Powered by Deep Web Technologies
Note: This page contains sample records for the topic "wind power research" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


1

NREL: Wind Research - Mariah Power's Windspire Wind Turbine Testing and  

NLE Websites -- All DOE Office Websites (Extended Search)

Mariah Power's Windspire Wind Turbine Testing and Results Mariah Power's Windspire Wind Turbine Testing and Results A video of Mariah Power's Windspire wind turbine. Text Version As part of the National Renewable Energy Laboratory and U.S. Department of Energy (NREL/DOE) Independent Testing project, NREL tested Mariah Power's Windspire Giromill small wind turbine at the National Wind Technology Center (NWTC) through January 14, 2009 when NREL terminated its testing. Read a chronology of events and letter from Mariah Power to NREL. The Windspire is a 1.2-kilowatt (kW) vertical-axis small wind turbine. The turbine tower is 9.1 meters tall, and its rotor area is 1.2 by 6.1 meters. The turbine has a permanent-magnet generator with a single-phase output at 120 volts AC. Testing Summary Testing was terminated January 14, 2009. Published test reports include

2

Wind power: executive summary on research on network wind power over the Pacific Northwest. Progress report, October 1979-September 1980  

SciTech Connect

This research in FY80 is composed of six primary tasks. These tasks include data collection and analysis, wind flow studies around an operational wind turbine generator (WTG), kite anemometer calibration, wind flow analysis and prediction, the Klickitat County small wind energy conversion system (SWECS) program, and network wind power analysis. The data collection and analysis task consists of four sections, three of which deal with wind flow site surveys and the fourth with collecting and analyzing wind data from existing data stations.

Baker, R.W.; Hewson, E.W.

1980-10-01T23:59:59.000Z

3

Wind Power  

NLE Websites -- All DOE Office Websites (Extended Search)

Wind Power As the accompanying map of New Mexico shows, the best wind power generation potential near WIPP is along the Delaware Mountain ridge line of the southern Guadalupe...

4

Wind Power Today  

SciTech Connect

Wind Power Today is an annual publication that provides an overview of the wind energy research conducted by the U.S. Department of Energy Wind and Hydropower Technologies Program.

Not Available

2006-05-01T23:59:59.000Z

5

Wind Power Today  

SciTech Connect

Wind Power Today is an annual publication that provides an overview of the wind energy research conducted by the U.S. Department of Energy Wind and Hydropower Technologies Program.

Not Available

2007-05-01T23:59:59.000Z

6

Research on Control System of High Power DFIG Wind Power System  

Science Journals Connector (OSTI)

Compared with constant speed constant frequency wind turbine, variable speed constant frequency wind turbine has many advantages: higher efficiency of wind energy converting to electric power, absorbing gust energy, smoothly cutting into the network ... Keywords: wind power, DFIG, high power, LQR, variable speed constant frequency, constant power control

Li Jianlin; Xu Honghua

2008-12-01T23:59:59.000Z

7

Wind Power Forecasting  

Science Journals Connector (OSTI)

The National Center for Atmospheric Research (NCAR) has configured a Wind Power Forecasting System for Xcel Energy that integrates high resolution and ensemble...

Sue Ellen Haupt; William P. Mahoney; Keith Parks

2014-01-01T23:59:59.000Z

8

HVDC Connected Offshore Wind Power Plants: Review and Outlook of Current Research  

E-Print Network (OSTI)

HVDC Connected Offshore Wind Power Plants: Review and Outlook of Current Research Jakob Glasdam-of-the-art review on grid integration of large offshore wind power plants (OWPPs) using high voltage direct voltage is to acquire in- depth knowledge of relevant operating phenomena in the offshore OWPP grid, rich with power

Bak, Claus Leth

9

Wind power and Wind power and  

E-Print Network (OSTI)

Wind power and the CDM #12; Wind power and the CDM Emerging practices in developing wind power 2005 Jyoti P. Painuly, Niels-Erik Clausen, Jørgen Fenhann, Sami Kamel and Romeo Pacudan #12; WIND POWER AND THE CDM Emerging practices in developing wind power projects for the Clean Development Mechanism Energy

10

DOE Science Showcase - Wind Power  

Office of Scientific and Technical Information (OSTI)

DOE Science Showcase - Wind Power DOE Science Showcase - Wind Power Wind Powering America Wind Powering America is a nationwide initiative of the U.S. Department of Energy's Wind Program designed to educate, engage, and enable critical stakeholders to make informed decisions about how wind energy contributes to the U.S. electricity supply. Wind Power Research Results in DOE Databases IEA Wind Task 26: The Past and Future Cost of Wind Energy, Work Package 2, Energy Citations Database NREL Triples Previous Estimates of U.S. Wind Power Potential, Energy Citations Database Dynamic Models for Wind Turbines and Wind Power Plants, DOE Information Bridge 2012 ARPA-E Energy Innovation Summit: Profiling General Compression: A River of Wind, ScienceCinema, multimedia Solar and Wind Energy Resource Assessment (SWERA) Data from the

11

Wind Farm Monitoring at Lake Benton II Wind Power Project - Equipment Only: Cooperative Research and Development Final Report, CRADA Number CRD-08-275  

SciTech Connect

Long-term, high-resolution wind turbine and wind power plant output data are important to assess the impact of wind power on grid operations and to derive meaningful statistics for better understanding of the variability nature of wind power. These data are used for many research and analyses activities consistent with the Wind Program mission: Establish a database of long-term wind power similar to other long-term renewable energy resource databases (e.g. solar irradiance and hydrology); produce meaningful statistics about long-term variation of wind power, spatial and temporal diversity of wind power, and the correlation of wind power, other renewable energy resources, and utility load; provide high quality, realistic wind power output data for system operations impact studies and wind plant and forecasting model validation.

Gevorgian, V.

2014-06-01T23:59:59.000Z

12

Offshore Wind Power USA  

Energy.gov (U.S. Department of Energy (DOE))

The Offshore Wind Power USA conference provides the latest offshore wind market updates and forecasts.

13

NREL: Wind Research - NREL and EPRI Actively Embrace Active Power Control  

NLE Websites -- All DOE Office Websites (Extended Search)

and EPRI Actively Embrace Active Power Control Systems for Wind Power and EPRI Actively Embrace Active Power Control Systems for Wind Power December 2, 2013 The Second Workshop on Active Power Control (APC) cohosted by the National Renewable Energy Laboratory (NREL) and the Electric Power Research Institute (EPRI) in Broomfield, Colorado, last May drew more than 60 industry experts from around the world to participate in a comprehensive discussion about the need for and impacts of active power controls from wind plants. Various forms of active power control can help stabilize the grid by enabling generating sources to increase or decrease power output to meet the constantly fluctuating needs of meeting the load demand and avoid events that can cause brownouts and power failures. The three forms of active power control discussed during the workshop were inertial control,

14

Proceedings Nordic Wind Power Conference  

E-Print Network (OSTI)

Estimation of Possible Power for Wind Plant Control Power Fluctuations from Offshore Wind Farms; Model Validation System grounding of wind farm medium voltage cable grids Faults in the Collection Grid of Offshore systems of wind turbines and wind farms. NWPC presents the newest research results related to technical

15

Wind Power Career Chat  

SciTech Connect

This document will teach students about careers in the wind energy industry. Wind energy, both land-based and offshore, is expected to provide thousands of new jobs in the next several decades. Wind energy companies are growing rapidly to meet America's demand for clean, renewable, and domestic energy. These companies need skilled professionals. Wind power careers will require educated people from a variety of areas. Trained and qualified workers manufacture, construct, operate, and manage wind energy facilities. The nation will also need skilled researchers, scientists, and engineers to plan and develop the next generation of wind energy technologies.

Not Available

2011-01-01T23:59:59.000Z

16

Wind Power Forecasting  

NLE Websites -- All DOE Office Websites (Extended Search)

Retrospective Reports 2011 Smart Grid Wind Integration Wind Integration Initiatives Wind Power Forecasting Wind Projects Email List Self Supplied Balancing Reserves Dynamic...

17

NREL: Wind Research - Research Staff  

NLE Websites -- All DOE Office Websites (Extended Search)

Research Staff Research Staff Here you will find contact information for NREL's research and support staff at the National Wind Technology Center. To learn more about us and our expertise, view our organizational charts and read the staff's biographies. Below is a listing of the research and support staff at the National Wind Technology Center. View organizational charts. Lab Program Manager, Wind and Water Power Program Brian Smith Program Integration, Wind and Water Power Program Elise DeGeorge Albert LiVecchi Dana Scholbrock Teresa Thadison Director, National Wind Technology Center Fort Felker, Center Director Laura Davis Kim Domenico Deputy Center Director, National Wind Technology Center Jim Green, Acting Research Fellow Bob Thresher Chief Engineer Paul Veers Wind Technology Research and Development

18

NREL: Wind Research - Projects  

NLE Websites -- All DOE Office Websites (Extended Search)

Projects Projects NREL's wind energy research and development projects focus on reducing the cost of wind technology and expanding access to wind energy sites. Our specialized technical expertise, comprehensive design and analysis tools, and unique testing facilities help industry overcome challenges to bringing new wind technology to the marketplace. Some of these success stories are described in NREL's Wind R&D Success Stories. We also work closely with universities and other national laboratories supporting fundamental research in wind technologies, including aerodynamics, aeroacoustics, and material sciences essential in the development of new blade technologies and advanced controls, power electronics, and testing to further refine drivetrain topology.

19

wind power station  

Science Journals Connector (OSTI)

wind power station [It may consist of just one wind turbine or a network of windmills] ? Windkraftanlage

2014-08-01T23:59:59.000Z

20

Wind Power  

Science Journals Connector (OSTI)

For off-shore wind energy, it is not economically profitable to locate wind turbines in waters with depths larger than about 40 m. For this reason, some floating turbine prototypes are being tested, which can be ...

Ricardo Guerrero-Lemus; José Manuel Martínez-Duart

2013-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "wind power research" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


21

Balancing of Wind Power.  

E-Print Network (OSTI)

?? In the future, renewable energy share, especially wind power share, in electricity generation is expected to increase. Due to nature of the wind, wind… (more)

Ülker, Muhammed Akif

2011-01-01T23:59:59.000Z

22

Wind for Schools Project Power System Brief, Wind Powering America...  

Wind Powering America (EERE)

Wind Powering America Fact Sheet Series Energy Efficiency & Renewable Energy Wind for Schools Project Power System Brief Wind for Schools Project Power System Brief Wind for...

23

Wyoming Wind Power Project (generation/wind)  

NLE Websites -- All DOE Office Websites (Extended Search)

Wind Power > Generation Hydro Power Wind Power Monthly GSP BPA White Book Dry Year Tools Firstgov Wyoming Wind Power Project (Foote Creek Rim I and II) Thumbnail image of wind...

24

Breeze Wind Power In China.  

E-Print Network (OSTI)

?? China is an energy production and consumption country, wind power is one of the greatest development potential energy.The authors use literature research methodology, case… (more)

wang, zhong tao

2012-01-01T23:59:59.000Z

25

NREL: Wind Research - Publications  

NLE Websites -- All DOE Office Websites (Extended Search)

Publications Publications The NREL wind research program develops publications about its R&D activities in wind energy technologies. Below you'll find links to recently published publications, links to the NREL Avian Literature and Publications Databases, and information about the Technical Library at the National Wind Technology Center (NWTC). The NWTC's quarterly newsletter, @NWTC, contains articles on current wind energy research projects and highlights the latest reports, papers, articles, and events published or sponsored by NREL. Subscribe to @NWTC. Selected Publications Featured Publication Large-scale Offshore Wind Power in the United States: Assessment of Opportunities and Barriers Here are some selected NWTC publications: 2011 Cost of Wind Energy Review Built-Environment Wind Turbine Roadmap

26

Wind Powering America: Wind Events  

Wind Powering America (EERE)

calendar.asp Lists upcoming wind calendar.asp Lists upcoming wind power-related events. en-us julie.jones@nrel.gov (Julie Jones) http://www.windpoweringamerica.gov/images/wpa_logo_sm.jpg Wind Powering America: Wind Events http://www.windpoweringamerica.gov/calendar.asp Pennsylvania Wind for Schools Educator Workshop https://www.regonline.com/builder/site/Default.aspx?EventID=1352684 http://www.windpoweringamerica.gov/filter_detail.asp?itemid=4068 Wed, 4 Dec 2013 00:00:00 MST 2014 Joint Action Workshop http://www.windpoweringamerica.gov/filter_detail.asp?itemid=3996 http://www.windpoweringamerica.gov/filter_detail.asp?itemid=3996 Mon, 21 Oct 2013 00:00:00 MST AWEA Wind Project Operations and Maintenance and Safety Seminar http://www.windpoweringamerica.gov/filter_detail.asp?itemid=4009 http://www.windpoweringamerica.gov/filter_detail.asp?itemid=4009 Mon, 21

27

Wind Powering America  

Wind Powering America (EERE)

These news items are notable additions These news items are notable additions to the Wind Powering America Web site. The Wind Powering America Web site reports recent national and state wind market changes by cataloging wind activities such as wind resource maps, small wind consumer's guides, local wind workshops, news articles, and publications in the areas of policy, public power, small wind, Native Americans, agricultural sector, economic development, public lands, and schools. en-us julie.jones@nrel.gov (Julie Jones) http://www.windpoweringamerica.gov/images/wpa_logo_sm.jpg Wind Powering America http://www.windpoweringamerica.gov/ Nominate an Electric Cooperative for Wind Power Leadership Award by January 15 http://www.windpoweringamerica.gov/filter_detail.asp?itemid=4076 http://www.windpoweringamerica.gov/filter_detail.asp?itemid=4076 Mon, 16

28

Wind Energy Benefits, Wind Powering America (WPA) (Fact Sheet...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Energy Benefits, Wind Powering America (WPA) (Fact Sheet), Wind And Water Power Program (WWPP) Wind Energy Benefits, Wind Powering America (WPA) (Fact Sheet), Wind And Water Power...

29

EA-1726: Kahuku Wind Power, LLC Wind Power Generation Facility...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

6: Kahuku Wind Power, LLC Wind Power Generation Facility, O'ahu, HI EA-1726: Kahuku Wind Power, LLC Wind Power Generation Facility, O'ahu, HI May 3, 2010 EA-1726: Final...

30

NREL: Wind Research - Offshore Wind Research  

NLE Websites -- All DOE Office Websites (Extended Search)

Offshore Wind Research Offshore Wind Research Photo of a European offshore wind farm. Early progress in European Offshore Wind Energy over the last decade provides a glimpse into the vast potential of the global offshore resource. For more than eight years, NREL has worked with the Department of Energy to become an international leader in offshore wind energy research. Capabilities NREL's offshore wind capabilities focus on critical areas that reflect the long-term needs of the offshore wind energy industry and the U.S. Department of Energy including: Offshore Design Tools and Methods Offshore Standards and Testing Energy Analysis of Offshore Systems Offshore Wind Resource Characterization Grid Integration of Offshore Wind Key Research NREL documented the status of offshore wind energy in the United States in

31

Research on Low Voltage Ride through of Doubly-Fed Induction Generator Wind Power System  

Science Journals Connector (OSTI)

Due to the double fed induction generator’s(DFIG) advantage of controlling active and reactive power independently and partly power converter, DFIG is becoming a popular type of wind power generation system. However, the converter is quite sensitive ...

Yongfeng Ren; Hongyan Xu; Jianlin Li; Shuju Hu

2008-12-01T23:59:59.000Z

32

NREL: Wind Research - Small Wind Turbine Research  

NLE Websites -- All DOE Office Websites (Extended Search)

Small Wind Turbine Research Small Wind Turbine Research The National Renewable Energy Laboratory and U.S. Department of Energy (NREL/DOE) Small Wind Project's objectives are to reduce barriers to wind energy expansion, stabilize the market, and expand the number of small wind turbine systems installed in the United States. "Small wind turbine" refers to a turbine smaller than or equal to 100 kilowatts (kW). "Distributed wind" includes small and midsize turbines (100 kW through 1 megawatt [MW]). Since 1996, NREL's small wind turbine research has provided turbine testing, turbine development, and prototype refinement leading to more commercially available small wind turbines. Work is conducted under the following areas. You can also learn more about state and federal policies

33

Wind power today  

SciTech Connect

This publication highlights initiatives of the US DOE`s Wind Energy Program. 1997 yearly activities are also very briefly summarized. The first article describes a 6-megawatt wind power plant installed in Vermont. Another article summarizes technical advances in wind turbine technology, and describes next-generation utility and small wind turbines in the planning stages. A village power project in Alaska using three 50-kilowatt turbines is described. Very brief summaries of the Federal Wind Energy Program and the National Wind Technology Center are also included in the publication.

NONE

1998-04-01T23:59:59.000Z

34

New England Wind Forum: Wind Power Technology  

Wind Powering America (EERE)

Wind Power Technology Wind Power Technology Modern wind turbines have become sophisticated power plants while the concept of converting wind energy to electrical energy remains quite simple. Follow these links to learn more about the science behind wind turbine technology. Wind Power Animation An image of a scene from the wind power animation. The animation shows how moving air rotates a wind turbine's blades and describes how the internal components work to produce electricity. It shows small and large wind turbines and the differences between how they are used, as stand alone or connected to the utility grid. How Wind Turbines Work Learn how wind turbines make electricity; what are the types, sizes, and applications of wind turbines; and see an illustration of the components inside a wind turbine.

35

Current status of research on optimum sizing of stand-alone hybrid solar–wind power generation systems  

Science Journals Connector (OSTI)

Solar and wind energy systems are omnipresent, freely available, environmental friendly, and they are considered as promising power generating sources due to their availability and topological advantages for local power generations. Hybrid solar–wind energy systems, uses two renewable energy sources, allow improving the system efficiency and power reliability and reduce the energy storage requirements for stand-alone applications. The hybrid solar–wind systems are becoming popular in remote area power generation applications due to advancements in renewable energy technologies and substantial rise in prices of petroleum products. This paper is to review the current state of the simulation, optimization and control technologies for the stand-alone hybrid solar–wind energy systems with battery storage. It is found that continued research and development effort in this area is still needed for improving the systems’ performance, establishing techniques for accurately predicting their output and reliably integrating them with other renewable or conventional power generation sources.

Wei Zhou; Chengzhi Lou; Zhongshi Li; Lin Lu; Hongxing Yang

2010-01-01T23:59:59.000Z

36

NREL: Wind Research - Midsize Wind Turbine Research  

NLE Websites -- All DOE Office Websites (Extended Search)

Midsize Wind Turbine Research Midsize Wind Turbine Research To facilitate the development and commercialization of midsize wind turbines (turbines with a capacity rating of more than 100 kW up to 1 MW), the U.S. Department of Energy (DOE) and NREL launched the Midsize Wind Turbine Development Project. In its latest study, NREL determined that there is a substantial market for midsize wind turbines. One of the most significant barriers to the midsize turbine market is the lack of turbines available for deployment; there are few midsize turbines on the market today. The objectives of the Midsize Wind Turbine Development Project are to reduce the barriers to wind energy expansion by filling an existing domestic technology gap; facilitate partnerships; accelerate maturation of existing U.S. wind energy businesses; and incorporate process improvement

37

Research on Cross-subsidy of Wind Farms Integrated and Injecting Power to the Grid  

Science Journals Connector (OSTI)

On the basis of a detailed analysis on power output of wind farms, this paper establishes a quantitative model of cross-subsidy between conventional power plants and wind farms and its identifying indicator through the technique of probabilistic production simulation and then analyzes a calculating instance with data from the IEEE-RTS system to base on. Results demonstrate the reasonability and effectiveness of this model. The work in this paper is helpful to market regulators and operators in accurately identifying the degree of wind farms’ cross-subsidy in a power system and taking effective measures to ensure the system's security, reliability and economy.

ZHAO Gao-qiang; QI Jian-xun; WANG Bao

2012-01-01T23:59:59.000Z

38

WINDExchange: What Is Wind Power?  

Wind Powering America (EERE)

animation to see how a wind turbine works or take a look inside. Wind power or wind energy describes the process by which the wind is used to generate mechanical power or...

39

NREL: Wind Research - Research and Development  

NLE Websites -- All DOE Office Websites (Extended Search)

Printable Version Wind Research Home Research & Development Utility-Scale Wind Turbines Offshore Wind Turbines Small Wind Turbines Grid Integration Market Acceleration...

40

NREL: Wind Research - National Wind Technology Center  

NLE Websites -- All DOE Office Websites (Extended Search)

Center Center The National Renewable Energy Laboratory's (NREL's) National Wind Technology Center (NWTC), located at the base of the foothills just south of Boulder, Colorado, is the nation's premier wind energy technology research facility. Built in 1993, the center provides an ideal environment for the development of advanced wind energy technologies. The goal of the research conducted at the center is to help industry reduce the cost of energy so that wind can compete with traditional energy sources, providing a clean, renewable alternative for our nation's energy needs. Research at the NWTC is organized under two main categories, Wind Technology Development and Testing and Operations. Illustration of the National Wind Technology Center's organization chart. Fort Felker is listed as the Center Director, with Mike Robinson, Deputy Center Director; Paul Veers, Chief Engineer, and Laura Davis and Dorothy Haldeman beneath him. The Associate Director position is empty. Beneath them is the Wind Technology Research and Development Group Manager, Mike Robinson; the Testing and Operations Group Manager, Dave Simms; and the Offshore Wind and Ocean Power Systems Acting Supervisor, Fort Felker.

Note: This page contains sample records for the topic "wind power research" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


41

Wind Powering America: New England Wind Forum  

Wind Powering America (EERE)

About the New England Wind Forum About the New England Wind Forum New England Wind Energy Education Project Historic Wind Development in New England State Activities Projects in New England Building Wind Energy in New England Wind Resource Wind Power Technology Economics Markets Siting Policy Technical Challenges Issues Small Wind Large Wind Newsletter Perspectives Events Quick Links to States CT MA ME NH RI VT Bookmark and Share The New England Wind Forum was conceived in 2005 as a platform to provide a single, comprehensive and objective source of up-to-date, Web-based information on a broad array of wind-energy-related issues pertaining to New England. The New England Wind Forum provides information to wind energy stakeholders through Web site features, periodic newsletters, and outreach activities. The New England Wind Forum covers the most frequently discussed wind energy topics.

42

New England Wind Forum: Wind Power Economics  

Wind Powering America (EERE)

State Activities Projects in New England Building Wind Energy in New England Wind Resource Wind Power Technology Economics Cost Components Determining Factors Influencing Wind Economics in New England How does wind compare to the cost of other electricity options? Markets Siting Policy Technical Challenges Issues Small Wind Large Wind Newsletter Perspectives Events Quick Links to States CT MA ME NH RI VT Bookmark and Share Wind Power Economics Long-Term Cost Trends Since the first major installations of commercial-scale wind turbines in the 1980s, the cost of energy from wind power projects has decreased substantially due to larger turbine generators, towers, and rotor lengths; scale economies associated with larger projects; improvements in manufacturing efficiency, and technological advances in turbine generator and blade design. These technological advances have allowed for higher generating capacities per turbine and more efficient capture of wind, especially at lower wind speeds.

43

Wind and Water Power Program Realignment | Department of Energy  

Office of Environmental Management (EM)

agencies, local communities, and research and development consortia. U.S. Department of Energy Wind Power Program Organization U.S. Department of Energy Wind Power Program...

44

Wind Powering America Webinar: Wind and Wildlife Interactions | Department  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

and Wildlife Interactions and Wildlife Interactions Wind Powering America Webinar: Wind and Wildlife Interactions November 23, 2011 - 2:08pm Addthis This webinar is part of the U.S. Department of Energy's Wind Powering America 2011 webinar series. This webinar will provide an overview of wind turbine and wildlife issues, including a summary of research plans by the American Wind and Wildlife Institute. Other topics will include an update of the U.S. Fish and Wildlife Service wind regulations and bat/wind turbine interactions. The webinar is free; no registration is required. More Addthis Related Articles Wind Powering America Webinar: Wind Power Economics: Past, Present, and Future Trends DOE Announces Webinar on Tying Energy Efficiency to Compensation and Performance Reviews, and More

45

Global Wind Power Installations  

Science Journals Connector (OSTI)

Several countries now have operational offshore wind power plants in Europe. These include Denmark, Sweden, the UK, the Netherlands, Belgium, Ireland, and Finland (see Table 8). Although significant development o...

Dr. Thomas Ackermann; Dr. Rena Kuwahata

2013-01-01T23:59:59.000Z

46

Global Wind Power Installations  

Science Journals Connector (OSTI)

Several countries now have operational offshore wind power plants in Europe. These include Denmark, Sweden, the UK, the Netherlands, Belgium, Ireland, and Finland (see Table 8). Although significant development o...

Dr. Thomas Ackermann; Dr. Rena Kuwahata

2012-01-01T23:59:59.000Z

47

Residential Wind Power  

E-Print Network (OSTI)

” Figure 3. “Wind Generators in Iowa – 2” Figure 4. “State Wind Power Capacity 2007” Figure 5. Annual average wind resource estimates in the contiguous United States (http://rredc.nrel.gov) Figure 6. “SkyStream Design Overview” Figure 7... crisis that raises crude oil prices hampering the price at the pump or commodity production and transportation. Many people do not even take the time to think about the impact to daily life that power and changes within the market play on their lives...

Willis, Gary

2011-12-16T23:59:59.000Z

48

Wind Power | Open Energy Information  

Open Energy Info (EERE)

Wind Power Wind Power Jump to: navigation, search Wind Power WIndfarm.Sunset.jpg Wind power is a form of solar energy.[1] Wind is caused by the uneven heating of the atmosphere by the sun, variations in the earth's surface, and rotation of the earth. Mountains, bodies of water, and vegetation all influence wind flow patterns[2], [3]. Wind energy (or wind power) describes the process by which wind is used to generate electricity. Wind turbines convert the energy in wind to electricity by rotating propeller-like blades around a rotor. The rotor turns the drive shaft, which turns an electric generator.[2] Three key factors affect the amount of energy a turbine can harness from the wind: wind speed, air density, and swept area.[4] Mechanical power can also be utilized directly for specific tasks such as

49

NREL: Wind Research - Awards  

NLE Websites -- All DOE Office Websites (Extended Search)

Awards NREL has received many awards for its technical innovations in wind energy. In addition, the research conducted at the National Wind Technology Center (NWTC) at NREL has led...

50

NREL: Wind Research - Controls Analysis  

NLE Websites -- All DOE Office Websites (Extended Search)

Controls Analysis Controls Analysis Photo of a man working inside the hub of a large 3-blades turbine. Working in the hub of Controls Advanced Research Turbine (CART) at the National Wind Technology Center (NWTC) Man in wind turbine hub viewed from inside a wind turbine's blade. At the National Wind Technology Center (NWTC), we design, implement, and test advanced wind turbine controls to maximize energy extraction and reduce structural dynamic loads. These control designs are based on linear models of the turbine that are simulated using specialized modeling software. The resulting advanced controls algorithms are field tested on the NWTC's Controls Advanced Research Turbines (CARTs). NWTC researchers are also studying blade pitch and generator torque, and employing advanced sensors to optimize power capture and reduce wind

51

NREL: Wind Research - Wind Energy Videos  

NLE Websites -- All DOE Office Websites (Extended Search)

Wind Energy Videos The National Wind Technology Center (NWTC) is pleased to offer video presentations of its world-class capabilities, facilities, research areas, and personnel. As...

52

TS Wind Power Developers | Open Energy Information  

Open Energy Info (EERE)

TS Wind Power Developers Jump to: navigation, search Name: TS Wind Power Developers Place: Satara, Maharashtra, India Sector: Wind energy Product: Setting up 30MW wind farm in...

53

Daqing Longjiang Wind Power | Open Energy Information  

Open Energy Info (EERE)

Longjiang Wind Power Jump to: navigation, search Name: Daqing Longjiang Wind Power Place: Daqing, Heilongjiang Province, China Zip: 163316 Sector: Wind energy Product: Local wind...

54

Heilongjiang Lishu Wind Power | Open Energy Information  

Open Energy Info (EERE)

Lishu Wind Power Jump to: navigation, search Name: Heilongjiang Lishu Wind Power Place: Heilongjiang Province, China Sector: Wind energy Product: China-based wind project developer...

55

Wind pro?le assessment for wind power purposes.  

E-Print Network (OSTI)

??Preliminary estimation of wind speed at the wind turbine hub height is critically important when planning new wind farms. Wind turbine power output is proportional… (more)

Sointu, Iida

2014-01-01T23:59:59.000Z

56

Wind power generating system  

SciTech Connect

Normally feathered propeller blades of a wind power generating system unfeather in response to the actuation of a power cylinder that responds to actuating signals. Once operational, the propellers generate power over a large range of wind velocities. A maximum power generation design point signals a feather response of the propellers so that once the design point is reached no increase in power results, but the system still generates power. At wind speeds below this maximum point, propeller speed and power output optimize to preset values. The propellers drive a positive displacement pump that in turn drives a positive displacement motor of the swash plate type. The displacement of the motor varies depending on the load on the system, with increasing displacement resulting in increasing propeller speeds, and the converse. In the event of dangerous but not clandestine problems developing in the system, a control circuit dumps hydraulic pressure from the unfeathering cylinder resulting in a predetermined, lower operating pressure produced by the pump. In the event that a problem of potentially cladestine consequence arises, the propeller unfeathering cylinder immediately unloads. Upon startup, a bypass around the motor is blocked, applying a pressure across the motor. The motor drives the generator until the generator reaches a predetermined speed whereupon the generator is placed in circuit with a utility grid and permitted to motor up to synchronous speed.

Schachle, Ch.; Schachle, E. C.; Schachle, J. R.; Schachle, P. J.

1985-03-12T23:59:59.000Z

57

Wind Wildlife Research Meeting X  

Energy.gov (U.S. Department of Energy (DOE))

The biennial Wind Wildlife Research Meeting provides an internationally recognized forum for researchers and wind-wildlife stakeholders to hear contributed papers, view research posters, and listen...

58

Water Power for a Clean Energy Future (Fact Sheet), Wind and Water Power Program (WWPP)  

Energy.gov (U.S. Department of Energy (DOE))

This fact sheet provides an overview of the Department of Energy's Wind and Water Power Program's water power research activities.

59

NREL: Wind Research - Grid Integration of Offshore Wind  

NLE Websites -- All DOE Office Websites (Extended Search)

Grid Integration of Offshore Wind Grid Integration of Offshore Wind Photograph of a wind turbine in the ocean. Located about 10 kilometers off the coast of Arklow, Ireland, the Arklow Bank offshore wind park consists of seven GE Wind 3.6-MW wind turbines. Much can be learned from the existing land-based integration research for handling the variability and uncertainty of the wind resource. Integration and Transmission One comprehensive grid integration study is the Eastern Wind Integration and Transmission Study (EWITS), in which offshore wind scenarios were analyzed. Nearly 80 GW of offshore wind was studied in the highest penetration scenario. Specific offshore grid distribution and transmission solutions were identified, including cost estimates. With the Atlantic coast likely to lead the way in offshore wind power deployment, EWITS is a benchmark for

60

New England Wind Forum: Buying Wind Power  

Wind Powering America (EERE)

Buying Wind Power Buying Wind Power On this page find information about: Green Marketing Renewable Energy Certificates Green Pricing Green Marketing Green power marketing refers to selling green power in the competitive marketplace, in which multiple suppliers and service offerings exist. In states that have established retail competition, customers may be able to purchase green power from a competitive supplier. Connecticut Connecticut Clean Energy Options Beginning in April 2005, Connecticut's two investor-owned utilities, Connecticut Light and Power and United Illuminating, began to offer a simple, affordable program to their customers for purchasing clean energy such as wind power. In late 2006, stakeholders started to explore a new offering that would convey the price stability of wind energy (and other renewable energy resources) to Connecticut consumers. This new offering is still under development.

Note: This page contains sample records for the topic "wind power research" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


61

Classification of wind power technologies  

Science Journals Connector (OSTI)

Literature offers many possibilities to classify wind power technologies, for example with respect to their ... which materials are required for the construction of wind power plants and which of them may become....

Anja Brumme

2014-01-01T23:59:59.000Z

62

NREL: Wind Research - Site Wind Resource Characteristics  

NLE Websites -- All DOE Office Websites (Extended Search)

Site Wind Resource Characteristics Site Wind Resource Characteristics A graphic showing the location of National Wind Technology Center and its wind power class 2. Click on the image to view a larger version. Enlarge image This graphic shows the wind power class at the National Wind Technology Center. You can download a printable copy. The National Wind Technology Center (NWTC) is on the Great Plains just miles from the Rocky Mountains. The site is flat and covered with short grasses. The terrain and lack of obstructions make the site highly suitable for testing wind turbines. Take a tour of the NWTC and its facilities to better understand its location and layout. Another prime feature of the NWTC is the strong directionality of the wind - most of the strong winds come within a few degrees of 285°. West of

63

Wind Powering America Webinar: Wind Power Economics: Past, Present, and  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Wind Powering America Webinar: Wind Power Economics: Past, Present, Wind Powering America Webinar: Wind Power Economics: Past, Present, and Future Trends Wind Powering America Webinar: Wind Power Economics: Past, Present, and Future Trends November 23, 2011 - 1:43pm Addthis Wind turbine prices in the United States have declined, on average, by nearly one-third since 2008, after doubling from 2002 through 2008. Over this entire period, the average nameplate capacity rating, hub height, and rotor swept area of turbines installed in the United States have increased significantly, while other design improvements have also boosted turbine energy production. In combination, these various trends have had a significant-and sometimes surprising-impact on the levelized cost of energy delivered by wind projects. This webinar will feature three related presentations that explore these

64

NREL: Wind Research - News  

NLE Websites -- All DOE Office Websites (Extended Search)

Below are some select news stories from the National Wind Technology Below are some select news stories from the National Wind Technology Center. Subscribe to the RSS feed RSS . Learn about RSS. January 3, 2014 New Modularization Framework Transforms FAST Wind Turbine Modeling Tool The U.S. Department of Energy's National Renewable Energy Laboratory (NREL) recently released an expanded version of its FAST wind turbine computer-aided engineering tool under a new modularization framework. January 2, 2014 The Denver Post Highlights the NWTC's New 5-MW Dynamometer On January 2, a reporter from The Denver Post toured the new 5-megawatt dynamometer test facility at the National Wind Technology Center (NWTC). Archives 2013 | 2012 | 2011 | 2010 | 2009 | 2008 | 2007 | 2006 Printable Version Wind Research Home Capabilities Projects Facilities

65

NREL: Wind Research - Facilities  

NLE Websites -- All DOE Office Websites (Extended Search)

Facilities Facilities Our facilities are designed to meet the wind industry's critical research needs with state-of-the-art design and testing facilities. NREL's unique and highly versatile facilities at the National Wind Technology Center offer research and analysis of wind turbine components and prototypes rated from 400 watts to 3 megawatts. Satellite facilities support the growth of wind energy development across the United States. National Wind Technology Center Facilities Our facilities are contained within a 305-acre area that comprises field test sites, test laboratories, industrial high-bay work areas, machine shops, electronics and instrumentation laboratories, and office areas. In addition, there are hundreds of test articles and supporting components such as turbines, meteorological towers, custom test apparatus, test sheds,

66

Wind Power: Options for Industry  

SciTech Connect

This six-page brochure outlines ways for industry to integrate wind power, including assessing wind power, building wind farms, using a developer, capitalizing on technology, enhancing the corporate image, and preparing RFPs. Company examples and information resources are also provided.

Not Available

2003-03-01T23:59:59.000Z

67

Guohua Qiqihaer Wind Power | Open Energy Information  

Open Energy Info (EERE)

Qiqihaer Wind Power Jump to: navigation, search Name: Guohua (Qiqihaer) Wind Power Place: Qiqihaer, Heilongjiang Province, China Zip: 161005 Sector: Wind energy Product: Guohua...

68

Surface wind speed distributions| Implications for climate and wind power.  

E-Print Network (OSTI)

?? Surface constituent and energy fluxes, and wind power depend non-linearly on wind speed and are sensitive to the tails of the wind distribution. Until… (more)

Capps, Scott Blair

2010-01-01T23:59:59.000Z

69

NREL: Wind Research - Utility-Scale Wind Turbine Research  

NLE Websites -- All DOE Office Websites (Extended Search)

wind turbine research addresses performance and reliability issues that large wind turbines experience throughout their lifespan and reduces system costs through innovative...

70

Active Power Controls from Wind Power: Bridging the Gaps  

SciTech Connect

This paper details a comprehensive study undertaken by the National Renewable Energy Laboratory, Electric Power Research Institute, and the University of Colorado to understand how the contribution of wind power providing active power control (APC) can benefit the total power system economics, increase revenue streams, improve the reliability and security of the power system, and provide superior and efficient response while reducing any structural and loading impacts that may reduce the life of the wind turbine or its components. The study includes power system simulations, control simulations, and actual field tests using turbines at NREL's National Wind Technology Center (NWTC). The study focuses on synthetic inertial control, primary frequency control, and automatic generation control, and analyzes timeframes ranging from milliseconds to minutes to the lifetime of wind turbines, locational scope ranging from components of turbines to large wind plants to entire synchronous interconnections, and additional topics ranging from economics to power system engineering to control design.

Ela, E.; Gevorgian, V.; Fleming, P.; Zhang, Y. C.; Singh, M.; Muljadi, E.; Scholbrook, A.; Aho, J.; Buckspan, A.; Pao, L.; Singhvi, V.; Tuohy, A.; Pourbeik, P.; Brooks, D.; Bhatt, N.

2014-01-01T23:59:59.000Z

71

New England Wind Forum: Selling Wind Power  

Wind Powering America (EERE)

Selling Wind Power Selling Wind Power Markets are either well-developed or developing for each of the 'products' produced by wind generators. These include electricity products and generation attributes. Electricity Electricity can be used in two ways: on-site (interconnected behind a retail customer's meter) of for sales of electricity over the electric grid. On-site generation can displace a portion of a customer's purchases of electricity from the grid. In addition, net metering rules are in place at the state level that in some cases allow generation in excess of on-site load to be sold back to the local utility (see state pages for net metering specifics). For sales over the electricity grid, the Independent System Operator of New England (ISO New England) creates and manages a wholesale market for electric energy, capacity, and ancillary services within the New England Power Pool (NEPOOL). Wind generators may sell their electric energy and capacity in spot markets organized by the ISO, or they may contract with wholesale buyers to sell these products for any term to buyers operating in the ISO New England marketplace. Wind generators do not generally produce other marketable ancillary services. The ISO has rules specific to the operation of wind generators reflecting operations, scheduling, calculation of installed capacity credit, and so forth.

72

Limits to Wind Power Utilization  

Science Journals Connector (OSTI)

...NEWMAN, B.G., SPACING OF WIND TURBINES IN LARGE ARRAYS, ENERGY...PUTNAM, P.C., POWER WIND 209 ( 1948 ). RAILLY, J...2.3 x 10"1 W) as the wind potential of the nation, ex-cluding offshore regions. This amounts to...

M. R. Gustavson

1979-04-06T23:59:59.000Z

73

Infinity Wind Power Inc | Open Energy Information  

Open Energy Info (EERE)

Inc Jump to: navigation, search Name: Infinity Wind Power, Inc. Place: Santa Barbara, California Zip: 93105 Sector: Renewable Energy, Wind energy Product: California-based wind...

74

Wind Power Associates LLC | Open Energy Information  

Open Energy Info (EERE)

Associates LLC Jump to: navigation, search Name: Wind Power Associates LLC Place: Goldendale, Washington State Sector: Wind energy Product: Wind farm developer and operater....

75

Definition: Wind power | Open Energy Information  

Open Energy Info (EERE)

Wind power Wind power Jump to: navigation, search Dictionary.png Wind power The amount of power available to a wind turbine depends on: air density, wind speed and the swept area of the rotor. While the power is proportional to air density and swept area, it varies with the cube of wind speed, so small changes in wind speed can have a relatively large impact on wind power.[1] View on Wikipedia Wikipedia Definition Wind power is the conversion of wind energy into a useful form of energy, such as using wind turbines to make electrical power, windmills for mechanical power, windpumps for water pumping or drainage, or sails to propel ships. Large wind farms consist of hundreds of individual wind turbines which are connected to the electric power transmission network. Offshore wind is steadier and stronger than on land, and offshore farms

76

The Political Economy of Wind Power in China  

E-Print Network (OSTI)

of wind power, as the integration of wind power, and thecompany, found that the integration of wind power into the

Swanson, Ryan Landon

2011-01-01T23:59:59.000Z

77

Estimated changes in wind speed and wind power density over the western High Plains, 1971–2000  

Science Journals Connector (OSTI)

This manuscript presents the results of research on the temporal patterns in wind speed and wind power density from 1971 to 2000. The ... Mountains in an area which has a proven wind power resource. Policies and ...

J. Scott Greene; Matthew Chatelain; Mark Morrissey…

2012-08-01T23:59:59.000Z

78

NREL: Wind Research - Offshore Wind Research  

NLE Websites -- All DOE Office Websites (Extended Search)

standards Third-party design verification of innovative floating and fixed-bottom wind turbines NREL's standards and testing capabilities address the need to validate our...

79

Brilliant Wind Turbine | GE Global Research  

NLE Websites -- All DOE Office Websites (Extended Search)

Brilliant(tm) Wind Turbines Push Power and Efficient Boundaries Brilliant(tm) Wind Turbines Push Power and Efficient Boundaries The conventional wisdom around wind is that the...

80

Probabilistic Wind Resource Assessment and Power Predictions  

E-Print Network (OSTI)

Probabilistic Wind Resource Assessment and Power Predictions Luca Delle Monache (lucadm Accurate wind resource assessment and power forecasts and reliable quanXficaXon of their uncertainty Mo5va5on · Power forecast: o Increase wind energy penetra

Firestone, Jeremy

Note: This page contains sample records for the topic "wind power research" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


81

Intra-hour wind power variability assessment using the conditional range metric : quantification, forecasting and applications.  

E-Print Network (OSTI)

??The research presented herein concentrates on the quantification, assessment and forecasting of intra-hour wind power variability. Wind power is intrinsically variable and, due to the… (more)

Boutsika, Thekla

2013-01-01T23:59:59.000Z

82

Wind Power , Introduction  

Science Journals Connector (OSTI)

Successful implementation of new technologies requires social acceptance. Historically, for the implementation of wind energy this was considered a relatively simple issue ... strategies. Without much study, soci...

Prof. Lennart Söder

2013-01-01T23:59:59.000Z

83

Wind Power , Introduction  

Science Journals Connector (OSTI)

Successful implementation of new technologies requires social acceptance. Historically, for the implementation of wind energy this was considered a relatively simple issue ... strategies. Without much study, soci...

Prof. Lennart Söder

2012-01-01T23:59:59.000Z

84

Wind Powering America Webinar: Wind Power Economics: Past, Present, and  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Power Economics: Past, Present, Power Economics: Past, Present, and Future Trends Wind Powering America Webinar: Wind Power Economics: Past, Present, and Future Trends November 23, 2011 - 1:43pm Addthis Wind turbine prices in the United States have declined, on average, by nearly one-third since 2008, after doubling from 2002 through 2008. Over this entire period, the average nameplate capacity rating, hub height, and rotor swept area of turbines installed in the United States have increased significantly, while other design improvements have also boosted turbine energy production. In combination, these various trends have had a significant-and sometimes surprising-impact on the levelized cost of energy delivered by wind projects. This webinar will feature three related presentations that explore these

85

Wind Powering America: Agricultural Podcasts  

Wind Powering America (EERE)

agricultural/podcasts.asp A series of agricultural/podcasts.asp A series of radio interviews on wind energy aimed at a rural stakeholder audience produced by Wind Powering America and the National Association of Farm Broadcasters. en-us julie.jones@nrel.gov (Julie Jones) http://www.windpoweringamerica.gov/images/wpa_logo_sm.jpg Wind Powering America: Agricultural Podcasts http://www.windpoweringamerica.gov/agricultural/podcasts.asp Wind Energy Forum Enhances Positives of Wind Production http://www.windpoweringamerica.gov/filter_detail.asp?itemid=4043 http://www.windpoweringamerica.gov/filter_detail.asp?itemid=4043 Thu, 14 Nov 2013 00:00:00 MST Rural Communities Benefit from Wind Energy's Continued Success http://www.windpoweringamerica.gov/filter_detail.asp?itemid=4021 http://www.windpoweringamerica.gov/filter_detail.asp?itemid=4021 Tue, 29

86

Models for monitoring wind farm power Andrew Kusiak*, Haiyang Zheng, Zhe Song  

E-Print Network (OSTI)

power plant. Researchers have applied different methodologies in studying wind farms. CameronModels for monitoring wind farm power Andrew Kusiak*, Haiyang Zheng, Zhe Song Department online 9 July 2008 Keywords: Wind farm Data mining Power prediction Monitoring Evolutionary computation

Kusiak, Andrew

87

Women of Wind Energy Honor Wind Program Researchers | Department...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Women of Wind Energy Honor Wind Program Researchers Women of Wind Energy Honor Wind Program Researchers August 1, 2013 - 2:54pm Addthis This is an excerpt from the Second Quarter...

88

Sinomatech Wind Power Blade aka Sinoma Science Technology Wind...  

Open Energy Info (EERE)

Page Edit History Facebook icon Twitter icon Sinomatech Wind Power Blade aka Sinoma Science Technology Wind Turbine Blade Co Ltd Jump to: navigation, search Name: Sinomatech...

89

2008 Wind Energy Projects, Wind Powering America (Poster)  

SciTech Connect

The Wind Powering America program produces a poster at the end of every calendar year that depicts new U.S. wind energy projects. The 2008 poster includes the following projects: Stetson Wind Farm in Maine; Dutch Hill Wind Farm in New York; Grand Ridge Wind Energy Center in Illinois; Hooper Bay, Alaska; Forestburg, South Dakota; Elbow Creek Wind Project in Texas; Glacier Wind Farm in Montana; Wray, Colorado; Smoky Hills Wind Farm in Kansas; Forbes Park Wind Project in Massachusetts; Spanish Fork, Utah; Goodland Wind Farm in Indiana; and the Tatanka Wind Energy Project on the border of North Dakota and South Dakota.

Not Available

2009-01-01T23:59:59.000Z

90

Are global wind power resource estimates overstated?  

Science Journals Connector (OSTI)

Estimates of the global wind power resource over land range from 56 to 400 TW. Most estimates have implicitly assumed that extraction of wind energy does not alter large-scale winds enough to significantly limit wind power production. Estimates that ignore the effect of wind turbine drag on local winds have assumed that wind power production of 2–4 W m?2 can be sustained over large areas. New results from a mesoscale model suggest that wind power production is limited to about 1 W m?2 at wind farm scales larger than about 100 km2. We find that the mesoscale model results are quantitatively consistent with results from global models that simulated the climate response to much larger wind power capacities. Wind resource estimates that ignore the effect of wind turbines in slowing large-scale winds may therefore substantially overestimate the wind power resource.

Amanda S Adams; David W Keith

2013-01-01T23:59:59.000Z

91

European Wind Energy Conference -Brussels, Belgium, April 2008 Data mining for wind power forecasting  

E-Print Network (OSTI)

European Wind Energy Conference - Brussels, Belgium, April 2008 Data mining for wind power-term forecasting of wind energy produc- tion up to 2-3 days ahead is recognized as a major contribution the improvement of predic- tion systems performance is recognised as one of the priorities in wind energy research

Paris-Sud XI, Université de

92

Boulder Wind Power Advanced Gearless Drivetrain: Cooperative Research and Development Final Report, CRADA Number CRD-12-00463  

SciTech Connect

The Boulder Wind Power (BWP) Advanced Gearless Drivetrain Project explored the application of BWP's innovative, axial-gap, air-core, permanent-magnet direct-drive generator in offshore wind turbines. The objective of this CRADA is to assess the benefits that result from reduced towerhead mass of BWP's technology when used in 6 MW offshore turbines installed on a monopile or a floating spar foundation.

Cotrell, J.

2013-04-01T23:59:59.000Z

93

Chapter 2 Offshore Wind Power Stations  

Science Journals Connector (OSTI)

Publisher Summary This chapter presents the historical background and development of offshore wind power stations. As early as 1890, windmills were put to work to produce electricity and more than 50,000 mills were in use in the United States alone in the twenties and thirties. Their decline was precipitated by the Rural Electrification Program. According to the San Francisco based Transaction Energy Projects Institute, offshore windmills could generate all the electrical power needed by northern California. Ocean winds have of course provided energy to windmills for centuries. In 1976, a study was commissioned by the (U.S.) Energy Research and Development Administration to ascertain and assess the economic value of offshore multi units aiming at identification and classification of area offshore types, assessing utility requirements for offshore power systems. It includes developing installation concepts including various floating and bottom-mounted designs, assessing current WECS (wind energy converter systems) for use in offshore environments, assessing various electric transmission and hydrogen delivery concepts, and performing an economic assessment, providing tradeoffs for variables such as distance offshore, climate, bottom and wave characteristics and average wave velocities. It is suggested that high wind velocity sites must be identified because the energy flow increases with the cube of the wind velocity; the kinetic energy of the wind passing through the area swept by the blades of a turbine is the energy available to that wind turbine. An average wind speed distribution is required.

1993-01-01T23:59:59.000Z

94

THE DANISH CONSORTIUM FOR WIND ENERGY RESEARCH Lars Landberg1  

E-Print Network (OSTI)

THE DANISH CONSORTIUM FOR WIND ENERGY RESEARCH Lars Landberg1 and Peter Hauge Madsen2 1 Risø National Laboratory, Wind Energy Department, DK-4000 Roskilde, Denmark; lars.landberg@risoe.dk 2 Siemens Wind Power, DK-7330 Brande, Denmark Abstract The Danish Wind Energy Research Consortium

95

Guodian Linghai Wind Power Co Ltd | Open Energy Information  

Open Energy Info (EERE)

Linghai Wind Power Co Ltd Jump to: navigation, search Name: Guodian Linghai Wind Power Co Ltd Place: China Sector: Wind energy Product: Wind power project developer. References:...

96

Tianjin Jinneng Wind Power Co Ltd | Open Energy Information  

Open Energy Info (EERE)

Jinneng Wind Power Co Ltd Place: Tianjin Municipality, China Sector: Wind energy Product: Tianjin-based wind power project developer. References: Tianjin Jinneng Wind Power Co...

97

NREL: Wind Research - Testing  

NLE Websites -- All DOE Office Websites (Extended Search)

the National Wind Technology Center (NWTC) support the installation and testing of wind turbines that range in size from 400 watts to 5.0 megawatts. Engineers provide wind...

98

Wind Speed Forecasting for Power System Operation  

E-Print Network (OSTI)

In order to support large-scale integration of wind power into current electric energy system, accurate wind speed forecasting is essential, because the high variation and limited predictability of wind pose profound challenges to the power system...

Zhu, Xinxin

2013-07-22T23:59:59.000Z

99

20% Wind Energy by 2030 - Chapter 6: Wind Power Markets Summary...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

6: Wind Power Markets Summary Slides 20% Wind Energy by 2030 - Chapter 6: Wind Power Markets Summary Slides Summary slides overviewing wind power markets, growth, applications, and...

100

Intelligent wind power prediction systems final report  

E-Print Network (OSTI)

Intelligent wind power prediction systems ­ final report ­ Henrik Aalborg Nielsen (han (FU 4101) Ens. journal number: 79029-0001 Project title: Intelligent wind power prediction systems #12;#12;Intelligent wind power prediction systems 1/36 Contents 1 Introduction 6 2 The Wind Power Prediction Tool 7 3

Note: This page contains sample records for the topic "wind power research" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


101

NREL: Wind Research - Small and Distributed Wind Turbine Research  

NLE Websites -- All DOE Office Websites (Extended Search)

research is to increase consumer confidence in and the number of certified small wind turbines on the market through certification testing, to improve performance, and to reduce...

102

NREL: Wind Research - News Release Archives  

NLE Websites -- All DOE Office Websites (Extended Search)

2 2 September 25, 2012 Wind Energy Research Institutes Join Forces at the Inaugural Meeting of the North American Wind Energy Academy The North American Wind Energy Academy held its inaugural meeting August 7-9, 2012, at the University of Massachusetts Amherst. The meeting drew 92 participants from 17 states and Canada, including 22 universities, eight commercial companies, and four government laboratories. September 25, 2012 DOE Wind Program Funds University of Wisconsin-Madison Wind Workforce Development Efforts: A Wind Powering America Success Story The University of Wisconsin-Madison was awarded an Energy Department workforce development grant in July 2010 to develop a series of continuing education short courses focused on civil design and construction for wind

103

Wind Powering America: Webinar Podcasts  

Wind Powering America (EERE)

podcasts_webinar.asp A series of podcasts_webinar.asp A series of Webinars about current wind energy issues. en-us julie.jones@nrel.gov (Julie Jones) http://www.windpoweringamerica.gov/images/wpa_logo_sm.jpg Wind Powering America: Webinar Podcasts http://www.windpoweringamerica.gov/podcasts_webinar.asp Stakeholder Engagement and Outreach Webinar: Jobs and Economic Development Impacts of Offshore Wind http://www.windpoweringamerica.gov/filter_detail.asp?itemid=4004 http://www.windpoweringamerica.gov/filter_detail.asp?itemid=4004 Sun, 1 Dec 2013 00:00:00 MST Small Wind Standards and Policy Update: A WPA Webinar http://www.windpoweringamerica.gov/filter_detail.asp?itemid=3976 http://www.windpoweringamerica.gov/filter_detail.asp?itemid=3976 Fri, 20 Sep 2013 00:00:00 MST 2012 Market Report on U.S. Wind Technologies in

104

POWER SYSTEMS STABILITY WITH LARGE-SCALE WIND POWER PENETRATION  

E-Print Network (OSTI)

of offshore wind farms, wind power fluctuations may introduce several challenges to reliable power system behaviour due to natural wind fluctuations. The rapid power fluctuations from the large scale wind farms Generation Control (AGC) system which includes large- scale wind farms for long-term stability simulation

Bak-Jensen, Birgitte

105

NREL: Wind Research Home Page  

NLE Websites -- All DOE Office Websites (Extended Search)

Photo of the non-torque loading system at the National Wind Technology Center. Photo of the non-torque loading system at the National Wind Technology Center. New NWTC Test Facility to Improve Wind Turbines Testing the performance of multimegawatt wind turbine drivetrains Illustration showing mountains, several wind turbines, a power plant, a crane setting up a turbine blade, and two semi-trucks carrying turbine blades. The concept is to show all the pieces and parts of a complete wind energy system and how they work together. NWTC Systems Engineering Initiative Analysis Platform New platform helps analyze and integrate entire wind energy systems Short video featuring Fort Felker, Center Director of the National Wind Technology Center, highlighting the NWTC's dual-axis resonant blade testing capabilities. Images from this video include Fort speaking, the static turbine blade in the testing facility, and flapwise and edgewise testing in action.

106

Powering | GE Global Research  

NLE Websites -- All DOE Office Websites (Extended Search)

Trials GE Global Research is advancing technology that will make the inspection of wind turbines faster and more reliable for customers.... Read More Brilliant(tm) Wind...

107

New Concepts in Wind Power Forecasting Models  

E-Print Network (OSTI)

New Concepts in Wind Power Forecasting Models Vladimiro Miranda, Ricardo Bessa, João Gama, Guenter to the training of mappers such as neural networks to perform wind power prediction as a function of wind for more accurate short term wind power forecasting models has led to solid and impressive development

Kemner, Ken

108

Computational methods in wind power meteorology  

E-Print Network (OSTI)

Computational methods in wind power meteorology Bo Hoffmann Jørgensen, Søren Ott, Niels Nørmark, Jakob Mann and Jake Badger Title: Computational methods in wind power meteorology Department: Wind in connection with the project called Computational meth- ods in wind power meteorology which was supported

109

Cielo Wind Power LLC | Open Energy Information  

Open Energy Info (EERE)

Austin, Texas Zip: 78701 2459 Sector: Wind energy Product: Currently the largest wind power developer in the US Southwest, with developments equaling approximately 600...

110

NREL: Wind Research - Events  

NLE Websites -- All DOE Office Websites (Extended Search)

Events Events Below are upcoming events related to wind energy technology. February 2014 NASEO Energy Outlook Conference February 4 - 7, 2014 Washington , DC Add to calendar NARUC Winter Committee Meeting February 9 - 12, 2014 United States Contact: Michelle Malloy, NARUC Add to calendar Gearbox Reliability Collaborative All Members Meeting February 10 - 12, 2014 Golden, CO Contact: Beverly Cisneros 303-384-6979 New instrumentation has been installed and calibrated in the high speed section of Gearbox #2 for current dynamometer testing and the improved Gearbox #3 is being manufactured and instrumented. The round robin modeling activity has also completed another data comparison. In addition, the Condition Monitoring and Failure Database activities have been combined into a new Operations & Maintenance Research task.

111

Berkshire Wind Power Cooperative | Open Energy Information  

Open Energy Info (EERE)

Wind Power Cooperative Wind Power Cooperative Jump to: navigation, search Name Berkshire Wind Power Cooperative Place Holyoke, Massachusetts Sector Wind energy Product The Berkshire Wind Power Cooperative Corp. is a municipal cooperative of 14 Massachusetts municipal utilities and the Massachusetts Municipal Wholesale Electric Co. (MMWEC) invovled in the development of wind farms. References Berkshire Wind Power Cooperative[1] LinkedIn Connections CrunchBase Profile No CrunchBase profile. Create one now! This article is a stub. You can help OpenEI by expanding it. Berkshire Wind Power Cooperative is a company located in Holyoke, Massachusetts . References ↑ "Berkshire Wind Power Cooperative" Retrieved from "http://en.openei.org/w/index.php?title=Berkshire_Wind_Power_Cooperative&oldid=342679

112

ANL Study Shows Wind Power Decreases Power Sector Emissions ...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

ANL Study Shows Wind Power Decreases Power Sector Emissions ANL Study Shows Wind Power Decreases Power Sector Emissions May 1, 2012 - 3:38pm Addthis This is an excerpt from the...

113

Scotrenewables Wind Power and Marine Power Ltd | Open Energy...  

Open Energy Info (EERE)

Wind Power and Marine Power Ltd Jump to: navigation, search Name: Scotrenewables Wind Power and Marine Power Ltd Place: Orkey, Scotland, United Kingdom Zip: KW16 3AW Sector:...

114

WATER POWER SOLAR POWER WIND POWER  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Generation YOUR HOUSE BIOMASS ENERGY GEOTHERMAL ENERGY Clean energy can come from the sun. 2 The energy in wind can make electricity. We can make energy with moving water....

115

Tianyuan Juneng Wind Power Co Ltd | Open Energy Information  

Open Energy Info (EERE)

Tianyuan Juneng Wind Power Co Ltd Jump to: navigation, search Name: Tianyuan Juneng Wind Power Co Ltd Place: Shuangliao, Jilin Province, China Sector: Wind energy Product: Wind...

116

Liaoning Kangping Jinshan Wind Power Co Ltd | Open Energy Information  

Open Energy Info (EERE)

Kangping Jinshan Wind Power Co Ltd Jump to: navigation, search Name: Liaoning Kangping Jinshan Wind Power Co Ltd Place: Liaoning Province, China Sector: Wind energy Product: Wind...

117

Liaoning Zhangwu Jinshan Wind Power Co Ltd | Open Energy Information  

Open Energy Info (EERE)

Zhangwu Jinshan Wind Power Co Ltd Jump to: navigation, search Name: Liaoning Zhangwu Jinshan Wind Power Co Ltd Place: Liaoning Province, China Sector: Wind energy Product: Wind...

118

Wind: wind speed and wind power density maps at 10m and 50m above...  

Open Energy Info (EERE)

files of wind speed and wind power density at 10 and 50 m heights. Global data of offshore wind resource as generated by NASA's QuikSCAT SeaWinds scatterometer....

119

Wind: wind speed and wind power density GIS data at 10m and 50m...  

Open Energy Info (EERE)

files of wind speed and wind power density at 10 and 50 m heights. Global data of offshore wind resource as generated by NASA's QuikScat SeaWinds scatterometer....

120

NREL: Wind Research - Utility Grid Integration Assessment  

NLE Websites -- All DOE Office Websites (Extended Search)

Utility Grid Integration Assessment Utility Grid Integration Assessment Photo of large power transmission towers set against a sunset. The national need for transmission improvements will have a direct impact on the effective use of renewable energy sources such as wind. For wind energy to play a larger role in supplying the nation's energy needs, integrating wind energy into the power grid of the United States is an important challenge to address. NREL's transmission grid integration staff collaborates with utility industry partners and provides data, analysis, and techniques to increase utility understanding of integration issues and confidence in the reliability of new wind turbines. For more information, contact Brian Parsons at 303-384-6958. Printable Version Wind Research Home Capabilities

Note: This page contains sample records for the topic "wind power research" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


121

Saturation wind power potential and its implications for wind energy  

Science Journals Connector (OSTI)

...and natural gas produce electricity...As such, wind turbines reduce direct...power, part I: Technologies, energy resources...arrays of wind turbines . J Wind Eng Ind...Yamada T (1982) Development of a turbulence...biofuel soot and gases, and methane...a single wind turbine intersects...

Mark Z. Jacobson; Cristina L. Archer

2012-01-01T23:59:59.000Z

122

Offshore Wind Research (Fact Sheet)  

SciTech Connect

This 2-page fact sheet describes NREL's offshore wind research and development efforts and capabilities. The National Renewable Energy Laboratory is internationally recognized for offshore wind energy research and development (R&D). Its experience and capabilities cover a wide spectrum of wind energy disciplines. NREL's offshore wind R&D efforts focus on critical areas that address the long-term needs of the offshore wind energy industry and the Department of Energy (DOE). R&D efforts include: (1) Developing offshore design tools and methods; (2) Collaborating with international partners; (3) Testing offshore systems and developing standards; (4) Conducting economic analyses; (5) Characterizing offshore wind resources; and (6) Identifying and mitigating offshore wind grid integration challenges and barriers. NREL has developed and maintains a robust, open-source, modular computer-aided engineering (CAE) tool, known as FAST. FAST's state-of-the-art capabilities provide full dynamic system simulation for a range of offshore wind systems. It models the coupled aerodynamic, hydrodynamic, control system, and structural response of offshore wind systems to support the development of innovative wind technologies that are reliable and cost effective. FAST also provides dynamic models of wind turbines on offshore fixed-bottom systems for shallow and transitional depths and floating-platform systems in deep water, thus enabling design innovation and risk reduction and facilitating higher performance designs that will meet DOE's cost of energy, reliability, and deployment objectives.

Not Available

2011-10-01T23:59:59.000Z

123

Wind Powering America Initiative (Fact Sheet)  

SciTech Connect

The U.S. Department of Energy's Wind Powering America initiative engages in technology market acceptance, barrier reduction, and technology deployment support activities. This fact sheet outlines ways in which the Wind Powering America team works to reduce barriers to appropriate wind energy deployment, primarily by focusing on six program areas: workforce development, communications and outreach, stakeholder analysis and resource assessment, wind technology technical support, wind power for Native Americans, and federal sector support and collaboration.

Not Available

2011-01-01T23:59:59.000Z

124

NREL: Wind Research - Advanced Research Turbines  

NLE Websites -- All DOE Office Websites (Extended Search)

Research Turbines Two 440 foot meteorological towers are upwind of two research wind turbines. Two 600-kW Westinghouse turbines at the NWTC are used to test new control schemes...

125

Padoma Wind Power LLC | Open Energy Information  

Open Energy Info (EERE)

Padoma Wind Power LLC Padoma Wind Power LLC Jump to: navigation, search Name Padoma Wind Power LLC Place La Jolla, California Zip 92037 Sector Wind energy Product A wind energy consulting and development company. References Padoma Wind Power LLC[1] LinkedIn Connections CrunchBase Profile No CrunchBase profile. Create one now! This article is a stub. You can help OpenEI by expanding it. Padoma Wind Power LLC is a company located in La Jolla, California . References ↑ "Padoma Wind Power LLC" Retrieved from "http://en.openei.org/w/index.php?title=Padoma_Wind_Power_LLC&oldid=349559" Categories: Clean Energy Organizations Companies Organizations Stubs What links here Related changes Special pages Printable version Permanent link Browse properties 429 Throttled (bot load)

126

New England Wind Forum: Wind Power Policy in New England  

Wind Powering America (EERE)

Projects in New England Building Wind Energy in New England Wind Resource Wind Power Technology Economics Markets Siting Policy Renewable Energy Portfolio Standards State Renewable Energy Funds Federal Tax Incentives and Grants Net Metering and Interconnection Standards Pollutant Emission Reduction Policies Awareness Technical Challenges Issues Small Wind Large Wind Newsletter Perspectives Events Quick Links to States CT MA ME NH RI VT Bookmark and Share Wind Power Policy in New England Why Incentives and Policy? Federal and state policies play an important role in encouraging wind energy development by leveling the playing field compared to other energy sources. Many of the substantial benefits of wind power as a domestic, zero-emission part of the energy portfolio - sustainability, displacement of pollutant emissions from other power sources, fuel diversity, price stabilization, keeping a substantial portion of energy expenditures in the local economy - are shared by society as a whole and cannot be readily captured by wind generators directly in the price they charge for their output. In addition, while wind power receives some policy support, the level of federal incentives for wind represents less than 1% of the subsidies and tax breaks given to the fossil fuels and nuclear industries (source: "Wind Power An Increasingly Competitive Source of New Generation." Wind Energy Weekly #1130.).

127

Power System Operation with Large Penetrations of Wind Power  

Science Journals Connector (OSTI)

The characteristics of wind power result in unique challenges for system operators when integrating large penetrations of wind generation into power systems. This chapter discusses some of the power system ope...

Eleanor Denny

2013-01-01T23:59:59.000Z

128

Federal Incentives for Wind Power Deployment | Department of...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Federal Incentives for Wind Power Deployment Federal Incentives for Wind Power Deployment Document that lists some of the major federal incentives for wind power deployment....

129

Wethersfield Wind Power Wind Farm | Open Energy Information  

Open Energy Info (EERE)

Wethersfield Wind Power Wind Farm Wethersfield Wind Power Wind Farm Facility Wethersfield Wind Power Sector Wind energy Facility Type Commercial Scale Wind Facility Status In Service Owner Enel North America Developer Western NY Wind Power Partners Energy Purchaser Niagara Mohawk Location WY County NY Coordinates 42.667741°, -78.219803° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":42.667741,"lon":-78.219803,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

130

Wind for Schools: A Wind Powering America Project  

SciTech Connect

This brochure serves as an introduction to Wind Powering America's Wind for Schools Project, including a description of the project, the participants, funding sources, and the basic configurations of the project.

Not Available

2007-12-01T23:59:59.000Z

131

NREL: Wind Research - International Research Collaboratives  

NLE Websites -- All DOE Office Websites (Extended Search)

Research Collaboratives Research Collaboratives Researchers at the National Wind Technology Center (NWTC) leverage U.S. research dollars by participating in multi-lateral research collaborations with many international organizations. NWTC collaborates with several of the world's most respected institutions, including the national research institutions of other countries. NREL also works through international agencies dedicated to the common interests of energy research and applications such as the International Energy Agency (IEA), the International Electrotechnical Commission (IEC), the Institute of Electrical and Electronics Engineers (IEEE), Underwriters Laboratory, and the International Measuring Network of Wind Energy Institutes (MEASNET). International Energy Agency NREL supports international research efforts through its participation in

132

Wind Power System Simulation of Switch Control  

Science Journals Connector (OSTI)

In order to find a balance between energy efficiency and reliability of wind power generation system, this paper presents a ... switch control strategy. This paper establishes a wind power system simulation model...

Yuehua Huang; Guangxu Li; Huanhuan Li

2014-01-01T23:59:59.000Z

133

Federal Incentives for Wind Power Deployment  

Energy.gov (U.S. Department of Energy (DOE))

This factsheet lists some of the major federal incentives for wind power deployment as of September 2014.

134

Wind Powering America Program Overview (Fact Sheet)  

SciTech Connect

This fact sheet provides an overview of the U.S. Department of Energy's Wind Powering America Program.

Not Available

2008-04-01T23:59:59.000Z

135

Wind Powering America: Document Not Found  

Wind Powering America (EERE)

navigation to main content. U.S. Department of Energy Energy Efficiency and Renewable Energy navigation to main content. U.S. Department of Energy Energy Efficiency and Renewable Energy Wind Powering America Document Not Found This is a temporary URL for the U.S. Department of Energy's Wind Powering America website. Either this page does not reside on this temporary server or it does not actually exist. You may try to find it using the search engine. Your page may be located at this URL Illinois 50-Meter Wind Resource Map Indiana 50-Meter Wind Resource Map Missouri 50-Meter Wind Resource Map New Jersey 50-Meter Wind Resource Map Ohio 50-Meter Wind Resource Map New England Wind Projects Wind Energy for Schools - Project Locations Wind Energy Educational Programs and Training You may also find this page by manually navigating to it via Wind Powering

136

Datang Jilin Wind Power Stockholding Co Ltd Formerly Jilin Noble Wind Power  

Open Energy Info (EERE)

Stockholding Co Ltd Formerly Jilin Noble Wind Power Stockholding Co Ltd Formerly Jilin Noble Wind Power Stockholding Co Ltd Jump to: navigation, search Name Datang Jilin Wind Power Stockholding Co Ltd(Formerly Jilin Noble Wind Power Stockholding Co Ltd) Place Changchun, Jilin Province, China Sector Wind energy Product Wind farm developer. References Datang Jilin Wind Power Stockholding Co Ltd(Formerly Jilin Noble Wind Power Stockholding Co Ltd)[1] LinkedIn Connections CrunchBase Profile No CrunchBase profile. Create one now! This article is a stub. You can help OpenEI by expanding it. Datang Jilin Wind Power Stockholding Co Ltd(Formerly Jilin Noble Wind Power Stockholding Co Ltd) is a company located in Changchun, Jilin Province, China . References ↑ "[ Datang Jilin Wind Power Stockholding Co Ltd(Formerly Jilin

137

NREL: Water Power Research - Working with Us  

NLE Websites -- All DOE Office Websites (Extended Search)

Working with Us NREL works with industry in a public-private contracting environment to research, design, and build advanced water power technologies. NREL's National Wind...

138

NREL: Wind Research - Wind Resource Assessment  

NLE Websites -- All DOE Office Websites (Extended Search)

Wind Resource Assessment Wind Resource Assessment A map of the United States is color-coded to indicate the high winds at 80 meters. This map shows the wind resource at 80 meters for both land-based and offshore wind resources in the United States. Correct estimation of the energy available in the wind can make or break the economics of wind plant development. Wind mapping and validation techniques developed at the National Wind Technology Center (NWTC) along with collaborations with U.S. companies have produced high-resolution maps of the United States that provide wind plant developers with accurate estimates of the wind resource potential. State Wind Maps International Wind Resource Maps Dynamic Maps, GIS Data, and Analysis Tools Due to the existence of special use airspace (SUA) (i.e., military airspace

139

Wind power forecast error smoothing within a wind farm  

Science Journals Connector (OSTI)

Smoothing of wind power forecast errors is well-known for large areas. Comparable effects within a wind farm are investigated in this paper. A Neural Network was taken to predict the power output of a wind farm in north-western Germany comprising 17 turbines. A comparison was done between an algorithm that fits mean wind and mean power data of the wind farm and a second algorithm that fits wind and power data individually for each turbine. The evaluation of root mean square errors (RMSE) shows that relative small smoothing effects occur. However, it can be shown for this wind farm that individual calculations have the advantage that only a few turbines are needed to give better results than the use of mean data. Furthermore different results occurred if predicted wind speeds are directly fitted to observed wind power or if predicted wind speeds are first fitted to observed wind speeds and then applied to a power curve. The first approach gives slightly better RMSE values, the bias improves considerably.

Nadja Saleck; Lueder von Bremen

2007-01-01T23:59:59.000Z

140

NREL: Wind Research - International Wind Resource Maps  

NLE Websites -- All DOE Office Websites (Extended Search)

projections of wind resources worldwide. This allows for more accurate siting of wind turbines and has led to the recognition of higher class winds in areas where none were...

Note: This page contains sample records for the topic "wind power research" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


141

PSO2004/FU5766 Improved wind power prediction  

E-Print Network (OSTI)

PSO2004/FU5766 Improved wind power prediction Optimal combined wind power forecasts using exogenous prediction can be accomplished. The application of combining wind power forecasts for certain wind power

142

NREL: Wind Research - Field Verification Project  

NLE Websites -- All DOE Office Websites (Extended Search)

Field Verification Project Field Verification Project The mission of the Field Verification Project (FVP) was to enable U.S. industry to complete the research, testing, and field verification needed to fully develop advanced wind energy technologies that lead the world in cost-effectiveness and reliability. The project, completed in 2003, included cost-shared research with industry partners to lead to the development of advanced technology wind turbines and support for projects that verify performance of wind turbine technologies in actual operational applications. FVP provided small wind turbine (<=100 kW) manufacturers with opportunities to operate and monitor their turbines under a range of distributed power applications and environments throughout the United States. This experience helped U.S. companies validate and improve the

143

Sandia National Laboratories: Wind Power  

NLE Websites -- All DOE Office Websites (Extended Search)

Wind Energy Staff On March 24, 2011, in Wind Energy On November 10, 2010, in Wind Plant Opt. Rotor Innovation Materials, Reliability & Standards Siting & Barrier Mitigation...

144

Offshore Wind Research (Fact Sheet), National Wind Technology Center (NWTC)  

NLE Websites -- All DOE Office Websites (Extended Search)

Offshore Offshore Wind Research The National Renewable Energy Laboratory is internationally recognized for offshore wind energy research and development (R&D). Its experience and capabilities cover a wide spectrum of wind energy disciplines. NREL's offshore wind R&D efforts focus on critical areas that address the long-term needs of the offshore wind energy industry and the Department of Energy (DOE). R&D efforts include: * Developing offshore design tools and methods * Collaborating with international partners * Testing offshore systems and developing standards * Conducting economic analyses * Characterizing offshore wind resources * Identifying and mitigating offshore wind grid integration challenges and barriers NREL documented the status of offshore wind energy in the United

145

Saturation wind power potential and its implications for wind energy  

E-Print Network (OSTI)

Board August 14, 2012 (received for review May 31, 2012) Wind turbines convert kinetic to electrical. As the number of wind turbines increases over large geographic regions, power extraction first increases the number of wind turbines over a large geographic region, indepen- dent of societal, environmental

146

NREL: Wind Research - Environmental Impacts Research  

NLE Websites -- All DOE Office Websites (Extended Search)

Environmental Impacts Research Environmental Impacts Research Photo of a Greater Prairie-Chicken. Credit: James Shroyer. NREL is a partner in the Grassland Shrub Steppe Species Collaborative, a multi-year effort to study wind turbines in prairie chicken habitat. The Wind Program at NREL works to resolve environmental issues that may hinder acceptance of wind energy technologies. The program accomplishes this through activities that address the potential effects of wind development on wildlife and identifies corresponding mitigation strategies. As part of this effort, the program supports the work of the National Wind Coordinating Collaborative (NWCC) Wildlife Workgroup, which is focused on collaborative approaches for understanding and evaluating species- and habitat-specific impacts, mitigation tools, risk assessment, and nocturnal

147

NREL: Wind Research - Small Wind Turbine Webinars  

NLE Websites -- All DOE Office Websites (Extended Search)

Small Wind Turbine Webinars Small Wind Turbine Webinars Here you will find webinars about small wind turbines that NREL hosted. Introducing WindLease(tm): Making Wind Energy Affordable NREL and the American Solar Energy Society (ASES) Wind Division co-hosted this webinar. (Text Version.) Date: August 1, 2013 Run Time: 40 minutes Joe Hess, VP of Business Development at United Wind, described United Wind's WindQuote and WindLease Program and explained the process from the dealer's and consumer's perspective. Texas Renewable Energy Industries Association NREL and the American Solar Energy Society (ASES) Wind Division co-hosted this webinar. (Text Version). Date: March 7, 2013 Run Time: 1 hour Russel Smith, Texas Renewable Energy Industries Association executive director and co-founder, provided an overview of the trade association

148

NREL: Wind Research - Small Wind Turbine Development  

NLE Websites -- All DOE Office Websites (Extended Search)

Small Wind Turbine Development Small Wind Turbine Development A photo of Southwest Windpower's Skystream wind turbine in front of a home. PIX14936 Southwest Windpower's Skystream wind turbine. A photo of the Endurance wind turbine. PIX15006 The Endurance wind turbine. A photo of the Atlantic Orient Corporation 15/50 wind turbine at the National Wind Technology Center. PIX07301 The Atlantic Orient Corporation 15/50 wind turbine at the National Wind Technology Center. NREL supports continued market expansion of small wind turbines by funding manufacturers through competitive solicitations (i.e., subcontracts and/or grants) to refine prototype systems leading to commercialization. Learn more about the turbine development projects below. Skystream NREL installed and tested an early prototype of this turbine at the

149

A Multiscale Wind and Power Forecast System for Wind Farms  

Science Journals Connector (OSTI)

Abstract A large scale introduction of wind energy in power sector causes a number of challenges for electricity market and wind farm operators who will have to deal with the variability and uncertainty in the wind power generation in their scheduling and trading decisions. Numerical wind power forecasting has been identified as an important tool to address the increasing variability and uncertainty and to more efficiently operate power systems with large wind power penetration. It has been observed that even when the wind magnitude and direction recorded at a wind mast are the same, the corresponding energy productions can vary significantly. In this work we try to introduce improvements by developing a more accurate wind forecast system for a complex terrain. The system has been operational for eight months for the Bessaker Wind Farm located in the middle part of Norway in a very complex terrain. Operational power curves have also been derived from data analysis. Although the methodology explained has been developed for an onshore wind farm, it can very well be utilized in an offshore context also.

Adil Rasheed; Jakob Kristoffer Süld; Trond Kvamsdal

2014-01-01T23:59:59.000Z

150

Active power regulation of wind power systems through demand response  

Science Journals Connector (OSTI)

With the specific characteristics of low-carbon intensity and economy, wind power has been widely promoted around the world. Due to the variable and intermittent nature of wind power production, the system has to...

WeiWei Miao; HongJie Jia; Dan Wang; Simon Parkinson…

2012-06-01T23:59:59.000Z

151

Arkansas 50m Wind Power Class  

NLE Websites -- All DOE Office Websites (Extended Search)

50m Wind Power Class 50m Wind Power Class Metadata also available as Metadata: Identification_Information Data_Quality_Information Spatial_Data_Organization_Information Spatial_Reference_Information Entity_and_Attribute_Information Distribution_Information Metadata_Reference_Information Identification_Information: Citation: Citation_Information: Originator: AWS TrueWind/NREL Publication_Date: April, 2007 Title: Arkansas 50m Wind Power Class Geospatial_Data_Presentation_Form: vector digital data Other_Citation_Details: The wind power resource estimates were produced by AWS TrueWind using their MesoMap system and historical weather data under contract to Wind Powering America/NREL. This map has been validated with available surface data by NREL and wind energy meteorological consultants.

152

Calm or storm? : Wind power actors perceptions of Finnish wind power and its future.  

E-Print Network (OSTI)

??Wind power has grown fast internationally. It can reduce the environmental impact of energy production and increase energy security. Finland has turbine industry but wind… (more)

Varho, Vilja

2007-01-01T23:59:59.000Z

153

University of Minnesota Boosts Studies with Wind Power | Department of  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Boosts Studies with Wind Power Boosts Studies with Wind Power University of Minnesota Boosts Studies with Wind Power October 27, 2011 - 10:53am Addthis Time-lapse of the University of Minnesota's wind turbine construction, from September 6 - 23, 2011. | Courtesy of the University of Minnesota College of Science and Engineering Eric Escudero Eric Escudero Senior Public Affairs Specialist & Contractor, Golden Field Office What does this project do? The American-made Clipper Liberty wind turbine and a 426-foot tall meteorological tower will allow researchers to work on improving wind turbine efficiency and will help train a new generation of engineers and technicians for careers in the wind industry. President Obama's goal to generate 80 percent of our nation's electricity through clean energy sources by 2035 is ambitious, but

154

DOE Science Showcase - Wind Power | OSTI, US Dept of Energy, Office of  

Office of Scientific and Technical Information (OSTI)

Science Showcase - Wind Power Science Showcase - Wind Power Wind Powering America is a nationwide initiative of the U.S. Department of Energy's Wind Program designed to educate, engage, and enable critical stakeholders to make informed decisions about how wind energy contributes to the U.S. electricity supply. Wind Power Research Results in DOE Databases IEA Wind Task 26: The Past and Future Cost of Wind Energy, Work Package 2, Energy Citations Database NREL Triples Previous Estimates of U.S. Wind Power Potential, Energy Citations Database Dynamic Models for Wind Turbines and Wind Power Plants, DOE Information Bridge 2012 ARPA-E Energy Innovation Summit: Profiling General Compression: A River of Wind, ScienceCinema, multimedia Solar and Wind Energy Resource Assessment (SWERA) Data from the

155

Fluctuating wind power penetration as limited by frequency standard.  

E-Print Network (OSTI)

??Fluctuating wind power is due to wind turbulence and is the part which should be filtered out leaving behind the more predictable mean wind power… (more)

Luo, Changling, 1980-

2005-01-01T23:59:59.000Z

156

Guodian Hefeng Wind Power Development Company | Open Energy Informatio...  

Open Energy Info (EERE)

Hefeng Wind Power Development Company Jump to: navigation, search Name: Guodian Hefeng Wind Power Development Company Place: Huludao, Liaoning Province, China Sector: Wind energy...

157

Ningxia Yinyi Wind Power Generation Co Ltd | Open Energy Information  

Open Energy Info (EERE)

Yinyi Wind Power Generation Co Ltd Jump to: navigation, search Name: Ningxia Yinyi Wind Power Generation Co Ltd Place: Ningxia Autonomous Region, China Sector: Wind energy Product:...

158

Changdao Liankai Wind Power Co Ltd | Open Energy Information  

Open Energy Info (EERE)

Changdao Liankai Wind Power Co Ltd Jump to: navigation, search Name: Changdao Liankai Wind Power Co Ltd Place: Yantai City, Shandong Province, China Zip: 265800 Sector: Wind energy...

159

Huaneng Shouguang Wind Power Company Limited | Open Energy Information  

Open Energy Info (EERE)

Shouguang Wind Power Company Limited Jump to: navigation, search Name: Huaneng Shouguang Wind Power Company Limited Place: Shouguang, Shandong Province, China Sector: Wind energy...

160

Inner Mongolia Damo Wind Power Co Ltd | Open Energy Information  

Open Energy Info (EERE)

Damo Wind Power Co Ltd Jump to: navigation, search Name: Inner Mongolia Damo Wind Power Co Ltd Place: Inner Mongolia Autonomous Region, China Sector: Wind energy Product:...

Note: This page contains sample records for the topic "wind power research" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


161

Lianyungang Zhongneng United Wind Power Co Ltd | Open Energy...  

Open Energy Info (EERE)

United Wind Power Co Ltd Jump to: navigation, search Name: Lianyungang Zhongneng United Wind Power Co Ltd Place: Lianyungang, Jiangsu Province, China Sector: Wind energy Product: A...

162

Liaoning Shenhua Xiehe Wind Power Investment Limited | Open Energy...  

Open Energy Info (EERE)

Xiehe Wind Power Investment Limited Jump to: navigation, search Name: Liaoning Shenhua Xiehe Wind Power Investment Limited Place: Liaoning Province, China Sector: Wind energy...

163

Dongbai Mountain Wind Power Co Ltd | Open Energy Information  

Open Energy Info (EERE)

Dongbai Mountain Wind Power Co Ltd Jump to: navigation, search Name: Dongbai Mountain Wind Power Co Ltd Place: Zhejiang Province, China Sector: Wind energy Product: Dongyang-based...

164

Inner Mongolia Lianhe Wind Power Investment | Open Energy Information  

Open Energy Info (EERE)

Lianhe Wind Power Investment Jump to: navigation, search Name: Inner Mongolia Lianhe Wind Power Investment Place: Inner Mongolia Autonomous Region, China Sector: Wind energy...

165

Changtu Liaoneng Xiexin Wind Power Co Ltd | Open Energy Information  

Open Energy Info (EERE)

Changtu Liaoneng Xiexin Wind Power Co Ltd Jump to: navigation, search Name: Changtu Liaoneng Xiexin Wind Power Co Ltd Place: Liaoning Province, China Sector: Wind energy Product:...

166

Jilin Longyuan Wind Power Co Ltd | Open Energy Information  

Open Energy Info (EERE)

Longyuan Wind Power Co Ltd Jump to: navigation, search Name: Jilin Longyuan Wind Power Co Ltd Place: Changchun, Jilin Province, China Zip: 130061 Sector: Wind energy Product: Joint...

167

Inner Mongolia Wind Power Corporation | Open Energy Information  

Open Energy Info (EERE)

Wind Power Corporation Place: Inner Mongolia Autonomous Region, China Sector: Wind energy Product: A company engages in wind power project development. References: Inner Mongolia...

168

Xilinguole Guotai Wind Power Co Ltd | Open Energy Information  

Open Energy Info (EERE)

Xilinguole Guotai Wind Power Co Ltd Jump to: navigation, search Name: Xilinguole Guotai Wind Power Co Ltd Place: China Sector: Wind energy Product: Hong Kong-based project...

169

Guohua Dongtai Wind Power Co Ltd | Open Energy Information  

Open Energy Info (EERE)

Dongtai Wind Power Co Ltd Jump to: navigation, search Name: Guohua (Dongtai) Wind Power Co Ltd Place: Dongtai, Jiangsu Province, China Zip: 224200 Sector: Wind energy Product:...

170

Zhangbei Guotou Wind Power Plant | Open Energy Information  

Open Energy Info (EERE)

Zhangbei Guotou Wind Power Plant Jump to: navigation, search Name: Zhangbei Guotou Wind Power Plant Place: Beijing Municipality, China Zip: 100037 Sector: Wind energy Product: A...

171

Inner Mongolia Sansheng Wind Power | Open Energy Information  

Open Energy Info (EERE)

Sansheng Wind Power Jump to: navigation, search Name: Inner Mongolia Sansheng Wind Power Place: Inner Mongolia Autonomous Region, China Sector: Wind energy Product: China-based...

172

Datang Jilin Wind Power Stockholding Co Ltd Formerly Jilin Noble...  

Open Energy Info (EERE)

Stockholding Co Ltd Formerly Jilin Noble Wind Power Stockholding Co Ltd Jump to: navigation, search Name: Datang Jilin Wind Power Stockholding Co Ltd(Formerly Jilin Noble Wind...

173

Xinjiang Tianfeng Wind Power Co Ltd | Open Energy Information  

Open Energy Info (EERE)

Xinjiang Tianfeng Wind Power Co Ltd Jump to: navigation, search Name: Xinjiang Tianfeng Wind Power Co Ltd Place: Urumuqi, Xinjiang Autonomous Region, China Zip: 830002 Sector: Wind...

174

Ningxia Tianjing Shenzhou Wind Power Co Ltd | Open Energy Information  

Open Energy Info (EERE)

Tianjing Shenzhou Wind Power Co Ltd Jump to: navigation, search Name: Ningxia Tianjing Shenzhou Wind Power Co Ltd Place: Ningxia Autonomous Region, China Zip: 750002 Sector: Wind...

175

Yongsheng National Energy Wind Power Co | Open Energy Information  

Open Energy Info (EERE)

Yongsheng National Energy Wind Power Co Jump to: navigation, search Name: Yongsheng National Energy Wind Power Co Place: Inner Mongolia Autonomous Region, China Sector: Wind energy...

176

Global ocean wind power sensitivity to surface layer stability  

E-Print Network (OSTI)

for the first time, the global ocean 80 m wind power and tofirst time, wind power at 80 m (typical wind turbine hub height) above the global ocean

Capps, Scott B; Zender, Charles S

2009-01-01T23:59:59.000Z

177

20% Wind Energy by 2030 - Chapter 5: Wind Power Siting and Environment...  

Office of Environmental Management (EM)

5: Wind Power Siting and Environmental Effects Summary Slides 20% Wind Energy by 2030 - Chapter 5: Wind Power Siting and Environmental Effects Summary Slides Environment and siting...

178

Integration of wind power in deregulated power systems.  

E-Print Network (OSTI)

??This thesis investigates the impact of integrating wind power into deregulated power systems. It includes a discussion of the history of deregulation and the development… (more)

Scorah, Hugh

2010-01-01T23:59:59.000Z

179

U.S. Wind Power Development  

SciTech Connect

The report provides an overview of domestic wind power development which provides an understanding of where the industry stands today, how it got there, and where it is going. The advent of state renewable portfolio standards and the 3-year renewal of the production tax credit have driven wind power to record levels. A key objective of the report is to provide a comprehensive view of what is behind these developments, so that industry participants can take advantage of the opportunity offered by wind power. Topics covered include: overview of U.S. wind power including its history, current status, and future prospects; business drivers of the U.S. wind power market; barriers to the growth of the U.S. wind power market; keys to successful wind power project development; economics of U.S. wind power, including cost, revenue, and government subsidy components; analysis of key state markets for wind power development; and, profiles of major U.S. wind power project developers.

NONE

2007-11-15T23:59:59.000Z

180

Wind Power Today, 2010, Wind and Water Power Program (WWPP) ...  

Office of Environmental Management (EM)

& Publications Wind Program Accomplishments Final Report DE-EE0005380 - Assessment of Offshore Wind Farm Effects on Sea Surface, Subsurface and Airborne Electronic Systems A...

Note: This page contains sample records for the topic "wind power research" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


181

Wind for Schools: A Wind Powering America Project (Brochure)  

Wind Powering America (EERE)

for Schools: for Schools: A Wind Powering America Project Donna Berry - Utah State University/PIX13969 2 2 What is the Wind for Schools Project? Energy is largely taken for granted within our society, but that perception is changing as the economic and environmental impacts of our current energy supply structure are more widely understood. The U.S. Department of Energy's (DOE's) Wind Powering America program (at the National Renewable Energy Laboratory) sponsors the Wind for Schools Project to raise awareness in rural America about the benefits of wind energy while simultaneously developing a wind energy knowledge base in future leaders of our communities, states, and nation. A wind turbine located at a school provides students and teachers with a physical example of how communities can take

182

Gansu Xin an Wind Power Co Ltd | Open Energy Information  

Open Energy Info (EERE)

Xin an Wind Power Co Ltd Jump to: navigation, search Name: Gansu Xin'an Wind Power Co Ltd Place: Gansu Province, China Sector: Wind energy Product: A wind power project developer....

183

Small Business Innovation Research Grant Helps Propel Innovative Wind  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Small Business Innovation Research Grant Helps Propel Innovative Small Business Innovation Research Grant Helps Propel Innovative Wind Energy Small Business Small Business Innovation Research Grant Helps Propel Innovative Wind Energy Small Business March 11, 2011 - 10:32am Addthis Link to image of Wind Tower System's Space Frame Tower™ Link to image of Wind Tower System's Space Frame Tower(tm) Mark Higgins Operations Supervisor, Wind & Water Power Technologies Office Wind Tower Systems, a subsidiary of Wasatch Wind, was founded in 2002 to research, develop and commercialize new ways to make lighter, taller and easier- to-assemble land-based wind turbines. Since then, the Park City, Utah-based small business received early funding from the Department of Energy, which catalyzed investment from the California Energy Commission

184

NREL: Wind Research - Offshore Wind Resource Characterization  

NLE Websites -- All DOE Office Websites (Extended Search)

Offshore Wind Resource Characterization Offshore Wind Resource Characterization Map of the United States, showing the wind potential of offshore areas across the country. Enlarge image US offshore wind speed estimates at 90-m height NREL scientists and engineers are leading efforts in resource mapping, remote sensor measurement and development, and forecasting that are essential for the development of offshore wind. Resource Mapping For more than 15 years, NREL's meteorologists, engineers, and Geographic Information System experts have led the production of wind resource characterization maps and reports used by policy makers, private industry, and other government organizations to inform and accelerate the development of wind energy in the United States. Offshore wind resource data and mapping has strategic uses. As with terrestrial developments, traditional

185

(HTTP://WWW.FASTCOMPANY.COM/) Could Wind Power's  

E-Print Network (OSTI)

(HTTP://WWW.FASTCOMPANY.COM/) Could Wind Power's Future Be Windmills On A Grain Of Rice? This new't work. Wind power is big. Very big. The turbines have steadily grown (http://www.fastcoexist.com/1680088-has-blades-the-length-of-a-football-field). Being big has its advantages--namely generating a lot of power. But researchers J.-C. Chiao (//www

Chiao, Jung-Chih

186

Hardscrabble Wind Power Project | Open Energy Information  

Open Energy Info (EERE)

Hardscrabble Wind Power Project Hardscrabble Wind Power Project Jump to: navigation, search Name Hardscrabble Wind Power Project Facility Hardscrabble Wind Power Project Sector Wind energy Facility Type Commercial Scale Wind Facility Status In Service Developer Atlantic Wind Location Fairfield and Norway north of Little Falls NY Coordinates 43.076452°, -74.859602° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":43.076452,"lon":-74.859602,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

187

Power and Frequency Control as it Relates to Wind-Powered Generation  

E-Print Network (OSTI)

of large amounts of wind power production might requirewill be satisfactory as wind power provides an increasing64   7.2   Wind Power in Relation to System

Lacommare, Kristina S H

2011-01-01T23:59:59.000Z

188

Wind for Schools Project Power System Brief, Wind Powering America Fact Sheet Series  

Wind Powering America (EERE)

Powering America Fact Sheet Series Powering America Fact Sheet Series Energy Efficiency & Renewable Energy Wind for Schools Project Power System Brief Wind for Schools Project Power System Brief Wind for Schools Project Power System Brief This fact sheet provides an overview of the system components of a Wind Powering America Wind for Schools project. Wind Powering America's (WPA's) Wind for Schools project uses a basic system configuration for each school project. The system incorporates a single SkyStream(tm) wind turbine, a 70-ft guyed tower, disconnect boxes at the base of the turbine and at the school, and an interconnection to the school's electrical system. A detailed description of each system component is provided in this document. The local power cooperative or utility should be an integral part of

189

NREL: Wind Research - WindPACT  

NLE Websites -- All DOE Office Websites (Extended Search)

WindPACT WindPACT The Wind Partnerships for Advanced Component Technology (WindPACT) studies were conducted to assist industry by testing innovative components, such as advanced blades and drivetrains, to lower the cost of energy. Specific goals included: Foster technological advancements to reduce the cost of wind energy Determine probable size ranges of advanced utility-scale turbines over the next decade for U.S. application Evaluate advanced concepts that are necessary to achieve objectives of cost and size for future turbines Identify and solve technological hurdles that may block industry from taking advantage of promising technology Design, fabricate, and test selected advanced components to prove their viability Support wind industry through transfer of technology from

190

Wind for Schools Project Power System Brief  

SciTech Connect

This fact sheet provides an overview of the system components of a Wind Powering America Wind for Schools project. Wind Powering America's (WPA's) Wind for Schools project uses a basic system configuration for each school project. The system incorporates a single SkyStream(TM) wind turbine, a 70-ft guyed tower, disconnect boxes at the base of the turbine and at the school, and an interconnection to the school's electrical system. A detailed description of each system component is provided in this document.

Not Available

2007-08-01T23:59:59.000Z

191

Offshore Wind Power: Science, engineering, and policy MAST 628-010, Fall 2008  

E-Print Network (OSTI)

Offshore Wind Power: Science, engineering, and policy MAST 628-010, Fall 2008 Revised 10 October@udel.edu Class web site with lecture notes: www.udel.edu/sakai UD offshore wind research: http, plan, regulate, and develop offshore wind resources for large-scale power production. Offshore wind

Firestone, Jeremy

192

The Political Economy of Wind Power in China  

E-Print Network (OSTI)

declaring offshore wind power to be cheaper than nuclearthe profitable uptake of wind power to the grid. 45 The FITemerges as the ratio of wind power to total power increases

Swanson, Ryan Landon

2011-01-01T23:59:59.000Z

193

Saturation wind power potential and its implications for wind energy  

Science Journals Connector (OSTI)

...ocean. § All turbines in this case...4 cells), offshore East Coast...2). ¶ All turbines in this case were...The jet stream winds considered were 10S...was available offshore at depths...portion at low turbine penetrations...for calculating wind power potentials...

Mark Z. Jacobson; Cristina L. Archer

2012-01-01T23:59:59.000Z

194

NREL: Wind Research - Utility Grid Integration  

NLE Websites -- All DOE Office Websites (Extended Search)

Utility Grid Integration Utility Grid Integration Photo of a wind farm in Lawton, Oklahoma where NREL researchers studied the impact of wind energy on farming system operations. NREL researchers analyzed research data collected from this wind farm in Lawton, Oklahoma, to determine the impacts of wind energy on systems operations. NREL researchers analyzed research data collected from this wind farm in Lawton, Oklahoma, to determine the impacts of wind energy on systems operations. The integration of wind energy into the electric generation industry's supply mix is one of the issues industry grapples with. The natural variability of the wind resource raises concerns about how wind can be integrated into routine grid operations, particularly with regard to the effects of wind on regulation, load following, scheduling, line voltage,

195

New England Wind Forum: Motivations for Buying Wind Power  

Wind Powering America (EERE)

Motivations for Buying Wind Power Motivations for Buying Wind Power Voluntary Voluntary purchases are often referred to as "Green Power." Voluntary purchases are made by individuals, businesses, governments, and groups of each (known as aggregations) to express personal preferences or meet personal or institutional commitments. One recent example of a government purchase is a request for proposals, issued in February 2005, to supply the Rhode Island State House with renewable energy for a five-year period. Hedging Hedging is a growing motivation to reduce exposure to volatile and rising energy costs. New England's publicly-owned utilities, as well as Vermont's utilities, can stabilize their fuel cost-driven supply portfolios with wind generation. In competitive markets that dominate the New England landscape, larger electricity customers are beginning to look to longer-term purchases of wind power as a means to protect their energy budgets against the volatile fossil-fuel-driven costs. Examples include:

196

Neppel Wind Power Project | Open Energy Information  

Open Energy Info (EERE)

Neppel Wind Power Project Neppel Wind Power Project Jump to: navigation, search Name Neppel Wind Power Project Facility Neppel Wind Power Project Sector Wind energy Facility Type Commercial Scale Wind Facility Status In Service Developer Alliant Energy Energy Purchaser Alliant/IES Utilities Location Armstrong IA Coordinates 43.402001°, -94.578989° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":43.402001,"lon":-94.578989,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

197

Fenner Wind Power Project | Open Energy Information  

Open Energy Info (EERE)

Fenner Wind Power Project Fenner Wind Power Project Jump to: navigation, search Name Fenner Wind Power Project Facility Fenner Wind Power Project Sector Wind energy Facility Type Commercial Scale Wind Facility Status In Service Owner Enel North America Developer Atlantic Renewable Energy Energy Purchaser Market Location Fenner NY Coordinates 43.000482°, -75.762498° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":43.000482,"lon":-75.762498,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

198

Somerset Wind Power Project | Open Energy Information  

Open Energy Info (EERE)

Wind Power Project Wind Power Project Jump to: navigation, search Name Somerset Wind Power Project Facility Somerset Wind Power Project Sector Wind energy Facility Type Commercial Scale Wind Facility Status In Service Owner NextEra Energy Resources Developer Atlantic Renewable Energy Energy Purchaser Exelon Location Somerset County PA Coordinates 39.979794°, -79.009216° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":39.979794,"lon":-79.009216,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

199

Hebei Hong Song Wind Power Co Ltd | Open Energy Information  

Open Energy Info (EERE)

Song Wind Power Co Ltd Jump to: navigation, search Name: Hebei Hong-Song Wind Power Co Ltd Place: Chengde, Hebei Province, China Zip: 67000 Sector: Wind energy Product: A wind...

200

FCG Putian Wind Power Co Ltd | Open Energy Information  

Open Energy Info (EERE)

FCG Putian Wind Power Co Ltd Jump to: navigation, search Name: FCG (Putian) Wind Power Co Ltd Place: Fuzhou, Fujian Province, China Zip: 320001 Sector: Wind energy Product: Wind...

Note: This page contains sample records for the topic "wind power research" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


201

PSO (FU 2101) Ensemble-forecasts for wind power  

E-Print Network (OSTI)

PSO (FU 2101) Ensemble-forecasts for wind power Analysis of the Results of an On-line Wind Power Ensemble- forecasts for wind power (FU2101) a demo-application producing quantile forecasts of wind power correct) quantile forecasts of the wind power production are generated by the application. However

202

Sinomatech Wind Power Blade aka Sinoma Science Technology Wind Turbine  

Open Energy Info (EERE)

Sinomatech Wind Power Blade aka Sinoma Science Technology Wind Turbine Sinomatech Wind Power Blade aka Sinoma Science Technology Wind Turbine Blade Co Ltd Jump to: navigation, search Name Sinomatech Wind Power Blade (aka Sinoma Science & Technology Wind Turbine Blade Co Ltd) Place Nanjing, Jiangsu Province, China Zip 210012 Sector Wind energy Product Jiangsu-based wind turbine blade manufactuer. Coordinates 32.0485°, 118.778969° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":32.0485,"lon":118.778969,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

203

Wind Power Partners '94 Wind Farm | Open Energy Information  

Open Energy Info (EERE)

4 Wind Farm 4 Wind Farm Jump to: navigation, search Name Wind Power Partners '94 Wind Farm Facility Wind Power Partners '94 Sector Wind energy Facility Type Commercial Scale Wind Facility Status In Service Owner NextEra Energy Resources Developer Kenetech Wind Power Energy Purchaser Lower Colorado River Authority Location Culberson County TX Coordinates 31.3508°, -104.443° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":31.3508,"lon":-104.443,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

204

Xi an Nordex Wind Turbine Co Ltd aka Xi an Weide Wind Power Equipment...  

Open Energy Info (EERE)

Wind Turbine Co Ltd aka Xi an Weide Wind Power Equipment Co Ltd Jump to: navigation, search Name: Xi'an Nordex Wind Turbine Co Ltd (aka Xi'an Weide Wind Power Equipment Co Ltd)...

205

Wind Research and Development | Department of Energy  

Office of Environmental Management (EM)

Research and Development Wind Research and Development Photo of two multimegawatt wind turbines in a green field, blue sky with clouds in the background. The U.S. Department of...

206

The Political Economy of Wind Power in China  

E-Print Network (OSTI)

wind power as they please. Moreover, according to a study of wind curtailment in North America and Europe,

Swanson, Ryan Landon

2011-01-01T23:59:59.000Z

207

Sandia National Laboratories: Wind Power  

NLE Websites -- All DOE Office Websites (Extended Search)

Wake Imaging System Doppler Radar SWiFT Operations It is well known that large amounts of wind energy are not effectively harvested in large wind farms because the turbines...

208

WINDExchange: Where Is Wind Power?  

Wind Powering America (EERE)

models that are used by weather forecasters and are even used to estimate the wind energy potential-or how much wind energy could potentially be produced at the state level, if...

209

Managing Wind Power Forecast Uncertainty in Electric Grids.  

E-Print Network (OSTI)

??Electricity generated from wind power is both variable and uncertain. Wind forecasts provide valuable information for wind farm management, but they are not perfect. Chapter… (more)

Mauch, Brandon Keith

2012-01-01T23:59:59.000Z

210

Harbin Wind Power Equipment Company | Open Energy Information  

Open Energy Info (EERE)

Company Jump to: navigation, search Name: Harbin Wind Power Equipment Company Place: Harbin, Heilongjiang Province, China Sector: Wind energy Product: A wind turbine manufacturer....

211

Datang Zhangzhou Wind Power Co Ltd | Open Energy Information  

Open Energy Info (EERE)

Zhangzhou Wind Power Co Ltd Place: Zhangzhou, Fujian Province, China Sector: Wind energy Product: Project developer of the Datang Zhangpu Liuao wind farm in Fujian province, China...

212

Indian Wind Power Association IWPA | Open Energy Information  

Open Energy Info (EERE)

IWPA Jump to: navigation, search Name: Indian Wind Power Association (IWPA) Place: Chennai, Tamil Nadu, India Zip: 600 020 Sector: Wind energy Product: Chennai-based wind energy...

213

Active Power Controls from Wind Power: Bridging the Gaps  

Energy.gov (U.S. Department of Energy (DOE))

This report evaluates how wind power can support power system reliability, and do so economically. The study includes a number of different power system simulations, control simulations, and actual field tests using turbines at the National Renewable Energy Laboratory's (NREL’s) National Wind Technology Center (NWTC).

214

NREL: Wind Research - @NWTC Newsletter  

NLE Websites -- All DOE Office Websites (Extended Search)

NREL Investigates the Logistics of Transporting and Installing Bigger, Taller Wind Turbines NREL Plays Founding, Developmental Role in Major Wind Journal Boosting Wind Plant...

215

NREL: Wind Research - NREL's Wind Technology Patents Boost Efficiency and  

NLE Websites -- All DOE Office Websites (Extended Search)

NREL's Wind Technology Patents Boost Efficiency and Lower Costs NREL's Wind Technology Patents Boost Efficiency and Lower Costs March 22, 2013 Wind energy research conducted at the National Wind Technology Center (NWTC) at the U.S. Department of Energy's National Renewable Energy Laboratory (NREL) during the last decade has earned the lab two patents, one for adaptive pitch control and one for a resonance blade test system that will ultimately help its industry partners increase the efficiency of wind technologies and reduce the cost of wind energy. The most recent patent for adaptive pitch control for variable-speed wind turbines was granted in May 2012. Variable-speed wind turbines use rotor blade pitch control to regulate rotor speed at the high wind speed limit. Although manufacturers and operators have been interested in developing a nominal pitch to improve

216

Network Wind Power Over the Pacific Northwest. Progress Report, October 1979-September 1980.  

SciTech Connect

The research in FY80 is composed of six primary tasks. These tasks include data collection and analysis, wind flow studies around an operational wind turbine generator (WTG), kite anemometer calibration, wind flow analysis and prediction, the Klickitat County small wind energy conversion system (SWECS) program, and network wind power analysis. The data collection and analysis task consists of four sections, three of which deal with wind flow site surveys and the fourth with collecting and analyzing wind data from existing data stations. This report also includes an appendix which contains mean monthly wind speed data summaries, wind spectrum summaries, time series analysis plots, and high wind summaries.

Baker, Robert W.; Hewson, E. Wendell

1980-10-01T23:59:59.000Z

217

Trends of Wind and Wind Power Over the Coterminous United States.  

E-Print Network (OSTI)

??The trends of wind and wind power at a typical wind turbine hub height (80 m) are analyzed using the North American Regional Reanalysis (NARR)… (more)

Holt, Eric M

2011-01-01T23:59:59.000Z

218

Wind power project siting workshop: emerging issues and technologies  

SciTech Connect

With wind power development extending more broadly across the various regions of the United States, and with new participants entering the wind development business, AWEA developed a workshop on the various ways in which wind power projects affect--and don't affect--elements of the human and natural environment. Over 180 people gathered in Portland, OR on October 13-14, 2004 to participate in a day and a half of presentations by 20 leading industry specialists. Their presentations covered emerging issues of project siting, such as bat interactions and wildlife survey techniques, and methods of generating local support for wind projects. Workshop topics included: Avian and Bat Research Updates; Wildlife Survey Technologies & Techniques; Technical Issues such as Noise, Aesthetics, and Lighting; National Environmental Policy Act (NEPA) Scenarios and Federal Land Policies; Tribal & Community Relations; Federal & State Permitting Process; and Bureau of Land Management Wind Power Developments.

anon.

2004-12-01T23:59:59.000Z

219

Comprehensive assessment of flexibility of the wind power industry chain  

Science Journals Connector (OSTI)

Abstract A number of energy development plans have been released in China in recent decades. These plans were aimed at promoting the optimization of the Chinese energy industry structure and achieving emission reduction targets by encouraging the development of clean energies such as wind energy. The sustainable development of the clean energy industry chain faces a number of challenges, one of which is the lack of flexibility. This has led to some serious issues associated with clean power industries such as wind power and it is timely to investigate the flexibility of the wind power industry chain to ensure its sustainable development. A hybrid research methodology has been employed in this study to identify most critical factors that affect the flexibility level of the wind power industry chain. These factors are related to seven types of flexibility, i.e. structural flexibility, production flexibility, operational flexibility, technological flexibility, development flexibility, construction flexibility, and policy flexibility. A flexibility assessment index system classified according to upstream, midstream and downstream industry supply chain has been established for the wind power industry chain and a Matter-element extension model was adopted to determine the level of flexibility. The flexibility deviation of the main factors that affect the flexibility of wind power was calculated using sensitivity analysis. The case study suggested that it is feasible to utilize this novel method to evaluate the flexibility of the wind power industry chain. The outcomes of the flexibility analysis provide useful information to assist the decision making process of both government and industry.

Cun-Bin Li; Hong-Yi Chen; Jiang Zhu; Jian Zuo; George Zillante; Zhen-Yu Zhao

2015-01-01T23:59:59.000Z

220

Time Series Models to Simulate and Forecast Wind Speed and Wind Power  

Science Journals Connector (OSTI)

A general approach for modeling wind speed and wind power is described. Because wind power is a function of wind speed, the methodology is based on the development of a model of wind speed. Values of wind power are estimated by applying the ...

Barbara G. Brown; Richard W. Katz; Allan H. Murphy

1984-08-01T23:59:59.000Z

Note: This page contains sample records for the topic "wind power research" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


221

Silicon Valley Power and Oklahoma Municipal Power Authority Win 2014 Public Power Wind Awards  

Energy.gov (U.S. Department of Energy (DOE))

The Energy Department and the American Public Power Association named Oklahoma Municipal Power Authority and Silicon Valley Power as the winners of the 2014 Public Power Wind Awards.

222

wind powering america | OpenEI Community  

Open Energy Info (EERE)

41 41 Varnish cache server Home Groups Community Central Green Button Applications Developer Utility Rate FRED: FRee Energy Database More Public Groups Private Groups Features Groups Blog posts Content Stream Documents Discussions Polls Q & A Events Notices My stuff Energy blogs 429 Throttled (bot load) Error 429 Throttled (bot load) Throttled (bot load) Guru Meditation: XID: 2142235241 Varnish cache server wind powering america Home Graham7781's picture Submitted by Graham7781(2002) Super contributor 30 January, 2013 - 10:55 Wind Powering America Guidebook officially launched on OpenEI guidebook OpenEI wind powering america WPA Wind Powering America's Small Wind Guidebook is now featured in OpenEI, the U.S. Department of Energy's wiki platform for energy information. This guide and the state-specific versions are some of the most successful

223

Impact of Wind Power Plants on Voltage and Transient Stability of Power Systems  

SciTech Connect

A standard three-machine, nine-bus wind power system is studied and augmented by a radially connected wind power plant that contains 22 wind turbine generators.

Muljadi, E.; Nguyen, Tony B.; Pai, M. A.

2008-09-30T23:59:59.000Z

224

A Comparative Analysis of Community Wind Power Development Models  

E-Print Network (OSTI)

Whip Up Hopes for Wind Power Again. ” The Wall StreetProduction Tax Credit for Wind Power. LBNL-51465. Berkeley,This combination is making wind power an important new cash

Bolinger, Mark; Wiser, Ryan; Wind, Tom; Juhl, Dan; Grace, Robert; West, Peter

2005-01-01T23:59:59.000Z

225

Analysis the Present Situation of Inner Mongolia Wind Power  

Science Journals Connector (OSTI)

The wind energy resource is rich and superior in the Inner Mongolia area. Wind power industry reach a preliminary scale. But with the wind power industry rapid development, appear some critical problems such as power

Linjing Hu; Dongmin Xi

2012-01-01T23:59:59.000Z

226

Global ocean wind power sensitivity to surface layer stability  

E-Print Network (OSTI)

Evaluation of global wind power, J. Geophys. Res. , 110,W. Tang, and X. Xie (2008), Wind power distribution over theApproach to Short-Term Wind Power Prediction, 1st ed. ,

Capps, Scott B; Zender, Charles S

2009-01-01T23:59:59.000Z

227

The Political Economy of Wind Power in China  

E-Print Network (OSTI)

adds 18.9 GW of new wind power capacity in 2010. ? GlobalEnd Challenged Subsidies in Wind Power Case. ? Internationalemergence in the global wind power industry. ? Ph. D.

Swanson, Ryan Landon

2011-01-01T23:59:59.000Z

228

Wind Power Price Trends in the United States  

E-Print Network (OSTI)

should eventually help wind power regain the downward priceModern Energy Review] Wind Power Price Trends in the Unitedled the world in adding new wind power capacity in 2008, and

Bolinger, Mark

2010-01-01T23:59:59.000Z

229

Wind Power: How Much, How Soon, and At What Cost?  

E-Print Network (OSTI)

Evaluation of Global Wind Power." Journal of Geophysical2008. "The Economics of Wind Power with Energy Storage."Economics of Large-Scale Wind Power in a Carbon Constrained

Wiser, Ryan H

2010-01-01T23:59:59.000Z

230

RELIABILITY OF WIND POWER FROM DISPERSED SITES: A PRELIMINARY ASSESSMENT  

E-Print Network (OSTI)

ON METHODOLOGY: FROM WIND POWER FREQUENCY TO LOSS-OF-LOADJ.P. , "Some Aspects of Wind Power Statistics, " J. of Appl.S£CTION Reliability of Wind Power From Dispersed Sites: A Pr

Kahn, E.

2011-01-01T23:59:59.000Z

231

Global ocean wind power sensitivity to surface layer stability  

E-Print Network (OSTI)

2009 Global ocean wind power sensitivity to surface layer1 May 2009. [ 1 ] Global ocean wind power has recently beenincreases mean global ocean wind power by +58% and À4%,

Capps, Scott B; Zender, Charles S

2009-01-01T23:59:59.000Z

232

Factors driving wind power development in the United States  

E-Print Network (OSTI)

about 1.3 MW of Iowa wind power to supply its Second Natureuse a portion of the wind power to supply customers whosupplies wholesale wind power to four Colorado utilities,

Bird, Lori A.; Parsons, Brian; Gagliano, Troy; Brown, Matthew H.; Wiser, Ryan H.; Bolinger, Mark

2003-01-01T23:59:59.000Z

233

The effect of high penetration of wind power on primary frequency control of power systems.  

E-Print Network (OSTI)

??In this work, a power system with wind power units and hydro power units are considered. The hydro power unit and variable speed wind turbine… (more)

Motamed, Bardia

2013-01-01T23:59:59.000Z

234

Stakeholder Engagement and Outreach: Where Is Wind Power?  

Wind Powering America (EERE)

Where Is Wind Power? Where Is Wind Power? Wind Powering America offers maps to help you visualize the wind resource at a local level and to show how much wind power has been installed in the United States. How much wind power is on my land? Go to the wind resource maps. Go to the wind resource maps. Go to the wind resource maps. If you want to know how much wind power is in a particular area, these wind resource maps can give you a visual indication of the average wind speeds to a local level such as a neighborhood. These maps have been developed using the same mathematical models that are used by weather forecasters and are even used to estimate the wind energy potential-or how much wind energy could potentially be produced at the state level, if wind power were developed there.

235

Dynamic Models for Wind Turbines and Wind Power Plants  

SciTech Connect

The primary objective of this report was to develop universal manufacturer-independent wind turbine and wind power plant models that can be shared, used, and improved without any restrictions by project developers, manufacturers, and engineers. Manufacturer-specific models of wind turbines are favored for use in wind power interconnection studies. While they are detailed and accurate, their usages are limited to the terms of the non-disclosure agreement, thus stifling model sharing. The primary objective of the work proposed is to develop universal manufacturer-independent wind power plant models that can be shared, used, and improved without any restrictions by project developers, manufacturers, and engineers. Each of these models includes representations of general turbine aerodynamics, the mechanical drive-train, and the electrical characteristics of the generator and converter, as well as the control systems typically used. To determine how realistic model performance is, the performance of one of the models (doubly-fed induction generator model) has been validated using real-world wind power plant data. This work also documents selected applications of these models.

Singh, M.; Santoso, S.

2011-10-01T23:59:59.000Z

236

PSO (FU 2101) Ensemble-forecasts for wind power  

E-Print Network (OSTI)

PSO (FU 2101) Ensemble-forecasts for wind power Wind Power Ensemble Forecasting Using Wind Speed the problems of (i) transforming the meteorological ensembles to wind power ensembles and, (ii) correcting) data. However, quite often the actual wind power production is outside the range of ensemble forecast

237

NREL: Wind Research - Accredited Testing  

NLE Websites -- All DOE Office Websites (Extended Search)

Accredited Testing Accredited Testing NREL has testing capabilities that are accredited by the American Association of Laboratory Accreditation (A2LA). Currently, NREL is one of only two facilities in the United States that are A2LA accredited. Small and large wind turbines are given a suite of tests that test acoustic noise emissions, duration, load, power performance, power quality, and safety and function. Each of the tests is briefly described below. Tests are performed to International Electrotechnical Commission (IEC) standards and in compliance with NREL's A2LA-accredited Quality Assurance (QA) system. Duration, load, power performance, and safety and function test data are collected using a National Instruments-based data acquisition system and compiled through custom LabVIEW software.

238

On methodology for modelling wind power impact on power systems  

Science Journals Connector (OSTI)

There is a continuous discussion going on concerning the integration cost of wind power. The integration cost can, for example, be defined as the extra costs in the rest of the system when wind power is introduced, compared with the situation without wind power. The result of the studies depends on both parameters and the method used. The aim of this paper is to structure the methods in order to get some understanding on the impact of different modelling approaches. In general, it can be noted that approximations are always needed since the integration of wind power includes so many complexities including stability of power systems, grid codes, market behaviour, uncertainties and trading possibilities. All these items have to be considered in both the wind power case and in the reference case to obtain an estimation of the integration cost.

Lennart Soder; Hannele Holttinen

2008-01-01T23:59:59.000Z

239

Estimating the impacts of wind power on power systems—summary of IEA Wind  

Science Journals Connector (OSTI)

Adding wind power to power systems will have beneficial impacts by reducing the emissions of electricity production and reducing the operational costs of the power system as less fuel is consumed in conventional power plants. Wind power will also have a capacity value to a power system. However, possible negative impacts will have to be assessed to make sure that they will only offset a small part of the benefits and also to ensure the security of the power system operation. An international forum for the exchange of knowledge of power system impacts of wind power has been formed under the IEA Implementing Agreement on Wind Energy. The Task 'Design and Operation of Power Systems with Large Amounts of Wind Power' is analyzing existing case studies from different power systems. There are a multitude of studies completed and ongoing related to the cost of wind integration. However, the results are not easy to compare. This paper describes the general issues of wind power impacts on power systems and presents a comparison of results from ten case studies on increased balancing needs due to wind power.

Hannele Holttinen

2008-01-01T23:59:59.000Z

240

The Political Economy of Wind Power in China  

E-Print Network (OSTI)

coal-fired power plants each week,? and wind power‘s currentwind-generated electricity (as contrasted with coal-fired power plants).fired power plants and the number of grid-connected wind

Swanson, Ryan Landon

2011-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "wind power research" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


241

Fujian Putian Nanridao Houshanzai Wind Power Co Ltd | Open Energy...  

Open Energy Info (EERE)

Putian Nanridao Houshanzai Wind Power Co Ltd Jump to: navigation, search Name: Fujian Putian Nanridao Houshanzai Wind Power Co Ltd Place: Putian, Fujian Province, China Sector:...

242

Tongliao Changxing Wind Power Co Ltd | Open Energy Information  

Open Energy Info (EERE)

Tongliao Changxing Wind Power Co Ltd Jump to: navigation, search Name: Tongliao Changxing Wind Power Co Ltd Place: Tongliao City, Inner Mongolia Autonomous Region, China Sector:...

243

The Economic Impact of Wind Power on Ercot Regulation Market.  

E-Print Network (OSTI)

??U.S. wind power generation has grown rapidly in the last decade due to government policies designed to reduce pollution. Although wind power does not contribute… (more)

Zheng, Bin

2013-01-01T23:59:59.000Z

244

CECIC Wind Power Investment Co Ltd | Open Energy Information  

Open Energy Info (EERE)

A subsidiary of China Energy Conservation Investment (CECIC), mainly engages in wind power project developing, investment and construction. References: CECIC Wind Power...

245

Local Content Requirements in British Columbia's Wind Power Industry  

E-Print Network (OSTI)

Local Content Requirements in British Columbia's Wind Power Industry May Hao, Matt Mackenzie, Alex..................................................................................8 4.1 Current Wind Power Projects

Pedersen, Tom

246

Miracle Wind Power Components Manufacture Co Ltd | Open Energy...  

Open Energy Info (EERE)

Miracle Wind Power Components Manufacture Co Ltd Jump to: navigation, search Name: Miracle Wind Power Components Manufacture Co Ltd Place: Wuxi, Jiangsu Province, China Sector:...

247

Fujian Pingtan Changjiangao Wind Power Co Ltd | Open Energy Informatio...  

Open Energy Info (EERE)

Fujian Pingtan Changjiangao Wind Power Co Ltd Jump to: navigation, search Name: Fujian Pingtan Changjiangao Wind Power Co Ltd Place: Pingtan, Fujian Province, China Zip: 350400...

248

Wind Power in China | Open Energy Information  

Open Energy Info (EERE)

in China in China Jump to: navigation, search This article is a stub. You can help OpenEI by expanding it. Contents 1 Summary 2 Estimate Potential 3 Current Projects 4 China Manufacturers 4.1 Wind Companies in Wind Power in China 5 China's Wind Goals 6 References Summary Installed wind capacity: approximately 30 GW by end of 2010 (est), added 13.8 GW in 2009 Installed wind capacity doubled each year, Min Deqing China_2050_Wind_Technology_Roadmap Estimate Potential Offshore wind energy generation potential in China estimate to be 11,000 terawatt-hours (TWh) similar to that of the North Sea in western Europe.[1][2] Current Projects 7 large projects or "megabases" (2010) [3] Inner Mongolia approximately 4.3 GW capacity in 2010 (66 projects; 40 more planned)[4] 1.25 GW offshore project in Guangdong

249

NREL: Wind Research - News Release Archives  

NLE Websites -- All DOE Office Websites (Extended Search)

09 09 September 14, 2009 IEA Wind Energy 2008 Annual Report Now Available for Free Download The IEA Annual Report for 2008 provides the latest information on wind industries in 20 International Energy Agency (IEA) Wind member countries. August 26, 2009 NWTC Installs Multimegawatt Research Turbines NREL's National Wind Technology Center installed the first of two multimegawatt wind turbines last week to be used for research to advance wind turbine performance and reliability. February 3, 2009 U.S. Wind Industry Takes Global Lead The U.S. wind energy industry broke another global record in 2008 by installing 8,358 megawatts (MW) of new capacity, bringing our nation's total wind energy capacity to 25,170 MW. The United States now claims the largest wind energy capacity in the world, taking the lead from Germany.

250

Gansu China Power Jiuquan Wind Power Co Ltd | Open Energy Information  

Open Energy Info (EERE)

Jiuquan Wind Power Co Ltd Jump to: navigation, search Name: Gansu China Power Jiuquan Wind Power Co Ltd Place: Gansu Province, China Sector: Wind energy Product: China-based wind...

251

NREL: Wind Research - Field Test Sites  

NLE Websites -- All DOE Office Websites (Extended Search)

Field Test Sites Field Test Sites Aerial view of the National Wind Technology Center with the Flatiron Mountains in the background NREL's NWTC has numerous test pads available to industry partners for testing wind turbines that range in size from a few hundred kilowatts to several megawatts. PIX 17711. Manufacturers can take advantage of NREL's numerous test pads and the technical expertise of its staff to field test prototypes of small and large wind turbines. Many of the small wind turbines tested at the NWTC are participants in NREL's Small Wind Turbine Independent Test Program. Small and mid-sized turbines field tested at the NWTC include those manufactured by Atlantic Orient Corporation, Bergey Windpower, Southwest Wind Power, Northern Power Systems, Endurance Wind Power Inc., Gaia-Wind Ltd.,

252

Kickoff of Offshore Wind Power in China: Playoffs for China Wind Power Development  

Science Journals Connector (OSTI)

Year 2010 is the significant year of offshore wind power development in China. The first national offshore wind power project is connected to the grid, and the first round of concession projects marks the strong support from central government. It is foreseeable that offshore wind power capacity in China will expand rapidly in the future, and the understanding pattern of it is crucial for analyzing the overall wind market in China and global offshore wind power development. This paper firstly provides an overview of global offshore wind power development, then in China, including historical installation, potential of resources, demonstration and concession projects, and target of development. Based on this, analysis on current policies related to offshore wind power and their implementation, current wind farm developers and turbine manufacturers of China's offshore wind industry is done. All the previous analysis generates complete evaluation of current status and some issues and trends of China offshore wind power development, based on which some policy recommendations for sustainable development of offshore wind power are made.

Zhang Xiliang; Zhang Da; Michele Stua

2012-01-01T23:59:59.000Z

253

EWEC 2006, Athens, The Anemos Wind Power Forecasting Platform Technology The Anemos Wind Power Forecasting Platform Technology -  

E-Print Network (OSTI)

EWEC 2006, Athens, The Anemos Wind Power Forecasting Platform Technology 1 The Anemos Wind Power a professional, flexible platform for operating wind power prediction models, laying the main focus on state models from all over Europe are able to work on this platform. Keywords: wind energy, wind power

Boyer, Edmond

254

Wind Power Career Chat, Wind And Water Power Program (WWPP)  

Wind Powering America (EERE)

Rackstraw Developer, Rackstraw Consulting LLC 1. How did you become interested in wind energy? I wanted to work in a "green" technology, and I happened to see a job posting to...

255

Marquiss Wind Power | Open Energy Information  

Open Energy Info (EERE)

Marquiss Wind Power Marquiss Wind Power Jump to: navigation, search Name Marquiss Wind Power Place Folsom, California Zip 95630 Sector Wind energy Product US-based manufacturer of patented ducted micro-scale wind turbines for use on commercial and industrial rooftops. Coordinates 39.474081°, -80.529699° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":39.474081,"lon":-80.529699,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

256

Madison Wind Power Project | Open Energy Information  

Open Energy Info (EERE)

Madison Wind Power Project Madison Wind Power Project Facility Madison Wind Power Project Sector Wind energy Facility Type Commercial Scale Wind Facility Status In Service Owner Horizon Developer Atlantic Renewable/PG&E Generating Energy Purchaser Market Location Madison County NY Coordinates 42.91455°, -75.569851° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":42.91455,"lon":-75.569851,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

257

Northwestern Wind Power | Open Energy Information  

Open Energy Info (EERE)

Northwestern Wind Power Northwestern Wind Power Jump to: navigation, search Name Northwestern Wind Power Place Wasco, Oregon Zip OR 97065 Sector Wind energy Product US-based wind project developer. Coordinates 45.591395°, -120.69777° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":45.591395,"lon":-120.69777,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

258

Desert Wind Power | Open Energy Information  

Open Energy Info (EERE)

Desert Wind Power Desert Wind Power Facility Desert Wind Power Sector Wind energy Facility Type Commercial Scale Wind Facility Status Proposed Developer Iberdrola Renewables Location Pasquotank and Perquimans Counties NC Coordinates 36.435688°, -76.232786° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":36.435688,"lon":-76.232786,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

259

Shiloh Wind Power Project | Open Energy Information  

Open Energy Info (EERE)

Shiloh Wind Power Project Shiloh Wind Power Project Facility Shiloh Wind Power Project Sector Wind energy Facility Type Commercial Scale Wind Facility Status In Service Owner PPM Energy Inc Developer PPM Energy Inc Energy Purchaser PG&E -Modesto Irrigation District & City of Palo Alto Utilities Location Solano County CA Coordinates 38.154041°, -121.876066° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":38.154041,"lon":-121.876066,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

260

Evergreen Wind Power LLC | Open Energy Information  

Open Energy Info (EERE)

Wind Power LLC Wind Power LLC Jump to: navigation, search Name Evergreen Wind Power LLC Place Bangor, Maine Zip 4401 Sector Wind energy Product Formed to develop wind projects in Maine. Coordinates 43.892445°, -90.990484° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":43.892445,"lon":-90.990484,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

Note: This page contains sample records for the topic "wind power research" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


261

Moraine Wind Power Project | Open Energy Information  

Open Energy Info (EERE)

Moraine Wind Power Project Moraine Wind Power Project Facility Moraine Wind Power Project Sector Wind energy Facility Type Commercial Scale Wind Facility Status In Service Owner PPM Energy Inc Developer PPM Energy Inc Energy Purchaser Xcel Energy Location Pipestone and Murray Counties MN Coordinates 43.993574°, -96.047301° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":43.993574,"lon":-96.047301,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

262

The Solar Wind Power from Magnetic Flux  

Science Journals Connector (OSTI)

Observations of the fast, high-latitude solar wind throughout Ulysses' three orbits show that solar wind power correlates remarkably well with the Sun's total open magnetic flux. These observations support a recent model of the solar wind energy and particle sources, where magnetic flux emergence naturally leads to an energy flux proportional to the strength of the large-scale magnetic field. This model has also been shown to be consistent with X-ray observations of the Sun and a variety of other stars over 12 decades of magnetic flux. The observations reported here show that the Sun delivers ~600 kW Wb?1 to power the solar wind, and that this power to magnetic flux relation has been extremely stable over the last 15 years. Thus, the same law that governs energy released in the corona and from other stars also applies to the total energy in the solar wind.

N. A. Schwadron; D. J. McComas

2008-01-01T23:59:59.000Z

263

Potential wind power generation in South Egypt  

Science Journals Connector (OSTI)

Egypt is one of the developing countries. The production of electricity in Egypt is basically on petroleum, natural gas, hydro-power and wind energy. The objective of this work to prove the availability of sufficient wind potential in the wide area of deep south Egypt for the operation of wind turbines there. Nevertheless, it gives in general an approximate profile which is useful to the wind parks design for this area. The data used in the calculation are published and analyzed for the first time. The diagrams of the measured wind data for three meteorological stations over a period of two years (wind speed, frequency, direction), wind shear coefficient, the mean monthly and annual wind speed profile for every location are presented. Monthly Weibull parameters, standard deviation and coefficient of variation have been statistically discussed. A comparison of the rose diagrams shows that the wind speed is more persistent and blow over this region of Egypt in two main sectors N and NNW with long duration of frequencies from 67% to 87% over the year with an average wind speed in the range 6.8–7.9 m/s at the three stations. Evaluation of monthly wind energy density at 10 m height by two different methods was carried out. And the final diagram for every site shows no significant difference between them. The annual natural wind energies at 70 m A.G.L. lie between 333 and 377 W/m2 for Dakhla South and Kharga stations, respectively, which is similar to the inland wind potential of Vindeby (Denmark) and some European countries. These results indicate that Kharga and Dakhla South locations are new explored sites for future wind power generation projects.

Ahmed Shata Ahmed

2012-01-01T23:59:59.000Z

264

Flexing Cable for Wind Power Applications  

Science Journals Connector (OSTI)

As conventional energy sources -- namely oil, gas, and coal -- are increasingly limited in their respective quantities, many countries are encouraging the development of renewable energies. Wind energy, already a well-developed technology, is quickly ... Keywords: Wind Power, Flexing, Cable, energy, Flexibility

Wenyan Qiu; Huili Zhang; Lu Li

2012-05-01T23:59:59.000Z

265

Stakeholder Engagement and Outreach: What Is Wind Power?  

Wind Powering America (EERE)

What Is Wind Power? What Is Wind Power? A three-bladed wind turbine with the internal components visible. Six turbines in a row are electrically connected to the power grid. Wind Power Animation This aerial view of a wind turbine plant shows how a group of wind turbines can make electricity for the utility grid. The electricity is sent through transmission and distribution lines to homes, businesses, schools, and so on. View the wind turbine animation to see how a wind turbine works or take a look inside. Wind power or wind energy describes the process by which the wind is used to generate mechanical power or electricity. Wind turbines convert the kinetic energy in the wind into mechanical power. This mechanical power can be used for specific tasks (such as grinding grain or pumping water), or

266

PSO2004/FU5766 Improved wind power prediction  

E-Print Network (OSTI)

PSO2004/FU5766 Improved wind power prediction Spatio-temporal modelling of short-term wind power of wind power generation in power systems. The quality of the forecast is very important, and a reliable estimate of the uncertainty of the forecast is known to be essential. Today the forecasts of wind power

267

Ris-R-1256(EN) Isolated Systems with Wind Power  

E-Print Network (OSTI)

Risø-R-1256(EN) Isolated Systems with Wind Power Main Report Per Lundsager, Henrik Bindner, Niels 2001 #12;Abstract It is generally expected that wind power could contribute significantly for such applications of wind power has not yet materialised in any substantial scale. Wind power in isolated power

268

Characterization of the Wind Power Resource in Europe and its  

E-Print Network (OSTI)

Characterization of the Wind Power Resource in Europe and its Intermittency Alexandra Cosseron, C for Global Change Science (CGCS) and the Center for Energy and Environmental Policy Research (CEEPR processes of policy development and implementation, climate change research needs to focus on improving

269

The Great Plains Wind Power Test Facility  

SciTech Connect

This multi-year, multi-faceted project was focused on the continued development of a nationally-recognized facility for the testing, characterization, and improvement of grid-connected wind turbines, integrated wind-water desalination systems, and related educational and outreach topics. The project involved numerous faculty and graduate students from various engineering departments, as well as others from the departments of Geosciences (in particular the Atmospheric Science Group) and Economics. It was organized through the National Wind Institute (NWI), which serves as an intellectual hub for interdisciplinary and transdisciplinary research, commercialization and education related to wind science, wind energy, wind engineering and wind hazard mitigation at Texas Tech University (TTU). Largely executed by an academic based team, the project resulted in approximately 38 peer-reviewed publications, 99 conference presentations, the development/expansion of several experimental facilities, and two provisional patents.

Schroeder, John

2014-01-31T23:59:59.000Z

270

Langford Wind Power LLC | Open Energy Information  

Open Energy Info (EERE)

Langford Wind Power LLC Place: Texas References: EIA Form EIA-861 Final Data File for 2010 - File220101 EIA Form 861 Data Utility Id 56506 This article is a stub. You can help...

271

Sandia National Laboratories: Wind & Water Power Newsletter  

NLE Websites -- All DOE Office Websites (Extended Search)

of the U.S. Department of Energy, Office of Energy Efficiency and Renewable Energy, Wind and Water Power Program. Events Register by August 11th to receive discounted rate for...

272

Wind Power Amercia Final Report  

SciTech Connect

The objective of this grant was to further the development of Montana�¢����s vast wind resources for small, medium and large scale benefits to Montana and the nation. This was accomplished through collaborative work with wind industry representatives, state and local governments, the agricultural community and interested citizens. Through these efforts DEQ was able to identify development barriers, educate and inform citizens as well as participate in regional and national dialogue that will spur the development of wind resources.

Brian Spangler, Kathi Montgomery and Paul Cartwright

2012-01-30T23:59:59.000Z

273

Explore Careers in Wind Power | Department of Energy  

Office of Environmental Management (EM)

the Basic PVC Wind Turbine K-12 Lesson Plan: An Exploration of Wind Energy and Wind Turbines K-12 Lesson Plan: PBS Wind Power for Educators Workforce and Economic Need There...

274

Wind Farm Power Prediction: A Data-Mining Approach  

E-Print Network (OSTI)

into a wind power plant. A number of different approaches have been used in forecasting wind speed and windWind Farm Power Prediction: A Data-Mining Approach Andrew Kusiak*, Haiyang Zheng and Zhe Song, IA 52242­1527, USA In this paper, models for short- and long-term prediction of wind farm power

Kusiak, Andrew

275

Offshore wind speed and wind power characteristics for ten locations in Aegean and Ionian Seas  

Science Journals Connector (OSTI)

This paper utilizes wind speed data measured at 3 and 10 ... and Aegean Seas to understand the behaviour of wind and thereafter energy yield at these stations using 5 MW rated power offshore wind turbine. With wind

HARALAMBOS S BAGIORGAS; GIOULI MIHALAKAKOU…

2012-08-01T23:59:59.000Z

276

Sandia National Laboratories: Wind Power  

NLE Websites -- All DOE Office Websites (Extended Search)

Sandia Wind Energy in the News On May 4, 2011, in Sandia is a multiprogram laboratory operated by Sandia Corporation, a Lockheed Martin company, for the U.S. Department of Energy's...

277

PBS: Wind Power for Educators  

K-12 Energy Lesson Plans and Activities Web site (EERE)

This lesson on wind energy is designed for physical science, earth science, and environmental science classrooms for grades 9-12, but may also be appropriate for some middle school science classes.

278

Wind Power Quality Test for Comparison of Power Quality Standards  

SciTech Connect

Power quality testing is important to wind power applications for several reasons. The nature of wind turbine generation is different from conventional power plants. Although windfarms are growing in capacity and diversifying in nature in the U.S. and throughout the globe, there is no standard that addresses the power quality of wind turbines or wind farms. The International Electrotechnical Committee (IEC) has convened Working Group 10 (WG10) to address testing and assessment of power quality characteristics of wind turbines. A IEEE task force has been appointed to reconsider flicker measurement procedures in the U.S. Lastly, power quality tests are now required as part of the certification process for wind turbines. NREL began this work both in response to industry request and in support of the IEC working group. (Mr. Gregory is a member of the IEC working group) This paper presents the NREL Certification Testing Team's effort in developing procedures and equipment for power quality testing for wind turbine certification. Summaries of several power quality standards that are applicable to this process are also presented in this paper.

Jacobson, R.; Gregory, B. (National Wind Technology Center)

1999-09-09T23:59:59.000Z

279

UNIVERSITY OF CALIFORNIA, Surface Wind Speed Distributions: Implications for Climate and Wind Power  

E-Print Network (OSTI)

and Wind Power DISSERTATION submitted in partial satisfaction of the requirements for the degree of DOCTOR . . . . . . . . . . . . . . . . . 19 1.3 Global Ocean Wind Power and Surface Layer Stability . . . . . . . . 23 1.3.1 Global Winds . . . . . . 27 1.4 Usable Offshore Wind Power . . . . . . . . . . . . . . . . . . . . . . . 31 1.4.1 Wind Turbine

Zender, Charles

280

Numerical Modeling and Optimization of Power Generation from Shrouded Wind Turbines.  

E-Print Network (OSTI)

??In recent years, it has been theoretically suggested by some researchers that the power coefficient of a wind turbine can be increased beyond the Betz… (more)

Foote, Tudor

2011-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "wind power research" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


281

NREL: Wind Research - News Release Archives  

NLE Websites -- All DOE Office Websites (Extended Search)

1 1 December 9, 2011 Saving Farmland One Wind Energy Project at a Time Rich VanderVeen, president of Mackinaw Power, LLC in Michigan talks about wind power being an important wealth-building second crop for American farmers. November 22, 2011 New Database Assists with Wind Project Siting November 2, 2011 Wind Energy Has A Lot Riding on Programs up for Debate in Congress Lisa Daniels, Windustry executive director, talks about how wind energy has become a farm product and that clean energy program funding decisions are being made that will affect farm energy progress for years to come. October 25, 2011 Wind Powering America Updates Interactive Maps The school wind energy projects map features 291 projects, and the anemometer loan projects map features 45 projects.

282

New England Wind Forum: A Wind Powering America Project - Newsletter #6 - September 2010, (NEWF), Wind and Water Power Program (WWPP)  

Wind Powering America (EERE)

6 - September 2010 6 - September 2010 WIND AND WATER POWER PROGRAM PIX 16204 New England and Northeast Look to the Horizon...and Beyond, for Offshore Wind In early December, Boston hosted the American Wind Energy Association's second annual Offshore Wind Project Workshop. U.S. and European offshore wind stakeholders convened to discuss the emerging U.S. offshore wind industry and provided evidence of a significant increase in activity along the Atlantic Coast from the Carolinas to Maine. The wind power industry and policymakers are looking to offshore for long-term growth, driven by aggressive policy goals, economic develop- ment opportunities, a finite set of attractive land-based wind sites, and immense wind energy potential at a modest distance from major population centers.

283

Aspects Regarding Design of Wind Power Plants Foundation System  

Science Journals Connector (OSTI)

During the past years wind power plants projects have become very important all over ... must be calculated for dynamic loads, especially wind charge. The article present the particularities of the wind power plants

Vasile Farcas; Nicoleta Ilies

2014-01-01T23:59:59.000Z

284

SeaWest WindPower Inc | Open Energy Information  

Open Energy Info (EERE)

WindPower Inc Place: San Diego, California Zip: 92108-4310 Sector: Services, Wind energy Product: SeaWest is a turnkey developer of wind power plants. Their services include...

285

Category:Wind power in China | Open Energy Information  

Open Energy Info (EERE)

Category: Wind Power in China Pages in category "Wind power in China" The following 2 pages are in this category, out of 2 total. C China-2050 Wind Technology Roadmap S Suzlon...

286

On the Wind Power Input to the Ocean General Circulation  

E-Print Network (OSTI)

The wind power input to the ocean general circulation is usually calculated from the time-averaged wind products. Here, this wind power input is reexamined using available observations, focusing on the role of the synoptically ...

Zhai, Xiaoming

287

Maoming Zhong ao Wind Power Co Ltd | Open Energy Information  

Open Energy Info (EERE)

Maoming Zhong ao Wind Power Co Ltd Jump to: navigation, search Name: Maoming Zhong'ao Wind Power Co Ltd Place: Guangdong Province, China Sector: Wind energy Product: Maoming-based...

288

CECIC HKC Wind Power Company Ltd | Open Energy Information  

Open Energy Info (EERE)

HKC Wind Power Company Ltd Jump to: navigation, search Name: CECIC HKC Wind Power Company Ltd Place: China Sector: Wind energy Product: HKC are in a joint venture with China Energy...

289

Jilin Licheng Xiehe Wind Power Co Ltd | Open Energy Information  

Open Energy Info (EERE)

Licheng Xiehe Wind Power Co Ltd Jump to: navigation, search Name: Jilin Licheng Xiehe Wind Power Co Ltd Place: Jilin Province, China Sector: Wind energy Product: Baicheng-based JV...

290

Innovation Framework for Generating Electricity from Wind Power  

Science Journals Connector (OSTI)

During this phase, wind power was characterized by continuing rapid increase in the capacity and technological differentiation of turbines, the scale of the wind farms and the beginnings of offshore wind power.

Prof. Dr. Elke Bruns; Dr. Dörte Ohlhorst…

2011-01-01T23:59:59.000Z

291

Wind for Schools Project Power System Brief, Wind Powering America Fact Sheet Series  

SciTech Connect

Wind Powering America's (WPA's) Wind for Schools project uses a basic system configuration for each school project. The system incorporates a single SkyStream wind turbine, a 70-ft guyed tower, disconnect boxes at the base of the turbine and at the school, and an interconnection to the school's electrical system. This document provides a detailed description of each system component.

Baring-Gould, I.

2009-05-01T23:59:59.000Z

292

Wind Power Excites Utility Interest  

Science Journals Connector (OSTI)

...rated at 200 kilowatts peak power output in Clayton, N.M...megawatts (2000 kilowatts) peak power output, is undergoing initial...output fed into the grid of the Bonneville Power Administration. Boeing estimates its machine...

R. JEFFREY SMITH

1980-02-15T23:59:59.000Z

293

Green Power Wind Farm | Open Energy Information  

Open Energy Info (EERE)

Green Power Wind Farm Green Power Wind Farm Facility Green Power Sector Wind energy Facility Type Commercial Scale Wind Facility Status In Service Owner NextEra Energy Resources Developer GE Energy Energy Purchaser Southern California Edison Co Location San Gorgonio CA Coordinates 33.9095°, -116.734° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":33.9095,"lon":-116.734,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

294

Feasibility study on wind-powered desalination  

Science Journals Connector (OSTI)

With the global demand for water rising, along with the ever-increasing scarcity of supply, desalination has been seen as a key proponent to meet the future challenges of fresh water. However, desalination uses significant amounts of energy, today mostly from fossil fuels. It is therefore favourable to rely on renewable energies, specifically the wind due to its low-cost and technological maturity, to power desalination systems. To prove the technical feasibility of wind-powered desalination with both reverse osmosis and mechanical vapour compression, physicsbased system models have been developed and the technical feasibility of using wind as the power source for desalination has been confirmed. The economics of wind-powered desalination are also favourable. The costs are in line with what is expected for a conventional desalination system, proving to be particularly cost-competitive in areas with good wind resources that have high costs of energy. It can be concluded that wind-powered desalination can be competitive with other desalination systems, providing safe and clean drinking water efficiently in an environmentally responsible manner.

Markus Forstmeier; Fredrik Mannerheim; Fernando D'Amato; Minesh Shah; Yan Liu; Michael Baldea; Albert Stella

2007-01-01T23:59:59.000Z

295

Ris-R-1330(EN) Wind Turbine Power Performance  

E-Print Network (OSTI)

Risø-R-1330(EN) Wind Turbine Power Performance Verification in Complex Terrain and Wind Farms/EN 61400-12 Ed 1 standard for wind turbine power performance testing is being revised. The standard on power performance measurements on individual wind turbines. The second one is a power performance

296

Title: Ontario Wind Power Allocation Ontario Ministry of Natural Resources  

E-Print Network (OSTI)

Title: Ontario Wind Power Allocation Data Creator / Copyright Owner: Ontario Ministry of Natural/A Updates: N/A Abstract: This data consists of a polygon shapefile, Wind Power Allocation Block. A Wind Power Allocation Block is an area that could be allocated for the exploration of wind power generation

297

Forecasting Uncertainty Related to Ramps of Wind Power Production  

E-Print Network (OSTI)

Forecasting Uncertainty Related to Ramps of Wind Power Production Arthur Bossavy, Robin Girard - The continuous improvement of the accuracy of wind power forecasts is motivated by the increasing wind power study. Key words : wind power forecast, ramps, phase er- rors, forecasts ensemble. 1 Introduction Most

Boyer, Edmond

298

Automatic selection of tuning parameters in wind power prediction  

E-Print Network (OSTI)

Automatic selection of tuning parameters in wind power prediction Lasse Engbo Christiansen (lec Report number: IMM-Technical Report-2007-12 Project title: Intelligent wind power prediction systems PSO The wind power forecasting system developed at DTU - the Wind Power Prediction Tool (WPPT) - predicts

299

Wind Power: How Much, How Soon, and At What Cost?  

E-Print Network (OSTI)

wind power owners standardized and known payment streams (Mendonca 2007). In other markets in Europe,

Wiser, Ryan H

2010-01-01T23:59:59.000Z

300

Distribution of Wind Power Forecasting Errors from Operational Systems (Presentation)  

SciTech Connect

This presentation offers new data and statistical analysis of wind power forecasting errors in operational systems.

Hodge, B. M.; Ela, E.; Milligan, M.

2011-10-01T23:59:59.000Z

Note: This page contains sample records for the topic "wind power research" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


301

Wind Powering America Podcasts (Postcards), Wind Powering America (WPA), Energy Efficiency & Renewable Energy (EERE)  

Wind Powering America (EERE)

Photo from iStock/ 6495435 Photo from iStock/ 6495435 Wind Powering America Podcasts Wind Powering America and the National Association of Farm Broadcasters produce a series of radio interviews featuring experts discussing wind energy topics. The interviews are aimed at a rural stakeholder audience and are available as podcasts. On the Wind Powering America website, you can access past interviews on topics such as: * Keys to Local Wind Energy Development Success * What to Know about Installing a Wind Energy System on Your Farm * Wind Energy Development Can Revitalize Rural America. Printed with a renewable-source ink on paper containing at least 50% wastepaper, including 10% post consumer waste. DOE/GO-102012-3585 · April 2012 windpoweringamerica.gov/podcasts_agricultural.asp

302

Fuxin Union Wind Power Co Ltd formerly known as Liaoning Zhangwu Xiehe Wind  

Open Energy Info (EERE)

Ltd formerly known as Liaoning Zhangwu Xiehe Wind Ltd formerly known as Liaoning Zhangwu Xiehe Wind Power Co Ltd Jump to: navigation, search Name Fuxin Union Wind Power Co Ltd (formerly known as Liaoning Zhangwu Xiehe Wind Power Co Ltd) Place Liaoning Province, China Sector Wind energy Product JV between CWP Development (a wholly-owned subsidiary of Wind Power) and Shenzhen KWC set up to develop, construct and operate wind power facilities. References Fuxin Union Wind Power Co Ltd (formerly known as Liaoning Zhangwu Xiehe Wind Power Co Ltd)[1] LinkedIn Connections CrunchBase Profile No CrunchBase profile. Create one now! This article is a stub. You can help OpenEI by expanding it. Fuxin Union Wind Power Co Ltd (formerly known as Liaoning Zhangwu Xiehe Wind Power Co Ltd) is a company located in Liaoning Province, China .

303

Analysis of wind power ancillary services characteristics with German 250-MW wind data  

SciTech Connect

With the increasing availability of wind power worldwide, power fluctuations have become a concern for some utilities. Under electric industry restructuring in the US, the impact of these fluctuations will be evaluated by examining provisions and costs of ancillary services for wind power. This paper analyzes wind power in the context of ancillary services, using data from a German 250 Megawatt Wind project.

Ernst, B.

1999-12-09T23:59:59.000Z

304

Robotic Wind Turbine Inspection | GE Global Research  

NLE Websites -- All DOE Office Websites (Extended Search)

Trials GE Global Research is advancing technology that will make the inspection of wind turbines faster and more reliable for customers. Currently, an inspector examines the...

305

Wind power in electricity markets: key issues and challenges  

Science Journals Connector (OSTI)

Due to the large penetration and continuous improvement in the wind power technology, wind farms are asked to operate similar to the conventional power plants. In emerging electricity market, wind power generators are now seen differently and should sustain with/without limited government support. Although cost reductions due to technological improvements bring wind power in competitions to conventional fossil-fuel generation, but until now various incentives are required to overcome wind power's cost disadvantage and these incentives may play a significant role in improving the competitiveness of wind power. However, the use and trade of wind power in the market is complicated because of the lack of guarantees of generation, mainly in the wind farms. This paper discusses several key issues and challenges which can be faced by the wind power in the competitive power market. With suitable market mechanism, wind power can be helpful in mitigating the market abuse up to some extent.

B.S. Rajpurohit; S.N. Singh; Istvan Erlich

2008-01-01T23:59:59.000Z

306

NREL: Wind Research - Get to Know a Wind Energy Expert  

NLE Websites -- All DOE Office Websites (Extended Search)

Get to Know a Wind Energy Expert Former Eagle Scout Leads the Pack in Aerodynamic Research A black and white photo of a young boy, Pat Moriarty, wearing a motorcycle helmet and...

307

Fenton Wind Power Project | Open Energy Information  

Open Energy Info (EERE)

Fenton Wind Power Project Fenton Wind Power Project Jump to: navigation, search Name Fenton Wind Power Project Facility Fenton Wind Power Project Sector Wind energy Facility Type Commercial Scale Wind Facility Status In Service Owner EnXco Developer EnXco Energy Purchaser Xcel Energy Location Murray and Nobles Counties near Chandler MN Coordinates 43.909806°, -95.965884° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":43.909806,"lon":-95.965884,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

308

Kumeyaay Wind Power Project | Open Energy Information  

Open Energy Info (EERE)

Kumeyaay Wind Power Project Kumeyaay Wind Power Project Jump to: navigation, search Name Kumeyaay Wind Power Project Facility Kumeyaay Wind Power Project Sector Wind energy Facility Type Commercial Scale Wind Facility Status In Service Owner Babcock & Brown Developer Superior Renewable Energy Energy Purchaser San Diego Gas & Electric Location East of San Diego CA Coordinates 32.710183°, -116.333224° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":32.710183,"lon":-116.333224,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

309

Social Acceptance of Wind Power in the United States: Evaluating Stakeholder Perspectives (Poster)  

SciTech Connect

As the wind industry strives to achieve 20% wind energy by 2030, maintaining high levels of social acceptance for wind energy will become increasingly important. Wind Powering America is currently researching stakeholder perspectives in the U.S. market and reviewing findings from wind energy projects around the world to better understand social acceptance barriers. Results from European studies show that acceptance varies widely depending on local community values. A preliminary survey shows similar results in the United States. Further research will be conducted to refine our understanding of key social acceptance barriers and evaluate the best ways to mitigate negative perspectives on wind power.

Tegen, S.; Lantz, E.

2009-05-01T23:59:59.000Z

310

Stakeholder Engagement and Outreach: How Do I Get Wind Power?  

Wind Powering America (EERE)

Education Education Printable Version Bookmark and Share Learn About Wind About Wind Power Locating Wind Power Getting Wind Power Installed Wind Capacity Wind for Schools Project Collegiate Wind Competition School Project Locations Education & Training Programs Curricula & Teaching Materials Resources How do I get Wind Power? Learn how you can own, partner with, host, and support wind power. Construct A Wind Project On Your Own Land There are wind turbines designed for everyone from residential homeowners to utilities, and from private to corporate use. Small wind turbines can be bought with cash, and commercial-scale projects can be financed. To learn more about small projects, such as those for a home or ranch or business that are less than or equal to 100 kilowatts (kW), see the small wind

311

Improving Regional Air Quality with Wind Power  

Wind Powering America (EERE)

Improving Regional Air Quality with Improving Regional Air Quality with Wind Power National Renewable Energy Laboratory Improving Regional Air Quality with Wind Power National Renewable Energy Laboratory * Clean Air Act (CAA) framework * Air quality challenges * CAA policies as market drivers * Met. Wash. Council of Governments (MWCOG) case study * Environmental Protection Agency (EPA) guidance on State Implementation Plan (SIP) credit for EERE * Model SIP documentation for wind purchases * Related marketing innovations Overview Overview * CAA requires regional air quality plans (SIPs) * "Window of opportunity" - Revised SIPs required by 2006/2007 to meet new 8-hour ozone and PM standards - August 2004 EPA guidance and NREL model SIP documentation for wind purchases Clean Air Act Framework Clean Air Act Framework

312

Cielo Wind Power | Open Energy Information  

Open Energy Info (EERE)

Cielo Wind Power Cielo Wind Power Address 823 Congress Avenue Place Austin, Texas Zip 78701 Sector Wind energy Product Wind energy developer Website http://www.cielowind.com/ Coordinates 30.270585°, -97.741444° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":30.270585,"lon":-97.741444,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

313

AG Wind Power Ltd | Open Energy Information  

Open Energy Info (EERE)

Wind Power Ltd Wind Power Ltd Place Sheffield, United Kingdom Zip S3 8EN Sector Wind energy Product UK-based company focused on wind turbine erection and maintenance. Coordinates 53.38311°, -1.464544° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":53.38311,"lon":-1.464544,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

314

Wind and Power | Open Energy Information  

Open Energy Info (EERE)

Wind and Power Wind and Power Place Warszawa, Poland Zip 04-320 Sector Solar, Wind energy Product The firm offers small-scale PV panels, inverters, accumulators, solar collectors and wind turbines, and has distributors in Germany, Hungary and Rumania. Coordinates 52.23537°, 21.009485° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":52.23537,"lon":21.009485,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

315

Wind Power Energia | Open Energy Information  

Open Energy Info (EERE)

Wind Power Energia Wind Power Energia Place Fortaleza, Ceara, Brazil Zip 60160-230 Sector Wind energy Product Brazil-based small scale wind turbine manufacturer. Coordinates -3.718404°, -38.542924° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":-3.718404,"lon":-38.542924,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

316

Clear Wind Renewable Power | Open Energy Information  

Open Energy Info (EERE)

Clear Wind Renewable Power Clear Wind Renewable Power Place Minneapolis, Minnesota Zip 55416 Sector Wind energy Product Clear Wind focuses its efforts on projects ranging in size from 5 to 50MW in the midwest US. Coordinates 44.979035°, -93.264929° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":44.979035,"lon":-93.264929,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

317

ANL Wind Power Forecasting and Electricity Markets | Open Energy  

Open Energy Info (EERE)

ANL Wind Power Forecasting and Electricity Markets ANL Wind Power Forecasting and Electricity Markets Jump to: navigation, search Logo: Wind Power Forecasting and Electricity Markets Name Wind Power Forecasting and Electricity Markets Agency/Company /Organization Argonne National Laboratory Partner Institute for Systems and Computer Engineering of Porto (INESC Porto) in Portugal, Midwest Independent System Operator and Horizon Wind Energy LLC, funded by U.S. Department of Energy Sector Energy Focus Area Wind Topics Pathways analysis, Technology characterizations Resource Type Software/modeling tools Website http://www.dis.anl.gov/project References Argonne National Laboratory: Wind Power Forecasting and Electricity Markets[1] Abstract To improve wind power forecasting and its use in power system and electricity market operations Argonne National Laboratory has assembled a team of experts in wind power forecasting, electricity market modeling, wind farm development, and power system operations.

318

Jilin CWP Milestone Wind Power Investment Limited | Open Energy Information  

Open Energy Info (EERE)

CWP Milestone Wind Power Investment Limited CWP Milestone Wind Power Investment Limited Jump to: navigation, search Name Jilin CWP-Milestone Wind Power Investment Limited Place Baicheng, Jilin Province, China Sector Wind energy Product JV between Top Well (a wholly-owned subsidiary of Wind Power) and Shenzhen KWC set up to develop, construct and operate wind power facilities in China. References Jilin CWP-Milestone Wind Power Investment Limited[1] LinkedIn Connections CrunchBase Profile No CrunchBase profile. Create one now! This article is a stub. You can help OpenEI by expanding it. Jilin CWP-Milestone Wind Power Investment Limited is a company located in Baicheng, Jilin Province, China . References ↑ "Jilin CWP-Milestone Wind Power Investment Limited" Retrieved from "http://en.openei.org/w/index.php?title=Jilin_CWP_Milestone_Wind_Power_Investment_Limited&oldid=347495"

319

Power control of a wind farm with active stall wind turbines and AC grid connection  

E-Print Network (OSTI)

Power control of a wind farm with active stall wind turbines and AC grid connection Anca D. Hansen1 controller for a wind farm made-up exclusively of active stall wind turbines with AC grid connection wind farm control involves both the control on wind turbine level as well as the central control

320

Sandia National Laboratories: wind energy  

NLE Websites -- All DOE Office Websites (Extended Search)

Wind Energy Manufacturing Lab Helps Engineers Improve Wind Power On November 15, 2011, in Energy, News, Partnership, Renewable Energy, Wind Energy Researchers at the Wind Energy...

Note: This page contains sample records for the topic "wind power research" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


321

Electricity for road transport, flexible power systems and wind power  

Open Energy Info (EERE)

road transport, flexible power systems and wind power road transport, flexible power systems and wind power (Smart Grid Project) Jump to: navigation, search Project Name Electricity for road transport, flexible power systems and wind power Country Denmark Coordinates 56.26392°, 9.501785° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":56.26392,"lon":9.501785,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

322

Palmetto Wind Research Project | Open Energy Information  

Open Energy Info (EERE)

Wind Research Project Wind Research Project Jump to: navigation, search Name Palmetto Wind Research Project Facility Palmetto Wind Research Project Sector Wind energy Facility Type Offshore Wind Facility Status Proposed Owner Santee Cooper Developer South Carolina Energy Office / Santee Cooper / Coastal Carolina University Location Atlantic Ocean SC Coordinates 33.534°, -78.59° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":33.534,"lon":-78.59,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

323

Wind to Power Systems | Open Energy Information  

Open Energy Info (EERE)

Wind to Power Systems Wind to Power Systems Place Madrid, Spain Zip 28108 Sector Wind energy Product Wind to Power Systems designs, supplies and installs a device designed for use in wind turbines to provide fault ride-through capability, enabling wind turbines to maintain grid connection during periods of transmission line faults and voltage dips. Coordinates 40.4203°, -3.705774° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":40.4203,"lon":-3.705774,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

324

Study Shows Active Power Controls from Wind May Increase Revenues and Improve System Reliability  

Energy.gov (U.S. Department of Energy (DOE))

The DOE Wind Program and the National Renewable Energy Laboratory recently published a study conducted in collaboration with the Electric Power Research Institute and the University of Colorado. Researchers examined how the contribution of wind power providing active power controls could benefit the total power system economics, increase revenue streams, and improve the reliability and security of the nation’s power system, all while having negligible impacts on the turbine and its components.

325

Judi Danielson Wind Power: From Niche to Mainstream  

E-Print Network (OSTI)

Judi Danielson Wind Power: From Niche to Mainstream What's Inside (continued on page 11) Winter the same way sails capture the wind to produce lift. In the Northwest, the market for wind power has, was the federal production tax incentive, which lowers the cost of wind power for potential investors

326

ForPeerReview PUBLIC ACCEPTANCE OF OFFSHORE WIND POWER  

E-Print Network (OSTI)

ForPeerReview PUBLIC ACCEPTANCE OF OFFSHORE WIND POWER PROJECTS IN THE UNITED STATES Journal: Wind, Andrew; Minerals Management Service Keywords: offshore wind power, public opinion, social acceptancePeerReview 1 PUBLIC ACCEPTANCE OF OFFSHORE WIND POWER PROJECTS IN THE UNITED STATES Jeremy Firestone*, Willett

Firestone, Jeremy

327

System-Wide Emissions Implications of Increased Wind Power Penetration  

E-Print Network (OSTI)

and ramifications of wind power providing 20% of U.S. electricity by 2030.1 Wind energy is advantageous becauseSystem-Wide Emissions Implications of Increased Wind Power Penetration Lauren Valentino,, Viviana of incorporating wind energy into the electric power system. We present a detailed emissions analysis based

Kemner, Ken

328

ANL Software Improves Wind Power Forecasting | Department of...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

principal investigator for the project. For wind power point forecasting, ARGUS PRIMA trains a neural network using data from weather forecasts, observations, and actual wind...

329

Equilibrium pricing in electricity markets with wind power.  

E-Print Network (OSTI)

?? Estimates from the World Wind Energy Association assert that world total wind power installed capacity climbed from 18 Gigawatt (GW) to 152 GW from… (more)

Rubin, Ofir David

2010-01-01T23:59:59.000Z

330

Equilibrium pricing in electricity markets with wind power.  

E-Print Network (OSTI)

??Estimates from the World Wind Energy Association assert that world total wind power installed capacity climbed from 18 Gigawatt (GW) to 152 GW from 2000… (more)

Rubin, Ofir David

2010-01-01T23:59:59.000Z

331

Sky WindPower Corp | Open Energy Information  

Open Energy Info (EERE)

California Zip: 92065 Sector: Wind energy Product: Sky WindPower is working on turbines that would look like airborne balloons or kites, tethered to the ground. References:...

332

Wind Powering America: FY09 Activities Summary (Book)  

SciTech Connect

The Wind Powering America FY09 Activities Summary reflects the accomplishments of state Wind Working Groups, WPA programs at the National Renewable Energy Laboratory, and partner organizations.

Not Available

2010-03-01T23:59:59.000Z

333

Study of auxiliary power systemsfor offshore wind turbines.  

E-Print Network (OSTI)

?? Until today the offshore wind power has grown in a steady pace and many new wind farms are being constructed around the globe. An… (more)

Berggren, Joakim

2013-01-01T23:59:59.000Z

334

Technical and economic analysis of US offshore wind power.  

E-Print Network (OSTI)

??Wind power is the fastest growing sector of electricity generation in the world and the development of offshore wind resources is an increasingly important component… (more)

McDaniel Wyman, Constance Annette

2014-01-01T23:59:59.000Z

335

Excise Tax Exemption for Solar- or Wind-Powered Systems  

Energy.gov (U.S. Department of Energy (DOE))

Massachusetts law exempts any "solar or wind powered climatic control unit and any solar or wind powered water heating unit or any other type unit or system powered thereby," that qualifies for the...

336

Jilin Taihe Wind Power Limited | Open Energy Information  

Open Energy Info (EERE)

Taihe Wind Power Limited Taihe Wind Power Limited Jump to: navigation, search Name Jilin Taihe Wind Power Limited Place Zhenlai, Jilin Province, China Sector Wind energy Product Top Well and Tianjin DH entered into a contract to establish a joint venture in Zhenlai, in Chinaâ€(tm)s Jilin province to develop a 50MW wind farm in the area under the name Jilin Taihe Wind Power Limited. References Jilin Taihe Wind Power Limited[1] LinkedIn Connections CrunchBase Profile No CrunchBase profile. Create one now! This article is a stub. You can help OpenEI by expanding it. Jilin Taihe Wind Power Limited is a company located in Zhenlai, Jilin Province, China . References ↑ "Jilin Taihe Wind Power Limited" Retrieved from "http://en.openei.org/w/index.php?title=Jilin_Taihe_Wind_Power_Limited&oldid=347531

337

PBS: Wind Power for Educators  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Power More on This Lesson: Select One Lesson Plan This lesson is designed for physical science, earth science, or environmental science classrooms, grades 9-12. Middle school...

338

Laizhou Luneng Wind Power | Open Energy Information  

Open Energy Info (EERE)

Laizhou Luneng Wind Power Laizhou Luneng Wind Power Jump to: navigation, search Name Laizhou Luneng Wind Power Place Laizhou, Shandong Province, China Sector Wind energy Product A wind project developer. Established in a 2007 joint venture between Shandong Luneng Group and Yantai Dongyuan Power for a total investment of CNY 90m (USD 1.1m). Coordinates 37.168011°, 119.942223° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":37.168011,"lon":119.942223,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

339

The Answer Is Blowing in the Wind: Analysis of Powering Internet Data Centers with Wind Energy  

E-Print Network (OSTI)

The Answer Is Blowing in the Wind: Analysis of Powering Internet Data Centers with Wind Energy Yan. As a result, many IDC operators have started using renewable energy, e.g., wind power, to power their data centers. Unfortunately, the utilization of wind energy has stayed at a low ratio due to the intermittent

340

NREL: Wind Research - News Release Archives  

NLE Websites -- All DOE Office Websites (Extended Search)

6 6 December 14, 2006 NREL and Xcel Energy Dedicate Wind-Powered Hydrogen Generator DOE's National Renewable Energy Laboratory (NREL) and Xcel Energy dedicated a new system to convert wind power into hydrogen on December 14th. The system, located at NREL's National Wind Technology Center, links two wind turbines to devices called electrolyzers, which pass the electricity through water to split the liquid into hydrogen and oxygen. December 14, 2006 Experimental "Wind to Hydrogen" System Up and Running Xcel Energy and the National Renewable Energy Laboratory unveiled a unique facility that uses electricity from wind turbines to produce and store pure hydrogen. November 7, 2006 Southwest Windpower Receives Best of What's New Award Southwest Windpower recently received a 2006 Best of What's New Award from

Note: This page contains sample records for the topic "wind power research" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


341

Wind: wind power density maps at 50m above ground and 1km resolution...  

Open Energy Info (EERE)

maps ... Dataset Activity Stream Wind: wind power density maps at 50m above ground and 1km resolution for Ghana from NREL (Abstract):HTMLREMOVEDHTMLREMOVEDRaster GIS data, 50...

342

Wind: wind power density maps at 50 m above ground and 1km resolution...  

Open Energy Info (EERE)

maps ... Dataset Activity Stream Wind: wind power density maps at 50 m above ground and 1km resolution for Cuba from NREL (Abstract):HTMLREMOVEDHTMLREMOVEDRaster GIS data, 50...

343

Students Learn about Wind Power First-Hand through Wind for Schools Program  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Learn about Wind Power First-Hand through Wind for Schools Learn about Wind Power First-Hand through Wind for Schools Program Students Learn about Wind Power First-Hand through Wind for Schools Program February 18, 2011 - 3:48pm Addthis JMU student Greg Miller shows Northumberland students how the blades of a wind turbine work | courtesy of Virginia Center for Wind Energy JMU student Greg Miller shows Northumberland students how the blades of a wind turbine work | courtesy of Virginia Center for Wind Energy April Saylor April Saylor Former Digital Outreach Strategist, Office of Public Affairs What will the project do? Wind for Schools raises awareness in rural America about the benefits of wind energy while simultaneously developing a wind energy knowledge base in communities across the nation. For years, Jenny Christman tried to find a way to get a wind turbine to

344

Yinhe Avantis Wind Power Co Ltd formerly known as Avantis Yinhe Wind Power  

Open Energy Info (EERE)

Yinhe Avantis Wind Power Co Ltd formerly known as Avantis Yinhe Wind Power Yinhe Avantis Wind Power Co Ltd formerly known as Avantis Yinhe Wind Power Co Ltd Jump to: navigation, search Name Yinhe Avantis Wind Power Co Ltd (formerly known as Avantis Yinhe Wind Power Co Ltd ) Place Beihai, Guangxi Autonomous Region, China Zip 536000 Sector Wind energy Product Large scale wind turbine manufacturer developing 2.5MW turbines. Coordinates 21.484501°, 109.105309° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":21.484501,"lon":109.105309,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

345

Wind Power Plant Voltage Stability Evaluation: Preprint  

SciTech Connect

Voltage stability refers to the ability of a power system to maintain steady voltages at all buses in the system after being subjected to a disturbance from a given initial operating condition. Voltage stability depends on a power system's ability to maintain and/or restore equilibrium between load demand and supply. Instability that may result occurs in the form of a progressive fall or rise of voltages of some buses. Possible outcomes of voltage instability are the loss of load in an area or tripped transmission lines and other elements by their protective systems, which may lead to cascading outages. The loss of synchronism of some generators may result from these outages or from operating conditions that violate a synchronous generator's field current limit, or in the case of variable speed wind turbine generator, the current limits of power switches. This paper investigates the impact of wind power plants on power system voltage stability by using synchrophasor measurements.

Muljadi, E.; Zhang, Y. C.

2014-09-01T23:59:59.000Z

346

Electricity for road transport, flexible power systems and wind...  

Open Energy Info (EERE)

Electricity for road transport, flexible power systems and wind power (Smart Grid Project) Jump to: navigation, search Project Name Electricity for road transport, flexible power...

347

Structural responses and power output of a wind turbine are strongly affected by the wind field acting on the wind turbine. Knowledge about the wind field and its  

E-Print Network (OSTI)

ABSTRACT Structural responses and power output of a wind turbine are strongly affected by the wind affect the power output and structural responses of a wind turbine. Wind field characteristics are conventionally described by time averaged features, such as mean wind speed, turbulence intensity and power

Stanford University

348

Unit commitment with wind power generation: integrating wind forecast uncertainty and stochastic programming.  

SciTech Connect

We present a computational framework for integrating the state-of-the-art Weather Research and Forecasting (WRF) model in stochastic unit commitment/energy dispatch formulations that account for wind power uncertainty. We first enhance the WRF model with adjoint sensitivity analysis capabilities and a sampling technique implemented in a distributed-memory parallel computing architecture. We use these capabilities through an ensemble approach to model the uncertainty of the forecast errors. The wind power realizations are exploited through a closed-loop stochastic unit commitment/energy dispatch formulation. We discuss computational issues arising in the implementation of the framework. In addition, we validate the framework using real wind speed data obtained from a set of meteorological stations. We also build a simulated power system to demonstrate the developments.

Constantinescu, E. M.; Zavala, V. M.; Rocklin, M.; Lee, S.; Anitescu, M. (Mathematics and Computer Science); (Univ. of Chicago); (New York Univ.)

2009-10-09T23:59:59.000Z

349

The Optimal Power Tracking Control Strategy of Grid-Connected Excited Synchronous Wind Power Generator.  

E-Print Network (OSTI)

??In this thesis, the wind power system is a coaxial coupling structure between servo motor and excited synchronous wind power generator. By using the excited… (more)

Cheng, Wen-kai

2014-01-01T23:59:59.000Z

350

Wind and Water Power Technologies FY'14 Budget At-a-Glance  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

1 WIND & WATER POWER TECHNOLOGIES WIND POWER PROGRAM FY14 BUDGET AT-A-GLANCE Wind and Water Power Technologies accelerates U.S. deployment of clean, affordable and reliable domestic wind power through research, development and demonstration. These advanced technology investments directly contribute to the President's goals for the United States to double renewable electricity generation again by 2020 and to achieve 80 percent of its electricity from clean, carbon-free energy sources by 2035 through reducing costs and increasing performance of wind energy systems. Wind power currently provides 3.5 percent of the nation's electricity, and more wind-powered electricity generation capacity was installed in the United States in 2012 than

351

Global Wind Power Ltd GWP | Open Energy Information  

Open Energy Info (EERE)

400 059 Sector: Wind energy Product: Mumbai-based firm involved in manufacturing of wind turbines. References: Global Wind Power Ltd. (GWP)1 This article is a stub. You can help...

352

Reactive Power Compensation Strategy of DGIF Wind Park  

Science Journals Connector (OSTI)

In this chapter, two different wind park reactive power compensation strategies for the DFIG wind park connected to the sub-transmission level are proposed. Except considering DFIG wind turbines as dynamic reacti...

JingJing Zhao; Yang Fu; DongDong Li…

2014-01-01T23:59:59.000Z

353

Erlianhot Changfeng Xiehe Wind Power Development Co Ltd | Open Energy  

Open Energy Info (EERE)

Erlianhot Changfeng Xiehe Wind Power Development Co Ltd Erlianhot Changfeng Xiehe Wind Power Development Co Ltd Jump to: navigation, search Name Erlianhot Changfeng Xiehe Wind Power Development Co Ltd Place Inner Mongolia Autonomous Region, China Sector Wind energy Product Erlianhot-based wind project developer. It is a JV between Tianjin DH Power Investment and China WindPower Group. References Erlianhot Changfeng Xiehe Wind Power Development Co Ltd[1] LinkedIn Connections CrunchBase Profile No CrunchBase profile. Create one now! This article is a stub. You can help OpenEI by expanding it. Erlianhot Changfeng Xiehe Wind Power Development Co Ltd is a company located in Inner Mongolia Autonomous Region, China . References ↑ "[ Erlianhot Changfeng Xiehe Wind Power Development Co Ltd]" Retrieved from

354

NREL: Wind Research - Working with Us  

NLE Websites -- All DOE Office Websites (Extended Search)

Working with Us Working with Us NREL works with industry in a public-private contracting environment to research, design, and build advanced wind energy technologies. We have an outstanding performance record for working with the wind industry to advance wind turbine science and lower the cost of wind-generated electricity. Companies partner with NREL when they have particular design challenges, when they wish to cost-share development of state-of-the-art wind turbines, and when they want to document their turbine's performance for certification. See projects and NREL's Wind R&D Success Stories for examples of current and past industry partnerships. Flexibility is the key to government-industry collaborations at the National Wind Technology Center (NWTC), where companies get the support

355

Boulder Wind Power | Open Energy Information  

Open Energy Info (EERE)

Boulder Wind Power Boulder Wind Power Address 2845 Wilderness Place Suite 201 Place Boulder, CO Zip 80301 Sector Wind energy Website http://www.boulderwindpower.co Coordinates 40.0406506°, -105.2077798° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":40.0406506,"lon":-105.2077798,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

356

CECIC Wind Power Zhangbei | Open Energy Information  

Open Energy Info (EERE)

Zhangbei Zhangbei Jump to: navigation, search Name CECIC Wind Power (Zhangbei) Place Zhangbei, Hebei Province, China Sector Wind energy Product A joint venture of CECIC Wind Power Investment and Hong Kong New Energy. Coordinates 41.15551°, 114.71312° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":41.15551,"lon":114.71312,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

357

Multiscale prediction of wind speed and output power for the wind farm  

Science Journals Connector (OSTI)

This paper focuses on establishing the multiscale prediction models for wind speed and power in wind farm by the average wind speed collected from the history records. Each type ... the predictive values of outpu...

Xiaolan Wang; Hui LI

2012-05-01T23:59:59.000Z

358

Stochastic Modeling of Multi-Area Wind Power Production  

E-Print Network (OSTI)

Stochastic Modeling of Multi-Area Wind Power Production Anthony Papavasiliou Department model accounts for the inter-temporal and spatial dependencies of multi-area wind power production. Results are presented for a case study of the California power system. Keywords - Wind power generation

Oren, Shmuel S.

359

Considering Air Density in Wind Power Production  

E-Print Network (OSTI)

In the wind power production calculations the air density is usually considered as constant in time. Using the CIPM-2007 equation for the density of moist air as a function of air temperature, air pressure and relative humidity, we show that it is worth taking the variation of the air density into account, because higher accuracy can be obtained in the calculation of the power production for little effort.

Farkas, Zénó

2011-01-01T23:59:59.000Z

360

Considering Air Density in Wind Power Production  

E-Print Network (OSTI)

In the wind power production calculations the air density is usually considered as constant in time. Using the CIPM-2007 equation for the density of moist air as a function of air temperature, air pressure and relative humidity, we show that it is worth taking the variation of the air density into account, because higher accuracy can be obtained in the calculation of the power production for little effort.

Zénó Farkas

2011-03-11T23:59:59.000Z

Note: This page contains sample records for the topic "wind power research" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


361

Wind: wind speed and wind power density maps at 10m and 50m above surface  

Open Energy Info (EERE)

maps at 10m and 50m above surface maps at 10m and 50m above surface and 0.25 degree resolution for global oceans from NREL Dataset Summary Description (Abstract): Raster GIS ASCII data files of wind speed and wind power density at 10 and 50 m heights. Global data of offshore wind resource as generated by NASA's QuikSCAT SeaWinds scatterometer. (Purpose): To provide information on the wind resource potential of offshore areas. Source NREL Date Released December 31st, 2005 (9 years ago) Date Updated November 01st, 2007 (7 years ago) Keywords GEF GIS NASA NREL SWERA UNEP wind Data application/zip icon Download Maps (zip, 36.3 MiB) Quality Metrics Level of Review Some Review Comment Temporal and Spatial Coverage Frequency Time Period 2000 - 2004 License License Other or unspecified, see optional comment below

362

Wind: wind speed and wind power density GIS data at 10m and 50m above  

Open Energy Info (EERE)

10m and 50m above 10m and 50m above surface and 0.25 degree resolution for global oceans from NREL Dataset Summary Description (Abstract): Raster GIS ASCII data files of wind speed and wind power density at 10 and 50 m heights. Global data of offshore wind resource as generated by NASA's QuikScat SeaWinds scatterometer. (Purpose): To provide information on the wind resource potential of offshore areas. Source NREL Date Released December 31st, 2005 (9 years ago) Date Updated November 01st, 2007 (7 years ago) Keywords GEF GIS NASA NREL ocean offshore QuikScat SWERA UNEP wind Data application/msword icon Download Documentation (doc, 53.8 KiB) application/zip icon Download Data (zip, 41 MiB) Quality Metrics Level of Review Some Review Comment Temporal and Spatial Coverage Frequency Time Period 01/01/2000 - 12/31/2004

363

What economic support is needed for Arctic offshore wind power?  

Science Journals Connector (OSTI)

Abstract Wind power is increasingly being installed in cold climates and in offshore locations. It is generally recognised that installing wind power to offshore locations is more expensive than onshore. The additional challenges from Arctic conditions with annual sea icing are still poorly known. We reviewed the existing knowledge of offshore wind power costs and developed a calculation model for the economics of offshore wind turbines in Finland, including taxes and sea base rent, to obtain a base case for determining the required tariff support. The model was tested with different production and cost rates to obtain a tariff price, which would make offshore wind power on Finnish territory economically viable for the producer. The main developers of planned offshore projects in Finland were interviewed to obtain a comparison between the created model and industry expectations. The cost of erected turbines was estimated to be 2750 €/kW. With this cost of capacity, it was clear that a higher than the current tariff price (83.5 €/MWh) will be required for offshore developments. Our analysis indicated a price level of about 115 €/MWh to be required. We found that even rather small changes in cost or production rates may lead to excess profits or economic losses and further research and pilot projects are required to define a more reliable tariff level.

Olli Salo; Sanna Syri

2014-01-01T23:59:59.000Z

364

FINAL TECHNICAL REPORT Project Title: Environmental Impacts of Wind Power Development on the Population Biology  

E-Print Network (OSTI)

Collaborative Abby Arnold, Executive Director, American Wind Wildlife Institute,aarnold@awwi.org, 202- 535-7800 (x105) Taber D. Allison, Director of Research and Evaluation, American Wind Wildlife Institutei FINAL TECHNICAL REPORT Project Title: Environmental Impacts of Wind Power Development

Sandercock, Brett K.

365

wind power capacity | OpenEI  

Open Energy Info (EERE)

capacity capacity Dataset Summary Description These estimates are derived from a composite of high resolution wind resource datasets modeled for specific countries with low resolution data originating from the National Centers for Environmental Prediction (United States) and the National Center for Atmospheric Research (United States) as processed for use in the IMAGE model. The high resolution datasets were produced by the National Renewable Energy Laboratory (United States), Risø DTU National Laboratory (Denmark), the National Institute for Space Research (Brazil), and the Canadian Wind Energy Association. The data repr Source National Renewable Energy Laboratory Date Released Unknown Date Updated Unknown Keywords area capacity clean energy international

366

NREL: Wind Research - News Release Archives  

NLE Websites -- All DOE Office Websites (Extended Search)

0 0 October 27, 2010 Offshore Wind Energy Poised to Play a Vital Role in Future U.S. Energy Markets A new report analyzes the current state of the offshore wind energy industry in the United States. October 7, 2010 DOE Releases Comprehensive Report on Offshore Wind Power in the United States U.S. Energy Secretary Steven Chu announced today the release of a report from the Department of Energy's National Renewable Energy Laboratory (NREL), which comprehensively analyzes the key factors impacting the deployment of offshore wind power in the United States. September 28, 2010 Explosion in Installed Wind Capacity Brings Big Benefits Dave Loomis, Illinois State University Professor of Economics and Center for Renewable Energy Director, in an interview says, "We've grown to this

367

Datang Chifeng Saihanba Wind Power Co Ltd | Open Energy Information  

Open Energy Info (EERE)

Saihanba Wind Power Co Ltd Saihanba Wind Power Co Ltd Jump to: navigation, search Name Datang Chifeng Saihanba Wind Power Co Ltd Place Chifeng, Inner Mongolia Autonomous Region, China Zip 24000 Sector Wind energy Product This subsidiary of China Datang Corporation develops and owns several wind projects in the Inner Mongolia Autonomous Region of China. References Datang Chifeng Saihanba Wind Power Co Ltd[1] LinkedIn Connections CrunchBase Profile No CrunchBase profile. Create one now! This article is a stub. You can help OpenEI by expanding it. Datang Chifeng Saihanba Wind Power Co Ltd is a company located in Chifeng, Inner Mongolia Autonomous Region, China . References ↑ "Datang Chifeng Saihanba Wind Power Co Ltd" Retrieved from "http://en.openei.org/w/index.php?title=Datang_Chifeng_Saihanba_Wind_Power_Co_Ltd&oldid=344087

368

Guangdong Mingyang Wind Power Technology Co Ltd | Open Energy Information  

Open Energy Info (EERE)

Mingyang Wind Power Technology Co Ltd Mingyang Wind Power Technology Co Ltd Jump to: navigation, search Name Guangdong Mingyang Wind Power Technology Co Ltd Place Zhongshan City, Guangdong Province, China Sector Wind energy Product Subsidiary of privately owned Guangdong Mingyang Electric that manufacturers 1.5MW wind turbines. References Guangdong Mingyang Wind Power Technology Co Ltd[1] LinkedIn Connections CrunchBase Profile No CrunchBase profile. Create one now! This article is a stub. You can help OpenEI by expanding it. Guangdong Mingyang Wind Power Technology Co Ltd is a company located in Zhongshan City, Guangdong Province, China . References ↑ "Guangdong Mingyang Wind Power Technology Co Ltd" Retrieved from "http://en.openei.org/w/index.php?title=Guangdong_Mingyang_Wind_Power_Technology_Co_Ltd&oldid=346230

369

Hangtian Longyuan Benxi Wind Power Co Ltd | Open Energy Information  

Open Energy Info (EERE)

Hangtian Longyuan Benxi Wind Power Co Ltd Hangtian Longyuan Benxi Wind Power Co Ltd Jump to: navigation, search Name Hangtian Longyuan (Benxi) Wind Power Co Ltd Place Liaoning Province, China Sector Wind energy Product A joint venture established for a 24.65MW wind farm in Benxi, Liaoning Province. References Hangtian Longyuan (Benxi) Wind Power Co Ltd[1] LinkedIn Connections CrunchBase Profile No CrunchBase profile. Create one now! This article is a stub. You can help OpenEI by expanding it. Hangtian Longyuan (Benxi) Wind Power Co Ltd is a company located in Liaoning Province, China . References ↑ "[ Hangtian Longyuan (Benxi) Wind Power Co Ltd]" Retrieved from "http://en.openei.org/w/index.php?title=Hangtian_Longyuan_Benxi_Wind_Power_Co_Ltd&oldid=346369" Categories: Clean Energy Organizations

370

WindPower Innovations Inc | Open Energy Information  

Open Energy Info (EERE)

WindPower Innovations Inc WindPower Innovations Inc Jump to: navigation, search Name WindPower Innovations Inc Place Queen Creek, Arizona Zip 85142 Sector Wind energy Product Arizona-based company focused on refurbishment and repair of wind turbine gearboxes. References WindPower Innovations Inc[1] LinkedIn Connections CrunchBase Profile No CrunchBase profile. Create one now! This article is a stub. You can help OpenEI by expanding it. WindPower Innovations Inc is a company located in Queen Creek, Arizona . References ↑ "WindPower Innovations Inc" Retrieved from "http://en.openei.org/w/index.php?title=WindPower_Innovations_Inc&oldid=353107" Categories: Clean Energy Organizations Companies Organizations Stubs What links here Related changes Special pages Printable version

371

Hebei Yeelong Wind Power Equipment Manufacturing Co Ltd | Open Energy  

Open Energy Info (EERE)

Yeelong Wind Power Equipment Manufacturing Co Ltd Yeelong Wind Power Equipment Manufacturing Co Ltd Jump to: navigation, search Name Hebei Yeelong Wind Power Equipment Manufacturing Co Ltd Place Hebei Province, China Sector Wind energy Product China-based wind turbine equipment manufacturer. References Hebei Yeelong Wind Power Equipment Manufacturing Co Ltd[1] LinkedIn Connections CrunchBase Profile No CrunchBase profile. Create one now! This article is a stub. You can help OpenEI by expanding it. Hebei Yeelong Wind Power Equipment Manufacturing Co Ltd is a company located in Hebei Province, China . References ↑ "[ Hebei Yeelong Wind Power Equipment Manufacturing Co Ltd]" Retrieved from "http://en.openei.org/w/index.php?title=Hebei_Yeelong_Wind_Power_Equipment_Manufacturing_Co_Ltd&oldid=346424

372

Baoding Tianwei Wind Power Blade Co Ltd | Open Energy Information  

Open Energy Info (EERE)

Tianwei Wind Power Blade Co Ltd Tianwei Wind Power Blade Co Ltd Jump to: navigation, search Name Baoding Tianwei Wind Power Blade Co Ltd Place Hebei Province, China Sector Wind energy Product Wind turbine blade maker. References Baoding Tianwei Wind Power Blade Co Ltd[1] LinkedIn Connections CrunchBase Profile No CrunchBase profile. Create one now! This article is a stub. You can help OpenEI by expanding it. Baoding Tianwei Wind Power Blade Co Ltd is a company located in Hebei Province, China . References ↑ "Baoding Tianwei Wind Power Blade Co Ltd" Retrieved from "http://en.openei.org/w/index.php?title=Baoding_Tianwei_Wind_Power_Blade_Co_Ltd&oldid=342529" Categories: Clean Energy Organizations Companies Organizations Stubs What links here Related changes Special pages

373

Guohua AES Huanghua Wind Power Co Ltd | Open Energy Information  

Open Energy Info (EERE)

Huanghua Wind Power Co Ltd Huanghua Wind Power Co Ltd Jump to: navigation, search Name Guohua AES (Huanghua) Wind Power Co Ltd Place Huanghua, Hebei Province, China Sector Wind energy Product The developer of the 1GW Huanghua Wind Farm in Hebei Province in China. It is a joint venture of Guohua Energy Investment and AES. References Guohua AES (Huanghua) Wind Power Co Ltd[1] LinkedIn Connections CrunchBase Profile No CrunchBase profile. Create one now! This article is a stub. You can help OpenEI by expanding it. Guohua AES (Huanghua) Wind Power Co Ltd is a company located in Huanghua, Hebei Province, China . References ↑ "Guohua AES (Huanghua) Wind Power Co Ltd" Retrieved from "http://en.openei.org/w/index.php?title=Guohua_AES_Huanghua_Wind_Power_Co_Ltd&oldid=34630

374

Qixia Rulin Wind Power Development Co Ltd | Open Energy Information  

Open Energy Info (EERE)

Qixia Rulin Wind Power Development Co Ltd Qixia Rulin Wind Power Development Co Ltd Jump to: navigation, search Name Qixia Rulin Wind Power Development Co. Ltd. Place Qixia City, Shandong Province, China Zip 265300 Sector Wind energy Product Local wind project developer based in Qixia, Shandong province, China. References Qixia Rulin Wind Power Development Co. Ltd.[1] LinkedIn Connections CrunchBase Profile No CrunchBase profile. Create one now! This article is a stub. You can help OpenEI by expanding it. Qixia Rulin Wind Power Development Co. Ltd. is a company located in Qixia City, Shandong Province, China . References ↑ "Qixia Rulin Wind Power Development Co. Ltd." Retrieved from "http://en.openei.org/w/index.php?title=Qixia_Rulin_Wind_Power_Development_Co_Ltd&oldid=350125

375

The KAMM/WAsP Numerical Wind Atlas A powerful ingredient for wind energy planning  

E-Print Network (OSTI)

The KAMM/WAsP Numerical Wind Atlas A powerful ingredient for wind energy planning J. Badger, N.G. Mortensen, J.C. Hansen Wind Energy Department Risø National Laboratory Great Wall World Renewable Energy Forum Beijing, 23-27 October 2006 #12;Wind Farm Planning National Wind Atlas Environmental Atlases Maps

376

Ex Post Analysis of Economic Impacts from Wind Power Development in U.S. Counties  

E-Print Network (OSTI)

use requirements of modern wind power plants in the Unitedrural areas, where wind power plants are often constructedimpacts of actual wind power plants (e.g. ,Pedden, 2006;

Brown, Jason P.

2014-01-01T23:59:59.000Z

377

Ex post analysis of economic impacts from wind power development in U.S. counties  

E-Print Network (OSTI)

use requirements of modern wind power plants in the Unitedrural areas, where wind power plants are often constructedimpacts of actual wind power plants (e.g. ,Pedden, 2006;

Brown, Jason P

2014-01-01T23:59:59.000Z

378

Ex post analysis of economic impacts from wind power development in U.S. counties  

E-Print Network (OSTI)

Figure 1. Location of Wind Power Development in the UnitedFigure 4: Total Installed Wind Power Capacity (MW): 2000 -development impacts of wind power installations. References

Brown, Jason P

2014-01-01T23:59:59.000Z

379

Analysis of Wind Power and Load Data at Multiple Time Scales  

E-Print Network (OSTI)

Wan, Yih-Huei. 2004. Wind Power Plant Behaviors: Analyses ofthe output of wind power plants. In a typical studyfluctuations across wind power plants located in the same

Coughlin, Katie

2011-01-01T23:59:59.000Z

380

Islanded Grid Wind Power Conference | Department of Energy  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Islanded Grid Wind Power Conference Islanded Grid Wind Power Conference March 4, 2015 8:00AM AKST to March 6, 2015 5:00PM AKST Alaska Pacific University 4101 University Drive...

Note: This page contains sample records for the topic "wind power research" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


381

Optimal combined wind power forecasts using exogeneous variables  

E-Print Network (OSTI)

Optimal combined wind power forecasts using exogeneous variables Fannar ¨Orn Thordarson Kongens of the thesis is combined wind power forecasts using informations from meteorological forecasts. Lyngby, January

382

Wind Power Forecasting: State-of-the-Art 2009  

E-Print Network (OSTI)

Wind Power Forecasting: State-of-the-Art 2009 ANL/DIS-10-1 Decision and Information Sciences about Argonne and its pioneering science and technology programs, see www.anl.gov. #12;Wind Power

Kemner, Ken

383

Synchrophasor Applications for Wind Power Generation  

SciTech Connect

The U.S. power industry is undertaking several initiatives that will improve the operations of the electric power grid. One of those is the implementation of wide-area measurements using phasor measurement units to dynamically monitor the operations and status of the network and provide advanced situational awareness and stability assessment. The overviews of synchrophasors and stability analyses in this report are intended to present the potential future applications of synchrophasors for power system operations under high penetrations of wind and other renewable energy sources.

Muljadi, E.; Zhang, Y. C.; Allen, A.; Singh, M.; Gevorgian, V.; Wan, Y. H.

2014-02-01T23:59:59.000Z

384

Wind Power Generation’s Impact on Peak Time Demand and on Future Power Mix  

Science Journals Connector (OSTI)

Although wind power is regarded as one of the ways to actively respond to climate change, the stability of the whole power system could be a serious problem in the future due to wind power’s uncertainties. These ...

Jinho Lee; Suduk Kim

2010-01-01T23:59:59.000Z

385

NREL Small Wind Turbine Test Project: Mariah Power's Windspire Wind Turbine Test Chronology  

SciTech Connect

This report presents a chronology of tests conducted at NREL's National Wind Technology Center on Mariah Power's Windspire 1.2-kW wind turbine and a letter of response from Mariah Power.

Huskey, A.; Forsyth, T.

2009-06-01T23:59:59.000Z

386

RELIABILITY OF WIND POWER FROM DISPERSED SITES: A PRELIMINARY ASSESSMENT  

E-Print Network (OSTI)

POWER FREQUENCY TO LOSS-OF-LOAD PROBABIL ITY The Basic Steps Optimization of Various Kinds WIND DATA

Kahn, E.

2011-01-01T23:59:59.000Z

387

NREL: Water Power Research - Publications  

NLE Websites -- All DOE Office Websites (Extended Search)

Publications Publications Access NREL publications on water power research. 1st Advanced Marine Renewable Energy Instrumentation Experts Workshop Report. Driscoll, R.; NREL Report No. MP-5000-51584. 2011 Marine and Hydrokinetic Device Modeling Workshop: Final Report. Li, Y.; NREL Report No. TP-5000-51421; DOE/GO-102011-3374. "Commercialization Path and Challenges for Marine Hydrokinetic Renewable Energy." 2011 IEEE PES (Power and Energy Society) General Meeting: The Electrification of Transportation and the Grid of the Future, 24-28 July 2011, Detroit, Michigan. Piscataway, NJ: Institute of Electrical and Electronics Engineers (IEEE) 8 pp.; NREL Report No. CP-5000-49959. Conventional Hydropower Technologies (Fact Sheet). Wind and Water Power Program (WWPP). (2011). 2 pp.; NREL Report No. FS-5000-52168;

388

Optimal Bidding Strategies for Wind Power Producers with Meteorological Forecasts  

E-Print Network (OSTI)

Optimal Bidding Strategies for Wind Power Producers with Meteorological Forecasts Antonio that the inherent variability in wind power generation and the related difficulty in predicting future generation profiles, raise major challenges to wind power integration into the electricity grid. In this work we study

Giannitrapani, Antonello

389

Control of Wind Turbines for Power Regulation and  

E-Print Network (OSTI)

Control of Wind Turbines for Power Regulation and Load Reduction Juan Jose Garcia Quirante Kongens regulation and load reduction and their ensemble in a variable-speed wind turbine. The power regulation aspects of mathematical modelling of wind turbines, and especially the control methods suited for power

390

Ris-R-1527(EN) Wind Power Prediction using Ensembles  

E-Print Network (OSTI)

Risø-R-1527(EN) Wind Power Prediction using Ensembles Gregor Giebel (ed.), Jake Badger, Lars, Lars Voulund Title: Wind Power Prediction using Ensembles Risø-R-1527(EN) September 2005 ISSN 0106 from the operational use - Elsam 35 5.2.1 Control room functions 35 5.2.2 Use of wind power predictions

391

The Potential Wind Power Resource in Australia: A New Perspective*  

E-Print Network (OSTI)

The Potential Wind Power Resource in Australia: A New Perspective* Willow Hallgren, Udaya Bhaskar: globalchange@mit.edu Website: http://globalchange.mit.edu/ #12;The Potential Wind Power Resource in Australia, and the utilization of this renewable energy resource is increasing rapidly: wind power installed capacity increased

392

Ris-R-1257(EN) Isolated Systems with Wind Power  

E-Print Network (OSTI)

Risø-R-1257(EN) Isolated Systems with Wind Power An Implementation Guideline Niels-Erik Clausen energy in isolated communities. So far most studies of isolated systems with wind power have been case studies of isolated systems with wind power have mostly been case- oriented. Thus it has been difficult

393

The Potential Wind Power Resource in Australia: A New Perspective  

E-Print Network (OSTI)

The Potential Wind Power Resource in Australia: A New Perspective Willow Hallgren, Udaya Bhaskar;1 The Potential Wind Power Resource in Australia: A New Perspective Willow Hallgren* , Udaya Bhaskar Gunturu, and the utilization of this renewable energy resource is increasing. Wind power installed capacity increased by 35

394

Characterization of wind power resource in the United States*  

E-Print Network (OSTI)

Characterization of wind power resource in the United States* U. Bhaskar Gunturu and C. Adam Chemistry and Physics Characterization of wind power resource in the United States U. B. Gunturu and C. A, 120 m turbine hub heights. The wind power density (WPD) estimates at 50 m are qualitatively similar

395

Accuracy of near real time updates in wind power forecasting  

E-Print Network (OSTI)

· advantage: no NWP data necessary ­ very actual shortest term forecasts possible · wind power inputAccuracy of near real time updates in wind power forecasting with regard to different weather October 2007 #12;EMS/ECAM 2007 ­ Nadja Saleck Outline · Study site · Wind power forecasting - method

Heinemann, Detlev

396

Stochastic Analysis of Wind Turbine Power Curves Edgar Anahua  

E-Print Network (OSTI)

of the wind turbine to its desired power production; and ii) the stochastic force (noise), whichStochastic Analysis of Wind Turbine Power Curves Edgar Anahua Oldenburg 2007 Zur Homepage der Dissertation #12;#12;Stochastic Analysis of Wind Turbine Power Curves Edgar Anahua Von der Fakult¨at f

Peinke, Joachim

397

Stakeholder Engagement and Outreach: Wind Power on State Lands  

Wind Powering America (EERE)

Wind Power on State Lands Wind Power on State Lands Wind development can be an attractive revenue option for states that have viable wind resources on their trust lands. Wind can provide much higher revenue per acre than many other sources of typical revenue. An added benefit is that harvesting the wind does not deplete any finite resources. Several state land offices are already pursuing wind development on state trust lands. The first such wind project, in west Texas, is a joint project by the Texas General Land Office and the Lower Colorado River Authority, a public utility in central Texas. Wind Powering America Assistance to State Land Offices Analysis of State Land Potential NREL can assist state land offices in analyzing their trust lands for wind development potential. By overlaying wind resource maps with land use,

398

Austin Energy Wins DOE Wind Power Award | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Austin Energy Wins DOE Wind Power Award Austin Energy Wins DOE Wind Power Award Austin Energy Wins DOE Wind Power Award October 25, 2005 - 12:30pm Addthis WASHINGTON, DC-The U.S. Department of Energy (DOE) today announced that Austin Energy, the city-owned utility of Austin, Texas, is receiving the 2005 Wind Power Pioneer Award. The utility was cited for its leadership, demonstrated success and innovation in its wind power program. The award, sponsored by DOE's Wind Powering America program, was presented today at the American Public Power Association's 2005 Customer Connections Conference in Kansas City, Mo. Austin Energy was one of eleven public power utilities nominated this year. "We congratulate Austin Energy for its innovation and commitment to wind power and other renewable resources," said Douglas L. Faulkner, Acting

399

Austin Energy Wins DOE Wind Power Award | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Austin Energy Wins DOE Wind Power Award Austin Energy Wins DOE Wind Power Award Austin Energy Wins DOE Wind Power Award October 25, 2005 - 12:30pm Addthis WASHINGTON, DC-The U.S. Department of Energy (DOE) today announced that Austin Energy, the city-owned utility of Austin, Texas, is receiving the 2005 Wind Power Pioneer Award. The utility was cited for its leadership, demonstrated success and innovation in its wind power program. The award, sponsored by DOE's Wind Powering America program, was presented today at the American Public Power Association's 2005 Customer Connections Conference in Kansas City, Mo. Austin Energy was one of eleven public power utilities nominated this year. "We congratulate Austin Energy for its innovation and commitment to wind power and other renewable resources," said Douglas L. Faulkner, Acting

400

China Longyuan Wind Power Co Ltd | Open Energy Information  

Open Energy Info (EERE)

China Longyuan Wind Power Co Ltd China Longyuan Wind Power Co Ltd Place China Sector Wind energy Product Wind farm development subsidiary of Longyuan Electricity Power Group and Xiongya Investment. References China Longyuan Wind Power Co Ltd[1] LinkedIn Connections CrunchBase Profile No CrunchBase profile. Create one now! This article is a stub. You can help OpenEI by expanding it. China Longyuan Wind Power Co Ltd is a company located in China . References ↑ "China Longyuan Wind Power Co Ltd" Retrieved from "http://en.openei.org/w/index.php?title=China_Longyuan_Wind_Power_Co_Ltd&oldid=343509" Categories: Clean Energy Organizations Companies Organizations Stubs What links here Related changes Special pages Printable version Permanent link Browse properties 429 Throttled (bot load)

Note: This page contains sample records for the topic "wind power research" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


401

NREL: Wind Research - Research Staff Biographies  

NLE Websites -- All DOE Office Websites (Extended Search)

and Eduard Muljadi on a soon-to-be-published history of Variable-Speed Operation of Wind Turbines. Photo of Corrie Christol Corrie Christol Administrative Project Manager, National...

402

Power System Modeling of 20percent Wind-Generated Electricity by 2030  

E-Print Network (OSTI)

power system modeling, wind energy I. I NTRODUCTION Generating electricity from wind technology has several advantages

Hand, Maureen

2008-01-01T23:59:59.000Z

403

Adaptive neuro-fuzzy evaluation of wind farm power production as function of wind speed and direction  

Science Journals Connector (OSTI)

Wind velocity assumes a critical part for measuring the power created by the wind turbines. Nonetheless, power production from wind has a few weaknesses. One significant issue is that wind is a discontinuous ener...

Dalibor Petkovi?; Shahaboddin Shamshirband…

2014-05-01T23:59:59.000Z

404

Sandia National Laboratories: wind turbines produce rated power  

NLE Websites -- All DOE Office Websites (Extended Search)

turbines produce rated power Increasing the Scaled Wind Farm Technology Facility's Power Production On April 7, 2014, in Energy, Facilities, News, News & Events, Partnership,...

405

Development of learning material to wind power courses.  

E-Print Network (OSTI)

??Wind power plants are more and more commonly used as power production units, which lead to an increased demand of educated personnel within the area.… (more)

Bruhn, Kristin; Lorensson, Sofia

2009-01-01T23:59:59.000Z

406

Conventional Hydropower Technologies, Wind And Water Power Program...  

Office of Environmental Management (EM)

Power for a Clean Energy Future (Fact Sheet), Wind and Water Power Program (WWPP) Hydropower Projects Environmental Impacts of Increased Hydroelectric Development at Existing Dams...

407

Wind Power on Native American Lands: Process and Progress (Poster)  

SciTech Connect

The United States is home to more than 700 American Indian tribes and Native Alaska villages and corporations located on 96 million acres. Many of these tribes and villages have excellent wind resources that could be commercially developed to meet their electricity needs or for electricity export. The Wind Powering America program engages Native Americans in wind energy development. This poster describes the process and progress of Wind Powering America's involvement with Native American wind energy projects.

Jimenez, A.; Flowers, L.; Gough, R.; Taylor, R.

2005-05-01T23:59:59.000Z

408

NREL: Wind Research - News Release Archives  

NLE Websites -- All DOE Office Websites (Extended Search)

8 8 December 9, 2008 Extra-High-Voltage Line from AEP Would Connect Wind-Rich Dakotas American Electric Power is evaluating the feasibility of building a multi-state, extra-high-voltage transmission project across the Upper Midwest. December 9, 2008 Colorado Study Confirms Low Grid Integration Costs for Wind A new study released this week once again adds to the body of peer-reviewed literature confirming that the cost of integrating wind energy with the electric grid is quite low. December 2, 2008 Spanish Wind Power Hits Record 43% of Demand Renewable energy has boomed in recent years in Spain, as the country tries to cut greenhouse gas emissions and reduce its heavy dependence on fuel imports. Spain is also saving large sums of money in the process. November 11, 2008

409

NREL: Water Power Research - Resource Characterization  

NLE Websites -- All DOE Office Websites (Extended Search)

Resource Characterization Resource Characterization Building on its success in wind resource characterization and assessment, the National Renewable Energy Laboratory (NREL) has extended its capabilities to the field of water power. NREL's team of scientists, engineers and computer experts has broad experience in physical oceanography, meteorology, modeling, data analysis, and Geographic Information Systems. Many years of experience in wind assessment have enabled NREL to develop the skills and methodologies to evaluate the development potential of many different water-based energy technologies. Read about NREL's current water power resource characterization projects. Printable Version Water Power Research Home Capabilities Design Review & Analysis Device & Component Testing

410

China Wind Systems formerly Green Power Malex | Open Energy Information  

Open Energy Info (EERE)

Green Power Malex Green Power Malex Jump to: navigation, search Name China Wind Systems (formerly Green Power/Malex) Place Wuxi, Jiangsu Province, China Sector Wind energy Product Manufacturer of precision-forged rolled rings and machinery with applications for the wind power industry. References China Wind Systems (formerly Green Power/Malex)[1] LinkedIn Connections CrunchBase Profile No CrunchBase profile. Create one now! This article is a stub. You can help OpenEI by expanding it. China Wind Systems (formerly Green Power/Malex) is a company located in Wuxi, Jiangsu Province, China . References ↑ "China Wind Systems (formerly Green Power/Malex)" Retrieved from "http://en.openei.org/w/index.php?title=China_Wind_Systems_formerly_Green_Power_Malex&oldid=343554

411

A novel dual stator-winding induction generator system applied in wind power generation  

Science Journals Connector (OSTI)

This paper presents a novel usage of 6/3-phase dual stator-winding induction generator (DWIG) with a static excitation power controller (SEC) as a wind power generator. This generator is composed of a standard squirrel-cage rotor and two sets of winding housed in the stator slots. One is referred to as the 6-phase power winding, and the other is defined as the 3-phase control winding. On the basis of the instantaneous power theory, the control mechanism of DWIG wind power system is analysed, and the control winding flux orientation control strategy is obtained consequently. The simulation and experimental results from a prototype of 18 kW 6/3-phase DWIG wind power system are presented to verify the correctness and feasibility of control strategy, and a desirable performance is implemented.

Bu Feifei; Huang Wenxin; Hu Yuwen; Shi Kai

2010-01-01T23:59:59.000Z

412

ENERGY EFFICIENCY RESEARCH POWERS  

E-Print Network (OSTI)

1 ENERGY EFFICIENCY RESEARCH POWERS THE FUTUREPIER CONTRIBUTES TO JOB GROWTH AND PRIVATE INVESTMENT.Partofthecreditforthese achievementsgoestoCalifornia'suniquePublicInterest EnergyResearch(PIER)Program. Overthepast40years,Californiansincreasedthesizeof their homes and added scores of new energy-using de- vices,fromlargerefrigerators,dishwashers,audioequip- ment

413

Validation of Power Output for the WIND Toolkit  

SciTech Connect

Renewable energy integration studies require wind data sets of high quality with realistic representations of the variability, ramping characteristics, and forecast performance for current wind power plants. The Wind Integration National Data Set (WIND) Toolkit is meant to be an update for and expansion of the original data sets created for the weather years from 2004 through 2006 during the Western Wind and Solar Integration Study and the Eastern Wind Integration Study. The WIND Toolkit expands these data sets to include the entire continental United States, increasing the total number of sites represented, and it includes the weather years from 2007 through 2012. In addition, the WIND Toolkit has a finer resolution for both the temporal and geographic dimensions. Three separate data sets will be created: a meteorological data set, a wind power data set, and a forecast data set. This report describes the validation of the wind power data set.

King, J.; Clifton, A.; Hodge, B. M.

2014-09-01T23:59:59.000Z

414

Global ocean wind power sensitivity to surface layer stability  

E-Print Network (OSTI)

observa- tions, vertical wind speed profile estimation givenspeed differences compared to over the Gulf Stream, 80 m wind power is relatively smaller because of reduced verticalvertical momentum transfer over the Gulf Stream and North Atlantic Current results in sub-logarithmic wind profiles, reduced 80 – 10 m wind speed

Capps, Scott B; Zender, Charles S

2009-01-01T23:59:59.000Z

415

Heilongjiang Fulong Wind Power Co Ltd | Open Energy Information  

Open Energy Info (EERE)

Power Co Ltd Power Co Ltd Jump to: navigation, search Name Heilongjiang Fulong Wind Power Co., Ltd. Place Fujin, Heilongjiang Province, China Zip 156100 Sector Wind energy Product Fujin-based developer of wind farms. References Heilongjiang Fulong Wind Power Co., Ltd.[1] LinkedIn Connections CrunchBase Profile No CrunchBase profile. Create one now! This article is a stub. You can help OpenEI by expanding it. Heilongjiang Fulong Wind Power Co., Ltd. is a company located in Fujin, Heilongjiang Province, China . References ↑ "Heilongjiang Fulong Wind Power Co., Ltd." Retrieved from "http://en.openei.org/w/index.php?title=Heilongjiang_Fulong_Wind_Power_Co_Ltd&oldid=346434" Categories: Clean Energy Organizations Companies Organizations Stubs What links here

416

Making european-style community wind power development work in the United States  

E-Print Network (OSTI)

and sells power to Xcel under the small wind tariff. Thecommunity wind projects are currently selling power to the

Bolinger, Mark A.

2004-01-01T23:59:59.000Z

417

Texas Tech University is poised to take a leadership role in the development of wind power systems through research, economic development, job creation and education.  

E-Print Network (OSTI)

that will deal with offshore wind turbines in the Gulf of Mexico. "We have the offshore oil expertise here for testing, characterization and improvement of wind turbines and wind-driven water desalination systems and feed that high fidelity wind data in real time into an advanced wind turbine computer model

Gelfond, Michael

418

Wind Energy Benefits, Wind Powering America (WPA) (Fact Sheet), Wind And Water Power Program (WWPP)  

Energy.gov (U.S. Department of Energy (DOE))

This fact sheet outlines the top 10 benefits of wind energy, including cost, water savings, job creation, indigenous resource, and low operating costs.

419

New England Wind Forum: A Wind Powering America Project - Newsletter #6 - September 2010, (NEWF)  

SciTech Connect

Wind Powering America program launched the New England Wind Forum (NEWF) in 2005 to provide a single comprehensive source of up-to-date, Web-based information on a broad array of wind energy issues pertaining to New England. The NEWF newsletter provides New England stakeholders with updates on wind energy development in the region.

Grace, R.; Gifford, J.; Leeds, T.; Bauer, S.

2010-09-01T23:59:59.000Z

420

Wind Powering America Fact Sheet Series 1 Wind energy is more expensive than conventional energy.  

E-Print Network (OSTI)

Wind Powering America Fact Sheet Series 1 Wind energy is more expensive than conventional energy, the commission determined that wind energy provided the lowest cost of any new generation resource submitted a reduction in payments by electricity customers of $305 million in one year.2 2 Wind energy requires

Massachusetts at Amherst, University of

Note: This page contains sample records for the topic "wind power research" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


421

High Altitude Wind Power Systems: A Survey on Flexible Power Kites Mariam Ahmed*  

E-Print Network (OSTI)

High Altitude Wind Power Systems: A Survey on Flexible Power Kites Mariam Ahmed* Grenoble wind power using a kite-based system, and the proposed structures *Corresponding author Mariam.AHMED@g2

Boyer, Edmond

422

NREL: Wind Research - Structural Testing Laboratory  

NLE Websites -- All DOE Office Websites (Extended Search)

Structural Testing Laboratory Structural Testing Laboratory Photo of NREL's Wind Research User Facility. Shown in front are several test bays that protect proprietary information while companies disassemble turbines to analyze, test, and modify individual components. NREL's Structural Testing Laboratory includes office space for industry researchers, houses experimental laboratories, computer facilities, space for assembling turbines, components, and blades for testing. Credit: Patrick Corkery. NREL's Structural Testing Laboratory at the National Wind Technology Center (NWTC) provides office space for industry researchers, experimental laboratories, computer facilities for analytical work, and space for assembling components and turbines for atmospheric testing. The facility also houses two blade stands equipped with overhead cranes and

423

NREL: Wind Research - Gearbox Reliability Collaborative  

NLE Websites -- All DOE Office Websites (Extended Search)

Research Research Search More Search Options Site Map Premature gearbox failures have a significant impact on the cost of wind farm operations. In 2007, NREL initiated the Gearbox Reliability Collaborative (GRC). The project combines analysis, field testing, dynamometer testing, condition monitoring, and the development and population of a gearbox failure database in a multi-pronged approach to determine why many wind turbine gearboxes do not achieve their expected design life-the time period that manufacturers expect them to last. Read about: The Gearbox Reliability Collaborative Gearbox Reliability Collaborative Projects Gearbox Reliability Collaborative Research and Development Working with the Gearbox Reliability Collaborative Gearbox Reliability Collaborative Publications

424

Ris-R-1118(EN) Power Control for Wind Tur-  

E-Print Network (OSTI)

to increase the wind energy penetration. The main options are to combine wind power with a pumped hydro power been developed to assess that. The economic investigations have shown that for small systems where only small amounts of wind energy would otherwise have been dumped add-on PQ- controllers with battery

425

Study on environmental impact model of grid-connected wind power generation  

Science Journals Connector (OSTI)

As a clean and renewable energy source, wind power is independent from the traditional external energy change, which makes it one of the most promising ways of clean energy generation. It is well known that wind power has obvious energy saving efficiency. But for long-term consideration, wind power generation still has certain impacts on human life. Therefore, standing in the point of the negative effects of wind energy, this paper makes a further research on environmental issues of wind energy development and utilisation. Then combining with fuzzy theory, the environmental impact model of wind energy utilisation is constructed, the science and effectiveness of the model is validated thorough example analysis, which aims to lay a solid theoretical foundation to solve the problems of wind farm grid-connection.

Hao Chang; Jicheng Liu; Cunbin Li

2013-01-01T23:59:59.000Z

426

An Improved Method for Estimating the Wind Power Density Distribution Function  

Science Journals Connector (OSTI)

The wind power density (WPD) distribution curve is essential for wind power assessment and wind turbine engineering. The usual practice of estimating this curve from wind speed data is to first estimate the wind speed probability density function ...

Mark L. Morrissey; Werner E. Cook; J. Scott Greene

2010-07-01T23:59:59.000Z

427

NREL: Wind Research - Regional Field Verification  

NLE Websites -- All DOE Office Websites (Extended Search)

Field Verification Field Verification The Regional Field Verification (RFV) project, completed in 2007, focused on regional issues and opportunities and tested turbines to gain operational knowledge that could be applied nationwide. The RFV objectives were to: Support industry needs for gaining initial field operation experience with small wind turbines, and verify the performance, reliability, maintainability, and cost of small wind turbines in diverse applications. Expand opportunities for wind energy in new regions of the United States by tailoring projects to meet unique regional requirements, and document and communicate the experience from these projects for the benefit of others in the wind power development community and rural utilities. Through a competitive solicitation in 2001-2002, NREL selected one

428

Wind Power Reliability: Breaking Down a Barrier | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Wind Power Reliability: Breaking Down a Barrier Wind Power Reliability: Breaking Down a Barrier Wind Power Reliability: Breaking Down a Barrier June 25, 2010 - 12:16pm Addthis EnerNex Corporation is developing documentation and validating generic wind turbine and plant models that test reliability. | File photo EnerNex Corporation is developing documentation and validating generic wind turbine and plant models that test reliability. | File photo Stephen Graff Former Writer & editor for Energy Empowers, EERE The steady increase of wind power on the grid presents new challenges for power system operators charged with making sure the grid stays up and running. "We need to ensure that we are going down a path that will lead to better reliability [with wind power]," said Bob Zavadil, an executive vice

429

Estimation of capacity credit for wind power in Libya  

Science Journals Connector (OSTI)

This paper presents the results of a study that evaluated the wind potential at the central region of the Libyan coast and estimated the capacity credit of wind power in the national network. Several sites were investigated to choose the most suitable sites for wind farm establishment. Different sizes of Wind Energy Converter Systems (WECSs) were selected to estimate the wind potential. The sizes were selected to satisfy present and future market development as well as to satisfy technical, economic, and environmental aspects. Wind data from three meteorological stations in the proposed region were used in assessing the wind potential. The wind potential was estimated according to the characteristics of the sites and power curves of the WECSs, and considering certain assumptions. The results showed that the capacity credit varied from about 20% to 50%, depending on penetration levels of wind power, for the assumptions made in this study.

Wedad B. El-Osta; Mohamed Ali Ekhlat; Amal S. Yagoub; Yousef Khalifa; E. Borass

2005-01-01T23:59:59.000Z

430

Titan propels GE wind turbine research into new territory | ornl...  

NLE Websites -- All DOE Office Websites (Extended Search)

Titan propels GE wind turbine research into new territory January 17, 2014 The amount of global electricity supplied by wind, the world's fastest growing energy source, is expected...

431

New England Wind Forum: A Wind Powering America Project, Newsletter #5 -- January 2010, Wind and Hydropower Technologies Program (WHTP)  

SciTech Connect

Wind Powering America program launched the New England Wind Forum (NEWF) in 2005 to provide a single comprehensive source of up-to-date, Web-based information on a broad array of wind energy issues pertaining to New England. The NEWF newsletter provides New England stakeholders with updates on wind energy development in the region. In addition to regional updates, Issue #5 offers an interview with Angus King, former governor of Maine and co-founder of Independence Wind.

Grace, R. C.; Gifford, J.

2010-01-01T23:59:59.000Z

432

Xi an Nordex Wind Turbine Co Ltd aka Xi an Weide Wind Power Equipment Co  

Open Energy Info (EERE)

Xi an Nordex Wind Turbine Co Ltd aka Xi an Weide Wind Power Equipment Co Xi an Nordex Wind Turbine Co Ltd aka Xi an Weide Wind Power Equipment Co Ltd Jump to: navigation, search Name Xi'an Nordex Wind Turbine Co Ltd (aka Xi'an Weide Wind Power Equipment Co Ltd) Place Xi An, Shaanxi Province, China Zip 710021 Sector Wind energy Product Subsidiary of Xiâ€(tm)an Aero-Engine that manufactures its 600kW wind turbines in Xi An, China. References Xi'an Nordex Wind Turbine Co Ltd (aka Xi'an Weide Wind Power Equipment Co Ltd)[1] LinkedIn Connections CrunchBase Profile No CrunchBase profile. Create one now! This article is a stub. You can help OpenEI by expanding it. Xi'an Nordex Wind Turbine Co Ltd (aka Xi'an Weide Wind Power Equipment Co Ltd) is a company located in Xi An, Shaanxi Province, China . References ↑ "[ Xi'an Nordex Wind Turbine Co Ltd (aka Xi'an Weide Wind

433

Stakeholder Engagement and Outreach: Wind Power for Native Americans  

Wind Powering America (EERE)

Wind Power for Native Americans Wind Power for Native Americans Wind Power for Native Americans poster with five happy Native American children and a wind turbine. Click on the image to view a larger version. Wind Power for Native Americans poster There are more than 700 American Indian tribes and Native Alaskan villages and corporations located on 96 million acres in the United States. Many of these tribes and villages have excellent wind resources that could be commercially developed to meet their electricity needs or for electricity export. Changing national utility policy, a keen interest in economic development, environmental concerns, and availability of low-cost financing have kindled a strong interest in tribal wind development opportunities. However, several key issues need to be addressed, including lack of wind resource

434

Wind and solar power electric generation to see strong growth...  

U.S. Energy Information Administration (EIA) Indexed Site

Short-Term Energy Outlook says the increase in wind power will be due to the new wind turbines coming online thanks to the federal production tax credit that was recently...

435

The Potential Wind Power Resource in Australia: A New Perspective  

E-Print Network (OSTI)

Australia is considered to have very good wind resources, and the utilization of this renewable energy resource is increasing. Wind power installed capacity increased by 35% from 2006 to 2011 and is predicted to account ...

Hallgren, Willow

436

The Potential Wind Power Resource in Australia: A New Perspective  

E-Print Network (OSTI)

Australia’s wind resource is considered to be very good, and the utilization of this renewable energy resource is increasing rapidly: wind power installed capacity increased by 35% from 2006 to 2011 and is predicted to ...

Hallgren, Willow

437

Category:Wind Power in China | Open Energy Information  

Open Energy Info (EERE)

in China Pages in category "Wind Power in China" The following 2 pages are in this category, out of 2 total. G Guangdong Baolihua New Energy Corporation S Sinovel Wind Group Co....

438

Pitfalls of modeling wind power using Markov chains  

E-Print Network (OSTI)

An increased penetration of wind turbines have given rise to a need for wind speed/power models that generate realistic synthetic data. Such data, for example, might be used in simulations to size energy storage or spinning ...

Kirtley, James L., Jr.

439

Sound?Power Production in Wind Instruments  

Science Journals Connector (OSTI)

This paper presents data for output sound powerP O of wind instruments relation to input power P I supplied by the player. P I was calculated as pV? where p equals mouth pressure and V? air flow rate through the instrument. P O was calculated from sound?pressure level and measurements of reverberation time in a live room of known volume. A part of the data was obtained in a room of unknown characteristics; from 15 comparable measurements on 8 different instruments in both the live and the unknown room data were obtained that allowed calculation of P O also from other experiments in the unknown room. Measurements were made on single notes played both pp and ff on each instrument; one low and one high note on the scale of each instrument were chosen. The ratio P O/P I representing the mechanical efficiency of wind instruments as sources of sound power varies from less than 0.001% to about 2%. It appears to increase with increasing P I and in some instruments with frequency. The consistent results obtained for 3 different flutes played by one performer suggest that the variability noted in the other data at least partially reflects individual differences in mechanical efficiency.

Arend Bouhuys

1965-01-01T23:59:59.000Z

440

On the effect of spatial dispersion of wind power plants on the wind energy capacity credit  

Science Journals Connector (OSTI)

Wind energy is now a mature technology and can be considered as a significant contributor in reducing CO2 emissions and protecting the environment. To meet the wind energy national targets, effective implementation of massive wind power installed capacity in the power supply system is required. Additionally, capacity credit is an important issue for an unstable power supply system as in Greece. To achieve high and reliable wind energy penetration levels into the system, the effect of spatial dispersion of wind energy installations within a very wide area (e.g. national level) on the power capacity credit should be accounted for. In the present paper, a methodology for estimating the effect of spatial dispersion of wind farm installations on the capacity credit is presented and applied for the power supply system of Greece. The method is based on probability theory and makes use of wind forecasting models to represent the wind energy potential over any candidate area for future wind farm installations in the country. Representative wind power development scenarios are studied and evaluated. Results show that the spatial dispersion of wind power plants contributes beneficially to the wind capacity credit.

George Caralis; Yiannis Perivolaris; Konstantinos Rados; Arthouros Zervos

2008-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "wind power research" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


441

Cooperative Extension Service & Wind Powering America Collaborate to Provide Wind Energy Information to Rural Stakeholders (Poster)  

SciTech Connect

Cooperative Extension's presence blankets much of the United States and has been a trusted information source to rural Americans. By working together, Cooperative Extension, Wind Powering America, and the wind industry can better educate the public and rural stakeholders about wind energy and maximize the benefits of wind energy to local communities. This poster provides an overview of Cooperative Extension, wind energy issues addressed by the organization, and related activities.

Jimenez, A.; Flower, L.; Hamlen, S.

2009-05-01T23:59:59.000Z

442

Powered by Renewables formerly Nevada Wind | Open Energy Information  

Open Energy Info (EERE)

formerly Nevada Wind formerly Nevada Wind Jump to: navigation, search Name Powered by Renewables (formerly Nevada Wind) Place Las Vegas, Nevada Zip 89102 Sector Renewable Energy Product PBR develops, manages and sells utility-scale renewable energy projects. References Powered by Renewables (formerly Nevada Wind)[1] LinkedIn Connections CrunchBase Profile No CrunchBase profile. Create one now! This article is a stub. You can help OpenEI by expanding it. Powered by Renewables (formerly Nevada Wind) is a company located in Las Vegas, Nevada . References ↑ "Powered by Renewables (formerly Nevada Wind)" Retrieved from "http://en.openei.org/w/index.php?title=Powered_by_Renewables_formerly_Nevada_Wind&oldid=349890" Categories: Clean Energy Organizations Companies

443

Synoptic and local influences on boundary layer processes, with an application to California wind power  

E-Print Network (OSTI)

maps showing locations of wind power conversion facilities,of US winds and wind power at 80 m derived fromEvaluation of global wind power. Journal of Geo- physical

Mansbach, David K.

2010-01-01T23:59:59.000Z

444

The Impact of Wind Development on County-Level Income and Employment: A Review of Methods and an Empirical Analysis (Fact Sheet). Wind And Water Power Program (WWPP).  

E-Print Network (OSTI)

development potential from wind power installations has beendevelopment potential of wind power projects, however,is whether new investment in wind power projects stimulates

Brown, Jason P.

2014-01-01T23:59:59.000Z

445

Operating the Irish Power System with Increased Levels of Wind Power  

E-Print Network (OSTI)

Operating the Irish Power System with Increased Levels of Wind Power Aidan Tuohy, Student Member-- This paper summarises some of the main impacts of large amounts of wind power installed in the island of Ireland. Using results from various studies performed on this system, it is shown that wind power

446

Benefits of Stochastic Scheduling for Power Systems with Significant Installed Wind Power  

E-Print Network (OSTI)

Benefits of Stochastic Scheduling for Power Systems with Significant Installed Wind Power Aidan a stochastic element due to the uncertainty of wind power forecasts. By explicitly taking into account the stochastic nature of wind power, it is expected that better schedules should be produced, thereby reducing

447

NREL: Wind Research - NREL Researchers Assess Where to Gear Up U.S.  

NLE Websites -- All DOE Office Websites (Extended Search)

Researchers Assess Where to Gear Up U.S. Manufacturing and Supply Researchers Assess Where to Gear Up U.S. Manufacturing and Supply Chain Capabilities for Advanced Drivetrain Technologies December 2, 2013 Illustration of an advanced wind turbine drivetrain showing the single-stage gearbox, power electronics, medium-speed generator, and hydrodynamic bearings. A wind turbine drivetrain featuring advanced technologies. Illustration by Powertrain Engineers Inc. The drivetrain of a wind turbine converts the power of the wind into electrical energy. Now, innovative technologies, such as medium-voltage and permanent-magnet generators, silicon-carbide (SiC) switches, and high-torque-density speed increasers, have the potential to improve the capacity and operating reliability of conventional drivetrains. Yet, these new configurations may be more advanced than what today's manufacturing

448

Sandia National Laboratories: wind manufacturing  

NLE Websites -- All DOE Office Websites (Extended Search)

manufacturing Wind Energy Manufacturing Lab Helps Engineers Improve Wind Power On November 15, 2011, in Energy, News, Partnership, Renewable Energy, Wind Energy Researchers at the...

449

Use of wind power forecasting in operational decisions.  

SciTech Connect

The rapid expansion of wind power gives rise to a number of challenges for power system operators and electricity market participants. The key operational challenge is to efficiently handle the uncertainty and variability of wind power when balancing supply and demand in ths system. In this report, we analyze how wind power forecasting can serve as an efficient tool toward this end. We discuss the current status of wind power forecasting in U.S. electricity markets and develop several methodologies and modeling tools for the use of wind power forecasting in operational decisions, from the perspectives of the system operator as well as the wind power producer. In particular, we focus on the use of probabilistic forecasts in operational decisions. Driven by increasing prices for fossil fuels and concerns about greenhouse gas (GHG) emissions, wind power, as a renewable and clean source of energy, is rapidly being introduced into the existing electricity supply portfolio in many parts of the world. The U.S. Department of Energy (DOE) has analyzed a scenario in which wind power meets 20% of the U.S. electricity demand by 2030, which means that the U.S. wind power capacity would have to reach more than 300 gigawatts (GW). The European Union is pursuing a target of 20/20/20, which aims to reduce greenhouse gas (GHG) emissions by 20%, increase the amount of renewable energy to 20% of the energy supply, and improve energy efficiency by 20% by 2020 as compared to 1990. Meanwhile, China is the leading country in terms of installed wind capacity, and had 45 GW of installed wind power capacity out of about 200 GW on a global level at the end of 2010. The rapid increase in the penetration of wind power into power systems introduces more variability and uncertainty in the electricity generation portfolio, and these factors are the key challenges when it comes to integrating wind power into the electric power grid. Wind power forecasting (WPF) is an important tool to help efficiently address this challenge, and significant efforts have been invested in developing more accurate wind power forecasts. In this report, we document our work on the use of wind power forecasting in operational decisions.

Botterud, A.; Zhi, Z.; Wang, J.; Bessa, R.J.; Keko, H.; Mendes, J.; Sumaili, J.; Miranda, V. (Decision and Information Sciences); (INESC Porto)

2011-11-29T23:59:59.000Z

450

Application Filing Requirements for Wind-Powered Electric Generation  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Application Filing Requirements for Wind-Powered Electric Application Filing Requirements for Wind-Powered Electric Generation Facilities (Ohio) Application Filing Requirements for Wind-Powered Electric Generation Facilities (Ohio) < Back Eligibility Commercial Developer Utility Investor-Owned Utility Municipal/Public Utility Rural Electric Cooperative Savings Category Wind Buying & Making Electricity Program Info State Ohio Program Type Siting and Permitting Provider Ohio Power Siting Board Chapter 4906-17 of the Ohio Administrative Code states the Application Filing Requirements for wind-powered electric generating facilities in Ohio. The information requested in this rule shall be used to assess the environmental effects of the proposed facility. An applicant for a certificate to site a wind-powered electric generation

451

Emerald PUD Wind Power Solicitation, Deadline July 14, 2003  

NLE Websites -- All DOE Office Websites (Extended Search)

Emerald PUD Wind Power Solicitation Emerald PUD Wind Power Solicitation June 20, 2003 Background: Emerald is interested in purchasing wind power through a Purchase Power Agreement or through ownership. While our aim is to gain the cost advantage of the PTC or REPI, we are concerned that REPI with its current configuration and funding level may be risky and may not add equivalent value over the life of the project. We are interested in proposals that can begin to deliver wind power now or within the next couple of years. Our thinking is that our wind power would come from part of larger wind project, thus gaining the economies of scale. If a PPA is proposed, we are interested in an ownership option at the end of the contract term, and ask that PPA proposers discuss this option in as much detail

452

NREL: Wind Research - Get to Know a Wind Energy Expert  

NLE Websites -- All DOE Office Websites (Extended Search)

Get to Know a Wind Energy Expert The Evolution of a Wind Expert A professional headshot photo of Maureen Hand Maureen Hand Maureen Hand knows wind. Growing up in Glenrock, Wyoming,...

453

Power Electronic Control for Wind Generation Systems  

Science Journals Connector (OSTI)

...? mathematical models for wind turbines such as wind turbine (WT) with doubly fed induction generator (DFIG) and WT with direct-drive permanent magnet...

Xiao-Ping Zhang; Christian Rehtanz…

2012-01-01T23:59:59.000Z

454

Wild Horse Wind Power Project | Open Energy Information  

Open Energy Info (EERE)

Wind Power Project Wind Power Project Jump to: navigation, search Name Wild Horse Wind Power Project Facility Wild Horse Wind Power Project Sector Wind energy Facility Type Commercial Scale Wind Facility Status In Service Owner Puget Sound Energy Developer Horizon Wind Energy Energy Purchaser Puget Sound Energy Location Kittitas County Coordinates 47.000782°, -120.190609° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":47.000782,"lon":-120.190609,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

455

Arkansas Preparing for Wind Power | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Arkansas Preparing for Wind Power Arkansas Preparing for Wind Power Arkansas Preparing for Wind Power April 15, 2010 - 5:25pm Addthis Joshua DeLung Renowned science fiction author Isaac Asimov once said, "No sensible decision can be made any longer without taking into account not only the world as it is, but the world as it will be." In Arkansas, state energy leaders are taking that advice and gathering the best possible data by which future developers can make decisions about the potential of wind energy in the state. While there are zero megawatts of wind power currently installed in Arkansas, gathering such data is crucial in showcasing the state's abilities to harvest wind. "Because no publicly available wind data are available at commercial hub heights in Arkansas ... you can't really have an informed debate

456

NREL: Wind Research - National Wind Technology Center Map  

NLE Websites -- All DOE Office Websites (Extended Search)

Wind Technology Center in Golden, Colorado Structural Testing Laboratory (STL) As wind turbines grow in size and their blades become longer and more flexible, it becomes more...

457

NREL: Wind Research - NREL Supports Innovative Offshore Wind...  

NLE Websites -- All DOE Office Websites (Extended Search)

NREL Supports Innovative Offshore Wind Energy Projects Demonstration Projects Eligible for up to 46.7M Additional Funding An offshore wind turbine floating off the coast of...

458

Simulation of a generator for a wind-power unit  

Science Journals Connector (OSTI)

Analysis of excitation systems of generators for wind-power units is carried out, a software package for generator simulation is presented, and the sequence of the...

I. M. Kirpichnikova; A. S. Mart’yanov; E. V. Solomin

2013-10-01T23:59:59.000Z

459

Wind power on BPA system sets another new record  

NLE Websites -- All DOE Office Websites (Extended Search)

another new record The renewable resource passes 4,000 megawatts Portland, Ore. - Wind turbines in the Bonneville Power Administration's transmission grid generated over 4,000...

460

Utilizing Load Response for Wind and Solar Integration and Power...  

NLE Websites -- All DOE Office Websites (Extended Search)

Laboratory 1617 Cole Blvd., Golden, CO 80401 michael.milligan@nrel.gov Topics: Demand Response Power System Operations and Wind Energy Abstract Responsive load is still the...

Note: This page contains sample records for the topic "wind power research" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


461

Domestic Demand Response to Increase the Value of Wind Power.  

E-Print Network (OSTI)

??This thesis describes a new method to evaluate the value of wind power combined with domestic demand response. The thesis gives a brief overview of… (more)

Hamidi, Vandad

2009-01-01T23:59:59.000Z

462

Modulated power filter compensator for a small renewable wind energy.  

E-Print Network (OSTI)

??This paper has three sections, the first one is related to wind energy, the second is related to power filters used to mitigate the harmonics,… (more)

Almadhi, Bassil

2015-01-01T23:59:59.000Z

463

Optimization Online - The Worst-case Wind Power Scenario for ...  

E-Print Network (OSTI)

Sep 16, 2014 ... The Worst-case Wind Power Scenario for Adaptive Robust Unit Commitment Problems. German Morales-España(gmorales ***at*** kth.se).

German Morales-España

2014-09-16T23:59:59.000Z

464

Optimization Online - Robustified Reserve Modelling for Wind Power ...  

E-Print Network (OSTI)

Jul 8, 2014 ... Robustified Reserve Modelling for Wind Power Integration in Ramp-Based Unit Commitment. German Morales-España(gmorales ***at*** ...

German Morales-España

2014-07-08T23:59:59.000Z

465

Impact Study of Wind Power on Tourism on Gotland.  

E-Print Network (OSTI)

?? This study investigates the impact of wind power on tourism on Gotland. The main objective is toidentify how tourists on Gotland during their holidaying… (more)

Braunova, Vendula

2013-01-01T23:59:59.000Z

466

Lillgrund Wind Farm Modelling and Reactive Power Control.  

E-Print Network (OSTI)

?? The installation of wind power plant has significantly increased since several years due to the recent necessity of creating renewable and clean energy sources.… (more)

Boulanger, Isabelle

2009-01-01T23:59:59.000Z

467

Implementation of Wind Energy Systems to the Existing Power Grid.  

E-Print Network (OSTI)

??Steady state and transient analysis of a Doubly Fed Induction Generator(DFIG) belonging to a Wind Power Generator is performed. Firstly, the steady state model of… (more)

Gogineni, Jalaja

2012-01-01T23:59:59.000Z

468

The Political Economy of Wind Power in China  

E-Print Network (OSTI)

pumped storage reservoirs and electric vehicles—will undoubtedly play an important role in integrating wind power into China‘s electricity system

Swanson, Ryan Landon

2011-01-01T23:59:59.000Z

469

Wind Powering America's Wind for Schools Team Honored with Wirth...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

NREL manages the program, funds the wind application centers through subcontracts, and trains teachers and community facilitators that work with the K-12 schools to build community...

470

WIND POWER PROGRAM WIND PROGRAM ACCOMPLISHMENTS U.S. Department...  

Office of Environmental Management (EM)

Many of these innovations have been incorporated by industry into modern commercial wind turbines. * Advanced airfoils led to new turbine blade designs that produced 30% more...

471

Response of Rocky Mountain Elk (Cervus elaphus) to Wind-power Development  

E-Print Network (OSTI)

Department of Wildlife and Fisheries Sciences, South Dakota State University, Brookings 57007 ABSTRACT.--WindResponse of Rocky Mountain Elk (Cervus elaphus) to Wind-power Development W. DAVID WALTER1 Oklahoma Cooperative Fish and Wildlife Research Unit, 404 Life Sciences West, Oklahoma State University, Stillwater

472

Life cycle cost analysis of wind power considering stochastic uncertainties  

Science Journals Connector (OSTI)

Abstract This paper presents a long-term cost analysis of wind power and compares its competitiveness to non-renewable generating technologies. The analysis considers several important attributes related to wind intermittency that are sometimes ignored in traditional generation planning or LCOE (levelized cost of energy) studies, including the need for more nameplate capacity due to intermittency, hourly fluctuations in wind outputs and cost for reserves. The competitiveness of wind power is assessed by evaluating four scenarios: 1) adding natural gas generating capacity to the power grid; 2) adding coal generating capacity to the power grid; 3) adding wind capacity to the power grid; and, 4) adding wind capacity and energy storage to the power grid where an energy storage device is used to cover wind intermittency. A case study in the state of Michigan is presented to demonstrate the use of the proposed methodology, in which a time horizon from 2010 to 2040 is considered. The results show that wind energy will still be more expensive than natural gas power plants in the next three decades, but will be cheaper than coal capacities if wind intermittency is mitigated. Furthermore, if the costs of carbon emissions and environmental externalities are considered, wind generation will be a competitive option for grid capacity expansion.

Chiao-Ting Li; Huei Peng; Jing Sun

2014-01-01T23:59:59.000Z

473

Development of a Web-based Emissions Reduction Calculator for Green Power Purchases from Texas Wind Energy Providers  

E-Print Network (OSTI)

DEVELOPMENT OF A WEB-BASED, EMISSIONS REDUCTION CALCULATOR FOR GREEN POWER PURCHASES FROM TEXAS WIND ENERGY PROVIDERS Zi Liu, Ph.D. Research Engineer Jeff S. Haberl, Ph.D., P.E. Professor/Assc. Director Juan... that have been developed to calculate the emissions reductions from electricity provided by wind energy providers in the Texas ERCOT region, including an analysis of actual hourly wind power generated from a wind turbine in Randall County, Texas...

Liu, Z.; Baltazar-Cervantes, J. C.; Gilman, D.; Haberl, J.; Culp, C.

2005-01-01T23:59:59.000Z

474

Wind Powering America: Opportunities from Chile and the Region | Open  

Open Energy Info (EERE)

Wind Powering America: Opportunities from Chile and the Region Wind Powering America: Opportunities from Chile and the Region Jump to: navigation, search Tool Summary Name: Wind Powering America: Opportunities from Chile and the Region Agency/Company /Organization: National Renewable Energy Laboratory, Centro de Energías Renovables (CER) Sector: Energy Focus Area: Wind Topics: Implementation, Policies/deployment programs Resource Type: Webinar References: WPA[1] Logo: Wind Powering America: Opportunities from Chile and the Region This webinar provides an overview of the Department of Energy's Wind Powering America program, key program areas, and success stories that might be of interest to policy makers and stakeholders interested in adapting this program for Chile and other countries in Latin America. Watch Click here to view this webinar

475

Wind: wind power density maps at 50m above ground and 1km resolution...  

Open Energy Info (EERE)

resolution for Central America from NREL (Abstract):HTMLREMOVEDHTMLREMOVED50 m wind power density (Wm2) maps of Central America. (Purpose):HTMLREMOVEDHTMLREMOVEDTo...

476

Wind power dynamic behaviour - Real case study on Linderödsåsen wind farm.  

E-Print Network (OSTI)

??Rapid wind power development has led to a shift from small generators to large generators and from single distributed units to large centralised clusters of… (more)

Wang-Hansen, Mats

2008-01-01T23:59:59.000Z

477

Maximum power tracking control scheme for wind generator systems  

E-Print Network (OSTI)

The purpose of this work is to develop a maximum power tracking control strategy for variable speed wind turbine systems. Modern wind turbine control systems are slow, and they depend on the design parameters of the turbine and use wind and/or rotor...

Mena, Hugo Eduardo

2009-05-15T23:59:59.000Z

478

Maximum power tracking control scheme for wind generator systems  

E-Print Network (OSTI)

The purpose of this work is to develop a maximum power tracking control strategy for variable speed wind turbine systems. Modern wind turbine control systems are slow, and they depend on the design parameters of the turbine and use wind and/or rotor...

Mena Lopez, Hugo Eduardo

2008-10-10T23:59:59.000Z

479

Impacts of wind power on PJM market development  

Science Journals Connector (OSTI)

Recently, there has been a substantial growth in wind energy in the USA. An increasing number of states are experiencing market design, planning and investment in wind energy with this growth. Currently, wind installations exist in more than half of the states. This paper explores the market factors that have been driven and affected by large-scale wind energy development in the USA, particularly in PJM control area that have achieved in recent years and will have a substantial amount of wind energy investment in the next 10â??15 years. In this paper, we also identify the key issues for wind power planning and interconnection.

Zhenyu Fan; Hui Ni

2008-01-01T23:59:59.000Z

480

Lidar-based Research and Innovation at DTU Wind Energy – a Review  

Science Journals Connector (OSTI)

As wind turbines during the past decade have increased in size so have the challenges met by the atmospheric boundary-layer meteorologists and the wind energy society to measure and characterize the huge-volume wind fields surpassing and driving them. At the DTU Wind Energy test site "Østerild" for huge wind turbines, the hub-height of a recently installed 8 MW Vestas V164 turbine soars 143 meters up above the ground, and its rotor of amazing 164 meters in diameter make the turbine tips flicker 225 meters into the sky. Following the revolution in photonics-based telecommunication at the turn of the Millennium new fibre-based wind lidar technologies emerged and DTU Wind Energy, at that time embedded within Rise National Laboratory, began in collaboration with researchers from wind lidar companies to measure remote sensed wind profiles and turbulence structures within the atmospheric boundary layer with the emerging, at that time new, all-fibre-based 1.55 ? coherent detection wind lidars. Today, ten years later, DTU Wind Energy routinely deploys ground-based vertical profilers instead of met masts for high-precision measurements of mean wind profiles and turbulence profiles. At the departments test site "Høvsøre" DTU Wind Energy also routinely calibrate and accredit wind lidar manufactures wind lidars. Meanwhile however, new methodologies for power curve assessment based on ground-based and nacelle based lidars have also emerged. For improving the turbines power curve assessments and for advancing their control with feed-forward wind measurements experience has also been gained with wind lidars installed on turbine nacelles and integrated into the turbines rotating spinners. A new mobile research infrastructure WindScanner.dk has also emerged at DTU Wind Energy. Wind and turbulence fields are today scanned from sets of three simultaneously in space and time synchronized scanning lidars. One set consists of three fast scanning continuous-wave based wind lidars (short-range system), and another consisting of three synchronized pulsed wind lidar systems (long-range system). Today, wind lidar profilers and WindScanners are routinely deployed and operated during field tests and measurement campaigns. Lidars have been installed and operated from ground, on offshore platforms, and also as scanning lidars integrated in operating turbines. As a result, wind profiles and also detailed 3D scanning of wind and turbulence fields have been achieved: 1) of the free wind aloft, 2) over complex terrain, 3) at coastal ranges with land-sea interfaces, 4) offshore, 5) in turbine inflow induction zone, and 6) of the complex and turbulent flow fields in the wakes inside wind parks.

T Mikkelsen

2014-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "wind power research" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


481

A stochastic framework for the grid integration of wind power using flexible load approach  

Science Journals Connector (OSTI)

Abstract Wind power integration has always been a key research area due to the green future power system target. However, the intermittent nature of wind power may impose some technical and economic challenges to Independent System Operators (ISOs) and increase the need for additional flexibility. Motivated by this need, this paper focuses on the potential of Demand Response Programs (DRPs) as an option to contribute to the flexible operation of power systems. On this basis, in order to consider the uncertain nature of wind power and the reality of electricity market, a Stochastic Network Constrained Unit Commitment associated with DR (SNCUCDR) is presented to schedule both generation units and responsive loads in power systems with high penetration of wind power. Afterwards, the effects of both price-based and incentive-based \\{DRPs\\} are evaluated, as well as DR participation levels and electricity tariffs on providing a flexible load profile and facilitating grid integration of wind power. For this reason, novel quantitative indices for evaluating flexibility are defined to assess the success of \\{DRPs\\} in terms of wind integration. Sensitivity studies indicate that DR types and customer participation levels are the main factors to modify the system load profile to support wind power integration.

E. Heydarian-Forushani; M.P. Moghaddam; M.K. Sheikh-El-Eslami; M. Shafie-khah; J.P.S. Catalão

2014-01-01T23:59:59.000Z

482

Ex Post Analysis of Economic Impacts from Wind Power Development in U.S. Counties  

E-Print Network (OSTI)

use requirements of modern wind power plants in the United2002. Economic impacts of wind power in Kittitas County:Renewable energy: Wind power’s contribution to electric

Brown, Jason P.

2014-01-01T23:59:59.000Z

483

Improving sound propagation modeling for wind power projects  

Science Journals Connector (OSTI)

Sound propagation from wind power projects can be modeled in the same manner as other more common outdoor noisesources but are these models suited to wind turbines' uniquely high source heights operating under high wind conditions and various degrees of terrain ruggedness. In "Propagation Modeling Parameters for Wind Turbines" (K. Kaliski and E. Duncan Proceedings of Institute of Noise ControlEngineers NOISECON 2007) the effects of ground attenuation and various adjustments for wind conditions on sound propagationmodeling were discussed. This paper continues the discussion and explores the accuracy of existing sound propagationmodeling methods for wind power projects including ISO 9613 and other standards. Model data for wind power projects and the implications of various terrain and ground coverage will be discussed.

Eddie Duncan; Kenneth Kaliski

2008-01-01T23:59:59.000Z

484

Loranger Power Generation Wind Farm | Open Energy Information  

Open Energy Info (EERE)

Loranger Power Generation Wind Farm Loranger Power Generation Wind Farm Jump to: navigation, search Name Loranger Power Generation Wind Farm Facility Loranger Power Generation Sector Wind energy Facility Type Commercial Scale Wind Facility Status In Service Owner Loranger Power Generation Developer Loranger Power Generation Location Berlin NH Coordinates 44.501183°, -71.231588° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":44.501183,"lon":-71.231588,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

485

GHG emissions and energy performance of offshore wind power  

Science Journals Connector (OSTI)

Abstract This paper presents specific life cycle GHG emissions from wind power generation from six different 5 MW offshore wind turbine conceptual designs. In addition, the energy performance, expressed by the energy indicators Energy Payback Ratio (EPR) Energy Payback Time (EPT), is calculated for each of the concepts. There are currently few LCA studies in existence which analyse offshore wind turbines with rated power as great as 5 MW. The results, therefore, give valuable additional environmental information concerning large offshore wind power. The resulting GHG emissions vary between 18 and 31.4 g CO2-equivalents per kWh while the energy performance, assessed as EPR and EPT, varies between 7.5 and 12.9, and 1.6 and 2.7 years, respectively. The relatively large ranges in GHG emissions and energy performance are chiefly the result of the differing steel masses required for the analysed platforms. One major conclusion from this study is that specific platform/foundation steel masses are important for the overall GHG emissions relating to offshore wind power. Other parameters of importance when comparing the environmental performance of offshore wind concepts are the lifetime of the turbines, wind conditions, distance to shore, and installation and decommissioning activities. Even though the GHG emissions from wind power vary to a relatively large degree, wind power can fully compete with other low GHG emission electricity technologies, such as nuclear, photovoltaic and hydro power.

Hanne Lerche Raadal; Bjørn Ivar Vold; Anders Myhr; Tor Anders Nygaard

2014-01-01T23:59:59.000Z

486

A life cycle co-benefits assessment of wind power in China  

Science Journals Connector (OSTI)

Abstract Wind power can help ensure regional energy security and also mitigate both global greenhouse gas and local air pollutant emissions, leading to co-benefits. With rapid installation of wind power equipment, it is critical to uncover the embodied emissions of greenhouse gas and air pollutants from wind power sector so that emission mitigation costs can be compared with a typical coal-fired power plant. In order to reach such a target, we conduct a life cycle analysis for wind power sector by using the Chinese inventory standards. Wind farms only release 1/40 of the total CO2 emissions that would be produced by the coal power system for the same amount of power generation, which is equal to 97.48% of CO2 emissions reduction. Comparing with coal power system, wind farms can also significantly reduce air pollutants (SO2, NOX and PM10), leading to 80.38%, 57.31% and 30.91% of SO2, NOX and PM10 emissions reduction, respectively. By considering both recycling and disposal, wind power system could reduce 2.74×104 t of CO2 emissions, 5.65×104 kg of NOX emissions, 2.95×105 kg of SO2 emissions and 7.97×104 kg of PM10 emissions throughout its life cycle. In terms of mitigation cost, a wind farm could benefit 37.14 US$ from mitigating 1ton of CO2 emissions. The mitigation cost rates of air pollutants were 7.94 US$/kg of SO2, 10.79 US$/kg of NOx, and 80.79 US$/kg of PM10.Our research results strongly support the development of wind power so that more environmental benefits can be gained. However, decentralized wind power developers should consider not only project locations close to the demand of electricity and wind resources, but also the convenient transportation for construction and recycling, while centralized wind power developers should focus on incorporating wind power into the grids in order to avoid wind power loss.

Bing Xue; Zhixiao Ma; Yong Geng; Peter Heck; Wanxia Ren; Mario Tobias; Achim Maas; Ping Jiang; Jose A. Puppim de Oliveira; Tsuyoshi Fujita

2015-01-01T23:59:59.000Z

487

NREL: Energy Analysis - Wind Power Results - Life Cycle Assessment  

NLE Websites -- All DOE Office Websites (Extended Search)

Wind LCA Harmonization (Fact Sheet) Wind LCA Harmonization (Fact Sheet) Cover of the LWind LCA Harmonization Fact Sheet Download the Fact Sheet Wind Power Results - Life Cycle Assessment Harmonization To better understand the state of knowledge of greenhouse gas (GHG) emissions from utility-scale wind power systems, NREL developed and applied a systematic approach to review life cycle assessment literature, identify sources of variability and, where possible, reduce variability in GHG emissions estimates through a meta-analytical process called "harmonization." Over the last 30 years, several hundred life cycle assessments have been conducted for wind power technologies with wide-ranging results. Harmonization for onshore and offshore wind power systems was performed by adjusting published greenhouse gas estimates to achieve:

488

Mill Run Wind Power Project | Open Energy Information  

Open Energy Info (EERE)

Wind Power Project Wind Power Project Jump to: navigation, search Name Mill Run Wind Power Project Facility Mill Run Wind Power Project Sector Wind energy Facility Type Commercial Scale Wind Facility Status In Service Owner NextEra Energy Resources Developer Atlantic Renewable Energy Energy Purchaser Exelon Location Mill Run PA Coordinates 39.921026°, -79.388666° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":39.921026,"lon":-79.388666,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

489

Mt. Wachusett Community College Makes Huge Investment in Wind Power |  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Mt. Wachusett Community College Makes Huge Investment in Wind Power Mt. Wachusett Community College Makes Huge Investment in Wind Power Mt. Wachusett Community College Makes Huge Investment in Wind Power March 14, 2011 - 1:14pm Addthis Mount Wachusett Community College staff Bill Swift, Bob LaBonte, Norm Boudreau, George Couillard and Vestas trainer Bill Fulkerson about to ascend the MWCC north wind turbine | Photo courtesy of GreenOnGreenStreet Mount Wachusett Community College staff Bill Swift, Bob LaBonte, Norm Boudreau, George Couillard and Vestas trainer Bill Fulkerson about to ascend the MWCC north wind turbine | Photo courtesy of GreenOnGreenStreet Mark Higgins Operations Supervisor, Wind & Water Power Technologies Office What will this project do? The turbines are expected to provide an annual savings of approximately $700,000 based on the area's current utility rates.

490

PowerWind GmbH | Open Energy Information  

Open Energy Info (EERE)

PowerWind GmbH PowerWind GmbH Jump to: navigation, search Name PowerWind GmbH Place Hamburg, Germany Zip 20457 Sector Wind energy Product PowerWind GmbH is a German manufacturer and service provider of wind turbines. Coordinates 53.553345°, 9.992455° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":53.553345,"lon":9.992455,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

491

How Do Wind and Solar Power Affect Grid Operations: The Western Wind and Solar Integration Study  

SciTech Connect

The Western Wind and Solar Integration Study is one of the largest regional wind and solar integration studies to date, examining the operational impact of up to 35% wind, photovoltaics, and concentrating solar power on the WestConnect grid in Arizona, Colorado, Nevada, New Mexico, and Wyoming. This paper reviews the scope of the study, the development of wind and solar datasets, and the results to date on three scenarios.

Lew, D.; Milligan, M.; Jordan, G.; Freeman, L.; Miller, N.; Clark, K.; Piwko, R.

2009-01-01T23:59:59.000Z

492

Wind power for the Creek Nation. Final report  

SciTech Connect

An Enertech 1800 horizontal-axis wind powered electric generator was purchased and interphased with the electric utility system provided to the Creek Nation by the Public Service Company of Oklahoma. Objectives of the work include: to determine the economic feasibility of wind power for the Creek Nation region; to educate the Creek Nation and other Indian tribes about the potential use of wind power; and to accumulate valuable climatic data through an on-site wind survey at a height of 60' over a long period of time. (LEW)

Not Available

1982-01-01T23:59:59.000Z

493

Optimal Placement of Wind Power Plants for Delivery Loss Minimization  

Science Journals Connector (OSTI)

In this chapter we investigate how to minimize power delivery losses in the distribution system on ... We show that strategically placing and utilizing new wind power plants can lead to significant loss reduction...

Masoud Honarvar Nazari

2013-01-01T23:59:59.000Z

494

The effects of energy storage properties and forecast accuracy on mitigating variability in wind power generation  

E-Print Network (OSTI)

Electricity generation from wind power is increasing worldwide. Wind power can offset traditional fossil fuel generators which is beneficial to the environment. However, wind generation is unpredictable. Wind speeds have ...

Jaworsky, Christina A

2013-01-01T23:59:59.000Z

495

Modeling the Benefits of Storage Technologies to Wind Power  

SciTech Connect

Rapid expansion of wind power in the electricity sector is raising questions about how wind resource variability might affect the capacity value of wind farms at high levels of penetration. Electricity storage, with the capability to shift wind energy from periods of low demand to peak times and to smooth fluctuations in output, may have a role in bolstering the value of wind power at levels of penetration envisioned by a new Department of Energy report ('20% Wind by 2030, Increasing Wind Energy's Contribution to U.S. Electricity Supply'). This paper quantifies the value storage can add to wind. The analysis was done employing the Regional Energy Deployment System (ReEDS) model, formerly known as the Wind Deployment System (WinDS) model. ReEDS was used to estimate the cost and development path associated with 20% penetration of wind in the report. ReEDS differs from the WinDS model primarily in that the model has been modified to include the capability to build and use three storage technologies: pumped-hydroelectric storage (PHS), compressed-air energy storage (CAES), and batteries. To assess the value of these storage technologies, two pairs of scenarios were run: business-as-usual, with and without storage; 20% wind energy by 2030, with and without storage. This paper presents the results from those model runs.

Sullivan, P.; Short, W.; Blair, N.

2008-06-01T23:59:59.000Z

496

System-wide emissions implications of increased wind power penetration.  

SciTech Connect

This paper discusses the environmental effects of incorporating wind energy into the electric power system. We present a detailed emissions analysis based on comprehensive modeling of power system operations with unit commitment and economic dispatch for different wind penetration levels. First, by minimizing cost, the unit commitment model decides which thermal power plants will be utilized based on a wind power forecast, and then, the economic dispatch model dictates the level of production for each unit as a function of the realized wind power generation. Finally, knowing the power production from each power plant, the emissions are calculated. The emissions model incorporates the effects of both cycling and start-ups of thermal power plants in analyzing emissions from an electric power system with increasing levels of wind power. Our results for the power system in the state of Illinois show significant emissions effects from increased cycling and particularly start-ups of thermal power plants. However, we conclude that as the wind power penetration increases, pollutant emissions decrease overall due to the replacement of fossil fuels.

Valentino, L.; Valenzuela, V.; Botterud, A.; Zhou, Z.; Conzelmann, G. (Decision and Information Sciences); (Univ. of Illinois, Champaign/Urbana); (Georgia Institute of Technology)

2012-01-01T23:59:59.000Z

497

New Battery Design Could Help Solar and Wind Power the Grid | Department of  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Battery Design Could Help Solar and Wind Power the Grid Battery Design Could Help Solar and Wind Power the Grid New Battery Design Could Help Solar and Wind Power the Grid April 24, 2013 - 4:20pm Addthis NEWS MEDIA CONTACT (202) 586-4940 WASHINGTON - Researchers from the U.S. Department of Energy's (DOE) SLAC National Accelerator Laboratory and Stanford University have designed a low-cost, long-life "flow" battery that could enable solar and wind energy to become major suppliers to the electrical grid. The research, led by Yi Cui, a Stanford associate professor and member of the Stanford Institute for Materials and Energy Sciences, is a product of the new Joint Center for Energy Storage Research (JCESR), a DOE Energy Innovation Hub. Led by Argonne National Laboratory, with SLAC as major partner, JCESR is one of five such Hubs created by the Department to

498

Improving Regional Air Quality with Wind Energy; Wind Powering America Fact Sheet Series  

Wind Powering America (EERE)

Powering America Fact Sheet Series Powering America Fact Sheet Series The Montgomery County, Maryland buying group purchases wind energy from the Mountaineer Wind Energy Center in West Virginia. This fact sheet provides an overview of how electricity generated from zero-emission wind energy can help states and municipalities improve air quality, achieve attainment of Clean Air Act standards, and reduce pollution control costs for taxpayers.

499

Power System Modeling of 20percent Wind-Generated Electricity by 2030  

E-Print Network (OSTI)

J. Charles Smith (Utility Wind Integration Group) and Robertare the integration costs associated with wind power. The

Hand, Maureen

2008-01-01T23:59:59.000Z

500

A Letter from Patrick Gilman: Wind Powering America Is Now Stakeholder Engagement and Outreach  

Energy.gov (U.S. Department of Energy (DOE))

Patrick Gilman, Wind Energy Deployment manager, explains why Wind Powering America's name is in the process of being changed.