Powered by Deep Web Technologies
Note: This page contains sample records for the topic "wind potential supply" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


1

Offshore Wind Resource Global Wind Potential Supply Curves by...  

Open Energy Info (EERE)

Offshore Wind Resource Global Wind Potential Supply Curves by Country, Class, and Depth (quantities in GW)
2012-07-12T22:51:45Z 2012-07-13T20:49:20Z I am submitting data from...

2

School supply drive winding down  

NLE Websites -- All DOE Office Websites (Extended Search)

submit School supply drive winding down The drive is collecting materials for schools throughout Northern New Mexico and will be distributed by the Lab and Self Help, Inc....

3

Wind-hydrogen energy systems for remote area power supply.  

E-Print Network (OSTI)

??Wind-hydrogen systems for remote area power supply are an early niche application of sustainable hydrogen energy. Optimal direct coupling between a wind turbine and an… (more)

Janon, A

2009-01-01T23:59:59.000Z

4

U.S. Offshore Wind Manufacturing and Supply Chain Development  

SciTech Connect

The objective of the report is to provide an assessment of the domestic supply chain and manufacturing infrastructure supporting the U.S. offshore wind market. The report provides baseline information and develops a strategy for future development of the supply chain required to support projected offshore wind deployment levels. A brief description of each of the key chapters includes: » Chapter 1: Offshore Wind Plant Costs and Anticipated Technology Advancements. Determines the cost breakdown of offshore wind plants and identifies technical trends and anticipated advancements in offshore wind manufacturing and construction. » Chapter 2: Potential Supply Chain Requirements and Opportunities. Provides an organized, analytical approach to identifying and bounding the uncertainties associated with a future U.S. offshore wind market. It projects potential component-level supply chain needs under three demand scenarios and identifies key supply chain challenges and opportunities facing the future U.S. market as well as current suppliers of the nation’s land-based wind market. » Chapter 3: Strategy for Future Development. Evaluates the gap or competitive advantage of adding manufacturing capacity in the U.S. vs. overseas, and evaluates examples of policies that have been successful . » Chapter 4: Pathways for Market Entry. Identifies technical and business pathways for market entry by potential suppliers of large-scale offshore turbine components and technical services. The report is intended for use by the following industry stakeholder groups: (a) Industry participants who seek baseline cost and supplier information for key component segments and the overall U.S. offshore wind market (Chapters 1 and 2). The component-level requirements and opportunities presented in Section 2.3 will be particularly useful in identifying market sizes, competition, and risks for the various component segments. (b) Federal, state, and local policymakers and economic development agencies, to assist in identifying policies with low effort and high impact (Chapter 3). Section 3.3 provides specific policy examples that have been demonstrated to be effective in removing barriers to development. (c) Current and potential domestic suppliers in the offshore wind market, in evaluating areas of opportunity and understanding requirements for participation (Chapter 4). Section 4.4 provides a step-by-step description of the qualification process that suppliers looking to sell components into a future U.S. offshore wind market will need to follow.

Hamilton, Bruce Duncan [Navigant Consulting, Inc.

2013-02-22T23:59:59.000Z

5

Wind energy potential in the United States  

SciTech Connect

Estimates of the electricity that could potentially be generated by wind power and of the land area available for wind energy development have been calculated for the contiguous United States. The estimates are based on published wind resource data and exclude windy lands that are not suitable for development as a result of environmental and land-use considerations. Despite these exclusions, the potential electric power from wind energy is surprisingly large. Good wind areas, which cover 6% of the contiguous US land area, have the potential to supply more than one and a half times the current electricity consumption of the United States. Technology under development today will be capable of producing electricity economically from good wind sites in many regions of the country.

Elliott, D.L.; Schwartz, M.N.

1993-06-01T23:59:59.000Z

6

Offshore Wind Potential Tables  

Wind Powering America (EERE)

Offshore wind resource by state and wind speed interval within 50 nm of shore. Offshore wind resource by state and wind speed interval within 50 nm of shore. Wind Speed at 90 m (m/s) 7.0 - 7.5 7.5 - 8.0 8.0 - 8.5 8.5 - 9.0 9.0 - 9.5 9.5 - 10.0 >10.0 Total >7.0 State Area km 2 (MW) Area km 2 (MW) Area km 2 (MW) Area km 2 (MW) Area km 2 (MW) Area km 2 (MW) Area km 2 (MW) Area km 2 (MW) California 11,439 (57,195) 24,864 (124,318) 23,059 (115,296) 22,852 (114,258) 13,185 (65,924) 15,231 (76,153) 6,926 (34,629) 117,555 (587,773) Connecticut 530 (2,652) 702 (3,508) 40 (201) 0 (0) 0 (0) 0 (0) 0 (0) 1,272 (6,360) Delaware 223 (1,116) 724 (3,618) 1,062 (5,310) 931 (4,657) 0 (0) 0 (0) 0 (0) 2,940 (14,701) Georgia 3,820 (19,102) 7,741 (38,706) 523 (2,617) 0 (0) 0 (0) 0 (0) 0 (0) 12,085 (60,425) Hawaii 18,873 (94,363) 42,298 (211,492)

7

NREL: Wind Research - New U.S. Offshore Wind Supply Chain Development...  

NLE Websites -- All DOE Office Websites (Extended Search)

New U.S. Offshore Wind Supply Chain Development Resources Available April 8, 2013 Clean Energy States Alliance, in conjunction with Douglas-Westwood and the U.S. Offshore Wind...

8

GIS Method for Developing Wind Supply Curves  

DOE Green Energy (OSTI)

This report describes work conducted by the National Renewable Energy Laboratory (NREL) as part of the Wind Technology Partnership (WTP) sponsored by the U.S. Environmental Protection Agency (EPA). This project has developed methods that the National Development and Reform Commission (NDRC) intends to use in the planning and development of China's 30 GW of planned capacity. Because of China's influence within the community of developing countries, the methods and the approaches here may help foster wind development in other countries.

Kline, D.; Heimiller, D.; Cowlin, S.

2008-06-01T23:59:59.000Z

9

Evaluation of Global Onshore Wind Energy Potential and Generation Costs  

SciTech Connect

In this study, we develop an updated global estimate of onshore wind energy potential using reanalysis wind speed data, along with updated wind turbine technology performance and cost assumptions as well as explicit consideration of transmission distance in the calculation of transmission costs. We find that wind has the potential to supply a significant portion of world energy needs, although this potential varies substantially by region as well as with assumptions such as on what types of land can be used to site wind farms. Total global wind potential under central assumptions is estimated to be approximately 89 petawatt hours per year at less than 9 cents/kWh with substantial regional variations. One limitation of global wind analyses is that the resolution of current global wind speed reanalysis data can result in an underestimate of high wind areas. A sensitivity analysis of eight key parameters is presented. Wind potential is sensitive to a number of input parameters, particularly those related to land suitability and turbine density as well as cost and financing assumptions which have important policy implications. Transmission cost has a relatively small impact on total wind costs, changing the potential at a given cost by 20-30%. As a result of sensitivities studied here we suggest that further research intended to inform wind supply curve development focus not purely on physical science, such as better resolved wind maps, but also on these less well-defined factors, such as land-suitability, that will also have an impact on the long-term role of wind power.

Zhou, Yuyu; Luckow, Patrick; Smith, Steven J.; Clarke, Leon E.

2012-06-20T23:59:59.000Z

10

Stakeholder Engagement and Outreach: Wind Resource Potential  

Wind Powering America (EERE)

Wind Resource Potential Offshore Maps Community-Scale Maps Residential-Scale Maps Anemometer Loan Programs & Data Wind Resource Potential State Wind Resource Potential Tables Find state wind resource potential tables in three versions: Microsoft Excel 2007, 2003, and Adobe Acrobat PDF. 30% Capacity Factor at 80-Meters Microsoft 2007 Microsoft 2003 Adobe Acrobat PDF Additional 80- and 100-Meter Wind Resource Potential Tables Microsoft 2007 Microsoft 2003 Adobe Acrobat PDF The National Renewable Energy Laboratory (NREL) estimated the windy land area and wind energy potential for each state using AWS Truepower's gross capacity factor data. This provides the most up to date estimate of how wind energy can support state and national energy needs. The table lists the estimates of windy land area with a gross capacity of

11

United States Wind Resource Potential Chart  

Wind Powering America (EERE)

18,000 18,000 Rated Capacity Above Indicated CF (GW) United States - Wind Resource Potential Cumulative Rated Capacity vs. Gross Capacity Factor (CF) 80 m The estimates show the potential gigawatts of rated capacity that could be installed on land above a given gross capacity factor (without losses) at 80-m and 100-m heights above ground. Areas greater than 30% at 80 m are generally considered to have suitable wind resource for potential wind development with today's advanced wind turbine technology. AWS Truewind, LLC developed the wind resource data for windNavigator® (http://navigator.awstruewind.com) with a spatial resolution of 200 m. NREL filtered the wind potential estimates to

12

Supplying Baseload Power and Reducing Transmission Requirements by Interconnecting Wind Farms  

Science Conference Proceedings (OSTI)

Wind is the world’s fastest growing electric energy source. Because it is intermittent, though, wind is not used to supply baseload electric power today. Interconnecting wind farms through the transmission grid is a simple and effective way of ...

Cristina L. Archer; Mark Z. Jacobson

2007-11-01T23:59:59.000Z

13

An assessment of the economic impact of the wind turbine supply chain in Illinois  

SciTech Connect

The enormous growth of wind energy in Illinois and around the country has led to a shortage of wind turbines. Turbine manufacturers have sold out their capacity into 2010. To the extent that Illinois manufacturing can integrate itself into the wind turbine supply chain, Illinois can enjoy the economic benefits from both having wind farms and supplying the parts to build them. (author)

Carlson, J. Lon; Loomis, David G.; Payne, James

2010-08-15T23:59:59.000Z

14

Assessment of Supply Chain Energy Efficiency Potentials: A U...  

NLE Websites -- All DOE Office Websites (Extended Search)

Supply Chain Energy Efficiency Potentials: A U.S. Case Study Title Assessment of Supply Chain Energy Efficiency Potentials: A U.S. Case Study Publication Type Conference Paper...

15

Demand Side Management for Wind Power Integration in Microgrid Using Dynamic Potential Game Theory  

E-Print Network (OSTI)

Demand Side Management for Wind Power Integration in Microgrid Using Dynamic Potential Game Theory the intermittency in wind power generation. Our focus is on an isolated microgrid with one wind turbine, one fast supply and demand in an isolated microgrid [2], which is an important concept for renewable energy

Huang, Jianwei

16

Hedging effects of wind on retail electric supply costs  

Science Conference Proceedings (OSTI)

In the short term, renewables - especially wind - are not as effective as conventional hedges due to uncertain volume and timing as well as possibly poor correlation with high-value periods. In the long term, there are more potential hedging advantages to renewables because conventional financial hedges are not available very far in the future. (author)

Graves, Frank; Litvinova, Julia

2009-12-15T23:59:59.000Z

17

Reassessing Wind Potential Estimates for India: Economic and Policy Implications  

E-Print Network (OSTI)

of Potential for Wind Farms in India, Renewable Energy (Report http://ies.lbl.gov/India_Wind_Potential Disclaimeron-shore wind potential in India at three different hub-

Phadke, Amol

2012-01-01T23:59:59.000Z

18

Wind Energy Potential in SE New Mexico  

NLE Websites -- All DOE Office Websites (Extended Search)

click to return to the Renewable Energy page click to return to the Renewable Energy page Return to Renewable Energy Page Wind Energy in Southeast New Mexico Several Ongoing and New Wind Power Projects are Contributing to Making Renewable Energy Sources an Important Economic and Environmental Mainstay of the Region As the accompanying map of New Mexico shows, the best wind power generation potential near WIPP is along the Delaware Mountain ridge line of the southern Guadalupe Mountains, about 50-60 miles southwest. The numeric grid values indicate wind potential, with a range from 1 (poor) to 7 (superb). Just inside Texas in the southern Guadalupe Mountains, the Delaware Mountain Wind Power Facility in Culbertson County, Texas currently generates over 30 MW, and could be expanded to a 250 MW station.

19

Gridded state maps of wind electric potential  

DOE Green Energy (OSTI)

Estimates of wind electric potential and available windy land area in the contiguous United States, calculated in 1991, have been revised by incorporating actual data on the distribution of environmental exclusion areas where wind energy development would be prohibited or severely restricted. The new gridded data base with actual environmental exclusion areas, in combination with a 'moderate' land-use scenario, is the basis for developing the first gridded maps of available windy land and wind electric potential. Gridded maps for the 48 contiguous states show the estimated windy land area and electric potential for each grid cell (1/40 latitude by 1/30 longitude). These new maps show the distribution of the estimated wind electric potential and available windy land within an individual state, unlike previous national maps that only show estimates of the total wind electric potential for the state as a whole. While changes for some individual states are fairly large (in percentage), on a national basis, the estimated windy land area and wind electric potential are only about 1% to 2% higher than estimated in 1991.

Schwartz, M.N.; Elliott, D.L.; Gower, G.L.

1992-10-01T23:59:59.000Z

20

Reassessing Wind Potential Estimates for India: Economic and...  

NLE Websites -- All DOE Office Websites (Extended Search)

Reassessing Wind Potential Estimates for India: Economic and Policy Implications Title Reassessing Wind Potential Estimates for India: Economic and Policy Implications Publication...

Note: This page contains sample records for the topic "wind potential supply" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


21

Reassessing Wind Potential Estimates for India: Economic and Policy Implications  

E-Print Network (OSTI)

Assessment of Potential for Wind Farms in India, RenewableNetworks for Offshore Wind Farms, Bremen, Germany, 14-15Assessment of Potential for Wind Farms in India, Renewable

Phadke, Amol

2012-01-01T23:59:59.000Z

22

Empowering wind power; On social and institutional conditions affecting the performance of entrepreneurs in the wind power supply market in the Netherlands.  

E-Print Network (OSTI)

??This dissertation focuses on wind energy for electricity generation, analysing the evolution of the wind power supply market in the Netherlands. We analysed different kind… (more)

Agterbosch, S.

2006-01-01T23:59:59.000Z

23

20% Wind Energy by 2030: Increasing Wind Energy's Contribution to U.S. Electricity Supply; Executive Summary (Revised)  

NLE Websites -- All DOE Office Websites (Extended Search)

0% Wind Energy by 2030 0% Wind Energy by 2030 Increasing Wind Energy's Contribution to U.S. Electricity Supply DOE/GO-102008-2578 * December 2008 More information is available on the web at: www.eere.energy.gov/windandhydro http://www.nrel.gov/docs/fy08osti/41869.pdf December 2008 GRATEFUL APPRECIATION TO PARTNERS The U.S. Department of Energy would like to acknowledge the in-depth analysis and extensive research conducted by the National Renewable Energy Laboratory and the major contributions and manuscript reviews by the American Wind Energy Association and many wind industry organizations that contributed to the production of this report. The costs curves for energy supply options and the WinDS modeling assumptions were developed in cooperation with Black & Veatch. The preparation of

24

Reassessing Wind Potential Estimates for India: Economic and Policy Implications  

E-Print Network (OSTI)

planning, policies, and programs, wind energy can be a coreof Wind Integration in the Tamil Nadu Grid. Energy PolicyEnergy Technologies Division Reassessing Wind Potential Estimates for India: Economic and Policy

Phadke, Amol

2012-01-01T23:59:59.000Z

25

Modeling the National Potential for Offshore Wind: Preprint  

SciTech Connect

The Wind Deployment System (WinDS) model was created to assess the potential penetration of offshore wind in the United States under different technology development, cost, and policy scenarios.

Short, W.; Sullivan, P.

2007-06-01T23:59:59.000Z

26

Wisconsin Start-up Taps into Wind Supply Chain | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Start-up Taps into Wind Supply Chain Start-up Taps into Wind Supply Chain Wisconsin Start-up Taps into Wind Supply Chain August 10, 2010 - 2:00pm Addthis Renewegy, LLC received a $525,000 Recovery Act loan to help start its smaller-scale wind turbine business. This fall, the company will begin production on its first batch of turbine systems. | Photo courtesy of Renewegy Renewegy, LLC received a $525,000 Recovery Act loan to help start its smaller-scale wind turbine business. This fall, the company will begin production on its first batch of turbine systems. | Photo courtesy of Renewegy Stephen Graff Former Writer & editor for Energy Empowers, EERE What are the key facts? Renewegy received $525,000 Recovery Act loan to start wind turbine business Business hired 16 people and projects at least three more by end of

27

Seasonal variability of wind electric potential in the United States  

DOE Green Energy (OSTI)

Seasonal wind electric potential has been estimated for the contiguous United States based on the methods previously used to estimate the annual average wind electric potential. National maps show estimates of the seasonal wind electric potential averaged over the state as a whole, and gridded maps show the distribution of the seasonal wind electric potential within a state. The seasons of winter and spring have highest wind electric potential for most windy areas in the United States. Summer is the season with the least potential for most of the contiguous United States. Wind electric potential patterns in autumn generally resemble the annual average potential map. Excellent matches between seasonal wind electric potential and electric energy use occur during winter for the northern parts of the nation. California has a good match between summer wind potential and electric use.

Schwartz, M.N.; Elliott, D.L.; Gower, G.L.

1993-07-01T23:59:59.000Z

28

Using supply chain management techniques to make wind plant and energy storage operation more profitable  

E-Print Network (OSTI)

Our research demonstrates that supply chain management techniques can improve the incremental gross profits of wind plant and storage operations by up to five times. Using Monte-Carlo simulation we create and test scenarios ...

Saran, Prashant

2009-01-01T23:59:59.000Z

29

Wind power manufacturing and supply chain summit USA.  

Science Conference Proceedings (OSTI)

The area of wind turbine component manufacturing represents a business opportunity in the wind energy industry. Modern wind turbines can provide large amounts of electricity, cleanly and reliably, at prices competitive with any other new electricity source. Over the next twenty years, the US market for wind power is expected to continue to grow, as is the domestic content of installed turbines, driving demand for American-made components. Between 2005 and 2009, components manufactured domestically grew eight-fold to reach 50 percent of the value of new wind turbines installed in the U.S. in 2009. While that growth is impressive, the industry expects domestic content to continue to grow, creating new opportunities for suppliers. In addition, ever-growing wind power markets around the world provide opportunities for new export markets.

Hill, Roger Ray

2010-12-01T23:59:59.000Z

30

Wind for Schools: Fostering the Human Talent Supply Chain for a 20% Wind Energy Future (Poster)  

DOE Green Energy (OSTI)

As the United States dramatically expands wind energy deployment, the industry is challenged with developing a skilled workforce and addressing public resistance. Wind Powering America's Wind for Schools project addresses these issues by: 1) Developing Wind Application Centers (WACs) at universities; WAC students assist in implementing school wind turbines and participate in wind courses. 2) Installing small wind turbines at community "host" schools. 3) Implementing teacher training with interactive curricula at each host school.

Baring-Gould, I.

2011-03-01T23:59:59.000Z

31

Wind Energy's New Role in Supplying the World's Energy: What Role Will Structural Health Monitoring Play?  

DOE Green Energy (OSTI)

Wind energy installations are leading all other forms of new energy installations in the United States and Europe. In Europe, large wind plants are supplying as much as 25% of Denmark's energy needs and 8% of the electric needs for Germany and Spain, who have more ambitious goals on the horizon. Although wind energy only produces about 2% of the current electricity demand in the United States, the U.S. Department of Energy, in collaboration with wind industry experts, has drafted a plan that would bring the U.S. installed wind capacity up to 20% of the nation's total electrical supply. To meet these expectations, wind energy must be extremely reliable. Structural health monitoring will play a critical role in making this goal successful.

Butterfield, S.; Sheng, S.; Oyague, F.

2009-12-01T23:59:59.000Z

32

Supply Chain and Blade Manufacturing Considerations in the Global Wind Industry (Presentation)  

DOE Green Energy (OSTI)

This briefing provides an overview of supply chain developments in the global wind industry and a detailed assessment of blade manufacturing considerations for U.S. end-markets. The report discusses the international trade flows of wind power equipment, blade manufacturing and logistical costs, and qualitative issues that often influence factory location decisions. To help guide policy and research and development strategy decisions, this report offers a comprehensive perspective of both quantitative and qualitative factors that affect selected supply chain developments in the growing wind power industry.

James, T.; Goodrich, A.

2013-12-01T23:59:59.000Z

33

On spatial estimation of wind energy potential in Malaysia  

Science Conference Proceedings (OSTI)

Statistical distribution for describing the wind speed at a particular location provides information about the wind energy potential which is available. In this paper, five different statistical distributions are fitted to the data of average hourly ... Keywords: inverse distance weighting method, kriging, semivariogram, spatial estimation, wind energy, wind speed distribution

Nurulkamal Masseran; Ahmad Mahir Razali; Kamarulzaman Ibrahim; Wan Zawiah Wan Zin; Azami Zaharim

2011-07-01T23:59:59.000Z

34

Wind Supply Curves and Location Scenarios in the West: Summary of the Clean and Diverse Energy Wind Task Force Report; Preprint  

DOE Green Energy (OSTI)

This paper presents supply curves and scenarios that were developed by the Wind Task Force. Much of this information has been adapted from the original Wind Task Force report.

Milligan, M.; Parsons, B.; Shimshak, R.; Larson, D.; Carr, T.

2006-06-01T23:59:59.000Z

35

Estimation of wind characteristics at potential wind energy conversion sites  

DOE Green Energy (OSTI)

A practical method has been developed and applied to the problem of determining wind characteristics at candidate wind energy conversion sites where there are no available historical data. The method uses a mass consistent wind flow model (called COMPLEX) to interpolate between stations where wind data are available. The COMPLEX model incorporates the effects of terrain features and airflow. The key to the practical application of COMPLEX to the derivation of wind statistics is the model's linearity. This allows the input data sets to be resolved into orthogonal components along the set of eigenvectors of the covariance matrix. The solution for each eigenvector is determined with COMPLEX; the hourly interpolated winds are then formed from linear combinations of these solutions. The procedure requires: acquisition and merger of wind data from three to five stations, application of COMPLEX to each of the seven to 11 (depending on the number of stations for which wind data are available) eigenvectors, reconstruction of the hourly interpolated winds at the site from the eigenvector solutions, and finally, estimating the wind characteristics from the simulated hourly values. The report describes the methodology and the underlying theory. Possible improvements to the procedure are also discussed.

Not Available

1979-10-01T23:59:59.000Z

36

Estimation of wind characteristics at potential wind energy conversion sites  

SciTech Connect

A practical method has been developed and applied to the problem of determining wind characteristics at candidate wind energy conversion sites where there are no available historical data. The method uses a mass consistent wind flow model (called COMPLEX) to interpolate between stations where wind data are available. The COMPLEX model incorporates the effects of terrain features and airflow. The key to the practical application of COMPLEX to the derivation of wind statistics is the model's linearity. This allows the input data sets to be resolved into orthogonal components along the set of eigenvectors of the covariance matrix. The solution for each eigenvector is determined with COMPLEX; the hourly interpolated winds are then formed from linear combinations of these solutions. The procedure requires: acquisition and merger of wind data from three to five stations, application of COMPLEX to each of the seven to 11 (depending on the number of stations for which wind data are available) eigenvectors, reconstruction of the hourly interpolated winds at the site from the eigenvector solutions, and finally, estimating the wind characteristics from the simulated hourly values. The report describes the methodology and the underlying theory. Possible improvements to the procedure are also discussed.

1979-10-01T23:59:59.000Z

37

Canadian Wind Energy Atlas Potential Website | Open Energy Information  

Open Energy Info (EERE)

Canadian Wind Energy Atlas Potential Website Canadian Wind Energy Atlas Potential Website Jump to: navigation, search Tool Summary LAUNCH TOOL Name: Canadian Wind Energy Atlas Potential Website Focus Area: Renewable Energy Topics: Opportunity Assessment & Screening Website: www.windatlas.ca/en/index.php Equivalent URI: cleanenergysolutions.org/content/canadian-wind-energy-atlas-potential- Language: English Policies: Deployment Programs DeploymentPrograms: Technical Assistance Environment Canada's Wind Energy Atlas website aims at developing new meteorological tools to be used by Canada's wind energy industry. It offers the possibility to browse through the results of the numerical simulations that were run on all of Canada in order to determine its wind energy potential. Consultants and the general public will find valuable data about

38

United States (48 Contiguous States) Wind Resource Potential Chart  

Wind Powering America (EERE)

Rated Capacity Above Indicated CF (GW) Rated Capacity Above Indicated CF (GW) United States (48 Contiguous States) - Wind Resource Potential Cumulative Rated Capacity vs. Gross Capacity Factor (CF) 80 m The estimates show the potential gigawatts of rated capacity that could be installed on land above a given gross capacity factor (without losses) at 80-m and 100-m heights above ground. Areas greater than 30% at 80 m are generally considered to have suitable wind resource for potential wind development with today's advanced wind turbine technology. AWS Truewind, LLC developed the wind resource data for windNavigator® (http://navigator.awstruewind.com) with a spatial resolution of 200 m. NREL filtered the wind potential estimates to

39

An assessment of the available windy land area and wind energy potential in the contiguous United States  

DOE Green Energy (OSTI)

Estimates of land areas with various levels of wind energy resource and resultant wind energy potential have been developed for each state in the contiguous United States. The estimates are based on published wind resource data and account for the exclusion of some windy lands as a result of environmental and land-use considerations. Despite these exclusions, the amount of wind resource estimated over the contiguous United States is surprisingly large and has the potential to supply a substantial fraction of the nation's energy needs, even with the use of today's wind turbine technology. Although this study shows that, after exclusions, only about 0.6% of the land area in the contiguous United States is characterized by high wind resource (comparable to that found in windy areas of California where wind energy is being cost-effectively developed), the wind electric potential that could be extracted with today's technology from these areas across the United States is equivalent to about 20% of the current US electric consumption. Future advances in wind turbine technology will further enhance the potential of wind energy. As advances in turbine technology allow areas of moderate wind resource to be developed, more than a tenfold increase in the wind energy potential is possible. These areas, which cover large sections of the Great Plains and are widely distributed throughout many other sections of the country, have the potential of producing more than three times the nation's current electric consumption. 9 refs., 12 figs., 13 tabs.

Elliott, D.L.; Wendell, L.L.; Gower, G.L.

1991-08-01T23:59:59.000Z

40

20% Wind Energy by 2030: Increasing Wind Energy's Contribution to U.S. Electricity Supply  

Energy.gov (U.S. Department of Energy (DOE))

The report considers some associated challenges, estimates the impacts and considers specific needs and outcomes in various areas associated with a 20% Wind Scenario.

Note: This page contains sample records for the topic "wind potential supply" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


41

A Stator-Voltage Decoupling Control Strategy for DFIG-based Wind Power Turbine Supplying Local Isolated Load  

Science Conference Proceedings (OSTI)

The performance of doubly fed induction generator (DFIG) based wind turbines supplying local isolated load is manly up to the stator-voltage control strategy. Compared with conventional steady mathematic model based one, a dynamic mathematic model based ... Keywords: dynamic model, supplying local isolated load, decoupling stator-voltage control, DFIG-based wind turbine

Long Zhan; Shuying Yang; Hui Gao

2012-10-01T23:59:59.000Z

42

Reassessing Wind Potential Estimates for India: Economic and Policy Implications  

DOE Green Energy (OSTI)

We assess developable on-shore wind potential in India at three different hub-heights and under two sensitivity scenarios – one with no farmland included, the other with all farmland included. Under the “no farmland included” case, the total wind potential in India ranges from 748 GW at 80m hub-height to 976 GW at 120m hub-height. Under the “all farmland included” case, the potential with a minimum capacity factor of 20 percent ranges from 984 GW to 1,549 GW. High quality wind energy sites, at 80m hub-height with a minimum capacity factor of 25 percent, have a potential between 253 GW (no farmland included) and 306 GW (all farmland included). Our estimates are more than 15 times the current official estimate of wind energy potential in India (estimated at 50m hub height) and are about one tenth of the official estimate of the wind energy potential in the US.

Phadke, Amol; Bharvirkar, Ranjit; Khangura, Jagmeet

2011-09-15T23:59:59.000Z

43

Global Potential for Wind-Generated Electricity  

Science Conference Proceedings (OSTI)

... free, non-urban areas and operating at as little as 20% of their rated capacity, could supply >40 times current worldwide consumption of electricity ...

2010-10-05T23:59:59.000Z

44

Property:PotentialOnshoreWindGeneration | Open Energy Information  

Open Energy Info (EERE)

PotentialOnshoreWindGeneration PotentialOnshoreWindGeneration Jump to: navigation, search Property Name PotentialOnshoreWindGeneration Property Type Quantity Description The area of potential onshore wind in a place. Use this type to express a quantity of energy. The default unit for energy on OpenEI is the Kilowatt hour (kWh), which is 3,600,000 Joules. http://en.wikipedia.org/wiki/Unit_of_energy It's possible types are Watt hours - 1000 Wh, Watt hour, Watthour Kilowatt hours - 1 kWh, Kilowatt hour, Kilowatthour Megawatt hours - 0.001 MWh, Megawatt hour, Megawatthour Gigawatt hours - 0.000001 GWh, Gigawatt hour, Gigawatthour Joules - 3600000 J, Joules, joules Pages using the property "PotentialOnshoreWindGeneration" Showing 25 pages using this property. (previous 25) (next 25)

45

Property:PotentialOffshoreWindGeneration | Open Energy Information  

Open Energy Info (EERE)

PotentialOffshoreWindGeneration PotentialOffshoreWindGeneration Jump to: navigation, search Property Name PotentialOffshoreWindGeneration Property Type Quantity Description The estimated potential energy generation from Offshore Wind for a particular place. Use this type to express a quantity of energy. The default unit for energy on OpenEI is the Kilowatt hour (kWh), which is 3,600,000 Joules. http://en.wikipedia.org/wiki/Unit_of_energy It's possible types are Watt hours - 1000 Wh, Watt hour, Watthour Kilowatt hours - 1 kWh, Kilowatt hour, Kilowatthour Megawatt hours - 0.001 MWh, Megawatt hour, Megawatthour Gigawatt hours - 0.000001 GWh, Gigawatt hour, Gigawatthour Joules - 3600000 J, Joules, joules Pages using the property "PotentialOffshoreWindGeneration" Showing 25 pages using this property. (previous 25) (next 25)

46

Remote sensing for wind power potential: a prospector's handbook  

DOE Green Energy (OSTI)

Remote sensing can aid in identifying and locating indicators of wind power potential from the terrestrial, marine, and atmospheric environments (i.e.: wind-deformed trees, white caps, and areas of thermal flux). It is not considered as a tool for determining wind power potential. A wide variety of remotely sensed evidence is described in terms of the scale at which evidence of wind power can be identified, and the appropriate remote sensors for finding such evidence. Remote sensing can be used for regional area prospecting using small-scale imagery. The information from such small-scale imagery is most often qualitative, and if it is transitory, examination of a number of images to verify presistence of the feature may be required. However, this evidence will allow rapid screening of a large area. Medium-scale imagery provides a better picture of the evidence obtained from small-scale imagery. At this level it is best to use existing imagery. Criteria relating to land use, accessibility, and proximity of candidate sites to nearby transmission lines can also be effectively evaluated from medium-scale imagery. Large-scale imagery provides the most quantitative evidence of the strength of wind. Wind-deformed trees can be identified at a large number of sites using only a few hours in locally chartered aircraft. A handheld 35mm camera can adequately document any evidence of wind. Three case studies that employ remote sensing prospecting techniques are described. Based on remotely sensed evidence, the wind power potential in three geographically and climatically diverse areas of the United States is estimated, and the estimates are compared to actual wind data in those regions. In addition, the cost of each survey is discussed. The results indicate that remote sensing for wind power potential is a quick, cost effective, and fairly reliable method for screening large areas for wind power potential.

Wade, J.E.; Maule, P.A.; Bodvarsson, G.; Rosenfeld, C.L.; Woolley, S.G.; McClenahan, M.R.

1983-02-01T23:59:59.000Z

47

Potential for supplying solar thermal energy to industrial unit operations  

DOE Green Energy (OSTI)

Previous studies have identified major industries deemed most appropriate for the near-term adoption of solar thermal technology to provide process heat; these studies have been based on surveys that followed standard industrial classifications. This paper presents an alternate, perhaps simpler analysis of this potential, considered in terms of the end-use of energy delivered to industrial unit operations. For example, materials, such as animal feed, can be air dried at much lower temperatures than are currently used. This situation is likely to continue while economic supplies of natural gas are readily available. However, restriction of these supplies could lead to the use of low-temperature processes, which are more easily integrated with solar thermal technology. The adoption of solar technology is also favored by other changes, such as the relative rates of increase of the costs of electricity and natural gas, and by energy conservation measures. Thus, the use of low-pressure steam to provide process heat could be replaced economically with high-temperature hot water systems, which are more compatible with solar technology. On the other hand, for certain operations such as high-temperature catalytic and distillation processes employed in petroleum refining, there is no ready alternative to presently employed fluid fuels.

May, E.K.

1980-04-01T23:59:59.000Z

48

Property:PotentialOnshoreWindCapacity | Open Energy Information  

Open Energy Info (EERE)

PotentialOnshoreWindCapacity PotentialOnshoreWindCapacity Jump to: navigation, search Property Name PotentialOnshoreWindCapacity Property Type Quantity Description The nameplate capacity technical potential from Onshore Wind for a particular place. Use this property to express potential electric energy generation, such as Nameplate Capacity. The default unit is megawatts (MW). For spatial capacity, use property Volume. Acceptable units (and their conversions) are: 1 MW,MWe,megawatt,Megawatt,MegaWatt,MEGAWATT,megawatts,Megawatt,MegaWatts,MEGAWATT,MEGAWATTS 1000 kW,kWe,KW,kilowatt,KiloWatt,KILOWATT,kilowatts,KiloWatts,KILOWATT,KILOWATTS 1000000 W,We,watt,watts,Watt,Watts,WATT,WATTS 1000000000 mW,milliwatt,milliwatts,MILLIWATT,MILLIWATTS 0.001 GW,gigawatt,gigawatts,Gigawatt,Gigawatts,GigaWatt,GigaWatts,GIGAWATT,GIGAWATTS

49

Property:PotentialOffshoreWindCapacity | Open Energy Information  

Open Energy Info (EERE)

PotentialOffshoreWindCapacity PotentialOffshoreWindCapacity Jump to: navigation, search Property Name PotentialOffshoreWindCapacity Property Type Quantity Description The nameplate capacity technical potential from Offshore Wind for a particular place. Use this property to express potential electric energy generation, such as Nameplate Capacity. The default unit is megawatts (MW). For spatial capacity, use property Volume. Acceptable units (and their conversions) are: 1 MW,MWe,megawatt,Megawatt,MegaWatt,MEGAWATT,megawatts,Megawatt,MegaWatts,MEGAWATT,MEGAWATTS 1000 kW,kWe,KW,kilowatt,KiloWatt,KILOWATT,kilowatts,KiloWatts,KILOWATT,KILOWATTS 1000000 W,We,watt,watts,Watt,Watts,WATT,WATTS 1000000000 mW,milliwatt,milliwatts,MILLIWATT,MILLIWATTS 0.001 GW,gigawatt,gigawatts,Gigawatt,Gigawatts,GigaWatt,GigaWatts,GIGAWATT,GIGAWATTS

50

Practical method for estimating wind characteristics at potential wind-energy-conversion sites  

DOE Green Energy (OSTI)

Terrain features and variations in the depth of the atmospheric boundary layer produce local variations in wind, and these variations are not depicted well by standard weather reports. A method is developed to compute local winds for use in estimating the wind energy available at any potential site for a wind turbine. The method uses the terrain heights for an area surrounding the site and a series of wind and pressure reports from the nearest four or five national Weather Service stations. An initial estimate of the winds in the atmospheric boundary layer is made, then these winds are adjusted to satisfy the continuity equation. In this manner the flow is made to reflect the influences of the terrain and the shape of the boundary-layer top. This report describes in detail the methodology and results, and provides descriptions of the computer programs, instructions for using them, and complete program listings.

Endlich, R. M.; Ludwig, F. L.; Bhumralkar, C. M.; Estoque, M. A.

1980-08-01T23:59:59.000Z

51

U.S. State Wind Resource Potential | OpenEI  

Open Energy Info (EERE)

State Wind Resource Potential State Wind Resource Potential Dataset Summary Description Estimates for each of the 50 states and the entire United States showing the windy land area with a gross capacity factor (without losses) of 30% and greater at 80-m height above ground and the wind energy potential from development of the "available" windy land area after exclusions. The "Installed Capacity" shows the potential megawatts (MW) of rated capacity that could be installed on the available windy land area, and the "Annual Generation" shows annual wind energy generation in gigawatt-hours (GWh) that could be produced from the installed capacity. AWS Truewind, LLC developed the wind resource data for windNavigator® with a spatial resolution of 200 m. NREL produced the estimates of windy land area and windy energy potential, including filtering the estimates to exclude areas unlikely to be developed such as wilderness areas, parks, urban areas, and water features (see the "Wind Resource Exclusion Table" sheet within the Excel file for more detail).

52

Fitting of Weibull distribution to study wind energy potential in Kuala Terengganu, Malaysia  

Science Conference Proceedings (OSTI)

A feasibility study on the wind energy potential of Kuala Terengganu, Malaysia was carried out. The most commonly used distribution to fit wind speed data is the Weibull distribution. This distribution was applied to wind speed data for the year 2008. ... Keywords: beaufort scale, weibull distribution, wind data, wind distribution pattern, wind energy potential

A. M. Razali; M. S. Sapuan; K. Ibrahim; A. R. Ismail; A. Zaharim; K. Sopian

2009-12-01T23:59:59.000Z

53

Power in the wind. [Techniques for estimation of wind potential energy  

SciTech Connect

Techniques are described which can be used by engineers, technicians and homeowners for the estimation of potential energy in wind and in particular wind machines. They are suitable for onsite calculations with the use of nothing more than a pocket calculator. (JMT)

Gipe, P.

1981-04-01T23:59:59.000Z

54

Impact of Electric Industry Structure on High Wind Penetration Potential  

NLE Websites -- All DOE Office Websites (Extended Search)

273 273 July 2009 Impact of Electric Industry Structure on High Wind Penetration Potential M. Milligan and B. Kirby National Renewable Energy Laboratory R. Gramlich and M. Goggin American Wind Energy Association National Renewable Energy Laboratory 1617 Cole Boulevard, Golden, Colorado 80401-3393 303-275-3000 * www.nrel.gov NREL is a national laboratory of the U.S. Department of Energy Office of Energy Efficiency and Renewable Energy Operated by the Alliance for Sustainable Energy, LLC Contract No. DE-AC36-08-GO28308 Technical Report NREL/TP-550-46273 July 2009 Impact of Electric Industry Structure on High Wind Penetration Potential M. Milligan and B. Kirby National Renewable Energy Laboratory R. Gramlich and M. Goggin American Wind Energy Association

55

Current and potential U.S. Corn Stover Supplies  

SciTech Connect

Agricultural residues such as corn (Zea mays L.) stover are a potential feedstock for bioenergy and bio-based products that could reduceU.S. dependence on foreign oil. Collection of such residues must take into account concerns that residue removal could increase erosion, reduce crop productivity, and deplete soil carbon and nutrients. This article estimates where and how much corn stover can be collected sustainably in the USA using existing commercial equipment and estimates costs of that collection. Erosion constraints to collection were considered explicitly, and crop productivity and soil nutrient constraints were considered implicitly, by recognizing the value of residues for maintaining soil moisture and including the cost of fertilizer to replace nutrients removed. Possible soil carbon loss was not considered in the analysis. With an annual production of 196 million Mg of corn grain (about9.2 billion bushels), the USA produces 196 million Mg of stover. Under current rotation and tillage practices, about 30% of this stover could be collected for less than $33 per Mg, taking into consideration erosion and soil moisture concerns and nutrient replacement costs. Wind erosion is a major constraint to stover collection. Analysis suggests three regions of the country (central Illinois, northern Iowa/southern Minnesota, and along the Platte River in Nebraska) produce sufficient stover to support large biorefineries with one million Mg per year feedstock demands and that if farmers converted to universal no-till production of corn, then over 100 million Mg of stover could be collected annually without causing erosion to exceed the tolerable soil loss.

Graham, Robin Lambert [ORNL; Nelson, R [Kansas State University; Perlack, Robert D [ORNL; Sheehan, J. [National Renewable Energy Laboratory (NREL); Wright, Lynn L [subcontractor

2007-01-01T23:59:59.000Z

56

Assured Fuel Supply: Potential Conversion and Fabrication Bottlenecks  

E-Print Network (OSTI)

challenges and generate nonproliferation and other benefits? · If such services were to be offered, how would Bush proposed assuring nuclear fuel supply for countries meeting certain nonproliferation criteria

57

Preliminary evaluation of wind energy potential: Cook Inlet area, Alaska  

DOE Green Energy (OSTI)

This report summarizes work on a project performed under contract to the Alaska Power Administration (APA). The objective of this research was to make a preliminary assessment of the wind energy potential for interconnection with the Cook Inlet area electric power transmission and distribution systems, to identify the most likely candidate regions (25 to 100 square miles each) for energy potential, and to recommend a monitoring program sufficient to quantify the potential.

Hiester, T.R.

1980-06-01T23:59:59.000Z

58

OpenEI - renewable energy potential  

Open Energy Info (EERE)

http:en.openei.orgdatasetstaxonomyterm8560 en Offshore Wind Resource http:en.openei.orgdatasetsnode921

Global Wind Potential Supply Curves by Country, Class, and...

59

A simple method of estimating wind turbine blade fatigue at potential wind turbine sites  

SciTech Connect

This paper presents a technique of estimating blade fatigue damage at potential wind turbine sites. The cornerstone of this technique is a simple model for the blade`s root flap bending moment. The model requires as input a simple set of wind measurements which may be obtained as part of a routine site characterization study. By using the model to simulate a time series of the root flap bending moment, fatigue damage rates may be estimated. The technique is evaluated by comparing these estimates with damage estimates derived from actual bending moment data; the agreement between the two is quite good. The simple connection between wind measurements and fatigue provided by the model now allows one to readily discriminate between damaging and more benign wind environments.

Barnard, J.C.; Wendell, L.L.

1995-06-01T23:59:59.000Z

60

Property:PotentialOffshoreWindArea | Open Energy Information  

Open Energy Info (EERE)

PotentialOffshoreWindArea PotentialOffshoreWindArea Jump to: navigation, search Property Name PotentialOffshoreWindArea Property Type Quantity Description The area of potential offshore wind in a place. Use this type to express a quantity of two-dimensional space. The default unit is the square meter (m²). http://en.wikipedia.org/wiki/Area Acceptable units (and their conversions) are: Square Meters - 1 m²,m2,m^2,square meter,square meters,Square Meter,Square Meters,Sq. Meters,SQUARE METERS Square Kilometers - 0.000001 km²,km2,km^2,square kilometer,square kilometers,square km,square Kilometers,SQUARE KILOMETERS Square Miles - 0.000000386 mi²,mi2,mi^2,mile²,square mile,square miles,square mi,Square Miles,SQUARE MILES Square Feet - 10.7639 ft²,ft2,ft^2,square feet,square foot,FT²,FT2,FT^2,Square Feet, Square Foot

Note: This page contains sample records for the topic "wind potential supply" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


61

Property:PotentialOnshoreWindArea | Open Energy Information  

Open Energy Info (EERE)

PotentialOnshoreWindArea PotentialOnshoreWindArea Jump to: navigation, search Property Name PotentialOnshoreWindArea Property Type Quantity Description The area of potential onshore wind in a place. Use this type to express a quantity of two-dimensional space. The default unit is the square meter (m²). http://en.wikipedia.org/wiki/Area Acceptable units (and their conversions) are: Square Meters - 1 m²,m2,m^2,square meter,square meters,Square Meter,Square Meters,Sq. Meters,SQUARE METERS Square Kilometers - 0.000001 km²,km2,km^2,square kilometer,square kilometers,square km,square Kilometers,SQUARE KILOMETERS Square Miles - 0.000000386 mi²,mi2,mi^2,mile²,square mile,square miles,square mi,Square Miles,SQUARE MILES Square Feet - 10.7639 ft²,ft2,ft^2,square feet,square foot,FT²,FT2,FT^2,Square Feet, Square Foot

62

The estimate of the wind energy potential and insolation  

E-Print Network (OSTI)

The concise letter points out that the estimates of the global potential of wind power exceeds the amount of kinetic energy in the relevant layer of atmosphere by far more than an order of magnitude. Originally submitted to the Letters section of the Proceedings of the National Academy of Sciences in August 2009.

Aoki, Kenichiro

2009-01-01T23:59:59.000Z

63

Gone with the Wind - The Potential Tragedy of the Common Wind  

E-Print Network (OSTI)

the Impacts of Large Wind Turbine Projects to Encourage438 1. How Wind Turbines Create Electricity . 2. Benefitssee also History of Wind Turbines, DANISH WIND INDUSTRY

Lifshitz-Goldberg, Yaei

2010-01-01T23:59:59.000Z

64

Potential for Development of Solar and Wind Resource in Bhutan  

DOE Green Energy (OSTI)

With support from the U.S. Agency for International Development (USAID), the U.S. Department of Energy's National Renewable Energy Laboratory (NREL) produced maps and data of the wind and solar resources in Bhutan. The solar resource data show that Bhutan has an adequate resource for flat-plate collectors, with annual average values of global horizontal solar radiation ranging from 4.0 to 5.5 kWh/m2-day (4.0 to 5.5 peak sun hours per day). The information provided in this report may be of use to energy planners in Bhutan involved in developing energy policy or planning wind and solar projects, and to energy analysts around the world interested in gaining an understanding of Bhutan's wind and solar energy potential.

Gilman, P.; Cowlin, S.; Heimiller, D.

2009-09-01T23:59:59.000Z

65

Assessment of potential ORNL contributions to supply of molybdenum-99  

SciTech Connect

The most widely used, and probably the most important, single radioisotope in commerce is {sup 99}Mo. Although the present supply is adequate, there are many vulnerabilities in the supply picture. Resources available at ORNL could be applied to help ensure the continued availability of this critically needed radioisotope. This assessment considers the ways in which ORNL might participate in DOE efforts to develop and maintain a domestic source of {sup 99}Mo for medical needs. The primary recommendation presented here is that ORNL obtain DOE support for development of an improved method for providing {sup 99}Mo to the user community. Specifically, development and demonstration of a system based on irradiation of enriched stable {sup 98}Mo, as opposed to fission of {sup 235}U, is recommended. Such a system would (1) alleviate the need for using highly enriched uranium as target material (nonproliferation and criticality safety concerns); (2) alleviate the need to produce a large volume of unwanted fission product wastes (safety and cost concerns); (3) promote the need for enriched {sup 98}Mo, which can be produced in the ORNL calutrons or plasma separation equipment; and (4) promote the need for a high-flux reactor, such as the High Flux Isotope Reactor (HFIR).

Ottinger, C.L.; Collins, E.D.

1996-04-01T23:59:59.000Z

66

Wind power is a rapidly growing con-tributor to worldwide energy supplies and  

E-Print Network (OSTI)

the U.S., represent- ing nearly one-third of the total installed wind energy capacity in the country for wind turbine siting and wind source prediction. Ironically, PPM has hired 3TIER to provide wind energy and operates wind farms in Ireland, Scotland, England, Wales and the United States. With the recent extension

67

Estimation of wind characteristics at potential wind energy conversion sites. Volume 2. Appendices  

DOE Green Energy (OSTI)

Data are presented concerning climatology development methodology programs; dual station wind correlation analyses; and the candidate site wind climatologies.

Howard, S. M.; Chen, P. C.

1978-03-01T23:59:59.000Z

68

20% Wind Energy by 2030: Increasing Wind Energy's Contribution to U.S. Electricity Supply (Executive Summary)  

Energy.gov (U.S. Department of Energy (DOE))

Executive summary of a report on the requirements needed to generate twenty percent of the nation's electricity from wind energy by the year 2030.

69

Coastal zone wind energy. Part III: a procedure to determine the wind power potential of the coastal zone  

DOE Green Energy (OSTI)

A stepwise procedure is presented for determining the seasonal and/or annual mean potential wind power density for any location on the East and Gulf coasts of the United States. The steps include reference to the dominant wind regimes and mean power densities already obtained to estimate the wind power potential of the location under consideration; methods to calculate the potential wind power distributions and steps to be taken to locate the best site in the area of interest. The method can be best applied where the atmospheric systems which produce most of the wind energy at the surface are relatively persistent. The method is least successful in areas where the wind field is highly variable. Application of the complete method requires the use of an existing two- or three-dimensional mesoscale numerical model.

Garstang, M.; Pielke, R.; Snow, J.W.

1982-03-01T23:59:59.000Z

70

Reassessing Wind Potential Estimates for India: Economic and Policy Implications  

E-Print Network (OSTI)

We estimate the cost of wind energy and compare it withMW installed worldwide. 6 Wind energy costs in India areof levelized cost were estimated (See Figure 7: Wind Energy

Phadke, Amol

2012-01-01T23:59:59.000Z

71

20% Wind Energy by 2030: Increasing Wind Energy's Contribution to U.S. Electricity Supply; Executive Summary (Revised)  

DOE Green Energy (OSTI)

This document is a 21-page summary of the 200+ page analysis that explores one clearly defined scenario for providing 20% of our nation's electricity demand with wind energy by 2030 and contrasts it to a scenario of no new U.S. wind power capacity.

Not Available

2008-12-01T23:59:59.000Z

72

Reassessing Wind Potential Estimates for India: Economic and Policy Implications  

E-Print Network (OSTI)

analysis. Further, turbines with higher rotor diameter havethe wind turbine, the average hub-height and rotor diameterand larger rotor diameters allows wind turbines to sweep

Phadke, Amol

2012-01-01T23:59:59.000Z

73

Assessment of the Economic Potential of Microgrids for Reactive Power Supply  

E-Print Network (OSTI)

Assessment of the Economic Potential of Microgrids for Reactive Power Supply Jan von Appen1 , Chris. This paper outlines the economic potential of DERs coordinated in a microgrid to provide reactive power possibilities of creating an incentive for microgrids to provide reactive power. Index Terms ­ microgrids

74

Impact of Electric Industry Structure on High Wind Penetration Potential  

DOE Green Energy (OSTI)

This paper attempts to evaluate which balancing area (BA) characteristics best accommodate wind energy.

Milligan, M.; Kirby, B.; Gramlich, R.; Goggin, M.

2009-07-01T23:59:59.000Z

75

Regional Changes in Wind Energy Potential over Europe Using Regional Climate Model Ensemble Projections  

Science Conference Proceedings (OSTI)

The impact of climate change on wind power generation potentials over Europe is investigated by considering ensemble projections from two regional climate models (RCMs) driven by a global climate model (GCM). Wind energy density and its ...

Hanna Hueging; Rabea Haas; Kai Born; Daniela Jacob; Joaquim G. Pinto

2013-04-01T23:59:59.000Z

76

Gone with the Wind - The Potential Tragedy of the Common Wind  

E-Print Network (OSTI)

tion to Conflict over Wind Farms in the Kansas Flint Hills,1,471 MW of offshore wind farms were in operation aroundFurther Offshore and Larger Wind Farm Developments, BRrrIS

Lifshitz-Goldberg, Yaei

2010-01-01T23:59:59.000Z

77

Gone with the Wind - The Potential Tragedy of the Common Wind  

E-Print Network (OSTI)

of pollutants by the wind and the various factors at play,2005). 12. Id. GONE WITH THE WIND? increased concerns aboutthe Impacts of Large Wind Turbine Projects to Encourage

Lifshitz-Goldberg, Yaei

2010-01-01T23:59:59.000Z

78

Gone with the Wind - The Potential Tragedy of the Common Wind  

E-Print Network (OSTI)

42 In fact, the price of wind energy is decreas- ing at aprice of wind en- ergy is competitive with other forms of energyother energy production technologies: 43 the price for wind

Lifshitz-Goldberg, Yaei

2010-01-01T23:59:59.000Z

79

Gone with the Wind - The Potential Tragedy of the Common Wind  

E-Print Network (OSTI)

of almost 1,471 MW of offshore wind farms were in operationFuture Prospects for Offshore Wind in Europe, TilE EUROPIEANof the many advantaged of offshore wind installations, see

Lifshitz-Goldberg, Yaei

2010-01-01T23:59:59.000Z

80

Gone with the Wind - The Potential Tragedy of the Common Wind  

E-Print Network (OSTI)

Encourage Utilization of Wind Energy Resources, 27 TiEMiP.supra note 44, at 92; Wind Energy, Ri--NEWABLE ENEzRGY PoL'yformerly named British Wind Energy Association), http://

Lifshitz-Goldberg, Yaei

2010-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "wind potential supply" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


81

Gone with the Wind - The Potential Tragedy of the Common Wind  

E-Print Network (OSTI)

2008); see also AWEA, Wind Power Today, supra note 2. 37.note 16, at 1782. 38. Wind Power and Climate Change, AM.WIND POWER Ass'N, http://www.awea. org/pubs/factsheets/

Lifshitz-Goldberg, Yaei

2010-01-01T23:59:59.000Z

82

Assessment of Offshore Wind Energy Potential in the United States (Poster)  

DOE Green Energy (OSTI)

The development of an offshore wind resource database is one of the first steps necessary to understand the magnitude of the resource and to plan the distribution and development of future offshore wind power facilities. The U.S. Department of Energy supported the production of offshore wind resource maps and potential estimates for much of the United States. This presentation discusses NREL's 2010 offshore wind resources report; current U.S., regional, and state offshore maps; methodology for the wind mapping and validation; wind potential estimates; the Geographic Information Systems database; and future work and conclusions.

Elliott, D.; Schwartz, M.; Haymes, S.; Heimiller, D.; Musial, W.

2011-05-01T23:59:59.000Z

83

Task 5.1:Expand the Number of Faculty Working in Wind Energy: Wind Energy Supply Chain and Logistics  

DOE Green Energy (OSTI)

Wind as a source of energy has gained a significant amount of attention because it is free and green. Construction of a wind farm involves considerable investment, which includes the cost of turbines, nacelles, and towers as well as logistical costs such as transportation of oversized parts and installation costs such as crane-rental costs. The terrain effects at the project site exert considerable influence on the turbine assembly rate and the project duration, which increases the overall installation cost. For higher capacity wind turbines (>3MW), the rental cost of the cranes is significant. In this study, the impact of interest rate, sales price of electricity, terrain effects and availability of cranes on the duration of installation and payback period for the project is analyzed. Optimization of the logistic activities involved during the construction phase of a wind farm contributes to the reduction of the project duration and also increases electricity generation during the construction phase.

Janet M Twomey, PhD

2010-04-30T23:59:59.000Z

84

Gone with the Wind - The Potential Tragedy of the Common Wind  

E-Print Network (OSTI)

clean, renewable alternative for energy production. Wind isrenewable and clean energy. Future Development In addition to land-based wind energy production,

Lifshitz-Goldberg, Yaei

2010-01-01T23:59:59.000Z

85

Fuel from the Sky: Solar Power's Potential for Western Energy Supply  

DOE Green Energy (OSTI)

A reliable and affordable supply of electricity is essential to protect public health and safety and to sustain a vigorous economy in the West. Renewable energy in the form of wind or solar provides one of the means of meeting the demand for power while minimizing adverse impacts on the environment, increasing fuel diversity, and hedging against fuel price volatility. Concentrating solar power (CSP) is the most efficient and cost-effective way to generate electricity from the sun. Hundreds of megawatts of CSP solar-generating capacity could be brought on-line within a few years and make a meaningful contribution to the energy needs of the West.

Leitner, A.

2002-07-01T23:59:59.000Z

86

NREL Study Finds U.S. Wind Energy Potential Triples Previous Estimates (Fact Sheet)  

DOE Green Energy (OSTI)

The maximum potential to generate wind power in the contiguous United States is more than three times greater than previously estimated, according to a National Renewable Energy Laboratory (NREL) study. The new analysis is based on the latest computer models and examines the wind potential at wind turbine hub heights of 80 meters and 100 meters. These hub heights, which reflect current and future models of wind turbines, are higher than those used in previous national estimates and are mainly responsible for the increased wind potential in the study.

Not Available

2011-02-01T23:59:59.000Z

87

The Potential for Supply-Following Loads to Enable Deep Renewables  

NLE Websites -- All DOE Office Websites (Extended Search)

Potential for Supply-Following Loads to Enable Deep Renewables Potential for Supply-Following Loads to Enable Deep Renewables Penetration in Electricity Grids Speaker(s): Jay Taneja Date: February 27, 2013 - 12:00pm Location: 90-1099 Seminar Host/Point of Contact: Rich Brown Driven by renewables portfolio standards and other high-level policy directives, renewable electricity generation is being phased in to the electrical grid at an unprecedented rate, and primarily displacing traditional fossil fuel-powered sources. Most electricity generation by renewables is non-dispatchable, meaning that it often fluctuates unpredictably and cannot be scheduled or shifted. This makes matching supply and demand to ensure electrical reliability a fundamentally new challenge as the proportion of renewable sources increases. To overcome

88

Toward a 20% Wind Electricity Supply in the United States: Preprint  

DOE Green Energy (OSTI)

Since the U.S. Department of Energy (DOE) initiated the Wind Powering America (WPA) program in 1999, installed wind power capacity in the United States has increased from 2,500 MW to more than 11,000 MW. In 1999, only four states had more than 100 MW of installed wind capacity; now 16 states have more than 100 MW installed. In addition to WPA's efforts to increase deployment, the American Wind Energy Association (AWEA) is building a network of support across the country. In July 2005, AWEA launched the Wind Energy Works! Coalition, which is comprised of more than 70 organizations. In February 2006, the wind deployment vision was enhanced by President George W. Bush's Advanced Energy Initiative, which refers to a wind energy contribution of up to 20% of the electricity consumption of the United States. A 20% electricity contribution over the next 20 to 25 years represents 300 to 350 gigawatts (GW) of electricity. This paper provides a background of wind energy deployment in the United States and a history of the U.S. DOE's WPA program, as well as the program's approach to increasing deployment through removal of institutional and informational barriers to a 20% wind electricity future.

Flowers, L.; Dougherty, P.

2007-05-01T23:59:59.000Z

89

innovati nNREL Confirms Large Potential for Grid Integration of Wind, Solar Power  

E-Print Network (OSTI)

innovati nNREL Confirms Large Potential for Grid Integration of Wind, Solar Power To fully harvest the nation's bountiful wind and solar resources, it is critical to know how much electrical power from at adding enough wind and solar power capacity to the grid to produce 35% of the WestConnect's electricity

90

Monitoring and Determination of Wind Energy Potential by Web Based Wireless Network  

Science Conference Proceedings (OSTI)

In this paper, we develop a web based interface which performs a wireless communication with ZigBee protocol for monitoring wind energy potential and also gathering custom reports for determination of the interested wind field. A custom printed circuit ... Keywords: wind energy, wireless network, web based control

Onur Keskin; ISmet Ates; Ziya Haktan Karadeniz; Alpaslan Turgut; Zeki KiRal

2012-12-01T23:59:59.000Z

91

DOE Science Showcase - Wind Power  

Office of Scientific and Technical Information (OSTI)

DOE Science Showcase - Wind Power DOE Science Showcase - Wind Power Wind Powering America Wind Powering America is a nationwide initiative of the U.S. Department of Energy's Wind Program designed to educate, engage, and enable critical stakeholders to make informed decisions about how wind energy contributes to the U.S. electricity supply. Wind Power Research Results in DOE Databases IEA Wind Task 26: The Past and Future Cost of Wind Energy, Work Package 2, Energy Citations Database NREL Triples Previous Estimates of U.S. Wind Power Potential, Energy Citations Database Dynamic Models for Wind Turbines and Wind Power Plants, DOE Information Bridge 2012 ARPA-E Energy Innovation Summit: Profiling General Compression: A River of Wind, ScienceCinema, multimedia Solar and Wind Energy Resource Assessment (SWERA) Data from the

92

Projected Impact of Federal Policies on U.S. Wind Market Potential: Preprint  

DOE Green Energy (OSTI)

This report discusses the potential for solar-powered agricultural irrigation pumps in the San Joaquin Valley and how these applications could improve the region's air This paper presents results from the Wind Deployment Systems Model (WinDS) for several potential energy policy cases. WinDS is a multiregional, multitime-period, Geographic Information System (GIS), and linear programming model of capacity expansion in the electric sector of the United States. WinDS is designed to address the principal market issues related to the penetration of wind energy technologies into the electric sector. These principal market issues include access to and cost of transmission, and the intermittency of wind power. WinDS has been used to model the impact of various policy initiatives, including a wind production tax credit (PTC) and a renewable portfolio standard (RPS).

Short, W.; Blair, N.; Heimiller, D.

2004-03-01T23:59:59.000Z

93

Continental U.S. State Wind Resource Potential Tables (RDF Transformat...  

Open Energy Info (EERE)

Continental U.S. State Wind Resource Potential Tables (RDF Transformation) Submitted by Woodjr on Fri, 02042011 - 14:19 A linked data (RDF) transformation of the...

94

NREL Study Finds U.S. Wind Energy Potential Triples Previous...  

NLE Websites -- All DOE Office Websites (Extended Search)

maximum potential to generate wind power in the contiguous United States is more than three times greater than previously estimated, according to a National Renewable Energy...

95

Proposal for the award of a contract for the supply of pole-face windings for the Ps main magnets  

E-Print Network (OSTI)

This document concerns the award of a contract for the supply of 244 pole-face windings for the PS main magnets. Following a market survey carried out among 58 firms in twelve Member States, a call for tenders (IT-3277/AT) was sent on 25 March 2004 to eight firms in seven Member States. By the closing date, CERN had received three tenders from three firms in three Member States. The Finance Committee is invited to agree to the negotiation of a contract with SIGMAPHI (FR), the lowest bidder, for the supply of 244 pole-face windings for a total amount of 1 122 268 euros (1 753 544 Swiss francs), not subject to revision, with an option for up to 240 additional pole-face windings for an amount not exceeding 1 101 299 euros (1 720 780 Swiss francs), not subject to revision, bringing the total amount to 2 223 567 euros (3 474 324 Swiss francs), not subject to revision. The firm has indicated the following distribution by country of the contract value covered by this adjudication proposal: FR - 98%; IT - 2%.

2004-01-01T23:59:59.000Z

96

VOLUME 46 JOURNAL OF APPLIED METEOROLOGY AND CLIMATOLOGY NOVEMBER 2007 Supplying Baseload Power and Reducing Transmission Requirements by Interconnecting Wind Farms  

E-Print Network (OSTI)

Wind is the world’s fastest growing electric energy source. Because it is intermittent, though, wind is not used to supply baseload electric power today. Interconnecting wind farms through the transmission grid is a simple and effective way of reducing deliverable wind power swings caused by wind intermittency. As more farms are interconnected in an array, wind speed correlation among sites decreases and so does the probability that all sites experience the same wind regime at the same time. The array consequently behaves more and more similarly to a single farm with steady wind speed and thus steady deliverable wind power. In this study, benefits of interconnecting wind farms were evaluated for 19 sites, located in the midwestern United States, with annual average wind speeds at 80 m above ground, the hub height of modern wind turbines, greater than 6.9 m s ?1 (class 3 or greater). It was found that an average of 33 % and a maximum of 47 % of yearly averaged wind power from interconnected farms can be used as reliable, baseload electric power. Equally significant, interconnecting multiple wind farms to a common point and then connecting that point to a far-away city can allow the long-distance portion of transmission capacity to be reduced, for example, by 20 % with only a 1.6 % loss of energy. Although most parameters, such as intermittency, improved less than linearly as the number of interconnected sites increased, no saturation of the benefits

Cristina L. Archer; Mark; Z. Jacobson

2006-01-01T23:59:59.000Z

97

Assessment of potential wood supply for intermediate scale thermoconversion facilities, Tasks I, II, III  

DOE Green Energy (OSTI)

The Department of Energy's Biomass Thermochemical Conversion Program has been concerned with the potential of wood biomass to contribute to the Nation's energy supply. One of the factors inhibiting the selection of wood biomass for energy by non-forest industries, especially by those requiring large quantities (500 to 2000 green tons per day), is concern with adequate fuel supply in terms of both a supply system and an adequate resource base. With respect to the latter, this report looks at the gross resource base as has been historically reported and also examines factors other than traditional product removals that could reduce to some degree the amount of resource that is available. The study also examined the conversion of a New England utility from coal to wood chips.

Not Available

1985-11-01T23:59:59.000Z

98

Bottom-Enhanced Diapycnal Mixing Driven by Mesoscale Eddies: Sensitivity to Wind Energy Supply  

Science Conference Proceedings (OSTI)

It has been estimated that much of the wind energy input to the ocean general circulation is removed by mesoscale eddies via baroclinic instability. While the fate of this energy remains a subject of research, arguments have been presented ...

Geoff J. Stanley; Oleg A. Saenko

99

Reassessing Wind Potential Estimates for India: Economic and Policy Implications  

E-Print Network (OSTI)

Prices for solar projects selected via competitive bidding in India are Rs 11-12/kWh Levelized tariff for wind power

Phadke, Amol

2012-01-01T23:59:59.000Z

100

Regional coherence project - Potential wind power plant development zone.  

E-Print Network (OSTI)

??This document presents a methodology to highlight the location on which the wind turbines could be implemented. This study was performed in the framework of… (more)

Bellut, Romain

2009-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "wind potential supply" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


101

Land-Based Wind Potential Changes in the Southeastern United States (Presentation)  

Science Conference Proceedings (OSTI)

Recent advancements in utility-scale wind turbine technology and pricing have vastly increased the potential land area where turbines can be deployed in the United States. This presentation quantifies the new developable land potential (e.g., capacity curves), visually identifies new areas for possible development (e.g., new wind resource maps), and begins to address deployment barriers to wind in new areas for modern and future turbine technology.

Roberts, J. O.

2013-09-01T23:59:59.000Z

102

Potential Economic Impacts from Offshore Wind in the Southeast...  

Wind Powering America (EERE)

Induced Impacts 170 2,760 Total Impacts during Operation 410 6,700 The U.S. DOE Wind & Water Power Technologies Office funded James Madison University and the National Renewable...

103

The Estimated Global Ocean Wind Power Potential from QuikSCAT Observations, Accounting for Turbine  

E-Print Network (OSTI)

The Estimated Global Ocean Wind Power Potential from QuikSCAT Observations, Accounting for Turbine offshore turbine characteristics including hub height, usable portion of the wind speed distri- bution hemisphere extratropics, respectively, between hub heights of 10 m and 100 m. A turbine with a cut-out speed

Zender, Charles

104

Gone with the Wind - The Potential Tragedy of the Common Wind  

E-Print Network (OSTI)

a source of energy throughout history. Early civilizationsRIIrIT.R, WIND ENERGY IN AMERICA: A HIsToRy 5-6 (1996)). 17.note 16, at 6-7). 19. History, CENTRE FOR ENERGY, http://

Lifshitz-Goldberg, Yaei

2010-01-01T23:59:59.000Z

105

A Diagnostic Model for Estimating Winds at Potential Sites for Wind Turbines  

Science Conference Proceedings (OSTI)

Terrain features and variations in the depth of the atmospheric boundary layer produce local variations in wind, and these variations are not depicted well by standard weather reports. We have developed a diagnostic model that computes local ...

R. M. Endlich; F. L. Ludwig; C. M. Bhumralkar; M. A. Estoque

1982-10-01T23:59:59.000Z

106

Gone with the Wind - The Potential Tragedy of the Common Wind  

E-Print Network (OSTI)

Wind Farms in the Kansas Flint Hills, 54 KAN. L. Riv. 1131,73 (reviewing the case the Flint Hills project in Kansas andviewshed" of the Kansas Flint Hills, groups such as Protect

Lifshitz-Goldberg, Yaei

2010-01-01T23:59:59.000Z

107

Nocturnal Wind Direction Shear and Its Potential Impact on Pollutant Transport  

Science Conference Proceedings (OSTI)

The potential effects of vertical wind direction shear on pollutant transport at a complicated, semiarid site are examined using tower measurements. This high-elevation site is situated on a sloping plateau between mountains to the west and a ...

Brent M. Bowen; Jeffrey A. Baars; Gregory L. Stone

2000-03-01T23:59:59.000Z

108

Potential Climatic Impacts and Reliability of Large-Scale Offshore Wind Farms  

E-Print Network (OSTI)

The vast availability of wind power has fueled substantial interest in this renewable energy source as a potential near-zero greenhouse gas emission technology for meeting future world energy needs while addressing the ...

Wang, Chien

109

Low-Level Winds in Tornadoes and Potential Catastrophic Tornado Impacts in Urban Areas  

Science Conference Proceedings (OSTI)

Using an axisymmetric model of tornado structure tightly constrained by high-resolution wind field measurements collected by Doppler on Wheels (DOW) mobile radars, the potential impacts of intense tornadoes crossing densely populated urban areas ...

Joshua Wurman; Paul Robinson; Curtis Alexander; Yvette Richardson

2007-01-01T23:59:59.000Z

110

On the Potential of VHF Wind Profilers for Studying Convective Processes in the Tropics  

Science Conference Proceedings (OSTI)

In this paper we provide a set of examples to demonstrate the potential of VHF radar wind profilers for studying tropical convection processes. Our examples were extracted from data obtained from the NOAA/CU Pacific Profiler Network, which has ...

B. B. Balsley; D. A. Carter; A. C. Riddle; W. L. Ecklund; K. S. Gage

1991-09-01T23:59:59.000Z

111

First-Order Scaling Law for Potential Vorticity Extraction due to Wind  

Science Conference Proceedings (OSTI)

Surface sources and sinks of potential vorticity (PV) have been examined recently in various publications. These are normally identified as the mechanical and buoyant PV fluxes with the former scaled according to wind stress and the latter from ...

Bruno Deremble; W. K. Dewar

2012-08-01T23:59:59.000Z

112

Worldwide wind/diesel hybrid power system study: Potential applications and technical issues  

DOE Green Energy (OSTI)

The world market potential for wind/diesel hybrid technology is a function of the need for electric power, the availability of sufficient wind resource to support wind/diesel power, and the existence of buyers with the financial means to invest in the technology. This study includes data related to each of these three factors. This study does not address market penetration, which would require analysis of application specific wind/diesel economics. Buyer purchase criteria, which are vital to assessing market penetration, are discussed only generally. Countries were screened for a country-specific market analysis based on indicators of need and wind resource. Both developed countries and less developed countries'' (LDCs) were screened for wind/diesel market potential. Based on the results of the screening, ten countries showing high market potential were selected for more extensive market analyses. These analyses provide country-specific market data to guide wind/diesel technology developers in making design decisions that will lead to a competitive product. Section 4 presents the country-specific data developed for these analyses, including more extensive wind resource characterization, application-specific market opportunities, business conditions, and energy market characterizations. An attempt was made to identify the potential buyers with ability to pay for wind/diesel technology required to meet the application-specific market opportunities identified for each country. Additionally, the country-specific data are extended to corollary opportunities in countries not covered by the study. Section 2 gives recommendations for wind/diesel research based on the findings of the study. 86 refs.

King, W.R.; Johnson, B.L. III (Science Applications International Corp., McLean, VA (USA))

1991-04-01T23:59:59.000Z

113

Potential Economic Impacts from Offshore Wind in the Gulf of Mexico Region (Fact Sheet)  

SciTech Connect

Offshore wind is a clean, renewable source of energy and can be an economic driver in the United States. To better understand the employment opportunities and other potential regional economic impacts from offshore wind development, the U.S. Department of Energy (DOE) funded research that focuses on four regions of the country. The studies use multiple scenarios with various local job and domestic manufacturing content assumptions. Each regional study uses the new offshore wind Jobs and Economic Development Impacts (JEDI) model, developed by the National Renewable Energy Laboratory. This fact sheet summarizes the potential economic impacts for the Gulf of Mexico region.

Flores, F.; Keyser, D.; Tegen, S.

2014-01-01T23:59:59.000Z

114

NREL Triples Previous Estimates of U.S. Wind Power Potential (Fact Sheet)  

DOE Green Energy (OSTI)

The National Renewable Energy Laboratory (NREL) recently released new estimates of the U.S. potential for wind-generated electricity, using advanced wind mapping and validation techniques to triple previous estimates of the size of the nation's wind resources. The new study, conducted by NREL and AWS TruePower, finds that the contiguous 48 states have the potential to generate up to 37 million gigawatt-hours annually. In comparison, the total U.S. electricity generation from all sources was roughly 4 million gigawatt-hours in 2009.

Not Available

2011-07-01T23:59:59.000Z

115

Meteorological field measurements at potential and actual wind turbine sites  

DOE Green Energy (OSTI)

An overview of experiences gained in a meteorological measurement program conducted at a number of locations around the United States for the purpose of site evaluation for wind energy utilization is provided. The evolution of the measurement program from its inception in 1976 to the present day is discussed. Some of the major accomplishments and areas for improvement are outlined. Some conclusions on research using data from this program are presented.

Renne, D.S.; Sandusky, W.F.; Hadley, D.L.

1982-09-01T23:59:59.000Z

116

Potential Flow Calculations of Axisymmetric Ducted Wind Turbines  

E-Print Network (OSTI)

An incompressible potential-flow vortex method has been constructed to analyze the flow field of a ducted

Widnall, Sheila

2009-09-02T23:59:59.000Z

117

80 and 100 Meter Wind Energy Resource Potential for the United States (Poster)  

SciTech Connect

Accurate information about the wind potential in each state is required for federal and state policy initiatives that will expand the use of wind energy in the United States. The National Renewable Energy Laboratory (NREL) and AWS Truewind have collaborated to produce the first comprehensive new state-level assessment of wind resource potential since 1993. The estimates are based on high-resolution maps of predicted mean annual wind speeds for the contiguous 48 states developed by AWS Truewind. These maps, at spatial resolution of 200 meters and heights of 60 to 100 meters, were created with a mesoscale-microscale modeling technique and adjusted to reduce errors through a bias-correction procedure involving data from more than 1,000 measurement masts. NREL used the capacity factor maps to estimate the wind energy potential capacity in megawatts for each state by capacity factor ranges. The purpose of this presentation is to (1) inform state and federal policy makers, regulators, developers, and other stakeholders on the availability of the new wind potential information that may influence development, (2) inform the audience of how the new information was derived, and (3) educate the audience on how the information should be interpreted in developing state and federal policy initiatives.

Elliott, D.; Schwartz, M.; Haymes, S.; Heimiller, D.; Scott, G.; Flowers, L.; Brower, M.; Hale, E.; Phelps, B.

2010-05-01T23:59:59.000Z

118

Assessment of the Economic Potential of Microgrids for Reactive Power Supply  

DOE Green Energy (OSTI)

As power generation from variable distributed energy resources (DER) grows, energy flows in the network are changing, increasing the requirements for ancillary services, including voltage support. With the appropriate power converter, DER can provide ancillary services such as frequency control and voltage support. This paper outlines the economic potential of DERs coordinated in a microgrid to provide reactive power and voltage support at its point of common coupling. The DER Customer Adoption Model assesses the costs of providing reactive power, given local utility rules. Depending on the installed DER, the cost minimizing solution for supplying reactive power locally is chosen. Costs include the variable cost of the additional losses and the investment cost of appropriately over-sizing converters or purchasing capacitors. A case study of a large health care building in San Francisco is used to evaluate different revenue possibilities of creating an incentive for microgrids to provide reactive power.

Appen, Jan von; Marnay, Chris; Stadler, Michael; Momber, Ilan; Klapp, David; Scheven, Alexander von

2011-05-01T23:59:59.000Z

119

Assessment of Supply Chain Energy Efficiency Potentials: A U.S. Case Study  

E-Print Network (OSTI)

for average natural gas-related supply chain GHG emissions.3: E STIMATED 2002 SUPPLY CHAIN NATURAL GAS - RELATED GHGsupply chain GHG emissions attributable to electricity and natural gas

Masanet, Eric

2010-01-01T23:59:59.000Z

120

DOE Hydrogen Program Record 5011 - Hydrogen Potential from Solar and Wind Resources  

NLE Websites -- All DOE Office Websites (Extended Search)

DOE Hydrogen Program Record Record #: 5011 Date: December 15, 2005 Title: Hydrogen Potential from Solar and Wind Resources Items: - Data/resource maps indicate that the potential exists to use wind and solar resources to produce more than 15 times the amount of hydrogen needed to displace the petroleum used by light duty vehicles in 2040. - About one billion metric tons of hydrogen could be produced by renewable electrolysis annually, based upon solar and wind resource potential. - The other three solar pathways - thermochemical, photoelectrochemical, and photobiological - would have similar or possibly higher productivity per unit of land area. Data: Figure 1: Hydrogen Potential from Solar Resources Note: Map shows total kilograms of hydrogen per county, normalized by

Note: This page contains sample records for the topic "wind potential supply" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


121

WIND ENERGY Wind Energ. (2012)  

E-Print Network (OSTI)

WIND ENERGY Wind Energ. (2012) Published online in Wiley Online Library (wileyonlinelibrary since energy production depends non-linearly on wind speed (U ), and wind speed observa- tions for the assessment of future long-term wind supply A. M. R. Bakker1 , B. J. J. M. Van den Hurk1 and J. P. Coelingh2 1

Haak, Hein

122

Wind Fins: Novel Lower-Cost Wind Power System  

DOE Green Energy (OSTI)

This project evaluated the technical feasibility of converting energy from the wind with a novel “wind fin” approach. This patent-pending technology has three major components: (1) a mast, (2) a vertical, hinged wind structure or fin, and (3) a power takeoff system. The wing structure responds to the wind with an oscillating motion, generating power. The overall project goal was to determine the basic technical feasibility of the wind fin technology. Specific objectives were the following: (1) to determine the wind energy-conversion performance of the wind fin and the degree to which its performance could be enhanced through basic design improvements; (2) to determine how best to design the wind fin system to survive extreme winds; (3) to determine the cost-effectiveness of the best wind fin designs compared to state-of-the-art wind turbines; and (4) to develop conclusions about the overall technical feasibility of the wind fin system. Project work involved extensive computer modeling, wind-tunnel testing with small models, and testing of bench-scale models in a wind tunnel and outdoors in the wind. This project determined that the wind fin approach is technically feasible and likely to be commercially viable. Project results suggest that this new technology has the potential to harvest wind energy at approximately half the system cost of wind turbines in the 10kW range. Overall, the project demonstrated that the wind fin technology has the potential to increase the economic viability of small wind-power generation. In addition, it has the potential to eliminate lethality to birds and bats, overcome public objections to the aesthetics of wind-power machines, and significantly expand wind-power’s contribution to the national energy supply.

David C. Morris; Dr. Will D. Swearingen

2007-10-08T23:59:59.000Z

123

Optimization of the Regional Spatial Distribution of Wind Power Plants to Minimize the Variability of Wind Energy Input into Power Supply Systems  

Science Conference Proceedings (OSTI)

In contrast to conventional power generation, wind energy is not a controllable resource because of its stochastic nature, and the cumulative energy input of several wind power plants into the electric grid may cause undesired fluctuations in the ...

Federico Cassola; Massimiliano Burlando; Marta Antonelli; Corrado F. Ratto

2008-12-01T23:59:59.000Z

124

Coastal zone wind energy. Part II: Validation of the coastal zone wind power potential. A summary of the field experiment  

DOE Green Energy (OSTI)

Procedures have been developed to determine the wind power potential of the coastal region from Maine to Texas. The procedures are based upon a climatological analysis and a mesoscale numerical model. The results of this procedure are encouraging but need to be tested. In January to February 1980 a field measurement program was carried out over the Delmarva Peninsula centered on Wallops Island and extending into the Atlantic Ocean and Chesapeake Bay to provide an observational basis on which to test our wind assessment methods. The field experiment is described. Listings of the measurements made by aircraft, tethered balloon, rawinsonde kites, tower mounted anemometry and surface thermometry are given together with sample results. The analysis of these data and the comparison between them and the model predicted fields are presented.

Garstang, M.; Pielke, R.A.; Snow, J.W.

1980-06-01T23:59:59.000Z

125

WIND ENERGY Wind Energ. 2013; 16:7790  

E-Print Network (OSTI)

marine energy systems to supply part of the global energy demand. However, there are many advances be achieved by using the existing knowledge and experience from offshore and wind energy industry energy industry lags far behind the wind energy industry, it has the potential to become a role player

Papalambros, Panos

126

Booster main magnet power supply, present operation and potential future upgrades  

SciTech Connect

The Brookhaven Booster Main Magnet Power Supply (MMPS) is a 24 pulse thyristor control supply, rated at 5500 Amps, +/-2000 Volts, or 3000 Amps, +/-6000 Volts. The power supply is fed directly from the power utility and the peak magnet power is 18 MWatts. This peak power is seen directly at the incoming ac line. This power supply has been in operation for the last 18 years. This paper will describe the present topology and operation of the power supply, the feedback control system and the different modes of operation of the power supply. Since the power supply has been in operation for the last 18 years, upgrading this power supply is essential. A new power supply topology has been studied where energy is stored in capacitor banks. DC to DC converters are used to convert the dc voltage stored in the capacitor banks to pulsed DC voltage into the magnet load. This enables the average incoming power from the ac line to be constant while the peak magnet power is pulsed to +/- 18 MWatts. Simulations and waveforms of this power supply will be presented.

Bajon, E.; Bannon, M.; Marneris, I.; Danowski, G.; Sandberg, J.; Savatteri, S.

2011-03-28T23:59:59.000Z

127

S. C. Pryor R. J. Barthelmie E. Kjellstro m Potential climate change impact on wind energy resources in northern  

E-Print Network (OSTI)

S. C. Pryor � R. J. Barthelmie � E. Kjellstro¨ m Potential climate change impact on wind energy of climate change on the feasibility and pre- dictability of renewable energy sources including wind energy on near-surface flow and hence wind energy density across northern Europe. It is shown that: Simulated

Pryor, Sara C.

128

The Potential of Desalination as an Alternative Water Supply in the United States.  

E-Print Network (OSTI)

??Many parts of the United States are facing water shortages. Planners have to ensure that there will be an adequate water supply to meet the… (more)

Naini, Anjali Nina

2013-01-01T23:59:59.000Z

129

Biofuel Boundaries: Estimating the Medium-Term Supply Potential of Domestic Biofuels  

E-Print Network (OSTI)

Biofuel Boundaries: Estimating the Medium-Term SupplyAugust 22, 2007 Biofuel Boundaries: Estimating the Medium-significant amount of liquid biofuel (equivalent to 30-100%

Jones, Andrew; O'Hare, Michael; Farrell, Alexander

2007-01-01T23:59:59.000Z

130

Analysis of the Technical and Economic Potential for Mid-Scale Distributed Wind: December 2007 - October 31, 2008  

DOE Green Energy (OSTI)

This report examines the status, restrainers, drivers, and estimated development potential of mid-scale (10 kW - 5000 kW) distributed wind energy projects.

Kwartin, R.; Wolfrum, A.; Granfield, K.; Kagel, A.; Appleton, A.

2008-12-01T23:59:59.000Z

131

Electric Energy Conservation and Production Project: Vpolume 3: Wind energy potential  

Science Conference Proceedings (OSTI)

A final report has been prepared under the Electric Energy Conservation and Production Project, conducted by the Blackfeet Indian Tribe and its consultants, Black Hawk Associates, Inc. The report addresses two major issues - the heavy reliance on electricity by residents of the Blackfeet Reservation, and the opportunities for electricity production from wind energy resources on the Reservation. The findings of this report (1) help provide a basis for comprehensive energy management planning on the Reservation, (2) analyze the potential for minimizing electricity demand and maximizing the efficiency of electrical end-uses through appropriate conservation measures, (3) assess the potential of wind energy resources located on the Reservation, and (4) identify and assess the technical, financial, legal, institutional, and regulatory issues involved in wind energy development within the Blackfeet Reservation.

Not Available

1984-02-01T23:59:59.000Z

132

Potential Economic Impacts from Offshore Wind in the Southeast Region (Fact Sheet)  

SciTech Connect

Offshore wind is a clean, renewable source of energy and can be an economic driver in the United States. To better understand the employment opportunities and other potential regional economic impacts from offshore wind development, the U.S. Department of Energy (DOE) funded research that focuses on four regions of the country. The studies use multiple scenarios with various local job and domestic manufacturing content assumptions. Each regional study uses the new offshore wind Jobs and Economic Development Impacts (JEDI) model, developed by the National Renewable Energy Laboratory. This fact sheet summarizes the potential economic impacts identified by the study for the Southeast (defined here as Georgia, South Carolina, North Carolina, and Virginia).

2013-07-01T23:59:59.000Z

133

A Feasibility Study to Evaluate Wind Energy Potential on the Navajo Nation  

SciTech Connect

The project, A Feasibility Study to Evaluate Wind Energy Potential on the Navajo Nation, is funded under a solicitation issued by the U.S. Department of Energy Tribal Energy Program. Funding provided by the grant allowed the Navajo Nation to measure wind potential at two sites, one located within the boundaries of the Navajo Nation and the other off-reservation during the project period (September 5, 2005 - September 30, 2009). The recipient for the grant award is the Navajo Tribal Utility Authority (NTUA). The grant allowed the Navajo Nation and NTUA manage the wind feasibility from initial site selection through the decision-making process to commit to a site for wind generation development. The grant activities help to develop human capacity at NTUA and help NTUA to engage in renewable energy generation activities, including not only wind but also solar and biomass. The final report also includes information about development activities regarding the sited included in the grant-funded feasibility study.

Terry Battiest

2012-11-30T23:59:59.000Z

134

20% Wind Energy by 2030: Increasing Wind Energy's Contribution to U.S. Electricity Supply; Executive Summary (Revised)  

SciTech Connect

This document is a 21-page summary of the 200+ page analysis that explores one clearly defined scenario for providing 20% of our nation's electricity demand with wind energy by 2030 and contrasts it to a scenario of no new U.S. wind power capacity.

2008-12-01T23:59:59.000Z

135

Assessment of Supply Chain Energy Efficiency Potentials: A U.S. Case Study  

SciTech Connect

This paper summarizes a modeling framework that characterizes the key underlying technologies and processes that contribute to the supply chain energy use and greenhouse gas (GHG) emissions of a variety of goods and services purchased by U.S. consumers. The framework couples an input-output supply chain modeling approach with"bottom-up" fuel end use models for individual IO sectors. This fuel end use modeling detail allows energy and policy analysts to better understand the underlying technologies and processes contributing to the supply chain energy and GHG"footprints" of goods and services. To illustrate the policy-relevance of thisapproach, a case study was conducted to estimate achievable household GHG footprint reductions associated with the adoption of best practice energy-efficient supply chain technologies.

Masanet, Eric; Kramer, Klaas Jan; Homan, Gregory; Brown, Richard; Worrell, Ernst

2009-01-01T23:59:59.000Z

136

The maximum potential to generate wind power in the contiguous United States is more than three times  

E-Print Network (OSTI)

detailed 200-meter resolution maps. The NREL analysis found enormous U.S. wind energy potential of the U.S. Department of Energy, Office of Energy Efficiency and Renewable Energy, operated Finds U.S. Wind Energy Potential Triples Previous Estimates #12;

137

Techno-economic Assessment of Wind Energy to Supply the Demand of Electricity for a Residential Community in Ethiopia.  

E-Print Network (OSTI)

?? The electricity sector is a major source of carbon dioxide emission that contributes to the global climate change. Over the past decade wind energy… (more)

Yebi, Adamu

2011-01-01T23:59:59.000Z

138

Review of remote-sensor potential for wind-energy studies  

DOE Green Energy (OSTI)

This report evaluates a number of remote-sensing systems such as radars, lidars, and acoustic echo sounders which are potential alternatives to the cup- and propeller anemometers routinely used in wind energy siting. The high costs and demanding operational requirements of these sensors currently preclude their use in the early stages of a multi-phase wind energy siting strategy such as that recently articulated by Hiester and Pennell (1981). Instead, these systems can be used most effectively in the lattermost stages of the siting process - what Hiester and Pennell (1981) refer to as the site development phase, necessary only for the siting of large wind-energy conversion systems (WECS) or WECS clusters. Even for this particular application only four techniques appear to be operational now; that is, if used properly, these techniques should provide the data sets currently considered adequate for wind-energy siting purposes. They are, in rough order of increasing expense and operating demands: optical transverse wind sensors; acoustic Doppler sounders; time-of-flight and continuous wave (CW) Doppler lidar; and frequency-modulated, continuous wave (FM-CW) Doppler radar.

Hooke, W.H.

1981-03-01T23:59:59.000Z

139

Potential supply and cost of biomass from energy crops in the TVA region  

DOE Green Energy (OSTI)

The economic and supply structures of energy crop markets have not been established. Establishing the likely price and supply of energy crop biomass in a region is a complex task because biomass is not an established commodity as are oil, natural gas, and coal. In this study, the cost and supply of short-rotation woody crop (SRWC) and switchgrass biomass for the Tennessee Valley Authority (TVA) region-a 276-county area that includes portions of 11 states in the southeastern United States - are projected. Projected prices and quantities of biomass are assumed to be a function of the amount and quality of crop and pasture land available in a region, expected energy crop yields and production costs on differing soils and land types, and the profit that could be obtained from current conventional crop production on these same lands. Results include the supply curves of SRWC and switchgrass biomass that are projected to be available from the entire region, the amount and location of crop and pasture land that would be used, and the conventional agricultural crops that would be displaced as a function of energy crop production. Finally, the results of sensitivity analysis on the projected cost and supply of energy crop biomass are shown. In particular, the separate impacts of varying energy crop production costs and yields, and interest rates are examined.

Graham, R.L.; Downing, M.E.

1995-04-01T23:59:59.000Z

140

Sustainable Energy Solutions Task 5.1:Expand the Number of Faculty Working in Wind Energy: Wind Energy Supply Chain and Logistics  

SciTech Connect

EXECUTIVE SUMARRY Wind as a source of energy has gained a significant amount of attention because it is free and green. Construction of a wind farm involves considerable investment, which includes the cost of turbines, nacelles, and towers as well as logistical costs such as transportation of oversized parts and installation costs such as crane-rental costs. The terrain effects at the project site exert considerable influence on the turbine assembly rate and the project duration, which increases the overall installation cost. For higher capacity wind turbines (>3MW), the rental cost of the cranes is significant. In this study, the impact of interest rate, sales price of electricity, terrain effects and availability of cranes on the duration of installation and payback period for the project is analyzed. Optimization of the logistic activities involved during the construction phase of a wind farm contributes to the reduction of the project duration and also increases electricity generation during the construction phase.

Janet M Twomey, PhD

2010-04-30T23:59:59.000Z

Note: This page contains sample records for the topic "wind potential supply" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


141

Analysis of the Technical and Economic Potential for Mid-Scale Distributed Wind  

NLE Websites -- All DOE Office Websites (Extended Search)

Analysis of the Technical and Analysis of the Technical and Economic Potential for Mid-Scale Distributed Wind December 2007 - October 31, 2008 R. Kwartin, A. Wolfrum, K. Granfield, A. Kagel, and A. Appleton ICF International Fairfax, Virginia Subcontract Report NREL/SR-500-44280 December 2008 An Analysis of the Technical and Economic Potential for Mid-Scale Distributed Wind December 2007 - October 31, 2008 R. Kwartin, A. Wolfrum, K. Granfield, A. Kagel, and A. Appleton ICF International Fairfax, Virginia NREL Technical Monitor: T. Forsyth Prepared under Subcontract No. AAM-8-89001-01 Subcontract Report NREL/SR-500-44280 December 2008 National Renewable Energy Laboratory 1617 Cole Boulevard, Golden, Colorado 80401-3393 303-275-3000 * www.nrel.gov NREL is a national laboratory of the U.S. Department of Energy

142

The Potential for Wind Induced Ventilation to Meet Occupant Comfort Conditions  

E-Print Network (OSTI)

This paper describes a simple graphic tool that enables a building designer to evaluate the potential for wind induced ventilation cooling in several climate zones. Long term weather data were analyzed to determine the conditions for which available wind speed can be used to meet occupant comfort conditions. By calculating the change in enthalpy produced by a typical residential air conditioner during those hours when an occupant is uncomfortable, we were able to estimate the impact of natural ventilation on building cooling load. The graphic presentation of the results allows a designer to determine the potential energy savings of increasing the ventilation air flow rate as well as the orientation of building openings that will maximize ventilation cooling of the building occupants.

Byrne, S. J.; Huang, Y. J.; Ritschard, R. L.; Foley, D. M.

1985-01-01T23:59:59.000Z

143

Projected Impact of Federal Policies on U.S. Wind Market Potential...  

NLE Websites -- All DOE Office Websites (Extended Search)

at 10 meters above ground) to Class 7 (>7.0 ms). WinDS, which also includes offshore wind resources, distinguishes between shallow offshore wind and deep offshore wind turbines....

144

Markets to Facilitate Wind and Solar Energy Integration in the Bulk Power Supply: An IEA Task 25 Collaboration; Preprint  

Science Conference Proceedings (OSTI)

Wind and solar power will give rise to challenges in electricity markets regarding flexibility, capacity adequacy, and the participation of wind and solar generators to markets. Large amounts of wind power will have impacts on bulk power system markets and electricity prices. If the markets respond to increased wind power by increasing investments in low-capital, high-cost or marginal-cost power, the average price may remain in the same range. However, experiences so far from Denmark, Germany, Spain, and Ireland are such that the average market prices have decreased because of wind power. This reduction may result in additional revenue insufficiency, which may be corrected with a capacity market, yet capacity markets are difficult to design. However, the flexibility attributes of the capacity also need to be considered. Markets facilitating wind and solar integration will include possibilities for trading close to delivery (either by shorter gate closure times or intraday markets). Time steps chosen for markets can enable more flexibility to be assessed. Experience from 5- and 10-minute markets has been encouraging.

Milligan, M.; Holttinen, H.; Soder, L.; Clark, C.; Pineda, I.

2012-09-01T23:59:59.000Z

145

Energy Efficiency Challenges in Heating Supply System of Turkmenistan and Potential Solutions  

E-Print Network (OSTI)

The poor condition and inefficient operation of the existing heat and hot water supply system in Turkmenistan is causing serious economic, social and environmental problems. Yet, the situation may very well change to the worse as increase of energy consumption is projected for near future. The country's commitment to reduce greenhouse gases emissions faces the challenge of ensuring that both the short- and long-term environmental impacts can be minimized while service levels of heat and hot water supply to the population are simultaneously improved. Despite the energy, economic, and environmental benefits of energy efficiency in Turkmenistan, little has been done to eliminate energy waste. Due historic legacy, there is a limited institutional capacity to increase energy efficiency. Achieving energy and environmental goals will require a basic institutional transformation. Gaps in polices and legislation in the area of energy efficiency and the lack capacity and institutional expertise in managing local, regional and national energy efficiency programs have to be addressed.

Zomov, A.; Behnke, R.

2010-01-01T23:59:59.000Z

146

Potential Benefits of Using Probabilistic Forecasts for Waves and Marine Winds Based on the ECMWF Ensemble Prediction System  

Science Conference Proceedings (OSTI)

The potential benefits of using the ECMWF Ensemble Prediction System (EPS) for waves and marine surface winds are demonstrated using buoy and platform data as well as altimeter data.

Øyvind Saetra; Jean-Raymond Bidlot

2004-08-01T23:59:59.000Z

147

The Impact of Gradient Wind Imbalance on Potential Intensity of Tropical Cyclones in an Unbalanced Slab Boundary Layer Model  

Science Conference Proceedings (OSTI)

The assumption of gradient wind balance is customarily made so as to derive the theoretical upper-bound intensity of a mature tropical cyclone. Emanuel's theory of hurricane potential intensity (E-PI) makes use of this assumption, whereas more ...

Thomas Frisius; Daria Schönemann; Jonathan Vigh

2013-07-01T23:59:59.000Z

148

Assessment of the Economic Potential of Microgrids for Reactive Power Supply  

E-Print Network (OSTI)

of Commercial Building Microgrids,” IEEE Transactions onEconomic Potential of Microgrids for Reactive Power Supplyof creating an incentive for microgrids to provide reactive

Appen, Jan von

2012-01-01T23:59:59.000Z

149

Assessment of Supply Chain Energy Efficiency Potentials: A U.S. Case Study  

E-Print Network (OSTI)

U.S. Building-Sector Energy Efficiency Potential. LawrenceMcMahon (2006). “Energy Efficiency Standards for Equipment:Whitehead (2007). Energy Efficiency Improvement and Cost

Masanet, Eric

2010-01-01T23:59:59.000Z

150

Biofuel Boundaries: Estimating the Medium-Term Supply Potential of Domestic Biofuels  

E-Print Network (OSTI)

tons of potential cellulosic feedstock was landfilled orcould be grown as a cellulosic ethanol feedstock instead ofFeedstock..17 Table 4 Estimated Cellulosic

Jones, Andrew; O'Hare, Michael; Farrell, Alexander

2007-01-01T23:59:59.000Z

151

NREL Confirms Large Potential for Grid Integration of Wind, Solar Power (Fact Sheet)  

DOE Green Energy (OSTI)

To fully harvest the nation's bountiful wind and solar resources, it is critical to know how much electrical power from these renewable resources could be integrated reliably into the grid. To inform the discussion about the potential of such variable sources, the National Renewable Energy Laboratory (NREL) launched two key regional studies, examining the east and west sections of the U.S. power grid. The studies show that it is technically possible for U.S. power systems to integrate 20%-35% renewable electricity if infrastructure and operational improvements can be made.

Not Available

2011-10-01T23:59:59.000Z

152

Fluctuations in the interplanetary electric potential and energy coupling between the solar-wind and the magnetosphere  

E-Print Network (OSTI)

We utilize solar rotation average geomagnetic index ap and various solar wind plasma and field parameters for four solar cycles 20-23. We perform analysis to search for a best possible coupling function at 27-day time resolution. Regression analysis using these data at different phases of solar activity (increasing including maximum/decreasing including minimum) led us to suggest that the time variation of interplanetary electric potential is a better coupling function for solar wind-magnetosphere coupling. We suspect that a faster rate of change in interplanetary electric potential at the magnetopause might enhance the reconnection rate and energy transfer from the solar wind into the magnetosphere. The possible mechanism that involves the interplanetary potential fluctuations in influencing the solar wind-magnetosphere coupling is being investigated.

Badruddin,

2013-01-01T23:59:59.000Z

153

State and National Wind Resource Potential at Various Capacity Factor Ranges for 80 and 100 Meters  

Wind Powering America (EERE)

February 4, 2010 (updated April 13, 2011 to add Alaska and Hawaii) February 4, 2010 (updated April 13, 2011 to add Alaska and Hawaii) State Total (km 2 ) Excluded 2 (km 2 ) Available (km 2 ) Available % of State % of Total Windy Land Excluded Installed Capacity 3 (MW) Annual Generation (GWh) Alabama 15.9 13.3 2.6 0.00% 83.4% 13.2 42 Alaska 267,897.7 209,673.4 58,224.3 3.87% 78.3% 291,121.3 1,051,210 Arizona 611.7 417.3 194.4 0.07% 68.2% 972.1 3,100 Arkansas 1,130.0 687.5 442.5 0.32% 60.8% 2,212.5 7,215 C lif i 11 456 4 8 650 1 2 806 3 0 69% 75 5% 14 031 7 49 073 Estimates of Windy 1 Land Area and Wind Energy Potential, by State, for areas >= 35% Capacity Factor at 80m These estimates show, for each of the 50 states and the total U.S., the windy land area with a gross capacity factor (without losses) of 35% and greater at 80-m height above ground and the wind energy potential that could be possible from development of the "available" windy land area

154

New report assesses offshore wind technology challenges and potential risks and benefits.  

E-Print Network (OSTI)

of the offshore wind energy industry, Large-Scale Offshore Wind Power in the United States. It provides a broad resource. The United States possesses large and accessible offshore wind energy resources. The availability of offshore wind energy facilities would generate an estimated $200 billion in new economic activity

155

EERE: Wind Program Home Page  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

wind projects and offshore wind resource potential. Offshore Wind R&D DOE makes strategic research & deployment investments to launch domestic offshore wind industry....

156

Underground coal gasification: Its potential for long-term supply of sng. Occasional pub  

Science Conference Proceedings (OSTI)

The paper examines the viability of underground coal gasification (UCU) as a future source of substitute natural gas (SNG). The economics of commercial scale UCG technology at a western site is estimated and compared with aboveground gasification and also with an extrapolation of GRI's Baseline Projection for natural gas prices. Although much technical and economic uncertainty exists regarding UCG, the potential reserve base for unmineable coals is very large, about four times that of currently mineable coals. Assuming that only 10 percent of the 1.8 trillion tons of marginal U.S. coal resources may be amendable to UCG, this represents 1000 trillion cubic feet of potential SNG production. The UCG economics of the paper are based on a techno-economic study conducted by Williams Brothers Engineering Company; the cosponsors included GRI, Amoco Production Company, Hunt Oil Company, and Williams Brothers Engineering Company.

Hill, V.L.; Burnham, K.B.; Barone, S.P.; Rosenberg, J.I.; Ashby, A.B.

1984-02-01T23:59:59.000Z

157

The Research Path to Determining the Natural Gas Supply Potential of Marine Gas Hydrates  

Science Conference Proceedings (OSTI)

A primary goal of the U.S. National Interagency Gas Hydrates R&D program is to determine the natural gas production potential of marine gas hydrates. In pursuing this goal, four primary areas of effort are being conducted in parallel. First, are wide-ranging basic scientific investigations in both the laboratory and in the field designed to advance the understanding of the nature and behavior of gas hydrate bearing sediments (GHBS). This multi-disciplinary work has wide-ranging direct applications to resource recovery, including assisting the development of exploration and production technologies through better rock physics models for GHBS and also in providing key data for numerical simulations of productivity, reservoir geomechanical response, and other phenomena. In addition, fundamental science efforts are essential to developing a fuller understanding of the role gas hydrates play in the natural environment and the potential environmental implications of gas hydrate production, a critical precursor to commercial extraction. A second area of effort is the confirmation of resource presence and viability via a series of multi-well marine drilling expeditions. The collection of data in the field is essential to further clarifying what proportion of the likely immense in-place marine gas hydrate resource exists in accumulations of sufficient quality to represent potential commercial production prospects. A third research focus area is the integration of geologic, geophysical, and geochemical field data into an effective suite of exploration tools that can support the delineation and characterization commercial gas hydrate prospects prior to drilling. The fourth primary research focus is the development and testing of well-based extraction technologies (including drilling, completion, stimulation and production) that can safely deliver commercial gas production rates from gas hydrate reservoirs in a variety of settings. Initial efforts will take advantage of the relatively favorable economics of conducting production tests in Arctic gas-hydrate bearing sandstones with the intent of translating the knowledge gained to later testing in marine sandstone reservoirs. The full and concurrent pusuit of each of these research topics is essential to the determining the future production potential of naturally-occuring gas hydrates.

Boswell, R.M.; Rose, K.K.; Baker, R.C.

2008-06-01T23:59:59.000Z

158

Japan's Long-term Energy Demand and Supply Scenario to 2050 - Estimation for the Potential of Massive CO2 Mitigation  

SciTech Connect

In this analysis, the authors projected Japan's energy demand/supply and energy-related CO{sub 2} emissions to 2050. Their analysis of various scenarios indicated that Japan's CO{sub 2} emissions in 2050 could be potentially reduced by 26-58% from the current level (FY 2005). These results suggest that Japan could set a CO{sub 2} emission reduction target for 2050 at between 30% and 60%. In order to reduce CO{sub 2} emissions by 60% in 2050 from the present level, Japan will have to strongly promote energy conservation at the same pace as an annual rate of 1.9% after the oil crises (to cut primary energy demand per GDP (TPES/GDP) in 2050 by 60% from 2005) and expand the share of non-fossil energy sources in total primary energy supply in 2050 to 50% (to reduce CO{sub 2} emissions per primary energy demand (CO{sub 2}/TPES) in 2050 by 40% from 2005). Concerning power generation mix in 2050, nuclear power will account for 60%, solar and other renewable energy sources for 20%, hydro power for 10% and fossil-fired generation for 10%, indicating substantial shift away from fossil fuel in electric power supply. Among the mitigation measures in the case of reducing CO{sub 2} emissions by 60% in 2050, energy conservation will make the greatest contribution to the emission reduction, being followed by solar power, nuclear power and other renewable energy sources. In order to realize this massive CO{sub 2} abatement, however, Japan will have to overcome technological and economic challenges including the large-scale deployment of nuclear power and renewable technologies.

Komiyama, Ryoichi; Marnay, Chris; Stadler, Michael; Lai, Judy; Borgeson, Sam; Coffey, Brian; Azevedo, Ines Lima

2009-09-01T23:59:59.000Z

159

DOE Science Showcase - Wind Power | OSTI, US Dept of Energy, Office of  

Office of Scientific and Technical Information (OSTI)

Science Showcase - Wind Power Science Showcase - Wind Power Wind Powering America is a nationwide initiative of the U.S. Department of Energy's Wind Program designed to educate, engage, and enable critical stakeholders to make informed decisions about how wind energy contributes to the U.S. electricity supply. Wind Power Research Results in DOE Databases IEA Wind Task 26: The Past and Future Cost of Wind Energy, Work Package 2, Energy Citations Database NREL Triples Previous Estimates of U.S. Wind Power Potential, Energy Citations Database Dynamic Models for Wind Turbines and Wind Power Plants, DOE Information Bridge 2012 ARPA-E Energy Innovation Summit: Profiling General Compression: A River of Wind, ScienceCinema, multimedia Solar and Wind Energy Resource Assessment (SWERA) Data from the

160

Dependence of the cross polar cap potential saturation on the type of solar wind streams  

E-Print Network (OSTI)

We compare of the cross polar cap potential (CPCP) saturation during magnetic storms induced by various types of the solar wind drivers. By using the model of Siscoe-Hill \\citep{Hilletal1976,Siscoeetal2002a,Siscoeetal2002b,Siscoeetal2004,Siscoe2011} we evaluate criteria of the CPCP saturation during the main phases of 257 magnetic storms ($Dst_{min} \\le -50$ nT) induced by the following types of the solar wind streams: magnetic clouds (MC), Ejecta, the compress region Sheath before MC ($Sh_{MC}$) and before Ejecta ($Sh_{E}$), corotating interaction regions (CIR) and indeterminate type (IND). Our analysis shows that occurrence rate of the CPCP saturation is higher for storms induced by ICME ($13.2%$) than for storms driven by CIR ($3.5%$) or by IND ($3.5%$).The CPCP saturation was obtained more often for storms initiated by MC ($25%$) than by Ejecta ($2.9%$); it was obtained for $8.6%$ of magnetic storms induced by sum of MC and Ejecta, and for $21.5%$ magnetic storms induced by Sheath before them (sum of $Sh_...

Nikolaeva, N S; Lodkina, I G

2013-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "wind potential supply" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


161

Modeling the Market Potential of Hydrogen from Wind and Competing Sources: Preprint  

NLE Websites -- All DOE Office Websites (Extended Search)

8 8 May 2005 Modeling the Market Potential of Hydrogen from Wind and Competing Sources Preprint W. Short, N. Blair, and D. Heimiller To be presented at WINDPOWER 2005 Denver, Colorado May 15-18, 2005 NOTICE The submitted manuscript has been offered by an employee of the Midwest Research Institute (MRI), a contractor of the US Government under Contract No. DE-AC36-99GO10337. Accordingly, the US Government and MRI retain a nonexclusive royalty-free license to publish or reproduce the published form of this contribution, or allow others to do so, for US Government purposes. This report was prepared as an account of work sponsored by an agency of the United States government. Neither the United States government nor any agency thereof, nor any of their employees, makes any

162

NREL Triples Previous Estimates of U.S. Wind Power Potential (Fact Sheet), The Spectrum of Clean Energy Innovation, NREL (National Renewable Energy Laboratory)  

NLE Websites -- All DOE Office Websites (Extended Search)

Triples Previous Estimates of Triples Previous Estimates of U.S. Wind Power Potential The National Renewable Energy Laboratory (NREL) recently released new estimates of the U.S. potential for wind-generated electricity, using advanced wind mapping and validation techniques that triple previous estimates of the size of the nation's wind resources. The new study, conducted by NREL and AWS TruePower, finds that the contiguous 48 states have the potential to generate up to 37 million gigawatt-hours annually. In comparison, the total U.S. electricity generation from all sources was roughly 4 million gigawatt-hours in 2009. Detailed state-by-state estimates of wind energy potential for the United States show the estimated average wind speeds at an 80-meter height. The wind resource maps and estimates

163

Potential Climatic Impacts and Reliability of Very Large-Scale Wind Farms  

E-Print Network (OSTI)

Meeting future world energy needs while addressing climate change requires large-scale deployment of low or zero greenhouse gas (GHG) emission technologies such as wind energy. The widespread availability of wind power has ...

Wang, Chien

164

Assessment of Wind Power Potential for Two Contrasting Coastlines of South Africa Using a Numerical Model  

Science Conference Proceedings (OSTI)

A two-dimensional numerical model is used to predict near surface wind velocities, and consequently wind power, for five distinct synoptic regimes for contrasting east and west coasts of South Africa. The model results suggest that no one ...

R. D. Diab; M. Garstang

1984-12-01T23:59:59.000Z

165

New Wind Energy Resource Potential Estimates for the United States (Presentation)  

DOE Green Energy (OSTI)

This presentation provides an overview of the wind energy resource mapping efforts conducted at NREL and by Truepower.

Elliott, D.; Schwartz, M.; Haymes, S.; Heimiller, D.; Scott, G.; Brower, M.; Hale, E.; Phelps, B.

2011-01-01T23:59:59.000Z

166

Contamination of Wind Profiler Data by Migrating Birds: Characteristics of Corrupted Data and Potential Solutions  

Science Conference Proceedings (OSTI)

Winds measured with 915- and 404-MHz wind profilers are frequently found to have nonrandom errors as large as 15 m s?1 when compared to simultaneously measured rawinsonde winds. Detailed studies of these errors which occur only at night below ...

J. M. Wilczak; R. G. Strauch; F. M. Ralph; B. L. Weber; D. A. Merritt; J. R. Jordan; D. E. Wolfe; L. K. Lewis; D. B. Wuertz; J. E. Gaynor; S. A. McLaughlin; R. R. Rogers; A. C. Riddle; T. S. Dye

1995-06-01T23:59:59.000Z

167

Estimated global ocean wind power potential from QuikSCAT observations, accounting for turbine characteristics and siting  

E-Print Network (OSTI)

for off- shore wind turbines in Europe and North America,of wind power and wind turbine characteristics, Renewablea multi?megawatt wind turbine, Renewable Energy, Matthews,

Capps, Scott B; Zender, Charles S

2010-01-01T23:59:59.000Z

168

OpenEI - offshore wind  

Open Energy Info (EERE)

/0 en Offshore Wind Resource /0 en Offshore Wind Resource http://en.openei.org/datasets/node/921 Global Wind Potential Supply Curves by Country, Class, and Depth (quantities in GW)

License
169

Some potential material supply constraints in the deployment of photovoltaic solar electric systems. (A preliminary screening to identify critical materials)  

DOE Green Energy (OSTI)

The objectives of this study are to: (1) identify potential material supply constraints which could seriously impede the large scale installation of photovoltaic (PV) systems; (2) provide a functional description of materials used in the construction of selected photovoltaic systems in computerized format suitable for interactive updating in workshops or for future reviews; (3) provide a data base of statistics and production processes in machine accessible format for making this assessment and supporting future PV assessments; and (4) show the sensitivity of potential shortages to the size of the PV implementation scenario. The scope of the study includes the screening of 13 photovoltaic cells in a total of 15 system designs. Some cells are also included in concentrating systems at 500 suns and 30 suns. The systems all are based on the substitutions of various cells and concentrator devices into designs based on the Meade, Nebraska 25 kW installation. The system designs all include energy storage but the effect of deleting energy storage is also examined. The study methodology, results, and recommendations are presented in detail. (WHK)

Watts, R.L.; Gurwell, W.E.; Bloomster, C.H.; Smith, S.A.; Nelson, T.A.; Pawlewicz, W.W.

1978-09-01T23:59:59.000Z

170

Japan's Long-term Energy Demand and Supply Scenario to 2050 - Estimation for the Potential of Massive CO2 Mitigation  

E-Print Network (OSTI)

2004 (16) NEDO, "Wind Power Generation Roadmap," 2005 (17)from 2005). Concerning power generation mix in 2050, nuclearintroduction of nuclear power generation is assumed from the

Komiyama, Ryoichi

2010-01-01T23:59:59.000Z

171

Analysis of Loads and Wind Energy Potential for Remote Power Stations in Alaska University of Massachusetts Amherst  

E-Print Network (OSTI)

Analysis of Loads and Wind Energy Potential for Remote Power Stations in Alaska Mia Devine Electric Use (kWh/year) 2,173,400 1,032,800 2,520,500 Average Load 300 kW 140 kW 280 kW Peak Load 600 k load profile. Villages usuall

Massachusetts at Amherst, University of

172

Modeling the Market Potential of Hydrogen from Wind and Competing Sources: Preprint  

DOE Green Energy (OSTI)

Developed from the Wind Deployment Systems (WinDS) model, the Hydrogen Deployment Systems (HyDS) model is a computer model of U.S. market expansion of hydrogen production from wind and other sources over the next 50 years. The WinDS model was developed in 2003 to model the expansion of generation and transmission capacity in the U.S. electric sector spanning the next 50 years. It minimizes system-wide costs of meeting loads, reserve requirements, and emission constraints by building and operating new generators and transmission in 26 two-year periods from 2000 to 2050. While it includes all major types of conventional generators, the WinDS model focuses on addressing the market issues of greatest significance to wind-specifically issues of electricity transmission and intermittency.

Short, W.; Blair, N.; Heimiller, D.

2005-05-01T23:59:59.000Z

173

Sage-Grouse and Wind Energy: Biology, Habits, and Potential Effects from Development  

DOE Green Energy (OSTI)

Proposed development of domestic energy resources, including wind energy, is expected to impact the sagebrush steppe ecosystem in the western United States. The greater sage-grouse relies on habitats within this ecosystem for survival, yet very little is known about how wind energy development may affect sage-grouse. The purpose of this report is to inform organizations of the impacts wind energy development could have on greater sage-grouse populations and identify information needed to fill gaps in knowledge.

Becker, James M.; Tagestad, Jerry D.; Duberstein, Corey A.; Downs, Janelle L.

2009-07-15T23:59:59.000Z

174

Bird Movements and Behaviors in the Gulf Coast Region: Relation to Potential Wind-Energy Developments  

DOE Green Energy (OSTI)

The purpose of this paper is to discuss the possible impacts of wind development to birds along the lower Gulf Coast, including both proposed near-shore and offshore developments. The report summarizes wind resources in Texas, discusses timing and magnitude of bird migration as it relates to wind development, reviews research that has been conducted throughout the world on near- and offshore developments, and provides recommendations for research that will help guide wind development that minimizes negative impacts to birds and other wildlife resources.

Morrison, M. L.

2006-06-01T23:59:59.000Z

175

Power System Modeling of 20percent Wind-Generated Electricity by 2030  

E-Print Network (OSTI)

Contribution to U.S. Electricity Supply. National Renewable20% of the nation's electricity from wind technology byTERMS wind-generated electricity; wind energy; 20% wind

Hand, Maureen

2008-01-01T23:59:59.000Z

176

offshore wind | OpenEI  

Open Energy Info (EERE)

wind wind Dataset Summary Description Global Wind Potential Supply Curves by Country, Class, and Depth (quantities in GW) Source National Renewable Energy Laboratory Date Released July 12th, 2012 (2 years ago) Date Updated July 12th, 2012 (2 years ago) Keywords offshore resource offshore wind renewable energy potential Data application/vnd.openxmlformats-officedocument.spreadsheetml.sheet icon offshore_resource_100_vs2.xlsx (xlsx, 41.7 KiB) Quality Metrics Level of Review Peer Reviewed Comment Temporal and Spatial Coverage Frequency Time Period License License Open Data Commons Public Domain Dedication and Licence (PDDL) Comment Rate this dataset Usefulness of the metadata Average vote Your vote Usefulness of the dataset Average vote Your vote Ease of access Average vote Your vote

177

Japan's Long-term Energy Demand and Supply Scenario to 2050 - Estimation for the Potential of Massive CO2 Mitigation  

E-Print Network (OSTI)

energy sources for 20%, hydro power for 10% and fossil-firedetc. • Wind power • Solar • Geothermal ^ Hydro O LO CO CT> Chydro and geothermal) are assumed to expand their share of electric utilities' power

Komiyama, Ryoichi

2010-01-01T23:59:59.000Z

178

A Regional-Scale GIS-Based Modeling System for Evaluating the Potential Costs and Supplies of Biomass from Biomass Crops  

DOE Green Energy (OSTI)

A GIS-based modeling system was developed for analyzing the geographic variation in potential bioenergy feedstock supplies and optimal locations for siting bioenergy facilities. The modeling system is designed for analyzing individual US states but could readily be adapted to any geographic region.

Graham, R.L.; English, B.C.; Noon, C.E.; Liu, W.; Daly, M.J.; Jager, H.I.

1996-06-24T23:59:59.000Z

179

Analysis of residential, industrial and commercial sector responses to potential electricity supply constraints in the 1990s  

DOE Green Energy (OSTI)

There is considerable debate over the ability of electric generation capacity to meet the growing needs of the US economy in the 1990s. This study provides new perspective on that debate and examines the possibility of power outages resulting from electricity supply constraints. Previous studies have focused on electricity supply growth, demand growth, and on the linkages between electricity and economic growth. This study assumes the occurrence of electricity supply shortfalls in the 1990s and examines the steps that homeowners, businesses, manufacturers, and other electricity users might take in response to electricity outages.

Fisher, Z.J.; Fang, J.M.; Lyke, A.J.; Krudener, J.R.

1986-09-01T23:59:59.000Z

180

A proposed metric for assessing the potential of community annoyance from wind turbine low-frequency noise emissions  

SciTech Connect

Given our initial experience with the low-frequency, impulsive noise emissions from the MOD-1 wind turbine and their impact on the surrounding community, the ability to assess the potential of interior low-frequency annoyance in homes located near wind turbine installations may be important. Since there are currently no universally accepted metrics or descriptors for low-frequency community annoyance, we performed a limited program using volunteers to see if we could identify a method suitable for wind turbine noise applications. We electronically simulated three interior environments resulting from low-frequency acoustical loads radiated from both individual turbines and groups of upwind and downwind turbines. The written comments of the volunteers exposed to these interior stimuli were correlated with a number of descriptors which have been proposed for predicting low-frequency annoyance. The results are presented in this paper. We discuss our modifications of the highest correlated predictor to include the internal dynamic pressure effects associated with the response of residential structures to low-frequency acoustic loads. Finally, we outline a proposed procedure for establishing both a low-frequency ''figure of merit'' for a particular wind turbine design and, using actual measurements, estimate the potential for annoyance to nearby communities. 10 refs., 13 figs., 7 tabs.

Kelley, N.D.

1987-10-05T23:59:59.000Z

Note: This page contains sample records for the topic "wind potential supply" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


181

Wind Power: How Much, How Soon, and At What Cost?  

E-Print Network (OSTI)

2007. "Utility Wind Integration and Operating Impact Statethat the integration of 20% wind into US electricity marketsand integration costs, Figure 8 provides a supply curve for wind

Wiser, Ryan H

2010-01-01T23:59:59.000Z

182

Forecasting Wind Markets  

U.S. Energy Information Administration (EIA)

Emerging Technologies, Data, and NEM Modeling Issues in Wind Resource Supply Data and Modeling Chris Namovicz ASA Committee on Energy Statistics

183

Japan's Long-term Energy Demand and Supply Scenario to 2050 - Estimation for the Potential of Massive CO2 Mitigation  

E-Print Network (OSTI)

renewable energy sources (excluding hydro and geothermal)C O ; Hydro and 4 Po geothermal energies I Nuclear Gas I OilNuclear Hydro/geothermal Renewables Primary energy supply

Komiyama, Ryoichi

2010-01-01T23:59:59.000Z

184

Forecasting Tornadic Thunderstorm Potential in Alberta Using Environmental Sounding Data. Part I: Wind Shear and Buoyancy  

Science Conference Proceedings (OSTI)

This study investigates, for Alberta, Canada, whether observed sounding parameters such as wind shear and buoyant energy can be used to help distinguish between thunderstorms with significant (F2–F5) tornadoes, thunderstorms with weak (F0–F1) ...

Max L. Dupilka; Gerhard W. Reuter

2006-06-01T23:59:59.000Z

185

Ris Energy Report 4 Supply technologies in the future energy system 10 Supply technologies in the future energy system  

E-Print Network (OSTI)

Risø Energy Report 4 Supply technologies in the future energy system 10 Supply technologies of local and central production and close coupling between supply and end-use. Wind Global wind energy: Energy supply technologies #12;Risø Energy Report 4 Supply technologies in the future energy system4 used

186

Wind Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

FUPWG Meeting FUPWG Meeting NREL is a national laboratory of the U.S. Department of Energy Office of Energy Efficiency and Renewable Energy operated by the Alliance for Sustainable Energy, LLC Robi Robichaud November 18, 2009 Topics Introduction Review of the Current Wind Market Drivers for Wind Development Siting g Issues Wind Resource Assessment Wind Characteristics Wind Power Potential Basic Wind Turbine Theory Basic Wind Turbine Theory Types of Wind Turbines Facts About Wind Siting Facts About Wind Siting Wind Performance 1. United States: MW 1 9 8 2 1 9 8 3 1 9 8 4 1 9 8 5 1 9 8 6 1 9 8 7 1 9 8 8 1 9 8 9 1 9 9 0 1 9 9 1 1 9 9 2 1 9 9 3 1 9 9 4 1 9 9 5 1 9 9 6 1 9 9 7 1 9 9 8 1 9 9 9 2 0 0 0 2 0 0 1 2 0 0 2 2 0 0 3 2 0 0 4 2 0 0 5 2 0 0 6 2 0 0 7 2 0 0 8 Current Status of the Wind Industry Total Global Installed Wind Capacity Total Global Installed Wind Capacity Total Global Installed Wind Capacity

187

RI_50m_Wind  

NLE Websites -- All DOE Office Websites (Extended Search)

UnitedStatesWindHighResolutionRhodeIslandWindHighResolution.zip> Description: Abstract: Annual average wind resource potential for the state of Rhode...

188

CT_50m_Wind  

NLE Websites -- All DOE Office Websites (Extended Search)

UnitedStatesWindHighResolutionConnecticutWindHighResolution.zip> Description: Abstract: Annual average wind resource potential for the state of...

189

MA_50m_Wind  

NLE Websites -- All DOE Office Websites (Extended Search)

UnitedStatesWindHighResolutionMassachusettsWindHighResolution.zip> Description: Abstract: Annual average wind resource potential for the state of...

190

VT_50m_Wind  

NLE Websites -- All DOE Office Websites (Extended Search)

DataTechnologySpecificUnitedStatesWindHighResolutionVermontWindHighResolution.zip> Description: Abstract: Annual average wind resource potential for the state of Vermont...

191

NH_50m_Wind  

NLE Websites -- All DOE Office Websites (Extended Search)

UnitedStatesWindHighResolutionNewHampshireWindHighResolution.zip> Description: Abstract: Annual average wind resource potential for the state of New...

192

IA_50m_Wind  

NLE Websites -- All DOE Office Websites (Extended Search)

ISDataTechnologySpecificUnitedStatesWindHighResolutionIowaWindHighResolution.zip> Description: Abstract: Annual average wind resource potential for the state of Iowa at...

193

ME_50m_Wind  

NLE Websites -- All DOE Office Websites (Extended Search)

SDataTechnologySpecificUnitedStatesWindHighResolutionMaineWindHighResolution.zip> Description: Abstract: Annual average wind resource potential for the state of Maine...

194

ga_50m_wind  

NLE Websites -- All DOE Office Websites (Extended Search)

DataTechnologySpecificUnitedStatesWindHighResolutionGeorgiaWindHighResolution.zip> Description: Abstract: Annual average wind resource potential for the state of Georgia...

195

ny_50m_wind  

NLE Websites -- All DOE Office Websites (Extended Search)

ataTechnologySpecificUnitedStatesWindHighResolutionNewYorkWindHighResolution.zip> Description: Abstract: Annual average wind resource potential for New York at a 50...

196

Estimated global ocean wind power potential from QuikSCAT observations, accounting for turbine characteristics and siting  

E-Print Network (OSTI)

and economic cost?benefit analysis of offshore wind energy,energy sources [Jacobson, 2009]. Onshore wind power costs

Capps, Scott B; Zender, Charles S

2010-01-01T23:59:59.000Z

197

Supply - U.S. Energy Information Administration (EIA)  

U.S. Energy Information Administration (EIA)

Includes hydropower, solar, wind, geothermal, biomass and ethanol. Nuclear & Uranium. Uranium fuel, nuclear reactors, generation, spent fuel. ... supply. View Archive ...

198

NREL Energy Models Examine the Potential for Wind and Solar Grid Integration (Fact Sheet)  

DOE Green Energy (OSTI)

As renewable energy generating sources, such as wind turbines and solar power systems, reach high levels of penetration in parts of the United States, the National Renewable Energy Laboratory (NREL) is helping the utility industry to peer into the future. Using software modeling tools that the lab developed, NREL is examining the future operation of the electrical grid as renewable energy continues to grow.

Not Available

2013-11-01T23:59:59.000Z

199

Transformed Eulerian-Mean Theory. Part II: Potential Vorticity Homogenization and the Equilibrium of a Wind- and Buoyancy-Driven Zonal Flow  

Science Conference Proceedings (OSTI)

The equilibrium of a modeled wind- and buoyancy-driven, baroclinically unstable, flow is analyzed using the transformed Eulerian-mean (TEM) approach described in Part I. Within the near-adiabatic interior of the flow, Ertel potential vorticity is ...

Allen Kuo; R. Alan Plumb; John Marshall

2005-02-01T23:59:59.000Z

200

Lab Supplies  

Science Conference Proceedings (OSTI)

reference materials, bleaching clay, activated bleaching earth and refining cups. Lab Supplies Lab Supplies Lab Supplies Laboratory Services analysis analytical methods aocs certified Certified Reference Materials (CRM) chemist chemists fats lab

Note: This page contains sample records for the topic "wind potential supply" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


201

NREL: Wind Research - Wind Resource Assessment  

NLE Websites -- All DOE Office Websites (Extended Search)

Wind Resource Assessment Wind Resource Assessment A map of the United States is color-coded to indicate the high winds at 80 meters. This map shows the wind resource at 80 meters for both land-based and offshore wind resources in the United States. Correct estimation of the energy available in the wind can make or break the economics of wind plant development. Wind mapping and validation techniques developed at the National Wind Technology Center (NWTC) along with collaborations with U.S. companies have produced high-resolution maps of the United States that provide wind plant developers with accurate estimates of the wind resource potential. State Wind Maps International Wind Resource Maps Dynamic Maps, GIS Data, and Analysis Tools Due to the existence of special use airspace (SUA) (i.e., military airspace

202

Future for Offshore Wind Energy in the United States: Preprint  

DOE Green Energy (OSTI)

Until recently, the offshore wind energy potential in the United States was ignored because vast onshore wind resources have the potential to fulfill the electrical energy needs for the entire country. However, the challenge of transmitting the electricity to the large load centers may limit wind grid penetration for land-based turbines. Offshore wind turbines can generate power much closer to higher value coastal load centers. Reduced transmission constraints, steadier and more energetic winds, and recent European success, have made offshore wind energy more attractive for the United States. However, U.S. waters are generally deeper than those on the European coast, and will require new technology. This paper presents an overview of U.S. coastal resources, explores promising deepwater wind technology, and predicts long-term cost-of-energy (COE) trends. COE estimates are based on generic 5-MW wind turbines in a hypothetical 500-MW wind power plant. Technology improvements and volume production are expected to lower costs to meet the U.S. Department of Energy target range of $0.06/kWh for deployment of deepwater offshore wind turbines by 2015, and $0.05/kWh by 2012 for shallow water. Offshore wind systems can diversify the U.S. electric energy supply and provide a new market for wind energy that is complementary to onshore development.

Musial, W.; Butterfield, S.

2004-06-01T23:59:59.000Z

203

U.S. State Wind Resource Potential

Open Energy Info (EERE)

from development of the "available" windy land area after exclusions.  The "Installed Capacity" shows the potential megawatts (MW) of rated capacity that could be...

204

Offshore Wind Resource | OpenEI  

Open Energy Info (EERE)

Offshore Wind Resource Offshore Wind Resource Dataset Summary Description Global Wind Potential Supply Curves by Country, Class, and Depth (quantities in GW) Source National Renewable Energy Laboratory Date Released July 12th, 2012 (2 years ago) Date Updated July 12th, 2012 (2 years ago) Keywords offshore resource offshore wind renewable energy potential Data application/vnd.openxmlformats-officedocument.spreadsheetml.sheet icon offshore_resource_100_vs2.xlsx (xlsx, 41.7 KiB) Quality Metrics Level of Review Peer Reviewed Comment Temporal and Spatial Coverage Frequency Time Period License License Open Data Commons Public Domain Dedication and Licence (PDDL) Comment Rate this dataset Usefulness of the metadata Average vote Your vote Usefulness of the dataset Average vote Your vote Ease of access

205

Stakeholder Engagement and Outreach: Offshore 90-Meter Wind Maps and Wind  

Wind Powering America (EERE)

Offshore 90-Meter Wind Maps and Wind Resource Potential Offshore 90-Meter Wind Maps and Wind Resource Potential The Stakeholder Engagement and Outreach initiative provides 90-meter (m) height, high-resolution wind maps and estimates of the total offshore wind potential that would be possible from developing the available offshore areas. The offshore wind resource maps can be used as a guide to identify regions for commercial wind development. A map of the United States showing offshore wind resource. Washington offshore wind map. Oregon offshore wind map. California offshore wind map. Texas offshore wind map. Minnesota offshore wind map. Lousiana offshore wind map. Wisconsin offshore wind map. Michigan offshore wind map. Michigan offshore wind map. Illinois offshore wind map. Indiana offshore wind map. Ohio offshore wind map. Georgia offshore wind map. South Carolina offshore wind map. North Carolina offshore wind map. Virginia offshore wind map. Maryland offshore wind map. Pennsylvania offshore wind map. Delaware offshore wind map. New Jersey offshore wind map. New York offshore wind map. Maine offshore wind map. Massachusetts offshore wind map. Rhode Island offshore wind map. Connecticut offshore wind map. Hawaii offshore wind map. Delaware offshore wind map. New Hampshire offshore wind map.

206

2011 Grants for Offshore Wind Power | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Wind Manufacturing Facilities Wind Manufacturing Facilities Testing America's Wind Turbines Testing America's Wind Turbines U.S. Hydropower Potential from Existing Non-powered Dams...

207

Relationships between Tracer Ages and Potential Vorticity in Unsteady Wind-Driven Circulations  

Science Conference Proceedings (OSTI)

The relationships between different tracer ages and between tracer age and potential vorticity are examined by simulating barotropic double-gyre circulations. The unsteady model flow crudely represents aspects of the midlatitude, middepth ocean ...

Hong Zhang; Thomas W. N. Haine; Darryn W. Waugh

2005-11-01T23:59:59.000Z

208

Power Supplies  

Science Conference Proceedings (OSTI)

Figure: ...Fig. 5 Typical medium-frequency induction power supply incorporating (a) a parallel inverter and (b) a series inverter...

209

Potential for Reducing Blade-Tip Acoustic Emissions for Small Wind Turbines: June 1, 2007 - July 31, 2008  

DOE Green Energy (OSTI)

This report provides results of wind tunnel aroacoustic tests conducted on a small wind turbine blade in the open-jet test section of the Georgia Tech Research Institute Flight Simulation Facility.

Migliore, P.

2009-02-01T23:59:59.000Z

210

Hurricane Andrew's Landfall in South Florida. Part II: Surface Wind Fields and Potential Real-Time Applications  

Science Conference Proceedings (OSTI)

All available wind data associated with Hurricane Andrew's passage were analysed for periods corresponding to landfall south of Miami and emergence from southwest Florida. At landfall in southeast Florida, maximum sustained 1-min surface wind ...

Mark D. Powell; Samuel H. Houston

1996-09-01T23:59:59.000Z

211

Wavelet Analysis for Wind Fields Estimation  

E-Print Network (OSTI)

resource assessment and wind farm development in the UK. Inevaluation of oil spills and wind farms. Keywords: SAR; Winddata to characterize wind farms and their potential energy

Leite, Gladeston C.

2013-01-01T23:59:59.000Z

212

Wind Power  

NLE Websites -- All DOE Office Websites (Extended Search)

Power As the accompanying map of New Mexico shows, the best wind power generation potential near WIPP is along the Delaware Mountain ridge line of the southern Guadalupe Mountains,...

213

Japan's Long-term Energy Demand and Supply Scenario to 2050 - Estimation for the Potential of Massive CO2 Mitigation  

SciTech Connect

In this analysis, the authors projected Japan's energy demand/supply and energy-related CO{sub 2} emissions to 2050. Their analysis of various scenarios indicated that Japan's CO{sub 2} emissions in 2050 could be potentially reduced by 26-58% from the current level (FY 2005). These results suggest that Japan could set a CO{sub 2} emission reduction target for 2050 at between 30% and 60%. In order to reduce CO{sub 2} emissions by 60% in 2050 from the present level, Japan will have to strongly promote energy conservation at the same pace as an annual rate of 1.9% after the oil crises (to cut primary energy demand per GDP (TPES/GDP) in 2050 by 60% from 2005) and expand the share of non-fossil energy sources in total primary energy supply in 2050 to 50% (to reduce CO{sub 2} emissions per primary energy demand (CO{sub 2}/TPES) in 2050 by 40% from 2005). Concerning power generation mix in 2050, nuclear power will account for 60%, solar and other renewable energy sources for 20%, hydro power for 10% and fossil-fired generation for 10%, indicating substantial shift away from fossil fuel in electric power supply. Among the mitigation measures in the case of reducing CO{sub 2} emissions by 60% in 2050, energy conservation will make the greatest contribution to the emission reduction, being followed by solar power, nuclear power and other renewable energy sources. In order to realize this massive CO{sub 2} abatement, however, Japan will have to overcome technological and economic challenges including the large-scale deployment of nuclear power and renewable technologies.

Komiyama, Ryoichi; Marnay, Chris; Stadler, Michael; Lai, Judy; Borgeson, Sam; Coffey, Brian; Azevedo, Ines Lima

2009-09-01T23:59:59.000Z

214

Federal Reserve Bank of of Kansas City The Cycles of Wind Power Development  

E-Print Network (OSTI)

Wind power, with its recent dramatic pace of development, has the potential to alter the energy landscape in some areas of the United States. Before 2006, wind power development was sparse. However, installed capacity doubled by 2008 and accelerated rapidly through 2012. Although wind power still accounts for a small share of the nation’s electricity supply, the recent surge in development has sparked discussion about wind’s potential as a significant source of long-term renewable energy. Utility-scale wind turbines are sprouting throughout the nation, particularly in the Midwest. More favorable economic conditions and government support have contributed significantly to the expansion of wind power. The expansion has been pronounced throughout the

Main Street; P. Brown

2013-01-01T23:59:59.000Z

215

Final Report on California Regional Wind Energy Forecasting Project:Application of NARAC Wind Prediction System  

DOE Green Energy (OSTI)

Wind power is the fastest growing renewable energy technology and electric power source (AWEA, 2004a). This renewable energy has demonstrated its readiness to become a more significant contributor to the electricity supply in the western U.S. and help ease the power shortage (AWEA, 2000). The practical exercise of this alternative energy supply also showed its function in stabilizing electricity prices and reducing the emissions of pollution and greenhouse gases from other natural gas-fired power plants. According to the U.S. Department of Energy (DOE), the world's winds could theoretically supply the equivalent of 5800 quadrillion BTUs of energy each year, which is 15 times current world energy demand (AWEA, 2004b). Archer and Jacobson (2005) also reported an estimation of the global wind energy potential with the magnitude near half of DOE's quote. Wind energy has been widely used in Europe; it currently supplies 20% and 6% of Denmark's and Germany's electric power, respectively, while less than 1% of U.S. electricity is generated from wind (AWEA, 2004a). The production of wind energy in California ({approx}1.2% of total power) is slightly higher than the national average (CEC & EPRI, 2003). With the recently enacted Renewable Portfolio Standards calling for 20% of renewables in California's power generation mix by 2010, the growth of wind energy would become an important resource on the electricity network. Based on recent wind energy research (Roulston et al., 2003), accurate weather forecasting has been recognized as an important factor to further improve the wind energy forecast for effective power management. To this end, UC-Davis (UCD) and LLNL proposed a joint effort through the use of UCD's wind tunnel facility and LLNL's real-time weather forecasting capability to develop an improved regional wind energy forecasting system. The current effort of UC-Davis is aimed at developing a database of wind turbine power curves as a function of wind speed and direction, using its wind tunnel facility at the windmill farm at the Altamont Pass. The main objective of LLNL's involvement is to provide UC-Davis with improved wind forecasts to drive the parameterization scheme of turbine power curves developed from the wind tunnel facility. Another objective of LLNL's effort is to support the windmill farm operation with real-time wind forecasts for the effective energy management. The forecast skill in capturing the situation to meet the cut-in and cutout speed of given turbines would help reduce the operation cost in low and strong wind scenarios, respectively. The main focus of this report is to evaluate the wind forecast errors of LLNL's three-dimensional real-time weather forecast model at the location with the complex terrain. The assessment of weather forecast accuracy would help quantify the source of wind energy forecast errors from the atmospheric forecast model and/or wind-tunnel module for further improvement in the wind energy forecasting system.

Chin, H S

2005-07-26T23:59:59.000Z

216

Wind powering America: Iowa  

DOE Green Energy (OSTI)

Wind resources in the state of Iowa show great potential for wind energy development. This fact sheet provides a brief description of the state's wind resources and the financial incentives available for the development of wind energy systems. It also provides a list of contacts for more information.

NREL

2000-04-11T23:59:59.000Z

217

Landmark Report Analyzes Current State of U.S. Offshore Wind Industry (Fact Sheet)  

DOE Green Energy (OSTI)

New report assesses offshore wind industry, offshore wind resource, technology challenges, economics, permitting procedures, and potential risks and benefits. The National Renewable Energy Laboratory (NREL) recently published a new report that analyzes the current state of the offshore wind energy industry, Large-Scale Offshore Wind Power in the United States. It provides a broad understanding of the offshore wind resource, and details the associated technology challenges, economics, permitting procedures, and potential risks and benefits of developing this clean, domestic, renewable resource. The United States possesses large and accessible offshore wind energy resources. The availability of these strong offshore winds close to major U.S. coastal cities significantly reduces power transmission issues. The report estimates that U.S. offshore winds have a gross potential generating capacity four times greater than the nation's present electric capacity. According to the report, developing the offshore wind resource along U.S. coastlines and in the Great Lakes would help the nation: (1) Achieve 20% of its electricity from wind by 2030 - Offshore wind could supply 54 gigawatts of wind capacity to the nation's electrical grid, increasing energy security, reducing air and water pollution, and stimulating the domestic economy. (2) Provide clean power to its coastal demand centers - Wind power emits no carbon dioxide (CO2) and there are plentiful winds off the coasts of 26 states. (3) Revitalize its manufacturing sector - Building 54 GW of offshore wind energy facilities would generate an estimated $200 billion in new economic activity, and create more than 43,000 permanent, well-paid technical jobs in manufacturing, construction, engineering, operations and maintenance. NREL's report concludes that the development of the nation's offshore wind resources can provide many potential benefits, and with effective research, policies, and commitment, offshore wind energy can play a vital role in future U.S. energy markets.

Not Available

2011-09-01T23:59:59.000Z

218

Supply Implications  

U.S. Energy Information Administration (EIA)

Supply Implications. European export gasoline volumes likely to remain unchanged Uncertainties are weighted towards less availability But the quality of the available ...

219

NREL: Wind Research - Offshore Wind Research  

NLE Websites -- All DOE Office Websites (Extended Search)

Offshore Wind Research Offshore Wind Research Photo of a European offshore wind farm. Early progress in European Offshore Wind Energy over the last decade provides a glimpse into the vast potential of the global offshore resource. For more than eight years, NREL has worked with the Department of Energy to become an international leader in offshore wind energy research. Capabilities NREL's offshore wind capabilities focus on critical areas that reflect the long-term needs of the offshore wind energy industry and the U.S. Department of Energy including: Offshore Design Tools and Methods Offshore Standards and Testing Energy Analysis of Offshore Systems Offshore Wind Resource Characterization Grid Integration of Offshore Wind Key Research NREL documented the status of offshore wind energy in the United States in

220

Wind Power: How Much, How Soon, and At What Cost?  

E-Print Network (OSTI)

been located on land; offshore wind capacity surpassed 1 G Woffshore, and deep offshore wind potential. Even assumingthe potential for offshore wind. As such, the size of the

Wiser, Ryan H

2010-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "wind potential supply" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


221

Offshore Wind 101  

Wind Powering America (EERE)

visual impact and potential user conflict. Sorry. According to the Department of Energy's national renewable energy lab, the nation's potential offshore wind energy resource is...

222

Indian Wind Energy Outlook 2009  

E-Print Network (OSTI)

1. ?The status of wind energy in India ? 4 Indian power sector?????????????????????????????????????????????????????????????????????????5 Renewable Energy in India ?????????????????????????????????????????????????????????????5 Wind potential???????????????????????????????????????????????????????????????????????????????? ? 7

unknown authors

2009-01-01T23:59:59.000Z

223

Estimated global ocean wind power potential from QuikSCAT observations, accounting for turbine characteristics and siting  

E-Print Network (OSTI)

C. S. Zender (2009), Global ocean wind power sensitivity toG. C. Johnson (2001), Ocean currents evident in satellitepower distribution over the ocean, Geophys. Res. Lett. , 35,

Capps, Scott B; Zender, Charles S

2010-01-01T23:59:59.000Z

224

The Estimated Global Ocean Wind Power Potential from QuikSCAT Observations, Accounting for Turbine Characteristics and Siting  

E-Print Network (OSTI)

For the first time, global ocean usable wind power is evaluated for modern offshore turbine characteristics including hub height, usable portion of the wind speed distribution and siting depth. Mean wind power increases by 30%, 69 % and 73 % within the tropics and northern and southern hemisphere extratropics, respectively, between hub heights of 10 m and 100 m. A turbine with a cut-out speed of 25 m s?1 (30 m s?1) within the northern hemisphere storm track harvests between 55 % (82%) and 85% (> 98%) of available power. Within this region, a 2–3m s?1 change in cut-out speed can result in a 5–7 % change in usable power. 80 m wind power accumulates at a rate of 20–45 GW km2 m?2 per meter depth increase from the shore to the shelf break. Beyond the shelf break, wind power accumulates at a slower rate (wind power is assessed for three technology tiers: existing, planned, and future innovations. Usable percent of 80 m available global ocean wind power ranges from 0.40 % for existing to 2.73 % for future envisioned turbine specifications. Offshore wind power production is estimated using typical turbine characteristics including rotor diameter, rated power and siting density. Global offshore wind power is as much as 37 TW (50 % of onshore) and is maximized for the smallest and least powerful of the three turbine specifications evaluated. 1 1

Charles S. Zender

2009-01-01T23:59:59.000Z

225

Fort Carson Wind Resource Assessment  

DOE Green Energy (OSTI)

This report focuses on the wind resource assessment, the estimated energy production of wind turbines, and economic potential of a wind turbine project on a ridge in the southeastern portion of the Fort Carson Army base.

Robichaud, R.

2012-10-01T23:59:59.000Z

226

Wind Resource Maps (Postcard)  

DOE Green Energy (OSTI)

The U.S. Department of Energy's Wind Powering America initiative provides high-resolution wind maps and estimates of the wind resource potential that would be possible from development of the available windy land areas after excluding areas unlikely to be developed. This postcard is a marketing piece that stakeholders can provide to interested parties; it will guide them to Wind Powering America's online wind energy resource maps.

Not Available

2011-07-01T23:59:59.000Z

227

Renewables in Global Energy Supply | Open Energy Information  

Open Energy Info (EERE)

in Global Energy Supply AgencyCompany Organization: International Energy Agency Sector: Energy Focus Area: Biomass, Geothermal, Solar, Wind, Hydrogen Website: www.iea.orgpapers...

228

Greensburg Wind Farm  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

renewable energy and energy efficiency. * Kansas offers the third highest potential for wind energy in the U.S. * Thorough research conducted by NREL proved the viability of wind...

229

Improved Offshore Wind Resource Assessment in Global Climate Stabilization Scenarios  

SciTech Connect

This paper introduces a technique for digesting geospatial wind-speed data into areally defined -- country-level, in this case -- wind resource supply curves. We combined gridded wind-vector data for ocean areas with bathymetry maps, country exclusive economic zones, wind turbine power curves, and other datasets and relevant parameters to build supply curves that estimate a country's offshore wind resource defined by resource quality, depth, and distance-from-shore. We include a single set of supply curves -- for a particular assumption set -- and study some implications of including it in a global energy model. We also discuss the importance of downscaling gridded wind vector data to capturing the full resource potential, especially over land areas with complex terrain. This paper includes motivation and background for a statistical downscaling methodology to account for terrain effects with a low computational burden. Finally, we use this forum to sketch a framework for building synthetic electric networks to estimate transmission accessibility of renewable resource sites in remote areas.

Arent, D.; Sullivan, P.; Heimiller, D.; Lopez, A.; Eurek, K.; Badger, J.; Jorgensen, H. E.; Kelly, M.; Clarke, L.; Luckow, P.

2012-10-01T23:59:59.000Z

230

Improved Offshore Wind Resource Assessment in Global Climate Stabilization Scenarios  

DOE Green Energy (OSTI)

This paper introduces a technique for digesting geospatial wind-speed data into areally defined -- country-level, in this case -- wind resource supply curves. We combined gridded wind-vector data for ocean areas with bathymetry maps, country exclusive economic zones, wind turbine power curves, and other datasets and relevant parameters to build supply curves that estimate a country's offshore wind resource defined by resource quality, depth, and distance-from-shore. We include a single set of supply curves -- for a particular assumption set -- and study some implications of including it in a global energy model. We also discuss the importance of downscaling gridded wind vector data to capturing the full resource potential, especially over land areas with complex terrain. This paper includes motivation and background for a statistical downscaling methodology to account for terrain effects with a low computational burden. Finally, we use this forum to sketch a framework for building synthetic electric networks to estimate transmission accessibility of renewable resource sites in remote areas.

Arent, D.; Sullivan, P.; Heimiller, D.; Lopez, A.; Eurek, K.; Badger, J.; Jorgensen, H. E.; Kelly, M.; Clarke, L.; Luckow, P.

2012-10-01T23:59:59.000Z

231

EA-1939: Reese Technology Center Wind and Battery Integration Project,  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

9: Reese Technology Center Wind and Battery Integration 9: Reese Technology Center Wind and Battery Integration Project, Lubbock County, TX EA-1939: Reese Technology Center Wind and Battery Integration Project, Lubbock County, TX SUMMARY This EA will evaluate the potential environmental impacts of a proposal by the Center for Commercialization of Electric Technologies to demonstrate battery technology integration with wind generated electricity by deploying and evaluating utility-scale lithium battery technology to improve grid performance and thereby aid in the integration of wind generation into the local electricity supply. Under the proposed action, DOE's Office of Electricity Delivery and Energy Reliability would provide cost shared funding for the project through American Reinvestment and Recovery Act

232

Some potential material supply constraints in solar systems for heating and cooling of buildings and process heat. (A preliminary screening to identify critical materials)  

DOE Green Energy (OSTI)

Nine Solar Heating and Cooling of Buildings (SHACOB) designs and three Agricultural and Industrial Process Heat (AIPH) designs have been studied to identify potential future material constraints to their large scale installation and use. The nine SHACOB and three AIPH systems were screened and found to be free of serious future material constraints. The screening was carried out for each individual system design assuming 500 million m/sup 2/ of collector area installed by the year 2000. Also, two mixed design scenarios, containing equal portions of each system design, were screened. To keep these scenarios in perspective, note that a billion m/sup 2/ containing a mixture of the nine SHACOB designs will yield an annual solar contribution of about 1.3 Quads or will displace about 4.2 Quads of fossil fuel used to generate electricity. For AIPH a billion square meters of the mixed designs will yield about 2.8 Quads/year. Three materials were identified that could possibly restrain the deployment of solar systems in the specific scenarios investigated. They are iron and steel, soda lime glass and polyvinyl fluoride. All three of these materials are bulk materials. No raw material supply constraints were found.

Watts, R.L.; Gurwell, W.E.; Nelson, T.A.; Smith, S.A.

1979-06-01T23:59:59.000Z

233

RELIABILITY OF WIND POWER FROM DISPERSED SITES: A PRELIMINARY ASSESSMENT  

E-Print Network (OSTI)

Electric Company, Wind Energy Mission Analysis, COO/2578-C.G. and W.R. Hargraves, Wind Energy Statistics for Largeng Power Supply from Wind Energy Converting Sys t ems, "

Kahn, E.

2011-01-01T23:59:59.000Z

234

Market potential for solar thermal energy supply systems in the United States industrial and commercial sectors: 1990--2030. Final report  

DOE Green Energy (OSTI)

This report revises and extends previous work sponsored by the US DOE on the potential industrial market in the United States for solar thermal energy systems and presents a new analysis of the commercial sector market potential. Current and future industrial process heat demand and commercial water heating, space heating and space cooling end-use demands are estimated. The PC Industrial Model (PCIM) and the commercial modules of the Building Energy End-Use Model (BEEM) used by the DOE`s Energy Information Administration (EIA) to support the recent National Energy Strategy (NES) analysis are used to forecast industrial and commercial end-use energy demand respectively. Energy demand is disaggregated by US Census region to account for geographic variation in solar insolation and regional variation in cost of alternative natural gas-fired energy sources. The industrial sector analysis also disaggregates demand by heat medium and temperature range to facilitate process end-use matching with appropriate solar thermal energy supply technologies. The commercial sector analysis disaggregates energy demand by three end uses: water heating, space heating, and space cooling. Generic conceptual designs are created for both industrial and commercial applications. Levelized energy costs (LEC) are calculated for industrial sector applications employing low temperature flat plate collectors for process water preheat; parabolic troughs for intermediate temperature process steam and direct heat industrial application; and parabolic dish technologies for high temperature, direct heat industrial applications. LEC are calculated for commercial sector applications employing parabolic trough technologies for low temperature water and space heating. Cost comparisons are made with natural gas-fired sources for both the industrial market and the commercial market assuming fuel price escalation consistent with NES reference case scenarios for industrial and commercial sector gas markets.

Not Available

1991-12-01T23:59:59.000Z

235

New England Wind Forum: Building Wind Energy in New England  

Wind Powering America (EERE)

Projects in New England Building Wind Energy in New England Wind Resource Wind Power Technology Economics Markets Siting Policy Technical Challenges Issues Small Wind Large Wind Newsletter Perspectives Events Quick Links to States CT MA ME NH RI VT Bookmark and Share Building Wind Energy in New England Many factors influence the ability to develop wind power in the New England region. A viable project requires the right site and the right technology for the application. It must provide suitable revenue or economic value to justify investment in this capital-intensive but zero-fuel technology. Policy initiatives are in place throughout the region to support the expansion of wind power's role in the regional supply mix. However, issues affecting public acceptance of wind projects in host communities must be addressed. Information on topics affecting wind power development in New England can be found by using the navigation to the left.

236

Impacts of Spatial and Temporal Windspeed Variability on Wind Energy Output  

Science Conference Proceedings (OSTI)

Modern applications of wind energy include water pumping and, for supply of electricity, grid-connected wind turbines and wind/direct stand-alone systems. In Britain, wind energy has been found to be particularly suited to isolated communities ...

J. P. Palutikof; P. M. Kelly; T. D. Davies; J. A. Halliday

1987-09-01T23:59:59.000Z

237

NREL: Wind Research - Offshore Wind Resource Characterization  

NLE Websites -- All DOE Office Websites (Extended Search)

Offshore Wind Resource Characterization Offshore Wind Resource Characterization Map of the United States, showing the wind potential of offshore areas across the country. Enlarge image US offshore wind speed estimates at 90-m height NREL scientists and engineers are leading efforts in resource mapping, remote sensor measurement and development, and forecasting that are essential for the development of offshore wind. Resource Mapping For more than 15 years, NREL's meteorologists, engineers, and Geographic Information System experts have led the production of wind resource characterization maps and reports used by policy makers, private industry, and other government organizations to inform and accelerate the development of wind energy in the United States. Offshore wind resource data and mapping has strategic uses. As with terrestrial developments, traditional

238

Wind characteristics for agricultural wind energy applications  

SciTech Connect

Wind energy utilization in agriculture can provide a potentially significant savings in fuel oil consumption and ultimately a cost savings to the farmer. A knowledge of the wind characteristics within a region and at a location can contribute greatly to a more efficient and cost-effective use of this resource. Current research indicates that the important wind characteristics include mean annual wind speed and the frequency distribution of the wind, seasonal and diurnal variations in wind speed and direction, and the turbulent and gustiness characteristics of the wind. Further research is underway to provide a better definition of the total wind resource available, improved methods for siting WECS and an improved understanding of the environment to which the WECS respond.

Renne, D. S.

1979-01-01T23:59:59.000Z

239

Wind Power Today: Federal Wind Program Highlights  

DOE Green Energy (OSTI)

Wind Power Today is an annual publication that provides an overview of the wind research conducted under the U.S. Department of Energy's Wind and Hydropower Technologies Program. The purpose of Wind Power Today is to show how DOE supports wind turbine research and deployment in hopes of furthering the advancement of wind technologies that produce clean, low-cost, reliable energy. Content objectives include: educate readers about the advantages and potential for widespread deployment of wind energy; explain the program's objectives and goals; describe the program's accomplishments in research and application; examine the barriers to widespread deployment; describe the benefits of continued research and development; facilitate technology transfer; and attract cooperative wind energy projects with industry.

Not Available

2005-04-01T23:59:59.000Z

240

Wind/Water Nexus  

DOE Green Energy (OSTI)

Nobel laureate Richard Smalley cited energy and water as among humanity's top problems for the next 50 years as the world's population increases from 6.3 billion to 9 billion. The U.S. Department of Energy's Wind and Hydropower Program has initiated an effort to explore wind energy's role as a technical solution to this critically important issue in the United States and the world. This four-page fact sheet outlines five areas in which wind energy can contribute: thermoelectric power plant/water processes, irrigation, municipal water supply, desalination, and wind/hydropower integration.

Not Available

2006-04-01T23:59:59.000Z

Note: This page contains sample records for the topic "wind potential supply" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


241

Power supply  

DOE Patents (OSTI)

A modular, low weight impedance dropping power supply with battery backup is disclosed that can be connected to a high voltage AC source and provide electrical power at a lower voltage. The design can be scaled over a wide range of input voltages and over a wide range of output voltages and delivered power.

Yakymyshyn, Christopher Paul (Seminole, FL); Hamilton, Pamela Jane (Seminole, FL); Brubaker, Michael Allen (Loveland, CO)

2007-12-04T23:59:59.000Z

242

Wind Energy Status and Future Wind Engineering Challenges: Preprint  

DOE Green Energy (OSTI)

This paper describes the current status of wind energy technology, the potential for future wind energy development and the science and engineering challenges that must be overcome for the technology to meet its potential.

Thresher, R.; Schreck, S.; Robinson, M.; Veers, P.

2008-08-01T23:59:59.000Z

243

Offshore Wind Turbines and Their Installation  

Science Conference Proceedings (OSTI)

Offshore winds tend to be higher, more constant and not disturbed by rough terrain, so there is a large potential for utilizing wind energy near to the sea. Compared with the wind energy converters onland, wind turbine components offshore will subject ... Keywords: renewable energy, wind power generation, offshore wind turbines, offshore installation

Liwei Li; Jianxing Ren

2010-01-01T23:59:59.000Z

244

Factors driving wind power development in the United States  

E-Print Network (OSTI)

1: CUMULATIVE U.S. WIND ENERGY CAPACITY policies and broadof wind energy development, resource potential, and policythe state’s tax policy, the Mountaineer Wind Energy Center

Bird, Lori A.; Parsons, Brian; Gagliano, Troy; Brown, Matthew H.; Wiser, Ryan H.; Bolinger, Mark

2003-01-01T23:59:59.000Z

245

DOE provides detailed offshore wind resource maps - Today in ...  

U.S. Energy Information Administration (EIA)

Includes hydropower, solar, wind, geothermal, biomass and ethanol. ... Wind energy potential is broken down by wind speed, water depth, and distance from shore.

246

Wind Power: How Much, How Soon, and At What Cost?  

E-Print Network (OSTI)

2000. "The Potential of Wind Energy to Reduce Carbon Dioxide0804.1126v2. Global Wind Energy Council (GWEC). 2008. "Brussels, Belgium: Global Wind Energy Council. Greenblatt,

Wiser, Ryan H

2010-01-01T23:59:59.000Z

247

Can the Western Boundary Layer Affect the Potential Vorticity Distribution in the Sverdrup interior of a Wind Gyre?  

Science Conference Proceedings (OSTI)

The question posed in the title of this paper is answered in the affirmative by investigating a two-layer, quasi-geostrophic model of the wind-driven circulation. The two layers model the thermocline rather than the whole depth of the ocean. The ...

G. R. Ierley; W. R. Young

1983-10-01T23:59:59.000Z

248

Estimated global ocean wind power potential from QuikSCAT observations, accounting for turbine characteristics and siting  

E-Print Network (OSTI)

, accounting for turbine characteristics and siting Scott B. Capps1 and Charles S. Zender1 Received 17 June, global ocean usable wind power is evaluated for modern offshore turbine characteristics including hub, between hub heights of 10 m and 100 m. A turbine with a cutout speed of 25 m s-1 (30 m s-1 ) within

Zender, Charles

249

Power supply  

SciTech Connect

An electric power supply employs a striking means to initiate ferroelectric elements which provide electrical energy output which subsequently initiates an explosive charge which initiates a second ferroelectric current generator to deliver current to the coil of a magnetic field current generator, creating a magnetic field around the coil. Continued detonation effects compression of the magnetic field and subsequent generation and delivery of a large output current to appropriate output loads.

Hart, Edward J. (Albuquerque, NM); Leeman, James E. (Albuquerque, NM); MacDougall, Hugh R. (Albuquerque, NM); Marron, John J. (Albuquerque, NM); Smith, Calvin C. (Amarillo, TX)

1976-01-01T23:59:59.000Z

250

Effects of Temporal Wind Patterns on the Value of Wind-Generated Electricity in California and the Northwest  

E-Print Network (OSTI)

approach to locating wind farms in the UK," Renewablepower production at existing wind farms. Each of these is anpower from potential wind farm locations in California and

Wiser, Ryan H

2008-01-01T23:59:59.000Z

251

Wind powering America: Vermont  

DOE Green Energy (OSTI)

Wind resources in the state of Vermont show great potential for wind energy development according to the wind resource assessment conducted by the state, its utilities, and NREL. This fact sheet provides a brief description of the resource assessment and a link to the resulting wind resource map produced by NREL. The fact sheet also provides a description of the state's net metering program, its financial incentives, and green power programs as well as a list of contacts for more information.

NREL

2000-04-11T23:59:59.000Z

252

Wind powering America: Kansas  

DOE Green Energy (OSTI)

Wind resources in the state of Kansas show great potential for wind energy development according to the wind resource assessment conducted by the Kansas Electric Utilities Research Program, UWIG, and DOE. This fact sheet provides a brief description of the resource assessment and description of the state's new educational wind kiosk as well as its green power program and financial incentives available for the development of renewable energy technologies. A list of contacts for more information is also included.

NREL

2000-04-11T23:59:59.000Z

253

Greenhouse gas and air pollutant emission reduction potentials of renewable energy - case studies on photovoltaic and wind power introduction considering interactions among technologies in Taiwan  

SciTech Connect

To achieve higher energy security and lower emission of greenhouse gases (GHGs) and pollutants, the development of renewable energy has attracted much attention in Taiwan. In addition to its contribution to the enhancement of reliable indigenous resources, the introduction of renewable energy such as photovoltaic (PV) and wind power systems reduces the emission of GHGs and air pollutants by substituting a part of the carbon- and pollutant-intensive power with power generated by methods that are cleaner and less carbon-intensive. To evaluate the reduction potentials, consequential changes in the operation of different types of existing power plants have to be taken into account. In this study, a linear mathematical programming model is constructed to simulate a power mix for a given power demand in a power market sharing a cost-minimization objective. By applying the model, the emission reduction potentials of capacity extension case studies, including the enhancement of PV and wind power introduction at different scales, were assessed. In particular, the consequences of power mix changes in carbon dioxide, nitrogen oxides, sulfur oxides, and particulates were discussed. Seasonally varying power demand levels, solar irradiation, and wind strength were taken into account. In this study, we have found that the synergetic reduction of carbon dioxide emission induced by PV and wind power introduction occurs under a certain level of additional installed capacity. Investigation of a greater variety of case studies on scenario development with emerging power sources becomes possible by applying the model developed in this study. 15 refs., 8 figs., 11 tabs.

Yu-Ming Kuo; Yasuhiro Fukushima [National Cheng Kung University, Tainan City (Taiwan). Department of Environmental Engineering

2009-03-15T23:59:59.000Z

254

New England Wind Forum: A Wind Powering America Project, Volume 1, Issue 2 -- December 2006  

Wind Powering America (EERE)

2 - December 2006 2 - December 2006 Converging Factors Drive Flurry of Regional Wind Development New England is currently experiencing a flurry of wind power development activity: more than 2,500 megawatts (MW) from nearly 100 installations, ranging from the drawing board to projects under construction. A convergence of local and global factors drives this increased interest in the Northeast and across the country. A variety of stresses on global energy markets were felt throughout the region in the form of higher and more volatile electricity and fuel prices. Policymakers throughout New England (which imports nearly all of its fuel) are focused on increased supply diversity and energy independence as a tool to reduce the region's exposure to further economic and potential supply

255

Coastal zone wind energy. Part I. Potential wind power density fields based on 3-D model simulations of the dominant wind regimes for three east and Gulf coast areas  

DOE Green Energy (OSTI)

The results of applying a numerical model of the atmosphere to the problem of locating areas of maximum wind power are presented. Three US coastal regions, of approximately 10/sup 5/ km/sup 2/ area each, are investigated. For each region the spatial distribution of daily average power density (W m/sup -2/) for the lowest 100 m of the atmosphere is given for the three most prevalent weather regimes. These distributions are then combined to form an estimate of the annual average power density for each region. Comparisons with long-term climatological data at stations within each region show good agreement between model estimated and observed wind power density for two of the three regions studied.

Garstang, M.; Pielke, R.A.; Snow, J.W.

1980-04-01T23:59:59.000Z

256

Wind Power Development in the United States: Current Progress, Future Trends  

E-Print Network (OSTI)

also concludes that the integration of 20% wind into U.S.and integration costs, Figure 4 provides a supply curve for wind

Wiser, Ryan H

2009-01-01T23:59:59.000Z

257

NREL: Wind Research - NREL Researchers Assess Where to Gear Up U.S.  

NLE Websites -- All DOE Office Websites (Extended Search)

Researchers Assess Where to Gear Up U.S. Manufacturing and Supply Researchers Assess Where to Gear Up U.S. Manufacturing and Supply Chain Capabilities for Advanced Drivetrain Technologies December 2, 2013 Illustration of an advanced wind turbine drivetrain showing the single-stage gearbox, power electronics, medium-speed generator, and hydrodynamic bearings. A wind turbine drivetrain featuring advanced technologies. Illustration by Powertrain Engineers Inc. The drivetrain of a wind turbine converts the power of the wind into electrical energy. Now, innovative technologies, such as medium-voltage and permanent-magnet generators, silicon-carbide (SiC) switches, and high-torque-density speed increasers, have the potential to improve the capacity and operating reliability of conventional drivetrains. Yet, these new configurations may be more advanced than what today's manufacturing

258

Power System Modeling of 20percent Wind-Generated Electricity by 2030  

E-Print Network (OSTI)

price elasticity of natural gas supply of 1.2; low and highfor natural gas, wind power may relieve gas supply pressures

Hand, Maureen

2008-01-01T23:59:59.000Z

259

Commercialization analysis of large wind energy conversion systems. Final report  

DOE Green Energy (OSTI)

The framework is described that can be used to evaluate potential new federal incentives to facilitate the market acceptance of utility-scale wind energy conversion systems. The insights gained from utilizing this framework to evaluate a variety of hypothetical federal incentives are discussed. The heart of the evaluation framework is an explicit representation of the decisions made by utility purchasers, suppliers, and government agencies with respect to the utilization and fabrication of large wind energy conversion systems. The demand-side and supply-side aspects of the multiparty commercialization model are described, and the model's struture is explained. (LEW)

Boyd, D.W.; Buckley, O.E.; Haas, S.M.

1980-06-01T23:59:59.000Z

260

Wind Power Today and Tomorrow  

DOE Green Energy (OSTI)

Wind Power Today and Tomorrow is an annual publication that provides an overview of the wind research conducted under the U.S. Department of Energy's Wind and Hydropower Technologies Program. The purpose of Wind Power Today and Tomorrow is to show how DOE supports wind turbine research and deployment in hopes of furthering the advancement of wind technologies that produce clean, low-cost, reliable energy. Content objectives include: educate readers about the advantages and potential for widespread deployment of wind energy; explain the program's objectives and goals; describe the program's accomplishments in research and application; examine the barriers to widespread deployment; describe the benefits of continued research and development; facilitate technology transfer; and attract cooperative wind energy projects with industry. This 2003 edition of the program overview also includes discussions about wind industry growth in 2003, how DOE is taking advantage of low wind speed region s through advancing technology, and distributed applications for small wind turbines.

Not Available

2004-03-01T23:59:59.000Z

Note: This page contains sample records for the topic "wind potential supply" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


261

Variable selection for wind power prediction using particle swarm optimization  

Science Conference Proceedings (OSTI)

Wind energy has an increasing influence on the energy supply in many countries, but in contrast to conventional power plants it is a fluctuating energy source. For its integration in the electricity supply structure it is necessary to predict the wind ... Keywords: nearest neighbour search, neural network, particle swarm optimization, variable selection, wind power prediction

René Jursa

2007-07-01T23:59:59.000Z

262

Why Supply Chain  

E-Print Network (OSTI)

Why supply chain explains the importance of supply chains. It includes an introduction to ERP as designed by SAP.

Datta, Shoumen

2000-01-01T23:59:59.000Z

263

Wind Energy Technology Basics | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Wind Energy Technology Basics Wind Energy Technology Basics Wind Energy Technology Basics August 15, 2013 - 4:10pm Addthis Photo of a hilly field, with six visible wind turbines spinning in the wind. Wind energy technologies use the energy in wind for practical purposes such as generating electricity, charging batteries, pumping water, and grinding grain. Most wind energy technologies can be used as stand-alone applications, connected to a utility power grid, or even combined with a photovoltaic system. For utility-scale sources of wind energy, a large number of turbines are usually built close together to form a wind farm that provides grid power. Several electricity providers use wind farms to supply power to their customers. Stand-alone turbines are typically used for water pumping or

264

Wind Energy Resource Atlas of the Philippines  

DOE Green Energy (OSTI)

This report contains the results of a wind resource analysis and mapping study for the Philippine archipelago. The study's objective was to identify potential wind resource areas and quantify the value of those resources within those areas. The wind resource maps and other wind resource characteristic information will be used to identify prospective areas for wind-energy applications.

Elliott, D.; Schwartz, M.; George, R.; Haymes, S.; Heimiller, D.; Scott, G.; McCarthy, E.

2001-03-06T23:59:59.000Z

265

Extreme Winds and Wind Effects on Structures  

Science Conference Proceedings (OSTI)

Extreme Winds and Wind Effects on Structures. The Engineering ... section. I. Extreme Winds: ... II. Wind Effects on Buildings. Database ...

2013-01-17T23:59:59.000Z

266

Wind for Schools: A Wind Powering America Project (Brochure)  

Wind Powering America (EERE)

for Schools: for Schools: A Wind Powering America Project Donna Berry - Utah State University/PIX13969 2 2 What is the Wind for Schools Project? Energy is largely taken for granted within our society, but that perception is changing as the economic and environmental impacts of our current energy supply structure are more widely understood. The U.S. Department of Energy's (DOE's) Wind Powering America program (at the National Renewable Energy Laboratory) sponsors the Wind for Schools Project to raise awareness in rural America about the benefits of wind energy while simultaneously developing a wind energy knowledge base in future leaders of our communities, states, and nation. A wind turbine located at a school provides students and teachers with a physical example of how communities can take

267

Wind Energy Assessment using a Wind Turbine with Dynamic Yaw Control.  

E-Print Network (OSTI)

??The goal of this project was to analyze the wind energy potential over Lake Michigan. For this purpose, a dynamic model of a utility-scale wind… (more)

Pervez, Md Nahid

2013-01-01T23:59:59.000Z

268

Surpassing Expectations: State of the U.S. Wind Power Market  

E-Print Network (OSTI)

States, new large-scale wind turbines were installed in 18The average size of wind turbines installed in the Uniteddominant manufacturer of wind turbines supplying the U.S.

Bolinger, Mark A

2009-01-01T23:59:59.000Z

269

Reducing the Environmental Footprint and Economic Costs of Automotive Manufacturing through an Alternative Energy Supply  

E-Print Network (OSTI)

energy supply pattern. On the other hand, wind electricity, with an ownership costcost. ENVIRONMENTAL SAVINGS ANALYSIS Solar, wind, and fuel cells are all considered as clean and renewable energy

Yuan, Chris; Dornfeld, David

2009-01-01T23:59:59.000Z

270

Wind Farm | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Wind Farm Wind Farm Wind Farm The wind farm in Greensburg, Kansas, was completed in spring 2010, and consists of ten 1.25 megawatt (MW) wind turbines that supply enough electricity to power every house, business, and municipal building in Greensburg. Technical assistance provided by the U.S. Department of Energy and the National Renewable Energy Laboratory was influential in helping Greensburg and its partners build the wind farm. The town uses only about 1/4 to 1/3 of the power generated to reach its "100% renewable energy, 100% of the time" goal. Excess power is placed back on the grid and offered as renewable energy credits for other Kansas Power Pool and Native Energy customers. The Greenburg Wind Farm continues to have an impact, inspiring Sunflower

271

New England Wind Forum: Renewable Energy Portfolio Standards  

Wind Powering America (EERE)

Renewable Energy Portfolio Standards Renewable Energy Portfolio Standards Renewable Energy Portfolio Standards (RPSs) are requirements for sellers of electricity to retail customers to include in their supply portfolio a specified fraction of eligible renewable energy. In New England, all the states have adopted such standards: Connecticut, Maine, Massachusetts, New Hampshire, Rhode Island, and Vermont (although Vermont's renewable energy goals are not binding). Each state treats wind as an eligible resource, and all states require increasing percentages of renewable energy supply over time. Renewable Energy Portfolio Standards policies in Massachusetts and Connecticut represent the greatest potential to spur the development of new wind power in New England due to their population densities (compared to the rest of New England) and aggressive Renewable Energy Portfolio Standards targets.

272

Potential  

NLE Websites -- All DOE Office Websites (Extended Search)

and and Frictional Drag on a Floating Sphere in a Flowing Plasma I. H. Hutchinson Plasma Science and Fusion Center Massachusetts Institute of Technology, Cambridge, MA, USA The interaction of an ion-collecting sphere at floating potential with a flowing colli- sionless plasma is investigated using the "Specialized Coordinate Electrostatic Particle and Thermals In Cell" particle-in-cell code SCEPTIC[1, 2]. Code calculations are given of potential and the total force exerted on the sphere by the flowing plasma. This force is of crucial importance to the problem of dusty plasmas, and the present results are the first for a collisionless plasma to take account of the full self-consistent potential. They reveal discrepancies amounting to as large as 20% with the standard analytic expressions, in parameter regimes where the analytic approximations might have been expected

273

It Should Be a Breeze: Harnessing the Potential of Open Trade and  

E-Print Network (OSTI)

This working paper maps out the structure and value chains of the wind industry, analyzes the wind industry’s increasing global integration via cross-border trade and investment flows, and offers recommendations to policymakers for the design of investment and trade policies to help realize wind energy’s potential. We find that demand for wind energy through longterm government support policies creates the basis for local supply of wind capital equipment and services and associated local job creation; policies that put a price on carbon will further help to make wind energy more competitive and increase the overall demand for turbines and equipment. Cross-border investment rather than trade is the dominant mode of the wind industry’s global integration. Principal barriers to global integration are nontariff trade barriers and formal and informal barriers that distort firms ’ investment decisions. These include local content requirements, divergent national industrial standards and licensing demands, and in particular political expectations. Intellectual property accounts for only a very small part of cost in the wind industry, and wind technology is widely available for licensing. Intellectual property rights are correspondingly not a major impediment for market participation. Credible long-term commitments coupled with a reduction or elimination of existing barriers to cross-border trade and investment are necessary to harness the full potential of global integration in reducing wind industry prices and increase worldwide deployment of wind energy.

Jacob Funk Kirkegaard; Thilo Hanemann; Lutz Weischer

2010-01-01T23:59:59.000Z

274

Effects of Temporal Wind Patterns on the Value of Wind-Generated Electricity at Different Sites in California and the Northwest  

E-Print Network (OSTI)

towers or operational wind farms are needed to resolveapproach to locating wind farms in the UK. ” Renewablepower from potential wind farm locations in California and

Fripp, Matthias; Wiser, Ryan

2006-01-01T23:59:59.000Z

275

Analyzing the Effects of Temporal Wind Patterns on the Value of Wind-Generated Electricity at Different Sites in California and the Northwest  

E-Print Network (OSTI)

7 2.2.3 Wind Farm Production1. Rated Capacity of Wind Farms for which Monthly Productionpower from potential wind farm locations in California and

Fripp, Matthias; Wiser, Ryan

2006-01-01T23:59:59.000Z

276

Analyzing the Effects of Temporal Wind Patterns on the Value of Wind-Generated Electricity at Different Sites in California and the Northwest  

E-Print Network (OSTI)

Energy Facilities. ” American Wind Energy Association (AWEA)21. Brower, M. 2002a. New Wind Energy Resource Maps ofand M. Schwartz. 1993. Wind Energy Potential in the United

Fripp, Matthias; Wiser, Ryan

2006-01-01T23:59:59.000Z

277

Wind Power R&D Routes Danish and European Perspectives  

E-Print Network (OSTI)

supply from wind January 2005 ­ 1076 GWH ~ 32% of total demand (41 % in western Denmark) Offshore impact Production strategy Maximum energy Maximum revenue Price of wind electricity Various support schemes

278

Wind Powering America Newsletter (Postcard)  

DOE Green Energy (OSTI)

Wind Powering America is a nationwide initiative of the U.S. Department of Energy's Wind Program designed to educate, engage, and enable critical stakeholders to make informed decisions about how wind energy contributes to the U.S. electricity supply. As part of Wind Powering America's outreach efforts, the team publishes a biweekly e-newsletter. This postcard is a marketing piece that stakeholders can provide to interested parties; it will guide them to the a website page at which they can sign up for the e-newsletter.

Not Available

2012-08-01T23:59:59.000Z

279

NREL: Wind Research - Utility Grid Integration  

NLE Websites -- All DOE Office Websites (Extended Search)

Utility Grid Integration Utility Grid Integration Photo of a wind farm in Lawton, Oklahoma where NREL researchers studied the impact of wind energy on farming system operations. NREL researchers analyzed research data collected from this wind farm in Lawton, Oklahoma, to determine the impacts of wind energy on systems operations. NREL researchers analyzed research data collected from this wind farm in Lawton, Oklahoma, to determine the impacts of wind energy on systems operations. The integration of wind energy into the electric generation industry's supply mix is one of the issues industry grapples with. The natural variability of the wind resource raises concerns about how wind can be integrated into routine grid operations, particularly with regard to the effects of wind on regulation, load following, scheduling, line voltage,

280

Ex Post Analysis of Economic Impacts from Wind Power Development...  

NLE Websites -- All DOE Office Websites (Extended Search)

was capable of genera?ng >3% of the na?on's electricity supply * Studies have shown that wind energy could one---day meet at least 20% of U.S. electric supply 2 * Some...

Note: This page contains sample records for the topic "wind potential supply" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


281

The Political Economy of Wind Power in China  

E-Print Network (OSTI)

in 2010. ? Global Wind Energy Council. 6 April 2011. http://China‘s Grid-Limited Wind Energy Potential. ? Carbon-Nation.grid-limited-wind-energy-potential/. ———. ?China‘s Potent

Swanson, Ryan Landon

2011-01-01T23:59:59.000Z

282

Winding Control Improvement of Drive Motor for Hybrid Electric ...  

This invention uses winding connection control and bidirectional on/off switches to supply reasonable level voltage to a motor without a booster. This invention also ...

283

Numerical Simulation of Along-Wind Loading on Small ...  

Science Conference Proceedings (OSTI)

... This means that the energy of the missing low-frequency fluctuations is supplied, in the simplified flow, by the increment in mean wind speed, which ...

2013-09-27T23:59:59.000Z

284

EERE: Wind  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

EERE: Buildings The U.S. Department of Energy funds R&D to develop wind energy. Learn about the DOE Wind Program, how to use wind energy and get financial incentives, and access...

285

20% Wind Energy - Diversifying Our Energy Portfolio and Addressing Climate Change (Brochure)  

SciTech Connect

This brochure describes the R&D efforts needed for wind energy to meet 20% of the U.S. electrical demand by 2030. In May 2008, DOE published its report, 20% Wind Energy by 2030, which presents an in-depth analysis of the potential for wind energy in the United States and outlines a potential scenario to boost wind electric generation from its current production of 16.8 gigawatts (GW) to 304 GW by 2030. According to the report, achieving 20% wind energy by 2030 could help address climate change by reducing electric sector carbon dioxide (CO2) emissions by 825 million metric tons (20% of the electric utility sector CO2 emissions if no new wind is installed by 2030), and it will enhance our nation's energy security by diversifying our electricity portfolio as wind energy is an indigenous energy source with stable prices not subject to fuel volatility. According to the report, increasing our nation's wind generation could also boost local rural economies and contribute to significant growth in manufacturing and the industry supply chain. Rural economies will benefit from a substantial increase in land use payments, tax benefits and the number of well-paying jobs created by the wind energy manufacturing, construction, and maintenance industries. Although the initial capital costs of implementing the 20% wind scenario would be higher than other generation sources, according to the report, wind energy offers lower ongoing energy costs than conventional generation power plants for operations, maintenance, and fuel. The 20% scenario could require an incremental investment of as little as $43 billion (net present value) more than a base-case no new wind scenario. This would represent less than 0.06 cent (6 one-hundredths of 1 cent) per kilowatt-hour of total generation by 2030, or roughly 50 cents per month per household. The report concludes that while achieving the 20% wind scenario is technically achievable, it will require enhanced transmission infrastructure, streamlined siting and permitting regimes, improved reliability and operability of wind systems, and increased U.S. wind manufacturing capacity. To meet these challenges, the DOE Wind Energy Program will continue to work with industry partners to increase wind energy system reliability and operability and improve manufacturing processes. The program also conducts research to address transmission and grid integration issues, to better understand wind resources, to mitigate siting and environmental issues, to provide information to industry stakeholders and policy makers, and to educate the future generations.

2008-05-01T23:59:59.000Z

286

20% Wind Energy - Diversifying Our Energy Portfolio and Addressing Climate Change (Brochure)  

DOE Green Energy (OSTI)

This brochure describes the R&D efforts needed for wind energy to meet 20% of the U.S. electrical demand by 2030. In May 2008, DOE published its report, 20% Wind Energy by 2030, which presents an in-depth analysis of the potential for wind energy in the United States and outlines a potential scenario to boost wind electric generation from its current production of 16.8 gigawatts (GW) to 304 GW by 2030. According to the report, achieving 20% wind energy by 2030 could help address climate change by reducing electric sector carbon dioxide (CO2) emissions by 825 million metric tons (20% of the electric utility sector CO2 emissions if no new wind is installed by 2030), and it will enhance our nation's energy security by diversifying our electricity portfolio as wind energy is an indigenous energy source with stable prices not subject to fuel volatility. According to the report, increasing our nation's wind generation could also boost local rural economies and contribute to significant growth in manufacturing and the industry supply chain. Rural economies will benefit from a substantial increase in land use payments, tax benefits and the number of well-paying jobs created by the wind energy manufacturing, construction, and maintenance industries. Although the initial capital costs of implementing the 20% wind scenario would be higher than other generation sources, according to the report, wind energy offers lower ongoing energy costs than conventional generation power plants for operations, maintenance, and fuel. The 20% scenario could require an incremental investment of as little as $43 billion (net present value) more than a base-case no new wind scenario. This would represent less than 0.06 cent (6 one-hundredths of 1 cent) per kilowatt-hour of total generation by 2030, or roughly 50 cents per month per household. The report concludes that while achieving the 20% wind scenario is technically achievable, it will require enhanced transmission infrastructure, streamlined siting and permitting regimes, improved reliability and operability of wind systems, and increased U.S. wind manufacturing capacity. To meet these challenges, the DOE Wind Energy Program will continue to work with industry partners to increase wind energy system reliability and operability and improve manufacturing processes. The program also conducts research to address transmission and grid integration issues, to better understand wind resources, to mitigate siting and environmental issues, to provide information to industry stakeholders and policy makers, and to educate the future generations.

Not Available

2008-05-01T23:59:59.000Z

287

NREL: Wind Research - Wind Energy and Public Health: Research...  

NLE Websites -- All DOE Office Websites (Extended Search)

literature and identify any known or potential health risks associated with exposure to wind turbines. The panel consisted of eight members from three major fields: Medicine:...

288

Bird orientation: compensation for wind  

E-Print Network (OSTI)

Bird orientation: compensation for wind drift in migrating raptors is age dependent Kasper Thorup1 14.04.03 Despite the potentially strong effect of wind on bird orientation, our understanding of how wind drift affects migrating birds is still very limited. Using data from satellite-based radio

Thorup, Kasper

289

Power Transfer Potential to the Southeast in Response to a Renewable Portfolio Standard: Interim Report 2  

DOE Green Energy (OSTI)

Electricity consumption in the Southeastern US, not including Florida, is approximately 24% of the total US. The availability of renewable resources for electricity production is relatively small compared to the high consumption. Therefore meeting a national renewable portfolio standard (RPS) is particularly challenging in this region. Neighboring regions, particularly to the west, have significant wind resources and given sufficient long distant transmission these resources could serve energy markets in the SE. This report looks at renewable resource supply relative to demands and the potential for power transfer into the SE. It shows that development of wind resources will depend not only on available transmission capacity but also on electricity supply and demand factors.

Hadley, Stanton W [ORNL; Key, Thomas S [Electric Power Research Institute (EPRI); Deb, Rajat [LCG Consulting

2009-05-01T23:59:59.000Z

290

Wind Manufacturing Facilities | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Testing America's Wind Turbines Testing America's Wind Turbines U.S. Hydropower Potential from Existing Non-powered Dams U.S. Hydropower Potential from Existing Non-powered Dams...

291

Petroleum Supply Annual  

U.S. Energy Information Administration (EIA) Indexed Site

0.PDF Table 10. PAD District 4 - Daily Average Supply and Disposition of Crude Oil and Petroleum Products, January 2011 (Thousand Barrels per Day) Commodity Supply Disposition...

292

Petroleum Supply Monthly  

Gasoline and Diesel Fuel Update (EIA)

December 2011 Table 21. PAD District 5 - Supply, Disposition, and Ending Stocks of Crude Oil and Petroleum Products, December 2011 (Thousand Barrels) Commodity Supply Disposition...

293

Petroleum Supply Annual  

Annual Energy Outlook 2012 (EIA)

TABLE8.PDF Table 8. PAD District 3 - Daily Average Supply and Disposition of Crude Oil and Petroleum Products, January 2011 (Thousand Barrels per Day) Commodity Supply Disposition...

294

Petroleum Supply Annual  

U.S. Energy Information Administration (EIA) Indexed Site

TABLE4.PDF Table 4. PAD District 1 - Daily Average Supply and Disposition of Crude Oil and Petroleum Products, January 2011 (Thousand Barrels per Day) Commodity Supply Disposition...

295

Petroleum Supply Monthly  

Annual Energy Outlook 2012 (EIA)

May 2013 Table 21. PAD District 5 - Supply, Disposition, and Ending Stocks of Crude Oil and Petroleum Products, May 2013 (Thousand Barrels) Commodity Supply Disposition Ending...

296

Petroleum Supply Monthly  

U.S. Energy Information Administration (EIA) Indexed Site

5 May 2013 Table 19. PAD District 4 - Daily Average Supply and Disposition of Crude Oil and Petroleum Products, May 2013 (Thousand Barrels per Day) Commodity Supply Disposition...

297

Petroleum Supply Monthly  

Gasoline and Diesel Fuel Update (EIA)

December 2011 Table 11. PAD District 2 - Daily Average Supply and Disposition of Crude Oil and Petroleum Products, December 2011 (Thousand Barrels per Day) Commodity Supply...

298

Petroleum Supply Annual  

Gasoline and Diesel Fuel Update (EIA)

TABLE6.PDF Table 6. PAD District 2 - Daily Average Supply and Disposition of Crude Oil and Petroleum Products, January 2011 (Thousand Barrels per Day) Commodity Supply Disposition...

299

Petroleum Supply Monthly  

Annual Energy Outlook 2012 (EIA)

December 2011 Table 13. PAD District 3 - Supply, Disposition, and Ending Stocks of Crude Oil and Petroleum Products, December 2011 (Thousand Barrels) Commodity Supply Disposition...

300

Technology Key to Harnessing Natural Gas Potential | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Technology Key to Harnessing Natural Gas Potential Technology Key to Harnessing Natural Gas Potential Technology Key to Harnessing Natural Gas Potential July 18, 2012 - 3:52pm Addthis Deputy Secretary Daniel Poneman tours Proinlosa Energy Corp. in Houston, Texas. Proinlosa is a company in the wind turbine manufacturing supply chain that develops tower parts and has benefitted from the Production Tax Credit (PTC). | Photo courtesy of Keri Fulton. Deputy Secretary Daniel Poneman tours Proinlosa Energy Corp. in Houston, Texas. Proinlosa is a company in the wind turbine manufacturing supply chain that develops tower parts and has benefitted from the Production Tax Credit (PTC). | Photo courtesy of Keri Fulton. Daniel B. Poneman Daniel B. Poneman Deputy Secretary of Energy What does this project do? Builds on President Obama's call for a new era for American energy

Note: This page contains sample records for the topic "wind potential supply" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


301

New England Wind Forum: Motivations for Buying Wind Power  

Wind Powering America (EERE)

Motivations for Buying Wind Power Motivations for Buying Wind Power Voluntary Voluntary purchases are often referred to as "Green Power." Voluntary purchases are made by individuals, businesses, governments, and groups of each (known as aggregations) to express personal preferences or meet personal or institutional commitments. One recent example of a government purchase is a request for proposals, issued in February 2005, to supply the Rhode Island State House with renewable energy for a five-year period. Hedging Hedging is a growing motivation to reduce exposure to volatile and rising energy costs. New England's publicly-owned utilities, as well as Vermont's utilities, can stabilize their fuel cost-driven supply portfolios with wind generation. In competitive markets that dominate the New England landscape, larger electricity customers are beginning to look to longer-term purchases of wind power as a means to protect their energy budgets against the volatile fossil-fuel-driven costs. Examples include:

302

Stakeholder Engagement and Outreach: Where Is Wind Power?  

Wind Powering America (EERE)

Where Is Wind Power? Where Is Wind Power? Wind Powering America offers maps to help you visualize the wind resource at a local level and to show how much wind power has been installed in the United States. How much wind power is on my land? Go to the wind resource maps. Go to the wind resource maps. Go to the wind resource maps. If you want to know how much wind power is in a particular area, these wind resource maps can give you a visual indication of the average wind speeds to a local level such as a neighborhood. These maps have been developed using the same mathematical models that are used by weather forecasters and are even used to estimate the wind energy potential-or how much wind energy could potentially be produced at the state level, if wind power were developed there.

303

Stakeholder Engagement and Outreach: Utility-Scale Land-Based 80-Meter Wind  

Wind Powering America (EERE)

Maps & Data Maps & Data Printable Version Bookmark and Share Utility-Scale Land-Based Maps Wind Resource Potential Offshore Maps Community-Scale Maps Residential-Scale Maps Anemometer Loan Programs & Data Utility-Scale Land-Based 80-Meter Wind Maps The U.S. Department of Energy provides an 80-meter (m) height, high-resolution wind resource map for the United States with links to state wind maps. States, utilities, and wind energy developers use utility-scale wind resource maps to locate and quantify the wind resource, identifying potentially windy sites within a fairly large region and determining a potential site's economic and technical viability. A wind resource map of the United States. Washington wind map and resources. Oregon wind map and resources. California wind map and resources. Idaho wind map and resources. Nevada wind map and resources. Arizona wind map and resources. Utah wind map and resources. Montana wind map and resources. Wyoming wind map and resources. North Dakota wind map and resources. South Dakota wind map and resources. Nebraska wind map and resources. Colorado wind map and resources. New Mexico wind map and resources. Kansas wind map and resources. Oklahoma wind map and resources. Texas wind map and resources. Minnesota wind map and resources. Iowa wind map and resources. Missouri wind map and resources. Arkansas wind map and resources. Lousiana wind map and resources. Wisconsin wind map and resources. Michigan wind map and resources. Michigan wind map and resources. Illinois wind map and resources. Indiana wind map and resources. Ohio wind map and resources. Kentucky wind map and resources. Tennessee wind map and resources. Mississippi wind map and resources. Alabama wind map and resources. Georgia wind map and resources. Florida wind map and resources. South Carolina wind map and resources. North Carolina wind map and resources. West Virginia wind map and resources. Virginia wind map and resources. Maryland wind map and resources. Pennsylvania wind map and resources. Delaware wind map and resources. New Jersey wind map and resources. New York wind map and resources. Maine wind map and resources. Vermont wind map and resources. New Hampshire wind map and resources. Massachusetts wind map and resources. Rhode Island wind map and resources. Connecticut wind map and resources. Alaska wind map and resources. Hawaii wind map and resources.

304

renewable energy potential | OpenEI  

Open Energy Info (EERE)

9 9 Varnish cache server Browse Upload data GDR 429 Throttled (bot load) Error 429 Throttled (bot load) Throttled (bot load) Guru Meditation: XID: 2142258919 Varnish cache server renewable energy potential Dataset Summary Description Global Wind Potential Supply Curves by Country, Class, and Depth (quantities in GW) Source National Renewable Energy Laboratory Date Released July 12th, 2012 (2 years ago) Date Updated July 12th, 2012 (2 years ago) Keywords offshore resource offshore wind renewable energy potential Data application/vnd.openxmlformats-officedocument.spreadsheetml.sheet icon offshore_resource_100_vs2.xlsx (xlsx, 41.7 KiB) Quality Metrics Level of Review Peer Reviewed Comment Temporal and Spatial Coverage Frequency Time Period License License Open Data Commons Public Domain Dedication and Licence (PDDL)

305

Dynamic valuation model For wind development in regard to land value, proximity to transmission lines, and capacity factor  

E-Print Network (OSTI)

Developing a wind farm involves many variables that can make or break the success of a potential wind farm project. Some variables such as wind data (capacity factor, wind rose, wind speed, etc.) are readily available in ...

Nikandrou, Paul

2009-01-01T23:59:59.000Z

306

Wind Energy Applications for Municipal Water Services: Opportunities, Situation Analyses, and Case Studies; Preprint  

DOE Green Energy (OSTI)

As communities grow, greater demands are placed on water supplies, wastewater services, and the electricity needed to power the growing water services infrastructure. Water is also a critical resource for thermoelectric power plants. Future population growth in the United States is therefore expected to heighten competition for water resources. Many parts of the United States with increasing water stresses also have significant wind energy resources. Wind power is the fastest-growing electric generation source in the United States and is decreasing in cost to be competitive with thermoelectric generation. Wind energy can offer communities in water-stressed areas the option of economically meeting increasing energy needs without increasing demands on valuable water resources. Wind energy can also provide targeted energy production to serve critical local water-system needs. The research presented in this report describes a systematic assessment of the potential for wind power to support water utility operation, with the objective to identify promising technical applications and water utility case study opportunities. The first section describes the current situation that municipal providers face with respect to energy and water. The second section describes the progress that wind technologies have made in recent years to become a cost-effective electricity source. The third section describes the analysis employed to assess potential for wind power in support of water service providers, as well as two case studies. The report concludes with results and recommendations.

Flowers, L.; Miner-Nordstrom, L.

2006-01-01T23:59:59.000Z

307

Wind Power: How Much, How Soon, and At What Cost?  

E-Print Network (OSTI)

the potential and costs for rapid wind energy deployment inincremental costs of achieving 20% wind energy are projectedwind energy and that allow the model to incorporate the costs

Wiser, Ryan H

2010-01-01T23:59:59.000Z

308

Small Wind Turbine Testing and Applications Development  

Science Conference Proceedings (OSTI)

Small wind turbines offer a promising alternative for many remote electrical uses where there is a good wind resource. The National Wind Technology Center (NWTC) of the National Renewable Energy Laboratory helps further the role that small turbines can play in supplying remote power needs. The NWTC tests and develops new applications for small turbines. The NWTC also develops components used in conjunction with wind turbines for various applications. This paper describes wind energy research at the NWTC for applications including battery charging stations, water desalination/purification, and health clinics. Development of data acquisition systems and tests on small turbines are also described.

Corbus, D.; Baring-Gould, I.; Drouilhet, S.; Gevorgian, V.; Jimenez, T.; Newcomb, C.; Flowers, L.

1999-09-14T23:59:59.000Z

309

Characterization of wind technology progress  

SciTech Connect

US DOE`s Wind Energy Program, NREL, and Sandia periodically re-evaluate the state of wind technology. Since 1995 marked the conclusion of a number of DOE-supported advanced turbine design efforts, and results from the next major round of research are expected near the latter part of the century, this paper discusses future trends for domestic wind farm applications (bulk power), incorporating recent turbine research efforts under different market assumptions from previous DOE estimates. Updated cost/performance projections are presented along with underlying assumptions and discussions of potential alternative wind turbine design paths. Issues on market valuation of wind technology in a restructured electricity market are also discussed.

Cadogan, J B [USDOE, Washington, DC (United States); Parsons, B [National Renewable Energy Lab., Golden, CO (United States); Cohen, J M; Johnson, B L [Princeton Economic Research, Inc., Rockville, MD (United States)

1996-07-01T23:59:59.000Z

310

Energy 101: Wind Turbines | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Wind Turbines Wind Turbines Energy 101: Wind Turbines July 30, 2010 - 10:47am Addthis John Schueler John Schueler Former New Media Specialist, Office of Public Affairs On Tuesday, the Department announced a $117 million loan guarantee through for the Kahuku Wind Power Project in Hawaii. That's a major step forward for clean energy in the region, as it's expected to supply clean electricity to roughly 7,700 households per year, and it also invites a deceptively simple question: how exactly do wind turbines generate electricity? One thing you might not realize is that wind is actually a form of solar energy. This is because wind is produced by the sun heating Earth's atmosphere, the rotation of the earth, and the earth's surface irregularities. Wind turbines are the rotary devices that convert the

311

Petroleum Supply Monthly  

U.S. Energy Information Administration (EIA) Indexed Site

Table 12. PAD District 2 - Year-to-Date Daily Average Supply and Disposition of Crude Oil and Petroleum Products, January-May 2013 (Thousand Barrels per Day) Commodity Supply...

312

Petroleum Supply Monthly  

U.S. Energy Information Administration (EIA)

Energy Information Administration/Petroleum Supply Monthly, October 2011 11 Table 4. U.S. Year-to-Date Daily Average Supply and Disposition of Crude Oil and Petroleum ...

313

Solar and Wind Energy Utilization and Project Development Scenarios |  

Open Energy Info (EERE)

Utilization and Project Development Scenarios Utilization and Project Development Scenarios Dataset Summary Description (Abstract): Solar and wind energy resources in Ethiopia have not been given due attention in the past. Some of the primary reasons for under consideration of these resources are lack of awareness of their potential in the country, the role they can have in the overall energy mix and the social benefits associated with them. Knowledge of the exploitable potential of these resources and identification of potential regions for development will help energy planners and developers to incorporate these resources as alternative means of supplying energy by conducting a more accurate techno-economic analysis which leads to more realistic economic projections. (Purpose): The ultimate objective of this study is to produce a document that comprises country background information on solar and wind energy utilization and project scenarios which present solar and wind energy investment opportunities to investors and decision makers. It is an integrated study with specific objectives of resource documentation including analysis of barriers and policies, identification of potential areas for technology promotion, and nationwide aggregation of potentials and benefits of the resource. The

314

Ethical Issues in Global Supply Chain Management  

Science Conference Proceedings (OSTI)

The paper addresses the general nature of a supply chain as a human artifact with potential for greatness and for failure like any other. The exact nature of the possible failures and successes are discussed, and the ethical issues identified. The hazards ... Keywords: Competitiveness, Ethics, Globalisation, Supply Chain Management

Andrew M. McCosh

2008-06-01T23:59:59.000Z

315

1992 Conversion Resources Supply Document  

SciTech Connect

In recent years conservation of electric power has become an integral part of utility planning. The 1980 Pacific Northwest Electric Power Planning and Conservation Act (Northwest Power Act) requires that the region consider conservation potential in planning acquisitions of resources to meet load growth. The Bonneville Power Administration (BPA) developed its first estimates of conservation potential in 1982. Since that time BPA has updated its conservation supply analyses as a part of its Resource Program and other planning efforts. Major updates were published in 1985 and in January 1990. This 1992 document presents updated supply curves, which are estimates of the savings potential over time (cumulative savings) at different cost levels of energy conservation measures (ECMs). ECMs are devices, pieces of equipment, or actions that increase the efficiency of electricity use and reduce the amount of electricity used by end-use equipment.

Not Available

1992-03-01T23:59:59.000Z

316

Biofuel Supply Chain Infrastructure  

NLE Websites -- All DOE Office Websites (Extended Search)

Research Areas Freight Flows Passenger Flows Supply Chain Efficiency Transportation: Energy Environment Safety Security Vehicle Technologies The Infrastructure Challenge of...

317

EIA: Wind  

U.S. Energy Information Administration (EIA)

Technical information and data on the wind energy industry from the U.S. Energy Information Administration (EIA).

318

Wind Power: How Much, How Soon, and At What Cost?  

E-Print Network (OSTI)

2000. "The Potential of Wind Energy to Reduce Carbon Dioxide2008: arXiv:0804.1126v2. Global Wind Energy Council (GWEC).2008. "Global Wind 2007 Report." Brussels, Belgium: Global

Wiser, Ryan H

2010-01-01T23:59:59.000Z

319

Industry Supply Chain Development (Ohio) | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Industry Supply Chain Development (Ohio) Industry Supply Chain Development (Ohio) Industry Supply Chain Development (Ohio) < Back Eligibility Utility Commercial Agricultural Investor-Owned Utility State/Provincial Govt Industrial Construction Municipal/Public Utility Local Government Installer/Contractor Rural Electric Cooperative Retail Supplier Systems Integrator Fuel Distributor Transportation Savings Category Solar Buying & Making Electricity Wind Program Info State Ohio Program Type Grant Program Industry Recruitment/Support Loan Program Provider Ohio Development Services Agency Supply Chain Development programs are focused on targeted industries that have significant growth opportunities for Ohio's existing manufacturing sector from emerging energy resources and technologies. The Office of Energy is currently working on developing the supply chains for the wind,

320

NREL: Renewable Resource Data Center - Wind Resource Information  

NLE Websites -- All DOE Office Websites (Extended Search)

Wind Resource Information Wind Resource Information Photo of five wind turbines at the Nine Canyon Wind Project. The Nine Canyon Wind Project in Benton County, Washington, includes 37 wind turbines and 48 MW of capacity. Detailed wind resource information can be found on NREL's Wind Research Web site. This site provides access to state and international wind resource maps. Wind Integration Datasets are provided to help energy professionals perform wind integration studies and estimate power production from hypothetical wind plants. In addition, RReDC offers Meteorological Field Measurements at Potential and Actual Wind Turbine Sites and a Wind Energy Resource Atlas of the United States. Wind resource maps are also available from the NREL Dynamic Maps, GIS Data, and Analysis Tools Web site.

Note: This page contains sample records for the topic "wind potential supply" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


321

Improving the risk identification process for a global supply chain  

E-Print Network (OSTI)

This thesis describes a proposed risk identification process that is intended to systematically identify potential risks that could materialize within a company's supply chain that would affect component supply. The process ...

Mody, Amil

2012-01-01T23:59:59.000Z

322

Planning and control of logistics for offshore wind farms  

Science Conference Proceedings (OSTI)

Construction and utilization of offshore wind farms will increase within the next years. So far the first German offshore wind farm was constructed and put into operation by "Alpha Ventus". Experiences illustrate that bad weather conditions are the main ... Keywords: MILP, installation scheduling, maritime logistics, offshore wind farm, supply chain

Bernd Scholz-Reiter; Michael Lütjen; Jens Heger; Anne Schweizer

2010-11-01T23:59:59.000Z

323

Renewable Fuel Supply Ltd RFSL | Open Energy Information  

Open Energy Info (EERE)

Supply Ltd RFSL Supply Ltd RFSL Jump to: navigation, search Name Renewable Fuel Supply Ltd (RFSL) Place United Kingdom Zip W1J 5EN Sector Biomass Product UKâ€(tm)s largest supplier of biomass to the UK co-firing power stations. References Renewable Fuel Supply Ltd (RFSL)[1] LinkedIn Connections CrunchBase Profile No CrunchBase profile. Create one now! This article is a stub. You can help OpenEI by expanding it. Renewable Fuel Supply Ltd (RFSL) is a company located in United Kingdom . References ↑ "[fsl@@Pikefsl@@Renewablefsl@@generationfsl@@sub*-Utilityfsl@@Photovoltanicsfsl@@Fuelfsl@@Wind-Poerfsl@@/ Renewable Fuel Supply Ltd (RFSL)" Retrieved from "http://en.openei.org/w/index.php?title=Renewable_Fuel_Supply_Ltd_RFSL&oldid=350339" Categories:

324

Assessing Reliability In Hydrogen Supply Pathways  

E-Print Network (OSTI)

gas and petroleum exports Other suppliers pose greater threats (Potential) importsImport terminals – Global LNG tanker fleet – Domestic natural gasgas supply LNG dependence on other systems Essentially 100% imports

McCarthy, Ryan; Ogden, Joan M

2005-01-01T23:59:59.000Z

325

Supply Curves of Conserved Energy  

SciTech Connect

Supply curves of conserved energy provide an accounting framework that expresses the potential for energy conservation. The economic worthiness of a conservation measure is expressed in terms of the cost of conserved energy, and a measure is considered economical when the cost of conserved energy is less than the price of the energy it replaces. A supply curve of conserved energy is independent of energy prices; however, the economical reserves of conserved energy will depend on energy prices. Double-counting of energy savings and error propagation are common problems when estimating conservation potentials, but supply curves minimize these difficulties and make their consequences predictable. The sensitivity of the cost of conserved energy is examined, as are variations in the optimal investment strategy in response to changes in inputs. Guidelines are presented for predicting the consequences of such changes. The conservation supply curve concept can be applied to peak power, water, pollution, and other markets where consumers demand a service rather than a particular good.

Meier, Alan Kevin

1982-05-01T23:59:59.000Z

326

New Facility to Shed Light on Offshore Wind Resource (Fact Sheet), Highlights in Research & Development, NREL (National Renewable Energy Laboratory)  

NLE Websites -- All DOE Office Websites (Extended Search)

As a pre-existing structure in a location with As a pre-existing structure in a location with excellent offshore wind resources, the Chesapeake Light Tower provides a cost-effective alternative to building a new platform large enough to support an 80- to 100-meter-tall meteorological tower. Photo by Rick Driscoll, NREL 25660 Chesapeake Light Tower facility will gather key data for unlocking the nation's vast offshore wind resource. According to the National Offshore Wind Strategy published by the U.S. Department of Energy (DOE) in 2011, the nation's offshore wind resource could supply 54 gigawatts of generat- ing capacity by 2030. However, to tap into that potential, more data on the nature of offshore wind resources and the ocean environment is needed. An opportunity to address this need was cre-

327

Wind Blog  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

wind-blog Office of Energy Efficiency & Renewable wind-blog Office of Energy Efficiency & Renewable Energy Forrestal Building 1000 Independence Avenue, SW Washington, DC 20585 en Two Facilities, One Goal: Advancing America's Wind Industry http://energy.gov/eere/articles/two-facilities-one-goal-advancing-america-s-wind-industry wind-industry" class="title-link">Two Facilities, One Goal: Advancing America's Wind Industry

328

Assessment of Tall Wind Tower Technology  

Science Conference Proceedings (OSTI)

Technologies that enable wind turbines to capture more energy at a given site have the potential to reduce the overall cost of energy, thereby making wind power more competitive against conventional power generation. Because wind speed generally increases with height above ground, one way to increase energy capture is to elevate the rotor by means of a taller tower. To exploit this potential, a number of tall tower models are under development or have recently been introduced to the wind energy market. I...

2011-11-08T23:59:59.000Z

329

Optimizing small wind turbine performance in battery charging applications  

Science Conference Proceedings (OSTI)

Many small wind turbine generators (10 kW or less) consist of a variable speed rotor driving a permanent magnet synchronous generator (alternator). One application of such wind turbines is battery charging, in which the generator is connected through a rectifier to a battery bank. The wind turbine electrical interface is essentially the same whether the turbine is part of a remote power supply for telecommunications, a standalone residential power system, or a hybrid village power system, in short, any system in which the wind generator output is rectified and fed into a DC bus. Field experience with such applications has shown that both the peak power output and the total energy capture of the wind turbine often fall short of expectations based on rotor size and generator rating. In this paper, the authors present a simple analytical model of the typical wind generator battery charging system that allows one to calculate actual power curves if the generator and rotor properties are known. The model clearly illustrates how the load characteristics affect the generator output. In the second part of this paper, the authors present four approaches to maximizing energy capture from wind turbines in battery charging applications. The first of these is to determine the optimal battery bank voltage for a given WTG. The second consists of adding capacitors in series with the generator. The third approach is to place an optimizing DC/DC voltage converter between the rectifier and the battery bank. The fourth is a combination of the series capacitors and the optimizing voltage controller. They also discuss both the limitations and the potential performance gain associated with each of the four configurations.

Drouilhet, S; Muljadi, E; Holz, R [National Renewable Energy Lab., Golden, CO (United States). Wind Technology Div.; Gevorgian, V [State Engineering Univ. of Armenia, Yerevan (Armenia)

1995-05-01T23:59:59.000Z

330

Distributed Wind Energy in Idaho  

SciTech Connect

Project Objective: This project is a research and development program aimed at furthering distributed wind technology. In particular, this project addresses some of the barriers to distributed wind energy utilization in Idaho. Background: At its core, the technological challenge inherent in Wind Energy is the transformation of a highly variable form of energy to one which is compatible with the commercial power grid or another useful application. A major economic barrier to the success of distributed wind technology is the relatively high capital investment (and related long payback periods) associated with wind turbines. This project will carry out fundamental research and technology development to address both the technological and economic barriers. � Active drive train control holds the potential to improve the overall efficiency of a turbine system by allowing variable speed turbine operation while ensuring a tight control of generator shaft speed, thus greatly simplifying power conditioning. � Recent blade aerodynamic advancements have been focused on large, utility-scale wind turbine generators (WTGs) as opposed to smaller WTGs designed for distributed generation. Because of Reynolds Number considerations, blade designs do not scale well. Blades which are aerodynamically optimized for distributed-scale WTGs can potentially reduce the cost of electricity by increasing shaft-torque in a given wind speed. � Grid-connected electric generators typically operate at a fixed speed. If a generator were able to economically operate at multiple speeds, it could potentially convert more of the wind�s energy to electricity, thus reducing the cost of electricity. This research directly supports the stated goal of the Wind and Hydropower Technologies Program for Distributed Wind Energy Technology: By 2007, reduce the cost of electricity from distributed wind systems to 10 to 15 cents/kWh in Class 3 wind resources, the same level that is currently achievable in Class 5 winds.

Gardner, John; Ferguson, James; Ahmed-Zaid, Said; Johnson, Kathryn; Haynes, Todd; Bennett, Keith

2009-01-31T23:59:59.000Z

331

Wind: wind speed and wind power density GIS data at 50m above ground and  

Open Energy Info (EERE)

Kenya from RisoeDTU Kenya from RisoeDTU Dataset Summary Description (Abstract): These data are results from the KAMM/WASP studies for Kenya. The KAMM/WAsP methodology uses a set of wind classes to represent wind conditions for the mapped region. A mesoscale simulation for each wind class, using KAMM (Karlsruhe Mesoscale Model), is performed and statistics performed on the model output. The results are a summary of the simulated wind climate, and ii. a wind atlas, a summary of the wind climate standardized to flat, uniform roughness terrain. (Purpose): The product is intended to be used to estimate the wind resource potential in the country including the the spatial variability. This map covers regions where long term measurements are not available. In a sense this is the point of the

332

1. Sector Description Wind Energy  

E-Print Network (OSTI)

Wind power is today’s most rapidly growing renewable power source. In the United States, new wind farms were the second-largest source of new power generation in 2005, after new natural gas power plants. In 2005, 2,431 megawatts (MW) of new capacity were installed in 22 states, increasing total wind generating capacity by more than a third to 9,149 MW, or enough to power 2.3 million average American households. Wind energy is a clean, domestic, renewable resource. It often displaces electricity that would otherwise have been produced by natural gas, thus helping to reduce gas demand and limit gas price hikes (DOE 2006a). It also can serve as a partial replacement for the electricity produced by the aging U.S. coal-fired power plant fleet. In the future, surplus wind power can be used for desalination and hydrogen production, and may be stored as hydrogen for use in fuel cells or gas turbines to generate electricity, leveling supply when winds are variable. Last February, the President said that wind energy could provide as much as 20 % of our electricity demands, up from less than 1 % today. Dozens of states have passed renewable portfolio standards setting goals similar to that stated by the President, giving broad-based public support for development of wind resources.

unknown authors

2006-01-01T23:59:59.000Z

333

NREL: Computational Science - Wind Energy Simulations  

NLE Websites -- All DOE Office Websites (Extended Search)

Wind Energy Simulations Wind Energy Simulations Scientists in the Computational Science Center at the National Renewable Energy Laboratory (NREL) are performing wind-farm computational fluid dynamics (CFD) and structural dynamics simulations that will provide a better understanding of the interactions of wind turbine wakes with one another, with the surrounding winds, and with the loads they impose on turbine blades and other components. Large-scale wind power generation deployment is a realistic and largely inevitable proposition as energy security, supply uncertainties, and global climate concerns drive the U.S. to develop diverse sources of domestic, clean, and renewable energy. The U.S. is currently on a path to produce 20% of its electricity from wind energy by 2030, which is a 10-fold increase

334

New England Wind Forum: Technical Challenges  

Wind Powering America (EERE)

Technical Challenges Technical Challenges Wind power is by its nature variable, and as a result, it differs from the majority of generation supplying the electric grid. Aspects of this variability are often cited as shortcomings. For instance, the fact that wind power will not be as regularly and reliably available at system peak times as most other generators is sometimes used to argue that wind power requires additional backup resources by other generation on a one-to-one basis. And wind's relatively low capacity factor (a ratio of the total energy output relative to the theoretical sustained peak output) is sometimes used to characterize wind generators as inefficient. It's been stated that other generation will have to be operated in such an inefficient manner to react to wind that it will not reduce fossil fuel usage or emissions. Here we address concerns that wind power's variability will eradicate any expected benefit.

335

DeWind Technick | Open Energy Information  

Open Energy Info (EERE)

Technick Technick Jump to: navigation, search Name DeWind Technick Place Lübeck, Germany Zip D - 23569 Sector Wind energy Product Wind energy converters occupy a central part of future energy supply. They are clean, safe and economical. References DeWind Technick[1] LinkedIn Connections CrunchBase Profile No CrunchBase profile. Create one now! This article is a stub. You can help OpenEI by expanding it. DeWind Technick is a company located in Lübeck, Germany . References ↑ "[ DeWind Technick]" Retrieved from "http://en.openei.org/w/index.php?title=DeWind_Technick&oldid=344216" Categories: Clean Energy Organizations Companies Organizations Stubs What links here Related changes Special pages Printable version Permanent link Browse properties

336

Protoneutron Star Winds  

E-Print Network (OSTI)

Neutrino-driven winds are thought to accompany the Kelvin-Helmholtz cooling phase of nascent protoneutron stars in the first seconds after a core-collapse supernova. These outflows are a likely candidate as the astrophysical site for rapid neutron-capture nucleosynthesis (the r-process). In this chapter we review the physics of protoneutron star winds and assess their potential as a site for the production of the heavy r-process nuclides. We show that spherical transonic protoneutron star winds do not produce robust $r$-process nucleosynthesis for `canonical' neutron stars with gravitational masses of 1.4 M_sun and coordinate radii of 10 km. We further speculate on and review some aspects of neutrino-driven winds from protoneutron stars with strong magnetic fields.

Todd A. Thompson

2003-09-03T23:59:59.000Z

337

Wind Resource Map: Mexico | Open Energy Information  

Open Energy Info (EERE)

Wind Resource Map: Mexico Wind Resource Map: Mexico Jump to: navigation, search Tool Summary LAUNCH TOOL Name: Wind Resource Map: Mexico Focus Area: Renewable Energy Topics: Potentials & Scenarios Website: www.altestore.com/howto/Reference-Materials/Wind-Resource-Map-Mexico/a Equivalent URI: cleanenergysolutions.org/content/wind-resource-map-mexico,http://clean Language: English Policies: Deployment Programs DeploymentPrograms: Technical Assistance This is on-shore wind resource map for rural power applications in Mexico. The map can be used to aid in appropriate siting of wind power installations. Please note that the wind speed classes are taken at 30 m (100 feet [ft]), instead of the usual 10 m (33 ft). Each wind power class should span two power densities. For example, Wind Power Class = 3

338

Supply | OpenEI  

Open Energy Info (EERE)

Supply Supply Dataset Summary Description This dataset comes from the Energy Information Administration (EIA), and is part of the 2011 Annual Energy Outlook Report (AEO2011). This dataset is table 11, and contains only the reference case. The dataset uses million barrels per day. The data is broken down into crude oil, other petroleum supply, other non petroleum supply and liquid fuel consumption. Source EIA Date Released April 26th, 2011 (3 years ago) Date Updated Unknown Keywords 2011 AEO disposition EIA liquid fuels Supply Data application/vnd.ms-excel icon AEO2011: Liquid Fuels Supply and Disposition- Reference Case (xls, 117 KiB) Quality Metrics Level of Review Peer Reviewed Comment Temporal and Spatial Coverage Frequency Annually Time Period 2008-2035 License

339

Opportunities for Energy Conservation and Improved Comfort From Wind Washing Retrofits in Two-Story Homes - Part I  

E-Print Network (OSTI)

Wind washing is a general term referring to diminished thermal control caused by air movement over or through a thermal barrier. The primary focus of this paper is towards a specific type of wind washing where wind can push attic air into the floor cavity between first and second stories of the home through ineffective (or missing) air barriers separating attic space from the floor cavity. A second type of wind washing studied in this project involved insulation batts on knee walls where space between the batts and the wall board allowed air movement against the gypsum wall board. During hot weather, the first type of wind washing pushes hot air into the floor cavity (between the first and second stories) thereby heating ceiling, floor, and interior wall surfaces (see Figures 1 and 2). Condensation may occur on cold supply duct surfaces within the floor cavity resulting in ceiling moisture damage. In cold climates, cold air from wind washing can chill surfaces within the interior floor space and result in frozen water pipes. Through the summer of 2009, a field study tested thirty-two two-story homes and found significant wind washing potential in 40% of the homes. Part I of this paper will highlight the evaluation methods used and the extent of wind washing found in this study. Repairs and energy monitoring were completed in six of these homes to evaluate retrofit methods and cost effectiveness of retrofit solutions. These results are discussed in Part II of this paper.

Withers, C. R. Jr.; Cummings, J. B.

2010-08-01T23:59:59.000Z

340

Mexico Wind Resource Assessment Project  

Science Conference Proceedings (OSTI)

A preliminary wind energy resource assessment of Mexico that produced wind resource maps for both utility-scale and rural applications was undertaken as part of the Mexico-U.S. Renewable Energy Cooperation Program. This activity has provided valuable information needed to facilitate the commercialization of small wind turbines and windfarms in Mexico and to lay the groundwork for subsequent wind resource activities. A surface meteorological data set of hourly data in digital form was utilized to prepare a more detailed and accurate wind resource assessment of Mexico than otherwise would have been possible. Software was developed to perform the first ever detailed analysis of the wind characteristics data for over 150 stations in Mexico. The hourly data set was augmented with information from weather balloons (upper-air data), ship wind data from coastal areas, and summarized wind data from sources in Mexico. The various data were carefully evaluated for their usefulness in preparing the wind resource assessment. The preliminary assessment has identified many areas of good-to-excellent wind resource potential and shows that the wind resource in Mexico is considerably greater than shown in previous surveys.

Schwartz, M.N.; Elliott, D.L.

1995-05-01T23:59:59.000Z

Note: This page contains sample records for the topic "wind potential supply" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


341

Wind turbulence characterization for wind energy development  

DOE Green Energy (OSTI)

As part of its support of the US Department of Energy's (DOE's) Federal Wind Energy Program, the Pacific Northwest Laboratory (PNL) has initiated an effort to work jointly with the wind energy community to characterize wind turbulence in a variety of complex terrains at existing or potential sites of wind turbine installation. Five turbulence characterization systems were assembled and installed at four sites in the Tehachapi Pass in California, and one in the Green Mountains near Manchester, Vermont. Data processing and analyses techniques were developed to allow observational analyses of the turbulent structure; this analysis complements the more traditional statistical and spectral analyses. Preliminary results of the observational analyses, in the rotating framework or a wind turbine blade, show that the turbulence at a site can have two major components: (1) engulfing eddies larger than the rotor, and (2) fluctuating shear due to eddies smaller than the rotor disk. Comparison of the time series depicting these quantities at two sites showed that the turbulence intensity (the commonly used descriptor of turbulence) did not adequately characterize the turbulence at these sites. 9 refs., 10 figs.,

Wendell, L.L.; Gower, G.L.; Morris, V.R.; Tomich, S.D.

1991-09-01T23:59:59.000Z

342

Oil and Gas Supply Module  

Annual Energy Outlook 2012 (EIA)

Onshore Lower 48 Oil and Gas Supply Submodule, Offshore Oil and Gas Supply Submodule, Oil Shale Supply Submodule, and Alaska Oil and Gas Supply Submodule. A detailed description of...

343

Energy Basics: Wind Turbines  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Energy Basics Renewable Energy Printable Version Share this resource Biomass Geothermal Hydrogen Hydropower Ocean Solar Wind Wind Turbines Wind Resources Wind Turbines...

344

Standards for Municipal Small Wind Regulations and Small Wind...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Standards for Municipal Small Wind Regulations and Small Wind Model Wind Ordinance Standards for Municipal Small Wind Regulations and Small Wind Model Wind Ordinance Eligibility...

345

Power Transfer Potential to the Southeast in Response to a Renewable Portfolio Standard: Final Report  

Science Conference Proceedings (OSTI)

Electricity consumption in the Southeastern US, including Florida, is approximately 32% of the total US. The availability of renewable resources for electricity production is relatively small compared to the high consumption. Therefore meeting a national renewable portfolio standard (RPS) is particularly challenging in this region. Neighboring regions, particularly to the west, have significant wind resources and given sufficient transmission these resources could serve energy markets in the SE. This report looks at renewable resource supply relative to demands and the potential for power transfer into the SE. We found that significant wind energy transfers, at the level of 30-60 GW, are expected to be economic in case of federal RPC or CO2 policy. Development of wind resources will depend not only on the available transmission capacity and required balancing resources, but also on electricity supply and demand factors.

Key, Thomas S [Electric Power Research Institute (EPRI); Hadley, Stanton W [ORNL; Deb, Rajat [LCG Consulting

2010-02-01T23:59:59.000Z

346

Magnets and Power Supplies  

NLE Websites -- All DOE Office Websites (Extended Search)

Bibliography Up: APS Storage Ring Parameters Previous: Longitudinal Bibliography Up: APS Storage Ring Parameters Previous: Longitudinal bunch profile and Magnets and Power Supplies Dipole Magnets and Power Supplies Value Dipole Number 80+1 No. of power supplies 1 Magnetic length 3.06 m Core length 3.00 m Bending radius 38.9611 m Power supply limit 500.0 A Field at 7 GeV 0.599 T Dipole trim coils Number 80+1 No. of power supplies 80 Magnetic length 3.06 m Core length 3.00 m Power supply limit 20.0 A Maximum field 0.04 T Horizontal Correction Dipoles Number 317 No. of power supplies 317 Magnetic length 0.160 m Core length 0.07 m Power supply limit 150.0 A Maximum field 0.16 T Max. deflection at 7 GeV 1.1 mrad Vertical Corrector Dipoles Number 317 No. of power supplies 317

347

Electricity Supply Sector  

U.S. Energy Information Administration (EIA)

Electricity Supply Sector Part 1 of 6 Supporting Documents Sector-Specific Issues and Reporting Methodologies Supporting the General Guidelines for the Voluntary

348

Petroleum Supply Monthly  

U.S. Energy Information Administration (EIA)

Energy Information Administration/Petroleum Supply Monthly, October 2011 49 Table 37. Imports of Crude Oil and Petroleum Products by PAD District, ...

349

Supplying Water Social Studies  

NLE Websites -- All DOE Office Websites (Extended Search)

Handbook of Engaged Learning Projects SUPPLYING OUR WATER NEEDS: Africa Project Summary Scenario Student Pages References Index SubjectContent Area: World CulturesSocial Studies...

350

Power supply apparatus  

SciTech Connect

The outputs of a plurality of modules or generators of electrical energy, such as fuel cells, chemical storage batteries, solar cells, MHD generators and the like, whose outputs are different are consolidated efficiently. The modules supply a power distribution system through an inverter. The efficiency is achieved by interconnecting the modules with an alternating voltage supply and electronic valves so controlled that the alternating-voltage supply absorbs power from modules whose output voltage is greater than the voltage at which the inverter operates and supplies this power as a booster to modules whose output voltage is less than the voltage at which the inverter operates.

Dickey, D. E.

1984-09-18T23:59:59.000Z

351

ICT Supply Chain Risk Management  

Science Conference Proceedings (OSTI)

... ICT Supply Chain Risk Management Manager's Forum ... ICT Supply Chain Risk Management National Institute of Standards and Technology Page 6. ...

2013-06-04T23:59:59.000Z

352

Accuracy of Petroleum Supply Data  

Reports and Publications (EIA)

Accuracy of published data in the Weekly Petroleum Status Report, the Petroleum Supply Monthly, and the Petroleum Supply Annual.

Tammy G. Heppner

2009-02-27T23:59:59.000Z

353

Wind Power Development in the United States: Current Progress, Future Trends  

E-Print Network (OSTI)

2008. “20% Wind Energy by 2030: Increasing Wind Energy’sof U.S. electricity needs by 2030 (U.S. DOE 2008). The papers electricity supply needs by 2030. Not surprisingly, the

Wiser, Ryan H

2009-01-01T23:59:59.000Z

354

Wind Turbines  

Energy.gov (U.S. Department of Energy (DOE))

Although all wind turbines operate on similar principles, several varieties are in use today. These include horizontal axis turbines and vertical axis turbines.

355

Supply curve impacts of Quick Start projects in Phase 1 of the Resource Supply Expansion Program  

DOE Green Energy (OSTI)

The Pacific Northwest Laboratory (PNL) prepared this report under contract to the Bonneville Power Administration (Bonneville), as part of the Resource Supply Expansion Project (RSEP). RSEP is a regional program instituted by Bonneville to expand conservation and renewable generation options available to resource planners and utilities. Resource alternatives are increased by RSEP through demonstration projects designed in a collaborative process that targets specific barriers to resource development including institutional, market, and reliability barriers. RSEP was launched with several projects that were designed and implemented quickly in 1992 to lay a foundation for future collaboration. The purpose of this report is to introduce the goal and structure of RSEP and to describe the so-called ``Quick Start`` RSEP projects in Phase One of RSEP. This description includes a preliminary estimate of the energy savings and/or other expected impacts of RSEP projects funded in FY 1992 and 1993. Similar estimates are also included for Bonneville projects to confirm wind and geothermal generation potential. Bonneville`s Geothermal Confirmation Agenda preceded implementation of RSEP, although it has a similar objective and collaborative approach.

Wright, G.A.; Warwick, W.M.; Durfee, D.L.

1993-12-01T23:59:59.000Z

356

NREL: Wind Research - Large Wind Turbine Research  

NLE Websites -- All DOE Office Websites (Extended Search)

Wind Research Search More Search Options Site Map Printable Version Large Wind Turbine Research NREL's utility scale wind system research addresses performance and...

357

Advanced Accessory Power Supply Topologies  

SciTech Connect

This Cooperative Research and Development Agreement (CRADA) began December 8, 2000 and ended September 30, 2009. The total funding provided by the Participant (General Motors Advanced Technology Vehicles [GM]) during the course of the CRADA totaled $1.2M enabling the Contractor (UT-Battelle, LLC [Oak Ridge National Laboratory, a.k.a. ORNL]) to contribute significantly to the joint project. The initial task was to work with GM on the feasibility of developing their conceptual approach of modifying major components of the existing traction inverter/drive to develop low cost, robust, accessory power. Two alternate methods for implementation were suggested by ORNL and both were proven successful through simulations and then extensive testing of prototypes designed and fabricated during the project. This validated the GM overall concept. Moreover, three joint U.S. patents were issued and subsequently licensed by GM. After successfully fulfilling the initial objective, the direction and duration of the CRADA was modified and GM provided funding for two additional tasks. The first new task was to provide the basic development for implementing a cascaded inverter technology into hybrid vehicles (including plug-in hybrid, fuel cell, and electric). The second new task was to continue the basic development for implementing inverter and converter topologies and new technology assessments for hybrid vehicle applications. Additionally, this task was to address the use of high temperature components in drive systems. Under this CRADA, ORNL conducted further research based on GM’s idea of using the motor magnetic core and windings to produce bidirectional accessory power supply that is nongalvanically coupled to the terminals of the high voltage dc-link battery of hybrid vehicles. In order not to interfere with the motor’s torque, ORNL suggested to use the zero-sequence, highfrequency harmonics carried by the main fundamental motor current for producing the accessory power. Two studies were conducted at ORNL. One was to put an additional winding in the motor slots to magnetically link with the high frequency of the controllable zero-sequence stator currents that do not produce any zero-sequence harmonic torques. The second approach was to utilize the corners of the square stator punching for the high-frequency transformers of the dc/dc inverter. Both approaches were successful. This CRADA validated the feasibility of GM’s desire to use the motor’s magnetic core and windings to produce bidirectional accessory power supply. Three joint U.S. patents with GM were issued to ORNL and GM by the U.S. Patent Office for the research results produced by this CRADA.

Marlino, L.D.

2010-06-15T23:59:59.000Z

358

Category:Wind Working Group Toolkit | Open Energy Information  

Open Energy Info (EERE)

Wind Working Group Toolkit Wind Working Group Toolkit Jump to: navigation, search In 1999, the U.S. Department of Energy (DOE) launched the Wind Powering America (WPA) initiative to educate, engage, and enable critical stakeholders to make informed decisions about how wind energy contributes to the U.S. electricity supply. State Wind Working Groups used Wind Powering America's State Wind Working Group Handbook to serve their states, in conjunction with their own methods and outreach materials. This updated wiki-based Wind Working Group Toolkit provides links to information, methods, and resources. This wiki is a work in progress, and we welcome your contributions. See the Wind Working Group Toolkit home page for an outline of topics. Pages in category "Wind Working Group Toolkit"

359

A sensitivity analysis of the treatment of wind energy in the AEO99 version of NEMS  

E-Print Network (OSTI)

presents forecasts of energy supply, demand and pricesa reference case forecast with fossil fuel prices close toforecast for wind technologies. The AEO’s annual report of energy supply, demand, and prices

Osborn, Julie G.; Wood, Frances; Richey, Cooper; Sanders, Sandy; Short, Walter; Koomey, Jonathan

2001-01-01T23:59:59.000Z

360

Wind Powering America: Wind Events  

Wind Powering America (EERE)

calendar.asp Lists upcoming wind calendar.asp Lists upcoming wind power-related events. en-us julie.jones@nrel.gov (Julie Jones) http://www.windpoweringamerica.gov/images/wpa_logo_sm.jpg Wind Powering America: Wind Events http://www.windpoweringamerica.gov/calendar.asp Pennsylvania Wind for Schools Educator Workshop https://www.regonline.com/builder/site/Default.aspx?EventID=1352684 http://www.windpoweringamerica.gov/filter_detail.asp?itemid=4068 Wed, 4 Dec 2013 00:00:00 MST 2014 Joint Action Workshop http://www.windpoweringamerica.gov/filter_detail.asp?itemid=3996 http://www.windpoweringamerica.gov/filter_detail.asp?itemid=3996 Mon, 21 Oct 2013 00:00:00 MST AWEA Wind Project Operations and Maintenance and Safety Seminar http://www.windpoweringamerica.gov/filter_detail.asp?itemid=4009 http://www.windpoweringamerica.gov/filter_detail.asp?itemid=4009 Mon, 21

Note: This page contains sample records for the topic "wind potential supply" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


361

The Cost of Transmission for Wind Energy: A Review of Transmission Planning Studies  

E-Print Network (OSTI)

Estimates of Congestion Costs. The Electricity Journal 17,Incremental Transmission Costs Due to Wind Power. Rockville,and Intermittency Really Cost? Supply Curves for Electricity

Mills, Andrew D.

2009-01-01T23:59:59.000Z

362

Energy Storage Solutions for Wind Generator Connected Distribution Systems in Rural Ontario.  

E-Print Network (OSTI)

??Environmental awareness and uncertainty about continued supply of fossil fuel has given rise to the renewable energy movement. Wind based power generation has been at… (more)

Rahman, Mohammed Nahid

2009-01-01T23:59:59.000Z

363

Research results for the Tornado Wind-Energy system: analysis and conclusions  

DOE Green Energy (OSTI)

The Tornado Wind Energy System (TWES) concept utilizes a wind driven vortex confined by a hollow tower to create a low pressure core intended to serve as a turbine exhaust reservoir. The turbine inlet flow is provided by a separate ram air supply. Numerous experimental and analytical research efforts have investigated the potential of the TWES as a wind energy conversion system (WECS). The present paper summarizes and analyzes much of theresearch to date on the TWES. A simplified cost analysis incorporating these research results is also included. Based on these analyses, the TWES does not show significant promise of improving on either the performance or the cost of energy attainable by conventional WECS. The prospects for achieving either a system power coefficient above 0.20 or a cost of energy less than $0.50/kWh (1979 dollars) appear to be poor.

Jacobs, E.

1983-01-01T23:59:59.000Z

364

Motor System Energy Efficiency Supply Curves: A Methodology for...  

NLE Websites -- All DOE Office Websites (Extended Search)

Motor System Energy Efficiency Supply Curves: A Methodology for Assessing the Energy Efficiency Potential of Industrial Motor Systems Speaker(s): Ali Hasanbeigi Date: February 8,...

365

Solar-hydrogen systems for remote area power supply.  

E-Print Network (OSTI)

??Remote area power supply (RAPS) is a potential early market for solar-hydrogen systems because of the comparatively high cost of conventional energy sources such as… (more)

Ali, S

2007-01-01T23:59:59.000Z

366

Reduced Form of Detailed Modeling of Wind Transmission and Intermittency for Use in Other ModelsReduced Form of Detailed Modeling of Wind Transmission and Intermittency for Use in Other Models  

NLE Websites -- All DOE Office Websites (Extended Search)

SUPPLY CURVE FOR ONE-REGION MODEL SUPPLY CURVE FOR ONE-REGION MODEL Figure 7 is the final supply curve to be used in a one-region model, plotted as the sum of the major drivers (described below). * Wind Capital represents the difference in cost of the wind capacity installed in the one-region model and the WinDS model. The level increases because WinDS requires a greater wind capacity for the same wind generation than the one-region model. This is because:

367

New England Wind Forum: A Wind Powering America Project - Newsletter #6 - September 2010, (NEWF), Wind and Water Power Program (WWPP)  

Wind Powering America (EERE)

6 - September 2010 6 - September 2010 WIND AND WATER POWER PROGRAM PIX 16204 New England and Northeast Look to the Horizon...and Beyond, for Offshore Wind In early December, Boston hosted the American Wind Energy Association's second annual Offshore Wind Project Workshop. U.S. and European offshore wind stakeholders convened to discuss the emerging U.S. offshore wind industry and provided evidence of a significant increase in activity along the Atlantic Coast from the Carolinas to Maine. The wind power industry and policymakers are looking to offshore for long-term growth, driven by aggressive policy goals, economic develop- ment opportunities, a finite set of attractive land-based wind sites, and immense wind energy potential at a modest distance from major population centers.

368

2008 WIND TECHNOLOGIES MARKET REPORT  

SciTech Connect

The U.S. wind industry experienced a banner year in 2008, again surpassing even optimistic growth projections from years past. At the same time, the last year has been one of upheaval, with the global financial crisis impacting near-term growth prospects for the wind industry, and with federal policy changes enacted to push the industry towards continued aggressive expansion. This rapid pace of development has made it difficult to keep up with trends in the marketplace. Yet, the need for timely, objective information on the industry and its progress has never been greater. This report - the third of an ongoing annual series - attempts to meet this need by providing a detailed overview of developments and trends in the U.S. wind power market, with a particular focus on 2008. As with previous editions, this report begins with an overview of key wind power installation-related trends: trends in wind capacity growth in the U.S., how that growth compares to other countries and generation sources, the amount and percentage of wind in individual states and serving specific utilities, and the quantity of proposed wind capacity in various interconnection queues in the United States. Next, the report covers an array of wind industry trends, including developments in turbine manufacturer market share, manufacturing and supply-chain investments, wind turbine and wind project size, project financing developments, and trends among wind power developers, project owners, and power purchasers. The report then turns to a discussion of wind project price, cost, and performance trends. In so doing, it reviews the price of wind power in the United States, and how those prices compare to the cost of fossil-fueled generation, as represented by wholesale power prices. It also describes trends in installed wind project costs, wind turbine transaction prices, project performance, and operations and maintenance expenses. Next, the report examines other policy and market factors impacting the domestic wind power market, including federal and state policy drivers, transmission issues, and grid integration. Finally, the report concludes with a preview of possible near- to medium-term market developments. This version of the Annual Report updates data presented in the previous editions, while highlighting key trends and important new developments from 2008. New to this edition is an executive summary of the report and an expanded final section on near- to medium-term market development. The report concentrates on larger-scale wind applications, defined here as individual turbines or projects that exceed 50 kW in size. The U.S. wind power sector is multifaceted, however, and also includes smaller, customer-sited wind turbines used to power the needs of residences, farms, and businesses. Data on these applications are not the focus of this report, though a brief discussion on Distributed Wind Power is provided on page 4. Much of the data included in this report were compiled by Berkeley Lab, and come from a variety of sources, including the American Wind Energy Association (AWEA), the Energy Information Administration (EIA), and the Federal Energy Regulatory Commission (FERC). The Appendix provides a summary of the many data sources used in the report. Data on 2008 wind capacity additions in the United States are based on information provided by AWEA; some minor adjustments to those data may be expected. In other cases, the data shown here represent only a sample of actual wind projects installed in the United States; furthermore, the data vary in quality. As such, emphasis should be placed on overall trends, rather than on individual data points. Finally, each section of this document focuses on historical market information, with an emphasis on 2008; with the exception of the final section, the report does not seek to forecast future trends.

Wiser, Ryan H.; Bolinger, Mark; Barbose, G.; Mills, A.; Rosa, A.; Porter, K.; Fink, S.; Tegen, S.; Musial, W.; Oteri, F.; Heimiller, D.; Rberts, B.; Belyeu, K.; Stimmel, R.

2009-07-15T23:59:59.000Z

369

Optics Supply Planning System  

Science Conference Proceedings (OSTI)

The purpose of this study is to specify the design for an initial optics supply planning system for NIF, and to present quality assurance and test plans for the construction of the system as specified. The National Ignition Facility (NIF) is a large laser facility that is just starting operations. Thousands of specialized optics are required to operate the laser, and must be exchanged over time based on the laser shot plan and predictions of damage. Careful planning and tracking of optic exchanges is necessary because of the tight inventory of spare optics, and the long lead times for optics procurements and production changes. Automated inventory forecasting and production planning tools are required to replace existing manual processes. The optics groups members who are expected to use the supply planning system are the stakeholders for this project, and are divided into three groups. Each of these groups participated in a requirements specification that was used to develop this design. (1) Optics Management--These are the top level stakeholdersk, and the final decision makers. This group is the interface to shot operations, is ultimately responsible for optics supply, and decides which exchanges will be made. (2) Work Center Managers--This group manages the on site optics processing work centers. They schedule the daily work center operations, and are responsible for developing long term processing, equipment, and staffing plans. (3) Component Engineers--This group manages the vendor contracts for the manufacture of new optics and the off site rework of existing optics. They are responsible for sourcing vendors, negotiating contracts, and managing vendor processes. The scope of this analysis is to describe the structure and design details of a system that will meet all requirements that were described by stakeholders and documented in the analysis model for this project. The design specifies the architecture, components, interfaces, and data stores of the system at a level of detail that can be used for construction and deployment. Test and quality assurance plans are also included to insure that the system delivers all requirements when it is built. The design is for an automated forecasting prototype that allocates inventory and processing resources in response to potentially daily changes in the forecasted optics exchanges required to operate NIF. It will automatically calculate future inventory levels and processing rates based on current inventory and projected exchanges, procurements, and capacities. It will include screens that allow users to readily assess the feasibility of the forecast, identify failures to meet the demand, revise input data, and re-run the automated forecast calculation. In addition, the system will automatically retrieve the current exchange demand from an external database. Approved forecasts from the system will automatically update work order plans and procurement plans in the existing inventory and production control database. The timing of optics exchanges affects the forecast of damage and future exchanges, so an approved exchange plan will be fed back to the demand database and be used to calculate the next demand projection. The system will read the demand data and update the forecast and output files daily. This specification has been divided into two parts. This document, Part 1 lays out the major design decisions and specifies the architectural, component, and data structure designs. Part 2 will add interface designs, quality assurance and testing plans, and deployment details.

Gaylord, J

2009-04-30T23:59:59.000Z

370

Wind Turbine Productivity and Development in Iran  

Science Conference Proceedings (OSTI)

This paper presents an overview of the status of wind energy productivity and development issues in Iran. It also presents a summary of the present global work on offshore energy, including the most recent works as well as potential offshore wind energy ... Keywords: Iran, development, offshore, turbine, wind

Ali Mostafaeipour; Saeid Abesi

2010-03-01T23:59:59.000Z

371

Wind energy systems information user study  

DOE Green Energy (OSTI)

This report describes the results of a series of telephone interviews with potential users of information on wind energy conversion. These interviews, part of a larger study covering nine different solar technologies, attempted to identify: the type of information each distinctive group of information users needed, and the best way of getting information to that group. Groups studied include: wind energy conversion system researchers; wind energy conversion system manufacturer representatives; wind energy conversion system distributors; wind turbine engineers; utility representatives; educators; county agents and extension service agents; and wind turbine owners.

Belew, W.W.; Wood, B.L.; Marle, T.L.; Reinhardt, C.L.

1981-01-01T23:59:59.000Z

372

Wind Farms through the Years | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Testing America's Wind Turbines Testing America's Wind Turbines U.S. Hydropower Potential from Existing Non-powered Dams U.S. Hydropower Potential from Existing Non-powered Dams...

373

NREL: Dynamic Maps, GIS Data, and Analysis Tools - Wind Maps  

NLE Websites -- All DOE Office Websites (Extended Search)

shore annual wind resource potential in the United States map. Thumbnail image of the 90m offshore wind resource potential in the United States. Thumbnail image of the national 50m...

374

Ris Energy Report 6 Energy supply technologies 1 PETER HJULER JENsEN, POVL bRNDsTED, NIELs gYLLINg MORTENsEN  

E-Print Network (OSTI)

: construction of new offshore wind farms, and a second repowering scheme to replace poorly-sited wind turbines originates from renewable sources. Wind turbines in 2006 pro- duced power equal to 17% of the total DanishRisø Energy Report 6 Energy supply technologies 1 7.1 Wind PETER HJULER JENsEN, POVL b

375

Extreme Winds and Wind Effects on Structures  

Science Conference Proceedings (OSTI)

Extreme Winds and Wind Effects on Structures. Description/Summary: The Building and Fire Research Laboratory has an ...

2010-10-04T23:59:59.000Z

376

Wind Resource Assessment Overview | Open Energy Information  

Open Energy Info (EERE)

Wind Resource Assessment Overview Wind Resource Assessment Overview Jump to: navigation, search Maps.jpg The first step in developing a wind project is to locate and quantify the wind resource. The magnitude of the wind and the characteristics of the resource are the largest factors in determining a potential site's economic and technical viability. There are three basic steps to identifying and characterizing the wind resource: prospecting, validating, and micrositing. The process of locating sites for wind energy development is similar to exploration for other resources, such as minerals and petroleum. Thus, the term prospecting is often used to describe the identification and preliminary evaluation of a wind resource area. Prospecting includes identifying potentially windy sites within a fairly large region - such

377

TMCC WIND RESOURCE ASSESSMENT  

DOE Green Energy (OSTI)

North Dakota has an outstanding resource--providing more available wind for development than any other state. According to U.S. Department of Energy (DOE) studies, North Dakota alone has enough energy from good wind areas, those of wind power Class 4 and higher, to supply 36% of the 1990 electricity consumption of the entire lower 48 states. At present, no more than a handful of wind turbines in the 60- to 100-kilowatt (kW) range are operating in the state. The first two utility-scale turbines were installed in North Dakota as part of a green pricing program, one in early 2002 and the second in July 2002. Both turbines are 900-kW wind turbines. Two more wind turbines are scheduled for installation by another utility later in 2002. Several reasons are evident for the lack of wind development. One primary reason is that North Dakota has more lignite coal than any other state. A number of relatively new minemouth power plants are operating in the state, resulting in an abundance of low-cost electricity. In 1998, North Dakota generated approximately 8.2 million megawatt-hours (MWh) of electricity, largely from coal-fired plants. Sales to North Dakota consumers totaled only 4.5 million MWh. In addition, the average retail cost of electricity in North Dakota was 5.7 cents per kWh in 1998. As a result of this surplus and the relatively low retail cost of service, North Dakota is a net exporter of electricity, selling approximately 50% to 60% of the electricity produced in North Dakota to markets outside the state. Keeping in mind that new electrical generation will be considered an export commodity to be sold outside the state, the transmission grid that serves to export electricity from North Dakota is at or close to its ability to serve new capacity. The markets for these resources are outside the state, and transmission access to the markets is a necessary condition for any large project. At the present time, technical assessments of the transmission network indicate that the ability to add and carry wind capacity outside of the state is limited. Identifying markets, securing long-term contracts, and obtaining a transmission path to export the power are all major steps that must be taken to develop new projects in North Dakota.

Turtle Mountain Community College

2003-12-30T23:59:59.000Z

378

Wind: wind speed and wind power density GIS data at 10m and 50m above  

Open Energy Info (EERE)

10m and 50m above 10m and 50m above surface and 0.25 degree resolution for global oceans from NREL Dataset Summary Description (Abstract): Raster GIS ASCII data files of wind speed and wind power density at 10 and 50 m heights. Global data of offshore wind resource as generated by NASA's QuikScat SeaWinds scatterometer. (Purpose): To provide information on the wind resource potential of offshore areas. Source NREL Date Released December 31st, 2005 (9 years ago) Date Updated November 01st, 2007 (7 years ago) Keywords GEF GIS NASA NREL ocean offshore QuikScat SWERA UNEP wind Data application/msword icon Download Documentation (doc, 53.8 KiB) application/zip icon Download Data (zip, 41 MiB) Quality Metrics Level of Review Some Review Comment Temporal and Spatial Coverage Frequency Time Period 01/01/2000 - 12/31/2004

379

Wind: wind speed and wind power density maps at 10m and 50m above surface  

Open Energy Info (EERE)

maps at 10m and 50m above surface maps at 10m and 50m above surface and 0.25 degree resolution for global oceans from NREL Dataset Summary Description (Abstract): Raster GIS ASCII data files of wind speed and wind power density at 10 and 50 m heights. Global data of offshore wind resource as generated by NASA's QuikSCAT SeaWinds scatterometer. (Purpose): To provide information on the wind resource potential of offshore areas. Source NREL Date Released December 31st, 2005 (9 years ago) Date Updated November 01st, 2007 (7 years ago) Keywords GEF GIS NASA NREL SWERA UNEP wind Data application/zip icon Download Maps (zip, 36.3 MiB) Quality Metrics Level of Review Some Review Comment Temporal and Spatial Coverage Frequency Time Period 2000 - 2004 License License Other or unspecified, see optional comment below

380

Offshore Wind in NY State (New York)  

Energy.gov (U.S. Department of Energy (DOE))

NYSERDA has expressed support for the development of offshore wind and committed funding to several publicly-available assessments that measure the potential energy benefits and environmental...

Note: This page contains sample records for the topic "wind potential supply" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


381

Petroleum Supply Monthly  

Gasoline and Diesel Fuel Update (EIA)

December 2011 December 2011 Table 19. PAD District 4 - Daily Average Supply and Disposition of Crude Oil and Petroleum Products, December 2011 (Thousand Barrels per Day) Commodity Supply Disposition Field Production Renewable Fuels and Oxygenate Plant Net Production Refinery and Blender Net Production Imports (PADD of Entry) 1 Net Receipts 2 Adjust- ments 3 Stock Change 4 Refinery and Blender Net Inputs Exports Products Supplied 5 Crude Oil ............................................................. 393 - - - - 330 -111 -46 4 562 0 0 Natural Gas Plant Liquids and Liquefied Refinery Gases ................................................... 406 0 2 15 -333 - - 0 20 9 61 Pentanes Plus .................................................. 58 0 - - - -33 - - 0 6 9 10 Liquefied Petroleum Gases .............................. 348 - - 2 15 -299 - -

382

Petroleum Supply Monthly  

Gasoline and Diesel Fuel Update (EIA)

December 2011 December 2011 Table 23. PAD District 5 - Daily Average Supply and Disposition of Crude Oil and Petroleum Products, December 2011 (Thousand Barrels per Day) Commodity Supply Disposition Field Production Renewable Fuels and Oxygenate Plant Net Production Refinery and Blender Net Production Imports (PADD of Entry) 1 Net Receipts 2 Adjust- ments 3 Stock Change 4 Refinery and Blender Net Inputs Exports Products Supplied 5 Crude Oil ............................................................. 1,197 - - - - 1,186 - -47 -4 2,340 0 0 Natural Gas Plant Liquids and Liquefied Refinery Gases ................................................... 69 0 14 4 - - - -60 83 20 43 Pentanes Plus .................................................. 32 0 - - - - - - -1 26 2 5 Liquefied Petroleum Gases .............................. 37 - - 14 4 - - - -59

383

Petroleum Supply Monthly  

Gasoline and Diesel Fuel Update (EIA)

December 2011 December 2011 Table 7. PAD District 1 - Daily Average Supply and Disposition of Crude Oil and Petroleum Products, December 2011 (Thousand Barrels per Day) Commodity Supply Disposition Field Production Renewable Fuels and Oxygenate Plant Net Production Refinery and Blender Net Production Imports (PADD of Entry) 1 Net Receipts 2 Adjust- ments 3 Stock Change 4 Refinery and Blender Net Inputs Exports Products Supplied 5 Crude Oil ............................................................. 24 - - - - 854 -10 42 -28 935 3 0 Natural Gas Plant Liquids and Liquefied Refinery Gases ................................................... 42 0 27 67 119 - - -30 26 1 259 Pentanes Plus .................................................. 7 0 - - - - - - 0 - 0 7 Liquefied Petroleum Gases .............................. 35 - - 27 67 119 - - -30 26

384

Petroleum Supply Monthly  

U.S. Energy Information Administration (EIA) Indexed Site

6 6 September 2013 Table 20. PAD District 4 - Year-to-Date Daily Average Supply and Disposition of Crude Oil and Petroleum Products, January-September 2013 (Thousand Barrels per Day) Commodity Supply Disposition Field Production Renewable Fuels and Oxygenate Plant Net Production Refinery and Blender Net Production Imports (PADD of Entry) 1 Net Receipts 2 Adjust- ments 3 Stock Change 4 Refinery and Blender Net Inputs Exports Products Supplied 5 Crude Oil ............................................................. 511 - - - - 289 -169 -49 4 579 0 0 Natural Gas Plant Liquids and Liquefied Refinery Gases ................................................... 316 0 13 11 -264 - - 2 16 15 44 Pentanes Plus .................................................. 50 0 - - 0 -38 - - 0 6 13 -7 Liquefied Petroleum Gases ..............................

385

Wind Energy Leasing Handbook  

E-Print Network (OSTI)

Wind Energy Leasing Handbook Wind Energy Leasing Handbook E-1033 Oklahoma Cooperative Extension?..................................................................................................................... 31 What do wind developers consider in locating wind energy projects?............................................................................................ 37 How do companies and individuals invest in wind energy projects?....................................................................

Balasundaram, Balabhaskar "Baski"

386

Hydropower: Setting a Course for Our Energy Future. Wind and...  

NLE Websites -- All DOE Office Websites (Extended Search)

aim to identify potential sites and partners . . . . . . . . . . . . . . . . . . . . 17 Wind & Hydropower Technologies Program - Harnessing America's abundant natural resources...

387

Wind Program: Stakeholder Engagement and Outreach  

Wind Powering America (EERE)

Outreach Outreach Printable Version Bookmark and Share The Stakeholder Engagement and Outreach initiative of the U.S. Department of Energy's Wind Program is designed to educate, engage, and enable critical stakeholders to make informed decisions about how wind energy contributes to the U.S. electricity supply. Highlights Resources Wind Resource Maps State Activities What activities are happening in my state? AK AL AR AZ CA CO CT DC DE FL GA HI IA ID IL IN KS KY LA MA MD ME MI MN MO MS MT NC ND NE NH NJ NM NV NY OH OK OR PA RI SC SD TN TX UT VA VT WA WI WV WY Installed wind capacity maps. Features A image of a house with a residential-scale small wind turbine. Small Wind for Homeowners, Farmers, and Businesses Stakeholder Engagement & Outreach Projects

388

INFOGRAPHIC: Offshore Wind Outlook | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Offshore Wind Outlook Offshore Wind Outlook INFOGRAPHIC: Offshore Wind Outlook December 12, 2012 - 2:15pm Addthis According to a new report commissioned by the Energy Department, a U.S. offshore wind industry that takes advantage of this abundant domestic resource could support up to 200,000 manufacturing, construction, operation and supply chain jobs across the country and drive over $70 billion in annual investments by 2030. Infographic by Sarah Gerrity. For more details, check out: New Reports Chart Offshore Wind’s Path Forward. According to a new report commissioned by the Energy Department, a U.S. offshore wind industry that takes advantage of this abundant domestic

389

Offshore Wind Energy | Open Energy Information  

Open Energy Info (EERE)

Page Page Edit History Facebook icon Twitter icon » Offshore Wind Energy Jump to: navigation, search The Middelgrunden Wind Farm was established as a collaboration between Middelgrunden Wind Turbine Cooperative and Copenhagen Energy, each installing 10 2-MW Bonus wind turbines. The farm is located off the coast of Denmark, east of the northern tip of Amager. Photo from H.C. Sorensen, NREL 17856 Offshore wind energy is a clean, domestic, renewable resource that can help the United States meet its critical energy, environmental, and economic challenges. By generating electricity from offshore wind turbines, the nation can reduce its greenhouse gas emissions, diversify its energy supply, provide cost-competitive electricity to key coastal regions, and help revitalize key sectors of its economy, including manufacturing.

390

Bayesian Inference for Wind Field Retrieval  

E-Print Network (OSTI)

In many problems in spatial statistics it is necessary to infer a global problem solution by combining local models. A principled approach to this problem is to develop a global probabilistic model for the relationships between local variables and to use this as the prior in a Bayesian inference procedure. We show how a Gaussian process with hyper-parameters estimated from Numerical Weather Prediction Models yields meteorologically convincing wind fields. We use neural networks to make local estimates of wind vector probabilities. The resulting inference problem cannot be solved analytically, but Markov Chain Monte Carlo methods allow us to retrieve accurate wind fields. Keywords: Bayesian inference; surface winds; spatial priors; Gaussian Processes 2 Bayesian Inference for Wind Field Retrieval 1 Introduction Satellite borne scatterometers are designed to retrieve surface winds over the oceans. These observations enhance the initial conditions supplied to Numerical Weather Predictio...

Dan Cornford And; Dan Cornford; Ian T. Nabney; Christopher K. I. Williams

2000-01-01T23:59:59.000Z

391

Numerical Simulation of the Irish Wind Climate and Comparison with Wind  

Open Energy Info (EERE)

Numerical Simulation of the Irish Wind Climate and Comparison with Wind Numerical Simulation of the Irish Wind Climate and Comparison with Wind Atlas Data Dataset Summary Description (Abstract): The wind climate of Ireland has been calculated using the Karlsruhe Atmospheric Mesoscale Model KAMM using the statistical-dynamical method. The large-scale climatology is represented by 65 classes of geostropic wind. From the frequency of the classes and the simulations the climatology of the surface wind is determined. The simulated winds are processed similar to observed data to obtain LIB-files for the Wind Atlas Analysis and Application Program WAsP. Comparisons are made with mast observations which have been analyzed by WAsP. Sites with high wind power potential are well predicted. Stations with low power are over predicted. (Purpose): Article describing an example of a KAMM

392

LIDAR Applications to Wind-Energy Technology Assessment  

Science Conference Proceedings (OSTI)

LIDAR (Light Detection And Ranging) is an emerging technology in the wind industry that has the potential to improve preconstruction wind project development as well as increase reliability and performance of operating projects. Realizing this potential will reduce the cost of wind-power generation. Several LIDAR models have been developed for the wind-energy industry in the past decade as ground-based and nacelle-mounted wind measurement systems. Cost-benefit analyses were conducted for the application ...

2011-11-21T23:59:59.000Z

393

Wind Powering America: New England Wind Forum  

Wind Powering America (EERE)

About the New England Wind Forum About the New England Wind Forum New England Wind Energy Education Project Historic Wind Development in New England State Activities Projects in New England Building Wind Energy in New England Wind Resource Wind Power Technology Economics Markets Siting Policy Technical Challenges Issues Small Wind Large Wind Newsletter Perspectives Events Quick Links to States CT MA ME NH RI VT Bookmark and Share The New England Wind Forum was conceived in 2005 as a platform to provide a single, comprehensive and objective source of up-to-date, Web-based information on a broad array of wind-energy-related issues pertaining to New England. The New England Wind Forum provides information to wind energy stakeholders through Web site features, periodic newsletters, and outreach activities. The New England Wind Forum covers the most frequently discussed wind energy topics.

394

Wind Power in China | Open Energy Information  

Open Energy Info (EERE)

in China in China Jump to: navigation, search This article is a stub. You can help OpenEI by expanding it. Contents 1 Summary 2 Estimate Potential 3 Current Projects 4 China Manufacturers 4.1 Wind Companies in Wind Power in China 5 China's Wind Goals 6 References Summary Installed wind capacity: approximately 30 GW by end of 2010 (est), added 13.8 GW in 2009 Installed wind capacity doubled each year, Min Deqing China_2050_Wind_Technology_Roadmap Estimate Potential Offshore wind energy generation potential in China estimate to be 11,000 terawatt-hours (TWh) similar to that of the North Sea in western Europe.[1][2] Current Projects 7 large projects or "megabases" (2010) [3] Inner Mongolia approximately 4.3 GW capacity in 2010 (66 projects; 40 more planned)[4] 1.25 GW offshore project in Guangdong

395

Petroleum Supply Monthly  

Annual Energy Outlook 2012 (EIA)

Ending Stocks by PAD District, December 2011 (Thousand Barrels, Except Where Noted) Process PAD Districts U.S. Total 1 2 3 4 5 Total Daily Average Supply Field Production...

396

European supply chain study  

E-Print Network (OSTI)

Introduction: Supply chain management has been defined as, "..a set of approaches utilized to efficiently integrate suppliers, manufacturers, warehouses and stores, so that merchandise is produced and distributed at the ...

Puri, Mohitkumar

2009-01-01T23:59:59.000Z

397

Petroleum Supply Monthly  

Annual Energy Outlook 2012 (EIA)

and Blender Net Production Imports (PADD of Entry) 1 Net Receipts 2 Adjust- ments 3 Stock Change 4 Refinery and Blender Net Inputs Exports Products Supplied 5 Crude Oil 6...

398

Improving supply chain resilience  

E-Print Network (OSTI)

Due to the global expansion of Company A's supply chain network, it is becoming more vulnerable to many disruptions. These disruptions often incur additional costs; and require time to respond to and recover from these ...

Leung, Elsa Hiu Man

2009-01-01T23:59:59.000Z

399

Naval Station Newport Wind Resource Assessment. A Study Prepared in Partnership with the Environmental Protection Agency for the RE-Powering America's Land Initiative: Siting Renewable Energy on Potentially Contaminated Land and Mine Sites, and The Naval Facilities Engineering Service Center  

DOE Green Energy (OSTI)

The U.S. Environmental Protection Agency (EPA) launched the RE-Powering America's Land initiative to encourage development of renewable energy (RE) on potentially contaminated land and mine sites. EPA is collaborating with the U.S. Department of Energy's (DOE's) National Renewable Energy Laboratory (NREL) to evaluate RE options at Naval Station (NAVSTA) Newport in Newport, Rhode Island where multiple contaminated areas pose a threat to human health and the environment. Designated a superfund site on the National Priorities List in 1989, the base is committed to working toward reducing the its dependency on fossil fuels, decreasing its carbon footprint, and implementing RE projects where feasible. The Naval Facilities Engineering Service Center (NFESC) partnered with NREL in February 2009 to investigate the potential for wind energy generation at a number of Naval and Marine bases on the East Coast. NAVSTA Newport was one of several bases chosen for a detailed, site-specific wind resource investigation. NAVSTA Newport, in conjunction with NREL and NFESC, has been actively engaged in assessing the wind resource through several ongoing efforts. This report focuses on the wind resource assessment, the estimated energy production of wind turbines, and a survey of potential wind turbine options based upon the site-specific wind resource.

Robichaud, R.; Fields, J.; Roberts, J. O.

2012-02-01T23:59:59.000Z

400

Coupling Renewable Energy Supply with Deferrable Demand  

E-Print Network (OSTI)

Current and projected capacity of wind power installations (electricity prices (left) and wind power production (right)of wind speed (left) and wind power pro- duction (right) for

Papavasiliou, Anthony

2011-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "wind potential supply" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


401

Stakeholder Engagement and Outreach: Wind Power on State Lands  

Wind Powering America (EERE)

Wind Power on State Lands Wind Power on State Lands Wind development can be an attractive revenue option for states that have viable wind resources on their trust lands. Wind can provide much higher revenue per acre than many other sources of typical revenue. An added benefit is that harvesting the wind does not deplete any finite resources. Several state land offices are already pursuing wind development on state trust lands. The first such wind project, in west Texas, is a joint project by the Texas General Land Office and the Lower Colorado River Authority, a public utility in central Texas. Wind Powering America Assistance to State Land Offices Analysis of State Land Potential NREL can assist state land offices in analyzing their trust lands for wind development potential. By overlaying wind resource maps with land use,

402

Impact of Increasing Distributed Wind Power and Wind Turbine Siting on Rural Distribution Feeder Voltage Profiles: Preprint  

DOE Green Energy (OSTI)

Many favorable wind energy resources in North America are located in remote locations without direct access to the transmission grid. Building transmission lines to connect remotely-located wind power plants to large load centers has become a barrier to increasing wind power penetration in North America. By connecting utility-sized megawatt-scale wind turbines to the distribution system, wind power supplied to consumers could be increased greatly. However, the impact of including megawatt-scale wind turbines on distribution feeders needs to be studied. The work presented here examined the impact that siting and power output of megawatt-scale wind turbines have on distribution feeder voltage. This is the start of work to present a general guide to megawatt-scale wind turbine impact on the distribution feeder and finding the amount of wind power that can be added without adversely impacting the distribution feeder operation, reliability, and power quality.

Allen, A.; Zhang, Y. C.; Hodge, B. M.

2013-09-01T23:59:59.000Z

403

Wind News  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

news Office of Energy Efficiency & Renewable news Office of Energy Efficiency & Renewable Energy Forrestal Building 1000 Independence Avenue, SW Washington, DC 20585 en New Report Shows Trend Toward Larger Offshore Wind Systems, with 11 Advanced Stage Projects Proposed in U.S. Waters http://energy.gov/eere/articles/new-report-shows-trend-toward-larger-offshore-wind-systems-11-advanced-stage-projects wind-systems-11-advanced-stage-projects" class="title-link">New Report Shows Trend Toward Larger Offshore Wind Systems, with 11 Advanced Stage Projects Proposed in U.S. Waters

404

Coal supply and cost under technological and environmental uncertainty  

E-Print Network (OSTI)

Coal supply and cost under technological and environmental uncertainty Submitted in partial, and Rod Lawrence at Foundation Coal. I received a lot of feedback and input on this report, and would like chapters. My conversations with Kurt Walzer at Clean Air Task Force and Rory McIlmoil at Coal Valley Wind

405

Electricity Supply Board Smart Grid Host Site Progress Report  

Science Conference Proceedings (OSTI)

The Electricity Supply Board (ESB) Networks Smart Grid Demonstration Project Host Site is part of a five-year collaborative initiative with 19 utility members. This project will integrate distribution and transmission level load management and embedded generation with customer-level storage by means of electric vehicle (EV) batteries, distribution-grid–connected wind farms, and customer demand response from smart meters.

2011-06-28T23:59:59.000Z

406

Funding and Federal Staffing Requirements Funding Summary (Energy Supply)  

E-Print Network (OSTI)

. . . . . . . 1,367 8,000 4,000 -4,000 -50.0% Wind Energy Technology Viability . . . . . . . . . . . 23,411 29Funding and Federal Staffing Requirements Funding Summary (Energy Supply) (dollars in thousands) FY.6% Solar Energy Concentrating Solar Power . . . . . . 13,025 1,932 0 -1,932 -100.0% Photovoltaic Energy

407

Stakeholder Engagement and Outreach: Community-Scale 50-Meter Wind Maps  

Wind Powering America (EERE)

Community-Scale 50-Meter Wind Maps Community-Scale 50-Meter Wind Maps The Stakeholder Engagement and Outreach initiative provides 50-meter (m) height, high-resolution wind resource maps for most of the states and territories of Puerto Rico and the Virgin Islands in the United States. Counties, towns, utilities, and schools use community-scale wind resource maps to locate and quantify the wind resource, identifying potentially windy sites determining a potential site's economic and technical viability. Map of the updated wind resource assessment status for the United States. Go to the Washington wind resource map. Go to the Oregon wind resource map. Go to the California wind resource map. Go to the Nevada wind resource map. Go to the Idaho wind resource map. Go to the Utah wind resource map. Go to the Arizona wind resource map. Go to the Montana wind resource map. Go to the Wyoming wind resource map. Go to the Colorado wind resource map. Go to the New Mexico wind resource map. Go to the North Dakota wind resource map. Go to the South Dakota wind resource map. Go to the Nebraska wind resource map. Go to the Kansas wind resource map. Go to the Oklahoma wind resource map. Go to the Missouri wind resource map. Go to the Alaska wind resource map. Go to the Hawaii wind resource map. Go to the Michigan wind resource map. Go to the Illinois wind resource map. Go to the Indiana wind resource map. Go to the Ohio wind resource map. Go to the North Carolina wind resource map. Go to the Virginia wind resource map. Go to the Maryland wind resource map. Go to the West Virginia wind resource map. Go to the Pennsylvania wind resource map. Go to the Rhode Island wind resource map. Go to the Connecticut wind resource map. Go to the Massachusetts wind resource map. Go to the Vermont wind resource map. Go to the New Hampshire wind resource map. Go to the Maine wind resource map. Go to the Kentucky wind resource map. Go to the Tennessee wind resource map. Go to the Arkansas wind resource map. Go to the Puerto Rico wind resource map. Go to the U.S. Virgin Islands wind resource map. Go to the New Jersey wind resource map. Go to the Delaware wind resource map.

408

Stakeholder Engagement and Outreach: About Wind Powering America  

Wind Powering America (EERE)

About About Printable Version Bookmark and Share Awards Contacts About the Stakeholder Engagement and Outreach Initiative This initiative is focused at advancing the appropriate deployment of wind energy systems while educating communities about the potential impacts of wind development, through supporting projects and activities: Delivering unbiased, relevant, and actionable information to policy and permitting processes, Expanding or preserving access to quality wind resources, Making decisions on wind deployment more certain and predictable for all stakeholders by reducing uncertainty around wind deployment related issues, Developing and providing tools to help communities understand the impact and benefits of potential wind development, and Supporting the development of a national wind workforce though the

409

Property Tax Exemption for Machinery, Equipment, Materials, and Supplies  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Exemption for Machinery, Equipment, Materials, and Exemption for Machinery, Equipment, Materials, and Supplies (Kansas) Property Tax Exemption for Machinery, Equipment, Materials, and Supplies (Kansas) < Back Eligibility Agricultural Commercial Construction Developer Fuel Distributor Industrial Installer/Contractor Savings Category Alternative Fuel Vehicles Hydrogen & Fuel Cells Buying & Making Electricity Water Home Weatherization Solar Wind Program Info State Kansas Program Type Property Tax Incentive Provider Revenue The Property Tax Exemption for Machinery, Equipment, Materials, and Supplies exists for low-dollar items of machinery, equipment, materials and supplies used for business purposes, or in activities by an entity not subject to Kansas income tax. A property tax exemption exists for all machinery, equipment, materials and supplies used for business purposes, or

410

An Embarrassment Of Riches- Canada'S Energy Supply Resources | Open Energy  

Open Energy Info (EERE)

Embarrassment Of Riches- Canada'S Energy Supply Resources Embarrassment Of Riches- Canada'S Energy Supply Resources Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Journal Article: An Embarrassment Of Riches- Canada'S Energy Supply Resources Details Activities (0) Areas (0) Regions (0) Abstract: We review the size and availability of Canada's energy supply resources, both non-renewable and renewable. Following a brief discussion of the energy fuel-mix in Canada from 1870 to 1984, and the current provincial breakdown of energy production and use, we provide a source-by-source review of energy supply resources, including oil, natural gas, coal, uranium, peat, wood, agricultural and municipal waste, and also hydro-electric, tidal, geothermal, wind and solar energy. An attempt is made to assess these resources in terms of resource base (the physical

411

Passive aeroelastic tailoring of wind turbine blades : a numerical analysis  

E-Print Network (OSTI)

This research aims to have an impact towards a sustainable energy supply. In wind power generation losses occur at tip speed ratios which the rotor was not designed for. Since the ideal blade shape changes nonlinearly with ...

Deilmann, Christian

2009-01-01T23:59:59.000Z

412

A Vertical Wind Tunnel for Snow Process Studies  

Science Conference Proceedings (OSTI)

A vertical wind tunnel using an artificially generated supercooled cloud was constructed to study snowfall processes. It is 18 m high and operates to a temperature as low as ?25°C. Ultrasonic atomizers supply the supercooled water droplets, and ...

Tsuneya Takahashi; Chikara Inoue; Yoshinori Furukawa; Tatsuo Endoh; Renji Naruse

1986-03-01T23:59:59.000Z

413

Electricity Shortage in California: Issues for Petroleum and Natural Gas Supply  

Reports and Publications (EIA)

This report addresses the potential impact of rotating electrical outages on petroleum product and natural gas supply in California.

Information Center

2001-06-01T23:59:59.000Z

414

How to Reduce Energy Supply Costs  

E-Print Network (OSTI)

Rising energy costs have many businesses looking for creative ways to reduce their energy usage and lower the costs of energy delivered to their facilities. This paper explores innovative renewable and alternative energy technologies that can help customers control their supply-side costs of energy. Specific topics include distributive wind power generation and solid fuel boilers. It identities factors to consider in determining whether these technologies are economically viable for customers and stresses the importance of fully researching alternatives before committing to major equipment investments.

Swanson, G.

2007-01-01T23:59:59.000Z

415

Vintage DOE: Wind | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Vintage DOE: Wind Vintage DOE: Wind Vintage DOE: Wind February 4, 2011 - 12:17pm Addthis Ginny Simmons Ginny Simmons Former Managing Editor for Energy.gov, Office of Public Affairs We're digging through the Department of Energy's video archives and pulling out some of our favorites to share on the Energy Blog. The below clip, from 1980, outlines the beginnings of the Department's focus on wind as a critical clean energy source. Of course, we've made a lot of advances in wind energy in the last 30 years. By mid-2010, wind power plants in the United States provided enough wind electricity to power nearly 10 million households, creating good jobs and avoiding nearly 62 million tons of carbon emissions - the equivalent of taking 10.5 million cars off the road. And the rapid growth of America's wind industry underscores the potential

416

European Wind Atlas: Offshore | Open Energy Information  

Open Energy Info (EERE)

European Wind Atlas: Offshore European Wind Atlas: Offshore Jump to: navigation, search Tool Summary LAUNCH TOOL Name: European Wind Atlas: Offshore Focus Area: Renewable Energy Topics: Potentials & Scenarios Website: www.windatlas.dk/Europe/oceanmap.html Equivalent URI: cleanenergysolutions.org/content/european-wind-atlas-offshore,http://c Language: English Policies: Deployment Programs DeploymentPrograms: Technical Assistance This is a European offshore wind resources over open sea map developed by Riso National Laboratory in 1989. The map shows the so-called generalised wind climate over Europe, also sometimes referred to as the regional wind climate or simply the wind atlas. In such a map, the influences of local topography have been removed and only the variations on the large scale are

417

European Wind Atlas: Onshore | Open Energy Information  

Open Energy Info (EERE)

European Wind Atlas: Onshore European Wind Atlas: Onshore Jump to: navigation, search Tool Summary LAUNCH TOOL Name: European Wind Atlas: Onshore Focus Area: Renewable Energy Topics: Potentials & Scenarios Website: www.windatlas.dk/Europe/landmap.html Equivalent URI: cleanenergysolutions.org/content/european-wind-atlas-onshore,http://cl Language: English Policies: Deployment Programs DeploymentPrograms: Technical Assistance This is a European on-shore wind resources at 50 meters of altitude map, developed by Riso National Laboratory in 1989. The map shows the so-called generalised wind climate over Europe, also sometimes referred to as the regional wind climate or simply the wind atlas. In such a map, the influences of local topography have been removed and only the variations on

418

New England Wind Forum: Wind Power Technology  

Wind Powering America (EERE)

Wind Power Technology Wind Power Technology Modern wind turbines have become sophisticated power plants while the concept of converting wind energy to electrical energy remains quite simple. Follow these links to learn more about the science behind wind turbine technology. Wind Power Animation An image of a scene from the wind power animation. The animation shows how moving air rotates a wind turbine's blades and describes how the internal components work to produce electricity. It shows small and large wind turbines and the differences between how they are used, as stand alone or connected to the utility grid. How Wind Turbines Work Learn how wind turbines make electricity; what are the types, sizes, and applications of wind turbines; and see an illustration of the components inside a wind turbine.

419

Hefei Sunlight Power Supply Co Ltd | Open Energy Information  

Open Energy Info (EERE)

Supply Co Ltd Supply Co Ltd Jump to: navigation, search Name Hefei Sunlight Power Supply Co Ltd Place Hefei, Anhui Province, China Zip 230088 Sector Solar, Wind energy Product Delicated to the design, installation of solar, wind or hybrid electricity generating systems for home and business use. Coordinates 31.86141°, 117.27562° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":31.86141,"lon":117.27562,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

420

Future of Wind Energy Technology in the United States  

DOE Green Energy (OSTI)

This paper describes the status of wind energy in the United States as of 2007, its cost, the potential for growth, offshore development, and potential technology improvements.

Thresher, R.; Robinson, M.; Veers, P.

2008-10-01T23:59:59.000Z

Note: This page contains sample records for the topic "wind potential supply" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


421

Balancing of Wind Power.  

E-Print Network (OSTI)

?? In the future, renewable energy share, especially wind power share, in electricity generation is expected to increase. Due to nature of the wind, wind… (more)

Ülker, Muhammed Akif

2011-01-01T23:59:59.000Z

422

Subhourly wind forecasting techniques for wind turbine operations  

DOE Green Energy (OSTI)

Three models for making automated forecasts of subhourly wind and wind power fluctuations were examined to determine the models' appropriateness, accuracy, and reliability in wind forecasting for wind turbine operation. Such automated forecasts appear to have value not only in wind turbine control and operating strategies, but also in improving individual wind turbine control and operating strategies, but also in improving individual wind turbine operating strategies (such as determining when to attempt startup). A simple persistence model, an autoregressive model, and a generalized equivalent Markhov (GEM) model were developed and tested using spring season data from the WKY television tower located near Oklahoma City, Oklahoma. The three models represent a pure measurement approach, a pure statistical method and a statistical-dynamical model, respectively. Forecasting models of wind speed means and measures of deviations about the mean were developed and tested for all three forecasting techniques for the 45-meter level and for the 10-, 30- and 60-minute time intervals. The results of this exploratory study indicate that a persistence-based approach, using onsite measurements, will probably be superior in the 10-minute time frame. The GEM model appears to have the most potential in 30-minute and longer time frames, particularly when forecasting wind speed fluctuations. However, several improvements to the GEM model are suggested. In comparison to the other models, the autoregressive model performed poorly at all time frames; but, it is recommended that this model be upgraded to an autoregressive moving average (ARMA or ARIMA) model. The primary constraint in adapting the forecasting models to the production of wind turbine cluster power output forecasts is the lack of either actual data, or suitable models, for simulating wind turbine cluster performance.

Wegley, H.L.; Kosorok, M.R.; Formica, W.J.

1984-08-01T23:59:59.000Z

423

Wind resource analysis. Annual report  

SciTech Connect

FY78 results of the Wind Resource Analyses task of the ERAB are described. Initial steps were taken to acquire modern atmosphere models of near-surface wind flow and primary data sets used in previous studies of national and regional wind resources. Because numerous assumptions are necessary to interpret available data in terms of wind energy potential, conclusions of previous studies differ considerably. These data analyses may be improved by future SERI research. State-of-the-art atmosphere models are a necessary component of the SERI wind resource analyses capacity. However, these methods also need to be tested and verified in diverse applications. The primary data sets and principal features of the models are discussed.

Hardy, D. M.

1978-12-01T23:59:59.000Z

424

Petroleum Supply Annual  

U.S. Energy Information Administration (EIA) Indexed Site

1. TABLE1.PDF 1. TABLE1.PDF Table 1. U.S. Supply, Disposition, and Ending Stocks of Crude Oil and Petroleum Products, January 2012 (Thousand Barrels) Commodity Supply Disposition Ending Stocks Field Production Renewable Fuels and Oxygenate Plant Net Production Refinery and Blender Net Production Imports Adjust- ments 1 Stock Change 2 Refinery and Blender Net Inputs Exports Products Supplied 3 Crude Oil 4 ............................................................ 190,109 - - - - 264,348 6,359 12,794 445,596 2,425 0 1,039,424 Natural Gas Plant Liquids and Liquefied Refinery Gases ................................................... 73,905 -587 13,044 6,935 - - -11,335 15,883 8,313 80,436 118,039 Pentanes Plus .................................................. 8,824 -587 - - 1,699 - - -805 4,946 2,754 3,041 16,791 Liquefied Petroleum Gases

425

Petroleum Supply Annual  

U.S. Energy Information Administration (EIA) Indexed Site

2.PDF 2.PDF Table 12. PAD District 5 - Daily Average Supply and Disposition of Crude Oil and Petroleum Products, January 2012 (Thousand Barrels per Day) Commodity Supply Disposition Field Production Renewable Fuels and Oxygenate Plant Net Production Refinery and Blender Net Production Imports (PADD of Entry) 1 Net Receipts 2 Adjust- ments 3 Stock Change 4 Refinery and Blender Net Inputs Exports Products Supplied 5 Crude Oil ............................................................. 1,180 - - - - 1,014 - 146 29 2,312 - 0 Natural Gas Plant Liquids and Liquefied Refinery Gases ................................................... 69 0 33 6 - - - -25 83 20 30 Pentanes Plus .................................................. 33 0 - - - - - - -1 27 4 3 Liquefied Petroleum Gases .............................. 37 - - 33 6 - - - -24 56 17 27 Ethane/Ethylene

426

Petroleum Supply Monthly  

U.S. Energy Information Administration (EIA) Indexed Site

September 2013 Table 1. U.S. Supply, Disposition, and Ending Stocks of Crude Oil and Petroleum Products, September 2013 (Thousand Barrels) Commodity Supply Disposition Ending Stocks Field Production Renewable Fuels and Oxygenate Plant Net Production Refinery and Blender Net Production Imports Adjust- ments 1 Stock Change 2 Refinery and Blender Net Inputs Exports Products Supplied 3 Crude Oil 4 ............................................................ 233,810 - - - - 237,344 8,334 7,688 468,825 2,975 0 1,067,149 Natural Gas Plant Liquids and Liquefied Refinery Gases ................................................... 81,196 -552 19,023 4,020 - - 3,027 16,794 13,937 69,929 189,672 Pentanes Plus .................................................. 11,167 -552 - - 772 - - -700 5,666 2,989 3,432 18,036 Liquefied Petroleum Gases

427

Petroleum Supply Monthly  

Gasoline and Diesel Fuel Update (EIA)

December 2011 December 2011 Table 1. U.S. Supply, Disposition, and Ending Stocks of Crude Oil and Petroleum Products, December 2011 (Thousand Barrels) Commodity Supply Disposition Ending Stocks Field Production Renewable Fuels and Oxygenate Plant Net Production Refinery and Blender Net Production Imports Adjust- ments 1 Stock Change 2 Refinery and Blender Net Inputs Exports Products Supplied 3 Crude Oil 4 ............................................................ 182,188 - - - - 270,188 2,576 -6,767 460,074 1,646 0 1,026,829 Natural Gas Plant Liquids and Liquefied Refinery Gases ................................................... 72,869 -607 11,545 7,801 - - -12,921 17,534 6,391 80,604 128,709 Pentanes Plus .................................................. 9,170 -607 - - 2,421 - - 1,146 5,321 2,200 2,317 17,598 Liquefied Petroleum Gases

428

Petroleum Supply Monthly  

Gasoline and Diesel Fuel Update (EIA)

December 2011 December 2011 Table 17. PAD District 4 - Supply, Disposition, and Ending Stocks of Crude Oil and Petroleum Products, December 2011 (Thousand Barrels) Commodity Supply Disposition Ending Stocks Field Production Renewable Fuels and Oxygenate Plant Net Production Refinery and Blender Net Production Imports (PADD of Entry) 1 Net Receipts 2 Adjust- ments 3 Stock Change 4 Refinery and Blender Net Inputs Exports Products Supplied 5 Crude Oil ............................................................. 12,175 - - - - 10,226 -3,426 -1,436 132 17,407 1 0 15,969 Natural Gas Plant Liquids and Liquefied Refinery Gases ................................................... 12,584 -10 52 460 -10,314 - - -12 611 282 1,891 1,375 Pentanes Plus .................................................. 1,788 -10 - - - -1,036 - - -15 174 273 310 180 Liquefied Petroleum Gases

429

Petroleum Supply Monthly  

Gasoline and Diesel Fuel Update (EIA)

December 2011 December 2011 Table 15. PAD District 3 - Daily Average Supply and Disposition of Crude Oil and Petroleum Products, December 2011 (Thousand Barrels per Day) Commodity Supply Disposition Field Production Renewable Fuels and Oxygenate Plant Net Production Refinery and Blender Net Production Imports (PADD of Entry) 1 Net Receipts 2 Adjust- ments 3 Stock Change 4 Refinery and Blender Net Inputs Exports Products Supplied 5 Crude Oil 6 ............................................................ 3,327 - - - - 4,646 -720 39 -191 7,482 - 0 Natural Gas Plant Liquids and Liquefied Refinery Gases ................................................... 1,380 -1 304 84 227 - - -113 306 108 1,693 Pentanes Plus .................................................. 155 -1 - - 77 -58 - - 35 106 1 31 Liquefied Petroleum Gases ..............................

430

Petroleum Supply Monthly  

Gasoline and Diesel Fuel Update (EIA)

December 2011 December 2011 Table 9. PAD District 2 - Supply, Disposition, and Ending Stocks of Crude Oil and Petroleum Products, December 2011 (Thousand Barrels) Commodity Supply Disposition Ending Stocks Field Production Renewable Fuels and Oxygenate Plant Net Production Refinery and Blender Net Production Imports (PADD of Entry) 1 Net Receipts 2 Adjust- ments 3 Stock Change 4 Refinery and Blender Net Inputs Exports Products Supplied 5 Crude Oil ............................................................. 29,019 - - - - 52,699 26,041 2,973 12 109,175 1,544 0 93,189 Natural Gas Plant Liquids and Liquefied Refinery Gases ................................................... 14,079 -560 812 2,541 -423 - - -6,605 4,051 2,114 16,889 48,197 Pentanes Plus .................................................. 1,354 -560 - - 21 2,843 - - 110 1,049

431

Petroleum Supply Monthly  

U.S. Energy Information Administration (EIA) Indexed Site

2 2 September 2013 Table 16. PAD District 3 - Year-to-Date Daily Average Supply and Disposition of Crude Oil and Petroleum Products, January-September 2013 (Thousand Barrels per Day) Commodity Supply Disposition Field Production Renewable Fuels and Oxygenate Plant Net Production Refinery and Blender Net Production Imports (PADD of Entry) 1 Net Receipts 2 Adjust- ments 3 Stock Change 4 Refinery and Blender Net Inputs Exports Products Supplied 5 Crude Oil 6 ............................................................ 4,354 - - - - 3,718 -413 345 75 7,905 24 0 Natural Gas Plant Liquids and Liquefied Refinery Gases ................................................... 1,615 0 454 39 170 - - 62 282 267 1,666 Pentanes Plus .................................................. 195 0 - - 36 -65 - - 15 113 4 35 Liquefied Petroleum Gases

432

Petroleum Supply Annual  

U.S. Energy Information Administration (EIA) Indexed Site

TABLE9.PDF TABLE9.PDF Table 9. PAD District 4 - Supply, Disposition, and Ending Stocks of Crude Oil and Petroleum Products, January 2012 (Thousand Barrels) Commodity Supply Disposition Ending Stocks Field Production Renewable Fuels and Oxygenate Plant Net Production Refinery and Blender Net Production Imports (PADD of Entry) 1 Net Receipts 2 Adjust- ments 3 Stock Change 4 Refinery and Blender Net Inputs Exports Products Supplied 5 Crude Oil ............................................................. 12,961 - - - - 10,783 -3,879 896 2,868 17,893 0 0 18,695 Natural Gas Plant Liquids and Liquefied Refinery Gases ................................................... 12,770 -9 127 502 -11,116 - - -50 621 280 1,423 1,326 Pentanes Plus .................................................. 1,484 -9 - - - -1,152 - - 7 122 264 -70 187 Liquefied Petroleum Gases

433

Petroleum Supply Annual  

U.S. Energy Information Administration (EIA) Indexed Site

.PDF .PDF Table 3. PAD District 1 - Supply, Disposition, and Ending Stocks of Crude Oil and Petroleum Products, January 2012 (Thousand Barrels) Commodity Supply Disposition Ending Stocks Field Production Renewable Fuels and Oxygenate Plant Net Production Refinery and Blender Net Production Imports (PADD of Entry) 1 Net Receipts 2 Adjust- ments 3 Stock Change 4 Refinery and Blender Net Inputs Exports Products Supplied 5 Crude Oil ............................................................. 734 - - - - 26,368 419 -1,209 627 25,554 130 0 10,529 Natural Gas Plant Liquids and Liquefied Refinery Gases ................................................... 1,314 -6 923 1,606 2,621 - - -1,556 707 53 7,254 6,409 Pentanes Plus .................................................. 213 -6 - - - - - - 3 5 6 193 34 Liquefied Petroleum Gases ..............................

434

Alternate Water Supply System  

Office of Legacy Management (LM)

Alternate Water Supply Alternate Water Supply System Flushing Report Riverton, Wyoming, Processing Site January 2008 Office of Legacy Management DOE M/1570 2008 - -L Work Performed Under DOE Contract No. for the U.S. Department of Energy Office of Legacy Management. DE-AC01-02GJ79491 Approved for public release; distribution is unlimited. Office of Legacy Management Office of Legacy Management Office of Legacy Management U.S. Department of Energy This page intentionally left blank DOE-LM/1570-2008 Alternate Water Supply System Flushing Report Riverton, Wyoming, Processing Site January 2008 Work Performed by S.M. Stoller Corporation under DOE Contract No. DE-AC01-02GJ79491 for the U.S. Department of Energy Office of Legacy Management, Grand Junction, Colorado This page intentionally left blank

435

Petroleum Supply Monthly  

U.S. Energy Information Administration (EIA) Indexed Site

6 6 September 2013 Table 10. PAD District 2 - Year-to-Date Supply, Disposition, and Ending Stocks of Crude Oil and Petroleum Products, January-September 2013 (Thousand Barrels) Commodity Supply Disposition Ending Stocks Field Production Renewable Fuels and Oxygenate Plant Net Production Refinery and Blender Net Production Imports (PADD of Entry) 1 Net Receipts 2 Adjust- ments 3 Stock Change 4 Refinery and Blender Net Inputs Exports Products Supplied 5 Crude Oil ............................................................. 366,285 - - - - 501,418 159,175 -109,633 -12,929 918,349 11,825 0 102,610 Natural Gas Plant Liquids and Liquefied Refinery Gases ................................................... 122,918 -4,579 37,556 21,926 4,444 - - 15,132 24,244 34,819 108,070 58,830 Pentanes Plus ..................................................

436

Petroleum Supply Monthly  

U.S. Energy Information Administration (EIA) Indexed Site

20 20 September 2013 Table 14. PAD District 3 - Year-to-Date Supply, Disposition, and Ending Stocks of Crude Oil and Petroleum Products, January-September 2013 (Thousand Barrels) Commodity Supply Disposition Ending Stocks Field Production Renewable Fuels and Oxygenate Plant Net Production Refinery and Blender Net Production Imports (PADD of Entry) 1 Net Receipts 2 Adjust- ments 3 Stock Change 4 Refinery and Blender Net Inputs Exports Products Supplied 5 Crude Oil 6 ............................................................ 1,188,751 - - - - 1,015,091 -112,708 94,064 20,399 2,158,191 6,608 0 882,207 Natural Gas Plant Liquids and Liquefied Refinery Gases ................................................... 440,766 -88 123,986 10,625 46,383 - - 16,960 76,972 72,880 454,860 114,138 Pentanes Plus ..................................................

437

Petroleum Supply Monthly  

U.S. Energy Information Administration (EIA) Indexed Site

September 2013 Table 2. U.S. Year-to-Date Supply, Disposition, and Ending Stocks of Crude Oil and Petroleum Products, January-September 2013 (Thousand Barrels) Commodity Supply Disposition Ending Stocks Field Production Renewable Fuels and Oxygenate Plant Net Production Refinery and Blender Net Production Imports Adjust- ments 1 Stock Change 2 Refinery and Blender Net Inputs Exports Products Supplied 3 Crude Oil 4 ............................................................ 2,003,948 - - - - 2,123,490 65,265 6,899 4,157,486 28,318 0 1,067,149 Natural Gas Plant Liquids and Liquefied Refinery Gases ................................................... 686,936 -4,909 195,516 47,812 - - 36,219 127,051 118,364 643,721 189,672 Pentanes Plus .................................................. 92,842 -4,909 - - 10,243 - -

438

Petroleum Supply Annual  

U.S. Energy Information Administration (EIA) Indexed Site

1.PDF 1.PDF Table 11. PAD District 5 - Supply, Disposition, and Ending Stocks of Crude Oil and Petroleum Products, January 2012 (Thousand Barrels) Commodity Supply Disposition Ending Stocks Field Production Renewable Fuels and Oxygenate Plant Net Production Refinery and Blender Net Production Imports (PADD of Entry) 1 Net Receipts 2 Adjust- ments 3 Stock Change 4 Refinery and Blender Net Inputs Exports Products Supplied 5 Crude Oil ............................................................. 36,593 - - - - 31,429 - 4,534 890 71,666 - 0 55,877 Natural Gas Plant Liquids and Liquefied Refinery Gases ................................................... 2,154 -11 1,013 192 - - - -786 2,587 629 918 3,544 Pentanes Plus .................................................. 1,013 -11 - - - - - - -35 842 110 85 36 Liquefied Petroleum Gases ..............................

439

Petroleum Supply Annual  

U.S. Energy Information Administration (EIA) Indexed Site

TABLE7.PDF TABLE7.PDF Table 7. PAD District 3 - Supply, Disposition, and Ending Stocks of Crude Oil and Petroleum Products, January 2012 (Thousand Barrels) Commodity Supply Disposition Ending Stocks Field Production Renewable Fuels and Oxygenate Plant Net Production Refinery and Blender Net Production Imports (PADD of Entry) 1 Net Receipts 2 Adjust- ments 3 Stock Change 4 Refinery and Blender Net Inputs Exports Products Supplied 5 Crude Oil 6 ............................................................ 109,919 - - - - 142,073 -20,272 -3,481 6,003 222,236 - 0 858,776 Natural Gas Plant Liquids and Liquefied Refinery Gases ................................................... 43,678 -17 9,648 1,838 7,546 - - -2,299 8,340 4,663 51,989 65,215 Pentanes Plus .................................................. 4,840 -17 - - 1,688 -3,010 - -

440

Petroleum Supply Monthly  

U.S. Energy Information Administration (EIA) Indexed Site

4 4 September 2013 Table 8. PAD District 1 - Year-to-Date Daily Average Supply and Disposition of Crude Oil and Petroleum Products, January-September 2013 (Thousand Barrels per Day) Commodity Supply Disposition Field Production Renewable Fuels and Oxygenate Plant Net Production Refinery and Blender Net Production Imports (PADD of Entry) 1 Net Receipts 2 Adjust- ments 3 Stock Change 4 Refinery and Blender Net Inputs Exports Products Supplied 5 Crude Oil ............................................................. 32 - - - - 843 -1 230 8 1,061 35 0 Natural Gas Plant Liquids and Liquefied Refinery Gases ................................................... 71 0 45 40 77 - - 1 16 10 205 Pentanes Plus .................................................. 12 0 - - 1 0 - - 0 0 2 9 Liquefied Petroleum Gases ..............................

Note: This page contains sample records for the topic "wind potential supply" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


441

Petroleum Supply Monthly Archives  

Gasoline and Diesel Fuel Update (EIA)

Petroleum Supply Monthly Petroleum Supply Monthly Petroleum Supply Monthly Archives With Data for December 2011 | Release Date: February 29, 2012 Changes to Table 26. "Production of Crude Oil by PAD District and State": Current State-level data are now included in Table 26, in addition to current U.S. and PAD District sums. State offshore production for Louisiana, Texas, Alaska, and California, which are included in the State totals, are no longer reported separately in a "State Offshore Production" category. Previously, State-level values lagged 2 months behind the U.S. and PAD District values. Beginning with this publication, they will be on the same cycle. Also included in this publication are two additional pages for Table 26 that provide October and November data. With the release of

442

Petroleum Supply Monthly  

Gasoline and Diesel Fuel Update (EIA)

December 2011 December 2011 Table 3. U.S. Daily Average Supply and Disposition of Crude Oil and Petroleum Products, December 2011 (Thousand Barrels per Day) Commodity Supply Disposition Field Production Renewable Fuels and Oxygenate Plant Net Production Refinery and Blender Net Production Imports Adjust- ments 1 Stock Change 2 Refinery and Blender Net Inputs Exports Products Supplied 3 Crude Oil 4 ............................................................ 5,877 - - - - 8,716 83 -218 14,841 53 0 Natural Gas Plant Liquids and Liquefied Refinery Gases ................................................... 2,351 -20 372 252 - - -417 566 206 2,600 Pentanes Plus .................................................. 296 -20 - - 78 - - 37 172 71 75 Liquefied Petroleum Gases .............................. 2,055 - - 372 174 - - -454 394 135 2,525

443

Petroleum Supply Monthly  

U.S. Energy Information Administration (EIA) Indexed Site

8 8 September 2013 Table 22. PAD District 5 - Year-to-Date Supply, Disposition, and Ending Stocks of Crude Oil and Petroleum Products, January-September 2013 (Thousand Barrels) Commodity Supply Disposition Ending Stocks Field Production Renewable Fuels and Oxygenate Plant Net Production Refinery and Blender Net Production Imports (PADD of Entry) 1 Net Receipts 2 Adjust- ments 3 Stock Change 4 Refinery and Blender Net Inputs Exports Products Supplied 5 Crude Oil ............................................................. 300,668 - - - - 297,837 - 31,342 -3,713 633,292 267 0 52,719 Natural Gas Plant Liquids and Liquefied Refinery Gases ................................................... 17,739 -73 18,288 1,401 - - - 3,536 17,170 3,791 12,858 8,270 Pentanes Plus .................................................. 7,914

444

Petroleum Supply Monthly  

Gasoline and Diesel Fuel Update (EIA)

December 2011 December 2011 Table 5. PAD District 1 - Supply, Disposition, and Ending Stocks of Crude Oil and Petroleum Products, December 2011 (Thousand Barrels) Commodity Supply Disposition Ending Stocks Field Production Renewable Fuels and Oxygenate Plant Net Production Refinery and Blender Net Production Imports (PADD of Entry) 1 Net Receipts 2 Adjust- ments 3 Stock Change 4 Refinery and Blender Net Inputs Exports Products Supplied 5 Crude Oil ............................................................. 751 - - - - 26,471 -300 1,308 -869 28,999 100 0 9,902 Natural Gas Plant Liquids and Liquefied Refinery Gases ................................................... 1,313 -7 839 2,091 3,702 - - -929 816 33 8,018 7,618 Pentanes Plus .................................................. 225 -7 - - - - - - 3 - 11 204 31 Liquefied Petroleum Gases

445

Petroleum Supply Monthly  

U.S. Energy Information Administration (EIA) Indexed Site

September 2013 Table 6. PAD District 1 - Year-to-Date Supply, Disposition, and Ending Stocks of Crude Oil and Petroleum Products, January-September 2013 (Thousand Barrels) Commodity Supply Disposition Ending Stocks Field Production Renewable Fuels and Oxygenate Plant Net Production Refinery and Blender Net Production Imports (PADD of Entry) 1 Net Receipts 2 Adjust- ments 3 Stock Change 4 Refinery and Blender Net Inputs Exports Products Supplied 5 Crude Oil ............................................................. 8,672 - - - - 230,125 -359 62,824 2,069 289,586 9,606 0 10,326 Natural Gas Plant Liquids and Liquefied Refinery Gases ................................................... 19,329 -83 12,151 10,808 21,118 - - 168 4,287 2,821 56,047 6,541 Pentanes Plus ..................................................

446

Petroleum Supply Annual  

U.S. Energy Information Administration (EIA) Indexed Site

TABLE5.PDF TABLE5.PDF Table 5. PAD District 2 - Supply, Disposition, and Ending Stocks of Crude Oil and Petroleum Products, January 2012 (Thousand Barrels) Commodity Supply Disposition Ending Stocks Field Production Renewable Fuels and Oxygenate Plant Net Production Refinery and Blender Net Production Imports (PADD of Entry) 1 Net Receipts 2 Adjust- ments 3 Stock Change 4 Refinery and Blender Net Inputs Exports Products Supplied 5 Crude Oil ............................................................. 29,902 - - - - 53,695 23,732 5,619 2,406 108,247 2,295 0 95,547 Natural Gas Plant Liquids and Liquefied Refinery Gases ................................................... 13,989 -544 1,333 2,797 949 - - -6,644 3,628 2,687 18,853 41,545 Pentanes Plus .................................................. 1,274 -544 - - 11 4,162 - - 233 966

447

Petroleum Supply Monthly  

U.S. Energy Information Administration (EIA) Indexed Site

September 2013 Table 4. U.S. Year-to-Date Daily Average Supply and Disposition of Crude Oil and Petroleum Products, January-September 2013 (Thousand Barrels per Day) Commodity Supply Disposition Field Production Renewable Fuels and Oxygenate Plant Net Production Refinery and Blender Net Production Imports Adjust- ments 1 Stock Change 2 Refinery and Blender Net Inputs Exports Products Supplied 3 Crude Oil 4 ............................................................ 7,340 - - - - 7,778 239 25 15,229 104 0 Natural Gas Plant Liquids and Liquefied Refinery Gases ................................................... 2,516 -18 716 175 - - 133 465 434 2,358 Pentanes Plus .................................................. 340 -18 - - 38 - - 20 168 134 38 Liquefied Petroleum Gases .............................. 2,176 - - 716

448

Petroleum Supply Monthly  

U.S. Energy Information Administration (EIA) Indexed Site

4 4 September 2013 Table 18. PAD District 4 - Year-to-Date Supply, Disposition, and Ending Stocks of Crude Oil and Petroleum Products, January-September 2013 (Thousand Barrels) Commodity Supply Disposition Ending Stocks Field Production Renewable Fuels and Oxygenate Plant Net Production Refinery and Blender Net Production Imports (PADD of Entry) 1 Net Receipts 2 Adjust- ments 3 Stock Change 4 Refinery and Blender Net Inputs Exports Products Supplied 5 Crude Oil ............................................................. 139,573 - - - - 79,019 -46,108 -13,333 1,073 158,068 10 0 19,287 Natural Gas Plant Liquids and Liquefied Refinery Gases ................................................... 86,184 -86 3,535 3,052 -71,945 - - 423 4,378 4,054 11,885 1,893 Pentanes Plus ..................................................

449

Petroleum Supply Monthly  

U.S. Energy Information Administration (EIA) Indexed Site

30 30 September 2013 Table 24. PAD District 5 - Year-to-Date Daily Average Supply and Disposition of Crude Oil and Petroleum Products, January-September 2013 (Thousand Barrels per Day) Commodity Supply Disposition Field Production Renewable Fuels and Oxygenate Plant Net Production Refinery and Blender Net Production Imports (PADD of Entry) 1 Net Receipts 2 Adjust- ments 3 Stock Change 4 Refinery and Blender Net Inputs Exports Products Supplied 5 Crude Oil ............................................................. 1,101 - - - - 1,091 - 115 -14 2,320 1 0 Natural Gas Plant Liquids and Liquefied Refinery Gases ................................................... 65 0 67 5 - - - 13 63 14 47 Pentanes Plus .................................................. 29 0 - - - - - - 1 21 4 3 Liquefied Petroleum Gases ..............................

450

Petroleum Supply Annual  

U.S. Energy Information Administration (EIA) Indexed Site

.PDF .PDF Table 2. U.S. Daily Average Supply and Disposition of Crude Oil and Petroleum Products, January 2012 (Thousand Barrels per Day) Commodity Supply Disposition Field Production Renewable Fuels and Oxygenate Plant Net Production Refinery and Blender Net Production Imports Adjust- ments 1 Stock Change 2 Refinery and Blender Net Inputs Exports Products Supplied 3 Crude Oil 4 ............................................................ 6,133 - - - - 8,527 205 413 14,374 78 0 Natural Gas Plant Liquids and Liquefied Refinery Gases ................................................... 2,384 -19 421 224 - - -366 512 268 2,595 Pentanes Plus .................................................. 285 -19 - - 55 - - -26 160 89 98 Liquefied Petroleum Gases .............................. 2,099 - - 421 169 - - -340 353 179 2,497 Ethane/Ethylene

451

Wind-Stress Coefficients at Light Winds  

Science Conference Proceedings (OSTI)

The increase of the wind-stress coefficient with wind velocity was found to start with winds as light as 3 m s?1, below which, following the formula for aerodynamically smooth flows, the wind-stress coefficient decreases as the wind velocity ...

Jin Wu

1988-12-01T23:59:59.000Z

452

Optimal Sizing of a Stand-alone Wind/Photovoltaic Generation Unit using Particle Swarm Optimization  

Science Conference Proceedings (OSTI)

A hybrid wind/photovoltaic generation system is designed to supply power demand. The aim of this design is minimization of the overall cost of the generation scheme over 20 years of operation. Full demand supply is modeled as constraint for optimization ... Keywords: genetic algorithm, optimal sizing, particle swarm optimization, photovoltaic, wind energy

Ali Kashefi Kaviani; Hamid Reza Baghaee; Gholam Hossein Riahy

2009-02-01T23:59:59.000Z

453

Wind Farm Recommendation Report  

Science Conference Proceedings (OSTI)

On April 21, 2011, an Idaho National Laboratory (INL) Land Use Committee meeting was convened to develop a wind farm recommendation for the Executive Council and a list of proposed actions for proceeding with the recommendation. In terms of land use, the INL Land Use Committee unanimously agrees that Site 6 is the preferred location of the alternatives presented for an INL wind farm. However, further studies and resolution to questions raised (stated in this report) by the INL Land Use Committee are needed for the preferred location. Studies include, but are not limited to, wind viability (6 months), bats (2 years), and the visual impact of the wind farm. In addition, cultural resource surveys and consultation (1 month) and the National Environmental Policy Act process (9 to 12 months) need to be completed. Furthermore, there is no documented evidence of developers expressing interest in constructing a small wind farm on INL, nor a specific list of expectations or concessions for which a developer might expect INL to cover the cost. To date, INL assumes the National Environmental Policy Act activities will be paid for by the Department of Energy and INL (the environmental assessment has only received partial funding). However, other concessions also may be expected by developers such as roads, fencing, power line installation, tie-ins to substations, annual maintenance, snow removal, access control, down-time, and remediation. These types of concessions have not been documented, as a request, from a developer and INL has not identified the short and long-term cost liabilities for such concessions should a developer expect INL to cover these costs. INL has not identified a go-no-go funding level or the priority this Wind Farm Project might have with respect to other nuclear-related projects, should the wind farm remain an unfunded mandate. The Land Use Committee recommends Legal be consulted to determine what, if any, liabilities exist with the Wind Farm Project and INL’s rights and responsibilities in regards to access to the wind farm once constructed. An expression of interest is expected to go out soon to developers. However, with the potential of 2 years of study remaining for Site 6, the expectation of obtaining meaningful interest from developers should be questioned.

John Reisenauer

2011-05-01T23:59:59.000Z

454

Wind energy mission analysis. Final report. [USA  

DOE Green Energy (OSTI)

The development of wind energy systems in the U.S. is discussed under the following headings: baseline power systems; assessment of wind potential; identification of high potential applications; electric utilities; residential application; paper industry application; agriculture application; and remote community applications.

Not Available

1977-02-18T23:59:59.000Z

455

Wind: wind power density GIS data at 50m above ground and 400m...  

Open Energy Info (EERE)

Sri Lanka

(Purpose):  To provide information on the wind resource potential within Sri Lanka and selected offshore areas
<...

456

Supply Chain - Submissions | Data.gov  

NLE Websites -- All DOE Office Websites (Extended Search)

Submissions Sustainable Supply Chains Submissions Let's Talk About Sustainable Supply Chain You are here Data.gov Communities Sustainable Supply Chain Sustainable Supply...

457

Investigating optimal configuration of a prospective renewable-based electricity supply sector  

Science Conference Proceedings (OSTI)

Proposed emission reduction targets as well as the scarcity of fossil fuel resources make a transition of the energy system towards a carbon free electricity supply necessary. Promising energy resources are solar and wind energy. The high temporal and ... Keywords: energy system model, geographic information system (GIS), linear optimization, power supply, renewable energy, simulation, supergrid

Tino Aboumahboub; Katrin Schaber; Peter Tzscheutschler; Thomas Hamacher

2010-02-01T23:59:59.000Z

458

Wind turbine  

DOE Patents (OSTI)

A wind turbine of the type having an airfoil blade (15) mounted on a flexible beam (20) and a pitch governor (55) which selectively, torsionally twists the flexible beam in response to wind turbine speed thereby setting blade pitch, is provided with a limiter (85) which restricts unwanted pitch change at operating speeds due to torsional creep of the flexible beam. The limiter allows twisting of the beam by the governor under excessive wind velocity conditions to orient the blades in stall pitch positions, thereby preventing overspeed operation of the turbine. In the preferred embodiment, the pitch governor comprises a pendulum (65,70) which responds to changing rotor speed by pivotal movement, the limiter comprising a resilient member (90) which engages an end of the pendulum to restrict further movement thereof, and in turn restrict beam creep and unwanted blade pitch misadjustment.

Cheney, Jr., Marvin C. (Glastonbury, CT)

1982-01-01T23:59:59.000Z

459

Electromagnetic torque analysis of a DFIG for wind turbines  

Science Conference Proceedings (OSTI)

Electromagnetic torque of doubly fed induction generator (DFIG) is a consequence of the rotor and stator supply. The stator voltage has a fixed amount and frequency. The rotor voltage of the DFIG as a part of a wind turbine has a variable amount and ... Keywords: DFIG, electromagnetic torque, renewable energy, wind turbine

Jurica Smajo; Dinko Vukadinovic

2008-05-01T23:59:59.000Z

460

Contribution to the Chapter on Wind Power Energy Technology  

E-Print Network (OSTI)

problems in the industry are expected to stop, once supply system constraints are overcome. Onshore windContribution to the Chapter on Wind Power Energy Technology Perspectives 2008 Jørgen Lemming; Poul for Sustainable Energy Technical University of Denmark Roskilde, Denmark January 2008 #12;Author: Jørgen Lemming

Note: This page contains sample records for the topic "wind potential supply" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


461

Wind Energy Stakeholder Outreach and Education  

DOE Green Energy (OSTI)

Since August of 2001, Bob Lawrence and Associates, Inc. (BL&A) has applied its outreach and support services to lead a highly effective work effort on behalf of Wind Powering America (WPA). In recent years, the company has generated informative brochures and posters, researched and created case studies, and provided technical support to key wind program managers. BL&A has also analyzed Lamar, Colorado’s 162MW wind project and developed a highly regarded 'wind supply chain' report and outreach presentation. BL&A’s efforts were then replicated to characterize similar supply chain presentations in New Mexico and Illinois. Note that during the period of this contract, the recipient met with members of the DOE Wind Program a number of times to obtain specific guidance on tasks that needed to be pursued on behalf of this grant. Thus, as the project developed over the course of 5 years, the recipient varied the tasks and emphasis on tasks to comply with the on-going and continuously developing requirements of the Wind Powering America Program. This report provides only a brief summary of activities to illustrate the recipient's work for advancing wind energy education and outreach from 2001 through the end of the contract period in 2006. It provides examples of how the recipient and DOE leveraged the available funding to provide educational and outreach work to a wide range of stakeholder communities.

Bob Lawrence; Craig Cox; Jodi Hamrick; DOE Contact - Keith Bennett

2006-07-27T23:59:59.000Z

462

New England Wind Forum: Wind Power Economics  

Wind Powering America (EERE)

State Activities Projects in New England Building Wind Energy in New England Wind Resource Wind Power Technology Economics Cost Components Determining Factors Influencing Wind Economics in New England How does wind compare to the cost of other electricity options? Markets Siting Policy Technical Challenges Issues Small Wind Large Wind Newsletter Perspectives Events Quick Links to States CT MA ME NH RI VT Bookmark and Share Wind Power Economics Long-Term Cost Trends Since the first major installations of commercial-scale wind turbines in the 1980s, the cost of energy from wind power projects has decreased substantially due to larger turbine generators, towers, and rotor lengths; scale economies associated with larger projects; improvements in manufacturing efficiency, and technological advances in turbine generator and blade design. These technological advances have allowed for higher generating capacities per turbine and more efficient capture of wind, especially at lower wind speeds.

463

New England Wind Forum: Large Wind  

Wind Powering America (EERE)

Small Wind Small Wind Large Wind Newsletter Perspectives Events Quick Links to States CT MA ME NH RI VT Bookmark and Share Large Wind When establishing wind farms, wind energy developers generally approach landowners where they want to build. Interest in wind farms is frequently spurred by external pressures such as tax and other financial incentives and legislative mandates. Since each situation is influenced by local policies and permitting, we can only provide general guidance to help you learn about the process of installing wind turbines. Publications Wind Project Development Process Permitting of Wind Energy Facilities: A Handbook. (August 2002). National Wind Coordinating Collaborative. Landowner Frequently Asked Questions and Answers. (August 2003). "State Wind Working Group Handbook." pp. 130-133.

464

NREL: Wind Research - International Wind Resource Maps  

NLE Websites -- All DOE Office Websites (Extended Search)

Wind Resource Maps NREL is helping to develop high-resolution projections of wind resources worldwide. This allows for more accurate siting of wind turbines and has led to the...

465

NREL: Wind Research - Wind Project Development Updates  

NLE Websites -- All DOE Office Websites (Extended Search)

Wind Project Development Updates A 2.3 megawatt Siemens wind turbine nacelle on route to the Record Hill Wind project in Roxbury, Maine. January 14, 2013 As a result of the...

466

Hot water supply system  

SciTech Connect

A hot water supply system is described which consists of: a boiler having an exhaust; solar panels; and a frame supporting the solar panels and including a compartment beneath the solar panels, the boiler exhaust termining in the compartment beneath the solar panels, the boiler being within the compartment.

Piper, J.R.

1986-06-10T23:59:59.000Z

467

Power Supplies for Precooler Ring  

SciTech Connect

Eight power supplies will energize the antiproton Precooler ring. there will be two series connected supplies per quadrant. These supplies will power 32 dipole and 19 quadrupole magnets. The resistance and inductance per quadrant is R = 1.4045 Ohms and L = 0.466. Each powr supply will have 12-phase series bridge rectifiers and will be energized from the 480 V 3-phase grid. The total of eight power supplies are numbered IA, IIA, IIIA, IVA, and IB, IIB, IIIB, and IVB. Each quadrant will contain one A and one B supply. A block diagram of the Precooler ring with its power supplies is shown in Figure 1.

Fuja, Raymond; Praeg, Walter

1980-12-12T23:59:59.000Z

468

NREL: Wind Research - Utility Grid Integration Assessment  

NLE Websites -- All DOE Office Websites (Extended Search)

Utility Grid Integration Assessment Utility Grid Integration Assessment Photo of large power transmission towers set against a sunset. The national need for transmission improvements will have a direct impact on the effective use of renewable energy sources such as wind. For wind energy to play a larger role in supplying the nation's energy needs, integrating wind energy into the power grid of the United States is an important challenge to address. NREL's transmission grid integration staff collaborates with utility industry partners and provides data, analysis, and techniques to increase utility understanding of integration issues and confidence in the reliability of new wind turbines. For more information, contact Brian Parsons at 303-384-6958. Printable Version Wind Research Home Capabilities

469

Wind Resource Atlas of Oaxaca | Open Energy Information  

Open Energy Info (EERE)

Resource Atlas of Oaxaca Resource Atlas of Oaxaca Jump to: navigation, search Tool Summary LAUNCH TOOL Name: Wind Resource Atlas of Oaxaca Focus Area: Renewable Energy Topics: Potentials & Scenarios Website: www.nrel.gov/wind/pdfs/34519.pdf Equivalent URI: cleanenergysolutions.org/content/wind-resource-atlas-oaxaca,http://cle Language: English Policies: Deployment Programs DeploymentPrograms: Technical Assistance This wind resource atlas identifies wind characteristics and distribution of wind resources in Oaxaca, Mexico, at a wind power density of 50 meters above ground. The detailed wind resource maps contained in the atlas facilitate the identification of prospective areas for use of wind energy technologies for utility-scale power generation, village power, and off-grid wind energy applications. The wind maps were created using a

470

Topic: Wind Engineering  

Science Conference Proceedings (OSTI)

Topic: Wind Engineering. Forty-Fourth Meeting of the UJNR Panel on Wind and Seismic Effects. NIST researchers collected ...

2011-08-31T23:59:59.000Z

471

Extreme Wind Speeds: Publications  

Science Conference Proceedings (OSTI)

... "Algorithms for Generating Large Sets of Synthetic Directional Wind Speed Data for Hurricane, Thunderstorm, and Synoptic Winds," NIST Technical ...

2013-08-19T23:59:59.000Z

472

NREL: Wind Research - Offshore Wind Research  

NLE Websites -- All DOE Office Websites (Extended Search)

Options Site Map Printable Version Offshore Standards and Testing NREL's Offshore Wind Testing Capabilities 35 years of wind turbine testing experience Custom high speed data...

473

Upstream Measurements of Wind Profiles with Doppler Lidar for Improved Wind Energy Integration  

DOE Green Energy (OSTI)

New upstream measurements of wind profiles over the altitude range of wind turbines will be produced using a scanning Doppler lidar. These long range high quality measurements will provide improved wind power forecasts for wind energy integration into the power grid. The main goal of the project is to develop the optimal Doppler lidar operating parameters and data processing algorithms for improved wind energy integration by enhancing the wind power forecasts in the 30 to 60 minute time frame, especially for the large wind power ramps. Currently, there is very little upstream data at large wind farms, especially accurate wind profiles over the full height of the turbine blades. The potential of scanning Doppler lidar will be determined by rigorous computer modeling and evaluation of actual Doppler lidar data from the WindTracer system produced by Lockheed Martin Coherent Technologies, Inc. of Louisville, Colorado. Various data products will be investigated for input into numerical weather prediction models and statistically based nowcasting algorithms. Successful implementation of the proposed research will provide the required information for a full cost benefit analysis of the improved forecasts of wind power for energy integration as well as the added benefit of high quality wind and turbulence information for optimal control of the wind turbines at large wind farms.

Rodney Frehlich

2012-10-30T23:59:59.000Z

474

Updated U.S. Geothermal Supply Curve  

Science Conference Proceedings (OSTI)

This paper documents the approach used to update the U.S. geothermal supply curve. The analysis undertaken in this study estimates the supply of electricity generation potential from geothermal resources in the United States and the levelized cost of electricity (LCOE), capital costs, and operating and maintenance costs associated with developing these geothermal resources. Supply curves were developed for four categories of geothermal resources: identified hydrothermal (6.4 GWe), undiscovered hydrothermal (30.0 GWe), near-hydrothermal field enhanced geothermal systems (EGS) (7.0 GWe) and deep EGS (15,900 GWe). Two cases were considered: a base case and a target case. Supply curves were generated for each of the four geothermal resource categories for both cases. For both cases, hydrothermal resources dominate the lower cost range of the combined geothermal supply curve. The supply curves indicate that the reservoir performance improvements assumed in the target case could significantly lower EGS costs and greatly increase EGS deployment over the base case.

Augustine, C.; Young, K. R.; Anderson, A.

2010-02-01T23:59:59.000Z

475

Selected GHG Emission Supply Curves | Open Energy Information  

Open Energy Info (EERE)

Selected GHG Emission Supply Curves Selected GHG Emission Supply Curves Jump to: navigation, search Tool Summary Name: Selected GHG Emission Supply Curves Agency/Company /Organization: Northwest Power and Conservation Council Sector: Energy Focus Area: Conventional Energy, Energy Efficiency, Renewable Energy, Industry, Transportation, Forestry, Agriculture Topics: GHG inventory, Pathways analysis Resource Type: Dataset, Publications Website: www.nwcouncil.org/energy/grac/20090130_Supply%20Curves_NWPCC_FINAL.pdf Selected GHG Emission Supply Curves Screenshot References: Selected GHG Emission Supply Curves[1] Background "The ECL supply curve model includes data on potential emission reductions for approximately 60 separate technology options. It allows the examination of multiple scenarios involving the inclusion or exclusion of technology

476

A FRESH LOOK AT OFFSHORE WIND OPPORTUNITIES IN MASSACHUSETTS Anthony L. Rogers, Ph.D.  

E-Print Network (OSTI)

projects are supplying energy at costs of about 7.5 cents/ kWh. There are plans to install 40 MW of wind enable the harvesting of wind energy resources from areas far from shore and close to shore in regions on these assumptions, the Department of Energy estimates that wind power could provide 33,000 GWh of energy per year

Massachusetts at Amherst, University of

477

Planning maritime logistics concepts for offshore wind farms: a newly developed decision support system  

Science Conference Proceedings (OSTI)

The wind industry is facing new, great challenges due to the planned construction of thousands of offshore wind turbines in the North and Baltic Sea. With increasing distances from the coast and rising sizes of the plants the industry has to face the ... Keywords: assembly, installation, installation vessel, logistics concepts, logistics strategies, maritime supply chain, offshore wind, production, simulation

Kerstin Lange; André Rinne; Hans-Dietrich Haasis

2012-09-01T23:59:59.000Z

478

A SENSITIVITY ANALYSIS OF THE TREATMENT OF WIND ENERGY IN THE AEO99 VERSION OF NEMS  

E-Print Network (OSTI)

LBNL-44070 TP-28529 A SENSITIVITY ANALYSIS OF THE TREATMENT OF WIND ENERGY IN THE AEO99 VERSION and market penetration on the U.S. Department of Energy's Annual Energy Outlook (AEO) forecast for wind supply mix remains fairly steady, and renewable energy technologies such as wind do not achieve

479

Wind Power Plant Monitoring Project Annual Report  

DOE Green Energy (OSTI)

The intermittent nature of the wind resource, together with short-term power fluctuations, are the two principal issues facing a utility with wind power plants in its power grid. To mitigate these issues, utilities, wind power plant developers, and operators need to understand the nature of wind power fluctuations and how they affect the electrical power system, as well as to analyze ancillary service requirements with real wind power plant output data. To provide the necessary data, NREL conducted a study to collect at least 2 years of long-term, high-frequency (1-hertz [Hz]) data from several medium- to large-scale wind power plants with different wind resources, terrain features, and turbine types. Researchers then analyzed the data for power fluctuations, frequency distribution of wind power (by deriving a probability distribution function of wind power plant output variations), spatial and temporal diversity of wind power, and wind power capacity credit issues. Results of these analyses can provide data on the potential effects of wind power plants on power system regulation.

Wan, Y.

2001-07-11T23:59:59.000Z

480

NREL: Wind Research - Small Wind Turbine Development  

NLE Websites -- All DOE Office Websites (Extended Search)

Small Wind Turbine Development Small Wind Turbine Development A photo of Southwest Windpower's Skystream wind turbine in front of a home. PIX14936 Southwest Windpower's Skystream wind turbine. A photo of the Endurance wind turbine. PIX15006 The Endurance wind turbine. A photo of the Atlantic Orient Corporation 15/50 wind turbine at the National Wind Technology Center. PIX07301 The Atlantic Orient Corporation 15/50 wind turbine at the National Wind Technology Center. NREL supports continued market expansion of small wind turbines by funding manufacturers through competitive solicitations (i.e., subcontracts and/or grants) to refine prototype systems leading to commercialization. Learn more about the turbine development projects below. Skystream NREL installed and tested an early prototype of this turbine at the

Note: This page contains sample records for the topic "wind potential supply" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


481

NREL: Wind Research - Small Wind Turbine Webinars  

NLE Websites -- All DOE Office Websites (Extended Search)

Small Wind Turbine Webinars Small Wind Turbine Webinars Here you will find webinars about small wind turbines that NREL hosted. Introducing WindLease(tm): Making Wind Energy Affordable NREL and the American Solar Energy Society (ASES) Wind Division co-hosted this webinar. (Text Version.) Date: August 1, 2013 Run Time: 40 minutes Joe Hess, VP of Business Development at United Wind, described United Wind's WindQuote and WindLease Program and explained the process from the dealer's and consumer's perspective. Texas Renewable Energy Industries Association NREL and the American Solar Energy Society (ASES) Wind Division co-hosted this webinar. (Text Version). Date: March 7, 2013 Run Time: 1 hour Russel Smith, Texas Renewable Energy Industries Association executive director and co-founder, provided an overview of the trade association

482

New England Wind Forum: Small Wind  

Wind Powering America (EERE)

Wind for Schools Project Funding Case Studies: Thomas Harrison Middle School, Virginia Wind for Schools Project Funding Case Studies: Thomas Harrison Middle School, Virginia August 26, 2013 Workshop Explores Information's Role in Wind Project Siting: A Wind Powering America Success Story November 19, 2012 More News Subscribe to News Updates Events Renewable Energy Market Update Webinar January 29, 2014 Strategic Energy Planning: Webinar February 26, 2014 Introduction to Wind Systems March 10, 2014 More Events Publications 2012 Market Report on Wind Technologies in Distributed Applications August 12, 2013 More Publications Features Sign up for the New England Wind Forum Newsletter. New England Wind Forum About the New England Wind Forum New England Wind Energy Education Project Historic Wind Development in New England State Activities Projects in New England

483

Supply Stores | Department of Energy  

NLE Websites -- All DOE Office Websites (Extended Search)

Supply Stores Supply Stores Supply Stores DOE Self Service Supply Stores at Headquarters Operated by: Paperclips, Etc. and the Winston-Salem Industries for the Blind DOE Self-Service Supply Stores Hours of Operation: 9:00 a.m. through 4:00 p.m. Monday through Friday DOE Supply Stores Locations Location Phone Fax Forrestal Room GA-171 (202) 554-1451 (202) 554-1452 (202) 554-7074 Germantown Room R-008 (301) 515-9109 (301) 515-9206 (301) 515-8751 The stores provide an Office Supply Product inventory that is tailored to meet the DOE customer's requirements. Office Supply items that are not carried in the store inventory can be special ordered, see the Catalog Order Form section below. The stores are operated for the Department of Energy, Office of Administration, Office of Logistics and Facility Operations, for the Supply

484

Oil and Gas Supply Module  

U.S. Energy Information Administration (EIA) Indexed Site

Oil and Gas Supply Module Oil and Gas Supply Module This page inTenTionally lefT blank 119 U.S. Energy Information Administration | Assumptions to the Annual Energy Outlook 2013 Oil and Gas Supply Module The NEMS Oil and Gas Supply Module (OGSM) constitutes a comprehensive framework with which to analyze crude oil and natural gas exploration and development on a regional basis (Figure 8). The OGSM is organized into 4 submodules: Onshore Lower 48 Oil and Gas Supply Submodule, Offshore Oil and Gas Supply Submodule, Oil Shale Supply Submodule[1], and Alaska Oil and Gas Supply Submodule. A detailed description of the OGSM is provided in the EIA publication, Model Documentation Report: The Oil and Gas Supply Module (OGSM), DOE/EIA-M063(2011), (Washington, DC, 2011). The OGSM provides

485

Big Spring Wind Power Project First-Year Operating Experience: 1999-2000: U.S. Department of Energy-EPRI Wind Turbine Verification P rogram  

Science Conference Proceedings (OSTI)

The 34-MW Big Spring wind power plant is sited on elevated tabletop mesas near Big Spring, Texas. Under a power purchase agreement between the project owner and operator, York Research Corporation (York), and TXU Electric and Gas (TXU), York will supply wind energy to TXU for 15 years. This report describes Big Spring's first-year operating experience. The lessons learned in the project will be valuable to other utilities and wind power developers planning similar wind power projects, especially those lo...

2000-12-18T23:59:59.000Z

486

Petroleum Supply Annual  

U.S. Energy Information Administration (EIA) Indexed Site

January 2012 January 2012 (Thousand Barrels) Commodity Supply Disposition Ending Stocks Field Production Renewable Fuels and Oxygenate Plant Net Production Refinery and Blender Net Production Imports Adjust- ments 1 Stock Change 2 Refinery and Blender Net Inputs Exports Products Supplied 3 Crude Oil 4 ............................................................ 190,109 - - - - 264,348 6,359 12,794 445,596 2,425 0 1,039,424 Natural Gas Plant Liquids and Liquefied Refinery Gases ................................................... 73,905 -587 13,044 6,935 - - -11,335 15,883 8,313 80,436 118,039 Pentanes Plus .................................................. 8,824 -587 - - 1,699 - - -805 4,946 2,754 3,041 16,791 Liquefied Petroleum Gases .............................. 65,081 - - 13,044 5,236 - - -10,530 10,937 5,559 77,395 101,248 Ethane/Ethylene

487

Petroleum Supply Annual  

U.S. Energy Information Administration (EIA) Indexed Site

3.PDF 3.PDF Table 13. Crude Oil Supply, Disposition, and Ending Stocks by PAD District, January 2012 (Thousand Barrels, Except Where Noted) Process PAD Districts U.S. Total 1 2 3 4 5 Total Daily Average Supply Field Production .................................................... 734 29,902 109,919 12,961 36,593 190,109 6,13