Sample records for wind photovoltaic storage

  1. Analysis of the value of battery storage with wind and photovoltaic generation to the Sacramento Municipal Utility District

    SciTech Connect (OSTI)

    Zaininger, H.W. [Zaininger Engineering Co., Inc., Roseville, CA (United States)

    1998-08-01T23:59:59.000Z

    This report describes the results of an analysis to determine the economic and operational value of battery storage to wind and photovoltaic (PV) generation technologies to the Sacramento Municipal Utility District (SMUD) system. The analysis approach consisted of performing a benefit-cost economic assessment using established SMUD financial parameters, system expansion plans, and current system operating procedures. This report presents the results of the analysis. Section 2 describes expected wind and PV plant performance. Section 3 describes expected benefits to SMUD associated with employing battery storage. Section 4 presents preliminary benefit-cost results for battery storage added at the Solano wind plant and the Hedge PV plant. Section 5 presents conclusions and recommendations resulting from this analysis. The results of this analysis should be reviewed subject to the following caveat. The assumptions and data used in developing these results were based on reports available from and interaction with appropriate SMUD operating, planning, and design personnel in 1994 and early 1995 and are compatible with financial assumptions and system expansion plans as of that time. Assumptions and SMUD expansion plans have changed since then. In particular, SMUD did not install the additional 45 MW of wind that was planned for 1996. Current SMUD expansion plans and assumptions should be obtained from appropriate SMUD personnel.

  2. Energy dispatch schedule optimization and cost benefit analysis for grid-connected, photovoltaic-battery storage systems

    E-Print Network [OSTI]

    Nottrott, A.; Kleissl, J.; Washom, B.

    2013-01-01T23:59:59.000Z

    photovoltaic systems with battery storages control based onconnected, photovoltaic-battery storage systems A. Nottrott,combined photovoltaic-battery storage system (PV+ system).

  3. Fact Sheet: Tehachapi Wind Energy Storage Project (October 2012...

    Broader source: Energy.gov (indexed) [DOE]

    Tehachapi Wind Energy Storage Project (October 2012) Fact Sheet: Tehachapi Wind Energy Storage Project (October 2012) The Tehachapi Wind Energy Storage Project (TSP) Battery Energy...

  4. Flywheel storage for photovoltaics: an economic evaluation of two applications

    E-Print Network [OSTI]

    Dinwoodie, Thomas L.

    1980-01-01T23:59:59.000Z

    A worth analysis is made for an advanced flywheel storage concept for tandem operation with photovoltaics currently being developed at MIT/Lincoln Laboratories. The applications examined here are a single family residence ...

  5. Enhanced Reliability of Photovoltaic Systems with Energy Storage and Controls

    SciTech Connect (OSTI)

    Manz, D.; Schelenz, O.; Chandra, R.; Bose, S.; de Rooij, M.; Bebic, J.

    2008-02-01T23:59:59.000Z

    This report summarizes efforts to reconfigure loads during outages to allow individual customers the opportunity to enhance the reliability of their electric service through the management of their loads, photovoltaics, and energy storage devices.

  6. Energy dispatch schedule optimization and cost benefit analysis for grid-connected, photovoltaic-battery storage systems

    E-Print Network [OSTI]

    Nottrott, A.; Kleissl, J.; Washom, B.

    2013-01-01T23:59:59.000Z

    photovoltaic-battery storage system (PV+ system). The LPrate). Eq. 1 minimizes net PV+ battery system power output (photovoltaic-battery storage system (PV+ system). The

  7. Oscillation Damping: A Comparison of Wind and Photovoltaic Power Plant Capabilities: Preprint

    SciTech Connect (OSTI)

    Singh, M.; Allen, A.; Muljadi, E.; Gevorgian, V.

    2014-07-01T23:59:59.000Z

    This work compares and contrasts strategies for providing oscillation damping services from wind power plants and photovoltaic power plants.

  8. ENERGY MODELING OF A LEAD-ACID BATTERY WITHIN HYBRID WIND / PHOTOVOLTAIC SYSTEMS

    E-Print Network [OSTI]

    Paris-Sud XI, Université de

    ENERGY MODELING OF A LEAD-ACID BATTERY WITHIN HYBRID WIND / PHOTOVOLTAIC SYSTEMS O. GERGAUD, G Abstract: Within the scope of full-scale energy modeling of a hybrid wind / photovoltaic system coupled-power hybrid wind/photovoltaic production system (20 ASE modules for a 2- kW polycrystalline silicon peak

  9. A novel hybrid (wind-photovoltaic) system sizing procedure

    SciTech Connect (OSTI)

    Hocaoglu, Fatih O. [Afyon Kocatepe University, Dept. of Electronics and Communication Eng., 03200 Afyonkarahisar (Turkey); Gerek, Oemer N.; Kurban, Mehmet [Anadolu University, Dept. of Electrical and Electronics Eng., 26555 Eskisehir (Turkey)

    2009-11-15T23:59:59.000Z

    Wind-photovoltaic hybrid system (WPHS) utilization is becoming popular due to increasing energy costs and decreasing prices of turbines and photovoltaic (PV) panels. However, prior to construction of a renewable generation station, it is necessary to determine the optimum number of PV panels and wind turbines for minimal cost during continuity of generated energy to meet the desired consumption. In fact, the traditional sizing procedures find optimum number of the PV modules and wind turbines subject to minimum cost. However, the optimum battery capacity is either not taken into account, or it is found by a full search between all probable solution spaces which requires extensive computation. In this study, a novel description of the production/consumption phenomenon is proposed, and a new sizing procedure is developed. Using this procedure, optimum battery capacity, together with optimum number of PV modules and wind turbines subject to minimum cost can be obtained with good accuracy. (author)

  10. Photovoltaic module with removable wind deflector

    DOE Patents [OSTI]

    Botkin, Jonathan (El Cerrito, CA); Graves, Simon (Berkeley, CA); Danning, Matt (Oakland, CA); Culligan, Matthew (Berkeley, CA)

    2012-08-07T23:59:59.000Z

    A photovoltaic (PV) module assembly including a PV module, a deflector, and a clip. The PV module includes a PV device and a frame. A PV laminate is assembled to the frame, and the frame includes a support arm forming a seat. The deflector defines a front face and a rear face, with the clip extending from either the trailing frame member or the rear face of the deflector. In a mounted state, the deflector is nested within the seat and is releasably mounted to the trailing frame member via the clip. In some embodiments, the support arm forms a second seat, with the PV module assembly providing a second mounted state in which the deflector is in a differing orientation/slope, nested within the second seat and releasably mounted to the trailing frame member via the clip.

  11. Photovoltaic module with removable wind deflector

    DOE Patents [OSTI]

    Botkin, Jonathan; Graves, Simon; Danning, Matt; Culligan, Matthew

    2014-02-18T23:59:59.000Z

    A photovoltaic (PV) module assembly including a PV module, a deflector, and a clip. The PV module includes a PV device and a frame. A PV laminate is assembled to the frame, and the frame includes a support arm forming a seat. The deflector defines a front face and a rear face, with the clip extending from either the trailing frame member or the rear face of the deflector. In a mounted state, the deflector is nested within the seat and is releasably mounted to the trailing frame member via the clip. In some embodiments, the support arm forms a second seat, with the PV module assembly providing a second mounted state in which the deflector is in a differing orientation/slope, nested within the second seat and releasably mounted to the trailing frame member via the clip.

  12. Photovoltaic module with removable wind deflector

    DOE Patents [OSTI]

    Botkin, Jonathan; Graves, Simon; Danning, Matt; Culligan, Matthew

    2013-05-28T23:59:59.000Z

    A photovoltaic (PV) module assembly including a PV module, a deflector, and a clip. The PV module includes a PV device and a frame. A PV laminate is assembled to the frame, and the frame includes a support arm forming a seat. The deflector defines a front face and a rear face, with the clip extending from either the trailing frame member or the rear face of the deflector. In a mounted state, the deflector is nested within the seat and is releasably mounted to the trailing frame member via the clip. In some embodiments, the support arm forms a second seat, with the PV module assembly providing a second mounted state in which the deflector is in a differing orientation/slope, nested within the second seat and releasably mounted to the trailing frame member via the clip.

  13. alkaline storage battery: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    arrays, wind turbines, and battery storage is designed based on empirical weather and load development of photovoltaic (PV), wind turbine and battery technologies, hybrid...

  14. alkaline storage batteries: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    arrays, wind turbines, and battery storage is designed based on empirical weather and load development of photovoltaic (PV), wind turbine and battery technologies, hybrid...

  15. Economic valuation of energy storage coupled with photovoltaics : current technologies and future projections

    E-Print Network [OSTI]

    Mosher, Trannon

    2010-01-01T23:59:59.000Z

    A practical framework for the economic valuation of current energy storage systems coupled with photovoltaic (PV) systems is presented. The solar-with-storage system's operation is optimized for two different rate schedules: ...

  16. Designing of Hybrid Power Generation System using Wind energy- Photovoltaic Solar energy- Solar energy with Nanoantenna

    E-Print Network [OSTI]

    All the natural wastage energies are used for production of Electricity. Thus, the Electrical Power or Electricity is available with a minimum cost and pollution free to anywhere in the world at all times. This process reveals a unique step in electricity generation and availability from natural resources without hampering the ecological balance. This paper describes a new and evolving Electrical Power Generation System by integrating simultaneously photovoltaic Solar Energy, solar Energy with Nano-antenna, Wind Energy and non conventional energy sources. We can have an uninterrupted power supply irrespective of the natural condition without any sort of environmental pollution. Moreover this process yields the least production cost for electricity generation. Utilization of lightning energy for generation of electricity reveals a new step. The set-up consists of combination of photo-voltaic solar-cell array & Nano-anteena array, a mast mounted wind generator, lead-acid storage batteries, an inverter unit to convert DC power to AC power, electrical lighting loads and electrical heating loads, several fuse and junction boxes and associated wiring, and test instruments for measuring voltages, currents, power factors, and harmonic contamination data throughout the system. This hybrid solar-wind power generating system will extensively use in the Industries and also in external use like home appliance.

  17. Hydrogen Storage in Wind Turbine Towers: Cost Analysis and Conceptual...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    in Wind Turbine Towers: Cost Analysis and Conceptual Design Hydrogen Storage in Wind Turbine Towers: Cost Analysis and Conceptual Design Preprint 34851.pdf More Documents &...

  18. Fact Sheet: Tehachapi Wind Energy Storage Project (October 2012...

    Broader source: Energy.gov (indexed) [DOE]

    Wind Resource Area because it is one of the largest wind resource areas in the world. Electricity Delivery & Energy Reliability Energy Storage Program Southern California...

  19. Coupling Wind Generation with Controllable Load and Storage

    E-Print Network [OSTI]

    Coupling Wind Generation with Controllable Load and Storage: A Time-Series Application of the Super Electric Energy System #12;Coupling Wind Generation with Controllable Load and Storage: A Time Wind Generation with Controllable Load and Storage: A Time-Series Application of the SuperOPF." (PSERC

  20. Lithium Ion Cell Development for Photovoltaic Energy Storage Applications

    SciTech Connect (OSTI)

    Susan Babinec

    2012-02-08T23:59:59.000Z

    The overall project goal is to reduce the cost of home and neighborhood photovoltaic storage systems by reducing the single largest cost component ?? the energy storage cells. Solar power is accepted as an environmentally advantaged renewable power source. Its deployment in small communities and integrated into the grid, requires a safe, reliable and low cost energy storage system. The incumbent technology of lead acid cells is large, toxic to produce and dispose of, and offer limited life even with significant maintenance. The ideal PV storage battery would have the safety and low cost of lead acid but the performance of lithium ion chemistry. Present lithium ion batteries have the desired performance but cost and safety remain the two key implementation barriers. The purpose of this project is to develop new lithium ion cells that can meet PVES cost and safety requirements using A123Systems phosphate-based cathode chemistries in commercial PHEV cell formats. The cost target is a cell design for a home or neighborhood scale at <$25/kWh. This DOE program is the continuation and expansion of an initial MPSC (Michigan Public Service Commission) program towards this goal. This program further pushes the initial limits of some aspects of the original program ?? even lower cost anode and cathode actives implemented at even higher electrode loadings, and as well explores new avenues of cost reduction via new materials ?? specifically our higher voltage cathode. The challenge in our materials development is to achieve parity in the performance metrics of cycle life and high temperature storage, and to produce quality materials at the production scale. Our new cathode material, M1X, has a higher voltage and so requires electrolyte reformulation to meet the high temperature storage requirements. The challenge of thick electrode systems is to maintain adequate adhesion and cycle life. The composite separator has been proven in systems having standard loading electrodes; the challenge with this material will be to maintain proven performance when this composite is coated onto a thicker electrode; as well the high temperature storage must meet application requirements. One continuing program challenge was the lack of specific performance variables for this PV application and so the low power requirements of PHEV/EV transportation markets were again used.

  1. COMPRESSED-AIR ENERGY STORAGE SYSTEMS FOR STAND-ALONE OFF-GRID PHOTOVOLTAIC MODULES

    E-Print Network [OSTI]

    Deymier, Pierre

    COMPRESSED-AIR ENERGY STORAGE SYSTEMS FOR STAND-ALONE OFF-GRID PHOTOVOLTAIC MODULES Dominique. Preliminary results clearly establish that the prototype holds enormous promise as energy storage systems production, is critically dependent on the availability of cost-effective, energy- storage technologies

  2. Modeling the Benefits of Storage Technologies to Wind Power

    SciTech Connect (OSTI)

    Sullivan, P.; Short, W.; Blair, N.

    2008-06-01T23:59:59.000Z

    Rapid expansion of wind power in the electricity sector is raising questions about how wind resource variability might affect the capacity value of wind farms at high levels of penetration. Electricity storage, with the capability to shift wind energy from periods of low demand to peak times and to smooth fluctuations in output, may have a role in bolstering the value of wind power at levels of penetration envisioned by a new Department of Energy report ('20% Wind by 2030, Increasing Wind Energy's Contribution to U.S. Electricity Supply'). This paper quantifies the value storage can add to wind. The analysis was done employing the Regional Energy Deployment System (ReEDS) model, formerly known as the Wind Deployment System (WinDS) model. ReEDS was used to estimate the cost and development path associated with 20% penetration of wind in the report. ReEDS differs from the WinDS model primarily in that the model has been modified to include the capability to build and use three storage technologies: pumped-hydroelectric storage (PHS), compressed-air energy storage (CAES), and batteries. To assess the value of these storage technologies, two pairs of scenarios were run: business-as-usual, with and without storage; 20% wind energy by 2030, with and without storage. This paper presents the results from those model runs.

  3. Tradeoffs between revenue enhancements and emissions reductions with energy storage-coupled photovoltaics

    E-Print Network [OSTI]

    Heidel, Timothy David

    2009-01-01T23:59:59.000Z

    Energy storage has the potential to dramatically change the operation of photovoltaics by allowing for a delay between generation and use. This flexibility has the potential to impact both the revenue from generating ...

  4. Storage Size Determination for Grid-Connected Photovoltaic Systems

    E-Print Network [OSTI]

    Ru, Yu; Martinez, Sonia

    2011-01-01T23:59:59.000Z

    In this paper, we study the problem of determining the size of battery storage used in grid-connected photovoltaic (PV) systems. In our setting, electricity is generated from PV and is used to supply the demand from loads. Excess electricity generated from the PV can be stored in a battery to be used later on, and electricity must be purchased from the electric grid if the PV generation and battery discharging cannot meet the demand. The objective is to minimize the electricity purchase from the electric grid while at the same time choosing an appropriate battery size. More specifically, we want to find a unique critical value (denoted as $E_{max}^c$) of the battery size such that the cost of electricity purchase remains the same if the battery size is larger than or equal to $E_{max}^c$, and the cost is strictly larger if the battery size is smaller than $E_{max}^c$. We propose an upper bound on $E_{max}^c$, and show that the upper bound is achievable for certain scenarios. For the case with ideal PV generat...

  5. Short term generation scheduling in photovoltaic-utility grid with battery storage

    SciTech Connect (OSTI)

    Marwali, M.K.C.; Ma, H.; Shahidehpour, S.M. [Illinois Inst. of Tech., Chicago, IL (United States). Dept. of Electrical and Computer Engineering] [Illinois Inst. of Tech., Chicago, IL (United States). Dept. of Electrical and Computer Engineering; Abdul-Rahman, K.H. [Siemens Energy and Automation, Brooklyn Park, MN (United States)] [Siemens Energy and Automation, Brooklyn Park, MN (United States)

    1998-08-01T23:59:59.000Z

    This paper presents an efficient approach to short term resource scheduling for an integrated thermal and photovoltaic-battery generation. The proposed model incorporated battery storage for peak load shaving. Several constraints including battery capacity, minimum up/down time and ramp rates for thermal units, as well as natural photovoltaic (PV) capacity are considered in the proposed model. A case study composed of 26 thermal units and a PV-battery plant is presented to test the efficiency of the method.

  6. Optimal Storage Policies with Wind Forecast Uncertainties [Extended Abstract

    E-Print Network [OSTI]

    Dalang, Robert C.

    Optimal Storage Policies with Wind Forecast Uncertainties [Extended Abstract] Nicolas Gast EPFL, IC generation. The use of energy storage compensates to some extent these negative effects; it plays a buffer role between demand and production. We revisit a model of real storage proposed by Bejan et al.[1]. We

  7. Cost-minimized combinations of wind power, solar power and electrochemical storage, powering the grid up to 99.9% of the time

    E-Print Network [OSTI]

    Firestone, Jeremy

    . Due to the design constraints of both climate mitigation and fossil fuel depletion, the possibility wind, and photovoltaics) with electrochemical storage (batteries and fuel cells), incorporated of electricity without subsidies and with inclusion of external costs. Our model evaluated over 28 billion

  8. Solar energy storage through the homogeneous electrocatalytic reduction of carbon dioxide : photoelectrochemical and photovoltaic approaches

    E-Print Network [OSTI]

    Sathrum, Aaron John

    2011-01-01T23:59:59.000Z

    Powered Hydrogen Generation using Photovoltaic-ElectrolysisPowered Hydrogen Generation Using Photovoltaic?ElectrolysisPowered Hydrogen Production Using Photovoltaic Electrolysis

  9. Sizing Storage and Wind Generation Capacities in Remote Power Systems

    E-Print Network [OSTI]

    Victoria, University of

    Sizing Storage and Wind Generation Capacities in Remote Power Systems by Andy Gassner B Capacities in Remote Power Systems by Andy Gassner B.Sc., University of Wisconsin Madison, 2003 Supervisory and small power systems. However, the variability due to the stochastic nature of the wind resource

  10. Load sharing operation of a 14kW photovoltaic/wind hybrid power system

    SciTech Connect (OSTI)

    Kim, S.; Kim, C. [Kongju National Univ., Chungnam (Korea, Republic of). Dept. of Electrical Engineering; Song, J.; Yu, G.; Jung, Y. [Korea Inst. of Energy Research, Taejon (Korea, Republic of). Photovoltaic Research Team

    1997-12-31T23:59:59.000Z

    In this paper, a design procedure for photovoltaic/wind hybrid power generation system is presented. The hybrid system is composed of a DC/DC converter for a photovoltaic energy conversion, a DC/DC converter for a wind energy conversion, a four switch IGBT inverter converting the combined DC power to the AC power and a backup power battery. Here, it is very important to select the desired battery size to meet the stable output and economic cost aspect since this system utilizes fluctuating and finite energy resource. The purpose of this paper is to develop a sizing method for the PV/Wind energy hybrid system with load sharing operation. The method demonstrates a simple tool to determine the desired battery size that satisfies the energy demand from the user with the photovoltaic and wind natural source. The proposed method is verified on a 14kW hybrid power system including a 10kW PV generator and a 4kW wind generator established in Cheju island, Korea.

  11. Reliability Modeling and Simulation of Composite Power Systems with Renewable Energy Resources and Storage

    E-Print Network [OSTI]

    Kim, Hagkwen

    2013-05-24T23:59:59.000Z

    This research proposes an efficient reliability modeling and simulation methodology in power systems to include photovoltaic units, wind farms and storage. Energy losses by wake effect in a wind farm are incorporated. Using the wake model, wind...

  12. Reliability Modeling and Simulation of Composite Power Systems with Renewable Energy Resources and Storage

    E-Print Network [OSTI]

    Kim, Hagkwen

    2013-05-24T23:59:59.000Z

    This research proposes an efficient reliability modeling and simulation methodology in power systems to include photovoltaic units, wind farms and storage. Energy losses by wake effect in a wind farm are incorporated. Using the wake model, wind...

  13. Solar energy storage through the homogeneous electrocatalytic reduction of carbon dioxide : photoelectrochemical and photovoltaic approaches

    E-Print Network [OSTI]

    Sathrum, Aaron John

    2011-01-01T23:59:59.000Z

    harvesting. With solar photovoltaic efficiencies approachingthat the photovoltaic solar cell efficiency plays a dominantEfficiency of Solar Powered Hydrogen Generation using Photovoltaic-

  14. Solar energy storage through the homogeneous electrocatalytic reduction of carbon dioxide : photoelectrochemical and photovoltaic approaches

    E-Print Network [OSTI]

    Sathrum, Aaron John

    2011-01-01T23:59:59.000Z

    electricity from photovoltaic cells to convert CO 2 intoSolar Energy Anode Photovoltaic Cell Cathode PP Mesh SpacerCoupling a Photovoltaic Solar Cell with a Homogeneous

  15. Solar energy storage through the homogeneous electrocatalytic reduction of carbon dioxide : photoelectrochemical and photovoltaic approaches

    E-Print Network [OSTI]

    Sathrum, Aaron John

    2011-01-01T23:59:59.000Z

    Hydrogen Generation using Photovoltaic-Electrolysis Devices.6128-6141. Gratzel, M. Photovoltaic and PhotoelectrochemicalHydrogen Generation Using Photovoltaic?Electrolysis Devices.

  16. Analysis of interrelationships between photovoltaic power and battery storage for electric utility load management

    SciTech Connect (OSTI)

    Chowdhury, B.H.; Rahman, S.

    1988-08-01T23:59:59.000Z

    The impact of photovoltaic power generation on the electric utility's load shape under supply-side peak load management conditions is explored. Results show that some utilities employing battery storage for peak load shaving might benefit from use of photovoltaic (PV) power, the extent of its usefulness being dependent on the specific load shapes as well as the photovoltaic array orientations. Typical utility load shapes both in the eastern and in the western parts of the U.S. are examined for this purpose. While photovoltaic power generation seems to present a bigger impact on the load of the western utility, both utilities will experience considerable savings on the size of the battery system required to shave the peak loads and also in the night-time base capacity required to charge the battery. Results show that when the cost of 2-axis tracking PV systems drop to $2/Wp, the southwestern utility will experience net cost savings when the PV-battery hybrid system is employed for load management. On the other hand, because of lesser availability of solar energy, the southeastern utility shows adverse economics for such a system.

  17. Managing Wind-based Electricity Generation and Storage

    E-Print Network [OSTI]

    Sadeh, Norman M.

    not exacerbate the global warming problem. However, renewable energy is inherently intermittent and variableManaging Wind-based Electricity Generation and Storage by Yangfang Zhou Submitted to the Tepper, and to meet increasing electricity demand without harming the environment. Two of the most promising solutions

  18. Managing Wind-based Electricity Generation and Storage

    E-Print Network [OSTI]

    and solar energy--is free, abundant, and most importantly, does not exacerbate the global warming problemManaging Wind-based Electricity Generation and Storage by Yangfang Zhou Submitted to the Tepper.S. strive to reduce reliance on the import of fossil fuels, and to meet increasing electricity demand

  19. Simulation Of Energy Storage In A System With Integrated Wind Yannick Degeilh, Justine Descloux, George Gross

    E-Print Network [OSTI]

    Gross, George

    Simulation Of Energy Storage In A System With Integrated Wind Resources Yannick Degeilh, Justine-scale storage [3],[4] to facilitate the improved harnessing of the wind resources by storing wind energy Descloux, George Gross University of Illinois at Urbana-Champaign, USA Abstract ­ Utility-scale storage

  20. A methodology for optimal sizing of autonomous hybrid PV/wind system

    E-Print Network [OSTI]

    Boyer, Edmond

    mathematical models for characterizing PV module, wind generator and battery are proposed. The second step is obtained for a system comprising a 125 W photovoltaic modules, one wind generator (600 W) and storage

  1. Minimizing Wind Power Producer's Balancing Costs Using Electrochemical Energy Storage: Preprint

    SciTech Connect (OSTI)

    Miettinen, J.; Tikka, V.; Lassila, J.; Partanen, J.; Hodge, B. M.

    2014-08-01T23:59:59.000Z

    This paper examines how electrochemical energy storage can be used to decrease the balancing costs of a wind power producer in the Nordic market. Because electrochemical energy storage is developing in both technological and financial terms, a sensitivity analysis was carried out for the most important variables in the wind-storage hybrid system. The system was studied from a wind power producer's point of view. The main result is that there are no technical limitations to using storage for reducing the balancing costs. However, in terms of economic feasibility, installing hybrid wind-storage systems such as the one studied in this paper faces challenges in both the short and long terms.

  2. Solar energy storage through the homogeneous electrocatalytic reduction of carbon dioxide : photoelectrochemical and photovoltaic approaches

    E-Print Network [OSTI]

    Sathrum, Aaron John

    2011-01-01T23:59:59.000Z

    Ideal Performance of Photochemical and Photovoltaic Solar-Photovoltaic Source to Load Power Matching The electrolyzer currentvoltage response (load curve) reflects the specific electrolyzer performance.

  3. MPC for Wind Power Gradients --Utilizing Forecasts, Rotor Inertia, and Central Energy Storage

    E-Print Network [OSTI]

    MPC for Wind Power Gradients -- Utilizing Forecasts, Rotor Inertia, and Central Energy Storage define an extremely low power output gradient and demonstrate how decentralized energy storage conservative bids on the power market. Energy storage strikes the major problems of wind power and joining

  4. NREL Wind to Hydrogen Project: Renewable Hydrogen Production for Energy Storage & Transportation (Presentation)

    SciTech Connect (OSTI)

    Ramsden, T.; Harrison, K.; Steward, D.

    2009-11-16T23:59:59.000Z

    Presentation about NREL's Wind to Hydrogen Project and producing renewable hydrogen for both energy storage and transporation, including the challenges, sustainable pathways, and analysis results.

  5. Residential solar-photovoltaic power systems: the need for battery storage

    SciTech Connect (OSTI)

    Mueller, R.O.; Cha, B.K.; Giese, R.F.; Maslowski, C.

    1980-01-01T23:59:59.000Z

    Benefits of battery storage used in conjunction with residential solar photovoltaic (PV) power systems were evaluated for a representative set of utility service areas. The PV systems were assumed capable of exporting excess power to the utility grid, and the batteries sited at the substation level were operated as a form of load-leveling utility storage. A cost-allocation model, SIMSTOR, was employed to determine utility fuel and capital cost savings resulting from the addition of batteries as a function of PV system penetration level. These benefits were compared with the savings of batteries used alone without introduction of the PV systems. Battery storage capacities and discharge rates were varied to determine the battery configurations that maximize net utility savings as a function of battery costs. Installed (rated) PV device capacities up to 20 percent of the generation peak load in each service area were considered. Findings indicate that batteries and PV systems are complementary rather than competing technologies, when attached to the electric supply grid. The utility benefits of the PV systems are primarily fuel savings, while those of the battery are primarily due to savings in utility capacity. The economic rationale for batteries does not change significantly as the penetration level for the PV systems increases. In some of the service areas, the addition of the PV systems tended to sharpen rather than flatten the peaks in the utility's load curves, with the magnitude of the effect becoming more pronounced at the higher PV system penetration levels. As a result of these load shape changes, batteries with higher discharge rates and larger storage capacities were favored.

  6. J.M. Tarascon, et al. , Electrochemical energy storage

    E-Print Network [OSTI]

    Canet, Léonie

    Integration of RES requires massive energy storage to improve grid , reliability, quality and utilization to smooth out energies from wind and photovoltaic farms. 34 MW2 MW Safety issues not completely resoved yet

  7. Optimal Operation of a Wind Farm equipped with a Storage Unit

    E-Print Network [OSTI]

    Paris-Sud XI, Universit de

    Optimal Operation of a Wind Farm equipped with a Storage Unit Paul Charton June 14, 2013 Keywords, viscosity solution, comparison principle. Abstract Due to the fluctuations in their production, wind farm. In particular wind energy is becoming more and more popular. Unlike other energy sources, the main drawback

  8. DESIGN AND MODELING OF DISPATCHABLE HEAT STORAGE IN WIND/DIESEL SYSTEMS

    E-Print Network [OSTI]

    Massachusetts at Amherst, University of

    1 DESIGN AND MODELING OF DISPATCHABLE HEAT STORAGE IN WIND/DIESEL SYSTEMS Clint Johnson, Utama system designed to increase the utilization of wind power in cold climate wind/diesel systems where and load occurs in many isolated cold-climate diesel systems around the world where the summer population

  9. Coupled Operation of a Wind Farm and Pumped Storage Facility: Techno-Economic Modelling and Stochastic Optimization

    E-Print Network [OSTI]

    Victoria, University of

    Coupled Operation of a Wind Farm and Pumped Storage Facility: Techno-Economic Modelling Operation of a Wind Farm and Pumped Storage Facility: Techno-Economic Modelling and Stochastic Optimization a stochastic programming approach to the techno-economic analysis of a wind farm coupled with a pumped storage

  10. Power Control and Optimization of Photovoltaic and Wind Energy Conversion Systems /

    E-Print Network [OSTI]

    Ghaffari, Azad

    2013-01-01T23:59:59.000Z

    77 5.2 Wind Energy Conversion System . . . . .Optimization and Control in Wind Energy Conversion SystemsAC matrix con- verter for wind energy conversion system, in

  11. Power Control and Optimization of Photovoltaic and Wind Energy Conversion Systems /

    E-Print Network [OSTI]

    Ghaffari, Azad

    2013-01-01T23:59:59.000Z

    Because High Altitude Wind Generators (HAWGs) could movecables, realizing a wind generator that is largely lighterSystems High altitude wind generators will have a relatively

  12. Power Control and Optimization of Photovoltaic and Wind Energy Conversion Systems /

    E-Print Network [OSTI]

    Ghaffari, Azad

    2013-01-01T23:59:59.000Z

    both AC drives and wind energy Turbine, shaft, and Gear BoxWind Energy Conversion Systems using Extremum Seeking Wind turbines (wind energy generation can be realized by capturing wind power at altitudes over the ground that cannot be reached by wind turbines.

  13. Using supply chain management techniques to make wind plant and energy storage operation more profitable

    E-Print Network [OSTI]

    Saran, Prashant

    2009-01-01T23:59:59.000Z

    Our research demonstrates that supply chain management techniques can improve the incremental gross profits of wind plant and storage operations by up to five times. Using Monte-Carlo simulation we create and test scenarios ...

  14. INTERNATIONAL JOURNAL OF HYDROGEN ENERGY Accepted June 2008 HYDROGEN STORAGE FOR MIXED WIND-NUCLEAR POWER PLANTS IN

    E-Print Network [OSTI]

    Caizares, Claudio A.

    evaluation of hydrogen production and storage for a mixed wind-nuclear power plant considering some new : nuclear power plant production (MW) GP : total wind-nuclear power plant production (MW) EP : electrolyzerINTERNATIONAL JOURNAL OF HYDROGEN ENERGY Accepted June 2008 1 HYDROGEN STORAGE FOR MIXED WIND-NUCLEAR

  15. Large CO2 reductions via offshore wind power matched to inherent storage in energy end-uses

    E-Print Network [OSTI]

    Jacobson, Mark

    Large CO2 reductions via offshore wind power matched to inherent storage in energy end-uses Willett develop methods for assessing offshore wind resources, using a model of the vertical structure offshore wind power matched to inherent storage in energy end- uses, Geophys. Res. Lett., 34, L02817, doi

  16. Power Control and Optimization of Photovoltaic and Wind Energy Conversion Systems /

    E-Print Network [OSTI]

    Ghaffari, Azad

    2013-01-01T23:59:59.000Z

    be realized by capturing wind power at altitudes over the2011. [2] , High altitude wind power systems: A survey onOckels, Optimal cross-wind towing and power generation with

  17. Energy Storage and Reactive Power Compensator in a Large Wind Farm: Preprint

    SciTech Connect (OSTI)

    Muljadi, E.; Butterfield, C. P.; Yinger, R.; Romanowitz, H.

    2003-10-01T23:59:59.000Z

    The size of wind farm power systems is increasing, and so is the number of wind farms contributing to the power systems network. The size of wind turbines is also increasing--from less than 1 MW a few years ago to the 2- to 3-MW machines being installed today and the 5-MW machines under development. The interaction of the wind farm, energy storage, reactive power compensation, and the power system network is being investigated. Because the loads and the wind farms' output fluctuate during the day, the use of energy storage and reactive power compensation is ideal for the power system network. Energy storage and reactive power compensation can minimize real/reactive power imbalances that can affect the surrounding power system. In this paper, we will show how the contribution of wind farms affects the power distribution network and how the power distribution network, energy storage, and reactive power compensation interact when the wind changes. We will also investigate the size of the components in relation to each other and to the power system.

  18. Integrated Building Energy Systems Design Considering Storage Technologies

    E-Print Network [OSTI]

    Stadler, Michael

    2009-01-01T23:59:59.000Z

    electric storage, energy efficiency, heat storage, micro-generation systems, photovoltaic, software, solar thermal

  19. Power Control and Optimization of Photovoltaic and Wind Energy Conversion Systems /

    E-Print Network [OSTI]

    Ghaffari, Azad

    2013-01-01T23:59:59.000Z

    solar irradiance, and wind speed. Maximum Power Point Tracking (Tracking Since PV and WECS power level are defined by the environmental param- eters like solar

  20. Accurate Component Model Based Optimal Control for Energy Storage Systems in Households with Photovoltaic Modules

    E-Print Network [OSTI]

    Pedram, Massoud

    a particularly interesting problem with the introduction of dynamic electricity energy pricing models since, comprised of both the energy price component and the demand price component. Due to the characteristics of the realistic electricity price function and the energy storage capacity limitation, the residential storage

  1. 2 Large CO2 reductions via offshore wind power matched to inherent 3 storage in energy end-uses

    E-Print Network [OSTI]

    Firestone, Jeremy

    2 Large CO2 reductions via offshore wind power matched to inherent 3 storage in energy end-uses 4] We develop methods for assessing offshore wind 9 resources, using a model of the vertical structure. Dhanju, R. W. 26 Garvine, and M. Z. Jacobson (2007), Large CO2 reductions via 27 offshore wind power

  2. ARRA-Multi-Level Energy Storage and Controls for Large-Scale Wind Energy Integration

    SciTech Connect (OSTI)

    David Wenzhong Gao

    2012-09-30T23:59:59.000Z

    The Project Objective is to design innovative energy storage architecture and associated controls for high wind penetration to increase reliability and market acceptance of wind power. The project goals are to facilitate wind energy integration at different levels by design and control of suitable energy storage systems. The three levels of wind power system are: Balancing Control Center level, Wind Power Plant level, and Wind Power Generator level. Our scopes are to smooth the wind power fluctuation and also ensure adequate battery life. In the new hybrid energy storage system (HESS) design for wind power generation application, the boundary levels of the state of charge of the battery and that of the supercapacitor are used in the control strategy. In the controller, some logic gates are also used to control the operating time durations of the battery. The sizing method is based on the average fluctuation of wind profiles of a specific wind station. The calculated battery size is dependent on the size of the supercapacitor, state of charge of the supercapacitor and battery wear. To accommodate the wind power fluctuation, a hybrid energy storage system (HESS) consisting of battery energy system (BESS) and super-capacitor is adopted in this project. A probability-based power capacity specification approach for the BESS and super-capacitors is proposed. Through this method the capacities of BESS and super-capacitor are properly designed to combine the characteristics of high energy density of BESS and the characteristics of high power density of super-capacitor. It turns out that the super-capacitor within HESS deals with the high power fluctuations, which contributes to the extension of BESS lifetime, and the super-capacitor can handle the peaks in wind power fluctuations without the severe penalty of round trip losses associated with a BESS. The proposed approach has been verified based on the real wind data from an existing wind power plant in Iowa. An intelligent controller that increases battery life within hybrid energy storage systems for wind application was developed. Comprehensive studies have been conducted and simulation results are analyzed. A permanent magnet synchronous generator, coupled with a variable speed wind turbine, is connected to a power grid (14-bus system). A rectifier, a DC-DC converter and an inverter are used to provide a complete model of the wind system. An Energy Storage System (ESS) is connected to a DC-link through a DC-DC converter. An intelligent controller is applied to the DC-DC converter to help the Voltage Source Inverter (VSI) to regulate output power and also to control the operation of the battery and supercapacitor. This ensures a longer life time for the batteries. The detailed model is simulated in PSCAD/EMTP. Additionally, economic analysis has been done for different methods that can reduce the wind power output fluctuation. These methods are, wind power curtailment, dumping loads, battery energy storage system and hybrid energy storage system. From the results, application of single advanced HESS can save more money for wind turbines owners. Generally the income would be the same for most of methods because the wind does not change and maximum power point tracking can be applied to most systems. On the other hand, the cost is the key point. For short term and small wind turbine, the BESS is the cheapest and applicable method while for large scale wind turbines and wind farms the application of advanced HESS would be the best method to reduce the power fluctuation. The key outcomes of this project include a new intelligent controller that can reduce energy exchanged between the battery and DC-link, reduce charging/discharging cycles, reduce depth of discharge and increase time interval between charge/discharge, and lower battery temperature. This improves the overall lifetime of battery energy storages. Additionally, a new design method based on probability help optimize the power capacity specification for BESS and super-capacitors. Recommendations include experimental imp

  3. Revenue Maximization of Electricity Generation for a Wind Turbine Integrated with a Compressed Air Energy Storage System

    E-Print Network [OSTI]

    Li, Perry Y.

    Energy Storage System Mohsen Saadat, Farzad A. Shirazi, Perry Y. Li Abstract-- A high-level supervisory controller is developed for a Compressed Air Energy Storage (CAES) system integrated with a wind turbine the effect of storage system sizing on the maximum revenue. I. INTRODUCTION Large-scale cost effective energy

  4. Modeling and control of an open accumulator Compressed Air Energy Storage (CAES) system for wind turbines q

    E-Print Network [OSTI]

    Li, Perry Y.

    Modeling and control of an open accumulator Compressed Air Energy Storage (CAES) system for wind compressed air energy storage. Maximizes energy production, levels load, downsizes electrical parts, meets Energy Storage (CAES) Load leveling Hydraulics Pneumatics Bandwidth limitation a b s t r a c t This paper

  5. Abstract--A novel compressed air energy storage system for wind turbine is proposed. It captures excess power prior to

    E-Print Network [OSTI]

    Li, Perry Y.

    Abstract-- A novel compressed air energy storage system for wind turbine is proposed. It captures instead of supply. Energy is stored in a high pressure dual chamber liquid-compressed air storage vessel a challenge. An energy storage system can provide steady and predictable power by storing excess energy

  6. Appropriate storage for high-penetration grid-connected photovoltaic plants A.A. Solomon a

    E-Print Network [OSTI]

    Kammen, Daniel M.

    % of the annual load requirements could have been achieved, albeit at the cost of having to dump approximately 5 be derived by detailed consideration of the three-way mutual interactions among storage, demand profile

  7. Optimal Sizing of Energy Storage and Photovoltaic Power Systems for Demand Charge Mitigation (Poster)

    SciTech Connect (OSTI)

    Neubauer, J.; Simpson, M.

    2013-10-01T23:59:59.000Z

    Commercial facility utility bills are often a strong function of demand charges -- a fee proportional to peak power demand rather than total energy consumed. In some instances, demand charges can constitute more than 50% of a commercial customer's monthly electricity cost. While installation of behind-the-meter solar power generation decreases energy costs, its variability makes it likely to leave the peak load -- and thereby demand charges -- unaffected. This then makes demand charges an even larger fraction of remaining electricity costs. Adding controllable behind-the-meter energy storage can more predictably affect building peak demand, thus reducing electricity costs. Due to the high cost of energy storage technology, the size and operation of an energy storage system providing demand charge management (DCM) service must be optimized to yield a positive return on investment (ROI). The peak demand reduction achievable with an energy storage system depends heavily on a facility's load profile, so the optimal configuration will be specific to both the customer and the amount of installed solar power capacity. We explore the sensitivity of DCM value to the power and energy levels of installed solar power and energy storage systems. An optimal peak load reduction control algorithm for energy storage systems will be introduced and applied to historic solar power data and meter load data from multiple facilities for a broad range of energy storage system configurations. For each scenario, the peak load reduction and electricity cost savings will be computed. From this, we will identify a favorable energy storage system configuration that maximizes ROI.

  8. Energy dispatch schedule optimization and cost benefit analysis for grid-connected, photovoltaic-battery storage systems

    E-Print Network [OSTI]

    Nottrott, A.; Kleissl, J.; Washom, B.

    2013-01-01T23:59:59.000Z

    State Assembly Bill 2514 Energy storage systems, Energy Storage for the Electricity5. D. Rastler, Electric Energy Storage Technology Options: A

  9. Energy dispatch schedule optimization and cost benefit analysis for grid-connected, photovoltaic-battery storage systems

    E-Print Network [OSTI]

    Nottrott, A.; Kleissl, J.; Washom, B.

    2013-01-01T23:59:59.000Z

    Rastler, Electric Energy Storage Technology Options: A WhiteJ. stergaard, Battery energy storage technology for powerof advanced energy storage technologies as a means to

  10. Sandia National Laboratories: Photovoltaics

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    ESTAP Webinar: Briefing on Sandia's Maui Energy Storage Study On March 6, 2013, in EC, Energy, News, Photovoltaic, Renewable Energy, Solar March 6, 2013 14:00 - 15:00 Eastern The...

  11. Photovoltaics information user study

    SciTech Connect (OSTI)

    Belew, W.W.; Wood, B.L.; Marie, T.L.; Reinhardt, C.L.

    1980-10-01T23:59:59.000Z

    The results of a series of telephone interviews with groups of users of information on photovoltaics (PV) are described. These results, part of a larger study on many different solar technologies, identify types of information each group needed and the best ways to get information to each group. The report is 1 of 10 discussing study results. The overall study provides baseline data about information needs in the solar community. It covers these technological areas: photovoltaics, passive solar heating and cooling, active solar heating and cooling, biomass energy, solar thermal electric power, solar industrial and agricultural process heat, wind energy, ocean energy, and advanced energy storage. An earlier study identified the information user groups in the solar community and the priority (to accelerate solar energy commercialization) of getting information to each group. In the current study only high-priority groups were examined. Results from seven PV groups respondents are analyzed in this report: DOE-Funded Researchers, Non-DOE-Funded Researchers, Researchers Working for Manufacturers, Representatives of Other Manufacturers, Representatives of Utilities, Electric Power Engineers, and Educators.

  12. Effect of Energy Storage in Increasing the Penetration of RES in the Remote Island of Agios Efstratios

    E-Print Network [OSTI]

    Chaudhary, Sanjay

    , photovoltaics, renewable penetration, wind power. I. INTRODUCTION Several autonomous power system (APS) have storage technologies have been envisaged as the enabling technologies to balance the power generation of total 840 kW capacity. Wind turbine generators of 680 kW total capacity and PV farm of 100 kWp power

  13. aquatic center photovoltaic: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    wind, fuel cells. However, renewable power sources such as photovoltaic (PV) arrays and wind are both variable Ramakrishnan, Naren 443 World Renewable Energy Congress 2011 Sweden...

  14. Techno-economic Modeling of the Integration of 20% Wind and Large-scale Energy Storage in ERCOT by 2030

    SciTech Connect (OSTI)

    Ross Baldick; Michael Webber; Carey King; Jared Garrison; Stuart Cohen; Duehee Lee

    2012-12-21T23:59:59.000Z

    This study?¢????s objective is to examine interrelated technical and economic avenues for the Electric Reliability Council of Texas (ERCOT) grid to incorporate up to and over 20% wind generation by 2030. Our specific interests are to look at the factors that will affect the implementation of both high level of wind power penetration (> 20% generation) and installation of large scale storage.

  15. Maui energy storage study.

    SciTech Connect (OSTI)

    Ellison, James; Bhatnagar, Dhruv; Karlson, Benjamin

    2012-12-01T23:59:59.000Z

    This report investigates strategies to mitigate anticipated wind energy curtailment on Maui, with a focus on grid-level energy storage technology. The study team developed an hourly production cost model of the Maui Electric Company (MECO) system, with an expected 72 MW of wind generation and 15 MW of distributed photovoltaic (PV) generation in 2015, and used this model to investigate strategies that mitigate wind energy curtailment. It was found that storage projects can reduce both wind curtailment and the annual cost of producing power, and can do so in a cost-effective manner. Most of the savings achieved in these scenarios are not from replacing constant-cost diesel-fired generation with wind generation. Instead, the savings are achieved by the more efficient operation of the conventional units of the system. Using additional storage for spinning reserve enables the system to decrease the amount of spinning reserve provided by single-cycle units. This decreases the amount of generation from these units, which are often operated at their least efficient point (at minimum load). At the same time, the amount of spinning reserve from the efficient combined-cycle units also decreases, allowing these units to operate at higher, more efficient levels.

  16. The effects of energy storage properties and forecast accuracy on mitigating variability in wind power generation

    E-Print Network [OSTI]

    Jaworsky, Christina A

    2013-01-01T23:59:59.000Z

    Electricity generation from wind power is increasing worldwide. Wind power can offset traditional fossil fuel generators which is beneficial to the environment. However, wind generation is unpredictable. Wind speeds have ...

  17. Energy dispatch schedule optimization and cost benefit analysis for grid-connected, photovoltaic-battery storage systems

    E-Print Network [OSTI]

    Nottrott, A.; Kleissl, J.; Washom, B.

    2013-01-01T23:59:59.000Z

    energy bill savings for the utility customer are the only value proposition considered in the valuation of the storage

  18. Overview of Two Hydrogen Energy Storage Studies: Wind Hydrogen in California and Blending in Natural Gas Pipelines (Presentation)

    SciTech Connect (OSTI)

    Melaina, M. W.

    2013-05-01T23:59:59.000Z

    This presentation provides an overview of two NREL energy storage studies: Wind Hydrogen in California: Case Study and Blending Hydrogen Into Natural Gas Pipeline Networks: A Review of Key Issues. The presentation summarizes key issues, major model input assumptions, and results.

  19. The need for high density energy storage for wind turbine and solar power has proven to be a

    E-Print Network [OSTI]

    Botea, Adi

    1 The need for high density energy storage for wind turbine and solar power has proven applications where under-hood temperatures may exceed the 85 C normal rating, where the Y5V and Y5R capacitors (currently ~0.22 F) is also considerable. The resultant devices are anticipated to be the new generation

  20. Abstract--A novel methodology for economic evaluation of hydrogen storage for a mixed wind-nuclear power plant is

    E-Print Network [OSTI]

    Cañizares, Claudio A.

    -nuclear power plant is presented in this article in a context of a "Hydrogen Economy". The simulation power plant production (MW) NP : nuclear power plant production (MW) CP : electrolyzer consumption (MW, IEEE THE FEASIBILITY OF HYDROGEN STORAGE FOR MIXED WIND-NUCLEAR POWER PLANTS #12;price scenario p

  1. Novel Compressed Air Approach to Off-Shore Wind Energy Storage (NSF Grant #: EFRI-1038294)! Principal Investigators: Perry Li1,a, Terry Simon1,b, James Van de Ven1,c, Eric Loth2,d, Steve Crane3,e!

    E-Print Network [OSTI]

    Li, Perry Y.

    Novel Compressed Air Approach to Off-Shore Wind Energy Storage (NSF Grant #: EFRI-1038294@lightsailenergy.com! Options for Energy Storage Compatible with Wind Turbines:! Objective! Our objective is to create a cost effective local energy storage system for offshore wind turbines using an "open accumulator" high pressure

  2. PCIM, Nrnberg, may 2003 FLYWHEEL ENERGY STORAGE SYSTEMS IN HYBRID AND

    E-Print Network [OSTI]

    Boyer, Edmond

    of smaller generators (using wind power, photovoltaic power, etc.) appears to be improving both the safety a stationary accumulator for a domestic application requiring power on the order of one kilowatt. Keywords towards a distributed generation in which energy storage plays a key role in balancing consumption

  3. Enabling Wind Power Nationwide

    Office of Environmental Management (EM)

    including natural gas, and competing renewable power resources such as solar photovoltaics. Figure 4-3. Wind turbine hub height trends in Germany from 2007 to 2014 Source:...

  4. Sustainable Energy Solutions Task 5.1: Expand the Number of Faculty Working in Wind Energy: Wind Energy Storage

    SciTech Connect (OSTI)

    Janet M Twomey, PhD

    2010-04-30T23:59:59.000Z

    EXECUTIVE SUMARRY Energy storage to reduce peak-load demands on utilities is emerging as an important way to address the intermittency of renewable energy resources. Wind energy produced in the middle of the night may be wasted unless it can be stored, and conversely, solar energy production could be used after the sun goes down if we had an efficient way to store it. It is uses an electrochemical process to convert hydrogen gas into electricity. The role of fuel cells in energy storage is a very important criteria and it is compared with regular batteries for the advantages of fuel cells over the latter. For this reason fuel cells can be employed. PEM fuel cells can be effectively used for this reason. But the performance and durability of PEM fuel cells are significantly affected by the various components used in a PEM cell. Several parameters affect the performance and durability of fuel cells. They are water management, degradation of components, cell contamination, reactant starvation and thermal management. Water management is the parameter which plays a major role in the performance of a fuel cell. Based on the reviews, improvement of condensation on the cathode side of a fuel cell is expected to improve the performance of the fuel cell by reducing cathode flooding. Microchannels and minichannels can enhance condensation on the cathode side of a fuel cell. Computational fluid dynamics (CFD) analysis was performed to evaluate and compare the condensation of steam in mini and microchannels with hydraulic diameter of 2mm, 2.66mm, 200m and 266m respectively. The simulation was run at various mass flux values ranging from 0.5 kg/m2s and 4 kg/m2s. The length of the mini and microchannels were in the range of 20 mm to 100 mm. CFD softwares GAMBIT and FLUENT were used for simulating the condensation process through the mini and microchannels. Steam flowed through the channels, whose walls were cooled by natural convection of air at room temperature. The outlet temperature of the condensate was in the range of 25oC to 90oC. The condensation process in minichannels was observed to be different from that in microchannels. It was found that the outlet temperature of the condensate decreased as the diameter of the channel decreased. It was also evident that the increase in length of the channel further decreased the outlet temperature of the condensate and subsequently the condensation heat flux. The investigation also showed that the pressure drop along the channel length increased with decreasing hydraulic diameter and length of the mini and micro channel. Conversely, the pressure drop along the channel increased with increasing inlet velocity of the stream. It was then suggested to use microchannels on the cathode section of a fuel cell for improved condensation.

  5. Energy dispatch schedule optimization and cost benefit analysis for grid-connected, photovoltaic-battery storage systems

    E-Print Network [OSTI]

    Nottrott, A.; Kleissl, J.; Washom, B.

    2013-01-01T23:59:59.000Z

    6a). If the market price for Lithium-ion batteries decreasesquestion: What is the price at which Lithium-ion batteriesto estimate the price at which Lithium-ion energy storage

  6. Module Handbook Specialisation Photovoltaics

    E-Print Network [OSTI]

    Habel, Annegret

    Module Handbook Specialisation Photovoltaics 2nd Semester for the Master Programme REMA/EUREC Course 2008/2009 University of Northumbria Specialisation Provider: Photovoltaics #12;Specialisation Photovoltaics, University of Northumbria Module 1/Photovoltaics: PHOTOVOLTAIC CELL

  7. On the Use of Energy Storage Technologies for Regulation Services in Electric Power Systems with Significant Penetration of Wind Energy

    SciTech Connect (OSTI)

    Yang, Bo; Makarov, Yuri V.; DeSteese, John G.; Vishwanathan, Vilanyur V.; Nyeng, Preben; McManus, Bart; Pease, John

    2008-05-27T23:59:59.000Z

    Energy produced by intermittent renewable resources is sharply increasing in the United States. At high penetration levels, volatility of wind power production could cause additional problems for the power system balancing functions such as regulation. This paper reports some partial results of a project work, recently conducted by the Pacific Northwest National Laboratory (PNNL) for Bonneville Power Administration (BPA). The project proposes to mitigate additional intermittency with the help of Wide Area Energy Management System (WAEMS) that would provide a two-way simultaneous regulation service for the BPA and California ISO systems by using a large energy storage facility. The paper evaluates several utility-scale energy storage technology options for their usage as regulation resources. The regulation service requires a participating resource to quickly vary its power output following the rapidly and frequently changing regulation signal. Several energy storage options have been analyzed based on thirteen selection criteria. The evaluation process resulted in the selection of flywheels, pumped hydro electric power (or conventional hydro electric power) plant and sodium sulfur or nickel cadmium batteries as candidate technologies for the WAEMS project. A cost benefit analysis should be conducted to narrow the choice to one technology.

  8. Impact of Wind and Solar on the Value of Energy Storage

    SciTech Connect (OSTI)

    Denholm, P.; Jorgenson, J.; Hummon, M.; Palchak, D.; Kirby, B.; Ma, O.; O'Malley, M.

    2013-11-01T23:59:59.000Z

    This analysis evaluates how the value of energy storage changes when adding variable generation (VG) renewable energy resources to the grid. A series of VG energy penetration scenarios from 16% to 55% were generated for a utility system in the western United States. This operational value of storage (measured by its ability to reduce system production costs) was estimated in each VG scenario, considering provision of different services and with several sensitivities to fuel price and generation mix. Overall, the results found that the presence of VG increases the value of energy storage by lowering off-peak energy prices more than on-peak prices, leading to a greater opportunity to arbitrage this price difference. However, significant charging from renewables, and consequently a net reduction in carbon emissions, did not occur until VG penetration was in the range of 40%-50%. Increased penetration of VG also increases the potential value of storage when providing reserves, mainly by increasing the amount of reserves required by the system. Despite this increase in value, storage may face challenges in capturing the full benefits it provides. Due to suppression of on-/off-peak price differentials, reserve prices, and incomplete capture of certain system benefits (such as the cost of power plant starts), the revenue obtained by storage in a market setting appears to be substantially less than the net benefit (reduction in production costs) provided to the system. Furthermore, it is unclear how storage will actually incentivize large-scale deployment of renewables needed to substantially increase VG penetration. This demonstrates some of the additional challenges for storage deployed in restructured energy markets.

  9. Photovoltaic cell

    DOE Patents [OSTI]

    Gordon, Roy G. (Cambridge, MA); Kurtz, Sarah (Somerville, MA)

    1984-11-27T23:59:59.000Z

    In a photovoltaic cell structure containing a visibly transparent, electrically conductive first layer of metal oxide, and a light-absorbing semiconductive photovoltaic second layer, the improvement comprising a thin layer of transition metal nitride, carbide or boride interposed between said first and second layers.

  10. The role of energy storage in accessing remote wind resources in the Midwest

    E-Print Network [OSTI]

    Jaramillo, Paulina

    with renewable energy could pro- vide part of the solution since most renewable technologies do not produce an increase in renewable capacity with incentives such as the federal production tax credit for wind power to 40% of generation coming from qualifying renewable resources (Database of State Incentives

  11. An Integrated Approach for Optimal Coordination of Wind Power and Hydro Pumping Storage

    E-Print Network [OSTI]

    Paris-Sud XI, Universit de

    of hydro storage used and the market characteristics and several options are compared in this study is the down regulation price in the electricity market paid to put in operation reserves to decrease generation at interval i; downreg ip^ is the down regulation price forecasted at period i during the intraday

  12. Optimizing a Hybrid Energy Storage System for a Virtual Power Plant for Improved Wind Power

    E-Print Network [OSTI]

    Teodorescu, Remus

    . Possibilities to overcome this problem are to increase transmission capacities, demand side management approach to find two optimum energy storages (ESs) to build a hybrid system which is part of a virtual and the EU renewable directive [1] is even demanding for even higher rates of renewable power generation

  13. EELE408 Photovoltaics Lecture 20: Photovoltaic Systems

    E-Print Network [OSTI]

    Kaiser, Todd J.

    · 6. Determine battery size for recommended reserve time Photovoltaic System Design Block Diagram Ph1 EELE408 Photovoltaics Lecture 20: Photovoltaic Systems Dr. Todd J. Kaiser tjkaiser into the grid 2 Application Areas 3 Photovoltaic System Basics · Photovoltaic Systems ­ Cell Panel Array

  14. Sandia National Laboratories: Photovoltaic

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    in Computational Modeling & Simulation, Energy, Facilities, News, News & Events, Photovoltaic, Photovoltaic Systems Evaluation Laboratory (PSEL), Renewable Energy, Solar, Solar...

  15. ANALYSIS OF THE PERFORMANCE AND COST EFFECTIVENESS OF NINE SMALL WIND ENERGY CONVERSION SYSTEMS FUNDED BY THE DOE SMALL GRANTS PROGRAM

    E-Print Network [OSTI]

    Kay, J.

    2009-01-01T23:59:59.000Z

    relationship between potential wind speed and theoreticalfirm contracts. Potential wind investors face considerable15 with optimism the potential that wind, photovoltaic, and

  16. Emerging Technologies: Energy Storage for PV Power

    SciTech Connect (OSTI)

    Ponoum, Ratcharit; Rutberg, Michael; Bouza, Antonio

    2013-11-30T23:59:59.000Z

    The article discusses available technologies for energy storage for photovoltaic power systems, and also addresses the efficiency levels and market potential of these strategies.

  17. Enabling Technologies for High Penetration of Wind and Solar Energy

    SciTech Connect (OSTI)

    Denholm, P.

    2011-01-01T23:59:59.000Z

    High penetration of variable wind and solar electricity generation will require modifications to the electric power system. This work examines the impacts of variable generation, including uncertainty, ramp rate, ramp range, and potentially excess generation. Time-series simulations were performed in the Texas (ERCOT) grid where different mixes of wind, solar photovoltaic and concentrating solar power provide up to 80% of the electric demand. Different enabling technologies were examined, including conventional generator flexibility, demand response, load shifting, and energy storage. A variety of combinations of these technologies enabled low levels of surplus or curtailed wind and solar generation depending on the desired penetration of renewable sources. At lower levels of penetration (up to about 30% on an energy basis) increasing flexible generation, combined with demand response may be sufficient to accommodate variability and uncertainty. Introduction of load-shifting through real-time pricing or other market mechanisms further increases the penetration of variable generation. The limited time coincidence of wind and solar generation presents increasing challenges as these sources provide greater than 50% of total demand. System flexibility must be increased to the point of virtually eliminating must-run baseload generators during periods of high wind and solar generation. Energy storage also becomes increasingly important as lower cost flexibility options are exhausted. The study examines three classes of energy storage - electricity storage, including batteries and pumped hydro, hybrid storage (compressed-air energy storage), and thermal energy storage. Ignoring long-distance transmission options, a combination of load shifting and storage equal to about 12 hours of average demand may keep renewable energy curtailment below 10% in the simulated system.

  18. EELE408 Photovoltaics Lecture 15 Photovoltaic Devices

    E-Print Network [OSTI]

    Kaiser, Todd J.

    1 EELE408 Photovoltaics Lecture 15 Photovoltaic Devices Dr. Todd J. Kaiser tjkaiser) Demonstrated the photovoltaic effect Best results with UV or blue light 2 g Electrodes covered with light of photovoltaic effect in an all solid state device Several decades before the effect could be explained Fritts

  19. Abstract--This paper discusses using the battery energy storage system (BESS) to mitigate wind power intermittency, so

    E-Print Network [OSTI]

    Peng, Huei

    to compensate for wind power forecast errors and minimize operation costs to the wind farm owner. A ramp rate wholesale market and grid operators, in that wind power outputs are intermittent, which may increase demands power intermittency, so that wind power can be dispatchable on an hourly basis like fossil fuel power

  20. Lower Brule Sioux Tribe Wind-Pump Storage Feasibility Study Project

    SciTech Connect (OSTI)

    Shawn A. LaRoche; Tracey LeBeau; Innovation Investments, LLC

    2007-04-20T23:59:59.000Z

    The Lower Brule Sioux Tribe is a federally recognized Indian tribe organized pursuant to the 1934 Wheeler-Howard Act (Indian Reorganization Act). The Lower Brule Sioux Indian Reservation lies along the west bank of Lake Francis Case and Lake Sharpe, which were created by the Fort Randall and Big Bend dams of the Missouri River pursuant to the Pick Sloan Act. The grid accessible at the Big Bend Dam facility operated by the U.S. Army Corps of Engineers is less than one mile of the wind farm contemplated by the Tribe in this response. The low-head hydroelectric turbines further being studied would be placed below the dam and would be turned by the water released from the dam itself. The riverbed at this place is within the exterior boundaries of the reservation. The low-head turbines in the tailrace would be evaluated to determine if enough renewable energy could be developed to pump water to a reservoir 500 feet above the river.

  1. Methodology to determine the technical performance and value proposition for grid-scale energy storage systems : a study for the DOE energy storage systems program.

    SciTech Connect (OSTI)

    Byrne, Raymond Harry; Loose, Verne William; Donnelly, Matthew K. [Montana Tech of The University of Montana, Butte, MT; Trudnowski, Daniel J. [Montana Tech of The University of Montana, Butte, MT

    2012-12-01T23:59:59.000Z

    As the amount of renewable generation increases, the inherent variability of wind and photovoltaic systems must be addressed in order to ensure the continued safe and reliable operation of the nation's electricity grid. Grid-scale energy storage systems are uniquely suited to address the variability of renewable generation and to provide other valuable grid services. The goal of this report is to quantify the technical performance required to provide di erent grid bene ts and to specify the proper techniques for estimating the value of grid-scale energy storage systems.

  2. Amorphous Silicon-Carbon Nanostructure Photovoltaic Devices

    E-Print Network [OSTI]

    Schriver, Maria Christine

    2012-01-01T23:59:59.000Z

    and Photovoltaic Performance . . . . . . . . . . . . . . .Amorphous Silicon as a Photovoltaic Material 2.1.2ii Photovoltaic Model . . . . . . . . . . .

  3. Effects of Metastabilities on CIGS Photovoltaic Modules

    Broader source: Energy.gov [DOE]

    This poster describes a SunShot Initiative solar project led by a team from Nexcis Photovoltaic Technology entitled "Effects of Metastabilities on CIGS Photovoltaic Modules." The team studied the driving force of the mechanisms which governs the different observed phases during storage, light exposition and annealing. The aim of this study is to obtain a better understanding of this phenomenon and hence a better evaluation of its impact on solar panel reliability.

  4. Photovoltaic roof heat flux

    E-Print Network [OSTI]

    Samady, Mezhgan Frishta

    2011-01-01T23:59:59.000Z

    designs (relatively) Photovoltaic Solar P a n e l AtmosphereCALIFORNIA, SAN DIEGO Photovoltaic Roof Heat Flux A ThesisABSTRACT OF T H E THESIS Photovoltaic Roof Heat Flux by

  5. Sandia National Laboratories: Photovoltaics

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Sandia Tool Determines Value of Solar Photovoltaic Power Systems On February 6, 2012, in Energy, News, News & Events, Partnership, Photovoltaic, Renewable Energy, Solar Consistent...

  6. Sandia National Laboratories: Photovoltaics

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Security National Solar Thermal Test Facility NSTTF Nuclear Energy photovoltaic Photovoltaics PV Renewable Energy solar Solar Energy solar power Solar Research Solid-State...

  7. Sandia National Laboratories: Photovoltaics

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Energy, News, Photovoltaic, Renewable Energy, Solar Sandia's microsystems enabled photovoltaics, also known as "solar glitter," captured a prestigious R&D 100 Award in this...

  8. Photovoltaic Technology Basics

    Broader source: Energy.gov [DOE]

    Photovoltaic (PV) materials and devices convert sunlight into electrical energy, and PV cells are commonly known as solar cells. Photovoltaics can literally be translated as light-electricity.

  9. Sandia National Laboratories: photovoltaic

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    photovoltaic Microsystems Enabled Photovoltaics (MEPV) On April 14, 2011, in About MEPV Flexible MEPV MEPV Publications MEPV Awards Researchers at Sandia National Laboratories are...

  10. Sandia National Laboratories: photovoltaic

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    photovoltaic Sandians Win 'Best Paper' Award at Photovoltaic Conference in Japan On March 4, 2015, in Computational Modeling & Simulation, Energy, Facilities, News, News & Events,...

  11. Sandia National Laboratories: photovoltaic

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Sandia Tool Determines Value of Solar Photovoltaic Power Systems On February 6, 2012, in Energy, News, News & Events, Partnership, Photovoltaic, Renewable Energy, Solar Consistent...

  12. Sandia National Laboratories: Photovoltaic

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Photovoltaic Sandians Win 'Best Paper' Award at Photovoltaic Conference in Japan On March 4, 2015, in Computational Modeling & Simulation, Energy, Facilities, News, News & Events,...

  13. Sandia National Laboratories: Photovoltaic

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Sandia Tool Determines Value of Solar Photovoltaic Power Systems On February 6, 2012, in Energy, News, News & Events, Partnership, Photovoltaic, Renewable Energy, Solar Consistent...

  14. Wind Turbine R&D and Certification Services: Cooperative Research and Development Final Report, CRADA Number CRD-04-00147

    SciTech Connect (OSTI)

    Link, H.

    2011-02-01T23:59:59.000Z

    NREL and Underwriters Laboratories Inc. are developing a domestic certification program for the US wind and photovoltaic (PV) industry.

  15. NREL Wind to Hydrogen Project: Renewable Hydrogen Production...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Wind to Hydrogen Project: Renewable Hydrogen Production for Energy Storage & Transportation NREL Wind to Hydrogen Project: Renewable Hydrogen Production for Energy Storage &...

  16. Role of Energy Storage with Renewable Electricity Generation

    SciTech Connect (OSTI)

    Denholm, P.; Ela, E.; Kirby, B.; Milligan, M.

    2010-01-01T23:59:59.000Z

    Renewable energy sources, such as wind and solar, have vast potential to reduce dependence on fossil fuels and greenhouse gas emissions in the electric sector. Climate change concerns, state initiatives including renewable portfolio standards, and consumer efforts are resulting in increased deployments of both technologies. Both solar photovoltaics (PV) and wind energy have variable and uncertain (sometimes referred to as intermittent) output, which are unlike the dispatchable sources used for the majority of electricity generation in the United States. The variability of these sources has led to concerns regarding the reliability of an electric grid that derives a large fraction of its energy from these sources as well as the cost of reliably integrating large amounts of variable generation into the electric grid. In this report, we explore the role of energy storage in the electricity grid, focusing on the effects of large-scale deployment of variable renewable sources (primarily wind and solar energy).

  17. Impact of dispersed solar and wind systems on electric distribution planning and operation

    SciTech Connect (OSTI)

    Boardman, R.W.; Patton, R.; Curtice, D.H.

    1981-02-01T23:59:59.000Z

    Small-scale dispersed solar photovoltaic and wind generation (DSW) will affect the generation, transmission, and distribution systems of an electric utility. This study examines the technical and economic impacts of dispersing DSW devices within the distribution system. Dispersed intermittent generation is included. Effects of DSW devices on capital investments, reliability, operating and maintenance costs, protection requirements, and communication and control requirements are examined. A DSW operation model is developed to help determine the dependable capacity of fluctuating solar photovoltaic and wind generation as part of the distribution planning process. Specific case studies using distribution system data and renewable resource data for Southern California Edison Company and Consumers Power Company are analyzed to gain insights into the effects of interconnecting DSW devices. The DSW devices were found to offer some distribution investment savings, depending on their availability during peak loads. For a summer-peaking utility, for example, dispersing photovoltaic systems is more likely to defer distribution capital investments than dispersing wind systems. Dispersing storage devices to increase DSW's dependable capacity for distribution systems needs is not economically attractive. Substation placement of DSW and storage devices is found to be more cost effective than feeder or customer placement. Examination of the effects of DSW on distribution system operation showed that small customer-owned DSW devices are not likely to disrupt present time-current distribution protection coordination. Present maintenance work procedures, are adequate to ensure workmen's safety. Regulating voltages within appropriate limits will become more complex with intermittent generation along the distribution feeders.

  18. China Solar Photovoltaic Group CNPV aka Dongying Photovoltaic...

    Open Energy Info (EERE)

    China Solar Photovoltaic Group CNPV aka Dongying Photovoltaic Power Co Ltd or China Solar PV Jump to: navigation, search Name: China Solar Photovoltaic Group (CNPV, aka Dongying...

  19. Photovoltaics: New opportunities for utilities

    SciTech Connect (OSTI)

    Not Available

    1991-07-01T23:59:59.000Z

    This publication presents information on photovoltaics. The following topics are discussed: Residential Photovoltaics: The New England Experience Builds Confidence in PV; Austin's 300-kW Photovoltaic Power Station: Evaluating the Breakeven Costs; Residential Photovoltaics: The Lessons Learned; Photovoltaics for Electric Utility Use; Least-Cost Planning: The Environmental Link; Photovoltaics in the Distribution System; Photovoltaic Systems for the Rural Consumer; The Issues of Utility-Intertied Photovoltaics; and Photovoltaics for Large-Scale Use: Costs Ready to Drop Again.

  20. Lab Breakthrough: Microelectronic Photovoltaics | Department...

    Broader source: Energy.gov (indexed) [DOE]

    Lab Breakthrough: Microelectronic Photovoltaics Lab Breakthrough: Microelectronic Photovoltaics June 7, 2012 - 9:31am Addthis Sandia developed tiny glitter-sized photovoltaic (PV)...

  1. Clark County- Solar and Wind Building Permit Guides

    Broader source: Energy.gov [DOE]

    Clark County, Nevada has established guides for obtaining building permits for wind and solar photovoltaic (PV) systems for both residential and commercial purposes. The guides outline applicable...

  2. Integrated Building Energy Systems Design Considering Storage Technologies

    E-Print Network [OSTI]

    Stadler, Michael

    2009-01-01T23:59:59.000Z

    photovoltaic, software, solar thermal systems Abstract Theinteractions among PV, solar thermal, and storage systemsstorage, PV, as well as solar thermal system adoption, two

  3. Flexible photovoltaic technologies Qingfeng Lin,a

    E-Print Network [OSTI]

    nanostructures, and the applications of func- tional nanomaterials for energy harvesting, energy storage Chang,e Dongdong Li,*b Yan Yao*df and Zhiyong Fan*a Flexible photovoltaic (PV) devices have attracted and new opportunities offered by these devices. 1 Introduction Electricity is the most extensively used

  4. Western Wind and Solar Integration Study

    SciTech Connect (OSTI)

    Lew, D.; Piwko, R.; Jordan, G.; Miller, N.; Clark, K.; Freeman, L.; Milligan, M.

    2011-01-01T23:59:59.000Z

    The Western Wind and Solar Integration Study (WWSIS) is one of the largest regional wind and solar integration studies to date. It was initiated in 2007 to examine the operational impact of up to 35% energy penetration of wind, photovoltaics (PV), and concentrating solar power (CSP) on the power system operated by the WestConnect group of utilities in Arizona, Colorado, Nevada, New Mexico, and Wyoming (see study area map). WestConnect also includes utilities in California, but these were not included because California had already completed a renewable energy integration study for the state. This study was set up to answer questions that utilities, public utilities commissions, developers, and regional planning organizations had about renewable energy use in the west: (1) Does geographic diversity of renewable energy resource help mitigate variability; (2) How do local resources compare to out-of-state resources; (3) Can balancing area cooperation help mitigate variability; (4) What is the role and value of energy storage; (5) Should reserve requirements be modified; (6) What is the benefit of forecasting; and (7) How can hydropower help with integration of renewables? The Western Wind and Solar Integration Study is sponsored by the U.S. Department of Energy (DOE) and run by NREL with WestConnect as a partner organization. The study follows DOE's 20% Wind Energy by 2030 report, which did not find any technical barriers to reaching 20% wind energy in the continental United States by 2030. This study and its partner study, the Eastern Wind Integration and Transmission Study, performed a more in-depth operating impact analysis to see if 20% wind energy was feasible from an operational level. In DOE/NREL's analysis, the 20% wind energy target required 25% wind energy in the western interconnection; therefore, this study considered 20% and 30% wind energy to bracket the DOE analysis. Additionally, since solar is rapidly growing in the west, 5% solar was also considered in this study. The goal of the Western Wind and Solar Integration Study is to understand the costs and operating impacts due to the variability and uncertainty of wind, PV, and CSP on the grid. This is mainly an operations study, (rather than a transmission study), although different scenarios model different transmission build-outs to deliver power. Using a detailed power system production simulation model, the study identifies operational impacts and challenges of wind energy penetration up to 30% of annual electricity consumption.

  5. Sandia National Laboratories: photovoltaic analysis

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    in Computational Modeling & Simulation, Energy, Facilities, News, News & Events, Photovoltaic, Photovoltaic Systems Evaluation Laboratory (PSEL), Renewable Energy, Solar, Solar...

  6. Abstract--Environmentally friendly technologies such as photovoltaics and fuel cells are DC sources. In the current power

    E-Print Network [OSTI]

    Tolbert, Leon M.

    Abstract--Environmentally friendly technologies such as photovoltaics and fuel cells are DC sources in pollution [1]. The most well-known green technologies include photovoltaics and wind turbines. Although fuel, fuel cells and photovoltaics, produce direct current (DC). Currently, power system infrastructures

  7. Decentalized solar photovoltaic energy systems

    SciTech Connect (OSTI)

    Krupka, M. C.

    1980-09-01T23:59:59.000Z

    Environmental data for decentralized solar photovoltaic systems have been generated in support of the Technology Assessment of Solar Energy Systems program (TASE). Emphasis has been placed upon the selection and use of a model residential photovoltaic system to develop and quantify the necessary data. The model consists of a reference home located in Phoenix, AZ, utilizing a unique solar cell array-roof shingle combination. Silicon solar cells, rated at 13.5% efficiency at 28/sup 0/C and 100 mW/cm/sup 2/ (AMI) insolation are used to generate approx. 10 kW (peak). An all-electric home is considered with lead-acid battery storage, dc-ac inversion and utility backup. The reference home is compared to others in regions of different insolation. Major material requirements, scaled to quad levels of end-use energy include significant quantities of silicon, copper, lead, antimony, sulfuric acid and plastics. Operating residuals generated are negligible with the exception of those from the storage battery due to a short (10-year) lifetime. A brief general discussion of other environmental, health, and safety and resource availability impacts is presented. It is suggested that solar cell materials production and fabrication may have the major environmental impact when comparing all facets of photovoltaic system usage. Fabrication of the various types of solar cell systems involves the need, handling, and transportation of many toxic and hazardous chemicals with attendant health and safety impacts. Increases in production of such materials as lead, antimony, sulfuric acid, copper, plastics, cadmium and gallium will be required should large scale usage of photovoltaic systems be implemented.

  8. Amorphous Silicon-Carbon Nanostructure Photovoltaic Devices

    E-Print Network [OSTI]

    Schriver, Maria Christine

    2012-01-01T23:59:59.000Z

    and Photovoltaic Performance . . . . . . . . . . . . . . .conduction and photovoltaic performance. Experimental dataElectronic and Photovoltaic Performance We also probed oxide

  9. Sandia National Laboratories: Photovoltaic Regional Testing Center...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Grid Integration, Modeling, Modeling & Analysis, News, News & Events, Partnership, Photovoltaic, Photovoltaic Regional Testing Center (PV RTC), Photovoltaic Systems Evaluation...

  10. Sandia National Laboratories: Photovoltaics

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    PV Facilities On November 10, 2010, in Photovoltaic System Evaluation Laboratory Distributed Energy Technologies Laboratory Microsystems and Engineering Sciences Applications...

  11. Photovoltaics (Fact Sheet)

    SciTech Connect (OSTI)

    Not Available

    2010-09-01T23:59:59.000Z

    The fact sheet summarizes the goals and activities of the DOE Solar Energy Technologies Program efforts within its photovoltaics subprogram.

  12. Photovoltaics (Fact Sheet)

    SciTech Connect (OSTI)

    Not Available

    2011-06-01T23:59:59.000Z

    The fact sheet summarizes the goals and activities of the DOE Solar Energy Technologies Program efforts within its photovoltaics subprogram.

  13. Electroluminescence in photovoltaic cell

    E-Print Network [OSTI]

    Petraglia, Antonio; 10.1088/0031-9120/46/5/F01

    2011-01-01T23:59:59.000Z

    Here we propose two methods to get electroluminescence images from photovoltaic cells in a school or home lab.

  14. Sandia National Laboratories: photovoltaic

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Grid Integration, Infrastructure Security, Microgrid, News, News & Events, Photovoltaic, Renewable Energy, SMART Grid, Solar Newsletter, Systems Analysis, Systems...

  15. Photovoltaic Technology Incubator Awards

    SciTech Connect (OSTI)

    Not Available

    2007-06-01T23:59:59.000Z

    This factsheet gives an overview of the Photovoltaic (PV) Technology Incubator Awards and the Solar America Initiative (SAI).

  16. Amorphous silicon photovoltaic devices

    DOE Patents [OSTI]

    Carlson, David E.; Lin, Guang H.; Ganguly, Gautam

    2004-08-31T23:59:59.000Z

    This invention is a photovoltaic device comprising an intrinsic or i-layer of amorphous silicon and where the photovoltaic device is more efficient at converting light energy to electric energy at high operating temperatures than at low operating temperatures. The photovoltaic devices of this invention are suitable for use in high temperature operating environments.

  17. EELE408 Photovoltaics Lecture 17 Photovoltaic Modules

    E-Print Network [OSTI]

    Kaiser, Todd J.

    1 EELE408 Photovoltaics Lecture 17 Photovoltaic Modules Dr. Todd J. Kaiser tjkaiser to temperature effects and other non ideal conditions · Allows for voltage drops across other PV system components · Requires 15 V to charge a 12 V battery 10 Module Current · Depends primarily on size of solar

  18. Flywheel Energy Storage technology workshop

    SciTech Connect (OSTI)

    O`Kain, D.; Howell, D. [comps.

    1993-12-31T23:59:59.000Z

    Advances in recent years of high strength/lightweight materials, high performance magnetic bearings, and power electronics technology has spurred a renewed interest by the transportation, utility, and manufacturing industries in Flywheel Energy Storage (FES) technologies. FES offers several advantages over conventional electro-chemical energy storage, such as high specific energy and specific power, fast charging time, long service life, high turnaround efficiency (energy out/energy in), and no hazardous/toxic materials or chemicals are involved. Potential applications of FES units include power supplies for hybrid and electric vehicles, electric vehicle charging stations, space systems, and pulsed power devices. Also, FES units can be used for utility load leveling, uninterruptable power supplies to protect electronic equipment and electrical machinery, and for intermittent wind or photovoltaic energy sources. The purpose of this workshop is to provide a forum to highlight technologies that offer a high potential to increase the performance of FES systems and to discuss potential solutions to overcome present FES application barriers. This document consists of viewgraphs from 27 presentations.

  19. Photovoltaic Materials

    SciTech Connect (OSTI)

    Duty, C.; Angelini, J.; Armstrong, B.; Bennett, C.; Evans, B.; Jellison, G. E.; Joshi, P.; List, F.; Paranthaman, P.; Parish, C.; Wereszczak, A.

    2012-10-15T23:59:59.000Z

    The goal of the current project was to help make the US solar industry a world leader in the manufacture of thin film photovoltaics. The overall approach was to leverage ORNLs unique characterization and processing technologies to gain a better understanding of the fundamental challenges for solar cell processing and apply that knowledge to targeted projects with industry members. ORNL has the capabilities in place and the expertise required to understand how basic material properties including defects, impurities, and grain boundaries affect the solar cell performance. ORNL also has unique processing capabilities to optimize the manufacturing process for fabrication of high efficiency and low cost solar cells. ORNL recently established the Center for Advanced Thin-film Systems (CATS), which contains a suite of optical and electrical characterization equipment specifically focused on solar cell research. Under this project, ORNL made these facilities available to industrial partners who were interested in pursuing collaborative research toward the improvement of their product or manufacturing process. Four specific projects were pursued with industrial partners: Global Solar Energy is a solar industry leader in full scale production manufacturing highly-efficient Copper Indium Gallium diSelenide (CIGS) thin film solar material, cells and products. ORNL worked with GSE to develop a scalable, non-vacuum, solution technique to deposit amorphous or nanocrystalline conducting barrier layers on untextured stainless steel substrates for fabricating high efficiency flexible CIGS PV. Ferro Corporations Electronic, Color and Glass Materials (ECGM) business unit is currently the worlds largest supplier of metallic contact materials in the crystalline solar cell marketplace. Ferros ECGM business unit has been the world's leading supplier of thick film metal pastes to the crystalline silicon PV industry for more than 30 years, and has had operational cells and modules in the field for 25 years. Under this project, Ferro leveraged world leading analytical capabilities at ORNL to characterize the paste-to-silicon interface microstructure and develop high efficiency next generation contact pastes. Ampulse Corporation is developing a revolutionary crystalline-silicon (c-Si) thin-film solar photovoltaic (PV) technology. Utilizing uniquely-textured substrates and buffer materials from the Oak Ridge National Laboratory (ORNL), and breakthroughs in Hot-Wire Chemical Vapor Deposition (HW-CVD) techniques in epitaxial silicon developed at the National Renewable Energy Laboratory (NREL), Ampulse is creating a solar technology that is tunable in silicon thickness, and hence in efficiency and economics, to meet the specific requirements of multiple solar PV applications. This project focused on the development of a high rate deposition process to deposit Si, Ge, and Si1-xGex films as an alternate to hot-wire CVD. Mossey Creek Solar is a start-up company with great expertise in the solar field. The primary interest is to create and preserve jobs in the solar sector by developing high-yield, low-cost, high-efficiency solar cells using MSC-patented and -proprietary technologies. The specific goal of this project was to produce large grain formation in thin, net-shape-thickness mc-Si wafers processed with high-purity silicon powder and ORNL's plasma arc lamp melting without introducing impurities that compromise absorption coefficient and carrier lifetime. As part of this project, ORNL also added specific pieces of equipment to enhance our ability to provide unique insight for the solar industry. These capabilities include a moisture barrier measurement system, a combined physical vapor deposition and sputtering system dedicated to cadmium-containing deposits, adeep level transient spectroscopy system useful for identifying defects, an integrating sphere photoluminescence system, and a high-speed ink jet printing system. These tools were combined with others to study the effect of defects on the performance of crystalline silicon and

  20. Role of Energy Storage with Renewable Electricity Generation (Report Summary) (Presentation)

    SciTech Connect (OSTI)

    Denholm, P.; Ela, E.; Kirby, B.; Milligan, M.

    2010-03-01T23:59:59.000Z

    Renewable energy sources, such as wind and solar, have vast potential to reduce dependence on fossil fuels and greenhouse gas emissions in the electric sector. Climate change concerns, state initiatives including renewable portfolio standards, and consumer efforts are resulting in increased deployments of both technologies. Both solar photovoltaics (PV) and wind energy have variable and uncertain (sometimes referred to as "intermittent") output, which are unlike the dispatchable sources used for the majority of electricity generation in the United States. The variability of these sources has led to concerns regarding the reliability of an electric grid that derives a large fraction of its energy from these sources as well as the cost of reliably integrating large amounts of variable generation into the electric grid. In this report, we explore the role of energy storage in the electricity grid, focusing on the effects of large-scale deployment of variable renewable sources (primarily wind and solar energy).

  1. Ris-R-1118(EN) Power Control for Wind Tur-

    E-Print Network [OSTI]

    storage or with an AC/DC converter and battery storage. The AC/DC converter can either be an "add-on" type.3 Wind turbine and wind speed model 24 8.4 Storage models 25 Pumped storage model 25 Battery storage, use of different storage types, development of a framework for comparing different options and tools

  2. Energy Management Strategy for Commercial Buildings Integrating PV and Storage Systems

    E-Print Network [OSTI]

    Paris-Sud XI, Université de

    Energy Management Strategy for Commercial Buildings Integrating PV and Storage Systems He ZHANG1 by using the solution proposed. Keywords: Photovoltaic (PV) systems, fuzzy logic, storage system, energy connected to the power network and associated to photovoltaic and storage system. Some energy management

  3. Lightweight, self-ballasting photovoltaic roofing assembly

    DOE Patents [OSTI]

    Dinwoodie, Thomas L.

    2006-02-28T23:59:59.000Z

    A photovoltaic roofing assembly comprises a roofing membrane (102), a plurality of photovoltaic modules (104, 106, 108) disposed as a layer on top of the roofing membrane (102), and a plurality of pre-formed spacers, pedestals or supports (112, 114, 116, 118, 120, 122) which are respectively disposed below the plurality of photovoltaic modules (104, 106, 108) and integral therewith, or fixed thereto. Spacers (112, 114, 116, 118, 120, 122) are disposed on top of roofing membrane (102). Membrane (102) is supported on conventional roof framing, and attached thereto by conventional methods. In an alternative embodiment, the roofing assembly may have insulation block (322) below the spacers (314, 314', 315, 315'). The geometry of the pre-formed spacers (112, 114, 116, 118, 120, 122, 314, 314', 315, 315') is such that wind tunnel testing has shown its maximum effectiveness in reducing net forces of wind uplift on the overall assembly. Such construction results in a simple, lightweight, self-ballasting, readily assembled roofing assembly which resists the forces of wind uplift using no roofing penetrations.

  4. Lightweight, self-ballasting photovoltaic roofing assembly

    DOE Patents [OSTI]

    Dinwoodie, Thomas L. (Berkeley, CA)

    1998-01-01T23:59:59.000Z

    A photovoltaic roofing assembly comprises a roofing membrane (102), a plurality of photovoltaic modules (104, 106, 108) disposed as a layer on top of the roofing membrane (102), and a plurality of pre-formed spacers, pedestals or supports (112, 114, 116, 118, 120, 122) which are respectively disposed below the plurality of photovoltaic modules (104, 106, 108) and integral therewith, or fixed thereto. Spacers (112, 114, 116, 118, 120, 122) are disposed on top of roofing membrane (102). Membrane (102) is supported on conventional roof framing, and attached thereto by conventional methods. In an alternative embodiment, the roofing assembly may have insulation block (322) below the spacers (314, 314', 315, 315'). The geometry of the preformed spacers (112, 114, 116, 118, 120, 122, 314, 314', 315, 315') is such that wind tunnel testing has shown its maximum effectiveness in reducing net forces of wind uplift on the overall assembly. Such construction results in a simple, lightweight, self-ballasting, readily assembled roofing assembly which resists the forces of wind uplift using no roofing penetrations.

  5. Lightweight, self-ballasting photovoltaic roofing assembly

    DOE Patents [OSTI]

    Dinwoodie, T.L.

    1998-05-05T23:59:59.000Z

    A photovoltaic roofing assembly comprises a roofing membrane (102), a plurality of photovoltaic modules (104, 106, 108) disposed as a layer on top of the roofing membrane (102), and a plurality of pre-formed spacers, pedestals or supports (112, 114, 116, 118, 120, 122) which are respectively disposed below the plurality of photovoltaic modules (104, 106, 108) and integral therewith, or fixed thereto. Spacers (112, 114, 116, 118, 120, 122) are disposed on top of roofing membrane (102). Membrane (102) is supported on conventional roof framing, and attached thereto by conventional methods. In an alternative embodiment, the roofing assembly may have insulation block (322) below the spacers (314, 314', 315, 315'). The geometry of the preformed spacers (112, 114, 116, 118, 120, 122, 314, 314', 315, 315') is such that wind tunnel testing has shown its maximum effectiveness in reducing net forces of wind uplift on the overall assembly. Such construction results in a simple, lightweight, self-ballasting, readily assembled roofing assembly which resists the forces of wind uplift using no roofing penetrations.

  6. Sandia National Laboratories: Photovoltaics

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Photovoltaics PV Plant Performance Technical Briefing Published in PV Power Tech On March 4, 2015, in Computational Modeling & Simulation, Energy, Facilities, News, News & Events,...

  7. Sandia National Laboratories: Photovoltaics

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Workshops and ... Solar Energy On February 3, 2011, in Solar Programs Photovoltaics Concentrating Solar Power Sunshine to Petrol Solar Publications Recent Solar...

  8. Photovoltaics Business Models

    SciTech Connect (OSTI)

    Frantzis, L.; Graham, S.; Katofsky, R.; Sawyer, H.

    2008-02-01T23:59:59.000Z

    This report summarizes work to better understand the structure of future photovoltaics business models and the research, development, and demonstration required to support their deployment.

  9. Sandia National Laboratories: Photovoltaic

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    News, News & Events, Photovoltaic, Renewable Energy, Research & Capabilities, Solar, SunShot The Center for Integrated Nanotechnologies at Sandia recently received a...

  10. Concentrating Photovoltaics (Presentation)

    SciTech Connect (OSTI)

    Kurtz, S.

    2009-01-20T23:59:59.000Z

    Solar is growing rapidly, and the concentrating photovoltaics industry-both high- and low-concentration cell approaches-may be ready to ramp production in 2009.

  11. National Laboratory Photovoltaics Research

    Broader source: Energy.gov [DOE]

    DOE supports photovoltaic (PV) research and development and facilities at its national laboratories to accelerate progress toward achieving the SunShot Initiative's technological and economic...

  12. Sandia National Laboratories: photovoltaic

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Instruments: Solar Glitter On March 21, 2013, in Capabilities, Energy, Partnership, Photovoltaic, Renewable Energy, Research & Capabilities, Solar, SunShot Sandia scientists have...

  13. Sandia National Laboratories: photovoltaic

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Integration Program addresses technical barriers to large-scale deployment of solar photovoltaic (PV) generation in grid-tied power systems. Sandia's grid integration research...

  14. Sandia National Laboratories: photovoltaic

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Resolving a Key to How Stars Transmit Energy Sandians Win 'Best Paper' Award at Photovoltaic Conference in Japan EC Top Publications Literature Survey of Crude Oil Properties...

  15. Sandia National Laboratories: Photovoltaic

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    of Solar Technology in the Home On June 12, 2014, in Energy, News, News & Events, Photovoltaic, Renewable Energy, Solar, Solar Newsletter, SunShot, Systems Analysis To better...

  16. Sandia National Laboratories: photovoltaic

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    photovoltaic Past Market Transformation Activities On April 4, 2012, in Current activates have built upon past efforts, most notably the Solar American Cities (now Communities)...

  17. Lab Breakthrough: Microelectronic Photovoltaics

    Broader source: Energy.gov [DOE]

    Sandia's glitter-sized photovoltaic cells are highly efficient and cost effective the perfect combination for a game-changing technology.

  18. Photovoltaic Resources and Technologies

    Broader source: Energy.gov [DOE]

    This page provides a brief overview of photovoltaic (PV) technologies supplemented by specific information to apply PV within the Federal sector.

  19. Sandia National Laboratories: concentrating photovoltaic

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    concentrating photovoltaic Sandia and EMCORE: Solar Photovoltaics, Fiber Optics, MODE, and Energy Efficiency On March 29, 2013, in Concentrating Solar Power, Energy, Partnership,...

  20. Next-Generation Photovoltaic Technologies

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Next-Generation Photovoltaic Technologies Next-Generation Photovoltaic Technologies Print Monday, 06 February 2012 15:48 Organic solar cells based on the polymerfullerene bulk...

  1. Large Scale Computing and Storage Requirements for Basic Energy Sciences Research

    E-Print Network [OSTI]

    Gerber, Richard

    2012-01-01T23:59:59.000Z

    photovoltaics; hydrogen storage; ultrathin epitaxial filmsstorage to obtain an accurate power spectrum, especially if the relatively rapid vibrational behavior of hydrogen

  2. Energy Storage 101

    Broader source: Energy.gov (indexed) [DOE]

    the storage of heat or cold between opposing seasons in deep aquifers or bedrock. A wind-up clock stores potential energy, in this case mechanical, in the spring tension. ...

  3. A single-phase photovoltaic inverter topology with a series-connected power buffer

    E-Print Network [OSTI]

    Pierquet, Brandon J.

    Module integrated converters (MICs) have been under rapid development for single-phase grid-tied photovoltaic applications. The capacitive energy storage implementation for the double-line-frequency power variation represents ...

  4. A Single-Phase Photovoltaic Inverter Topology With a Series-Connected Energy Buffer

    E-Print Network [OSTI]

    Pierquet, Brandon J.

    Module integrated converters (MICs) have been under rapid development for single-phase grid-tied photovoltaic applications. The capacitive energy storage implementation for the double-line-frequency power variation represents ...

  5. Ris Energy Report 5 Photovoltaics 6.3.1 Photovoltaics

    E-Print Network [OSTI]

    Ris Energy Report 5 Photovoltaics 6.3.1 Photovoltaics TOM MARkVART, UNIVERsITy OF s kREbs, RIs NATIONAL LAbORATORy, DENMARk The market for photovoltaics (PV, or solar cells) has grown. The European Photovoltaic Industry Association esti- mates that the share of thin-film technologies

  6. Microsystems Enabled Photovoltaics

    ScienceCinema (OSTI)

    Gupta, Vipin; Nielson, Greg; Okandan, Murat, Granata, Jennifer; Nelson, Jeff; Haney, Mike; Cruz-Campa, Jose Luiz

    2014-06-23T23:59:59.000Z

    Sandia's microsystems enabled photovoltaic advances combine mature technology and tools currently used in microsystem production with groundbreaking advances in photovoltaics cell design, decreasing production and system costs while improving energy conversion efficiency. The technology has potential applications in buildings, houses, clothing, portable electronics, vehicles, and other contoured structures.

  7. Photovoltaics Life Cycle Analysis

    E-Print Network [OSTI]

    (air, water, solid) M, Q E PV array Photovoltaic modules Balance of System (BOS) (Inverters & Environmental Engineering Department Columbia University and National Photovoltaic (PV) EHS Research Center Brookhaven National Laboratory www.clca.columbia.edu www.pv.bnl.gov #12;2 The Life Cycle of PVThe Life Cycle

  8. Photovoltaics for residential applications

    SciTech Connect (OSTI)

    Not Available

    1984-02-01T23:59:59.000Z

    Information is given about the parts of a residential photovoltaic system and considerations relevant to photovoltaic power use in homes that are also tied to utility lines. In addition, factors are discussed that influence implementation, including legal and environmental factors such as solar access and building codes, insurance, utility buyback, and system longevity. (LEW)

  9. Microsystems Enabled Photovoltaics

    SciTech Connect (OSTI)

    Gupta, Vipin; Nielson, Greg; Okandan, Murat, Granata, Jennifer; Nelson, Jeff; Haney, Mike; Cruz-Campa, Jose Luiz

    2012-07-02T23:59:59.000Z

    Sandia's microsystems enabled photovoltaic advances combine mature technology and tools currently used in microsystem production with groundbreaking advances in photovoltaics cell design, decreasing production and system costs while improving energy conversion efficiency. The technology has potential applications in buildings, houses, clothing, portable electronics, vehicles, and other contoured structures.

  10. Energy Storage Systems 2012 Peer Review Presentations - Poster...

    Broader source: Energy.gov (indexed) [DOE]

    Grid Support - Haukur Asgeirsson, Detroit Edison ESS 2012 Peer Review - Notrees Wind Storage - Jeff Gates, Duke Energy ESS 2012 Peer Review - Compressed Air Energy Storage -...

  11. White Creek and Nine Canyon wind farms Fact Sheet

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    additional wind storage and shaping services. Since these White Creek and Nine Canyon wind farms December 2006 2 Bonne ville Power Administration DOEBP-3770 November 2006...

  12. american wind interest: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    of Aeronautics and Astronautics Aeroelastic Modeling of Large Offshore Vertical-axis Wind Energy Storage, Conversion and Utilization Websites Summary: Vertical-axis Wind...

  13. ancient solar wind: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    2006-02-03 5 Solar and Wind Technologies for Hydrogen Production: Report to Congress Solar and Wind Technologies Energy Storage, Conversion and Utilization Websites Summary: )...

  14. Characterization of 3D Photovoltaics

    E-Print Network [OSTI]

    Characterization of 3D Photovoltaics SEMICONDUCTORS Our goal is to provide industry with test structures and models of next-generation photovoltaics, with an initial focus on cadmium telluride (Cd (nanostructured) photovoltaic devices. Objective Impact and Customers The U.S. Photovoltaic Industry Roadmap

  15. DISSERTATION DEVICE CHARACTERIZATION OF CADMIUM TELLURIDE PHOTOVOLTAICS

    E-Print Network [OSTI]

    Sites, James R.

    DISSERTATION DEVICE CHARACTERIZATION OF CADMIUM TELLURIDE PHOTOVOLTAICS Submitted by Russell M Reserved #12;ABSTRACT DEVICE CHARACTERIZATION OF CADMIUM TELLURIDE PHOTOVOLTAICS Thin-film photovoltaics

  16. Amorphous Silicon-Carbon Nanostructure Photovoltaic Devices

    E-Print Network [OSTI]

    Schriver, Maria Christine

    2012-01-01T23:59:59.000Z

    of Photovoltaics . . . . . . . . . . . . . . . . 4.3.1Graphene 4 Photovoltaics 4.1 Motivation and Materialby the European Photovoltaics Industry Association for

  17. Metallic nanostructures for optoelectronic and photovoltaic applications

    E-Print Network [OSTI]

    Lim, Swee Hoe

    2009-01-01T23:59:59.000Z

    enhanced performance of photovoltaic and photodetector Proc.and H. Wagner, in Photovoltaic Specialists Conference. ,for Optoelectronic and Photovoltaic Applications by Swee Hoe

  18. Fact Sheet: Wind Firming EnergyFarm (October 2012)

    Energy Savers [EERE]

    Electricity Delivery & Energy Reliability Energy Storage Program Primus Power American Recovery and Reinvestment Act (ARRA) Wind Firming EnergyFarm Using energy storage to...

  19. Boosting CSP Production with Thermal Energy Storage

    SciTech Connect (OSTI)

    Denholm, P.; Mehos, M.

    2012-06-01T23:59:59.000Z

    Combining concentrating solar power (CSP) with thermal energy storage shows promise for increasing grid flexibility by providing firm system capacity with a high ramp rate and acceptable part-load operation. When backed by energy storage capability, CSP can supplement photovoltaics by adding generation from solar resources during periods of low solar insolation. The falling cost of solar photovoltaic (PV) - generated electricity has led to a rapid increase in the deployment of PV and projections that PV could play a significant role in the future U.S. electric sector. The solar resource itself is virtually unlimited; however, the actual contribution of PV electricity is limited by several factors related to the current grid. The first is the limited coincidence between the solar resource and normal electricity demand patterns. The second is the limited flexibility of conventional generators to accommodate this highly variable generation resource. At high penetration of solar generation, increased grid flexibility will be needed to fully utilize the variable and uncertain output from PV generation and to shift energy production to periods of high demand or reduced solar output. Energy storage is one way to increase grid flexibility, and many storage options are available or under development. In this article, however, we consider a technology already beginning to be used at scale - thermal energy storage (TES) deployed with concentrating solar power (CSP). PV and CSP are both deployable in areas of high direct normal irradiance such as the U.S. Southwest. The role of these two technologies is dependent on their costs and relative value, including how their value to the grid changes as a function of what percentage of total generation they contribute to the grid, and how they may actually work together to increase overall usefulness of the solar resource. Both PV and CSP use solar energy to generate electricity. A key difference is the ability of CSP to utilize high-efficiency TES, which turns CSP into a partially dispatchable resource. The addition of TES produces additional value by shifting the delivery of solar energy to periods of peak demand, providing firm capacity and ancillary services, and reducing integration challenges. Given the dispatchability of CSP enabled by TES, it is possible that PV and CSP are at least partially complementary. The dispatchability of CSP with TES can enable higher overall penetration of the grid by solar energy by providing solar-generated electricity during periods of cloudy weather or at night, when PV-generated power is unavailable. Such systems also have the potential to improve grid flexibility, thereby enabling greater penetration of PV energy (and other variable generation sources such as wind) than if PV were deployed without CSP.

  20. How Do Wind and Solar Power Affect Grid Operations: The Western Wind and Solar Integration Study

    SciTech Connect (OSTI)

    Lew, D.; Milligan, M.; Jordan, G.; Freeman, L.; Miller, N.; Clark, K.; Piwko, R.

    2009-01-01T23:59:59.000Z

    The Western Wind and Solar Integration Study is one of the largest regional wind and solar integration studies to date, examining the operational impact of up to 35% wind, photovoltaics, and concentrating solar power on the WestConnect grid in Arizona, Colorado, Nevada, New Mexico, and Wyoming. This paper reviews the scope of the study, the development of wind and solar datasets, and the results to date on three scenarios.

  1. Photovoltaic module and interlocked stack of photovoltaic modules

    SciTech Connect (OSTI)

    Wares, Brian S.

    2014-09-02T23:59:59.000Z

    One embodiment relates to an arrangement of photovoltaic modules configured for transportation. The arrangement includes a plurality of photovoltaic modules, each photovoltaic module including a frame. A plurality of individual male alignment features and a plurality of individual female alignment features are included on each frame. Adjacent photovoltaic modules are interlocked by multiple individual male alignment features on a first module of the adjacent photovoltaic modules fitting into and being surrounded by corresponding individual female alignment features on a second module of the adjacent photovoltaic modules. Other embodiments, features and aspects are also disclosed.

  2. Sandia National Laboratories: Photovoltaics

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    845-9015 rdrobin@sandia.gov Publications available at: pvsac@sandia.gov Websites Photovoltaics energy.sandia.gov www.eere.energy.gov SunShot Meetings & Workshops On November 9,...

  3. Sandia National Laboratories: Photovoltaics

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Photovoltaics PV Publications On April 22, 2011, in Recent Publications, Listed by Date. Click on publication title to view, right click to download. All files are in PDF format...

  4. Photovoltaic Research Facilities

    Broader source: Energy.gov [DOE]

    The U.S. Department of Energy (DOE) funds photovoltaic (PV) research and development (R&D) at its national laboratory facilities located throughout the country. To encourage further innovation,...

  5. Nanocarbon-Based Photovoltaics

    E-Print Network [OSTI]

    Bernardi, Marco

    Carbon materials are excellent candidates for photovoltaic solar cells: they are Earth-abundant, possess high optical absorption, and maintain superior thermal and photostability. Here we report on solar cells with active ...

  6. INTEGRATING PHOTOVOLTAIC SYSTEMS

    E-Print Network [OSTI]

    Delaware, University of

    for Energy and Environmental Policy University of Delaware February 2006 #12;INTEGRATING PHOTOVOLTAIC Delmarva Power Delaware Energy Office University of Delaware Center for Energy and Environmental Policy..................................................................................................... 5 3.3.1 Delaware's Solar Resource

  7. Photovoltaic solar cell

    DOE Patents [OSTI]

    Nielson, Gregory N; Okandan, Murat; Cruz-Campa, Jose Luis; Resnick, Paul J

    2013-11-26T23:59:59.000Z

    A photovoltaic solar cell for generating electricity from sunlight is disclosed. The photovoltaic solar cell comprises a plurality of spaced-apart point contact junctions formed in a semiconductor body to receive the sunlight and generate the electicity therefrom, the plurality of spaced-apart point contact junctions having a first plurality of regions having a first doping type and a second plurality of regions having a second doping type. In addition, the photovoltaic solar cell comprises a first electrical contact electrically connected to each of the first plurality of regions and a second electrical contact electrically connected to each of the second plurality of regions, as well as a passivation layer covering major surfaces and sidewalls of the photovoltaic solar cell.

  8. Photovoltaic solar cell

    DOE Patents [OSTI]

    Nielson, Gregory N; Cruz-Campa, Jose Luis; Okandan, Murat; Resnick, Paul J

    2014-05-20T23:59:59.000Z

    A photovoltaic solar cell for generating electricity from sunlight is disclosed. The photovoltaic solar cell comprises a plurality of spaced-apart point contact junctions formed in a semiconductor body to receive the sunlight and generate the electricity therefrom, the plurality of spaced-apart point contact junctions having a first plurality of regions having a first doping type and a second plurality of regions having a second doping type. In addition, the photovoltaic solar cell comprises a first electrical contact electrically connected to each of the first plurality of regions and a second electrical contact electrically connected to each of the second plurality of regions, as well as a passivation layer covering major surfaces and sidewalls of the photovoltaic solar cell.

  9. Photovoltaic decision analysis

    E-Print Network [OSTI]

    Goldman, Neil L.

    1977-01-01T23:59:59.000Z

    This paper is concerned with the development and implementation of a methodology that analyzes information relating to the choice between flat plate and concentrator technologies for photovoltaic development. A

  10. Three-dimensional photovoltaics

    E-Print Network [OSTI]

    Myers, Bryan

    The concept of three-dimensional (3D) photovoltaics is explored computationally using a genetic algorithm to optimize the energy production in a day for arbitrarily shaped 3D solar cells confined to a given area footprint ...

  11. Photovoltaic roof heat flux

    E-Print Network [OSTI]

    Samady, Mezhgan Frishta

    2011-01-01T23:59:59.000Z

    e l Atmosphere ceiling, back panel roof, exposed roof insideSAN DIEGO Photovoltaic Roof Heat Flux A Thesis submitted i no n Convection Exposed Roof Temperature Seasonal Temperature

  12. Organic photovoltaics and concentrators

    E-Print Network [OSTI]

    Mapel, Jonathan King

    2008-01-01T23:59:59.000Z

    The separation of light harvesting and charge generation offers several advantages in the design of organic photovoltaics and organic solar concentrators for the ultimate end goal of achieving a lower cost solar electric ...

  13. Sandia National Laboratories: photovoltaic

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    On October 10, 2011, in This Web Demo model is a simplified "player" version of the Photovoltaic Reliability Performance Model (PV-RPM) currently in development at Sandia National...

  14. WIND ENERGY Wind Energ. 2013; 00:112

    E-Print Network [OSTI]

    that by a novel change of variables, which focuses on power flows, we can transform the problem to one with linear rejection, model predictive control, convex optimization, wind power control, energy storage, power output to reliable operation of power systems due to the fluctuating nature of wind power. Thus, modern wind power

  15. The Power of Energy Storage

    E-Print Network [OSTI]

    Sadoulet, Elisabeth

    The Power of Energy Storage How to Increase Deployment in California to Reduce Greenhouse Gas;1Berkeley Law \\ UCLA Law The Power of Energy Storage: How to Increase Deployment in California to Reduce Greenhouse Gas Emissions Executive Summary: Expanding Energy Storage in California Sunshine and wind, even

  16. Photovoltaic systems and applications

    SciTech Connect (OSTI)

    Not Available

    1982-01-01T23:59:59.000Z

    Abstracts are given of presentations given at a project review meeting held at Albuquerque, NM. The proceedings cover the past accomplishments and current activities of the Photovoltaic Systems Research, Balance-of-System Technology Development and System Application Experiments Projects at Sandia National Laboratories. The status of intermediate system application experiments and residential system analysis is emphasized. Some discussion of the future of the Photovoltaic Program in general, and the Sandia projects in particular is also presented.

  17. General Services Administration Photovoltaics Project in Sacramento...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    General Services Administration Photovoltaics Project in Sacramento, California General Services Administration Photovoltaics Project in Sacramento, California Document describes a...

  18. Sandia National Laboratories: Photovoltaic Systems Evaluation...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Modeling & Simulation, Energy, Facilities, News, News & Events, Partnership, Photovoltaic, Photovoltaic Systems Evaluation Laboratory (PSEL), Renewable Energy, Solar, Solar...

  19. Optimal Bidding Strategies for Wind Power Producers with Meteorological Forecasts

    E-Print Network [OSTI]

    Giannitrapani, Antonello

    bid is computed by exploiting the forecast energy price for the day ahead market, the historical wind renewable energy resources, such as wind and photovoltaic, has grown rapidly. It is well known the problem of optimizing energy bids for an independent Wind Power Producer (WPP) taking part

  20. Development and Testing of Hydrogen Storage System(s)

    E-Print Network [OSTI]

    of Electricity Delivery and Energy Reliability Under Award No. DE-FC-06NT42847 Task 2.2. Deliverable #1), considerable infrastructure already existed at Kahua comprised of photovoltaic (PV), wind turbine (WT), battery

  1. Fine-grained Photovoltaic Output Prediction using a Bayesian Ensemble Prithwish Chakraborty1,2

    E-Print Network [OSTI]

    Ramakrishnan, Naren

    generation is increasingly reliant on renewable power sources, e.g., solar (pho- tovoltaic or PV) and wind Increasingly, local and distributed power generation e.g., through solar (photovoltaic or PV), wind, fuel cells and intermittent in their energy output, which makes integration with the power grid challenging. PV output

  2. Fabrication and Characterization of Organic/Inorganic Photovoltaic Devices

    E-Print Network [OSTI]

    Guvenc, Ali Bilge

    2012-01-01T23:59:59.000Z

    Polymer Photovoltaic Cells - Enhanced Efficiencies Via afor high-efficiency polymer photovoltaic cells usingfactors. The photovoltaic power conversion efficiency (?) [

  3. The Development of Semiconducting Materials for Organic Photovoltaics

    E-Print Network [OSTI]

    Douglas, Jessica D.

    2013-01-01T23:59:59.000Z

    of Organic Photovoltaic Device Efficiency..4of Organic Photovoltaic Device Efficiency The efficiency atpower conversion efficiency of organic photovoltaic devices.

  4. IEEE JOURNAL OF PHOTOVOLTAICS 1 Optimal Dispatch of Residential Photovoltaic

    E-Print Network [OSTI]

    Giannakis, Georgios

    IEEE JOURNAL OF PHOTOVOLTAICS 1 Optimal Dispatch of Residential Photovoltaic Inverters Under of existing low- voltage distribution systems with high photovoltaic (PV) gen- eration have focused on the possibility of inverters providing ancillary services such as active power curtailment and reactive power

  5. Wind Power: How Much, How Soon, and At What Cost?

    E-Print Network [OSTI]

    Wiser, Ryan H

    2010-01-01T23:59:59.000Z

    Evaluation of Global Wind Power." Journal of Geophysical2008. "The Economics of Wind Power with Energy Storage."Economics of Large-Scale Wind Power in a Carbon Constrained

  6. Wind Power: How Much, How Soon, and At What Cost?

    E-Print Network [OSTI]

    Wiser, Ryan H

    2010-01-01T23:59:59.000Z

    World's Electricity from Wind Power by 2020." Prepared forof the 2004 Global Wind Power Conference. 29-31 March.of Storage Technologies to Wind Power." NREL/CP-670-43510.

  7. Interim performance criteria for photovoltaic energy systems. [Glossary included

    SciTech Connect (OSTI)

    DeBlasio, R.; Forman, S.; Hogan, S.; Nuss, G.; Post, H.; Ross, R.; Schafft, H.

    1980-12-01T23:59:59.000Z

    This document is a response to the Photovoltaic Research, Development, and Demonstration Act of 1978 (P.L. 95-590) which required the generation of performance criteria for photovoltaic energy systems. Since the document is evolutionary and will be updated, the term interim is used. More than 50 experts in the photovoltaic field have contributed in the writing and review of the 179 performance criteria listed in this document. The performance criteria address characteristics of present-day photovoltaic systems that are of interest to manufacturers, government agencies, purchasers, and all others interested in various aspects of photovoltaic system performance and safety. The performance criteria apply to the system as a whole and to its possible subsystems: array, power conditioning, monitor and control, storage, cabling, and power distribution. They are further categorized according to the following performance attributes: electrical, thermal, mechanical/structural, safety, durability/reliability, installation/operation/maintenance, and building/site. Each criterion contains a statement of expected performance (nonprescriptive), a method of evaluation, and a commentary with further information or justification. Over 50 references for background information are also given. A glossary with definitions relevant to photovoltaic systems and a section on test methods are presented in the appendices. Twenty test methods are included to measure performance characteristics of the subsystem elements. These test methods and other parts of the document will be expanded or revised as future experience and needs dictate.

  8. Thermionic-photovoltaic energy converter

    SciTech Connect (OSTI)

    Chubb, D. L.

    1985-07-09T23:59:59.000Z

    A thermionic-photovoltaic energy conversion device comprises a thermionic diode mounted within a hollow tubular photovoltaic converter. The thermionic diode maintains a cesium discharge for producing excited atoms that emit line radiation in the wavelength region of 850 nm to 890 nm. The photovoltaic converter is a silicon or galium arsenide photovoltaic cell having bandgap energies in this same wavelength region for optimum cell efficiency.

  9. Simulation and simplified design studies of photovoltaic systems

    SciTech Connect (OSTI)

    Evans, D.L.; Facinelli, W.A.; Koehler, L.P.

    1980-09-01T23:59:59.000Z

    Results of TRNSYS simulations of photovoltaic systems with electrical storage are described. Studies of the sensitivity of system performance, in terms of the fraction of the electrical load supplied by the solar energy system, to variables such as array size, battery size, location, time of year, and load shape are reported. An accurate simplified method for predicting array output of max-power photovoltaic systems is presented. A second simplified method, which estimates the overall performance of max-power systems, is developed. Finally, a preliminary technique for predicting clamped-voltage system performance is discussed.

  10. Photovoltaic system controller

    SciTech Connect (OSTI)

    Gerken, K.F.; Sullivan, R.A.

    1989-12-19T23:59:59.000Z

    This patent describes a photovoltaic system controller for utilization with a photovoltaic power system including at least a photovoltaic array, a system battery adapted to be charged by the array and a load adapted to be powered by the battery. The controller comprising a microprocessor having an erasable programmable memory. The microprocessor having means to receive input data from the array, the battery and the load. The microprocessor having means to evaluate the input data in relation to at least one predetermined setpoint, the microprocessor in response to the evaluation being adapted to disconnect the battery from the array or to disconnect the load from the battery. The setpoint being adapted to be adjusted to a second setpoint by adjustment means, and the erasable programmable memory being adapted to be changed whereby the evaluation performed by the microprocessor is also changed.

  11. Nanowires enabling strained photovoltaics

    SciTech Connect (OSTI)

    Greil, J.; Bertagnolli, E.; Lugstein, A., E-mail: alois.lugstein@tuwien.ac.at [Institute of Solid State Electronics, Vienna University of Technology, Floragasse 7, 1040 Vienna (Austria); Birner, S. [nextnano GmbH, Sdmhrenstr. 21, 85586 Poing (Germany)

    2014-04-21T23:59:59.000Z

    Photovoltaic nano-devices have largely been relying on charge separation in conventional p-n junctions. Junction formation via doping, however, imposes major challenges in process control. Here, we report on a concept for photovoltaic energy conversion at the nano scale without the need for intentional doping. Our approach relies on charge carrier separation in inhomogeneously strained germanium nanowires (Ge NWs). This concept utilizes the strain-induced gradient in bandgap along tapered NWs. Experimental data confirms the feasibility of strain-induced charge separation in individual vapor-liquid-solid grown Ge NW devices with an internal quantum efficiency of ?5%. The charge separation mechanism, though, is not inherently limited to a distinct material. Our work establishes a class of photovoltaic nano-devices with its opto-electronic properties engineered by size, shape, and applied strain.

  12. Photovoltaic Subcontract Program

    SciTech Connect (OSTI)

    Surek, Thomas; Catalano, Anthony

    1993-03-01T23:59:59.000Z

    This report summarizes the fiscal year (FY) 1992 progress of the subcontracted photovoltaic (PV) research and development (R D) performed under the Photovoltaic Advanced Research and Development Project at the National Renewable Energy Laboratory (NREL)-formerly the Solar Energy Research Institute (SERI). The mission of the national PV program is to develop PV technology for large-scale generation of economically competitive electric power in the United States. The technical sections of the report cover the main areas of the subcontract program: the Crystalline Materials and Advanced Concepts project, the Polycrystalline Thin Films project, Amorphous Silicon Research project, the Photovoltaic Manufacturing Technology (PVMaT) project, PV Module and System Performance and Engineering project, and the PV Analysis and Applications Development project. Technical summaries of each of the subcontracted programs provide a discussion of approaches, major accomplishments in FY 1992, and future research directions.

  13. High efficiency photovoltaic device

    DOE Patents [OSTI]

    Guha, Subhendu (Troy, MI); Yang, Chi C. (Troy, MI); Xu, Xi Xiang (Findlay, OH)

    1999-11-02T23:59:59.000Z

    An N-I-P type photovoltaic device includes a multi-layered body of N-doped semiconductor material which has an amorphous, N doped layer in contact with the amorphous body of intrinsic semiconductor material, and a microcrystalline, N doped layer overlying the amorphous, N doped material. A tandem device comprising stacked N-I-P cells may further include a second amorphous, N doped layer interposed between the microcrystalline, N doped layer and a microcrystalline P doped layer. Photovoltaic devices thus configured manifest improved performance, particularly when configured as tandem devices.

  14. Concentrating photovoltaic solar panel

    DOE Patents [OSTI]

    Cashion, Steven A; Bowser, Michael R; Farrelly, Mark B; Hines, Braden E; Holmes, Howard C; Johnson, Jr., Richard L; Russell, Richard J; Turk, Michael F

    2014-04-15T23:59:59.000Z

    The present invention relates to photovoltaic power systems, photovoltaic concentrator modules, and related methods. In particular, the present invention features concentrator modules having interior points of attachment for an articulating mechanism and/or an articulating mechanism that has a unique arrangement of chassis members so as to isolate bending, etc. from being transferred among the chassis members. The present invention also features adjustable solar panel mounting features and/or mounting features with two or more degrees of freedom. The present invention also features a mechanical fastener for secondary optics in a concentrator module.

  15. Sandia Energy - Photovoltaics

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office of ScienceandMesa del Sol Home Distribution Grid IntegrationOffshoreLive PhotovoltaicPhotovoltaics

  16. Photovoltaics | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are being directedAnnual SiteofEvaluatingGroupPerfectenergy International LimitedPhoenix BioPhotovoltaicsPhotovoltaics

  17. Sustainable Energy Solutions Task 1.0: Networked Monitoring and Control of Small Interconnected Wind Energy Systems

    SciTech Connect (OSTI)

    Janet.twomey@wichita.edu

    2010-04-30T23:59:59.000Z

    EXECUTIVE SUMARRY This report presents accomplishments, results, and future work for one task of five in the Wichita State University Sustainable Energy Solutions Project: To develop a scale model laboratory distribution system for research into questions that arise from networked control and monitoring of low-wind energy systems connected to the AC distribution system. The lab models developed under this task are located in the Electric Power Quality Lab in the Engineering Research Building on the Wichita State University campus. The lab system consists of four parts: 1. A doubly-fed induction generator 2. A wind turbine emulator 3. A solar photovoltaic emulator, with battery energy storage 4. Distribution transformers, lines, and other components, and wireless and wired communications and control These lab elements will be interconnected and will function together to form a complete testbed for distributed resource monitoring and control strategies and smart grid applications testing. Development of the lab system will continue beyond this project.

  18. Photovoltaic Energy Conversion

    E-Print Network [OSTI]

    Glashausser, Charles

    than electricity from coal if cost of carbon capture is factored in Great promise for solving globalPhotovoltaic Energy Conversion Frank Zimmermann #12;Solar Electricity Generation Consumes no fuel No pollution No greenhouse gases No moving parts, little or no maintenance Sunlight is plentiful

  19. Photovoltaics (Fact Sheet)

    SciTech Connect (OSTI)

    Not Available

    2011-10-01T23:59:59.000Z

    DOE works with national labs, academia, and industry to support the domestic photovoltaics (PV) industry and research enterprise. SunShot aims to achieve widespread, unsubsidized cost-competitiveness through an applied research and development (R&D) portfolio spanning PV materials, devices, and manufacturing technologies.

  20. Photovoltaics (Fact Sheet)

    SciTech Connect (OSTI)

    Not Available

    2012-11-01T23:59:59.000Z

    The U.S. Department of Energy (DOE) works with industry, academia, national laboratories, and other government agencies to advance solar photovoltaics (PV) domestically. The SunShot Initiative aims to achieve widespread, unsubsidized cost-competitiveness through an applied research and development (R&D) portfolio spanning PV materials, devices, and manufacturing technologies.

  1. Multiple gap photovoltaic device

    DOE Patents [OSTI]

    Dalal, Vikram L. (Newark, DE)

    1981-01-01T23:59:59.000Z

    A multiple gap photovoltaic device having a transparent electrical contact adjacent a first cell which in turn is adjacent a second cell on an opaque electrical contact, includes utilizing an amorphous semiconductor as the first cell and a crystalline semiconductor as the second cell.

  2. Photovoltaic radiation detector element

    DOE Patents [OSTI]

    Agouridis, D.C.

    1980-12-17T23:59:59.000Z

    A radiation detector element is formed of a body of semiconductor material, a coating on the body which forms a photovoltaic junction therewith, and a current collector consisting of narrow metallic strips, the aforesaid coating having an opening therein in the edge of which closely approaches but is spaced from the current collector strips.

  3. Thin film photovoltaic cell

    DOE Patents [OSTI]

    Meakin, John D. (Newark, DE); Bragagnolo, Julio (Newark, DE)

    1982-01-01T23:59:59.000Z

    A thin film photovoltaic cell having a transparent electrical contact and an opaque electrical contact with a pair of semiconductors therebetween includes utilizing one of the electrical contacts as a substrate and wherein the inner surface thereof is modified by microroughening while being macro-planar.

  4. PHOTOVOLTAICS AND COMMERCIAL BUILDINGS--

    E-Print Network [OSTI]

    Perez, Richard R.

    management of electricity demand. · PV applications are now being integrated directly into building roofs, Valuation of Demand-Side Commercial PV Systems in the United States, we sought to measure the costPHOTOVOLTAICS AND COMMERCIAL BUILDINGS-- A NATURAL MATCH A study highlighting strategic

  5. CFES RESEARCH THRUSTS: Energy Storage

    E-Print Network [OSTI]

    L, James Jian-Qiang

    CFES RESEARCH THRUSTS: Energy Storage Wind Energy Solar Energy Smart Grids Smart Buildings For our with the student to finalize the project plan. To sponsor an Energy Scholar, a company agrees to: Assign

  6. Progress in photovoltaic system and component improvements

    SciTech Connect (OSTI)

    Thomas, H.P.; Kroposki, B.; McNutt, P.; Witt, C.E. [National Renewable Energy Lab., Golden, CO (United States); Bower, W.; Bonn, R.; Hund, T.D. [Sandia National Labs., Albuquerque, NM (United States)

    1998-07-01T23:59:59.000Z

    The Photovoltaic Manufacturing Technology (PVMaT) project is a partnership between the US government (through the US Department of Energy [DOE]) and the PV industry. Part of its purpose is to conduct manufacturing technology research and development to address the issues and opportunities identified by industry to advance photovoltaic (PV) systems and components. The project was initiated in 1990 and has been conducted in several phases to support the evolution of PV industrial manufacturing technology. Early phases of the project stressed PV module manufacturing. Starting with Phase 4A and continuing in Phase 5A, the goals were broadened to include improvement of component efficiency, energy storage and manufacturing and system or component integration to bring together all elements for a PV product. This paper summarizes PV manufacturers` accomplishments in components, system integration, and alternative manufacturing methods. Their approaches have resulted in improved hardware and PV system performance, better system compatibility, and new system capabilities. Results include new products such as Underwriters Laboratories (UL)-listed AC PV modules, modular inverters, and advanced inverter designs that use readily available and standard components. Work planned in Phase 5A1 includes integrated residential and commercial roof-top systems, PV systems with energy storage, and 300-Wac to 4-kWac inverters.

  7. Efficiency enhancement of luminescent solar concentrations for photovoltaic technologies

    E-Print Network [OSTI]

    Wang, Chunhua

    2011-01-01T23:59:59.000Z

    to standardize the performance of photovoltaic devices,Performance of organic luminescent solar concentrator photovoltaic

  8. Hour-by-Hour Cost Modeling of Optimized Central Wind-Based Water...

    Broader source: Energy.gov (indexed) [DOE]

    Hydrogen Production for Energy Storage & Transportation Liquid Hydrogen Production and Delivery from a Dedicated Wind Power Plant Final Solar and Wind H2 Report EPAct 812.doc...

  9. The Cost of Transmission for Wind Energy: A Review of Transmission Planning Studies

    E-Print Network [OSTI]

    Mills, Andrew D.

    2009-01-01T23:59:59.000Z

    wind power in a carbon constrained world. Energy Policy 34,wind energy: modeling the competition between gas turbines and compressed air energy storage for supplemental generation. Energy Policy

  10. Photovoltaic module and interlocked stack of photovoltaic modules

    SciTech Connect (OSTI)

    Wares, Brian S.

    2012-09-04T23:59:59.000Z

    One embodiment relates to an arrangement of photovoltaic modules configured for transportation. The arrangement includes a plurality of photovoltaic modules, each photovoltaic module including a frame having at least a top member and a bottom member. A plurality of alignment features are included on the top member of each frame, and a plurality of alignment features are included on the bottom member of each frame. Adjacent photovoltaic modules are interlocked by the alignment features on the top member of a lower module fitting together with the alignment features on the bottom member of an upper module. Other embodiments, features and aspects are also disclosed.

  11. Photon management in thermal and solar photovoltaics

    E-Print Network [OSTI]

    Hu, Lu

    2008-01-01T23:59:59.000Z

    Photovoltaics is a technology that directly converts photon energy into electrical energy. Depending on the photon source, photovoltaic systems can be categorized into two groups: solar photovoltaics (PV) and thermophotovoltaics ...

  12. Scattering Properties of nanostructures : applications to photovoltaics

    E-Print Network [OSTI]

    Derkacs, Daniel

    2009-01-01T23:59:59.000Z

    Arya, D. Carlson, Prog. Photovoltaics 10, p. 69 (2002). K.and J. Bailat, Prog. in Photovoltaics 12 , 113 (2004). M.and A. Mart?, Progress in Photovoltaics 9, p. 73 (2001). S.

  13. Compact magnetic energy storage module

    DOE Patents [OSTI]

    Prueitt, Melvin L. (Los Alamos, NM)

    1994-01-01T23:59:59.000Z

    A superconducting compact magnetic energy storage module in which a plurality of superconducting toroids, each having a toroidally wound superconducting winding inside a poloidally wound superconducting winding, are stacked so that the flow of electricity in each toroidally wound superconducting winding is in a direction opposite from the direction of electrical flow in other contiguous superconducting toroids. This allows for minimal magnetic pollution outside of the module.

  14. Compact magnetic energy storage module

    DOE Patents [OSTI]

    Prueitt, M.L.

    1994-12-20T23:59:59.000Z

    A superconducting compact magnetic energy storage module in which a plurality of superconducting toroids, each having a toroidally wound superconducting winding inside a poloidally wound superconducting winding, are stacked so that the flow of electricity in each toroidally wound superconducting winding is in a direction opposite from the direction of electrical flow in other contiguous superconducting toroids. This allows for minimal magnetic pollution outside of the module. 4 figures.

  15. Temperature compensated photovoltaic array

    DOE Patents [OSTI]

    Mosher, D.M.

    1997-11-18T23:59:59.000Z

    A temperature compensated photovoltaic module comprises a series of solar cells having a thermally activated switch connected in parallel with several of the cells. The photovoltaic module is adapted to charge conventional batteries having a temperature coefficient differing from the temperature coefficient of the module. The calibration temperatures of the switches are chosen whereby the colder the ambient temperature for the module, the more switches that are on and form a closed circuit to short the associated solar cells. By shorting some of the solar cells as the ambient temperature decreases, the battery being charged by the module is not excessively overcharged at lower temperatures. PV module is an integrated solution that is reliable and inexpensive. 2 figs.

  16. Temperature compensated photovoltaic array

    DOE Patents [OSTI]

    Mosher, Dan Michael (Plano, TX)

    1997-11-18T23:59:59.000Z

    A temperature compensated photovoltaic module (20) comprised of a series of solar cells (22) having a thermally activated switch (24) connected in parallel with several of the cells (22). The photovoltaic module (20) is adapted to charge conventional batteries having a temperature coefficient (TC) differing from the temperature coefficient (TC) of the module (20). The calibration temperatures of the switches (24) are chosen whereby the colder the ambient temperature for the module (20), the more switches that are on and form a closed circuit to short the associated solar cells (22). By shorting some of the solar cells (22) as the ambient temperature decreases, the battery being charged by the module (20) is not excessively overcharged at lower temperatures. PV module (20) is an integrated solution that is reliable and inexpensive.

  17. Photovoltaics for Residential Buildings Webinar

    Broader source: Energy.gov [DOE]

    A webinar by National Renewable Energy Laboratory (NREL) Senior Engineer Otto VanGeet on using solar photovoltaic (PV) systems to provide electricity for homes.

  18. Monitoring SERC Technologies Solar Photovoltaics

    Broader source: Energy.gov [DOE]

    A webinar by National Renewable Energy Laboratory's Market Transformation Center electrical engineer Peter McNutt about Solar Photovoltaics and how to properly monitor its installation.

  19. Sandia National Laboratories: sustainable photovoltaics

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    photovoltaics Solar Energy Research Institute for India and the United States Kick-Off On November 27, 2012, in Concentrating Solar Power, Energy, National Solar Thermal Test...

  20. Solar photovoltaics for development applications

    SciTech Connect (OSTI)

    Shepperd, L.W. [Florida Solar Energy Center, Cape Canaveral, FL (United States)] [Florida Solar Energy Center, Cape Canaveral, FL (United States); Richards, E.H. [Sandia National Labs., Albuquerque, NM (United States)] [Sandia National Labs., Albuquerque, NM (United States)

    1993-08-01T23:59:59.000Z

    This document introduces photovoltaic technology to individuals and groups specializing in development activities. Examples of actual installations illustrate the many services supplied by photovoltaic systems in development applications, including water pumping, lighting, health care, refrigeration, communications, and a variety of productive uses. The various aspects of the technology are explored to help potential users evaluate whether photovoltaics can assist them in achieving their organizational goals. Basic system design, financing techniques, and the importance of infrastructure are included, along with additional sources of information and major US photovoltaic system suppliers.

  1. Amorphous Silicon-Carbon Nanostructure Photovoltaic Devices

    E-Print Network [OSTI]

    Schriver, Maria Christine

    2012-01-01T23:59:59.000Z

    decline in photovoltaic efficiency is less dramatic, butefficiency ? = V OC I ?j SC Amorphous Silicon-Carbon Nanostructure So- lar Cells For this thesis, I made photovoltaic

  2. Scattering Properties of nanostructures : applications to photovoltaics

    E-Print Network [OSTI]

    Derkacs, Daniel

    2009-01-01T23:59:59.000Z

    Manufacturing high-efficiency low- cost photovoltaic devicesManufacturing high-efficiency low-cost photovoltaic devicesphotovoltaic devices capable of operation at power conversion efficiencies

  3. Organic Photovoltaics Experiments Showcase 'Superfacility' Research

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Organic Photovoltaics Experiments Showcase 'Superfacility' Concept Organic Photovoltaics Experiments Showcase 'Superfacility' Concept Collaboration Key to Enabling On-The-Fly HPC...

  4. Sandia National Laboratories: microsystems enabled photovoltaics

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    microsystems enabled photovoltaics Sandian Selected for Outstanding Young Engineer Award On June 4, 2014, in Energy, News, News & Events, Photovoltaic, Renewable Energy, Solar The...

  5. Sandia National Laboratories: photovoltaic plant reliability

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    photovoltaic plant reliability Sandia-Electric Power Research Institute Partnership Publishes Photovoltaic Reliability Report On January 21, 2014, in Energy, Facilities, Grid...

  6. Sandia National Laboratories: increased photovoltaic efficiency

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    increased photovoltaic efficiency Combining 'Tinkertoy' Materials with Solar Cells for Increased Photovoltaic Efficiency On December 4, 2014, in Energy, Materials Science, News,...

  7. Sandia National Laboratories: Photovoltaic System Model Calibration...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Photovoltaic System Model Calibration Using Monitored System Data Sandians Win 'Best Paper' Award at Photovoltaic Conference in Japan On March 4, 2015, in Computational Modeling &...

  8. Sandia National Laboratories: Photovoltaic Systems Evaluation...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Energy On May 1, 2013, in DETL, Energy, Facilities, News, News & Events, Photovoltaic, Photovoltaic Systems Evaluation Laboratory (PSEL), Renewable Energy, Solar, Solar...

  9. Iron Chalcogenide Photovoltaic Absorbers

    SciTech Connect (OSTI)

    Yu, Liping [National Renewable Energy Lab. (NREL), Golden, CO (United States); Lany, Stephan [National Renewable Energy Lab. (NREL), Golden, CO (United States); Kykyneshi, Robert [Oregon State Univ., Corvallis, OR (United States); Jieratum, Vorranutch [Oregon State Univ., Corvallis, OR (United States); Ravichandran, Ram [Oregon State Univ., Corvallis, OR (United States); Pelatt, Brian [Oregon State Univ., Corvallis, OR (United States); Altschul, Emmeline [Oregon State Univ., Corvallis, OR (United States); Platt, Heather A. S. [Oregon State Univ., Corvallis, OR (United States); Wager, John F. [Oregon State Univ., Corvallis, OR (United States); Keszler, Douglas A. [Oregon State Univ., Corvallis, OR (United States); Zunger, Alex [National Renewable Energy Lab. (NREL), Golden, CO (United States)

    2011-10-01T23:59:59.000Z

    An integrated computational and experimental study of FeS? pyrite reveals that phase coexistence is an important factor limiting performance as a thin-film solar absorber. This phase coexistence is suppressed with the ternary materials Fe?SiS? and Fe?GeS?, which also exhibit higher band gaps than FeS?. Thus, the ternaries provide a new entry point for development of thin-film absorbers and high-efficiency photovoltaics.

  10. Photovoltaic-thermal collectors

    DOE Patents [OSTI]

    Cox, III, Charles H. (Carlisle, MA)

    1984-04-24T23:59:59.000Z

    A photovoltaic-thermal solar cell including a semiconductor body having antireflective top and bottom surfaces and coated on each said surface with a patterned electrode covering less than 10% of the surface area. A thermal-absorbing surface is spaced apart from the bottom surface of the semiconductor and a heat-exchange fluid is passed between the bottom surface and the heat-absorbing surface.

  11. Photovoltaic module reliability workshop

    SciTech Connect (OSTI)

    Mrig, L. (ed.)

    1990-01-01T23:59:59.000Z

    The paper and presentations compiled in this volume form the Proceedings of the fourth in a series of Workshops sponsored by Solar Energy Research Institute (SERI/DOE) under the general theme of photovoltaic module reliability during the period 1986--1990. The reliability Photo Voltaic (PV) modules/systems is exceedingly important along with the initial cost and efficiency of modules if the PV technology has to make a major impact in the power generation market, and for it to compete with the conventional electricity producing technologies. The reliability of photovoltaic modules has progressed significantly in the last few years as evidenced by warranties available on commercial modules of as long as 12 years. However, there is still need for substantial research and testing required to improve module field reliability to levels of 30 years or more. Several small groups of researchers are involved in this research, development, and monitoring activity around the world. In the US, PV manufacturers, DOE laboratories, electric utilities and others are engaged in the photovoltaic reliability research and testing. This group of researchers and others interested in this field were brought together under SERI/DOE sponsorship to exchange the technical knowledge and field experience as related to current information in this important field. The papers presented here reflect this effort.

  12. Photovoltaic self-assembly.

    SciTech Connect (OSTI)

    Lavin, Judith; Kemp, Richard Alan; Stewart, Constantine A.

    2010-10-01T23:59:59.000Z

    This late-start LDRD was focused on the application of chemical principles of self-assembly on the ordering and placement of photovoltaic cells in a module. The drive for this chemical-based self-assembly stems from the escalating prices in the 'pick-and-place' technology currently used in the MEMS industries as the size of chips decreases. The chemical self-assembly principles are well-known on a molecular scale in other material science systems but to date had not been applied to the assembly of cells in a photovoltaic array or module. We explored several types of chemical-based self-assembly techniques, including gold-thiol interactions, liquid polymer binding, and hydrophobic-hydrophilic interactions designed to array both Si and GaAs PV chips onto a substrate. Additional research was focused on the modification of PV cells in an effort to gain control over the facial directionality of the cells in a solvent-based environment. Despite being a small footprint research project worked on for only a short time, the technical results and scientific accomplishments were significant and could prove to be enabling technology in the disruptive advancement of the microelectronic photovoltaics industry.

  13. Models used to assess the performance of photovoltaic systems.

    SciTech Connect (OSTI)

    Stein, Joshua S.; Klise, Geoffrey T.

    2009-12-01T23:59:59.000Z

    This report documents the various photovoltaic (PV) performance models and software developed and utilized by researchers at Sandia National Laboratories (SNL) in support of the Photovoltaics and Grid Integration Department. In addition to PV performance models, hybrid system and battery storage models are discussed. A hybrid system using other distributed sources and energy storage can help reduce the variability inherent in PV generation, and due to the complexity of combining multiple generation sources and system loads, these models are invaluable for system design and optimization. Energy storage plays an important role in reducing PV intermittency and battery storage models are used to understand the best configurations and technologies to store PV generated electricity. Other researcher's models used by SNL are discussed including some widely known models that incorporate algorithms developed at SNL. There are other models included in the discussion that are not used by or were not adopted from SNL research but may provide some benefit to researchers working on PV array performance, hybrid system models and energy storage. The paper is organized into three sections to describe the different software models as applied to photovoltaic performance, hybrid systems, and battery storage. For each model, there is a description which includes where to find the model, whether it is currently maintained and any references that may be available. Modeling improvements underway at SNL include quantifying the uncertainty of individual system components, the overall uncertainty in modeled vs. measured results and modeling large PV systems. SNL is also conducting research into the overall reliability of PV systems.

  14. 992 IEEE TRANSACTIONS ON SMART GRID, VOL. 5, NO. 2, MARCH 2014 Adaptive Control for Energy Storage Systems in

    E-Print Network [OSTI]

    Pedram, Massoud

    992 IEEE TRANSACTIONS ON SMART GRID, VOL. 5, NO. 2, MARCH 2014 Adaptive Control for Energy Storage) power generation and energy storage systems into the smart grid will provide a better way of utilizing and storage systems. Index Terms--Control, energy storage, photovoltaic, prediction. I. INTRODUCTION

  15. Phenomena of spin rotation and oscillation of particles (atoms, molecules) containing in a trap blowing on by wind of high energy particles in storage ring

    E-Print Network [OSTI]

    Vladimir Baryshevsky

    2002-02-14T23:59:59.000Z

    Spin rotation and oscillation phenomena of particles captured in a gas target through which beam of high energy particles passes is discussed. Such experiment arrangement make it realizable for storage ring and allows to study zero-angle scattering amplitude at highest possible energies.

  16. Graphite-based photovoltaic cells

    DOE Patents [OSTI]

    Lagally, Max (Madison, WI); Liu, Feng (Salt Lake City, UT)

    2010-12-28T23:59:59.000Z

    The present invention uses lithographically patterned graphite stacks as the basic building elements of an efficient and economical photovoltaic cell. The basic design of the graphite-based photovoltaic cells includes a plurality of spatially separated graphite stacks, each comprising a plurality of vertically stacked, semiconducting graphene sheets (carbon nanoribbons) bridging electrically conductive contacts.

  17. System design and manufacturability of concrete spheres for undersea pumped hydro energy or hydrocarbon storage

    E-Print Network [OSTI]

    Fennell, Gregory E. (Gregory Edmund)

    2011-01-01T23:59:59.000Z

    Offshore wind and energy storage have both gained considerable attention in recent years as more wind turbine capacity is installed, less attractive/economical space remains for onshore wind, and load-leveling issues make ...

  18. Metallic nanostructures for optoelectronic and photovoltaic applications

    E-Print Network [OSTI]

    Lim, Swee Hoe

    2009-01-01T23:59:59.000Z

    photovoltaics deployment, such technologies will reach their fundamental limitation in terms of efficiency,

  19. Photovoltaic system reliability

    SciTech Connect (OSTI)

    Maish, A.B.; Atcitty, C. [Sandia National Labs., NM (United States); Greenberg, D. [Ascension Technology, Inc., Lincoln Center, MA (United States)] [and others

    1997-10-01T23:59:59.000Z

    This paper discusses the reliability of several photovoltaic projects including SMUD`s PV Pioneer project, various projects monitored by Ascension Technology, and the Colorado Parks project. System times-to-failure range from 1 to 16 years, and maintenance costs range from 1 to 16 cents per kilowatt-hour. Factors contributing to the reliability of these systems are discussed, and practices are recommended that can be applied to future projects. This paper also discusses the methodology used to collect and analyze PV system reliability data.

  20. Bracket for photovoltaic modules

    DOE Patents [OSTI]

    Ciasulli, John; Jones, Jason

    2014-06-24T23:59:59.000Z

    Brackets for photovoltaic ("PV") modules are described. In one embodiment, a saddle bracket has a mounting surface to support one or more PV modules over a tube, a gusset coupled to the mounting surface, and a mounting feature coupled to the gusset to couple to the tube. The gusset can have a first leg and a second leg extending at an angle relative to the mounting surface. Saddle brackets can be coupled to a torque tube at predetermined locations. PV modules can be coupled to the saddle brackets. The mounting feature can be coupled to the first gusset and configured to stand the one or more PV modules off the tube.

  1. Photovoltaic Degradation Risk: Preprint

    SciTech Connect (OSTI)

    Jordan, D. C.; Kurtz, S. R.

    2012-04-01T23:59:59.000Z

    The ability to accurately predict power delivery over the course of time is of vital importance to the growth of the photovoltaic (PV) industry. Important cost drivers include the efficiency with which sunlight is converted into power, how this relationship changes over time, and the uncertainty in this prediction. An accurate quantification of power decline over time, also known as degradation rate, is essential to all stakeholders - utility companies, integrators, investors, and researchers alike. In this paper we use a statistical approach based on historical data to quantify degradation rates, discern trends and quantify risks related to measurement uncertainties, number of measurements and methodologies.

  2. Photovoltaic panel clamp

    DOE Patents [OSTI]

    Mittan, Margaret Birmingham (Oakland, CA); Miros, Robert H. J. (Fairfax, CA); Brown, Malcolm P. (San Francisco, CA); Stancel, Robert (Loss Altos Hills, CA)

    2012-06-05T23:59:59.000Z

    A photovoltaic panel clamp includes an upper and lower section. The interface between the assembled clamp halves and the module edge is filled by a flexible gasket material, such as EPDM rubber. The gasket preferably has small, finger like protrusions that allow for easy insertion onto the module edge while being reversed makes it more difficult to remove them from the module once installed. The clamp includes mounting posts or an integral axle to engage a bracket. The clamp also may include a locking tongue to secure the clamp to a bracket.

  3. Photovoltaic panel clamp

    DOE Patents [OSTI]

    Brown, Malcolm P.; Mittan, Margaret Birmingham; Miros, Robert H. J.; Stancel, Robert

    2013-03-19T23:59:59.000Z

    A photovoltaic panel clamp includes an upper and lower section. The interface between the assembled clamp halves and the module edge is filled by a flexible gasket material, such as EPDM rubber. The gasket preferably has small, finger like protrusions that allow for easy insertion onto the module edge while being reversed makes it more difficult to remove them from the module once installed. The clamp includes mounting posts or an integral axle to engage a bracket. The clamp also may include a locking tongue to secure the clamp to a bracket.

  4. Thin film photovoltaic device

    DOE Patents [OSTI]

    Catalano, Anthony W. (Wilmington, DE); Bhushan, Manjul (Wilmington, DE)

    1982-01-01T23:59:59.000Z

    A thin film photovoltaic solar cell which utilizes a zinc phosphide semiconductor is of the homojunction type comprising an n-type conductivity region forming an electrical junction with a p-type region, both regions consisting essentially of the same semiconductor material. The n-type region is formed by treating zinc phosphide with an extrinsic dopant such as magnesium. The semiconductor is formed on a multilayer substrate which acts as an opaque contact. Various transparent contacts may be used, including a thin metal film of the same chemical composition as the n-type dopant or conductive oxides or metal grids.

  5. Thin film photovoltaic device

    DOE Patents [OSTI]

    Catalano, A.W.; Bhushan, M.

    1982-08-03T23:59:59.000Z

    A thin film photovoltaic solar cell which utilizes a zinc phosphide semiconductor is of the homojunction type comprising an n-type conductivity region forming an electrical junction with a p-type region, both regions consisting essentially of the same semiconductor material. The n-type region is formed by treating zinc phosphide with an extrinsic dopant such as magnesium. The semiconductor is formed on a multilayer substrate which acts as an opaque contact. Various transparent contacts may be used, including a thin metal film of the same chemical composition as the n-type dopant or conductive oxides or metal grids. 5 figs.

  6. Ballasted photovoltaic module and module arrays

    DOE Patents [OSTI]

    Botkin, Jonathan (El Cerrito, CA); Graves, Simon (Berkeley, CA); Danning, Matt (Oakland, CA)

    2011-11-29T23:59:59.000Z

    A photovoltaic (PV) module assembly including a PV module and a ballast tray. The PV module includes a PV device and a frame. A PV laminate is assembled to the frame, and the frame includes an arm. The ballast tray is adapted for containing ballast and is removably associated with the PV module in a ballasting state where the tray is vertically under the PV laminate and vertically over the arm to impede overt displacement of the PV module. The PV module assembly can be installed to a flat commercial rooftop, with the PV module and the ballast tray both resting upon the rooftop. In some embodiments, the ballasting state includes corresponding surfaces of the arm and the tray being spaced from one another under normal (low or no wind) conditions, such that the frame is not continuously subjected to a weight of the tray.

  7. Photovoltaic array mounting apparatus, systems, and methods

    DOE Patents [OSTI]

    West, John Raymond; Atchley, Brian; Hudson, Tyrus Hawkes; Johansen, Emil

    2014-12-02T23:59:59.000Z

    An apparatus for mounting a photovoltaic (PV) module on a surface, including a support with an upper surface, a lower surface, tabs, one or more openings, and a clip comprising an arm and a notch, where the apparatus resists wind forces and seismic forces and creates a grounding electrical bond between the PV module, support, and clip. The invention further includes a method for installing PV modules on a surface that includes arranging supports in rows along an X axis and in columns along a Y axis on a surface such that in each row the distance between two neighboring supports does not exceed the length of the longest side of a PV module and in each column the distance between two neighboring supports does not exceed the length of the shortest side of a PV module.

  8. Photovoltaic Product Directory and Buyers Guide

    SciTech Connect (OSTI)

    Watts, R.L.; Smith, S.A.; Dirks, J.A.; Mazzucchi, R.P.; Lee, V.E.

    1984-04-01T23:59:59.000Z

    The directory guide explains photovoltaic systems briefly and shows what products are available off-the-shelf. Information is given to assist in designing a photovoltaic system and on financial incentives. Help is given for determining if photovoltaic products can meet a particular buyer's needs, and information is provided on actual photovoltaic user's experiences. Detailed information is appended on various financial incentives available from state and federal governments, sources of additional information on photovoltaics, sources of various photovoltaic products, and a listing of addresses of photovoltaic products suppliers. (LEW)

  9. WIND ENERGY Wind Energ. (2014)

    E-Print Network [OSTI]

    Peinke, Joachim

    2014-01-01T23:59:59.000Z

    loads from the wind inflow through rotor aerodynamics, drive train and power electronics is stillWIND ENERGY Wind Energ. (2014) Published online in Wiley Online Library (wileyonlinelibrary wind inflow conditions M. R. Luhur, J. Peinke, J. Schneemann and M. Wchter ForWind-Center for Wind

  10. Structure-Function Relationships in Semiconducting Polymers for Organic Photovoltaics

    E-Print Network [OSTI]

    Kavulak, David Fredric Joel

    2010-01-01T23:59:59.000Z

    current organic photovoltaic efficiencies are not highof the high photovoltaic efficiencies, 20-22 high chargeof a photovoltaic device by affecting the efficiency of

  11. Learning by doing: The evolution of state support for photovoltaics

    E-Print Network [OSTI]

    Bolinger, Mark; Wiser, Ryan

    2003-01-01T23:59:59.000Z

    of State Support for Photovoltaics Mark Bolinger and Ryantarget the installation of photovoltaics (PV) in one way orwidespread popularity of photovoltaics (PV), along with its

  12. Optically Functional Nanomaterials: Optothermally Responsive Composites and Carbon Nanotube Photovoltaics

    E-Print Network [OSTI]

    Okawa, David

    2010-01-01T23:59:59.000Z

    and Carbon Nanotube Photovoltaics by David Christopher OkawaPart II: Carbon Nanotube Photovoltaics Chapter 6:Carbon Nanotube Polymer Photovoltaics 6.1 Polymer-Nanotube

  13. The Development of Semiconducting Materials for Organic Photovoltaics

    E-Print Network [OSTI]

    Douglas, Jessica D.

    2013-01-01T23:59:59.000Z

    F. C. ; Norrman, K. Prog. Photovoltaics 2007, 15, 697712.Processed Organic Photovoltaics that Generate Chargepolymer-based organic photovoltaics (OPVs) have attracted

  14. Temperature-Dependent Electron Transport in Quantum Dot Photovoltaics

    E-Print Network [OSTI]

    Padilla, Derek

    2013-01-01T23:59:59.000Z

    4.4 Photovoltaics in Practice . . . . . . . . . . . . . .milestones. Quantum dot photovoltaics is in the bottom-rightIN QUANTUM DOT PHOTOVOLTAICS A dissertation submitted in

  15. Structure-Function Relationships in Semiconducting Polymers for Organic Photovoltaics

    E-Print Network [OSTI]

    Kavulak, David Fredric Joel

    2010-01-01T23:59:59.000Z

    properties for organic photovoltaics (OPVs). Space-chargePolymers for Organic Photovoltaics By David Fredric JoelPolymers for Organic Photovoltaics by David Fredric Joel

  16. Comment on "coherence and uncertainty in nanostructured organic photovoltaics"

    E-Print Network [OSTI]

    Mukamel, S

    2013-01-01T23:59:59.000Z

    provide new probes for photovoltaics. The develop- ment ofin Nanostructured Organic Photovoltaics. J. Phys. Chem. Lettin Nanostructured Organic Photovoltaics Shaul Mukamel

  17. The Development of Semiconducting Materials for Organic Photovoltaics

    E-Print Network [OSTI]

    Douglas, Jessica D.

    2013-01-01T23:59:59.000Z

    properties of P1-P3, and photovoltaic performance of P1-P3Polymer Optoelectronic Photovoltaic Performance Propertiespolymer and the photovoltaic performance of the OPV devices,

  18. Fabrication and Characterization of Organic/Inorganic Photovoltaic Devices

    E-Print Network [OSTI]

    Guvenc, Ali Bilge

    2012-01-01T23:59:59.000Z

    Defect States, and Photovoltaic Performance, Advanced EnergyV curve and Photovoltaic Device Performance Parameters: Thetransport. The BHJ photovoltaic device performance improving

  19. The Market Value and Cost of Solar Photovoltaic Electricity Production

    E-Print Network [OSTI]

    Borenstein, Severin

    2008-01-01T23:59:59.000Z

    Production of Solar Photovoltaic Cells, Center for theconcerns is solar photovoltaic cells (PVs), which captureProduction of Solar Photovoltaic Cells Solar PV cells

  20. Statistical Methods for Enhanced Metrology in Semiconductor/Photovoltaic Manufacturing

    E-Print Network [OSTI]

    Zeng, Dekong

    2012-01-01T23:59:59.000Z

    modeling method for photovoltaic cells. in Proc. IEEE 35thlosses in solar photovoltaic cell networks. Energy 32:Cell Variability Photovoltaic (PV) cells manufactured with

  1. Structure-Function Relationships in Semiconducting Polymers for Organic Photovoltaics

    E-Print Network [OSTI]

    Kavulak, David Fredric Joel

    2010-01-01T23:59:59.000Z

    Photovoltaic Cell .the materials, all photovoltaic cells operate on the basicEquation 1.2) For photovoltaic cells of all kinds and from

  2. Fabrication and Characterization of Organic/Inorganic Photovoltaic Devices

    E-Print Network [OSTI]

    Guvenc, Ali Bilge

    2012-01-01T23:59:59.000Z

    processable polymer photovoltaic cells by self-organizationand their influence on photovoltaic cells, Solar EnergyPhotodiodes, and Photovoltaic Cells, Applied Physics Letters

  3. Charge transport in hybrid nanorod-polymer composite photovoltaic cells

    E-Print Network [OSTI]

    Huynh, Wendy U.; Dittmer, Janke J.; Teclemariam, Nerayo; Milliron, Delia; Alivisatos, A. Paul; Barnham, Keith W.J.

    2002-01-01T23:59:59.000Z

    circuit diagram for a photovoltaic cell under illumination.Polymer Composite Photovoltaic Cells Wendy U. Huynh ,devices such as photovoltaic cells and light-emitting-

  4. Fabrication and Characterization of Organic/Inorganic Photovoltaic Devices

    E-Print Network [OSTI]

    Guvenc, Ali Bilge

    2012-01-01T23:59:59.000Z

    Colloidal-quantum-dot photovoltaics using atomic-ligandGreen, Third generation photovoltaics: solar cells for 202027), Progress in Photovoltaics 14 (1), 45-51 (2006). [44] I.

  5. Tariffs Can Be Structured to Encourage Photovoltaic Energy

    E-Print Network [OSTI]

    Wiser, Ryan

    2009-01-01T23:59:59.000Z

    Be Structured to Encourage Photovoltaic Energy Ryan Wiser,of customer-sited photovoltaic (PV) systems. Though theseEconomics of Commercial Photovoltaic Systems in California,

  6. Fabrication and Characterization of Organic/Inorganic Photovoltaic Devices

    E-Print Network [OSTI]

    Guvenc, Ali Bilge

    2012-01-01T23:59:59.000Z

    J. W. Yu, Organic photovoltaic devices with a crosslinkablein Nanostructured Photovoltaic Devices, Recent Patents oninterfaces in organic photovoltaic devices, Solar Energy

  7. Effects of solar photovoltaic panels on roof heat transfer

    E-Print Network [OSTI]

    Dominguez, Anthony; Kleissl, Jan; Luvall, Jeffrey C

    2011-01-01T23:59:59.000Z

    theenergyperformanceof photovoltaicroofs,ASHRAETransAthermalmodelforphotovoltaicsystems,SolarEnergy,EffectsofSolarPhotovoltaicPanelsonRoofHeatTransfer

  8. Financing Non-Residential Photovoltaic Projects: Options and Implications

    E-Print Network [OSTI]

    Bolinger, Mark

    2009-01-01T23:59:59.000Z

    Coggeshall. 2008. Solar Photovoltaic Financing: DeploymentEconomics of Commercial Photovoltaic Systems in California.Financing Non-Residential Photovoltaic Projects: Options and

  9. Soiling losses for solar photovoltaic systems in California

    E-Print Network [OSTI]

    Mejia, Felipe A; Kleissl, Jan

    2013-01-01T23:59:59.000Z

    on Large Grid-Connected Photovoltaic Systems in Californiaof Dust on Solar Photovoltaic (PV) Performance: Researchclimatology in design of photovoltaic systems. In: Markvart

  10. Efficiency enhancement of luminescent solar concentrations for photovoltaic technologies

    E-Print Network [OSTI]

    Wang, Chunhua

    2011-01-01T23:59:59.000Z

    and V.U. Ho?mann. Photovoltaic Solar Energy Gen- eration.Concentrations for Photovoltaic Technologies A dissertationThirteenth IEEE Photovoltaic Specialists Conference- 1978

  11. Statistical Methods for Enhanced Metrology in Semiconductor/Photovoltaic Manufacturing

    E-Print Network [OSTI]

    Zeng, Dekong

    2012-01-01T23:59:59.000Z

    and Simulation of Photovoltaic Arrays. IEEE Trans. PowerSolar Cell Variability Photovoltaic (PV) cells manufacturedmodeling method for photovoltaic cells. in Proc. IEEE 35th

  12. NREL Center for Photovoltaics

    SciTech Connect (OSTI)

    None

    2009-01-01T23:59:59.000Z

    Solar cells, also called photovoltaics (PV) by solar cell scientists, convert sunlight directly into electricity. Solar cells are often used to power calculators and watches. The performance of a solar cell is measured in terms of its efficiency at turning sunlight into electricity. Only sunlight of certain energies will work efficiently to create electricity, and much of it is reflected or absorbed by the material that make up the cell. Because of this, a typical commercial solar cell has an efficiency of 15%about one-sixth of the sunlight striking the cell generates electricity. Low efficiencies mean that larger arrays are needed, and that means higher cost. Improving solar cell efficiencies while holding down the cost per cell is an important goal of the PV industry, researchers at the National Renewable Energy Laboratory (NREL) and other U.S. Department of Energy (DOE) laboratories, and they have made significant progress. The first solar cells, built in the 1950s, had efficiencies of less than 4%. For a text version of this video visit http://www.nrel.gov/learning/re_photovoltaics_video_text.html

  13. NREL Center for Photovoltaics

    ScienceCinema (OSTI)

    None

    2013-05-29T23:59:59.000Z

    Solar cells, also called photovoltaics (PV) by solar cell scientists, convert sunlight directly into electricity. Solar cells are often used to power calculators and watches. The performance of a solar cell is measured in terms of its efficiency at turning sunlight into electricity. Only sunlight of certain energies will work efficiently to create electricity, and much of it is reflected or absorbed by the material that make up the cell. Because of this, a typical commercial solar cell has an efficiency of 15%?about one-sixth of the sunlight striking the cell generates electricity. Low efficiencies mean that larger arrays are needed, and that means higher cost. Improving solar cell efficiencies while holding down the cost per cell is an important goal of the PV industry, researchers at the National Renewable Energy Laboratory (NREL) and other U.S. Department of Energy (DOE) laboratories, and they have made significant progress. The first solar cells, built in the 1950s, had efficiencies of less than 4%. For a text version of this video visit http://www.nrel.gov/learning/re_photovoltaics_video_text.html

  14. Control of naturally coupled piezoelectric and photovoltaic properties for multi-type energy scavengers

    E-Print Network [OSTI]

    Wang, Zhong L.

    -frequency mechanical energies such as a light- wind and body movements, making it possible to produce a promising powerControl of naturally coupled piezoelectric and photovoltaic properties for multi-type energy*d Received 5th July 2011, Accepted 12th August 2011 DOI: 10.1039/c1ee02080c In this paper, we present

  15. NEDO Research Related to Battery Storage Applications for Integration...

    Open Energy Info (EERE)

    NEDO Research Related to Battery Storage Applications for Integration of Renewable Energy Jump to: navigation, search Tool Summary LAUNCH TOOL Name: Spain Installed Wind Capacity...

  16. The Role of Energy Storage in Helping Global Energy Problems

    E-Print Network [OSTI]

    Powell, Warren B.

    of an individual wind farm, via storage technologies, so that the energy can be infused into the grid at a later

  17. Pitfalls of modeling wind power using Markov chains

    E-Print Network [OSTI]

    Kirtley, James L., Jr.

    An increased penetration of wind turbines have given rise to a need for wind speed/power models that generate realistic synthetic data. Such data, for example, might be used in simulations to size energy storage or spinning ...

  18. Photovoltaic module with adhesion promoter

    DOE Patents [OSTI]

    2013-10-08T23:59:59.000Z

    Photovoltaic modules with adhesion promoters and methods for fabricating photovoltaic modules with adhesion promoters are described. A photovoltaic module includes a solar cell including a first surface and a second surface, the second surface including a plurality of interspaced back-side contacts. A first glass layer is coupled to the first surface by a first encapsulating layer. A second glass layer is coupled to the second surface by a second encapsulating layer. At least a portion of the second encapsulating layer is bonded directly to the plurality of interspaced back-side contacts by an adhesion promoter.

  19. Power Electronics and Motor Drives Laboratory Integrating Energy Storage withIntegrating Energy Storage with

    E-Print Network [OSTI]

    Saldin, Dilano

    Power Electronics and Motor Drives Laboratory Integrating Energy Storage withIntegrating Energy Storage with Renewable Energy SystemsRenewable Energy Systems Power Electronics and Motor Drives Introduction Wind Energy Profile Solar Energy Profile Energy Storage Options Role of Industrial Electronics

  20. annual wind speeds: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    In this paper, an efficient system has been presented comprising of solar panel, wind generator, charge controller and charge storage unit (battery). Solar panel is selected as...

  1. accurate wind speed: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    In this paper, an efficient system has been presented comprising of solar panel, wind generator, charge controller and charge storage unit (battery). Solar panel is selected as...

  2. Temperature-Dependent Electron Transport in Quantum Dot Photovoltaics

    E-Print Network [OSTI]

    Padilla, Derek

    2013-01-01T23:59:59.000Z

    to enhanced photovoltaic device efficiency. ACS nano, 2(11):Photovoltaic Devices Introduction Thin-film quantum dot (QD) photovoltaics provide the potential to create high-efficiencyefficiency under such illumina- tion. A non-ideal model of a photovoltaic

  3. The Development of Semiconducting Materials for Organic Photovoltaics

    E-Print Network [OSTI]

    Douglas, Jessica D.

    2013-01-01T23:59:59.000Z

    photovoltaics (OPVs) has led to a significant increase in their power conversion efficiencies (Photovoltaics..1 Motivation and Current Technology1 Organic Photovoltaic Device Operation and Structure2 Characterization of Organic Photovoltaic Device Efficiency..

  4. Methodology Guidelines on Life Cycle Assessment of Photovoltaic Electricity

    E-Print Network [OSTI]

    1 Methodology Guidelines on Life Cycle Assessment of Photovoltaic Electricity of Photovoltaic Electricity #12;IEA-PVPS-TASK 12 Methodology Guidelines on Life Cycle Assessment of Photovoltaic Electricity INTERNATIONAL ENERGY AGENCY PHOTOVOLTAIC POWER SYSTEMS PROGRAMME Methodology

  5. OTEC- Residential Photovoltaic Rebate Program

    Broader source: Energy.gov [DOE]

    Customers of Oregon Trail Electric Consumers Cooperative (OTEC) who install photovoltaic systems are eligible for a rebate of $500 for the first kilowatt (kW) of installed capacity per year. ...

  6. Reducing recombination in organic photovoltaics

    E-Print Network [OSTI]

    Sussman, Jason M. (Jason Michael)

    2011-01-01T23:59:59.000Z

    In this thesis, I consider two methods to improve organic photovoltaic efficiency: energy level cascades and promotion of triplet state excitons. The former relies on a thin layer of material placed between the active ...

  7. Salem Electric- Photovoltaic Rebate Program

    Broader source: Energy.gov [DOE]

    Salem Electric offers a rebate to residential customers who install solar photovoltaic (PV) systems. Customers have the option of receiving a rebate or a [http://dsireusa.org/incentives/incentive...

  8. Mandatory Photovoltaic System Cost Estimate

    Broader source: Energy.gov [DOE]

    At the request of a customer or a potential customer, Colorado electric utilities are required to conduct a cost comparison of a photovoltaic (PV) system to any proposed distribution line extension...

  9. Ameren Missouri- Photovoltaic Rebate Program

    Broader source: Energy.gov [DOE]

    Ameren Missouri offers rebates to its customers for the installation of net metered photovoltaic (PV) systems on their properties. The rebate is set at $2.00 per DC watt with a maximum rebate of ...

  10. Mandatory Photovoltaic System Cost Analysis

    Broader source: Energy.gov [DOE]

    The Arizona Corporation Commission requires electric utilities to conduct a cost/benefit analysis to compare the cost of line extension with the cost of installing a stand-alone photovoltaic (PV)...

  11. Rooftop Photovoltaics Market Penetration Scenarios

    SciTech Connect (OSTI)

    Paidipati, J.; Frantzis, L.; Sawyer, H.; Kurrasch, A.

    2008-02-01T23:59:59.000Z

    The goal of this study was to model the market penetration of rooftop photovoltaics (PV) in the United States under a variety of scenarios, on a state-by-state basis, from 2007 to 2015.

  12. Photovoltaic cell assembly

    DOE Patents [OSTI]

    Beavis, Leonard C. (Albuquerque, NM); Panitz, Janda K. G. (Edgewood, NM); Sharp, Donald J. (Albuquerque, NM)

    1990-01-01T23:59:59.000Z

    A photovoltaic assembly for converting high intensity solar radiation into lectrical energy in which a solar cell is separated from a heat sink by a thin layer of a composite material which has excellent dielectric properties and good thermal conductivity. This composite material is a thin film of porous Al.sub.2 O.sub.3 in which the pores have been substantially filled with an electrophoretically-deposited layer of a styrene-acrylate resin. This composite provides electrical breakdown strengths greater than that of a layer consisting essentially of Al.sub.2 O.sub.3 and has a higher thermal conductivity than a layer of styrene-acrylate alone.

  13. Photovoltaic module mounting system

    DOE Patents [OSTI]

    Miros, Robert H. J. (Fairfax, CA); Mittan, Margaret Birmingham (Oakland, CA); Seery, Martin N. (San Rafael, CA); Holland, Rodney H. (Novato, CA)

    2012-04-17T23:59:59.000Z

    A solar array mounting system having unique installation, load distribution, and grounding features, and which is adaptable for mounting solar panels having no external frame. The solar array mounting system includes flexible, pedestal-style feet and structural links connected in a grid formation on the mounting surface. The photovoltaic modules are secured in place via the use of attachment clamps that grip the edge of the typically glass substrate. The panel mounting clamps are then held in place by tilt brackets and/or mid-link brackets that provide fixation for the clamps and align the solar panels at a tilt to the horizontal mounting surface. The tilt brackets are held in place atop the flexible feet and connected link members thus creating a complete mounting structure.

  14. Photovoltaic solar concentrator

    DOE Patents [OSTI]

    Nielson, Gregory N.; Okandan, Murat; Resnick, Paul J.; Cruz-Campa, Jose Luis

    2012-12-11T23:59:59.000Z

    A photovoltaic solar concentrator is disclosed with one or more transverse-junction solar cells (also termed point contact solar cells) and a lens located above each solar cell to concentrate sunlight onto the solar cell to generate electricity. Piezoelectric actuators tilt or translate each lens to track the sun using a feedback-control circuit which senses the electricity generated by one or more of the solar cells. The piezoelectric actuators can be coupled through a displacement-multiplier linkage to provide an increased range of movement of each lens. Each lens in the solar concentrator can be supported on a frame (also termed a tilt plate) having three legs, with the movement of the legs being controlled by the piezoelectric actuators.

  15. Photovoltaic module mounting system

    DOE Patents [OSTI]

    Miros, Robert H. J.; Mittan, Margaret Birmingham; Seery, Martin N; Holland, Rodney H

    2012-09-18T23:59:59.000Z

    A solar array mounting system having unique installation, load distribution, and grounding features, and which is adaptable for mounting solar panels having no external frame. The solar array mounting system includes flexible, pedestal-style feet and structural links connected in a grid formation on the mounting surface. The photovoltaic modules are secured in place via the use of attachment clamps that grip the edge of the typically glass substrate. The panel mounting clamps are then held in place by tilt brackets and/or mid-link brackets that provide fixation for the clamps and align the solar panels at a tilt to the horizontal mounting surface. The tilt brackets are held in place atop the flexible feet and connected link members thus creating a complete mounting structure.

  16. A prototype photovoltaic/thermal system integrated with transpired collector

    SciTech Connect (OSTI)

    Athienitis, Andreas K.; Bambara, James; O'Neill, Brendan; Faille, Jonathan [Dept. of Building, Civil and Environmental Engineering, Concordia University, 1455 Maisonneuve W., Montreal, Quebec (Canada)

    2011-01-15T23:59:59.000Z

    Building-integrated photovoltaic/thermal (BIPV/T) systems may be utilized to produce useful heat while simultaneously generating electricity from the same building envelope surface. A well known highly efficient collector is the open-loop unglazed transpired collector (UTC) which consists of dark porous cladding through which outdoor air is drawn and heated by absorbed solar radiation. Commercially available photovoltaic systems typically produce electricity with efficiencies up to about 18%. Thus, it is beneficial to obtain much of the normally wasted heat from the systems, possibly by combining UTC with photovoltaics. Combination of BIPV/T and UTC systems for building facades is considered in this paper - specifically, the design of a prototype facade-integrated photovoltaic/thermal system with transpired collector (BIPV/T). A full scale prototype is constructed with 70% of UTC area covered with PV modules specially designed to enhance heat recovery and compared to a UTC of the same area under outdoor sunny conditions with low wind. The orientation of the corrugations in the UTC is horizontal and the black-framed modules are attached so as to facilitate flow into the UTC plenum. While the overall combined thermal efficiency of the UTC is higher than that of the BIPV/T system, the value of the generated energy - assuming that electricity is at least four times more valuable than heat - is between 7% and 17% higher. Also, the electricity is always useful while the heat is usually utilized only in the heating season. The BIPV/T concept is applied to a full scale office building demonstration project in Montreal, Canada. The ratio of photovoltaic area coverage of the UTC may be selected based on the fresh air heating needs of the building, the value of the electricity generated and the available building surfaces. (author)

  17. Statistical Methods for Enhanced Metrology in Semiconductor/Photovoltaic Manufacturing

    E-Print Network [OSTI]

    Zeng, Dekong

    2012-01-01T23:59:59.000Z

    Bowden. (1999). Photovoltaics CDROM: Devices, Systems, andNREL). [1.3] IEA Photovoltaics Power Systems Programme (IEA

  18. Spectroscopy of Photovoltaic Materials: Charge-Transfer Complexes and Titanium Dioxide

    E-Print Network [OSTI]

    Dillon, Robert

    2013-01-01T23:59:59.000Z

    Clean Electricity From Photovoltaics ; Archer, M. D. , Hill,1 1.1 Introduction to Photovoltaics andPhotovoltaics.

  19. Commonwealth Wind Commercial Wind Program

    Broader source: Energy.gov [DOE]

    Through the Commonwealth Wind Incentive Program Commercial Wind Initiative the Massachusetts Clean Energy Center (MassCEC) offers site assessment grants of services, feasibility study grants, a...

  20. Wind/Hybrid Electricity Applications

    SciTech Connect (OSTI)

    McDaniel, Lori

    2001-03-31T23:59:59.000Z

    Wind energy is widely recognized as the most efficient and cost effective form of new renewable energy available in the Midwest. New utility-scale wind farms (arrays of large turbines in high wind areas producing sufficient energy to serve thousands of homes) rival the cost of building new conventional forms of combustion energy plants, gas, diesel and coal power plants. Wind energy is not subject to the inflationary cost of fossil fuels. Wind energy can also be very attractive to residential and commercial electric customers in high wind areas who would like to be more self-sufficient for their energy needs. And wind energy is friendly to the environment at a time when there is increasing concern about pollution and climate change. However, wind energy is an intermittent source of power. Most wind turbines start producing small amounts of electricity at about 8-10 mph (4 meters per second) of wind speed. The turbine does not reach its rated output until the wind reaches about 26-28 mph (12 m/s). So what do you do for power when the output of the wind turbine is not sufficient to meet the demand for energy? This paper will discuss wind hybrid technology options that mix wind with other power sources and storage devices to help solve this problem. This will be done on a variety of scales on the impact of wind energy on the utility system as a whole, and on the commercial and small-scale residential applications. The average cost and cost-benefit of each application along with references to manufacturers will be given. Emerging technologies that promise to shape the future of renewable energy will be explored as well.

  1. Photovoltaic cell efficiency at elevated temperatures

    E-Print Network [OSTI]

    Ray, Katherine Leung

    2010-01-01T23:59:59.000Z

    In order to determine what type of photovoltaic solar cell could best be used in a thermoelectric photovoltaic hybrid power generator, we tested the change in efficiency due to higher temperatures of three types of solar ...

  2. ULTRA BARRIER TOPSHEET (UBT) FOR FLEXIBLE PHOTOVOLTAICS

    SciTech Connect (OSTI)

    DeScioli, Derek

    2013-06-01T23:59:59.000Z

    This slide-show presents 3M photovoltaic-related products, particularly flexible components. Emphasis is on the 3M Ultra Barrier Solar Films. Topics covered include reliability and qualification testing and flexible photovoltaic encapsulation costs.

  3. Amorphous Silicon-Carbon Nanostructure Photovoltaic Devices

    E-Print Network [OSTI]

    Schriver, Maria Christine

    2012-01-01T23:59:59.000Z

    way to do better. A photovoltaic cell, or solar cell, is aFor this thesis, I made photovoltaic cells using a Schottkyphotovoltaic processes oc- cur in a Schottky barrier solar cell. . . . . . . . . . . . . . . . . .

  4. Plug-and-Play Photovoltaics Funding Opportunity

    Broader source: Energy.gov [DOE]

    Through the Plug-and-Play Photovoltaics program, DOE will advance the development of a commercial plug-and-play photovoltaic (PV) system, an off-the-shelf product that is fully inclusive with...

  5. Mounting support for a photovoltaic module

    DOE Patents [OSTI]

    Brandt, Gregory Michael; Barsun, Stephan K.; Coleman, Nathaniel T.; Zhou, Yin

    2013-03-26T23:59:59.000Z

    A mounting support for a photovoltaic module is described. The mounting support includes a foundation having an integrated wire-way ledge portion. A photovoltaic module support mechanism is coupled with the foundation.

  6. Photovoltaic Reliability and Engineering (Revised) (Fact Sheet)

    SciTech Connect (OSTI)

    Not Available

    2011-06-01T23:59:59.000Z

    Capabilities fact sheet for the National Center for Photovoltaics: Photovoltaic Reliability and Engineering. One-sided sheet that includes Scope, Core Competencies and Capabilities, and Contact/Web information.

  7. Thin film photovoltaic panel and method

    DOE Patents [OSTI]

    Ackerman, Bruce (El Paso, TX); Albright, Scot P. (El Paso, TX); Jordan, John F. (El Paso, TX)

    1991-06-11T23:59:59.000Z

    A thin film photovoltaic panel includes a backcap for protecting the active components of the photovoltaic cells from adverse environmental elements. A spacing between the backcap and a top electrode layer is preferably filled with a desiccant to further reduce water vapor contamination of the environment surrounding the photovoltaic cells. The contamination of the spacing between the backcap and the cells may be further reduced by passing a selected gas through the spacing subsequent to sealing the backcap to the base of the photovoltaic panels, and once purged this spacing may be filled with an inert gas. The techniques of the present invention are preferably applied to thin film photovoltaic panels each formed from a plurality of photovoltaic cells arranged on a vitreous substrate. The stability of photovoltaic conversion efficiency remains relatively high during the life of the photovoltaic panel, and the cost of manufacturing highly efficient panels with such improved stability is significantly reduced.

  8. Photovoltaic product directory and buyers guide

    SciTech Connect (OSTI)

    Watts, R.L.; Smith, S.A.; Mazzucchi, R.P.

    1981-06-01T23:59:59.000Z

    Basic information on photovoltaic conversion technology is provided for those unfamiliar with the field. Various types of photovoltaic products and systems currently available off-the-shelf are described. These include products without batteries, battery chargers, power packages, home electric systems, and partial systems. Procedures are given for designing a photovoltaic system from scratch. A few custom photovoltaic systems are described, and a list is compiled of photovoltaic firms which can provide custom systems. Guidance is offered for deciding whether or not to use photovoltaic products. A variety of installations are described and their performance is appraised by the owners. Information is given on various financial incentives available from state and federal governments. Sources of additional information on photovoltaics are listed. A matrix is provided indicating the sources of various types of photovoltaic products. The addresses of suppliers are listed. (LEW)

  9. Zhongke Photovoltaic Material Technology Co Ltd | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are being directedAnnualProperty Edit withTianlinPapersWindey Wind Generating EngineeringZhichengZhongke Photovoltaic

  10. Nanopillar Photovoltaics: Photon Management and Junction Engineering for Next-Generation Solar Cells

    E-Print Network [OSTI]

    Mariani, Giacomo

    2013-01-01T23:59:59.000Z

    of interfaces in high-efficiency photovoltaic devices. , MRS24,25 Nonetheless, a high-efficiency photovoltaic device ishigh-efficiency photovoltaics, 39th IEEE Photovoltaic

  11. Nanocrystal Photovoltaics: The Case of Cu2S-CdS

    E-Print Network [OSTI]

    Rivest, Jessica Louis Baker

    2011-01-01T23:59:59.000Z

    M. A. Third generation photovoltaics: Ultra-high conversionmodern photovoltaic age. in photovoltaics: research andnanopillar-array photovoltaics on low-cost and flexible

  12. Process Development for Nanostructured Photovoltaics

    SciTech Connect (OSTI)

    Elam, Jeffrey W.

    2015-01-01T23:59:59.000Z

    Photovoltaic manufacturing is an emerging industry that promises a carbon-free, nearly limitless source of energy for our nation. However, the high-temperature manufacturing processes used for conventional silicon-based photovoltaics are extremely energy-intensive and expensive. This high cost imposes a critical barrier to the widespread implementation of photovoltaic technology. Argonne National Laboratory and its partners recently invented new methods for manufacturing nanostructured photovoltaic devices that allow dramatic savings in materials, process energy, and cost. These methods are based on atomic layer deposition, a thin film synthesis technique that has been commercialized for the mass production of semiconductor microelectronics. The goal of this project was to develop these low-cost fabrication methods for the high efficiency production of nanostructured photovoltaics, and to demonstrate these methods in solar cell manufacturing. We achieved this goal in two ways: 1) we demonstrated the benefits of these coatings in the laboratory by scaling-up the fabrication of low-cost dye sensitized solar cells; 2) we used our coating technology to reduce the manufacturing cost of solar cells under development by our industrial partners.

  13. Photovoltaic retinal prosthesis with high pixel density

    E-Print Network [OSTI]

    Palanker, Daniel

    Photovoltaic retinal prosthesis with high pixel density Keith Mathieson1,4 , James Loudin1 to stimulating electrodes via intraocular cables. We present a photovoltaic subretinal prosthesis, in which pixel, demonstrating the possibility of a fully integrated photovoltaic retinal prosthesis with high

  14. Low band gap polymers Organic Photovoltaics

    E-Print Network [OSTI]

    Low band gap polymers for Organic Photovoltaics Eva Bundgaard Ph.D. Dissertation Ris National Bundgaard Title: Low band gap polymers for Organic photovoltaics Department: The polymer department Report the area of organic photovoltaics are focusing on low band gap polymers, a type of polymer which absorbs

  15. Photovoltaics for the Terawatt Christiana Honsberg

    E-Print Network [OSTI]

    Firestone, Jeremy

    1 Photovoltaics for the Terawatt Challenge Christiana Honsberg Department of Electrical Computer;Photovoltaic Milestones Germany, Spain, Italy have yearly installed PV capacity > yearly increase Workshop 02/28/14 C. Honsberg 5 5 #12;Learning Curves for Photovoltaics UD Energy Institute Solar Workshop

  16. The Solar Photovoltaics Technology Conflict between

    E-Print Network [OSTI]

    Deutch, John

    A Duel in the Sun The Solar Photovoltaics Technology Conflict between China and the United States A Duel in the Sun The Solar Photovoltaics Technology Conflict between China and the United States1 John domestically, and selling interna- tionally solar photovoltaic (PV) electricity- generating technology. Over

  17. EELE408 Photovoltaics Lecture 01: Intro & Safety

    E-Print Network [OSTI]

    Kaiser, Todd J.

    1 EELE408 Photovoltaics Lecture 01: Intro & Safety Dr. Todd J. Kaiser tjkaiser@ece.montana.edu Department of Electrical and Computer Engineering Montana State University - Bozeman EELE408 Photovoltaics & Ventre: Photovoltaic Systems Engineering , 3E Resources: Green: Solar Cells: Operating Principles

  18. Rational Design of Zinc Phosphide Heterojunction Photovoltaics

    E-Print Network [OSTI]

    Winfree, Erik

    Rational Design of Zinc Phosphide Heterojunction Photovoltaics Thesis by Jeffrey Paul Bosco would meet me with the same energy and enthusiasm regarding the topic of zinc phosphide photovoltaics to the field of earth-abundant photovoltaics has been indispensable to my work. Greg also made a great mentor

  19. Discovery Park Impact Network for Photovoltaic Technology

    E-Print Network [OSTI]

    Holland, Jeffrey

    Discovery Park Impact Network for Photovoltaic Technology NEED Discovery Park provides for Photovoltaic Technology (NPT). The NPT is designed to be a unique venue for industry-directed, university aims to become an international center of gravity for photovoltaic research that connects islands

  20. International photovoltaic products and manufacturers directory, 1995

    SciTech Connect (OSTI)

    Shepperd, L.W. [ed.] [Florida Solar Energy Center, Cocoa, FL (United States)] [ed.; Florida Solar Energy Center, Cocoa, FL (United States)

    1995-11-01T23:59:59.000Z

    This international directory of more than 500 photovoltaic-related manufacturers is intended to guide potential users of photovoltaics to sources for systems and their components. Two indexes help the user to locate firms and materials. A glossary describes equipment and terminology commonly used in the photovoltaic industry.

  1. EELE408 Photovoltaics Lecture 23: Summary

    E-Print Network [OSTI]

    Kaiser, Todd J.

    Photovoltaic Myth #1 Solar modules consume more energy for their production than they ever generate. Most industry Future recycling of modules will further reduce environmental impact 15 Photovoltaic Myth #81 EELE408 Photovoltaics Lecture 23: Summary Dr. Todd J. Kaiser tjkaiser@ece.montana.edu Department

  2. WindTurbineGenerator Introduction of the Renewable Micro-Grid Test-Bed

    E-Print Network [OSTI]

    Johnson, Eric E.

    Simulator Wind Turbine: PMSM, 3kW, 8.3A Wind Generator: PMSM, 3kW, 8.3A 3 AC/DC Converter & DC/AC Inverter Wind Turbine: Torque or Speed Control Wind Generator: PQ Control Cubicle #4: Energy Storage Generator #1 3kW, 8.3A Wind Turbine #1 3kW, 8.3A Wind Turbine #2 3kW Wind Generator #2 3kW RS232

  3. WIND ENERGY Wind Energ. (2014)

    E-Print Network [OSTI]

    2014-01-01T23:59:59.000Z

    in the near wake. In conclusion, WiTTS performs satisfactorily in the rotor region of wind turbine wakes under neutral stability. Copyright 2014 John Wiley & Sons, Ltd. KEYWORDS wind turbine wake; wake model; self in wind farms along several rows and columns. Because wind turbines generate wakes that propagate downwind

  4. Photovoltaic Subcontract Program, FY 1991

    SciTech Connect (OSTI)

    Not Available

    1992-03-01T23:59:59.000Z

    This report summarizes the fiscal year (FY) 1991 (October 1, 1990, through September 30, 1991) progress of the subcontracted photovoltaic (PV) research and development (R D) performed under the Photovoltaic Advanced Research and Development Project at the National Renewable Energy Laboratory (NREL) -- formerly the Solar Energy Research Institute (SERI). The mission of the national PV program is to develop PV technology for large-scale generation of economically competitive electric power in the United States. The technical sections of the report cover the main areas of the subcontract program: the Amorphous Silicon Research Project, Polycrystalline Thin Films, Crystalline Silicon Materials Research, High-Efficiency Concepts, the New Ideas Program, the University Participation Program, and the Photovoltaic Manufacturing Technology (PVMaT) project. Technical summaries of each of the subcontracted programs provide a discussion of approaches, major accomplishments in FY 1991, and future research directions.

  5. Aternating current photovoltaic building block

    DOE Patents [OSTI]

    Bower, Ward Issac; Thomas, Michael G.; Ruby, Douglas S.

    2004-06-15T23:59:59.000Z

    A modular apparatus for and method of alternating current photovoltaic power generation comprising via a photovoltaic module, generating power in the form of direct current; and converting direct current to alternating current and exporting power via one or more power conversion and transfer units attached to the module, each unit comprising a unitary housing extending a length or width of the module, which housing comprises: contact means for receiving direct current from the module; one or more direct current-to-alternating current inverters; an alternating current bus; and contact means for receiving alternating current from the one or more inverters.

  6. Battery testing for photovoltaic applications

    SciTech Connect (OSTI)

    Hund, T.

    1996-11-01T23:59:59.000Z

    Battery testing for photovoltaic (PV) applications is funded at Sandia under the Department of Energy`s (DOE) Photovoltaic Balance of Systems (BOS) Program. The goal of the PV BOS program is to improve PV system component design, operation, reliability, and to reduce overall life-cycle costs. The Sandia battery testing program consists of: (1) PV battery and charge controller market survey, (2) battery performance and life-cycle testing, (3) PV charge controller development, and (4) system field testing. Test results from this work have identified market size and trends, PV battery test procedures, application guidelines, and needed hardware improvements.

  7. Photovoltaic cell and production thereof

    DOE Patents [OSTI]

    Narayanan, Srinivasamohan (Gaithersburg, MD); Kumar, Bikash (Bangalore, IN)

    2008-07-22T23:59:59.000Z

    An efficient photovoltaic cell, and its process of manufacture, is disclosed wherein the back surface p-n junction is removed from a doped substrate having an oppositely doped emitter layer. A front surface and edges and optionally the back surface periphery are masked and a back surface etch is performed. The mask is not removed and acts as an anti-reflective coating, a passivating agent, or both. The photovoltaic cell retains an untextured back surface whether or not the front is textured and the dopant layer on the back surface is removed to enhance the cell efficiency. Optionally, a back surface field is formed.

  8. Recycling Of Cis Photovoltaic Waste

    DOE Patents [OSTI]

    Drinkard, Jr., William F. (Charlotte, NC); Long, Mark O. (Charlotte, NC); Goozner; Robert E. (Charlotte, NC)

    1998-07-14T23:59:59.000Z

    A method for extracting and reclaiming metals from scrap CIS photovoltaic cells and associated photovoltaic manufacturing waste by leaching the waste with dilute nitric acid, skimming any plastic material from the top of the leaching solution, separating glass substrate from the leachate, electrolyzing the leachate to plate a copper and selenium metal mixture onto a first cathode, replacing the cathode with a second cathode, re-electrolyzing the leachate to plate cadmium onto the second cathode, separating the copper from selenium, and evaporating the depleted leachate to yield a zinc and indium containing solid.

  9. Rapid screening buffer layers in photovoltaics

    DOE Patents [OSTI]

    List, III, Frederick Alyious; Tuncer, Enis

    2014-09-09T23:59:59.000Z

    An apparatus and method of testing electrical impedance of a multiplicity of regions of a photovoltaic surface includes providing a multi-tipped impedance sensor with a multiplicity of spaced apart impedance probes separated by an insulating material, wherein each impedance probe includes a first end adapted for contact with a photovoltaic surface and a second end in operable communication with an impedance measuring device. The multi-tipped impedance sensor is used to contact the photovoltaic surface and electrical impedance of the photovoltaic material is measured between individual first ends of the probes to characterize the quality of the photovoltaic surface.

  10. Ocean Renewable Energy Storage (ORES) System: Analysis of an Undersea Energy Storage Concept

    E-Print Network [OSTI]

    Slocum, Alexander H.

    Due to its higher capacity factor and proximity to densely populated areas, offshore wind power with integrated energy storage could satisfy > 20% of U.S. electricity demand. Similar results could also be obtained in many ...

  11. Development and operation of a photovoltaic power system for use at remote Antarctic sites

    SciTech Connect (OSTI)

    Piszczor, M.F.; Kohout, L.L.; Manzo, M. [National Aeronautics and Space Administration, Cleveland, OH (United States). Lewis Research Center; Colozza, A.J. [NYMA, Brook Park, OH (United States)

    1994-12-31T23:59:59.000Z

    A photovoltaic power system, designed and built at the NASA Lewis Research Center, has successfully operated over the past two summer seasons at a remote site in Antarctica, providing utility-type power for a six-person field team. The system was installed at the Lake Hoare site for approximately five weeks during late 1992, put into storage for the Antarctic winter, and then used again during the 1993 season. The photovoltaic power system consists of three silicon photovoltaic sub-arrays delivering a total of 1.5 kWe peak power, three lead-acid gel battery modules supplying 2.4 kWh, and an electrical distribution system which delivers 120 Vac and 12 Vdc to the user. The system worked extremely well in providing quiet, reliable power. The experience gained from early system demonstrations such as this should be beneficial in accelerating the transition toward future PV systems in Antarctica and other similar areas.

  12. Breakthrough: micro-electronic photovoltaics

    ScienceCinema (OSTI)

    Okandan, Murat; Gupta, Vipin

    2014-06-23T23:59:59.000Z

    Sandia developed tiny glitter-sized photovoltaic (PV) cells that could revolutionize solar energy collection. The crystalline silicon micro-PV cells will be cheaper and have greater efficiencies than current PV collectors. Micro-PV cells require relatively little material to form well-controlled, highly efficient devices. Cell fabrication uses common microelectric and micro-electromechanical systems (MEMS) techniques.

  13. Improved photovoltaic cells and electrodes

    DOE Patents [OSTI]

    Skotheim, T.A.

    1983-06-29T23:59:59.000Z

    Improved photovoltaic cells and electrodes for use therein, particularly electrodes employing amorphous silicon or polyacetylene coating are produced by a process which includes filling pinholes or porous openings in the coatings by electrochemical oxidation of selected monomers to deposit insulating polymer in the openings.

  14. Photovoltaic cells employing zinc phosphide

    DOE Patents [OSTI]

    Barnett, Allen M. (Newark, DE); Catalano, Anthony W. (Wilmington, DE); Dalal, Vikram L. (Newark, DE); Masi, James V. (Wilbraham, MA); Meakin, John D. (Newark, DE); Hall, Robert B. (Newark, DE)

    1984-01-01T23:59:59.000Z

    A photovoltaic cell having a zinc phosphide absorber. The zinc phosphide can be a single or multiple crystal slice or a thin polycrystalline film. The cell can be a Schottky barrier, heterojunction or homojunction device. Methods for synthesizing and crystallizing zinc phosphide are disclosed as well as a method for forming thin films.

  15. Electrochemical photovoltaic cells and electrodes

    DOE Patents [OSTI]

    Skotheim, Terje A. (East Patchogue, NY)

    1984-01-01T23:59:59.000Z

    Improved electrochemical photovoltaic cells and electrodes for use therein, particularly electrodes employing amorphous silicon or polyacetylene coating are produced by a process which includes filling pinholes or porous openings in the coatings by electrochemical oxidation of selected monomers to deposit insulating polymer in the openings.

  16. NREL Photovoltaic Program FY 1993

    SciTech Connect (OSTI)

    Not Available

    1994-08-01T23:59:59.000Z

    This report reviews the in-house and subcontracted research and development (R&D) activities under the National Renewable Energy Laboratory (NREL) Photovoltaic (PV) Program from October 1, 1992, through September 30, 1993 (fiscal year [FY] 1993). The NREL PV Program is part of the U.S. Department of Energy`s (DOE`s) National Photovoltaics Program, as described in the DOE Photovoltaics Program Plan, FY 1991 - FY 1995. The FY 1993 budget authority (BA) for carrying out the NREL PV Program was $40.1 million in operating funds and $0.9 million in capital equipment funds. An additional $4.8 million in capital equipment funds were made available for the new Solar Energy Research Facility (SERF) that will house the in-house PV laboratories beginning in FY 1994. Subcontract activities represent a major part of the NREL PV Program, with more than $23.7 million (nearly 59%) of the FY 1993 operating funds going to 70 subcontractors. In FY 1993, DOE assigned certain other PV subcontracting efforts to the DOE Golden Field Office (DOE/GO), and assigned responsibility for their technical support to the NREL PV Program. An example is the PV:BONUS (Building Opportunities in the U.S. for Photovoltaics) Project. These DOE/GO efforts are also reported in this document.

  17. Photovoltaic Subcontract Program, FY 1990

    SciTech Connect (OSTI)

    Summers, K.A. (ed.)

    1991-03-01T23:59:59.000Z

    This report summarizes the progress of the subcontracted photovoltaic (PV) research and development (R D) performed under the Photovoltaics Program at the Solar Energy Research Institute (SERI). The SERI subcontracted PV research and development represents most of the subcontracted R D that is funded by the US Department of Energy (DOE) National Photovoltaics Program. This report covers fiscal year (FY) 1990: October 1, 1989 through September 30, 1990. During FY 1990, the SERI PV program started to implement a new DOE subcontract initiative, entitled the Photovoltaic Manufacturing Technology (PVMaT) Project.'' Excluding (PVMaT) because it was in a start-up phase, in FY 1990 there were 54 subcontracts with a total annualized funding of approximately $11.9 million. Approximately two-thirds of those subcontracts were with universities, at a total funding of over $3.3 million. Cost sharing by industry added another $4.3 million to that $11.9 million of SERI PV subcontracted R D. The six technical sections of this report cover the previously ongoing areas of the subcontracted program: the Amorphous Silicon Research Project, Polycrystalline Thin Films, Crystalline Silicon Materials Research, High-Efficiency Concepts, the New Ideas Program, and the University Participation Program. Technical summaries of each of the subcontracted programs discuss approaches, major accomplishments in FY 1990, and future research directions. Another section introduces the PVMaT project and reports the progress since its inception in FY 1990. Highlights of technology transfer activities are also reported.

  18. Wind Farm

    Office of Energy Efficiency and Renewable Energy (EERE)

    The wind farm in Greensburg, Kansas, was completed in spring 2010, and consists of ten 1.25 megawatt (MW) wind turbines that supply enough electricity to power every house, business, and municipal...

  19. Wind Energy

    Broader source: Energy.gov [DOE]

    Presentation covers wind energy at the Federal Utility Partnership Working Group (FUPWG) meeting, held on November 18-19, 2009.

  20. 2006 European Wind Energy Conference 27th February-2nd

    E-Print Network [OSTI]

    2006 European Wind Energy Conference 27th February-2nd March, Athens. Hybrid System Performance Wind Energy Conference 27th February-2nd March, Athens. 1/9 1 Introduction Uncertain and often, but not always, wind energy input as a means to reduce fuel consumption. There may be an element of storage

  1. Photovoltaic battery & charge controller market & applications survey. An evaluation of the photovoltaic system market for 1995

    SciTech Connect (OSTI)

    Hammond, R.L.; Turpin, J.F.; Corey, G.P. [and others] [and others

    1996-12-01T23:59:59.000Z

    Under the sponsorship of the Department of Energy, Office of Utility Technologies, the Battery Analysis and Evaluation Department and the Photovoltaic System Assistance Center of Sandia National Laboratories (SNL) initiated a U.S. industry-wide PV Energy Storage System Survey. Arizona State University (ASU) was contracted by SNL in June 1995 to conduct the survey. The survey included three separate segments tailored to: (a) PV system integrators, (b) battery manufacturers, and (c) PV charge controller manufacturers. The overall purpose of the survey was to: (a) quantify the market for batteries shipped with (or for) PV systems in 1995, (b) quantify the PV market segments by battery type and application for PV batteries, (c) characterize and quantify the charge controllers used in PV systems, (d) characterize the operating environment for energy storage components in PV systems, and (e) estimate the PV battery market for the year 2000. All three segments of the survey were mailed in January 1996. This report discusses the purpose, methodology, results, and conclusions of the survey.

  2. Producer-Focused Life Cycle Assessment of Thin-Film Silicon Photovoltaic Systems

    E-Print Network [OSTI]

    Zhang, Teresa Weirui

    2011-01-01T23:59:59.000Z

    Best research photovoltaic efficiencies (Kazmerski,Best research photovoltaic efficiencies (Kazmerski, 2011).

  3. Understanding Variability and Uncertainty of Photovoltaics for Integration with the Electric Power System

    E-Print Network [OSTI]

    Mills, Andrew

    2010-01-01T23:59:59.000Z

    and Uncertainty of Photovoltaics for Integration with themodels and datasets. Photovoltaics fall under the broader

  4. Producer-Focused Life Cycle Assessment of Thin-Film Silicon Photovoltaic Systems

    E-Print Network [OSTI]

    Zhang, Teresa Weirui

    2011-01-01T23:59:59.000Z

    emissions of pv systems. Progress in Photovoltaics: Researchpv system flatcon. Progress in Photovoltaics: Research and

  5. Nanocrystal Photovoltaics: The Case of Cu2S-CdS

    E-Print Network [OSTI]

    Rivest, Jessica Louis Baker

    2011-01-01T23:59:59.000Z

    systems, sensors, light-emitting diodes, photovoltaics andsystem. ) Research on Cu 2 S nanocrystal photovoltaics may

  6. Do Photovoltaic Energy Systems Effect Residential Selling Prices? Results from a California Statewide Investigation.

    E-Print Network [OSTI]

    Hoen, Ben

    2012-01-01T23:59:59.000Z

    PHOTOVOLTAIC ENERGY SYSTEMS AFFECT RESIDENTIAL SELLING PRICES?PHOTOVOLTAIC ENERGY SYSTEMS AFFECT RESIDENTIAL SELLING PRICES?

  7. The effect of wind speed fluctuations on the performance of a wind-powered membrane system for brackish water desalination

    E-Print Network [OSTI]

    Park, Gavin L.; Schfer, Andrea; Richards, Bryce S.

    2011-01-01T23:59:59.000Z

    A wind-powered reverse osmosis membrane (wind-membrane) system without energy storage was tested using synthetic brackish water (2750 and 5500 mg/L NaCl) over a range of simulated wind speeds under both steady-state and ...

  8. Battery Powered Electric Car, Using Photovoltaic Cells Assistance Juan Dixon, Alberto Ziga, Angel Abusleme and Daniel Soto

    E-Print Network [OSTI]

    Catholic University of Chile (Universidad Católica de Chile)

    Battery Powered Electric Car, Using Photovoltaic Cells Assistance Juan Dixon, Alberto Zúñiga, Angel Vehicles (EVs) is the scarce capacity of conventional electrical energy storage systems. Although. However, if a particular situation is considered, in which a small-sized, high-efficiency EV operates

  9. REGULATIONS ON PHOTOVOLTAIC MODULE DISPOSAL AND RECYCLING.

    SciTech Connect (OSTI)

    FTHENAKIS,V.

    2001-01-29T23:59:59.000Z

    Environmental regulations can have a significant impact on product use, disposal, and recycling. This report summarizes the basic aspects of current federal, state and international regulations which apply to end-of-life photovoltaic (PV) modules and PV manufacturing scrap destined for disposal or recycling. It also discusses proposed regulations for electronics that may set the ground of what is to be expected in this area in the near future. In the US, several states have started programs to support the recycling of electronic equipment, and materials destined for recycling often are excepted from solid waste regulations during the collection, transfer, storage and processing stages. California regulations are described separately because they are different from those of most other states. International agreements on the movement of waste between different countries may pose barriers to cross-border shipments. Currently waste moves freely among country members of the Organization of Economic Cooperation and Development (OECD), and between the US and the four countries with which the US has bilateral agreements. However, it is expected, that the US will adopt the rules of the Basel Convention (an agreement which currently applies to 128 countries but not the US) and that the Convection's waste classification system will influence the current OECD waste-handling system. Some countries adopting the Basel Convention consider end-of-life electronics to be hazardous waste, whereas the OECD countries consider them to be non-hazardous. Also, waste management regulations potentially affecting electronics in Germany and Japan are mentioned in this report.

  10. Comparison of evolving photovoltaic and nuclear power systems for Earth orbital applications

    SciTech Connect (OSTI)

    Rockey, D.E.; Jones, R.M.; Schulman, I.

    1983-08-01T23:59:59.000Z

    As the Space Shuttle becomes fully operational, NASA and DOD missions may require high power Earth orbital power systems. Total end-to-end comparisons are made for representative photovoltaic and nuclear systems. The photovoltaic systems examined range from flight demonstrated conventional solid substrate solar array/NiCd battery approaches to undemonstrated advanced array/energy storage systems. End-of-life power to mass performance is presented for 25 kW photovoltaic arrays at orbital altitudes ranging from low Earth orbit to geosynchronous orbit for 1, 5, and 10 year missions. The SP-100 nuclear power system is examined for three technology levels ranging from near term to advanced approaches for 25 and 100 kWe power levels. The system specific power, or ratio of load power to power system mass, for each end-to-end photovoltaic and nuclear system is presented. Detailed descriptions of various photovoltaic and nuclear power systems together with their associated electrical block diagrams are also presented.

  11. Sustainability of Large Deployment of Photovoltaics: Environmental & Grid Integration Research

    E-Print Network [OSTI]

    Ohta, Shigemi

    1 Sustainability of Large Deployment of Photovoltaics: Environmental & Grid Integration Research Sustainability of Large Deployment of Photovoltaics: Environmental & Grid Integration Research www Photovoltaics Environmental Research Center Brookhaven National Laboratory #12;2 Source: PV Market Outlook

  12. Solution-processed photovoltaics with advanced characterization and analysis

    E-Print Network [OSTI]

    Duan, Hsin-Sheng

    2014-01-01T23:59:59.000Z

    at the 37th IEEE Photovoltaics Specialists Conference (D. B. Mitzi, Prog. Photovoltaics 2011, 20, 6. [23] S. Bag,R. Noufi, IEEE J. Photovoltaics 2012, T. Todorov, J. Tang,

  13. Photovoltaic Lifetime & Degradation Science Statistical Pathway Development: Acrylic Degradation

    E-Print Network [OSTI]

    Rollins, Andrew M.

    Photovoltaic Lifetime & Degradation Science Statistical Pathway Development: Acrylic Degradation, USA ABSTRACT In order to optimize and extend the life of photovoltaics (PV) modules, scientific photovoltaics. The statisti- cally significant relationships were investigated using lifetime and degradation

  14. Photovoltaic nanocrystal scintillators hybridized on Si solar cells

    E-Print Network [OSTI]

    Demir, Hilmi Volkan

    Photovoltaic nanocrystal scintillators hybridized on Si solar cells for enhanced conversion@bilkent.edu.tr Abstract: We propose and demonstrate semiconductor nanocrystal based photovoltaic scintillators integrated on solar cells to enhance photovoltaic device parameters including spectral responsivity, open circuit

  15. Degradation Pathway Models for Photovoltaics Module Lifetime Performance

    E-Print Network [OSTI]

    Rollins, Andrew M.

    Degradation Pathway Models for Photovoltaics Module Lifetime Performance Nicholas R. Wheeler, Laura data from Underwriter Labs, featuring measurements taken on 18 identical photovoltaic (PV) modules in modules and their effects on module performance over lifetime. Index Terms--photovoltaics, statistical

  16. Efficiency enhancement of luminescent solar concentrations for photovoltaic technologies

    E-Print Network [OSTI]

    Wang, Chunhua

    2011-01-01T23:59:59.000Z

    and V.U. Ho?mann. Photovoltaic Solar Energy Gen- eration.stacked LSC plates for photovoltaics with the green LSC onsolar concentra- tors for photovoltaics. Science, 321(5886):

  17. Temperature-Dependent Electron Transport in Quantum Dot Photovoltaics

    E-Print Network [OSTI]

    Padilla, Derek

    2013-01-01T23:59:59.000Z

    Paul Alivisatos. Photovoltaic performance of ultrasmall pbsenot including photovoltaic performance. To understand theperformance through overall structure and QD properties, relatively few studies probe the effects of temperature or capping ligands on the photovoltaic (

  18. Femtosecond laser processing of photovoltaic and transparent materials

    E-Print Network [OSTI]

    Ahn, Sanghoon

    2013-01-01T23:59:59.000Z

    20% efficiency. Progress in Photovoltaics. 2004;12:efficiency tables (version 39). Progress in Photovoltaics. efficiency for Cu(In,Ga)Se-?2 thin-?film solar cells beyond 20%. Progress in Photovoltaics.

  19. Synthesis and photovoltaic application of coper (I) sulfide nanocrystals

    E-Print Network [OSTI]

    Wu, Yue

    2008-01-01T23:59:59.000Z

    polymer hybrid photovoltaic cells. Appl. Phys. Lett. 88,S-CdS heterojunction photovoltaic cells. J. Appl. Phys. 45,photovoltaic devices, such as dye-sensitized solar cells 1-

  20. Synthesis and photovoltaic application of coper (I) sulfide nanocrystals

    E-Print Network [OSTI]

    Wu, Yue

    2008-01-01T23:59:59.000Z

    CdSe quantum dots for photovoltaic devices. Nano Lett. 7,nanocrystal-polymer hybrid photovoltaic cells. Appl. Phys.Gill, W. D. , Bube, R. H. Photovoltaic Properties of Cu 2 S-

  1. EXPERIMENTS with PHOTOVOLTAIC CELLS for high school science students

    E-Print Network [OSTI]

    Oregon, University of

    EXPERIMENTS with PHOTOVOLTAIC CELLS for high school science students By Dick Erickson ­ Pleasant Activity ­ Testing Photovoltaic Cells ..........................5 Expected Observations: ........................................................................................................8 II. LAB ACTIVITY - TESTING PHOTOVOLTAIC CELLS ..................................9 BEFORE YOU START

  2. Semitransparent Organic Photovoltaic Cells with Laminated Top Electrode

    E-Print Network [OSTI]

    Cui, Yi

    Semitransparent Organic Photovoltaic Cells with Laminated Top Electrode Jung-Yong Lee, Steve T demonstrate semitransparent small molecular weight organic photovoltaic cells using a laminated silver metal cathode due to differences in optical absorption. KEYWORDS Organic photovoltaics, transparent

  3. US photovoltaic patents: 1991--1993

    SciTech Connect (OSTI)

    Pohle, L

    1995-03-01T23:59:59.000Z

    This document contains US patents on terrestrial photovoltaic (PV) power applications, including systems, components, and materials as well as manufacturing and support functions. The patent entries in this document were issued from 1991 to 1993. The entries were located by searching USPA, the database of the US Patent Office. The final search retrieved all patents under the class ``Batteries, Thermoelectric and Photoelectric`` and the subclasses ``Photoelectric,`` ``Testing,`` and ``Applications.`` The search also located patents that contained the words ``photovoltaic(s)`` or ``solar cell(s)`` and their derivatives. After the initial list was compiled, most of the patents on the following subjects were excluded: space photovoltaic technology, use of the photovoltaic effect for detectors, and subjects only peripherally concerned with photovoltaic. Some patents on these three subjects were included when ft appeared that those inventions might be of use in terrestrial PV power technologies.

  4. PhotovoltaicsPhotovoltaics: the equations for solar: the equations for solar--cell designcell design

    E-Print Network [OSTI]

    Pulfrey, David L.

    design LECTURE 5 photovoltaic effect the equation set simplifying the equation set absorption, Germany 90 MW Sarnia, Ontario 5kW Boston Massachusetts http://256.com/solar/ #12;3 The Photovoltaic EffectThe Photovoltaic EffectSec. 7.0 Is the full Device Equation Set needed to design and analyze a cell like this one

  5. PROGRESS IN PHOTOVOLTAICS RESEARCH AND APPLICATIONS, VOL 2, 235-248 (1994) ~pplications Photovoltaics as a

    E-Print Network [OSTI]

    Delaware, University of

    1994-01-01T23:59:59.000Z

    PROGRESS IN PHOTOVOLTAICS RESEARCH AND APPLICATIONS, VOL 2, 235-248 (1994) ~pplications Photovoltaics as a Demand-side Management Technology: an Analysis of Peak-shaving and Direct Load Control Dept. of Energy University Center of Excellence for Photovoltaic Research and Development, Newark, DE

  6. Energizing the Next Generation with Photovoltaics Following the lead of Russian colleagues, photovoltaic (PV)

    E-Print Network [OSTI]

    Oregon, University of

    Energizing the Next Generation with Photovoltaics ABSTRACT Following the lead of Russian colleagues, photovoltaic (PV) lab kits are being built and experiments and curricula are being developed for use of these kits. This Photovoltaic Sci- ence Experiments and Curriculum (PSEC) is being tested in local high

  7. Chapter 9: Photovoltaic DevicesChapter 9: Photovoltaic Devices Solar energy spectrumSolar energy spectrum

    E-Print Network [OSTI]

    Wang, Jianfang

    Chapter 9: Photovoltaic DevicesChapter 9: Photovoltaic Devices Solar energy spectrumSolar energy Solar Energy? · Clean · Nearly unlimited PHYS5320 Chapter Nine 3 #12;S l ll l t PHYS5320 Chapter Nine 4 Solar cell plant #12;Cars powered by photovoltaic devices PHYS5320 Chapter Nine 5 #12;Solar Energy

  8. Photovoltaic Energy Program Overview Fiscal Year 1996

    SciTech Connect (OSTI)

    NONE

    1997-05-01T23:59:59.000Z

    Significant activities in the National Photovoltaic Program are reported for each of the three main program elements. In Research and Development, advances in thin-film materials and crystalline silicon materials are described. The Technology Development report describes activities in photovoltaic manufacturing technology, industrial expansion, module and array development, and testing photovoltaic system components. Systems Engineering and Applications projects described include projects with government agencies, projects with utilities, documentation of performance for international applications, and product certification.

  9. Energy Storage

    SciTech Connect (OSTI)

    Paranthaman, Parans

    2014-06-03T23:59:59.000Z

    ORNL Distinguished Scientist Parans Paranthaman is discovering new materials with potential for greatly increasing batteries' energy storage capacity and bring manufacturing back to the US.

  10. Energy Storage

    ScienceCinema (OSTI)

    Paranthaman, Parans

    2014-06-23T23:59:59.000Z

    ORNL Distinguished Scientist Parans Paranthaman is discovering new materials with potential for greatly increasing batteries' energy storage capacity and bring manufacturing back to the US.

  11. Photovoltaic performance and reliability workshop

    SciTech Connect (OSTI)

    Mrig, L. [ed.

    1993-12-01T23:59:59.000Z

    This workshop was the sixth in a series of workshops sponsored by NREL/DOE under the general subject of photovoltaic testing and reliability during the period 1986--1993. PV performance and PV reliability are at least as important as PV cost, if not more. In the US, PV manufacturers, DOE laboratories, electric utilities, and others are engaged in the photovoltaic reliability research and testing. This group of researchers and others interested in the field were brought together to exchange the technical knowledge and field experience as related to current information in this evolving field of PV reliability. The papers presented here reflect this effort since the last workshop held in September, 1992. The topics covered include: cell and module characterization, module and system testing, durability and reliability, system field experience, and standards and codes.

  12. High voltage photovoltaic power converter

    DOE Patents [OSTI]

    Haigh, Ronald E. (Arvada, CO); Wojtczuk, Steve (Cambridge, MA); Jacobson, Gerard F. (Livermore, CA); Hagans, Karla G. (Livermore, CA)

    2001-01-01T23:59:59.000Z

    An array of independently connected photovoltaic cells on a semi-insulating substrate contains reflective coatings between the cells to enhance efficiency. A uniform, flat top laser beam profile is illuminated upon the array to produce electrical current having high voltage. An essentially wireless system includes a laser energy source being fed through optic fiber and cast upon the photovoltaic cell array to prevent stray electrical signals prior to use of the current from the array. Direct bandgap, single crystal semiconductor materials, such as GaAs, are commonly used in the array. Useful applications of the system include locations where high voltages are provided to confined spaces such as in explosive detonation, accelerators, photo cathodes and medical appliances.

  13. Design and manufacture study of Ocean Renewable Energy Storage (ORES) prototype

    E-Print Network [OSTI]

    Dndar, Gkhan

    2012-01-01T23:59:59.000Z

    Utility scale energy storage is needed to balance rapidly varying outputs from renewable energy systems such as wind and solar. In order to address this need, an innovative utility scale energy storage concept has been ...

  14. NREL Photovoltaic Program FY 1994 bibliography

    SciTech Connect (OSTI)

    none,

    1994-12-01T23:59:59.000Z

    This report lists all published documents of the Photovoltaic Program for FY 1994. Documents include conference papers, journal articles, book chapters, patents, etc.

  15. Sandia National Laboratories: microsystems-enabled photovoltaics

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    microsystems-enabled photovoltaics Sandia, Endicott Interconnect Technologies, EMCORE, International Micro Industries, NREL, Universal Instruments: Solar Glitter On March 21, 2013,...

  16. Renewable Energy Ready Home Solar Photovoltaic Specifications...

    Broader source: Energy.gov (indexed) [DOE]

    Solar Photovoltaic Specification, Checklist and Guide, from the U.S. Environmental Protection Agency. rerhsolarelectricguide.pdf More Documents & Publications Solar Water...

  17. Sandia National Laboratories: Vermont Photovoltaic Regional Test...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Photovoltaic Regional Test Center (RTC). The RTC will enable research on integrating solar panels into the statewide smart grid and help reduce the cost of solar power. The...

  18. Sandia National Laboratories: photovoltaic systems integration

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Photovoltaic Regional Test Center (RTC). The RTC will enable research on integrating solar panels into the statewide smart grid and help reduce the cost of solar power. The...

  19. Sandia National Laboratories: photovoltaic systems validation

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Photovoltaic Regional Test Center (RTC). The RTC will enable research on integrating solar panels into the statewide smart grid and help reduce the cost of solar power. The...

  20. Mesa Top Photovoltaic Array (Fact Sheet)

    SciTech Connect (OSTI)

    Not Available

    2009-07-01T23:59:59.000Z

    Fact sheet overview of the Mesa Top Photovoltaic Array project implemented by the Department of Energy Golden Office and National Renewable Energy Laboratory.

  1. Recording of SERC Monitoring Technologies- Solar Photovoltaics

    Broader source: Energy.gov [DOE]

    This document provides a transcript of the of SERC Monitoring Technologies - Solar Photovoltaics webinar, presented on 10/20/2011 by Peter McNutt.

  2. Scattering Properties of nanostructures : applications to photovoltaics

    E-Print Network [OSTI]

    Derkacs, Daniel

    2009-01-01T23:59:59.000Z

    hydrogen during deposition, dangling bonds are compensated and hydrogenated amorphous silicon (a-Si:H) can be made into a promising photovoltaic

  3. Sandia National Laboratories: predicts photovoltaic array energy...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    energy production Solar Glare Hazard Analysis Tool Available for Download On March 13, 2014, in Energy, News, News & Events, Photovoltaic, Renewable Energy, Solar, Solar Newsletter...

  4. Hudson Light & Power- Photovoltaic Incentive Program

    Broader source: Energy.gov [DOE]

    Hudson Light &Power Department, the municipal utility for the Town of Hudson, offers a limited number of solar photovoltaic (PV) rebates for residential, commercial, industrial, and municipal...

  5. Sandia National Laboratories: Photovoltaic Systems Evaluation...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Systems Evaluation Laboratory (PSEL) Sandians Win 'Best Paper' Award at Photovoltaic Conference in Japan On March 4, 2015, in Computational Modeling & Simulation, Energy,...

  6. Sandia National Laboratories: Photovoltaic Power Systems Programme...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Photovoltaic Power Systems Programme Task 13 Sandian Presents on PV Failure Analysis at European PV Solar Energy Conference and Exhibition (EU PVSC) On December 15, 2014, in...

  7. Sandia National Laboratories: predicts photovoltaic array ocular...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Tool Available for Download On March 13, 2014, in Energy, News, News & Events, Photovoltaic, Renewable Energy, Solar, Solar Newsletter Sandia developed the Solar Glare Hazard...

  8. Nellis AFB 'Sun Park' Photovoltaic Power Project

    Broader source: Energy.gov (indexed) [DOE]

    Briefing is: UNCLASSIFIED Headquarters Air Combat Command Nellis AFB 'Sun Park' Photovoltaic Power Project *Capt Frank Hollifield *AFLOAJACLULT Overview *Objective * Provide...

  9. Photovoltaic cell with thin CS layer

    DOE Patents [OSTI]

    Jordan, John F. (El Paso, TX); Albright, Scot P. (El Paso, TX)

    1994-01-18T23:59:59.000Z

    An improved photovoltaic panel and method of forming a photovoltaic panel are disclosed for producing a high efficiency CdS/CdTe photovoltaic cell. The photovoltaic panel of the present invention is initially formed with a substantially thick Cds layer, and the effective thickness of the CdS layer is substantially reduced during regrowth to both form larger diameter CdTe crystals and substantially reduce the effective thickness of the C This invention was made with Government support under Subcontract No. ZL-7-06031-3 awarded by the Department of Energy. The Government has certain rights in this invention.

  10. NREL Photovoltaic Program FY 1993 bibliography

    SciTech Connect (OSTI)

    Pohle, L. [ed.

    1994-01-01T23:59:59.000Z

    This report lists all published documents of the Photovoltaic Program for FY 1993. Documents include conference papers, journal articles, book chapters, etc.

  11. Sandia Energy - Sandia and EMCORE: Solar Photovoltaics, Fiber...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    EMCORE: Solar Photovoltaics, Fiber Optics, MODE, and Energy Efficiency Home Renewable Energy Energy Partnership Concentrating Solar Power Photovoltaic Research & Capabilities Solar...

  12. Kyungdong Photovoltaic Energy Corp KPE formerly Photon Semiconductor...

    Open Energy Info (EERE)

    Kyungdong Photovoltaic Energy Corp KPE formerly Photon Semiconductor Energy Jump to: navigation, search Name: Kyungdong Photovoltaic Energy Corp (KPE) (formerly Photon...

  13. Project Profile: Evaluating the Causes of Photovoltaics Cost...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    progress observed for photovoltaics (PV) over the past half century. Motivation Photovoltaic technologies, including silicon and thin film solar cells, have experienced...

  14. Soiling losses for solar photovoltaic systems in California

    E-Print Network [OSTI]

    Mejia, Felipe A; Kleissl, Jan

    2013-01-01T23:59:59.000Z

    on Solar Photovoltaic (PV) Performance: Research Status,Photovoltaic Systems in California Felipe A Mejia, Jan Kleissl Keywords: Soiling, PV Performance

  15. Temperature-Dependent Electron Transport in Quantum Dot Photovoltaics

    E-Print Network [OSTI]

    Padilla, Derek

    2013-01-01T23:59:59.000Z

    cell efficiency milestones. Quantum dot photovoltaics is inphotovoltaics provide the potential to create high-efficiencycell efficiency milestones. Quantum dot photovoltaics is in

  16. Solar Photovoltaic Installation Market Trends | OpenEI Community

    Open Energy Info (EERE)

    Solar Photovoltaic Installation Market Trends Home John55364's picture Submitted by John55364(95) Contributor 14 May, 2015 - 02:24 Global Solar Photovoltaic (PV) Installation...

  17. Sandia National Laboratories: Sandia Expertise Guides New Photovoltaic...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Expertise Guides New Photovoltaic Requirements Sandia Expertise Guides New Photovoltaic Requirements Solar Test Facility Upgrades Complete, Leading to Better Sandia Capabilities to...

  18. Sandia National Laboratories: 6th World Conference on Photovoltaic...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    6th World Conference on Photovoltaic Energy Conversion Sandians Win 'Best Paper' Award at Photovoltaic Conference in Japan On March 4, 2015, in Computational Modeling & Simulation,...

  19. Solar Photovoltaic Financing: Deployment on Public Property by...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Solar Photovoltaic Financing: Deployment on Public Property by State and Local Governments Solar Photovoltaic Financing: Deployment on Public Property by State and Local...

  20. Agua Caliente, World's Largest Solar Photovoltaic Plant, Helps...

    Energy Savers [EERE]

    Agua Caliente, World's Largest Solar Photovoltaic Plant, Helps Advance America's Solar Leadership Agua Caliente, World's Largest Solar Photovoltaic Plant, Helps Advance America's...

  1. Terrestrial Water Storage

    E-Print Network [OSTI]

    Rodell, M; Chambers, D P; Famiglietti, Jay

    2013-01-01T23:59:59.000Z

    T. E. Reilly, 2002: Flow and storage in groundwater systems.storage ..2013: Global ocean storage of anthropogenic carbon.

  2. Stasis: Flexible Transactional Storage

    E-Print Network [OSTI]

    Sears, Russell C.

    2009-01-01T23:59:59.000Z

    storage . . . . . . . . . . . . . . . . . . . . . .example system based on log-structured storage 10.1 SystemA storage bottleneck. . . . . . . . . . . . . . . .

  3. Photovoltaics performance and reliability workshop

    SciTech Connect (OSTI)

    Mrig, L. (ed.) [ed.

    1992-01-01T23:59:59.000Z

    This document consists of papers and viewgraphs compiled from the proceedings of a workshop held in September 1992. This workshop was the fifth in a series sponsored by NREL/DOE under the general subject areas of photovoltaic module testing and reliability. PV manufacturers, DOE laboratories, electric utilities and others exchanged technical knowledge and field experience. The topics of cell and module characterization, module and system performance, materials and module durability/reliability research, solar radiation, and applications are discussed.

  4. Photovoltaics performance and reliability workshop

    SciTech Connect (OSTI)

    Mrig, L. [ed.] [ed.

    1992-11-01T23:59:59.000Z

    This document consists of papers and viewgraphs compiled from the proceedings of a workshop held in September 1992. This workshop was the fifth in a series sponsored by NREL/DOE under the general subject areas of photovoltaic module testing and reliability. PV manufacturers, DOE laboratories, electric utilities and others exchanged technical knowledge and field experience. The topics of cell and module characterization, module and system performance, materials and module durability/reliability research, solar radiation, and applications are discussed.

  5. Photovoltaic Films - Energy Innovation Portal

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level:Energy: Grid Integration Redefining What's Possible for RenewableSpeedingBiomassPPPOPetroleum Reserves Vision,4newsSolar Photovoltaic Solar

  6. Nanostructured Photovoltaics: - Energy Innovation Portal

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level:Energy: Grid Integration Redefining What's Possible for Renewable Energy: GridTruckNanostructued Glass-CeramicInnovationSolar Photovoltaic

  7. Photovoltaic application for disaster relief

    SciTech Connect (OSTI)

    Young, W.R. Jr.

    1995-11-01T23:59:59.000Z

    Hurricanes, floods, tornados, and earthquakes are natural disasters that can happen at any time destroying homes, businesses, and natural surroundings. One such disaster, Hurricane Andrew, devastated South Florida leaving several hundred-thousand people homeless. Many people were without electrical service, functioning water and sewage systems, communications, and medical services for days, even weeks in the aftermath of the storm. Emergency management teams, the military, and countless public and private organizations staged a massive relief effort. Dependency on electrical utility power became a pronounced problem as emergency services were rendered to survivors and the rebuilding process started. Many of the energy needs of emergency management organizations, relief workers, and the general public can be satisfied with solar electric energy systems. Photovoltaic (PV) power generated from solar energy is quiet, safe, inexhaustible and pollution-free. Previously, photovoltaics have supplied emergency power for Hurricanes Hugo and Andrew, and the earthquake at Northridge in Southern California. This document focuses on photovoltaic technology and its application to disaster relief efforts.

  8. Sandia National Laboratories: Wind

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Wind Grid System Planning for Wind: Wind Generator Modeling On June 11, 2014, in Wind generation continues to dominate the interconnection queues and the need for generic,...

  9. How Much Energy Is Transferred from the Winds to the Thermocline on ENSO Time Scales?

    E-Print Network [OSTI]

    the winds (via wind power) and changes in the storage of available potential energy in the tropical ocean~o is characterized by a decrease in wind power that leads to a decrease in available potential energy, and hence to an increase in the available potential energy and a steeper thermocline. The wind power alters the available

  10. Western Wind and Solar Integration Study (Fact Sheet)

    SciTech Connect (OSTI)

    Not Available

    2012-09-01T23:59:59.000Z

    Initiated in 2007 to examine the operational impact of up to 35% penetration of wind, photovoltaic (PV), and concentrating solar power (CSP) energy on the electric power system, the Western Wind and Solar Integration Study (WWSIS) is one of the largest regional wind and solar integration studies to date. The goal is to understand the effects of variability and uncertainty of wind, PV, and CSP on the grid. In the Western Wind and Solar Integration Study Phase 1, solar penetration was limited to 5%. Utility-scale PV was not included because of limited capability to model sub-hourly, utility-scale PV output . New techniques allow the Western Wind and Solar Integration Study Phase 2 to include high penetrations of solar - not only CSP and rooftop PV but also utility-scale PV plants.

  11. Renewable generation and storage project industry and laboratory recommendations

    SciTech Connect (OSTI)

    Clark, N.H.; Butler, P.C.; Cameron, C.P.

    1998-03-01T23:59:59.000Z

    The US Department of Energy Office of Utility Technologies is planning a series of related projects that will seek to improve the integration of renewable energy generation with energy storage in modular systems. The Energy Storage Systems Program and the Photovoltaics Program at Sandia National Laboratories conducted meetings to solicit industry guidance and to create a set of recommendations for the proposed projects. Five possible projects were identified and a three pronged approach was recommended. The recommended approach includes preparing a storage technology handbook, analyzing data from currently fielded systems, and defining future user needs and application requirements.

  12. NREL: Photovoltaics Research - Thin Film Photovoltaic Partnership Project

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office of Science (SC)Integrated CodesTransparency Visit |Infrastructure JohnEnergyThin Film Photovoltaic

  13. Photovoltaic Energy Program overview, fiscal year 1997

    SciTech Connect (OSTI)

    NONE

    1998-02-01T23:59:59.000Z

    The US Department of Energy (DOE) Photovoltaic Energy Program fosters the widespread acceptance of photovoltaic (PV) technology and accelerates commercial use of US PV products. The Program is founded on a collaborative strategy involving industry, the research and development community, potential users, utilities, and state and federal agencies. There are three main Program elements: Systems Engineering and Applications, Technology Development, and Research and Development.

  14. Solar Photovoltaics development -Status and perspectives

    E-Print Network [OSTI]

    Solar Photovoltaics development - Status and perspectives Jrgen Fenhann Ris National Laboratory for the development of solar photovoltaics, contributing to the Macro Task E1 on production cost for fusion.S. with 53 MWp followed by Japan and EU. Until now off-grid installation have dominated the solar PV market

  15. Low-Cost Installation of Concentrating Photovoltaic

    E-Print Network [OSTI]

    .5 megawatt power plant for the Pacific Gas and Electric Company near Tracy, CA the first solar related with system components, and traditional solar designs that limit installation locations. Many offerings. Currently, no solar company provides a complete photovoltaic or concentrating photovoltaic

  16. National Center for Photovoltaics at NREL

    ScienceCinema (OSTI)

    VanSant, Kaitlyn; Wilson, Greg; Berry, Joseph; Al-Jassim, Mowafak; Kurtz, Sarah

    2014-06-10T23:59:59.000Z

    The National Center for Photovoltaics at the National Renewable Energy Laboratory (NREL) focuses on technology innovations that drive industry growth in U.S. photovoltaic (PV) manufacturing. The NCPV is a central resource for our nation's capabilities in PV research, development, deployment, and outreach.

  17. National Center for Photovoltaics at NREL

    SciTech Connect (OSTI)

    VanSant, Kaitlyn; Wilson, Greg; Berry, Joseph; Al-Jassim, Mowafak; Kurtz, Sarah

    2013-11-07T23:59:59.000Z

    The National Center for Photovoltaics at the National Renewable Energy Laboratory (NREL) focuses on technology innovations that drive industry growth in U.S. photovoltaic (PV) manufacturing. The NCPV is a central resource for our nation's capabilities in PV research, development, deployment, and outreach.

  18. Photovoltaic Installations at Williams College Ruth Aronoff

    E-Print Network [OSTI]

    Aalberts, Daniel P.

    generation using solar power. Photovoltaic (PV) panel installations are a simple way for the College facilities, it is now evaluating in detail the environmental impact of these actions. In addition to making1 Photovoltaic Installations at Williams College Ruth Aronoff Williams Luce Project SUMMARY

  19. Solar photovoltaic residence in Carlisle, Massachusetts

    SciTech Connect (OSTI)

    Strong, S. J.; Nichols, B. E.

    1981-01-01T23:59:59.000Z

    The first solar photovoltaic house designed and constructed under the US Department of Energy's Solar Photovoltaic Residential Project has been completed. The house, which is powered by a 7-kWp PV system, will be used to assess the occupants' acceptance of and reactions to residential photovoltaic systems and to familiarize utilities, builders, developers, town building officials and others with issues concerning photovoltaic installations. The house is located on a two-acre lot in Carlisle, approximately twenty miles northwest of Boston. Built by a local architect/developer team, the house includes energy conservation and passive solar features. It utilizes a roof-mounted, flat-plate PV array which operates in a two-way energy exchange mode with the electric utility. The energy conservation and passive solar features of this house are described and a detailed description of the utility-interactive photovoltaic system is presented, along with initial performance data.

  20. Module Handbook Specialisation Hybrid Systems

    E-Print Network [OSTI]

    Habel, Annegret

    Storage (Lab) Photovoltaic's PV (Lab) Hydro Power Wind Energy Wind Energy (Ex/Lab) ElectricalOffgrid Energy Storage Storage (Lab) Photovoltaic's PV (Lab) Hydro Power Wind Energy Electrical on operation and maintenance, reliability and SWT certification are also addressed. Practical matters like

  1. Offshore Wind Power USA

    Broader source: Energy.gov [DOE]

    The Offshore Wind Power USA conference provides the latest offshore wind market updates and forecasts.

  2. EPJ Photovoltaics 2, 20301 (2011) www.epj-pv.org

    E-Print Network [OSTI]

    Paris-Sud XI, Universit de

    2011-01-01T23:59:59.000Z

    EPJ Photovoltaics 2, 20301 (2011) www.epj-pv.org DOI: 10.1051/epjpv/2011001 c Owned by the authors, published by EDP Sciences, 2011 EPJ PhotovoltaicsEPJ Photovoltaics Geometrical optimization and electrical online: 1 April 2011 Abstract This article investigates the optimal efficiency of a photovoltaic system

  3. Photovoltaics Green is a Prerequisite for Sustainable Growth

    E-Print Network [OSTI]

    Ohta, Shigemi

    1 Photovoltaics Green is a Prerequisite for Sustainable Growth Vasilis Fthenakis1 and Brent Nelson2 impact on the environment, are the key drivers of photovoltaic energy development Photovoltaic life Criteria Photovoltaics are required to meet the need for abundant electricity generation at competitive

  4. Optically Functional Nanomaterials: Optothermally Responsive Composites and Carbon Nanotube Photovoltaics

    E-Print Network [OSTI]

    Okawa, David

    2010-01-01T23:59:59.000Z

    materials for organic photovoltaics. We have successfully investigated polymer functionalization to produce supramolecular

  5. Hydrogen Storage

    Fuel Cell Technologies Publication and Product Library (EERE)

    This 2-page fact sheet provides a brief introduction to hydrogen storage technologies. Intended for a non-technical audience, it explains the different ways in which hydrogen can be stored, as well a

  6. Photovoltaics Inc | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are being directedAnnual SiteofEvaluatingGroupPerfectenergy International LimitedPhoenix BioPhotovoltaics Design

  7. 20% Wind Energy 20% Wind Energy

    E-Print Network [OSTI]

    Powell, Warren B.

    (government, industry, utilities, NGOs) Analyzes wind's potential contributions to energy security, economic · Transmission a challenge #12;Wind Power Class Resource Potential Wind Power Density at 50 m W/m 2 Wind Speed20% Wind Energy by 2030 20% Wind Energy by 2030 #12;Presentation and Objectives Overview Background

  8. Apparatus for mounting photovoltaic power generating systems on buildings

    DOE Patents [OSTI]

    Russell, Miles C. (Lincoln, MA)

    2009-08-18T23:59:59.000Z

    Rectangular photovoltaic (PV) modules are mounted on a building roof by mounting stands that are distributed in rows and columns. Each stand comprises a base plate and first and second different height brackets attached to opposite ends of the base plate. Each first and second bracket comprises two module-support members. One end of each module is pivotally attached to and supported by a first module-support member of a first bracket and a second module-support member of another first bracket. At its other end each module rests on but is connected by flexible tethers to module-support members of two different second brackets. The tethers are sized to allow the modules to pivot up away from the module-support members on which they rest to a substantially horizontal position in response to wind uplift forces.

  9. Wind Energy Leasing Handbook

    E-Print Network [OSTI]

    Balasundaram, Balabhaskar "Baski"

    Wind Energy Leasing Handbook Wind Energy Leasing Handbook E-1033 Oklahoma Cooperative Extension?..................................................................................................................... 31 What do wind developers consider in locating wind energy projects?............................................................................................ 37 How do companies and individuals invest in wind energy projects?....................................................................

  10. Safety Issues Chemical Storage

    E-Print Network [OSTI]

    Cohen, Robert E.

    Safety Issues Chemical Storage Store in compatible containers that are in good condition to store separately. #12;Safety Issues Flammable liquid storage -Store bulk quantities in flammable storage cabinets -UL approved Flammable Storage Refrigerators are required for cold storage Provide

  11. Low-Cost Photovoltaics: Luminescent Solar Concentrators And Colloidal Quantum Dot Solar Cells

    E-Print Network [OSTI]

    Leow, Shin Woei

    2014-01-01T23:59:59.000Z

    for building integrated photovoltaics, 2013, vol. 8821, pp.of building integrated photovoltaics, Sol. Energy, vol. 85,of building-integrated photovoltaics, Energy, vol. 26, no.

  12. The Effects of Non-Uniform Electronic Properties on Thin Film Photovoltaics

    E-Print Network [OSTI]

    Brown, Gregory Ferguson

    2011-01-01T23:59:59.000Z

    Third Generation Photovoltaics: Advanced Solar R. Noufi, Prog. Photovoltaics 16, 235-?239 (2008). M. Green, Prog. Photovoltaics 17, 183-?189 (2009).

  13. Laser Assisted Nanomanufacturing with Solution Processed Nanoparticles for Low-cost Electronics and Photovoltaics

    E-Print Network [OSTI]

    Pan, Heng

    2009-01-01T23:59:59.000Z

    Electronics and Photovoltaics by Heng Pan A dissertationcost Electronics and Photovoltaics Copyright 2009 By HengLow-cost Electronics and Photovoltaics by Heng Pan Doctor of

  14. Photovoltaic performance of ultra-small PbSe quantum dots

    E-Print Network [OSTI]

    Ma, Wanli

    2014-01-01T23:59:59.000Z

    Photovoltaic performance of ultra-small PbSe quantum dotssize on the photovoltaic performance of simple Schottky-typeconfinement on the photovoltaic performance, we adopted

  15. Nanocrystal Photovoltaics: The Case of Cu2S-CdS

    E-Print Network [OSTI]

    Rivest, Jessica Louis Baker

    2011-01-01T23:59:59.000Z

    high conversion efficiency photovoltaics, utilizing self-low-cost and low-efficiency photovoltaics. Third generationgeneration photovoltaics: Ultra-high conversion efficiency

  16. Nanopillar Photovoltaics: Photon Management and Junction Engineering for Next-Generation Solar Cells

    E-Print Network [OSTI]

    Mariani, Giacomo

    2013-01-01T23:59:59.000Z

    for ultrahigh-efficiency photovoltaics, Nat. Mater. 11, 174-devices towards high-efficiency photovoltaics, 39th IEEEto ensure high-efficiency nanostructured photovoltaics: each

  17. Low-Cost Photovoltaics: Luminescent Solar Concentrators And Colloidal Quantum Dot Solar Cells

    E-Print Network [OSTI]

    Leow, Shin Woei

    2014-01-01T23:59:59.000Z

    using front-facing photovoltaic cell luminescent solarwith front-facing photovoltaic cells using weighted Montefor tandem photovoltaic cells, Thin Solid Films, vol. 516,

  18. Nanopillar Photovoltaics: Photon Management and Junction Engineering for Next-Generation Solar Cells

    E-Print Network [OSTI]

    Mariani, Giacomo

    2013-01-01T23:59:59.000Z

    for efficient photovoltaic cells, Nat. Nanotechnol. 6, 568-for efficient photovoltaic cells, Nat. Nanotechnol. 6, 568-trapping in thin-film photovoltaic cells, Opt. Express 8,

  19. Valuing the Time-Varying Electricity Production of Solar Photovoltaic Cells

    E-Print Network [OSTI]

    Borenstein, Severin

    2005-01-01T23:59:59.000Z

    Production of Solar Photovoltaic Cells Severin BorensteinProduction of Solar Photovoltaic Cells Severin Borenstein 1concerns is so- lar photovoltaic cells (PVs), which capture

  20. Producer-Focused Life Cycle Assessment of Thin-Film Silicon Photovoltaic Systems

    E-Print Network [OSTI]

    Zhang, Teresa Weirui

    2011-01-01T23:59:59.000Z

    microcrystalline- silicon photovoltaic cell, B) range ofpayback of roof mounted photovoltaic cells. Boustead, I. andmicrocrystalline-silicon photovoltaic cell, B) range of

  1. Rational Design and Preparation of Organic Semiconductors for use in Field Effect Transistors and Photovoltaic Cells

    E-Print Network [OSTI]

    Mauldin, Clayton Edward

    2010-01-01T23:59:59.000Z

    in thin film organic photovoltaic cells (OPVs) is presented.efficient organic photovoltaic cells with power conversionEffect Transistors and Photovoltaic Cells By Clayton Edward

  2. Photovoltaic performance of ultra-small PbSe quantum dots

    E-Print Network [OSTI]

    Ma, Wanli

    2014-01-01T23:59:59.000Z

    Colloidal Quantum Dots for Photovoltaics: Fundamentals andSchottky-Quantum Dot Photovoltaics for Efficient InfraredDJ; Klimov, VI, Hybrid Photovoltaics Based on Semiconductor

  3. The impact of retail rate structures on the economics of commercial photovoltaic systems in California

    E-Print Network [OSTI]

    Mills, Andrew D.

    2009-01-01T23:59:59.000Z

    Benefits of Distributed Photovoltaics to the Nevada PowerCarrying Capability of Photovoltaics in the United States. A Case Study of Photovoltaics Serving Kerman Substation.

  4. Producer-Focused Life Cycle Assessment of Thin-Film Silicon Photovoltaic Systems

    E-Print Network [OSTI]

    Zhang, Teresa Weirui

    2011-01-01T23:59:59.000Z

    of pv systems. Progress in Photovoltaics: Research andand Alsema, E. (2006). Photovoltaics energy payback times,emissions from photovoltaics. Environmental Science and

  5. The Impact of Retail Rate Structures on the Economics of Commercial Photovoltaic Systems in California

    E-Print Network [OSTI]

    Mills, Andrew

    2009-01-01T23:59:59.000Z

    Benefits of Distributed Photovoltaics to the Nevada PowerCarrying Capability of Photovoltaics in the United States. A Case Study of Photovoltaics Serving Kerman Substation.

  6. Nanopillar Photovoltaics: Photon Management and Junction Engineering for Next-Generation Solar Cells

    E-Print Network [OSTI]

    Mariani, Giacomo

    2013-01-01T23:59:59.000Z

    for ultrahigh-efficiency photovoltaics, Nat. Mater. 11, 174-devices towards high-efficiency photovoltaics, 39th IEEEfor high efficiency hybrid photovoltaics, 37th IEEE

  7. Rational Design and Preparation of Organic Semiconductors for use in Field Effect Transistors and Photovoltaic Cells

    E-Print Network [OSTI]

    Mauldin, Clayton Edward

    2010-01-01T23:59:59.000Z

    in thin film organic photovoltaic cells (OPVs) is presented.Effect Transistors and Photovoltaic Cells By Clayton EdwardEffect Transistors and Photovoltaic Cells By Clayton Edward

  8. Photovoltaic Devices Employing Ternary PbSxSe1-x Nanocrystals

    E-Print Network [OSTI]

    Alivisatos, A. Paul

    2009-01-01T23:59:59.000Z

    Photovoltaic Devices Employing Ternary PbS x Se 1-xalloy nanoparticles. Photovoltaic devices made using ternaryInformation for Efficient Photovoltaic Devices Employing

  9. Spectroscopy of Photovoltaic Materials: Charge-Transfer Complexes and Titanium Dioxide

    E-Print Network [OSTI]

    Dillon, Robert

    2013-01-01T23:59:59.000Z

    RIVERSIDE Spectroscopy of Photovoltaic Materials: Charge-DISSERTATION Spectroscopy of Photovoltaic Materials: Charge-function of photovoltaic (PV) and photocatalytic (PC)

  10. Modeling Variability and Uncertainty of Photovoltaic Generation: A Hidden State Spatial Statistical Approach

    E-Print Network [OSTI]

    Callaway, Duncan S; Tabone, Michaelangelo D

    2015-01-01T23:59:59.000Z

    AND UNCERTAINTY OF PHOTOVOLTAIC GENERATION [9] M. Milligan,for grid-connected photovoltaic system based on advancedand uncertainty in solar photovoltaic generation at multiple

  11. Residential Photovoltaic Energy Systems in California: The Effect on Home Sales Prices

    E-Print Network [OSTI]

    Hoen, Ben

    2013-01-01T23:59:59.000Z

    Residential Photovoltaic Energy Systems in California: Thethe marginal impacts of photovoltaic (PV) energy systems ons largest market for photovoltaic solar (PV), with nearly

  12. Producer-Focused Life Cycle Assessment of Thin-Film Silicon Photovoltaic Systems

    E-Print Network [OSTI]

    Zhang, Teresa Weirui

    2011-01-01T23:59:59.000Z

    installed power from photovoltaic systems worldwide fromBest research photovoltaic efficiencies (Kazmerski,as a function of time for numerous types of photovoltaic

  13. A Cradle to Grave Framework for Environmental Assessment of Photovoltaic Systems

    E-Print Network [OSTI]

    Zhang, Teresa; Dornfeld, David

    2010-01-01T23:59:59.000Z

    impacts and costs of photovoltaic systems: Current state ofEnergy Payback Time for Photovoltaic Modules, ProceedingsLife-cycle assessment of photovoltaic modules: Comparison of

  14. The Potential Impact of Increased Renewable Energy Penetrations on Electricity Bill Savings from Residential Photovoltaic Systems

    E-Print Network [OSTI]

    Barbose, Galen

    2013-01-01T23:59:59.000Z

    Californias Solar Photovoltaic Subsidies? Center for thefrom Residential Photovoltaic Systems Nam R. Darghouth,FROM RESIDENTIAL PHOTOVOLTAIC SYSTEMS Nam R. Darghouth

  15. Do Photovoltaic Energy Systems Effect Residential Selling Prices? Results from a California Statewide Investigation.

    E-Print Network [OSTI]

    Hoen, Ben

    2012-01-01T23:59:59.000Z

    DO PHOTOVOLTAIC ENERGY SYSTEMS AFFECT RESIDENTIAL SELLINGopportunity employer. DO PHOTOVOLTAIC ENERGY SYSTEMS AFFECTin the U.S. have sold with photovoltaic (PV) energy systems

  16. The impact of retail rate structures on the economics of commercial photovoltaic systems in California

    E-Print Network [OSTI]

    Mills, Andrew D.

    2009-01-01T23:59:59.000Z

    Production of Solar Photovoltaic Cells. Center for theR. Margolis. 2004. Are Photovoltaic Systems Worth More toLepley. 1993. Distributed photovoltaic system evaluation by

  17. An Analysis of the Effects of Photovoltaic Energy Systems on Residential Selling Prices in California.

    E-Print Network [OSTI]

    Cappers, Peter

    2012-01-01T23:59:59.000Z

    Effects of Residential Photovoltaic Energy Systems on Homeof homes with existing photovoltaic (PV) energy systems havegrid-connected solar photovoltaic (PV) energy systems were

  18. Photovoltaic performance of ultra-small PbSe quantum dots

    E-Print Network [OSTI]

    Ma, Wanli

    2014-01-01T23:59:59.000Z

    Y; Alivisatos, AP, Photovoltaic Devices Employing TernaryPhotovoltaic performance of ultra-small PbSe quantum dotsquantum dot, solar cell, photovoltaic, quantum size effect

  19. The Impact of Retail Rate Structures on the Economics of Commercial Photovoltaic Systems in California

    E-Print Network [OSTI]

    Mills, Andrew

    2009-01-01T23:59:59.000Z

    Production of Solar Photovoltaic Cells. Center for theR. Margolis. 2004. Are Photovoltaic Systems Worth More toLepley. 1993. Distributed photovoltaic system evaluation by

  20. PbS and Ge Nanocrystals: A Pathway Towards Third Generation Photovoltaics

    E-Print Network [OSTI]

    Church, Carena

    2014-01-01T23:59:59.000Z

    Towards Third Generation Photovoltaics by Carena PuameliChurch Third-generation photovoltaics offer a way around theJ. Nozik. Third generation photovoltaics based on multiple

  1. Sustainability of Very Large Photovoltaic DeploymentSustainability of Very Large Photovoltaic Deployment email: vmf5@columbia.edu

    E-Print Network [OSTI]

    Ohta, Shigemi

    1 Sustainability of Very Large Photovoltaic DeploymentSustainability of Very Large Photovoltaic for Life Cycle Analysis Columbia University and National Photovoltaics Environmental Research Center, 2006 - Fthenakis & Alsema, Progress in Photovoltaics, 14, 275, 2006 #12;9 0 200 400 600 800 1000 1200

  2. Editorial: Photovoltaic Materials and Devices

    SciTech Connect (OSTI)

    Sopori, B.; Tan, T.; Rupnowski, P.

    2012-01-01T23:59:59.000Z

    As the global energy needs grow, there is increasing interest in the generation of electricity by photovoltaics (PVs) devices or solar cells - devices that convert sunlight to electricity. Solar industry has seen an enormous growth during the last decade. The sale of PV modules has exceeded 27 GW in 2011, with significant contributions to the market share from all technologies. While the silicon technology continues to have the dominant share, the other thin film technologies (CdTe, CIGS, a-Si, and organic PV) are experiencing fast growth. Increased production of silicon modules has led to a very rapid reduction in their price and remains as benchmark for other technologies. The PV industry is in full gear to commercialize new automated equipment for solar cell and module production, instrumentation for process monitoring technologies, and for implementation of other cost-reduction approaches, and extensive research continues to be carried out in many laboratories to improve the efficiency of solar cells and modules without increasing the production costs. A large variety of solar cells, which differ in the material systems used, design, PV structure, and even the principle of PV conversion, are designed to date. This special issue contains peer-reviewed papers in the recent developments in research related to broad spectrum of photovoltaic materials and devices. It contains papers on many aspects of solar cells-the growth and deposition, characterization, and new material development.

  3. Applying photovoltaics to disaster relief

    SciTech Connect (OSTI)

    Young, W. Jr. [Florida Solar Energy Center, Cocoa, FL (United States)

    1996-11-01T23:59:59.000Z

    Hurricanes, floods, tornados, earthquakes and other disasters can happen at any time, often with little or no advance warning. They can be as destructive as Hurricane Andrew leaving several hundred-thousand people homeless or as minor as an afternoon thunderstorm knocking down local power lines to your home. Major disasters leave many people without adequate medical services, potable water, electrical service and communications. In response to a natural disaster, photovoltaic (solar electric) modules offer a source of quiet, safe, pollution-free electrical power. Photovoltaic (PV) power systems are capable of providing the electrical needs for vaccine refrigerators, microscopes, medical equipment, lighting, radios, fans, communications, traffic devices and other general electrical needs. Stand alone PV systems do not require refueling and operate for long period of time from the endless energy supplied by the sun, making them beneficial during recovery efforts. This report discusses the need for electrical power during a disaster, and the capability of PV to fill that need. Applications of PV power used during previous disaster relief efforts are also presented.

  4. Winding Trail

    E-Print Network [OSTI]

    Unknown

    2011-09-05T23:59:59.000Z

    During the past decade, the demand for clean renewable energy continues to rise drastically in Europe, the US, and other countries. Wind energy in the ocean can possibly be one of those future renewable clean energy sources as long...

  5. altamont pass wind: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    20 21 22 23 24 25 Next Page Last Page Topic Index 1 BIRD BEHAVIORS IN THE ALTAMONT PASS WIND RESOURCE AREA 8.1 INTRODUCTION Energy Storage, Conversion and Utilization Websites...

  6. Sandia National Laboratories: grid-tied wind-power inverters

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    wind-power inverters Sandia, DOE Energy Storage Program, GeneSiC Semiconductor, U.S. Army ARDEC: Ultra-High-Voltage Silicon Carbide Thyristors On March 29, 2013, in Capabilities,...

  7. Wind Energy Status and Perspectives Senior Scientist in Aeroelastic Design

    E-Print Network [OSTI]

    employees Systems Analysis Fuel cells Hydrogen storage PV polymer cells Bio Energy Materials #12;Ris, DTU Small Wind Turbines at Ris - 1979 #12;Aeroelastic Design #12;2D CFD Airfoil design (+ optimization

  8. Request for Information on Photovoltaic Module Recycling

    Broader source: Energy.gov [DOE]

    The U.S. Department of Energy SunShot Initiative requests feedback from industry, academia, research laboratories, government agencies, and other stakeholders on issues related to photovoltaic (PV) module recycling technology. SunShot intends to understand the current state of recycling technology and the areas of research that could lead to impactful recycling technologies to support the developing PV industry. The intent of this request for information is to generate discussion related to planning for the end of life of photovoltaic modules and to create a list of high impact research topics in photovoltaics recycling.

  9. Making the most of residential photovoltaic systems

    SciTech Connect (OSTI)

    Moon, S.; Parker, D.; Hayter, S.

    1999-10-18T23:59:59.000Z

    Making the Most of Residential Photovoltaic Systems, was recently produced by NREL Communications and Public Affairs. It showcases a demonstration project in Florida that produced some remarkable results by incorporating both energy efficiency and photovoltaic systems into newly built housing. The brochure points up the benefits of making wise personal choices about energy use, and how large-scale use of advanced energy technologies can benefit the nation. This is one of a series of brochures that presents stimulating information about photovoltaics, with a goal of helping to push this technology into the power-generation mix in different utilities, communities, and states.

  10. Wind Energy Benefits, Wind Powering America (WPA) (Fact Sheet...

    Broader source: Energy.gov (indexed) [DOE]

    Energy Benefits, Wind Powering America (WPA) (Fact Sheet), Wind And Water Power Program (WWPP) Wind Energy Benefits, Wind Powering America (WPA) (Fact Sheet), Wind And Water Power...

  11. SIXTH QUARTERLY REPORT OF RESEARCH ON CuxS - (Cd,Zn)S PHOTOVOLTAIC SOLAR ENERGY CONVERTERS

    E-Print Network [OSTI]

    Chin, B.L.

    2011-01-01T23:59:59.000Z

    for use in experimental photovoltaic cells. Hall mobilityvacuum method for photovoltaic cell fabrication" However,

  12. SINGLE STAGE GRID CONVERTERS FOR BATTERY ENERGY STORAGE

    E-Print Network [OSTI]

    Munk-Nielsen, Stig

    in the power system network such as wind and solar is still a challenge in our days. Energy storage systems, is the wide fluctuation of output power depending on the weather conditions. This power variation is reflected grid can smooth the output power of wind farms by acting as a load/generator improving the grid

  13. Life Cycle Assessment of Thermal Energy Storage: Two-Tank Indirect and Thermocline

    SciTech Connect (OSTI)

    Heath, G.; Turchi, C.; Burkhardt, J.; Kutscher, C.; Decker, T.

    2009-07-01T23:59:59.000Z

    In the United States, concentrating solar power (CSP) is one of the most promising renewable energy (RE) technologies for reduction of electric sector greenhouse gas (GHG) emissions and for rapid capacity expansion. It is also one of the most price-competitive RE technologies, thanks in large measure to decades of field experience and consistent improvements in design. One of the key design features that makes CSP more attractive than many other RE technologies, like solar photovoltaics and wind, is the potential for including relatively low-cost and efficient thermal energy storage (TES), which can smooth the daily fluctuation of electricity production and extend its duration into the evening peak hours or longer. Because operational environmental burdens are typically small for RE technologies, life cycle assessment (LCA) is recognized as the most appropriate analytical approach for determining their environmental impacts of these technologies, including CSP. An LCA accounts for impacts from all stages in the development, operation, and decommissioning of a CSP plant, including such upstream stages as the extraction of raw materials used in system components, manufacturing of those components, and construction of the plant. The National Renewable Energy Laboratory (NREL) is undertaking an LCA of modern CSP plants, starting with those of parabolic trough design.

  14. Sandia National Laboratories: Photovoltaic Technology and Tour...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    * Tour of PV Test Facility Comments are closed. Renewable Energy Wind Energy Wind Plant Optimization Test Site Operations & Maintenance Safety: Test Facilities Capital Equipment...

  15. AQUIFER THERMAL ENERGY STORAGE

    E-Print Network [OSTI]

    Tsang, C.-F.

    2011-01-01T23:59:59.000Z

    aquifers for thermal energy storage. Problems outlined aboveModeling of Thermal Energy Storage in Aquifers," Proceed-ings of Aquifer Thermal Energy Storage Workshop, Lawrence

  16. SUPERCONDUCTING MAGNETIC ENERGY STORAGE

    E-Print Network [OSTI]

    Hassenzahl, W.

    2011-01-01T23:59:59.000Z

    Superconducting 30-MJ Energy Storage Coil", Proc. 19 80 ASC,Superconducting Magnetic Energy Storage Plant", IEEE Trans.SlIperconducting Magnetic Energy Storage Unit", in Advances

  17. AQUIFER THERMAL ENERGY STORAGE

    E-Print Network [OSTI]

    Tsang, C.-F.

    2011-01-01T23:59:59.000Z

    aquifers for thermal energy storage. Problems outlined abovean Aquifer Used for Hot Water Storage: Digital Simulation ofof Aquifer Systems for Cyclic Storage of Water," of the Fall

  18. AQUIFER THERMAL ENERGY STORAGE

    E-Print Network [OSTI]

    Tsang, C.-F.

    2011-01-01T23:59:59.000Z

    using aquifers for thermal energy storage. Problems outlinedmatical Modeling of Thermal Energy Storage in Aquifers,"ings of Aquifer Thermal Energy Storage Workshop, Lawrence

  19. AQUIFER THERMAL ENERGY STORAGE

    E-Print Network [OSTI]

    Tsang, C.-F.

    2011-01-01T23:59:59.000Z

    using aquifers for thermal energy storage. Problems outlinedmatical Modeling of Thermal Energy Storage in Aquifers,"Proceed- ings of Aquifer Thermal Energy Storage Workshop,

  20. Stasis: Flexible Transactional Storage

    E-Print Network [OSTI]

    Sears, Russell C.

    2009-01-01T23:59:59.000Z

    Stasis: Flexible Transactional Storage by Russell C. Sears AR. Larson Fall 2009 Stasis: Flexible Transactional StorageC. Sears Abstract Stasis: Flexible Transactional Storage by