Sample records for wind power technology

  1. Sinomatech Wind Power Blade aka Sinoma Science Technology Wind...

    Open Energy Info (EERE)

    Sinomatech Wind Power Blade aka Sinoma Science Technology Wind Turbine Blade Co Ltd Jump to: navigation, search Name: Sinomatech Wind Power Blade (aka Sinoma Science & Technology...

  2. Hydraulic Wind Power Transfer Technology Afshin Izadian

    E-Print Network [OSTI]

    Zhou, Yaoqi

    Hydraulic Wind Power Transfer Technology Afshin Izadian Purdue School of Engineering and Technology of renewable energy tax credits in general and a gap in wind energy breakthroughs in particular have caused high cost of wind energy and technological dependency on countries such as China and Germany. Reducing

  3. Conventional Hydropower Technologies, Wind And Water Power Program...

    Office of Environmental Management (EM)

    Conventional Hydropower Technologies, Wind And Water Power Program (WWPP) (Fact Sheet) Conventional Hydropower Technologies, Wind And Water Power Program (WWPP) (Fact Sheet) The US...

  4. EWEC 2006, Athens, The Anemos Wind Power Forecasting Platform Technology The Anemos Wind Power Forecasting Platform Technology -

    E-Print Network [OSTI]

    Boyer, Edmond

    the fluctuating output from wind farms into power plant dispatching and energy trading, wind power predictionsEWEC 2006, Athens, The Anemos Wind Power Forecasting Platform Technology 1 The Anemos Wind Power a professional, flexible platform for operating wind power prediction models, laying the main focus on state

  5. This introduction to wind power technology is meant to help communities in considering or planning wind

    E-Print Network [OSTI]

    Massachusetts at Amherst, University of

    This introduction to wind power technology is meant to help communities in considering or planning wind power. It focuses on commercial and medium-scale wind turbine technology that is available in the United States. This fact sheet also discusses the integration of wind power into the electrical grid

  6. Contribution to the Chapter on Wind Power Energy Technology

    E-Print Network [OSTI]

    turbines, are being implemented across all wind energy countries. The cost of wind-generated electricityContribution to the Chapter on Wind Power Energy Technology Perspectives 2008 Jørgen Lemming; Poul; Poul Erik Morthorst; Niels-Erik Clausen; Peter Hjuler Jensen Title: Contribution to the Chapter on Wind

  7. Wind Power Today: Building a New Energy Future, Wind and Hydropower Technologies Program 2009 (Brochure)

    SciTech Connect (OSTI)

    Not Available

    2009-04-01T23:59:59.000Z

    Wind Power Today is an annual publication that provides an overview of the wind energy research conducted by the U.S. Department of Energy Wind and Hydropower Technologies Program.

  8. Modeling the Benefits of Storage Technologies to Wind Power

    SciTech Connect (OSTI)

    Sullivan, P.; Short, W.; Blair, N.

    2008-06-01T23:59:59.000Z

    Rapid expansion of wind power in the electricity sector is raising questions about how wind resource variability might affect the capacity value of wind farms at high levels of penetration. Electricity storage, with the capability to shift wind energy from periods of low demand to peak times and to smooth fluctuations in output, may have a role in bolstering the value of wind power at levels of penetration envisioned by a new Department of Energy report ('20% Wind by 2030, Increasing Wind Energy's Contribution to U.S. Electricity Supply'). This paper quantifies the value storage can add to wind. The analysis was done employing the Regional Energy Deployment System (ReEDS) model, formerly known as the Wind Deployment System (WinDS) model. ReEDS was used to estimate the cost and development path associated with 20% penetration of wind in the report. ReEDS differs from the WinDS model primarily in that the model has been modified to include the capability to build and use three storage technologies: pumped-hydroelectric storage (PHS), compressed-air energy storage (CAES), and batteries. To assess the value of these storage technologies, two pairs of scenarios were run: business-as-usual, with and without storage; 20% wind energy by 2030, with and without storage. This paper presents the results from those model runs.

  9. Sinomatech Wind Power Blade aka Sinoma Science Technology Wind Turbine

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are being directedAnnual Siteof Energy 2,AUDITCalifornia Sector:Shrenik Industries Jump to:Simran Wind Project

  10. Testing Active Power Control from Wind Power at the National Wind Technology Center (NWTC) (Presentation)

    SciTech Connect (OSTI)

    Ela, E.

    2011-05-01T23:59:59.000Z

    In order to keep the electricity grid stable and the lights on, the power system relies on certain responses from its generating fleet. This presentation evaluates the potential for wind turbines and wind power plants to provide these services and assist the grid during critical times.

  11. This introduction to wind power technology is meant to help communities begin considering or

    E-Print Network [OSTI]

    Massachusetts at Amherst, University of

    call both liquids and gases "fluids" ­ i.e. things that flow). A wind turbine's blades use aerodynamic of a typical wind turbine are: - Rotor: a wind turbine's blades and the hub to which they attach form the rotor or planning wind power. It focuses on commercial and medium-scale wind turbine technology available

  12. Wind Power Today

    SciTech Connect (OSTI)

    Not Available

    2006-05-01T23:59:59.000Z

    Wind Power Today is an annual publication that provides an overview of the wind energy research conducted by the U.S. Department of Energy Wind and Hydropower Technologies Program.

  13. Wind Power Today

    SciTech Connect (OSTI)

    Not Available

    2007-05-01T23:59:59.000Z

    Wind Power Today is an annual publication that provides an overview of the wind energy research conducted by the U.S. Department of Energy Wind and Hydropower Technologies Program.

  14. Part of the Climate Change Problem . . . and the Solution? Chinese-Made Wind Power Technology and Opportunities for Dissemination

    E-Print Network [OSTI]

    Lewis, Joanna I.

    2005-01-01T23:59:59.000Z

    was  directly  tied  to  wind  turbine  cost.  Goldwind’s countries where  the cost of wind power technology had bringing  down  the  cost  of  wind?powered  electricity.  

  15. 2008 WIND TECHNOLOGIES MARKET REPORT

    E-Print Network [OSTI]

    Bolinger, Mark

    2010-01-01T23:59:59.000Z

    to natural gas. 2008 Wind Technologies Market Report 1% windforward gas market. 2008 Wind Technologies Market Report 4.Market Report Wind Penetration (Capacity Basis) Arizona Public Service Avista Utilities California RPS Idaho Power Xcel-PSCo-2008 at 2006 Gas

  16. New England Wind Forum: A Wind Powering America Project, Newsletter #5 -- January 2010, Wind and Hydropower Technologies Program (WHTP)

    SciTech Connect (OSTI)

    Grace, R. C.; Gifford, J.

    2010-01-01T23:59:59.000Z

    Wind Powering America program launched the New England Wind Forum (NEWF) in 2005 to provide a single comprehensive source of up-to-date, Web-based information on a broad array of wind energy issues pertaining to New England. The NEWF newsletter provides New England stakeholders with updates on wind energy development in the region. In addition to regional updates, Issue #5 offers an interview with Angus King, former governor of Maine and co-founder of Independence Wind.

  17. Wind power today

    SciTech Connect (OSTI)

    NONE

    1998-04-01T23:59:59.000Z

    This publication highlights initiatives of the US DOE`s Wind Energy Program. 1997 yearly activities are also very briefly summarized. The first article describes a 6-megawatt wind power plant installed in Vermont. Another article summarizes technical advances in wind turbine technology, and describes next-generation utility and small wind turbines in the planning stages. A village power project in Alaska using three 50-kilowatt turbines is described. Very brief summaries of the Federal Wind Energy Program and the National Wind Technology Center are also included in the publication.

  18. Wind power and Wind power and

    E-Print Network [OSTI]

    Wind power and the CDM #12; Wind power and the CDM Emerging practices in developing wind power 2005 Jyoti P. Painuly, Niels-Erik Clausen, Jørgen Fenhann, Sami Kamel and Romeo Pacudan #12; WIND POWER AND THE CDM Emerging practices in developing wind power projects for the Clean Development Mechanism Energy

  19. Wind Power Career Chat

    SciTech Connect (OSTI)

    Not Available

    2011-01-01T23:59:59.000Z

    This document will teach students about careers in the wind energy industry. Wind energy, both land-based and offshore, is expected to provide thousands of new jobs in the next several decades. Wind energy companies are growing rapidly to meet America's demand for clean, renewable, and domestic energy. These companies need skilled professionals. Wind power careers will require educated people from a variety of areas. Trained and qualified workers manufacture, construct, operate, and manage wind energy facilities. The nation will also need skilled researchers, scientists, and engineers to plan and develop the next generation of wind energy technologies.

  20. Offshore Wind Power USA

    Broader source: Energy.gov [DOE]

    The Offshore Wind Power USA conference provides the latest offshore wind market updates and forecasts.

  1. Shenyang Huaren Wind Power Technology Development Co Ltd | Open Energy

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are being directedAnnual Siteof Energy 2,AUDITCalifornia Sector: WindRiegotecSeaScapeInformation Huaren Wind

  2. Reliable, Efficient and Cost-Effective Electric Power Converter for Small Wind Turbines Based on AC-link Technology

    SciTech Connect (OSTI)

    Darren Hammell; Mark Holveck; DOE Project Officer - Keith Bennett

    2006-08-01T23:59:59.000Z

    Grid-tied inverter power electronics have been an Achilles heel of the small wind industry, providing opportunity for new technologies to provide lower costs, greater efficiency, and improved reliability. The small wind turbine market is also moving towards the 50-100kW size range. The unique AC-link power conversion technology provides efficiency, reliability, and power quality advantages over existing technologies, and Princeton Power will adapt prototype designs used for industrial asynchronous motor control to a 50kW small wind turbine design.

  3. Baoding Tianwei Wind Power Technology Co Ltd | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are being directedAnnual Siteof EnergyInnovation in Carbon CaptureAtriaPower Systems JumpUSAIDBaoding Tianwei

  4. V2G Technology for Designing Active Filter System to Improve Wind Power Quality

    E-Print Network [OSTI]

    Pota, Himanshu Roy

    generation. A system model with wind generator and a dynamic model of PHEVs are introduced here based on the instantaneous power theory (p-q theory) to improve the wind generator performance through compensating have the potential to work as active filter with wind generator to improve power quality, dynamic power

  5. The Political Economy of Wind Power in China

    E-Print Network [OSTI]

    Swanson, Ryan Landon

    2011-01-01T23:59:59.000Z

    by which wind turbine technology converts wind energy intoWind energy developers – usually power companies combined with a wind turbine

  6. Wind Technologies & Evolving Opportunities (Presentation)

    SciTech Connect (OSTI)

    Robichaud, R.

    2014-07-01T23:59:59.000Z

    This presentation covers opportunities for wind technology; wind energy market trends; an overview of the National Wind Technology Center near Boulder, Colorado; wind energy price and cost trends; wind turbine technology improvements; and wind resource characterization improvements.

  7. Wind Power

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level:Energy: Grid Integration Redefining What'sis Taking Over OurThe Iron SpinPrincetonUsingWhat is abig world of tinyWind Industry SoarsWind

  8. Wind Powering America Initiative (Fact Sheet)

    SciTech Connect (OSTI)

    Not Available

    2011-01-01T23:59:59.000Z

    The U.S. Department of Energy's Wind Powering America initiative engages in technology market acceptance, barrier reduction, and technology deployment support activities. This fact sheet outlines ways in which the Wind Powering America team works to reduce barriers to appropriate wind energy deployment, primarily by focusing on six program areas: workforce development, communications and outreach, stakeholder analysis and resource assessment, wind technology technical support, wind power for Native Americans, and federal sector support and collaboration.

  9. Wind Energy at NREL's National Wind Technology Center

    SciTech Connect (OSTI)

    None

    2010-01-01T23:59:59.000Z

    It is a pure, plentiful natural resource. Right now wind is in high demand and it holds the potential to transform the way we power our homes and businesses. NREL is at the forefront of wind energy research and development. NREL's National Wind Technology Center (NWTC) is a world-class facility dedicated to accelerating and deploying wind technology.

  10. Wind Energy at NREL's National Wind Technology Center

    ScienceCinema (OSTI)

    None

    2013-05-29T23:59:59.000Z

    It is a pure, plentiful natural resource. Right now wind is in high demand and it holds the potential to transform the way we power our homes and businesses. NREL is at the forefront of wind energy research and development. NREL's National Wind Technology Center (NWTC) is a world-class facility dedicated to accelerating and deploying wind technology.

  11. Wind Power

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742EnergyOnItemResearch >Internship Program TheSiteEurekaWeekly UserWhat's New Today aboutWind

  12. 2011 Wind Technologies Market Report

    E-Print Network [OSTI]

    Bolinger, Mark

    2013-01-01T23:59:59.000Z

    charging wind power projects for balancing services. 81 BPA,in balancing reserves with increased wind power penetrationin balancing reserves with increased wind power penetration

  13. 2010 Wind Technologies Market Report

    E-Print Network [OSTI]

    Wiser, Ryan

    2012-01-01T23:59:59.000Z

    charging wind power projects for balancing services. 88 BPA,in balancing reserves with increased wind power penetrationin balancing reserves with increased wind power penetration

  14. Active Power Control Testing at the U.S. National Wind Technology Center (NWTC) (Presentation)

    SciTech Connect (OSTI)

    Ela, E.

    2011-01-01T23:59:59.000Z

    In order to keep the electricity grid stable and the lights on, the power system relies on certain responses from its generating fleet. This presentation evaluates the potential for wind turbines and wind power plants to provide these services and assist the grid during critical times.

  15. Wind Energy Benefits, Wind Powering America (WPA) (Fact Sheet...

    Broader source: Energy.gov (indexed) [DOE]

    Energy Benefits, Wind Powering America (WPA) (Fact Sheet), Wind And Water Power Program (WWPP) Wind Energy Benefits, Wind Powering America (WPA) (Fact Sheet), Wind And Water Power...

  16. National Wind Technology Center (Fact Sheet), National Wind Technology...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    NATIONAL WIND TECHNOLOGY CENTER www.nrel.govwind Wind energy is one of the fastest growing electricity generation sources in the world. NREL's National Wind Technology Center...

  17. 2008 WIND TECHNOLOGIES MARKET REPORT

    E-Print Network [OSTI]

    Bolinger, Mark

    2010-01-01T23:59:59.000Z

    States. Specifically, Bluewater Wind and Delmarva PowerLLC Babcock & Brown Acquisition Bluewater Wind Good Energies

  18. Residential Wind Power

    E-Print Network [OSTI]

    Willis, Gary

    2011-12-16T23:59:59.000Z

    This research study will explore the use of residential wind power and associated engineering and environmental issues. There is various wind power generating devices available to the consumer. The study will discuss the dependencies of human...

  19. EA-1726: Kahuku Wind Power, LLC Wind Power Generation Facility...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    6: Kahuku Wind Power, LLC Wind Power Generation Facility, O'ahu, HI EA-1726: Kahuku Wind Power, LLC Wind Power Generation Facility, O'ahu, HI May 3, 2010 EA-1726: Final...

  20. 2010 Wind Technologies Market Report

    E-Print Network [OSTI]

    Wiser, Ryan

    2012-01-01T23:59:59.000Z

    Public Service Wind Integration Cost Impact Study. Preparedequipment-related wind turbine costs, the overall importinstalled wind power project costs, wind turbine transaction

  1. 2009 Wind Technologies Market Report

    E-Print Network [OSTI]

    Wiser, Ryan

    2010-01-01T23:59:59.000Z

    Public Service Wind Integration Cost Impact Study. Preparedinstalled wind power project costs, wind turbine transactionand components and wind turbine costs. Excluded from all

  2. 2009 Wind Technologies Market Report

    E-Print Network [OSTI]

    Wiser, Ryan

    2010-01-01T23:59:59.000Z

    directly charging wind power projects for balancing servicesin smaller balancing areas. The successful use of wind power

  3. 2011 Wind Technologies Market Report

    E-Print Network [OSTI]

    Bolinger, Mark

    2013-01-01T23:59:59.000Z

    Operations Impacts of Wind Generation Integration Study.Impacts of Integrating Wind Generation into Idaho Power's2008. Analysis of Wind Generation Impact on ERCOT Ancillary

  4. Sandia National Laboratories: wind turbines produce rated power

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    wind turbines produce rated power Increasing the Scaled Wind Farm Technology Facility's Power Production On April 7, 2014, in Energy, Facilities, News, News & Events, Partnership,...

  5. Wind Partnerships for Advanced Component Technology: WindPACT Advanced Wind Turbine Drivetrain Designs; Northern Power Systems, Inc.

    SciTech Connect (OSTI)

    Not Available

    2006-03-01T23:59:59.000Z

    This fact sheet describes a subcontract with Northern Power Systems to develop a direct-drive (no gearbox) permanent magnet generator, which has the greatest potential to decrease the cost of energy.

  6. Wind Power Outlook 2004

    SciTech Connect (OSTI)

    anon.

    2004-01-01T23:59:59.000Z

    The brochure, expected to be updated annually, provides the American Wind Energy Association's (AWAE's) up-to-date assessment of the wind industry. It provides a summary of the state of wind power in the U.S., including the challenges and opportunities facing the industry. It provides summary information on the growth of the industry, policy-related factors such as the federal wind energy production tax credit status, comparisons with natural gas, and public views on wind energy.

  7. Wind Fins: Novel Lower-Cost Wind Power System

    SciTech Connect (OSTI)

    David C. Morris; Dr. Will D. Swearingen

    2007-10-08T23:59:59.000Z

    This project evaluated the technical feasibility of converting energy from the wind with a novel “wind fin” approach. This patent-pending technology has three major components: (1) a mast, (2) a vertical, hinged wind structure or fin, and (3) a power takeoff system. The wing structure responds to the wind with an oscillating motion, generating power. The overall project goal was to determine the basic technical feasibility of the wind fin technology. Specific objectives were the following: (1) to determine the wind energy-conversion performance of the wind fin and the degree to which its performance could be enhanced through basic design improvements; (2) to determine how best to design the wind fin system to survive extreme winds; (3) to determine the cost-effectiveness of the best wind fin designs compared to state-of-the-art wind turbines; and (4) to develop conclusions about the overall technical feasibility of the wind fin system. Project work involved extensive computer modeling, wind-tunnel testing with small models, and testing of bench-scale models in a wind tunnel and outdoors in the wind. This project determined that the wind fin approach is technically feasible and likely to be commercially viable. Project results suggest that this new technology has the potential to harvest wind energy at approximately half the system cost of wind turbines in the 10kW range. Overall, the project demonstrated that the wind fin technology has the potential to increase the economic viability of small wind-power generation. In addition, it has the potential to eliminate lethality to birds and bats, overcome public objections to the aesthetics of wind-power machines, and significantly expand wind-power’s contribution to the national energy supply.

  8. Improved Performance of an Air Cooled Condenser (ACC) Using SPX Wind Guide Technology at Coal-Based Thermoelectric Power Plants

    SciTech Connect (OSTI)

    Ken Mortensen

    2010-12-31T23:59:59.000Z

    This project added a new airflow enhancement technology to an existing ACC cooling process at a selected coal power plant. Airflow parameters and efficiency improvement for the main plant cooling process using the applied technology were determined and compared with the capabilities of existing systems. The project required significant planning and pre-test execution in order to reach the required Air Cooled Condenser system configuration for evaluation. A host Power Plant ACC system had to be identified, agreement finalized, and addition of the SPX ACC Wind Guide Technology completed on that site. Design of the modification, along with procurement, fabrication, instrumentation, and installation of the new airflow enhancement technology were executed. Baseline and post-modification cooling system data was collected and evaluated. The improvement of ACC thermal performance after SPX wind guide installation was clear. Testing of the improvement indicates there is a 5% improvement in heat transfer coefficient in high wind conditions and 1% improvement at low wind speed. The benefit increased with increasing wind speed. This project was completed on schedule and within budget.

  9. Wind Power: How Much, How Soon, and At What Cost?

    E-Print Network [OSTI]

    Wiser, Ryan H

    2010-01-01T23:59:59.000Z

    World's Electricity from Wind Power by 2020." Prepared forof the 2004 Global Wind Power Conference. 29-31 March.of Storage Technologies to Wind Power." NREL/CP-670-43510.

  10. Enabling Wind Power Nationwide

    Office of Environmental Management (EM)

    including natural gas, and competing renewable power resources such as solar photovoltaics. Figure 4-3. Wind turbine hub height trends in Germany from 2007 to 2014 Source:...

  11. 2008 WIND TECHNOLOGIES MARKET REPORT

    E-Print Network [OSTI]

    Bolinger, Mark

    2010-01-01T23:59:59.000Z

    of larger balancing areas, the use of regional wind powerbalancing areas. The successful use of regional wind power

  12. 2009 Wind Technologies Market Report

    E-Print Network [OSTI]

    Wiser, Ryan

    2010-01-01T23:59:59.000Z

    the Impact of Significant Wind Generation Facilities on BulkOperations Impacts of Wind Generation Integration Study.Impacts of Integrating Wind Generation into Idaho Power's

  13. 2008 WIND TECHNOLOGIES MARKET REPORT

    E-Print Network [OSTI]

    Bolinger, Mark

    2010-01-01T23:59:59.000Z

    the Impact of Significant Wind Generation Facilities on BulkOperations Impacts of Wind Generation Integration Study.Impacts of Integrating Wind Generation into Idaho Power's

  14. 2010 Wind Technologies Market Report

    E-Print Network [OSTI]

    Wiser, Ryan

    2012-01-01T23:59:59.000Z

    Operations Impacts of Wind Generation Integration Study.Impacts of Integrating Wind Generation into Idaho Power'sthe Impact of Significant Wind Generation Facilities on Bulk

  15. 2010 Wind Technologies Market Report

    E-Print Network [OSTI]

    Wiser, Ryan

    2012-01-01T23:59:59.000Z

    and the drop in wind power plant installations, for example,the decrease in new wind power plant construction. A GrowingRelative Economics of Wind Power Plants Installed in Recent

  16. 2011 Wind Technologies Market Report

    E-Print Network [OSTI]

    Bolinger, Mark

    2013-01-01T23:59:59.000Z

    and the drop in wind power plant installations since 2009and the drop in wind power plant installations since 2009towers used in U.S. wind power plants increases from 80% in

  17. Sandia Energy - Wind & Water Power Newsletter

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Wind & Water Power Newsletter Home Stationary Power Energy Conversion Efficiency Wind Energy Resources Wind & Water Power Newsletter Wind & Water Power NewsletterTara...

  18. 2012 Wind Technologies Market Report

    E-Print Network [OSTI]

    Wiser, Ryan

    2014-01-01T23:59:59.000Z

    wind power projects in the United States to date have been installed on land,on developing wind power projects on public lands. State

  19. 2011 Wind Technologies Market Report

    E-Print Network [OSTI]

    Bolinger, Mark

    2013-01-01T23:59:59.000Z

    wind power projects in the United States to date have been installed on land,of developing wind power projects on public lands. State

  20. Primer on Wind Power for Utility Applications

    SciTech Connect (OSTI)

    Wan, Y.

    2005-12-01T23:59:59.000Z

    The wind industry still faces many market barriers, some of which stem from utilities' lack of experience with the technology. Utility system operators and planners need to understand the effects of fluctuating wind power on system regulation and stability. Without high-frequency wind power data and realistic wind power plant models to analyze the problem, utilities often rely on conservative assumptions and worst-case scenarios to make engineering decisions. To remedy the situation, the National Renewable Energy Laboratory (NREL) has undertaken a project to record long-term, high-resolution (1-hertz [Hz]) wind power output data from large wind power plants in various regions. The objective is to systematically collect actual wind power data from large commercial wind power plants so that wind power fluctuations, their frequency distribution, the effects of spatial diversity, and the ancillary services of large commercial wind power plants can be analyzed. It also aims to provide the industry with nonproprietary wind power data in different wind regimes for system planning and operating impact studies. This report will summarize the results of data analysis performed at NREL and discuss the wind power characteristics related to power system operation and planning.

  1. 2009 Wind Technologies Market Report

    E-Print Network [OSTI]

    Wiser, Ryan

    2010-01-01T23:59:59.000Z

    forward gas market. 2009 Wind Technologies Market Report TheMarket Report Wind Penetration (Capacity Basis) Xcel-PSCo-2008 at 2006 Gasgas facilities run at even lower capacity factors. 2009 Wind Technologies Market Report

  2. 2011 Wind Technologies Market Report

    E-Print Network [OSTI]

    Bolinger, Mark

    2013-01-01T23:59:59.000Z

    Technologies Market Report Wind Gas Coal Other Renewablethe forward gas market. 2011 Wind Technologies Market ReportMarket Report Nameplate Capacity (GW) Entered queue in 2011 Total in queue at end of 2011 Wind Natural Gas

  3. MHK Technologies/New Knowledge Wind and Wave Renewable Mobile...

    Open Energy Info (EERE)

    Wave Renewable Mobile Wind and Wave Power Plant Platform < MHK Technologies Jump to: navigation, search << Return to the MHK database homepage New Knowledge Wind and Wave Renewable...

  4. Engineering innovation to reduce wind power COE

    SciTech Connect (OSTI)

    Ammerman, Curtt Nelson [Los Alamos National Laboratory

    2011-01-10T23:59:59.000Z

    There are enough wind resources in the US to provide 10 times the electric power we currently use, however wind power only accounts for 2% of our total electricity production. One of the main limitations to wind use is cost. Wind power currently costs 5-to-8 cents per kilowatt-hour, which is more than twice the cost of electricity generated by burning coal. Our Intelligent Wind Turbine LDRD Project is applying LANL's leading-edge engineering expertise in modeling and simulation, experimental validation, and advanced sensing technologies to challenges faced in the design and operation of modern wind turbines.

  5. Wind Power Today, 2010, Wind and Water Power Program (WWPP)

    SciTech Connect (OSTI)

    Not Available

    2010-05-01T23:59:59.000Z

    Wind Power Today is an annual publication that provides an overview of the wind energy research conducted by the U.S. Department of Energy Wind and Water Power Program.

  6. 2015 Iowa Wind Power Conference and Iowa Wind Energy Association...

    Energy Savers [EERE]

    2015 Iowa Wind Power Conference and Iowa Wind Energy Association Midwest Regional Energy Job Fair 2015 Iowa Wind Power Conference and Iowa Wind Energy Association Midwest Regional...

  7. 2010 Wind Technologies Market Report

    E-Print Network [OSTI]

    Wiser, Ryan

    2012-01-01T23:59:59.000Z

    forward gas market. 2010 Wind Technologies Market Report 4.Market Report Entered queue in 2010 Total in queue at end of 2010 Nameplate Capacity (GW) Wind Natural Gas

  8. Wind Energy Resources and Technologies

    Broader source: Energy.gov [DOE]

    This page provides a brief overview of wind energy resources and technologies supplemented by specific information to apply wind energy within the Federal sector.

  9. On the Use of Energy Storage Technologies for Regulation Services in Electric Power Systems with Significant Penetration of Wind Energy

    SciTech Connect (OSTI)

    Yang, Bo; Makarov, Yuri V.; DeSteese, John G.; Vishwanathan, Vilanyur V.; Nyeng, Preben; McManus, Bart; Pease, John

    2008-05-27T23:59:59.000Z

    Energy produced by intermittent renewable resources is sharply increasing in the United States. At high penetration levels, volatility of wind power production could cause additional problems for the power system balancing functions such as regulation. This paper reports some partial results of a project work, recently conducted by the Pacific Northwest National Laboratory (PNNL) for Bonneville Power Administration (BPA). The project proposes to mitigate additional intermittency with the help of Wide Area Energy Management System (WAEMS) that would provide a two-way simultaneous regulation service for the BPA and California ISO systems by using a large energy storage facility. The paper evaluates several utility-scale energy storage technology options for their usage as regulation resources. The regulation service requires a participating resource to quickly vary its power output following the rapidly and frequently changing regulation signal. Several energy storage options have been analyzed based on thirteen selection criteria. The evaluation process resulted in the selection of flywheels, pumped hydro electric power (or conventional hydro electric power) plant and sodium sulfur or nickel cadmium batteries as candidate technologies for the WAEMS project. A cost benefit analysis should be conducted to narrow the choice to one technology.

  10. Wind Power Technologies Office FY 2016 Budget At-A-Glance

    Broader source: Energy.gov (indexed) [DOE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742EnergyOn AprilA group currentBradley NickellApril 16, 2008 TBD-0075 -In theWideWind Power

  11. Proceedings Nordic Wind Power Conference

    E-Print Network [OSTI]

    Estimation of Possible Power for Wind Plant Control Power Fluctuations from Offshore Wind Farms; Model Validation System grounding of wind farm medium voltage cable grids Faults in the Collection Grid of Offshore systems of wind turbines and wind farms. NWPC presents the newest research results related to technical

  12. Environmentally Sound Design and Recycling of Future Wind Power Systems

    E-Print Network [OSTI]

    Environmentally Sound Design and Recycling of Future Wind Power Systems Presentation at the IEA R state-of-the-art wind power system Mapping current trends of wind power technologies and concepts Expert wind power systems Expert panel brainstorm on environmental aspects of decommissioning current

  13. 2010 Wind Technologies Market Report

    E-Print Network [OSTI]

    Wiser, Ryan

    2012-01-01T23:59:59.000Z

    ET2/TL-08-1474. May 19, 2010 Wind Technologies Market ReportAssociates. 2010. SPP WITF Wind Integration Study. Little10, 2010. David, A. 2009. Wind Turbines: Industry and Trade

  14. 2011 Wind Technologies Market Report

    E-Print Network [OSTI]

    Bolinger, Mark

    2013-01-01T23:59:59.000Z

    shows that 8.5% of potential wind energy generation withinin GWh (and as a % of potential wind generation) Electricreport also laid out a potential wind power deployment path

  15. Wind Energy and Spatial Technology

    E-Print Network [OSTI]

    Schweik, Charles M.

    2/3/2011 1 Wind Energy and Spatial Technology Lori Pelech Why Wind Energy? A clean, renewable 2,600 tons of carbon emissions annually ­ The economy · Approximately 85,000 wind energy workers to Construct a Wind Farm... Geo-Spatial Components of Wind Farm Development Process Selecting a Project Site

  16. National Wind Technology Center (Fact Sheet)

    SciTech Connect (OSTI)

    Not Available

    2011-12-01T23:59:59.000Z

    This overview fact sheet is one in a series of information fact sheets for the National Wind Technology Center (NWTC). Wind energy is one of the fastest growing electricity generation sources in the world. NREL's National Wind Technology Center (NWTC), the nation's premier wind energy technology research facility, fosters innovative wind energy technologies in land-based and offshore wind through its research and testing facilities and extends these capabilities to marine hydrokinetic water power. Research and testing conducted at the NWTC offers specialized facilities and personnel and provides technical support critical to the development of advanced wind energy systems. From the base of a system's tower to the tips of its blades, NREL researchers work side-by-side with wind industry partners to increase system reliability and reduce wind energy costs. The NWTC's centrally located research and test facilities at the foot of the Colorado Rockies experience diverse and robust wind patterns ideal for testing. The NWTC tests wind turbine components, complete wind energy systems and prototypes from 400 watts to multiple megawatts in power rating.

  17. V2G Technology to Improve Wind Power Quality and Stability F. R. Islam and H. R. Pota

    E-Print Network [OSTI]

    Pota, Himanshu Roy

    of wind generation with PHEVs, as well as the stability analysis of the power grid to demonstrate that use. A charging station gives opportunity to use the PHEVs battery as a battery base for the wind generator provides the wind generator model; dynamic battery model of PHEVs and network interfacing are presented

  18. 2009 Wind Technologies Market Report

    E-Print Network [OSTI]

    Wiser, Ryan

    2010-01-01T23:59:59.000Z

    wind power installations in the United States have been located on land,wind power projects in the United States to date have been installed on land,wind power projects built in the United States to date have been sited on land.

  19. Robi, Robichaud, Wind Technologies and Evolving Opportunities

    Broader source: Energy.gov (indexed) [DOE]

    RPS * Wind Technology Overview * Larger Rotors * Taller Towers * Improved Controls * Wind Resource * Improved Assessment 2 Innova+on for Our Energy Future National Wind Technology...

  20. NREL Small Wind Turbine Test Project: Mariah Power's Windspire Wind Turbine Test Chronology

    SciTech Connect (OSTI)

    Huskey, A.; Forsyth, T.

    2009-06-01T23:59:59.000Z

    This report presents a chronology of tests conducted at NREL's National Wind Technology Center on Mariah Power's Windspire 1.2-kW wind turbine and a letter of response from Mariah Power.

  1. Paul S. Veers Wind Energy Technology Department

    E-Print Network [OSTI]

    Ginzel, Matthew

    turbulence simulation, fatigue analysis, reliability, structural dynamics, aeroelastic tailoring of blades journal for progress and applications in wind power. He has a MS in Engineering Mechanics fromPaul S. Veers Wind Energy Technology Department Sandia National Laboratories Thursday, April 8th 3

  2. Wind Technologies and Evolving Opportunities (Presentation)

    SciTech Connect (OSTI)

    Robi Robichaud

    2014-03-01T23:59:59.000Z

    This presentation provides an overview of wind energy research being conducted at the National Wind Technology Center, market and technology trends in wind energy, and opportunities for wind technology.

  3. 2013 Wind Technologies Market Report

    SciTech Connect (OSTI)

    Wiser, R.; Bolinger, M.; Barbose, G.; Darghouth, N.; Hoen, B.; Mills, A.; Weaver, S.; Porter, K.; Buckley, M.; Oteri, F.; Tegen, S.

    2014-08-01T23:59:59.000Z

    This annual report provides a detailed overview of developments and trends in the U.S. wind power market, with a particular focus on 2013. This 2013 edition updates data presented in previous editions while highlighting key trends and important new developments. The report includes an overview of key installation-related trends; trends in wind power capacity growth; how that growth compares to other countries and generation sources; the amount and percentage of wind energy in individual states; the status of offshore wind power development and the quantity of proposed wind power capacity in various interconnection queues in the United States.

  4. Active Power Controls from Wind Power: Bridging the Gaps

    SciTech Connect (OSTI)

    Ela, E.; Gevorgian, V.; Fleming, P.; Zhang, Y. C.; Singh, M.; Muljadi, E.; Scholbrook, A.; Aho, J.; Buckspan, A.; Pao, L.; Singhvi, V.; Tuohy, A.; Pourbeik, P.; Brooks, D.; Bhatt, N.

    2014-01-01T23:59:59.000Z

    This paper details a comprehensive study undertaken by the National Renewable Energy Laboratory, Electric Power Research Institute, and the University of Colorado to understand how the contribution of wind power providing active power control (APC) can benefit the total power system economics, increase revenue streams, improve the reliability and security of the power system, and provide superior and efficient response while reducing any structural and loading impacts that may reduce the life of the wind turbine or its components. The study includes power system simulations, control simulations, and actual field tests using turbines at NREL's National Wind Technology Center (NWTC). The study focuses on synthetic inertial control, primary frequency control, and automatic generation control, and analyzes timeframes ranging from milliseconds to minutes to the lifetime of wind turbines, locational scope ranging from components of turbines to large wind plants to entire synchronous interconnections, and additional topics ranging from economics to power system engineering to control design.

  5. Wind Powering America Webinar Series (Postcard), Wind Powering America (WPA)

    SciTech Connect (OSTI)

    Not Available

    2012-02-01T23:59:59.000Z

    Wind Powering America offers a free monthly webinar series that provides expert information on today?s key wind energy topics. This postcard is an outreach tool that provides a brief description of the webinars as well as the URL.

  6. Wind Powering America Podcasts, Wind Powering America (WPA)

    SciTech Connect (OSTI)

    Not Available

    2012-04-01T23:59:59.000Z

    Wind Powering America and the National Association of Farm Broadcasters produce a series of radio interviews featuring experts discussing wind energy topics. The interviews are aimed at a rural stakeholder audience and are available as podcasts. On the Wind Powering America website, you can access past interviews on topics such as: Keys to Local Wind Energy Development Success, What to Know about Installing a Wind Energy System on Your Farm, and Wind Energy Development Can Revitalize Rural America. This postcard is a marketing piece that stakeholders can provide to interested parties; it will guide them to this online resource for podcast episodes.

  7. Wind and Water Power Technologies FY'14 Budget At-a-Glance

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page onYouTube YouTube Note: SinceDevelopment | Department ofPartnerships ToolkitWasteWho WillWind Programof Energy Wind 1

  8. Enabling Wind Power Nationwide

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page onYouTube YouTube Note: Since the YouTube|6721 Federal Register /of Energy 3 BTO PeerDepartment ofWind Power

  9. Wind Power Link

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office of ScienceandMesa del SolStrengtheningWildfires may contribute more to globalWind Power Links These other

  10. Wind Power Outreach Campaign

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office of ScienceandMesa del SolStrengtheningWildfires may contribute more to globalWind Power Links These other

  11. Wind Power Software

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office of ScienceandMesa del SolStrengtheningWildfires may contribute more to globalWind Power Links These

  12. 2011 Wind Technologies Market Report

    E-Print Network [OSTI]

    Bolinger, Mark

    2013-01-01T23:59:59.000Z

    can also provide power to off-grid sites. Wind turbines usedkW in size (often used off-grid) were flat or even declined

  13. Kahuku Wind Power (First Wind) | Department of Energy

    Office of Environmental Management (EM)

    The project employs the integration of Clipper LibertyTM wind turbine generators and a control system to more efficiently integrate wind power with the utility's power grid....

  14. Review of Historical and Modern Utilization of Wind Power Publications Department

    E-Print Network [OSTI]

    UTILIZATION TODAY WIND POWER TECHNOLOGY q Modern wind turbine technology q Concepts COST OF WIND ENERGY TYPES costs BEGINNERS GUIDE TO WIND ENERGY STUDIES q Selected text books on wind energy and wind turbines WECS - Wind Energy Conversion Systems. To co-ordinate the many terms derived from ancient Teutonic

  15. Wind and Water Power Technologies FY'14 Budget At-a-Glance | Department of

    Broader source: Energy.gov (indexed) [DOE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742EnergyOn AprilA group currentBradley NickellApril 16, 2008 TBD-0075 -In17,InEnergy Wind and

  16. Wind Power Technologies Office FY 2015 Budget At-A-Glance

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page onYouTube YouTube Note: SinceDevelopment | Department ofPartnerships ToolkitWasteWho Will BeWhyWind Gallerydouble

  17. Active Power Control from Wind Power (Presentation)

    SciTech Connect (OSTI)

    Ela, E.; Brooks, D.

    2011-04-01T23:59:59.000Z

    In order to keep the electricity grid stable and the lights on, the power system relies on certain responses from its generating fleet. This presentation evaluates the potential for wind turbines and wind power plants to provide these services and assist the grid during critical times.

  18. Three Offshore Wind Advanced Technology Demonstration Projects...

    Office of Environmental Management (EM)

    Offshore Wind Advanced Technology Demonstration Projects Receive Phase 2 Funding Three Offshore Wind Advanced Technology Demonstration Projects Receive Phase 2 Funding September...

  19. National-Scale Wind Resource Assessment for Power Generation (Presentation)

    SciTech Connect (OSTI)

    Baring-Gould, E. I.

    2013-08-01T23:59:59.000Z

    This presentation describes the current standards for conducting a national-scale wind resource assessment for power generation, along with the risk/benefit considerations to be considered when beginning a wind resource assessment. The presentation describes changes in turbine technology and viable wind deployment due to more modern turbine technology and taller towers and shows how the Philippines national wind resource assessment evolved over time to reflect changes that arise from updated technologies and taller towers.

  20. Wind Power Forecasting: State-of-the-Art 2009

    E-Print Network [OSTI]

    Kemner, Ken

    Wind Power Forecasting: State-of-the-Art 2009 ANL/DIS-10-1 Decision and Information Sciences about Argonne and its pioneering science and technology programs, see www.anl.gov. #12;Wind Power................................................ 14 2.2.3 Critical Processes for Wind Forecast

  1. Wind power outlook 2006

    SciTech Connect (OSTI)

    anon.

    2006-04-15T23:59:59.000Z

    This annual brochure provides the American Wind Energy Association's up-to-date assessment of the wind industry in the United States. This 2006 general assessment shows positive signs of growth, use and acceptance of wind energy as a vital component of the U.S. energy mix.

  2. 2008 WIND TECHNOLOGIES MARKET REPORT

    SciTech Connect (OSTI)

    Wiser, Ryan H.; Bolinger, Mark; Barbose, G.; Mills, A.; Rosa, A.; Porter, K.; Fink, S.; Tegen, S.; Musial, W.; Oteri, F.; Heimiller, D.; Rberts, B.; Belyeu, K.; Stimmel, R.

    2009-07-15T23:59:59.000Z

    The U.S. wind industry experienced a banner year in 2008, again surpassing even optimistic growth projections from years past. At the same time, the last year has been one of upheaval, with the global financial crisis impacting near-term growth prospects for the wind industry, and with federal policy changes enacted to push the industry towards continued aggressive expansion. This rapid pace of development has made it difficult to keep up with trends in the marketplace. Yet, the need for timely, objective information on the industry and its progress has never been greater. This report - the third of an ongoing annual series - attempts to meet this need by providing a detailed overview of developments and trends in the U.S. wind power market, with a particular focus on 2008. As with previous editions, this report begins with an overview of key wind power installation-related trends: trends in wind capacity growth in the U.S., how that growth compares to other countries and generation sources, the amount and percentage of wind in individual states and serving specific utilities, and the quantity of proposed wind capacity in various interconnection queues in the United States. Next, the report covers an array of wind industry trends, including developments in turbine manufacturer market share, manufacturing and supply-chain investments, wind turbine and wind project size, project financing developments, and trends among wind power developers, project owners, and power purchasers. The report then turns to a discussion of wind project price, cost, and performance trends. In so doing, it reviews the price of wind power in the United States, and how those prices compare to the cost of fossil-fueled generation, as represented by wholesale power prices. It also describes trends in installed wind project costs, wind turbine transaction prices, project performance, and operations and maintenance expenses. Next, the report examines other policy and market factors impacting the domestic wind power market, including federal and state policy drivers, transmission issues, and grid integration. Finally, the report concludes with a preview of possible near- to medium-term market developments. This version of the Annual Report updates data presented in the previous editions, while highlighting key trends and important new developments from 2008. New to this edition is an executive summary of the report and an expanded final section on near- to medium-term market development. The report concentrates on larger-scale wind applications, defined here as individual turbines or projects that exceed 50 kW in size. The U.S. wind power sector is multifaceted, however, and also includes smaller, customer-sited wind turbines used to power the needs of residences, farms, and businesses. Data on these applications are not the focus of this report, though a brief discussion on Distributed Wind Power is provided on page 4. Much of the data included in this report were compiled by Berkeley Lab, and come from a variety of sources, including the American Wind Energy Association (AWEA), the Energy Information Administration (EIA), and the Federal Energy Regulatory Commission (FERC). The Appendix provides a summary of the many data sources used in the report. Data on 2008 wind capacity additions in the United States are based on information provided by AWEA; some minor adjustments to those data may be expected. In other cases, the data shown here represent only a sample of actual wind projects installed in the United States; furthermore, the data vary in quality. As such, emphasis should be placed on overall trends, rather than on individual data points. Finally, each section of this document focuses on historical market information, with an emphasis on 2008; with the exception of the final section, the report does not seek to forecast future trends.

  3. Probabilistic Wind Resource Assessment and Power Predictions

    E-Print Network [OSTI]

    Firestone, Jeremy

    Probabilistic Wind Resource Assessment and Power Predictions Luca Delle Monache (lucadm Accurate wind resource assessment and power forecasts and reliable quanXficaXon of their uncertainty Mo5va5on · Power forecast: o Increase wind energy penetra

  4. Beijing Wende Xingye Wind Power Technology Co Ltd | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are being directedAnnual Siteof Energy 2,AUDIT REPORT Americium/CuriumAguaBBBWind LtdFengli Technology Ltd

  5. Conventional Hydropower Technologies, Wind And Water Power Program (WWPP) (Fact Sheet)

    Broader source: Energy.gov (indexed) [DOE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742Energy China U.S. DepartmentEnergy This partAs theFebruary09Contractor(DOE's) Water Power

  6. Advanced Airfoils for Wind Turbines: Office of Power Technologies (OPT) Success Stories Series Fact Sheet

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office511041cloth DocumentationProducts (VAP) VAP7-0973 1BP-14 Power and TransmissionAdolphus L. Lotts,Program

  7. Fostering a Renewable Energy Technology Industry: An International Comparison of Wind Industry Policy Support Mechanisms

    E-Print Network [OSTI]

    Lewis, Joanna; Wiser, Ryan

    2005-01-01T23:59:59.000Z

    Policy and Renewable Energy Technology. Proceedings of theDiffusion of Renewable Energy Technologies: Wind Power inFostering a Renewable Energy Technology Industry: An

  8. 2010 Wind Technologies Market Report

    E-Print Network [OSTI]

    Wiser, Ryan

    2012-01-01T23:59:59.000Z

    can also provide power to off-grid sites. Wind turbines used1 kW in size (often used off-grid) were flat from 2006-09 at

  9. 2009 Wind Technologies Market Report

    SciTech Connect (OSTI)

    Wiser, R.; Bolinger, M.

    2010-08-01T23:59:59.000Z

    The U.S. wind power industry experienced yet another record year in 2009, once again surpassing even optimistic growth projections from years past. At the same time, 2009 was a year of upheaval, with the global financial crisis impacting the wind power industry and with federal policy changes enacted to push the industry toward continued aggressive expansion. The year 2010, meanwhile, is anticipated to be one of some retrenchment, with expectations for fewer wind power capacity additions than seen in 2009. The rapid pace of development and change within the industry has made it difficult to keep up with trends in the marketplace, yet the need for timely, objective information on the industry and its progress has never been greater. This report - the fourth in an ongoing annual series - attempts to meet this need by providing a detailed overview of developments and trends in the United States wind power market, with a particular focus on 2009.

  10. Enabling Wind Power Nationwide

    Office of Environmental Management (EM)

    hub heights of 110 meters (m) (which are already in wide commercial deployment in Germany and other European countries), the technical potential for wind deployment is...

  11. Reference wind farm selection for regional wind power prediction models

    E-Print Network [OSTI]

    Paris-Sud XI, Université de

    1 Reference wind farm selection for regional wind power prediction models Nils Siebert George.siebert@ensmp.fr, georges.kariniotakis@ensmp.fr Abstract Short-term wind power forecasting is recognized today as a major requirement for a secure and economic integration of wind generation in power systems. This paper deals

  12. 2008 Wind Energy Projects, Wind Powering America (Poster)

    SciTech Connect (OSTI)

    Not Available

    2009-01-01T23:59:59.000Z

    The Wind Powering America program produces a poster at the end of every calendar year that depicts new U.S. wind energy projects. The 2008 poster includes the following projects: Stetson Wind Farm in Maine; Dutch Hill Wind Farm in New York; Grand Ridge Wind Energy Center in Illinois; Hooper Bay, Alaska; Forestburg, South Dakota; Elbow Creek Wind Project in Texas; Glacier Wind Farm in Montana; Wray, Colorado; Smoky Hills Wind Farm in Kansas; Forbes Park Wind Project in Massachusetts; Spanish Fork, Utah; Goodland Wind Farm in Indiana; and the Tatanka Wind Energy Project on the border of North Dakota and South Dakota.

  13. Wind Power Systems 1.0 Overview

    E-Print Network [OSTI]

    Ding, Yu

    Wind Power Systems 1.0 Overview 2.0 Simulation model for wind farm operation 3.0 Research topics #12;Contents 1. Overview of wind power systems 2. Simulation model of wind farm operations 3. Research area of wind power systems 3.0 Overview 3.1 Economic dispatch 3.2 Correlation analysis 3.3 Energy

  14. 20% Wind Energy by 2030 - Chapter 6: Wind Power Markets Summary...

    Energy Savers [EERE]

    6: Wind Power Markets Summary Slides 20% Wind Energy by 2030 - Chapter 6: Wind Power Markets Summary Slides Summary slides overviewing wind power markets, growth, applications, and...

  15. Wind Power Overview Windpoweristhefastestgrowingformofrenewableenergy,withpoten-

    E-Print Network [OSTI]

    Wind Power Overview · Windpoweristhefastestgrowingformofrenewableenergy Offshore Wind Power for Florida? · AveragehouseholdelectricitycostsforFloridaare expectedtoincreaseby4.7%($7.50/month)each yearoverthenextdecade2 . · Offshore winds are typically stronger and more

  16. Wind Speed Forecasting for Power System Operation 

    E-Print Network [OSTI]

    Zhu, Xinxin

    2013-07-22T23:59:59.000Z

    In order to support large-scale integration of wind power into current electric energy system, accurate wind speed forecasting is essential, because the high variation and limited predictability of wind pose profound challenges to the power system...

  17. Wind Speed Forecasting for Power System Operation

    E-Print Network [OSTI]

    Zhu, Xinxin

    2013-07-22T23:59:59.000Z

    In order to support large-scale integration of wind power into current electric energy system, accurate wind speed forecasting is essential, because the high variation and limited predictability of wind pose profound challenges to the power system...

  18. Part of the Climate Change Problem . . . and the Solution? Chinese-Made Wind Power Technology and Opportunities for Dissemination

    E-Print Network [OSTI]

    Lewis, Joanna I.

    2005-01-01T23:59:59.000Z

    Commercial  Scale  Wind  Turbines  in  Canada. ”  April Development of China?s Wind Turbine  Manufacturing Industry duties  on  importing wind turbine components.   13   “

  19. Floating Offshore Wind Technology Generating Resources Advisory Committee

    E-Print Network [OSTI]

    Floating Offshore Wind Technology Jeff King Generating Resources Advisory Committee May 28, 2014 1 to site) Potential interconnection to future offshore PNWCA intertie 4 #12;5 Ave wind speed >= 10 m. (2010) Large-scale Offshore Wind Power in the United States National Renewable Energy Laboratory. (2012

  20. Wind Power in Norway -Innovation strategy -

    E-Print Network [OSTI]

    Müller, Ralf R.

    Wind Power in Norway - Innovation strategy - Liana Müller #12;2 Introduction The existing energy and, at the same time, not to irreversibly damage the life on Earth. The use of waterpower, wind power, the growth of the wind power industry in Norway. In the sequel, a brief history of wind power energy

  1. Intelligent wind power prediction systems final report

    E-Print Network [OSTI]

    Intelligent wind power prediction systems ­ final report ­ Henrik Aalborg Nielsen (han (FU 4101) Ens. journal number: 79029-0001 Project title: Intelligent wind power prediction systems #12;#12;Intelligent wind power prediction systems 1/36 Contents 1 Introduction 6 2 The Wind Power Prediction Tool 7 3

  2. Part of the Climate Change Problem . . . and the Solution? Chinese-Made Wind Power Technology and Opportunities for Dissemination

    E-Print Network [OSTI]

    Lewis, Joanna I.

    2005-01-01T23:59:59.000Z

    the building of wind farms  with  turbines  manufactured tender  for  a  100  MW  wind  farm  located  in  Huilai, wind  turbines  in  its  wind  farm  projects.   Policy 

  3. Sandia National Laboratories: Scaled Wind Farm Technology (SWIFT...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    ClimateECEnergyScaled Wind Farm Technology (SWIFT) Facility Wind Turbine Controller Ground Testing Scaled Wind Farm Technology (SWIFT) Facility Wind Turbine Controller Ground...

  4. Part of the Climate Change Problem . . . and the Solution? Chinese-Made Wind Power Technology and Opportunities for Dissemination

    E-Print Network [OSTI]

    Lewis, Joanna I.

    2005-01-01T23:59:59.000Z

    plans for onshore and offshore wind energy development in early problems with offshore wind turbines. 20 Figure 3.  

  5. Impact of Wind Shear and Tower Shadow Effects on Power System with Large Scale Wind Power

    E-Print Network [OSTI]

    Hu, Weihao

    Impact of Wind Shear and Tower Shadow Effects on Power System with Large Scale Wind Power to wind speed variations, the wind shear and the tower shadow effects. The fluctuating power may be ableSILENT/PowerFactory. In this paper, the impacts of wind shear and tower shadow effects on the small signal stability of power systems

  6. POWER SYSTEMS STABILITY WITH LARGE-SCALE WIND POWER PENETRATION

    E-Print Network [OSTI]

    Bak-Jensen, Birgitte

    of offshore wind farms, wind power fluctuations may introduce several challenges to reliable power system behaviour due to natural wind fluctuations. The rapid power fluctuations from the large scale wind farms Generation Control (AGC) system which includes large- scale wind farms for long-term stability simulation

  7. Long-Term Wind Power Variability

    SciTech Connect (OSTI)

    Wan, Y. H.

    2012-01-01T23:59:59.000Z

    The National Renewable Energy Laboratory started collecting wind power data from large commercial wind power plants (WPPs) in southwest Minnesota with dedicated dataloggers and communication links in the spring of 2000. Over the years, additional WPPs in other areas were added to and removed from the data collection effort. The longest data stream of actual wind plant output is more than 10 years. The resulting data have been used to analyze wind power fluctuations, frequency distribution of changes, the effects of spatial diversity, and wind power ancillary services. This report uses the multi-year wind power data to examine long-term wind power variability.

  8. New Concepts in Wind Power Forecasting Models

    E-Print Network [OSTI]

    Kemner, Ken

    New Concepts in Wind Power Forecasting Models Vladimiro Miranda, Ricardo Bessa, João Gama, Guenter to the training of mappers such as neural networks to perform wind power prediction as a function of wind characteristics (mainly speed and direction) in wind parks connected to a power grid. Renyi's Entropy is combined

  9. Computational methods in wind power meteorology

    E-Print Network [OSTI]

    Computational methods in wind power meteorology Bo Hoffmann Jørgensen, Søren Ott, Niels Nørmark, Jakob Mann and Jake Badger Title: Computational methods in wind power meteorology Department: Wind in connection with the project called Computational meth- ods in wind power meteorology which was supported

  10. Power Quality Aspects in a Wind Power Plant: Preprint

    SciTech Connect (OSTI)

    Muljadi, E.; Butterfield, C. P.; Chacon, J.; Romanowitz, H.

    2006-01-01T23:59:59.000Z

    Although many operational aspects affect wind power plant operation, this paper focuses on power quality. Because a wind power plant is connected to the grid, it is very important to understand the sources of disturbances that affect the power quality.

  11. 2013 Wind Technologies Market Report Data | Department of Energy

    Office of Environmental Management (EM)

    Data 2013 Wind Technologies Market Report Data 2013 Wind Technologies Market Report Data Tables.xlsx More Documents & Publications 2012 Data File 2013 Wind Technologies Market...

  12. NCAR WRF-based data assimilation and forecasting systems for wind energy applications power

    E-Print Network [OSTI]

    Kim, Guebuem

    NCAR WRF-based data assimilation and forecasting systems for wind energy applications power Yuewei of these modeling technologies w.r.t. wind energy applications. Then I'll discuss wind farm

  13. Community wind power ownership schemes in Europe and their relevance to the United States

    E-Print Network [OSTI]

    Bolinger, Mark

    2001-01-01T23:59:59.000Z

    Wizelius, T. 1999c. “Wind bank opens to Swedish co-ops. ”Andersen, P.D. 1998. Wind Power in Denmark: Technology,of Community Ownership in a Wind Energy Project at Harlock

  14. Wind Power Forecasting Data

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level:Energy: Grid Integration Redefining What'sis Taking Over OurThe Iron SpinPrincetonUsingWhat is abig world of tinyWind Industry

  15. Wind Power Integration: Exploring Impacts and Alternatives

    E-Print Network [OSTI]

    Walter, M.Todd

    Wind Power Integration: Exploring Impacts and Alternatives Assist. Prof. C sustainable sources of energy. The idea of harnessing wind energy has been there have been no less than fifteen in-depth wind integration studies

  16. Low-Maintenance Wind Power System

    E-Print Network [OSTI]

    Rasson, Joseph E

    2010-01-01T23:59:59.000Z

    with widespread adoption of wind energy. The project hasProject: Low-Maintenance Wind Power System Summary of theImproved Vertical Axis Wind Turbine and Aerodynamic Control

  17. 2010 Wind Technologies Market Report

    E-Print Network [OSTI]

    Wiser, Ryan

    2012-01-01T23:59:59.000Z

    wind turbine components (specifically, generators, bladeschangers. ” Wind turbine components such as blades, towers,17%). Wind turbine component exports (towers, blades,

  18. Saturation wind power potential and its implications for wind energy

    E-Print Network [OSTI]

    Saturation wind power potential and its implications for wind energy Mark Z. Jacobsona,1 at 10 km above ground in the jet streams assuming airborne wind energy devices ("jet stream the theoretical limit of wind energy available at these altitudes, particularly because some recent studies

  19. Wind Technology Advancements and Impacts on Western Wind Resources (Presentation)

    SciTech Connect (OSTI)

    Robichaud, R.

    2014-09-01T23:59:59.000Z

    Robi Robichaud made this presentation at the Bureau of Land Management West-wide Wind Opportunities and Constraints Mapping (WWOCM) Project public meeting in Denver, Colorado in September 2014. This presentation outlines recent wind technology advancements, evolving turbine technologies, and industry challenges. The presentation includes maps of mean wind speeds at 50-m, 80-m, and 100-m hub heights on BLM lands. Robichaud also presented on the difference in mean wind speeds from 80m to 100m in Wyoming.

  20. Use of Slip Ring Induction Generator for Wind Power Generation

    E-Print Network [OSTI]

    K Y Patil; D S Chavan

    Wind energy is now firmly established as a mature technology for electricity generation. There are different types of generators that can be used for wind energy generation, among which Slip ring Induction generator proves to be more advantageous. To analyse application of Slip ring Induction generator for wind power generation, an experimental model is developed and results are studied. As power generation from natural sources is the need today and variable speed wind energy is ample in amount in India, it is necessary to study more beneficial options for wind energy generating techniques. From this need a model is developed by using Slip ring Induction generator which is a type of Asynchronous generator.

  1. 2010 Wind Technologies Market Report

    SciTech Connect (OSTI)

    Exeter Associates; National Renewable Energy Laboratory; Energetics Incorporated; Wiser, Ryan; Bolinger, Mark; Barbose, Galen; Darghouth, Naim; Hoen, Ben; Mills, Andrew; Seel, Joachim; Porter, Kevin; Buckley, Michael; Fink, Sari; Oteri, Frank; Raymond, Russell

    2011-06-27T23:59:59.000Z

    The U.S. wind power industry experienced a trying year in 2010, with a significant reduction in new builds compared to both 2008 and 2009. The delayed impact of the global financial crisis, relatively low natural gas and wholesale electricity prices, and slumping overall demand for energy countered the ongoing availability of existing federal and state incentives for wind energy deployment. The fact that these same drivers did not impact capacity additions in 2009 can be explained, in part, by the 'inertia' in capital-intensive infrastructure investments: 2009 capacity additions were largely determined by decisions made prior to the economy-wide financial crisis that was at its peak in late 2008 and early 2009, whereas decisions on 2010 capacity additions were often made at the height of the financial crisis. Cumulative wind power capacity still grew by a healthy 15% in 2010, however, and most expectations are for moderately higher wind power capacity additions in 2011 than witnessed in 2010, though those additions are also expected to remain below the 2009 high.

  2. EFFECT OF PITCH CONTROL AND POWER CONDITIONING ON POWER QUALITY OF VARIABLE SPEED WIND TURBINE GENERATORS

    E-Print Network [OSTI]

    EFFECT OF PITCH CONTROL AND POWER CONDITIONING ON POWER QUALITY OF VARIABLE SPEED WIND TURBINE), Curtin University of Technology, WA Abstract: Variable speed wind turbine generators provide the opportunity to capture more power than fixed speed turbines. However the variable speed machine output can

  3. 2008 WIND TECHNOLOGIES MARKET REPORT

    E-Print Network [OSTI]

    Bolinger, Mark

    2010-01-01T23:59:59.000Z

    policy support for other renewable energy sources, wind mayrenewable energy and climate policy initiatives. With wind

  4. Wind for Schools: A Wind Powering America Project (Brochure)

    SciTech Connect (OSTI)

    Baring-Gould, I.

    2009-08-01T23:59:59.000Z

    This brochure provides an overview of Wind Powering America's Wind for Schools Project, including a description of the project, the participants, funding sources, the basic configurations, and how interested parties can become involved.

  5. Wind for Schools: A Wind Powering America Project (Alaska) (Brochure)

    SciTech Connect (OSTI)

    Not Available

    2010-02-01T23:59:59.000Z

    This brochure provides an overview of Wind Powering America's Wind for Schools Project, including a description of the project, the participants, funding sources, the basic configurations, and how interested parties can become involved.

  6. Wind Powering America Program Overview (Fact Sheet)

    SciTech Connect (OSTI)

    Not Available

    2008-04-01T23:59:59.000Z

    This fact sheet provides an overview of the U.S. Department of Energy's Wind Powering America Program.

  7. COE projection for the modular WARP{trademark} wind power system for wind farms and electric utility power transmission

    SciTech Connect (OSTI)

    Weisbrich, A.L. [ENECO, West Simsbury, CT (United States); Ostrow, S.L.; Padalino, J. [Raytheon Engineers and Constructors, New York, NY (United States)

    1995-09-01T23:59:59.000Z

    Wind power has emerged as an attractive alternative source of electricity for utilities. Turbine operating experience from wind farms has provided corroborating data of wind power potential for electric utility application. Now, a patented modular wind power technology, the Toroidal Accelerator Rotor Platform (TARP{trademark}) Windframe{trademark}, forms the basis for next generation megawatt scale wind farm and/or distributed wind power plants. When arranged in tall vertically clustered TARP{trademark} module stacks, such power plant units are designated Wind Amplified Rotor Platform (WARP{trademark}) Systems. While heavily building on proven technology, these systems are projected to surpass current technology windmills in terms of performance, user-friendly operation and ease of maintenance. In its unique generation and transmission configuration, the WARP{trademark}-GT System combines both electricity generation through wind energy conversion and electric power transmission. Furthermore, environmental benefits include dramatically less land requirement, architectural appearance, lower noise and EMI/TV interference, and virtual elimination of bird mortality potential. Cost-of-energy (COE) is projected to be from under $0.02/kWh to less than $0.05/kWh in good to moderate wind resource sites.

  8. Wind Power FAQ

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office of ScienceandMesa del SolStrengtheningWildfires may contribute more to global warmingGlobalPower

  9. Wind power communication Design and implementation

    E-Print Network [OSTI]

    Wind power communication ­ Design and implementation of test environment for IEC61850/UCA2 Elforsk rapport 02:16 Anders Johnsson, Jörgen Svensson April 2002 #12;#12;Wind power communication ­ Design 2002 #12;#12;Wind power communication ­ Design and implementation of test environment for IEC61850/UCA2

  10. Wind Power Forecasting andWind Power Forecasting and Electricity Market Operations

    E-Print Network [OSTI]

    Kemner, Ken

    forecasting methods and better integration of advanced wind power forecasts into system and plant operations and wind power plants) ­ Review and assess current practices Propose and test new and improved approachesWind Power Forecasting andWind Power Forecasting and Electricity Market Operations Audun Botterud

  11. U.S. Offshore Wind Advanced Technology Demonstration Projects...

    Energy Savers [EERE]

    U.S. Offshore Wind Advanced Technology Demonstration Projects Public Meeting Transcript for Offshore Wind Demonstrations U.S. Offshore Wind Advanced Technology Demonstration...

  12. Solar and Wind Technologies for Hydrogen Production: Report to Congress Solar and Wind Technologies

    E-Print Network [OSTI]

    .........................5 1.4 Potential Capacity for Hydrogen Production from Conventional Electrolysis Using Wind and SolarSolar and Wind Technologies for Hydrogen Production: Report to Congress Solar and Wind Technologies For Hydrogen Production Report to Congress December 2005 (ESECS EE-3060) #12;Solar and Wind Technologies

  13. 2009 Wind Technologies Market Report

    E-Print Network [OSTI]

    Wiser, Ryan

    2010-01-01T23:59:59.000Z

    Prepared for the Utility Wind Integration Group. Arlington,Consult. 2010. International Wind Energy Development: WorldUBS Global I/O: Global Wind Sector. UBS Investment Research.

  14. 2008 WIND TECHNOLOGIES MARKET REPORT

    E-Print Network [OSTI]

    Bolinger, Mark

    2010-01-01T23:59:59.000Z

    2008. Washington, DC: American Wind Energy Association.American Wind Energy Association ( AWEA).2009b. AWEA Small Wind Turbine Global Market Study: Year

  15. 2008 WIND TECHNOLOGIES MARKET REPORT

    E-Print Network [OSTI]

    Bolinger, Mark

    2010-01-01T23:59:59.000Z

    Table 8 Figure 30. Wind Integration Costs at Various LevelsOperations and Maintenance Costs Wind project operations andPublic Service Wind Integration Cost Impact Study. Prepared

  16. 2011 Wind Technologies Market Report

    E-Print Network [OSTI]

    Bolinger, Mark

    2013-01-01T23:59:59.000Z

    wind turbine components (specifically, generators, bladeschangers. ” Wind turbine components such as blades, towers,Canada (8%). Wind turbine component exports (towers, blades,

  17. 2012 Wind Technologies Market Report

    E-Print Network [OSTI]

    Wiser, Ryan

    2014-01-01T23:59:59.000Z

    with the section on offshore wind; Donna Heimiller and Billyof 2012, global cumulative offshore wind capacity stood ats (DOE’s) investments in offshore wind energy research and

  18. 2012 Wind Technologies Market Report

    E-Print Network [OSTI]

    Wiser, Ryan

    2014-01-01T23:59:59.000Z

    Xcel Energy. 2011. Wind Induced Coal Plant Cyclingand the Implications of Wind Curtailment for Public Serviceof Colorado 2 GW and 3 GW Wind Integration Cost Study.

  19. 2010 Wind Technologies Market Report

    E-Print Network [OSTI]

    Wiser, Ryan

    2012-01-01T23:59:59.000Z

    2011. In March 2011, NRG Bluewater Wind?s Delaware projectPurchaser Delmarva NRG Bluewater Wind (Delaware) Universitythe project, while NRG Bluewater would retain the remaining

  20. 2011 Wind Technologies Market Report

    E-Print Network [OSTI]

    Bolinger, Mark

    2013-01-01T23:59:59.000Z

    natural gas prices), pushed wind energy to the top of (andperformance, and price of wind energy, policy uncertainty –cost, performance, and price of wind energy, some of these

  1. 2011 Wind Technologies Market Report

    E-Print Network [OSTI]

    Bolinger, Mark

    2013-01-01T23:59:59.000Z

    studies show that wind energy integration costs are below $do not represent wind energy generation costs. This sectioncomponent of the overall cost of wind energy, but can vary

  2. 2008 WIND TECHNOLOGIES MARKET REPORT

    E-Print Network [OSTI]

    Bolinger, Mark

    2010-01-01T23:59:59.000Z

    do not represent wind energy generation costs. Based on thisproduction-cost reduction value of wind energy, without anwith wind energy. Generally, these costs are associated with

  3. 2011 Wind Technologies Market Report

    E-Print Network [OSTI]

    Bolinger, Mark

    2013-01-01T23:59:59.000Z

    performance, and price of wind energy, policy uncertainty –The wind energy integration, transmission, and policyand absent supportive policies for wind energy. That said,

  4. 2010 Wind Technologies Market Report

    E-Print Network [OSTI]

    Wiser, Ryan

    2012-01-01T23:59:59.000Z

    The wind energy integration, transmission, and policy2012, however, federal policy towards wind energy remainsin federal policy towards wind energy after 2012 places such

  5. 2009 Wind Technologies Market Report

    E-Print Network [OSTI]

    Wiser, Ryan

    2010-01-01T23:59:59.000Z

    The wind energy integration, transmission, and policyPTC. Moreover, federal policy towards wind energy remainsand policy announcements demonstrate accelerated activity in the offshore wind energy

  6. 2010 Wind Technologies Market Report

    E-Print Network [OSTI]

    Wiser, Ryan

    2012-01-01T23:59:59.000Z

    Market Report vii potential wind energy generation withinthat nearly 8% of potential wind energy generation withinAreas, in GWh (and % of potential wind generation) Electric

  7. 2009 Wind Technologies Market Report

    E-Print Network [OSTI]

    Wiser, Ryan

    2010-01-01T23:59:59.000Z

    capacity), with 17% of all potential wind energy generationthat roughly 17% of potential wind energy generation withinexample, roughly 1% of potential wind energy output in 2009

  8. PSO2004/FU5766 Improved wind power prediction

    E-Print Network [OSTI]

    PSO2004/FU5766 Improved wind power prediction Optimal combined wind power forecasts using exogenous prediction can be accomplished. The application of combining wind power forecasts for certain wind power

  9. Wind Vision Chapter 2: Wind Power in the United States

    Broader source: Energy.gov (indexed) [DOE]

    M; Holtinnen, H.; Sder, L.; Clark, C.; Pineda, I. "Markets to Facilitate Wind and Solar Energy Integration in the Bulk Power Supply: An IEA Task 25 Collaboration."...

  10. The Political Economy of Wind Power in China

    E-Print Network [OSTI]

    Swanson, Ryan Landon

    2011-01-01T23:59:59.000Z

    some or all of the wind generation. ? 118 Because Chinahas grown faster than wind generation, wind-generatedhtm. ?Analysis of UK Wind Power Generation: November 2008 to

  11. 2010 Wind Technologies Market Report

    E-Print Network [OSTI]

    Wiser, Ryan

    2012-01-01T23:59:59.000Z

    AWEA?s Wind Energy Weekly, DOE/EPRI?s Turbine Verification10% Wind Energy Penetration New large-scale 9 wind turbineswind energy continues to decline as a result of lower wind turbine

  12. 2011 Wind Technologies Market Report

    E-Print Network [OSTI]

    Bolinger, Mark

    2013-01-01T23:59:59.000Z

    AWEA’s Wind Energy Weekly, DOE/EPRI’s Turbine Verification10% Wind Energy Penetration New large-scale 8 wind turbinesTurbine Market Report. Washington, D.C. : American Wind Energy

  13. 2012 Wind Technologies Market Report

    E-Print Network [OSTI]

    Wiser, Ryan

    2014-01-01T23:59:59.000Z

    regulation and frequency response services charge to wind energyRegulation and Frequency Response Service rate for wind energy

  14. 2010 Wind Technologies Market Report

    E-Print Network [OSTI]

    Wiser, Ryan

    2012-01-01T23:59:59.000Z

    space constraints. Ohio: The Lake Erie Energy DevelopmentGreat Lakes Ohio Wind, and Great Lakes Wind Energy LLC. In

  15. Understanding Inertial and Frequency Response of Wind Power Plants: Preprint

    SciTech Connect (OSTI)

    Muljadi, E.; Gevorgian, V.; Singh, M.; Santoso, S.

    2012-07-01T23:59:59.000Z

    The objective of this paper is to analyze and quantify the inertia and frequency responses of wind power plants with different wind turbine technologies (particularly those of fixed speed, variable slip with rotor-resistance controls, and variable speed with vector controls).

  16. Sandia National Laboratories: Wind Power

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Wind Energy Staff On March 24, 2011, in Wind Energy On November 10, 2010, in Wind Plant Opt. Rotor Innovation Materials, Reliability & Standards Siting & Barrier Mitigation...

  17. Offshore Wind Power Farm Environmental Impact Assessment

    E-Print Network [OSTI]

    Horns Rev Offshore Wind Power Farm Environmental Impact Assessment on Water Quality #12;Prepared with a planned 150 MW offshore wind farm at Horns Rev, an assessment was made of the effects the wind farm would for the preparation of EIA studies for offshore wind farms." Horns Rev is situated off Blåvands Huk, which is Denmark

  18. Assessment of research needs for wind turbine rotor materials technology

    SciTech Connect (OSTI)

    Not Available

    1991-01-01T23:59:59.000Z

    Wind-driven power systems is a renewable energy technology that is still in the early stages of development. Wind power plants installed in early 1980s suffered structural failures chiefly because of incomplete understanding of wind forces (turbulent), in some cases because of poor product quality. Failures of rotor blades are now somewhat better understood. This committee has examined the experience base accumulated by wind turbines and the R and D programs sponsored by DOE. It is concluded that a wind energy system such as is described is within the capability of engineering practice; however because of certain gaps in knowledge, and the presence of only one major integrated manufacturer of wind power machines in the USA, a DOE R and D investment is still required.

  19. Datang Jilin Wind Power Stockholding Co Ltd Formerly Jilin Noble...

    Open Energy Info (EERE)

    Stockholding Co Ltd Formerly Jilin Noble Wind Power Stockholding Co Ltd Jump to: navigation, search Name: Datang Jilin Wind Power Stockholding Co Ltd(Formerly Jilin Noble Wind...

  20. Wind Power Today, 2010, Wind and Water Power Program (WWPP)

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels DataDepartment of Energy Your DensityEnergy U.S.-China Electric VehicleCenters | Department ofofto PurchaseAprilWind Power

  1. 20% Wind Energy by 2030 - Chapter 5: Wind Power Siting and Environment...

    Energy Savers [EERE]

    5: Wind Power Siting and Environmental Effects Summary Slides 20% Wind Energy by 2030 - Chapter 5: Wind Power Siting and Environmental Effects Summary Slides Environment and siting...

  2. 2009 Wind Technologies Market Report: Executive Summary

    SciTech Connect (OSTI)

    Wiser, R.; Bolinger, M.

    2010-08-01T23:59:59.000Z

    This is the Executive Summary of the full report entitled 2009 Wind Technologies Market Report (DOE/GO-102010-3107).

  3. Sandia Energy - Wind Vision 2015: A New Era for Wind Power in...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Wind Power in the United States Home Stationary Power Energy Conversion Efficiency Wind Energy Special Programs Wind Vision 2015: A New Era for Wind Power in the United States...

  4. 2011 Wind Technologies Market Report

    E-Print Network [OSTI]

    Bolinger, Mark

    2013-01-01T23:59:59.000Z

    Associates. 2010. SPP WITF Wind Integration Study. LittlePool. David, A. 2011. U.S. Wind Turbine Trade in a Changing2011. David, A. 2010. Impact of Wind Energy Installations on

  5. 2011 Wind Technologies Market Report

    E-Print Network [OSTI]

    Bolinger, Mark

    2013-01-01T23:59:59.000Z

    Public Service Wind Integration Cost Impact Study. Preparedused to estimate wind integration costs and the ability toColorado 2 GW and 3 GW Wind Integration Cost Study. Denver,

  6. 2009 Wind Technologies Market Report

    E-Print Network [OSTI]

    Wiser, Ryan

    2010-01-01T23:59:59.000Z

    AWEA’s Wind Energy Weekly, DOE/EPRI’s Turbine Verification10% Wind Energy Penetration New large-scale 10 wind turbineswind energy became more challenging, orders for new turbines

  7. 2009 Wind Technologies Market Report

    E-Print Network [OSTI]

    Wiser, Ryan

    2010-01-01T23:59:59.000Z

    natural gas prices), pushed wind energy from the bottom toover the cost and price of wind energy that it receives. Asweighted-average price of wind energy in 1999 was $65/MWh (

  8. 2008 WIND TECHNOLOGIES MARKET REPORT

    E-Print Network [OSTI]

    Bolinger, Mark

    2010-01-01T23:59:59.000Z

    natural gas prices, though the economic value of wind energyenergy and climate policy initiatives. With wind turbine pricesprices reported here would be at least $20/MWh higher without the PTC), they do not represent wind energy

  9. 2010 Wind Technologies Market Report

    E-Print Network [OSTI]

    Wiser, Ryan

    2012-01-01T23:59:59.000Z

    weighted-average price of wind energy in 1999 was roughly $reduced near-term price expectations, wind energy?s primaryelectricity prices in 2009 pushed wind energy to the top of

  10. 2009 Wind Technologies Market Report

    E-Print Network [OSTI]

    Wiser, Ryan

    2010-01-01T23:59:59.000Z

    AWEA). 2010b. AWEA Small Wind Turbine Global Market Survey,html David, A. 2009. Wind Turbines: Industry and Tradewhich new large-scale wind turbines were installed in 2009 (

  11. 2011 Wind Technologies Market Report

    E-Print Network [OSTI]

    Bolinger, Mark

    2013-01-01T23:59:59.000Z

    regulation and frequency response services charge for wind energyRegulation and Frequency Response Service that charges a higher rate for wind energy

  12. 2008 WIND TECHNOLOGIES MARKET REPORT

    E-Print Network [OSTI]

    Bolinger, Mark

    2010-01-01T23:59:59.000Z

    AWEA’s Wind Energy Weekly, DOE/EPRI’s Turbine VerificationTurbine Global Market Study: Year Ending 2008. Washington, DC: American Wind Energy

  13. Powering Up With Space-Time Wind Forecasting Amanda S. HERING and Marc G. GENTON

    E-Print Network [OSTI]

    Genton, Marc G.

    Powering Up With Space-Time Wind Forecasting Amanda S. HERING and Marc G. GENTON The technology to harvest electricity from wind energy is now advanced enough to make entire cities powered by it a reality be more realistically assessed with a loss measure that depends upon the power curve relating wind speed

  14. Power and Frequency Control as it Relates to Wind-Powered Generation

    E-Print Network [OSTI]

    Lacommare, Kristina S H

    2011-01-01T23:59:59.000Z

    of large amounts of wind power production might requirewill be satisfactory as wind power provides an increasing64   7.2   Wind Power in Relation to System

  15. 2008 WIND TECHNOLOGIES MARKET REPORT

    E-Print Network [OSTI]

    Bolinger, Mark

    2010-01-01T23:59:59.000Z

    some wind turbine manufacturers experienced blade andwind turbine manufacturers: Vestas (nacelles, blades, and

  16. 2008 WIND TECHNOLOGIES MARKET REPORT

    E-Print Network [OSTI]

    Bolinger, Mark

    2010-01-01T23:59:59.000Z

    Cost Analysis: Multi-Year Analysis Results and Recommendations. Consultant report prepared by the California Wind

  17. The Value of Wind Power Forecasting

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Wind Power Forecasting Preprint Debra Lew and Michael Milligan National Renewable Energy Laboratory Gary Jordan and Richard Piwko GE Energy Presented at the 91 st American...

  18. A survey on wind power ramp forecasting.

    SciTech Connect (OSTI)

    Ferreira, C.; Gama, J.; Matias, L.; Botterud, A.; Wang, J. (Decision and Information Sciences); (INESC Porto)

    2011-02-23T23:59:59.000Z

    The increasing use of wind power as a source of electricity poses new challenges with regard to both power production and load balance in the electricity grid. This new source of energy is volatile and highly variable. The only way to integrate such power into the grid is to develop reliable and accurate wind power forecasting systems. Electricity generated from wind power can be highly variable at several different timescales: sub-hourly, hourly, daily, and seasonally. Wind energy, like other electricity sources, must be scheduled. Although wind power forecasting methods are used, the ability to predict wind plant output remains relatively low for short-term operation. Because instantaneous electrical generation and consumption must remain in balance to maintain grid stability, wind power's variability can present substantial challenges when large amounts of wind power are incorporated into a grid system. A critical issue is ramp events, which are sudden and large changes (increases or decreases) in wind power. This report presents an overview of current ramp definitions and state-of-the-art approaches in ramp event forecasting.

  19. ARE660 Wind Generator: Low Wind Speed Technology for Small Turbine Development

    SciTech Connect (OSTI)

    Robert W. Preus; DOE Project Officer - Keith Bennett

    2008-04-23T23:59:59.000Z

    This project is for the design of a wind turbine that can generate most or all of the net energy required for homes and small businesses in moderately windy areas. The purpose is to expand the current market for residential wind generators by providing cost effective power in a lower wind regime than current technology has made available, as well as reduce noise and improve reliability and safety. Robert W. Preus’ experience designing and/or maintaining residential wind generators of many configurations helped identify the need for an improved experience of safety for the consumer. Current small wind products have unreliable or no method of stopping the wind generator in fault or high wind conditions. Consumers and their neighbors do not want to hear their wind generators. In addition, with current technology, only sites with unusually high wind speeds provide payback times that are acceptable for the on-grid user. Abundant Renewable Energy’s (ARE) basic original concept for the ARE660 was a combination of a stall controlled variable speed small wind generator and automatic fail safe furling for shutdown. The stall control for a small wind generator is not novel, but has not been developed for a variable speed application with a permanent magnet alternator (PMA). The fail safe furling approach for shutdown has not been used to our knowledge.

  20. Wind Farm Power System Model Development: Preprint

    SciTech Connect (OSTI)

    Muljadi, E.; Butterfield, C. P.

    2004-07-01T23:59:59.000Z

    In some areas, wind power has reached a level where it begins to impact grid operation and the stability of local utilities. In this paper, the model development for a large wind farm will be presented. Wind farm dynamic behavior and contribution to stability during transmission system faults will be examined.

  1. U.S. Department of Energy Wind and Water Power Program Funding...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Yield Improvement, Load Mitigation and Stabilization 4,594,933 FY11: U.S. Offshore Wind: Technology Development FOA Virginia Project Description Alstom Power is developing an...

  2. Wind Powering America's Wind for Schools Project: Summary Report

    SciTech Connect (OSTI)

    Baring-Gould, I.; Newcomb, C.

    2012-06-01T23:59:59.000Z

    This report provides an overview of the U.S. Department of Energy, Wind Powering America, Wind for Schools project. It outlines teacher-training activities and curriculum development; discusses the affiliate program that allows school districts and states to replicate the program; and contains reports that provide an update on activities and progress in the 11 states in which the Wind for Schools project operates.

  3. U.S. Department of Energy Wind and Water Power Program Funding...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Wind Turbine Systems through Advanced Control Strategies 3,780,848 FY11: U.S. Offshore Wind: Technology Development FOA Virginia Project Description Alstom Power is developing an...

  4. Previous Wind Power Announcements (generation/wind)

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level:Energy: Grid Integration Redefining What's Possible forPortsmouth/Paducah ProjectPRE-AWARDenergyEnergytransmission-rates Sign In About |Wind

  5. The Political Economy of Wind Power in China

    E-Print Network [OSTI]

    Swanson, Ryan Landon

    2011-01-01T23:59:59.000Z

    those suitable for offshore wind farms. But foreign firms,technology for offshore wind farms. 111 Thus, although China

  6. Revisiting the Long-Term Hedge Value of Wind Power in an Era of Low Natural Gas Prices

    E-Print Network [OSTI]

    Bolinger, Mark

    2014-01-01T23:59:59.000Z

    Cost of Energy from U.S. Wind Power Projects. Berkeley,and M. Bolinger. 2012. 2011 Wind Technologies Market Report.AWEA). 2012b. AWEA U.S. Wind Industry Fourth Quarter 2012

  7. The Political Economy of Wind Power in China

    E-Print Network [OSTI]

    Swanson, Ryan Landon

    2011-01-01T23:59:59.000Z

    by pitching the blades of the turbines out of the wind. 114wind turbine technology converts wind energy into electricity, taking into account factors such as blade

  8. Part of the Climate Change Problem . . . and the Solution? Chinese-Made Wind Power Technology and Opportunities for Dissemination

    E-Print Network [OSTI]

    Lewis, Joanna I.

    2005-01-01T23:59:59.000Z

    2004.   “China  to  train  developing  nations  in  solar China  where  quality  is  already  equivalent  to  the  highest  technological  level  of  the  global  industry,  including  solar 

  9. 2009 Wind Technologies Market Report

    E-Print Network [OSTI]

    Wiser, Ryan

    2010-01-01T23:59:59.000Z

    generating sets. Wind turbine blades, hubs, generators,wind turbine components that include towers (trade category is “towers and lattice masts”), generators (“AC generators from 750 to 10,000 kVA”), blades

  10. PSO (FU 2101) Ensemble-forecasts for wind power

    E-Print Network [OSTI]

    PSO (FU 2101) Ensemble-forecasts for wind power Analysis of the Results of an On-line Wind Power Ensemble- forecasts for wind power (FU2101) a demo-application producing quantile forecasts of wind power correct) quantile forecasts of the wind power production are generated by the application. However

  11. Wind power resource assessment in complex urban environments: MIT campus case-study using CFD Analysis

    E-Print Network [OSTI]

    Wind power resource assessment in complex urban environments: MIT campus case-study using CFD of Technology, 2Meteodyn Objectives Conclusions References [1] TopoWind software, User Manual [2] Wind Resource Assessment Handbook: Fundamentals for Conducting a Successful Wind Monitoring Program, AWS Scientific, Inc

  12. 2010 Wind Technologies Market Report

    E-Print Network [OSTI]

    Wiser, Ryan

    2012-01-01T23:59:59.000Z

    Wind Report, Actual Installations, Projected Growth As with other forms of energy development, a variety of concerns about public acceptance

  13. Xi an Nordex Wind Turbine Co Ltd aka Xi an Weide Wind Power Equipment...

    Open Energy Info (EERE)

    Wind Turbine Co Ltd aka Xi an Weide Wind Power Equipment Co Ltd Jump to: navigation, search Name: Xi'an Nordex Wind Turbine Co Ltd (aka Xi'an Weide Wind Power Equipment Co Ltd)...

  14. Power Transformer Application for Wind Plant Substations

    SciTech Connect (OSTI)

    Behnke, M. R. [IEEE PES Wind Plant Collector System Design Working Group; Bloethe, W.G. [IEEE PES Wind Plant Collector System Design Working Group; Bradt, M. [IEEE PES Wind Plant Collector System Design Working Group; Brooks, C. [IEEE PES Wind Plant Collector System Design Working Group; Camm, E H [IEEE PES Wind Plant Collector System Design Working Group; Dilling, W. [IEEE PES Wind Plant Collector System Design Working Group; Goltz, B. [IEEE PES Wind Plant Collector System Design Working Group; Li, J. [IEEE PES Wind Plant Collector System Design Working Group; Niemira, J. [IEEE PES Wind Plant Collector System Design Working Group; Nuckles, K. [IEEE PES Wind Plant Collector System Design Working Group; Patino, J. [IEEE PES Wind Plant Collector System Design Working Group; Reza, M [IEEE PES Wind Plant Collector System Design Working Group; Richardson, B. [IEEE PES Wind Plant Collector System Design Working Group; Samaan, N. [IEEE PES Wind Plant Collector System Design Working Group; Schoene, Jens [IEEE PES Wind Plant Collector System Design Working Group; Smith, Travis M [ORNL; Snyder, Isabelle B [ORNL; Starke, Michael R [ORNL; Walling, R. [IEEE PES Wind Plant Collector System Design Working Group; Zahalka, G. [IEEE PES Wind Plant Collector System Design Working Group

    2010-01-01T23:59:59.000Z

    Wind power plants use power transformers to step plant output from the medium voltage of the collector system to the HV or EHV transmission system voltage. This paper discusses the application of these transformers with regard to the selection of winding configuration, MVA rating, impedance, loss evaluation, on-load tapchanger requirements, and redundancy.

  15. Wind Power Price Trends in the United States

    E-Print Network [OSTI]

    Bolinger, Mark

    2010-01-01T23:59:59.000Z

    49 Figure 5. Installed Wind Project Costs Over Time Capacitynot represent the true cost of wind generation (which wouldinstalled project costs on wind power prices. Specifically,

  16. Wind Power: How Much, How Soon, and At What Cost?

    E-Print Network [OSTI]

    Wiser, Ryan H

    2010-01-01T23:59:59.000Z

    on U.S. Wind Power Installation, Cost, and Performanceaccess the nation's lowest-cost wind resources can be builtpressure on installed wind project costs while the industry

  17. Global ocean wind power sensitivity to surface layer stability

    E-Print Network [OSTI]

    Capps, Scott B; Zender, Charles S

    2009-01-01T23:59:59.000Z

    2005), Evaluation of global wind power, J. Geophys. Res. ,Pryor (2003), Can satellite sampling of offshore wind speedsrealistically represent wind speed distributions? , J. Appl.

  18. RELIABILITY OF WIND POWER FROM DISPERSED SITES: A PRELIMINARY ASSESSMENT

    E-Print Network [OSTI]

    Kahn, E.

    2011-01-01T23:59:59.000Z

    Coincidence of Demand and Wind Resource Diurnal PowerOutput Variations for Three Wind Regimes List of TablesCAPACITY CREDIT FOR WIND ARRAYS: THE PROBLEM . . . . . . .

  19. DOE Seeking Proposals to Advance Distributed Wind Turbine Technology...

    Office of Environmental Management (EM)

    Seeking Proposals to Advance Distributed Wind Turbine Technology and Manufacturing DOE Seeking Proposals to Advance Distributed Wind Turbine Technology and Manufacturing December...

  20. Power conversion technologies

    SciTech Connect (OSTI)

    Newton, M. A.

    1997-02-01T23:59:59.000Z

    The Power Conversion Technologies thrust area identifies and sponsors development activities that enhance the capabilities of engineering at Lawrence Livermore National Laboratory (LLNL) in the area of solid- state power electronics. Our primary objective is to be a resource to existing and emerging LLNL programs that require advanced solid-state power electronic technologies.. Our focus is on developing and integrating technologies that will significantly impact the capability, size, cost, and reliability of future power electronic systems. During FY-96, we concentrated our research efforts on the areas of (1) Micropower Impulse Radar (MIR); (2) novel solid-state opening switches; (3) advanced modulator technology for accelerators; (4) compact accelerators; and (5) compact pulse generators.

  1. Sandia National Laboratories: Wind Power

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    known that large amounts of wind energy are not effectively harvested in large wind farms because the turbines "shadow" each other and reduce the output of the turbines located...

  2. Value of Wind Power Forecasting

    SciTech Connect (OSTI)

    Lew, D.; Milligan, M.; Jordan, G.; Piwko, R.

    2011-04-01T23:59:59.000Z

    This study, building on the extensive models developed for the Western Wind and Solar Integration Study (WWSIS), uses these WECC models to evaluate the operating cost impacts of improved day-ahead wind forecasts.

  3. Final Technical Report - Kotzebue Wind Power Project - Volume II

    SciTech Connect (OSTI)

    Rana Zucchi, Global Energy Concepts, LLC; Brad Reeve, Kotzebue Electric Association; DOE Project Officer - Doug Hooker

    2007-10-31T23:59:59.000Z

    The Kotzebue Wind Power Project is a joint undertaking of the U.S. Department of Energy (DOE); Kotzebue Electric Association (KEA); and the Alaska Energy Authority (AEA). The goal of the project is to develop, construct, and operate a wind power plant interconnected to a small isolated utility grid in an arctic climate in Northwest Alaska. The primary objective of KEA’s wind energy program is to bring more affordable electricity and jobs to remote Alaskan communities. DOE funding has allowed KEA to develop a multi-faceted approach to meet these objectives that includes wind project planning and development, technology transfer, and community outreach. The first wind turbines were installed in the summer of 1997 and the newest turbines were installed in the spring of 2007. The total installed capacity of the KEA wind power project is 1.16 MW with a total of 17 turbines rated between 65 kW and 100 kW. The operation of the wind power plant has resulted in a wind penetration on the utility system in excess of 35% during periods of low loads. This document and referenced attachments are presented as the final technical report for the U.S. Department of Energy (DOE) grant agreement DE-FG36-97GO10199. Interim deliverables previously submitted are also referenced within this document and where reasonable to do so, specific sections are incorporated in the report or attached as appendices.

  4. 2009 Wind Technologies Market Report

    E-Print Network [OSTI]

    Wiser, Ryan

    2010-01-01T23:59:59.000Z

    Association Bonneville Power Administration combined cycleWAPA), Bonneville Power Administration (BPA), Tennesseeand Texas. Bonneville Power Administration (BPA) Network

  5. 2008 WIND TECHNOLOGIES MARKET REPORT

    E-Print Network [OSTI]

    Bolinger, Mark

    2010-01-01T23:59:59.000Z

    publicly owned utility power purchase agreement Productioncolumn) represents MSR’s power purchase agreement with theDelmarva Power signed a power purchase agreement to bring

  6. Impact of Wind Power Plants on Voltage and Transient Stability of Power Systems

    SciTech Connect (OSTI)

    Muljadi, E.; Nguyen, Tony B.; Pai, M. A.

    2008-09-30T23:59:59.000Z

    A standard three-machine, nine-bus wind power system is studied and augmented by a radially connected wind power plant that contains 22 wind turbine generators.

  7. Wind Power Price Trends in the United States

    E-Print Network [OSTI]

    Bolinger, Mark

    2010-01-01T23:59:59.000Z

    price of power from new U.S. wind projects higher in 2009.should eventually help wind power regain the downward pricein Modern Energy Review] Wind Power Price Trends in the

  8. RELIABILITY OF WIND POWER FROM DISPERSED SITES: A PRELIMINARY ASSESSMENT

    E-Print Network [OSTI]

    Kahn, E.

    2011-01-01T23:59:59.000Z

    ON METHODOLOGY: FROM WIND POWER FREQUENCY TO LOSS-OF-LOADJ.P. , "Some Aspects of Wind Power Statistics, " J. of Appl.J • J METHODOLOGY: FROM WIND POWER FREQUENCY TO LOSS-OF-LOAD

  9. Global ocean wind power sensitivity to surface layer stability

    E-Print Network [OSTI]

    Capps, Scott B; Zender, Charles S

    2009-01-01T23:59:59.000Z

    Evaluation of global wind power, J. Geophys. Res. , 110,W. Tang, and X. Xie (2008), Wind power distribution over theApproach to Short-Term Wind Power Prediction, 1st ed. ,

  10. Wind Power Price Trends in the United States

    E-Print Network [OSTI]

    Bolinger, Mark

    2010-01-01T23:59:59.000Z

    should eventually help wind power regain the downward priceModern Energy Review] Wind Power Price Trends in the Unitedled the world in adding new wind power capacity in 2008, and

  11. The Political Economy of Wind Power in China

    E-Print Network [OSTI]

    Swanson, Ryan Landon

    2011-01-01T23:59:59.000Z

    adds 18.9 GW of new wind power capacity in 2010. ? GlobalEnd Challenged Subsidies in Wind Power Case. ? Internationalemergence in the global wind power industry. ? Ph. D.

  12. Wind Power: How Much, How Soon, and At What Cost?

    E-Print Network [OSTI]

    Wiser, Ryan H

    2010-01-01T23:59:59.000Z

    Evaluation of Global Wind Power." Journal of Geophysical2008. "The Economics of Wind Power with Energy Storage."Economics of Large-Scale Wind Power in a Carbon Constrained

  13. RELIABILITY OF WIND POWER FROM DISPERSED SITES: A PRELIMINARY ASSESSMENT

    E-Print Network [OSTI]

    Kahn, E.

    2011-01-01T23:59:59.000Z

    ON METHODOLOGY: FROM WIND POWER FREQUENCY TO LOSS-OF-LOADJ.P. , "Some Aspects of Wind Power Statistics, " J. of Appl.S£CTION Reliability of Wind Power From Dispersed Sites: A Pr

  14. PSO (FU 2101) Ensemble-forecasts for wind power

    E-Print Network [OSTI]

    PSO (FU 2101) Ensemble-forecasts for wind power Wind Power Ensemble Forecasting Using Wind Speed the problems of (i) transforming the meteorological ensembles to wind power ensembles and, (ii) correcting) data. However, quite often the actual wind power production is outside the range of ensemble forecast

  15. 2010 Wind Technologies Market Report

    E-Print Network [OSTI]

    Wiser, Ryan

    2012-01-01T23:59:59.000Z

    estimates for installed capacity. Other methodological2008, yielding a cumulative installed capacity of small windTexas in cumulative installed capacity are Iowa, California,

  16. 2011 Wind Technologies Market Report

    E-Print Network [OSTI]

    Bolinger, Mark

    2013-01-01T23:59:59.000Z

    16% of global installed capacity in 2011, up slightly from82% of the cumulative installed capacity. Utility ownership2010, yielding a cumulative installed capacity of small wind

  17. 2011 Wind Technologies Market Report

    E-Print Network [OSTI]

    Bolinger, Mark

    2013-01-01T23:59:59.000Z

    at the National Renewable Energy Laboratory’s National WindGolden, CO: National Renewable Energy Laboratory. ElectricColorado: National Renewable Energy Laboratory. EnerNex

  18. 2010 Wind Technologies Market Report

    SciTech Connect (OSTI)

    Wiser, R.; Bolinger, M.

    2011-06-01T23:59:59.000Z

    This report describes the status of the U.S. wind energy industry market in 2010; its trends, performance, market drivers and future outlook.

  19. 2012 Wind Technologies Market Report

    SciTech Connect (OSTI)

    Wiser, R.; Bolinger, M.; Barbose, G.; Darghouth, N.; Hoen, B.; Mills, A.; Weaver, S.; Porter, K.; Buckley, M.; Fink, S.; Oteri, F.; Tegen, S.

    2013-08-01T23:59:59.000Z

    This report describes the status of the U.S. wind energy industry market in 2012; its trends, performance, market drivers and future outlook.

  20. 2011 Wind Technologies Market Report

    E-Print Network [OSTI]

    Bolinger, Mark

    2013-01-01T23:59:59.000Z

    Cost Analysis: Multi-Year Analysis Results and Recommendations. Consultant report prepared by the California Windanalysis of the AWEA project database. Cost, Performance and Pricing Trends Wind

  1. 2010 Wind Technologies Market Report

    E-Print Network [OSTI]

    Wiser, Ryan

    2012-01-01T23:59:59.000Z

    Cost Analysis: Multi-Year Analysis Results and Recommendations. Consultant report prepared by the California Windanalysis of the AWEA project database. Price, Cost, and Performance Trends Wind

  2. 2009 Wind Technologies Market Report

    E-Print Network [OSTI]

    Wiser, Ryan

    2010-01-01T23:59:59.000Z

    Projects Seller NRG Bluewater Purchaser Delmarva Location /of regulatory filings * NRG Bluewater has contracted for an14 In Delaware, NRG Bluewater Wind was awarded an interim

  3. 2011 Wind Technologies Market Report

    SciTech Connect (OSTI)

    Wiser, R.; Bolinger, M.

    2012-08-01T23:59:59.000Z

    This report describes the status of the U.S. wind energy industry market in 2011; its trends, performance, market drivers and future outlook.

  4. 2009 Wind Technologies Market Report

    E-Print Network [OSTI]

    Wiser, Ryan

    2010-01-01T23:59:59.000Z

    wind energy, regulatory delays and uncertainty associated with offshore development, turbine supply shortages, high and uncertain offshore project costs, and public acceptance

  5. The amount of power in the wind is very dependent on the speed of the wind. Because the power in the wind

    E-Print Network [OSTI]

    Massachusetts at Amherst, University of

    the potential benefits of a wind power installation, wind speeds and other characteristics of a site's wind for potential wind power sites. However, these maps do not elimi- nate the need for more precise and thoroughThe amount of power in the wind is very dependent on the speed of the wind. Because the power

  6. Dynamic Models for Wind Turbines and Wind Power Plants

    SciTech Connect (OSTI)

    Singh, M.; Santoso, S.

    2011-10-01T23:59:59.000Z

    The primary objective of this report was to develop universal manufacturer-independent wind turbine and wind power plant models that can be shared, used, and improved without any restrictions by project developers, manufacturers, and engineers. Manufacturer-specific models of wind turbines are favored for use in wind power interconnection studies. While they are detailed and accurate, their usages are limited to the terms of the non-disclosure agreement, thus stifling model sharing. The primary objective of the work proposed is to develop universal manufacturer-independent wind power plant models that can be shared, used, and improved without any restrictions by project developers, manufacturers, and engineers. Each of these models includes representations of general turbine aerodynamics, the mechanical drive-train, and the electrical characteristics of the generator and converter, as well as the control systems typically used. To determine how realistic model performance is, the performance of one of the models (doubly-fed induction generator model) has been validated using real-world wind power plant data. This work also documents selected applications of these models.

  7. Value of Improved Wind Power Forecasting in the Western Interconnection (Poster)

    SciTech Connect (OSTI)

    Hodge, B.

    2013-12-01T23:59:59.000Z

    Wind power forecasting is a necessary and important technology for incorporating wind power into the unit commitment and dispatch process. It is expected to become increasingly important with higher renewable energy penetration rates and progress toward the smart grid. There is consensus that wind power forecasting can help utility operations with increasing wind power penetration; however, there is far from a consensus about the economic value of improved forecasts. This work explores the value of improved wind power forecasting in the Western Interconnection of the United States.

  8. Optimal combined wind power forecasts using exogeneous variables

    E-Print Network [OSTI]

    Optimal combined wind power forecasts using exogeneous variables Fannar ¨Orn Thordarson Kongens of the thesis is combined wind power forecasts using informations from meteorological forecasts. Lyngby, January

  9. Local Content Requirements in British Columbia's Wind Power Industry

    E-Print Network [OSTI]

    Pedersen, Tom

    Local Content Requirements in British Columbia's Wind Power Industry May Hao, Matt Mackenzie, Alex..................................................................................8 4.1 Current Wind Power Projects

  10. Analysis of Wind Power Ramping Behavior in ERCOT

    SciTech Connect (OSTI)

    Wan, Y. H.

    2011-03-01T23:59:59.000Z

    This report analyzes the wind power ramping behavior using 10-minute and hourly average wind power data from ERCOT and presents statistical properties of the large ramp events.

  11. Wind Turbine Generator System Duration Test Report for the Mariah Power Windspire Wind Turbine

    SciTech Connect (OSTI)

    Huskey, A.; Bowen, A.; Jager, D.

    2010-05-01T23:59:59.000Z

    This test was conducted as part of the U.S. Department of Energy's (DOE) Independent Testing project to help reduce the barriers of wind energy expansion by providing independent testing results for small turbines. In total, five turbines are being tested at the National Wind Technology Center (NWTC) as a part of the first round of this project. Duration testing is one of up to five tests that may be performed on the turbines. Other tests include power performance, safety and function, noise, and power quality tests. NWTC testing results provide manufacturers with reports that may be used to meet part of small wind turbine certification requirements. This duration test report focuses on the Mariah Power Windspire wind turbine.

  12. 2009 Wind Technologies Market Report

    E-Print Network [OSTI]

    Wiser, Ryan

    2010-01-01T23:59:59.000Z

    publicly owned utility power purchase agreement Productionhave signed or proposed power purchase agreements with termsbe seeking longer- term power purchase contracts in order to

  13. 2011 Wind Technologies Market Report

    E-Print Network [OSTI]

    Bolinger, Mark

    2013-01-01T23:59:59.000Z

    publicly owned utility power purchase agreement ProductionOf these, two have signed power purchase agreements (a thirdbut Scarcity of Power Purchase Agreements and Looming PTC

  14. 2010 Wind Technologies Market Report

    E-Print Network [OSTI]

    Wiser, Ryan

    2012-01-01T23:59:59.000Z

    publicly owned utility power purchase agreement Productionthree have signed power purchase agreements with terms andArrangement, but Scarcity of Power Purchase Agreements Drove

  15. 2010 Wind Technologies Market Report

    E-Print Network [OSTI]

    Wiser, Ryan

    2012-01-01T23:59:59.000Z

    November Bonneville Power Administration (BPA). 2011a.johnday.cfm. Bonneville Power Administration (BPA). 2011b.Doug Johnson, Bonneville Power Administration. May 11, 2011.

  16. 2008 WIND TECHNOLOGIES MARKET REPORT

    E-Print Network [OSTI]

    Bolinger, Mark

    2010-01-01T23:59:59.000Z

    Association Bonneville Power Administration commercialWAPA), Bonneville Power Administration (BPA), PacifiCorp,in April 2009. Bonneville Power Administration Network Open

  17. 2011 Wind Technologies Market Report

    E-Print Network [OSTI]

    Bolinger, Mark

    2013-01-01T23:59:59.000Z

    Laboratory. Bonneville Power Administration (BPA). 2011.of Decision. Portland, OR: Bonneville Power Administration.Bonneville Power Administration (BPA). 2009. 2010 Wholesale

  18. Wind Energy Resources and Technologies | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    Wind Energy Resources and Technologies Wind Energy Resources and Technologies Photo of two wind turbines standing on a mountain in front of a cloudy blue sky. The Department of...

  19. Wind Power Reliability: Breaking Down a Barrier

    Broader source: Energy.gov [DOE]

    The steady increase of wind power on the grid presents new challenges for power system operators charged with making sure the grid stays up and running. "We need to ensure that we are going down a path that will lead to better reliability [with wind power]," said Bob Zavadil, an executive vice president at EnerNex Corporation in Knoxville, Tenn., a firm specializing in renewable energy grid interconnection and integration. "If this piece isn't done, there will be problems." EnerNex has spent the last decade perfecting wind turbine and plant models that test a wind plant's influence on the grid and its ability to provide grid support. In its latest effort, the company is using American Recovery and Reinvestment Act funds worth $750,000 to develop documentation and validations of computer wind turbine models.

  20. Challenges in Predicting Power Output from Offshore Wind Farms

    E-Print Network [OSTI]

    Pryor, Sara C.

    Challenges in Predicting Power Output from Offshore Wind Farms R. J. Barthelmie1 and S. C. Pryor2 Abstract: Offshore wind energy is developing rapidly in Europe and the trend is towards large wind farms an offshore wind farm, accurate assessment of the wind resource/power output from the wind farm is a necessity

  1. Federal Incentives for Wind Power (Fact Sheet)

    SciTech Connect (OSTI)

    Not Available

    2013-05-01T23:59:59.000Z

    This fact sheet describes the federal incentives available as of April 2013 that encourage increased development and deployment of wind energy technologies, including research grants, tax incentives, and loan programs.

  2. PSO2004/FU5766 Improved wind power prediction

    E-Print Network [OSTI]

    PSO2004/FU5766 Improved wind power prediction Spatio-temporal modelling of short-term wind power of wind power generation in power systems. The quality of the forecast is very important, and a reliable estimate of the uncertainty of the forecast is known to be essential. Today the forecasts of wind power

  3. Wind Powering America Webinar: Wind Power Economics: Past, Present...

    Energy Savers [EERE]

    Economics: Past, Present, and Future Trends November 23, 2011 - 1:43pm Addthis Wind turbine prices in the United States have declined, on average, by nearly one-third since...

  4. The Political Economy of Wind Power in China

    E-Print Network [OSTI]

    Swanson, Ryan Landon

    2011-01-01T23:59:59.000Z

    China‘s Potent Wind Potential. ? Technology Review,Fairley, ?China‘s Potent Wind Potential,? Technology Review,s Grid-Limited Wind Energy Potential. ? Carbon-Nation. 15

  5. 2011 Wind Technologies Market Report

    E-Print Network [OSTI]

    Bolinger, Mark

    2013-01-01T23:59:59.000Z

    WindLogics Inc. (2006) [MN-MISO (2006)]; EnerNex et al. (IPP ISO ISO-NE ITC kW kWh MISO MW MWh NERC NREL NYISO OEMIndependent System Operator (MISO), New York ISO (NYISO),

  6. 2009 Wind Technologies Market Report

    E-Print Network [OSTI]

    Wiser, Ryan

    2010-01-01T23:59:59.000Z

    Texas, May 24, 2010. MISO. 2010. Dispatchable Intermittentand Windlogics Inc. (2006) [MN-MISO]; Puget Sound Energy (ITC kW kWh LADWP LIBOR MISO American Wind Energy Association

  7. 2010 Wind Technologies Market Report

    E-Print Network [OSTI]

    Wiser, Ryan

    2012-01-01T23:59:59.000Z

    WindLogics Inc. (2006) [MN-MISO (2006)]; EnerNex et al. (IPP ISO ISO-NE ITC kW kWh MISO MW MWh NERC NREL NYISO OEMIndependent System Operator (MISO), New York ISO (NYISO),

  8. 2009 Wind Technologies Market Report

    E-Print Network [OSTI]

    Wiser, Ryan

    2010-01-01T23:59:59.000Z

    2008, yielding a cumulative installed capacity of small windTexas in cumulative installed capacity are Iowa, California,Owner Type Cumulative Installed Capacity (GW) IOU: 1,057 MW

  9. 2011 Wind Technologies Market Report

    E-Print Network [OSTI]

    Bolinger, Mark

    2013-01-01T23:59:59.000Z

    in 2011, followed by Siemens (18%), Suzlon and Mitsubishi (GE, Vestas, and Siemens. On a worldwide basis, ChineseGE Wind and Vestas were Siemens (with an 18% market share),

  10. 2008 WIND TECHNOLOGIES MARKET REPORT

    E-Print Network [OSTI]

    Bolinger, Mark

    2010-01-01T23:59:59.000Z

    the Midwest, Texas, Southwest, and PJM regions: wind in the52 GW), SPP (48 GW), and PJM (43 GW) account for over 70% ofThe queues surveyed include PJM Interconnection, Midwest

  11. 2008 Wind Technologies Market Report

    SciTech Connect (OSTI)

    Wiser, R.; Bolinger, M.

    2009-07-01T23:59:59.000Z

    The U.S. wind industry experienced a banner year in 2008, once again surpassing even optimistic growth projections from years past. At the same time, the past year has been one of upheaval, with the global financial crisis impacting near-term growth prospects for the wind industry, and with significant federal policy changes enacted to push the industry toward continued aggressive expansion. This report examines key trends.

  12. UNIVERSITY OF CALIFORNIA, Surface Wind Speed Distributions: Implications for Climate and Wind Power

    E-Print Network [OSTI]

    Zender, Charles

    and Wind Power DISSERTATION submitted in partial satisfaction of the requirements for the degree of DOCTOR . . . . . . . . . . . . . . . . . 19 1.3 Global Ocean Wind Power and Surface Layer Stability . . . . . . . . 23 1.3.1 Global Winds . . . . . . 27 1.4 Usable Offshore Wind Power . . . . . . . . . . . . . . . . . . . . . . . 31 1.4.1 Wind Turbine

  13. The National Wind Technology Center

    SciTech Connect (OSTI)

    Thresher, R.W.; Hock, S.M. [National Renewable Energy Lab., Golden, CO (United States)] [National Renewable Energy Lab., Golden, CO (United States); Loose, R.R.; Cadogon, J.B.

    1994-07-01T23:59:59.000Z

    Wind energy research began at the Rocky Flats test site in 1976 when Rockwell International subcontracted with the Energy Research and Development Administration (ERDA). The Rocky Flats Plant was competitively selected from a number of ERDA facilities primarily because it experienced high instantaneous winds and provided a large, clear land area. By 1977, several small wind turbines were in place. During the facility`s peak of operation, in 1979-1980, researchers were testing as many as 23 small wind turbines of various configurations, including commercially available machines and prototype turbines developed under subcontract to Rocky Flats. Facilities also included 8-kW, 40-kW, and 225-kW dynamometers; a variable-speed test bed; a wind/hybrid test facility; a controlled velocity test facility (in Pueblo, Colorado); a modal test facility, and a multimegawatt switchgear facility. The main laboratory building was dedicated in July 1981 and was operated by the Rocky Flats Plant until 1984, when the Solar Energy Research Institute (SERI) and Rocky Flats wind energy programs were merged and transferred to SERI. SERI and now the National Renewable Energy Laboratory (NREL) continued to conduct wind turbine system component tests after 1987, when most program personnel were moved to the Denver WEst Office Park in Golden and site ownership was transferred back to Rocky Flats. The Combined Experiment test bed was installed and began operation in 1988, and the NREL structural test facility began operation in 1990. In 1993, the site`s operation was officially transferred to the DOE Golden Field Office that oversees NREL. This move was in anticipation of NREL`s renovation and reoccupation of the facility in 1994.

  14. Wind Power Amercia Final Report

    SciTech Connect (OSTI)

    Brian Spangler, Kathi Montgomery and Paul Cartwright

    2012-01-30T23:59:59.000Z

    The objective of this grant was to further the development of Montana�¢����s vast wind resources for small, medium and large scale benefits to Montana and the nation. This was accomplished through collaborative work with wind industry representatives, state and local governments, the agricultural community and interested citizens. Through these efforts DEQ was able to identify development barriers, educate and inform citizens as well as participate in regional and national dialogue that will spur the development of wind resources.

  15. Wind Technology Modeling Within the System Advisor Model (SAM) (Poster)

    SciTech Connect (OSTI)

    Blair, N.; Dobos, A.; Ferguson, T.; Freeman, J.; Gilman, P.; Whitmore, J.

    2014-05-01T23:59:59.000Z

    This poster provides detail for implementation and the underlying methodology for modeling wind power generation performance in the National Renewable Energy Laboratory's (NREL's) System Advisor Model (SAM). SAM's wind power model allows users to assess projects involving one or more large or small wind turbines with any of the detailed options for residential, commercial, or utility financing. The model requires information about the wind resource, wind turbine specifications, wind farm layout (if applicable), and costs, and provides analysis to compare the absolute or relative impact of these inputs. SAM is a system performance and economic model designed to facilitate analysis and decision-making for project developers, financers, policymakers, and energy researchers. The user pairs a generation technology with a financing option (residential, commercial, or utility) to calculate the cost of energy over the multi-year project period. Specifically, SAM calculates the value of projects which buy and sell power at retail rates for residential and commercial systems, and also for larger-scale projects which operate through a power purchase agreement (PPA) with a utility. The financial model captures complex financing and rate structures, taxes, and incentives.

  16. On the Wind Power Input to the Ocean General Circulation

    E-Print Network [OSTI]

    Zhai, Xiaoming

    The wind power input to the ocean general circulation is usually calculated from the time-averaged wind products. Here, this wind power input is reexamined using available observations, focusing on the role of the synoptically ...

  17. Wind Farm Aggregation Impact on Power Quality: Preprint

    SciTech Connect (OSTI)

    Bialasiewicz, J. T.; Muljadi, E.

    2006-11-01T23:59:59.000Z

    This paper explores the effects of wind farm power fluctuations on the power network. A dynamic simulation of a wind farm is performed and the spatial distribution of the wind turbines is considered.

  18. Wind Powering America FY06 Activities Summary

    SciTech Connect (OSTI)

    Not Available

    2007-02-01T23:59:59.000Z

    The Wind Powering America FY06 Activities Summary reflects the accomplishments of our state wind working groups, our programs at the National Renewable Energy Laboratory, and our partner organizations. The national WPA team remains a leading force for moving wind energy forward in the United States. WPA continues to work with its national, regional, and state partners to communicate the opportunities and benefits of wind energy to a diverse set of stakeholders. WPA now has 29 state wind working groups (welcoming New Jersey, Indiana, Illinois, and Missouri in 2006) that form strategic alliances to communicate wind's benefits to the state stakeholders. More than 120 members of national and state public and private sector organizations from 34 states attended the 5th Annual WPA All-States Summit in Pittsburgh in June.

  19. Wind Power in China | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are being directedAnnualProperty Edit withTianlinPapers Home Kyoung's pictureWind Power Energia Jump to:Wind PowerWind

  20. Sandia National Laboratories: Wind Power

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    in Matlab which simplifies the process of creating a three-dimensional model of a wind turbine blade. The graphical, user-friendly tool manages all blade information including...

  1. Distribution of Wind Power Forecasting Errors from Operational Systems (Presentation)

    SciTech Connect (OSTI)

    Hodge, B. M.; Ela, E.; Milligan, M.

    2011-10-01T23:59:59.000Z

    This presentation offers new data and statistical analysis of wind power forecasting errors in operational systems.

  2. Title: Ontario Wind Power Allocation Ontario Ministry of Natural Resources

    E-Print Network [OSTI]

    Title: Ontario Wind Power Allocation Data Creator / Copyright Owner: Ontario Ministry of Natural/A Updates: N/A Abstract: This data consists of a polygon shapefile, Wind Power Allocation Block. A Wind Power Allocation Block is an area that could be allocated for the exploration of wind power generation

  3. Automatic selection of tuning parameters in wind power prediction

    E-Print Network [OSTI]

    Automatic selection of tuning parameters in wind power prediction Lasse Engbo Christiansen (lec Report number: IMM-Technical Report-2007-12 Project title: Intelligent wind power prediction systems PSO The wind power forecasting system developed at DTU - the Wind Power Prediction Tool (WPPT) - predicts

  4. Forecasting Uncertainty Related to Ramps of Wind Power Production

    E-Print Network [OSTI]

    Boyer, Edmond

    - namic reserve quantification [8], for the optimal oper- ation of combined wind-hydro power plants [5, 1Forecasting Uncertainty Related to Ramps of Wind Power Production Arthur Bossavy, Robin Girard - The continuous improvement of the accuracy of wind power forecasts is motivated by the increasing wind power

  5. Preliminary Assumptions for Wind Technologies

    E-Print Network [OSTI]

    and incentives for renewable resources Federal Production Tax Credit (PTC) 2.3 cents/kWh over first 10 years of operation Investment Tax Credit (ITC) alternative 30% towards developer's income tax for qualifying solar, fuel cell and small wind (geothermal, CHP BETC ­ just Oregon (now expired) 5 #12

  6. MSU-Wind Applications Center: Wind Resource Worksheet Theoretical Power Calculation

    E-Print Network [OSTI]

    Dyer, Bill

    MSU-Wind Applications Center: Wind Resource Worksheet Theoretical Power Calculation Equations: A= swept area = air density v= velocity R= universal gas constant Steps: 1. Measure wind speed from fan. = ___________/(________*________)= _________kg/m3 5. Theoretical Power a. Low Setting Theoretical Wind Power i. Power= ½*______*______*______*.59

  7. Next-Generation Wind Technology | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    and reliability of next-generation wind technologies while lowering the cost of wind energy. The program's research efforts have helped to increase the average capacity...

  8. An overview: Challenges in wind technology development

    SciTech Connect (OSTI)

    Thresher, R W; Hock, S M

    1991-12-01T23:59:59.000Z

    Developing innovative wind turbine components and advanced turbine configurations is a primary focus for wind technology researchers. In their rush to bring these new components and systems to the marketplace, designers and developers should consider the lessons learned in the wind farms over the past 10 years. Experience has shown that a disciplined design approach is required that realistically accounts for the turbulence-induced loads, unsteady stall loading, and fatigue effects. This paper reviews past experiences and compares current modelling capabilities with experimental measurements in order to identify some of the knowledge gaps that challenge designers of advanced components and systems. 7 refs., 11 figs.

  9. Alternative Energy Technologies Solar Power

    E-Print Network [OSTI]

    Scott, Christopher

    #12;Alternative Energy Technologies Solar Power Photovoltaics Concentrating Solar Power (CSP) Power;Concentrating Solar Power (CSP) Reflector material is Aluminum or Silver Tube material ..... Several possible ............... Mexico, Canada, Peru Alumina ............Guinea, Brazil, Australia, Jamaica Manganese ....... S. Africa

  10. Wind Power (pbl/generation)

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level:Energy: Grid Integration Redefining What'sis Taking Over OurThe Iron SpinPrincetonUsingWhat is abig world of tinyWind Industry SoarsWind

  11. Analysis of wind power for battery charging

    SciTech Connect (OSTI)

    Muljadi, E.; Drouilhet, S.; Holz, R. [National Renewable Energy Lab., Golden, CO (United States); Gevorgian, V. [University of Armenia, Yerevan (Armenia). State Engineering

    1995-11-01T23:59:59.000Z

    One type of wind-powered battery charging will be explored in this paper. It consists of a wind turbine driving a permanent magnet alternator and operates at variable speed. The alternator is connected to a battery bank via a rectifier. The characteristic of the system depends on the wind turbine, the alternator, and the system configuration. If the electrical load does not match the wind turbine, the performance of the system will be degraded. By matching the electrical load to the wind turbine, the system can be improved significantly. This paper analyzes the properties of the system components. The effects of parameter variation and the system configuration on the system performance are investigated. Two basic methods of shaping the torque-speed characteristic of the generator are presented. The uncompensated as well as the compensated systems will be discussed. Control strategies to improve the system performance will be explored. Finally, a summary of the paper will be presented in the last section.

  12. Wind Farm Diversification and Its Impact on Power System Reliability

    E-Print Network [OSTI]

    Degeilh, Yannick

    2010-10-12T23:59:59.000Z

    of potential wind farming sites for which the wind patterns are statistically known. The objective is to demonstrate the benefits of diversification for the reliability of wind-sustained systems through the search for steadier overall power outputs. Three... power output. Reported studies are generally concerned about the selection of a given potential wind farming site based on its wind patterns [1], but not about the beneficial interactions that various power outputs from various wind parks may yield...

  13. 2008 WIND TECHNOLOGIES MARKET REPORT

    E-Print Network [OSTI]

    Bolinger, Mark

    2010-01-01T23:59:59.000Z

    also provide power to off- grid sites (see, e.g. , ForsythAWEA 2009b). Application Off-grid On-grid TOTAL Source: AWEA

  14. 2011 Wind Technologies Market Report

    E-Print Network [OSTI]

    Bolinger, Mark

    2013-01-01T23:59:59.000Z

    date of an interconnection agreement and the commercialof generation interconnection agreements. In addition toInterconnection publicly owned utility power purchase agreement

  15. Wind Powering America FY07 Activities Summary

    SciTech Connect (OSTI)

    Not Available

    2008-02-01T23:59:59.000Z

    The Wind Powering America FY07 Activities Summary reflects the accomplishments of our state wind working groups, our programs at the National Renewable Energy Laboratory, and our partner organizations. The national WPA team remains a leading force for moving wind energy forward in the United States. WPA continues to work with its national, regional, and state partners to communicate the opportunities and benefits of wind energy to a diverse set of stakeholders. WPA now has 30 state wind working groups (welcoming Georgia and Wisconsin in 2007) that form strategic alliances to communicate wind's benefits to the state stakeholders. More than 140 members of national and state public and private sector organizations from 39 U.S. states and Canada attended the 6th Annual WPA All-States Summit in Los Angeles in June. WPA's emphasis remains on the rural agricultural sector, which stands to reap the significant economic development benefits of wind energy development. Additionally, WPA continues its program of outreach, education, and technical assistance to Native American communities, public power entities, and regulatory and legislative bodies.

  16. Analysis of Wind Power Generation of Texas 

    E-Print Network [OSTI]

    Liu, Z.; Haberl, J.; Subbarao, K.; Baltazar, J. C.

    2007-01-01T23:59:59.000Z

    1 ? Energy Systems Laboratory, Texas A&M University Page 1 ANALYSIS OF WIND POWER GENERATION OF TEXAS April 2007 Zi ?Betty? Liu, Ph.D., Jeff Haberl, Ph.D., P.E., Kris Subbarao, Ph.D., P.E., Juan-Carlos Baltazar, Ph.D. Energy Systems Laboratory... from Jul 2002 to Jan 2003 Degradation Analysis - On average, no degradation observed for nine wind farms analyzed over 4-year period. Application of Method 1 to New Site- Sweetwater I Wind Farm ? Energy Systems Laboratory, Texas A&M University Page 3...

  17. Wind Powering America Webinar: Wind Power Economics: Past, Present, and

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels DataDepartment of Energy Your DensityEnergy U.S.-China Electric VehicleCenters | Department ofofto PurchaseAprilWindFuture Trends |

  18. PowerJet Wind Turbine Project

    SciTech Connect (OSTI)

    Bartlett, Raymond J

    2008-11-30T23:59:59.000Z

    PROJECT OBJECTIVE The PowerJet wind turbine overcomes problems characteristic of the small wind turbines that are on the market today by providing reliable output at a wide range of wind speeds, durability, silent operation at all wind speeds, and bird-safe operation. Prime Energy�s objective for this project was to design and integrate a generator with an electrical controller and mechanical controls to maximize the generation of electricity by its wind turbine. The scope of this project was to design, construct and test a mechanical back plate to control rotational speed in high winds, and an electronic controller to maximize power output and to assist the base plate in controlling rotational speed in high winds. The test model will continue to operate beyond the time frame of the project, with the ultimate goal of manufacturing and marketing the PowerJet worldwide. Increased Understanding of Electronic & Mechanical Controls Integrated With Electricity Generator The PowerJet back plate begins to open as wind speed exceeds 13.5 mps. The pressure inside the turbine and the turbine rotational speed are held constant. Once the back plate has fully opened at approximately 29 mps, the controller begins pulsing back to the generator to limit the rotational speed of the turbine. At a wind speed in excess of 29 mps, the controller shorts the generator and brings the turbine to a complete stop. As the wind speed subsides, the controller releases the turbine and it resumes producing electricity. Data collection and instrumentation problems prevented identification of the exact speeds at which these events occur. However, the turbine, controller and generator survived winds in excess of 36 mps, confirming that the two over-speed controls accomplished their purpose. Technical Effectiveness & Economic Feasibility Maximum Electrical Output The output of electricity is maximized by the integration of an electronic controller and mechanical over-speed controls designed and tested during the course of this project. The output exceeds that of the PowerJet�s 3-bladed counterparts (see Appendix). Durability All components of the PowerJet turbine assembly�including the electronic and mechanical controls designed, manufactured and field tested during the course of this project�proved to be durable through severe weather conditions, with constant operation and no interruption in energy production. Low Cost Materials for the turbine, generator, tower, charge controllers and ancillary parts are available at reasonable prices. Fabrication of these parts is also readily available worldwide. The cost of assembling and installing the turbine is reduced because it has fewer parts and requires less labor to manufacture and assemble, making it competitively priced compared with turbines of similar output manufactured in the U.S. and Europe. The electronic controller is the unique part to be included in the turbine package. The controllers can be manufactured in reasonably-sized production runs to keep the cost below $250 each. The data logger and 24 sensors are for research only and will be unnecessary for the commercial product. Benefit To Public The PowerJet wind-electric system is designed for distributed wind generation in 3 and 4 class winds. This wind turbine meets DOE�s requirements for a quiet, durable, bird-safe turbine that eventually can be deployed as a grid-connected generator in urban and suburban settings. Results As described more fully below and illustrated in the Appendices, the goals and objectives outlined in 2060 SOPO were fully met. Electronic and mechanical controls were successfully designed, manufactured and integrated with the generator. The turbine, tower, controllers and generators operated without incident throughout the test period, surviving severe winter and summer weather conditions such as extreme temperatures, ice and sustained high winds. The electronic controls were contained in weather-proof electrical boxes and the elec

  19. ForPeerReview PUBLIC ACCEPTANCE OF OFFSHORE WIND POWER

    E-Print Network [OSTI]

    Firestone, Jeremy

    ForPeerReview PUBLIC ACCEPTANCE OF OFFSHORE WIND POWER PROJECTS IN THE UNITED STATES Journal: Wind, Andrew; Minerals Management Service Keywords: offshore wind power, public opinion, social acceptancePeerReview 1 PUBLIC ACCEPTANCE OF OFFSHORE WIND POWER PROJECTS IN THE UNITED STATES Jeremy Firestone*, Willett

  20. Power and Frequency Control as it Relates to Wind-Powered Generation

    E-Print Network [OSTI]

    Lacommare, Kristina S H

    2011-01-01T23:59:59.000Z

    per hour in both balancing areas Wind power ramps down atper hour in both balancing areas Wind power ramps down atbalancing area 2 Power and Frequency Control as it Relates to Wind-

  1. Power and Frequency Control as it Relates to Wind-Powered Generation

    E-Print Network [OSTI]

    Lacommare, Kristina S H

    2011-01-01T23:59:59.000Z

    Control as it Relates to Wind- Powered Generation AppendixControl as it Relates to Wind-Powered Generation JohnControl as it Relates to Wind-Powered Generation LBNL-XXXXX

  2. The Political Economy of Wind Power in China

    E-Print Network [OSTI]

    Swanson, Ryan Landon

    2011-01-01T23:59:59.000Z

    solar panels are too expensive to install domestically, China‘China,? as Chinese wind resources are abundant and wind power is cheaper than solar

  3. Wind Powering America: FY09 Activities Summary (Book)

    SciTech Connect (OSTI)

    Not Available

    2010-03-01T23:59:59.000Z

    The Wind Powering America FY09 Activities Summary reflects the accomplishments of state Wind Working Groups, WPA programs at the National Renewable Energy Laboratory, and partner organizations.

  4. Wind Powering America FY08 Activities Summary (Book)

    SciTech Connect (OSTI)

    Not Available

    2009-02-01T23:59:59.000Z

    The Wind Powering America FY08 Activities Summary reflects the accomplishments of state Wind Working Groups, WPA programs at the National Renewable Energy Laboratory, and partner organizations.

  5. Wind Power Project Repowering: History, Economics, and Demand...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Wind Power Project Repowering: History, Economics, and Demand Wind Exchange Webinar Eric Lantz January 21, 2015 NRELPR-6A20-63591 2 Presentation Overview 1. Background - Concepts...

  6. Wind Farm Diversification and Its Impact on Power System Reliability 

    E-Print Network [OSTI]

    Degeilh, Yannick

    2010-10-12T23:59:59.000Z

    As wind exploitation gains prominence in the power industry, the extensive use of this intermittent source of power may heavily rely on our ability to select the best combination of wind farming sites that yields maximal reliability of power systems...

  7. Wind Energy Workforce Development: Engineering, Science, & Technology

    SciTech Connect (OSTI)

    Lesieutre, George A.; Stewart, Susan W.; Bridgen, Marc

    2013-03-29T23:59:59.000Z

    Broadly, this project involved the development and delivery of a new curriculum in wind energy engineering at the Pennsylvania State University; this includes enhancement of the Renewable Energy program at the Pennsylvania College of Technology. The new curricula at Penn State includes addition of wind energy-focused material in more than five existing courses in aerospace engineering, mechanical engineering, engineering science and mechanics and energy engineering, as well as three new online graduate courses. The online graduate courses represent a stand-alone Graduate Certificate in Wind Energy, and provide the core of a Wind Energy Option in an online intercollege professional Masters degree in Renewable Energy and Sustainability Systems. The Pennsylvania College of Technology erected a 10 kilowatt Xzeres wind turbine that is dedicated to educating the renewable energy workforce. The entire construction process was incorporated into the Renewable Energy A.A.S. degree program, the Building Science and Sustainable Design B.S. program, and other construction-related coursework throughout the School of Construction and Design Technologies. Follow-on outcomes include additional non-credit opportunities as well as secondary school career readiness events, community outreach activities, and public awareness postings.

  8. The Political Economy of Wind Power in China

    E-Print Network [OSTI]

    Swanson, Ryan Landon

    2011-01-01T23:59:59.000Z

    on the expansion of nuclear power to decouple China‘s energyoffshore wind power to be cheaper than nuclear power. 21 In

  9. Electricity for road transport, flexible power systems and wind...

    Open Energy Info (EERE)

    for road transport, flexible power systems and wind power (Smart Grid Project) Jump to: navigation, search Project Name Electricity for road transport, flexible power systems and...

  10. Wind Power Plant Voltage Stability Evaluation: Preprint

    SciTech Connect (OSTI)

    Muljadi, E.; Zhang, Y. C.

    2014-09-01T23:59:59.000Z

    Voltage stability refers to the ability of a power system to maintain steady voltages at all buses in the system after being subjected to a disturbance from a given initial operating condition. Voltage stability depends on a power system's ability to maintain and/or restore equilibrium between load demand and supply. Instability that may result occurs in the form of a progressive fall or rise of voltages of some buses. Possible outcomes of voltage instability are the loss of load in an area or tripped transmission lines and other elements by their protective systems, which may lead to cascading outages. The loss of synchronism of some generators may result from these outages or from operating conditions that violate a synchronous generator's field current limit, or in the case of variable speed wind turbine generator, the current limits of power switches. This paper investigates the impact of wind power plants on power system voltage stability by using synchrophasor measurements.

  11. Clear Wind Renewable Power | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are being directedAnnual Siteof Energy 2,AUDIT REPORTEnergy Offshore Place:Wind EnergyCielo Wind PowerWaterPower

  12. Wind Power Renewables | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are being directedAnnualProperty Edit withTianlinPapers Home Kyoung's pictureWind Power Energia Jump to:Wind Power

  13. Annual Report on U.S. Wind Power Installation, Cost, and Performance Trends: 2006

    E-Print Network [OSTI]

    2008-01-01T23:59:59.000Z

    of the U.S. DOE’s Wind & Hydropower Technologies Program. Weand Renewable Energy (Wind & Hydropower Technologies ProgramManager Office of Wind and Hydropower Technologies Energy

  14. PBS: Wind Power for Educators

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels DataDepartment of Energy Your Density Isn'tOrigin of Contamination in ManyDepartmentOutreachDepartment ofProgram49, thePAGEPART I -PBS: Wind

  15. BY ERIC M. HINES, P.E., PH.D., AND WILLIAM C. GIBB THE RECENTLY COMMISSIONED Wind Technology Testing

    E-Print Network [OSTI]

    Hines, Eric

    for offshore wind farm development. Whereas the largest blades for land-based wind farms in the United States are currently on the order of 50-m (164- ft) long, and generate 2-3 MW of power per turbine, offshore windT BY ERIC M. HINES, P.E., PH.D., AND WILLIAM C. GIBB THE RECENTLY COMMISSIONED Wind Technology

  16. Fostering a Renewable Energy Technology Industry: An International Comparison of Wind Industry Policy Support Mechanisms

    E-Print Network [OSTI]

    Lewis, Joanna; Wiser, Ryan

    2005-01-01T23:59:59.000Z

    and Renewable Energy, Wind & Hydropower Technologiesand Renewable Energy, Wind & Hydropower Technologies2004. International Wind Energy Development, World Market

  17. The Political Economy of Wind Power in China

    E-Print Network [OSTI]

    Swanson, Ryan Landon

    2011-01-01T23:59:59.000Z

    woes hamper China wind farms‘ push for profitability. ?China adds 18.9 GW of new wind power capacity in 2010. ?Global Wind Energy Council. 6 April 2011. http://

  18. Solar and Wind Technologies for Hydrogen Production Report to Congress

    Fuel Cell Technologies Publication and Product Library (EERE)

    DOE's Solar and Wind Technologies for Hydrogen Production Report to Congress summarizes the technology roadmaps for solar- and wind-based hydrogen production. Published in December 2005, it fulfills t

  19. Considering Air Density in Wind Power Production

    E-Print Network [OSTI]

    Zénó Farkas

    2011-03-11T23:59:59.000Z

    In the wind power production calculations the air density is usually considered as constant in time. Using the CIPM-2007 equation for the density of moist air as a function of air temperature, air pressure and relative humidity, we show that it is worth taking the variation of the air density into account, because higher accuracy can be obtained in the calculation of the power production for little effort.

  20. Considering Air Density in Wind Power Production

    E-Print Network [OSTI]

    Farkas, Zénó

    2011-01-01T23:59:59.000Z

    In the wind power production calculations the air density is usually considered as constant in time. Using the CIPM-2007 equation for the density of moist air as a function of air temperature, air pressure and relative humidity, we show that it is worth taking the variation of the air density into account, because higher accuracy can be obtained in the calculation of the power production for little effort.

  1. Sandia National Laboratories: Scaled Wind Farm Technologies Facility

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Technologies Facility Scaled Wind Farm Technology Facility Baselining Project Accelerates Work On April 7, 2014, in Energy, Facilities, News, News & Events, Partnership, Renewable...

  2. Wind Power Plant Prediction by Using Neural Networks: Preprint

    SciTech Connect (OSTI)

    Liu, Z.; Gao, W.; Wan, Y. H.; Muljadi, E.

    2012-08-01T23:59:59.000Z

    This paper introduces a method of short-term wind power prediction for a wind power plant by training neural networks based on historical data of wind speed and wind direction. The model proposed is shown to achieve a high accuracy with respect to the measured data.

  3. Mark Your Calendar! Indiana's only statewide wind power

    E-Print Network [OSTI]

    Ginzel, Matthew

    Mark Your Calendar! Indiana's only statewide wind power conference is July 21-22, 2010. WIndiana in Track 1. Wind power supply chain information will be in Track 2. Track 3 is an expanded Community Wind 2010. First, there will be three separate session tracks to choose from. Big Wind will be represented

  4. Judi Danielson Wind Power: From Niche to Mainstream

    E-Print Network [OSTI]

    , was the federal production tax incentive, which lowers the cost of wind power for potential investorsJudi Danielson Wind Power: From Niche to Mainstream What's Inside (continued on page 11) Winter sailboats to sail-type windmills. Today, the wind is converted into electricity through wind turbine

  5. Analysis of Wind Power and Load Data at Multiple Time Scales

    E-Print Network [OSTI]

    Coughlin, Katie

    2011-01-01T23:59:59.000Z

    Wan, Yih-Huei. 2004. Wind Power Plant Behaviors: Analyses ofthe output of wind power plants. In a typical studyfluctuations across wind power plants located in the same

  6. Assessment of wind power predictability as a decision factor in the investment phase of wind farms

    E-Print Network [OSTI]

    Paris-Sud XI, Université de

    Assessment of wind power predictability as a decision factor in the investment phase of wind farms on market revenue of, respectively, the predictability and the capacity factor of a wind farm or a cluster of wind farms. This is done through a real-life case study in West Denmark, including wind farm production

  7. The Answer Is Blowing in the Wind: Analysis of Powering Internet Data Centers with Wind Energy

    E-Print Network [OSTI]

    of real-world wind power traces from 69 wind farms. The idea is to leverage the front-end load dispatching generally lie in a range from 44% to 96%, depending on how the locations of wind farms are selected. We" IDCs through a wind- aware load balancing design? and 2) How to select data center or wind farm

  8. Wind power: executive summary on research on network wind power over the Pacific Northwest. Progress report, October 1979-September 1980

    SciTech Connect (OSTI)

    Baker, R.W.; Hewson, E.W.

    1980-10-01T23:59:59.000Z

    This research in FY80 is composed of six primary tasks. These tasks include data collection and analysis, wind flow studies around an operational wind turbine generator (WTG), kite anemometer calibration, wind flow analysis and prediction, the Klickitat County small wind energy conversion system (SWECS) program, and network wind power analysis. The data collection and analysis task consists of four sections, three of which deal with wind flow site surveys and the fourth with collecting and analyzing wind data from existing data stations.

  9. Arkansas Preparing for Wind Power | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    Arkansas Preparing for Wind Power Arkansas Preparing for Wind Power April 15, 2010 - 5:25pm Addthis Joshua DeLung Renowned science fiction author Isaac Asimov once said, "No...

  10. Observer-based control of a tethered wing wind power system: indoor real-time experiment

    E-Print Network [OSTI]

    Paris-Sud XI, Université de

    . A third solution is to use power kites as renewable energy generators [3]. One can cite the "Kite Wind Generator" of Politecnico di Torino [6], [5] and the "Laddermill" of the Delft University of Technology [13

  11. Structural responses and power output of a wind turbine are strongly affected by the wind field acting on the wind turbine. Knowledge about the wind field and its

    E-Print Network [OSTI]

    Stanford University

    ABSTRACT Structural responses and power output of a wind turbine are strongly affected by the wind field acting on the wind turbine. Knowledge about the wind field and its variations is essential not only for designing, but also for cost-efficiently managing wind turbines. Wind field monitoring

  12. Green Power Wind Farm | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are beingZealand Jump to: navigation, search OpenEI ReferenceJump to: navigation,II WindAirplaneGreenEnergy |Power Wind

  13. Marquiss Wind Power | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are being directedAnnual Siteof Energy 2,AUDIT REPORTEnergyFarmsPower CoLongxing WindMaoming Zhong ao Wind

  14. Cielo Wind Power | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are being directedAnnual Siteof Energy 2,AUDIT REPORTEnergy Offshore Place:Wind EnergyCielo Wind Power Jump to:

  15. Probabilistic wind power forecasting -European Wind Energy Conference -Milan, Italy, 7-10 May 2007 Probabilistic short-term wind power forecasting

    E-Print Network [OSTI]

    Paris-Sud XI, Université de

    Probabilistic wind power forecasting - European Wind Energy Conference - Milan, Italy, 7-10 May 2007 Probabilistic short-term wind power forecasting based on kernel density estimators J´er´emie Juban jeremie.juban@ensmp.fr; georges.kariniotakis@ensmp.fr Abstract Short-term wind power forecasting tools

  16. The Political Economy of Wind Power in China

    E-Print Network [OSTI]

    Swanson, Ryan Landon

    2011-01-01T23:59:59.000Z

    wind power, while others may mandate daily operating limits or are based upon thresholds for the percentage of balancing

  17. Wind Power Forecasting Error Distributions over Multiple Timescales (Presentation)

    SciTech Connect (OSTI)

    Hodge, B. M.; Milligan, M.

    2011-07-01T23:59:59.000Z

    This presentation presents some statistical analysis of wind power forecast errors and error distributions, with examples using ERCOT data.

  18. The Industrialization of Thermoelectric Power Generation Technology...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    The Industrialization of Thermoelectric Power Generation Technology The Industrialization of Thermoelectric Power Generation Technology Presents module and system requirements for...

  19. Synchrophasor Applications for Wind Power Generation

    SciTech Connect (OSTI)

    Muljadi, E.; Zhang, Y. C.; Allen, A.; Singh, M.; Gevorgian, V.; Wan, Y. H.

    2014-02-01T23:59:59.000Z

    The U.S. power industry is undertaking several initiatives that will improve the operations of the electric power grid. One of those is the implementation of wide-area measurements using phasor measurement units to dynamically monitor the operations and status of the network and provide advanced situational awareness and stability assessment. The overviews of synchrophasors and stability analyses in this report are intended to present the potential future applications of synchrophasors for power system operations under high penetrations of wind and other renewable energy sources.

  20. Wind Farm Power Prediction: A Data-Mining Approach

    E-Print Network [OSTI]

    Kusiak, Andrew

    Wind Farm Power Prediction: A Data-Mining Approach Andrew Kusiak*, Haiyang Zheng and Zhe Song, IA 52242­1527, USA In this paper, models for short- and long-term prediction of wind farm power length of the long-term prediction model is 84 h. The wind farm power prediction models are built

  1. WIND POWER ENSEMBLE FORECASTING Henrik Aalborg Nielsen1

    E-Print Network [OSTI]

    WIND POWER ENSEMBLE FORECASTING Henrik Aalborg Nielsen1 , Henrik Madsen1 , Torben Skov Nielsen1. In this paper we address the problems of (i) transforming the mete- orological ensembles to wind power ensembles the uncertainty which follow from historical (climatological) data. However, quite often the actual wind power

  2. Characterization of the Wind Power Resource in Europe and its

    E-Print Network [OSTI]

    Characterization of the Wind Power Resource in Europe and its Intermittency Alexandra Cosseron, C;1 Characterization of the Wind Power Resource in Europe and its Intermittency Alexandra Cosseron* , C. Adam Schlosser , and Udaya Bhaskar Gunturu Abstract Wind power is assessed over Europe, with special attention given

  3. Managing Wind Power Forecast Uncertainty in Electric Brandon Keith Mauch

    E-Print Network [OSTI]

    i Managing Wind Power Forecast Uncertainty in Electric Grids Brandon Keith Mauch Co for the modeled wind- CAES system would not cover annualized capital costs. We also estimate market prices-ahead market is roughly $100, with large variability due to electric power prices. Wind power forecast errors

  4. Characterization of wind power resource in the United States*

    E-Print Network [OSTI]

    Characterization of wind power resource in the United States* U. Bhaskar Gunturu and C. Adam Chemistry and Physics Characterization of wind power resource in the United States U. B. Gunturu and C. A, 120 m turbine hub heights. The wind power density (WPD) estimates at 50 m are qualitatively similar

  5. Ris-R-1527(EN) Wind Power Prediction using Ensembles

    E-Print Network [OSTI]

    Risø-R-1527(EN) Wind Power Prediction using Ensembles Gregor Giebel (ed.), Jake Badger, Lars, Lars Voulund Title: Wind Power Prediction using Ensembles Risø-R-1527(EN) September 2005 ISSN 0106 from the operational use - Elsam 35 5.2.1 Control room functions 35 5.2.2 Use of wind power predictions

  6. Stochastic Analysis of Wind Turbine Power Curves Edgar Anahua

    E-Print Network [OSTI]

    Peinke, Joachim

    Stochastic Analysis of Wind Turbine Power Curves Edgar Anahua Oldenburg 2007 Zur Homepage der Dissertation #12;#12;Stochastic Analysis of Wind Turbine Power Curves Edgar Anahua Von der Fakult¨at f the wind turbine's power per- formance directly from high frequency fluctuating measurements. In particular

  7. Control of Wind Turbines for Power Regulation and

    E-Print Network [OSTI]

    Control of Wind Turbines for Power Regulation and Load Reduction Juan Jose Garcia Quirante Kongens regulation and load reduction and their ensemble in a variable-speed wind turbine. The power regulation aspects of mathematical modelling of wind turbines, and especially the control methods suited for power

  8. Testing of a 50-kW Wind-Diesel Hybrid System at the National Wind Technology Center

    SciTech Connect (OSTI)

    Corbus, D. A.; Green, H. J.; Allderdice, A.; Rand, K.; Bianchi, J.; Linton, E.

    1996-07-01T23:59:59.000Z

    In remote off-grid villages and communities, a reliable power source is important in improving the local quality of life. Villages often use a diesel generator for their power, but fuel can be expensive and maintenance burdensome. Including a wind turbine in a diesel system can reduce fuel consumption and lower maintenance, thereby reducing energy costs. However, integrating the various components of a wind-diesel system, including wind turbine, power conversion system, and battery storage (if applicable), is a challenging task. To further the development of commercial hybrid power systems, the National Renewable Energy Laboratory (NREL), in collaboration with the New World Village Power Corporation (NWVP), tested a NWVP 50-kW wind-diesel hybrid system connected to a 15/50 Atlantic Orient Corporation (AOC) wind turbine. Testing was conducted from October 1995 through March 1996 at the National Wind Technology Center (NWTC). A main objective of the testing was to better understand the application of wind turbines to weak grids typical of small villages. Performance results contained in this report include component characterization, such as power conversion losses for the rotary converter system and battery round trip efficiencies. In addition, system operation over the test period is discussed with special attention given to dynamic issues. Finally, future plans for continued testing and research are discussed.

  9. TECHNICALADVANCES IN EPOXY TECHNOLOGY FOR WIND TURBINE BLADE COMPOSITE FABRICATION

    E-Print Network [OSTI]

    TECHNICALADVANCES IN EPOXY TECHNOLOGY FOR WIND TURBINE BLADE COMPOSITE FABRICATION George C. Jacob reliability in many demanding applications including components for aerospace and wind turbine blades. While in operation, wind turbine blades are subjected to significant stresses from their movement, wind and other

  10. Power System Modeling of 20percent Wind-Generated Electricity by 2030

    E-Print Network [OSTI]

    Hand, Maureen

    2008-01-01T23:59:59.000Z

    Contribution to U.S. Electricity Supply. National Renewable20% of the nation's electricity from wind technology byTERMS wind-generated electricity; wind energy; 20% wind

  11. 20% Wind Energy by 2030 - Chapter 2: Wind Turbine Technology...

    Energy Savers [EERE]

    Wind Energy's Contribution to U.S. Electricity Supply Testing, Manufacturing, and Component Development Projects U.S. Offshore Wind Manufacturing and Supply Chain Development...

  12. Wind Power on Native American Lands: Process and Progress (Poster)

    SciTech Connect (OSTI)

    Jimenez, A.; Flowers, L.; Gough, R.; Taylor, R.

    2005-05-01T23:59:59.000Z

    The United States is home to more than 700 American Indian tribes and Native Alaska villages and corporations located on 96 million acres. Many of these tribes and villages have excellent wind resources that could be commercially developed to meet their electricity needs or for electricity export. The Wind Powering America program engages Native Americans in wind energy development. This poster describes the process and progress of Wind Powering America's involvement with Native American wind energy projects.

  13. Maglev Wind Turbine Technologies | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are being directedAnnual Siteof Energy 2,AUDIT REPORTEnergyFarmsPower CoLongxing Wind PowerMCFMVV Energie AGMaglev

  14. Global Wind Power Conference September 18-21, 2006, Adelaide, Australia Design and Operation of Power Systems with Large Amounts of Wind Power, first

    E-Print Network [OSTI]

    of Power Systems with Large Amounts of Wind Power, first results of IEA collaboration Hannele Holttinen1.holttinen@vtt.fi Abstract: An international forum for exchange of knowledge of power system impacts of wind power has been Systems with Large Amounts of Wind Power"will analyse existing case studies from different power systems

  15. WIND POWER PROGRAM WIND PROGRAM ACCOMPLISHMENTS U.S. Department...

    Office of Environmental Management (EM)

    capturing more wind than ever before through the installation of innovative offshore wind turbines and systems in U.S. waters, the Atmosphere to Electrons initiative which...

  16. WREF 2012: THE PAST AND FUTURE COST OF WIND ENERGY

    E-Print Network [OSTI]

    Wiser, Ryan

    2013-01-01T23:59:59.000Z

    2009). Technology Roadmap – Wind Energy. Paris, France:Bolinger, M. (2011). 2010 Wind Technologies Market Report.Økonomi (The Economy of Wind Power). EUDP 33033-0196.

  17. Validation of Power Output for the WIND Toolkit

    SciTech Connect (OSTI)

    King, J.; Clifton, A.; Hodge, B. M.

    2014-09-01T23:59:59.000Z

    Renewable energy integration studies require wind data sets of high quality with realistic representations of the variability, ramping characteristics, and forecast performance for current wind power plants. The Wind Integration National Data Set (WIND) Toolkit is meant to be an update for and expansion of the original data sets created for the weather years from 2004 through 2006 during the Western Wind and Solar Integration Study and the Eastern Wind Integration Study. The WIND Toolkit expands these data sets to include the entire continental United States, increasing the total number of sites represented, and it includes the weather years from 2007 through 2012. In addition, the WIND Toolkit has a finer resolution for both the temporal and geographic dimensions. Three separate data sets will be created: a meteorological data set, a wind power data set, and a forecast data set. This report describes the validation of the wind power data set.

  18. Concurrent Wind Cooling in Power Transmission Lines

    SciTech Connect (OSTI)

    Jake P Gentle

    2012-08-01T23:59:59.000Z

    Idaho National Laboratory and the Idaho Power Company, with collaboration from Idaho State University, have been working on a project to monitor wind and other environmental data parameters along certain electrical transmission corridors. The combination of both real-time historical weather and environmental data is being used to model, validate, and recommend possibilities for dynamic operations of the transmission lines for power and energy carrying capacity. The planned results can also be used to influence decisions about proposed design criteria for or upgrades to certain sections of the transmission lines.

  19. India Wind Power Ltd | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are being directedAnnual SiteofEvaluatingGroup | OpenHunan Runhua New EnergyIT PowerImagineWind Power Ltd Jump to:

  20. Enabling Technologies for High Penetration of Wind and Solar Energy

    SciTech Connect (OSTI)

    Denholm, P.

    2011-01-01T23:59:59.000Z

    High penetration of variable wind and solar electricity generation will require modifications to the electric power system. This work examines the impacts of variable generation, including uncertainty, ramp rate, ramp range, and potentially excess generation. Time-series simulations were performed in the Texas (ERCOT) grid where different mixes of wind, solar photovoltaic and concentrating solar power provide up to 80% of the electric demand. Different enabling technologies were examined, including conventional generator flexibility, demand response, load shifting, and energy storage. A variety of combinations of these technologies enabled low levels of surplus or curtailed wind and solar generation depending on the desired penetration of renewable sources. At lower levels of penetration (up to about 30% on an energy basis) increasing flexible generation, combined with demand response may be sufficient to accommodate variability and uncertainty. Introduction of load-shifting through real-time pricing or other market mechanisms further increases the penetration of variable generation. The limited time coincidence of wind and solar generation presents increasing challenges as these sources provide greater than 50% of total demand. System flexibility must be increased to the point of virtually eliminating must-run baseload generators during periods of high wind and solar generation. Energy storage also becomes increasingly important as lower cost flexibility options are exhausted. The study examines three classes of energy storage - electricity storage, including batteries and pumped hydro, hybrid storage (compressed-air energy storage), and thermal energy storage. Ignoring long-distance transmission options, a combination of load shifting and storage equal to about 12 hours of average demand may keep renewable energy curtailment below 10% in the simulated system.

  1. 1 Energy Markets and Policy Group Energy Analysis Department The Impact of Wind Power Projects

    E-Print Network [OSTI]

    Firestone, Jeremy

    1 Energy Markets and Policy Group · Energy Analysis Department The Impact of Wind Power Projects) This analysis was funded by the U.S. Department of Energy, Office of Energy Efficiency and Renewable Energy, Wind & Hydropower Technologies Program #12;2 Energy Markets and Policy Group · Energy Analysis

  2. Fostering a Renewable Energy Technology Industry: An International Comparison of Wind Industry Policy Support Mechanisms

    E-Print Network [OSTI]

    Lewis, Joanna; Wiser, Ryan

    2005-01-01T23:59:59.000Z

    Wind Energy Development in China: Institutional Dynamics and Policyand Candles: Wind Power in China. Energy Policy, 28, 271-wind power development in the United States. Energy Policy.

  3. Technology, Performance, and Market of Wind-Diesel Applications for Remote and Island Communities (Poster)

    SciTech Connect (OSTI)

    Baring-Gould, E. I.; Dabo, M.

    2009-05-01T23:59:59.000Z

    The market for wind-diesel power systems in Alaska and other areas has proven that the integration of wind turbines with conventional isolated generation is a commercial reality. During the past few years, the use of wind energy to reduce diesel fuel consumption has increased, providing economic, environmental, social, and security benefits to communities' energy supply. This poster provides an overview of markets, project examples, technology advances, and industry challenges.

  4. Benefits of Stochastic Scheduling for Power Systems with Significant Installed Wind Power

    E-Print Network [OSTI]

    Benefits of Stochastic Scheduling for Power Systems with Significant Installed Wind Power Aidan Abstract-- Wind energy on a power system alters the unit commitment and dispatch problem, as it adds generation, Power system eco- nomics, Power generation dispatch, Unit Commitment, Wind Forecasting. I

  5. Operating the Irish Power System with Increased Levels of Wind Power

    E-Print Network [OSTI]

    Operating the Irish Power System with Increased Levels of Wind Power Aidan Tuohy, Student Member of Ireland. Using results from various studies performed on this system, it is shown that wind power of installed wind power will have implications for the operation of power systems. These will be seen

  6. European Wind Energy Conference -Brussels, Belgium, April 2008 Data mining for wind power forecasting

    E-Print Network [OSTI]

    Paris-Sud XI, Université de

    European Wind Energy Conference - Brussels, Belgium, April 2008 Data mining for wind power-term forecasting of wind energy produc- tion up to 2-3 days ahead is recognized as a major contribution the improvement of predic- tion systems performance is recognised as one of the priorities in wind energy research

  7. Wind Powering America Fact Sheet Series 1 Wind energy is more expensive than conventional energy.

    E-Print Network [OSTI]

    Massachusetts at Amherst, University of

    Wind Powering America Fact Sheet Series 1 Wind energy is more expensive than conventional energy. Wind's variability does increase the day-to-day and minute-to- minute operating costs of a utility system because the wind variations do affect the operation of other plants. But investigations by utility

  8. New England Wind Forum: A Wind Powering America Project - Newsletter #6 - September 2010, (NEWF)

    SciTech Connect (OSTI)

    Grace, R.; Gifford, J.; Leeds, T.; Bauer, S.

    2010-09-01T23:59:59.000Z

    Wind Powering America program launched the New England Wind Forum (NEWF) in 2005 to provide a single comprehensive source of up-to-date, Web-based information on a broad array of wind energy issues pertaining to New England. The NEWF newsletter provides New England stakeholders with updates on wind energy development in the region.

  9. Scotrenewables Wind Power and Marine Power Ltd | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are being directedAnnual Siteof Energy 2,AUDITCalifornia Sector: WindRiegotec InternacionalhasASSciraWind Power and

  10. Minimizing Wind Power Producer's Balancing Costs Using Electrochemical Energy Storage: Preprint

    SciTech Connect (OSTI)

    Miettinen, J.; Tikka, V.; Lassila, J.; Partanen, J.; Hodge, B. M.

    2014-08-01T23:59:59.000Z

    This paper examines how electrochemical energy storage can be used to decrease the balancing costs of a wind power producer in the Nordic market. Because electrochemical energy storage is developing in both technological and financial terms, a sensitivity analysis was carried out for the most important variables in the wind-storage hybrid system. The system was studied from a wind power producer's point of view. The main result is that there are no technical limitations to using storage for reducing the balancing costs. However, in terms of economic feasibility, installing hybrid wind-storage systems such as the one studied in this paper faces challenges in both the short and long terms.

  11. Comment on "Air Emissions Due to Wind and Solar Power" and Supporting Information

    E-Print Network [OSTI]

    Mills, Andrew D.

    2011-01-01T23:59:59.000Z

    Consulting, Analysis of Wind Generation Impact on ERCOTE. ; O’Malley, M. Wind generation, power system operation,E. ; O’Malley, M. Wind generation, power system operation,

  12. Annual Report on U.S. Wind Power Installation, Cost, and Performance Trends: 2006

    E-Print Network [OSTI]

    2008-01-01T23:59:59.000Z

    on U.S. Wind Power Installation, Cost, and Performanceand Capital Costs Drive Wind Power Prices. . . . . 14Figure 18. Installed Wind Project Costs over Time Installed

  13. Analysis of Wind Power and Load Data at Multiple Time Scales

    E-Print Network [OSTI]

    Coughlin, Katie

    2011-01-01T23:59:59.000Z

    The spectrum of power from wind turbines. Journal of PowerAWEA 2010. American Wind Energy Association ProjectsErik and Jason Kemper. 2009. Wind Plant Ramping Behavior.

  14. Wind Energy Benefits, Wind Powering America (WPA) (Fact Sheet), Wind And Water Power Program (WWPP)

    Broader source: Energy.gov [DOE]

    This fact sheet outlines the top 10 benefits of wind energy, including cost, water savings, job creation, indigenous resource, and low operating costs.

  15. Stochastic Modeling of Multi-Area Wind Power Production

    E-Print Network [OSTI]

    Oren, Shmuel S.

    Stochastic Modeling of Multi-Area Wind Power Production Anthony Papavasiliou Department we present a stochastic model for multi-area wind production that is used for planning reserves model accounts for the inter-temporal and spatial dependencies of multi-area wind power production

  16. Ris-R-Report Power fluctuations from large wind farms -

    E-Print Network [OSTI]

    Abstract (max. 2000 char.): Experience from power system operation with the first large offshore wind farm acquired at the two large offshore wind farms in Denmark are applied to validate the models. FinallyRisø-R-Report Power fluctuations from large wind farms - Final report Poul Sørensen, Pierre Pinson

  17. Dynamic wind turbine models in power system simulation tool

    E-Print Network [OSTI]

    Dynamic wind turbine models in power system simulation tool DIgSILENT Anca D. Hansen, Florin Iov Iov, Poul Sørensen, Nicolaos Cutululis, Clemens Jauch, Frede Blaabjerg Title: Dynamic wind turbine system simulation tool PowerFactory DIgSILENT for different wind turbine concepts. It is the second

  18. FEED-IN TARIFFS AND OFFSHORE WIND POWER DEVELOPMENT

    E-Print Network [OSTI]

    Firestone, Jeremy

    FEED-IN TARIFFS AND OFFSHORE WIND POWER DEVELOPMENT Prepared by Jon Lilley, Blaise Sheridan, Dawn.......................................................................................................................... 25 FERC Clarification as Applied to Offshore Wind........................................................................................................................ 28 #12; 3 Feed-in Tariffs and Offshore Wind Power Development Prepared Pursuant to DOE Grant Em

  19. Electric power from offshore wind via synoptic-scale interconnection

    E-Print Network [OSTI]

    Firestone, Jeremy

    Electric power from offshore wind via synoptic-scale interconnection Willett Kemptona,1 , Felipe M regional estimate, Kempton et al. (2) calculated that two-thirds of the offshore wind power off the U in the U.S. Atlantic region is already underway. Fig. 1 shows as black squares offshore wind developments

  20. The Potential Wind Power Resource in Australia: A New Perspective*

    E-Print Network [OSTI]

    The Potential Wind Power Resource in Australia: A New Perspective* Willow Hallgren, Udaya Bhaskar: globalchange@mit.edu Website: http://globalchange.mit.edu/ #12;The Potential Wind Power Resource in Australia density, and analyzes the variation of these characteristics with current and potential wind turbine hub

  1. The Potential Wind Power Resource in Australia: A New Perspective

    E-Print Network [OSTI]

    The Potential Wind Power Resource in Australia: A New Perspective Willow Hallgren, Udaya Bhaskar;1 The Potential Wind Power Resource in Australia: A New Perspective Willow Hallgren* , Udaya Bhaskar Gunturu intermittency can potentially be mitigated by the aggregation of geographically dispersed wind farms. Our

  2. System-Wide Emissions Implications of Increased Wind Power Penetration

    E-Print Network [OSTI]

    Kemner, Ken

    of incorporating wind energy into the electric power system. We present a detailed emissions analysis based on comprehensive modeling of power system operations with unit commitment and economic dispatch for different wind of both cycling and start-ups of thermal power plants in analyzing emissions from an electric power system

  3. The Political Economy of Wind Power in China

    E-Print Network [OSTI]

    Swanson, Ryan Landon

    2011-01-01T23:59:59.000Z

    plants each week,? and wind power‘s current share of total electricity generationplants, an examination of China‘s efforts to integrate wind power into its electricity generationelectricity generation mix. It is important to note that in 2009, coal-fired power plants

  4. Wind Energy Technology Module | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov YouKizildere IRaghuraji Agro IndustriesTown ofNationwideWTEDBird,Wilsonville, Oregon: EnergyWind EnergyTechnology Module

  5. Low-Maintenance Wind Power System

    E-Print Network [OSTI]

    Rasson, Joseph E

    2010-01-01T23:59:59.000Z

    Improved Vertical Axis Wind Turbine and Aerodynamic ControlDarrieus Vertical Axis Wind Turbines and Aerodynamic Control

  6. Wind technology roadmap | OpenEI Community

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are being directedAnnualProperty Edit withTianlinPapers Home Kyoung's pictureWind Power EnergiaPortaltechnology roadmap

  7. Pitfalls of modeling wind power using Markov chains

    E-Print Network [OSTI]

    Kirtley, James L., Jr.

    An increased penetration of wind turbines have given rise to a need for wind speed/power models that generate realistic synthetic data. Such data, for example, might be used in simulations to size energy storage or spinning ...

  8. The Political Economy of Wind Power in China

    E-Print Network [OSTI]

    Swanson, Ryan Landon

    2011-01-01T23:59:59.000Z

    Policies for Renewable Energy-the example of China‘s windframework,? Energy Policy 32 (2004): ?PR China,? Global WindWind Power in China: Policy and development challenges,? Energy Policy

  9. The Potential Wind Power Resource in Australia: A New Perspective

    E-Print Network [OSTI]

    Hallgren, Willow

    Australia is considered to have very good wind resources, and the utilization of this renewable energy resource is increasing. Wind power installed capacity increased by 35% from 2006 to 2011 and is predicted to account ...

  10. The Potential Wind Power Resource in Australia: A New Perspective

    E-Print Network [OSTI]

    Hallgren, Willow

    Australia’s wind resource is considered to be very good, and the utilization of this renewable energy resource is increasing rapidly: wind power installed capacity increased by 35% from 2006 to 2011 and is predicted to ...

  11. Hi-Q Rotor - Low Wind Speed Technology

    SciTech Connect (OSTI)

    Todd E. Mills; Judy Tatum

    2010-01-11T23:59:59.000Z

    The project objective was to optimize the performance of the Hi-Q Rotor. Early research funded by the California Energy Commission indicated the design might be advantageous over state-of-the-art turbines for collecting wind energy in low wind conditions. The Hi-Q Rotor is a new kind of rotor targeted for harvesting wind in Class 2, 3, and 4 sites, and has application in areas that are closer to cities, or 'load centers.' An advantage of the Hi-Q Rotor is that the rotor has non-conventional blade tips, producing less turbulence, and is quieter than standard wind turbine blades which is critical to the low-wind populated urban sites. Unlike state-of-the-art propeller type blades, the Hi-Q Rotor has six blades connected by end caps. In this phase of the research funded by DOE's Inventions and Innovation Program, the goal was to improve the current design by building a series of theoretical and numeric models, and composite prototypes to determine a best of class device. Development of the rotor was performed by aeronautical engineering and design firm, DARcorporation. From this investigation, an optimized design was determined and an 8-foot diameter, full-scale rotor was built and mounted using a Bergey LX-1 generator and furling system which were adapted to support the rotor. The Hi-Q Rotor was then tested side-by-side against the state-of-the-art Bergey XL-1 at the Alternative Energy Institute's Wind Test Center at West Texas State University for six weeks, and real time measurements of power generated were collected and compared. Early wind tunnel testing showed that the cut-in-speed of the Hi-Q rotor is much lower than a conventional tested HAWT enabling the Hi-Q Wind Turbine to begin collecting energy before a conventional HAWT has started spinning. Also, torque at low wind speeds for the Hi-Q Wind Turbine is higher than the tested conventional HAWT and enabled the wind turbine to generate power at lower wind speeds. Based on the data collected, the results of our first full-scale prototype wind turbine proved that higher energy can be captured at lower wind speeds with the new Hi-Q Rotor. The Hi-Q Rotor is almost 15% more productive than the Bergey from 6 m/s to 8 m/s, making it ideal in Class 3, 4, and 5 wind sites and has application in the critical and heretofore untapped areas that are closer to cities, 'load centers,' and may even be used directly in urban areas. The additional advantage of the Hi-Q Rotor's non-conventional blade tips, which eliminates most air turbulence, is noise reduction which makes it doubly ideal for populated urban areas. Hi-Q Products recommends one final stage of development to take the Hi-Q Rotor through Technology Readiness Levels 8-9. During this stage of development, the rotor will be redesigned to further increase efficiency, match the rotor to a more suitable generator, and lower the cost of manufacturing by redesigning the structure to allow for production in larger quantities at lower cost. Before taking the rotor to market and commercialization, it is necessary to further optimize the performance by finding a better generator and autofurling system, ones more suitable for lower wind speeds and rpms should be used in all future testing. The potential impact of this fully developed technology will be the expansion and proliferation of energy renewal into the heretofore untapped Class 2, 3, 4, and 5 Wind Sites, or the large underutilized sites where the wind speed is broken by physical features such as mountains, buildings, and trees. Market estimates by 2011, if low wind speed technology can be developed are well above: 13 million homes, 675,000 commercial buildings, 250,000 public facilities. Estimated commercial exploitation of the Hi-Q Rotor show potential increase in U.S. energy gained through the clean, renewable wind energy found in low and very low wind speed sites. This new energy source would greatly impact greenhouse emissions as well as the public sector's growing energy demands.

  12. Synoptic and local influences on boundary layer processes, with an application to California wind power

    E-Print Network [OSTI]

    Mansbach, David K.

    2010-01-01T23:59:59.000Z

    maps showing locations of wind power conversion facilities,of US winds and wind power at 80 m derived fromEvaluation of global wind power. Journal of Geo- physical

  13. Future of Wind Energy Technology in the United States

    SciTech Connect (OSTI)

    Thresher, R.; Robinson, M.; Veers, P.

    2008-10-01T23:59:59.000Z

    This paper describes the status of wind energy in the United States as of 2007, its cost, the potential for growth, offshore development, and potential technology improvements.

  14. arctic wind technology: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    and Utilization Websites Summary: Renewable Energy Center California Off-shore Wind Technology Assessment 12;California Renewable EnergyRESEARCH RESULTS FORUM FOR RENEWABLE...

  15. National Wind Technology Center to Debut New Dynamometer (Fact Sheet)

    SciTech Connect (OSTI)

    Not Available

    2013-05-01T23:59:59.000Z

    New test facility will be used to accelerate the development and deployment of next-generation offshore and land-based wind energy technologies.

  16. Technology Incubator for Wind Energy Innovations Funding Opportunity...

    Office of Environmental Management (EM)

    robust non-invasive wake measurement technologies that can be deployed in wind farms, are environmentally safe, and are capable of measuring wake velocities, meandering,...

  17. Sandia National Laboratories: DOE/Sandia Scaled Wind Farm Technology

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Sandia Scaled Wind Farm Technology New Facility Tool at SWiFT Makes Rotor Work More Efficient On January 22, 2014, in Energy, Facilities, News, News & Events, Partnership,...

  18. Wind: wind power density GIS data at 50m above ground and 1km...

    Open Energy Info (EERE)

    GIS ... Dataset Activity Stream Wind: wind power density GIS data at 50m above ground and 1km resolution for Ghana from NREL (Abstract):  Raster GIS data, exported as BIL...

  19. Wind: wind power density GIS data at 50m above ground and 1km...

    Open Energy Info (EERE)

    file, 50 m wind power density for eastern China. (Purpose): To provide information on the wind resource potential in eastern China. Values range from 0 to 3079 Wm2. (Supplemental...

  20. The Political Economy of Wind Power in China

    E-Print Network [OSTI]

    Swanson, Ryan Landon

    2011-01-01T23:59:59.000Z

    the risk of default on power purchase contracts [being] oneon Supervision of Power-Grid Enterprise Purchases of Fullgrid companies purchase wind power at the price fixed by the

  1. Wind Power Variability, Its Cost, and Effect on Power Plant Emissions

    E-Print Network [OSTI]

    Wind Power Variability, Its Cost, and Effect on Power Plant Emissions A Dissertation Submitted The recent growth in wind power is transforming the operation of electricity systems by introducing. As a result, system operators are learning in real-time how to incorporate wind power and its variability

  2. Heilongjiang Lishu Wind Power | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are being directedAnnual Siteof Energy 2,AUDIT REPORTEnergyFarms AHefei Sungrow Power Supply Co Ltd SPSLishu Wind

  3. Padoma Wind Power LLC | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are being directedAnnual Siteof Energy 2,AUDIT REPORTEnergyFarmsPowerKaitianOstsee WindEnergy InformationPadoma

  4. Northwestern Wind Power | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are beingZealand Jump to: navigation, searchOfRoseConcerns Jumpsource History ViewTexas: EnergyWind Power Jump to:

  5. Shiloh Wind Power Project | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are beingZealand Jump to:Ezfeedflag JumpID-f < RAPID‎ |Rippey JumpAirPower Partners WindSherbino 2ShikunIII

  6. CECIC Wind Power Zhangbei | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are being directedAnnual Siteof Energy 2,AUDIT REPORT Americium/CuriumAguaBBBWind-BrizaHKC Wind Power Company

  7. Moraine Wind Power Project | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are beingZealand Jump to: navigation, searchOfRose BendMiasole IncMinutemanVistaZephyr) Jump to: navigation,Wind Power

  8. Neppel Wind Power Project | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are beingZealand Jump to: navigation, searchOfRoseConcerns Jump to:Neppel Wind Power Project Jump to: navigation,

  9. Laizhou Luneng Wind Power | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are being directedAnnual SiteofEvaluatingGroup |Jilin Zhongdiantou NewKorea PartsLLNLLaizhou Luneng Wind Power Jump to:

  10. Wind Power Energia | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are being directedAnnualProperty Edit withTianlinPapers Home Kyoung's pictureWind Power Energia Jump to: navigation,

  11. Wind Power Ltd | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are being directedAnnualProperty Edit withTianlinPapers Home Kyoung's pictureWind Power Energia Jump to:

  12. Desert Wind Power | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are being directedAnnualPropertyd8c-a9ae-f8521cbb8489 No revision hasda62829c05bGabbs ValleyWind Power Jump to:

  13. Fenner Wind Power Project | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are being directedAnnualPropertyd8c-a9ae-f8521cbb8489 NoEurope BV JumpFederal Highway AdministrationFellowsWind Power

  14. Wind Power: How Much, How Soon, and At What Cost?

    SciTech Connect (OSTI)

    Wiser, Ryan H; Hand, Maureen

    2010-01-01T23:59:59.000Z

    The global wind power market has been growing at a phenomenal pace, driven by favorable policies towards renewable energy and the improving economics of wind projects. On a going forward basis, utility-scale wind power offers the potential for significant reductions in the carbon footprint of the electricity sector. Specifically, the global wind resource is vast and, though accessing this potential is not costless or lacking in barriers, wind power can be developed at scale in the near to medium term at what promises to be an acceptable cost.

  15. Power System Modeling of 20percent Wind-Generated Electricity by 2030

    E-Print Network [OSTI]

    Hand, Maureen

    2008-01-01T23:59:59.000Z

    demand in future years. Technology cost and performanceAssumptions Land-Based Wind Technology Cost $1730/kW in 2005Shallow Offshore Wind Technology Cost Wind Technology

  16. Wind Power: How Much, How Soon, and At What Cost?

    E-Print Network [OSTI]

    Wiser, Ryan H

    2010-01-01T23:59:59.000Z

    GW, predominantly from hydropower plants (Table 2). This isIf one excludes large hydropower, however, this figure dropsGeneration Technology Large Hydropower Small Hydropower Wind

  17. Use of wind power forecasting in operational decisions.

    SciTech Connect (OSTI)

    Botterud, A.; Zhi, Z.; Wang, J.; Bessa, R.J.; Keko, H.; Mendes, J.; Sumaili, J.; Miranda, V. (Decision and Information Sciences); (INESC Porto)

    2011-11-29T23:59:59.000Z

    The rapid expansion of wind power gives rise to a number of challenges for power system operators and electricity market participants. The key operational challenge is to efficiently handle the uncertainty and variability of wind power when balancing supply and demand in ths system. In this report, we analyze how wind power forecasting can serve as an efficient tool toward this end. We discuss the current status of wind power forecasting in U.S. electricity markets and develop several methodologies and modeling tools for the use of wind power forecasting in operational decisions, from the perspectives of the system operator as well as the wind power producer. In particular, we focus on the use of probabilistic forecasts in operational decisions. Driven by increasing prices for fossil fuels and concerns about greenhouse gas (GHG) emissions, wind power, as a renewable and clean source of energy, is rapidly being introduced into the existing electricity supply portfolio in many parts of the world. The U.S. Department of Energy (DOE) has analyzed a scenario in which wind power meets 20% of the U.S. electricity demand by 2030, which means that the U.S. wind power capacity would have to reach more than 300 gigawatts (GW). The European Union is pursuing a target of 20/20/20, which aims to reduce greenhouse gas (GHG) emissions by 20%, increase the amount of renewable energy to 20% of the energy supply, and improve energy efficiency by 20% by 2020 as compared to 1990. Meanwhile, China is the leading country in terms of installed wind capacity, and had 45 GW of installed wind power capacity out of about 200 GW on a global level at the end of 2010. The rapid increase in the penetration of wind power into power systems introduces more variability and uncertainty in the electricity generation portfolio, and these factors are the key challenges when it comes to integrating wind power into the electric power grid. Wind power forecasting (WPF) is an important tool to help efficiently address this challenge, and significant efforts have been invested in developing more accurate wind power forecasts. In this report, we document our work on the use of wind power forecasting in operational decisions.

  18. Sizing Storage and Wind Generation Capacities in Remote Power Systems

    E-Print Network [OSTI]

    Victoria, University of

    Sizing Storage and Wind Generation Capacities in Remote Power Systems by Andy Gassner B Capacities in Remote Power Systems by Andy Gassner B.Sc., University of Wisconsin ­ Madison, 2003 Supervisory and small power systems. However, the variability due to the stochastic nature of the wind resource

  19. Ris-R-1257(EN) Isolated Systems with Wind Power

    E-Print Network [OSTI]

    energy in isolated communities. So far most studies of isolated systems with wind power have been case and economical feasibility of isolated power supply systems with wind energy. General guidelines and checklists project costs 24 5.5.2 Cost of Energy, COE 25 5.5.3 Value of Energy, VOE 25 Primary power supply 25

  20. WARP: A modular wind power system for distributed electric utility application

    SciTech Connect (OSTI)

    Weisbrich, A.L. [ENECO, West Simsbury, CT (United States)] [ENECO, West Simsbury, CT (United States); Ostrow, S.L.; Padalino, J.P. [Raytheon Engineers and Constructors, New York, NY (United States)] [Raytheon Engineers and Constructors, New York, NY (United States)

    1996-07-01T23:59:59.000Z

    Steady development of wind turbine technology, and the accumulation of wind farm operating experience, have resulted in the emergence of wind power as a potentially attractive source of electricity for utilities. Since wind turbines are inherently modular, with medium-sized units typically in the range of a few hundred kilowatts each, they lend themselves well to distributed generation service. A patented wind power technology, the Toroidal Accelerator Rotor Platform (TARP) Windframe, forms the basis for a proposed network-distributed, wind power plant combining electric generation and transmission. While heavily building on proven wind turbine technology, this system is projected to surpass traditional configuration windmills through a unique distribution/transmission combination, superior performance, user-friendly operation and maintenance, and high availability and reliability. Furthermore, its environmental benefits include little new land requirements, relatively attractive appearance, lower noise and EMI/TV interference, and reduced avian (bird) mortality potential. Its cost of energy is projected to be very competitive, in the range of from approximately 2{cents}/kWh to 5{cents}/kWh, depending on the wind resource.

  1. Optimization Online - The Worst-case Wind Power Scenario for ...

    E-Print Network [OSTI]

    German Morales-España

    2014-09-16T23:59:59.000Z

    Sep 16, 2014 ... The Worst-case Wind Power Scenario for Adaptive Robust Unit Commitment Problems. German Morales-España(gmorales ***at*** kth.se).

  2. Wind Power Siting: Public Acceptance and Land Use

    Wind Powering America (EERE)

    by the Alliance for Sustainable Energy, LLC. Wind Power Siting: Public Acceptance and Land Use Suzanne Tegen WINDExchange Webinar June 17, 2015 2 Overview * Current NREL Research *...

  3. Concentrating Solar Power Resources and Technologies | Department...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Concentrating Solar Power Resources and Technologies Concentrating Solar Power Resources and Technologies Photo of a CSP dish glistening in the sun. Multiple solar mirrors reflect...

  4. Power System Modeling of 20percent Wind-Generated Electricity by 2030

    E-Print Network [OSTI]

    Hand, Maureen

    2008-01-01T23:59:59.000Z

    Assumptions Land-Based Wind Technology Cost $1730/kW in 2005Shallow Offshore Wind Technology Cost Wind Technologyare modeled by WinDS, the costs of building transmission

  5. 20% Wind Energy by 2030 - Chapter 6: Wind Power Markets Summary...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    6: Wind Power Markets Summary Slides California: 20% by 2017 State renewable energy incentives Illinois: 15% by 2012 New York: 25% by 2013 Renewable portfolio standards (RPS) * 25...

  6. Maximum power tracking control scheme for wind generator systems

    E-Print Network [OSTI]

    Mena Lopez, Hugo Eduardo

    2008-10-10T23:59:59.000Z

    The purpose of this work is to develop a maximum power tracking control strategy for variable speed wind turbine systems. Modern wind turbine control systems are slow, and they depend on the design parameters of the turbine and use wind and/or rotor...

  7. Maximum power tracking control scheme for wind generator systems

    E-Print Network [OSTI]

    Mena, Hugo Eduardo

    2009-05-15T23:59:59.000Z

    The purpose of this work is to develop a maximum power tracking control strategy for variable speed wind turbine systems. Modern wind turbine control systems are slow, and they depend on the design parameters of the turbine and use wind and/or rotor...

  8. Wind Power Resource Assessment in Ohio and Puerto Rico

    E-Print Network [OSTI]

    Womeldorf, Carole

    Wind Power Resource Assessment in Ohio and Puerto Rico: A Motivational and Educational Tool Juan University, Athens, Ohio Abstract This paper presents an educational guide and example of a wind resource calculations. New data representing wind speed and direction for locations in Ohio and Puerto Rico

  9. Offshore Wind Power Experiences, Potential and Key Issues for

    E-Print Network [OSTI]

    offshore wind farms are installed in British, Swedish and Danish waters, and present-day costs in 2015, 2030 and 2050 14 3.1 Offshore wind farms under construction and in planning stage 14 3Offshore Wind Power Experiences, Potential and Key Issues for Deployment Jørgen Lemming, Poul Erik

  10. Maximum power tracking control scheme for wind generator systems 

    E-Print Network [OSTI]

    Mena, Hugo Eduardo

    2009-05-15T23:59:59.000Z

    The purpose of this work is to develop a maximum power tracking control strategy for variable speed wind turbine systems. Modern wind turbine control systems are slow, and they depend on the design parameters of the turbine and use wind and/or rotor...

  11. Maximum power tracking control scheme for wind generator systems 

    E-Print Network [OSTI]

    Mena Lopez, Hugo Eduardo

    2008-10-10T23:59:59.000Z

    The purpose of this work is to develop a maximum power tracking control strategy for variable speed wind turbine systems. Modern wind turbine control systems are slow, and they depend on the design parameters of the turbine and use wind and/or rotor...

  12. Optimal Bidding Strategies for Wind Power Producers with Meteorological Forecasts

    E-Print Network [OSTI]

    Giannitrapani, Antonello

    bid is computed by exploiting the forecast energy price for the day ahead market, the historical wind renewable energy resources, such as wind and photovoltaic, has grown rapidly. It is well known the problem of optimizing energy bids for an independent Wind Power Producer (WPP) taking part

  13. Fast Verification of Wind Turbine Power Summary of Project Results

    E-Print Network [OSTI]

    Fast Verification of Wind Turbine Power Curves: Summary of Project Results by: Cameron Brown ­ s equation on high frequency wind turbine measurement data sampled at one sample per second or more. The aim's Nordtank wind turbine at the Risø site, the practical application of this new method was tested

  14. Ex Post Analysis of Economic Impacts from Wind Power Development in U.S. Counties

    E-Print Network [OSTI]

    Brown, Jason P.

    2014-01-01T23:59:59.000Z

    use requirements of modern wind power plants in the United2002. Economic impacts of wind power in Kittitas County:Office, 2004. Renewable energy: Wind power’s contribution to

  15. Wind Energy Benefits, Wind Powering America (WPA) (Fact Sheet)

    SciTech Connect (OSTI)

    Not Available

    2011-04-01T23:59:59.000Z

    This fact sheet outlines the top 10 benefits of wind energy, including cost, water savings, job creation, indigenous resource, and low operating costs.

  16. Power Generation Asset Management Technology Roadmap M

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    be done to determine optimal sensor deployment to address these criteria. TC8 Incorporate turbine layouts, make efforts and operational status within wind power plants to have more...

  17. Power Performance Test Report for the SWIFT Wind Turbine

    SciTech Connect (OSTI)

    Mendoza, I.; Hur, J.

    2012-12-01T23:59:59.000Z

    This report summarizes the results of a power performance test that NREL conducted on the SWIFT wind turbine. This test was conducted in accordance with the International Electrotechnical Commission's (IEC) standard, Wind Turbine Generator Systems Part 12: Power Performance Measurements of Electricity Producing Wind Turbines, IEC 61400-12-1 Ed.1.0, 2005-12. However, because the SWIFT is a small turbine as defined by IEC, NREL also followed Annex H that applies to small wind turbines. In these summary results, wind speed is normalized to sea-level air density.

  18. Annual Report on U.S. Wind Power Installation, Cost, and Performance Trends: 2006

    E-Print Network [OSTI]

    2008-01-01T23:59:59.000Z

    Western Wind, and Midwest Wind Energy. Table 4. Merger andHorizon) Noble Power CPV Wind Catamount Western Wind EnergyCoastal Wind Energy LLC Tierra Energy, LLC Renewable

  19. The effects of energy storage properties and forecast accuracy on mitigating variability in wind power generation

    E-Print Network [OSTI]

    Jaworsky, Christina A

    2013-01-01T23:59:59.000Z

    Electricity generation from wind power is increasing worldwide. Wind power can offset traditional fossil fuel generators which is beneficial to the environment. However, wind generation is unpredictable. Wind speeds have ...

  20. Surpassing Expectations: State of the U.S. Wind Power Market

    E-Print Network [OSTI]

    Bolinger, Mark A

    2009-01-01T23:59:59.000Z

    on U.S. Wind Power Installation, Cost, and Performancecontinued to put upward pressure on wind turbine costs,wind project costs, and wind power prices in 2007. Since

  1. Wind Power Forecasting Error Distributions: An International Comparison; Preprint

    SciTech Connect (OSTI)

    Hodge, B. M.; Lew, D.; Milligan, M.; Holttinen, H.; Sillanpaa, S.; Gomez-Lazaro, E.; Scharff, R.; Soder, L.; Larsen, X. G.; Giebel, G.; Flynn, D.; Dobschinski, J.

    2012-09-01T23:59:59.000Z

    Wind power forecasting is expected to be an important enabler for greater penetration of wind power into electricity systems. Because no wind forecasting system is perfect, a thorough understanding of the errors that do occur can be critical to system operation functions, such as the setting of operating reserve levels. This paper provides an international comparison of the distribution of wind power forecasting errors from operational systems, based on real forecast data. The paper concludes with an assessment of similarities and differences between the errors observed in different locations.

  2. How Do Wind and Solar Power Affect Grid Operations: The Western Wind and Solar Integration Study

    SciTech Connect (OSTI)

    Lew, D.; Milligan, M.; Jordan, G.; Freeman, L.; Miller, N.; Clark, K.; Piwko, R.

    2009-01-01T23:59:59.000Z

    The Western Wind and Solar Integration Study is one of the largest regional wind and solar integration studies to date, examining the operational impact of up to 35% wind, photovoltaics, and concentrating solar power on the WestConnect grid in Arizona, Colorado, Nevada, New Mexico, and Wyoming. This paper reviews the scope of the study, the development of wind and solar datasets, and the results to date on three scenarios.

  3. BPA supports wind power for the Pacific Northwest - Mar 2009...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Northwest wind power boom is continuing, and much of this growth is occurring in the heart of the Bonneville Power Administration system. The agency now has more than 2,000...

  4. Novel Power Electronics Systems for Wind Energy Applications: Final Report; Period of Performance: August 24, 1999 -- November 30, 2002

    SciTech Connect (OSTI)

    Erickson, R.; Angkititrakul, S.; Al-Naseem, O.; Lujan, G.

    2004-10-01T23:59:59.000Z

    The objective of this work was to develop new approaches to the power electronics of variable-speed wind power systems, with the goal of improving the associated cost of energy. Of particular importance is the converter efficiency at low-wind operating points. Developing converter approaches that maintain high efficiency at partial power, without sacrificing performance at maximum power, is desirable, as is demonstrating an approach that can use emerging power component technologies to attain these performance goals with low projected capital costs. In this report, we show that multilevel conversion is an approach that can meet these performance requirements. In the wind power application, multilevel conversion proves superior to conventional converter technologies because it is callable to high power and higher voltage levels, it extends the range of high converter efficiency to lower wind speeds, and it allows superior low-voltage fast-switching semiconductor devices to be used in high-voltage high-power applications.

  5. System-wide emissions implications of increased wind power penetration.

    SciTech Connect (OSTI)

    Valentino, L.; Valenzuela, V.; Botterud, A.; Zhou, Z.; Conzelmann, G. (Decision and Information Sciences); (Univ. of Illinois, Champaign/Urbana); (Georgia Institute of Technology)

    2012-01-01T23:59:59.000Z

    This paper discusses the environmental effects of incorporating wind energy into the electric power system. We present a detailed emissions analysis based on comprehensive modeling of power system operations with unit commitment and economic dispatch for different wind penetration levels. First, by minimizing cost, the unit commitment model decides which thermal power plants will be utilized based on a wind power forecast, and then, the economic dispatch model dictates the level of production for each unit as a function of the realized wind power generation. Finally, knowing the power production from each power plant, the emissions are calculated. The emissions model incorporates the effects of both cycling and start-ups of thermal power plants in analyzing emissions from an electric power system with increasing levels of wind power. Our results for the power system in the state of Illinois show significant emissions effects from increased cycling and particularly start-ups of thermal power plants. However, we conclude that as the wind power penetration increases, pollutant emissions decrease overall due to the replacement of fossil fuels.

  6. A Letter from Patrick Gilman: Wind Powering America Is Now Stakeholder Engagement and Outreach

    Broader source: Energy.gov [DOE]

    Patrick Gilman, Wind Energy Deployment manager, explains why Wind Powering America's name is in the process of being changed.

  7. Wind Power Development in the United States: Current Progress, Future Trends

    E-Print Network [OSTI]

    Wiser, Ryan H

    2009-01-01T23:59:59.000Z

    high levels of wind generation. Figure 5. Installed Windis that the increased wind generation offsets both coal andmuch higher levels of wind power generation than currently

  8. Wind Power Development in the United States: Current Progress, Future Trends

    E-Print Network [OSTI]

    Wiser, Ryan H

    2009-01-01T23:59:59.000Z

    supply curve for wind using cost and performance assumptionspressure on installed wind project costs while the industryon U.S. Wind Power Installation, Cost, and Performance

  9. Henan Mingdu Wind Power Co Ltd aka He Nan Ming Du Feng Dian Limited...

    Open Energy Info (EERE)

    Company) Place: Jiaozuo, Henan Province, China Sector: Wind energy Product: Wind turbine blades provider. References: Henan Mingdu Wind Power Co Ltd (aka He Nan Ming Du Feng...

  10. Annual Report on U.S. Wind Power Installation, Cost, and Performance Trends: 2006

    E-Print Network [OSTI]

    2008-01-01T23:59:59.000Z

    Power, Exergy, U.S. Wind Force, Wind Capital Group,Developer enXco Navitas US Wind Force Atlantic Renewable

  11. Annual Report on U.S. Wind Power Installation, Cost, and Performance Trends: 2006

    E-Print Network [OSTI]

    2008-01-01T23:59:59.000Z

    to Drive Wind Development. . . . . . . . . . . . . . .5 GE Wind Is the Dominant Turbine Manufacturer, with SiemensAnnual Report on U.S. Wind Power Installation, Cost, and

  12. Synoptic and local influences on boundary layer processes, with an application to California wind power

    E-Print Network [OSTI]

    Mansbach, David K.

    2010-01-01T23:59:59.000Z

    California o?shore wind energy potential. Renewable Energy,2008: Ex- ploring wind energy potential o? the Californiafor estimates of wind power potential. Journal of Applied

  13. Wind Powering America's Wind for Schools Team Honored with Wirth...

    Broader source: Energy.gov (indexed) [DOE]

    Second Quarter 2012 edition of the Wind Program R&D Newsletter. The University of Colorado at Denver and the Wirth Chair awarded the Energy Department's National Renewable Energy...

  14. The Impact of Wind Power Projects on Residential Property Values in the United States: A Multi-Site Hedonic Analysis

    E-Print Network [OSTI]

    Hoen, Ben

    2010-01-01T23:59:59.000Z

    2002) Economic Impacts of Wind Power in Kittitas County, WA.about Large Offshore Wind Power: Underlying Factors. EnergyOpinion on Offshore Wind Power - Interim Report. University

  15. Estimated global ocean wind power potential from QuikSCAT observations, accounting for turbine characteristics and siting

    E-Print Network [OSTI]

    Capps, Scott B; Zender, Charles S

    2010-01-01T23:59:59.000Z

    ZENDER: GLOBAL OCEAN WIND POWER POTENTIAL Serpetzoglou, E. ,Estimated global ocean wind power potential from QuikSCATEstimated global ocean wind power potential from QuikSCAT

  16. Economic Development Impacts of Wind Power: A Comparative Analysis of Impacts within the Western Governors' Association States; Preprint

    SciTech Connect (OSTI)

    Tegen, S.; Milligan, M.; Goldberg, M.

    2007-06-01T23:59:59.000Z

    This paper uses NREL's newest Jobs and Economic Development Impacts (JEDI II) model to assess economic impacts from alternative power technologies, with a focus on wind energy, for a variety of states.

  17. EA-1750: Smart Grid, Center for Commercialization of Electric Technology, Technology Solutions for Wind Integration in ERCOT, Houston, Texas

    Broader source: Energy.gov [DOE]

    This EA evaluates the potential environmental impacts of providing a financial assistance grant under the American Recovery and Reinvestment Act of 2009 to the Center for Commercialization of Electric Technology to facilitate the development and demonstration of a multi-faceted, synergistic approach to managing fluctuations in wind power within the Electric Reliability Council of Texas transmission grid.

  18. Comment on "Air Emissions Due to Wind and Solar Power" and Supporting Information

    E-Print Network [OSTI]

    Mills, Andrew D.

    2011-01-01T23:59:59.000Z

    due to wind and solar power. Environ. Sci. Technol. (2)Emissions Due to Wind and Solar Power” Andrew Mills, ? , †due to wind and solar power. Environ. Sci. Technol. (2)

  19. Analysis of Wind Power and Load Data at Multiple Time Scales

    E-Print Network [OSTI]

    Coughlin, Katie

    2011-01-01T23:59:59.000Z

    Huei. 2005. Primer on Wind Power for Utility Applications.Wan, Yih-Huei. 2004. Wind Power Plant Behaviors: Analysesof Long-Term Wind Power Data. National Renewable Energy Lab

  20. Surpassing Expectations: State of the U.S. Wind Power Market

    E-Print Network [OSTI]

    Bolinger, Mark A

    2009-01-01T23:59:59.000Z

    The Annual Report on U.S. Wind Power Installation, Cost, andState of the U.S. Wind Power Market Intro Sidebar: The U.S.Annual Report on U.S. Wind Power Installation, Cost, and

  1. Yinhe Avantis Wind Power Co Ltd formerly known as Avantis Yinhe...

    Open Energy Info (EERE)

    Yinhe Avantis Wind Power Co Ltd formerly known as Avantis Yinhe Wind Power Co Ltd Jump to: navigation, search Name: Yinhe Avantis Wind Power Co Ltd (formerly known as Avantis Yinhe...

  2. Power Control and Optimization of Photovoltaic and Wind Energy Conversion Systems /

    E-Print Network [OSTI]

    Ghaffari, Azad

    2013-01-01T23:59:59.000Z

    be realized by capturing wind power at altitudes over the2011. [2] ——, “High altitude wind power systems: A survey onOckels, “Optimal cross-wind towing and power generation with

  3. Annual Report on U.S. Wind Power Installation, Cost, and Performance Trends: 2006

    E-Print Network [OSTI]

    2008-01-01T23:59:59.000Z

    Annual Report on U.S. Wind Power Installation, Cost, and3 U.S. Wind Power Capacity Increased by 27% inAre Significant. . . . . . . 9 Wind Power Prices Are Up in

  4. Wind Power Development in the United States: Current Progress, Future Trends

    E-Print Network [OSTI]

    Wiser, Ryan H

    2009-01-01T23:59:59.000Z

    Annual Report on U.S. Wind Power Installation, Cost, andWind Power Development in the United States: Current94720 Abstract: The U.S. wind power industry is in an era of

  5. Worldwide wind/diesel hybrid power system study: Potential applications and technical issues

    SciTech Connect (OSTI)

    King, W.R.; Johnson, B.L. III (Science Applications International Corp., McLean, VA (USA))

    1991-04-01T23:59:59.000Z

    The world market potential for wind/diesel hybrid technology is a function of the need for electric power, the availability of sufficient wind resource to support wind/diesel power, and the existence of buyers with the financial means to invest in the technology. This study includes data related to each of these three factors. This study does not address market penetration, which would require analysis of application specific wind/diesel economics. Buyer purchase criteria, which are vital to assessing market penetration, are discussed only generally. Countries were screened for a country-specific market analysis based on indicators of need and wind resource. Both developed countries and less developed countries'' (LDCs) were screened for wind/diesel market potential. Based on the results of the screening, ten countries showing high market potential were selected for more extensive market analyses. These analyses provide country-specific market data to guide wind/diesel technology developers in making design decisions that will lead to a competitive product. Section 4 presents the country-specific data developed for these analyses, including more extensive wind resource characterization, application-specific market opportunities, business conditions, and energy market characterizations. An attempt was made to identify the potential buyers with ability to pay for wind/diesel technology required to meet the application-specific market opportunities identified for each country. Additionally, the country-specific data are extended to corollary opportunities in countries not covered by the study. Section 2 gives recommendations for wind/diesel research based on the findings of the study. 86 refs.

  6. Analysis of Wind Power Generation of Texas

    E-Print Network [OSTI]

    Liu, Z.; Haberl, J.; Subbarao, K.; Baltazar, J. C.

    from Jul 2002 to Jan 2003 Degradation Analysis - On average, no degradation observed for nine wind farms analyzed over 4-year period. Application of Method 1 to New Site- Sweetwater I Wind Farm ? Energy Systems Laboratory, Texas A&M University Page 3...&M University Page 10 Weather Data: NOAA- ABI 1999 and 2005 Hourly Wind Speed NOAA -ABI Hourly Wind Speed -1999 0 10 20 30 40 Jan-99 Feb-99 M ar-99 Apr-99 M ay-99 Jun-99 Jul-99 Aug-99 Sep-99 Oct-99 Nov-99 Dec-99 W in d Spe ed [m ph ] NOAA -ABI Hourly Wind...

  7. Comparison of Wind Power and Load Forecasting Error Distributions: Preprint

    SciTech Connect (OSTI)

    Hodge, B. M.; Florita, A.; Orwig, K.; Lew, D.; Milligan, M.

    2012-07-01T23:59:59.000Z

    The introduction of large amounts of variable and uncertain power sources, such as wind power, into the electricity grid presents a number of challenges for system operations. One issue involves the uncertainty associated with scheduling power that wind will supply in future timeframes. However, this is not an entirely new challenge; load is also variable and uncertain, and is strongly influenced by weather patterns. In this work we make a comparison between the day-ahead forecasting errors encountered in wind power forecasting and load forecasting. The study examines the distribution of errors from operational forecasting systems in two different Independent System Operator (ISO) regions for both wind power and load forecasts at the day-ahead timeframe. The day-ahead timescale is critical in power system operations because it serves the unit commitment function for slow-starting conventional generators.

  8. Limits to the power density of very large wind farms

    E-Print Network [OSTI]

    Nishino, Takafumi

    2013-01-01T23:59:59.000Z

    A simple analysis is presented concerning an upper limit of the power density (power per unit land area) of a very large wind farm located at the bottom of a fully developed boundary layer. The analysis suggests that the limit of the power density is about 0.38 times $\\tau_{w0}U_{F0}$, where $\\tau_{w0}$ is the natural shear stress on the ground (that is observed before constructing the wind farm) and $U_{F0}$ is the natural or undisturbed wind speed averaged across the height of the farm to be constructed. Importantly, this implies that the maximum extractable power from such a very large wind farm will not be proportional to the cubic of the wind speed at the farm height, or even the farm height itself, but be proportional to $U_{F0}$.

  9. Wind Power Price Trends in the United States

    SciTech Connect (OSTI)

    Bolinger, Mark; Wiser, Ryan

    2009-07-15T23:59:59.000Z

    For the fourth year in a row, the United States led the world in adding new wind power capacity in 2008, and also surpassed Germany to take the lead in terms of cumulative installed wind capacity. The rapid growth of wind power in the U.S. over the past decade (Figure 1) has been driven by a combination of increasingly supportive policies (including the Federal production tax credit (PTC) and a growing number of state renewables portfolio standards), uncertainty over the future fuel costs and environmental liabilities of natural gas and coal-fired power plants, and wind's competitive position among generation resources. This article focuses on just the last of these drivers - i.e., trends in U.S. wind power prices - over the period of strong capacity growth since 1998.

  10. The Great Plains Wind Power Test Facility

    SciTech Connect (OSTI)

    Schroeder, John

    2014-01-31T23:59:59.000Z

    This multi-year, multi-faceted project was focused on the continued development of a nationally-recognized facility for the testing, characterization, and improvement of grid-connected wind turbines, integrated wind-water desalination systems, and related educational and outreach topics. The project involved numerous faculty and graduate students from various engineering departments, as well as others from the departments of Geosciences (in particular the Atmospheric Science Group) and Economics. It was organized through the National Wind Institute (NWI), which serves as an intellectual hub for interdisciplinary and transdisciplinary research, commercialization and education related to wind science, wind energy, wind engineering and wind hazard mitigation at Texas Tech University (TTU). Largely executed by an academic based team, the project resulted in approximately 38 peer-reviewed publications, 99 conference presentations, the development/expansion of several experimental facilities, and two provisional patents.

  11. Systems and methods for an integrated electrical sub-system powered by wind energy

    DOE Patents [OSTI]

    Liu, Yan (Ballston Lake, NY); Garces, Luis Jose (Niskayuna, NY)

    2008-06-24T23:59:59.000Z

    Various embodiments relate to systems and methods related to an integrated electrically-powered sub-system and wind power system including a wind power source, an electrically-powered sub-system coupled to and at least partially powered by the wind power source, the electrically-powered sub-system being coupled to the wind power source through power converters, and a supervisory controller coupled to the wind power source and the electrically-powered sub-system to monitor and manage the integrated electrically-powered sub-system and wind power system.

  12. Wind Power Partners '94 Wind Farm | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are beingZealand Jump to:Ezfeedflag JumpID-fTriWildcat 1 Wind Project Jump to:Wilson Hot SpringNevada:Data0-'92 Wind4

  13. Remote sensing for wind power potential: a prospector's handbook

    SciTech Connect (OSTI)

    Wade, J.E.; Maule, P.A.; Bodvarsson, G.; Rosenfeld, C.L.; Woolley, S.G.; McClenahan, M.R.

    1983-02-01T23:59:59.000Z

    Remote sensing can aid in identifying and locating indicators of wind power potential from the terrestrial, marine, and atmospheric environments (i.e.: wind-deformed trees, white caps, and areas of thermal flux). It is not considered as a tool for determining wind power potential. A wide variety of remotely sensed evidence is described in terms of the scale at which evidence of wind power can be identified, and the appropriate remote sensors for finding such evidence. Remote sensing can be used for regional area prospecting using small-scale imagery. The information from such small-scale imagery is most often qualitative, and if it is transitory, examination of a number of images to verify presistence of the feature may be required. However, this evidence will allow rapid screening of a large area. Medium-scale imagery provides a better picture of the evidence obtained from small-scale imagery. At this level it is best to use existing imagery. Criteria relating to land use, accessibility, and proximity of candidate sites to nearby transmission lines can also be effectively evaluated from medium-scale imagery. Large-scale imagery provides the most quantitative evidence of the strength of wind. Wind-deformed trees can be identified at a large number of sites using only a few hours in locally chartered aircraft. A handheld 35mm camera can adequately document any evidence of wind. Three case studies that employ remote sensing prospecting techniques are described. Based on remotely sensed evidence, the wind power potential in three geographically and climatically diverse areas of the United States is estimated, and the estimates are compared to actual wind data in those regions. In addition, the cost of each survey is discussed. The results indicate that remote sensing for wind power potential is a quick, cost effective, and fairly reliable method for screening large areas for wind power potential.

  14. Fault Analysis at a Wind Power Plant for One Year of Observation: Preprint

    SciTech Connect (OSTI)

    Muljadi, E.; Mills, Z.; Foster, R.; Conto, J.; Ellis, A.

    2008-07-01T23:59:59.000Z

    This paper analyzes the fault characteristics observed at a wind power plant, and the behavior of the wind power plant under fault events.

  15. Building a New Energy Future with Wind Power (Revised) (Fact Sheet)

    SciTech Connect (OSTI)

    Not Available

    2013-01-01T23:59:59.000Z

    This fact sheet provides an overview of the U.S. Department of Energy's Wind and Water Power Program's wind power research activities.

  16. FOUR ESSAYS ON OFFSHORE WIND POWER POTENTIAL, DEVELOPMENT, REGULATORY FRAMEWORK, AND INTEGRATION

    E-Print Network [OSTI]

    Firestone, Jeremy

    FOUR ESSAYS ON OFFSHORE WIND POWER POTENTIAL, DEVELOPMENT, REGULATORY FRAMEWORK, AND INTEGRATION 2010 Amardeep Dhanju All Rights Reserved #12;FOUR ESSAYS ON OFFSHORE WIND POWER POTENTIAL, DEVELOPMENT

  17. Live Webcast on Recent Wind Energy Technology Advances

    Broader source: Energy.gov [DOE]

    The Energy Department will present a live webcast titled “Recent Wind Technology Advances” on April 16, 2014, from 3:00 to 4:00 p.m. Eastern Standard Time.

  18. Wind Turbine Inspection Technology Reaches New Heights | GE Global...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Wind Turbine Inspection Technology Reaches New Heights Click to email this to a friend (Opens in new window) Share on Facebook (Opens in new window) Click to share (Opens in new...

  19. MHK Technologies/Oregon State University Columbia Power Technologies...

    Open Energy Info (EERE)

    Jump to: navigation, search << Return to the MHK database homepage Oregon State University Columbia Power Technologies Direct Drive Point Absorber.jpg Technology Profile...

  20. Wind power manufacturing and supply chain summit USA.

    SciTech Connect (OSTI)

    Hill, Roger Ray

    2010-12-01T23:59:59.000Z

    The area of wind turbine component manufacturing represents a business opportunity in the wind energy industry. Modern wind turbines can provide large amounts of electricity, cleanly and reliably, at prices competitive with any other new electricity source. Over the next twenty years, the US market for wind power is expected to continue to grow, as is the domestic content of installed turbines, driving demand for American-made components. Between 2005 and 2009, components manufactured domestically grew eight-fold to reach 50 percent of the value of new wind turbines installed in the U.S. in 2009. While that growth is impressive, the industry expects domestic content to continue to grow, creating new opportunities for suppliers. In addition, ever-growing wind power markets around the world provide opportunities for new export markets.

  1. Final Scientific Report - Wind Powering America State Outreach Project

    SciTech Connect (OSTI)

    Sinclair, Mark; Margolis, Anne

    2012-02-01T23:59:59.000Z

    The goal of the Wind Powering America State Outreach Project was to facilitate the adoption of effective state legislation, policy, finance programs, and siting best practices to accelerate public acceptance and development of wind energy. This was accomplished by Clean Energy States Alliance (CESA) through provision of informational tools including reports and webinars as well as the provision of technical assistance to state leaders on wind siting, policy, and finance best practices, identification of strategic federal-state partnership activities for both onshore and offshore wind, and participation in regional wind development collaboratives. The Final Scientific Report - Wind Powering America State Outreach Project provides a summary of the objectives, activities, and outcomes of this project as accomplished by CESA over the period 12/1/2009 - 11/30/2011.

  2. WPA Omnibus Award MT Wind Power Outreach

    SciTech Connect (OSTI)

    Brian Spangler, Manager Energy Planning and Renewables

    2012-01-30T23:59:59.000Z

    The objective of this grant was to further the development of Montanaâ??s vast wind resources for small, medium, and large scale benefits to Montana and the nation. This was accomplished through collaborative work with wind industry representatives, state and local governments, the agricultural community, and interested citizens. Through these efforts MT Dept Environmental Quality (DEQ) was able to identify development barriers, educate and inform citizens, as well as to participate in regional and national dialogue that will spur the development of wind resources. The scope of DEQâ??s wind outreach effort evolved over the course of this agreement from the development of the Montana Wind Working Group and traditional outreach efforts, to the current focus on working with the stateâ??s university system to deliver a workforce trained to enter the wind industry.

  3. NREL: Wind Research - NREL's Wind Technology Patents Boost Efficiency and

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level:Energy: Grid Integration Redefining What's Possible for Renewable Energy: GridTruck Platooning Testing Photofrom U.S. Wind

  4. Microturbine Power Conversion Technology Review

    SciTech Connect (OSTI)

    Staunton, R.H.

    2003-07-21T23:59:59.000Z

    In this study, the Oak Ridge National Laboratory (ORNL) is performing a technology review to assess the market for commercially available power electronic converters that can be used to connect microturbines to either the electric grid or local loads. The intent of the review is to facilitate an assessment of the present status of marketed power conversion technology to determine how versatile the designs are for potentially providing different services to the grid based on changes in market direction, new industry standards, and the critical needs of the local service provider. The project includes data gathering efforts and documentation of the state-of-the-art design approaches that are being used by microturbine manufacturers in their power conversion electronics development and refinement. This project task entails a review of power converters used in microturbines sized between 20 kW and 1 MW. The power converters permit microturbine generators, with their non-synchronous, high frequency output, to interface with the grid or local loads. The power converters produce 50- to 60-Hz power that can be used for local loads or, using interface electronics, synchronized for connection to the local feeder and/or microgrid. The power electronics enable operation in a stand-alone mode as a voltage source or in grid-connect mode as a current source. Some microturbines are designed to automatically switch between the two modes. The information obtained in this data gathering effort will provide a basis for determining how close the microturbine industry is to providing services such as voltage regulation, combined control of both voltage and current, fast/seamless mode transfers, enhanced reliability, reduced cost converters, reactive power supply, power quality, and other ancillary services. Some power quality improvements will require the addition of storage devices; therefore, the task should also determine what must be done to enable the power conversion circuits to accept a varying dc voltage source. The study will also look at technical issues pertaining to the interconnection and coordinated/compatible operation of multiple microturbines. It is important to know today if modifications to provide improved operation and additional services will entail complete redesign, selected component changes, software modifications, or the addition of power storage devices. This project is designed to provide a strong technical foundation for determining present technical needs and identifying recommendations for future work.

  5. Sandia National Laboratories: Wind & Water Power Newsletter

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    reports, papers, and events published by Sandia. This monthly newsletter is intended for wind industry partners, stakeholders, universities and potential partners. This issue...

  6. World-Unique Wind Facilities Designed to protect us from storms, harness the power of wind and

    E-Print Network [OSTI]

    Denham, Graham

    World-Unique Wind Facilities Designed to protect us from storms, harness the power of wind and develop sustainable cities, the Wind Engineering, Energy and the Environment (WindEEE) Institute at Western University is home to the world's first three-dimensional wind-testing chamber. Its facilities

  7. EA-1985: Virginia Offshore Wind Technology Advancement Project (VOWTAP), 24 nautical miles offshore of Virginia Beach, Virginia

    Broader source: Energy.gov [DOE]

    DOE is proposing to fund Virginia Electric and Power Company's Virginia Offshore Wind Technology Advancement Project (VOWTAP). The proposed VOWTAP project consists of design, construction and operation of a 12 megawatt offshore wind facility located approximately 24 nautical miles off the coast of Virginia Beach, VA on the Outer Continental Shelf.

  8. Effect of ocean surface currents on wind stress, heat flux, and wind power input to the ocean

    E-Print Network [OSTI]

    Thompson, LuAnne

    Effect of ocean surface currents on wind stress, heat flux, and wind power input to the ocean, J. T., and L. Thompson (2006), Effect of ocean surface currents on wind stress, heat flux, and wind power input to the ocean, Geophys. Res. Lett., 33, L09604, doi:10.1029/2006GL025784. 1. Introduction [2

  9. EA-1726: Kahuku Wind Power, LLC Wind Power Generation Facility, O'ahu, HI

    Broader source: Energy.gov (indexed) [DOE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742Energy China U.S.ContaminationJuly 2011D APPENDIXKahuku Wind Power, LLC, Construction of the|

  10. Wind for Schools Project Power System Brief, Wind Powering America Fact Sheet Series

    Wind Powering America (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov YouKizildere IRaghuraji Agro IndustriesTownDells, Wisconsin:Deployment Activities Printable80 mPilot ProjectWind Powering

  11. Datang Jilin Wind Power Stockholding Co Ltd Formerly Jilin Noble Wind Power

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are being directedAnnual Siteof Energy 2,AUDIT REPORTEnergy Offshore Place:WindOilCowalJilin Power Generation

  12. Wind Power Today, 2010, Wind and Water Power Program (WWPP) | Department of

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels DataDepartment of Energy Your DensityEnergy U.S.-China Electric VehicleCenters | Department ofofto PurchaseAprilWind PowerEnergy

  13. Wind Power Price Trends in the United States: Struggling to Remain Competitive in the Face of Strong Growth

    E-Print Network [OSTI]

    Bolinger, Mark A

    2009-01-01T23:59:59.000Z

    timeframe. Projected Wind Generation as % of Electricityrepresent the cost of wind generation. Wind Power Price (time-variability of wind generation is often such that its

  14. Estimated global ocean wind power potential from QuikSCAT observations, accounting for turbine characteristics and siting

    E-Print Network [OSTI]

    Capps, Scott B; Zender, Charles S

    2010-01-01T23:59:59.000Z

    Wind Energy Association (2009), American Wind Energy Asso-ciation annual wind industry report: Year ending 2008,2005), Evaluation of global wind power, J. Geophys. Res. ,

  15. Wind Energy Technology Trends: Comparing and Contrasting Recent Cost and Performance Forecasts (Poster)

    SciTech Connect (OSTI)

    Lantz, E.; Hand, M.

    2010-05-01T23:59:59.000Z

    Poster depicts wind energy technology trends, comparing and contrasting recent cost and performance forecasts.

  16. Blades of Glory: Wind Technology Bringing Us Closer To a Clean Energy Future

    Broader source: Energy.gov [DOE]

    Making sure the best, most efficient wind energy technologies are developed and manufactured here in America.

  17. Proceedings of National Avian-Wind Power Planning Meeting IV

    SciTech Connect (OSTI)

    NWCC Avian Subcommittee

    2001-05-01T23:59:59.000Z

    OAK-B135 The purpose of the fourth meeting was to (1) share research and update research conducted on avian wind interactions (2) identify questions and issues related to the research results, (3) develop conclusions about some avian/wind power issues, and (4) identify questions and issues for future avian research.

  18. Ris-R-1256(EN) Isolated Systems with Wind Power

    E-Print Network [OSTI]

    of methods and guidelines rather than "universal solutions" for the use of wind energy in isolated the technical and economical feasibility of isolated power supply systems with wind energy. As a part of the project the following tasks were carried out: Review of literature, field measurements in Egypt

  19. Electrical Collection and Transmission Systems for Offshore Wind Power: Preprint

    SciTech Connect (OSTI)

    Green, J.; Bowen, A.; Fingersh, L.J.; Wan, Y.

    2007-03-01T23:59:59.000Z

    The electrical systems needed for offshore wind farms to collect power from wind turbines--and transmit it to shore--will be a significant cost element of these systems. This paper describes the development of a simplified model of the cost and performance of such systems.

  20. Variability of wind power near Oklahoma City and implications for siting of wind turbines

    SciTech Connect (OSTI)

    Kessler, E.; Eyster, R.

    1987-09-01T23:59:59.000Z

    Data from five sites near Oklahoma City were examined to assess wind power availability. Wind turbines of identical manufacture were operated at three of the sites, one of which was also equipped with anemometers on a 100-ft tower. Comprehensive anemometric data were available from the other two sites. The study indicates that the average wind speed varies substantially over Oklahoma's rolling plains, which have often been nominally regarded as flat for purposes of wind power generation. Average wind differences may be as much as 5 mph at 20 ft above ground level, and 7 mph at 100 ft above ground level for elevation differences of about 200 ft above mean sea level, even in the absence of substantial features of local terrain. Local altitude above mean sea level seems to be as influential as the shape of local terrain in determining the average wind speed. The wind turbine used at a meteorologically instrumented site in the study produced the power expected from it for the wind regime in which it was situated. The observed variations of local wind imply variations in annual kWh of as much as a factor of four between identical turbines located at similar heights above ground level in shallow valleys and on hilltops or elevated extended flat areas. 17 refs., 39 figs., 11 tabs.