Wind energy information guide  

SciTech Connect (OSTI)

This book is divided into nine chapters. Chapters 1--8 provide background and annotated references on wind energy research, development, and commercialization. Chapter 9 lists additional sources of printed information and relevant organizations. Four indices provide alphabetical access to authors, organizations, computer models and design tools, and subjects. A list of abbreviations and acronyms is also included. Chapter topics include: introduction; economics of using wind energy; wind energy resources; wind turbine design, development, and testing; applications; environmental issues of wind power; institutional issues; and wind energy systems development.

NONE

1996-04-01T23:59:59.000Z

323

Microphysical Structure of the Marine Boundary Layer under Strong Wind and Spray Formation as Seen from Simulations Using a 2D Explicit  

E-Print Network [OSTI]

in the vertical profiles of wind speed occurring with in- creasing wind speeds were attributed to a decrease generation is de- termined by a source function depending on the background wind speed assumed in the surface roughness and the drag coefficient for wind speeds exceeding about 33 m s21 . This decrease

Mark, Pinsky

324

EA-1726: Kahuku Wind Power, LLC Wind Power Generation Facility...  

Broader source: Energy.gov (indexed) [DOE]

6: Kahuku Wind Power, LLC Wind Power Generation Facility, O'ahu, HI EA-1726: Kahuku Wind Power, LLC Wind Power Generation Facility, O'ahu, HI May 3, 2010 EA-1726: Final...

325

Women of Wind Energy Honor Wind Program Researchers | Department...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Women of Wind Energy Honor Wind Program Researchers Women of Wind Energy Honor Wind Program Researchers August 1, 2013 - 2:54pm Addthis This is an excerpt from the Second Quarter...

326

2008 Wind Energy Projects, Wind Powering America (Poster)  

SciTech Connect (OSTI)

The Wind Powering America program produces a poster at the end of every calendar year that depicts new U.S. wind energy projects. The 2008 poster includes the following projects: Stetson Wind Farm in Maine; Dutch Hill Wind Farm in New York; Grand Ridge Wind Energy Center in Illinois; Hooper Bay, Alaska; Forestburg, South Dakota; Elbow Creek Wind Project in Texas; Glacier Wind Farm in Montana; Wray, Colorado; Smoky Hills Wind Farm in Kansas; Forbes Park Wind Project in Massachusetts; Spanish Fork, Utah; Goodland Wind Farm in Indiana; and the Tatanka Wind Energy Project on the border of North Dakota and South Dakota.

Not Available

2009-01-01T23:59:59.000Z

327

Mentee Profile  

Broader source: Energy.gov (indexed) [DOE]

Mentee Profile Mentee Profile The information you provide on this form will assist us in providing you with a list of prospective mentor from which to choose the most appropriate match. Once you've completed the form, please email it to doementoringprogram@hq.doe.gov . Thank you for your interest in the DOE Mentoring Program. Name (last/first): Phone Number: Job Title/Series/Grade: Organization (indicate HQ or field - complete address): Email Address: Are you a Veteran? If yes, do want a veteran mentee? If yes, which branch of the service? Are you student or intern? Do you have a preference on mentor? For example, male, female, particular career field, specific person or other? If so, what or who? Do you want a mentor in your career field? What are your career goals?

328

Mentor Profile  

Broader source: Energy.gov (indexed) [DOE]

Mentor Profile Mentor Profile The information you provide on this form will assist us in providing you with a list of prospective mentee from which to choose the most appropriate match. Once you've completed the form, please email it to doementoringprogram@hq.doe.gov . Thank you for your interest in the DOE Mentoring Program. Name (last/first): Phone Number: Job Title/Series/Grade: Organization (indicate HQ or field - complete address): Email Address: Are you a Veteran? If yes, do want a veteran mentee? If yes, which branch of the service? Do you want a student or intern mentee? Do you have a preference on mentee? For example, male, female, particular career field or other? If so, what or state name of pre selected mentee? Do you want a mentee in your career field? What are your hobbies?

329

EIA - State Nuclear Profiles  

Gasoline and Diesel Fuel Update (EIA)

Vermont profile Vermont profile Vermont total electric power industry, summer capacity and net generation, by energy source, 2010 Primary energy source Summer capacity (mw) Share of State total (percent) Net generation (thousand mwh) Share of State total (percent) Nuclear 620 55.0 4,782 72.2 Hydro and Pumped Storage 324 28.7 1,347 20.3 Natural Gas - - 4 0.1 Other Renewable1 84 7.5 482 7.3 Petroleum 100 8.9 5 0.1 Total 1,128 100.0 6,620 100.0 1Municipal Solid Waste net generation is allocated according to the biogenic and non-biogenic components of the fuel; however, all Municipal Solid Waste summer capacity is classified as Renewable. - = No data reported. Notes: Totals may not equal sum of components due to independent rounding. Other Renewable: Wood, black liquor, other wood waste, biogenic municipal solid waste, landfill gas, sludge waste, agriculture byproducts, other biomass, geothermal, solar thermal, photovoltaic energy, and wind.

330

EIA - State Nuclear Profiles  

U.S. Energy Information Administration (EIA) Indexed Site

Vermont profile Vermont profile Vermont total electric power industry, summer capacity and net generation, by energy source, 2010 Primary energy source Summer capacity (mw) Share of State total (percent) Net generation (thousand mwh) Share of State total (percent) Nuclear 620 55.0 4,782 72.2 Hydro and Pumped Storage 324 28.7 1,347 20.3 Natural Gas - - 4 0.1 Other Renewable1 84 7.5 482 7.3 Petroleum 100 8.9 5 0.1 Total 1,128 100.0 6,620 100.0 1Municipal Solid Waste net generation is allocated according to the biogenic and non-biogenic components of the fuel; however, all Municipal Solid Waste summer capacity is classified as Renewable. - = No data reported. Notes: Totals may not equal sum of components due to independent rounding. Other Renewable: Wood, black liquor, other wood waste, biogenic municipal solid waste, landfill gas, sludge waste, agriculture byproducts, other biomass, geothermal, solar thermal, photovoltaic energy, and wind.

331

NREL: Wind Research - National Wind Technology Center  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Center Center The National Renewable Energy Laboratory's (NREL's) National Wind Technology Center (NWTC), located at the base of the foothills just south of Boulder, Colorado, is the nation's premier wind energy technology research facility. Built in 1993, the center provides an ideal environment for the development of advanced wind energy technologies. The goal of the research conducted at the center is to help industry reduce the cost of energy so that wind can compete with traditional energy sources, providing a clean, renewable alternative for our nation's energy needs. Research at the NWTC is organized under two main categories, Wind Technology Development and Testing and Operations. Illustration of the National Wind Technology Center's organization chart. Fort Felker is listed as the Center Director, with Mike Robinson, Deputy Center Director; Paul Veers, Chief Engineer, and Laura Davis and Dorothy Haldeman beneath him. The Associate Director position is empty. Beneath them is the Wind Technology Research and Development Group Manager, Mike Robinson; the Testing and Operations Group Manager, Dave Simms; and the Offshore Wind and Ocean Power Systems Acting Supervisor, Fort Felker.

332

Wind Rose Bias Correction  

Science Journals Connector (OSTI)

Wind rose summaries, which provide a basis for understanding and evaluating the climatological behavior of local wind, have a directional bias if a conventional method is used in their generation. Three techniques used to remove this bias are ...

Scott Applequist

2012-07-01T23:59:59.000Z

333

Surface Wind Direction Variability  

Science Journals Connector (OSTI)

Common large shifts of wind direction in the weak-wind nocturnal boundary layer are poorly understood and are not adequately captured by numerical models and statistical parameterizations. The current study examines 15 datasets representing a ...

Larry Mahrt

2011-01-01T23:59:59.000Z

334

GSA Wind Supply Opportunity  

Office of Environmental Management (EM)

Wind Supply Opportunity 1 2 3 Proposed Location * Size: 100-210 MegaWatts *Location: Bureau County, IL *Planned COD: December 2014 or 2015 *Site Control: 17,000 acres *Wind...

335

Scale Models & Wind Turbines  

Broader source: Energy.gov (indexed) [DOE]

Scale Models and Wind Turbines Grades: 5-8, 9-12 Topics: Wind Energy Owner: Kidwind Project This educational material is brought to you by the U.S. Department of Energy's Office of...

336

Distributed Wind 2015  

Broader source: Energy.gov [DOE]

Distributed Wind 2015 is committed to the advancement of both distributed and community wind energy. This two day event includes a Business Conference with sessions focused on advancing the...

337

Competitive Wind Grants (Vermont)  

Broader source: Energy.gov [DOE]

The Clean Energy Development Fund Board will offer a wind grant program beginning October 1, 2013. The grant program will replace the wind incentives that were originally part of the [http:/...

338

NREL: Wind Research - Awards  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Awards NREL has received many awards for its technical innovations in wind energy. In addition, the research conducted at the National Wind Technology Center (NWTC) at NREL has led...

339

Talbot County- Wind Ordinance  

Broader source: Energy.gov [DOE]

This ordinance amends the Talbot County Code, Chapter 190, Zoning, Subdivision and Land Development, to permit small wind turbine systems with wind turbine towers not to exceed 160 feet in total...

340

Wind Career Map  

K-12 Energy Lesson Plans and Activities Web site (EERE)

This wind career map explores an expanding universe of wind energy occupations, describing diverse jobs across the industry, charting possible progression between them, and identifying the high-quality training necessary to do them well.

Note: This page contains sample records for the topic "wind profiler demo" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


341

WINDExchange: Wind Events  

Wind Powering America (EERE)

Sun, 15 Feb 2015 00:00:00 MST 2015 Iowa Wind Power Conference and Iowa Wind Energy Association Midwest Regional Energy Job Fair http:www.iowawindenergy.org...

342

WINDExchange: Wind Potential Capacity  

Wind Powering America (EERE)

area with a gross capacity factor1 of 35% and higher, which may be suitable for wind energy development. AWS Truepower LLC produced the wind resource data with a spatial...

343

Offshore wind metadata management  

Science Journals Connector (OSTI)

Offshore wind energy is gaining more and more attention from industry and research community due to its high potential in producing green energy and lowering price on electricity consumption. However, offshore wind is facing many challenges, and hence ...

Trinh Hoang Nguyen; Rocky Dunlap; Leo Mark; Andreas Prinz; Bjørn Mo Østgren; Trond Friisø

2014-10-01T23:59:59.000Z

344

2008 WIND TECHNOLOGIES MARKET REPORT  

E-Print Network [OSTI]

Prepared for the Utility Wind Integration Group. Arlington,Wind Logics, Inc. 2004. Wind Integration Study—Final Report.EnerNex Corp. 2006. Wind Integration Study for Public

Bolinger, Mark

2010-01-01T23:59:59.000Z

345

How Do Wind Turbines Work?  

Broader source: Energy.gov [DOE]

Instead of using electricity to make wind, like a fan, wind turbines use wind to make electricity. The wind turns the blades, which spin a shaft, which connects to a generator and makes electricity.

346

WINDExchange: Wind Basics and Education  

Wind Powering America (EERE)

locate higher education and training programs. Learn about Wind Learn about how wind energy generates power; where the best wind resources are; how you can get wind power; and...

347

WINDExchange: What Is Wind Power?  

Wind Powering America (EERE)

animation to see how a wind turbine works or take a look inside. Wind power or wind energy describes the process by which the wind is used to generate mechanical power or...

348

The Wind at Our Backs  

Science Journals Connector (OSTI)

...uncertainty that chills U.S. wind farm development. He...serious challenge of siting wind turbines in the United States...a community college wind training program, and...and the nation's first offshore wind project near Nantucket...

Dan Reicher

2012-05-11T23:59:59.000Z

349

Kent County- Wind Ordinance  

Broader source: Energy.gov [DOE]

This ordinance establishes provisions and standards for small wind energy systems in various zoning districts in Kent County, Maryland.

350

2009 Wind Technologies Market Report  

E-Print Network [OSTI]

is located in Europe. In contrast, all wind power projectsin Europe. In 2009, for example, more wind power was

Wiser, Ryan

2010-01-01T23:59:59.000Z

351

CONGRESSIONAL BRIEFING Offshore Wind  

E-Print Network [OSTI]

CONGRESSIONAL BRIEFING Offshore Wind Lessons Learned from Europe: Reducing Costs and Creating Jobs Thursday, June 12, 2014 Capitol Visitors Center, Room SVC 215 Enough offshore wind capacity to power six the past decade. What has Europe learned that is applicable to a U.S. effort to deploy offshore wind off

Firestone, Jeremy

352

Offshore Wind Potential Tables  

Wind Powering America (EERE)

Offshore wind resource by state and wind speed interval within 50 nm of shore. Wind Speed at 90 m (ms) 7.0 - 7.5 7.5 - 8.0 8.0 - 8.5 8.5 - 9.0 9.0 - 9.5 9.5 - 10.0 >10.0 Total...

353

Offshore wind energy systems  

Science Journals Connector (OSTI)

Wind energy systems deployed in the shallow but windy waters of the southern North Sea have the potential to provide more than 20% of UK electricity needs. With existing experience of windmills, and of aircraft and offshore structures, such wind energy systems could be developed within a relatively short timescale. A preliminary assessment of the economics of offshore wind energy systems is encouraging.

P Musgrove

1978-01-01T23:59:59.000Z

354

Wind Turbine Competition Introduction  

E-Print Network [OSTI]

Wind Turbine Competition Introduction: The Society of Hispanic Professional Engineers, SHPE at UTK, wishes to invite you to participate in our first `Wind Turbine' competition as part of Engineer's Week). You will be evaluated by how much power your wind turbine generates at the medium setting of our fan

Wang, Xiaorui "Ray"

355

New England Wind Forum: New England Wind Projects  

Wind Powering America (EERE)

Projects in New England Building Wind Energy in New England Wind Resource Wind Power Technology Economics Markets Siting Policy Technical Challenges Issues Small Wind Large Wind Newsletter Perspectives Events Quick Links to States CT MA ME NH RI VT Bookmark and Share New England Wind Projects This page shows the location of installed and planned New England wind projects. Find windfarms, community-scale wind projects, customer-sited wind projects, small wind projects, and offshore wind projects. Read more information about how to use the Google Map and how to add your wind project to the map. Text version New England Wind Energy Projects Connecticut, East Canaan Wind Connecticut, Klug Farm Connecticut, Phoenix Press Connecticut, Wind Colebrook (South and North)

356

Wind: wind speed and wind power density maps at 10m and 50m above...  

Open Energy Info (EERE)

files of wind speed and wind power density at 10 and 50 m heights. Global data of offshore wind resource as generated by NASA's QuikSCAT SeaWinds scatterometer....

357

Wind: wind speed and wind power density GIS data at 10m and 50m...  

Open Energy Info (EERE)

files of wind speed and wind power density at 10 and 50 m heights. Global data of offshore wind resource as generated by NASA's QuikScat SeaWinds scatterometer....

358

China Resources Wind Power Development Co Ltd Hua Run | Open Energy  

Open Energy Info (EERE)

Hua Run Hua Run Jump to: navigation, search Name China Resources Wind Power Development Co Ltd (Hua Run) Place Shantou, Guangdong Province, China Zip 515041 Sector Wind energy Product A company engages in developing wind power project. References China Resources Wind Power Development Co Ltd (Hua Run)[1] LinkedIn Connections CrunchBase Profile No CrunchBase profile. Create one now! This article is a stub. You can help OpenEI by expanding it. China Resources Wind Power Development Co Ltd (Hua Run) is a company located in Shantou, Guangdong Province, China . References ↑ "China Resources Wind Power Development Co Ltd (Hua Run)" Retrieved from "http://en.openei.org/w/index.php?title=China_Resources_Wind_Power_Development_Co_Ltd_Hua_Run&oldid=343528

359

Prairie Winds Wind Farm | Open Energy Information  

Open Energy Info (EERE)

Prairie Winds Wind Farm Prairie Winds Wind Farm Facility Prairie Winds Sector Wind energy Facility Type Commercial Scale Wind Facility Status In Service Owner Basin Electric Power Coop/Central Power Electric Coop Developer Basin Electric Power Coop/Central Power Electric Coop Energy Purchaser Basin Electric Power Coop/Central Power Electric Coop Location Near Minot ND Coordinates 48.022927°, -101.291435° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":48.022927,"lon":-101.291435,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

360

Wind energy | Open Energy Information  

Open Energy Info (EERE)

(Redirected from Wind) (Redirected from Wind) Jump to: navigation, search Wind energy is a form of solar energy.[1] Wind energy (or wind power) describes the process by which wind is used to generate electricity. Wind turbines convert the kinetic energy in the wind into mechanical power. A generator can convert mechanical power into electricity[2]. Mechanical power can also be utilized directly for specific tasks such as pumping water. The US DOE developed a short wind power animation that provides an overview of how a wind turbine works and describes the wind resources in the United States. Contents 1 Wind Energy Basics 1.1 Equation for Wind Power 2 DOE Wind Programs and Information 3 Worldwide Installed Capacity 3.1 United States Installed Capacity 4 Wind Farm Development 4.1 Land Requirements

Note: This page contains sample records for the topic "wind profiler demo" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


361

Vertical axis wind turbine  

SciTech Connect (OSTI)

Wind turbines are largely divided into vertical axis wind turbines and propeller (Horizontal axis) wind turbines. The present invention discloses a vertical axis high speed wind turbine provided with a starting and braking control system. This vertical axis wind turbine is formed by having blades of a proper airfoil fitted to respective supporting arms provided radially from a vertical rotary axis by keeping the blade span-wise direction in parallel with the axis and being provided with a low speed control windmill in which the radial position of each operating piece varies with a centrifugal force produced by the rotation of the vertical rotary axis.

Kato, Y.; Seki, K.; Shimizu, Y.

1981-01-27T23:59:59.000Z

362

Vertical axis wind turbine  

SciTech Connect (OSTI)

Wind turbines are largely divided into vertical axis wind turbines and propeller (Horizontal axis) wind turbines. The present invention discloses a vertical axis high speed wind turbine provided with rotational speed control systems. This vertical axis wind turbine is formed by having blades of a proper airfoil fitted to respective supporting arms provided radially from a vertical rotating shaft by keeping the blade span-wise direction in parallel with the shaft and being provided with aerodynamic control elements operating manually or automatically to control the rotational speed of the turbine.

Kato, Y.; Seki, K.; Shimizu, Y.

1981-01-27T23:59:59.000Z

363

Realization and control of a wind turbine connected to the grid by using PMSG  

Science Journals Connector (OSTI)

Abstract This paper studies the control of a variable-speed wind turbine using the permanent magnet synchronous generator (PMSG) driven by a wind turbine emulator. The wind turbine is realized by imposing the wind profile on emulator to behave as the real wind turbine when it receives the same wind profile. This wind turbine is connected to the grid by means of a two back-to-back voltage-fed pulse width-modulation (PWM) converters to interface the generator and the grid. This paper has three main objectives, the first is realization of the wind turbine emulator, the second is extracting and exploiting the maximum power from the wind, the third is feeding the grid by high-power and good electrical energy quality; to achieve that, we applied the strategies of maximum power point tracking (MPPT) using optimal torque control which allows the PMSG to operate at an optimal speed. The inverter is used for delivering power to the grid, controlled in a way to deliver only the active power into the grid, thus we have unit power factor. DC-link voltage is also controlled by the inverter. This paper shows the dynamic performances of the complete system by its simulation using Matlab Simulink. Experimental results has verified and validated the wind turbine emulator and the efficiency of MPPT control method using a variable wind profile.

Abdeldjalil Dahbi; Mabrouk Hachemi; Nasreddine Nait-Said; Mohamed-Said Nait-Said

2014-01-01T23:59:59.000Z

364

MHK Technologies/New Knowledge Wind and Wave Renewable Mobile Wind and Wave  

Open Energy Info (EERE)

Wind and Wave Renewable Mobile Wind and Wave Wind and Wave Renewable Mobile Wind and Wave Power Plant Platform < MHK Technologies Jump to: navigation, search << Return to the MHK database homepage New Knowledge Wind and Wave Renewable Mobile Wind and Wave Power Plant Platform.jpg Technology Profile Primary Organization Darrel Dammen Technology Resource Click here Wave Technology Description Buoyant vessel attached to a lever the lever being attached to a stationary source like near shore Oil Rigs docks or a vessel less affected by swells and waves like large ships floating Oil rigs or boats the levers going up and down creates a torque at the pivot point by the vessel being raised and lowered this works on all size levers making it possible to collect energy from all size Waves with enough levers with in reasonable size and numbers the force can be used hydraulically mechanically or to compress air to power generators Ten tons going up and down is a lot of force when connected to a 100 so connecting to 100 tons then to 50 tons then to 25 tons then to 10 tons to 5 tons to 2 tons continuing down in size and multiplying the levers from the less affected floating object or stationary object will mean We collect energy from 1 foot to 100 foot waves and swells This Wind and Wave with 120 oarsmen showing buoyant vessels are the oarsman in this picture with hund

365

Energy in the Wind  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Provi and BP Energy in the Wind - Exploring Basic Electrical Concepts by Modeling Wind Turbines Curriculum: Wind Power (simple machines, aerodynamics, weather/climatology, leverage, mechanics, atmospheric pressure, and energy resources/transformations) Grade Level: High School Small groups: 2 students Time: Introductory packet will take 2-3 periods. Scientific investigation will take 2-3 periods. (45-50 minute periods) Summary: Students explore basic electrical concepts. Students are introduced to electrical concepts by using a hand held generator utilizing a multimeter, modeling, and designing a wind turbine in a wind tunnel (modifications are given if a wind tunnel is not available). Students investigate how wind nergy is used as a renewable energy resource. e

366

NREL: Wind Research - Publications  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Publications Publications The NREL wind research program develops publications about its R&D activities in wind energy technologies. Below you'll find links to recently published publications, links to the NREL Avian Literature and Publications Databases, and information about the Technical Library at the National Wind Technology Center (NWTC). The NWTC's quarterly newsletter, @NWTC, contains articles on current wind energy research projects and highlights the latest reports, papers, articles, and events published or sponsored by NREL. Subscribe to @NWTC. Selected Publications Featured Publication Large-scale Offshore Wind Power in the United States: Assessment of Opportunities and Barriers Here are some selected NWTC publications: 2011 Cost of Wind Energy Review Built-Environment Wind Turbine Roadmap

367

Offshore wind metadata management  

Science Journals Connector (OSTI)

Offshore wind energy is gaining more and more attention from industry and research community due to its high potential in producing green energy and lowering price on electricity consumption. However, offshore wind is facing many challenges, and hence it is still expensive to install in large scale. It therefore needs to be considered from different aspects of technologies in order to overcome these challenges. One of the problems of the offshore wind is that information comes from different sources with diversity in types and format. Besides, there are existing wind databases that should be utilised in order to enrich the knowledge base of the wind domain. This paper describes an approach to managing offshore wind metadata effectively using semantic technologies. An offshore wind ontology has been developed. The semantic gap between the developed ontology and the relational database is investigated. A prototype system has been developed to demonstrate the use of the ontology.

Trinh Hoang Nguyen; Rocky Dunlap; Leo Mark; Andreas Prinz; Bjørn Mo �stgren; Trond Friisø

2014-01-01T23:59:59.000Z

368

Wind energy conversion system  

DOE Patents [OSTI]

The wind energy conversion system includes a wind machine having a propeller connected to a generator of electric power, the propeller rotating the generator in response to force of an incident wind. The generator converts the power of the wind to electric power for use by an electric load. Circuitry for varying the duty factor of the generator output power is connected between the generator and the load to thereby alter a loading of the generator and the propeller by the electric load. Wind speed is sensed electro-optically to provide data of wind speed upwind of the propeller, to thereby permit tip speed ratio circuitry to operate the power control circuitry and thereby optimize the tip speed ratio by varying the loading of the propeller. Accordingly, the efficiency of the wind energy conversion system is maximized.

Longrigg, Paul (Golden, CO)

1987-01-01T23:59:59.000Z

369

New England Wind Forum: Buying Wind Power  

Wind Powering America (EERE)

Buying Wind Power Buying Wind Power On this page find information about: Green Marketing Renewable Energy Certificates Green Pricing Green Marketing Green power marketing refers to selling green power in the competitive marketplace, in which multiple suppliers and service offerings exist. In states that have established retail competition, customers may be able to purchase green power from a competitive supplier. Connecticut Connecticut Clean Energy Options Beginning in April 2005, Connecticut's two investor-owned utilities, Connecticut Light and Power and United Illuminating, began to offer a simple, affordable program to their customers for purchasing clean energy such as wind power. In late 2006, stakeholders started to explore a new offering that would convey the price stability of wind energy (and other renewable energy resources) to Connecticut consumers. This new offering is still under development.

370

Modeling the line variations from the wind-wind shock emissions of WR 30a  

E-Print Network [OSTI]

The study of Wolf-Rayet stars plays an important role in evolutionary theories of massive stars. Among these objects, ~ 20% are known to be in binary systems and can therefore be used for the mass determination of these stars. Most of these systems are not spatially resolved and spectral lines can be used to constrain the orbital parameters. However, part of the emission may originate in the interaction zone between the stellar winds, modifying the line profiles and thus challenging us to use different models to interpret them. In this work, we analyzed the HeII4686\\AA + CIV4658\\AA blended lines of WR30a (WO4+O5) assuming that part of the emission originate in the wind-wind interaction zone. In fact, this line presents a quiescent base profile, attributed to the WO wind, and a superposed excess, which varies with the orbital phase along the 4.6 day period. Under these assumptions, we were able to fit the excess spectral line profile and central velocity for all phases, except for the longest wavelengths, where a spectral line with constant velocity seems to be present. The fit parameters provide the eccentricity and inclination of the binary orbit, from which it is possible to constrain the stellar masses.

D. Falceta-Goncalves; Z. Abraham; V. Jatenco-Pereira

2007-10-02T23:59:59.000Z

371

New England Wind Forum: Selling Wind Power  

Wind Powering America (EERE)

Selling Wind Power Selling Wind Power Markets are either well-developed or developing for each of the 'products' produced by wind generators. These include electricity products and generation attributes. Electricity Electricity can be used in two ways: on-site (interconnected behind a retail customer's meter) of for sales of electricity over the electric grid. On-site generation can displace a portion of a customer's purchases of electricity from the grid. In addition, net metering rules are in place at the state level that in some cases allow generation in excess of on-site load to be sold back to the local utility (see state pages for net metering specifics). For sales over the electricity grid, the Independent System Operator of New England (ISO New England) creates and manages a wholesale market for electric energy, capacity, and ancillary services within the New England Power Pool (NEPOOL). Wind generators may sell their electric energy and capacity in spot markets organized by the ISO, or they may contract with wholesale buyers to sell these products for any term to buyers operating in the ISO New England marketplace. Wind generators do not generally produce other marketable ancillary services. The ISO has rules specific to the operation of wind generators reflecting operations, scheduling, calculation of installed capacity credit, and so forth.

372

NREL: Wind Research - News  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Below are some select news stories from the National Wind Technology Below are some select news stories from the National Wind Technology Center. Subscribe to the RSS feed RSS . Learn about RSS. January 3, 2014 New Modularization Framework Transforms FAST Wind Turbine Modeling Tool The U.S. Department of Energy's National Renewable Energy Laboratory (NREL) recently released an expanded version of its FAST wind turbine computer-aided engineering tool under a new modularization framework. January 2, 2014 The Denver Post Highlights the NWTC's New 5-MW Dynamometer On January 2, a reporter from The Denver Post toured the new 5-megawatt dynamometer test facility at the National Wind Technology Center (NWTC). Archives 2013 | 2012 | 2011 | 2010 | 2009 | 2008 | 2007 | 2006 Printable Version Wind Research Home Capabilities Projects Facilities

373

Wind energy conversion system  

SciTech Connect (OSTI)

This patent describes a wind energy conversion system comprising: a propeller rotatable by force of wind; a generator of electricity mechanically coupled to the propeller for converting power of the wind to electric power for use by an electric load; means coupled between the generator and the electric load for varying the electric power drawn by the electric load to alter the electric loading of the generator; means for electro-optically sensing the speed of the wind at a location upwind from the propeller; and means coupled between the sensing means and the power varying means for operating the power varying means to adjust the electric load of the generator in accordance with a sensed value of wind speed to thereby obtain a desired ratio of wind speed to the speed of a tip of a blade of the propeller.

Longrigg, P.

1987-03-17T23:59:59.000Z

374

Session: Offshore wind  

SciTech Connect (OSTI)

This session at the Wind Energy and Birds/Bats workshop consisted of two presentations. Due to time constraints, a discussion period was not possible. The session addressed the current state of offshore wind energy development. The first presentation ''Monitoring Program and Results: Horns Rev and Nysted'' by Jette Gaarde summarized selected environmental studies conducted to date at operating offshore wind turbine projects in Denmark and lessons from other offshore wind developments in Europe. Wildlife impacts studies from the Danish sites focused on birds, fish, and mammals. The second presentation ''What has the U.S. Wind Industry Learned from the European Example'' by Bonnie Ram provided an update on current permit applications for offshore wind developments in the U.S. as well as lessons that may be drawn from the European experience.

Gaarde, Jette; Ram, Bonnie

2004-09-01T23:59:59.000Z

375

Wind Turbine Blade Design  

K-12 Energy Lesson Plans and Activities Web site (EERE)

Blade engineering and design is one of the most complicated and important aspects of modern wind turbine technology. Engineers strive to design blades that extract as much energy from the wind as possible throughout a range of wind speeds and gusts, yet are still durable, quiet and cheap. A variety of ideas for building turbines and teacher handouts are included in this document and at the Web site.

376

Howden Wind Turbines Ltd | Open Energy Information  

Open Energy Info (EERE)

Howden Wind Turbines Ltd Jump to: navigation, search Name: Howden Wind Turbines Ltd Place: United Kingdom Sector: Wind energy Product: Howden was a manufacturer of wind turbines in...

377

ABO Wind AG | Open Energy Information  

Open Energy Info (EERE)

AG Place: Hessen, Germany Zip: 65193 Sector: Bioenergy, Wind energy Product: German developer of wind and bioenergy generation assets. ABO Wind has no direct holding in any wind...

378

TS Wind Power Developers | Open Energy Information  

Open Energy Info (EERE)

TS Wind Power Developers Jump to: navigation, search Name: TS Wind Power Developers Place: Satara, Maharashtra, India Sector: Wind energy Product: Setting up 30MW wind farm in...

379

Daqing Longjiang Wind Power | Open Energy Information  

Open Energy Info (EERE)

Longjiang Wind Power Jump to: navigation, search Name: Daqing Longjiang Wind Power Place: Daqing, Heilongjiang Province, China Zip: 163316 Sector: Wind energy Product: Local wind...

380

Heilongjiang Lishu Wind Power | Open Energy Information  

Open Energy Info (EERE)

Lishu Wind Power Jump to: navigation, search Name: Heilongjiang Lishu Wind Power Place: Heilongjiang Province, China Sector: Wind energy Product: China-based wind project developer...

Note: This page contains sample records for the topic "wind profiler demo" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


381

WINDExchange Offshore Wind Webinar: Transmission Planning and...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Offshore Wind Webinar: Transmission Planning and Interconnection for Offshore Wind WINDExchange Offshore Wind Webinar: Transmission Planning and Interconnection for Offshore Wind...

382

Blyth Offshore Wind Ltd | Open Energy Information  

Open Energy Info (EERE)

Blyth Offshore Wind Ltd Jump to: navigation, search Name: Blyth Offshore Wind Ltd Place: United Kingdom Sector: Renewable Energy, Wind energy Product: Blyth Offshore Wind Limited,...

383

2013 Wind Technologies Market Report Presentation | Department...  

Office of Environmental Management (EM)

3 Wind Technologies Market Report Presentation 2013 Wind Technologies Market Report Presentation Presentation summarizing the 2013 Wind Technologies Market Report. 2013 Wind...

384

Environmental Wind Projects | Department of Energy  

Energy Savers [EERE]

Wind Projects Environmental Wind Projects This report covers the Wind and Water Power Technologies Office's environmental wind projects from fiscal years 2006 to 2014....

385

NREL: Wind Research - Research and Development  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Printable Version Wind Research Home Research & Development Utility-Scale Wind Turbines Offshore Wind Turbines Small Wind Turbines Grid Integration Market Acceleration...

386

Workforce Development Wind Projects | Department of Energy  

Energy Savers [EERE]

Workforce Development Wind Projects Workforce Development Wind Projects This report covers the Wind and Water Power Technologies Office's workforce development wind projects from...

387

Environmental Wind Projects | Department of Energy  

Energy Savers [EERE]

Environmental Wind Projects Environmental Wind Projects This report covers the Wind and Water Power Technologies Office's environmental wind projects from fiscal years 2006 to...

388

Sandia National Laboratories: Wind Software Downloads  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

* SAND 2014-3685P * Wind software * wind tools Comments are closed. Renewable Energy Wind Energy Wind Plant Optimization Test Site Operations & Maintenance Safety: Test...

389

Wind Power | Open Energy Information  

Open Energy Info (EERE)

Wind Power Wind Power Jump to: navigation, search Wind Power WIndfarm.Sunset.jpg Wind power is a form of solar energy.[1] Wind is caused by the uneven heating of the atmosphere by the sun, variations in the earth's surface, and rotation of the earth. Mountains, bodies of water, and vegetation all influence wind flow patterns[2], [3]. Wind energy (or wind power) describes the process by which wind is used to generate electricity. Wind turbines convert the energy in wind to electricity by rotating propeller-like blades around a rotor. The rotor turns the drive shaft, which turns an electric generator.[2] Three key factors affect the amount of energy a turbine can harness from the wind: wind speed, air density, and swept area.[4] Mechanical power can also be utilized directly for specific tasks such as

390

Patterns of satellite-viewed, subtropical, jet-stream clouds in relation to the observed wind field  

E-Print Network [OSTI]

constructed in which the mean velocity, height, temperature, and potential temperature of the jet core were determined. An excellent relationship between the cloud band orientation and velocity of propagation, and the subtropical, jet- stream, wind field... AND RESULTS Cases Selected. Cloud-Band Features 19 Cloud to Jet Velocity Ratio Maximum Wind Analyses Cross Section Analyses. Horizontal Wind Profile Vertical Wind Shear, Richardson Number and 19 23 27 Static Stability 30 IV CONCLUSIONS...

Vogt, Richard Joel

2012-06-07T23:59:59.000Z

391

Gone with the Wind.  

E-Print Network [OSTI]

?? The purpose of this thesis is to explore disruptions Swedish wind turbines onshore are exposed to, and to estimate their economic impacts on the… (more)

Duncker, Nadja; Klötzer, Anneke

2010-01-01T23:59:59.000Z

392

Barstow Wind Turbine Project  

Broader source: Energy.gov [DOE]

Presentation covers the Barstow Wind Turbine project for the Federal Utility Partnership Working Group (FUPWG) meeting, held on November 18-19, 2009.

393

Vertical axis wind turbines  

DOE Patents [OSTI]

A vertical axis wind turbine is described. The wind turbine can include a top ring, a middle ring and a lower ring, wherein a plurality of vertical airfoils are disposed between the rings. For example, three vertical airfoils can be attached between the upper ring and the middle ring. In addition, three more vertical airfoils can be attached between the lower ring and the middle ring. When wind contacts the vertically arranged airfoils the rings begin to spin. By connecting the rings to a center pole which spins an alternator, electricity can be generated from wind.

Krivcov, Vladimir (Miass, RU); Krivospitski, Vladimir (Miass, RU); Maksimov, Vasili (Miass, RU); Halstead, Richard (Rohnert Park, CA); Grahov, Jurij (Miass, RU)

2011-03-08T23:59:59.000Z

394

NREL: Innovation Impact - Wind  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Manufacturing Manufacturing Energy Systems Integration Energy Systems Integration Wind turbines must withstand powerful aerodynamic forces unlike any other propeller-drive...

395

Wind energy analysis system .  

E-Print Network [OSTI]

??One of the most important steps to be taken before a site is to be selected for the extraction of wind energy is the analysis… (more)

Koegelenberg, Johan

2014-01-01T23:59:59.000Z

396

Wind Power Forecasting  

Science Journals Connector (OSTI)

The National Center for Atmospheric Research (NCAR) has configured a Wind Power Forecasting System for Xcel Energy that integrates high resolution and ensemble...

Sue Ellen Haupt; William P. Mahoney; Keith Parks

2014-01-01T23:59:59.000Z

397

Wind Program: Publications  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

pres Details Bookmark & Share View Related Product Thumbnail Image 2014 Offshore Wind Market and Economic Analysis The objective of this report is to provide a...

398

Wind Success Stories  

Energy Savers [EERE]

+0000 843456 at http:energy.gov United States Launches First Grid-Connected Offshore Wind Turbine http:energy.goveeresuccess-storiesarticlesunited-states-launches-f...

399

wind_guidance  

Broader source: Energy.gov [DOE]

Guidance to Accompany Non-Availability Waiver of the Recovery Act Buy American Provisions for 5kW and 50kW Wind Turbines

400

Allegany County Wind Ordinance  

Broader source: Energy.gov [DOE]

This ordinance sets requirements for industrial wind energy conversion systems. These requirements include minimum separation distances, setback requirements, electromagnetic interference analysis ...

Note: This page contains sample records for the topic "wind profiler demo" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


401

Wind Power , Introduction  

Science Journals Connector (OSTI)

Successful implementation of new technologies requires social acceptance. Historically, for the implementation of wind energy this was considered a relatively simple issue ... strategies. Without much study, soci...

Prof. Lennart Söder

2013-01-01T23:59:59.000Z

402

Wind Power , Introduction  

Science Journals Connector (OSTI)

Successful implementation of new technologies requires social acceptance. Historically, for the implementation of wind energy this was considered a relatively simple issue ... strategies. Without much study, soci...

Prof. Lennart Söder

2012-01-01T23:59:59.000Z

403

Wind Energy Myths  

SciTech Connect (OSTI)

This two-sided fact sheet succinctly outlines and counters the top misconceptions about wind energy. It is well suited for general audiences.

Not Available

2005-05-01T23:59:59.000Z

404

Campbell County Wind Farm  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

environmental assessment (EA) on the proposed interconnection of the Campbell County Wind Farm (Project) in Campbell County, near the city of Pollock, South Dakota. Dakota...

405

Energy from the wind  

Science Journals Connector (OSTI)

The large?scale generation of electrical power by wind turbine fields is discussed. It is shown that the maximum power which can be extracted by a wind turbine is 16/27 or 59.3% of the power available in the wind. An estimate is made of the total electrical power which could be generated in the United States by utilizing wind energy. The material in this paper was presented by the authors in a one?semester course on energy science. It could also be used in an introductory physics class as an illustration of elementary fluid mechanics concepts and of the basic principles of energy and momentum conservation.

David G. Pelka; Robert T. Park; Runbir Singh

1978-01-01T23:59:59.000Z

406

What is Distributed Wind?  

Broader source: Energy.gov (indexed) [DOE]

and refurbishers, including those from Canada, Mexico, Europe, China, and South Africa. In 2013, 30.4 MW of new distributed wind capacity was added, representing nearly...

407

Proceedings Nordic Wind Power Conference  

E-Print Network [OSTI]

Estimation of Possible Power for Wind Plant Control Power Fluctuations from Offshore Wind Farms; Model Validation System grounding of wind farm medium voltage cable grids Faults in the Collection Grid of Offshore systems of wind turbines and wind farms. NWPC presents the newest research results related to technical

408

Optimization of Wind Turbine Operation  

E-Print Network [OSTI]

inclination angle was about 1°. The spinner anemometer measurements were correlated with wind speed and windOptimization of Wind Turbine Operation by Use of Spinner Anemometer TF Pedersen, NN Sørensen, L Title: Optimization of Wind Turbine Operation by Use of Spinner Anemometer Department: Wind Energy

409

Michigan Wind II Wind Farm | Open Energy Information  

Open Energy Info (EERE)

Wind II Wind Farm Wind II Wind Farm Jump to: navigation, search Name Michigan Wind II Wind Farm Facility Michigan Wind II Wind Farm Sector Wind energy Facility Type Commercial Scale Wind Facility Status In Service Owner Exelon Wind Developer Exelon Wind Energy Purchaser Consumers Energy Location Minden City MI Coordinates 43.6572421°, -82.7681278° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":43.6572421,"lon":-82.7681278,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

410

20% Wind Energy by 2030: Increasing Wind Energy's Contribution...  

Office of Environmental Management (EM)

: Increasing Wind Energy's Contribution to U.S. Electricity Supply 20% Wind Energy by 2030: Increasing Wind Energy's Contribution to U.S. Electricity Supply Here you will find the...

411

NREL: Wind Research - Get to Know a Wind Energy Expert  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Get to Know a Wind Energy Expert The Evolution of a Wind Expert A professional headshot photo of Maureen Hand Maureen Hand Maureen Hand knows wind. Growing up in Glenrock, Wyoming,...

412

American Wind Energy Association Wind Energy Finance and Investment...  

Broader source: Energy.gov (indexed) [DOE]

Wind Energy Finance and Investment Seminar American Wind Energy Association Wind Energy Finance and Investment Seminar October 20, 2014 8:00AM EDT to October 21, 2014 5:00PM EDT...

413

United States Wind Resource Map: Annual Average Wind Speed at...  

Wind Powering America (EERE)

4.0 Source: Wind resource estimates developed by AWS Truepower, LLC for windNavigator . Web: http:www.windnavigator.com | http:www.awstruepower.com. Spatial resolution of wind...

414

WINDExchange: Offshore 90-Meter Wind Maps and Wind Resource Potential  

Wind Powering America (EERE)

Offshore 90-Meter Wind Maps and Wind Resource Potential The U.S. Department of Energy provides 90-meter (m) height, high-resolution wind maps and estimates of the total offshore...

415

Community Wind: Once Again Pushing the Envelope of Project Finance  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Community Wind: Once Again Pushing the Envelope of Project Finance Community Wind: Once Again Pushing the Envelope of Project Finance Title Community Wind: Once Again Pushing the Envelope of Project Finance Publication Type Report Refereed Designation Unknown Year of Publication 2011 Authors Bolinger, Mark Pagination 34 Date Published 01/2011 Publisher LBNL City Berkeley Keywords electricity markets and policy group, energy analysis and environmental impacts department Abstract The "community wind" sector in the United States - defined in this report as consisting of relatively small utility-scale wind power projects that sell power on the wholesale market and that are developed and owned primarily by local investors - has historically served as a "test bed" or "proving grounds" not only for up-and-coming wind turbine manufacturers trying to break into the broader U.S. wind market, but also for wind project financing structures. More recently, a handful of community wind projects built over the past year have been financed via new and creative structures that push the envelope of wind project finance in the U.S. - in many cases, moving beyond the now-standard partnership flip structures involving strategic tax equity investors. Details of the financing structures used for each project are described in Section 4 of the full report. In most cases, these are first-of-their-kind structures that could serve as useful examples for other projects - both community and commercial wind alike. Other policy-related enablers of some of the financial innovation profiled in this report include New Markets Tax Credits - which are not new but have only recently been tapped to help finance solar projects and, for the first time, in 2010 have been part of a community wind project financing - and Section 6108 of the 2008 Farm Bill, which expands the USDA's authority to loan to renewable generation projects, even if those projects are not serving traditional rural markets.

416

LARGE SCALE WIND CLIMATOLOGICAL EXAMINATIONS OF WIND ENERGY UTILIZATION  

E-Print Network [OSTI]

The aim of this article is to describe the particular field of climatology which analyzes air movement characteristics regarding utilization of wind for energy generation. The article describes features of wind energy potential available in Hungary compared to wind conditions in other areas of the northern quarter sphere in order to assist the wind energy use development in Hungary. Information on wind climate gives a solid basis for financial and economic decisions of stakeholders in the field of wind energy utilization.

Andrea Kircsi

417

WIND BRAKING OF MAGNETARS  

SciTech Connect (OSTI)

We explore the wind braking of magnetars considering recent observations challenging the traditional magnetar model. There is evidence for strong multipole magnetic fields in active magnetars, but the dipole field inferred from spin-down measurements may be strongly biased by particle wind. Recent observations challenging the traditional model of magnetars may be explained naturally by the wind braking scenario: (1) the supernova energies of magnetars are of normal value; (2) the non-detection in Fermi observations of magnetars; (3) the problem posed by low magnetic field soft gamma-ray repeaters; (4) the relation between magnetars and high magnetic field pulsars; and (5) a decreasing period derivative during magnetar outbursts. Transient magnetars with L{sub x}<- E-dot{sub rot} may still be magnetic dipole braking. This may explain why low luminosity magnetars are more likely to have radio emissions. A strong reduction of the dipole magnetic field is possible only when the particle wind is very collimated at the star surface. A small reduction of the dipole magnetic field may result from detailed considerations of magnetar wind luminosity. In the wind braking scenario, magnetars are neutron stars with a strong multipole field. For some sources, a strong dipole field may no longer be needed. A magnetism-powered pulsar wind nebula will be one of the consequences of wind braking. For a magnetism-powered pulsar wind nebula, we should see a correlation between the nebula luminosity and the magnetar luminosity. Under the wind braking scenario, a braking index smaller than three is expected. Future braking index measurement of a magnetar may tell us whether magnetars are wind braking or magnetic dipole braking.

Tong, H. [Xinjiang Astronomical Observatory, Chinese Academy of Sciences, Urumqi, Xinjiang 830011 (China); Xu, R. X.; Qiao, G. J. [KIAA and School of Physics, Peking University, Beijing 100871 (China); Song, L. M., E-mail: tonghao@xao.ac.cn [Institute of High Energy Physics, Chinese Academy of Sciences, Beijing 100049 (China)

2013-05-10T23:59:59.000Z

418

New models for wind noise measured in a flat surface under turbulent flow.  

Science Journals Connector (OSTI)

We have previously developed models for predicting the power spectral density of the wind noisepressuremeasured in a flat plate outdoors from the measured power spectral density of the turbulence and the measured wind velocity profile above the plate [Yu et al. Proceedings of NCAD 2008 NoiseCon2008?ASME NCAD]. Recently we have corrected an error in the model for the logarithmic profile wind velocity gradient results and have developed an improved integration method. Also we have developed a prediction for arbitrary wind velocity profiles using the previous single exponential model. Typical results comparing our predictions with our measurements are presented and analyzed. A simple algebraic fit to the prediction for the logarithmic profile fit form is also provided for use by others. [Research supported by the U.S. Army TACOM?ARDEC at Picatinny Arsenal NJ.

2009-01-01T23:59:59.000Z

419

Non-thermal solar wind heating by supra-thermal ions  

Science Journals Connector (OSTI)

The effect of a new energy source due to energies transferred from supra-thermal secondary ions on the temperature profile of the solar wind has been considered. For this purpose ... solution of a tri-fluid model...

H. J. Fahr

1973-05-01T23:59:59.000Z

420

Q-Winds satellite hurricane wind retrievals and H*Wind comparisons  

E-Print Network [OSTI]

tailored to extreme wind events. Because of this and precipitation effects, scatterometers have failed/passive scatterometer retrieval algorithm designed specifically for extreme wind events, hereafter identified1 Q-Winds satellite hurricane wind retrievals and H*Wind comparisons Pet Laupattarakasem and W

Hennon, Christopher C.

Note: This page contains sample records for the topic "wind profiler demo" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


421

Offshore Wind Research (Fact Sheet), National Wind Technology Center (NWTC)  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Offshore Offshore Wind Research The National Renewable Energy Laboratory is internationally recognized for offshore wind energy research and development (R&D). Its experience and capabilities cover a wide spectrum of wind energy disciplines. NREL's offshore wind R&D efforts focus on critical areas that address the long-term needs of the offshore wind energy industry and the Department of Energy (DOE). R&D efforts include: * Developing offshore design tools and methods * Collaborating with international partners * Testing offshore systems and developing standards * Conducting economic analyses * Characterizing offshore wind resources * Identifying and mitigating offshore wind grid integration challenges and barriers NREL documented the status of offshore wind energy in the United

422

NREL: Wind Research - Utility-Scale Wind Turbine Research  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

wind turbine research addresses performance and reliability issues that large wind turbines experience throughout their lifespan and reduces system costs through innovative...

423

NREL: Wind Research - National Wind Technology Center Map  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Wind Technology Center in Golden, Colorado Structural Testing Laboratory (STL) As wind turbines grow in size and their blades become longer and more flexible, it becomes more...

424

Wind Power Today, 2010, Wind and Water Power Program (WWPP) ...  

Office of Environmental Management (EM)

& Publications Wind Program Accomplishments Final Report DE-EE0005380 - Assessment of Offshore Wind Farm Effects on Sea Surface, Subsurface and Airborne Electronic Systems A...

425

NREL: Wind Research - NREL Supports Innovative Offshore Wind...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

NREL Supports Innovative Offshore Wind Energy Projects Demonstration Projects Eligible for up to 46.7M Additional Funding An offshore wind turbine floating off the coast of...

426

American Wind Energy Association Wind Energy Finance and Investment Seminar  

Broader source: Energy.gov [DOE]

The American Wind Energy Association Wind Energy Finance and Investment Seminar will be attended by representatives in the financial sector, businesses, bankers, government and other nonprofit...

427

Sinomatech Wind Power Blade aka Sinoma Science Technology Wind...  

Open Energy Info (EERE)

Page Edit History Facebook icon Twitter icon Sinomatech Wind Power Blade aka Sinoma Science Technology Wind Turbine Blade Co Ltd Jump to: navigation, search Name: Sinomatech...

428

20% Wind Energy by 2030: Increasing Wind Energy's Contribution...  

Office of Environmental Management (EM)

Summary) 20% Wind Energy by 2030: Increasing Wind Energy's Contribution to U.S. Electricity Supply (Executive Summary) Executive summary of a report on the requirements needed...

429

Reliability analysis of wind turbine at high uncertain wind;.  

E-Print Network [OSTI]

??Wind energy plays a vital role in the renewable energy scenario of newlinethe world The wind turbine systems have complex components which are newlinerepairable The… (more)

Sunder selwyn T

2014-01-01T23:59:59.000Z

430

2012 Wind Technologies Market Report  

E-Print Network [OSTI]

ERCOT (Brown 2012). Wind power plants with negative offersThermal Power Plants Under Increasing Wind Energy Supply. ”power plants that, among other benefits, lowers the costs of integrating wind

Wiser, Ryan

2014-01-01T23:59:59.000Z

431

2009 Wind Technologies Market Report  

E-Print Network [OSTI]

AWEA). 2010b. AWEA Small Wind Turbine Global Market Survey,html David, A. 2009. Wind Turbines: Industry and Tradewhich new large-scale wind turbines were installed in 2009 (

Wiser, Ryan

2010-01-01T23:59:59.000Z

432

Foundations for offshore wind turbines  

Science Journals Connector (OSTI)

...wind farms, although supplying green energy, tend to provoke some objections...wind farms, although supplying 'green energy', tend to provoke some objections...wind farms, although supplying `green energy', tend to provoke some objections...

2003-01-01T23:59:59.000Z

433

2011 Wind Technologies Market Report  

E-Print Network [OSTI]

Associates. 2010. SPP WITF Wind Integration Study. LittlePool. David, A. 2011. U.S. Wind Turbine Trade in a Changing2011. David, A. 2010. Impact of Wind Energy Installations on

Bolinger, Mark

2013-01-01T23:59:59.000Z

434

Sandia National Laboratories: Offshore Wind  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

EnergyOffshore Wind Offshore Wind Sandia executes several projects in support of the DOE Offshore Wind program, which address unique R&D needs related to offshore siting and, in...

435

2011 Wind Technologies Market Report  

E-Print Network [OSTI]

and the drop in wind power plant installations since 2009and the drop in wind power plant installations since 2009towers used in U.S. wind power plants increases from 80% in

Bolinger, Mark

2013-01-01T23:59:59.000Z

436

2010 Wind Technologies Market Report  

E-Print Network [OSTI]

and the drop in wind power plant installations, for example,the decrease in new wind power plant construction. A GrowingRelative Economics of Wind Power Plants Installed in Recent

Wiser, Ryan

2012-01-01T23:59:59.000Z

437

Wind Farms in North America  

E-Print Network [OSTI]

Public Perceptions of a Wind Energy Landscape. Landscape andDepartment of Energy (US DOE) (2008) 20% Wind Energy by2030: Increasing Wind Energy's Contribution to U.S.

Hoen, Ben

2014-01-01T23:59:59.000Z

438

Sandia National Laboratories: wind energy  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

uses the blade information to generate input files for other tools: The ANSYS ... Wind Energy Staff On March 24, 2011, in Wind Energy On November 10, 2010, in Wind Plant...

439

Foundations for offshore wind turbines  

Science Journals Connector (OSTI)

...T. Thompson Foundations for offshore wind turbines B. W. Byrne G. T...civil-engineering problems encountered for offshore wind turbines. A critical component...energy suppliers. Foundations|Offshore Wind Turbines|Renewable Energy...

2003-01-01T23:59:59.000Z

440

2011 Wind Technologies Market Report  

E-Print Network [OSTI]

the contribution of wind power to electricity consumption,GW per year needed for wind power to contribute 20% of thegrid; such wind turbines can also provide power to off-grid

Bolinger, Mark

2013-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "wind profiler demo" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


441

2012 Wind Technologies Market Report  

E-Print Network [OSTI]

the contribution of wind power to electricity consumption,16 GW/year needed for wind power to contribute 20% of thegrid; such wind turbines can also provide power to off-grid

Wiser, Ryan

2014-01-01T23:59:59.000Z

442

2009 Wind Technologies Market Report  

E-Print Network [OSTI]

the contribution of wind power to electricity consumption,per year pace needed for wind power to contribute 20% of thegrid; such wind turbines can also provide power to off-grid

Wiser, Ryan

2010-01-01T23:59:59.000Z

443

2008 WIND TECHNOLOGIES MARKET REPORT  

E-Print Network [OSTI]

First Wind and Noble Environmental Power – to pursue initialdistributed wind turbines can also provide power to off-power to others, sometimes taking some merchant risk 22 – in the wind

Bolinger, Mark

2010-01-01T23:59:59.000Z

444

2010 Wind Technologies Market Report  

E-Print Network [OSTI]

the contribution of wind power to electricity consumption,are intended to transmit wind power to load centers in theper year pace needed for wind power to contribute 20% of the

Wiser, Ryan

2012-01-01T23:59:59.000Z

445

Kivalina wind generator  

SciTech Connect (OSTI)

The project reported was to construct a system to harness the winds of an Arctic site to generate electricity that would power a greenhouse where fruit and vegetables could be raised for local consumption. The installation of the tower and an Enertech 4K wind generator are described. (LEW)

Aldrich, D.

1984-02-18T23:59:59.000Z

446

Carbon smackdown: wind warriors  

ScienceCinema (OSTI)

July 16. 2010 carbon smackdown summer lecture: learn how Berkeley Lab scientists are developing wind turbines to be used in an urban setting, as well as analyzing what it will take to increase the adoption of wind energy in the U.S.

Glen Dahlbacka of the Accelerator & Fusion Research Division and Ryan Wiser of the Environmental Energy Technologies Division are the speakers.

2010-09-01T23:59:59.000Z

447

Offshore Wind Geoff Sharples  

E-Print Network [OSTI]

Offshore Wind Geoff Sharples geoff@clearpathenergyllc.com #12;Frequently Unanswered Ques?ons · Why don't "they" build more offshore wind? · Why not make the blades bigger? · How big will turbines get? #12;Offshore Resource is Good #12

Kammen, Daniel M.

448

Mesoscale Simulations of a Wind Ramping Event for Wind Energy Prediction  

SciTech Connect (OSTI)

Ramping events, or rapid changes of wind speed and wind direction over a short period of time, present challenges to power grid operators in regions with significant penetrations of wind energy in the power grid portfolio. Improved predictions of wind power availability require adequate predictions of the timing of ramping events. For the ramping event investigated here, the Weather Research and Forecasting (WRF) model was run at three horizontal resolutions in 'mesoscale' mode: 8100m, 2700m, and 900m. Two Planetary Boundary Layer (PBL) schemes, the Yonsei University (YSU) and Mellor-Yamada-Janjic (MYJ) schemes, were run at each resolution as well. Simulations were not 'tuned' with nuanced choices of vertical resolution or tuning parameters so that these simulations may be considered 'out-of-the-box' tests of a numerical weather prediction code. Simulations are compared with sodar observations during a wind ramping event at a 'West Coast North America' wind farm. Despite differences in the boundary-layer schemes, no significant differences were observed in the abilities of the schemes to capture the timing of the ramping event. As collaborators have identified, the boundary conditions of these simulations probably dominate the physics of the simulations. They suggest that future investigations into characterization of ramping events employ ensembles of simulations, and that the ensembles include variations of boundary conditions. Furthermore, the failure of these simulations to capture not only the timing of the ramping event but the shape of the wind profile during the ramping event (regardless of its timing) indicates that the set-up and execution of such simulations for wind power forecasting requires skill and tuning of the simulations for a specific site.

Rhodes, M; Lundquist, J K

2011-09-21T23:59:59.000Z

449

AIR-FLOW STRUCTURE IN THE VERY CLOSE VICINITY OF WIND GENERATED WATER-WAVES  

E-Print Network [OSTI]

to : , with the air-density, u and w the horizontal and vertical components of the wind speed, u* the friction and the viscous drag at the sea sur- face, we build two new microphysical devices: 1) the wind-speed vertical of the vertical profile of the normalized phase-averaged wind-speed in the air-viscous layer (1mm above water

Paris-Sud XI, Université de

450

NREL: Wind Research - Facilities  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Facilities Facilities Our facilities are designed to meet the wind industry's critical research needs with state-of-the-art design and testing facilities. NREL's unique and highly versatile facilities at the National Wind Technology Center offer research and analysis of wind turbine components and prototypes rated from 400 watts to 3 megawatts. Satellite facilities support the growth of wind energy development across the United States. National Wind Technology Center Facilities Our facilities are contained within a 305-acre area that comprises field test sites, test laboratories, industrial high-bay work areas, machine shops, electronics and instrumentation laboratories, and office areas. In addition, there are hundreds of test articles and supporting components such as turbines, meteorological towers, custom test apparatus, test sheds,

451

Wind Energy Update  

Wind Powering America (EERE)

by the Alliance for Sustainable Energy, LLC. by the Alliance for Sustainable Energy, LLC. Wind Energy Update Wind Powering America January 2012 NATIONAL RENEWABLE ENERGY LABORATORY Evolution of Commercial Wind Technology NATIONAL RENEWABLE ENERGY LABORATORY Small (≤100 kW) Homes Farms Remote Applications (e.g. water pumping, telecom sites, icemaking) Midscale (100-1000 kW) Village Power Hybrid Systems Distributed Power Large, Land-based (1-3 MW) Utility-scale wind farms Large Distributed Power Sizes and Applications Large, Offshore (3-7 MW) Utility-scale wind farms, shallow coastal waters No U.S. installations NATIONAL RENEWABLE ENERGY LABORATORY Capacity & Cost Trends As of January 2012 (AWEA) 0 5000 10000 15000 20000 25000 30000 35000 40000 45000 50000 $- $200 $400 $600 $800 $1,000 $1,200

452

Wind | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

Wind Wind Wind EERE plays a key role in advancing America's "all of the above" energy strategy, leading a large network of researchers and other partners to deliver innovative technologies that will make renewable electricity generation cost-competitive with traditional sources of energy. EERE plays a key role in advancing America's "all of the above" energy strategy, leading a large network of researchers and other partners to deliver innovative technologies that will make renewable electricity generation cost-competitive with traditional sources of energy. Image of a wind turbine against a partly cloudy sky. The U.S. Department of Energy (DOE) leads national efforts to improve the performance, lower the costs, and accelerate the deployment of wind energy technologies-both on

453

Song of the Wind  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Song of the Wind Song of the Wind Nature Bulletin No. 318-A October 26, 1968 Forest Preserve District of Cook County Richard B. Ogilvie, President Roland F. Eisenbeis, Supt. of Conservation SONG OF THE WIND The wind is simply air in motion. Air has substance like wood or water, it has pressure, it can acquire heat and hold a temperature, and it can travel from place to place.... The air which affects our lives is a layer seven or eight miles thick, called the troposphere, which is next to the earth. This air has pressure (14.7 pounds per square inch at sea level) and when various factors, one of which is temperature, cause changes in this pressure, the air starts moving. We cannot see it. We can hear it. The song of the wind is the most wonderful music on earth, and at times the most terrifying in its angry moments.

454

Session: Poster Session + Poster Award + Scientific Award + Excellent young wind doctor award (PO.202) Track: Technical  

E-Print Network [OSTI]

tower-mounted instruments. Typical turbine hub heights are now in excess of 70m. For such machinesSession: Poster Session + Poster Award + Scientific Award + Excellent young wind doctor award (PO.202) Track: Technical COMMERCIAL LIDAR PROFILERS FOR WIND ENERGY. A COMPARATIVE GUIDE. (abstract

455

Stetson Wind Expansion Wind Farm | Open Energy Information  

Open Energy Info (EERE)

Stetson Wind Expansion Wind Farm Stetson Wind Expansion Wind Farm Jump to: navigation, search Name Stetson Wind Expansion Wind Farm Facility Stetson Wind Expansion Sector Wind energy Facility Type Commercial Scale Wind Facility Status In Service Owner First Wind Developer First Wind Location Washington County ME Coordinates 45.595833°, -67.928628° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":45.595833,"lon":-67.928628,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

456

NREL: Learning - Wind Energy Basics: How Wind Turbines Work  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Wind Energy Basics: How Wind Turbines Work Wind Energy Basics: How Wind Turbines Work We have been harnessing the wind's energy for hundreds of years. From old Holland to farms in the United States, windmills have been used for pumping water or grinding grain. Today, the windmill's modern equivalent-a wind turbine-can use the wind's energy to generate electricity. Wind turbines, like windmills, are mounted on a tower to capture the most energy. At 100 feet (30 meters) or more aboveground, they can take advantage of the faster and less turbulent wind. Turbines catch the wind's energy with their propeller-like blades. Usually, two or three blades are mounted on a shaft to form a rotor. A blade acts much like an airplane wing. When the wind blows, a pocket of low-pressure air forms on the downwind side of the blade. The low-pressure

457

NREL: Wind Research - Grid Integration of Offshore Wind  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Grid Integration of Offshore Wind Grid Integration of Offshore Wind Photograph of a wind turbine in the ocean. Located about 10 kilometers off the coast of Arklow, Ireland, the Arklow Bank offshore wind park consists of seven GE Wind 3.6-MW wind turbines. Much can be learned from the existing land-based integration research for handling the variability and uncertainty of the wind resource. Integration and Transmission One comprehensive grid integration study is the Eastern Wind Integration and Transmission Study (EWITS), in which offshore wind scenarios were analyzed. Nearly 80 GW of offshore wind was studied in the highest penetration scenario. Specific offshore grid distribution and transmission solutions were identified, including cost estimates. With the Atlantic coast likely to lead the way in offshore wind power deployment, EWITS is a benchmark for

458

2012 Wind Technologies Market Report  

E-Print Network [OSTI]

Colorado: Xcel Energy. 2012 Wind Technologies Market ReportDistributed Wind Market Report. PNNL- SA-94583. Washington,2013. 2012 State of the Market Report for PJM. Norristown,

Wiser, Ryan

2014-01-01T23:59:59.000Z

459

European Wind Energy Conference Exhibition  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

European Wind Energy Conference & Exhibition 2009 Parc Chanot, Marseille, France 16-19 March 2009 ACTIVE AERODYNAMIC BLADE CONTROL DESIGN FOR LOAD REDUCTION ON LARGE WIND TURBINES...

460

Solar Wind | Open Energy Information  

Open Energy Info (EERE)

Place: Krasnodar, Romania Zip: 350000 Sector: Solar, Wind energy Product: Russia-based PV product manufacturer. Solar Wind manufactures solar modules and cells. References: Solar...

Note: This page contains sample records for the topic "wind profiler demo" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


461

Wind Wildlife Research Meeting X  

Broader source: Energy.gov [DOE]

The biennial Wind Wildlife Research Meeting provides an internationally recognized forum for researchers and wind-wildlife stakeholders to hear contributed papers, view research posters, and listen...

462

Wind Program | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

upcoming events, funding opportunities, and recent publications. Read more 2014 Offshore Wind Market and Economic Analysis Performed by Navigant 2014 Offshore Wind Market and...

463

Wind and Solar Curtailment: Preprint  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Integration of Wind Power Into Power Systems as Well as on Transmission Networks for Offshore Wind Power Plants London, England October 22 - 24, 2013 Conference Paper NREL...

464

Wind Energy Resources and Technologies  

Broader source: Energy.gov [DOE]

This page provides a brief overview of wind energy resources and technologies supplemented by specific information to apply wind energy within the Federal sector.

465

2010 Wind Technologies Market Report  

E-Print Network [OSTI]

Fish and Wildlife Service?s Draft Land- Based Wind Energywildlife impacts are addressed in the planning, siting, and permitting process for wind

Wiser, Ryan

2012-01-01T23:59:59.000Z

466

2010 Wind Technologies Market Report  

E-Print Network [OSTI]

wind turbine equipment-related costs are assumed to equal 85% of 2010 Wind Technologies Market Report periods to further avoid “noise”

Wiser, Ryan

2012-01-01T23:59:59.000Z

467

Summit Wind Farm, Summit, SD  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

a draft environmental assessment (EA) on the proposed interconnection of the Summit Wind Farm (Project) in Roberts County, near the city of Summit, South Dakota. SummitWind,...

468

2009 Wind Technologies Market Report  

E-Print Network [OSTI]

selected wind turbine components that include towers (tradeWind turbine transactions differ in the services offered (e.g. , whether towers

Wiser, Ryan

2010-01-01T23:59:59.000Z

469

2008 WIND TECHNOLOGIES MARKET REPORT  

E-Print Network [OSTI]

wind turbine manufacturers: Vestas (nacelles, blades, and towersWind turbine transactions differ in the services offered (e.g. , whether towers

Bolinger, Mark

2010-01-01T23:59:59.000Z

470

Wind is Energy (17 activities)  

K-12 Energy Lesson Plans and Activities Web site (EERE)

A nonfiction test to be read with primary student with basic information about wind as an energy source and hands-on, wind-related activities including

471

WINDExchange: Wind for Schools Project  

Wind Powering America (EERE)

Resources Wind for Schools Project As the United States dramatically expands wind energy deployment, the industry is challenged with developing a highly-educated workforce...

472

Standards for Municipal Small Wind Regulations and Small Wind Model Wind  

Broader source: Energy.gov (indexed) [DOE]

Standards for Municipal Small Wind Regulations and Small Wind Model Standards for Municipal Small Wind Regulations and Small Wind Model Wind Ordinance Standards for Municipal Small Wind Regulations and Small Wind Model Wind Ordinance < Back Eligibility Agricultural Commercial Fed. Government Industrial Institutional Local Government Nonprofit Residential Schools State Government Tribal Government Utility Savings Category Wind Buying & Making Electricity Program Info State New Hampshire Program Type Solar/Wind Permitting Standards In July 2008, New Hampshire enacted legislation designed to prevent municipalities from adopting ordinances or regulations that place unreasonable limits or hinder the performance of wind energy systems up to 100 kilowatts (kW) in capacity. Such wind turbines must be used primarily to produce energy for on-site consumption. The law identifies a several

473

Normal operation and maintenance safety lessons from the ITER US PbLi test blanket module program for a US FNSF and DEMO  

SciTech Connect (OSTI)

A leading power reactor breeding blanket candidate for a fusion demonstration power plant (DEMO) being pursued by the US Fusion Community is the Dual Coolant Lead Lithium (DCLL) concept. The safety hazards associated with the DCLL concept as a reactor blanket have been examined in several US design studies. These studies identify the largest radiological hazards as those associated with the dust generation by plasma erosion of plasma blanket module first walls, oxidation of blanket structures at high temperature in air or steam, inventories of tritium bred in or permeating through the ferritic steel structures of the blanket module and blanket support systems, and the 210Po and 203Hg produced in the PbLi breeder/coolant. What these studies lack is the scrutiny associated with a licensing review of the DCLL concept. An insight into this process was gained during the US participation in the International Thermonuclear Experimental Reactor (ITER) Test Blanket Module (TBM) Program. In this paper we discuss the lessons learned during this activity and make safety proposals for the design of a Fusion Nuclear Science Facility (FNSF) or a DEMO that employs a lead lithium breeding blanket.

L. C. Cadwallader; C. P. C. Wong; M. Abdou; B. B. Morely; B.J Merrill

2014-10-01T23:59:59.000Z

474

New England Wind Forum: Markets  

Wind Powering America (EERE)

Markets Markets Selling Wind Power Wind generators interconnected directly to the transmission or distribution grid, or sized in excess of the load of a host end-user, interact with either well-developed or developing markets for the products produced by wind generators: electricity and generation attributes. Buying Wind Power Individuals, companies, institutions, and governments throughout New England have a number of opportunities to buying wind power or support the development of wind power. The links below take you to information on opportunities and guidance for buying wind power in New England. Motivations for Buying Wind Power Buying Wind Power Resources and Tools for Large Energy Users Printable Version Skip footer navigation to end of page. New England Wind Forum Home | Wind Program Home | EERE Home | U.S. Department of Energy

475

Wind News | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

Wind News Wind News Wind News RSS February 7, 2011 Salazar, Chu Announce Major Offshore Wind Initiatives Strategic plan, $50 million in R&D funding, identified Wind Energy Areas will speed offshore wind energy development December 16, 2010 Department of Energy Finalizes Loan Guarantee to Support World's Largest Wind Project 845-Megawatt Wind Facility Will Create Hundreds of Jobs and Avoid Over 1.2 Million Tons of Carbon Dioxide Annually October 29, 2010 Statement by Energy Secretary Steven Chu on Today's Grand Opening of the Nordex Manufacturing Facility in Jonesboro, Arkansas Recovery Act investment creates jobs, helps lay the foundation for a clean energy economy September 13, 2010 DOE Announces More than $5 Million to Support Wind Energy Development Funds to Enhance Short-Term Wind Forecasting and Accelerate Midsize Wind

476

EIA - State Nuclear Profiles  

U.S. Energy Information Administration (EIA) Indexed Site

Massachusetts Nuclear Profile 2010 Massachusetts profile Massachusetts total electric power industry, summer capacity and net generation, by energy source, 2010 Primary energy...

477

EIA - State Nuclear Profiles  

U.S. Energy Information Administration (EIA) Indexed Site

Iowa Nuclear Profile 2010 Iowa profile Iowa total electric power industry, summer capacity and net generation, by energy source, 2010 Primary energy source Summer capacity (mw)...

478

EIA - State Nuclear Profiles  

U.S. Energy Information Administration (EIA) Indexed Site

Illinois Nuclear Profile 2010 Illinois profile Illinois total electric power industry, summer capacity and net generation, by energy source, 2010 Primary energy source Summer...

479

EIA - State Nuclear Profiles  

U.S. Energy Information Administration (EIA) Indexed Site

Louisiana Nuclear Profile 2010 Louisiana profile Louisiana total electric power industry, summer capacity and net generation, by energy source, 2010 Primary energy source Summer...

480

Midsize Wind Turbines for the U.S. Community Wind Market | Department...  

Broader source: Energy.gov (indexed) [DOE]

Midsize Wind Turbines for the U.S. Community Wind Market Midsize Wind Turbines for the U.S. Community Wind Market Midsize Wind Turbines for the U.S. Community Wind Market More...

Note: This page contains sample records for the topic "wind profiler demo" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


481

Line formation in the inner winds of classical T Tauri stars: testing the conical wind solution  

E-Print Network [OSTI]

We present the emission line profile models of hydrogen and helium based on the results from axisymmetric magnetohydrodynamics (MHD) simulations of the wind formed near the disk-magnetosphere boundary of classical T Tauri stars (CTTSs). We extend the previous outflow models of `the conical wind' by Romanova et al. to include a well defined magnetospheric accretion funnel flow which is essential for modelling the optical and near-infrared hydrogen and helium lines of CTTSs. Our MHD model shows outflows in conical shape with a half opening angle about 35 degrees. The flow properties such as the maximum outflow speed in the conical wind, maximum inflow speed in the accretion funnel, mass-accretion and mass-loss rates are comparable to those found in a typical CTTS. The density, velocity and temperature from the MHD simulations are used in a separate radiative transfer model to predict the line profiles and test the consistency of the MHD models with observations. The line profiles are computed with various combi...

Kurosawa, Ryuichi

2012-01-01T23:59:59.000Z

482

Utilizing Wind: Optimal Wind Farm Placement in the United States  

E-Print Network [OSTI]

Utilizing Wind: Optimal Wind Farm Placement in the United States By: Yintao Sun Advisor: Professor Acknowledgements First and foremost, I would like to thank my advisor, Professor Warren Powell, for all the help he An Introduction to Wind Energy 1 1.1 Wind, a Brief History . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

Powell, Warren B.

483

Wind Energy at NREL's National Wind Technology Center  

ScienceCinema (OSTI)

It is a pure, plentiful natural resource. Right now wind is in high demand and it holds the potential to transform the way we power our homes and businesses. NREL is at the forefront of wind energy research and development. NREL's National Wind Technology Center (NWTC) is a world-class facility dedicated to accelerating and deploying wind technology.

None

2013-05-29T23:59:59.000Z

484

Estimation of Wind Speed in Connection to a Wind Turbine  

E-Print Network [OSTI]

horizontal axis wind power plant with rated power 750 KW. The plant has a three bladed rotor and an automatic is shown in Figure 1 demand Drive train Generator Rotor Wind speed Power demand Grid Power Controller PitchEstimation of Wind Speed in Connection to a Wind Turbine X. Ma #3; , N. K. Poulsen #3; , H. Bindner

485

WIND ENERGY Wind Energ. 2013; 00:112  

E-Print Network [OSTI]

WIND ENERGY Wind Energ. 2013; 00:1­12 DOI: 10.1002/we RESEARCH ARTICLE Model predictive control in wind speed, ensuring certain power gradients, with an insignificant loss in energy production rejection, model predictive control, convex optimization, wind power control, energy storage, power output

486

Saturation wind power potential and its implications for wind energy  

Science Journals Connector (OSTI)

...and natural gas produce electricity...As such, wind turbines reduce direct...power, part I: Technologies, energy resources...arrays of wind turbines . J Wind Eng Ind...Yamada T (1982) Development of a turbulence...biofuel soot and gases, and methane...a single wind turbine intersects...

Mark Z. Jacobson; Cristina L. Archer

2012-01-01T23:59:59.000Z

487

Stakeholder Engagement and Outreach: Learn About Wind  

Wind Powering America (EERE)

About Wind Power Locating Wind Power Getting Wind Power Installed Wind Capacity Wind for Schools Project Collegiate Wind Competition School Project Locations Education & Training Programs Curricula & Teaching Materials Resources Learn About Wind Learn about how wind energy generates power; where the best wind resources are; how you can own, host, partner with, and support wind power; and how and where wind energy has increased over the past decade. What Is Wind Power? Learn about how wind energy generates power, about wind turbine sizes and how wind turbines work, and how wind energy can be used. Also read examples of financial and business decisions. Where Is Wind Power? Go to maps to see the wind resource for utility-, community-, and residential-scale wind development. Or, see how much energy wind projects

488

Wind Energy Resource Basics | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

Renewable Energy Wind Wind Energy Resource Basics Wind Energy Resource Basics July 30, 2013 - 3:11pm Addthis Wind energy can be produced anywhere in the world where the wind...

489

Stakeholder Engagement and Outreach: Offshore 90-Meter Wind Maps and Wind  

Wind Powering America (EERE)

Offshore 90-Meter Wind Maps and Wind Resource Potential Offshore 90-Meter Wind Maps and Wind Resource Potential The Stakeholder Engagement and Outreach initiative provides 90-meter (m) height, high-resolution wind maps and estimates of the total offshore wind potential that would be possible from developing the available offshore areas. The offshore wind resource maps can be used as a guide to identify regions for commercial wind development. A map of the United States showing offshore wind resource. Washington offshore wind map. Oregon offshore wind map. California offshore wind map. Texas offshore wind map. Minnesota offshore wind map. Lousiana offshore wind map. Wisconsin offshore wind map. Michigan offshore wind map. Michigan offshore wind map. Illinois offshore wind map. Indiana offshore wind map. Ohio offshore wind map. Georgia offshore wind map. South Carolina offshore wind map. North Carolina offshore wind map. Virginia offshore wind map. Maryland offshore wind map. Pennsylvania offshore wind map. Delaware offshore wind map. New Jersey offshore wind map. New York offshore wind map. Maine offshore wind map. Massachusetts offshore wind map. Rhode Island offshore wind map. Connecticut offshore wind map. Hawaii offshore wind map. Delaware offshore wind map. New Hampshire offshore wind map.

490

NREL Wind Organization Chart  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

/16/13 /16/13 National Wind Technology Center Fort Felker, Center Director Wind Technology Research & Development Fort Felker, Group Manager (Acting) Wind Innovation & Reliability Jason Cotrell, Supervisor - Palmer Carlin - Lee Fingersh - Paul Fleming - Jim Johnson - Bonnie Jonkman - Jon Keller - Andrew Scholbrock - Shawn Sheng - Alan Wright Joint Appointees: - Katie Johnson (CSM) Students - Brendan Geels Post Docs - Yi Guo - Jason Laks Contractors: - Brian McNiff - Lucy Pao (CU) Aero & Systems Dynamics Pat Moriarty, Supervisor - Marshall Buhl - Matt Churchfield - Andrew Clifton - Rick Damiani - Caroline Draxl - Dennis Elliott - Steve Haymes - Jason Jonkman - Khanh Nguyen - Andrew Platt - Scott Schreck - George Scott - Diwanshu Shekhar

491

Cape Wind Project  

Broader source: Energy.gov (indexed) [DOE]

G G Biological Assessment U.S. Department of the Interior Minerals Management Service MMS Cape Wind Energy Project January 2009 Final EIS Appendix G Biological Assessment Cape Wind Energy Project Nantucket Sound Biological Assessment Minerals Management Service for Consultation with the United States Fish and Wildlife Service and NOAA Fisheries May 2008 Appendix G Biological Assessment Cape Wind Energy Project i May 2008 U.S. Department of the Interior Minerals Management Service MMS TABLE OF CONTENTS 1.0 BACKGROUND ............................................................................................................ 1-1 1.1 Project History .............................................................................................................

492

Residential Wind Power  

E-Print Network [OSTI]

” Figure 3. “Wind Generators in Iowa – 2” Figure 4. “State Wind Power Capacity 2007” Figure 5. Annual average wind resource estimates in the contiguous United States (http://rredc.nrel.gov) Figure 6. “SkyStream Design Overview” Figure 7... crisis that raises crude oil prices hampering the price at the pump or commodity production and transportation. Many people do not even take the time to think about the impact to daily life that power and changes within the market play on their lives...

Willis, Gary

2011-12-16T23:59:59.000Z

493

Theoretical X-ray line profiles from colliding wind binaries  

Science Journals Connector (OSTI)

......106 Mo yr1 the lower energy lines (E 1 keV) are...Chandra Low- and High-Energy Transmission Grating...Skinner et al. 2001) and Car (Corcoran et al. 2001...it actually is. The alternative is to assume that all...noticeable for the lower energy lines (E 1 keV). These......

David B. Henley; Ian R. Stevens; Julian M. Pittard

2003-12-11T23:59:59.000Z

494

Michigan Wind I Wind Farm | Open Energy Information  

Open Energy Info (EERE)

Wind I Wind Farm Wind I Wind Farm Jump to: navigation, search Name Michigan Wind I Wind Farm Facility Michigan Wind I Sector Wind energy Facility Type Commercial Scale Wind Facility Status In Service Owner John Deere Wind Developer Noble Environmental Power Energy Purchaser Consumers Energy Location Huron County MI Coordinates 43.7099°, -82.9388° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":43.7099,"lon":-82.9388,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

495

Cisco Wind Energy Wind Farm | Open Energy Information  

Open Energy Info (EERE)

Cisco Wind Energy Wind Farm Cisco Wind Energy Wind Farm Jump to: navigation, search Name Cisco Wind Energy Wind Farm Facility Cisco Wind Energy Sector Wind energy Facility Type Commercial Scale Wind Facility Status In Service Owner John Deere Wind Energy Developer Community Energy Purchaser Northern States Power Location Brewster MN Coordinates 43.696164°, -95.467078° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":43.696164,"lon":-95.467078,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

496

New England Wind Forum: Interviews with Wind Industry Stakeholders and  

Wind Powering America (EERE)

Small Wind Small Wind Large Wind Newsletter Perspectives Events Quick Links to States CT MA ME NH RI VT Bookmark and Share Interviews With Wind Industry Stakeholders and Pioneers in New England The New England Wind Forum will interview different stakeholders actively shaping the wind power landscape in New England and wind pioneers to examine how they have laid the groundwork for today's New England wind energy market. Stephan Wollenburg, Green Energy Program Director of Energy Consumers Alliance of New England January 2013 A Panel of Seven Offer Insight into the Evolving Drivers and Challenges Facing Wind Development in New England June 2011 John Norden, Manager of Renewable Resource Integration, Independent System Operator-New England September 2010 Angus King, Former Governor of Maine and Co-Founder of Independence Wind

497

New England Wind Forum: New England Wind Forum Newsletter  

Wind Powering America (EERE)

Projects in New England Building Wind Energy in New England Wind Resource Wind Power Technology Economics Markets Siting Policy Technical Challenges Issues Small Wind Large Wind Newsletter Perspectives Events Quick Links to States CT MA ME NH RI VT Bookmark and Share New England Wind Forum Newsletter Follow news from the New England Wind Forum by subscribing to its newsletter. Newsletter The New England Wind Forum Newsletter informs stakeholders of New England Wind Energy Education Project announcements, plus, events, project, siting, and policy updates. Enter your email address below to begin the registration process. After you subscribe to the New England Wind Forum Newsletter, you can choose to subscribe to other energy efficiency and renewable energy news. Archived copies of this e-newsletter are not available, but all of the news items can be found on this website under news, events, and publications. If you have ideas or news items to contribute for future issues, please contact Sustainable Energy Advantage.

498

New England Wind Forum: Building Wind Energy in New England  

Wind Powering America (EERE)

Projects in New England Building Wind Energy in New England Wind Resource Wind Power Technology Economics Markets Siting Policy Technical Challenges Issues Small Wind Large Wind Newsletter Perspectives Events Quick Links to States CT MA ME NH RI VT Bookmark and Share Building Wind Energy in New England Many factors influence the ability to develop wind power in the New England region. A viable project requires the right site and the right technology for the application. It must provide suitable revenue or economic value to justify investment in this capital-intensive but zero-fuel technology. Policy initiatives are in place throughout the region to support the expansion of wind power's role in the regional supply mix. However, issues affecting public acceptance of wind projects in host communities must be addressed. Information on topics affecting wind power development in New England can be found by using the navigation to the left.

499

NREL: Wind Research - Gaia-Wind's 11 Kilowatt Wind Turbine Testing and  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Gaia-Wind's 11 Kilowatt Wind Turbine Testing and Results Gaia-Wind's 11 Kilowatt Wind Turbine Testing and Results A video of Gaia-Wind's 11-kW wind turbine. Text Version As part of the National Renewable Energy Laboratory and U.S. Department of Energy (NREL/DOE) Independent Testing project, NREL tested Gaia-Wind's 11-kilowatt (kW) small wind turbine at the National Wind Technology Center (NWTC). Gaia-Wind's turbine is a three-phase induction generator that operates at 480 volts. The turbine's downwind rotor has a 13-meter diameter, and its tower is 18 meters tall. The two-bladed, oversized rotor is designed for low to moderate wind speeds. Testing Summary The summary of the tests is below with the final reports. Cumulative Energy Production 6/11/2008: 210; 6/13/2008: 528; 6/16/2008: 716; 6/18/2008: 731; 6/19/2008:

500

20% Wind Energy by 2030 - Chapter 6: Wind Power Markets Summary...  

Broader source: Energy.gov (indexed) [DOE]

6: Wind Power Markets Summary Slides 20% Wind Energy by 2030 - Chapter 6: Wind Power Markets Summary Slides Summary slides overviewing wind power markets, growth, applications, and...