National Library of Energy BETA

Sample records for wind power generator

  1. Wyoming Wind Power Project (generation/wind)

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantityBonneville Power AdministrationRobust,Field-effectWorkingLos Alamos verifies largest single goldWind Power > Generation Hydro

  2. Wind Power (pbl/generation)

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantityBonneville Power AdministrationRobust,Field-effectWorking WithTelecentricNCubicthe FOIA?ResourceMeasurement Buoy AdvancesWind

  3. Previous Wind Power Announcements (generation/wind)

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantityBonneville Power Administration wouldMass mapSpeedingProgram Guidelines ThisHENPDepartment'sPrestonPreviousMembers | HomeWind

  4. EA-1726: Kahuku Wind Power, LLC Wind Power Generation Facility...

    Broader source: Energy.gov (indexed) [DOE]

    Us Offices May 3, 2010 EA-1726: Final Environmental Assessment Loan Guarantee to Kahuku Wind Power, LLC for Construction of the Kahuku Wind Power Facility in Kahuku, O'ahu,...

  5. Analysis of Wind Power Generation of Texas 

    E-Print Network [OSTI]

    Liu, Z.; Haberl, J.; Subbarao, K.; Baltazar, J. C.

    2007-01-01

    ? Not appropriate for predicting hourly power using power curve ? On-site wind: ? Measured power vs. on-site wind following well the power curve prediction ? No curtailment at this site ? Green curves showing a band of 5 MW from the power curve WHY NOT Use... APPLICATION ? Indian Mesa Wind Farm Measured MW Plotted Against Hourly NOAA Wind Speed? ANN significantly improves the prediction of on-site wind speed compared to NOAA. ? Green curves showing a band of 5 MW from the power curve Hourly Wind Power...

  6. Enhanced Efficiency of Wind-Diesel Power Generation in Tribal...

    Office of Environmental Management (EM)

    Enhanced Efficiency of Wind-Diesel Power Generation in Tribal Villages Enhanced Efficiency of Wind-Diesel Power Generation in Tribal Villages June 17, 2014 - 3:50pm Addthis The...

  7. Power and Frequency Control as it Relates to Wind-Powered Generation

    E-Print Network [OSTI]

    Lacommare, Kristina S H

    2011-01-01

    Control as it Relates to Wind- Powered Generation AppendixControl as it Relates to Wind-Powered Generation JohnControl as it Relates to Wind-Powered Generation LBNL-XXXXX

  8. Power System Modeling of 20percent Wind-Generated Electricity by 2030

    E-Print Network [OSTI]

    Hand, Maureen

    2008-01-01

    fueled power generation with wind energy reduces waterand water savings. Index Terms—power system modeling, wind

  9. Synchrophasor Applications for Wind Power Generation

    SciTech Connect (OSTI)

    Muljadi, E.; Zhang, Y. C.; Allen, A.; Singh, M.; Gevorgian, V.; Wan, Y. H.

    2014-02-01

    The U.S. power industry is undertaking several initiatives that will improve the operations of the electric power grid. One of those is the implementation of wide-area measurements using phasor measurement units to dynamically monitor the operations and status of the network and provide advanced situational awareness and stability assessment. The overviews of synchrophasors and stability analyses in this report are intended to present the potential future applications of synchrophasors for power system operations under high penetrations of wind and other renewable energy sources.

  10. Wind Power

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Wind Power Bioenergy Power Systems Wind Power Wind Power Main Page Outreach Programs Image Gallery FAQs Links Software Hydro Power INL Home Wind Power Introduction The Wind Power...

  11. The effects of energy storage properties and forecast accuracy on mitigating variability in wind power generation

    E-Print Network [OSTI]

    Jaworsky, Christina A

    2013-01-01

    Electricity generation from wind power is increasing worldwide. Wind power can offset traditional fossil fuel generators which is beneficial to the environment. However, wind generation is unpredictable. Wind speeds have ...

  12. National-Scale Wind Resource Assessment for Power Generation (Presentation)

    SciTech Connect (OSTI)

    Baring-Gould, E. I.

    2013-08-01

    This presentation describes the current standards for conducting a national-scale wind resource assessment for power generation, along with the risk/benefit considerations to be considered when beginning a wind resource assessment. The presentation describes changes in turbine technology and viable wind deployment due to more modern turbine technology and taller towers and shows how the Philippines national wind resource assessment evolved over time to reflect changes that arise from updated technologies and taller towers.

  13. EFFECT OF PITCH CONTROL AND POWER CONDITIONING ON POWER QUALITY OF VARIABLE SPEED WIND TURBINE GENERATORS

    E-Print Network [OSTI]

    EFFECT OF PITCH CONTROL AND POWER CONDITIONING ON POWER QUALITY OF VARIABLE SPEED WIND TURBINE), Curtin University of Technology, WA Abstract: Variable speed wind turbine generators provide the opportunity to capture more power than fixed speed turbines. However the variable speed machine output can

  14. Aalborg Universitet ARIMA-Based Time Series Model of Stochastic Wind Power Generation

    E-Print Network [OSTI]

    Bak-Jensen, Birgitte

    the nonstationarity and physical limits of stochastic wind power generation. The model is constructed based on wind power measurement of one year from the Nysted offshore wind farm in Denmark. The proposed limitedAalborg Universitet ARIMA-Based Time Series Model of Stochastic Wind Power Generation Chen, Peiyuan

  15. EA-1857: Wind Turbine Power Generation Complex at Idaho National Laboratory

    Broader source: Energy.gov [DOE]

    This EA would evaluate the environmental impacts of the proposed wind turbine power generation complex at Idaho National Laboratory, Idaho.

  16. Power and Frequency Control as it Relates to Wind-Powered Generation

    E-Print Network [OSTI]

    Lacommare, Kristina S H

    2011-01-01

    of large amounts of wind power production might requirewill be satisfactory as wind power provides an increasing64   7.2   Wind Power in Relation to System

  17. Maximum power tracking control scheme for wind generator systems 

    E-Print Network [OSTI]

    Mena Lopez, Hugo Eduardo

    2009-05-15

    The purpose of this work is to develop a maximum power tracking control strategy for variable speed wind turbine systems. Modern wind turbine control systems are slow, and they depend on the design parameters of the turbine and use wind and/or rotor...

  18. Maximum power tracking control scheme for wind generator systems 

    E-Print Network [OSTI]

    Mena Lopez, Hugo Eduardo

    2008-10-10

    The purpose of this work is to develop a maximum power tracking control strategy for variable speed wind turbine systems. Modern wind turbine control systems are slow, and they depend on the design parameters of the turbine and use wind and/or rotor...

  19. Direct Power Control of Doubly-Fed Generator Based Wind Turbine Converters to Improve Low Voltage

    E-Print Network [OSTI]

    Kimball, Jonathan W.

    by an Industrial Power Corruptor (IPC) in the laboratory. I. INTRODUCTION The new grid code requirements for windDirect Power Control of Doubly-Fed Generator Based Wind Turbine Converters to Improve Low Voltage power integration state that doubly fed induction generator (DFIG) controllers should be capable

  20. A stochastic framework for uncertainty analysis in electric power transmission systems with wind generation

    E-Print Network [OSTI]

    Paris-Sud XI, Université de

    of generating units, the transfer of electric power over networks of transmission lines and, finally1 A stochastic framework for uncertainty analysis in electric power transmission systems with wind an electric transmission network with wind power generation and their impact on its reliability. A stochastic

  1. Power and Frequency Control as it Relates to Wind-Powered Generation

    E-Print Network [OSTI]

    Lacommare, Kristina S H

    2011-01-01

    per hour in both balancing areas Wind power ramps down atper hour in both balancing areas Wind power ramps down atbalancing area 2 Power and Frequency Control as it Relates to Wind-

  2. Analyzing Effects of Turbulence on Power Generation Using Wind Plant Monitoring Data: Preprint

    SciTech Connect (OSTI)

    Zhang, J.; Chowdhury, S.; Hodge, B. M.

    2014-01-01

    In this paper, a methodology is developed to analyze how ambient and wake turbulence affects the power generation of a single wind turbine within an array of turbines. Using monitoring data from a wind power plant, we selected two sets of wind and power data for turbines on the edge of the wind plant that resemble (i) an out-of-wake scenario (i.e., when the turbine directly faces incoming winds) and (ii) an in-wake scenario (i.e., when the turbine is under the wake of other turbines). For each set of data, two surrogate models were then developed to represent the turbine power generation (i) as a function of the wind speed; and (ii) as a function of the wind speed and turbulence intensity. Support vector regression was adopted for the development of the surrogate models. Three types of uncertainties in the turbine power generation were also investigated: (i) the uncertainty in power generation with respect to the published/reported power curve, (ii) the uncertainty in power generation with respect to the estimated power response that accounts for only mean wind speed; and (iii) the uncertainty in power generation with respect to the estimated power response that accounts for both mean wind speed and turbulence intensity. Results show that (i) under the same wind conditions, the turbine generates different power between the in-wake and out-of-wake scenarios, (ii) a turbine generally produces more power under the in-wake scenario than under the out-of-wake scenario, (iii) the power generation is sensitive to turbulence intensity even when the wind speed is greater than the turbine rated speed, and (iv) there is relatively more uncertainty in the power generation under the in-wake scenario than under the out-of-wake scenario.

  3. Next Generation Short-Term Forecasting of Wind Power Overview of the ANEMOS Project.

    E-Print Network [OSTI]

    Boyer, Edmond

    1 Next Generation Short-Term Forecasting of Wind Power ­ Overview of the ANEMOS Project. G outperform current state-of-the-art methods, for onshore and offshore wind power forecasting. Advanced and evaluation at a local, regional and national scale. Finally, the project demonstrates the value of wind

  4. Wind Turbine Generator System Power Performance Test Report for the Entegrity EW50 Wind Turbine

    SciTech Connect (OSTI)

    Smith, J.; Huskey, A.; Jager, D.; Hur, J.

    2011-05-01

    Report on the results of the power performance test that the National Renewable Energy Laboratory (NREL) conducted on Entegrity Wind System Inc.'s EW50 small wind turbine.

  5. Power and Frequency Control as it Relates to Wind-Powered Generation

    SciTech Connect (OSTI)

    Lacommare, Kristina S H

    2010-12-20

    This report is a part of an investigation of the ability of the U.S. power system to accommodate large scale additions of wind generation. The objectives of this report are to describe principles by which large multi-area power systems are controlled and to anticipate how the introduction of large amounts of wind power production might require control protocols to be changed. The operation of a power system is described in terms of primary and secondary control actions. Primary control is fast, autonomous, and provides the first-line corrective action in disturbances; secondary control takes place on a follow-up time scale and manages the deployment of resources to ensure reliable and economic operation. This report anticipates that the present fundamental primary and secondary control protocols will be satisfactory as wind power provides an increasing fraction of the total production, provided that appropriate attention is paid to the timing of primary control response, to short term wind forecasting, and to management of reserves for control action.

  6. Sandia Energy - Grid System Planning for Wind: Wind Generator...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Grid System Planning for Wind: Wind Generator Modeling Home Stationary Power Energy Conversion Efficiency Wind Energy Siting and Barrier Mitigation Grid System Planning for Wind:...

  7. Residential Wind Power

    E-Print Network [OSTI]

    Willis, Gary

    2011-12-16

    This research study will explore the use of residential wind power and associated engineering and environmental issues. There is various wind power generating devices available to the consumer. The study will discuss the dependencies of human...

  8. Wind Generation in the Future Competitive California Power Market

    SciTech Connect (OSTI)

    Sezgen, O.; Marnay, C.; Bretz, S.

    1998-03-01

    The goal of this work is to develop improved methods for assessing the viability of wind generation in competitive electricity markets. The viability of a limited number of possible wind sites is assessed using a geographic information system (GIS) to determine the cost of development, and Elfin, an electric utility production costing and capacity expansion model, to estimate the possible revenues and profits of wind farms at the sites. This approach improves on a simple profitability calculation by using a site-specific development cost calculation and by taking the effect of time varying market prices on revenues into account. The first component of the work is to develop data characterizing wind resources suitable for use in production costing and capacity expansion models, such as Elfin, that are capable of simulating competitive electricity markets. An improved representation of California wind resources is built, using information collected by the California Energy Commission (CE C) in previous site evaluations, and by using a GIS approach to estimating development costs at 36 specific sites. These sites, which have been identified as favorable for wind development, are placed on Digital Elevation Maps (DEMs) and development costs are calculated based on distances to roads and transmission lines. GIS is also used to develop the potential capacity at each site by making use of the physical characteristics of the terrain, such as ridge lengths. In the second part of the effort, using a previously developed algorithm for simulating competitive entry to the California electricity market, the Elfin model is used to gauge the viability of wind farms at the 36 sites. The results of this exercise are forecasts of profitable development levels at each site and the effects of these developments on the electricity system as a whole. Under best guess assumptions, including prohibition of new nuclear and coal capacity, moderate increase in gas prices and some decline in renewable capital costs, about 7.35 GW of the 10 GW potential capacity at the 36 specific sites is profitably developed and 62 TWh of electricity produced per annum by the year 2030. Most of the development happens during the earlier years of the forecast. Sensitivity of these results to future gas price scenarios is also presented. This study also demonstrates that an analysis based on a simple levelized profitability calculation approach does not sufficiently capture the implications of time varying prices in a competitive market.

  9. Ningxia Yinyi Wind Power Generation Co Ltd | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QA J-E-1 SECTION J APPENDIX E LIST OFAMERICA'SHeavyAgency (IRENA)Options Jump to: navigation, searchYinyi Wind Power

  10. Power System Modeling of 20percent Wind-Generated Electricity by 2030

    E-Print Network [OSTI]

    Hand, Maureen

    2008-01-01

    of wind and conventional energy technologies, transmission,wind versus the displaced conventional energy technologies,wind energy I. I NTRODUCTION Generating electricity from wind technology

  11. Power System Modeling of 20percent Wind-Generated Electricity by 2030

    E-Print Network [OSTI]

    Hand, Maureen

    2008-01-01

    Contribution to U.S. Electricity Supply. National Renewable20% of the nation's electricity from wind technology byTERMS wind-generated electricity; wind energy; 20% wind

  12. Wind Turbine Generator System Duration Test Report for the Mariah Power Windspire Wind Turbine

    SciTech Connect (OSTI)

    Huskey, A.; Bowen, A.; Jager, D.

    2010-05-01

    This test was conducted as part of the U.S. Department of Energy's (DOE) Independent Testing project to help reduce the barriers of wind energy expansion by providing independent testing results for small turbines. In total, five turbines are being tested at the National Wind Technology Center (NWTC) as a part of the first round of this project. Duration testing is one of up to five tests that may be performed on the turbines. Other tests include power performance, safety and function, noise, and power quality tests. NWTC testing results provide manufacturers with reports that may be used to meet part of small wind turbine certification requirements. This duration test report focuses on the Mariah Power Windspire wind turbine.

  13. The maximum potential to generate wind power in the contiguous United States is more than three times

    E-Print Network [OSTI]

    , the potential for 100-meter hubs operating in windy regions with at least 30% capacity is 12,125 GW of wind, the installed U.S. wind power capacity is now about 35 GW. While most of the wind potential comes from the windyThe maximum potential to generate wind power in the contiguous United States is more than three

  14. Generating Economic Development from a Wind Power Plant in Spanish...

    Wind Powering America (EERE)

    of the utility companies. In Utah, the Commission is responsible for determining avoided cost rates for qualifying facilities. As will be noted later, the Spanish Fork Wind...

  15. Unit commitment with wind power generation: integrating wind forecast uncertainty and stochastic programming.

    SciTech Connect (OSTI)

    Constantinescu, E. M.; Zavala, V. M.; Rocklin, M.; Lee, S.; Anitescu, M.

    2009-10-09

    We present a computational framework for integrating the state-of-the-art Weather Research and Forecasting (WRF) model in stochastic unit commitment/energy dispatch formulations that account for wind power uncertainty. We first enhance the WRF model with adjoint sensitivity analysis capabilities and a sampling technique implemented in a distributed-memory parallel computing architecture. We use these capabilities through an ensemble approach to model the uncertainty of the forecast errors. The wind power realizations are exploited through a closed-loop stochastic unit commitment/energy dispatch formulation. We discuss computational issues arising in the implementation of the framework. In addition, we validate the framework using real wind speed data obtained from a set of meteorological stations. We also build a simulated power system to demonstrate the developments.

  16. Wind Turbine Generator System Power Quality Test Report for the Gaia Wind 11-kW Wind Turbine

    SciTech Connect (OSTI)

    Curtis, A.; Gevorgian, V.

    2011-07-01

    This report details the power quality test on the Gaia Wind 11-kW Wind Turbine as part of the U.S. Department of Energy's Independent Testing Project. In total five turbines are being tested as part of the project. Power quality testing is one of up to five test that may be performed on the turbines including power performance, safety and function, noise, and duration tests. The results of the testing provide manufacturers with reports that may be used for small wind turbine certification.

  17. Economic modeling of intermittency in wind power generation

    E-Print Network [OSTI]

    Cheng, Alan Yung Chen

    2005-01-01

    The electricity sector is a major source of carbon dioxide emissions that contribute to global climate change. Over the past decade wind energy has steadily emerged as a potential source for large-scale, low carbon energy. ...

  18. The role of hydroelectric generation in electric power systems with large scale wind generation

    E-Print Network [OSTI]

    Hagerty, John Michael

    2012-01-01

    An increasing awareness of the operational challenges created by intermittent generation of electricity from policy-mandated renewable resources, such as wind and solar, has led to increased scrutiny of the public policies ...

  19. Abstract--A bi-objective optimization model of power and power changes generated by a wind turbine is discussed in this

    E-Print Network [OSTI]

    Kusiak, Andrew

    1 Abstract--A bi-objective optimization model of power and power changes generated by a wind the industrial data collected at a wind farm. The models and constraints derived from the data were integrated prediction, power ramp rate, data mining, wind turbine operation strategy, generator torque, blade pitch

  20. Loranger Power Generation Wind Farm | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QA J-E-1 SECTION J APPENDIXsource History ViewInformationWindsCompressedListguided wavesLoneLorain County,2

  1. Exact and Efficient Algorithm to Discover Extreme Stochastic Events in Wind Generation over Transmission Power Grids

    E-Print Network [OSTI]

    Chertkov, Michael; Pan, Feng; Baldick, Ross

    2011-01-01

    In this manuscript we continue the thread of [M. Chertkov, F. Pan, M. Stepanov, Predicting Failures in Power Grids: The Case of Static Overloads, IEEE Smart Grid 2011] and suggest a new algorithm discovering most probable extreme stochastic events in static power grids associated with intermittent generation of wind turbines. The algorithm becomes EXACT and EFFICIENT (polynomial) in the case of the proportional (or other low parametric) control of standard generation, and log-concave probability distribution of the renewable generation, assumed known from the wind forecast. We illustrate the algorithm's ability to discover problematic extreme events on the example of the IEEE RTS-96 model of transmission with additions of 10%, 20% and 30% of renewable generation. We observe that the probability of failure may grow but it may also decrease with increase in renewable penetration, if the latter is sufficiently diversified and distributed.

  2. Wind Energy Management System EMS Integration Project: Incorporating Wind Generation and Load Forecast Uncertainties into Power Grid Operations

    SciTech Connect (OSTI)

    Makarov, Yuri V.; Huang, Zhenyu; Etingov, Pavel V.; Ma, Jian; Guttromson, Ross T.; Subbarao, Krishnappa; Chakrabarti, Bhujanga B.

    2010-01-01

    The power system balancing process, which includes the scheduling, real time dispatch (load following) and regulation processes, is traditionally based on deterministic models. Since the conventional generation needs time to be committed and dispatched to a desired megawatt level, the scheduling and load following processes use load and wind and solar power production forecasts to achieve future balance between the conventional generation and energy storage on the one side, and system load, intermittent resources (such as wind and solar generation), and scheduled interchange on the other side. Although in real life the forecasting procedures imply some uncertainty around the load and wind/solar forecasts (caused by forecast errors), only their mean values are actually used in the generation dispatch and commitment procedures. Since the actual load and intermittent generation can deviate from their forecasts, it becomes increasingly unclear (especially, with the increasing penetration of renewable resources) whether the system would be actually able to meet the conventional generation requirements within the look-ahead horizon, what the additional balancing efforts would be needed as we get closer to the real time, and what additional costs would be incurred by those needs. To improve the system control performance characteristics, maintain system reliability, and minimize expenses related to the system balancing functions, it becomes necessary to incorporate the predicted uncertainty ranges into the scheduling, load following, and, in some extent, into the regulation processes. It is also important to address the uncertainty problem comprehensively by including all sources of uncertainty (load, intermittent generation, generators’ forced outages, etc.) into consideration. All aspects of uncertainty such as the imbalance size (which is the same as capacity needed to mitigate the imbalance) and generation ramping requirement must be taken into account. The latter unique features make this work a significant step forward toward the objective of incorporating of wind, solar, load, and other uncertainties into power system operations. Currently, uncertainties associated with wind and load forecasts, as well as uncertainties associated with random generator outages and unexpected disconnection of supply lines, are not taken into account in power grid operation. Thus, operators have little means to weigh the likelihood and magnitude of upcoming events of power imbalance. In this project, funded by the U.S. Department of Energy (DOE), a framework has been developed for incorporating uncertainties associated with wind and load forecast errors, unpredicted ramps, and forced generation disconnections into the energy management system (EMS) as well as generation dispatch and commitment applications. A new approach to evaluate the uncertainty ranges for the required generation performance envelope including balancing capacity, ramping capability, and ramp duration has been proposed. The approach includes three stages: forecast and actual data acquisition, statistical analysis of retrospective information, and prediction of future grid balancing requirements for specified time horizons and confidence levels. Assessment of the capacity and ramping requirements is performed using a specially developed probabilistic algorithm based on a histogram analysis, incorporating all sources of uncertainties of both continuous (wind and load forecast errors) and discrete (forced generator outages and start-up failures) nature. A new method called the “flying brick” technique has been developed to evaluate the look-ahead required generation performance envelope for the worst case scenario within a user-specified confidence level. A self-validation algorithm has been developed to validate the accuracy of the confidence intervals.

  3. Wind Power Career Chat

    SciTech Connect (OSTI)

    L. Flowers

    2011-01-01

    This document will teach students about careers in the wind energy industry. Wind energy, both land-based and offshore, is expected to provide thousands of new jobs in the next several decades. Wind energy companies are growing rapidly to meet America's demand for clean, renewable, and domestic energy. These companies need skilled professionals. Wind power careers will require educated people from a variety of areas. Trained and qualified workers manufacture, construct, operate, and manage wind energy facilities. The nation will also need skilled researchers, scientists, and engineers to plan and develop the next generation of wind energy technologies.

  4. Investigation of vortex generators for augmentation of wind turbine power performance

    SciTech Connect (OSTI)

    Griffin, D.A. [Lynette (R.) and Associates, Seattle, WA (United States)

    1996-12-01

    This study focuses on the use of vortex generators (VGs) for performance augmentation of the stall-regulated AWT-26 wind turbine. The goal was to design a VG array which would increase annual energy production (AEP) by increasing power output at moderate wind speeds, without adversely affecting the loads or stall-regulation performance of the turbine. Wind tunnel experiments were conducted at the University of Washington to evaluate the effect of VGs on the AWT-26 blade, which is lofted from National Renewable Energy Laboratory (NREL) S-series airfoils. Based on wind-tunnel results and analysis, a VG array was designed and then tested on the AWT-26 prototype, designated P1. Performance and loads data were measured for P1, both with and without VGs installed. the turbine performance with VGs met most of the design requirements; power output was increased at moderate wind speeds with a negligible effect on peak power. However, VG drag penalties caused a loss in power output for low wind speeds, such that performance with VGs resulted in a net decrease in AEP for sites having annual average wind speeds up to 8.5 m/s. While the present work did not lead to improved AEP for the AWT-2 turbine, it does provide insight into performance augmentation of wind turbines with VGs. The safe design of a VG array for a stall-regulated turbine has been demonstrated, and several issues involving optimal performance with VGs have been identified and addressed. 15 refs., 34 figs., 10 tabs.

  5. Offshore Wind Power USA

    Broader source: Energy.gov [DOE]

    The Offshore Wind Power USA conference provides the latest offshore wind market updates and forecasts.

  6. Wind Power Forecasting Data

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Operations Call 2012 Retrospective Reports 2012 Retrospective Reports 2011 Smart Grid Wind Integration Wind Integration Initiatives Wind Power Forecasting Wind Projects Email...

  7. Wind Power Link

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Wind Power Links These other web sites may provide additional information of interest: American Wind Energy Association Idaho Department of Energy Wind Power Information Utah...

  8. Wind Power

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantityBonneville Power AdministrationRobust,Field-effectWorking WithTelecentricNCubicthe FOIA?ResourceMeasurement Buoy AdvancesWind

  9. SHORT TERM PREDICTIONS FOR THE POWER OUTPUT OF ENSEMBLES OF WIND TURBINES AND PV-GENERATORS

    E-Print Network [OSTI]

    Heinemann, Detlev

    subject. 2. RELEVANCE OF POWER PRODUCTION FORECASTS OF WIND AND SOLAR INSTALLATIONS First, the relevance region the installed wind power capacity has reached the order of magnitude of the average load-georg.beyer@elektrotechnik.fh-magdeburg.de Abstract - With the increase of penetration of the utility networks by wind- and solar derived electricity

  10. Wind Power Outreach Campaign

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Wind Power Wind Power Main Page Outreach Programs Image Gallery FAQs Links Software Hydro Power INL Home Outreach Programs A team of educators and scientists from the Idaho...

  11. The role of wind generation in European power sector decarbonization : a general equilibrium analysis

    E-Print Network [OSTI]

    Karkatsouli, Ioanna

    2013-01-01

    Wind generation has been growing fast, with onshore wind having a 27% average annual growth rate over the past decade. Motivated by this growth, a comprehensive analysis of both the economic and engineering implications ...

  12. RELIABILITY OF WIND POWER FROM DISPERSED SITES: A PRELIMINARY ASSESSMENT

    E-Print Network [OSTI]

    Kahn, E.

    2011-01-01

    r r r r rated power of wind turbine generator rated speed ofWind Characteristics on Annual Power Estimates from Wind Turbine Generators,WIND ARRAYS With the introduction of large generators into power

  13. TRANSMISSION SYSTEM ADEQUACY EVALUATION CONSIDERING WIND POWER

    E-Print Network [OSTI]

    Saskatchewan, University of

    TRANSMISSION SYSTEM ADEQUACY EVALUATION CONSIDERING WIND POWER Rajesh Karki Jaimin Patel Power to significantly increase renewable power penetration in electrical power systems. Wind power is the most important systems and large grid connected systems. Power generated by wind depends on the availability of the wind

  14. Incorporating Uncertainty of Wind Power Generation Forecast into Power System Operation, Dispatch, and Unit Commitment Procedures

    SciTech Connect (OSTI)

    Makarov, Yuri V.; Etingov, Pavel V.; Ma, Jian; Huang, Zhenyu; Subbarao, Krishnappa

    2011-06-23

    An approach to evaluate the uncertainties of the balancing capacity, ramping capability, and ramp duration requirements is proposed. The approach includes three steps: forecast data acquisition, statistical analysis of retrospective information, and prediction of grid balancing requirements for a specified time horizon and a given confidence level. An assessment of the capacity and ramping requirements is performed using a specially developed probabilistic algorithm based on histogram analysis, incorporating sources of uncertainty - both continuous (wind and load forecast errors) and discrete (forced generator outages and start-up failures). A new method called the 'flying-brick' technique is developed to evaluate the look-ahead required generation performance envelope for the worst case scenario within a user-specified confidence level. A self-validation process is used to validate the accuracy of the confidence intervals. To demonstrate the validity of the developed uncertainty assessment methods and its impact on grid operation, a framework for integrating the proposed methods with an EMS system is developed. Demonstration through EMS integration illustrates the applicability of the proposed methodology and the developed tool for actual grid operation and paves the road for integration with EMS systems in control rooms.

  15. Integrating a significant amount of wind power generation into bulk power grid is a primary task for building a cost-effective renewable portfolio and a sustainable energy infrastructure. The uncertainty

    E-Print Network [OSTI]

    DeMara, Ronald F.

    Integrating a significant amount of wind power generation into bulk power grid is a primary task. This talk will be focused on modeling the spatial correlation of wind power from farm level to grid level and spatial correlation of wind farm power generation have posed new challenges to power system operations

  16. Power and Frequency Control as it Relates to Wind-Powered Generation

    E-Print Network [OSTI]

    Lacommare, Kristina S H

    2011-01-01

    5   2.2   Balancing Areas and Generating Plantvariations of load and generating plant output closely so as1. Balancing Areas and Generating Plant Types Simulations

  17. Power and Frequency Control as it Relates to Wind-Powered Generation

    E-Print Network [OSTI]

    Lacommare, Kristina S H

    2011-01-01

    Undrill. 1975. "Automatic Generation Control", IEEE Tutorialfraction of generation providing response grid. The adjustment of generation, minute-by- minute, in

  18. Wind Power Software

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Wind Analysis ms - 3.0MB Excel Excel Wind Analysis Presentation - 8.2MB PowerPoint Excel Wind Analysis With Power Curves Included - 3.7MB Excel WindR.exe - 44kB Weibull Excel Wind...

  19. A Spin-down Power Threshold for Pulsar Wind Nebula Generation?

    E-Print Network [OSTI]

    E. V. Gotthelf

    2006-10-12

    A systematic X-ray survey of the most energetic rotation-powered pulsars known, based on spin-down energy loss rate, $\\dot E$ = $I\\omega\\dot\\omega$, shows that all energetic pulsars with $\\dot E > \\dot E_{c} \\approx 3.4 \\times\\ 10^{36}$ erg s$^{-1}$ are X-ray bright, manifest a distinct pulsar wind nebula (PWN), and are associated with a supernova event, either historically or via a thermal remnant, with over half residing in shell-like supernova remnants. Below $\\dot E_c$, the 2-10 keV PWN flux ratio $F_{PWN}/F_{PSR}$ decreases by an order-of-magnitude. This threshold is predicted by the lower limit on the spectral slope $\\Gamma_{min} \\approx 0.5$ observed for rotation-powered pulsars (Gotthelf 2003). The apparent lack of bright pulsar nebulae below a critical Edot suggests a change in the particle injection spectrum and serves as a constraint on emission models for rotation-powered pulsars. Neither a young age nor a high density environment is found to be a sufficient condition for generating a PWN, as often suggested, instead the spin-down energy loss rate is likely the key parameter in determining the evolution of a rotation-powered pulsar.

  20. Reference wind farm selection for regional wind power prediction models

    E-Print Network [OSTI]

    Paris-Sud XI, Université de

    1 Reference wind farm selection for regional wind power prediction models Nils Siebert George.siebert@ensmp.fr, georges.kariniotakis@ensmp.fr Abstract Short-term wind power forecasting is recognized today as a major requirement for a secure and economic integration of wind generation in power systems. This paper deals

  1. Wind Turbinie Generator System Power Performance Test Report for the Mariah Windspire 1-kW Wind Turbine

    SciTech Connect (OSTI)

    Huskey, A.; Bowen, A.; Jager, D.

    2009-12-01

    This report summarizes the results of a power performance test that NREL conducted on the Mariah Windspire 1-kW wind turbine. During this test, two configurations were tested on the same turbine. In the first configuration, the turbine inverter was optimized for power production. In the second configuration, the turbine inverter was set for normal power production. In both configurations, the inverter experienced failures and the tests were not finished.

  2. Talkin’ Bout Wind Generation

    Office of Energy Efficiency and Renewable Energy (EERE)

    The amount of electricity generated by the wind industry started to grow back around 1999, and since 2007 has been increasing at a rapid pace.

  3. Wind Power Today

    SciTech Connect (OSTI)

    Not Available

    2006-05-01

    Wind Power Today is an annual publication that provides an overview of the wind energy research conducted by the U.S. Department of Energy Wind and Hydropower Technologies Program.

  4. POWER SYSTEMS STABILITY WITH LARGE-SCALE WIND POWER PENETRATION

    E-Print Network [OSTI]

    Bak-Jensen, Birgitte

    of offshore wind farms, wind power fluctuations may introduce several challenges to reliable power system behaviour due to natural wind fluctuations. The rapid power fluctuations from the large scale wind farms Generation Control (AGC) system which includes large- scale wind farms for long-term stability simulation

  5. Protection from ground faults in the stator winding of generators at power plants in the Siberian networks

    SciTech Connect (OSTI)

    Vainshtein, R. A.; Lapin, V. I.; Naumov, A. M.; Doronin, A. V.; Yudin, S. M.

    2010-05-15

    The experience of many years of experience in developing and utilization of ground fault protection in the stator winding of generators in the Siberian networks is generalized. The main method of protection is to apply a direct current or an alternating current with a frequency of 25 Hz to the primary circuits of the stator. A direct current is applied to turbo generators operating in a unit with a transformer without a resistive coupling to the external grid or to other generators. Applying a 25 Hz control current is appropriate for power generation systems with compensation of a capacitive short circuit current to ground. This method forms the basis for protection of generators operating on busbars, hydroelectric generators with a neutral grounded through an arc-suppression reactor, including in consolidated units with generators operating in parallel on a single low-voltage transformer winding.

  6. Power and Frequency Control as it Relates to Wind-Powered Generation

    E-Print Network [OSTI]

    Lacommare, Kristina S H

    2011-01-01

    Generation the security of the transmission grid. Thisaffect the security and reliability of the grid. h. BA

  7. Effects of Temporal Wind Patterns on the Value of Wind-Generated Electricity in California and the Northwest

    E-Print Network [OSTI]

    Wiser, Ryan H

    2008-01-01

    year. 2 Be- cause wind power generators are intermittent andgenerators to compensate for the intermittency of wind power

  8. Power System Modeling of 20percent Wind-Generated Electricity by 2030

    SciTech Connect (OSTI)

    Bolinger, Mark A; Hand, Maureen; Blair, Nate; Bolinger, Mark; Wiser, Ryan; Hern, Tracy; Miller, Bart; O'Connell, R.

    2008-06-09

    The Wind Energy Deployment System model was used to estimate the costs and benefits associated with producing 20% of the nation's electricity from wind technology by 2030. This generation capacity expansion model selects from electricity generation technologies that include pulverized coal plants, combined cycle natural gas plants, combustion turbine natural gas plants, nuclear plants, and wind technology to meet projected demand in future years. Technology cost and performance projections, as well as transmission operation and expansion costs, are assumed. This study demonstrates that producing 20% of the nation's projected electricity demand in 2030 from wind technology is technically feasible, not cost-prohibitive, and provides benefits in the forms of carbon emission reductions, natural gas price reductions, and water savings.

  9. A computational framework for uncertainty quantification and stochastic optimization in unit commitment with wind power generation.

    SciTech Connect (OSTI)

    Constantinescu, E. M; Zavala, V. M.; Rocklin, M.; Lee, S.; Anitescu, M.

    2011-02-01

    We present a computational framework for integrating a state-of-the-art numerical weather prediction (NWP) model in stochastic unit commitment/economic dispatch formulations that account for wind power uncertainty. We first enhance the NWP model with an ensemble-based uncertainty quantification strategy implemented in a distributed-memory parallel computing architecture. We discuss computational issues arising in the implementation of the framework and validate the model using real wind-speed data obtained from a set of meteorological stations. We build a simulated power system to demonstrate the developments.

  10. Dynamic Simulation Studies of the Frequency Response of the Three U.S. Interconnections with Increased Wind Generation

    E-Print Network [OSTI]

    Mackin, Peter

    2011-01-01

    IEEE Dynamic Performance of Wind Power Generation Workingof the impacts of wind generation on power system frequencywith Increased Wind Generation 9. Siemens Power Technologies

  11. Impact of Wind Power Plants on Voltage and Transient Stability of Power Systems

    SciTech Connect (OSTI)

    Muljadi, E.; Nguyen, Tony B.; Pai, M. A.

    2008-09-30

    A standard three-machine, nine-bus wind power system is studied and augmented by a radially connected wind power plant that contains 22 wind turbine generators.

  12. The Political Economy of Wind Power in China

    E-Print Network [OSTI]

    Swanson, Ryan Landon

    2011-01-01

    biores/108435/. ?China‘s power generation capacity leapsfor Renewable Energy Power Generation Prices and Expenses? [htm. ?Analysis of UK Wind Power Generation: November 2008 to

  13. Power System Modeling of 20percent Wind-Generated Electricity by 2030

    E-Print Network [OSTI]

    Hand, Maureen

    2008-01-01

    price is constant Shallow Offshore Wind Technology Cost WindOhio was modified and offshore wind development in Texas was

  14. Figure 1. The net load, or power load minus wind and solar generation, for the state of California on March 31.

    E-Print Network [OSTI]

    Nehorai, Arye

    increase in solar and wind installations. This graph, often called a "Duck Curve" in the industry because can have. When a power grid has a large #12;2 amount of solar power capacity, the middle of this curve1 Figure 1. The net load, or power load minus wind and solar generation, for the state

  15. Wind Power Price Trends in the United States

    E-Print Network [OSTI]

    Bolinger, Mark

    2010-01-01

    49 Figure 5. Installed Wind Project Costs Over Time Capacitynot represent the true cost of wind generation (which wouldinstalled project costs on wind power prices. Specifically,

  16. Wind Power FAQ

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Power Frequently Asked Questions QUESTION: Why was the time stamp on my first wind explorer data chip incorrect? ANSWER: You need to program the proper date and time in the wind...

  17. Power System Modeling of 20percent Wind-Generated Electricity by 2030

    E-Print Network [OSTI]

    Hand, Maureen

    2008-01-01

    Assumptions Land-Based Wind Technology Cost $1730/kW in 2005Shallow Offshore Wind Technology Cost Wind Technologyare modeled by WinDS, the costs of building transmission

  18. Wind powering America: Vermont

    SciTech Connect (OSTI)

    NREL

    2000-04-11

    Wind resources in the state of Vermont show great potential for wind energy development according to the wind resource assessment conducted by the state, its utilities, and NREL. This fact sheet provides a brief description of the resource assessment and a link to the resulting wind resource map produced by NREL. The fact sheet also provides a description of the state's net metering program, its financial incentives, and green power programs as well as a list of contacts for more information.

  19. Power System Modeling of 20percent Wind-Generated Electricity by 2030

    E-Print Network [OSTI]

    Hand, Maureen

    2008-01-01

    Long-Term Market Penetration of Wind in the United States. ”2003. U.S. Department of Energy (2008). 20% Wind Energy by2030: Increasing Wind Energy’s Contribution to U.S.

  20. Power System Modeling of 20percent Wind-Generated Electricity by 2030

    E-Print Network [OSTI]

    Hand, Maureen

    2008-01-01

    2003. U.S. Department of Energy (2008). 20% Wind Energy by2030: Increasing Wind Energy’s Contribution to U.S.shows the results of the Wind Energy Deployment System model

  1. Power System Modeling of 20percent Wind-Generated Electricity by 2030

    E-Print Network [OSTI]

    Hand, Maureen

    2008-01-01

    demand in future years. Technology cost and performanceAssumptions Land-Based Wind Technology Cost $1730/kW in 2005Shallow Offshore Wind Technology Cost Wind Technology

  2. Wind Fins: Novel Lower-Cost Wind Power System

    SciTech Connect (OSTI)

    David C. Morris; Dr. Will D. Swearingen

    2007-10-08

    This project evaluated the technical feasibility of converting energy from the wind with a novel “wind fin” approach. This patent-pending technology has three major components: (1) a mast, (2) a vertical, hinged wind structure or fin, and (3) a power takeoff system. The wing structure responds to the wind with an oscillating motion, generating power. The overall project goal was to determine the basic technical feasibility of the wind fin technology. Specific objectives were the following: (1) to determine the wind energy-conversion performance of the wind fin and the degree to which its performance could be enhanced through basic design improvements; (2) to determine how best to design the wind fin system to survive extreme winds; (3) to determine the cost-effectiveness of the best wind fin designs compared to state-of-the-art wind turbines; and (4) to develop conclusions about the overall technical feasibility of the wind fin system. Project work involved extensive computer modeling, wind-tunnel testing with small models, and testing of bench-scale models in a wind tunnel and outdoors in the wind. This project determined that the wind fin approach is technically feasible and likely to be commercially viable. Project results suggest that this new technology has the potential to harvest wind energy at approximately half the system cost of wind turbines in the 10kW range. Overall, the project demonstrated that the wind fin technology has the potential to increase the economic viability of small wind-power generation. In addition, it has the potential to eliminate lethality to birds and bats, overcome public objections to the aesthetics of wind-power machines, and significantly expand wind-power’s contribution to the national energy supply.

  3. Power System Modeling of 20percent Wind-Generated Electricity by 2030

    E-Print Network [OSTI]

    Hand, Maureen

    2008-01-01

    wind and conventional energy technologies, transmission, operations and maintenance (wind versus the displaced conventional energy technologies, as well as differences in transmission, operations and maintenance (

  4. Wind Power Today, 2010, Wind and Water Power Program (WWPP)

    SciTech Connect (OSTI)

    Not Available

    2010-05-01

    Wind Power Today is an annual publication that provides an overview of the wind energy research conducted by the U.S. Department of Energy Wind and Water Power Program.

  5. Linkages from DOE's Wind Energy Program R&D to Commercial Renewable Power Generation

    SciTech Connect (OSTI)

    Rosalie, Ruegg; Thomas, Patrick

    2009-09-01

    The report compares wind energy technology and markets for the pre- and post-DOE Wind Energy Program as a backdrop for the investigation of linkages from the Program to downstream developments.

  6. Power System Modeling of 20% Wind-Generated Electricity by 2030: Preprint

    SciTech Connect (OSTI)

    Hand, M.; Blair, N.; Bolinger, M.; Wiser, R.; O'Connell, R.; Hern, T.; Miller, B.

    2008-06-01

    This paper shows the results of the Wind Energy Deployment System model used to estimate the costs and benefits associated with producing 20% of the nation's electricity from wind technology by 2030.

  7. ANEMOS: Development of a Next Generation Wind Power Forecasting System for the Large-Scale Integration of Onshore &

    E-Print Network [OSTI]

    Heinemann, Detlev

    -Scale Integration of Onshore & Offshore Wind Farms. G. Kariniotakis* , D. Mayer, J. Moussafir, R. Chevallaz-line operation at onshore and offshore wind farms for prediction at a local, regional and national scale, for onshore and offshore wind power forecasting, exploiting both statistical and physical modeling approaches

  8. Incorporating Wind Generation Forecast Uncertainty into Power System Operation, Dispatch, and Unit Commitment Procedures

    SciTech Connect (OSTI)

    Makarov, Yuri V.; Etingov, Pavel V.; Huang, Zhenyu; Ma, Jian; Subbarao, Krishnappa

    2010-10-19

    In this paper, an approach to evaluate the uncertainties of the balancing capacity, ramping capability, and ramp duration requirements is proposed. The approach includes three steps: forecast data acquisition, statistical analysis of retrospective information, and prediction of grid balancing requirements for a specified time horizon and a given confidence level. Assessment of the capacity and ramping requirements is performed using a specially developed probabilistic algorithm based on histogram analysis, incorporating sources of uncertainty of both continuous (wind and load forecast errors) and discrete (forced generator outages and start-up failures) nature. A new method called the "flying-brick" technique is developed to evaluate the look-ahead required generation performance envelope for the worst case scenario within a user-specified confidence level. A self-validation process is used to validate the accuracy of the confidence intervals. To demonstrate the validity of the developed uncertainty assessment methods and its impact on grid operation, a framework for integrating the proposed methods with an EMS system is developed. Demonstration through integration with an EMS system illustrates the applicability of the proposed methodology and the developed tool for actual grid operation and paves the road for integration with EMS systems from other vendors.

  9. 2015 Iowa Wind Power Conference and Iowa Wind Energy Association...

    Office of Environmental Management (EM)

    2015 Iowa Wind Power Conference and Iowa Wind Energy Association Midwest Regional Energy Job Fair 2015 Iowa Wind Power Conference and Iowa Wind Energy Association Midwest Regional...

  10. Engineering innovation to reduce wind power COE

    SciTech Connect (OSTI)

    Ammerman, Curtt Nelson

    2011-01-10

    There are enough wind resources in the US to provide 10 times the electric power we currently use, however wind power only accounts for 2% of our total electricity production. One of the main limitations to wind use is cost. Wind power currently costs 5-to-8 cents per kilowatt-hour, which is more than twice the cost of electricity generated by burning coal. Our Intelligent Wind Turbine LDRD Project is applying LANL's leading-edge engineering expertise in modeling and simulation, experimental validation, and advanced sensing technologies to challenges faced in the design and operation of modern wind turbines.

  11. Property Tax Exemption for Wind Generators

    Broader source: Energy.gov [DOE]

    In May 2015, Oklahoma enacted a bill (SB 498) ending the property tax exemption for wind power generators. The exemption will end on January 1, 2017; projects currently in production or put into...

  12. PSO2004/FU5766 Improved wind power prediction

    E-Print Network [OSTI]

    PSO2004/FU5766 Improved wind power prediction Spatio-temporal modelling of short-term wind power of wind power generation in power systems. The quality of the forecast is very important, and a reliable estimate of the uncertainty of the forecast is known to be essential. Today the forecasts of wind power

  13. Dynamic Simulation Studies of the Frequency Response of the Three U.S. Interconnections with Increased Wind Generation

    E-Print Network [OSTI]

    Mackin, Peter

    2011-01-01

    2009. “North America Dynamic Wind Generator Modeling Update,work performed by the WECC Wind Generator Modeling Group andIEEE Dynamic Performance of Wind Power Generation Working

  14. Proceedings Nordic Wind Power Conference

    E-Print Network [OSTI]

    Estimation of Possible Power for Wind Plant Control Power Fluctuations from Offshore Wind Farms; Model Validation System grounding of wind farm medium voltage cable grids Faults in the Collection Grid of Offshore systems of wind turbines and wind farms. NWPC presents the newest research results related to technical

  15. Power System Modeling of 20percent Wind-Generated Electricity by 2030

    E-Print Network [OSTI]

    Hand, Maureen

    2008-01-01

    selected to achieve a cost-optimal generation mix over a 20-Conventional Generation Technology Cost and Performancethe future cost and performance of conventional generation

  16. Topic 5: Power System Operation and Planning for Enhanced Wind Generation Penetration

    SciTech Connect (OSTI)

    Vittal, Vijay; Heydt, Gerald T; Ayyanar, Raja; McCalley, James D; Ajjarapu, V; Aliprantis, Dionysios

    2012-08-31

    This project dealt with the development of a range of educational resources dealing with wind energy and wind energy integration in the electric grid. These resources were developed for a variety of audiences including; a) high school student, b) undergraduate electrical engineering students, c) graduate electrical engineering students, and d) practicing engineers in industry. All the developed material is available publicly and the courses developed are being taught at the two participating universities, Arizona State University and Iowa State University.

  17. Wind Vision: A New Era for Wind Power

    Broader source: Energy.gov (indexed) [DOE]

    that is ready to add power to the grid to compensate for increased load or reduced generation from other units (such as wind or solar). 6 Appendix A | Glossary Term...

  18. Gansu Xinhui Wind Power | Open Energy Information

    Open Energy Info (EERE)

    Xinhui Wind Power Jump to: navigation, search Name: Gansu Xinhui Wind Power Place: China Sector: Wind energy Product: China-based joint venture engaged in developing wind projects....

  19. Title: Ontario Wind Power Allocation Ontario Ministry of Natural Resources

    E-Print Network [OSTI]

    Title: Ontario Wind Power Allocation Data Creator / Copyright Owner: Ontario Ministry of Natural/A Updates: N/A Abstract: This data consists of a polygon shapefile, Wind Power Allocation Block. A Wind Power Allocation Block is an area that could be allocated for the exploration of wind power generation

  20. Power Control and Optimization of Photovoltaic and Wind Energy Conversion Systems /

    E-Print Network [OSTI]

    Ghaffari, Azad

    2013-01-01

    Output power leveling of wind turbine generator for allpower map of Distributed Generators (DG), including Photo- voltaic (PV) and WindGenerator (IG) stator. Introduction A variable speed wind turbine generates power

  1. Aalborg Universitet Loss Minimizing Operation of Doubly Fed Induction Generator Based Wind Generation

    E-Print Network [OSTI]

    Hu, Weihao

    performance [1]. Moreover, some grid codes already require wind turbines to provide reactive power ability Wind Generation Systems Considering Reactive Power Provision. In Proceedings of the 40th Annual generator based wind generation systems when providing reactive power. The proposed method achieves its goal

  2. Optimal sizing study of hybrid wind/PV/diesel power generation unit

    SciTech Connect (OSTI)

    Belfkira, Rachid; Zhang, Lu; Barakat, Georges [Groupe de Recherche en Electrotechnique et Automatique du Havre, University of Le Havre, 25 rue Philippe Lebon, BP 1123, 76063 Le Havre (France)

    2011-01-15

    In this paper, a methodology of sizing optimization of a stand-alone hybrid wind/PV/diesel energy system is presented. This approach makes use of a deterministic algorithm to suggest, among a list of commercially available system devices, the optimal number and type of units ensuring that the total cost of the system is minimized while guaranteeing the availability of the energy. The collection of 6 months of data of wind speed, solar radiation and ambient temperature recorded for every hour of the day were used. The mathematical modeling of the main elements of the hybrid wind/PV/diesel system is exposed showing the more relevant sizing variables. A deterministic algorithm is used to minimize the total cost of the system while guaranteeing the satisfaction of the load demand. A comparison between the total cost of the hybrid wind/PV/diesel energy system with batteries and the hybrid wind/PV/diesel energy system without batteries is presented. The reached results demonstrate the practical utility of the used sizing methodology and show the influence of the battery storage on the total cost of the hybrid system. (author)

  3. Impacts of Large-Scale Wind Generators Penetration on the Voltage Stability of Power Systems

    E-Print Network [OSTI]

    Pota, Himanshu Roy

    on the operation of existing transmission network . The European Wind Energy Association (EWEA) projects 230 GW closer to their limits, using flexible AC transmission system devices (FACTS), and also due- rently interconnected into the existing transmission network of 220kV voltage level with higher installed

  4. Wind power costs in Portugal Saleiro, Carla

    E-Print Network [OSTI]

    Wind power costs in Portugal Saleiro, Carla Department of Biological Engineering, University, following the European tendency. This analysis sets out to evaluate the total generating cost of wind power and CCGT in Portugal. A life cycle cost analysis was conducted, including investment costs, O&M costs, fuel

  5. Sinomatech Wind Power Blade aka Sinoma Science Technology Wind...

    Open Energy Info (EERE)

    Sinomatech Wind Power Blade aka Sinoma Science Technology Wind Turbine Blade Co Ltd Jump to: navigation, search Name: Sinomatech Wind Power Blade (aka Sinoma Science & Technology...

  6. A survey on wind power ramp forecasting.

    SciTech Connect (OSTI)

    Ferreira, C.; Gama, J.; Matias, L.; Botterud, A.; Wang, J.

    2011-02-23

    The increasing use of wind power as a source of electricity poses new challenges with regard to both power production and load balance in the electricity grid. This new source of energy is volatile and highly variable. The only way to integrate such power into the grid is to develop reliable and accurate wind power forecasting systems. Electricity generated from wind power can be highly variable at several different timescales: sub-hourly, hourly, daily, and seasonally. Wind energy, like other electricity sources, must be scheduled. Although wind power forecasting methods are used, the ability to predict wind plant output remains relatively low for short-term operation. Because instantaneous electrical generation and consumption must remain in balance to maintain grid stability, wind power's variability can present substantial challenges when large amounts of wind power are incorporated into a grid system. A critical issue is ramp events, which are sudden and large changes (increases or decreases) in wind power. This report presents an overview of current ramp definitions and state-of-the-art approaches in ramp event forecasting.

  7. Saturation wind power potential and its implications for wind energy

    E-Print Network [OSTI]

    Board August 14, 2012 (received for review May 31, 2012) Wind turbines convert kinetic to electrical linearly, but then converges to a saturation potential not identified previously from physical principles does not increase the generated power further. At the SWPP, winds still occur because individual

  8. Generation Interconnection Policies and Wind Power: A Discussion of Issues, Problems, and Potential Solutions

    SciTech Connect (OSTI)

    Porter, K.; Fink, S.; Mudd, C.; DeCesaro, J.

    2009-01-01

    This report describes the adoption and implementation of FERC Order 2003 and the reasons for the sharp rise in generation interconnection filings in recent years.

  9. Power System Modeling of 20percent Wind-Generated Electricity by 2030

    E-Print Network [OSTI]

    Hand, Maureen

    2008-01-01

    fuel price forecast Coal prices follow AEO 2007 referencecoal- and natural gas-based electricity generation analyzed here include decreased natural gas prices,

  10. Power System Modeling of 20percent Wind-Generated Electricity by 2030

    E-Print Network [OSTI]

    Hand, Maureen

    2008-01-01

    forecast Uranium fuel price is constant Shallow Offshore Windwind power directly reduces exposure to gas price risk, given uncertainties in the gas price forecast [

  11. Wind and solar power electric generation to see strong growth over the next two years

    Gasoline and Diesel Fuel Update (EIA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of Natural GasAdjustments (Billion Cubic Feet) Wyoming Dry NaturalPrices Globaldieselgasolinemonthlysummer1Net ProductionWind

  12. Managing Wind Power Forecast Uncertainty in Electric Brandon Keith Mauch

    E-Print Network [OSTI]

    i Managing Wind Power Forecast Uncertainty in Electric Grids Brandon Keith Mauch Co Paulina Jaramillo Doctor Paul Fischbeck 2012 #12;ii #12;iii Managing Wind Power Forecast Uncertainty generated from wind power is both variable and uncertain. Wind forecasts provide valuable information

  13. Power System Modeling of 20percent Wind-Generated Electricity by 2030

    E-Print Network [OSTI]

    Hand, Maureen

    2008-01-01

    pulverized coal plants, combined cycle natural gas plants,natural gas plants, and combined cycle natural gas plants.generated largely from combined-cycle Capacity (GW) yd r as

  14. Optimal Bidding Strategies for Wind Power Producers with Meteorological Forecasts

    E-Print Network [OSTI]

    Garulli, Andrea

    profiles, raise major challenges to wind power integration into the electricity grid. In this work we studyOptimal Bidding Strategies for Wind Power Producers with Meteorological Forecasts Antonio that the inherent variability in wind power generation and the related difficulty in predicting future generation

  15. Wind Powering America Webinar Series (Postcard), Wind Powering America (WPA)

    SciTech Connect (OSTI)

    Not Available

    2012-02-01

    Wind Powering America offers a free monthly webinar series that provides expert information on today?s key wind energy topics. This postcard is an outreach tool that provides a brief description of the webinars as well as the URL.

  16. Wind Powering America Podcasts, Wind Powering America (WPA)

    SciTech Connect (OSTI)

    Not Available

    2012-04-01

    Wind Powering America and the National Association of Farm Broadcasters produce a series of radio interviews featuring experts discussing wind energy topics. The interviews are aimed at a rural stakeholder audience and are available as podcasts. On the Wind Powering America website, you can access past interviews on topics such as: Keys to Local Wind Energy Development Success, What to Know about Installing a Wind Energy System on Your Farm, and Wind Energy Development Can Revitalize Rural America. This postcard is a marketing piece that stakeholders can provide to interested parties; it will guide them to this online resource for podcast episodes.

  17. Wind Generation Challenges & New Technologies

    E-Print Network [OSTI]

    McCalley, James D.

    · Introduction · Grid Integration Challenges · "New" Technologies · Conclusions #12;Introduction #12;Proprietary · Testing and modeling thermal and renewable plants for grid code compliance GE Wind Generator & Electrical: AWEA, 1Q 2014 [1] #12;Wind Integration Challenges #12;Proprietary Information: This document contains

  18. Stochastic Modeling of Multi-Area Wind Power Production

    E-Print Network [OSTI]

    Oren, Shmuel S.

    Stochastic Modeling of Multi-Area Wind Power Production Anthony Papavasiliou Department model accounts for the inter-temporal and spatial dependencies of multi-area wind power production. Results are presented for a case study of the California power system. Keywords - Wind power generation

  19. EERE 2014 Wind Technologies Market Report Finds Wind Power at...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    2014 Wind Technologies Market Report Finds Wind Power at Record Low Prices EERE 2014 Wind Technologies Market Report Finds Wind Power at Record Low Prices August 10, 2015 - 11:00am...

  20. Active Power Controls from Wind Power: Bridging the Gaps

    SciTech Connect (OSTI)

    Ela, E.; Gevorgian, V.; Fleming, P.; Zhang, Y. C.; Singh, M.; Muljadi, E.; Scholbrook, A.; Aho, J.; Buckspan, A.; Pao, L.; Singhvi, V.; Tuohy, A.; Pourbeik, P.; Brooks, D.; Bhatt, N.

    2014-01-01

    This paper details a comprehensive study undertaken by the National Renewable Energy Laboratory, Electric Power Research Institute, and the University of Colorado to understand how the contribution of wind power providing active power control (APC) can benefit the total power system economics, increase revenue streams, improve the reliability and security of the power system, and provide superior and efficient response while reducing any structural and loading impacts that may reduce the life of the wind turbine or its components. The study includes power system simulations, control simulations, and actual field tests using turbines at NREL's National Wind Technology Center (NWTC). The study focuses on synthetic inertial control, primary frequency control, and automatic generation control, and analyzes timeframes ranging from milliseconds to minutes to the lifetime of wind turbines, locational scope ranging from components of turbines to large wind plants to entire synchronous interconnections, and additional topics ranging from economics to power system engineering to control design.

  1. Enabling Wind Power Nationwide

    Broader source: Energy.gov (indexed) [DOE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of Natural GasAdjustmentsShirleyEnergy A plug-inPPL EnergyPlus,DepartmentFederal RegisterEditableWind Power Nationwide May

  2. Wind Power Overview Windpoweristhefastestgrowingformofrenewableenergy,withpoten-

    E-Print Network [OSTI]

    Wind Power Overview · Windpoweristhefastestgrowingformofrenewableenergy Offshore Wind Power for Florida? · AveragehouseholdelectricitycostsforFloridaare expectedtoincreaseby4Pensacola. · SiemensWindPowerNorthAmerica isbasedinOrlando. · Sugarland Wind is planning onshorewindfarmadjacentto

  3. World Wind Energy Conference, Berlin (2002) REGIONAL WIND POWER PREDICTION WITH RISK CONTROL

    E-Print Network [OSTI]

    Heinemann, Detlev

    2002-01-01

    is to seperately calculate the power output for each wind farm in the region and generate the sum. This wouldWorld Wind Energy Conference, Berlin (2002) PREVIENTO REGIONAL WIND POWER PREDICTION WITH RISK Oldenburg 26111 Oldenburg, Fax: ++49-441-798-3579 email: m.lange@mail.uni-oldenburg.de, http://ehf.uni-oldenburg.de/wind

  4. Class Generation for Numerical Wind Atlases

    E-Print Network [OSTI]

    Class Generation for Numerical Wind Atlases Risø National Laboratory Wind Energy Department Constructing a Numerical Wind Atlas 5 2.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . 13 2.4 The existing procedure at Risø . . . . . . . . . . . . . . . . . . . 13 3 Representing a Wind

  5. Contracting for wind generation

    E-Print Network [OSTI]

    Newbery, David

    on the discount offered to small wind farms, but it might even be as high as 15-20%. These figures may also reflect risk surrounding ROC prices, which although apparently stable, are subject to political and credibility risk. EPRG No 1120 14 ahead of time...

  6. Testing Active Power Control from Wind Power at the National Wind Technology Center (NWTC) (Presentation)

    SciTech Connect (OSTI)

    Ela, E.

    2011-05-01

    In order to keep the electricity grid stable and the lights on, the power system relies on certain responses from its generating fleet. This presentation evaluates the potential for wind turbines and wind power plants to provide these services and assist the grid during critical times.

  7. Doubly Fed Induction Generator in an Offshore Wind Power Plant Operated at Rated V/Hz: Preprint

    SciTech Connect (OSTI)

    Muljadi, E.; Singh, M.; Gevorgian, V.

    2012-06-01

    This paper introduces the concept of constant Volt/Hz operation of offshore wind power plants. The deployment of offshore WPPs requires power transmission from the plant to the load center inland. Since this power transmission requires submarine cables, there is a need to use High-Voltage Direct Current transmission, which is economical for transmission distances longer than 50 kilometers. In the concept presented here, the onshore substation is operated at 60 Hz synced with the grid, and the offshore substation is operated at variable frequency and voltage, thus allowing the WPP to be operated at constant Volt/Hz.

  8. WIND POWER SIMULATION MODEL FOR RELIABILITY EVALUATION Rajesh Karki

    E-Print Network [OSTI]

    Saskatchewan, University of

    WIND POWER SIMULATION MODEL FOR RELIABILITY EVALUATION Rajesh Karki Rajesh.Karki@usask.ca Po Hu poh The rapidly increasing contribution of wind power to electric power generation around the world has motivated a need to develop more widely applicable methodologies for evaluating the actual benefits of adding wind

  9. Dynamic Models for Wind Turbines and Wind Power Plants

    SciTech Connect (OSTI)

    Singh, M.; Santoso, S.

    2011-10-01

    The primary objective of this report was to develop universal manufacturer-independent wind turbine and wind power plant models that can be shared, used, and improved without any restrictions by project developers, manufacturers, and engineers. Manufacturer-specific models of wind turbines are favored for use in wind power interconnection studies. While they are detailed and accurate, their usages are limited to the terms of the non-disclosure agreement, thus stifling model sharing. The primary objective of the work proposed is to develop universal manufacturer-independent wind power plant models that can be shared, used, and improved without any restrictions by project developers, manufacturers, and engineers. Each of these models includes representations of general turbine aerodynamics, the mechanical drive-train, and the electrical characteristics of the generator and converter, as well as the control systems typically used. To determine how realistic model performance is, the performance of one of the models (doubly-fed induction generator model) has been validated using real-world wind power plant data. This work also documents selected applications of these models.

  10. Power Control and Optimization of Photovoltaic and Wind Energy Conversion Systems /

    E-Print Network [OSTI]

    Ghaffari, Azad

    2013-01-01

    be realized by capturing wind power at altitudes over the2011. [2] ——, “High altitude wind power systems: A survey onOckels, “Optimal cross-wind towing and power generation with

  11. Pitfalls of modeling wind power using Markov chains

    E-Print Network [OSTI]

    Kirtley, James L., Jr.

    An increased penetration of wind turbines have given rise to a need for wind speed/power models that generate realistic synthetic data. Such data, for example, might be used in simulations to size energy storage or spinning ...

  12. Wind Powering America's Wind for Schools Team Honored with Wirth...

    Office of Environmental Management (EM)

    Powering America's Wind for Schools Team Honored with Wirth Chair Award Wind Powering America's Wind for Schools Team Honored with Wirth Chair Award May 1, 2012 - 2:46pm Addthis...

  13. Wind power outlook 2006

    SciTech Connect (OSTI)

    anon.

    2006-04-15

    This annual brochure provides the American Wind Energy Association's up-to-date assessment of the wind industry in the United States. This 2006 general assessment shows positive signs of growth, use and acceptance of wind energy as a vital component of the U.S. energy mix.

  14. Wind Turbine Generator System Acoustic Noise Test Report for the Gaia Wind 11-kW Wind Turbine

    SciTech Connect (OSTI)

    Huskey, A.

    2011-11-01

    This report details the acoustic noise test conducted on the Gaia-Wind 11-kW wind turbine at the National Wind Technology Center. The test turbine is a two- bladed, downwind wind turbine with a rated power of 11 kW. The test turbine was tested in accordance with the International Electrotechnical Commission standard, IEC 61400-11 Ed 2.1 2006-11 Wind Turbine Generator Systems -- Part 11 Acoustic Noise Measurement Techniques.

  15. PowerJet Wind Turbine Project

    SciTech Connect (OSTI)

    Bartlett, Raymond J

    2008-11-30

    PROJECT OBJECTIVE The PowerJet wind turbine overcomes problems characteristic of the small wind turbines that are on the market today by providing reliable output at a wide range of wind speeds, durability, silent operation at all wind speeds, and bird-safe operation. Prime Energy�s objective for this project was to design and integrate a generator with an electrical controller and mechanical controls to maximize the generation of electricity by its wind turbine. The scope of this project was to design, construct and test a mechanical back plate to control rotational speed in high winds, and an electronic controller to maximize power output and to assist the base plate in controlling rotational speed in high winds. The test model will continue to operate beyond the time frame of the project, with the ultimate goal of manufacturing and marketing the PowerJet worldwide. Increased Understanding of Electronic & Mechanical Controls Integrated With Electricity Generator The PowerJet back plate begins to open as wind speed exceeds 13.5 mps. The pressure inside the turbine and the turbine rotational speed are held constant. Once the back plate has fully opened at approximately 29 mps, the controller begins pulsing back to the generator to limit the rotational speed of the turbine. At a wind speed in excess of 29 mps, the controller shorts the generator and brings the turbine to a complete stop. As the wind speed subsides, the controller releases the turbine and it resumes producing electricity. Data collection and instrumentation problems prevented identification of the exact speeds at which these events occur. However, the turbine, controller and generator survived winds in excess of 36 mps, confirming that the two over-speed controls accomplished their purpose. Technical Effectiveness & Economic Feasibility Maximum Electrical Output The output of electricity is maximized by the integration of an electronic controller and mechanical over-speed controls designed and tested during the course of this project. The output exceeds that of the PowerJet�s 3-bladed counterparts (see Appendix). Durability All components of the PowerJet turbine assembly�including the electronic and mechanical controls designed, manufactured and field tested during the course of this project�proved to be durable through severe weather conditions, with constant operation and no interruption in energy production. Low Cost Materials for the turbine, generator, tower, charge controllers and ancillary parts are available at reasonable prices. Fabrication of these parts is also readily available worldwide. The cost of assembling and installing the turbine is reduced because it has fewer parts and requires less labor to manufacture and assemble, making it competitively priced compared with turbines of similar output manufactured in the U.S. and Europe. The electronic controller is the unique part to be included in the turbine package. The controllers can be manufactured in reasonably-sized production runs to keep the cost below $250 each. The data logger and 24 sensors are for research only and will be unnecessary for the commercial product. Benefit To Public The PowerJet wind-electric system is designed for distributed wind generation in 3 and 4 class winds. This wind turbine meets DOE�s requirements for a quiet, durable, bird-safe turbine that eventually can be deployed as a grid-connected generator in urban and suburban settings. Results As described more fully below and illustrated in the Appendices, the goals and objectives outlined in 2060 SOPO were fully met. Electronic and mechanical controls were successfully designed, manufactured and integrated with the generator. The turbine, tower, controllers and generators operated without incident throughout the test period, surviving severe winter and summer weather conditions such as extreme temperatures, ice and sustained high winds. The electronic controls were contained in weather-proof electrical boxes and the elec

  16. Wind Turbine Generator KanaKanapathipillai

    E-Print Network [OSTI]

    New South Wales, University of

    Wind Turbine Generator Noise KanaKanapathipillai Reliable and accurate measurement of wind turbine & Associates on wind turbine noise for a number of years. Treatment for Presbyopia Hooman M. Pour Presbyopia

  17. Wind Power Plant Voltage Stability Evaluation: Preprint

    SciTech Connect (OSTI)

    Muljadi, E.; Zhang, Y. C.

    2014-09-01

    Voltage stability refers to the ability of a power system to maintain steady voltages at all buses in the system after being subjected to a disturbance from a given initial operating condition. Voltage stability depends on a power system's ability to maintain and/or restore equilibrium between load demand and supply. Instability that may result occurs in the form of a progressive fall or rise of voltages of some buses. Possible outcomes of voltage instability are the loss of load in an area or tripped transmission lines and other elements by their protective systems, which may lead to cascading outages. The loss of synchronism of some generators may result from these outages or from operating conditions that violate a synchronous generator's field current limit, or in the case of variable speed wind turbine generator, the current limits of power switches. This paper investigates the impact of wind power plants on power system voltage stability by using synchrophasor measurements.

  18. Contribution to the Chapter on Wind Power Energy Technology

    E-Print Network [OSTI]

    Contribution to the Chapter on Wind Power Energy Technology Perspectives 2008 Jørgen Lemming; Poul Power Energy Technology Perspectives 2008 Division: Division Risø-R-1674(EN) January 2008 Abstract turbines, are being implemented across all wind energy countries. The cost of wind-generated electricity

  19. ECE 457 Dawson Fall 2010 Course Syllabus & Policies Fundamentals of Wind Power

    E-Print Network [OSTI]

    Stuart, Steven J.

    to power generation. Topics include wind energy principles, wind site assessment, wind turbine components, power generation machinery, control systems, connection to the electric grid, and maintenance and societal perspectives regarding the demand for mechanical and electrical power generation from wind using

  20. 2008 Wind Energy Projects, Wind Powering America (Poster)

    SciTech Connect (OSTI)

    Not Available

    2009-01-01

    The Wind Powering America program produces a poster at the end of every calendar year that depicts new U.S. wind energy projects. The 2008 poster includes the following projects: Stetson Wind Farm in Maine; Dutch Hill Wind Farm in New York; Grand Ridge Wind Energy Center in Illinois; Hooper Bay, Alaska; Forestburg, South Dakota; Elbow Creek Wind Project in Texas; Glacier Wind Farm in Montana; Wray, Colorado; Smoky Hills Wind Farm in Kansas; Forbes Park Wind Project in Massachusetts; Spanish Fork, Utah; Goodland Wind Farm in Indiana; and the Tatanka Wind Energy Project on the border of North Dakota and South Dakota.

  1. Modeling Generator Power Plant Portfolios and Pollution Taxes in

    E-Print Network [OSTI]

    Nagurney, Anna

    Modeling Generator Power Plant Portfolios and Pollution Taxes in Electric Power Supply Chain-term solution (e.g.,are long-term solution (e.g., solar power and wind power (solar power and wind power Heavy user of fossil fuels:Heavy user of fossil fuels: Electric power industryElectric power industry

  2. Advanced Coal Wind Hybrid: Economic Analysis

    E-Print Network [OSTI]

    Phadke, Amol

    2008-01-01

    When the wind generators are producing power, the powerWhen the wind generators are not producing power, the power

  3. Status of Centralized Wind Power Forecasting in North America: May 2009-May 2010

    SciTech Connect (OSTI)

    Porter, K.; Rogers, J.

    2010-04-01

    Report surveys grid wind power forecasts for all wind generators, which are administered by utilities or regional transmission organizations (RTOs), typically with the assistance of one or more wind power forecasting companies.

  4. Superconducting Power Generation

    E-Print Network [OSTI]

    Mario Rabinowitz

    2003-02-20

    The superconducting ac generator has the greatest potential for large-scale commercial application of superconductivity that can benefit the public. Electric power is a vital ingredient of modern society, and generation may be considered to be the vital ingredient of a power system. This articles gives background, and an insight into the physics and engineering of superconducting power generation.

  5. Coupling Wind Generation with Controllable Load and Storage

    E-Print Network [OSTI]

    Electric Energy System #12;Coupling Wind Generation with Controllable Load and Storage: A Time the electric power industry and educating the next generation of power engineers. More information about PSERC will fundamentally alter the traditional generation technology mix. This will place a greater value on technologies

  6. Wind Speed Forecasting for Power System Operation 

    E-Print Network [OSTI]

    Zhu, Xinxin

    2013-07-22

    In order to support large-scale integration of wind power into current electric energy system, accurate wind speed forecasting is essential, because the high variation and limited predictability of wind pose profound challenges to the power system...

  7. Impact of DFIG wind turbines on transient stability of power systems a review

    E-Print Network [OSTI]

    Pota, Himanshu Roy

    Impact of DFIG wind turbines on transient stability of power systems ­ a review Authors Na Abstract of wind farms are using variable speed wind turbines equipped with doubly-fed induction generators (DFIG) due to their advantages over other wind turbine generators. Therefore, the analysis of wind power

  8. DOE Announces Effort to Advance U.S. Wind Power Manufacturing...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    of Understanding (MOU) between DOE and six leading wind industry turbine manufacturers: GE Energy, Siemens Power Generation, Vestas Wind Systems, Clipper Turbine Works, Suzlon...

  9. Managing Wind Power Forecast Uncertainty in Electric Grids Submitted in partial fulfillment of the requirements for

    E-Print Network [OSTI]

    Instituto de Sistemas e Robotica

    Managing Wind Power Forecast Uncertainty in Electric Grids Submitted in partial fulfillment;iii Abstract Electricity generated from wind power is both variable and uncertain. Wind forecasts prices. Wind power forecast errors for aggregated wind farms are often modeled with Gaussian

  10. Aalborg Universitet Control and Protection of Wind Power Plants with VSC-HVDC Connection

    E-Print Network [OSTI]

    Chaudhary, Sanjay

    to a higher energy yield. Europe has a huge potential of offshore wind energy, which is a green energy. The European Union expects to generate 230 GW wind power, in which the offshore wind power is expected to contribute 40 GW. Offshore wind power plants have better wind velocity profile leading

  11. Wind Vision: A New Era for Wind Power

    Broader source: Energy.gov (indexed) [DOE]

    a period of volatility in natural gas fuel prices launched the modern era of U.S. wind power. Electric system operators and utilities now routinely consider wind power as part...

  12. ARE660 Wind Generator: Low Wind Speed Technology for Small Turbine Development

    SciTech Connect (OSTI)

    Robert W. Preus; DOE Project Officer - Keith Bennett

    2008-04-23

    This project is for the design of a wind turbine that can generate most or all of the net energy required for homes and small businesses in moderately windy areas. The purpose is to expand the current market for residential wind generators by providing cost effective power in a lower wind regime than current technology has made available, as well as reduce noise and improve reliability and safety. Robert W. Preus’ experience designing and/or maintaining residential wind generators of many configurations helped identify the need for an improved experience of safety for the consumer. Current small wind products have unreliable or no method of stopping the wind generator in fault or high wind conditions. Consumers and their neighbors do not want to hear their wind generators. In addition, with current technology, only sites with unusually high wind speeds provide payback times that are acceptable for the on-grid user. Abundant Renewable Energy’s (ARE) basic original concept for the ARE660 was a combination of a stall controlled variable speed small wind generator and automatic fail safe furling for shutdown. The stall control for a small wind generator is not novel, but has not been developed for a variable speed application with a permanent magnet alternator (PMA). The fail safe furling approach for shutdown has not been used to our knowledge.

  13. Long-Term Wind Power Variability

    SciTech Connect (OSTI)

    Wan, Y. H.

    2012-01-01

    The National Renewable Energy Laboratory started collecting wind power data from large commercial wind power plants (WPPs) in southwest Minnesota with dedicated dataloggers and communication links in the spring of 2000. Over the years, additional WPPs in other areas were added to and removed from the data collection effort. The longest data stream of actual wind plant output is more than 10 years. The resulting data have been used to analyze wind power fluctuations, frequency distribution of changes, the effects of spatial diversity, and wind power ancillary services. This report uses the multi-year wind power data to examine long-term wind power variability.

  14. Control of a wind park with doubly fed induction generators in support of power system stability in case of grid faults

    E-Print Network [OSTI]

    and the transmission grid in the power system simulation software DIgSILENT Power Factory. The results demonstrate penetration of wind power the power system operators are revising nowa- days the grid codes in several turbines to support directly the power system in case of grid faults. The attention is thus on both

  15. Sandia Energy - Wind Generator Modeling

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantityBonneville Power AdministrationRobust, High-Throughput AnalysisSinkholeCapabilitiesThe Sandia-patented rotary electricalWind

  16. Wind Powering America FY09 Activities Summary

    SciTech Connect (OSTI)

    none,

    2010-03-22

    The report reflects the accomplishments of state Wind Working Groups, Wind Powering America programs at the National Renewable Energy Laboratory, and partner organizations.

  17. Wind Generation Feasibility Study in Bethel, AK

    SciTech Connect (OSTI)

    Tom Humphrey, YKHC; Lance Kincaid, EMCOR Energy & Technologies

    2004-07-31

    This report studies the wind resources in the Yukon-Kuskokwim Health Corporation (YKHC) region, located in southwestern Alaska, and the applicability of wind generation technologies to YKHC facilities.

  18. An Enabling Framework for Wind Power in Colombia: What are the...

    Open Energy Info (EERE)

    to investing in wind power, we focus on the regulatory incentives for investment in power generation."1 References 1.0 1.1 "An Enabling Framework for Wind Power in...

  19. Wind Power Integration: Exploring Impacts and Alternatives

    E-Print Network [OSTI]

    Walter, M.Todd

    Wind Power Integration: Exploring Impacts and Alternatives Assist. Prof. C sustainable sources of energy. The idea of harnessing wind energy has been there have been no less than fifteen in-depth wind integration studies

  20. Low-Maintenance Wind Power System

    E-Print Network [OSTI]

    Rasson, Joseph E

    2010-01-01

    with widespread adoption of wind energy. The project hasProject: Low-Maintenance Wind Power System Summary of theImproved Vertical Axis Wind Turbine and Aerodynamic Control

  1. Wind Power Integration via Aggregator-Consumer Coordination: A Game Theoretic Approach

    E-Print Network [OSTI]

    Mohsenian-Rad, Hamed

    the balance between load and generation in the power grid at all times [2]. Moreover, wind generation is nonWind Power Integration via Aggregator-Consumer Coordination: A Game Theoretic Approach Chenye Wu@ie.cuhk.edu.hk Abstract--Due to the stochastic nature of wind power, its large-scale integration into the power grid

  2. Analyzing the Effects of Temporal Wind Patterns on the Value of Wind-Generated Electricity at Different Sites in California and the Northwest

    E-Print Network [OSTI]

    Fripp, Matthias; Wiser, Ryan

    2006-01-01

    generator portfolio, as well as computing resources that would make it prohibitive for estimating the capacity contribution from wind power

  3. Wind Powering America Initiative (Fact Sheet)

    SciTech Connect (OSTI)

    Not Available

    2011-01-01

    The U.S. Department of Energy's Wind Powering America initiative engages in technology market acceptance, barrier reduction, and technology deployment support activities. This fact sheet outlines ways in which the Wind Powering America team works to reduce barriers to appropriate wind energy deployment, primarily by focusing on six program areas: workforce development, communications and outreach, stakeholder analysis and resource assessment, wind technology technical support, wind power for Native Americans, and federal sector support and collaboration.

  4. Variable Speed Wind Turbine Generator with Zero-sequence Filter

    DOE Patents [OSTI]

    Muljadi, Eduard (Golden, CO)

    1998-08-25

    A variable speed wind turbine generator system to convert mechanical power into electrical power or energy and to recover the electrical power or energy in the form of three phase alternating current and return the power or energy to a utility or other load with single phase sinusoidal waveform at sixty (60) hertz and unity power factor includes an excitation controller for generating three phase commanded current, a generator, and a zero sequence filter. Each commanded current signal includes two components: a positive sequence variable frequency current signal to provide the balanced three phase excitation currents required in the stator windings of the generator to generate the rotating magnetic field needed to recover an optimum level of real power from the generator; and a zero frequency sixty (60) hertz current signal to allow the real power generated by the generator to be supplied to the utility. The positive sequence current signals are balanced three phase signals and are prevented from entering the utility by the zero sequence filter. The zero sequence current signals have zero phase displacement from each other and are prevented from entering the generator by the star connected stator windings. The zero sequence filter allows the zero sequence current signals to pass through to deliver power to the utility.

  5. Variable speed wind turbine generator with zero-sequence filter

    DOE Patents [OSTI]

    Muljadi, Eduard (Golden, CO)

    1998-01-01

    A variable speed wind turbine generator system to convert mechanical power into electrical power or energy and to recover the electrical power or energy in the form of three phase alternating current and return the power or energy to a utility or other load with single phase sinusoidal waveform at sixty (60) hertz and unity power factor includes an excitation controller for generating three phase commanded current, a generator, and a zero sequence filter. Each commanded current signal includes two components: a positive sequence variable frequency current signal to provide the balanced three phase excitation currents required in the stator windings of the generator to generate the rotating magnetic field needed to recover an optimum level of real power from the generator; and a zero frequency sixty (60) hertz current signal to allow the real power generated by the generator to be supplied to the utility. The positive sequence current signals are balanced three phase signals and are prevented from entering the utility by the zero sequence filter. The zero sequence current signals have zero phase displacement from each other and are prevented from entering the generator by the star connected stator windings. The zero sequence filter allows the zero sequence current signals to pass through to deliver power to the utility.

  6. Variable speed wind turbine generator with zero-sequence filter

    DOE Patents [OSTI]

    Muljadi, E.

    1998-08-25

    A variable speed wind turbine generator system to convert mechanical power into electrical power or energy and to recover the electrical power or energy in the form of three phase alternating current and return the power or energy to a utility or other load with single phase sinusoidal waveform at sixty (60) hertz and unity power factor includes an excitation controller for generating three phase commanded current, a generator, and a zero sequence filter. Each commanded current signal includes two components: a positive sequence variable frequency current signal to provide the balanced three phase excitation currents required in the stator windings of the generator to generate the rotating magnetic field needed to recover an optimum level of real power from the generator; and a zero frequency sixty (60) hertz current signal to allow the real power generated by the generator to be supplied to the utility. The positive sequence current signals are balanced three phase signals and are prevented from entering the utility by the zero sequence filter. The zero sequence current signals have zero phase displacement from each other and are prevented from entering the generator by the star connected stator windings. The zero sequence filter allows the zero sequence current signals to pass through to deliver power to the utility. 14 figs.

  7. Factors driving wind power development in the United States

    E-Print Network [OSTI]

    Bird, Lori A.; Parsons, Brian; Gagliano, Troy; Brown, Matthew H.; Wiser, Ryan H.; Bolinger, Mark

    2003-01-01

    s Largest Purchase of Wind Power,” September 17, 2001.FACTORS DRIVING WIND POWER DEVELOPMENT IN THE UNITED STATESthe United States third in wind power capacity globally,

  8. Datang Jilin Wind Power Stockholding Co Ltd Formerly Jilin Noble...

    Open Energy Info (EERE)

    Datang Jilin Wind Power Stockholding Co Ltd Formerly Jilin Noble Wind Power Stockholding Co Ltd Jump to: navigation, search Name: Datang Jilin Wind Power Stockholding Co...

  9. The Political Economy of Wind Power in China

    E-Print Network [OSTI]

    Swanson, Ryan Landon

    2011-01-01

    resources fully occupied and offshore wind power resourcesin this paper, not offshore wind power—a very small yetthe press declaring offshore wind power to be cheaper than

  10. The State of the Art of Generators for Wind Energy Conversion Systems

    E-Print Network [OSTI]

    Paris-Sud XI, Université de

    243 1 The State of the Art of Generators for Wind Energy Conversion Systems Y. Amirat, M. E. H. Benbouzid, B. Bensaker, R. Wamkeue and H. Mangel Abstract--Wind Energy Conversion Systems (WECS) have become of the studied generators is provided in Fig. 2. II. WIND ENERGY BACKGROUND A. Wind Power Conversion

  11. Wind for Schools: A Wind Powering America Project (Alaska) (Brochure)

    SciTech Connect (OSTI)

    Not Available

    2010-02-01

    This brochure provides an overview of Wind Powering America's Wind for Schools Project, including a description of the project, the participants, funding sources, the basic configurations, and how interested parties can become involved.

  12. Wind for Schools: A Wind Powering America Project (Brochure)

    SciTech Connect (OSTI)

    Baring-Gould, I.

    2009-08-01

    This brochure provides an overview of Wind Powering America's Wind for Schools Project, including a description of the project, the participants, funding sources, the basic configurations, and how interested parties can become involved.

  13. Success Stories (Postcard), Wind Powering America (WPA)

    SciTech Connect (OSTI)

    Not Available

    2012-02-01

    Wind Powering America shares best practices and lessons learned on the Wind Powering America website. This postcard is an outreach tool that provides a brief description of the success stories as well as the URL.

  14. Power Performance Test Report for the SWIFT Wind Turbine

    SciTech Connect (OSTI)

    Mendoza, I.; Hur, J.

    2012-12-01

    This report summarizes the results of a power performance test that NREL conducted on the SWIFT wind turbine. This test was conducted in accordance with the International Electrotechnical Commission's (IEC) standard, Wind Turbine Generator Systems Part 12: Power Performance Measurements of Electricity Producing Wind Turbines, IEC 61400-12-1 Ed.1.0, 2005-12. However, because the SWIFT is a small turbine as defined by IEC, NREL also followed Annex H that applies to small wind turbines. In these summary results, wind speed is normalized to sea-level air density.

  15. Wind Power Forecasting

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantityBonneville Power AdministrationRobust,Field-effectWorking WithTelecentricNCubicthe FOIA?ResourceMeasurement BuoyForecasting Sign

  16. Active Power Controls from Wind Power: Bridging the Gaps | Department...

    Broader source: Energy.gov (indexed) [DOE]

    This report evaluates how wind power can support power system reliability, and do so economically. The study includes a number of different power system simulations, control...

  17. Wind Powering America Program Overview (Fact Sheet)

    SciTech Connect (OSTI)

    Not Available

    2008-04-01

    This fact sheet provides an overview of the U.S. Department of Energy's Wind Powering America Program.

  18. PEV-based Reactive Power Compensation for Wind DG Units: A Stackelberg Game Approach

    E-Print Network [OSTI]

    Huang, Jianwei

    1 PEV-based Reactive Power Compensation for Wind DG Units: A Stackelberg Game Approach Chenye Wu, in particular wind power, in form of distributed generation (DG) units. However, one important challenge with wind DG units is to provide low-cost and fast-responding reactive power compensation of the wind

  19. PEV-based Reactive Power Compensation for Wind DG Units: A Stackelberg Game Approach

    E-Print Network [OSTI]

    Mohsenian-Rad, Hamed

    a multiple timescale dispatch for smart grid with integrated wind power. Wu et al. investigated how to utilize wind power integration into the power grid when aggregators use a linear pricing scheme in [4. Keywords--Distributed generation, wind power integration, plug-in electric vehicles, reactive power

  20. Global ocean wind power sensitivity to surface layer stability

    E-Print Network [OSTI]

    Capps, Scott B; Zender, Charles S

    2009-01-01

    Can satellite sampling of offshore wind speeds realisticallydata to evaluate the offshore wind power resource of

  1. Wind Power Resource Assessment in Ohio and Puerto Rico

    E-Print Network [OSTI]

    Womeldorf, Carole

    occurring with wind power: specifically environmental concerns and benefits, the economics of small wind

  2. Optimization of Wind Power and Its Variability With a Computational Intelligence Approach

    E-Print Network [OSTI]

    Kusiak, Andrew

    Optimization of Wind Power and Its Variability With a Computational Intelligence Approach Zijun is presented for maximizing the generation of wind power while minimizing its variability. In the optimization model, data-driven approaches are used to model the wind-power generation process based on industrial

  3. Wind Vision: A New Era for Wind Power

    Broader source: Energy.gov (indexed) [DOE]

    M; Holtinnen, H.; Sder, L.; Clark, C.; Pineda, I. "Markets to Facilitate Wind and Solar Energy Integration in the Bulk Power Supply: An IEA Task 25 Collaboration."...

  4. Use of wind power forecasting in operational decisions.

    SciTech Connect (OSTI)

    Botterud, A.; Zhi, Z.; Wang, J.; Bessa, R.J.; Keko, H.; Mendes, J.; Sumaili, J.; Miranda, V.

    2011-11-29

    The rapid expansion of wind power gives rise to a number of challenges for power system operators and electricity market participants. The key operational challenge is to efficiently handle the uncertainty and variability of wind power when balancing supply and demand in ths system. In this report, we analyze how wind power forecasting can serve as an efficient tool toward this end. We discuss the current status of wind power forecasting in U.S. electricity markets and develop several methodologies and modeling tools for the use of wind power forecasting in operational decisions, from the perspectives of the system operator as well as the wind power producer. In particular, we focus on the use of probabilistic forecasts in operational decisions. Driven by increasing prices for fossil fuels and concerns about greenhouse gas (GHG) emissions, wind power, as a renewable and clean source of energy, is rapidly being introduced into the existing electricity supply portfolio in many parts of the world. The U.S. Department of Energy (DOE) has analyzed a scenario in which wind power meets 20% of the U.S. electricity demand by 2030, which means that the U.S. wind power capacity would have to reach more than 300 gigawatts (GW). The European Union is pursuing a target of 20/20/20, which aims to reduce greenhouse gas (GHG) emissions by 20%, increase the amount of renewable energy to 20% of the energy supply, and improve energy efficiency by 20% by 2020 as compared to 1990. Meanwhile, China is the leading country in terms of installed wind capacity, and had 45 GW of installed wind power capacity out of about 200 GW on a global level at the end of 2010. The rapid increase in the penetration of wind power into power systems introduces more variability and uncertainty in the electricity generation portfolio, and these factors are the key challenges when it comes to integrating wind power into the electric power grid. Wind power forecasting (WPF) is an important tool to help efficiently address this challenge, and significant efforts have been invested in developing more accurate wind power forecasts. In this report, we document our work on the use of wind power forecasting in operational decisions.

  5. The Political Economy of Wind Power in China

    E-Print Network [OSTI]

    Swanson, Ryan Landon

    2011-01-01

    lagged the construction of new wind farms, leaving roughlythe construction and maintenance of the wind farm. Second,wind farms). Unlike the 1994 ?Opinion on Wind Power Construction

  6. Offshore Wind Power Farm Environmental Impact Assessment

    E-Print Network [OSTI]

    Horns Rev Offshore Wind Power Farm Environmental Impact Assessment on Water Quality #12;Prepared with a planned 150 MW offshore wind farm at Horns Rev, an assessment was made of the effects the wind farm would for the preparation of EIA studies for offshore wind farms." Horns Rev is situated off Blåvands Huk, which is Denmark

  7. Wind and Water Power Program - Wind Power Opens Door To Diverse Opportunities (Green Jobs)

    SciTech Connect (OSTI)

    None

    2010-04-01

    The strong projected growth of wind power will require a stream of trained and qualified workers to manufacture, construct, operate, and maintain the wind energy facilities.

  8. Wind Power Integration via Aggregator-Consumer Coordination: A Game Theoretic Approach

    E-Print Network [OSTI]

    Huang, Jianwei

    Wind Power Integration via Aggregator-Consumer Coordination: A Game Theoretic Approach Chenye Wu@ie.cuhk.edu.hk Abstract--Due to the stochastic nature of wind power, its large-scale integration into the power grid-side resources via pricing in order to tackle the intermittency and fluctuations in wind power generation

  9. Sandia Energy - Wind Vision 2015: A New Era for Wind Power in...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Wind Vision 2015: A New Era for Wind Power in the United States Home Stationary Power Energy Conversion Efficiency Wind Energy Special Programs Wind Vision 2015: A New Era for Wind...

  10. 20% Wind Energy by 2030 - Chapter 5: Wind Power Siting and Environment...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    5: Wind Power Siting and Environmental Effects Summary Slides 20% Wind Energy by 2030 - Chapter 5: Wind Power Siting and Environmental Effects Summary Slides Environment and siting...

  11. Quantifying the system balancing cost when wind energy is incorporated into electricity generation system 

    E-Print Network [OSTI]

    Issaeva, Natalia

    2009-01-01

    Incorporation of wind energy into the electricity generation system requires a detailed analysis of wind speed in order to minimize system balancing cost and avoid a significant mismatch between supply and demand. Power ...

  12. Oscillating fluid power generator

    DOE Patents [OSTI]

    Morris, David C

    2014-02-25

    A system and method for harvesting the kinetic energy of a fluid flow for power generation with a vertically oriented, aerodynamic wing structure comprising one or more airfoil elements pivotably attached to a mast. When activated by the moving fluid stream, the wing structure oscillates back and forth, generating lift first in one direction then in the opposite direction. This oscillating movement is converted to unidirectional rotational movement in order to provide motive power to an electricity generator. Unlike other oscillating devices, this device is designed to harvest the maximum aerodynamic lift forces available for a given oscillation cycle. Because the system is not subjected to the same intense forces and stresses as turbine systems, it can be constructed less expensively, reducing the cost of electricity generation. The system can be grouped in more compact clusters, be less evident in the landscape, and present reduced risk to avian species.

  13. Estimated global ocean wind power potential from QuikSCAT observations, accounting for turbine characteristics and siting

    E-Print Network [OSTI]

    Capps, Scott B; Zender, Charles S

    2010-01-01

    generator and gearbox inefficiencies. [ 37 ] The sensitivity of wind powergenerator/gearbox inefficiencies fur- ther reducing this limit. A wind turbine power

  14. System-wide emissions implications of increased wind power penetration.

    SciTech Connect (OSTI)

    Valentino, L.; Valenzuela, V.; Botterud, A.; Zhou, Z.; Conzelmann, G. (Decision and Information Sciences); (Univ. of Illinois, Champaign/Urbana); (Georgia Institute of Technology)

    2012-01-01

    This paper discusses the environmental effects of incorporating wind energy into the electric power system. We present a detailed emissions analysis based on comprehensive modeling of power system operations with unit commitment and economic dispatch for different wind penetration levels. First, by minimizing cost, the unit commitment model decides which thermal power plants will be utilized based on a wind power forecast, and then, the economic dispatch model dictates the level of production for each unit as a function of the realized wind power generation. Finally, knowing the power production from each power plant, the emissions are calculated. The emissions model incorporates the effects of both cycling and start-ups of thermal power plants in analyzing emissions from an electric power system with increasing levels of wind power. Our results for the power system in the state of Illinois show significant emissions effects from increased cycling and particularly start-ups of thermal power plants. However, we conclude that as the wind power penetration increases, pollutant emissions decrease overall due to the replacement of fossil fuels.

  15. IEEE TRANSACTIONS ON POWER SYSTEMS, VOL. 26, NO. 4, NOVEMBER 2011 2197 Reserve Requirements for Wind Power Integration: A

    E-Print Network [OSTI]

    Oren, Shmuel S.

    for Wind Power Integration: A Scenario-Based Stochastic Programming Framework Anthony Papavasiliou, Student-stage stochastic programming model for committing reserves in systems with large amounts of wind power. We describe wind power generation in terms of a representative set of appropriately weighted scenarios, and we

  16. Investigating the Correlation Between Wind and Solar Power Forecast Errors in the Western Interconnection: Preprint

    SciTech Connect (OSTI)

    Zhang, J.; Hodge, B. M.; Florita, A.

    2013-05-01

    Wind and solar power generations differ from conventional energy generation because of the variable and uncertain nature of their power output. This variability and uncertainty can have significant impacts on grid operations. Thus, short-term forecasting of wind and solar generation is uniquely helpful for power system operations to balance supply and demand in an electricity system. This paper investigates the correlation between wind and solar power forecasting errors.

  17. Wind Power Price Trends in the United States

    SciTech Connect (OSTI)

    Bolinger, Mark; Wiser, Ryan

    2009-07-15

    For the fourth year in a row, the United States led the world in adding new wind power capacity in 2008, and also surpassed Germany to take the lead in terms of cumulative installed wind capacity. The rapid growth of wind power in the U.S. over the past decade (Figure 1) has been driven by a combination of increasingly supportive policies (including the Federal production tax credit (PTC) and a growing number of state renewables portfolio standards), uncertainty over the future fuel costs and environmental liabilities of natural gas and coal-fired power plants, and wind's competitive position among generation resources. This article focuses on just the last of these drivers - i.e., trends in U.S. wind power prices - over the period of strong capacity growth since 1998.

  18. Comparison of Wind Power and Load Forecasting Error Distributions: Preprint

    SciTech Connect (OSTI)

    Hodge, B. M.; Florita, A.; Orwig, K.; Lew, D.; Milligan, M.

    2012-07-01

    The introduction of large amounts of variable and uncertain power sources, such as wind power, into the electricity grid presents a number of challenges for system operations. One issue involves the uncertainty associated with scheduling power that wind will supply in future timeframes. However, this is not an entirely new challenge; load is also variable and uncertain, and is strongly influenced by weather patterns. In this work we make a comparison between the day-ahead forecasting errors encountered in wind power forecasting and load forecasting. The study examines the distribution of errors from operational forecasting systems in two different Independent System Operator (ISO) regions for both wind power and load forecasts at the day-ahead timeframe. The day-ahead timescale is critical in power system operations because it serves the unit commitment function for slow-starting conventional generators.

  19. Madison Wind Power Project | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QA J-E-1 SECTION J APPENDIXsource HistoryScenarios Towards 2050EnermarGeneration Jump to:New York: EnergyWind Power

  20. WIND AND WATER POWER TECHNOLOGIES OFFICE

    Broader source: Energy.gov (indexed) [DOE]

    AND WATER POWER TECHNOLOGIES OFFICE August 20, 2014 2 2013 Wind Technologies Market Report Purpose, Scope, and Data: * Publicly available annual report summarizing key trends in...

  1. Wind Power Forecasting Error Frequency Analyses for Operational Power System Studies: Preprint

    SciTech Connect (OSTI)

    Florita, A.; Hodge, B. M.; Milligan, M.

    2012-08-01

    The examination of wind power forecasting errors is crucial for optimal unit commitment and economic dispatch of power systems with significant wind power penetrations. This scheduling process includes both renewable and nonrenewable generators, and the incorporation of wind power forecasts will become increasingly important as wind fleets constitute a larger portion of generation portfolios. This research considers the Western Wind and Solar Integration Study database of wind power forecasts and numerical actualizations. This database comprises more than 30,000 locations spread over the western United States, with a total wind power capacity of 960 GW. Error analyses for individual sites and for specific balancing areas are performed using the database, quantifying the fit to theoretical distributions through goodness-of-fit metrics. Insights into wind-power forecasting error distributions are established for various levels of temporal and spatial resolution, contrasts made among the frequency distribution alternatives, and recommendations put forth for harnessing the results. Empirical data are used to produce more realistic site-level forecasts than previously employed, such that higher resolution operational studies are possible. This research feeds into a larger work of renewable integration through the links wind power forecasting has with various operational issues, such as stochastic unit commitment and flexible reserve level determination.

  2. Wind Farm Power System Model Development: Preprint

    SciTech Connect (OSTI)

    Muljadi, E.; Butterfield, C. P.

    2004-07-01

    In some areas, wind power has reached a level where it begins to impact grid operation and the stability of local utilities. In this paper, the model development for a large wind farm will be presented. Wind farm dynamic behavior and contribution to stability during transmission system faults will be examined.

  3. Wind Powering America's Wind for Schools Project: Summary Report

    SciTech Connect (OSTI)

    Baring-Gould, I.; Newcomb, C.

    2012-06-01

    This report provides an overview of the U.S. Department of Energy, Wind Powering America, Wind for Schools project. It outlines teacher-training activities and curriculum development; discusses the affiliate program that allows school districts and states to replicate the program; and contains reports that provide an update on activities and progress in the 11 states in which the Wind for Schools project operates.

  4. Models for Assessing Power Fluctuations from Large Wind Farms N. A. Cutululis1)

    E-Print Network [OSTI]

    that the active power supplied from the first large 160 MW offshore wind farm in this system, Horns Rev today). Figure 1. Power generation of Horns Rev offshore wind farm and onshore turbines, January 18 2005Models for Assessing Power Fluctuations from Large Wind Farms N. A. Cutululis1) , P. Sørensen1) , A

  5. A Data Analytics Framework for Smart Grids: Spatio-temporal Wind Power Analysis and Synchrophasor Data Mining

    E-Print Network [OSTI]

    Zhang, Junshan

    A Data Analytics Framework for Smart Grids: Spatio-temporal Wind Power Analysis and Synchrophasor-temporal wind power analysis for wind generation forecast and integration, and II) data mining and information fusion of synchrophasor measurements toward secure power grids. Part I is centered around wind power

  6. 2010 Wind Technologies Market Report

    E-Print Network [OSTI]

    Wiser, Ryan

    2012-01-01

    be provided by wind power generators to provide frequencyof wind power capacity in that state) because generatorsgenerators to provide the needed flexibility to integrate wind power.

  7. Plasma plume MHD power generator and method

    DOE Patents [OSTI]

    Hammer, J.H.

    1993-08-10

    A method is described of generating power at a situs exposed to the solar wind which comprises creating at separate sources at the situs discrete plasma plumes extending in opposed directions, providing electrical communication between the plumes at their source and interposing a desired electrical load in the said electrical communication between the plumes.

  8. WIND POWER PROGRAM WIND PROGRAM ACCOMPLISHMENTS U.S. Department...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    20% of all electricity for the nation by 2030. By December 2013, the U.S. wind industry totaled more than 60,000 MW of installed power capacity, over 20% of the 300,000 MW needed...

  9. Wind power communication Design and implementation

    E-Print Network [OSTI]

    02:14 "Wind power communications ­ Verification report and recommendation". Denna rapport innehåller Gotland. Syftet är med denna rapport är beskriva de tekniska lösningar i form av modeller, system och in a separate Elforsk report, 02:14 "Wind power communications ­ Verification report and recommendation

  10. Wind power development -Status and perspectives

    E-Print Network [OSTI]

    of long-term forecasts for the wind power technology in general shows a decrease in production costs of 2 5.1 US-DOE estimate of the development of wind power costs. 22 5.2 Technology based forecast 23 5 to the Macro Task E1 on pro- duction costs for fusion and alternative technologies, part of the pro- gramme

  11. Xi an Nordex Wind Turbine Co Ltd aka Xi an Weide Wind Power Equipment...

    Open Energy Info (EERE)

    Xi an Nordex Wind Turbine Co Ltd aka Xi an Weide Wind Power Equipment Co Ltd Jump to: navigation, search Name: Xi'an Nordex Wind Turbine Co Ltd (aka Xi'an Weide Wind Power...

  12. Wind Generation on Winnebago Tribal Lands

    SciTech Connect (OSTI)

    Multiple

    2009-09-30

    The Winnebago Wind Energy Study evaluated facility-scale, community-scale and commercial-scale wind development on Winnebago Tribal lands in northeastern Nebraska. The Winnebago Tribe of Nebraska has been pursuing wind development in various forms for nearly ten years. Wind monitoring utilizing loaned met towers from NREL took place during two different periods. From April 2001 to April 2002, a 20-meter met tower monitored wind data at the WinnaVegas Casino on the far eastern edge of the Winnebago reservation in Iowa. In late 2006, a 50-meter tower was installed, and subsequently monitored wind data at the WinnaVegas site from late 2006 through late 2008. Significant challenges with the NREL wind monitoring equipment limited the availability of valid data, but based on the available data, average wind speeds between 13.6 – 14.3 miles were indicated, reflecting a 2+/3- wind class. Based on the anticipated cost of energy produced by a WinnaVegas wind turbine, and the utility policies and rates in place at this time, a WinnaVegas wind project did not appear to make economic sense. However, if substantial grant funding were available for energy equipment at the casino site, and if either Woodbury REC backup rates were lower, or NIPCO was willing to pay more for wind power, a WinnaVegas wind project could be feasible. With funding remaining in the DOE-funded project budget,a number of other possible wind project locations on the Winnebago reservation were considered. in early 2009, a NPPD-owned met tower was installed at a site identified in the study pursuant to a verbal agreement with NPPD which provided for power from any ultimately developed project on the Western Winnebago site to be sold to NPPD. Results from the first seven months of wind monitoring at the Western Winnebago site were as expected at just over 7 meters per second at 50-meter tower height, reflecting Class 4 wind speeds, adequate for commercial development. If wind data collected in the remaining months of the twelve-month collection period is consistent with that collected in the first seven months, the Western Winnebago site may present an interesting opportunity for Winnebago. Given the distance to nearby substations, and high cost of interconnection at higher voltage transmission lines, Winnebago would likely need to be part of a larger project in order to reduce power costs to more attractive levels. Another alternative would be to pursue grant funding for a portion of development or equipment costs, which would also help reduce the cost of power produced. The NREL tower from the WinnaVegas site was taken down in late 2008, re-instrumented and installation attempted on the Thunderway site south of the Winnebago community. Based on projected wind speeds, current equipment costs, and the project’s proximity to substations for possible interconnection, a Thunderway community-scale wind project could also be feasible.

  13. Wind Power: How Much, How Soon, and At What Cost?

    E-Print Network [OSTI]

    Wiser, Ryan H

    2010-01-01

    on U.S. Wind Power Installation, Cost, and Performanceaccess the nation's lowest-cost wind resources can be builtpressure on installed wind project costs while the industry

  14. Global ocean wind power sensitivity to surface layer stability

    E-Print Network [OSTI]

    Capps, Scott B; Zender, Charles S

    2009-01-01

    2005), Evaluation of global wind power, J. Geophys. Res. ,Pryor (2003), Can satellite sampling of offshore wind speedsrealistically represent wind speed distributions? , J. Appl.

  15. RELIABILITY OF WIND POWER FROM DISPERSED SITES: A PRELIMINARY ASSESSMENT

    E-Print Network [OSTI]

    Kahn, E.

    2011-01-01

    Coincidence of Demand and Wind Resource Diurnal PowerOutput Variations for Three Wind Regimes List of TablesCAPACITY CREDIT FOR WIND ARRAYS: THE PROBLEM . . . . . . .

  16. Value of Wind Power Forecasting

    SciTech Connect (OSTI)

    Lew, D.; Milligan, M.; Jordan, G.; Piwko, R.

    2011-04-01

    This study, building on the extensive models developed for the Western Wind and Solar Integration Study (WWSIS), uses these WECC models to evaluate the operating cost impacts of improved day-ahead wind forecasts.

  17. The Worst-case Wind Power Scenario for Adaptive Robust Unit ...

    E-Print Network [OSTI]

    Sep 16, 2014 ... Abstract: Abstract--- The increasing penetration of uncertain generation such as wind and solar in power systems imposes new challenges to ...

  18. Structural optimisation of permanent magnet direct drive generators for 5MW wind turbines 

    E-Print Network [OSTI]

    Zavvos, Aristeidis

    2013-11-28

    This thesis focuses on permanent magnet "direct drive" electrical generators for wind turbines with large power output. A variety of such generator topologies is reviewed, tested and optimised in an attempt to increase ...

  19. RELIABILITY OF WIND POWER FROM DISPERSED SITES: A PRELIMINARY ASSESSMENT

    E-Print Network [OSTI]

    Kahn, E.

    2011-01-01

    ON METHODOLOGY: FROM WIND POWER FREQUENCY TO LOSS-OF-LOADJ.P. , "Some Aspects of Wind Power Statistics, " J. of Appl.S£CTION Reliability of Wind Power From Dispersed Sites: A Pr

  20. The Political Economy of Wind Power in China

    E-Print Network [OSTI]

    Swanson, Ryan Landon

    2011-01-01

    adds 18.9 GW of new wind power capacity in 2010. ? GlobalEnd Challenged Subsidies in Wind Power Case. ? Internationalemergence in the global wind power industry. ? Ph. D.

  1. Global ocean wind power sensitivity to surface layer stability

    E-Print Network [OSTI]

    Capps, Scott B; Zender, Charles S

    2009-01-01

    Evaluation of global wind power, J. Geophys. Res. , 110,W. Tang, and X. Xie (2008), Wind power distribution over theApproach to Short-Term Wind Power Prediction, 1st ed. ,

  2. A Comparative Analysis of Community Wind Power Development Models

    E-Print Network [OSTI]

    Bolinger, Mark; Wiser, Ryan; Wind, Tom; Juhl, Dan; Grace, Robert; West, Peter

    2005-01-01

    Whip Up Hopes for Wind Power Again. ” The Wall StreetProduction Tax Credit for Wind Power. LBNL-51465. Berkeley,This combination is making wind power an important new cash

  3. Wind Power: How Much, How Soon, and At What Cost?

    E-Print Network [OSTI]

    Wiser, Ryan H

    2010-01-01

    Evaluation of Global Wind Power." Journal of Geophysical2008. "The Economics of Wind Power with Energy Storage."Economics of Large-Scale Wind Power in a Carbon Constrained

  4. Wind Power Price Trends in the United States

    E-Print Network [OSTI]

    Bolinger, Mark

    2010-01-01

    should eventually help wind power regain the downward priceModern Energy Review] Wind Power Price Trends in the Unitedled the world in adding new wind power capacity in 2008, and

  5. The Political Economy of Wind Power in China

    E-Print Network [OSTI]

    Swanson, Ryan Landon

    2011-01-01

    in this paper, not offshore wind power—a very small yetthe press declaring offshore wind power to be cheaper thanfully occupied and offshore wind power resources grabbed in

  6. Variability of wind power near Oklahoma City and implications for siting of wind turbines

    SciTech Connect (OSTI)

    Kessler, E.; Eyster, R.

    1987-09-01

    Data from five sites near Oklahoma City were examined to assess wind power availability. Wind turbines of identical manufacture were operated at three of the sites, one of which was also equipped with anemometers on a 100-ft tower. Comprehensive anemometric data were available from the other two sites. The study indicates that the average wind speed varies substantially over Oklahoma's rolling plains, which have often been nominally regarded as flat for purposes of wind power generation. Average wind differences may be as much as 5 mph at 20 ft above ground level, and 7 mph at 100 ft above ground level for elevation differences of about 200 ft above mean sea level, even in the absence of substantial features of local terrain. Local altitude above mean sea level seems to be as influential as the shape of local terrain in determining the average wind speed. The wind turbine used at a meteorologically instrumented site in the study produced the power expected from it for the wind regime in which it was situated. The observed variations of local wind imply variations in annual kWh of as much as a factor of four between identical turbines located at similar heights above ground level in shallow valleys and on hilltops or elevated extended flat areas. 17 refs., 39 figs., 11 tabs.

  7. Next-Generation Wind Technology | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    and reliability of next-generation wind technologies while lowering the cost of wind energy. The program's research efforts have helped to increase the average capacity...

  8. Optimal distributed power generation under network load constraints

    E-Print Network [OSTI]

    Utrecht, Universiteit

    , small wind turbine or central heating power units) can be inserted into any transmission line, mainly because of the development of novel components for decentral power generation (solar panels, small wind turbines and heat pumps). This gives rise to the question how many units of each type (solar panel

  9. GEOTHERMAL POWER GENERATION PLANT

    SciTech Connect (OSTI)

    Boyd, Tonya

    2013-12-01

    Oregon Institute of Technology (OIT) drilled a deep geothermal well on campus (to 5,300 feet deep) which produced 196oF resource as part of the 2008 OIT Congressionally Directed Project. OIT will construct a geothermal power plant (estimated at 1.75 MWe gross output). The plant would provide 50 to 75 percent of the electricity demand on campus. Technical support for construction and operations will be provided by OIT’s Geo-Heat Center. The power plant will be housed adjacent to the existing heat exchange building on the south east corner of campus near the existing geothermal production wells used for heating campus. Cooling water will be supplied from the nearby cold water wells to a cooling tower or air cooling may be used, depending upon the type of plant selected. Using the flow obtained from the deep well, not only can energy be generated from the power plant, but the “waste” water will also be used to supplement space heating on campus. A pipeline will be construction from the well to the heat exchanger building, and then a discharge line will be construction around the east and north side of campus for anticipated use of the “waste” water by facilities in an adjacent sustainable energy park. An injection well will need to be drilled to handle the flow, as the campus existing injection wells are limited in capacity.

  10. Aalborg Universitet Methodologies for Wind Turbine and STATCOM Integration in Wind Power Plant

    E-Print Network [OSTI]

    Bak, Claus Leth

    Aalborg Universitet Methodologies for Wind Turbine and STATCOM Integration in Wind Power Plant Integration in Wind Power Plant Models for Harmonic Resonances Assessment. In Proceedings of the 14th Wind Integration Workshop: International Workshop on Large-Scale Integration of Wind Power into Power Systems

  11. The Answer Is Blowing in the Wind: Analysis of Powering Internet Data Centers with Wind Energy

    E-Print Network [OSTI]

    The Answer Is Blowing in the Wind: Analysis of Powering Internet Data Centers with Wind Energy Yan. As a result, many IDC operators have started using renewable energy, e.g., wind power, to power their data of real-world wind power traces from 69 wind farms. The idea is to leverage the front-end load dispatching

  12. Reactive power control of grid-connected wind farm based on adaptive dynamic programming

    E-Print Network [OSTI]

    He, Haibo

    Reactive power control of grid-connected wind farm based on adaptive dynamic programming Yufei Tang and integration with the grid. This controller can effectively dampen the oscillation of the wind farm system under grid fault. In general, there are mainly three kinds of wind power generators: squirrel

  13. Energy Policy 35 (2007) 15841598 Public opinion about large offshore wind power: Underlying factors

    E-Print Network [OSTI]

    Firestone, Jeremy

    2007-01-01

    Energy Policy 35 (2007) 1584­1598 Public opinion about large offshore wind power: Underlying opinion regarding offshore wind power based on a survey of residents near a proposed development off Cape, the first offshore wind proposal in North America, in Nantucket Sound (MA, USA) has generated a strong

  14. Demand Side Management for Wind Power Integration in Microgrid Using Dynamic Potential Game Theory

    E-Print Network [OSTI]

    Huang, Jianwei

    Demand Side Management for Wind Power Integration in Microgrid Using Dynamic Potential Game Theory the intermittency in wind power generation. Our focus is on an isolated microgrid with one wind turbine, one fast supply and demand in an isolated microgrid [2], which is an important concept for renewable energy

  15. Aalborg Universitet Individual Pitch Control for Mitigation of Power Fluctuation of Variable Speed Wind

    E-Print Network [OSTI]

    Hu, Weihao

    angles are adjusted separately according to the generator output power and the azimuth angle of the wind Wind Turbines Zhang, Yunqian; Hu, Weihao; Chen, Zhe; Cheng, Ming Published in: Proceedings of the 10th Pitch Control for Mitigation of Power Fluctuation of Variable Speed Wind Turbines. In Proceedings

  16. Dynamic Simulation Studies of the Frequency Response of the Three U.S. Interconnections with Increased Wind Generation

    E-Print Network [OSTI]

    Mackin, Peter

    2011-01-01

    the power factor. Type 2 Wind Turbine Generator (Wound Rotorwind Time (Seconds) Figure 2-5. The Power Delivered by Primary Frequency Control Actions Provided by GeneratorWind .. 20   Figure 3- 5. The Power Delivered (and Load Removed) by Primary Frequency Control Actions via Generator

  17. Analysis of Wind Power Ramping Behavior in ERCOT

    SciTech Connect (OSTI)

    Wan, Y. H.

    2011-03-01

    This report analyzes the wind power ramping behavior using 10-minute and hourly average wind power data from ERCOT and presents statistical properties of the large ramp events.

  18. Environmental Impacts of Wind Power Development on the Population...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Environmental Impacts of Wind Power Development on the Population Biology of Greater Prairie-Chickens Environmental Impacts of Wind Power Development on the Population Biology of...

  19. National Renewable Energy Laboratory Wind and Water Power Small...

    Office of Environmental Management (EM)

    National Renewable Energy Laboratory Wind and Water Power Small Business Voucher Open House National Renewable Energy Laboratory Wind and Water Power Small Business Voucher Open...

  20. Characterizing wind power resource reliability in southern Africa...

    Office of Scientific and Technical Information (OSTI)

    DOE PAGES Search Results Published Article: Characterizing wind power resource reliability in southern Africa Title: Characterizing wind power resource reliability in southern...

  1. Conventional Hydropower Technologies, Wind And Water Power Program...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Conventional Hydropower Technologies, Wind And Water Power Program (WWPP) (Fact Sheet) Conventional Hydropower Technologies, Wind And Water Power Program (WWPP) (Fact Sheet) The US...

  2. Wind Power Reliability: Breaking Down a Barrier

    Broader source: Energy.gov [DOE]

    The steady increase of wind power on the grid presents new challenges for power system operators charged with making sure the grid stays up and running. "We need to ensure that we are going down a path that will lead to better reliability [with wind power]," said Bob Zavadil, an executive vice president at EnerNex Corporation in Knoxville, Tenn., a firm specializing in renewable energy grid interconnection and integration. "If this piece isn't done, there will be problems." EnerNex has spent the last decade perfecting wind turbine and plant models that test a wind plant's influence on the grid and its ability to provide grid support. In its latest effort, the company is using American Recovery and Reinvestment Act funds worth $750,000 to develop documentation and validations of computer wind turbine models.

  3. Wind Powering America Webinar: Wind Power Economics: Past, Present...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Past, Present, and Future Trends November 23, 2011 - 1:43pm Addthis Wind turbine prices in the United States have declined, on average, by nearly one-third since 2008, after...

  4. Challenges in Predicting Power Output from Offshore Wind Farms

    E-Print Network [OSTI]

    Pryor, Sara C.

    Challenges in Predicting Power Output from Offshore Wind Farms R. J. Barthelmie1 and S. C. Pryor2 Abstract: Offshore wind energy is developing rapidly in Europe and the trend is towards large wind farms an offshore wind farm, accurate assessment of the wind resource/power output from the wind farm is a necessity

  5. Wind power forecasting : state-of-the-art 2009.

    SciTech Connect (OSTI)

    Monteiro, C.; Bessa, R.; Miranda, V.; Botterud, A.; Wang, J.; Conzelmann, G.; Decision and Information Sciences; INESC Porto

    2009-11-20

    Many countries and regions are introducing policies aimed at reducing the environmental footprint from the energy sector and increasing the use of renewable energy. In the United States, a number of initiatives have been taken at the state level, from renewable portfolio standards (RPSs) and renewable energy certificates (RECs), to regional greenhouse gas emission control schemes. Within the U.S. Federal government, new energy and environmental policies and goals are also being crafted, and these are likely to increase the use of renewable energy substantially. The European Union is pursuing implementation of its ambitious 20/20/20 targets, which aim (by 2020) to reduce greenhouse gas emissions by 20% (as compared to 1990), increase the amount of renewable energy to 20% of the energy supply, and reduce the overall energy consumption by 20% through energy efficiency. With the current focus on energy and the environment, efficient integration of renewable energy into the electric power system is becoming increasingly important. In a recent report, the U.S. Department of Energy (DOE) describes a model-based scenario, in which wind energy provides 20% of the U.S. electricity demand in 2030. The report discusses a set of technical and economic challenges that have to be overcome for this scenario to unfold. In Europe, several countries already have a high penetration of wind power (i.e., in the range of 7 to 20% of electricity consumption in countries such as Germany, Spain, Portugal, and Denmark). The rapid growth in installed wind power capacity is expected to continue in the United States as well as in Europe. A large-scale introduction of wind power causes a number of challenges for electricity market and power system operators who will have to deal with the variability and uncertainty in wind power generation when making their scheduling and dispatch decisions. Wind power forecasting (WPF) is frequently identified as an important tool to address the variability and uncertainty in wind power and to more efficiently operate power systems with large wind power penetrations. Moreover, in a market environment, the wind power contribution to the generation portofolio becomes important in determining the daily and hourly prices, as variations in the estimated wind power will influence the clearing prices for both energy and operating reserves. With the increasing penetration of wind power, WPF is quickly becoming an important topic for the electric power industry. System operators (SOs), generating companies (GENCOs), and regulators all support efforts to develop better, more reliable and accurate forecasting models. Wind farm owners and operators also benefit from better wind power prediction to support competitive participation in electricity markets against more stable and dispatchable energy sources. In general, WPF can be used for a number of purposes, such as: generation and transmission maintenance planning, determination of operating reserve requirements, unit commitment, economic dispatch, energy storage optimization (e.g., pumped hydro storage), and energy trading. The objective of this report is to review and analyze state-of-the-art WPF models and their application to power systems operations. We first give a detailed description of the methodologies underlying state-of-the-art WPF models. We then look at how WPF can be integrated into power system operations, with specific focus on the unit commitment problem.

  6. Quadrennial Technology Review 2015: Technology Assessments--Wind Power

    SciTech Connect (OSTI)

    none,

    2015-10-07

    Wind power has become a mainstream power source in the U.S. electricity portfolio, supplying 4.9% of the nation’s electricity demand in 2014. With more than 65 GW installed across 39 states at the end of 2014, utility-scale wind power is a cost-effective source of low-emissions power generation throughout much of the nation. The United States has significant sustainable land-based and offshore wind resource potential, greater than 10 times current total U.S. electricity consumption. A technical wind resource assessment conducted by the Department of Energy (DOE) in 2009 estimated that the land-based wind energy potential for the contiguous United States is equivalent to 10,500 GW capacity at 80 meters (m) hub and 12,000 GW capacity at 100 meters (m) hub heights, assuming a capacity factor of at least 30%. A subsequent 2010 DOE report estimated the technical offshore wind energy potential to be 4,150 GW. The estimate was calculated from the total offshore area within 50 nautical miles of shore in areas where average annual wind speeds are at least 7 m per second at a hub height of 90 m.

  7. Wind Power Amercia Final Report

    SciTech Connect (OSTI)

    Brian Spangler, Kathi Montgomery and Paul Cartwright

    2012-01-30

    The objective of this grant was to further the development of Montana�¢����s vast wind resources for small, medium and large scale benefits to Montana and the nation. This was accomplished through collaborative work with wind industry representatives, state and local governments, the agricultural community and interested citizens. Through these efforts DEQ was able to identify development barriers, educate and inform citizens as well as participate in regional and national dialogue that will spur the development of wind resources.

  8. Power control of a wind farm with active stall wind turbines and AC grid connection

    E-Print Network [OSTI]

    Power control of a wind farm with active stall wind turbines and AC grid connection Anca D. Hansen1 on the wind farm level. The ability of active stall wind farms with AC grid connection to regulate the power, is therefore directed towards optimising the integration of large wind farms within the electrical power grid

  9. Making european-style community wind power development work in the United States

    E-Print Network [OSTI]

    Bolinger, Mark A.

    2004-01-01

    Support for Community Wind Power Development. LBNL-54715.at 2003 Oklahoma Wind Power and Bioenergy Conference, JuneWind. 2001. Distributed Wind Power Assessment. Prepared for

  10. U.S. Department of Energy Wind and Water Power Program Funding...

    Broader source: Energy.gov (indexed) [DOE]

    OFFSHORE WIND PROJECTS Fiscal Years 2006 - 2015 WIND AND WATER POWER TECHNOLOGIES OFFICE WIND AND WATER POWER TECHNOLOGIES OFFICE WIND AND WATER POWER TECHNOLOGIES OFFICE 1...

  11. U.S. Department of Energy Wind and Water Power Program Funding...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    OFFSHORE WIND PROJECTS Fiscal Years 2006 - 2014 WIND AND WATER POWER TECHNOLOGIES OFFICE WIND AND WATER POWER TECHNOLOGIES OFFICE WIND AND WATER POWER TECHNOLOGIES OFFICE 1...

  12. Stability effects of frequency controllers and transmission line configurations on power systems with integration of wind power

    E-Print Network [OSTI]

    Abdelhalim, Hussein Mohamed

    2012-01-01

    This thesis investigates the stability effects of the integration of wind power on multi-machine power systems. First, the small-signal stability effects of turbine governors connected to synchronous generators in the ...

  13. Wind Powering America FY06 Activities Summary

    SciTech Connect (OSTI)

    Not Available

    2007-02-01

    The Wind Powering America FY06 Activities Summary reflects the accomplishments of our state wind working groups, our programs at the National Renewable Energy Laboratory, and our partner organizations. The national WPA team remains a leading force for moving wind energy forward in the United States. WPA continues to work with its national, regional, and state partners to communicate the opportunities and benefits of wind energy to a diverse set of stakeholders. WPA now has 29 state wind working groups (welcoming New Jersey, Indiana, Illinois, and Missouri in 2006) that form strategic alliances to communicate wind's benefits to the state stakeholders. More than 120 members of national and state public and private sector organizations from 34 states attended the 5th Annual WPA All-States Summit in Pittsburgh in June.

  14. Fenton Wind Power Project | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QA J-E-1 SECTION J APPENDIX ECoopButtePowerEdisto Electric Coop,ErosionNewCoalFarmlandExpress JumpWindWindWind Power

  15. Desert Wind Power | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QA J-E-1 SECTION J APPENDIX ECoopButtePower VenturesInformation9) WindGridDeepiSolar and WindQueenWind Power

  16. A Disturbance Margin For Quantifying Limits on Power Smoothing by Wind Turbines

    E-Print Network [OSTI]

    Maggiore, Manfredi

    the robustness of other control laws. Index Terms Wind power generation, Nonlinear systems, Kinetic energy, State the first assumption. With wind energy systems providing an ever growing portion of total generation, expectation of these systems to support frequency regulation in the power grid is emerging. Proposals

  17. Statkraft is Europe's largest generator of renewable energy and is the leading power company in Norway. The company owns, produces and develops hydropower, wind power, gas-fired power and

    E-Print Network [OSTI]

    Morik, Katharina

    Statkraft is Europe's largest generator of renewable energy and is the leading power company countries. For our office in Düsseldorf we are currently looking to hire a System Manager Renewable Energy. Share our passion for renewable energy and be a part of tomorrow's energy world. Your department

  18. On the Wind Power Input to the Ocean General Circulation

    E-Print Network [OSTI]

    Zhai, Xiaoming

    The wind power input to the ocean general circulation is usually calculated from the time-averaged wind products. Here, this wind power input is reexamined using available observations, focusing on the role of the synoptically ...

  19. Wind Vision: A New Era for Wind Power

    Broader source: Energy.gov (indexed) [DOE]

    power generation...48 Table of Contents List of Figures vii Table of Contents Figure 2-18. Fire Island 17.6-MW project in Alaska...

  20. INTERNATIONAL JOURNAL OF HYDROGEN ENERGY Accepted June 2008 HYDROGEN STORAGE FOR MIXED WIND-NUCLEAR POWER PLANTS IN

    E-Print Network [OSTI]

    Cañizares, Claudio A.

    evaluation of hydrogen production and storage for a mixed wind-nuclear power plant considering some new for existent nuclear and wind power generation facilities. Keywords: hydrogen production, hydrogen storage, hydrogen economy, nuclear power, wind power, electricity markets, mixed-integer stochastic linear

  1. Factors driving wind power development in the United States

    SciTech Connect (OSTI)

    Bird, Lori A.; Parsons, Brian; Gagliano, Troy; Brown, Matthew H.; Wiser, Ryan H.; Bolinger, Mark

    2003-05-15

    In the United States, there has been substantial recent growth in wind energy generating capacity, with growth averaging 24 percent annually during the past five years. About 1,700 MW of wind energy capacity was installed in 2001, while another 410 MW became operational in 2002. This year (2003) shows promise of significant growth with more than 1,500 MW planned. With this growth, an increasing number of states are experiencing investment in wind energy projects. Wind installations currently exist in about half of all U.S. states. This paper explores the key factors at play in the states that have achieved a substantial amount of wind energy investment. Some of the factors that are examined include policy drivers, such as renewable portfolio standards (RPS), federal and state financial incentives, and integrated resource planning; as well as market drivers, such as consumer demand for green power, natural gas price volatility, and wholesale market rules.

  2. Electrokinetic Power Generation from Liquid Water Microjets

    E-Print Network [OSTI]

    Duffin, Andrew M.

    2008-01-01

    Electrokinetic Power Generation from Liquid Water MicrojetsElectrokinetic power generation using liquid water microjetscalculations of power generation and conversion efficiency.

  3. Test Cases for Wind Power Plant Dynamic Models on Real-Time Digital Simulator: Preprint

    SciTech Connect (OSTI)

    Singh, M.; Muljadi, E.; Gevorgian, V.

    2012-06-01

    The objective of this paper is to present test cases for wind turbine generator and wind power plant models commonly used during commissioning of wind power plants to ensure grid integration compatibility. In this paper, different types of wind power plant models based on the Western Electricity Coordinating Council Wind Generator Modeling Group's standardization efforts are implemented on a real-time digital simulator, and different test cases are used to gauge their grid integration capability. The low-voltage ride through and reactive power support capability and limitations of wind turbine generators under different grid conditions are explored. Several types of transient events (e.g., symmetrical and unsymmetrical faults, frequency dips) are included in the test cases. The differences in responses from different types of wind turbine are discussed in detail.

  4. Hybrid Wind Power Balance Control Strategy using Thermal Power, Hydro Power and Flow Batteries

    E-Print Network [OSTI]

    MacDonald, Mark

    Hybrid Wind Power Balance Control Strategy using Thermal Power, Hydro Power and Flow Batteries the con- trolled use of hybrid flow battery, thermal and hydro power plant system, to support wind power on range of thermal and hydro power plant reaction times. This work suggests that power and energy

  5. Distribution of Wind Power Forecasting Errors from Operational Systems (Presentation)

    SciTech Connect (OSTI)

    Hodge, B. M.; Ela, E.; Milligan, M.

    2011-10-01

    This presentation offers new data and statistical analysis of wind power forecasting errors in operational systems.

  6. Forecasting Uncertainty Related to Ramps of Wind Power Production

    E-Print Network [OSTI]

    Boyer, Edmond

    Forecasting Uncertainty Related to Ramps of Wind Power Production Arthur Bossavy, Robin Girard - The continuous improvement of the accuracy of wind power forecasts is motivated by the increasing wind power. This paper presents two methods focusing on forecasting large and sharp variations in power output of a wind

  7. Accuracy of near real time updates in wind power forecasting

    E-Print Network [OSTI]

    Heinemann, Detlev

    Accuracy of near real time updates in wind power forecasting with regard to different weather October 2007 #12;EMS/ECAM 2007 ­ Nadja Saleck Outline · Study site · Wind power forecasting - method #12;EMS/ECAM 2007 ­ Nadja Saleck Wind power forecast data observed wind power input (2004 ­ 2006

  8. Automotive Power Generation and Control

    E-Print Network [OSTI]

    Caliskan, Vahe

    This paper describes some new developments in the application of power electronics to automotive power generation and control. A new load-matching technique is introduced that uses a simple switched-mode rectifier to achieve ...

  9. Methods and apparatus for cooling wind turbine generators

    DOE Patents [OSTI]

    Salamah, Samir A. (Niskayuna, NY); Gadre, Aniruddha Dattatraya (Rexford, NY); Garg, Jivtesh (Schenectady, NY); Bagepalli, Bharat Sampathkumaran (Niskayuna, NY); Jansen, Patrick Lee (Alplaus, NY); Carl, Jr., Ralph James (Clifton Park, NY)

    2008-10-28

    A wind turbine generator includes a stator having a core and a plurality of stator windings circumferentially spaced about a generator longitudinal axis. A rotor is rotatable about the generator longitudinal axis, and the rotor includes a plurality of magnetic elements coupled to the rotor and cooperating with the stator windings. The magnetic elements are configured to generate a magnetic field and the stator windings are configured to interact with the magnetic field to generate a voltage in the stator windings. A heat pipe assembly thermally engaging one of the stator and the rotor to dissipate heat generated in the stator or rotor.

  10. Analysis of wind power ancillary services characteristics with German 250-MW wind data

    SciTech Connect (OSTI)

    Ernst, B.

    1999-12-09

    With the increasing availability of wind power worldwide, power fluctuations have become a concern for some utilities. Under electric industry restructuring in the US, the impact of these fluctuations will be evaluated by examining provisions and costs of ancillary services for wind power. This paper analyzes wind power in the context of ancillary services, using data from a German 250 Megawatt Wind project.

  11. New England Wind Forum: A Wind Powering America Project Volume 1, Issue 3 -- October 2007

    SciTech Connect (OSTI)

    2009-02-26

    Newsletter featuring the latest developments throughout New England in wind power policy, project development, and markets.

  12. New England Wind Forum: A Wind Powering America Project Volume 1, Issue 4 -- May 2008

    SciTech Connect (OSTI)

    2009-02-26

    Newsletter featuring the latest developments throughout New England in wind power policy, project development, and markets.

  13. MSU-Wind Applications Center: Wind Resource Worksheet Theoretical Power Calculation

    E-Print Network [OSTI]

    Dyer, Bill

    MSU-Wind Applications Center: Wind Resource Worksheet Theoretical Power Calculation Equations: A= swept area = air density v= velocity R= universal gas constant Steps: 1. Measure wind speed from fan. = ___________/(________*________)= _________kg/m3 5. Theoretical Power a. Low Setting Theoretical Wind Power i. Power= ½*______*______*______*.59

  14. Wind Power Opportunities in St. Thomas, USVI: A Site-Specific...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    power producer. Assuming WAPA follows a similar model as it has adopted for the generation of utility- scale solar PV generation, the development of a utility-scale wind...

  15. Ramp Forecasting Performance from Improved Short-Term Wind Power Forecasting: Preprint

    SciTech Connect (OSTI)

    Zhang, J.; Florita, A.; Hodge, B. M.; Freedman, J.

    2014-05-01

    The variable and uncertain nature of wind generation presents a new concern to power system operators. One of the biggest concerns associated with integrating a large amount of wind power into the grid is the ability to handle large ramps in wind power output. Large ramps can significantly influence system economics and reliability, on which power system operators place primary emphasis. The Wind Forecasting Improvement Project (WFIP) was performed to improve wind power forecasts and determine the value of these improvements to grid operators. This paper evaluates the performance of improved short-term wind power ramp forecasting. The study is performed for the Electric Reliability Council of Texas (ERCOT) by comparing the experimental WFIP forecast to the current short-term wind power forecast (STWPF). Four types of significant wind power ramps are employed in the study; these are based on the power change magnitude, direction, and duration. The swinging door algorithm is adopted to extract ramp events from actual and forecasted wind power time series. The results show that the experimental short-term wind power forecasts improve the accuracy of the wind power ramp forecasting, especially during the summer.

  16. Hydraulic Wind Power Transfer Technology Afshin Izadian

    E-Print Network [OSTI]

    Zhou, Yaoqi

    Hydraulic Wind Power Transfer Technology Afshin Izadian Purdue School of Engineering and Technology be introduced. Earlier solutions were based on hydraulic power transmission for a single turbine as a promising investment. Hydraulic techniques have not been widely used probably because of the following reasons: 1

  17. Electromagnetic Generators for Portable Power Applications Matthew Kurt Senesky

    E-Print Network [OSTI]

    Sanders, Seth

    -- the electrochemical battery -- has failed to shrink at the same rate as circuits and sensors. While this growing or turbines paired with electrical generators. Producing such a system to run efficiently on the milli to power tools to electric vehicle drives to wind power generation -- that would benefit from high

  18. Reassessing thermodynamic and dynamic constraints on global wind power

    E-Print Network [OSTI]

    Makarieva, A M; Nefiodov, A V; Sheil, D; Nobre, A D; Li, B L

    2015-01-01

    We analyze the determinants of the power output of moist atmospheric air. It is shown to be represented as a sum of terms with different physical meanings and uncertainties. We demonstrate that using a thermodynamic approach to constrain the global power output as a whole, e.g. by considering the entropy budget (Lalibert\\'e et al., 2015), results in a loss of information concerning the rate of kinetic energy generation. We discuss why it is important to find dynamic constraints on wind power and emphasize the role of condensation in the generation of atmospheric circulation.

  19. Energy 101: Wind Turbines

    ScienceCinema (OSTI)

    None

    2013-05-29

    See how wind turbines generate clean electricity from the power of the wind. Highlighted are the various parts and mechanisms of a modern wind turbine.

  20. Energy 101: Wind Turbines

    SciTech Connect (OSTI)

    None

    2011-01-01

    See how wind turbines generate clean electricity from the power of the wind. Highlighted are the various parts and mechanisms of a modern wind turbine.

  1. The amount of power in the wind is very dependent on the speed of the wind. Because the power in the wind

    E-Print Network [OSTI]

    Massachusetts at Amherst, University of

    The amount of power in the wind is very dependent on the speed of the wind. Because the power in the wind is proportional to the cube of the wind speed, small differences in the wind speed make a big. This gives rise to the primary reason for wind re- source assessment. In order to more accurately predict

  2. The Industrialization of Thermoelectric Power Generation Technology...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    The Industrialization of Thermoelectric Power Generation Technology The Industrialization of Thermoelectric Power Generation Technology Presents module and system requirements for...

  3. Grid Impacts of Wind Power Variability: Recent Assessments from a Variety of Utilities in the United States; Preprint

    SciTech Connect (OSTI)

    Parsons, B.; Milligan, M.; Smith, J. C.; DeMeo, E.; Oakleaf, B.; Wolf, K.; Schuerger, M.; Zavadil, R.; Ahlstrom, M.; Nakafuji, D. Y.

    2006-07-01

    Because of wind power's unique characteristics, many concerns are based on the increased variability that wind contributes to the grid, and most U.S. studies have focused on this aspect of wind generation. Grid operators are also concerned about the ability to predict wind generation over several time scales. In this report, we quantify the physical impacts and costs of wind generation on grid operations and the associated costs.

  4. Wind Powering America FY07 Activities Summary

    SciTech Connect (OSTI)

    Not Available

    2008-02-01

    The Wind Powering America FY07 Activities Summary reflects the accomplishments of our state wind working groups, our programs at the National Renewable Energy Laboratory, and our partner organizations. The national WPA team remains a leading force for moving wind energy forward in the United States. WPA continues to work with its national, regional, and state partners to communicate the opportunities and benefits of wind energy to a diverse set of stakeholders. WPA now has 30 state wind working groups (welcoming Georgia and Wisconsin in 2007) that form strategic alliances to communicate wind's benefits to the state stakeholders. More than 140 members of national and state public and private sector organizations from 39 U.S. states and Canada attended the 6th Annual WPA All-States Summit in Los Angeles in June. WPA's emphasis remains on the rural agricultural sector, which stands to reap the significant economic development benefits of wind energy development. Additionally, WPA continues its program of outreach, education, and technical assistance to Native American communities, public power entities, and regulatory and legislative bodies.

  5. Aalborg Universitet Models for HLI analysis of power system with offshore wind farms and distributed

    E-Print Network [OSTI]

    Bak-Jensen, Birgitte

    Aalborg Universitet Models for HLI analysis of power system with offshore wind farms for Offshore Wind farms Publication date: 2008 Document Version Publisher final version (usually the publisher with offshore wind farms and distributed generation. In Proc. of 7th International Workshop on Large- Scale

  6. Sixth Northwest Conservation & Electric Power Plan Cost and Availability of Wind

    E-Print Network [OSTI]

    1 Sixth Northwest Conservation & Electric Power Plan Cost and Availability of Wind Integration and Conservation Council Wind Integration Costs · Reserving capacity for within-hour balancing is costly the system without the need to reserve flexible capacity for within-hour balancing of wind generation #12;3 5

  7. Innovative Applications of O.R. Scheduling electric power production at a wind farm

    E-Print Network [OSTI]

    Kusiak, Andrew

    computations Wind farm Particle swarm optimization Small world network a b s t r a c t We present a model for scheduling power generation at a wind farm, and introduce a particle swarm optimization algorithm) and therefore could be incorporated into an optimization model to assist opera- tors in scheduling wind turbines

  8. Wind turbine generator with improved operating subassemblies

    DOE Patents [OSTI]

    Cheney, Jr., Marvin C. (24 Stonepost Rd., Glastonbury, CT 06033)

    1985-01-01

    A wind turbine includes a yaw spring return assembly to return the nacelle from a position to which it has been rotated by yawing forces, thus preventing excessive twisting of the power cables and control cables. It also includes negative coning restrainers to limit the bending of the flexible arms of the rotor towards the tower, and stop means on the rotor shaft to orient the blades in a vertical position during periods when the unit is upwind when the wind commences. A pendulum pitch control mechanism is improved by orienting the pivot axis for the pendulum arm at an angle to the longitudinal axis of its support arm, and excessive creep is of the synthetic resin flexible beam support for the blades is prevented by a restraining cable which limits the extent of pivoting of the pendulum during normal operation but which will permit further pivoting under abnormal conditions to cause the rotor to stall.

  9. Wind Power: How Much, How Soon, and At What Cost?

    E-Print Network [OSTI]

    Wiser, Ryan H

    2010-01-01

    Energy Technology Industry: A n International Comparison of Windthe Wind & Hydropower Technologies Program, Office of EnergyEnergy Capacity Generation Technology Large Hydropower Small Hydropower Wind

  10. Washington University Can the Sound Generated by Modern Wind Turbines

    E-Print Network [OSTI]

    Salt, Alec N.

    Washington University Can the Sound Generated by Modern Wind Turbines Affect the Health of Those turbines haveWind turbines have been getting biggerbeen getting bigger and bigger....and bigger.... Lars Needs Wind turbines are "green" and areWind turbines are "green" and are contributing to our energy

  11. Wind Powering America: FY09 Activities Summary (Book)

    SciTech Connect (OSTI)

    Not Available

    2010-03-01

    The Wind Powering America FY09 Activities Summary reflects the accomplishments of state Wind Working Groups, WPA programs at the National Renewable Energy Laboratory, and partner organizations.

  12. Wind Powering America FY08 Activities Summary (Book)

    SciTech Connect (OSTI)

    Not Available

    2009-02-01

    The Wind Powering America FY08 Activities Summary reflects the accomplishments of state Wind Working Groups, WPA programs at the National Renewable Energy Laboratory, and partner organizations.

  13. COMMUNICATION VULNERABILITIES AND MITIGATIONS IN WIND POWER SCADA SYSTEMS

    E-Print Network [OSTI]

    1 COMMUNICATION VULNERABILITIES AND MITIGATIONS IN WIND POWER SCADA SYSTEMS American Wind Energy/ Abstract This paper focuses on securing wind power Supervisory Control And Data Acquisition (SCADA) systems security vulnerabilities. To address these new vulnerabilities in wind power SCADA systems, we apply

  14. ForPeerReview PUBLIC ACCEPTANCE OF OFFSHORE WIND POWER

    E-Print Network [OSTI]

    Firestone, Jeremy

    ForPeerReview PUBLIC ACCEPTANCE OF OFFSHORE WIND POWER PROJECTS IN THE UNITED STATES Journal: Wind, Andrew; Minerals Management Service Keywords: offshore wind power, public opinion, social acceptancePeerReview 1 PUBLIC ACCEPTANCE OF OFFSHORE WIND POWER PROJECTS IN THE UNITED STATES Jeremy Firestone*, Willett

  15. BPA Power Generation (pbl/main)

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity ofkandz-cm11 Outreach Home Room News PublicationsAudits & Inspections Audits Generation Hydro Power Wind Power Monthly GSP

  16. Annual Report on U.S. Wind Power Installation, Cost, and Performance Trends: 2006

    E-Print Network [OSTI]

    2008-01-01

    wind project costs, wind turbine transaction prices, projectincreases in the cost of wind turbines. Berkeley Lab hasrising prices wind turbine costs, and therefore wind power

  17. PBS: Wind Power for Educators

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Power More on This Lesson: Select One Lesson Plan This lesson is designed for physical science, earth science, or environmental science classrooms, grades 9-12. Middle school...

  18. Mesofluidic magnetohydrodynamic power generation

    E-Print Network [OSTI]

    Fucetola, Jay J

    2012-01-01

    Much of the previous research into magnetohydrodynamics has involved large-scale systems. This thesis explores the miniaturization and use of devices to convert the power dissipated within an expanding gas flow into ...

  19. GEOTHERMAL POWER GENERATION PLANT

    Broader source: Energy.gov [DOE]

    Project objectives: Drilling a deep geothermal well on the Oregon Institute of Technology campus, Klamath Falls, OR. Constructing a geothermal power plant on the Oregon Institute of Technology campus.

  20. 20% Wind Energy by 2030 - Chapter 6: Wind Power Markets Summary...

    Broader source: Energy.gov (indexed) [DOE]

    Summary slides overviewing wind power markets, growth, applications, and market features 20percentsummarychap6.pdf More Documents & Publications 20% Wind Energy by 2030 - Chapter...

  1. Wind Program: A New Vision for U.S. Wind Power

    SciTech Connect (OSTI)

    2013-05-07

    A link to the New Vision for U.S. Wind Power Web page, which enables stakeholders to provide input on the direction of the wind industry.

  2. This introduction to wind power technology is meant to help communities in considering or planning wind

    E-Print Network [OSTI]

    Massachusetts at Amherst, University of

    This introduction to wind power technology is meant to help communities in considering or planning wind power. It focuses on commercial and medium-scale wind turbine technology that is available in the United States. This fact sheet also discusses the integration of wind power into the electrical grid

  3. Annual Report on U.S. Wind Power Installation, Cost, and Performance Trends: 2006

    E-Print Network [OSTI]

    2008-01-01

    on U.S. Wind Power Installation, Cost, and Performanceand Capital Costs Drive Wind Power Prices. . . . . 14in installed wind project costs, wind turbine transaction

  4. Fenner Wind Power Project | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QA J-E-1 SECTION J APPENDIX ECoopButtePowerEdisto Electric Coop,ErosionNewCoalFarmlandExpress JumpWindWind Power

  5. Study Shows Active Power Controls from Wind May Increase Revenues...

    Broader source: Energy.gov (indexed) [DOE]

    and the University of Colorado (CU). Researchers examined how the contribution of wind power providing active power controls (APC) could benefit the total power system economics,...

  6. Electricity for road transport, flexible power systems and wind...

    Open Energy Info (EERE)

    Electricity for road transport, flexible power systems and wind power (Smart Grid Project) Jump to: navigation, search Project Name Electricity for road transport, flexible power...

  7. Structural responses and power output of a wind turbine are strongly affected by the wind field acting on the wind turbine. Knowledge about the wind field and its

    E-Print Network [OSTI]

    Stanford University

    ABSTRACT Structural responses and power output of a wind turbine are strongly affected by the wind affect the power output and structural responses of a wind turbine. Wind field characteristics are conventionally described by time averaged features, such as mean wind speed, turbulence intensity and power

  8. Effects of Temporal Wind Patterns on the Value of Wind-Generated Electricity in California and the Northwest

    E-Print Network [OSTI]

    Wiser, Ryan H

    2008-01-01

    approach to locating wind farms in the UK," RenewableV. G. Rau, "Optimum siting of wind turbine generators," IEEEoptimal planning for wind energy conver- sion systems over

  9. Effects of Temporal Wind Patterns on the Value of Wind-Generated Electricity in California and the Northwest

    E-Print Network [OSTI]

    Wiser, Ryan H

    2008-01-01

    of wind turbine generators," IEEE Transactions on Energysuch as wind turbines, can contribute both energy andturbine converts about 40 percent of the kinetic energy of wind

  10. RF power generation

    E-Print Network [OSTI]

    Carter, R G

    2011-01-01

    This paper reviews the main types of r.f. power amplifiers which are, or may be, used for particle accelerators. It covers solid-state devices, tetrodes, inductive output tubes, klystrons, magnetrons, and gyrotrons with power outputs greater than 10 kW c.w. or 100 kW pulsed at frequencies from 50 MHz to 30 GHz. Factors affecting the satisfactory operation of amplifiers include cooling, matching and protection circuits are discussed. The paper concludes with a summary of the state of the art for the different technologies.

  11. An experimental and numerical study of wind turbine seismic behavior

    E-Print Network [OSTI]

    Prowell, I.

    2011-01-01

    wind was unavailable, power (from an external electric generator)wind conditions and 22 RPM in higher wind speeds by adjusting the generator power

  12. Wind Power: How Much, How Soon, and At What Cost?

    E-Print Network [OSTI]

    Wiser, Ryan H

    2010-01-01

    Annual Report on U.S. Wind Power Installation, Cost, andand costs for rapid wind energy deployment in the US haveinstalled cost for wind projects in the US has increased

  13. The Political Economy of Wind Power in China

    E-Print Network [OSTI]

    Swanson, Ryan Landon

    2011-01-01

    woes hamper China wind farms‘ push for profitability. ?China adds 18.9 GW of new wind power capacity in 2010. ?Global Wind Energy Council. 6 April 2011. http://

  14. RELIABILITY OF WIND POWER FROM DISPERSED SITES: A PRELIMINARY ASSESSMENT

    E-Print Network [OSTI]

    Kahn, E.

    2011-01-01

    Electric Company, Wind Energy Mission Analysis, COO/2578-C.G. and W.R. Hargraves, Wind Energy Statistics for Largeng Power Supply from Wind Energy Converting Sys t ems, "

  15. Wind Energy in Indian Country: Turning to Wind for the Seventh Generation

    E-Print Network [OSTI]

    Kammen, Daniel M.

    Wind Energy in Indian Country: Turning to Wind for the Seventh Generation by Andrew D. Mills: ___________________________________________ Jane Stahlhut Date #12;Wind Energy in Indian Country A.D. Mills Abstract - ii - Abstract Utility-scale wind projects are increasingly being developed in rural areas of the United States. In the West

  16. Wind Power Today: Building a New Energy Future, Wind and Hydropower Technologies Program 2009 (Brochure)

    SciTech Connect (OSTI)

    Not Available

    2009-04-01

    Wind Power Today is an annual publication that provides an overview of the wind energy research conducted by the U.S. Department of Energy Wind and Hydropower Technologies Program.

  17. Toward Controlled Wind Farm Output: Adjustable Power Filtering

    E-Print Network [OSTI]

    Maggiore, Manfredi

    1 Toward Controlled Wind Farm Output: Adjustable Power Filtering Barry G. Rawn, Student Member research into the limits on controllable power output from wind energy conversion systems. The viewpoint methodology that specifies the delivered power as a filtered version of available wind power. Simulation

  18. Wind Power Career Chat, Wind And Water Power Program (WWPP)

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantityBonneville Power AdministrationRobust,Field-effectWorking WithTelecentricNCubicthe FOIA?ResourceMeasurement Buoy

  19. Value of Storage for Wind Power Producers in Forward Power Markets

    E-Print Network [OSTI]

    Zhao, Yue

    for integrating wind energy into the electric grid is to let wind power producers (WPPs) participateValue of Storage for Wind Power Producers in Forward Power Markets Milind Rao, Mainak Chowdhury, Yue Zhao, Tara Javidi, Andrea Goldsmith Abstract--Wind power producers (WPPs) that sell power

  20. Active Power Control Testing at the U.S. National Wind Technology Center (NWTC) (Presentation)

    SciTech Connect (OSTI)

    Ela, E.

    2011-01-01

    In order to keep the electricity grid stable and the lights on, the power system relies on certain responses from its generating fleet. This presentation evaluates the potential for wind turbines and wind power plants to provide these services and assist the grid during critical times.

  1. Considering Air Density in Wind Power Production

    E-Print Network [OSTI]

    Zénó Farkas

    2011-03-11

    In the wind power production calculations the air density is usually considered as constant in time. Using the CIPM-2007 equation for the density of moist air as a function of air temperature, air pressure and relative humidity, we show that it is worth taking the variation of the air density into account, because higher accuracy can be obtained in the calculation of the power production for little effort.

  2. Considering Air Density in Wind Power Production

    E-Print Network [OSTI]

    Farkas, Zénó

    2011-01-01

    In the wind power production calculations the air density is usually considered as constant in time. Using the CIPM-2007 equation for the density of moist air as a function of air temperature, air pressure and relative humidity, we show that it is worth taking the variation of the air density into account, because higher accuracy can be obtained in the calculation of the power production for little effort.

  3. Development and testing of improved statistical wind power forecasting methods.

    SciTech Connect (OSTI)

    Mendes, J.; Bessa, R.J.; Keko, H.; Sumaili, J.; Miranda, V.; Ferreira, C.; Gama, J.; Botterud, A.; Zhou, Z.; Wang, J. (Decision and Information Sciences); (INESC Porto)

    2011-12-06

    Wind power forecasting (WPF) provides important inputs to power system operators and electricity market participants. It is therefore not surprising that WPF has attracted increasing interest within the electric power industry. In this report, we document our research on improving statistical WPF algorithms for point, uncertainty, and ramp forecasting. Below, we provide a brief introduction to the research presented in the following chapters. For a detailed overview of the state-of-the-art in wind power forecasting, we refer to [1]. Our related work on the application of WPF in operational decisions is documented in [2]. Point forecasts of wind power are highly dependent on the training criteria used in the statistical algorithms that are used to convert weather forecasts and observational data to a power forecast. In Chapter 2, we explore the application of information theoretic learning (ITL) as opposed to the classical minimum square error (MSE) criterion for point forecasting. In contrast to the MSE criterion, ITL criteria do not assume a Gaussian distribution of the forecasting errors. We investigate to what extent ITL criteria yield better results. In addition, we analyze time-adaptive training algorithms and how they enable WPF algorithms to cope with non-stationary data and, thus, to adapt to new situations without requiring additional offline training of the model. We test the new point forecasting algorithms on two wind farms located in the U.S. Midwest. Although there have been advancements in deterministic WPF, a single-valued forecast cannot provide information on the dispersion of observations around the predicted value. We argue that it is essential to generate, together with (or as an alternative to) point forecasts, a representation of the wind power uncertainty. Wind power uncertainty representation can take the form of probabilistic forecasts (e.g., probability density function, quantiles), risk indices (e.g., prediction risk index) or scenarios (with spatial and/or temporal dependence). Statistical approaches to uncertainty forecasting basically consist of estimating the uncertainty based on observed forecasting errors. Quantile regression (QR) is currently a commonly used approach in uncertainty forecasting. In Chapter 3, we propose new statistical approaches to the uncertainty estimation problem by employing kernel density forecast (KDF) methods. We use two estimators in both offline and time-adaptive modes, namely, the Nadaraya-Watson (NW) and Quantilecopula (QC) estimators. We conduct detailed tests of the new approaches using QR as a benchmark. One of the major issues in wind power generation are sudden and large changes of wind power output over a short period of time, namely ramping events. In Chapter 4, we perform a comparative study of existing definitions and methodologies for ramp forecasting. We also introduce a new probabilistic method for ramp event detection. The method starts with a stochastic algorithm that generates wind power scenarios, which are passed through a high-pass filter for ramp detection and estimation of the likelihood of ramp events to happen. The report is organized as follows: Chapter 2 presents the results of the application of ITL training criteria to deterministic WPF; Chapter 3 reports the study on probabilistic WPF, including new contributions to wind power uncertainty forecasting; Chapter 4 presents a new method to predict and visualize ramp events, comparing it with state-of-the-art methodologies; Chapter 5 briefly summarizes the main findings and contributions of this report.

  4. Spin Seebeck power generators

    SciTech Connect (OSTI)

    Cahaya, Adam B.; Tretiakov, O. A. [Institute for Materials Research, Tohoku University, Sendai 980-8577 (Japan); Bauer, Gerrit E. W. [Institute for Materials Research and WPI-AIMR, Tohoku University, Sendai 980-8577 (Japan); Kavli Institute of NanoScience, TU Delft Lorentzweg 1, 2628 CJ Delft (Netherlands)

    2014-01-27

    We derive expressions for the efficiency and figure of merit of two spin caloritronic devices based on the spin Seebeck effect (SSE), i.e., the generation of spin currents by a temperature gradient. The inverse spin Hall effect is conventionally used to detect the SSE and offers advantages for large area applications. We also propose a device that converts spin current into electric one by means of a spin-valve detector, which scales favorably to small sizes and approaches a figure of merit of 0.5 at room temperature.

  5. WindTurbineGenerator Introduction of the Renewable Micro-Grid Test-Bed

    E-Print Network [OSTI]

    Johnson, Eric E.

    Introduction of the Renewable Micro-Grid Test-Bed Dr. Wenxin Liu Smart Micro-grid and Renewable Technology/AC Inverter Wind Turbine: Torque or Speed Control Wind Generator: PQ Control Cubicle #4: Energy Storage - ± 70A Renewable Microgrid Shipboard Power System ZEDSZEDS ZEDSZEDS ZEDS PDM PDM PMM PMM PDM PMM PMM PDM

  6. Wind Power Plant Prediction by Using Neural Networks: Preprint

    SciTech Connect (OSTI)

    Liu, Z.; Gao, W.; Wan, Y. H.; Muljadi, E.

    2012-08-01

    This paper introduces a method of short-term wind power prediction for a wind power plant by training neural networks based on historical data of wind speed and wind direction. The model proposed is shown to achieve a high accuracy with respect to the measured data.

  7. The KAMM/WAsP Numerical Wind Atlas A powerful ingredient for wind energy planning

    E-Print Network [OSTI]

    The KAMM/WAsP Numerical Wind Atlas A powerful ingredient for wind energy planning J. Badger, N.G. Mortensen, J.C. Hansen Wind Energy Department Risø National Laboratory Great Wall World Renewable Energy Forum Beijing, 23-27 October 2006 #12;Wind Farm Planning National Wind Atlas Environmental Atlases Maps

  8. Wind turbine/generator set and method of making same

    DOE Patents [OSTI]

    Bevington, Christopher M.; Bywaters, Garrett L.; Coleman, Clint C.; Costin, Daniel P.; Danforth, William L.; Lynch, Jonathan A.; Rolland, Robert H.

    2013-06-04

    A wind turbine comprising an electrical generator that includes a rotor assembly. A wind rotor that includes a wind rotor hub is directly coupled to the rotor assembly via a simplified connection. The wind rotor and generator rotor assembly are rotatably mounted on a central spindle via a bearing assembly. The wind rotor hub includes an opening having a diameter larger than the outside diameter of the central spindle adjacent the bearing assembly so as to allow access to the bearing assembly from a cavity inside the wind rotor hub. The spindle is attached to a turret supported by a tower. Each of the spindle, turret and tower has an interior cavity that permits personnel to traverse therethrough to the cavity of the wind rotor hub. The wind turbine further includes a frictional braking system for slowing, stopping or keeping stopped the rotation of the wind rotor and rotor assembly.

  9. Ex post analysis of economic impacts from wind power development in U.S. counties

    E-Print Network [OSTI]

    Brown, Jason P

    2014-01-01

    Figure 1. Location of Wind Power Development in the UnitedFigure 4: Total Installed Wind Power Capacity (MW): 2000 -development impacts of wind power installations. References

  10. Community wind power ownership schemes in Europe and their relevance to the United States

    E-Print Network [OSTI]

    Bolinger, Mark

    2001-01-01

    Andersen, P.D. 1998. Wind Power in Denmark: Technology,Inc. 1998. Distributed Wind Power Assessment. Draft reportwww.stem.se Swedish Wind Power Association. 2001. Current

  11. Evergreen Wind Power LLC | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QA J-E-1 SECTIONRobertsdale, AlabamaETEC GmbH JumpEllenville,PowerEvaporative Coolers Jump to:Wind LLCSecuritiesWind

  12. Wind Power Associates LLC | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QA J-E-1 SECTION J APPENDIX E LIST OFAMERICA'SHeavyAgencyTendo New EnergyWindState GridWind TurbinesproLtdPower

  13. Wind and Power | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QA J-E-1 SECTION J APPENDIX E LIST OFAMERICA'SHeavyAgencyTendo New EnergyWindState GridWindLtd Jump to:SmartPower

  14. Wind to Power Systems | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QA J-E-1 SECTION J APPENDIX E LIST OFAMERICA'SHeavyAgencyTendo New EnergyWindState GridWindLtd JumpPower Systems

  15. Islanded Grid Wind Power Conference | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Islanded Grid Wind Power Conference Islanded Grid Wind Power Conference March 4, 2015 8:00AM AKST to March 6, 2015 5:00PM AKST Alaska Pacific University 4101 University Drive...

  16. Alternative methods of modeling wind generation using production cost models

    SciTech Connect (OSTI)

    Milligan, M.R. [National Renewable Energy Lab., Golden, CO (United States)] [National Renewable Energy Lab., Golden, CO (United States); Pang, C.K. [P Plus Corp., Cupertino, CA (United States)] [P Plus Corp., Cupertino, CA (United States)

    1996-08-01

    This paper examines the methods of incorporating wind generation in two production costing models: one is a load duration curve (LDC) based model and the other is a chronological-based model. These two models were used to evaluate the impacts of wind generation on two utility systems using actual collected wind data at two locations with high potential for wind generation. The results are sensitive to the selected wind data and the level of benefits of wind generation is sensitive to the load forecast. The total production cost over a year obtained by the chronological approach does not differ significantly from that of the LDC approach, though the chronological commitment of units is more realistic and more accurate. Chronological models provide the capability of answering important questions about wind resources which are difficult or impossible to address with LDC models.

  17. Atmospheric Stability Impacts on Power Curves of Tall Wind Turbines - An Analysis of a West Coast North American Wind Farm

    SciTech Connect (OSTI)

    Wharton, S; Lundquist, J K

    2010-02-22

    Tall wind turbines, with hub heights at 80 m or above, can extract large amounts of energy from the atmosphere because they are likely to encounter higher wind speeds, but they face challenges given the complex nature of wind flow and turbulence at these heights in the boundary layer. Depending on whether the boundary layer is stable, neutral, or convective, the mean wind speed, direction, and turbulence properties may vary greatly across the tall turbine swept area (40 to 120 m AGL). This variability can cause tall turbines to produce difference amounts of power during time periods with identical hub height wind speeds. Using meteorological and power generation data from a West Coast North American wind farm over a one-year period, our study synthesizes standard wind park observations, such as wind speed from turbine nacelles and sparse meteorological tower observations, with high-resolution profiles of wind speed and turbulence from a remote sensing platform, to quantify the impact of atmospheric stability on power output. We first compare approaches to defining atmospheric stability. The standard, limited, wind farm operations enable the calculation only of a wind shear exponent ({alpha}) or turbulence intensity (I{sub U}) from cup anemometers, while the presence at this wind farm of a SODAR enables the direct observation of turbulent kinetic energy (TKE) throughout the turbine rotor disk. Additionally, a nearby research meteorological station provided observations of the Obukhov length, L, a direct measure of atmospheric stability. In general, the stability parameters {alpha}, I{sub U}, and TKE are in high agreement with the more physically-robust L, with TKE exhibiting the best agreement with L. Using these metrics, data periods are segregated by stability class to investigate power performance dependencies. Power output at this wind farm is highly correlated with atmospheric stability during the spring and summer months, while atmospheric stability exerts little impact on power output during the winter and autumn periods. During the spring and summer seasons, power output for a given wind speed was significantly higher during stable conditions and significantly lower during strongly convective conditions: power output differences approached 20% between stable and convective regimes. The dependency of stability on power output was apparent only when both turbulence and the shape of the wind speed profile were considered. Turbulence is one of the mechanisms by which atmospheric stability affects a turbine's power curve at this particular site, and measurements of turbulence can yield actionable insights into wind turbine behavior.

  18. New Superconducting Magnet Will Lead to Next Generation of Wind...

    Energy Savers [EERE]

    DOE funded AML's design for a superconducting generator for large-scale, high-efficiency offshore wind turbines. AML worked with its partners, Emerson Electric Corporation, Creare...

  19. RELIABILITY OF WIND POWER FROM DISPERSED SITES: A PRELIMINARY ASSESSMENT

    E-Print Network [OSTI]

    Kahn, E.

    2011-01-01

    wind generators . For utility planning purposes an LOLPWe will see that for utility system planning purposes, it is

  20. Generation of Simulated Wind Data using an Intelligent Algorithm...

    Office of Scientific and Technical Information (OSTI)

    Renewable Energy Laboratory (NREL), Golden, CO. Sponsoring Org: USDOE Office of Energy Efficiency and Renewable Energy Wind Power Technologies Office Country of Publication:...

  1. The Political Economy of Wind Power in China

    E-Print Network [OSTI]

    Swanson, Ryan Landon

    2011-01-01

    wind power, while others may mandate daily operating limits or are based upon thresholds for the percentage of balancing

  2. NREL Small Wind Turbine Test Project: Mariah Power's Windspire Wind Turbine Test Chronology

    SciTech Connect (OSTI)

    Huskey, A.; Forsyth, T.

    2009-06-01

    This report presents a chronology of tests conducted at NREL's National Wind Technology Center on Mariah Power's Windspire 1.2-kW wind turbine and a letter of response from Mariah Power.

  3. Mass Market Demand Response and Variable Generation Integration Issues: A Scoping Study

    E-Print Network [OSTI]

    Cappers, Peter

    2012-01-01

    T. (2005) Variability of wind power and other renewables:with large amounts of wind power. Final report, IEA WINDto increase acceptable wind power generation. Wind Energy.

  4. Aalborg Universitet FACTS Devices for Large Wind Power Plants

    E-Print Network [OSTI]

    Berning, Torsten

    of wind power has become significant, grid performance and stability is affected [3]-[5]. ThereforeAalborg Universitet FACTS Devices for Large Wind Power Plants Adamczyk, Andrzej Grzegorz., Teodorescu, R., Rodriguez, P., & Mukerjee, R. N. (2010). FACTS Devices for Large Wind Power Plants

  5. Power optimization of wind farms by curtailment of upwind turbines

    E-Print Network [OSTI]

    Power optimization of wind farms by curtailment of upwind turbines Simon Kirkeby Wessel Kongens is shown to increase the total power production of wind farms of dierent size and shape. Several methods by curtailing upwind turbines. It is shown that the annual power production for a square wind farm consisting

  6. Fast Verification of Wind Turbine Power Summary of Project Results

    E-Print Network [OSTI]

    Fast Verification of Wind Turbine Power Curves: Summary of Project Results by: Cameron Brown ­ s in the FastWind project. Several methods of estimating the power curve uncertainty were developed, it was found to be sensitive to the coherence of high frequency wind speed and power measurements

  7. The Potential Wind Power Resource in Australia: A New Perspective

    E-Print Network [OSTI]

    The Potential Wind Power Resource in Australia: A New Perspective Willow Hallgren, Udaya Bhaskar;1 The Potential Wind Power Resource in Australia: A New Perspective Willow Hallgren* , Udaya Bhaskar Gunturu, and the utilization of this renewable energy resource is increasing. Wind power installed capacity increased by 35

  8. Wind Farm Power Prediction: A Data-Mining Approach

    E-Print Network [OSTI]

    Kusiak, Andrew

    Wind Farm Power Prediction: A Data-Mining Approach Andrew Kusiak*, Haiyang Zheng and Zhe Song, IA 52242­1527, USA In this paper, models for short- and long-term prediction of wind farm power length of the long-term prediction model is 84 h. The wind farm power prediction models are built

  9. The Potential Wind Power Resource in Australia: A New Perspective*

    E-Print Network [OSTI]

    The Potential Wind Power Resource in Australia: A New Perspective* Willow Hallgren, Udaya Bhaskar: globalchange@mit.edu Website: http://globalchange.mit.edu/ #12;The Potential Wind Power Resource in Australia, and the utilization of this renewable energy resource is increasing rapidly: wind power installed capacity increased

  10. Automatic selection of tuning parameters in wind power prediction

    E-Print Network [OSTI]

    Automatic selection of tuning parameters in wind power prediction Lasse Engbo Christiansen (lec Report number: IMM-Technical Report-2007-12 Project title: Intelligent wind power prediction systems PSO these classes of systems, e.g. when predicting the power production from new wind farms. 4 #12;1 Introduction

  11. Characterization of wind power resource in the United States*

    E-Print Network [OSTI]

    Characterization of wind power resource in the United States* U. Bhaskar Gunturu and C. Adam Chemistry and Physics Characterization of wind power resource in the United States U. B. Gunturu and C. A, 120 m turbine hub heights. The wind power density (WPD) estimates at 50 m are qualitatively similar

  12. Wind Farm Diversification and Its Impact on Power System Reliability 

    E-Print Network [OSTI]

    Degeilh, Yannick

    2010-10-12

    enhancement of wind power output predictability is in itself desirable, as it would permit the accurate design of thermal conventional units dedicated only to the compensation of wind power erratic behavior. The turbines used in the studies are 3 MW Vestas...M the covariance matrix of the statistical single wind turbine power outputs ?? (i designating the farm number): 19...

  13. The Political Economy of Wind Power in China

    E-Print Network [OSTI]

    Swanson, Ryan Landon

    2011-01-01

    promote wind power. Section three analyzes the policy designdesign of several policy mechanisms that many observers claim have enabled the explosive growth of Chinese wind power.design—not policy causation. My findings, however, suggest that future research on Chinese wind power

  14. Stochastic Analysis of Wind Turbine Power Curves Edgar Anahua

    E-Print Network [OSTI]

    Peinke, Joachim

    Stochastic Analysis of Wind Turbine Power Curves Edgar Anahua Oldenburg 2007 Zur Homepage der Dissertation #12;#12;Stochastic Analysis of Wind Turbine Power Curves Edgar Anahua Von der Fakult¨at f the wind turbine's power per- formance directly from high frequency fluctuating measurements. In particular

  15. Characterization of the Wind Power Resource in Europe and its

    E-Print Network [OSTI]

    Characterization of the Wind Power Resource in Europe and its Intermittency Alexandra Cosseron, C;1 Characterization of the Wind Power Resource in Europe and its Intermittency Alexandra Cosseron* , C. Adam Schlosser , and Udaya Bhaskar Gunturu Abstract Wind power is assessed over Europe, with special attention given

  16. Wind-Power Development in Germany and the U.S.: Multiple Streams, Advocacy Coalitions, and Turning Points

    E-Print Network [OSTI]

    Qiu, Weigang

    Wind-Power Development in Germany and the U.S.: Multiple Streams, Advocacy Coalitions, and Turning). Of the various forms of renewable energy, wind-generated electricity has a unique set of advantages, which make especially large. Wind power produces relatively low levels of environmental damage over its life cycle (like

  17. Abstract--A large share of integrated wind power causes technical and financial impacts on the operation of the existing

    E-Print Network [OSTI]

    1 Abstract-- A large share of integrated wind power causes technical and financial impacts on the operation of the existing electricity system due to the fluctuating behaviour and unpredictability of wind behaviour of the wind power generation and of the prediction error. It can be used for the evaluation

  18. REDUCTION OF WIND POWER PREDICTION ERROR BY SPATIAL SMOOTHING EFFECTS Ulrich Focken, Matthias Lange, Hans-Peter Waldl

    E-Print Network [OSTI]

    Heinemann, Detlev

    horizon up to 48 hours. It is based on the large scale wind field prediction which is generatedREDUCTION OF WIND POWER PREDICTION ERROR BY SPATIAL SMOOTHING EFFECTS Ulrich Focken, Matthias Lange of spatially distributed wind farms. Our forecasting procedure provides the expected power output for a time

  19. The Political Economy of Wind Power in China

    E-Print Network [OSTI]

    Swanson, Ryan Landon

    2011-01-01

    Renewable power for China: Past, present, and future,? Frontiers of Energyfuture energy demand. Wind power must be complemented with other renewable

  20. Wind Concurrent Cooling Could Increase Power Transmission Potential...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Concurrent Cooling Could Increase Power Transmission Potential by as Much as 40% Wind Concurrent Cooling Could Increase Power Transmission Potential by as Much as 40% May 18, 2015...

  1. Variable Frequency Operations of an Offshore Wind Power Plant with HVDC-VSC: Preprint

    SciTech Connect (OSTI)

    Gevorgian, V.; Singh, M.; Muljadi, E.

    2011-12-01

    In this paper, a constant Volt/Hz operation applied to the Type 1 wind turbine generator. Various control aspects of Type 1 generators at the plant level and at the turbine level will be investigated. Based on DOE study, wind power generation may reach 330 GW by 2030 at the level of penetration of 20% of the total energy production. From this amount of wind power, 54 GW of wind power will be generated at offshore wind power plants. The deployment of offshore wind power plants requires power transmission from the plant to the load center inland. Since this power transmission requires submarine cable, there is a need to use High-Voltage Direct Current (HVDC) transmission. Otherwise, if the power is transmitted via alternating current, the reactive power generated by the cable capacitance may cause an excessive over voltage in the middle of the transmission distance which requires unnecessary oversized cable voltage breakdown capability. The use of HVDC is usually required for transmission distance longer than 50 kilometers of submarine cables to be economical. The use of HVDC brings another advantage; it is capable of operating at variable frequency. The inland substation will be operated to 60 Hz synched with the grid, the offshore substation can be operated at variable frequency, thus allowing the wind power plant to be operated at constant Volt/Hz. In this paper, a constant Volt/Hz operation applied to the Type 1 wind turbine generator. Various control aspects of Type 1 generators at the plant level and at the turbine level will be investigated.

  2. Abstract--Wind energy is the fastest growing source of renewable energy in the power industry and it will continue to

    E-Print Network [OSTI]

    Tolbert, Leon M.

    1 Abstract--Wind energy is the fastest growing source of renewable energy in the power industry fault conditions. Index Terms--induction generators, wind power generation, fault tolerance. I of energy. Wind energy is the fastest growing source of renewable energy in the power industry

  3. Revenue Maximization of Electricity Generation for a Wind Turbine Integrated with a Compressed Air Energy Storage System

    E-Print Network [OSTI]

    Li, Perry Y.

    Revenue Maximization of Electricity Generation for a Wind Turbine Integrated with a Compressed Air controller is developed for a Compressed Air Energy Storage (CAES) system integrated with a wind turbine of wind intermittency are investigated in [2] using convex optimization techniques. The optimal power flow

  4. SiC's Potential Impact on the Design of Wind Generation System , Leon M. Tolbert1,2

    E-Print Network [OSTI]

    Tolbert, Leon M.

    is that SiC devices would reduce substantially the cost of energy of large wind turbines that use powerSiC's Potential Impact on the Design of Wind Generation System Hui Zhang1 , Leon M. Tolbert1 National Laboratory Knoxville, TN 37932 Abstract -- The potential impact of SiC devices on a wind

  5. Solid state pulsed power generator

    DOE Patents [OSTI]

    Tao, Fengfeng; Saddoughi, Seyed Gholamali; Herbon, John Thomas

    2014-02-11

    A power generator includes one or more full bridge inverter modules coupled to a semiconductor opening switch (SOS) through an inductive resonant branch. Each module includes a plurality of switches that are switched in a fashion causing the one or more full bridge inverter modules to drive the semiconductor opening switch SOS through the resonant circuit to generate pulses to a load connected in parallel with the SOS.

  6. Combining Droop Curve Concepts with Control Systems for Wind Turbine Active Power Control: Preprint

    SciTech Connect (OSTI)

    Buckspan, A.; Aho, J.; Pao, L.; Fleming, P.; Jeong, Y.

    2012-06-01

    Wind energy is becoming a larger portion of the global energy portfolio and wind penetration has increased dramatically in certain regions of the world. This increasing wind penetration has driven the need for wind turbines to provide active power control (APC) services to the local utility grid, as wind turbines do not intrinsically provide frequency regulation services that are common with traditional generators. It is common for large scale wind turbines to be decoupled from the utility grid via power electronics, which allows the turbine to synthesize APC commands via control of the generator torque and blade pitch commands. Consequently, the APC services provided by a wind turbine can be more flexible than those provided by conventional generators. This paper focuses on the development and implementation of both static and dynamic droop curves to measure grid frequency and output delta power reference signals to a novel power set point tracking control system. The combined droop curve and power tracking controller is simulated and comparisons are made between simulations using various droop curve parameters and stochastic wind conditions. The tradeoffs involved with aggressive response to frequency events are analyzed. At the turbine level, simulations are performed to analyze induced structural loads. At the grid level, simulations test a wind plant's response to a dip in grid frequency.

  7. Concurrent Wind Cooling in Power Transmission Lines

    SciTech Connect (OSTI)

    Jake P Gentle

    2012-08-01

    Idaho National Laboratory and the Idaho Power Company, with collaboration from Idaho State University, have been working on a project to monitor wind and other environmental data parameters along certain electrical transmission corridors. The combination of both real-time historical weather and environmental data is being used to model, validate, and recommend possibilities for dynamic operations of the transmission lines for power and energy carrying capacity. The planned results can also be used to influence decisions about proposed design criteria for or upgrades to certain sections of the transmission lines.

  8. Validation of Power Output for the WIND Toolkit

    SciTech Connect (OSTI)

    King, J.; Clifton, A.; Hodge, B. M.

    2014-09-01

    Renewable energy integration studies require wind data sets of high quality with realistic representations of the variability, ramping characteristics, and forecast performance for current wind power plants. The Wind Integration National Data Set (WIND) Toolkit is meant to be an update for and expansion of the original data sets created for the weather years from 2004 through 2006 during the Western Wind and Solar Integration Study and the Eastern Wind Integration Study. The WIND Toolkit expands these data sets to include the entire continental United States, increasing the total number of sites represented, and it includes the weather years from 2007 through 2012. In addition, the WIND Toolkit has a finer resolution for both the temporal and geographic dimensions. Three separate data sets will be created: a meteorological data set, a wind power data set, and a forecast data set. This report describes the validation of the wind power data set.

  9. Generation Following with Thermostatically Controlled Loads via Alternating Direction Method of Multipliers Sharing Algorithm

    E-Print Network [OSTI]

    Burger, Eric M.; Moura, Scott J.

    2015-01-01

    We present 5-minute wind and solar power forecasts reported6 presents the wind and solar power generation for theimpacts of wind generation on california power systems,”

  10. Capacity Value of PV and Wind Generation in the NV Energy System

    SciTech Connect (OSTI)

    Lu, Shuai; Diao, Ruisheng; Samaan, Nader A.; Etingov, Pavel V.

    2014-03-21

    Calculation of photovoltaic (PV) and wind power capacity values is important for estimating additional load that can be served by new PV or wind installations in the electrical power system. It also is the basis for assigning capacity credit payments in systems with markets. Because of variability in solar and wind resources, PV and wind generation contribute to power system resource adequacy differently from conventional generation. Many different approaches to calculating PV and wind generation capacity values have been used by utilities and transmission operators. Using the NV Energy system as a study case, this report applies peak-period capacity factor (PPCF) and effective load carrying capability (ELCC) methods to calculate capacity values for renewable energy sources. We show the connection between the PPCF and ELCC methods in the process of deriving a simplified approach that approximates the ELCC method. This simplified approach does not require generation fleet data and provides the theoretical basis for a quick check on capacity value results of PV and wind generation. The diminishing return of capacity benefit as renewable generation increases is conveniently explained using the simplified capacity value approach.

  11. Wind Turbine Generator System Safety and Function Test Report for the Entegrity EW50 Wind Turbine

    SciTech Connect (OSTI)

    Smith, J.; Huskey, A.; Jager, D.; Hur, J.

    2012-11-01

    This report summarizes the results of a safety and function test that NREL conducted on the Entegrity EW50 wind turbine. This test was conducted in accordance with the International Electrotechnical Commissions' (IEC) standard, Wind Turbine Generator System Part 2: Design requirements for small wind turbines, IEC 61400-2 Ed.2.0, 2006-03.

  12. Wind Turbine Generator System Safety and Function Test Report for the Ventera VT10 Wind Turbine

    SciTech Connect (OSTI)

    Smith, J.; Huskey, A.; Jager, D.; Hur, J.

    2012-11-01

    This report summarizes the results of a safety and function test that NREL conducted on the Ventera VT10 wind turbine. This test was conducted in accordance with the International Electrotechnical Commissions' (IEC) standard, Wind Turbine Generator System Part 2: Design requirements for small wind turbines, IEC 61400-2 Ed.2.0, 2006-03.

  13. The Political Economy of Wind Power in China

    E-Print Network [OSTI]

    Swanson, Ryan Landon

    2011-01-01

    a system for trading ?renewable power generation surchargethe system for trading renewable power credits and verifies

  14. Viability of Small Wind Distributed Generation for Farmers Who Irrigate (Poster)

    SciTech Connect (OSTI)

    Meadows, B.; Forsyth, T.; Johnson, S.; Healow, D.

    2010-05-01

    About 14% of U.S. farms are irrigated, representing 55 million acres of irrigated land. Irrigation on these farms is a major energy user in the United States, accounting for one-third of water withdrawals and 137 billion gallons per day. More than half of the Irrigation systems use electric energy. Wind energy can be a good choice for meeting irrigation energy needs. Nine of the top 10 irrigation states (California, Texas, Idaho, Arkansas, Colorado, Nebraska, Arizona, Kansas, Washington, and Oregon) have good to excellent wind resources. Many rural areas have sufficient wind speeds to make wind an attractive alternative, and farms and ranches can often install a wind energy system without impacting their ability to plant crops and graze livestock. Additionally, the rising and uncertain future costs of diesel, natural gas, and even electricity increase the potential effectiveness for wind energy and its predictable and competitive cost. In general, wind-powered electric generation systems generate more energy in the winter months than in the summer months when most crops need the water. Therefore, those states that have a supportive net metering policy can dramatically impact the viability of an onsite wind turbine. This poster presentation highlights case studies that show favorable and unfavorable policies that impact the growth of small wind in this important sector and demonstrate how net metering policies affect the viability of distributed wind generation for farmers who irrigate.

  15. Wind Energy Benefits, Wind Powering America (WPA) (Fact Sheet), Wind And Water Power Program (WWPP)

    Office of Energy Efficiency and Renewable Energy (EERE)

    This fact sheet outlines the top 10 benefits of wind energy, including cost, water savings, job creation, indigenous resource, and low operating costs.

  16. European Wind Energy Conference -Brussels, Belgium, April 2008 Data mining for wind power forecasting

    E-Print Network [OSTI]

    Paris-Sud XI, Université de

    European Wind Energy Conference - Brussels, Belgium, April 2008 Data mining for wind power-term forecasting of wind energy produc- tion up to 2-3 days ahead is recognized as a major contribution the improvement of predic- tion systems performance is recognised as one of the priorities in wind energy research

  17. New England Wind Forum: A Wind Powering America Project - Newsletter #6 - September 2010, (NEWF)

    SciTech Connect (OSTI)

    Grace, R.; Gifford, J.; Leeds, T.; Bauer, S.

    2010-09-01

    Wind Powering America program launched the New England Wind Forum (NEWF) in 2005 to provide a single comprehensive source of up-to-date, Web-based information on a broad array of wind energy issues pertaining to New England. The NEWF newsletter provides New England stakeholders with updates on wind energy development in the region.

  18. Low-Maintenance Wind Power System

    E-Print Network [OSTI]

    Rasson, Joseph E

    2010-01-01

    Improved Vertical Axis Wind Turbine and Aerodynamic ControlDarrieus Vertical Axis Wind Turbines and Aerodynamic Control

  19. Review of Historical and Modern Utilization of Wind Power Publications Department

    E-Print Network [OSTI]

    Review of Historical and Modern Utilization of Wind Power Publications Department publications Review of Historical and Modern Utilization of Wind Power Per Dannemand Andersen, Ph.D. Content INTRODUCTION THE HISTORY OF WIND POWER q Wind Power in Denmark APPLICATIONS OF WIND POWER WIND POWER

  20. Grid-scale Fluctuations and Forecast Error in Wind Power

    E-Print Network [OSTI]

    G. Bel; C. P. Connaughton; M. Toots; M. M. Bandi

    2015-03-29

    The fluctuations in wind power entering an electrical grid (Irish grid) were analyzed and found to exhibit correlated fluctuations with a self-similar structure, a signature of large-scale correlations in atmospheric turbulence. The statistical structure of temporal correlations for fluctuations in generated and forecast time series was used to quantify two types of forecast error: a timescale error ($e_{\\tau}$) that quantifies the deviations between the high frequency components of the forecast and the generated time series, and a scaling error ($e_{\\zeta}$) that quantifies the degree to which the models fail to predict temporal correlations in the fluctuations of the generated power. With no $a$ $priori$ knowledge of the forecast models, we suggest a simple memory kernel that reduces both the timescale error ($e_{\\tau}$) and the scaling error ($e_{\\zeta}$).

  1. Grid-scale Fluctuations and Forecast Error in Wind Power

    E-Print Network [OSTI]

    Bel, G; Toots, M; Bandi, M M

    2015-01-01

    The fluctuations in wind power entering an electrical grid (Irish grid) were analyzed and found to exhibit correlated fluctuations with a self-similar structure, a signature of large-scale correlations in atmospheric turbulence. The statistical structure of temporal correlations for fluctuations in generated and forecast time series was used to quantify two types of forecast error: a timescale error ($e_{\\tau}$) that quantifies the deviations between the high frequency components of the forecast and the generated time series, and a scaling error ($e_{\\zeta}$) that quantifies the degree to which the models fail to predict temporal correlations in the fluctuations of the generated power. With no $a$ $priori$ knowledge of the forecast models, we suggest a simple memory kernel that reduces both the timescale error ($e_{\\tau}$) and the scaling error ($e_{\\zeta}$).

  2. Ris-R-Report Power fluctuations from large wind farms -

    E-Print Network [OSTI]

    Abstract (max. 2000 char.): Experience from power system operation with the first large offshore wind farm acquired at the two large offshore wind farms in Denmark are applied to validate the models. FinallyRisø-R-Report Power fluctuations from large wind farms - Final report Poul Sørensen, Pierre Pinson

  3. FEED-IN TARIFFS AND OFFSHORE WIND POWER DEVELOPMENT

    E-Print Network [OSTI]

    Firestone, Jeremy

    FEED-IN TARIFFS AND OFFSHORE WIND POWER DEVELOPMENT Prepared by Jon Lilley, Blaise Sheridan, Dawn.......................................................................................................................... 25 FERC Clarification as Applied to Offshore Wind........................................................................................................................ 28 #12; 3 Feed-in Tariffs and Offshore Wind Power Development Prepared Pursuant to DOE Grant Em

  4. Electric power from offshore wind via synoptic-scale interconnection

    E-Print Network [OSTI]

    Firestone, Jeremy

    Electric power from offshore wind via synoptic-scale interconnection Willett Kemptona,1 , Felipe M regional estimate, Kempton et al. (2) calculated that two-thirds of the offshore wind power off the U in the U.S. Atlantic region is already underway. Fig. 1 shows as black squares offshore wind developments

  5. Ris-R-1118(EN) Power Control for Wind Tur-

    E-Print Network [OSTI]

    to increase the wind energy penetration. The main options are to combine wind power with a pumped hydro power been developed to assess that. The economic investigations have shown that for small systems where only small amounts of wind energy would otherwise have been dumped add-on PQ- controllers with battery

  6. Optimal combined wind power forecasts using exogeneous variables

    E-Print Network [OSTI]

    Optimal combined wind power forecasts using exogeneous variables Fannar ¨Orn Thordarson Kongens to the Klim wind farm using three WPPT forecasts based on different weather forecasting systems. It is shown of the thesis is combined wind power forecasts using informations from meteorological forecasts. Lyngby, January

  7. Dynamic wind turbine models in power system simulation tool

    E-Print Network [OSTI]

    Dynamic wind turbine models in power system simulation tool DIgSILENT Anca D. Hansen, Florin Iov Iov, Poul Sørensen, Nicolaos Cutululis, Clemens Jauch, Frede Blaabjerg Title: Dynamic wind turbine system simulation tool PowerFactory DIgSILENT for different wind turbine concepts. It is the second

  8. Power Control and Optimization of Photovoltaic and Wind Energy Conversion Systems /

    E-Print Network [OSTI]

    Ghaffari, Azad

    2013-01-01

    Power Optimization and Control in Wind Energy Conversion Systemspower point tracking in wind energy conversion systems,”power point tracking of wind energy conversion systems based

  9. Analysis of Wind Power and Load Data at Multiple Time Scales

    E-Print Network [OSTI]

    Coughlin, Katie

    2011-01-01

    The spectrum of power from wind turbines. Journal of PowerAWEA 2010. American Wind Energy Association ProjectsErik and Jason Kemper. 2009. Wind Plant Ramping Behavior.

  10. Empirical Analysis of the Variability of Wind Generation in India: Implications for Grid Integration

    SciTech Connect (OSTI)

    Phadke, Amol; Abhyankar, NIkit; Rao, Poorvi

    2014-06-17

    We analyze variability in load and wind generation in India to assess its implications for grid integration of large scale wind projects using actual wind generation and load data from two states in India, Karnataka and Tamil Nadu. We compare the largest variations in load and net load (load ?wind, i.e., load after integrating wind) that the generation fleet has to meet. In Tamil Nadu, where wind capacity is about 53percent of the peak demand, we find that the additional variation added due to wind over the current variation in load is modest; if wind penetration reaches 15percent and 30percent by energy, the additional hourly variation is less than 0.5percent and 4.5percent of the peak demand respectively for 99percent of the time. For wind penetration of 15percent by energy, Tamil Nadu system is found to be capable of meeting the additional ramping requirement for 98.8percent of the time. Potential higher uncertainty in net load compared to load is found to have limited impact on ramping capability requirements of the system if coal plants can me ramped down to 50percent of their capacity. Load and wind aggregation in Tamil Nadu and Karnataka is found to lower the variation by at least 20percent indicating the benefits geographic diversification. These findings suggest modest additional flexible capacity requirements and costs for absorbing variation in wind power and indicate that the potential capacity support (if wind does not generate enough during peak periods) may be the issue that has more bearing on the economics of integrating wind

  11. Assessment of wind power predictability as a decision factor in the investment phase of wind farms

    E-Print Network [OSTI]

    Paris-Sud XI, Université de

    the point of view of a producer participating in the day-ahead electricity market, lack of predictability price settlement mechanism will remain the same. Keywords: Wind power resource assessment, Wind power GW by 2020 according to EWEA projections (see [1]). Such large-scale integration of wind energy

  12. Analyzing the Effects of Temporal Wind Patterns on the Value of Wind-Generated Electricity at Different Sites in California and the Northwest

    E-Print Network [OSTI]

    Fripp, Matthias; Wiser, Ryan

    2006-01-01

    Energy Facilities. ” American Wind Energy Association (AWEA)Analyzing the Effects of Temporal Wind Patterns onthe Value of Wind-Generated Electricity References TrueWind

  13. New England Wind Forum: A Wind Powering America Project, Newsletter #5 -- January 2010, Wind and Hydropower Technologies Program (WHTP)

    SciTech Connect (OSTI)

    Grace, R. C.; Gifford, J.

    2010-01-01

    Wind Powering America program launched the New England Wind Forum (NEWF) in 2005 to provide a single comprehensive source of up-to-date, Web-based information on a broad array of wind energy issues pertaining to New England. The NEWF newsletter provides New England stakeholders with updates on wind energy development in the region. In addition to regional updates, Issue #5 offers an interview with Angus King, former governor of Maine and co-founder of Independence Wind.

  14. Overview of Thermoelectric Power Generation Technologies in Japan...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Thermoelectric Power Generation Technologies in Japan Overview of Thermoelectric Power Generation Technologies in Japan Discusses thermoelectric power generation technologies as...

  15. Tutorial of Wind Turbine Control for Supporting Grid Frequency through Active Power Control: Preprint

    SciTech Connect (OSTI)

    Aho, J.; Buckspan, A.; Laks, J.; Fleming, P.; Jeong, Y.; Dunne, F.; Churchfield, M.; Pao, L.; Johnson, K.

    2012-03-01

    As wind energy becomes a larger portion of the world's energy portfolio and wind turbines become larger and more expensive, wind turbine control systems play an ever more prominent role in the design and deployment of wind turbines. The goals of traditional wind turbine control systems are maximizing energy production while protecting the wind turbine components. As more wind generation is installed there is an increasing interest in wind turbines actively controlling their power output in order to meet power setpoints and to participate in frequency regulation for the utility grid. This capability will be beneficial for grid operators, as it seems possible that wind turbines can be more effective at providing some of these services than traditional power plants. Furthermore, establishing an ancillary market for such regulation can be beneficial for wind plant owner/operators and manufacturers that provide such services. In this tutorial paper we provide an overview of basic wind turbine control systems and highlight recent industry trends and research in wind turbine control systems for grid integration and frequency stability.

  16. The Potential Wind Power Resource in Australia: A New Perspective

    E-Print Network [OSTI]

    Hallgren, Willow

    Australia is considered to have very good wind resources, and the utilization of this renewable energy resource is increasing. Wind power installed capacity increased by 35% from 2006 to 2011 and is predicted to account ...

  17. The Potential Wind Power Resource in Australia: A New Perspective

    E-Print Network [OSTI]

    Hallgren, Willow

    Australia’s wind resource is considered to be very good, and the utilization of this renewable energy resource is increasing rapidly: wind power installed capacity increased by 35% from 2006 to 2011 and is predicted to ...

  18. Impact of Distributed Wind on Bulk Power System Operations in ISO-NE: Preprint

    SciTech Connect (OSTI)

    Brancucci Martinez-Anido, C.; Hodge, B. M.; Palchak, D.; Miettinen, J.

    2014-09-01

    The work presented in this paper aims to study the impact of a range of penetration levels of distributed wind on the operation of the electric power system at the transmission level. This paper presents a case study on the power system in Independent System Operator New England. It is analyzed using PLEXOS, a commercial power system simulation tool. The results show that increasing the integration of distributed wind reduces total variable electricity generation costs, coal- and gas-fired electricity generation, electricity imports, and CO2 emissions, and increases wind curtailment. The variability and uncertainty of wind power also increases the start-up and shutdown costs and ramping of most conventional power plants.

  19. Next Generation Geothermal Power Plants

    SciTech Connect (OSTI)

    Brugman, John; Hattar, Mai; Nichols, Kenneth; Esaki, Yuri

    1995-09-01

    A number of current and prospective power plant concepts were investigated to evaluate their potential to serve as the basis of the next generation geothermal power plant (NGGPP). The NGGPP has been envisaged as a power plant that would be more cost competitive (than current geothermal power plants) with fossil fuel power plants, would efficiently use resources and mitigate the risk of reservoir under-performance, and minimize or eliminate emission of pollutants and consumption of surface and ground water. Power plant concepts were analyzed using resource characteristics at ten different geothermal sites located in the western United States. Concepts were developed into viable power plant processes, capital costs were estimated and levelized busbar costs determined. Thus, the study results should be considered as useful indicators of the commercial viability of the various power plants concepts that were investigated. Broadly, the different power plant concepts that were analyzed in this study fall into the following categories: commercial binary and flash plants, advanced binary plants, advanced flash plants, flash/binary hybrid plants, and fossil/geothed hybrid plants. Commercial binary plants were evaluated using commercial isobutane as a working fluid; both air-cooling and water-cooling were considered. Advanced binary concepts included cycles using synchronous turbine-generators, cycles with metastable expansion, and cycles utilizing mixtures as working fluids. Dual flash steam plants were used as the model for the commercial flash cycle. The following advanced flash concepts were examined: dual flash with rotary separator turbine, dual flash with steam reheater, dual flash with hot water turbine, and subatmospheric flash. Both dual flash and binary cycles were combined with other cycles to develop a number of hybrid cycles: dual flash binary bottoming cycle, dual flash backpressure turbine binary cycle, dual flash gas turbine cycle, and binary gas turbine cycle. Results of this study indicate that dual flash type plants are preferred at resources with temperatures above 400 F. Closed loop (binary type) plants are preferred at resources with temperatures below 400 F. A rotary separator turbine upstream of a dual flash plant can be beneficial at Salton Sea, the hottest resource, or at high temperature resources where there is a significant variance in wellhead pressures from well to well. Full scale demonstration is required to verify cost and performance. Hot water turbines that recover energy from the spent brine in a dual flash cycle improve that cycle's brine efficiency. Prototype field tests of this technology have established its technical feasibility. If natural gas prices remain low, a combustion turbine/binary hybrid is an economic option for the lowest temperature sites. The use of mixed fluids appear to be an attractive low risk option. The synchronous turbine option as prepared by Barber-Nichols is attractive but requires a pilot test to prove cost and performance. Dual flash binary bottoming cycles appear promising provided that scaling of the brine/working fluid exchangers is controllable. Metastable expansion, reheater, Subatmospheric flash, dual flash backpressure turbine, and hot dry rock concepts do not seem to offer any cost advantage over the baseline technologies. If implemented, the next generation geothermal power plant concept may improve brine utilization but is unlikely to reduce the cost of power generation by much more than 10%. Colder resources will benefit more from the development of a next generation geothermal power plant than will hotter resources. All values presented in this study for plant cost and for busbar cost of power are relative numbers intended to allow an objective and meaningful comparison of technologies. The goal of this study is to assess various technologies on an common basis and, secondarily, to give an approximate idea of the current costs of the technologies at actual resource sites. Absolute costs at a given site will be determined by the specifics of a given pr

  20. Western Wind and Solar Integration Study Phase 3A: Low Levels of Synchronous Generation

    SciTech Connect (OSTI)

    Miller, Nicholas W.; Leonardi, Bruno; D'Aquila, Robert; Clark, Kara

    2015-11-17

    The stability of the North American electric power grids under conditions of high penetrations of wind and solar is a significant concern and possible impediment to reaching renewable energy goals. The 33% wind and solar annual energy penetration considered in this study results in substantial changes to the characteristics of the bulk power system. This includes different power flow patterns, different commitment and dispatch of existing synchronous generation, and different dynamic behavior from wind and solar generation. The Western Wind and Solar Integration Study (WWSIS), sponsored by the U.S. Department of Energy, is one of the largest regional solar and wind integration studies to date. In multiple phases, it has explored different aspects of the question: Can we integrate large amounts of wind and solar energy into the electric power system of the West? The work reported here focused on the impact of low levels of synchronous generation on the transient stability performance in one part of the region in which wind generation has displaced synchronous thermal generation under highly stressed, weak system conditions. It is essentially an extension of WWSIS-3. Transient stability, the ability of the power system to maintain synchronism among all elements following disturbances, is a major constraint on operations in many grids, including the western U.S. and Texas systems. These constraints primarily concern the performance of the large-scale bulk power system. But grid-wide stability concerns with high penetrations of wind and solar are still not thoroughly understood. This work focuses on 'traditional' fundamental frequency stability issues, such as maintaining synchronism, frequency, and voltage. The objectives of this study are to better understand the implications of low levels of synchronous generation and a weak grid on overall system performance by: 1) Investigating the Western Interconnection under conditions of both high renewable generation (e.g., wind and solar) and low synchronous generation (e.g., significant coal power plant decommitment or retirement); and 2) Analyzing both the large-scale stability of the Western Interconnection and regional stability issues driven by more geographically dispersed renewable generation interacting with a transmission grid that evolved with large, central station plants at key nodes. As noted above, the work reported here is an extension of the research performed in WWSIS-3.

  1. Stochastic Methods for Planning and Operating Power Systems with Large Amounts of Wind and Solar Power: Preprint

    SciTech Connect (OSTI)

    Milligan, M.; Donohoo, P.; O'Malley, M.

    2012-09-01

    Wind and solar generators differ in their generation characteristics than conventional generators. The variable output and imperfect predictability of these generators face a stochastic approach to plan and operate the power system without fundamentally changing the operation and planning problems. This paper overviews stochastic modeling challenges in operations, generation planning, and transmission planning, with references to current industry and academic work. Different stochastic problem formulations, including approximations, are also discussed.

  2. India Wind Power Ltd | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QA J-E-1 SECTION J APPENDIX E LISTStar2-0057-EA JumpDuimen RiverScoringUtilitiesRenovInceisa SAIBFC JumpWind Power

  3. Wind Power Renewables | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QA J-E-1 SECTION J APPENDIX ECoop IncIowa (Utility Company)Idaho)VosslohWestConnecticut: EnergyWind Power Renewables

  4. Wind Power in China | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QA J-E-1 SECTION J APPENDIX ECoop IncIowa (Utility Company)Idaho)VosslohWestConnecticut: EnergyWind Power

  5. Northwestern Wind Power | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QA J-E-1 SECTION J APPENDIXsourceII Jump to:Information 3rd|Northfork Electric Coop, Inc JumpNorthwestWind Power

  6. AG Wind Power Ltd | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QA J-E-1 SECTION J APPENDIX E LIST OFAMERICA'S FUTURE.EnergyWoodenDate RecCompetitionCenturyWind Power Ltd Jump

  7. MAST/GEOG 667: Wind Power Meteorology Fall 2013, 3 credit hours

    E-Print Network [OSTI]

    Firestone, Jeremy

    MAST/GEOG 667: Wind Power Meteorology Fall 2013, 3 credit hours 1 to understand onshore, offshore, and airborne wind power. Topics include: forces affecting winds; terrain and land-use effects; air turbulence; numerical modeling; wind power

  8. Synoptic and local influences on boundary layer processes, with an application to California wind power

    E-Print Network [OSTI]

    Mansbach, David K

    2010-01-01

    maps showing locations of wind power conversion facilities,of US winds and wind power at 80 m derived fromEvaluation of global wind power. Journal of Geo- physical

  9. The Political Economy of Wind Power in China

    E-Print Network [OSTI]

    Swanson, Ryan Landon

    2011-01-01

    the risk of default on power purchase contracts [being] oneon Supervision of Power-Grid Enterprise Purchases of Fullgrid companies purchase wind power at the price fixed by the

  10. The Political Economy of Wind Power in China

    E-Print Network [OSTI]

    Swanson, Ryan Landon

    2011-01-01

    Coco. ?China Rebuilds Its Power Grid as Part of Its CleanSchwartz, Louis. ?The Power Grid and Wind Industry in China:Measure on Supervision of Power-Grid Enterprise Purchases of

  11. Draft Fourth Northwest Conservation and Electric Power Plan, Appendix F GENERATION COST AND PERFORMANCE

    E-Print Network [OSTI]

    F-1 Draft Fourth Northwest Conservation and Electric Power Plan, Appendix F APPENDIX F GENERATION WIND #12;F-2 Draft Fourth Northwest Conservation and Electric Power Plan, Appendix F GENERATION COST and Electric Power Plan, Appendix F ANALYTICALAPPROACH The analysis of alternative generating resources

  12. Wind Power Variability, Its Cost, and Effect on Power Plant Emissions

    E-Print Network [OSTI]

    Wind Power Variability, Its Cost, and Effect on Power Plant Emissions A Dissertation Submitted The recent growth in wind power is transforming the operation of electricity systems by introducing. As a result, system operators are learning in real-time how to incorporate wind power and its variability

  13. The Impact of Wind Development on County-Level Income and Employment: A Review of Methods and an Empirical Analysis (Fact Sheet). Wind And Water Power Program (WWPP).

    E-Print Network [OSTI]

    Brown, Jason P.

    2014-01-01

    development potential from wind power installations has beendevelopment potential of wind power projects, however,is whether new investment in wind power projects stimulates

  14. Reliability Evaluation of Electric Power Generation Systems with Solar Power 

    E-Print Network [OSTI]

    Samadi, Saeed

    2013-11-08

    Conventional power generators are fueled by natural gas, steam, or water flow. These generators can respond to fluctuating load by varying the fuel input that is done by a valve control. Renewable power generators such as ...

  15. Thermoelectric power generator for variable thermal power source

    DOE Patents [OSTI]

    Bell, Lon E; Crane, Douglas Todd

    2015-04-14

    Traditional power generation systems using thermoelectric power generators are designed to operate most efficiently for a single operating condition. The present invention provides a power generation system in which the characteristics of the thermoelectrics, the flow of the thermal power, and the operational characteristics of the power generator are monitored and controlled such that higher operation efficiencies and/or higher output powers can be maintained with variably thermal power input. Such a system is particularly beneficial in variable thermal power source systems, such as recovering power from the waste heat generated in the exhaust of combustion engines.

  16. European Wind Energy Conference & Exhibition EWEC 2003, Madrid, Spain. Forecasting of Regional Wind Generation by a Dynamic

    E-Print Network [OSTI]

    Paris-Sud XI, Université de

    European Wind Energy Conference & Exhibition EWEC 2003, Madrid, Spain. Forecasting of Regional Wind. Abstract-Short-term wind power forecasting is recognized nowadays as a major requirement for a secure and economic integration of wind power in a power system. In the case of large-scale integration, end users

  17. Wind Power: How Much, How Soon, and At What Cost?

    SciTech Connect (OSTI)

    Wiser, Ryan H; Hand, Maureen

    2010-01-01

    The global wind power market has been growing at a phenomenal pace, driven by favorable policies towards renewable energy and the improving economics of wind projects. On a going forward basis, utility-scale wind power offers the potential for significant reductions in the carbon footprint of the electricity sector. Specifically, the global wind resource is vast and, though accessing this potential is not costless or lacking in barriers, wind power can be developed at scale in the near to medium term at what promises to be an acceptable cost.

  18. Optimal site selection and sizing of distributed utility-scale wind power plants

    SciTech Connect (OSTI)

    Milligan, M.R. [National Renewable Energy Lab., Golden, CO (United States); Artig, R. [Minnesota Dept. of Public Service, St. Paul, MN (United States)

    1998-04-01

    As electric market product unbundling occurs, sellers in the wholesale market for electricity will find it to their advantage to be able to specify the quantity of electricity available and the time of availability. Since wind power plants are driven by the stochastic nature of the wind itself, this can present difficulties. To the extent that an accurate wind forecast is available, contract deviations, and therefore penalties, can be significantly reduced. Even though one might have the ability to accurately forecast the availability of wind power, it might not be available during enough of the peak period to provide sufficient value. However, if the wind power plant is developed over geographically disperse locations, the timing and availability of wind power from these multiple sources could provide a better match with the utility`s peak load than a single site. There are several wind plants in various stages of planning or development in the US. Although some of these are small-scale demonstration projects, significant wind capacity has been developed in Minnesota, with additional developments planned in Wyoming and Iowa. As these and other projects are planned and developed, there is a need to perform analysis of the value of geographically diverse sites on the efficiency of the overall wind plant. In this paper, the authors use hourly wind-speed data from six geographically diverse sites to provide some insight into the potential benefits of disperse wind plant development. They provide hourly wind power from each of these sites to an electric reliability simulation model. This model uses generating plant characteristics of the generators within the state of Minnesota to calculate various reliability indices. Since they lack data on wholesale power transactions, they do not include them in the analysis, and they reduce the hourly load data accordingly. The authors present and compare results of their methods and suggest some areas of future research.

  19. Computational Needs for the Next Generation Electric Grid Proceedings

    E-Print Network [OSTI]

    Birman, Kenneth

    2012-01-01

    Commitment  with  Wind  Power  Generation:  Integrating El?Saadany.  Overview of wind power intermittency impacts for  minimizing wind  power  scenarios  in  stochastic 

  20. Control of Wind Turbines for Power Regulation and

    E-Print Network [OSTI]

    Control of Wind Turbines for Power Regulation and Load Reduction Juan Jose Garcia Quirante Kongens@imm.dtu.dk www.imm.dtu.dk #12;#12;#12;Abstract This thesis describes the design of controllers for power regulation and load reduction and their ensemble in a variable-speed wind turbine. The power regulation

  1. 166 IEEE TRANSACTIONS ON SMART GRID, VOL. 6, NO. 1, JANUARY 2015 Power System Stability Control for a Wind Farm

    E-Print Network [OSTI]

    He, Haibo

    for a Wind Farm Based on Adaptive Dynamic Programming Yufei Tang, Student Member, IEEE, Haibo He, Senior generator based wind farm to improve the system transient stability under fault conditions. The proposed is a practical size power system with wind farm in Liaoning Province in China. Detailed simulation analysis

  2. Wind Power: How Much, How Soon, and At What Cost?

    E-Print Network [OSTI]

    Wiser, Ryan H

    2010-01-01

    GW, predominantly from hydropower plants (Table 2). This isIf one excludes large hydropower, however, this figure dropsGeneration Technology Large Hydropower Small Hydropower Wind

  3. Powerful, Rotating Disk Winds from Stellar-mass Black Holes

    E-Print Network [OSTI]

    Miller, J M; Kaastra, J; Kallman, T; King, A L; Proga, D; Raymond, J; Reynolds, C S

    2015-01-01

    We present an analysis of ionized X-ray disk winds observed in the Fe K band of four stellar-mass black holes observed with Chandra, including 4U 1630-47, GRO J1655-40, H 1743-322, and GRS 1915+105. High-resolution photoionization grids were generated in order to model the data. Third-order gratings spectra were used to resolve complex absorption profiles into atomic effects and multiple velocity components. The Fe XXV line is found to be shaped by contributions from the intercombination line (in absorption), and the Fe XXVI line is detected as a spin-orbit doublet. The data require 2-3 absorption zones, depending on the source. The fastest components have velocities approaching or exceeding 0.01c, increasing mass outflow rates and wind kinetic power by orders of magnitude over prior single-zone models. The first-order spectra require re-emission from the wind, broadened by a degree that is loosely consistent with Keplerian orbital velocities at the photoionization radius. This suggests that disk winds are ro...

  4. DOE Announces Webinars on the Distributed Wind Power Market,...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Retrofits Financial Analysis Tool, and More DOE Announces Webinars on the Distributed Wind Power Market, Lighting Retrofits Financial Analysis Tool, and More August 16, 2013 -...

  5. Optimization Online - The Worst-case Wind Power Scenario for ...

    E-Print Network [OSTI]

    German Morales-España

    2014-09-16

    Sep 16, 2014 ... The Worst-case Wind Power Scenario for Adaptive Robust Unit Commitment Problems. German Morales-España(gmorales ***at*** kth.se).

  6. Wind Power Siting: Public Acceptance and Land Use

    Wind Powering America (EERE)

    by the Alliance for Sustainable Energy, LLC. Wind Power Siting: Public Acceptance and Land Use Suzanne Tegen WINDExchange Webinar June 17, 2015 2 Overview * Current NREL Research *...

  7. Wind Energy Benefits, Wind Powering America (WPA) (Fact Sheet)

    SciTech Connect (OSTI)

    Not Available

    2011-04-01

    This fact sheet outlines the top 10 benefits of wind energy, including cost, water savings, job creation, indigenous resource, and low operating costs.

  8. 2011 Wind Technologies Market Report

    E-Print Network [OSTI]

    Bolinger, Mark

    2013-01-01

    of wind power capacity in that state) because generatorsgenerators to provide the needed flexibility to integrate wind power.wind power forecasts by system operators can significantly reduce integration challenges and costs. Intra-hour transmission scheduling and generator

  9. Offshore Wind Power Experiences, Potential and Key Issues for

    E-Print Network [OSTI]

    offshore wind farms are installed in British, Swedish and Danish waters, and present-day costs in 2015, 2030 and 2050 14 3.1 Offshore wind farms under construction and in planning stage 14 3Offshore Wind Power Experiences, Potential and Key Issues for Deployment Jørgen Lemming, Poul Erik

  10. Wind power resource assessment in complex urban environments

    E-Print Network [OSTI]

    Wind power resource assessment in complex urban environments: MIT campus case-study using CFD in Computational Fluid Dynamics (CFD) methods holds potential for the advancement of wind energy resource assessment in complex urban terrain by modeling wind circulation around urban obstacles. The geometry

  11. Thermoelectric Power Generation System with Loop Thermosyphon...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Generation System with Loop Thermosyphon in Future High Efficiency Hybrid Vehicles Thermoelectric Power Generation System with Loop Thermosyphon in Future High Efficiency Hybrid...

  12. Evaluation of Global Onshore Wind Energy Potential and Generation Costs

    SciTech Connect (OSTI)

    Zhou, Yuyu; Luckow, Patrick; Smith, Steven J.; Clarke, Leon E.

    2012-06-20

    In this study, we develop an updated global estimate of onshore wind energy potential using reanalysis wind speed data, along with updated wind turbine technology performance and cost assumptions as well as explicit consideration of transmission distance in the calculation of transmission costs. We find that wind has the potential to supply a significant portion of world energy needs, although this potential varies substantially by region as well as with assumptions such as on what types of land can be used to site wind farms. Total global wind potential under central assumptions is estimated to be approximately 89 petawatt hours per year at less than 9 cents/kWh with substantial regional variations. One limitation of global wind analyses is that the resolution of current global wind speed reanalysis data can result in an underestimate of high wind areas. A sensitivity analysis of eight key parameters is presented. Wind potential is sensitive to a number of input parameters, particularly those related to land suitability and turbine density as well as cost and financing assumptions which have important policy implications. Transmission cost has a relatively small impact on total wind costs, changing the potential at a given cost by 20-30%. As a result of sensitivities studied here we suggest that further research intended to inform wind supply curve development focus not purely on physical science, such as better resolved wind maps, but also on these less well-defined factors, such as land-suitability, that will also have an impact on the long-term role of wind power.

  13. Benefits of Stochastic Scheduling for Power Systems with Significant Installed Wind Power

    E-Print Network [OSTI]

    Abstract-- Wind energy on a power system alters the unit commitment and dispatch problem, as it adds to provide large amounts of their electrical energy requirements from wind power. This wind power will have (regulation and frequency issues), to hours and days (unit commitment and dispatch), to years (transmission

  14. Investment Timing and Capacity Choice for Small-Scale Wind Power Under Uncertainty

    E-Print Network [OSTI]

    Fleten, Stein-Erik; Maribu, Karl Magnus

    2004-01-01

    REFERENCES [1] American Wind Power Association (AWEA), Road-CHOICE FOR SMALL-SCALE WIND POWER UNDER UNCERTAINTY Stein-Power production from wind power has stochastic inflows, and

  15. Ex Post Analysis of Economic Impacts from Wind Power Development in U.S. Counties

    E-Print Network [OSTI]

    Brown, Jason P.

    2014-01-01

    use requirements of modern wind power plants in the United2002. Economic impacts of wind power in Kittitas County:Renewable energy: Wind power’s contribution to electric

  16. Ex Post Analysis of Economic Impacts from Wind Power Development in U.S. Counties

    E-Print Network [OSTI]

    Brown, Jason P.

    2014-01-01

    use requirements of modern wind power plants in the United2002. Economic impacts of wind power in Kittitas County:Office, 2004. Renewable energy: Wind power’s contribution to

  17. Wind for Schools: Developing Educational Programs to Train a New Workforce and the Next Generation of Wind Energy Experts (Poster)

    SciTech Connect (OSTI)

    Flowers, L.; Baring-Gould, I.

    2010-04-01

    As the United States dramatically expands wind energy deployment, the industry is challenged with developing a skilled workforce and addressing public resistance. Wind Powering America's Wind for Schools project addresses these issues by: Developing Wind Application Centers (WACs) at universities; installing small wind turbines at community "host" schools; and implementing teacher training with interactive curricula at each host school.

  18. Changes in the Economic Value of Variable Generation at High Penetration Levels: A Pilot Case Study of California

    E-Print Network [OSTI]

    Mills, Andrew

    2013-01-01

    conventional power plants and wind power. IEEE Transactionsplanning with significant wind power generation. IEEEmix with high level of wind power penetration. Applied

  19. Floating offshore wind farms : demand planning & logistical challenges of electricity generation

    E-Print Network [OSTI]

    Nnadili, Christopher Dozie, 1978-

    2009-01-01

    Floating offshore wind farms are likely to become the next paradigm in electricity generation from wind energy mainly because of the near constant high wind speeds in an offshore environment as opposed to the erratic wind ...

  20. Annual Report on U.S. Wind Power Installation, Cost, and Performance Trends: 2006

    E-Print Network [OSTI]

    2008-01-01

    Western Wind, and Midwest Wind Energy. Table 4. Merger andHorizon) Noble Power CPV Wind Catamount Western Wind EnergyCoastal Wind Energy LLC Tierra Energy, LLC Renewable

  1. An Analysis of Wind Power Development in the Town of Hull, MA

    SciTech Connect (OSTI)

    Adams, Christopher

    2013-06-30

    Over the past three decades the Town of Hull, MA has solidified its place in U.S. wind energy history through its leadership in community-based generation. This is illustrated by its commissioning of the first commercial-scale wind turbine on the Atlantic coastline, the first suburban-sited turbine in the continental United States, pursuit of community-based offshore wind, and its push toward creating an energy independent community. The town's history and demographics are briefly outlined, followed by experience in projects to provide wind power, including pre-construction and feasibility efforts, financial aspects, and market/industry factors.

  2. Wind Power Forecasting Error Distributions: An International Comparison; Preprint

    SciTech Connect (OSTI)

    Hodge, B. M.; Lew, D.; Milligan, M.; Holttinen, H.; Sillanpaa, S.; Gomez-Lazaro, E.; Scharff, R.; Soder, L.; Larsen, X. G.; Giebel, G.; Flynn, D.; Dobschinski, J.

    2012-09-01

    Wind power forecasting is expected to be an important enabler for greater penetration of wind power into electricity systems. Because no wind forecasting system is perfect, a thorough understanding of the errors that do occur can be critical to system operation functions, such as the setting of operating reserve levels. This paper provides an international comparison of the distribution of wind power forecasting errors from operational systems, based on real forecast data. The paper concludes with an assessment of similarities and differences between the errors observed in different locations.

  3. Surpassing Expectations: State of the U.S. Wind Power Market

    E-Print Network [OSTI]

    Bolinger, Mark A

    2009-01-01

    on U.S. Wind Power Installation, Cost, and Performancecontinued to put upward pressure on wind turbine costs,wind project costs, and wind power prices in 2007. Since

  4. Modeling the Benefits of Storage Technologies to Wind Power

    SciTech Connect (OSTI)

    Sullivan, P.; Short, W.; Blair, N.

    2008-06-01

    Rapid expansion of wind power in the electricity sector is raising questions about how wind resource variability might affect the capacity value of wind farms at high levels of penetration. Electricity storage, with the capability to shift wind energy from periods of low demand to peak times and to smooth fluctuations in output, may have a role in bolstering the value of wind power at levels of penetration envisioned by a new Department of Energy report ('20% Wind by 2030, Increasing Wind Energy's Contribution to U.S. Electricity Supply'). This paper quantifies the value storage can add to wind. The analysis was done employing the Regional Energy Deployment System (ReEDS) model, formerly known as the Wind Deployment System (WinDS) model. ReEDS was used to estimate the cost and development path associated with 20% penetration of wind in the report. ReEDS differs from the WinDS model primarily in that the model has been modified to include the capability to build and use three storage technologies: pumped-hydroelectric storage (PHS), compressed-air energy storage (CAES), and batteries. To assess the value of these storage technologies, two pairs of scenarios were run: business-as-usual, with and without storage; 20% wind energy by 2030, with and without storage. This paper presents the results from those model runs.

  5. Control Strategies for Distributed Energy Resources to Maximize the Use of Wind Power in Rural Microgrids

    SciTech Connect (OSTI)

    Lu, Shuai; Elizondo, Marcelo A.; Samaan, Nader A.; Kalsi, Karanjit; Mayhorn, Ebony T.; Diao, Ruisheng; Jin, Chunlian; Zhang, Yu

    2011-10-10

    The focus of this paper is to design control strategies for distributed energy resources (DERs) to maximize the use of wind power in a rural microgrid. In such a system, it may be economical to harness wind power to reduce the consumption of fossil fuels for electricity production. In this work, we develop control strategies for DERs, including diesel generators, energy storage and demand response, to achieve high penetration of wind energy in a rural microgrid. Combinations of centralized (direct control) and decentralized (autonomous response) control strategies are investigated. Detailed dynamic models for a rural microgrid are built to conduct simulations. The system response to large disturbances and frequency regulation are tested. It is shown that optimal control coordination of DERs can be achieved to maintain system frequency while maximizing wind power usage and reducing the wear and tear on fossil fueled generators.

  6. Multiple Timescale Dispatch and Scheduling for Stochastic Reliability in Smart Grids with Wind Generation Integration

    E-Print Network [OSTI]

    He, Miao; Zhang, Junshan

    2010-01-01

    Integrating volatile renewable energy resources into the bulk power grid is challenging, due to the reliability requirement that at each instant the load and generation in the system remain balanced. In this study, we tackle this challenge for smart grid with integrated wind generation, by leveraging multi-timescale dispatch and scheduling. Specifically, we consider smart grids with two classes of energy users - traditional energy users and opportunistic energy users (e.g., smart meters or smart appliances), and investigate pricing and dispatch at two timescales, via day-ahead scheduling and realtime scheduling. In day-ahead scheduling, with the statistical information on wind generation and energy demands, we characterize the optimal procurement of the energy supply and the day-ahead retail price for the traditional energy users; in realtime scheduling, with the realization of wind generation and the load of traditional energy users, we optimize real-time prices to manage the opportunistic energy users so as...

  7. Empirical Analysis of the Variability of Wind Generation in India: Implications for Grid Integration

    E-Print Network [OSTI]

    Phadke, Amol

    2014-01-01

    and V. Neimane. 2005. 4000 MW Wind Power in Sweden-Impact onand Michael Milligan. 2009. “Wind Energy and Power SystemOperations: A Review of Wind Integration Studies to Date. ”

  8. Wind Power Development in the United States: Current Progress, Future Trends

    E-Print Network [OSTI]

    Wiser, Ryan H

    2009-01-01

    to lower the cost of offshore wind power, and incrementallyinstalled offshore. From 2018 to 2030, roughly 16 GW of wind

  9. Pseudorandom sequences constructed by the power generator

    E-Print Network [OSTI]

    Katalin, Gyarmati

    Pseudorandom sequences constructed by the power generator Katalin Gyarmati # Abstract We study the pseudorandom properties of the power generator (which includes as special cases the RSA generator and the Blum- Blum-Shub generator). In order to estimate the pseudorandom mea- sures character sums with exponential

  10. Cascading Closed Loop Cycle Power Generation 

    E-Print Network [OSTI]

    Romero, M.

    2008-01-01

    the combustion of fossil fuels. The WOWGen® power plant inherently reduces emissions and Greenhouse Gases (GHG) by producing power from waste heat without consuming fuel, thus increasing the overall energy efficiency of any industrial plant or power generation...

  11. Revised: Jan 20, 2014 56:155 [IE:4550] Wind Power Management

    E-Print Network [OSTI]

    Kusiak, Andrew

    1 Revised: Jan 20, 2014 56:155 [IE:4550] Wind Power Management http://www.icaen.uiowa.edu/~ie_155 and systems, wind farm performance optimization, and integration of wind power with a grid. The modeling Useful Wind Energy Websites Wind basics http://www.nrel.gov/learning/re_wind.html Wind energy tutorial

  12. Wind Power Development in the United States: Current Progress, Future Trends

    E-Print Network [OSTI]

    Wiser, Ryan H

    2009-01-01

    supply curve for wind using cost and performance assumptionspressure on installed wind project costs while the industryon U.S. Wind Power Installation, Cost, and Performance

  13. Annual Report on U.S. Wind Power Installation, Cost, and Performance Trends: 2006

    E-Print Network [OSTI]

    2008-01-01

    to Drive Wind Development. . . . . . . . . . . . . . .5 GE Wind Is the Dominant Turbine Manufacturer, with SiemensAnnual Report on U.S. Wind Power Installation, Cost, and

  14. Geek-Up[04.01.2011]: Charting Wind, Thermal, Hydro Generation

    Office of Energy Efficiency and Renewable Energy (EERE)

    Check out Bonneville Power Administration’s new near real-time energy monitoring – it displays the output of all wind, thermal and hydro generation in the agency’s balancing authority against its load. Updated every five minutes, it’s a great resource for universities, research laboratories and other utilities.

  15. Role of Concentrating Solar Power in Integrating Solar and Wind Energy: Preprint

    SciTech Connect (OSTI)

    Denholm, P.; Mehos, M.

    2015-06-03

    As wind and solar photovoltaics (PV) increase in penetration it is increasingly important to examine enabling technologies that can help integrate these resources at large scale. Concentrating solar power (CSP) when deployed with thermal energy storage (TES) can provide multiple services that can help integrate variable generation (VG) resources such as wind and PV. CSP with TES can provide firm, highly flexible capacity, reducing minimum generation constraints which limit penetration and results in curtailment. By acting as an enabling technology, CSP can complement PV and wind, substantially increasing their penetration in locations with adequate solar resource.

  16. Impacts of Wind and Solar on Fossil-Fueled Generators: Preprint

    SciTech Connect (OSTI)

    Lew, D.; Brinkman, G.; Kumar, N.; Besuner, P.; Agan, D.; Lefton, S.

    2012-08-01

    High penetrations of wind and solar power will impact the operations of the remaining generators on the power system. Regional integration studies have shown that wind and solar may cause fossil-fueled generators to cycle on and off and ramp down to part load more frequently and potentially more rapidly. Increased cycling, deeper load following, and rapid ramping may result in wear-and-tear impacts on fossil-fueled generators that lead to increased capital and maintenance costs, increased equivalent forced outage rates, and degraded performance over time. Heat rates and emissions from fossil-fueled generators may be higher during cycling and ramping than during steady-state operation. Many wind and solar integration studies have not taken these increased cost and emissions impacts into account because data have not been available. This analysis considers the cost and emissions impacts of cycling and ramping of fossil-fueled generation to refine assessments of wind and solar impacts on the power system.

  17. Linkages from DOE's Wind Energy Program to Commercial Renewable...

    Energy Savers [EERE]

    Linkages from DOE's Wind Energy Program to Commercial Renewable Power Generation Linkages from DOE's Wind Energy Program to Commercial Renewable Power Generation The study examines...

  18. Symmetrical and Unsymmetrical Fault Currents of a Wind Power Plant: Preprint

    SciTech Connect (OSTI)

    Gevorgian, V.; Singh, M.; Muljadi, E.

    2011-12-01

    This paper investigates the short-circuit behavior of a wind power plant for different types of wind turbines. Both symmetrical faults and unsymmetrical faults are investigated. The size of wind power plants (WPPs) keeps getting bigger and bigger. The number of wind plants in the U.S. has increased very rapidly in the past 10 years. It is projected that in the U.S., the total wind power generation will reach 330 GW by 2030. As the importance of WPPs increases, planning engi-neers must perform impact studies used to evaluate short-circuit current (SCC) contribution of the plant into the transmission network under different fault conditions. This information is needed to size the circuit breakers, to establish the proper sys-tem protection, and to choose the transient suppressor in the circuits within the WPP. This task can be challenging to protec-tion engineers due to the topology differences between different types of wind turbine generators (WTGs) and the conventional generating units. This paper investigates the short-circuit behavior of a WPP for different types of wind turbines. Both symmetrical faults and unsymmetrical faults are investigated. Three different soft-ware packages are utilized to develop this paper. Time domain simulations and steady-state calculations are used to perform the analysis.

  19. The Impact of Wind Power Projects on Residential Property Values in the United States: A Multi-Site Hedonic Analysis

    E-Print Network [OSTI]

    Hoen, Ben

    2010-01-01

    2002) Economic Impacts of Wind Power in Kittitas County, WA.about Large Offshore Wind Power: Underlying Factors. EnergyOpinion on Offshore Wind Power - Interim Report. University

  20. A comparative analysis of business structures suitable for farmer-owned wind power projects in the United States

    E-Print Network [OSTI]

    Bolinger, Mark; Wiser, Ryan

    2004-01-01

    Support for Community Wind Power Development. LBNL-54715.Analysis of Community Wind Power Development Options inWhip Up Hopes for Wind Power Again. ” The Wall Street

  1. Part of the Climate Change Problem . . . and the Solution? Chinese-Made Wind Power Technology and Opportunities for Dissemination

    E-Print Network [OSTI]

    Lewis, Joanna I.

    2005-01-01

    2004.   “Grid  Connected  Wind  Power  in  China. ”  NREL/Commercialization  of  Wind  Power  Technology  in  China.  Coal  and  Candles:  Wind  Power in  China. ” Energy Policy 

  2. The Great Plains Wind Power Test Facility

    SciTech Connect (OSTI)

    Schroeder, John

    2014-01-31

    This multi-year, multi-faceted project was focused on the continued development of a nationally-recognized facility for the testing, characterization, and improvement of grid-connected wind turbines, integrated wind-water desalination systems, and related educational and outreach topics. The project involved numerous faculty and graduate students from various engineering departments, as well as others from the departments of Geosciences (in particular the Atmospheric Science Group) and Economics. It was organized through the National Wind Institute (NWI), which serves as an intellectual hub for interdisciplinary and transdisciplinary research, commercialization and education related to wind science, wind energy, wind engineering and wind hazard mitigation at Texas Tech University (TTU). Largely executed by an academic based team, the project resulted in approximately 38 peer-reviewed publications, 99 conference presentations, the development/expansion of several experimental facilities, and two provisional patents.

  3. Plasma plume MHD power generator and method

    DOE Patents [OSTI]

    Hammer, James H. (Livermore, CA)

    1993-01-01

    Highly-conducting plasma plumes are ejected across the interplanetary magnetic field from a situs that is moving relative to the solar wind, such as a spacecraft or an astral body, such as the moon, having no magnetosphere that excludes the solar wind. Discrete plasma plumes are generated by plasma guns at the situs extending in opposite directions to one another and at an angle, preferably orthogonal, to the magnetic field direction of the solar wind plasma. The opposed plumes are separately electrically connected to their source by a low impedance connection. The relative movement between the plasma plumes and the solar wind plasma creates a voltage drop across the plumes which is tapped by placing the desired electrical load between the electrical connections of the plumes to their sources. A portion of the energy produced may be used in generating the plasma plumes for sustained operation.

  4. Automatic contour-based road network design for optimized wind farm micrositing

    E-Print Network [OSTI]

    Gu, H; Wang, J; Lin, Q; Gong, Q

    2015-01-01

    and R. Li, “Study on wind power generation cost in Zhejiang:ing renewable energy. A wind power generation station, alsotheir applications to wind power prediction, and wind energy

  5. High Altitude Wind Power Systems: A Survey on Flexible Power Kites Mariam Ahmed*

    E-Print Network [OSTI]

    Boyer, Edmond

    High Altitude Wind Power Systems: A Survey on Flexible Power Kites Mariam Ahmed* Grenoble (G2ELab) 38402 Saint-Martin d'Heres, France Abstract-- High altitude wind energy (HAWE) is a new interest in sustainable development, renewable energy systems, such as solar photo-voltaic, wind and tidal

  6. Optimizing a Hybrid Energy Storage System for a Virtual Power Plant for Improved Wind Power

    E-Print Network [OSTI]

    Teodorescu, Remus

    Optimizing a Hybrid Energy Storage System for a Virtual Power Plant for Improved Wind Power approach to find two optimum energy storages (ESs) to build a hybrid system which is part of a virtual power plant. In this paper it means the combination of the hybrid energy storage system and wind power

  7. 2014 WIND POWER PROGRAM PEER REVIEW-DISTRIBUTED WIND

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE:Financing ToolInternationalReportOffice | Department ofDistributed Wind March 24-27, 2014 Wind

  8. The Impact of Wind Development on County-Level Income and Employment: A Review of Methods and an Empirical Analysis (Fact Sheet). Wind And Water Power Program (WWPP).

    E-Print Network [OSTI]

    Brown, Jason P.

    2014-01-01

    WIND AND WATER POWER PROGRAM The Impact of Wind Developmentmay be required. WIND AND WATER POWER PROGRAM Methods TheNREL). The U.S. DOE (Wind & Water Power Program) funded

  9. Limits to the power density of very large wind farms

    E-Print Network [OSTI]

    Nishino, Takafumi

    2013-01-01

    A simple analysis is presented concerning an upper limit of the power density (power per unit land area) of a very large wind farm located at the bottom of a fully developed boundary layer. The analysis suggests that the limit of the power density is about 0.38 times $\\tau_{w0}U_{F0}$, where $\\tau_{w0}$ is the natural shear stress on the ground (that is observed before constructing the wind farm) and $U_{F0}$ is the natural or undisturbed wind speed averaged across the height of the farm to be constructed. Importantly, this implies that the maximum extractable power from such a very large wind farm will not be proportional to the cubic of the wind speed at the farm height, or even the farm height itself, but be proportional to $U_{F0}$.

  10. Fuxin Union Wind Power Co Ltd formerly known as Liaoning Zhangwu...

    Open Energy Info (EERE)

    Union Wind Power Co Ltd formerly known as Liaoning Zhangwu Xiehe Wind Power Co Ltd Jump to: navigation, search Name: Fuxin Union Wind Power Co Ltd (formerly known as Liaoning...

  11. Analyzing the interaction between state tax incentives and the federal production tax credit for wind power

    E-Print Network [OSTI]

    Wiser, Ryan; Bolinger, Mark; Gagliano, Troy

    2002-01-01

    Production Tax Credit for Wind Power Ryan Wiser and MarkState Policies Foster a Wind Power Resurgence The ImportancePTC) for large-scale wind power projects. While the federal

  12. Comment on "Air Emissions Due to Wind and Solar Power" and Supporting Information

    E-Print Network [OSTI]

    Mills, Andrew D.

    2011-01-01

    The Effects of Integrating Wind Power on Transmission SystemH. On methodology for modelling wind power impact on powerwith Large Amounts of Wind Power; VTT Working Paper 82,

  13. Surpassing Expectations: State of the U.S. Wind Power Market

    E-Print Network [OSTI]

    Bolinger, Mark A

    2009-01-01

    The Annual Report on U.S. Wind Power Installation, Cost, andState of the U.S. Wind Power Market Intro Sidebar: The U.S.Annual Report on U.S. Wind Power Installation, Cost, and

  14. Wind Power Development in the United States: Current Progress, Future Trends

    E-Print Network [OSTI]

    Wiser, Ryan H

    2009-01-01

    Annual Report on U.S. Wind Power Installation, Cost, andWind Power Development in the United States: Current94720 Abstract: The U.S. wind power industry is in an era of

  15. Annual Report on U.S. Wind Power Installation, Cost, and Performance Trends: 2006

    E-Print Network [OSTI]

    2008-01-01

    Annual Report on U.S. Wind Power Installation, Cost, and3 U.S. Wind Power Capacity Increased by 27% inAre Significant. . . . . . . 9 Wind Power Prices Are Up in

  16. Analysis of Wind Power and Load Data at Multiple Time Scales

    E-Print Network [OSTI]

    Coughlin, Katie

    2011-01-01

    Huei. 2005. Primer on Wind Power for Utility Applications.Wan, Yih-Huei. 2004. Wind Power Plant Behaviors: Analysesof Long-Term Wind Power Data. National Renewable Energy Lab

  17. Comment on "Air Emissions Due to Wind and Solar Power" and Supporting Information

    E-Print Network [OSTI]

    Mills, Andrew D.

    2011-01-01

    due to wind and solar power. Environ. Sci. Technol. (2)Emissions Due to Wind and Solar Power” Andrew Mills, ? , †due to wind and solar power. Environ. Sci. Technol. (2)

  18. Power Control and Optimization of Photovoltaic and Wind Energy Conversion Systems /

    E-Print Network [OSTI]

    Ghaffari, Azad

    2013-01-01

    2011. [2] ——, “High altitude wind power systems: A survey onidea of harnessing high altitude wind power using a tetheredComputed power densities in high altitude winds exceed a 10

  19. A Guidebook on Grid Interconnection and Islanded Operation of Mini-Grid Power Systems Up to 200 kW

    E-Print Network [OSTI]

    Greacen, Chris

    2014-01-01

    from different sources: wind, solar, and diesel. ” Productsphotovoltaic (PV), wind power, and even diesel generators.

  20. Wind power is a rapidly growing and evolving field that crosses traditional academic disciplines and increasingly

    E-Print Network [OSTI]

    Firestone, Jeremy

    Wind power is a rapidly growing and evolving field that crosses traditional academic disciplines to locate wind power projects, the economics and regulatory policies governing wind power and the complex wind projects. Interdisciplinary Research and Education The Wind Power Science, Engineering and Policy

  1. Effects of Temporal Wind Patterns on the Value of Wind-Generated Electricity at Different Sites in California and the Northwest

    E-Print Network [OSTI]

    Fripp, Matthias; Wiser, Ryan

    2006-01-01

    1992). “Capacity credit of wind power in the Netherlands. ”modeling as a tool for wind resource assessment andBurton, T. , et al. (2001). Wind Energy Handbook, John

  2. Xcel Energy Wind and Biomass Generation Mandate

    Broader source: Energy.gov [DOE]

    A separate law (Minn. Stat. § 216B.2424, also originally enacted in 1994) requires Xcel Energy to build or contract for 110 MW of electricity generated from biomass resources. The original...

  3. WPA Omnibus Award MT Wind Power Outreach

    SciTech Connect (OSTI)

    Brian Spangler, Manager Energy Planning and Renewables

    2012-01-30

    The objective of this grant was to further the development of Montanaâ??s vast wind resources for small, medium, and large scale benefits to Montana and the nation. This was accomplished through collaborative work with wind industry representatives, state and local governments, the agricultural community, and interested citizens. Through these efforts MT Dept Environmental Quality (DEQ) was able to identify development barriers, educate and inform citizens, as well as to participate in regional and national dialogue that will spur the development of wind resources. The scope of DEQâ??s wind outreach effort evolved over the course of this agreement from the development of the Montana Wind Working Group and traditional outreach efforts, to the current focus on working with the stateâ??s university system to deliver a workforce trained to enter the wind industry.

  4. Reactive power interconnection requirements for PV and wind plants : recommendations to NERC.

    SciTech Connect (OSTI)

    McDowell, Jason; Walling, Reigh; Peter, William; Von Engeln, Edi; Seymour, Eric; Nelson, Robert; Casey, Leo; Ellis, Abraham; Barker, Chris.

    2012-02-01

    Voltage on the North American bulk system is normally regulated by synchronous generators, which typically are provided with voltage schedules by transmission system operators. In the past, variable generation plants were considered very small relative to conventional generating units, and were characteristically either induction generator (wind) or line-commutated inverters (photovoltaic) that have no inherent voltage regulation capability. However, the growing level of penetration of non-traditional renewable generation - especially wind and solar - has led to the need for renewable generation to contribute more significantly to power system voltage control and reactive power capacity. Modern wind-turbine generators, and increasingly PV inverters as well, have considerable dynamic reactive power capability, which can be further enhanced with other reactive support equipment at the plant level to meet interconnection requirements. This report contains a set of recommendations to the North-America Electricity Reliability Corporation (NERC) as part of Task 1-3 (interconnection requirements) of the Integration of Variable Generation Task Force (IVGTF) work plan. The report discusses reactive capability of different generator technologies, reviews existing reactive power standards, and provides specific recommendations to improve existing interconnection standards.

  5. Remote sensing for wind power potential: a prospector's handbook

    SciTech Connect (OSTI)

    Wade, J.E.; Maule, P.A.; Bodvarsson, G.; Rosenfeld, C.L.; Woolley, S.G.; McClenahan, M.R.

    1983-02-01

    Remote sensing can aid in identifying and locating indicators of wind power potential from the terrestrial, marine, and atmospheric environments (i.e.: wind-deformed trees, white caps, and areas of thermal flux). It is not considered as a tool for determining wind power potential. A wide variety of remotely sensed evidence is described in terms of the scale at which evidence of wind power can be identified, and the appropriate remote sensors for finding such evidence. Remote sensing can be used for regional area prospecting using small-scale imagery. The information from such small-scale imagery is most often qualitative, and if it is transitory, examination of a number of images to verify presistence of the feature may be required. However, this evidence will allow rapid screening of a large area. Medium-scale imagery provides a better picture of the evidence obtained from small-scale imagery. At this level it is best to use existing imagery. Criteria relating to land use, accessibility, and proximity of candidate sites to nearby transmission lines can also be effectively evaluated from medium-scale imagery. Large-scale imagery provides the most quantitative evidence of the strength of wind. Wind-deformed trees can be identified at a large number of sites using only a few hours in locally chartered aircraft. A handheld 35mm camera can adequately document any evidence of wind. Three case studies that employ remote sensing prospecting techniques are described. Based on remotely sensed evidence, the wind power potential in three geographically and climatically diverse areas of the United States is estimated, and the estimates are compared to actual wind data in those regions. In addition, the cost of each survey is discussed. The results indicate that remote sensing for wind power potential is a quick, cost effective, and fairly reliable method for screening large areas for wind power potential.

  6. Systems and methods for an integrated electrical sub-system powered by wind energy

    DOE Patents [OSTI]

    Liu, Yan (Ballston Lake, NY); Garces, Luis Jose (Niskayuna, NY)

    2008-06-24

    Various embodiments relate to systems and methods related to an integrated electrically-powered sub-system and wind power system including a wind power source, an electrically-powered sub-system coupled to and at least partially powered by the wind power source, the electrically-powered sub-system being coupled to the wind power source through power converters, and a supervisory controller coupled to the wind power source and the electrically-powered sub-system to monitor and manage the integrated electrically-powered sub-system and wind power system.

  7. Final Scientific Report - Wind Powering America State Outreach Project

    SciTech Connect (OSTI)

    Sinclair, Mark; Margolis, Anne

    2012-02-01

    The goal of the Wind Powering America State Outreach Project was to facilitate the adoption of effective state legislation, policy, finance programs, and siting best practices to accelerate public acceptance and development of wind energy. This was accomplished by Clean Energy States Alliance (CESA) through provision of informational tools including reports and webinars as well as the provision of technical assistance to state leaders on wind siting, policy, and finance best practices, identification of strategic federal-state partnership activities for both onshore and offshore wind, and participation in regional wind development collaboratives. The Final Scientific Report - Wind Powering America State Outreach Project provides a summary of the objectives, activities, and outcomes of this project as accomplished by CESA over the period 12/1/2009 - 11/30/2011.

  8. Wind power manufacturing and supply chain summit USA.

    SciTech Connect (OSTI)

    Hill, Roger Ray

    2010-12-01

    The area of wind turbine component manufacturing represents a business opportunity in the wind energy industry. Modern wind turbines can provide large amounts of electricity, cleanly and reliably, at prices competitive with any other new electricity source. Over the next twenty years, the US market for wind power is expected to continue to grow, as is the domestic content of installed turbines, driving demand for American-made components. Between 2005 and 2009, components manufactured domestically grew eight-fold to reach 50 percent of the value of new wind turbines installed in the U.S. in 2009. While that growth is impressive, the industry expects domestic content to continue to grow, creating new opportunities for suppliers. In addition, ever-growing wind power markets around the world provide opportunities for new export markets.

  9. FOUR ESSAYS ON OFFSHORE WIND POWER POTENTIAL, DEVELOPMENT, REGULATORY FRAMEWORK, AND INTEGRATION

    E-Print Network [OSTI]

    Firestone, Jeremy

    FOUR ESSAYS ON OFFSHORE WIND POWER POTENTIAL, DEVELOPMENT, REGULATORY FRAMEWORK, AND INTEGRATION 2010 Amardeep Dhanju All Rights Reserved #12;FOUR ESSAYS ON OFFSHORE WIND POWER POTENTIAL, DEVELOPMENT

  10. Building a New Energy Future with Wind Power (Revised) (Fact Sheet)

    SciTech Connect (OSTI)

    Not Available

    2013-01-01

    This fact sheet provides an overview of the U.S. Department of Energy's Wind and Water Power Program's wind power research activities.

  11. Wind Turbine Generator System Duration Test Report for the Gaia-Wind 11 kW Wind Turbine

    SciTech Connect (OSTI)

    Huskey, A.; Bowen, A.; Jager, D.

    2010-09-01

    This test was conducted as part of the U.S. Department of Energy's (DOE) Independent Testing project. This project was established to help reduce the barriers of wind energy expansion by providing independent testing results for small turbines. In total, five turbines are being tested at the National Renewable Energy Laboratory's (NRELs) National Wind Technology Center (NWTC) as a part of this project. Duration testing is one of up to five tests that may be performed on the turbines, including power performance, safety and function, noise, and power quality tests. The results of the testing will provide the manufacturers with reports that may be used for small wind turbine certification. The test equipment includes a Gaia-Wind 11 kW wind turbine mounted on an 18 m monopole tower. Gaia-Wind Ltd. manufactured the turbine in Denmark, although the company is based in Scotland. The system was installed by the NWTC Site Operations group with guidance and assistance from Gaia-Wind.

  12. Nonlinear Dual-Mode Control of Variable-Speed Wind Turbines with Doubly Fed Induction Generators

    E-Print Network [OSTI]

    Tang, Choon Yik; Jiang, John N

    2010-01-01

    This paper presents a feedback/feedforward nonlinear controller for variable-speed wind turbines with doubly fed induction generators. By appropriately adjusting the rotor voltages and the blade pitch angle, the controller simultaneously enables: (a) control of the active power in both the maximum power tracking and power regulation modes, (b) seamless switching between the two modes, and (c) control of the reactive power so that a desirable power factor is maintained. Unlike many existing designs, the controller is developed based on original, nonlinear, electromechanically-coupled models of wind turbines, without attempting approximate linearization. Its development consists of three steps: (i) employ feedback linearization to exactly cancel some of the nonlinearities and perform arbitrary pole placement, (ii) design a speed controller that makes the rotor angular velocity track a desired reference whenever possible, and (iii) introduce a Lyapunov-like function and present a gradient-based approach for mini...

  13. Final Summary Report: Em-Powering Coastal States and Utilities through Model Offshore Wind Legislation and Outreach

    SciTech Connect (OSTI)

    Jeremy Firestone; Dawn Kurtz Crompton

    2011-11-30

    The final summary report summarizes the most significant findings from three project reports detailing: feed-in tariffs, model request for proposals for new generation, and model state offshore wind power legislation.

  14. Effects of Temporal Wind Patterns on the Value of Wind-Generated Electricity in California and the Northwest

    SciTech Connect (OSTI)

    Wiser, Ryan H; Wiser, Ryan H; Fripp, Matthias

    2008-05-01

    Wind power production is variable, but also has diurnal and seasonal patterns. These patterns differ between sites, potentially making electric power from some wind sites more valuable for meeting customer loads or selling in wholesale power markets. This paper investigates whether the timing of wind significantly affects the value of electricity from sites in California and the Northwestern United States. We use both measured and modeled wind data and estimate the time-varying value of wind power with both financial and load-based metrics. We find that the potential difference in wholesale market value between better-correlated and poorly correlated wind sites is modest, on the order of 5-10 percent. A load-based metric, power production during the top 10 percent of peak load hours, varies more strongly between sites, suggesting that the capacity value of different wind projects could vary by as much as 50 percent based on the timing of wind alone.

  15. World-Unique Wind Facilities Designed to protect us from storms, harness the power of wind and

    E-Print Network [OSTI]

    Lennard, William N.

    World-Unique Wind Facilities Designed to protect us from storms, harness the power of wind advanced experimental facility for studying the effects of damaging winds on structures, and for designing on buildings and structures, wind turbines, forests and crops; and improve the positioning and design of wind

  16. Analysis of Variability and Uncertainty in Wind Power Forecasting: An International Comparison: Preprint

    SciTech Connect (OSTI)

    Zhang, J.; Hodge, B. M.; Gomez-Lazaro, E.; Lovholm, A. L.; Berge, E.; Miettinen, J.; Holttinen, H.; Cutululis, N.; Litong-Palima, M.; Sorensen, P.; Dobschinski, J.

    2013-10-01

    One of the critical challenges of wind power integration is the variable and uncertain nature of the resource. This paper investigates the variability and uncertainty in wind forecasting for multiple power systems in six countries. An extensive comparison of wind forecasting is performed among the six power systems by analyzing the following scenarios: (i) wind forecast errors throughout a year; (ii) forecast errors at a specific time of day throughout a year; (iii) forecast errors at peak and off-peak hours of a day; (iv) forecast errors in different seasons; (v) extreme forecasts with large overforecast or underforecast errors; and (vi) forecast errors when wind power generation is at different percentages of the total wind capacity. The kernel density estimation method is adopted to characterize the distribution of forecast errors. The results show that the level of uncertainty and the forecast error distribution vary among different power systems and scenarios. In addition, for most power systems, (i) there is a tendency to underforecast in winter; and (ii) the forecasts in winter generally have more uncertainty than the forecasts in summer.

  17. Managing Wind Power Forecast Uncertainty in Electric Brandon Keith Mauch

    E-Print Network [OSTI]

    with compressed air energy storage (CAES) participating freely in the day-ahead electricity market without the benefit of a renewable portfolio standard or production tax credit. CAES is used to reduce the risk of committing uncertain quantities of wind energy and to shift dispatch of wind generation to high price periods

  18. Proceedings of National Avian-Wind Power Planning Meeting IV

    SciTech Connect (OSTI)

    NWCC Avian Subcommittee

    2001-05-01

    OAK-B135 The purpose of the fourth meeting was to (1) share research and update research conducted on avian wind interactions (2) identify questions and issues related to the research results, (3) develop conclusions about some avian/wind power issues, and (4) identify questions and issues for future avian research.

  19. Understanding Inertial and Frequency Response of Wind Power Plants: Preprint

    SciTech Connect (OSTI)

    Muljadi, E.; Gevorgian, V.; Singh, M.; Santoso, S.

    2012-07-01

    The objective of this paper is to analyze and quantify the inertia and frequency responses of wind power plants with different wind turbine technologies (particularly those of fixed speed, variable slip with rotor-resistance controls, and variable speed with vector controls).

  20. Electrical Collection and Transmission Systems for Offshore Wind Power: Preprint

    SciTech Connect (OSTI)

    Green, J.; Bowen, A.; Fingersh, L.J.; Wan, Y.

    2007-03-01

    The electrical systems needed for offshore wind farms to collect power from wind turbines--and transmit it to shore--will be a significant cost element of these systems. This paper describes the development of a simplified model of the cost and performance of such systems.