Powered by Deep Web Technologies
Note: This page contains sample records for the topic "wind phase evaluate" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


1

Phase 2 Report: Oahu Wind Integration and Transmission Study (OWITS);  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Phase 2 Report: Oahu Wind Integration and Transmission Study Phase 2 Report: Oahu Wind Integration and Transmission Study (OWITS); Hawaiian Islands Transmission Interconnection Project Phase 2 Report: Oahu Wind Integration and Transmission Study (OWITS); Hawaiian Islands Transmission Interconnection Project This report provides an independent review included an initial evaluation of the technical configuration and capital costs of establishing an undersea cable system and examining impacts to the existing electric transmission systems as a result of interconnecting the islands. 50414.pdf More Documents & Publications Oahu Wind Integration and Transmission Study (OWITS): Hawaiian Islands Transmission Interconnection Project OAHU Wind Integration And Transmission Study: Summary Report, NREL (National Renewable Energy Laboratory)

2

Helping Policymakers Evaluate Distributed Wind Options | Department...  

Energy Savers (EERE)

and consumers evaluate the effectiveness of policies that promote distributed wind-wind turbines installed at homes, farms, and busi-nesses. Distributed wind allows Americans to...

3

Low Wind Speed Technology Phase I: Evaluation of Design and Construction Approaches for Economical Hybrid Steel/Concrete Wind Turbine Towers; BERGER/ABAM Engineers Inc.  

SciTech Connect

This fact sheet describes a subcontract with BERGER/ABAM Engineers Inc. to study the economic feasibility of concrete and hybrid concrete/steel wind turbine towers.

Not Available

2006-03-01T23:59:59.000Z

4

The Western Wind and Solar Integration Study Phase 2  

SciTech Connect

The electric grid is a highly complex, interconnected machine, and changing one part of the grid can have consequences elsewhere. Adding wind and solar affects the operation of the other power plants and adding high penetrations can induce cycling of fossil-fueled generators. Cycling leads to wear-and-tear costs and changes in emissions. Phase 2 of the Western Wind and Solar Integration Study (WWSIS-2) evaluated these costs and emissions and simulated grid operations for a year to investigate the detailed impact of wind and solar on the fossil-fueled fleet. This built on Phase 1, one of the largest wind and solar integration studies ever conducted, which examined operational impacts of high wind and solar penetrations in the West.

Lew, D.; Brinkman, G.; Ibanez, E.; Hodge, B. M.; Hummon, M.; Florita, A.; Heaney, M.

2013-09-01T23:59:59.000Z

5

ARM - Evaluation Product - Derived Wind Profiles from Doppler...  

NLE Websites -- All DOE Office Websites (Extended Search)

the radial velocity data; the amplitude, phase and offset of the sinusoid determine the wind speed, wind direction and vertical velocity, respectively. The derived winds are...

6

Conceptual Model of Offshore Wind Environmental Risk Evaluation System  

SciTech Connect

In this report we describe the development of the Environmental Risk Evaluation System (ERES), a risk-informed analytical process for estimating the environmental risks associated with the construction and operation of offshore wind energy generation projects. The development of ERES for offshore wind is closely allied to a concurrent process undertaken to examine environmental effects of marine and hydrokinetic (MHK) energy generation, although specific risk-relevant attributes will differ between the MHK and offshore wind domains. During FY10, a conceptual design of ERES for offshore wind will be developed. The offshore wind ERES mockup described in this report will provide a preview of the functionality of a fully developed risk evaluation system that will use risk assessment techniques to determine priority stressors on aquatic organisms and environments from specific technology aspects, identify key uncertainties underlying high-risk issues, compile a wide-range of data types in an innovative and flexible data organizing scheme, and inform planning and decision processes with a transparent and technically robust decision-support tool. A fully functional version of ERES for offshore wind will be developed in a subsequent phase of the project.

Anderson, Richard M.; Copping, Andrea E.; Van Cleve, Frances B.; Unwin, Stephen D.; Hamilton, Erin L.

2010-06-01T23:59:59.000Z

7

Milford Wind Corridor Phase II | Open Energy Information  

Open Energy Info (EERE)

Milford Wind Corridor Phase II Milford Wind Corridor Phase II Facility Milford Wind Corridor Phase II Sector Wind energy Facility Type Commercial Scale Wind Facility Status In Service Owner First Wind Developer First Wind Energy Purchaser Southern California Public Power Authority Location Millard and Beaver County UT Coordinates 38.645608°, -112.878027° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":38.645608,"lon":-112.878027,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

8

Galveston Offshore Wind Phase 2 | Open Energy Information  

Open Energy Info (EERE)

Offshore Wind Phase 2 Offshore Wind Phase 2 Jump to: navigation, search Name Galveston Offshore Wind Phase 2 Facility Galveston Offshore Wind Phase 2 Sector Wind energy Facility Type Offshore Wind Facility Status Proposed Owner Coastal Point Energy LLC Developer Coastal Point Energy LLC Location Gulf of Mexico TX Coordinates 29.16°, -94.747° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":29.16,"lon":-94.747,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

9

The Western Wind and Solar Integration Study Phase 2  

Office of Energy Efficiency and Renewable Energy (EERE)

Greg Brinkman will present the results of the Western Wind and Solar Integration Study (WWSIS), Phase 2. This study, which follows the first phase of WWSIS, focuses on potential emissions and wear...

10

Ponnequin phase III (PSCo) Wind Farm | Open Energy Information  

Open Energy Info (EERE)

Ponnequin phase III (PSCo) Wind Farm Ponnequin phase III (PSCo) Wind Farm Jump to: navigation, search Name Ponnequin phase III (PSCo) Wind Farm Facility Ponnequin- phase III Sector Wind energy Facility Type Commercial Scale Wind Facility Status In Service Owner Xcel Energy Energy Purchaser Xcel Energy Location Weld County CO Coordinates 40.998405°, -104.811466° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":40.998405,"lon":-104.811466,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

11

Caprock Wind Ranch phase II | Open Energy Information  

Open Energy Info (EERE)

phase II phase II Jump to: navigation, search Name Caprock Wind Ranch phase II Facility Caprock Wind Ranch phase II Sector Wind energy Facility Type Commercial Scale Wind Facility Status In Service Owner Babcock & Brown Developer Cielo Wind Power Energy Purchaser Xcel Energy Location Quay County NM Coordinates 35.043532°, -103.583422° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":35.043532,"lon":-103.583422,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

12

Kotzebue Wind Project Phase I | Open Energy Information  

Open Energy Info (EERE)

Kotzebue Wind Project Phase I Kotzebue Wind Project Phase I Facility Kotzebue Wind Project Phase I Sector Wind energy Facility Type Commercial Scale Wind Facility Status In Service Owner Kotzebue Electric Assoc. Developer Kotzebue Electric Association Energy Purchaser Kotzebue Electric Assoc. Location Kotzebue AK Coordinates 66.83907°, -162.551315° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":66.83907,"lon":-162.551315,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

13

North Wind 4-kW wind-system development. Phase II. Fabrication and test  

SciTech Connect

This report presents the results of Phase II (testing and fabrication) of a program funded by the US Department of Energy to design, fabricate, and test a cost-effective wind system in the 3 to 6 kW class. During Phase II, using the design developed during Phase I, a prototype 4 kW machine was fabricated and tested in Waitsfield, Vermont. Several problems were encountered and subsequently analyzed. Design modifications, including the use of a larger alternator, are described. Test performed by North Wind and by Rockwell International (which monitored the program) demonstrated the predicted performance characteristics and the validity of the North Wind design.

Lynch, J.; Coleman, C.; Mayer, D.J.

1983-01-01T23:59:59.000Z

14

Combined Experiment Phase 1. [Horizontal axis wind turbines: wind tunnel testing versus field testing  

SciTech Connect

How does wind tunnel airfoil data differ from the airfoil performance on an operating horizontal axis wind turbine (HAWT) The National Renewable Energy laboratory has been conducting a comprehensive test program focused on answering this question and understanding the basic fluid mechanics of rotating HAWT stall aerodynamics. The basic approach was to instrument a wind rotor, using an airfoil that was well documented by wind tunnel tests, and measure operating pressure distributions on the rotating blade. Based an the integrated values of the pressure data, airfoil performance coefficients were obtained, and comparisons were made between the rotating data and the wind tunnel data. Care was taken to the aerodynamic and geometric differences between the rotating and the wind tunnel models. This is the first of two reports describing the Combined Experiment Program and its results. This Phase I report covers background information such as test setup and instrumentation. It also includes wind tunnel test results and roughness testing.

Butterfield, C.P.; Musial, W.P.; Simms, D.A.

1992-10-01T23:59:59.000Z

15

Solano Wind Project Phase I | Open Energy Information  

Open Energy Info (EERE)

Phase I Phase I Jump to: navigation, search Name Solano Wind Project Phase I Facility Solano Wind Project Phase I Sector Wind energy Facility Type Commercial Scale Wind Facility Status In Service Owner Sacramento Municipal Utility District Developer Sacramento Municipal Utility District Energy Purchaser Sacramento Municipal Utility District Location Solano County CA Coordinates 38.165683°, -121.817186° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":38.165683,"lon":-121.817186,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

16

Western Wind and Solar Integration Study Phase 2 (Fact Sheet)  

SciTech Connect

This is one-page, two-sided fact sheet presents high-level summary results of the Western Wind and Solar Integration Study Phase 2, which examined operational impacts of high penetrations of variable renewable generation in the West.

Not Available

2013-09-01T23:59:59.000Z

17

Western Wind and Solar Integration Study: Phase 2 (Presentation)  

SciTech Connect

This presentation summarizes the scope and results of the Western Wind and Solar Integration Study Phase 2, which examined operational impacts of high penetrations of variable renewable generation in the West.

Lew, D.; Brinkman, G.; Ibanez, E.; Lefton, S.; Kumar, N.; Venkataraman, S.; Jordan, G.

2013-09-01T23:59:59.000Z

18

Condon Wind Project phase II | Open Energy Information  

Open Energy Info (EERE)

Project phase II Project phase II Jump to: navigation, search Name Condon Wind Project phase II Facility Condon Wind Project phase II Sector Wind energy Facility Type Commercial Scale Wind Facility Status In Service Developer SeaWest Energy Purchaser Bonneville Power Admin Location Gilliam County OR Coordinates 45.306062°, -120.255847° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":45.306062,"lon":-120.255847,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

19

Top Crop Wind Farm (Phase II) | Open Energy Information  

Open Energy Info (EERE)

(Phase II) (Phase II) Jump to: navigation, search Name Top Crop Wind Farm (Phase II) Facility Top Crop Wind Farm (Phase II) Sector Wind energy Facility Type Commercial Scale Wind Facility Status In Service Owner Horizon-EDPR Developer Horizon-EDPR Location Grundy County IL Coordinates 41.202313°, -88.530078° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":41.202313,"lon":-88.530078,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

20

Oak Creek Wind Power Phase 2 Wind Farm | Open Energy Information  

Open Energy Info (EERE)

Phase 2 Wind Farm Phase 2 Wind Farm Jump to: navigation, search Name Oak Creek Wind Power Phase 2 Wind Farm Facility Oak Creek Wind Power Phase 2 Sector Wind energy Facility Type Commercial Scale Wind Facility Status In Service Owner Caithness Developer M&N Wind Power/Oak Creek Energy Systems Energy Purchaser Southern California Edison Co Location Tehachapi CA Coordinates 35.07665°, -118.25529° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":35.07665,"lon":-118.25529,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

Note: This page contains sample records for the topic "wind phase evaluate" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


21

Ponnequin phase III (EUI) Wind Farm | Open Energy Information  

Open Energy Info (EERE)

III (EUI) Wind Farm III (EUI) Wind Farm Jump to: navigation, search Name Ponnequin phase III (EUI) Wind Farm Facility Ponnequin phase III (EUI) Sector Wind energy Facility Type Commercial Scale Wind Facility Status In Service Developer Energy Unlimited Energy Purchaser Xcel Energy Location Weld County CO Coordinates 40.998405°, -104.811466° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":40.998405,"lon":-104.811466,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

22

Milford Wind Corridor Phase I (Clipper) Wind Farm | Open Energy Information  

Open Energy Info (EERE)

Clipper) Wind Farm Clipper) Wind Farm Jump to: navigation, search Name Milford Wind Corridor Phase I (Clipper) Wind Farm Facility Milford Wind Corridor Phase I (Clipper) Sector Wind energy Facility Type Commercial Scale Wind Facility Status In Service Owner First Wind Developer First Wind Energy Purchaser Southern California Public Power Authority Location Milford UT Coordinates 38.52227°, -112.935262° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":38.52227,"lon":-112.935262,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

23

Milford Wind Corridor Phase I (GE Energy) | Open Energy Information  

Open Energy Info (EERE)

form form View source History View New Pages Recent Changes All Special Pages Semantic Search/Querying Get Involved Help Apps Datasets Community Login | Sign Up Search Page Edit with form History Facebook icon Twitter icon » Milford Wind Corridor Phase I (GE Energy) Jump to: navigation, search Name Milford Wind Corridor Phase I (GE Energy) Facility Milford Wind Corridor Phase I (GE Energy) Sector Wind energy Facility Type Commercial Scale Wind Facility Status In Service Owner First Wind Developer First Wind Energy Purchaser Southern California Public Power Authority Location Milford UT Coordinates 38.52227°, -112.935262° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":38.52227,"lon":-112.935262,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

24

Wind Turbine Drivetrain Condition Monitoring During GRC Phase 1 and Phase 2 Testing  

SciTech Connect

This report will present the wind turbine drivetrain condition monitoring (CM) research conducted under the phase 1 and phase 2 Gearbox Reliability Collaborative (GRC) tests. The rationale and approach for this drivetrain CM research, investigated CM systems, test configuration and results, and a discussion on challenges in wind turbine drivetrain CM and future research and development areas, will be presented.

Sheng, S.; Link, H.; LaCava, W.; van Dam, J.; McNiff, B.; Veers, P.; Keller, J.; Butterfield, S.; Oyague, F.

2011-10-01T23:59:59.000Z

25

Moulton Chandler Hills Wind Farm Phase II | Open Energy Information  

Open Energy Info (EERE)

Moulton Chandler Hills Wind Farm Phase II Moulton Chandler Hills Wind Farm Phase II Jump to: navigation, search Name Moulton Chandler Hills Wind Farm Phase II Facility Moulton Chandler Hills Wind Farm Phase II Sector Wind energy Facility Type Commercial Scale Wind Facility Status In Service Owner Great River Energy Developer EnXco Energy Purchaser Great River Energy Location Near Chandler MN Coordinates 43.9189°, -95.9557° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":43.9189,"lon":-95.9557,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

26

Fowler Ridge Wind Farm Phase I (Vestas) | Open Energy Information  

Open Energy Info (EERE)

Fowler Ridge Wind Farm Phase I (Vestas) Fowler Ridge Wind Farm Phase I (Vestas) Jump to: navigation, search Name Fowler Ridge Wind Farm Phase I (Vestas) Facility Fowler Ridge Wind Farm Phase I (Vestas) Sector Wind energy Facility Type Commercial Scale Wind Facility Status In Service Owner BP Alternative Energy/Dominion Energy Developer BP Alternative Energy/Dominion Energy Energy Purchaser AEP-Appalachian Power/AEP-Indiana Michigan Power Location Benton and Tippecanoe Counties IN Coordinates 40.613872°, -87.318692° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":40.613872,"lon":-87.318692,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

27

Kotzebue Wind Project Phase II & III | Open Energy Information  

Open Energy Info (EERE)

II & III II & III Jump to: navigation, search Name Kotzebue Wind Project Phase II & III Facility Kotzebue Wind Project Phase II & III Sector Wind energy Facility Type Commercial Scale Wind Facility Status In Service Owner Kotzebue Electric Assoc. Developer Kotzebue Electric Association Energy Purchaser Kotzebue Electric Assoc. Location Kotzebue AK Coordinates 66.839104°, -162.556894° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":66.839104,"lon":-162.556894,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

28

Biglow Canyon Phase III Wind Farm | Open Energy Information  

Open Energy Info (EERE)

Biglow Canyon Phase III Wind Farm Biglow Canyon Phase III Wind Farm Jump to: navigation, search Name Biglow Canyon Phase III Wind Farm Facility Biglow Canyon Phase III Sector Wind energy Facility Type Commercial Scale Wind Facility Status In Service Owner Portland General Electric Developer Orion Energy Group Energy Purchaser Portland General Electric Location Sherman County OR Coordinates 45.6375°, -120.605278° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":45.6375,"lon":-120.605278,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

29

Forward Phase I Wind Farm | Open Energy Information  

Open Energy Info (EERE)

Forward Phase I Wind Farm Forward Phase I Wind Farm Jump to: navigation, search Name Forward Phase I Wind Farm Facility Forward Phase I Sector Wind energy Facility Type Commercial Scale Wind Facility Status In Service Owner Invenergy Developer Invenergy Energy Purchaser Alliant- Wisconsin Public Service- Madison Gas & Electric-Wisconsin Public Power Location Dodge and Fond du Lac Counties WI Coordinates 43.606819°, -88.534834° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":43.606819,"lon":-88.534834,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

30

Goat Mountain Phase I Wind Farm | Open Energy Information  

Open Energy Info (EERE)

Goat Mountain Phase I Wind Farm Goat Mountain Phase I Wind Farm Jump to: navigation, search Name Goat Mountain Phase I Wind Farm Facility Goat Mountain Phase I Sector Wind energy Facility Type Commercial Scale Wind Facility Status In Service Owner Cielo/Edison Mission Group Developer Cielo/Edison Mission Group Energy Purchaser Market Location North of San Angelo TX Coordinates 31.908696°, -100.824122° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":31.908696,"lon":-100.824122,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

31

Biglow Canyon Phase II Wind Farm | Open Energy Information  

Open Energy Info (EERE)

Phase II Wind Farm Phase II Wind Farm Jump to: navigation, search Name Biglow Canyon Phase II Wind Farm Facility Biglow Canyon Phase II Sector Wind energy Facility Type Commercial Scale Wind Facility Status In Service Owner Portland General Electric Developer Orion Energy Group Energy Purchaser Portland General Electric Location Sherman County OR Coordinates 45.6375°, -120.605278° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":45.6375,"lon":-120.605278,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

32

Maple Ridge Wind Farm phase II | Open Energy Information  

Open Energy Info (EERE)

phase II phase II Jump to: navigation, search Name Maple Ridge Wind Farm phase II Facility Maple Ridge Wind Farm phase II Sector Wind energy Facility Type Commercial Scale Wind Facility Status In Service Owner Horizon/PPM Energy Developer 'PPM Energy/Horizon Wind Energy Energy Purchaser NYSERDA/Market Location Lewis County NY Coordinates 43.775565°, -75.584614° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":43.775565,"lon":-75.584614,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

33

Kibby Mountain Phase I Wind Farm | Open Energy Information  

Open Energy Info (EERE)

Phase I Wind Farm Phase I Wind Farm Jump to: navigation, search Name Kibby Mountain Phase I Wind Farm Facility Kibby Mountain Phase I Sector Wind energy Facility Type Commercial Scale Wind Facility Status In Service Owner TransCanada Power Mktg Ltd Developer TransCanada Power Mktg Ltd Location Kibby Township ME Coordinates 43.973144°, -71.030844° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":43.973144,"lon":-71.030844,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

34

Goat Mountain Phase II Wind Farm | Open Energy Information  

Open Energy Info (EERE)

Goat Mountain Phase II Wind Farm Goat Mountain Phase II Wind Farm Jump to: navigation, search Name Goat Mountain Phase II Wind Farm Facility Goat Mountain Phase II Sector Wind energy Facility Type Commercial Scale Wind Facility Status In Service Owner Cielo/Edison Mission Group Developer Cielo/Edison Mission Group Energy Purchaser Market Location North of San Angelo TX Coordinates 31.910008°, -100.869355° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":31.910008,"lon":-100.869355,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

35

Sweetwater Phase II Wind Farm | Open Energy Information  

Open Energy Info (EERE)

Phase II Wind Farm Phase II Wind Farm Jump to: navigation, search Name Sweetwater Phase II Wind Farm Facility Sweetwater Phase II Sector Wind energy Facility Type Commercial Scale Wind Facility Status In Service Owner Babcock & Brown/Catamount Developer DKRW/Babcock & Brown/Catamount Energy Purchaser Austin Energy Location Sweetwater TX Coordinates 32.368084°, -100.333722° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":32.368084,"lon":-100.333722,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

36

Victory Gardens Phase IV Wind Farm II | Open Energy Information  

Open Energy Info (EERE)

Gardens Phase IV Wind Farm II Gardens Phase IV Wind Farm II Jump to: navigation, search Name Victory Gardens Phase IV Wind Farm II Facility Victory Gardens- Phase IV Sector Wind energy Facility Type Commercial Scale Wind Facility Status In Service Owner NextEra Energy Resources Developer Zond Systems Energy Purchaser Southern California Edison Co Location Tehachapi CA Coordinates 35.07665°, -118.25529° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":35.07665,"lon":-118.25529,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

37

Sweetwater Phase III Wind Farm | Open Energy Information  

Open Energy Info (EERE)

Sweetwater Phase III Wind Farm Sweetwater Phase III Wind Farm Jump to: navigation, search Name Sweetwater Phase III Wind Farm Facility Sweetwater Phase III Sector Wind energy Facility Type Commercial Scale Wind Facility Status In Service Owner Babcock & Brown/Catamount Developer DKRW/Babcock & Brown/Catamount Energy Purchaser CPS Energy/Austin Energy Location Sweetwater TX Coordinates 32.368084°, -100.333722° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":32.368084,"lon":-100.333722,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

38

Victory Gardens Phase IV Wind Farm I | Open Energy Information  

Open Energy Info (EERE)

Gardens Phase IV Wind Farm I Gardens Phase IV Wind Farm I Jump to: navigation, search Name Victory Gardens Phase IV Wind Farm I Facility Victory Gardens- Phase IV Sector Wind energy Facility Type Commercial Scale Wind Facility Status In Service Owner NextEra Energy Resources Developer Zond Systems Energy Purchaser Southern California Edison Co Location Tehachapi CA Coordinates 35.07665°, -118.25529° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":35.07665,"lon":-118.25529,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

39

Oak Creek Phase I Wind Farm | Open Energy Information  

Open Energy Info (EERE)

Wind Farm Wind Farm Jump to: navigation, search Name Oak Creek Phase I Wind Farm Facility Oak Creek Phase I Sector Wind energy Facility Type Commercial Scale Wind Facility Status In Service Owner Nichimen America/Oak Creek Energy Systems Developer M&N Wind Power/Oak Creek Energy Systems Energy Purchaser Southern California Edison Co Location Tehachapi CA Coordinates 35.07665°, -118.25529° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":35.07665,"lon":-118.25529,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

40

Western Wind and Solar Integration Study Phase 2: Preprint  

NLE Websites -- All DOE Office Websites (Extended Search)

Western Wind and Solar Western Wind and Solar Integration Study Phase 2 Preprint D. Lew, G. Brinkman, E. Ibanez, and B.-M. Hodge National Renewable Energy Laboratory J. King RePPAE To be presented at the 11th Annual International Workshop on Large-Scale Integration of Wind Power into Power Systems as Well as on Transmission Networks for Offshore Wind Power Plants Conference Lisbon, Portugal November 13-15, 2012 Conference Paper NREL/CP-5500-56217 September 2012 NOTICE The submitted manuscript has been offered by an employee of the Alliance for Sustainable Energy, LLC (Alliance), a contractor of the US Government under Contract No. DE-AC36-08GO28308. Accordingly, the US Government and Alliance retain a nonexclusive royalty-free license to publish or reproduce the published form of

Note: This page contains sample records for the topic "wind phase evaluate" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


41

Nine Canyon Wind Farm Phase II | Open Energy Information  

Open Energy Info (EERE)

Page Page Edit with form History Facebook icon Twitter icon » Nine Canyon Wind Farm Phase II Jump to: navigation, search Name Nine Canyon Wind Farm Phase II Facility Nine Canyon Wind Farm Phase II Sector Wind energy Facility Type Commercial Scale Wind Facility Status In Service Owner Energy Northwest Developer Energy Northwest Energy Purchaser Energy Northwest Location Benton County Coordinates 46.286065°, -119.425532° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":46.286065,"lon":-119.425532,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

42

Fowler Ridge Wind Farm Phase I (Clipper) | Open Energy Information  

Open Energy Info (EERE)

Phase I (Clipper) Phase I (Clipper) Jump to: navigation, search Name Fowler Ridge Wind Farm Phase I (Clipper) Facility Fowler Ridge Wind Farm Phase I (Clipper) Sector Wind energy Facility Type Commercial Scale Wind Facility Status In Service Owner BP Alternative Energy/Dominion Energy Developer BP Alternative Energy/Dominion Energy Energy Purchaser AEP-Appalachian Power/AEP-Indiana Michigan Power Location Benton and Tippecanoe Counties IN Coordinates 40.613872°, -87.318692° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":40.613872,"lon":-87.318692,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

43

Solano Wind Project- phase II | Open Energy Information  

Open Energy Info (EERE)

Project- phase II Project- phase II Jump to: navigation, search Name Solano Wind Project- phase II Facility Solano Wind Project- phase II Sector Wind energy Facility Type Commercial Scale Wind Facility Status In Service Owner Sacramento Municipal Utility District Developer NextEra Energy Resources Energy Purchaser Sacramento Municipal Utility District Location Solano County CA Coordinates 38.165683°, -121.817186° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":38.165683,"lon":-121.817186,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

44

Western Wind and Solar Integration Study Phase 2: Preprint  

SciTech Connect

The Western Wind and Solar Integration Study (WWSIS) investigates the impacts of high penetrations of wind and solar power into the Western Interconnection of the United States. WWSIS2 builds on the Phase 1 study but with far greater refinement in the level of data inputs and production simulation. It considers the differences between wind and solar power on systems operations. It considers mitigation options to accommodate wind and solar when full costs of wear-and-tear and full impacts of emissions rates are taken into account. It determines wear-and-tear costs and emissions impacts. New data sets were created for WWSIS2, and WWSIS1 data sets were refined to improve realism of plant output and forecasts. Four scenarios were defined for WWSIS2 that examine the differences between wind and solar and penetration level. Transmission was built out to bring resources to load. Statistical analysis was conducted to investigate wind and solar impacts at timescales ranging from seasonal down to 5 minutes.

Lew, D.; Brinkman, G.; Ibanez, E.; Hodge, B.-M.; King, J.

2012-09-01T23:59:59.000Z

45

Wind Power Plant Voltage Stability Evaluation: Preprint  

SciTech Connect

Voltage stability refers to the ability of a power system to maintain steady voltages at all buses in the system after being subjected to a disturbance from a given initial operating condition. Voltage stability depends on a power system's ability to maintain and/or restore equilibrium between load demand and supply. Instability that may result occurs in the form of a progressive fall or rise of voltages of some buses. Possible outcomes of voltage instability are the loss of load in an area or tripped transmission lines and other elements by their protective systems, which may lead to cascading outages. The loss of synchronism of some generators may result from these outages or from operating conditions that violate a synchronous generator's field current limit, or in the case of variable speed wind turbine generator, the current limits of power switches. This paper investigates the impact of wind power plants on power system voltage stability by using synchrophasor measurements.

Muljadi, E.; Zhang, Y. C.

2014-09-01T23:59:59.000Z

46

Western Wind and Solar Integration Study Phase 2 (Presentation)  

SciTech Connect

This presentation accompanies Phase 2 of the Western Wind and Solar Integration Study, a follow-on to Phase 1, which examined the operational impacts of high penetrations of variable renewable generation on the electric power system in the West and was one of the largest variable generation studies to date. High penetrations of variable generation can induce cycling of fossil-fueled generators. Cycling leads to wear-and-tear costs and changes in emissions. Phase 2 calculated these costs and emissions, and simulated grid operations for a year to investigate the detailed impact of variable generation on the fossil-fueled fleet. The presentation highlights the scope of the study and results.

Lew, D.; Brinkman, G.; Ibanez, E.; Kumar, N.; Lefton, S.; Jordan, G.; Venkataraman, S.; King, J.

2013-06-01T23:59:59.000Z

47

Evaluation of global wind power Cristina L. Archer and Mark Z. Jacobson  

E-Print Network (OSTI)

Evaluation of global wind power Cristina L. Archer and Mark Z. Jacobson Department of Civil the world's wind power potential for the first time from data. Wind speeds are calculated at 80 m, the hub% of all reporting stations experience annual mean wind speeds ! 6.9 m/s at 80 m (i.e., wind power class 3

48

Modeling and Simulation of Four-Phase 8/6 Switched Reluctance Motor with an Improved Winding Configuration  

Science Journals Connector (OSTI)

This paper presents a novel winding configuration which stimulates short flux loops to improve performance of four-phase 8/6 switched reluctance motor (SRM) with two phases excited. Conventional winding configuration of four-phase 8/6 SRM with two phases ... Keywords: switched reluctance motor, winding configuration, simulation

Jie Li; Hexu Sun

2008-12-01T23:59:59.000Z

49

Sandia National Laboratories Develops Tool for Evaluating Wind...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

better integrating new wind turbines with their local environment. One barrier to wind energy installations has been the concern that wind turbines may impact the National Air...

50

Evaluation of Offshore Wind Simulations with MM5 in the Japanese and Danish Coastal Waters  

E-Print Network (OSTI)

Evaluation of Offshore Wind Simulations with MM5 in the Japanese and Danish Coastal Waters Teruo to evaluate the accuracy of offshore wind simulation with the mesoscale model MM5, long-term simulations to simulate offshore wind conditions in the Japanese coastal waters even using a mesoscale model, compared

Heinemann, Detlev

51

Predictive current control of outer-rotor five-phase BLDC generators applicable for off-shore wind power plants  

Science Journals Connector (OSTI)

Abstract Model predictive control algorithms have recently gained more importance in the field of wind power generators. One of the important categories of model predictive control methods is improved deadbeat control in which the reverse model of generator is used to calculate the appropriate inputs for the next iteration of controlling process. In this paper, a new improved deadbeat algorithm is proposed to control the stator currents of an outer-rotor five-phase BLDC generator. Extended Kalman filter is used in the estimation step of proposed method, and generator equations are used to calculate the appropriate voltages for the next modulation period. Two aspects of proposed controlling method are evaluated including its sensitivity to generator parameter variations and its speed in following the reference values of required torque during transient states. Wind power generators are kept in mind, and proposed controlling method is both simulated and experimentally evaluated on an outer-rotor five-phase BLDC generator.

Jose Luis Romeral Martinez; Ramin Salehi Arashloo; Mehdi Salehifar; Juan Manuel Moreno

2014-01-01T23:59:59.000Z

52

Llano Estacado Wind Ranch at Texico phase II | Open Energy Information  

Open Energy Info (EERE)

Estacado Wind Ranch at Texico phase II Estacado Wind Ranch at Texico phase II Jump to: navigation, search Name Llano Estacado Wind Ranch at Texico phase II Facility Llano Estacado Wind Ranch at Texico phase II Sector Wind energy Facility Type Commercial Scale Wind Facility Status In Service Owner Cielo Wind Power Developer Cielo Wind Power Energy Purchaser Xcel Energy Location Curry County NM Coordinates 34.6283°, -103.387° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":34.6283,"lon":-103.387,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

53

Experimental evidence of phase coherence of magnetohydrodynamic turbulence in the solar wind: GEOTAIL satellite data  

Science Journals Connector (OSTI)

...research, the amplitude (power spectrum) has been discussed...Saito 1969) and the power-law type spectrum of...turbulence in the solar wind (Goldstein Roberts 1999...spacecraft in the solar wind. From the original data...original data into the power spectrum and the phases...

2008-01-01T23:59:59.000Z

54

Offshore Code Comparison Collaboration within IEA Wind Task 23: Phase IV Results Regarding Floating Wind Turbine Modeling; Preprint  

SciTech Connect

Offshore wind turbines are designed and analyzed using comprehensive simulation codes that account for the coupled dynamics of the wind inflow, aerodynamics, elasticity, and controls of the turbine, along with the incident waves, sea current, hydrodynamics, and foundation dynamics of the support structure. This paper describes the latest findings of the code-to-code verification activities of the Offshore Code Comparison Collaboration, which operates under Subtask 2 of the International Energy Agency Wind Task 23. In the latest phase of the project, participants used an assortment of codes to model the coupled dynamic response of a 5-MW wind turbine installed on a floating spar buoy in 320 m of water. Code predictions were compared from load-case simulations selected to test different model features. The comparisons have resulted in a greater understanding of offshore floating wind turbine dynamics and modeling techniques, and better knowledge of the validity of various approximations. The lessons learned from this exercise have improved the participants' codes, thus improving the standard of offshore wind turbine modeling.

Jonkman, J.; Larsen, T.; Hansen, A.; Nygaard, T.; Maus, K.; Karimirad, M.; Gao, Z.; Moan, T.; Fylling, I.

2010-04-01T23:59:59.000Z

55

Offshore Code Comparison Collaboration, Continuation within IEA Wind Task 30: Phase II Results Regarding a Floating Semisubmersible Wind System: Preprint  

SciTech Connect

Offshore wind turbines are designed and analyzed using comprehensive simulation tools (or codes) that account for the coupled dynamics of the wind inflow, aerodynamics, elasticity, and controls of the turbine, along with the incident waves, sea current, hydrodynamics, and foundation dynamics of the support structure. This paper describes the latest findings of the code-to-code verification activities of the Offshore Code Comparison Collaboration, Continuation (OC4) project, which operates under the International Energy Agency (IEA) Wind Task 30. In the latest phase of the project, participants used an assortment of simulation codes to model the coupled dynamic response of a 5-MW wind turbine installed on a floating semisubmersible in 200 m of water. Code predictions were compared from load-case simulations selected to test different model features. The comparisons have resulted in a greater understanding of offshore floating wind turbine dynamics and modeling techniques, and better knowledge of the validity of various approximations. The lessons learned from this exercise have improved the participants? codes, thus improving the standard of offshore wind turbine modeling.

Robertson, A.; Jonkman, J.; Vorpahl, F.; Popko, W.; Qvist, J.; Froyd, L.; Chen, X.; Azcona, J.; Uzungoglu, E.; Guedes Soares, C.; Luan, C.; Yutong, H.; Pengcheng, F.; Yde, A.; Larsen, T.; Nichols, J.; Buils, R.; Lei, L.; Anders Nygard, T.; et al.

2014-03-01T23:59:59.000Z

56

The Western Wind and Solar Integration Study Phase 2 (Fact Sheet), NREL (National Renewable Energy Laboratory)  

Energy.gov (U.S. Department of Energy (DOE))

This is one-page, two-sided fact sheet presents high-level summary results of the Western Wind and Solar Integration Study Phase 2, which examined operational impacts of high penetrations of variable renewable generation in the West.

57

Optimisation of voltage and frequency regulation in an isolated wind-driven six-phase self-excited induction generator  

Science Journals Connector (OSTI)

Abstract This paper presents a constant voltage operation of a Six-Phase Self-Excited Induction Generator (SPSEIG) driven by a fixed speed wind turbine using an Ant colony optimisation (ACO) technique to predict the behaviour of a the machine. In this paper, an attempt has been made to estimate the excitation capacitance requirements of a SPSEIG for maintaining rated terminal voltage and frequency. The range of capacitance variation required for maintaining constant terminal voltage while supplying a load of variable magnitude is evaluated. Analytical approaches, suitable for all the configurations of shunt capacitances such as variable excitation capacitance connected across (i) single three-phase winding set only and (ii) both the three-phase winding sets of an SPSEIG for operation as a simple shunt on no load and pure resistive load, are presented. The mathematical model developed is based on loop impedance method using graph theory. It is shown that the proposed technique is very effective and useful for making the SPSEIG feasible for remote areas with wind potential. The proposed approach is tested and compared with Genetic Algorithm (GA) and Fmincon technique.

A. Senthil Kumar; Josiah L. Munda

2014-01-01T23:59:59.000Z

58

Evaluation of Advanced Wind Power Forecasting Models Results of the Anemos Project  

E-Print Network (OSTI)

1 Evaluation of Advanced Wind Power Forecasting Models ­ Results of the Anemos Project I. Martí1.kariniotakis@ensmp.fr Abstract An outstanding question posed today by end-users like power system operators, wind power producers or traders is what performance can be expected by state-of-the-art wind power prediction models. This paper

Paris-Sud XI, Université de

59

EVALUATION OF MODELS FOR THE VERTICAL EXTRAPOLATION OF WIND SPEED MEASUREMENTS AT OFFSHORE SITES  

E-Print Network (OSTI)

EVALUATION OF MODELS FOR THE VERTICAL EXTRAPOLATION OF WIND SPEED MEASUREMENTS AT OFFSHORE SITES important for offshore wind energy utilisation are discussed and tested: Four models for the surface tested with data from the offshore field measurement Rødsand by extrapolating the measured 10 m wind

Heinemann, Detlev

60

Social Acceptance of Wind Power in the United States: Evaluating Stakeholder Perspectives (Poster)  

SciTech Connect

As the wind industry strives to achieve 20% wind energy by 2030, maintaining high levels of social acceptance for wind energy will become increasingly important. Wind Powering America is currently researching stakeholder perspectives in the U.S. market and reviewing findings from wind energy projects around the world to better understand social acceptance barriers. Results from European studies show that acceptance varies widely depending on local community values. A preliminary survey shows similar results in the United States. Further research will be conducted to refine our understanding of key social acceptance barriers and evaluate the best ways to mitigate negative perspectives on wind power.

Tegen, S.; Lantz, E.

2009-05-01T23:59:59.000Z

Note: This page contains sample records for the topic "wind phase evaluate" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


61

Is the Weibull distribution really suited for wind statistics modeling and wind power evaluation?  

E-Print Network (OSTI)

Wind speed statistics is generally modeled using the Weibull distribution. This distribution is convenient since it fully characterizes analytically with only two parameters (the shape and scale parameters) the shape of distribution and the different moments of the wind speed (mean, standard deviation, skewness and kurtosis). This distribution is broadly used in the wind energy sector to produce maps of wind energy potential. However, the Weibull distribution is based on empirical rather than physical justification and might display strong limitations for its applications. The philosophy of this article is based on the modeling of the wind components instead of the wind speed itself. This provides more physical insights on the validity domain of the Weibull distribution as a possible relevant model for wind statistics and the quantification of the error made by using such a distribution. We thereby propose alternative expressions of more suited wind speed distribution.

Drobinski, Philippe

2012-01-01T23:59:59.000Z

62

Evaluation of NSCAT-2 Wind Vectors by Using Statistical Distributions of Wind Speeds and Directions  

Science Journals Connector (OSTI)

In order to validate wind vectors derived from the NASA scatterometer (NSCAT), statistical distributions of wind speeds and directions retrieved by the NSCAT- ... model function have been investigated by comparis...

Naoto Ebuchi

2000-04-01T23:59:59.000Z

63

Enertech 15-kW wind-system development. Phase II. Fabrication and test  

SciTech Connect

This Phase II report presents a description of the Enertech 15 kW prototype wind system hardware fabrication; results of component tests; and results of preliminary testing conducted at Norwich, VT and the RF Wind Energy Research Center. In addition, the assembly sequence is documented. During testing, the unit experienced several operational problems, but testing proved the design concept and demonstrated the system's ability to meet the contract design specifications for power output.

Zickefoose, C.R.

1982-12-01T23:59:59.000Z

64

Evaluation of Global Onshore Wind Energy Potential and Generation Costs  

Science Journals Connector (OSTI)

(2)Where Et is the wind technical potential (kWh/year), A is the area of each grid cell (km(2)), ?1 is the availability factor, ?2 is the array efficiency, ? is average installed power density (MW km2), and ((A?)/(1.5)) represents the number of turbines (1.5 MW GE turbine) in a given grid cell. ... If wind is to play a large role, lower quality wind resources would need to be used, and a bias against the highest speed winds can be less important. ... EEA. Europes Onshore and Offshore Wind Energy Potential. ...

Yuyu Zhou; Patrick Luckow; Steven J. Smith; Leon Clarke

2012-06-20T23:59:59.000Z

65

Phase 2 Report: Oahu Wind Integration and Transmission Study (OWITS); Hawaiian Islands Transmission Interconnection Project  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Phase 2 Report: Oahu Wind Phase 2 Report: Oahu Wind Integration and Transmission Study (OWITS) Hawaiian Islands Transmission Interconnection Project Dennis Woodford Electranix Corporation Winnipeg, Manitoba Canada Subcontract Report NREL/SR-5500-50414 February 2011 NREL is a national laboratory of the U.S. Department of Energy, Office of Energy Efficiency & Renewable Energy, operated by the Alliance for Sustainable Energy, LLC. National Renewable Energy Laboratory 1617 Cole Boulevard Golden, Colorado 80401 303-275-3000 * www.nrel.gov Contract No. DE-AC36-08GO28308 Phase 2 Report: Oahu Wind Integration and Transmission Study (OWITS) Hawaiian Islands Transmission Interconnection Project Dennis Woodford Electranix Corporation Winnipeg, Manitoba Canada

66

Ponnequin phase I and II (PSCo) Wind Farm | Open Energy Information  

Open Energy Info (EERE)

Ponnequin phase I and II (PSCo) Wind Farm Ponnequin phase I and II (PSCo) Wind Farm Jump to: navigation, search Name Ponnequin phase I and II (PSCo) Wind Farm Facility Ponnequin phase I and II (PSCo) Sector Wind energy Facility Type Commercial Scale Wind Facility Status In Service Owner Xcel Energy Developer Utility Engineering Energy Purchaser Xcel Energy Location Weld County CO Coordinates 40.998405°, -104.811466° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":40.998405,"lon":-104.811466,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

67

The Western Wind and Solar Integration Study Phase 2: Executive...  

NLE Websites -- All DOE Office Websites (Extended Search)

STUDY PHASE 2: Executive Summary Debra Lew and Greg Brinkman National Renewable Energy Laboratory Prepared under Task Nos. OE10.3020, SS12.2720, SM12.2010, and WE11.0810...

68

INTERAGENCY FIELD TEST & EVALUATION OF WIND TURBINE - RADAR INTERFEREN...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

the tests and 2) summaries of three field tests designed to measure the impact of wind turbines on current air surveillance radars and the effectiveness of private sector...

69

New Report Evaluates Impacts of DOE's Wind Powering America Initiative...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

address current and emerging barriers that could affect large-scale growth in wind energy capacity. Another recommendation was to continue utilizing the initiative's ability to...

70

Reinforced Wind Turbine Blades - An Environmental Life Cycle Evaluation  

Science Journals Connector (OSTI)

Methods for producing wind turbines and the foundations for offshore installation are not expected to change much before the year 2025. ... Benchmark LCA data from Ecoinvent for a 2 MW offshore horizontal axis wind turbine was selected with capacity factor of 30% and lifespan of 20 years. ...

Laura Merugula; Vikas Khanna; Bhavik R. Bakshi

2012-08-02T23:59:59.000Z

71

Reliability evaluation for electrical collector systems of wind farm using the section enumeration technique  

Science Journals Connector (OSTI)

Topology has a significant effect on the reliability performance of an electrical collector system (ECS) of wind farms. Novel indices for the reliability of wind farm ECS are presented based on topological features of wind farm ECS in this paper. The concept of the section for a wind farm ECS is defined. The probability table of multistate capacity (PTMC) for a wind turbine generator (WTG) and the Probability Table of the Number of WTG in Up-state (PTNU) for a section can be created. Based on the PTMC and PTNU PTMC of a wind farm can be established using the state enumeration algorithm and the matrix operations. Therefore the reliability evaluation model considering effects of wind speed and component failures can be built. The proposed model not only considers the multi-failures of ECS components including failures of cable feeder WTG and wind turbine transformer (WTT) but also states of switching devices in failure disconnection and switching processes. Four wind farm ECS topologies i.e. radial topology single-sided ring topology double-sided ring topology and star topology are implemented. Case studies on the reliability evaluation of wind farm ECS are used to verify the feasibility and validity of the proposed technique.

Kaigui Xie; Hejun Yang; Bo Hu; David Yu

2013-01-01T23:59:59.000Z

72

Berry phase and pseudospin winding number in bilayer graphene  

E-Print Network (OSTI)

Ever since the novel quantum Hall effect in bilayer graphene was discovered, and explained by a Berry phase of 2? [ K. S. Novoselov et al. Nat. Phys. 2 177 (2006)], it has been widely accepted that the low-energy electronic ...

Marzari, Nicola

73

Phase II: Performance Evaluation of Permeable Reactive Barriers and  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Phase II: Performance Evaluation of Permeable Reactive Barriers and Phase II: Performance Evaluation of Permeable Reactive Barriers and Potential for Rejuvenation by Chemical Flushing Phase II: Performance Evaluation of Permeable Reactive Barriers and Potential for Rejuvenation by Chemical Flushing Final Report Phase II: Performance Evaluation of Permeable Reactive Barriers and Potential for Rejuvenation by Chemical Flushing U. S. Environmental Protection Agency Region 8 Support January 2004 Phase II: Performance Evaluation of Permeable Reactive Barriers and Potential for Rejuvenation by Chemical Flushing More Documents & Publications Final Report Phase II: Performance Evaluation of Permeable Reactive Barriers and Potential for Rejuvenation by Chemical Flushing Rejuvenating Permeable Reactive Barriers by Chemical Flushing

74

Final Report Phase II: Performance Evaluation of Permeable Reactive  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Final Report Phase II: Performance Evaluation of Permeable Reactive Final Report Phase II: Performance Evaluation of Permeable Reactive Barriers and Potential for Rejuvenation by Chemical Flushing Final Report Phase II: Performance Evaluation of Permeable Reactive Barriers and Potential for Rejuvenation by Chemical Flushing Final Report Phase II: Performance Evaluation of Permeable Reactive Barriers and Potential for Rejuvenation by Chemical Flushing Final Report Phase II: Performance Evaluation of Permeable Reactive Barriers and Potential for Rejuvenation by Chemical Flushing More Documents & Publications Phase II: Performance Evaluation of Permeable Reactive Barriers and Potential for Rejuvenation by Chemical Flushing Rejuvenating Permeable Reactive Barriers by Chemical Flushing Final Report - Rejuvenating Permeable Reactive Barriers by Chemical

75

Final Report Phase II: Performance Evaluation of Permeable Reactive  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Final Report Phase II: Performance Evaluation of Permeable Reactive Final Report Phase II: Performance Evaluation of Permeable Reactive Barriers and Potential for Rejuvenation by Chemical Flushing Final Report Phase II: Performance Evaluation of Permeable Reactive Barriers and Potential for Rejuvenation by Chemical Flushing Final Report Phase II: Performance Evaluation of Permeable Reactive Barriers and Potential for Rejuvenation by Chemical Flushing Final Report Phase II: Performance Evaluation of Permeable Reactive Barriers and Potential for Rejuvenation by Chemical Flushing More Documents & Publications Phase II: Performance Evaluation of Permeable Reactive Barriers and Potential for Rejuvenation by Chemical Flushing Final Report - Rejuvenating Permeable Reactive Barriers by Chemical Flushing, U.S. Environmental Protection Agency Region 8 Support

76

Evaluation of wind turbine noise levels and impact studies  

Science Journals Connector (OSTI)

Measured A?weighted sound levels at 125?ft distance for individual wind turbines with 20? to 120?kW power ratings are typically in the range 6575 dB at moderate to high power output conditions (2030?mph wind speeds). Tonelike sounds in the 300? to 1000?Hz frequency range often are clearly audible. Cyclical fluctuations of 10 dB in low?frequency noise levels are propagated by some downwind?type turbines. The random aerodynamic rotor noisesounds like a roar the gear box noisesounds like a whine and the low?frequency noise fluctuations sound like thump?thump or whoosh?whoosh. All of these wind turbinenoises are propagated from existing wind farms to residential areas and are judged intrusive and annoying. Measurements and predictions of wind turbinenoise submitted with applications for wind farm development have often contained errors which understated the noise levels by 310 dB. These errors were due to noisemeasurements at minimal wind speeds and turbine power and faulty modeling procedures. Simple analytical expressions have been developed which quickly and accurately predict the noise levels for large turbine arrays.

Samuel R. Lane

1986-01-01T23:59:59.000Z

77

Evaluation of Equivalent Static Wind Loads on Buildings Xinzhong Chen1  

E-Print Network (OSTI)

effects. This load representation allows designers to follow a relatively simple static analysis procedureEvaluation of Equivalent Static Wind Loads on Buildings Xinzhong Chen1 and Ahsan Kareem2 1 Professor of Engineering, University of Notre Dame, Indiana, USA, kareem@nd.edu ABSTRACT Wind loads

Kareem, Ahsan

78

EVALUATION OF MODELS FOR THE VERTICAL EXTRAPOLATION OF WIND SPEED MEASUREMENTS AT OFFSHORE SITES  

E-Print Network (OSTI)

EVALUATION OF MODELS FOR THE VERTICAL EXTRAPOLATION OF WIND SPEED MEASUREMENTS AT OFFSHORE SITES important for offshore wind energy utilisation are discussed and tested: Four models for the surface tested with measurements from the offshore field measurement Rødsand by extrapolating the measured 10 m

Heinemann, Detlev

79

Wind Tunnel Evaluation of PAM II Pressure Ports  

Science Journals Connector (OSTI)

The Portable Automated Mesonet II (PAM II) is a network of automated remote weather stations developed by the National Center for Atmospheric Research (NCAR) for measuring wind speed and direction, atmospheric pressure, temperature, humidity, and ...

Fikri Adnan Akyz; Henry Liu; Tom Horst

1991-06-01T23:59:59.000Z

80

Temporal Changes in Wind as Objects for Evaluating Mesoscale Numerical Weather Prediction  

Science Journals Connector (OSTI)

The study describes a method of evaluating numerical weather prediction models by comparing the characteristics of temporal changes in simulated and observed 10-m (AGL) winds. The method is demonstrated on a 1-yr collection of 1-day simulations ...

Daran L. Rife; Christopher A. Davis; Jason C. Knievel

2009-10-01T23:59:59.000Z

Note: This page contains sample records for the topic "wind phase evaluate" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


81

The Western Wind and Solar Integration Study Phase 2 (Fact Sheet), NREL (National Renewable Energy Laboratory)  

NLE Websites -- All DOE Office Websites (Extended Search)

of Energy Efficiency of Energy Efficiency and Renewable Energy, operated by the Alliance for Sustainable Energy, LLC. The Western Wind and Solar Integration Study Phase 2 An examination of how wind and solar power affect operations, costs, and emissions from fossil-fueled generators The electric grid is a highly complex, interconnected machine. Changing one part of the grid can have consequences elsewhere. Adding variable renewable generation such as wind and solar power affects the operation of the other types of power plants, and adding high penetrations can induce cycling of fossil-fueled generators. Cycling leads to wear-and-tear costs and changes in emissions, but do those increases in costs and emissions from cycling negate the overall benefits of integrating renewables?

82

Integrating High Penetrations of Solar in the Western United States: Results of the Western Wind and Solar Integration Study Phase 2 (Poster)  

SciTech Connect

This poster presents a summary of the results of the Western Wind and Solar Integration Study Phase 2.

Bird, L.; Lew, D.

2013-10-01T23:59:59.000Z

83

Fast Solar Wind and Geomagnetic Variability during the Descendant Phase of the 11?yr Solar Cycle  

Science Journals Connector (OSTI)

Solar activity and its consequences for the interplanetary space are governing and perturbing the Earths magnetosphere. The response of the terrestrial magnetosphere displayed as geomagnetic disturbances is measured by several geomagnetic indices. This paper analyses the geomagnetic variability during the descendant phases of the last four solar cycles (Nos. 2023) under the influence of the high speed streams of the solar wind. The descendant phases of the 11?yr solar cycle are complex intervals of the irrespective cycles during which two magnetic dipoles with opposite polarities are present on the Sun. The variability and statistics of the stream intensity and geomagnetic index Ap during the descendant phases revealed strong activity. The correlation between the geomagnetic indices and the stream intensity during the analyzed intervals was examined. The energy transfer from solar wind into the terrestrial magnetosphere during the main phase of some geomagnetic storm depends of the solar wind energy and magnetic fields (terrestrial and heliospheric) configuration which allows or not reconnections of these fields. Analysis of some geomagnetic storms during the descendant branch of solar cycle 23 put into evidence the main role of the B z component of heliospheric magnetic field in this transfer.

G. Maris; O. Maris

2011-01-01T23:59:59.000Z

84

Adaptive neuro-fuzzy evaluation of wind farm power production as function of wind speed and direction  

Science Journals Connector (OSTI)

Wind velocity assumes a critical part for measuring the power created by the wind turbines. Nonetheless, power production from wind has a few weaknesses. One significant issue is that wind is a discontinuous ener...

Dalibor Petkovi?; Shahaboddin Shamshirband

2014-05-01T23:59:59.000Z

85

Evaluating the risk-reduction benefits of wind energy  

SciTech Connect

The question of uncertainty and risk in electric utility resource planning has received considerable attention in recent years. During the 1980s, many utilities suffered financial losses because of unexpectedly high plant construction costs and low growth in electricity demand. In addition, the introduction of competition to the electric industry is creating new risks for power companies. No longer will utilities be able to count on regulatory protections and a base of captive consumers to provide a stable market and adequate return on their investments. Alternative risk management strategies will have to be considered instead. One approach to managing risk is for a utility company to invest in diverse power sources such as wind power plants. Since wind plants consume no fuel, can be built in relatively small increments with short construction lead times, and generate no pollutants, it is often said that they offer significant protection from risks associated with conventional fossil-fuel power plants. So far there have been few efforts to quantify these benefits, however. The study compares the costs and risks of two competing resource options, a gas-fired combined cycle plant and a wind plant, both utility-owned, through decision analysis. The case study utility is Texas Utilities Electric, a very large investor-owned company serving an area with substantial, high-quality wind resources. The authors chose a specific moment in the future - the year 2003 - when the utility currently plans to build a large fossil-fueled power plant, and examined the implications for the utility`s expected revenues, costs, and profits if a wind plant were to be built instead.

Brower, M.C.; Bell, K.; Spinney, P. [and others

1997-05-01T23:59:59.000Z

86

Western Wind and Solar Integration Study Phase 3 -- Frequency Response and Transient Stability (Report and Executive Summary)  

SciTech Connect

The primary objectives of Phase 3 of the Western Wind and Solar Integration Study (WWSIS-3) were to examine the large-scale transient stability and frequency response of the Western Interconnection with high wind and solar penetration, and to identify means to mitigate any adverse performance impacts via transmission reinforcements, storage, advanced control capabilities, or other alternatives.

Miller, N. W.; Shao, M.; Pajic, S.; D'Aquila, R.

2014-12-01T23:59:59.000Z

87

Preliminary evaluation of wind energy potential: Cook Inlet area, Alaska  

SciTech Connect

This report summarizes work on a project performed under contract to the Alaska Power Administration (APA). The objective of this research was to make a preliminary assessment of the wind energy potential for interconnection with the Cook Inlet area electric power transmission and distribution systems, to identify the most likely candidate regions (25 to 100 square miles each) for energy potential, and to recommend a monitoring program sufficient to quantify the potential.

Hiester, T.R.

1980-06-01T23:59:59.000Z

88

Temporal Changes in Wind as Objects for Evaluating Mesoscale Numerical Weather Prediction  

E-Print Network (OSTI)

a method of evaluating numerical weather prediction models by comparing the characteristics of temporal for biases in features forecast by the model. 1. Introduction Verification of numerical weather predictionTemporal Changes in Wind as Objects for Evaluating Mesoscale Numerical Weather Prediction DARAN L

Knievel, Jason Clark

89

Evaluation of wind energy potential and electricity generation at five locations in Jordan  

Science Journals Connector (OSTI)

Abstract Evaluation of the wind power from the knowledge of the mean monthly wind speeds of a typical year, and for five different locations in Jordan is analyzed and assessed. In addition, an investigation into the feasibility of using five different wind turbines of different rated power ranging from 100kW to 3000kW at each location to be employed in wind farms is examined. The data of the wind speeds over five years are fitted to the Weibull distribution, which is most frequently used and most appropriate, describing frequency distribution for wind moving over Jordan. The annual mean values of the wind speed and the frequency distributions were found for the five locations studied; Ras-Moneef, Azraq south; Safawi, Queen Alia Airport and Aqaba Airport. The locations included the eastern desert regions where wide plain lands are economically feasible to be used for wind farms. It is apparent from the results of the analysis that the highly promising sites of having good wind energy potential are Aqaba and Ras-Moneef, whereas, the desert sites of Safawi and Azraq South have only moderate potential and Queen Alia Airport have a lower potential. The annual mean values of the wind speed and power density of the observed and theoretical distributions are 5.5ms?1 and 160Wm?2 for Ras Moneef, 4.0ms?1 and 175Wm?2 for Azraq South, 4.5ms?1 and 94Wm?2 for Safawi, 3.13ms?1 and 31Wm?2 for Queen Alia Airport and 6.0ms?1 and 215Wm?2 for Aqaba Airport, respectively.

Handri D. Ammari; Saad S. Al-Rwashdeh; Mohammad I. Al-Najideen

2014-01-01T23:59:59.000Z

90

An Evaluation of the Wind Erosion Module in DUSTRAN  

SciTech Connect

Pacific Northwest National Laboratory (PNNL) has developed a dust transport model (DUSTRAN), which calculates atmospheric dust concentrations that result from both natural and human activity. DUSTRAN is a comprehensive dispersion modeling system, consisting of a dust-emissions module, a diagnostic meteorological model, and dispersion models that are integrated seamlessly into GIS software. DUSTRAN functions as a console application and allows the user to interactively create a release scenario and run the underlying models. We have recently had the opportunity to compare dust concentrations calculated by DUSTRAN with observations of wind erosion made on the U.S. Department of Energys Hanford Site in southeastern Washington. In this paper we describe both DUSTRANs algorithm for predicting the source strength of windblown dust and the comparison of simulated dust concentrations with data. The comparisons use observations of PM10 concentrations for three separate dust events on the Hanford Site in 2001. The dust measurements were made as part of an effort to monitor site recovery following a large range fire that occurred on the Hanford Site in 2000. The comparisons have provided both encouragement as to the practical value of the wind erosion module in DUSTRAN and examples of occasions when the simulations and observations diverge. In general, the maximum dust concentrations from the simulations and the observations for each dust event agreed closely. Because of the lack of soil moisture information, the model was run in a dry mode. However, some discrepancies between the observations and the model suggest that accounting for soil moisture should be done where possible. For low dust concentrations, DUSTRAN tends to overestimate PM10 levels. This may be a weakness in the simple form of the dust flux parameterization. It could also be a reflection of deviations of the threshold friction velocity from our nominal value of 20 cm s-1. Overall, however, we have shown DUSTRAN to be an effective tool for simulating dust events due to wind erosion.

Shaw, William J.; Allwine, K Jerry; Fritz, Brad G.; Rutz, Frederick C.; Rishel, Jeremy P.; Chapman, Elaine G.

2008-03-01T23:59:59.000Z

91

Economic evaluation of demand response in power systems with high wind power penetration  

Science Journals Connector (OSTI)

The penetration of wind power generation is expected to increase in power systems dramatically. The unpredictable nature of the wind generation poses an obstacle to high penetration of wind energy in the electric power systems. Demand response (DR) may be considered as an efficient approach to cope with the energy unbalances caused by the wind power intermittency. Fair mechanism for pricing of the DR may increase the demand-side participation which consequently facilitates wind power integration in the power systems. This paper focuses on the economic evaluation of the DR according to its potential for mitigating the wind power forecast error in the power system operation. Demand increase similar to the demand curtailment is considered as a DR resource and evaluated in this paper. For this purpose first an insight is provided into the power system operation under the high wind power penetration with the aim of extracting the DR benefits. Based on the DR benefits a mathematical model is developed to find the maximum monetary incentive for the DR that the system operator is willing to pay to the DR providers. In the proposed model DR's potential in reducing the cost of supplying load as well as its capability in reducing the cost of system reserve start up and shut down of units load shedding and wind power spillage are considered. The results of the proposed evaluation method provide valuable information for both the system operator and demand response providers. The proposed method is implemented on an example and a realistic case study and discussions on results are presented.

2014-01-01T23:59:59.000Z

92

Phase resolved X-ray spectroscopy of HDE288766: Probing the wind of an extreme Of+/WNLha star  

E-Print Network (OSTI)

HDE228766 is a very massive binary system hosting a secondary component, which is probably in an intermediate evolutionary stage between an Of supergiant and an WN star. The wind of this star collides with the wind of its O8 II companion, leading to relatively strong X-ray emission. Measuring the orbital variations of the line-of-sight absorption toward the X-ray emission from the wind-wind interaction zone yields information on the wind densities of both stars. X-ray spectra have been collected at three key orbital phases to probe the winds of both stars. Optical photometry has been gathered to set constraints on the orbital inclination of the system. The X-ray spectra reveal prominent variations of the intervening column density toward the X-ray emission zone, which are in line with the expectations for a wind-wind collision. We use a toy model to set constraints on the stellar wind parameters by attempting to reproduce the observed variations of the relative fluxes and wind optical depths at 1 keV. The lac...

Rauw, G; Naze, Y; Eenens, P; Manfroid, J; Flores, C A

2014-01-01T23:59:59.000Z

93

Off-shore wind power potential evaluation and economy analysis of entire Japan using GIS technology  

Science Journals Connector (OSTI)

Off-shore wind energy has been drawing interest recently. This research is focusing on the potential analysis of off-shore wind energy surrounding entire Japan coast using GIS technology. Base on the economy and environment assessment, this research is evaluating the current situation and forecasting on future of wind energy technology in Japan. In order to reduce the green-house gas emission, renewable energy (such as wind energy, solar energy, fuel cell) will gradually substitute can be installed the primary energy resource (such as coal, oil, scale gas). Based on GIS technique, wind power turbines in the surrounding area of Japanese coast-line. In the study, 2,000 kW rated wind turbines are considered for further installation. As the result of this study, we have determined that 108,067 in 330 places number of off-shore with annual generation of 180.0 TWh are expected. This is equal to 20% of annual total generated power of Japan in 2010. Wind speed 6 m/s or more of the coastline, the average cost of electricity is about generation cost is within 10 to 17 Japanese Yen/kWh and construction cost is within 139,445 Japanese Yen/kW to 240,366 Japanese Yen/kW.

Asifujiang Abudureyimu; Yoshiki Hayashi; Zulati Litifu; Ken Nagasaka

2012-01-01T23:59:59.000Z

94

Multi-star multi-phase winding for a high power naval propulsion machine with low ripple torques  

E-Print Network (OSTI)

Permanent Magnet (SMPM) Machine designed for naval propulsion is proposed. The design objective of this high if the magnetic couplings between the stars is weak. The 4-star 3-phase winding proposed in this paper is designed star being magnetically shifted by an angle of 15 degrees. This 4-star 3-phase configuration allows

Boyer, Edmond

95

INTERAGENCY FIELD TEST & EVALUATION OF WIND TURBINE RADAR INTERFERENCE MITIGATION TECHNOLOGIES  

Energy.gov (U.S. Department of Energy (DOE))

These documents include a final report on the Interagency Field Test & Evaluation (IFT&E) program and summaries of three field tests designed to measure the impact of wind turbines on current air surveillance radars and the effectiveness of private sector technologies in mitigating that interference.

96

A Gravitational Search Algorithm (GSA) based Photo-Voltaic (PV) excitation control strategy for single phase operation of three phase wind-turbine coupled induction generator  

Science Journals Connector (OSTI)

Abstract Three phase induction generators are widely used for single phase operation in wind based micro-generation schemes to cater single phase loads due to various advantages. This paper presents an improved control methodology for self excited three phase induction generator operating in single phase mode. The excitation is controlled through an inverter with Photo-Voltaic (PV) panels providing power to the dc bus. The proposed technique enables the generator for building up voltage from low wind speeds compared to conventional three phase machines. A capacitor connected across load terminals reduces the reactive power supplied by the inverter connected across the other two phases. Gravitational search algorithm (GSA) is used to calculate the switching angles of the inverter under various load and wind speeds for minimum Total Harmonic Distortion (THD) of the generated voltage. The proposed induction generator is aimed to be conveniently used in remote and grid isolated areas as a portable source of electrical power driving single phase loads. Simulations and experiments performed on a 3-phase 1kW, 415V, 50Hz, 1440r/min induction machine validates the proposed concept.

Arunava Chatterjee; Krishna Roy; Debashis Chatterjee

2014-01-01T23:59:59.000Z

97

Evaluation of phase change materials for reconfigurable interconnects  

E-Print Network (OSTI)

The possible use of programmable integrated circuit interconnect vias using an indirectly heated phase change material is evaluated. Process development and materials investigations are examined. Devices capable of multiple ...

Khoo, Chee Ying

2010-01-01T23:59:59.000Z

98

Operation of Concentrating Solar Power Plants in the Western Wind and Solar Integration Phase 2 Study  

SciTech Connect

The Western Wind and Solar Integration Study (WWSIS) explores various aspects of the challenges and impacts of integrating large amounts of wind and solar energy into the electric power system of the West. The phase 2 study (WWSIS-2) is one of the first to include dispatchable concentrating solar power (CSP) with thermal energy storage (TES) in multiple scenarios of renewable penetration and mix. As a result, it provides unique insights into CSP plant operation, grid benefits, and how CSP operation and configuration may need to change under scenarios of increased renewable penetration. Examination of the WWSIS-2 results indicates that in all scenarios, CSP plants with TES provides firm system capacity, reducing the net demand and the need for conventional thermal capacity. The plants also reduced demand during periods of short-duration, high ramping requirements that often require use of lower efficiency peaking units. Changes in CSP operation are driven largely by the presence of other solar generation, particularly PV. Use of storage by the CSP plants increases in the higher solar scenarios, with operation of the plant often shifted to later in the day. CSP operation also becomes more variable, including more frequent starts. Finally, CSP output is often very low during the day in scenarios with significant PV, which helps decrease overall renewable curtailment (over-generation). However, the configuration studied is likely not optimal for High Solar Scenario implying further analysis of CSP plant configuration is needed to understand its role in enabling high renewable scenarios in the Western United States.

Denholm, P.; Brinkman, G.; Lew, D.; Hummon, M.

2014-05-01T23:59:59.000Z

99

The intensity of the main phase of geomagnetic storms in relation to the parameters of the solar wind  

Science Journals Connector (OSTI)

On the basis of investigating 10 storms (19651967) good correlation was found between the density of the solar wind energy (?2=1/2mNv2) and the intensity of the main phase of the geomagnetic storms, expressed in...

Petronela Ochabov; Reviewer J. Halenka

1976-01-01T23:59:59.000Z

100

Enertech 2-kW high-reliability wind system. Phase II. Fabrication and testing  

SciTech Connect

A high-reliability wind machine rated for 2 kW in a 9 m/s wind has been developed. Activities are summarized that are centered on the fabrication and testing of prototypes of the wind machine. The test results verified that the wind machine met the power output specification and that the variable-pitch rotor effectively controlled the rotor speed for wind speeds up to 50 mph. Three prototypes of the wind machine were shipped to the Rocky Flats test center in September through November of 1979. Work was also performed to reduce the start-up wind speed. The start-up wind speed to the Enertech facility has been reduced to 4.5 m/s.

Cordes, J A; Johnson, B A

1981-06-01T23:59:59.000Z

Note: This page contains sample records for the topic "wind phase evaluate" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


101

Evaluating capital and operating cost efficiency of offshore wind farms: A DEA approach  

Science Journals Connector (OSTI)

Abstract An actual growth rate greater than 30% indicates that offshore wind is a reasonable alternative to other energy sources. The industry today is faced with the challenge of becoming competitive and thus significantly reduce the cost of electricity from offshore wind. This situation implies that the evaluation of costs incurred during development, installation and operation is one of the most pressing issues in this industry at the moment. Unfortunately, actual cost analyses suffer from less resilient input data and the application of simple methodologies. Therefore, the objective of this study was to elevate the discussion, providing stakeholders with a sophisticated methodology and representative benchmark figures. The use of Data Envelopment Analysis (DEA) allowed for plants to be modelled as entities and costs to be related to the main specifics, such as distance to shore and water depth, ensuring the necessary comparability. Moreover, a particularly reliable database was established using cost data from annual reports. Offshore wind capacity of 3.6GW was benchmarked regarding capital and operating cost efficiency, best-practice cost frontiers were determined, and the effects of learning-by-doing and economies of scale were investigated, ensuring that this article is of significant interest for the offshore wind industry.

Nikolaus Ederer

2015-01-01T23:59:59.000Z

102

Evaluation of distributed building thermal energy storage in conjunction with wind and solar electric power generation  

Science Journals Connector (OSTI)

Abstract Energy storage is often seen as necessary for the electric utility systems with large amounts of solar or wind power generation to compensate for the inability to schedule these facilities to match power demand. This study looks at the potential to use building thermal energy storage as a load shifting technology rather than traditional electric energy storage. Analyses are conducted using hourly electric load, temperature, wind speed, and solar radiation data for a 5-state central U.S. region in conjunction with simple computer simulations and economic models to evaluate the economic benefit of distributed building thermal energy storage (TES). The value of the TES is investigated as wind and solar power generation penetration increases. In addition, building side and smart grid enabled utility side storage management strategies are explored and compared. For a relative point of comparison, batteries are simulated and compared to TES. It is found that cooling TES value remains approximately constant as wind penetration increases, but generally decreases with increasing solar penetration. It is also clearly shown that the storage management strategy is vitally important to the economic value of TES; utility side operating methods perform with at least 75% greater value as compared to building side management strategies. In addition, TES compares fairly well against batteries, obtaining nearly 90% of the battery value in the base case; this result is significant considering TES can only impact building thermal loads, whereas batteries can impact any electrical load. Surprisingly, the value of energy storage does not increase substantially with increased wind and solar penetration and in some cases it decreases. This result is true for both TES and batteries and suggests that the tie between load shifting energy storage and renewable electric power generation may not be nearly as strong as typically thought.

Byron W. Jones; Robert Powell

2015-01-01T23:59:59.000Z

103

Detecting and evaluating climate change effect on frequency analysis of wind speed  

Science Journals Connector (OSTI)

The purpose of this study is to detect an existing trend in wind speed and to evaluate the effect of climate change on frequency analysis of wind speed in Iran. Twenty-two stations with a length of records higher than 50 years have been selected. Five statistical methods that were used to detect the trends are Mann-Kendall, Spearman-Conley, cumulative deviation, autocorrelation coefficient and regression analysis. It is revealed that 11 stations have a positive or a negative trend while the rest has no trend. Climate change leads to a lack of homogeneity in a number of stations. Therefore, it is impossible to use frequency analysis for those stations. One appropriate approach is dividing the stations into two smaller parts, and for each part, frequency analysis could be taken if the part is homogenous.

Saeid Eslamian; Hadi Hassanzadeh; Mohammad Javad Khordadi

2009-01-01T23:59:59.000Z

104

Evaluation of WRF-Predicted Near-Hub-Height Winds and Ramp Events over a Pacific Northwest Site with Complex Terrain  

Science Journals Connector (OSTI)

One challenge with wind-power forecasts is the accurate prediction of rapid changes in wind speed (ramps). To evaluate the Weather Research and Forecasting (WRF) model's ability to predict such events, model simulations, conducted over an area of ...

Qing Yang; Larry K. Berg; Mikhail Pekour; Jerome D. Fast; Rob K. Newsom; Mark Stoelinga; Catherine Finley

2013-08-01T23:59:59.000Z

105

Module Handbook Specialisation Wind Energy  

E-Print Network (OSTI)

of Wind Turbines Module name: Wind potential, Aerodynamics & Loading of Wind Turbines Section Classes Evaluation of Wind Energy Potential Wind turbine Aerodynamics Static and dynamic Loading of Wind turbines Wind turbine Aerodynamics Static and dynamic Loading of Wind turbines Credit points 8 CP

Habel, Annegret

106

Evaluating state markets for residential wind systems: Results from an economic and policy analysis tool  

E-Print Network (OSTI)

permitting.pdf Bergey Windpower Co. WindCad Turbineof the 2004 Global Windpower Conference, March 2004, ChicagoWind Energy Association WindPower 2002 Conference, 3-5 June

Edwards, Jennifer L.; Wiser, Ryan; Bolinger, Mark; Forsyth, Trudy

2004-01-01T23:59:59.000Z

107

Design and performance evaluation of a unity power factor converter for wind energy conversion systems.  

E-Print Network (OSTI)

??Wind turbine driven Permanent Magnet Synchronous Generators (PMSG) find increasing applications due to their numerous advantages. Small scale stand-alone wind energy systems are receiving considerable (more)

Nirnaya Sarangan.

2012-01-01T23:59:59.000Z

108

SOWFA Super-Controller: A High Fidelity Tool for Evaluating Wind...  

NLE Websites -- All DOE Office Websites (Extended Search)

and Pat Moriarty Abstract This paper presents a new tool for testing wind plant controllers in the Simulator for Offshore Wind Farm Applications (SOWFA). SOWFA is a...

109

Community Wind Development Handbook | Open Energy Information  

Open Energy Info (EERE)

Community Wind Development Handbook Community Wind Development Handbook Jump to: navigation, search Tool Summary Name: Community Wind Development Handbook Agency/Company /Organization: Windustry Partner: AURI AG Innovations, The Minnesota Project, MC&PC, Clean Energy Resource Teams, Southwest Initiative Foundation Sector: Energy Focus Area: Wind, Economic Development Phase: Evaluate Options, Develop Goals, Prepare a Plan, Create Early Successes Resource Type: Guide/manual User Interface: Other Website: www.auri.org/research/Community%20Wind%20Handbook.pdf Cost: Free References: Community Wind Development Handbook[1] Provides developers practical knowledge of what to expect when developing commercial-scale community wind energy projects in the range of 2 to 50 Megawatts. Overview The Community Wind Development Handbook "is designed to give developers of

110

Wind Power Opportunities in St. Thomas, USVI: A Site-Specific Evaluation and Analysis  

NLE Websites -- All DOE Office Websites (Extended Search)

Power Opportunities in Power Opportunities in St. Thomas, USVI: A Site-Specific Evaluation and Analysis E. Lantz, A. Warren, J.O. Roberts, and V. Gevorgian Technical Report NREL/TP-7A20-55415 September 2012 NREL is a national laboratory of the U.S. Department of Energy, Office of Energy Efficiency & Renewable Energy, operated by the Alliance for Sustainable Energy, LLC. National Renewable Energy Laboratory 15013 Denver West Parkway Golden, Colorado 80401 303-275-3000 * www.nrel.gov Contract No. DE-AC36-08GO28308 Wind Power Opportunities in St. Thomas, USVI: A Site-Specific Evaluation and Analysis E. Lantz, A. Warren, J.O. Roberts, and V. Gevorgian Prepared under Task No. IDVI.1020 Technical Report NREL/TP-7A20-55415 September 2012 NOTICE This report was prepared as an account of work sponsored by an agency of the United States government.

111

Evaluation of the wind energy potential of two south west sites in Nigeria  

Science Journals Connector (OSTI)

Wind resource assessment is a crucial first step in gauging the potential of a site to produce energy from wind turbines. In this paper, the wind energy potential of Abeokuta (0703?N, 0319?E) and Ijebu-Ode (...

Olaleye M. Amoo

2012-09-01T23:59:59.000Z

112

ALTERNATE REDUCTANT COLD CAP EVALUATION FURNACE PHASE I TESTING  

SciTech Connect

Savannah River Remediation (SRR) conducted a Systems Engineering Evaluation (SEE) to determine the optimum alternate reductant flowsheet for the Defense Waste Processing Facility (DWPF). Specifically, two proposed flowsheets (nitricformicglycolic and nitricformicsugar) were evaluated based upon results from preliminary testing. Comparison of the two flowsheets among evaluation criteria indicated a preference towards the nitricformicglycolic flowsheet. Further evaluation of this flowsheet eliminated the formic acid1, and as a result, the nitricglycolic flowsheet was recommended for further testing. Based on the development of a roadmap for the nitricglycolic acid flowsheet, Waste Solidification Engineering (WS-E) issued a Technical Task Request (TTR) to address flammability issues that may impact the implementation of this flowsheet. Melter testing was requested in order to define the DWPF flammability envelope for the nitric glycolic acid flowsheet. The Savannah River National Laboratory (SRNL) Cold Cap Evaluation Furnace (CEF), a 1/12th scale DWPF melter, was selected by the SRR Alternate Reductant project team as the melter platform for this testing. The overall scope was divided into the following sub-tasks as discussed in the Task Technical and Quality Assurance Plan (TTQAP): ? Phase I - A nitricformic acid flowsheet melter test (unbubbled) to baseline the Cold Cap Evaluation Furnace (CEF) cold cap and vapor space data to the benchmark melter flammability models ? Phase II - A nitricglycolic acid flowsheet melter test (unbubbled and bubbled) to: o Define new cold cap reactions and global kinetic parameters for the melter flammability models o Quantify off-gas surging potential of the feed o Characterize off-gas condensate for complete organic and inorganic carbon species Prior to startup, a number of improvements and modifications were made to the CEF, including addition of cameras, vessel support temperature measurement, and a heating element near the pour tube. After charging the CEF with cullet from a previous Sludge Batch 6 (SB6) run, the melter was slurry-fed with SB6-Frit 418 melter feed at 36% waste loading and was operated continuously for 6 days. Process data was collected throughout testing and included melter operation variables and off-gas chemistry. In order to satisfy the objective of Phase I testing, vapor space steady testing in the range of ~300C-700C was conducted without argon bubbling to baseline the melter data to the existing DWPF melter flammability model. Adjustments to heater outputs, air flows and feed rate were necessary in order to achieve the vapor space temperatures in this range. The results of the Phase I testing demonstrated that the CEF is capable of operating under the low vapor space temperatures A melter pressure of -5 inches of water was not sustained throughout the run, but the melter did remain slightly negative even with the maximum air flows required for the lowest temperature conditions were used. The auxiliary pour tube heater improved the pouring behavior at all test conditions, including reduced feed rates required for the low vapor space testing. Argon bubbling can be used to promote mixing and increase feed rate at multiple conditions. Improvements due to bubbling have been determined previously; however, the addition of the cameras to the CEF allows for visual observation during a range of bubbling configurations. The off-gas analysis system proved to be robust and capable of operating for long durations. The total operational hours on the melter vessel are approximately 385 hours. Dimensional measurements taken prior to Phase I testing and support block temperatures recorded during Phase I testing are available if an extension of service life beyond 1250 hours is desired in the future.

Johnson, F.; Miller, D.; Zamecnik, J.; Lambert, D.

2014-04-22T23:59:59.000Z

113

Study of second phase in bioabsorbable magnesium alloys: Phase stability evaluation via Dmol{sup 3} calculation  

SciTech Connect

Thermodynamical stabilities of four conventional second phases as well as magnesium matrix in bioabsorbable magnesium alloys were investigated theoretically via computer calculation method. Model of individual phase and systems including phase and four water molecular (phase-4H{sub 2}O) were established to simulate the in vitro and in vivo environment. Local orbital density functional theory approach was applied to calculate the total energy for the individual phase and phase-4H{sub 2}O system. The results demonstrated that all the second phases possessed higher phase stability compared with magnesium matrix, but the phase stability was quite different for different types of second phases or second phase-4H{sub 2}O systems. Furthermore, a schematic process of inflammation reaction caused by magnesium alloy implants was proposed for the further evaluation on biocompatibility of different second phases.

Yang, Huazhe [Institute of Metal Research, Chinese Academy of Sciences, Shenyang 110016 (China); Department of Biophysics, China Medical University, Shenyang 110001 (China); Liu, Chen [Institute of Metal Research, Chinese Academy of Sciences, Shenyang 110016 (China); Department of Materials Science and Engineering, Nanjing University of Science and Technology, Nanjing 210094 (China); Wan, Peng; Tan, Lili; Yang, Ke, E-mail: kyang@imr.ac.cn [Institute of Metal Research, Chinese Academy of Sciences, Shenyang 110016 (China)

2013-11-01T23:59:59.000Z

114

Methods for developing seismic and extreme wind-hazard models for evaluating critical structures and equipment at US Department of Energy facilities and commercial plutonium facilities in the United States  

SciTech Connect

Lawrence Livermore National Laboratory (LLNL) is developing seismic and wind hazard models for the US Department of Energy (DOE). The work is part of a three-phase effort to establish building design criteria developed with a uniform methodology for seismic and wind hazards at the various DOE sites throughout the United States. In Phase 1, LLNL gathered information on the sites and their critical facilities, including nuclear reactors, fuel-reprocessing plants, high-level waste storage and treatment facilities, and special nuclear material facilities. Phase 2 - development of seismic and wind hazard models - is discussed in this paper, which summarizes the methodologies used by seismic and extreme-wind experts and gives sample hazard curves for the first sites to be modeled. These hazard models express the annual probability that the site will experience an earthquake (or windspeed) greater than some specified magnitude. In the final phase, the DOE will use the hazards models and LLNL-recommended uniform design criteria to evaluate critical facilities. The methodology presented in this paper also was used for a related LLNL study - involving the seismic assessment of six commercial plutonium fabrication plants licensed by the US Nuclear Regulatory Commission (NRC). Details and results of this reassessment are documented in reference.

Coats, D.W.; Murray, R.C.; Bernreuter, D.L.

1981-02-04T23:59:59.000Z

115

Tune Evaluation From Phased BPM Turn-By-Turn Data  

E-Print Network (OSTI)

In fast ramping synchrotrons like the Fermilab Booster the conventional methods of betatron tune evaluation from the turn-by-turn data may not work due to rapid changes of the tunes (sometimes in a course of a few dozens of turns) and a high level of noise. We propose a technique based on phasing of signals from a large number of BPMs which significantly increases the signal to noise ratio. Implementation of the method in the Fermilab Booster control system is described and some measurement results are presented.

Alexahin, Y; Marsh, W

2012-01-01T23:59:59.000Z

116

INVELOX: Description of a new concept in wind power and its performance evaluation  

Science Journals Connector (OSTI)

Abstract A new concept in wind power harnessing is described which significantly outperforms traditional wind turbines of the same diameter and aerodynamic characteristics under the same wind conditions and it delivers significantly higher output, at reduced cost. Its first innovative feature is the elimination of tower-mounted turbines. These large, mechanically complex turbines, and the enormous towers used to hoist them into the sky, are the hallmark of today's wind power industry. They are also expensive, unwieldy, inefficient, and hazardous to people and wildlife. The second innovative feature of INVELOX is that it captures wind flow through an omnidirectional intake and thereby there is no need for a passive or active yaw control. Third, it accelerates the flow within a shrouded Venturi section which is subsequently expanded and released into the ambient environment through a diffuser. In addition, INVELOX provides solutions to all the major problems that have so far undermined the wind industry, such as low turbine reliability, intermittency issues and adverse environmental and radar impact. Simulating the performance of this wind delivery system is quite challenging because of the complexity of the wind delivery system and its interaction with wind at the front end and with a turbine at the back end. The objectives of the present work are to model and understand the flow field inside the INVELOX where the actual wind turbine is located as well the external flow field which not only provides the intake flow but also has to match the exhaust flow of the system. The present computations involved cases with different incoming wind directions and changes in the intake geometry. The results show that it is possible to capture, accelerate and concentrate the wind. Increased wind velocities result in significant improvement in the power output. These results led to the design of a demonstration facility which has provided actual data which verified the significantly increased power expectations.

Daryoush Allaei; Yiannis Andreopoulos

2014-01-01T23:59:59.000Z

117

ALTERNATE REDUCTANT COLD CAP EVALUATION FURNACE PHASE II TESTING  

SciTech Connect

Savannah River Remediation (SRR) conducted a Systems Engineering Evaluation (SEE) to determine the optimum alternate reductant flowsheet for the Defense Waste Processing Facility (DWPF). Specifically, two proposed flowsheets (nitricformicglycolic and nitricformicsugar) were evaluated based upon results from preliminary testing. Comparison of the two flowsheets among evaluation criteria indicated a preference towards the nitricformicglycolic flowsheet. Further research and development of this flowsheet eliminated the formic acid, and as a result, the nitricglycolic flowsheet was recommended for further testing. Based on the development of a roadmap for the nitricglycolic acid flowsheet, Waste Solidification Engineering (WS-E) issued a Technical Task Request (TTR) to address flammability issues that may impact the implementation of this flowsheet. Melter testing was requested in order to define the DWPF flammability envelope for the nitric-glycolic acid flowsheet. The Savannah River National Laboratory (SRNL) Cold Cap Evaluation Furnace (CEF), a 1/12th scale DWPF melter, was selected by the SRR Alternate Reductant project team as the melter platform for this testing. The overall scope was divided into the following sub-tasks as discussed in the Task Technical and Quality Assurance Plan (TTQAP): ? Phase I - A nitricformic acid flowsheet melter test (unbubbled) to baseline the CEF cold cap and vapor space data to the benchmark melter flammability models; ? Phase II - A nitricglycolic acid flowsheet melter test (unbubbled and bubbled) to: o Define new cold cap reactions and global kinetic parameters in support of the melter flammability model development; o Quantify off-gas surging potential of the feed; o Characterize off-gas condensate for complete organic and inorganic carbon species. After charging the CEF with cullet from Phase I CEF testing, the melter was slurry-fed with glycolic flowsheet based SB6-Frit 418 melter feed at 36% waste loading and was operated continuously for 25 days. Process data was collected throughout testing and included melter operation parameters and off-gas chemistry. In order to generate off-gas data in support of the flammability model development for the nitric-glycolic flowsheet, vapor space steady state testing in the range of ~300-750C was conducted under the following conditions, (i) 100% (nominal and excess antifoam levels) and 125% stoichiometry feed and (ii) with and without argon bubbling. Adjustments to feed rate, heater outputs and purge air flow were necessary in order to achieve vapor space temperatures in this range. Surge testing was also completed under nominal conditions for four days with argon bubbling and one day without argon bubbling.

Johnson, F.; Stone, M.; Miller, D.

2014-09-03T23:59:59.000Z

118

Yakima River Basin Phase II Fish Screen Evaluations, 2003  

SciTech Connect

In 2003, the Pacific Northwest National Laboratory (PNNL) evaluated 23 Phase II fish screen sites in the Yakima River Basin as part of a multi-year project for the Bonneville Power Administration on the effectiveness of fish screening devices. PNNL collected data to determine whether velocities in front of the screens and in the bypasses met the Nation Oceanic and Atmospheric Administration Fisheries (NOAA Fisheries, formerly the National Marine Fisheries Service (NMFS)) criteria to promote safe and timely fish passage. In addition, PNNL conducted underwater video surveys to evaluate the environmental and operational conditions of the screen sites with respect to fish passage. Based on evaluations in 2003, PNNL concluded that: (1) In general, water velocity conditions at the screen sites met fish passage criteria set by the National Oceanic and Atmospheric Administration Fisheries. (2) Conditions at most facilities would be expected to provide for safe juvenile fish passage. (3) Conditions at some facilities indicate that operation and/or maintenance should be modified to improve juvenile fish passage conditions. (4) Automated cleaning brushes generally functioned properly; chains and other moving parts were typically well greased and operative. (5) Removal of sediment buildup and accumulated leafy and woody debris could be improved at some sites.

Vucelick, Jessica A.; McMichael, Geoffrey A.; Chamness, Mickie A.

2004-05-01T23:59:59.000Z

119

Evaluation of the DFIG wind turbine built-in model in PSS/E.  

E-Print Network (OSTI)

??Due to growth of environmental concern, more electricity must be generated from renewable energy sources. One of the most cost efficient alternatives is wind energy. (more)

Seyedi, Mohammed

2009-01-01T23:59:59.000Z

120

Economic Development Impacts of Community Wind Projects: A Review and Empirical Evaluation; Preprint  

SciTech Connect

'Community wind' refers to a class of wind energy ownership structures. The extent of local ownership may range from a small minority share to full ownership by persons in the immediate area surrounding the wind project site. Potential project owners include local farmers, businesses, Native American tribes, universities, cooperatives, or any other local entity seeking to invest in wind energy. The opposite of community wind is an 'absentee' project, in which ownership is completely removed from the state and community surrounding the facility. Thus, there is little or no ongoing direct financial benefit to state and local populations aside from salaries for local repair technicians, local property tax payments, and land lease payments. In recent years, the community wind sector has been inhibited by manufacturers' preference for larger turbine orders. This often puts smaller community wind developers and projects at a competitive disadvantage. However, state policies specifically supporting community wind may become a more influential market factor as turbines are now more readily available given manufacturer ramp-ups and the slow-down in the industry that has accompanied the recent economic and financial crises. This report examines existing literature to provide an overview of economic impacts resulting from community wind projects, compares results, and explains variability.

Lantz, E.; Tegen, S.

2009-04-01T23:59:59.000Z

Note: This page contains sample records for the topic "wind phase evaluate" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


121

Wind Power Opportunities in St. Thomas, USVI: A Site-Specific Evaluation and Analysis  

Office of Energy Efficiency and Renewable Energy (EERE)

Utilizes a development framework to assist the USVI in identifying and understanding concrete opportunities for wind power development in the territory.

122

Three Offshore Wind Advanced Technology Demonstration Projects Receive Phase 2 Funding  

Energy.gov (U.S. Department of Energy (DOE))

Dominion Virginia Power, Fishermens Energy of New Jersey, and Principle Power, Inc. will each receive up to $46.7 million over the next four years to advance their projects in the second phase of the funding opportunity. The second phase will include follow-on design, fabrication, and deployment in order to achieve commercial operation by 2017.

123

Sandia National Laboratories Develops Tool for Evaluating Wind Turbine-Radar Impacts  

Energy.gov (U.S. Department of Energy (DOE))

The TSPEAR toolkit supports energy developers that wish to design, analyze, track the progress of wind energy projects. Initially designed to support wind energy development by assessing the interaction between turbines and constraining factors, such as the NAS radar systems, TSPEAR is partially populated with information from existing databases and can integrate custom models and tools used throughout the development process.

124

Oahu Wind Integration and Transmission Study (OWITS): Hawaiian Islands  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Oahu Wind Integration and Transmission Study (OWITS): Hawaiian Oahu Wind Integration and Transmission Study (OWITS): Hawaiian Islands Transmission Interconnection Project Oahu Wind Integration and Transmission Study (OWITS): Hawaiian Islands Transmission Interconnection Project This report provides an independent review included an initial evaluation of the technical configuration and capital costs of establishing an undersea cable system and examining impacts to the existing electric transmission systems as a result of interconnecting the islands. 50411.pdf More Documents & Publications Phase 2 Report: Oahu Wind Integration and Transmission Study (OWITS); Hawaiian Islands Transmission Interconnection Project OAHU Wind Integration And Transmission Study: Summary Report, NREL (National Renewable Energy Laboratory)

125

West Village Student Housing Phase I: Apartment Monitoring and Evaluation  

SciTech Connect

Building America team Alliance for Residential Building Innovation (ARBI) worked with the University of California, Davis (UC Davis) and the developer partner West Village Community Partnership (WVCP) to evaluate performance on 192 student apartments completed in September, 2011 as part of Phase I of the multi-purpose West Village project. West Village, the largest planned zero net energy community in the United States. The campus neighborhood is designed to enable faculty, staff and students to affordably live near campus, take advantage of environmentally friendly transportation options, and participate fully in campus life. The aggressive energy efficiency measures that are incorporated in the design contribute to source energy reductions of 37% over the B10 Benchmark. The energy efficiency measures that are incorporated into these apartments include increased wall & attic insulation, high performance windows, high efficiency heat pumps for heating and cooling, central heat pump water heaters (HPWHs), 100% high efficacy lighting, and ENERGY STAR major appliances. Results discuss how measured energy use compares to modeling estimates over a 10 month monitoring period and includes a cost effective evaluation.

German, A.; Bell, C.; Dakin, B.; Hoeschele, M.

2014-06-01T23:59:59.000Z

126

The CLIMIX model: A tool to create and evaluate spatially-resolved scenarios of photovoltaic and wind power development  

Science Journals Connector (OSTI)

Abstract Renewable energies arise as part of both economic development plans and mitigation strategies aimed at abating climate change. Contrariwise, most renewable energies are potentially vulnerable to climate change, which could affect in particular solar and wind power. Proper evaluations of this two-way climaterenewable energy relationship require detailed information of the geographical location of the renewable energy fleets. However, this information is usually provided as total amounts installed per administrative region, especially with respect to future planned installations. To help overcome this limiting issue, the objective of this contribution was to develop the so-called CLIMIX model: a tool that performs a realistic spatial allocation of given amounts of both photovoltaic (PV) and wind power installed capacities and evaluates the energy generated under varying climate conditions. This is done over a regular grid so that the created scenarios can be directly used in conjunction with outputs of climate models. First, we used the 0.44 resolution grid defined for the EURO-CORDEX project and applied the CLIMIX model to spatially allocate total amounts of both unreported 2012 and future 2020 PV and wind power installations in Europe at the country level. Second, we performed a validation exercise using the various options for estimating PV and wind power production under the created scenarios that are included in the model. The results revealed an acceptable agreement between the estimated and the recorded power production values in every European country. Lastly, we estimated increases in power production derived from the future deployment of new renewable units, often obtaining non-direct relationships. This latter further emphasizes the need of accurate spatially-resolved PV and wind power scenarios in order to perform reliable estimations of power production.

S. Jerez; F. Thais; I. Tobin; M. Wild; A. Colette; P. Yiou; R. Vautard

2015-01-01T23:59:59.000Z

127

Simulation of Wind-Vector Estimation Design Evaluation of Microwave Scatterometer -  

Science Journals Connector (OSTI)

One of several representative features of the microwave scatterometer(SCAT), which has been being developed by NASDA since 1979, is in its higher capability of wind alias removal by providing three differently mo...

Masanobu Shimada; Masao Sasanuma

1985-01-01T23:59:59.000Z

128

Surface Wind Regionalization over Complex Terrain: Evaluation and Analysis of a High-Resolution WRF Simulation  

Science Journals Connector (OSTI)

This study analyzes the daily-mean surface wind variability over an area characterized by complex topography through comparing observations and a 2-km-spatial-resolution simulation performed with the Weather Research and Forecasting (WRF) model ...

Pedro A. Jimnez; J. Fidel Gonzlez-Rouco; Elena Garca-Bustamante; Jorge Navarro; Juan P. Montvez; Jordi Vil-Guerau de Arellano; Jimy Dudhia; Antonio Muoz-Roldan

2010-02-01T23:59:59.000Z

129

Reliability Evaluation of Offshore Wind Energy Networks and the Dutch Power System:.  

E-Print Network (OSTI)

??In the future, a large-scale expansion of offshore wind energy is expected in the Netherlands. For this large-scale expansion, a well-designed offshore network is needed. (more)

Tuinema, B.W.

2009-01-01T23:59:59.000Z

130

Accelerating Offshore Wind Development | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Accelerating Offshore Wind Development Accelerating Offshore Wind Development Accelerating Offshore Wind Development Click on a project for more information. The Energy Department has selected seven projects that will accelerate the commercialization of innovative offshore wind technologies in the United States. Each project will receive up to $4 million from the Energy Department to complete the engineering, site evaluation, and planning phase of their project. Upon completion of this phase, the Energy Department will select the up to three of these projects to advance the follow-on design, fabrication, and deployment phases to achieve commercial operation by 2017. Each of the these projects will be eligible for up to $47 million in additional funding over four years, subject to Congressional appropriations. This map also includes 42

131

Reduced vibration motor winding arrangement  

DOE Patents (OSTI)

An individual phase winding arrangement having a sixty electrical degree phase belt width for use with a three phase motor armature includes a delta connected phase winding portion and a wye connected phase winding portion. Both the delta and wye connected phase winding portions have a thirty electrical degree phase belt width. The delta and wye connected phase winding portions are each formed from a preselected number of individual coils each formed, in turn, from an unequal number of electrical conductor turns in the approximate ratio of {radical}3. The individual coils of the delta and wye connected phase winding portions may either be connected in series or parallel. This arrangement provides an armature winding for a three phase motor which retains the benefits of the widely known and utilized thirty degree phase belt concept, including improved mmf waveform and fundamental distribution factor, with consequent reduced vibrations and improved efficiency. 4 figs.

Slavik, C.J.; Rhudy, R.G.; Bushman, R.E.

1997-11-11T23:59:59.000Z

132

Reduced vibration motor winding arrangement  

DOE Patents (OSTI)

An individual phase winding arrangement having a sixty electrical degree phase belt width for use with a three phase motor armature includes a delta connected phase winding portion and a wye connected phase winding portion. Both the delta and wye connected phase winding portions have a thirty electrical degree phase belt width. The delta and wye connected phase winding portions are each formed from a preselected number of individual coils each formed, in turn, from an unequal number of electrical conductor turns in the approximate ratio of .sqroot.3. The individual coils of the delta and wye connected phase winding portions may either be connected in series or parallel. This arrangement provides an armature winding for a three phase motor which retains the benefits of the widely known and utilized thirty degree phase belt concept, including improved mmf waveform and fundamental distribution factor, with consequent reduced vibrations and improved efficiency.

Slavik, Charles J. (Rexford, NY); Rhudy, Ralph G. (Scotia, NY); Bushman, Ralph E. (Lathem, NY)

1997-01-01T23:59:59.000Z

133

Phase 2 Report: Oahu Wind Integration and Transmission Study (OWITS); Hawaiian Islands Transmission Interconnection Project  

SciTech Connect

This report provides an independent review including an initial evaluation of the technical configuration and capital costs of establishing an undersea cable system and examining impacts to the existing electric transmission systems as a result of interconnecting the islands

Woodford, D.

2011-02-01T23:59:59.000Z

134

Techno-economic evaluation of hybrid energy storage technologies for a solarwind generation system  

Science Journals Connector (OSTI)

Huazhong University of Science and Technology is planning to establish a hybrid solarwind generation dynamic simulation laboratory. Energy storage technologies will be vital to this system for load leveling, power quality control and stable output. In this paper, the technical feasibility of energy storage technologies for renewable intermittent sources like wind and solar generation is analyzed. Furthermore, the different combination modes of energy storage technologies are proposed. The involved energy storage technologies include superconducting magnetic energy storage systems (SMESs), flywheels (FWs), electrochemical super-capacitors (SCs) and redox flow batteries (RFBs). Based on that, the economic analysis of hybrid energy storage technologies is conducted.

L. Ren; Y. Tang; J. Shi; J. Dou; S. Zhou; T. Jin

2013-01-01T23:59:59.000Z

135

Wind Rose Bias Correction  

Science Journals Connector (OSTI)

Wind rose summaries, which provide a basis for understanding and evaluating the climatological behavior of local wind, have a directional bias if a conventional method is used in their generation. Three techniques used to remove this bias are ...

Scott Applequist

2012-07-01T23:59:59.000Z

136

Evaluation of PM10 and Total Suspended Particulate Sampler Performance Through Wind Tunnel Testing  

E-Print Network (OSTI)

.................................................... 86 APPENDIX F SHARP-EDGE ORIFICE METER CALIBRATION PROCEDURE ................................................................................ 89 APPENDIX G TEXAS A&M WIND TUNNEL OPERATION PROCEDURE ... 92 APPENDIX H MALVER MASTERSIZER 2000... Velocity Uniformity ?10% for 2, 8 and 24 km/h Measurement 1) Minimum of 12 test points 2) Monitoring techniques: precision? 2% ; accuracy ? 5% Aerosol Concentration Uniformity ?10% of the mean Measurement ? 5 evenly spaced isokinetic samplers...

Thelen, Mary Katherine

2011-10-21T23:59:59.000Z

137

Evaluation of active flow control applied to wind turbine blade section  

Science Journals Connector (OSTI)

A feasibility study for implementing active flow control (AFC) methods to improve the performance of wind turbines was performed. The experimental effort investigated the impact of zero-mass-flux (ZMF) piezofluidic actuators attempting to controlboundary layer separation from thick airfoils that are suitable for wind turbine rotor blades. It was demonstrated that the ZMF actuators can replace passive vortexgenerators that are commonly used for boundary layer separation delay without the inherent drag penalty that the passive devices impose. It has been shown that ZMF fluidic actuators are suitable for flow control in wind turbine application due to the fact that they are adjustable for wider Reynolds number range while vortexgenerators are tuned to perform well in one design point. It was demonstrated that AFC can effectively double the maximum lift of this airfoil at low Reynolds numbers. A possible application is a significant reduction of the turbine start-up velocity. It was also found that even for a contaminated blade AFC is capable to delay the stall and decrease the drag using low energy expenditure therefore restoring and even surpassing the clean airfoil performance. The effectiveness of the AFC method was examined using a newly defined aerodynamic figure of merit. Various scaling options for collapsing the effect of the excitation magnitude on the lift alternation due to the activation of zero-mass-flux periodic excitation for boundary layer separation control are proposed and examined using experimental data.

O. Stalnov; A. Kribus; A. Seifert

2010-01-01T23:59:59.000Z

138

Evaluation of 241-AZ tank farm supporting phase 1 privatization waste feed delivery  

SciTech Connect

This evaluation is one in a series of evaluations determining the process needs and assessing the adequacy of existing and planned equipment in meeting those needs at various double-shell tank farms in support of Phase 1 privatization. A number of tank-to-tank transfers and waste preparation activities are needed to process and feed waste to the private contractor in support of Phase 1 privatization. The scope of this evaluation is limited to process needs associated with 241-AZ tank farm during the Phase 1 privatization.

CARLSON, A.B.

1998-11-19T23:59:59.000Z

139

Wind Turbine Competition Introduction  

E-Print Network (OSTI)

Wind Turbine Competition Introduction: The Society of Hispanic Professional Engineers, SHPE at UTK, wishes to invite you to participate in our first `Wind Turbine' competition as part of Engineer's Week). You will be evaluated by how much power your wind turbine generates at the medium setting of our fan

Wang, Xiaorui "Ray"

140

MMCR Spectra-based Hydrometeor Phase Classifier: Evaluation & New Insights  

NLE Websites -- All DOE Office Websites (Extended Search)

MMCR Spectra-based Hydrometeor Phase Classifier: Evaluation & New Insights MMCR Spectra-based Hydrometeor Phase Classifier: Evaluation & New Insights Edward Luke 1 , Pavlos Kollias 1 , Matthew Shupe 2 1. Brookhaven National Laboratory 2. CIRES/NOAA/ETL Predicting HSRL depolarization with MMCR classifier Actual Depolarization Predicted Depolarization How accurately can combined HSRL, MMCR, MWR, and radiosonde generate the "golden" phase retrievals needed to train an MMCR-only classifier? For further discussion see Shupe, 2007. How well can the MMCR-only classifier predict the phase of "golden" retrievals it has not been trained on? We focus here on this second question. KEY EVALUATION QUESTIONS Classifier Sensitivity to Certain Input Parameters Probability Distributions of Certain Input Parameters Probability of Correct Phase Classification

Note: This page contains sample records for the topic "wind phase evaluate" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


141

Offshore Code Comparison Collaboration within IEA Wind Annex XXIII: Phase III Results Regarding Tripod Support Structure Modeling  

SciTech Connect

Offshore wind turbines are designed and analyzed using comprehensive simulation codes. This paper describes the findings of code-to-code verification activities of the IEA Offshore Code Comparison Collaboration.

Nichols, J.; Camp, T.; Jonkman, J.; Butterfield, S.; Larsen, T.; Hansen, A.; Azcona, J.; Martinez, A.; Munduate, X.; Vorpahl, F.; Kleinhansl, S.; Kohlmeier, M.; Kossel, T.; Boker, C.; Kaufer, D.

2009-01-01T23:59:59.000Z

142

Planning For Wind Energy: Evaluating Municipal Wind Energy Land Use Planning Frameworks in Southwestern Ontario with a Focus on Developing Wind Energy Planning Policies for the City of Stratford.  

E-Print Network (OSTI)

??Wind energy provides an environmentally friendly and renewable source of electricity, that can help meet Canada's Kyoto commitments, help safeguard against future blackouts, reduce air (more)

Longston, Kristopher, J.

2007-01-01T23:59:59.000Z

143

Community Renewable Energy Deployment: Haxtun Wind Project | Open Energy  

Open Energy Info (EERE)

Haxtun Wind Project Haxtun Wind Project Jump to: navigation, search Name Community Renewable Energy Deployment: Haxtun Wind Project Agency/Company /Organization US Department of Energy Focus Area Economic Development, Renewable Energy, Wind Phase Evaluate Options, Get Feedback, Develop Finance and Implement Projects Resource Type Case studies/examples Availability Publicly Available--Free Publication Date 2/7/2011 Website http://www1.eere.energy.gov/co Locality Phillips County, Colorado References Community Renewable Energy Deployment: Haxtun Wind Project[1] Contents 1 Overview 2 Highlights 3 Environmental Aspects 4 Related Tools 5 References Overview This short case study describes Phillips County's Haxtun Wind Project efforts through the Department of Energy's Community Renewable Energy

144

Development of a 2-kilowatt high-reliability wind machine. Phase I. Design and analysis. Volume I. Executive summary  

SciTech Connect

A high reliability wind machine rated for 2 kW at 9 m/s has been designed to be cost-effective for remote site use. To meet or exceed environmental conditions as specified in Contract PF64410F, the resulting design defines a rugged, relatively simple wind machine. Rigorous fatigue analysis for structural components and development of redundant systems for electrical components led to an expected mean time between failures of 12.35 years. Approximately one year into the research and development program, a completed design meeting contract stipulations is being submitted to the contract buyer. The design is for a horizontal axis, down-wind machine with two wooden blades spanning 5 meters diameter. Positive rotor speed control is accomplished through a centrifugally governed variable pitch, stalling rotor. Design merits have been confirmed through dynamic truck testing.

Drake, W.; Clews, H.; Cordes, J.; Johnson, B.; Murphy, P.

1980-01-01T23:59:59.000Z

145

Development of a 2-kilowatt high-reliability wind machine. Phase I. Design and analysis. Volume II. Technical report  

SciTech Connect

A high reliability wind machine rated for 2 kW at 9 m/s has been designed to be cost-effective for remote site use. To meet or exceed environmental conditions as specified in Contract PF64410F, the resulting design defines a rugged, relatively simple wind machine. Rigorous fatigue analysis for structural components and development of redundant systems for electrical components led to an expected mean time between failures of 12.35 years. Approximately one year into the research and development program a completed design meeting contract stipulations is being submitted to the contract buyer. The design is for a horizontal axis, down-wind machine with two wooden blades spanning 5 meters diameter. Positive rotor speed control is accomplished through a centrifugally governed variable pitch stalling rotor. Design merits have been confirmed through dynamic truck testing.

Drake, W.; Clews, H.; Cordes, J.; Johnson, B.; Murphy, P.

1980-01-01T23:59:59.000Z

146

Enertech 15-kW wind-system development: Phase I. Design and analysis. Volume I. Executive summary  

SciTech Connect

A utility interfaced wind machine rated for 15 kW at 9 m/s (20.1 mph) has been designed to be cost effective in 5.4 m/s (12 mph) average wind sites. Approximately 18 months into the research and development program a completed design meeting contract specifications was submitted to the buyer. The design is for a horizontal axis, down wind machine which features three fixed pitch wood-epoxy blades and free yaw. Rotor diameter is 44 feet (13.4 meters). Unit shutdown is provided by an electrohydraulic brake. Blade tip brakes provide back-up rotor overspeed protection. Design merits have been verified through dynamic truck testing of a prototype unit.

Not Available

1981-09-01T23:59:59.000Z

147

Enertech 15-kW wind-system development. Phase I. Design and Analysis. Volume II. Technical report  

SciTech Connect

A utility interfaced wind machine rated for 15 kW at 9 m/s (20.1 mph) has been designed to be cost effective in 5.4 m/s (12 mph) average wind sites. Approximately 18 months into the research and development program a completed design meeting contract specifications was submitted to the buyer. The design is for a horizontal axis, down wind machine which features three fixed pitch wood-epoxy blades and free yaw. Rotor diameter is 44 feet (13.4 meters). Unit shutdown is provided by an electrohydraulic brake. Blade tip brakes provide back-up rotor overspeed protection. Design merits have been verified through dynamic truck testing of a prototype unit.

Dodge, D.M. (ed.)

1981-09-01T23:59:59.000Z

148

NREL: Wind Research - Gaia-Wind's 11 Kilowatt Wind Turbine Testing and  

NLE Websites -- All DOE Office Websites (Extended Search)

Gaia-Wind's 11 Kilowatt Wind Turbine Testing and Results Gaia-Wind's 11 Kilowatt Wind Turbine Testing and Results A video of Gaia-Wind's 11-kW wind turbine. Text Version As part of the National Renewable Energy Laboratory and U.S. Department of Energy (NREL/DOE) Independent Testing project, NREL tested Gaia-Wind's 11-kilowatt (kW) small wind turbine at the National Wind Technology Center (NWTC). Gaia-Wind's turbine is a three-phase induction generator that operates at 480 volts. The turbine's downwind rotor has a 13-meter diameter, and its tower is 18 meters tall. The two-bladed, oversized rotor is designed for low to moderate wind speeds. Testing Summary The summary of the tests is below with the final reports. Cumulative Energy Production 6/11/2008: 210; 6/13/2008: 528; 6/16/2008: 716; 6/18/2008: 731; 6/19/2008:

149

Wind derivatives: hedging wind risk:.  

E-Print Network (OSTI)

??Wind derivatives are financial contracts that can be used to hedge or mitigate wind risk. In this thesis, the focus was on pricing these wind (more)

Hoyer, S.A.

2013-01-01T23:59:59.000Z

150

NREL: Wind Research - WindPACT  

NLE Websites -- All DOE Office Websites (Extended Search)

WindPACT WindPACT The Wind Partnerships for Advanced Component Technology (WindPACT) studies were conducted to assist industry by testing innovative components, such as advanced blades and drivetrains, to lower the cost of energy. Specific goals included: Foster technological advancements to reduce the cost of wind energy Determine probable size ranges of advanced utility-scale turbines over the next decade for U.S. application Evaluate advanced concepts that are necessary to achieve objectives of cost and size for future turbines Identify and solve technological hurdles that may block industry from taking advantage of promising technology Design, fabricate, and test selected advanced components to prove their viability Support wind industry through transfer of technology from

151

Wind Resource Assessment in Europe Using Emergy  

E-Print Network (OSTI)

umd-5707.pdf Wind power, 2013. http://www.thewindpower.net/sustainability evaluation of a wind power generation system,sustainability of wind power: An emergy analysis of Chinese

Paudel, Subodh; Santarelli, Massimo; Martin, Viktoria; Lacarriere, Bruno; Le Corre, Olivier

2014-01-01T23:59:59.000Z

152

Evaluation of a slotted orifice plate flow meter using horizontal two phase flow  

E-Print Network (OSTI)

of MASTER OF SCIENCE December 2000 Major Subject: Mechanical Engineering EVALUATION OF A SLOTTED ORIFICE PLATE FLOW METER USING HORIZONTAL TWO PHASE FLOW A Thesis by ANITA ELENA FLORES Submitted to Texas A&M University in partial fulfillment...: Mechanical Engineering ABSTRACT Fvaluation of a Slotted Orifice Plate Flow Meter Using Horizontal Two Phase Flow. (December 2000) Anita Elena Flores, B. S. , Texas A&M I Jniversitv Chair of Advisory Committee: Dr. Herald L. Morrison In the past several...

Flores, Anita Elena

2012-06-07T23:59:59.000Z

153

An Evaluation of the Cascaded H-Bridge Multilevel Inverter Topology For Direct-Drive Synchronous Wind Farm Applications.  

E-Print Network (OSTI)

?? A key driver in the recent success of wind has been engineering advances that have lead to improved economics. Many of these advances have (more)

Callison, Gerald Robert

2006-01-01T23:59:59.000Z

154

Computational Strategies for Evaluating Barrier Heights for Gas-Phase Reactions of Lithium Enolates  

E-Print Network (OSTI)

of an enolate to an aldehyde, a proton transfer from an alcohol to a lithium enolate, and an SN2 reactionComputational Strategies for Evaluating Barrier Heights for Gas-Phase Reactions of Lithium Enolates reactions by using several different ab initio and density functional theory (DFT) methods to determine

Ramachandran, Bala (Ramu)

155

Development and evaluation of a thermodynamic dataset for phases of interest in CO2 mineral sequestration in basaltic rocks  

E-Print Network (OSTI)

evaluation of a thermodynamic dataset for phases of interestKeywords: Thermodynamic dataset CO2water basaltABSTRACT A thermodynamic dataset describing 36 mineral

Aradottir, E.S.P.

2013-01-01T23:59:59.000Z

156

Space-time forecasting and evaluation of wind speed with statistical tests for comparing accuracy of spatial predictions  

E-Print Network (OSTI)

). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36 11 Comparing the predictive distributions for the models when the TDD model produces the best forecast (top panel) and when the BST model produces the best forecast (bottom panel). The small vertical line on the x-axis of each plot represents... of wind to benefit humans is not a new concept. Historically, wind- mills have been used to pump water from wells or to grind grain for centuries. But fast- forwarding into the 21st century, ?windmills? are being used to generate electricity. Wind turbines...

Hering, Amanda S.

2010-10-12T23:59:59.000Z

157

The wind/hydrogen demonstration system at Utsira in Norway: Evaluation of system performance using operational data and updated hydrogen energy system modeling tools  

Science Journals Connector (OSTI)

An autonomous wind/hydrogen energy demonstration system located at the island of Utsira in Norway was officially launched by Norsk Hydro (now StatoilHydro) and Enercon in July 2004. The main components in the system installed are a wind turbine (600kW), water electrolyzer (10Nm3/h), hydrogen gas storage (2400Nm3, 200bar), hydrogen engine (55kW), and a PEM fuel cell (10kW). The system gives 23 days of full energy autonomy for 10 households on the island, and is the first of its kind in the world. A significant amount of operational experience and data has been collected over the past 4 years. The main objective with this study was to evaluate the operation of the Utsira plant using a set of updated hydrogen energy system modeling tools (HYDROGEMS). Operational data (10-min data) was used to calibrate the model parameters and fine-tune the set-up of a system simulation. The hourly operation of the plant was simulated for a representative month (March 2007), using only measured wind speed (m/s) and average power demand (kW) as the input variables, and the results compared well to measured data. The operation for a specific year (2005) was also simulated, and the performance of several alternative system designs was evaluated. A thorough discussion on issues related to the design and operation of wind/hydrogen energy systems is also provided, including specific recommendations for improvements to the Utsira plant. This paper shows how important it is to improve the hydrogen system efficiency in order to achieve a fully (100%) autonomous wind/hydrogen power system.

ystein Ulleberg; Torgeir Nakken; Arnaud Et

2010-01-01T23:59:59.000Z

158

WIND ENERGY Wind Energ. (2014)  

E-Print Network (OSTI)

WIND ENERGY Wind Energ. (2014) Published online in Wiley Online Library (wileyonlinelibrary Correspondence M. Wächter, ForWind-Center for Wind Energy Research, Institute of Physics, Carl Von Ossietzky on the operation of wind energy converters (WECs) imposing different risks especially in terms of highly dynamic

Peinke, Joachim

159

Condon Wind Project Draft Environmental Impact Statement  

SciTech Connect

BPA needs to acquire resources to meet its customers' load growth. In meeting that need for power, BPA will consider the following purposes: protecting BPA and its customers against risk by diversifying its resource portfolio; assuring consistency with its responsibilities under the Pacific Northwest Electric Power Planning and Conservation Act to encourage the development of renewable resources; meeting customer demand for renewable resources; assuring consistency with its resource acquisition strategy; and meeting the objectives of its Power Business Line's Strategic Plan. The Draft Environmental Impact Statement (DEIS) evaluates the environmental impacts of the Proposed Action (to execute one or more power purchase and transmission services agreements to acquire and transmit up to the full electric output of the proposed Condon Wind Project) and the No Action Alternative. BPA's preferred alternative is the Proposed Action. BPA has also identified the Proposed Action as the environmentally-preferred alternative. The proposed wind project is located on private agricultural land in Gilliam County, Oregon. The 38-acre project site is located within a 4,200-acre study area located on both sides of Oregon Highway 206, approximately 5 miles northwest of the town of Condon. The project would use modern, efficient 600-kilowatt (kW) wind turbines to convert energy in the winds to electricity that would be transmitted over the existing BPA transmission system. The project would consist of one or two phases: the first phase would use 41 wind turbines to yield a capacity of approximately 24.6 megawatts (MW). A second phase (if built) would use 42 wind turbines to yield a capacity of approximately 25.2 MW. For purposes of this DEIS, the size of the project is assumed to be 49.8 MW, built in two phases. Major components of the wind project include wind turbines and foundations, small pad-mounted transformers, an operation and maintenance building, power collection and communication cables, project access roads, meteorological towers on foundations, and a substation. During construction there would also be temporary equipment storage and construction staging areas. The first phase is proposed for construction in late 2001; the second phase could be constructed during spring/summer 2002 or later.

N /A

2001-06-01T23:59:59.000Z

160

wind energy  

National Nuclear Security Administration (NNSA)

5%2A en Pantex to Become Wind Energy Research Center http:nnsa.energy.govfieldofficesnponpopressreleasespantex-become-wind-energy-research-center

Note: This page contains sample records for the topic "wind phase evaluate" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


161

Evaluation of WRF predicted near hub-height winds and ramp events over a Pacific Northwest site with complex terrain  

SciTech Connect

The WRF model version 3.3 is used to simulate near hub-height winds and power ramps utilizing three commonly used planetary boundary-layer (PBL) schemes: Mellor-Yamada-Janji? (MYJ), University of Washington (UW), and Yonsei University (YSU). The predicted winds have small mean biases compared with observations. Power ramps and step changes (changes within an hour) consistently show that the UW scheme performed better in predicting up ramps under stable conditions with higher prediction accuracy and capture rates. Both YSU and UW scheme show good performance predicting up- and down- ramps under unstable conditions with YSU being slightly better for ramp durations longer than an hour. MYJ is the most successful simulating down-ramps under stable conditions. The high wind speed and large shear associated with low-level jets are frequently associated with power ramps, and the biases in predicted low-level jet explain some of the shown differences in ramp predictions among different PBL schemes. Low-level jets were observed as low as ~200 m in altitude over the Columbia Basin Wind Energy Study (CBWES) site, located in an area of complex terrain. The shear, low-level peak wind speeds, as well as the height of maximum wind speed are not well predicted. Model simulations with 3 PBL schemes show the largest variability among them under stable conditions.

Yang, Qing; Berg, Larry K.; Pekour, Mikhail S.; Fast, Jerome D.; Newsom, Rob K.; Stoelinga, Mark; Finley, Cathy

2013-08-16T23:59:59.000Z

162

Three-phase measurement evaluation using a high-speed processor with snapshot facility  

SciTech Connect

A homogeneous measurement evaluation system is presented which is able to provide all characteristic, electrical parameters in a HV substation. It can be applied to asymmetric and to distorted power systems. Its application software consists of four parts for each function: preprocessing, frequency shift, filtering, arithmetic functions. Its processor features the snapshot facility i.e. all voltage and current phases of one feeder can be picked up simultaneously thus eliminating interpolation errors. The accuracy of the evaluated parameters is C1.0.2 and C1.0.5 resp. including rms values of harmonics. Analog anti-aliasing filters are not required. Amplitude and phase errors of instrument transformers can be compensated. Since the applied processor is very fast, real-time results are obtained which meet even the stringent requirements of static Var compensators or other power electronics control equipment. An application for an EHV gas-insulated substation is described.

Brand, K.P.; Kopainsky, J.; Wittwer, F. (BBC Brown, Boveri and Cie., Ltd., CH-5401 Baden (CH))

1988-07-01T23:59:59.000Z

163

Evaluation of hydrothermal resources of North Dakota. Phase II. Final technical report  

SciTech Connect

This evaluation of the hydrothermal resources of North Dakota is based on existing data on file with the North Dakota Geological Survey (NDGS) and other state and federal agencies, and field and laboratory studies conducted. The principal sources of data used during the Phase II study were WELLFILE, the computer library of oil and gas well data developed during the Phase I study, and WATERCAT, a computer library system of water well data assembled during the Phase II study. A field survey of the shallow geothermal gradients present in selected groundwater observation holes was conducted. Laboratory determinations of the thermal conductivity of core samples is being done to facilitate heat-flow calculations on those hole-of-convenience cased.

Harris, K.L.; Howell, F.L.; Winczewski, L.M.; Wartman, B.L.; Umphrey, H.R.; Anderson, S.B.

1981-06-01T23:59:59.000Z

164

Lower Sioux Wind Feasibility & Development  

SciTech Connect

This report describes the process and findings of a Wind Energy Feasibility Study (Study) conducted by the Lower Sioux Indian Community (Community). The Community is evaluating the development of a wind energy project located on tribal land. The project scope was to analyze the critical issues in determining advantages and disadvantages of wind development within the Community. This analysis addresses both of the Community's wind energy development objectives: the single turbine project and the Commerical-scale multiple turbine project. The main tasks of the feasibility study are: land use and contraint analysis; wind resource evaluation; utility interconnection analysis; and project structure and economics.

Minkel, Darin

2012-04-01T23:59:59.000Z

165

Innovation Framework for Generating Electricity from Wind Power  

Science Journals Connector (OSTI)

During this phase, wind power was characterized by continuing rapid increase in the capacity and technological differentiation of turbines, the scale of the wind farms and the beginnings of offshore wind power.

Prof. Dr. Elke Bruns; Dr. Drte Ohlhorst

2011-01-01T23:59:59.000Z

166

Wind Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

FUPWG Meeting FUPWG Meeting NREL is a national laboratory of the U.S. Department of Energy Office of Energy Efficiency and Renewable Energy operated by the Alliance for Sustainable Energy, LLC Robi Robichaud November 18, 2009 Topics Introduction Review of the Current Wind Market Drivers for Wind Development Siting g Issues Wind Resource Assessment Wind Characteristics Wind Power Potential Basic Wind Turbine Theory Basic Wind Turbine Theory Types of Wind Turbines Facts About Wind Siting Facts About Wind Siting Wind Performance 1. United States: MW 1 9 8 2 1 9 8 3 1 9 8 4 1 9 8 5 1 9 8 6 1 9 8 7 1 9 8 8 1 9 8 9 1 9 9 0 1 9 9 1 1 9 9 2 1 9 9 3 1 9 9 4 1 9 9 5 1 9 9 6 1 9 9 7 1 9 9 8 1 9 9 9 2 0 0 0 2 0 0 1 2 0 0 2 2 0 0 3 2 0 0 4 2 0 0 5 2 0 0 6 2 0 0 7 2 0 0 8 Current Status of the Wind Industry Total Global Installed Wind Capacity Total Global Installed Wind Capacity Total Global Installed Wind Capacity

167

AWEA Wind Project Siting Seminar 2015  

Energy.gov (U.S. Department of Energy (DOE))

As the wind industry has grown and evolved, the scope and complexity of siting and environmental compliance issues has evolved and increased, and now affects all phases of a wind facility's life...

168

An Innovative Technique for Evaluating the Integrity and Durability of Wind Turbine Blade Composites - Final Project Report  

SciTech Connect

To build increasingly larger, lightweight, and robust wind turbine blades for improved power output and cost efficiency, durability of the blade, largely resulting from its structural composites selection and aerodynamic shape design, is of paramount concern. The safe/reliable operation of structural components depends critically on the selection of materials that are resistant to damage and failure in the expected service environment. An effective surveillance program is also necessary to monitor the degradation of the materials in the course of service. Composite materials having high specific strength/stiffness are desirable for the construction of wind turbines. However, most high-strength materials tend to exhibit low fracture toughness. That is why the fracture toughness of the composite materials under consideration for the manufacture of the next generation of wind turbines deserves special attention. In order to achieve the above we have proposed to develop an innovative technology, based on spiral notch torsion test (SNTT) methodology, to effectively investigate the material performance of turbine blade composites. SNTT approach was successfully demonstrated and extended to both epoxy and glass fiber composite materials for wind turbine blades during the performance period. In addition to typical Mode I failure mechanism, the mixed-mode failure mechanism induced by the wind turbine service environments and/or the material mismatch of the composite materials was also effectively investigated using SNTT approach. The SNTT results indicate that the proposed protocol not only provides significant advance in understanding the composite failure mechanism, but also can be readily utilized to assist the development of new turbine blade composites.

Wang, Jy-An John [ORNL; Ren, Fei [ORNL; Tan, Ting [ORNL; Mandell, John [Montana State University; Agastra, Pancasatya [Montana State University

2011-11-01T23:59:59.000Z

169

Evaluate and characterize mechanisms controlling transport, fate, and effects of army smokes in the aerosol wind tunnel: Transport, transformations, fate, and terrestrial ecological effects of hexachloroethane obscurant smokes  

SciTech Connect

The terrestrial transport, chemical fate, and ecological effects of hexachloroethane (HC) smoke were evaluated under controlled wind tunnel conditions. The primary objectives of this research program are to characterize and assess the impacts of smoke and obscurants on: (1) natural vegetation characteristic of US Army training sites in the United States; (2) physical and chemical properties of soils representative of these training sites; and (3) soil microbiological and invertebrate communities. Impacts and dose/responses were evaluated based on exposure scenarios, including exposure duration, exposure rate, and sequential cumulative dosing. Key to understanding the environmental impacts of HC smoke/obscurants is establishing the importance of environmental parameters such as relative humidity and wind speed on airborne aerosol characteristics and deposition to receptor surfaces. Direct and indirect biotic effects were evaluated using five plant species and two soil types. HC aerosols were generated in a controlled atmosphere wind tunnel by combustion of hexachloroethane mixtures prepared to simulate normal pot burn rates and conditions. The aerosol was characterized and used to expose plant, soil, and other test systems. Particle sizes of airborne HC ranged from 1.3 to 2.1 {mu}m mass median aerodynamic diameter (MMAD), and particle size was affected by relative humidity over a range of 20% to 85%. Air concentrations employed ranged from 130 to 680 mg/m{sup 3}, depending on exposure scenario. Chlorocarbon concentrations within smokes, deposition rates for plant and soil surfaces, and persistence were determined. The fate of principal inorganic species (Zn, Al, and Cl) in a range of soils was assessed.

Cataldo, D.A.; Ligotke, M.W.; Bolton, H. Jr.; Fellows, R.J.; Van Voris, P.; McVeety, B.D.; Li, Shu-mei W.; McFadden, K.M.

1989-09-01T23:59:59.000Z

170

New Method for Evaluating Irreversible Adsorption and Stationary Phase Bleed in Gas Chromatographic Capillary Columns  

SciTech Connect

A novel method for the evaluation of gas chromatographic (GC) column inertness has been developed using a tandem GC approach. Typically column inertness is measured by analyte peak shape evaluation. In general, silica, glass, and metal surfaces are chemically reactive and can cause analyte adsorption, which typically is observed as chromatographic peak tailing. Adsorption processes produce broad, short chromatographic peaks that confound peak area determinations because a significant portion can reside in the noise. In addition, chromatographic surfaces and stationary phases can irreversibly adsorb certain analytes without obvious degradation of peak shape. The inertness measurements described in this work specifically determine the degree of irreversible adsorption behavior of specific target compounds at levels ranging from approximately 50 picograms to 1 nanogram on selected gas chromatographic columns. Chromatographic columns with 5% phenylmethylsiloxane, polyethylene glycol (wax), trifluoropropylsiloxane, and 78% cyanopropylsiloxane stationary phases were evaluated with a variety of phosphorus- and sulfur- containing compounds selected as test compounds due to their ease of adsorption and importance in trace analytical detection. In addition, the method was shown effective for characterizing column bleed.

Wright, Bob W.; Wright, Cherylyn W.

2012-10-26T23:59:59.000Z

171

DOE/SC-ARM-P-07-006 Evaluation of Mixed-Phase Cloud Microphysics  

NLE Websites -- All DOE Office Websites (Extended Search)

6 6 Evaluation of Mixed-Phase Cloud Microphysics Parameterizations with the NCAR Single Column Climate Model (SCAM) and ARM Observations Second Quarter 2007 ARM Metric Report April 2007 Xiaohong Liu and Steven J. Ghan Pacific Northwest National Laboratory Richland, Washington Shaocheng Xie Lawrence Livermore National Laboratory Livermore, California Work supported by the U.S. Department of Energy, Office of Science, Office of Biological and Environmental Research X. Lui, S.J. Ghan, and S. Xie, DOE/SC-ARM/P-07-006 Summary Mixed-phase stratus clouds are ubiquitous in the Arctic and play an important role in climate in this region. However, climate models have generally proven unsuccessful at simulating the partitioning of condensed water

172

Sandia National Laboratories: support wind-energy development  

NLE Websites -- All DOE Office Websites (Extended Search)

support wind-energy development Sandia Develops Tool to Evaluate Wind-TurbineRadar Impacts On December 3, 2014, in Computational Modeling & Simulation, Energy, News, News &...

173

Evaluation of phase change materials for thermal regulation enhancement of building integrated photovoltaics  

Science Journals Connector (OSTI)

Regulating the temperature of building integrated photovoltaics (BIPV) using phase change materials (PCMs) reduces the loss of temperature dependent photovoltaic (PV) efficiency. Five \\{PCMs\\} were selected for evaluation all with melting temperatures ?254C and heat of fusion between 140 and 213kJ/kg. Experiments were conducted at three insolation intensities to evaluate the performance of each PCM in four different PV/PCM systems. The effect on thermal regulation of PV was determined by changing the (i) mass of PCM and (ii) thermal conductivities of the PCM and PV/PCM system. A maximum temperature reduction of 18C was achieved for 30min while 10C temperature reduction was maintained for 5h at ?1000W/m2 insolation.

A. Hasan; S.J. McCormack; M.J. Huang; B. Norton

2010-01-01T23:59:59.000Z

174

Evaluation of phase change materials for thermal regulation enhancement of building integrated photovoltaics  

SciTech Connect

Regulating the temperature of building integrated photovoltaics (BIPV) using phase change materials (PCMs) reduces the loss of temperature dependent photovoltaic (PV) efficiency. Five PCMs were selected for evaluation all with melting temperatures {proportional_to}25 {+-} 4 C and heat of fusion between 140 and 213 kJ/kg. Experiments were conducted at three insolation intensities to evaluate the performance of each PCM in four different PV/PCM systems. The effect on thermal regulation of PV was determined by changing the (i) mass of PCM and (ii) thermal conductivities of the PCM and PV/PCM system. A maximum temperature reduction of 18 C was achieved for 30 min while 10 C temperature reduction was maintained for 5 h at -1000 W/m{sup 2} insolation. (author)

Hasan, A.; Norton, B. [Dublin Energy Lab., Focas Institute, School of Physics, Dublin Institute of Technology, Kevin St., Dublin 8 (Ireland); McCormack, S.J. [Department of Civil, Structure and Environmental Engineering, Trinity College Dublin, Dublin 1 (Ireland); Huang, M.J. [Centre for Sustainable Technologies, University of Ulster, Newtownabbey, N. Ireland, BT370QB (United Kingdom)

2010-09-15T23:59:59.000Z

175

Ultrasonic Phased Array Evaluation of Control Rod Drive Mechanism (CRDM) Nozzle Interference Fit and Weld Region  

SciTech Connect

In this investigation, non-destructive and destructive testing were used to evaluate potential boric acid leakage paths around an Alloy 600 CRDM penetration (Nozzle 63) from the North Anna Unit 2 reactor pressure vessel head that was removed from service in 2003. For this investigation, Nozzle 63 was examined using phased array ultrasonic testing. Prior to examining Nozzle 63, a CRDM penetration mockup with known notches and boric acid deposits was used to assess probe sensitivity, resolution and calibration. Following the non-destructive testing of Nozzle 63, the nozzle was destructively examined to visually assess the leak paths. These destructive and nondestructive results are compared and results are presented. The results of this investigation may be used by NRC to evaluate licensees volumetric leak path assessment methodologies and to support regulatory inspection requirements.

Cinson, Anthony D.; Crawford, Susan L.; MacFarlan, Paul J.; Mathews, Royce; Hanson, Brady D.; Diaz, Aaron A.

2011-10-01T23:59:59.000Z

176

Wind Mills  

Science Journals Connector (OSTI)

Over 5,000 years ago, the ancient Egyptians used wind to sail ships on the Nile River. While the proliferation of water mills was in full swing, windmills appeared to harness more inanimate energy by employing wind

J. S. Rao

2011-01-01T23:59:59.000Z

177

Wind Farm  

Office of Energy Efficiency and Renewable Energy (EERE)

The wind farm in Greensburg, Kansas, was completed in spring 2010, and consists of ten 1.25 megawatt (MW) wind turbines that supply enough electricity to power every house, business, and municipal...

178

Wind Power  

NLE Websites -- All DOE Office Websites (Extended Search)

Wind Power As the accompanying map of New Mexico shows, the best wind power generation potential near WIPP is along the Delaware Mountain ridge line of the southern Guadalupe...

179

Wind Power  

Science Journals Connector (OSTI)

For off-shore wind energy, it is not economically profitable to locate wind turbines in waters with depths larger than about 40m. For this reason, some floating turbine prototypes are being tested, which can be ...

Ricardo Guerrero-Lemus; Jos Manuel Martnez-Duart

2013-01-01T23:59:59.000Z

180

An evaluation of high viscosity, crowded phase emulsions as herbicide carriers when applied through the bifluid spray system  

E-Print Network (OSTI)

AN EVALUATION OF HIGH VISCOSITY, CROWDED PHASE EMULSIONS AS HERBICIDE CARRIERS WHEN APPLIED THROUGH THE BIFLUID SPRAY SYSTEM A Thesis By PHIL J, PHILLIPS Submitted to the Graduate School of the Agricultural and Mechanical College of Texas... in partial fulfillment of the requirements for the degree of MASTER OF SCIENCE May 1963 Range Management AN EVALUATION OF HIGH VISCOSITY, CROWDED PHASE EMULSIONS AS HERBICIDE CARRIERS WHEN APPLIED THROUGH THE BIFLUID SPRAY SYSTEM A Thesis By PHIL J...

Phillips, Phil J

2012-06-07T23:59:59.000Z

Note: This page contains sample records for the topic "wind phase evaluate" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


181

Evaluation of absorption/stripping for second phase expansion of KG gas cracker  

SciTech Connect

This report addresses technology evaluation for a second phase expansion of BP Chemical Ltd.`s (BPCL) KG cracker. Its primary objective was to determine if the absorption/stripping technology being developed by BPCL is competitive with cryogenic demethanization technology. The expansion basis for this evaluation is a 150,000 MTA ethylene increment. This increment represents an increase in KG`s capacity from 450,000 MTA after the current expansion to an ultimate capacity of 600,000 MTA. Two recovery systems for a 150,000 MTA expansion are compared: (1) Case A - Absorption/Stripping Expansion; and (2) Case B - ARS Expansion. Another objective of this report was to confirm the magnitude of the economic advantages of the absorption/stripping technology for grass roots applications. For that evaluation, absorption/stripping was compared with the original 350,000 MTA KG recovery system. The two additional 350,000 MTA grass roots cases evaluated are: (1) Case C - Absorption/Stripping - Grass Roots Design; (2) Case D - Conventional Cryogenic Recovery (Original KG 350,000 MTA design).

NONE

1995-12-01T23:59:59.000Z

182

Wind energy  

Science Journals Connector (OSTI)

...is approximately 4.5-6.01 for onshore wind farms. The price for offshore wind farms is estimated to be 50% higher. For comparison...visually intrusive. The visual impact of offshore wind farms quickly diminishes with distance and 10km...

2007-01-01T23:59:59.000Z

183

Chinook winds.  

Science Journals Connector (OSTI)

...of south-easterly winds, which blow over the...Ocean, from which the winds come, can at this season...freezing-point. The wind well known in the Alps as the foehn is another example of...result is complicated by local details; regions of...

George M. Dawson

1886-01-08T23:59:59.000Z

184

LIDAR Wind Speed Measurements of Evolving Wind Fields  

SciTech Connect

Light Detection and Ranging (LIDAR) systems are able to measure the speed of incoming wind before it interacts with a wind turbine rotor. These preview wind measurements can be used in feedforward control systems designed to reduce turbine loads. However, the degree to which such preview-based control techniques can reduce loads by reacting to turbulence depends on how accurately the incoming wind field can be measured. Past studies have assumed Taylor's frozen turbulence hypothesis, which implies that turbulence remains unchanged as it advects downwind at the mean wind speed. With Taylor's hypothesis applied, the only source of wind speed measurement error is distortion caused by the LIDAR. This study introduces wind evolution, characterized by the longitudinal coherence of the wind, to LIDAR measurement simulations to create a more realistic measurement model. A simple model of wind evolution is applied to a frozen wind field used in previous studies to investigate the effects of varying the intensity of wind evolution. LIDAR measurements are also evaluated with a large eddy simulation of a stable boundary layer provided by the National Center for Atmospheric Research. Simulation results show the combined effects of LIDAR errors and wind evolution for realistic turbine-mounted LIDAR measurement scenarios.

Simley, E.; Pao, L. Y.

2012-07-01T23:59:59.000Z

185

Geothermal Evaluation of The Hosston Formation Lackland Air Force Base, San Antonio, Texas Phase II Report  

SciTech Connect

This report summarizes the results of a phased program to test the geothermal characteristics of the Hosston Formation at Lackland Air Force Base, San Antonio, Texas. The geothermal resource evaluation was made possible through drilling and preliminary testing of a large diameter well, Lackland AFB No.1, at the south portion of the base. Phase I of the program had 3 major components: (1) compilation and interpretation of surface and subsurface geologic data to site the well; (2) design of the well; and (3) permitting the well. Phase II consisted of well drilling and preliminary development. The goal of the program was to identify water temperature, water quality, and productivity characteristics of the Hosston aquifer, which preliminary studies suggested might be favorable for direct applications on the base. Results reported herein suggest that heat pumps or other engineering alternatives might be needed for such applications. Results of the well drilling give data on water productivity, quality and temperature. Air-lift testing shows that, although the well does not flow to surface, good artesian pressure exists. Water quality appears acceptable, with about 2200 parts per million total dissolved solids. Equilibrated reservoir temperatures appear to be slightly less than 108 F (42 C).

Zeisloft, Jon; Foley, Duncan

1984-05-30T23:59:59.000Z

186

Global ocean wind power sensitivity to surface layer stability  

E-Print Network (OSTI)

Evaluation of global wind power, J. Geophys. Res. , 110,W. Tang, and X. Xie (2008), Wind power distribution over theApproach to Short-Term Wind Power Prediction, 1st ed. ,

Capps, Scott B; Zender, Charles S

2009-01-01T23:59:59.000Z

187

Wind Power: How Much, How Soon, and At What Cost?  

E-Print Network (OSTI)

Evaluation of Global Wind Power." Journal of Geophysical2008. "The Economics of Wind Power with Energy Storage."Economics of Large-Scale Wind Power in a Carbon Constrained

Wiser, Ryan H

2010-01-01T23:59:59.000Z

188

Wind Blog  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

wind-blog Office of Energy Efficiency & Renewable wind-blog Office of Energy Efficiency & Renewable Energy Forrestal Building 1000 Independence Avenue, SW Washington, DC 20585 en Two Facilities, One Goal: Advancing America's Wind Industry http://energy.gov/eere/articles/two-facilities-one-goal-advancing-america-s-wind-industry wind-industry" class="title-link">Two Facilities, One Goal: Advancing America's Wind Industry

189

A novel dual stator-winding induction generator system applied in wind power generation  

Science Journals Connector (OSTI)

This paper presents a novel usage of 6/3-phase dual stator-winding induction generator (DWIG) with a static excitation power controller (SEC) as a wind power generator. This generator is composed of a standard squirrel-cage rotor and two sets of winding housed in the stator slots. One is referred to as the 6-phase power winding, and the other is defined as the 3-phase control winding. On the basis of the instantaneous power theory, the control mechanism of DWIG wind power system is analysed, and the control winding flux orientation control strategy is obtained consequently. The simulation and experimental results from a prototype of 18 kW 6/3-phase DWIG wind power system are presented to verify the correctness and feasibility of control strategy, and a desirable performance is implemented.

Bu Feifei; Huang Wenxin; Hu Yuwen; Shi Kai

2010-01-01T23:59:59.000Z

190

Estimated global ocean wind power potential from QuikSCAT observations, accounting for turbine characteristics and siting  

E-Print Network (OSTI)

envisioned floating offshore wind turbines. Finally, global35 ] For the three turbines considered, offshore wind farmsusable wind power is evaluated for modern offshore turbine

Capps, Scott B; Zender, Charles S

2010-01-01T23:59:59.000Z

191

Life cycle assessment of CO2 emissions from wind power plants: Methodology and case studies  

Science Journals Connector (OSTI)

Wind energy plays an increasingly important role in the worlds electricity market with rapid growth projected in the future. In order to evaluate the potential for wind energy to mitigate the effects of climate change by reducing CO2 intensity of the energy sector, this study developed a new direct and simple method for estimating CO2 emissions per kWh produced during the life cycle of four representative wind power plants (three in developed countries and one in China). The life cycle analysis focuses on the wind power plant as the basic functional object instead of a single wind turbine. Our results show that present-day wind power plants have a lifetime emission intensity of 5.08.2gCO2/kWh electricity, a range significantly lower than estimates in previous studies. Our estimate suggests that wind is currently the most desirable renewable energy in terms of minimizing CO2 emissions per kWh of produced electricity. The production phase contributes the most to overall CO2 emissions, while recycling after decommission could reduce emissions by nearly half, representing an advantage of wind when compared with other energy generation technologies such as nuclear. Compared with offshore wind plants, onshore plants have lower CO2 emissions per kWh electricity and require less transmission infrastructure. Analysis of a case in China indicates that a large amount of CO2 emissions could be saved in the transport phase in large countries by using shorter alternative routes of transportation. As the worlds fastest growing market for wind power, China could potentially save 780Mtons of CO2 emissions annually by 2030 with its revised wind development target. However, there is still ample room for even more rapid development of wind energy in China, accompanied by significant opportunities for reducing overall CO2 emissions.

Yuxuan Wang; Tianye Sun

2012-01-01T23:59:59.000Z

192

Washington Phase II Fish Diversion Screen Evaluations in the Yakima River Basin, 2003 Annual Report.  

SciTech Connect

In 2003, the Pacific Northwest National Laboratory (PNNL) evaluated 23 Phase II fish screen sites in the Yakima River Basin as part of a multi-year project for the Bonneville Power Administration on the effectiveness of fish screening devices. PNNL collected data to determine whether velocities in front of the screens and in the bypasses met the National Oceanic and Atmospheric Administration Fisheries (NOAA Fisheries, formerly the National Marine Fisheries Service [NMFS]) criteria to promote safe and timely fish passage. In addition, PNNL conducted underwater video surveys to evaluate the environmental and operational conditions of the screen sites with respect to fish passage. Based on evaluations in 2003, PNNL concluded that: (1) In general, water velocity conditions at the screen sites met fish passage criteria set by the NOAA Fisheries. (2) Conditions at most facilities would be expected to provide for safe juvenile fish passage. (3) Conditions at some facilities indicate that operation and/or maintenance should be modified to improve juvenile fish passage conditions. (4) Automated cleaning brushes generally functioned properly; chains and other moving parts were typically well greased and operative. (5) Removal of sediment buildup and accumulated leafy and woody debris could be improved at some sites.

Vucelick, J.; McMichael, G.; Chamness, M. (Pacific Northwest National Laboratory)

2004-05-01T23:59:59.000Z

193

Analysis of wind power ancillary services characteristics with German 250-MW wind data  

SciTech Connect

With the increasing availability of wind power worldwide, power fluctuations have become a concern for some utilities. Under electric industry restructuring in the US, the impact of these fluctuations will be evaluated by examining provisions and costs of ancillary services for wind power. This paper analyzes wind power in the context of ancillary services, using data from a German 250 Megawatt Wind project.

Ernst, B.

1999-12-09T23:59:59.000Z

194

MESOSCALE MODELLING OF WIND ENERGY OVER NON-HOMOGENEOUS TERRAIN  

E-Print Network (OSTI)

MESOSCALE MODELLING OF WIND ENERGY OVER NON-HOMOGENEOUS TERRAIN (ReviewArticle) Y. MAHRER.1. OBSERVATIONALAPPROACHES Evaluations of wind energy based on wind observations (usually surface winds) at well, the resolution of the wind energy pattern throughout an extended area by this methodology requires a large number

Pielke, Roger A.

195

Sandia National Laboratories: Wind Energy  

NLE Websites -- All DOE Office Websites (Extended Search)

first phase of a project to explore the feasibility of large-scale vertical-axis wind turbines (VAWTs) for deep-water offshore locations. The results of this conceptual study...

196

Synoptic and local influences on boundary layer processes, with an application to California wind power  

E-Print Network (OSTI)

maps showing locations of wind power conversion facilities,of US winds and wind power at 80 m derived fromEvaluation of global wind power. Journal of Geo- physical

Mansbach, David K.

2010-01-01T23:59:59.000Z

197

Investigation of Wind Turbine Rotor Concepts for Offshore Wind Farms  

Science Journals Connector (OSTI)

Current plans in offshore wind energy developments call for further reduction of cost of energy. In order to contribute to this goal, several wind turbine rotor concepts have been investigated. Assuming the future offshore wind turbines will operate only in the offshore wind farms, the rotor concepts are not only evaluated for their stand-alone performances and their potential in reducing the loads, but also for their performance in an offshore wind farm. In order to do that, the 10MW reference wind turbine designed in Innwind.EU project is chosen as baseline. Several rotor parameters have been modified and their influences are investigated for offshore wind turbine design purposes. This investigation is carried out as a conceptual parametrical study. All concepts are evaluated numerically with BOT (Blade optimisation tool) software in wind turbine level and with Farmflow software in wind farm level for two wind farm layouts. At the end, all these concepts are compared with each other in terms of their advantages and disadvantages.

zlem Ceyhan; Francesco Grasso

2014-01-01T23:59:59.000Z

198

Advanced wind turbine design studies: Advanced conceptual study. Final report  

SciTech Connect

In conjunction with the US Department of Energy and the National Renewable Energy Laboratory`s Advanced Wind Turbine Program, the Atlantic Orient Corporation developed preliminary designs for the next generation of wind turbines. These 50 kW and 350 kW turbines are based upon the concept of simplicity. By adhering to a design philosophy that emphasizes simplicity, we project that these turbines will produce energy at extremely competitive rates which will unlock the potential of wind energy domestically and internationally. The program consisted of three distinct phases. First, we evaluated the operational history of the Enertech 44 series wind turbines. As a result of this evaluation, we developed, in the second phase, a preliminary design for a new 50 kW turbine for the near-term market. In the third phase, we took a clean-sheet-of-paper approach to designing a 350 kW turbine focused on the mid-1990s utility market that incorporated past experience and advanced technology.

Hughes, P.; Sherwin, R. [Atlantic Orient Corp., Norwich, VT (United States)] [Atlantic Orient Corp., Norwich, VT (United States)

1994-08-01T23:59:59.000Z

199

Wind power forecast error smoothing within a wind farm  

Science Journals Connector (OSTI)

Smoothing of wind power forecast errors is well-known for large areas. Comparable effects within a wind farm are investigated in this paper. A Neural Network was taken to predict the power output of a wind farm in north-western Germany comprising 17 turbines. A comparison was done between an algorithm that fits mean wind and mean power data of the wind farm and a second algorithm that fits wind and power data individually for each turbine. The evaluation of root mean square errors (RMSE) shows that relative small smoothing effects occur. However, it can be shown for this wind farm that individual calculations have the advantage that only a few turbines are needed to give better results than the use of mean data. Furthermore different results occurred if predicted wind speeds are directly fitted to observed wind power or if predicted wind speeds are first fitted to observed wind speeds and then applied to a power curve. The first approach gives slightly better RMSE values, the bias improves considerably.

Nadja Saleck; Lueder von Bremen

2007-01-01T23:59:59.000Z

200

NREL: Wind Research - Mariah Power's Windspire Wind Turbine Testing and  

NLE Websites -- All DOE Office Websites (Extended Search)

Mariah Power's Windspire Wind Turbine Testing and Results Mariah Power's Windspire Wind Turbine Testing and Results A video of Mariah Power's Windspire wind turbine. Text Version As part of the National Renewable Energy Laboratory and U.S. Department of Energy (NREL/DOE) Independent Testing project, NREL tested Mariah Power's Windspire Giromill small wind turbine at the National Wind Technology Center (NWTC) through January 14, 2009 when NREL terminated its testing. Read a chronology of events and letter from Mariah Power to NREL. The Windspire is a 1.2-kilowatt (kW) vertical-axis small wind turbine. The turbine tower is 9.1 meters tall, and its rotor area is 1.2 by 6.1 meters. The turbine has a permanent-magnet generator with a single-phase output at 120 volts AC. Testing Summary Testing was terminated January 14, 2009. Published test reports include

Note: This page contains sample records for the topic "wind phase evaluate" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


201

NREL: Wind Research - SWIFT Wind Turbine Testing and Results  

NLE Websites -- All DOE Office Websites (Extended Search)

SWIFT Wind Turbine Testing and Results SWIFT Wind Turbine Testing and Results The SWIFT wind turbine. Text Version As part of the National Renewable Energy Laboratory and U.S. Department of Energy (NREL/DOE) Independent Testing project, NREL is testing the SWIFT small wind turbine at the National Wind Technology Center (NWTC). The competitive grant was awarded to Cascade Engineering. The SWIFT is a 1-kilowatt (kW), five-bladed with outer ring, horizontal-axis upwind small wind turbine. The turbine's rotor diameter is 2 meters, and its hub height is 13.72 meters. The SWIFT uses a single-phase permanent-magnet generator rated at 1 kW grid connected through an inverter at 240 volts AC. Testing Summary Supporting data and explanations for data provided in this table will be provided in the final reports. Data presented are preliminary and subject

202

Evaluation of hydro sound and vibration measurements during the use of the Hydro-Sound-Damper (HSD) at the wind farm London Array  

Science Journals Connector (OSTI)

Since some years a noise prevention concept for the protection of marine animals exists in Germany. Based on that the acoustic underwater noise from the pile driving at offshore wind farms is required to be less than 160 dB (SEL) at a distance of 750 m. This value however is often exceeded so that the use of a soundproofing system is necessary. The Hydro-Sound-Damper (HSD) is a new versatile method to reduce the noise during offshore pile driving. To achieve this elements of different sizes and materials are used which are fixed to fishing nets. The principle of operation and the effectiveness of these HSD elements were investigated in the laboratory and in situ under offshore conditions at the worlds largest offshore wind farm London Array. During the offshore tests thorough measurements were performed which metered the propagation of the hydro sound and the vibrations of the sea floor at various distances and directions. The evaluation of these data led to very promising results concerning underwater noise reduction. This article describes the theory and implementation of the HSD at London Array and focuses on the interpretation of the data from the hydro sound and vibration measurements.

Benedikt Bruns

2013-01-01T23:59:59.000Z

203

Wind Power Forecasting  

NLE Websites -- All DOE Office Websites (Extended Search)

Retrospective Reports 2011 Smart Grid Wind Integration Wind Integration Initiatives Wind Power Forecasting Wind Projects Email List Self Supplied Balancing Reserves Dynamic...

204

Wind turbine  

SciTech Connect

The improvement in a wind turbine comprises providing a tower with a freely liftable mount and adapting a nacelle which is fitted with a propeller windwheel consisting of a plurality of rotor blades and provided therein with means for conversion of wind energy to be shifted onto said mount attached to the tower. In case of a violent wind storm, the nacelle can be lowered down to the ground to protect the rotor blades from breakage due to the force of the wind. Required maintenance and inspection of the nacelle and replacement of rotor blades can be safely carried out on the ground.

Abe, M.

1982-01-19T23:59:59.000Z

205

numerical models & information Systems, Nice: France (2013)" Environmental impact for offshore wind farms: Geolocalized Life Cycle Assessment (LCA) approach  

E-Print Network (OSTI)

Abstract. This paper presents an approach for Environmental Impact Assessment through the use of geolocalized LCA approach, for fixed and floating offshore wind farms. This work was undertaken within the EUsponsored EnerGEO project, aiming at providing a versatile modeling platform for stakeholders allowing calculation, forecasting and monitoring of environmental impacts of different sources of energy. This paper described the geolocalized LCA approach, and its use for the evaluation of environmental impacts of wind energy. The effects of offshore wind farms on global environnemental impacts are evaluated though the LCA approach. It takes into account the type of wind farm, the construction phase, all technical aspects, the operation and maintenance scheme and the decommissioning. It also includes geolocalized information such as wind resources, bathymetry, accessibility Environmental impact parameters are accessible through a web service helping the decision makers in assessing the environnemental impacts. 1

Catherine Guermont; Lionel Mnard; Isabelle Blanc

2013-01-01T23:59:59.000Z

206

Accelerated safety analyses - structural analyses Phase I - structural sensitivity evaluation of single- and double-shell waste storage tanks  

SciTech Connect

Accelerated Safety Analyses - Phase I (ASA-Phase I) have been conducted to assess the appropriateness of existing tank farm operational controls and/or limits as now stipulated in the Operational Safety Requirements (OSRs) and Operating Specification Documents, and to establish a technical basis for the waste tank operating safety envelope. Structural sensitivity analyses were performed to assess the response of the different waste tank configurations to variations in loading conditions, uncertainties in loading parameters, and uncertainties in material characteristics. Extensive documentation of the sensitivity analyses conducted and results obtained are provided in the detailed ASA-Phase I report, Structural Sensitivity Evaluation of Single- and Double-Shell Waste Tanks for Accelerated Safety Analysis - Phase I. This document provides a summary of the accelerated safety analyses sensitivity evaluations and the resulting findings.

Becker, D.L.

1994-11-01T23:59:59.000Z

207

Wind Powering America: Wind Events  

Wind Powering America (EERE)

calendar.asp Lists upcoming wind calendar.asp Lists upcoming wind power-related events. en-us julie.jones@nrel.gov (Julie Jones) http://www.windpoweringamerica.gov/images/wpa_logo_sm.jpg Wind Powering America: Wind Events http://www.windpoweringamerica.gov/calendar.asp Pennsylvania Wind for Schools Educator Workshop https://www.regonline.com/builder/site/Default.aspx?EventID=1352684 http://www.windpoweringamerica.gov/filter_detail.asp?itemid=4068 Wed, 4 Dec 2013 00:00:00 MST 2014 Joint Action Workshop http://www.windpoweringamerica.gov/filter_detail.asp?itemid=3996 http://www.windpoweringamerica.gov/filter_detail.asp?itemid=3996 Mon, 21 Oct 2013 00:00:00 MST AWEA Wind Project Operations and Maintenance and Safety Seminar http://www.windpoweringamerica.gov/filter_detail.asp?itemid=4009 http://www.windpoweringamerica.gov/filter_detail.asp?itemid=4009 Mon, 21

208

Evaluation of gas-phase technetium decontamination and safety related experiments during FY 1994. A report of work in progress  

SciTech Connect

Laboratory activities for FY94 included: evaluation of decontamination of Tc by gas-phase techniques, evaluation of diluted ClF{sub 3} for removing U deposits, evaluation of potential hazard of wet air inlekage into a vessel containing ClF{sub 3}, planning and preparation for experiments to assess hazard of rapid reaction of ClF{sub 3} and hydrated UO{sub 2}F{sub 2} or powdered Al, and preliminary evaluation of compatibility of Tenic valve seat material.

Simmons, D.W.; Munday, E.B.

1995-05-01T23:59:59.000Z

209

Wyoming Wind Power Project (generation/wind)  

NLE Websites -- All DOE Office Websites (Extended Search)

Wind Power > Generation Hydro Power Wind Power Monthly GSP BPA White Book Dry Year Tools Firstgov Wyoming Wind Power Project (Foote Creek Rim I and II) Thumbnail image of wind...

210

Phase-Change Frame Walls (PCFWs) for On-Peak Demand Reduction and Energy Conservation in Residential Buildings: Development, Construction and Evaluation  

E-Print Network (OSTI)

macroencapsulated phase-change materials (PCMs), incorporated therein, was developed, constructed, and evaluated. This prototype wall is referred to as - phase-change frame wall (PCFW). A PCFW is a typical frame wall, consisting of outside siding, thermal insulation...

Zhang, M.; Medina, M. A.; King, J. B.

2004-01-01T23:59:59.000Z

211

Thermodynamic Evaluation of Immobilized Cellulose Tris(3,5-Dichlorophenylcarbamate) as a Stationary Phase for Liquid Chromatographic Separation of Darunavir Enantiomers  

Science Journals Connector (OSTI)

......phase conditions using different compositions of n-hexane, organic modifier...pharmaceutical, biomedical, agrochemical and environmental is well known...was evaluated using different compositions of mobile phases between 20 and......

R. Nageswara Rao; K. Nagesh Kumar

2014-06-01T23:59:59.000Z

212

Forecasting Uncertainty Related to Ramps of Wind Power Production  

E-Print Network (OSTI)

Forecasting Uncertainty Related to Ramps of Wind Power Production Arthur Bossavy, Robin Girard - The continuous improvement of the accuracy of wind power forecasts is motivated by the increasing wind power study. Key words : wind power forecast, ramps, phase er- rors, forecasts ensemble. 1 Introduction Most

Boyer, Edmond

213

Offshore Wind Power USA  

Energy.gov (U.S. Department of Energy (DOE))

The Offshore Wind Power USA conference provides the latest offshore wind market updates and forecasts.

214

Permitting of Wind Energy Facilities: A Handbook  

SciTech Connect

This handbook has been written for individuals and groups involved in evaluating wind projects: decision-makers and agency staff at all levels of government, wind developers, interested parties and the public. Its purpose is to help stakeholders make permitting wind facility decisions in a manner which assures necessary environmental protection and responds to public needs.

NWCC Siting Work Group

2002-08-01T23:59:59.000Z

215

offshore wind farm  

Science Journals Connector (OSTI)

offshore wind farm, wind farm [Wind park which one may find on the ... engineers and should not be used. A wind farm consists of a network of wind turbines] ? Windkraftanlage f, Windpark m; Offshore

2014-08-01T23:59:59.000Z

216

Wind Energy Leasing Handbook  

E-Print Network (OSTI)

Wind Energy Leasing Handbook Wind Energy Leasing Handbook E-1033 Oklahoma Cooperative Extension?..................................................................................................................... 31 What do wind developers consider in locating wind energy projects?............................................................................................ 37 How do companies and individuals invest in wind energy projects?....................................................................

Balasundaram, Balabhaskar "Baski"

217

Design Wind Speed  

Science Journals Connector (OSTI)

Wind is characterized by various different parameters. They include the following items: (1) wind speed, such as the mean wind speed and maximum instantaneous wind speed; (2) wind direction such as the azimuth di...

Yozo Fujino; Kichiro Kimura; Hiroshi Tanaka

2012-01-01T23:59:59.000Z

218

Wind Powering America: New England Wind Forum  

Wind Powering America (EERE)

About the New England Wind Forum About the New England Wind Forum New England Wind Energy Education Project Historic Wind Development in New England State Activities Projects in New England Building Wind Energy in New England Wind Resource Wind Power Technology Economics Markets Siting Policy Technical Challenges Issues Small Wind Large Wind Newsletter Perspectives Events Quick Links to States CT MA ME NH RI VT Bookmark and Share The New England Wind Forum was conceived in 2005 as a platform to provide a single, comprehensive and objective source of up-to-date, Web-based information on a broad array of wind-energy-related issues pertaining to New England. The New England Wind Forum provides information to wind energy stakeholders through Web site features, periodic newsletters, and outreach activities. The New England Wind Forum covers the most frequently discussed wind energy topics.

219

NREL: Wind Research - Abundant Renewable Energy's ARE 442 Wind Turbine  

NLE Websites -- All DOE Office Websites (Extended Search)

Abundant Renewable Energy's ARE 442 Wind Turbine Testing and Results Abundant Renewable Energy's ARE 442 Wind Turbine Testing and Results Get the Adobe Flash Player to see this video. A video of Abundant Renewable Energy's ARE 442 wind turbine. Text Version As part of the National Renewable Energy Laboratory and U.S. Department of Energy (NREL/DOE) Independent Testing project, NREL tested Abundant Renewable Energy's ARE 442 turbine at the National Wind Technology Center (NWTC). The ARE 442 is a 10-kilowatt (kW), three-bladed, horizontal-axis upwind small wind turbine. It has a hub height of 30.9 meters and a rotor diameter of 7.2 meters. The turbine has a single-phase permanent-magnet generator that operates at variable voltages up to 410 volts AC. Testing Summary The summary of the tests is below with the final reports.

220

Wind Energy Myths | Open Energy Information  

Open Energy Info (EERE)

Wind Energy Myths Wind Energy Myths Jump to: navigation, search Glacier Wind Project is located 10 miles west of Shelby, Montana, 2 miles south of Ethridge, in Glacier and Toole Counties, and is the largest wind farm in Montana. This project is comprised of 71 machines in phase 1 and 69 machines in phase 2 for a total of 140 Acciona AW-1500, capable of producing 210 MW at full capacity. Photo from Todd Spink, NREL 16521 U.S. Department of Energy. (July 10, 2011). Myths and Benefits of Wind Energy Wind Powering America hosted this webinar featuring speakers Ian Baring-Gould (National Renewable Energy Laboratory), Ed DeMeo, and Ben Hoen (Lawrence Berkeley National Laboratory). References Retrieved from "http://en.openei.org/w/index.php?title=Wind_Energy_Myths&oldid=700129"

Note: This page contains sample records for the topic "wind phase evaluate" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


221

ISET-Wind-Index Assessment of the Annual Available Wind Energy  

E-Print Network (OSTI)

Particularly in years with wind speeds that are clearly below average, dissatisfaction of operators and even liquidity problems are sparked through the unexpected low annual power production. An objective standard for the evaluation of the respective wind year is required for the internal estimation of the performance of wind farms, and for justification to share owners and banks. The annual wind conditions are composed from such a multitude of meteorological situations, differing from location to location, that the available wind energy at every individual location develops totally differently. A single code is therefore not sufficient to describe the wind year in Germany and, moreover, the evaluation of annual available wind energy must be carried out separately for the smallest areas possible. With the support of the Gothaer Rckversicherungen AG, a procedure has been developed at ISET which provides the proportion of the respective annual available wind energy, in relation to the long-term average available wind energy, for each 10 km x 10 km sized plan area in Germany. This amount, the ISET-Wind-Index, is founded on wind measurements at locations that are typical for wind energy use and therefore presents an objective standard. The measurement grid is part of the Scientific Measurement and Evaluation Programme (WMEP), which accompanies the 250 MW Wind project of the German Federal Ministry for Economy and Labour. The ISET-Wind-Index, which will be regularly updated, provides an objective standard for the estimation of annual available

Berthold Hahn; Kurt Rohrig

2003-01-01T23:59:59.000Z

222

Wind News  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

news Office of Energy Efficiency & Renewable news Office of Energy Efficiency & Renewable Energy Forrestal Building 1000 Independence Avenue, SW Washington, DC 20585 en New Report Shows Trend Toward Larger Offshore Wind Systems, with 11 Advanced Stage Projects Proposed in U.S. Waters http://energy.gov/eere/articles/new-report-shows-trend-toward-larger-offshore-wind-systems-11-advanced-stage-projects wind-systems-11-advanced-stage-projects" class="title-link">New Report Shows Trend Toward Larger Offshore Wind Systems, with 11 Advanced Stage Projects Proposed in U.S. Waters

223

Wind energy  

Science Journals Connector (OSTI)

Wind energy is rapidly growing. In 2006 the installed generating capacity in the world increased by 25%, a growth rate which has more or less been sustained during the last decade. And there is no reason to believe that this growth will slow significantly in the coming years. For example, the United Kingdom's goal for installed wind turbines by 2020 is 33GW up from 2GW in 2006, an average annual growth rate of 22% over that period. More than half of all turbines are installed in Europe, but United States, India and lately China are also rapidly growing markets. The cradle of modern wind energy was set by innovative blacksmiths in rural Denmark. Now the wind provides more than 20% of the electrical power in Denmark, the industry has professionalized and has close ties with public research at universities. This focus issue is concerned with research in wind energy. The main purposes of research in wind energy are to: decrease the cost of power generated by the wind; increase the reliability and predictability of the energy source; investigate and reduce the adverse environmental impact of massive deployment of wind turbines; build research based educations for wind energy engineers. This focus issue contains contributions from several fields of research. Decreased costs cover a very wide range of activities from aerodynamics of the wind turbine blades, optimal site selection for the turbines, optimization of the electrical grid and power market for a fluctuating source, more efficient electrical generators and gears, and new materials and production techniques for turbine manufacturing. The United Kingdom recently started the construction of the London Array, a 1GW off-shore wind farm east of London consisting of several hundred turbines. To design such a farm optimally it is necessary to understand the chaotic and very turbulent flow downwind from a turbine, which decreases the power production and increases the mechanical loads on other nearby turbines. Also addressed within the issue is how much conventional power production can be replaced by the ceaseless wind, with the question of how Greece's target of 29% renewables by 2020 is to be met efficiently. Other topics include an innovative way to determine the power curve of a turbine experimentally more accurately, the use of fluid dynamics tools to investigate the implications of placing vortex generators on wind turbine blades (thereby possibly improving their efficiency) and a study of the perception of wind turbine noise. It turns out that a small but significant fraction of wind turbine neighbours feel that turbine generated noise impairs their ability to rest. The annoyance is correlated with a negative attitude towards the visual impact on the landscape, but what is cause and effect is too early to say. As mentioned there is a rush for wind turbines in many countries. However, this positive development for the global climate is currently limited by practical barriers. One bottleneck is the difficulties for the sub-suppliers of gears and other parts to meet the demand. Another is the difficulties to meet the demand for engineers specialized in wind. For that reason the Technical University of Denmark (DTU) recently launched the world's first Wind Energy Masters Program. Here and elsewhere in the world of wind education and research we should really speed up now, as our chances of contributing to emission free energy production and a healthier global climate have never been better. Focus on Wind Energy Contents The articles below represent the first accepted contributions and further additions will appear in the near future. Wind turbineslow level noise sources interfering with restoration? EjaPedersen andKerstin PerssonWaye On the effect of spatial dispersion of wind power plants on the wind energy capacity credit in Greece GeorgeCaralis, YiannisPerivolaris, KonstantinosRados andArthourosZervos Large-eddy simulation of spectral coherence in a wind turbine wake AJimenez, ACrespo, EMigoya andJGarcia How to improve the estimation of

Jakob Mann; Jens Nrkr Srensen; Poul-Erik Morthorst

2008-01-01T23:59:59.000Z

224

Evaluate and characterize mechanisms controlling transport, fate and effects of army smokes in an aerosol wind tunnel: Transport, transformations, fate and terrestrial ecological effects of fog oil obscurant smokes: Final report  

SciTech Connect

The terrestrial transport, chemical fate, and ecological effects of fog oil (FO) smoke obscurants were evaluated under controlled wind tunnel conditions. The primary objectives of this research program are to characterize and assess the impacts of smoke and obscurants on: (1) natural vegetation characteristic of US Army training sites in the United States; (2) physical and chemical properties of soils representative of these training sites; and (3) soil microbiological and invertebrate communities. Impacts and dose/responses were evaluated based on an exposure scenario, including exposure duration, exposure rate, and sequential cumulative dosing. Key to understanding the environmental impacts of fog oil smoke/obscurants is establishing the importance of environmental parameters, such as relative humidity and wind speed on airborne aerosol characteristics and deposition to receptor surfaces. Direct and indirect biotic effects were evaluated using five plant species and three soil types. 29 refs., 35 figs., 32 tabs.

Cataldo, D.A.; Van Voris, P.; Ligotke, M.W.; Fellows, R.J.; McVeety, B.D.; Li, Shu-mei W.; Bolton, H. Jr.; Fredrickson, J.K.

1989-01-01T23:59:59.000Z

225

Wind Energy Benefits, Wind Powering America (WPA) (Fact Sheet...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Energy Benefits, Wind Powering America (WPA) (Fact Sheet), Wind And Water Power Program (WWPP) Wind Energy Benefits, Wind Powering America (WPA) (Fact Sheet), Wind And Water Power...

226

Yakima and Touchet River Basins Phase II Fish Screen Evaluation, 2006-2007 Annual Report.  

SciTech Connect

In 2006, Pacific Northwest National Laboratory (PNNL) researchers evaluated 27 Phase II fish screen sites in the Yakima and Touchet river basins. Pacific Northwest National Laboratory performs these evaluations for Bonneville Power Administration (BPA) to determine whether the fish screening devices meet those National Marine Fisheries (NMFS) criteria for juvenile fish screen design, that promote safe and timely passage of juvenile salmonids. The NMFS criteria against which the sites were evaluated are as follows: (1) a uniform flow distribution over the screen surface to minimize approach velocity; (2) approach velocities less than or equal to 0.4 ft/s protects the smallest salmonids from impingement; (3) sweep velocities that are greater than approach velocities to minimize delay of out-migrating juveniles and minimize sediment deposition near the screens; (4) a bypass flow greater than or equal to the maximum flow velocity vector resultant upstream of the screens to also minimize delay of out-migrating salmonids; (5) a gradual and efficient acceleration of flow from the upstream end of the site into the bypass entrance to minimize delay of out-migrating salmonids; and (6) screen submergence between 65% and 85% for drum screen sites. In addition, the silt and debris accumulation next to the screens should be kept to a minimum to prevent excessive wear on screens, seals and cleaning mechanisms. Evaluations consist of measuring velocities in front of the screens, using an underwater camera to assess the condition and environment in front of the screens, and noting the general condition and operation of the sites. Results of the evaluations in 2006 include the following: (1) Most approach velocities met the NMFS criterion of less than or equal to 0.4 ft/s. Of the sites evaluated, 31% exceeded the criterion at least once. Thirty-three percent of flat-plate screens had problems compared to 25% of drum screens. (2) Woody debris and gravel deposited during high river levels were a problem at several sites. In some cases, it was difficult to determine the bypass pipe was plugged until several weeks had passed. Slow bypass flow caused by both the obstructions and high river levels may have discouraged fish from entering the bypass, but once they were in the bypass, they may have had no safe exit. Perhaps some tool or technique can be devised that would help identify whether slow bypass flow is caused by pipe blockage or by high river levels. (3) Bypass velocities generally were greater than sweep velocities, but sweep velocities often did not increase toward the bypass. The latter condition could slow migration of fish through the facility. (4) Screen and seal materials generally were in good condition. (5) Automated cleaning brushes generally functioned properly; chains and other moving parts were typically well-greased and operative. (6) Washington Department of Fish and Wildlife (WDFW) and U.S. Bureau of Reclamation (USBR) generally operated and maintained fish screen facilities in a way that provided safe passage for juvenile fish. (7) Efforts with WDFW to find optimal louver settings at Naches-Selah were partly successful. The number of spots with excessive approach velocities was decreased, but we were unable to adjust the site to bring all approach values below 0.4 ft/s. (8) In some instances, irrigators responsible for specific maintenance at their sites (e.g., debris removal) did not perform their tasks in a way that provided optimum operation of the fish screen facility. Enforcement personnel proved effective at reminding irrigation districts of their responsibilities to maintain the sites for fish protection as well as irrigation. (9) We recommend placing datasheets providing up-to-date operating criteria and design flows in each site's logbox. The datasheet should include bypass design flows and a table showing depths of water over the weir and corresponding bypass flow. A similar datasheet relating canal gage readings and canal discharge in cubic feet per second would help identify times when the canal is taking mo

Chamness, Mickie; Tunnicliffe, Cherylyn [Pacific Northwest National Laboratory

2007-03-01T23:59:59.000Z

227

NREL: Wind Research - Wind Resource Assessment  

NLE Websites -- All DOE Office Websites (Extended Search)

Wind Resource Assessment Wind Resource Assessment A map of the United States is color-coded to indicate the high winds at 80 meters. This map shows the wind resource at 80 meters for both land-based and offshore wind resources in the United States. Correct estimation of the energy available in the wind can make or break the economics of wind plant development. Wind mapping and validation techniques developed at the National Wind Technology Center (NWTC) along with collaborations with U.S. companies have produced high-resolution maps of the United States that provide wind plant developers with accurate estimates of the wind resource potential. State Wind Maps International Wind Resource Maps Dynamic Maps, GIS Data, and Analysis Tools Due to the existence of special use airspace (SUA) (i.e., military airspace

228

New England Wind Forum: Wind Power Technology  

Wind Powering America (EERE)

Wind Power Technology Wind Power Technology Modern wind turbines have become sophisticated power plants while the concept of converting wind energy to electrical energy remains quite simple. Follow these links to learn more about the science behind wind turbine technology. Wind Power Animation An image of a scene from the wind power animation. The animation shows how moving air rotates a wind turbine's blades and describes how the internal components work to produce electricity. It shows small and large wind turbines and the differences between how they are used, as stand alone or connected to the utility grid. How Wind Turbines Work Learn how wind turbines make electricity; what are the types, sizes, and applications of wind turbines; and see an illustration of the components inside a wind turbine.

229

2011 Wind Technologies Market Report  

E-Print Network (OSTI)

that includes wind turbine towers. 2011 Wind TechnologiesSets Other Wind Turbine Components Towers Wind-Poweredselected wind turbine components includes towers as well as

Bolinger, Mark

2013-01-01T23:59:59.000Z

230

2010 Wind Technologies Market Report  

E-Print Network (OSTI)

that includes wind turbine towers. 2010 Wind TechnologiesImports : Other Wind Turbine Components Towers Wind-Poweredselected wind turbine components includes towers as well as

Wiser, Ryan

2012-01-01T23:59:59.000Z

231

Energy 101: Wind Turbines  

ScienceCinema (OSTI)

See how wind turbines generate clean electricity from the power of the wind. Highlighted are the various parts and mechanisms of a modern wind turbine.

None

2013-05-29T23:59:59.000Z

232

Balancing of Wind Power.  

E-Print Network (OSTI)

?? In the future, renewable energy share, especially wind power share, in electricity generation is expected to increase. Due to nature of the wind, wind (more)

lker, Muhammed Akif

2011-01-01T23:59:59.000Z

233

Energy 101: Wind Turbines  

SciTech Connect

See how wind turbines generate clean electricity from the power of the wind. Highlighted are the various parts and mechanisms of a modern wind turbine.

None

2011-01-01T23:59:59.000Z

234

WINDExchange: Learn About Wind  

Wind Powering America (EERE)

Curricula & Teaching Materials Resources Learn About Wind Learn about how wind energy generates power; where the best wind resources are; how you can own, host, partner...

235

Wind power and Wind power and  

E-Print Network (OSTI)

Wind power and the CDM #12; Wind power and the CDM Emerging practices in developing wind power 2005 Jyoti P. Painuly, Niels-Erik Clausen, Jørgen Fenhann, Sami Kamel and Romeo Pacudan #12; WIND POWER AND THE CDM Emerging practices in developing wind power projects for the Clean Development Mechanism Energy

236

A new algorithm for evaluating the fields associated with HVDC power transmission lines in the presence of corona and strong wind  

SciTech Connect

A new algorithm for calculating HVDC fields in the presence of corona and strong wind based on boundary element method is presented. The new algorithm uses an auxiliary Poisson's equation for updating the space charge density during the iteration. The iteration process is convergent for wind velocities tested up to 12 m/s.

Yu, Ming; Kuffel, E. (Univ. of Manitoba, Winnipeg (Canada))

1993-03-01T23:59:59.000Z

237

World-Unique Wind Facilities Designed to protect us from storms, harness the power of wind and  

E-Print Network (OSTI)

connectivity and solar- and wind-distributed nodes, as well as green energy policy and implementation and develop sustainable cities, the Wind Engineering, Energy and the Environment (WindEEE) Institute, while evaluating energy potential and damage risks. About the WindEEE Institute · The world's most

Denham, Graham

238

Meteorological aspects of siting large wind turbines  

SciTech Connect

This report, which focuses on the meteorological aspects of siting large wind turbines (turbines with a rated output exceeding 100 kW), has four main goals. The first is to outline the elements of a siting strategy that will identify the most favorable wind energy sites in a region and that will provide sufficient wind data to make responsible economic evaluations of the site wind resource possible. The second is to critique and summarize siting techniques that were studied in the Department of Energy (DOE) Wind Energy Program. The third goal is to educate utility technical personnel, engineering consultants, and meteorological consultants (who may have not yet undertaken wind energy consulting) on meteorological phenomena relevant to wind turbine siting in order to enhance dialogues between these groups. The fourth goal is to minimize the chances of failure of early siting programs due to insufficient understanding of wind behavior.

Hiester, T.R.; Pennell, W.T.

1981-01-01T23:59:59.000Z

239

Wind Resource Assessment Overview | Open Energy Information  

Open Energy Info (EERE)

Wind Resource Assessment Overview Wind Resource Assessment Overview Jump to: navigation, search Maps.jpg The first step in developing a wind project is to locate and quantify the wind resource. The magnitude of the wind and the characteristics of the resource are the largest factors in determining a potential site's economic and technical viability. There are three basic steps to identifying and characterizing the wind resource: prospecting, validating, and micrositing. The process of locating sites for wind energy development is similar to exploration for other resources, such as minerals and petroleum. Thus, the term prospecting is often used to describe the identification and preliminary evaluation of a wind resource area. Prospecting includes identifying potentially windy sites within a fairly large region - such

240

ART CCIM PHASE II-A OFF-GAS SYSTEM EVALUATION TEST REPORT  

SciTech Connect

AREVA Federal Services (AFS) is performing a multi-year, multi-phase Advanced Remediation Technologies (ART) project, sponsored by the U.S. Department of Energy (DOE), to evaluate the feasibility and benefits of replacing the existing joule-heated melter (JHM) used to treat high level waste (HLW) in the Defense Waste Processing Facility (DWPF) at the Savannah River Site with a cold crucible induction melter (CCIM). The AFS ART CCIM project includes several collaborators from AREVA subsidiaries, French companies, and DOE national laboratories. The Savannah River National Laboratory and the Commissariat a lEnergie Atomique (CEA) have performed laboratory-scale studies and testing to determine a suitable, high-waste-loading glass matrix. The Idaho National Laboratory (INL) and CEA are performing CCIM demonstrations at two different pilot scales to assess CCIM design and operation for treating SRS sludge wastes that are currently being treated in the DWPF. SGN is performing engineering studies to validate the feasibility of retrofitting CCIM technology into the DWPF Melter Cell. The long-term project plan includes more lab-testing, pilot- and large-scale demonstrations, and engineering activities to be performed during subsequent project phases. A simulant of the DWPF SB4 feed was successfully fed and melted in a small pilot-scale CCIM system during two test series. The OGSE tests provide initial results that (a) provide melter operating conditions while feeding a DWPF SB4 simulant feed, (b) determine the fate of feed organic and metal feed constituents and metals partitioning, and (c) characterize the melter off-gas source term to a downstream off-gas system. The INL CCIM test system was operated continuously for about 30 hours during the parametric test series, and for about 58 hours during the OGSE test. As the DWPF simulant feed was continuously fed to the melter, the glass level gradually increased until a portion of the molten glass was drained from the melter. The glass drain was operated periodically on-demand. A cold cap of unmelted feed was controlled by adjusting the feedrate and melter power levels to obtain the target molten glass temperatures with varying cold cap levels. Three test conditions were performed per the test plan, during which the melter was operated with a target melt temperature of either 1,250oC or 1,300oC, and with either a partial or complete cold cap of unmelted feed on top of the molten glass. Samples of all input and output streams including the starting glass, the simulant feed, the off-gas particulate matter, product glass, and deposits removed from the crucible and off-gas pipe after the test were collected for analysis.

Nick Soelberg

2009-04-01T23:59:59.000Z

Note: This page contains sample records for the topic "wind phase evaluate" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


241

New England Wind Forum: Wind Power Economics  

Wind Powering America (EERE)

State Activities Projects in New England Building Wind Energy in New England Wind Resource Wind Power Technology Economics Cost Components Determining Factors Influencing Wind Economics in New England How does wind compare to the cost of other electricity options? Markets Siting Policy Technical Challenges Issues Small Wind Large Wind Newsletter Perspectives Events Quick Links to States CT MA ME NH RI VT Bookmark and Share Wind Power Economics Long-Term Cost Trends Since the first major installations of commercial-scale wind turbines in the 1980s, the cost of energy from wind power projects has decreased substantially due to larger turbine generators, towers, and rotor lengths; scale economies associated with larger projects; improvements in manufacturing efficiency, and technological advances in turbine generator and blade design. These technological advances have allowed for higher generating capacities per turbine and more efficient capture of wind, especially at lower wind speeds.

242

New England Wind Forum: Large Wind  

Wind Powering America (EERE)

Small Wind Small Wind Large Wind Newsletter Perspectives Events Quick Links to States CT MA ME NH RI VT Bookmark and Share Large Wind When establishing wind farms, wind energy developers generally approach landowners where they want to build. Interest in wind farms is frequently spurred by external pressures such as tax and other financial incentives and legislative mandates. Since each situation is influenced by local policies and permitting, we can only provide general guidance to help you learn about the process of installing wind turbines. Publications Wind Project Development Process Permitting of Wind Energy Facilities: A Handbook. (August 2002). National Wind Coordinating Collaborative. Landowner Frequently Asked Questions and Answers. (August 2003). "State Wind Working Group Handbook." pp. 130-133.

243

NREL: Wind Research - International Wind Resource Maps  

NLE Websites -- All DOE Office Websites (Extended Search)

projections of wind resources worldwide. This allows for more accurate siting of wind turbines and has led to the recognition of higher class winds in areas where none were...

244

Evaluation of the phase content and properties of a detonation gun coating  

SciTech Connect

X-ray diffraction techniques were used to identify the phases present in four molybdenum base D-Gun{trademark} coatings because the common method of an SEM equipped with energy dispersive spectroscopy could not distinguish between the phases. The overlapping diffraction peaks from the coatings were resolved using a profile fitting computer routine. Powder samples from each phase present in the coatings were obtained and reference samples prepared and measured. The Reference Intensity Ratio method was used to quantify the amount of each phase present in each coating. Regression analysis was used to relate coating hardness and laboratory wear test results to the amount of molybdenum in each coating. Hardness appears to be unrelated to molybdenum whereas the erosion and abrasion results can be represented by a linear relationship.

Whichard, G.C.; Stavros, A.J. [Praxair Surface Technologies, Inc., Indianapolis, IN (United States)

1994-12-31T23:59:59.000Z

245

Evaluation on the thin-film phase change material-based technologies  

E-Print Network (OSTI)

Two potential applications of thin film phase-change materials are considered, non-volatile electronic memories and MEMS (Micro-Electro-Mechanical Systems) actuators. The markets for those two applications are fast growing ...

Guo, Qiang, M. Eng. Massachusetts Institute of Technology

2006-01-01T23:59:59.000Z

246

LIDAR Wind Speed Measurements of Evolving Wind Fields  

SciTech Connect

Light Detection and Ranging (LIDAR) systems are able to measure the speed of incoming wind before it interacts with a wind turbine rotor. These preview wind measurements can be used in feedforward control systems that are designed to reduce turbine loads. However, the degree to which such preview-based control techniques can reduce loads by reacting to turbulence depends on how accurately the incoming wind field can be measured. Past studies have assumed the validity of physicist G.I. Taylor's 1938 frozen turbulence hypothesis, which implies that turbulence remains unchanged as it advects downwind at the mean wind speed. With Taylor's hypothesis applied, the only source of wind speed measurement error is distortion caused by the LIDAR. This study introduces wind evolution, characterized by the longitudinal coherence of the wind, to LIDAR measurement simulations using the National Renewable Energy Laboratory's (NREL's) 5-megawatt turbine model to create a more realistic measurement model. A simple model of wind evolution was applied to a frozen wind field that was used in previous studies to investigate the effects of varying the intensity of wind evolution. LIDAR measurements were also evaluated using a large eddy simulation (LES) of a stable boundary layer that was provided by the National Center for Atmospheric Research. The LIDAR measurement scenario investigated consists of a hub-mounted LIDAR that scans a circle of points upwind of the turbine in order to estimate the wind speed component in the mean wind direction. Different combinations of the preview distance that is located upwind of the rotor and the radius of the scan circle were analyzed. It was found that the dominant source of measurement error for short preview distances is the detection of transverse and vertical wind speeds from the line-of-sight LIDAR measurement. It was discovered in previous studies that, in the absence of wind evolution, the dominant source of error for large preview distances is the spatial averaging caused by the LIDAR's sampling volume. However, by introducing wind evolution, the dominant source of error for large preview distances was found to be the coherence loss caused by evolving turbulence. Different measurement geometries were compared using the bandwidth for which the measurement coherence remained above 0.5 and also the area under the measurement coherence curve. Results showed that, by increasing the intensity of wind evolution, the measurement coherence decreases. Using the coherence bandwidth metric, the optimal preview distance for a fixed-scan radius remained almost constant for low and moderate amounts of wind evolution. For the wind field with the simple wind evolution model introduced, the optimal preview distance for a scan radius of 75% blade span (47.25 meters) was found to be 80 meters. Using the LES wind field, the optimal preview distance was 65 meters. When comparing scan geometries using the area under the coherence curve, results showed that, as the intensity of wind evolution increases, the optimal preview distance decreases.

Simley, E.; Pao, L. Y.; Kelley, N.; Jonkman, B.; Frehlich, R.

2012-01-01T23:59:59.000Z

247

Advanced Hydraulic Wind Energy  

Science Journals Connector (OSTI)

The Jet Propulsion Laboratory, California Institute of Technology, has developed a novel advanced hydraulic wind energy design, which has up to 23% performance improvement over conventional wind turbine and conventional hydraulic wind energy systems ... Keywords: wind, tide, energy, power, hydraulic

Jack A. Jones; Allan Bruce; Adrienne S. Lam

2013-04-01T23:59:59.000Z

248

WINDExchange: Wind Economic Development  

Wind Powering America (EERE)

help you analyze the economics of a small wind electric system and decide whether wind energy will work for you. Wind Energy Finance Online Calculator Wind Energy Finance developed...

249

Exploiting Wind Versus Coal  

Science Journals Connector (OSTI)

...be offset with turbine mass production...of installed turbines, more than the...Denmark have wind parks offshore, where winds...of installed turbines, more than the...Denmark have wind parks offshore, where winds...

Mark Z. Jacobson; Gilbert M. Masters

2001-08-24T23:59:59.000Z

250

Evaluation of Phase II glass formulations for vitrification of Hanford Site low-level waste  

SciTech Connect

A vendor glass formulation study was carried out at Pacific Northwest Laboratory (PNL), supporting the Phase I and Phase II melter vendor testing activities for Westinghouse Hanford Company. This study is built upon the LLW glass optimization effort that will be described in a separate report. For Phase I vendor melter testing, six glass formulations were developed at PNL and additional were developed by Phase I vendors. All the doses were characterized in terms of viscosity and chemical durability by the 7-day Product Consistency Test. Twelve Phase II glass formulations (see Tables 3.5 and 3.6) were developed to accommodate 2.5 wt% P{sub 2}O{sub 5} and 1.0 wt% S0{sub 3} without significant processing problems. These levels of P{sub 2}O{sub 5} and SO{sub 3} are expected to be the highest possible concentrations from Hanford Site LLW streams at 25 wt% waste loading in glass. The Phase H compositions formulated were 6 to 23 times more durable than the environmental assessment (EA) glass. They melt within the temperature range of 1160{degrees} to 1410{degrees}C to suit different melting technologies. The composition types include boron-free for volatilization sensitive melters; boron-containing glasses for coId-cap melters; Zr-containing, glasses for enhanced Iong-term durability; and Fe-containing glasses for reducing melting temperature and melt volatility while maintaining chemical durability.

Feng, X.; Hrma, P.R.; Schweiger, M.J. [and others

1996-03-01T23:59:59.000Z

251

Evaluation of the phase randomness of the light source in quantum key distribution systems with an attenuated laser  

E-Print Network (OSTI)

The phase randomized light is one of the key assumptions in the security proof of Bennett-Brassard 1984 (BB84) quantum key distribution (QKD) protocol implemented with an attenuated laser. Though the assumption has been believed to be satisfied for conventional systems, it should be reexamined for current high speed QKD systems. The phase correlation may be induced by the overlap of the optical pulses, the interval of which decreases as the clock frequency. The phase randomness was investigated experimentally by measuring the visibility of interference. An asymmetric Mach-Zehnder interferometer was used to observe the interference between adjacent pulses from a gain-switched distributed feedback laser diode driven at 10 GHz. Low visibility was observed when the minimum drive current was set far below the threshold, while the interference emerged when the minimum drive current was close to the threshold. Theoretical evaluation on the impact of the imperfect phase randomization provides target values for the visibility to guarantee the phase randomness. The experimental and theoretical results show that secure implementation of decoy BB84 protocol is achievable even for the 10-GHz clock frequency, by using the laser diode under proper operating conditions.

Toshiya Kobayashi; Akihisa Tomita; Atsushi Okamoto

2014-07-07T23:59:59.000Z

252

NREL: Wind Research - Wind Energy Videos  

NLE Websites -- All DOE Office Websites (Extended Search)

Wind Energy Videos The National Wind Technology Center (NWTC) is pleased to offer video presentations of its world-class capabilities, facilities, research areas, and personnel. As...

253

wind power station  

Science Journals Connector (OSTI)

wind power station [It may consist of just one wind turbine or a network of windmills] ? Windkraftanlage

2014-08-01T23:59:59.000Z

254

NREL: Wind Research - Small Wind Turbine Webinars  

NLE Websites -- All DOE Office Websites (Extended Search)

Small Wind Turbine Webinars Small Wind Turbine Webinars Here you will find webinars about small wind turbines that NREL hosted. Introducing WindLease(tm): Making Wind Energy Affordable NREL and the American Solar Energy Society (ASES) Wind Division co-hosted this webinar. (Text Version.) Date: August 1, 2013 Run Time: 40 minutes Joe Hess, VP of Business Development at United Wind, described United Wind's WindQuote and WindLease Program and explained the process from the dealer's and consumer's perspective. Texas Renewable Energy Industries Association NREL and the American Solar Energy Society (ASES) Wind Division co-hosted this webinar. (Text Version). Date: March 7, 2013 Run Time: 1 hour Russel Smith, Texas Renewable Energy Industries Association executive director and co-founder, provided an overview of the trade association

255

New England Wind Forum: Small Wind  

Wind Powering America (EERE)

Wind for Schools Project Funding Case Studies: Thomas Harrison Middle School, Virginia Wind for Schools Project Funding Case Studies: Thomas Harrison Middle School, Virginia August 26, 2013 Workshop Explores Information's Role in Wind Project Siting: A Wind Powering America Success Story November 19, 2012 More News Subscribe to News Updates Events Renewable Energy Market Update Webinar January 29, 2014 Strategic Energy Planning: Webinar February 26, 2014 Introduction to Wind Systems March 10, 2014 More Events Publications 2012 Market Report on Wind Technologies in Distributed Applications August 12, 2013 More Publications Features Sign up for the New England Wind Forum Newsletter. New England Wind Forum About the New England Wind Forum New England Wind Energy Education Project Historic Wind Development in New England State Activities Projects in New England

256

NREL: Wind Research - Small Wind Turbine Development  

NLE Websites -- All DOE Office Websites (Extended Search)

Small Wind Turbine Development Small Wind Turbine Development A photo of Southwest Windpower's Skystream wind turbine in front of a home. PIX14936 Southwest Windpower's Skystream wind turbine. A photo of the Endurance wind turbine. PIX15006 The Endurance wind turbine. A photo of the Atlantic Orient Corporation 15/50 wind turbine at the National Wind Technology Center. PIX07301 The Atlantic Orient Corporation 15/50 wind turbine at the National Wind Technology Center. NREL supports continued market expansion of small wind turbines by funding manufacturers through competitive solicitations (i.e., subcontracts and/or grants) to refine prototype systems leading to commercialization. Learn more about the turbine development projects below. Skystream NREL installed and tested an early prototype of this turbine at the

257

Integrated low emissions cleanup system for coal fueled turbines Phase III bench-scale testing and evaluation  

SciTech Connect

The United States Department of Energy, Morgantown Energy Research Center (DOE/METC), is sponsoring the development of coal-fired turbine technologies such as Pressurized Fluidized Bed Combustion (PFBC), coal Gasification Combined Cycles (GCC), and Direct Coal-Fired Turbines (DCFT). A major technical development challenge remaining for coal-fired turbine systems is high-temperature gas cleaning to meet environmental emissions standards, as well as to ensure acceptable turbine life. The Westinghouse Electric Corporation, Science & Technology Center, has evaluated an Integrated Low Emissions Cleanup (ILEC) concept that has been configured to meet this technical challenge. This ceramic hot gas filter (HGF), ILEC concept controls particulate emissions, while simultaneously contributing to the control of sulfur and alkali vapor contaminants in high-temperature, high-pressure, fuel gases or combustion gases. This document reports on the results of Phase III of the ILEC evaluation program, the final phase of the program. In Phase III, a bench-scale ILEC facility has been tested to (1) confirm the feasibility of the ILEC concept, and (2) to resolve some major filter cake behavior issues identified in PFBC, HGF applications.

Newby, R.A.; Alvin, M.A.; Bachovchin, D.M. [and others

1995-08-01T23:59:59.000Z

258

Trav Info Evaluation ( Technology Element ) Traveler Information Center ( TIC ) Study: Operator Interface Analysis - Phase III  

E-Print Network (OSTI)

and evaluator visits to the TIC. The objective of this workthe different aspects of the TIC working environment. Thecontribute to or hinder the TIC operators job performance.

Miller, Mark; Loukakos, Dimitri

1998-01-01T23:59:59.000Z

259

Coastal Ohio Wind Project  

SciTech Connect

The Coastal Ohio Wind Project intends to address problems that impede deployment of wind turbines in the coastal and offshore regions of Northern Ohio. The project evaluates different wind turbine designs and the potential impact of offshore turbines on migratory and resident birds by developing multidisciplinary research, which involves wildlife biology, electrical and mechanical engineering, and geospatial science. Firstly, the project conducts cost and performance studies of two- and three-blade wind turbines using a turbine design suited for the Great Lakes. The numerical studies comprised an analysis and evaluation of the annual energy production of two- and three-blade wind turbines to determine the levelized cost of energy. This task also involved wind tunnel studies of model wind turbines to quantify the wake flow field of upwind and downwind wind turbine-tower arrangements. The experimental work included a study of a scaled model of an offshore wind turbine platform in a water tunnel. The levelized cost of energy work consisted of the development and application of a cost model to predict the cost of energy produced by a wind turbine system placed offshore. The analysis found that a floating two-blade wind turbine presents the most cost effective alternative for the Great Lakes. The load effects studies showed that the two-blade wind turbine model experiences less torque under all IEC Standard design load cases considered. Other load effects did not show this trend and depending on the design load cases, the two-bladed wind turbine showed higher or lower load effects. The experimental studies of the wake were conducted using smoke flow visualization and hot wire anemometry. Flow visualization studies showed that in the downwind turbine configuration the wake flow was insensitive to the presence of the blade and was very similar to that of the tower alone. On the other hand, in the upwind turbine configuration, increasing the rotor blade angle of attack reduced the wake size and enhanced the vortices in the flow downstream of the turbine-tower compared with the tower alone case. Mean and rms velocity distributions from hot wire anemometer data confirmed that in a downwind configuration, the wake of the tower dominates the flow, thus the flow fields of a tower alone and tower-turbine combinations are nearly the same. For the upwind configuration, the mean velocity shows a narrowing of the wake compared with the tower alone case. The downwind configuration wake persisted longer than that of an upwind configuration; however, it was not possible to quantify this difference because of the size limitation of the wind tunnel downstream of the test section. The water tunnel studies demonstrated that the scale model studies could be used to adequately produce accurate motions to model the motions of a wind turbine platform subject to large waves. It was found that the important factors that affect the platform is whether the platform is submerged or surface piercing. In the former, the loads on the platform will be relatively reduced whereas in the latter case, the structure pierces the wave free surface and gains stiffness and stability. The other important element that affects the movement of the platform is depth of the sea in which the wind turbine will be installed. Furthermore, the wildlife biology component evaluated migratory patterns by different monitoring systems consisting of marine radar, thermal IR camera and acoustic recorders. The types of radar used in the project are weather surveillance radar and marine radar. The weather surveillance radar (1988 Doppler), also known as Next Generation Radar (NEXRAD), provides a network of weather stations in the US. Data generated from this network were used to understand general migratory patterns, migratory stopover habitats, and other patterns caused by the effects of weather conditions. At a local scale our marine radar was used to complement the datasets from NEXRAD and to collect additional monitoring parameters such as passage rates, flight paths, flight directi

Gorsevski, Peter; Afjeh, Abdollah; Jamali, Mohsin; Bingman, Verner

2014-04-04T23:59:59.000Z

260

Coastal Ohio Wind Project for Reduced Barriers to Deployment of Offshore Wind Energy  

SciTech Connect

The Coastal Ohio Wind Project was created to establish the viability of wind turbines on the coastal and offshore regions of Northern Ohio. The projects main goal was to improve operational unit strategies used for environmental impact assessment of offshore turbines on lake wildlife by optimizing and fusing data from the multi-instrument surveillance system and providing an engineering analysis of potential design/operational alternatives for offshore wind turbines. The project also developed a general economic model for offshore WTG deployment to quantify potential revenue losses due to wind turbine shutdown related to ice and avian issues. In a previous phase of this project (Award Number: DE-FG36-06GO86096), we developed a surveillance system that was used to collect different parameters such as passage rates, flight paths, flight directions, and flight altitudes of nocturnal migrating species, movements of birds and bats, and bird calls for assessing patterns and peak passage rates during migration. To derive such parameters we used thermal IR imaging cameras, acoustic recorders, and marine radar Furuno (XANK250), which was coupled with a XIR3000B digitizing card from Russell Technologies and open source radR processing software. The integration yielded a development of different computational techniques and methods, which we further developed and optimized as a combined surveillance system. To accomplish this task we implemented marine radar calibration, optimization of processing parameters, and fusion of the multi-sensor data in order to make inferences about the potential avian targets. The main goal of the data fusion from the multi-sensor environment was aimed at reduction of uncertainties while providing acceptable confidence levels with detailed information about the migration patterns. Another component comprised of an assessment of wind resources in a near lake environment and an investigation of the effectiveness of ice coating materials to mitigate adverse effects of ice formation on wind turbine structures. Firstly, a Zephir LiDAR system was acquired and installed at Woodlands School in Huron, Ohio, which is located near Lake Erie. Wind resource data were obtained at ten measurement heights, 200m, 150m, 100m, 80m, 60m, 40m, 38m, 30m, 20m, and 10m. The Woodlands Schools wind turbine anemometer also measured the wind speed at the hub height. These data were collected for approximately one year. The hub anemometer data correlated well with the LiDAR wind speed measurements at the same height. The data also showed that on several days different power levels were recorded by the turbine at the same wind speed as indicated by the hub anemometer. The corresponding LiDAR data showed that this difference can be attributed to variability in the wind over the turbine rotor swept area, which the hub anemometer could not detect. The observation suggests that single point hub wind velocity measurements are inadequate to accurately estimate the power generated by a turbine at all times since the hub wind speed is not a good indicator of the wind speed over the turbine rotor swept area when winds are changing rapidly. To assess the effectiveness of ice coatings to mitigate the impact of ice on turbine structures, a closed-loop icing research tunnel (IRT) was designed and constructed. By controlling the temperature, air speed, water content and liquid droplet size, the tunnel enabled consistent and repeatable ice accretion under a variety of conditions with temperatures between approximately 0C and -20C and wind speeds up to 40 miles per hour in the tunnels test section. The tunnels cooling unit maintained the tunnel temperature within 0.2C. The coatings evaluated in the study were Boyd Coatings Research Companys CRC6040R3, MicroPhase Coatings Inc.s PhaseBreak TP, ESL and Flex coatings. Similar overall performance was observed in all coatings tested in that water droplets form on the test articles beginning at the stagnation region and spreading in the downstream direction in time. When compari

Gorsevski, Peter; Afjeh, Abdollah; Jamali, Mohsin; Carroll, Michael

2014-04-09T23:59:59.000Z

Note: This page contains sample records for the topic "wind phase evaluate" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


261

NREL: Wind Research - Offshore Wind Research  

NLE Websites -- All DOE Office Websites (Extended Search)

Offshore Wind Research Offshore Wind Research Photo of a European offshore wind farm. Early progress in European Offshore Wind Energy over the last decade provides a glimpse into the vast potential of the global offshore resource. For more than eight years, NREL has worked with the Department of Energy to become an international leader in offshore wind energy research. Capabilities NREL's offshore wind capabilities focus on critical areas that reflect the long-term needs of the offshore wind energy industry and the U.S. Department of Energy including: Offshore Design Tools and Methods Offshore Standards and Testing Energy Analysis of Offshore Systems Offshore Wind Resource Characterization Grid Integration of Offshore Wind Key Research NREL documented the status of offshore wind energy in the United States in

262

NREL: Wind Research - Site Wind Resource Characteristics  

NLE Websites -- All DOE Office Websites (Extended Search)

Site Wind Resource Characteristics Site Wind Resource Characteristics A graphic showing the location of National Wind Technology Center and its wind power class 2. Click on the image to view a larger version. Enlarge image This graphic shows the wind power class at the National Wind Technology Center. You can download a printable copy. The National Wind Technology Center (NWTC) is on the Great Plains just miles from the Rocky Mountains. The site is flat and covered with short grasses. The terrain and lack of obstructions make the site highly suitable for testing wind turbines. Take a tour of the NWTC and its facilities to better understand its location and layout. Another prime feature of the NWTC is the strong directionality of the wind - most of the strong winds come within a few degrees of 285°. West of

263

Hydrogen storage for mixed windnuclear power plants in the context of a Hydrogen Economy  

Science Journals Connector (OSTI)

A novel methodology for the economic evaluation of hydrogen production and storage for a mixed windnuclear power plant considering some new aspects such as residual heat and oxygen utilization is applied in this work. This analysis is completed in the context of a Hydrogen Economy and competitive electricity markets. The simulation of the operation of a combined nuclearwindhydrogen system is discussed first, where the selling and buying of electricity, the selling of excess hydrogen and oxygen, and the selling of heat are optimized to maximize profit to the energy producer. The simulation is performed in two phases: in a pre-dispatch phase, the system model is optimized to obtain optimal hydrogen charge levels for the given operational horizons. In the second phase, a real-time dispatch is carried out on an hourly basis to optimize the operation of the system as to maximize profits, following the hydrogen storage levels of the pre-dispatch phase. Based on the operation planning and dispatch results, an economic evaluation is performed to determine the feasibility of the proposed scheme for investment purposes; this evaluation is based on calculations of modified internal rates of return and net present values for a realistic scenario. The results of the present studies demonstrate the feasibility of a hydrogen storage and production system with oxygen and heat utilization for existent nuclear and wind power generation facilities.

Gregor Taljan; Michael Fowler; Claudio Caizares; Gregor Verbi?

2008-01-01T23:59:59.000Z

264

Wind Technologies & Evolving Opportunities (Presentation)  

SciTech Connect

This presentation covers opportunities for wind technology; wind energy market trends; an overview of the National Wind Technology Center near Boulder, Colorado; wind energy price and cost trends; wind turbine technology improvements; and wind resource characterization improvements.

Robichaud, R.

2014-07-01T23:59:59.000Z

265

EDS Coal Liquefaction Process Development. Phase V. Laboratory evaluation of the characteristics of EDS Illinois bottoms  

SciTech Connect

This interim report documents work carried out by Combustion Engineering, Inc. under a contract to Exxon Research and Engineering Company to develop a conceptual Hybrid Boiler design fueled by the vacuum distillation residue (vacuum bottoms) derived from Illinois No. 6 coal in the EDS Coal Liquefaction Process. This report was prepared by Combustion Engineering, Inc., and is the first of two reports on the predevelopment phase of the Hybrid Boiler program. This report covers the results of a laboratory investigation to assess the fuel and ash properties of EDS vacuum bottoms. The results of the laboratory testing reported here were used in conjunction with Combustion Engineering's design experience to predict fuel performance and to develop appropriate boiler design parameters. These boiler design parameters were used to prepare the engineering design study reported in EDS Interim Report FE-2893-113, the second of the two reports on the predevelopment phase of the Hybrid Boiler Program. 46 figures, 29 tables.

Lao, T C; Levasseur, A A

1984-02-01T23:59:59.000Z

266

An Exploration of Wind Energy & Wind Turbines | Department of...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

An Exploration of Wind Energy & Wind Turbines An Exploration of Wind Energy & Wind Turbines Below is information about the student activitylesson plan from your search. Grades...

267

A National Offshore Wind Strategy: Creating an Offshore Wind...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

A National Offshore Wind Strategy: Creating an Offshore Wind Energy Industry in the United States A National Offshore Wind Strategy: Creating an Offshore Wind Energy Industry in...

268

20% Wind Energy by 2030 - Chapter 2: Wind Turbine Technology...  

Office of Environmental Management (EM)

20% Wind Energy by 2030: Increasing Wind Energy's Contribution to U.S. Electricity Supply U.S. Offshore Wind Manufacturing and Supply Chain Development Wind Program Accomplishments...

269

Wind pro?le assessment for wind power purposes.  

E-Print Network (OSTI)

??Preliminary estimation of wind speed at the wind turbine hub height is critically important when planning new wind farms. Wind turbine power output is proportional (more)

Sointu, Iida

2014-01-01T23:59:59.000Z

270

Collegiate Wind Competition Engages Tomorrow's Wind Energy Innovators...  

Office of Environmental Management (EM)

Collegiate Wind Competition Engages Tomorrow's Wind Energy Innovators Collegiate Wind Competition Engages Tomorrow's Wind Energy Innovators January 6, 2014 - 10:00am Addthis 2014...

271

Wind for Schools Project Power System Brief, Wind Powering America...  

Wind Powering America (EERE)

Wind Powering America Fact Sheet Series Energy Efficiency & Renewable Energy Wind for Schools Project Power System Brief Wind for Schools Project Power System Brief Wind for...

272

Wind-Induced Instability of Structures [and Discussion  

Science Journals Connector (OSTI)

13 May 1971 research-article Wind-Induced Instability of Structures [and...G. V. Parkinson D. Dicker Forms of wind-induced instability of structures are...structural response frequency over a discrete wind speed range and amplification and phase...

1971-01-01T23:59:59.000Z

273

Evaluation of Atmospheric Transport Models for Use in Phase II of the Historical Public Exposures Studies at the Rocky Flats Plant  

Science Journals Connector (OSTI)

Five atmospheric transport models were evaluated for use in Phase II of the Historical Public Exposures Studies at the Rocky Flats Plant. Models included a simple straight-line ... hexafluoride tracer measurement...

Arthur S. Rood; George G. Killough; John E. Till

1999-08-01T23:59:59.000Z

274

2014 Wind Program Peer Review Report  

Energy.gov (U.S. Department of Energy (DOE))

The Wind Program Peer Review Meeting was held March 24-28, 2014 in Arlington, VA. Principle investigators from the Energy Department, National Laboratories, academic, and industry representatives presented the progress of their DOE-funded research. This report documents the formal, rigorous evaluation process and findings of nine independent reviewers who examined the technical, scientific, and business results of Wind Program funded projects, as well as the productivity and management effectiveness of the Wind Program itself.

275

Evaluation of the solid-phase radioimmunoassay for diagnosis of St. Louis encephalitis infection in humans.  

Science Journals Connector (OSTI)

...virus infections is evaluated. MATERIALS AND MErHODS Antigens. Virus...investigators prepared more thor- ough epidemiological profiles...Gamma 310 spectrom- eter. Handling of data. A radioimmunoassay...Regression analysis of scatter diagrams was then used to compare the...

K L Wolff; D J Muth; B W Hudson; D W Trent

1981-08-01T23:59:59.000Z

276

2009 Wind Technologies Market Report  

E-Print Network (OSTI)

Prepared for the Utility Wind Integration Group. Arlington,Arizona Public Service Wind Integration Cost Impact Study.an Order Revising the Wind Integration Rate for Wind Powered

Wiser, Ryan

2010-01-01T23:59:59.000Z

277

2010 Wind Technologies Market Report  

E-Print Network (OSTI)

2010. SPP WITF Wind Integration Study. Little Rock,an Order Revising the Wind Integration Rate for Wind PoweredPacifiCorp. 2010. 2010 Wind Integration Study. Portland,

Wiser, Ryan

2012-01-01T23:59:59.000Z

278

2011 Wind Technologies Market Report  

E-Print Network (OSTI)

and K. Porter. 2011. Wind Power and Electricity Markets.41 6. Wind Power Priceat Various Levels of Wind Power Capacity Penetration Wind

Bolinger, Mark

2013-01-01T23:59:59.000Z

279

Sandia National Laboratories: Wind Resources  

NLE Websites -- All DOE Office Websites (Extended Search)

EnergyWind Resources Wind Resources Comments are closed. Renewable Energy Wind Energy Wind Plant Optimization Test Site Operations & Maintenance Safety: Test Facilities Capital...

280

Sandia National Laboratories: wind energy  

NLE Websites -- All DOE Office Websites (Extended Search)

Wind Energy Manufacturing Lab Helps Engineers Improve Wind Power On November 15, 2011, in Energy, News, Partnership, Renewable Energy, Wind Energy Researchers at the Wind Energy...

Note: This page contains sample records for the topic "wind phase evaluate" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


281

Wind Energy | Department of Energy  

Office of Environmental Management (EM)

Wind Energy Wind Energy Below are resources for Tribes on wind energy technologies. 2012 Market Report on Wind Technologies in Distributed Applications Includes a breakdown of...

282

Modelling and analysis of a novel wind turbine structure  

Science Journals Connector (OSTI)

This study introduces a novel wind turbine structure for an urban environment. A computational modelling has been conducted to investigate the effect of the new structure on the flow behaviour of entrance wind through the structure and the feasibility of the new wind turbine working at different wind speeds in an urban area. The wind flow behaviour through a chamber of the wind turbine structure has resulted in an increase of 1.3 times of the wind velocity at the outlet of the wind turbine. This is equivalent to 2.5 times increase of wind energy. The wind tunnel tests were carried out to validate the simulation results. There is a good correlation between the experimental and computational results. It is evident that the presented computational method can predict and evaluate the performance of this new type of shroud structure in an urban environment.

Xu Zhang; Yong K. Chen; Rajnish K. Calay

2013-01-01T23:59:59.000Z

283

Evaluation of Cloud-Phase Retrieval Methods for SEVIRI on Meteosat-8 Using Ground-Based Lidar and Cloud Radar Data  

E-Print Network (OSTI)

Evaluation of Cloud-Phase Retrieval Methods for SEVIRI on Meteosat-8 Using Ground-Based Lidar and Cloud Radar Data ERWIN L. A. WOLTERS, ROBERT A. ROEBELING, AND ARNOUT J. FEIJT Royal Netherlands 2007) ABSTRACT Three cloud-phase determination algorithms from passive satellite imagers are explored

Stoffelen, Ad

284

NREL: Wind Research - Small Wind Turbine Research  

NLE Websites -- All DOE Office Websites (Extended Search)

Small Wind Turbine Research Small Wind Turbine Research The National Renewable Energy Laboratory and U.S. Department of Energy (NREL/DOE) Small Wind Project's objectives are to reduce barriers to wind energy expansion, stabilize the market, and expand the number of small wind turbine systems installed in the United States. "Small wind turbine" refers to a turbine smaller than or equal to 100 kilowatts (kW). "Distributed wind" includes small and midsize turbines (100 kW through 1 megawatt [MW]). Since 1996, NREL's small wind turbine research has provided turbine testing, turbine development, and prototype refinement leading to more commercially available small wind turbines. Work is conducted under the following areas. You can also learn more about state and federal policies

285

Wind Vision Wind Farm | Open Energy Information  

Open Energy Info (EERE)

Wind Farm Wind Farm Jump to: navigation, search Name Wind Vision Wind Farm Facility Wind Vision Sector Wind energy Facility Type Commercial Scale Wind Facility Status In Service Owner Wind Vision Developer Wind Vision Location St. Ansgar IA Coordinates 43.348224°, -92.888816° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":43.348224,"lon":-92.888816,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

286

High Winds Wind Farm | Open Energy Information  

Open Energy Info (EERE)

Winds Wind Farm Winds Wind Farm Jump to: navigation, search Name High Winds Wind Farm Facility High Winds Sector Wind energy Facility Type Commercial Scale Wind Facility Status In Service Owner NextEra Energy Resources Developer NextEra Energy Resources Energy Purchaser PPM Energy Inc Location Solano County CA Coordinates 38.124844°, -121.764915° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":38.124844,"lon":-121.764915,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

287

NREL: Wind Research - Entegrity Wind Systems's EW50 Turbine Testing and  

NLE Websites -- All DOE Office Websites (Extended Search)

Entegrity Wind Systems's EW50 Turbine Testing and Results Entegrity Wind Systems's EW50 Turbine Testing and Results Entegrity Wind Systems' EW50 wind turbine. Text Version As part of the National Renewable Energy Laboratory and U.S. Department of Energy (NREL/DOE) Independent Testing project, NREL tested Entegrity Wind Systems' EW50 turbine at the National Wind Technology Center (NWTC). The EW50 is a 50-kilowatt (kW), three-bladed, horizontal-axis downwind small wind turbine. The turbine's rotor diameter is 15 meters, and its hub height is 30.5 meters. It has a three-phase induction generator that operates at 480 volts AC. Testing Summary The summary of the tests is listed below, along with the final reports. Cumulative Energy Production 3/11/2009: 17; 3/12/2009: 17; 3/13/2009: 17; 3/14/2009: 17; 3/15/2009: 17;

288

Aging of nuclear station diesel generators: Evaluation of operating and expert experience: Phase 1, Study  

SciTech Connect

Pacific Northwest Laboratory evaluated operational and expert experience pertaining to the aging degradation of diesel generators in nuclear service. The research, sponsored by the US Nuclear Regulatory Commission (NRC), identified and characterized the contribution of aging to emergency diesel generator failures. This report, Volume I, reviews diesel-generator experience to identify the systems and components most subject to aging degradation and isolates the major causes of failure that may affect future operational readiness. Evaluations show that as plants age, the percent of aging-related failures increases and failure modes change. A compilation is presented of recommended corrective actions for the failures identified. This study also includes a review of current, relevant industry programs, research, and standards. Volume II reports the results of an industry-wide workshop held on May 28 and 29, 1986 to discuss the technical issues associated with aging of nuclear service emergency diesel generators.

Hoopingarner, K.R.; Vause, J.W.; Dingee, D.A.; Nesbitt, J.F.

1987-08-01T23:59:59.000Z

289

Lake Michigan Offshore Wind Feasibility Assessment  

SciTech Connect

The purpose of this project was to conduct the first comprehensive offshore wind assessment over Lake Michigan and to advance the body of knowledge needed to support future commercial wind energy development on the Great Lakes. The project involved evaluation and selection of emerging wind measurement technology and the permitting, installation and operation of the first mid-lake wind assessment meteorological (MET) facilities in Michigans Great Lakes. In addition, the project provided the first opportunity to deploy and field test floating LIDAR and Laser Wind Sensor (LWS) technology, and important research related equipment key to the sitting and permitting of future offshore wind energy development in accordance with public participation guidelines established by the Michigan Great Lakes Wind Council (GLOW). The project created opportunities for public dialogue and community education about offshore wind resource management and continued the dialogue to foster Great Lake wind resource utilization consistent with the focus of the GLOW Council. The technology proved to be effective, affordable, mobile, and the methods of data measurement accurate. The public benefited from a substantial increase in knowledge of the wind resources over Lake Michigan and gained insights about the potential environmental impacts of offshore wind turbine placements in the future. The unique first ever hub height wind resource assessment using LWS technology over water and development of related research data along with the permitting, sitting, and deployment of the WindSentinel MET buoy has captured public attention and has helped to increase awareness of the potential of future offshore wind energy development on the Great Lakes. Specifically, this project supported the acquisition and operation of a WindSentinel (WS) MET wind assessment buoy, and associated research for 549 days over multiple years at three locations on Lake Michigan. Four research objectives were defined for the project including to: 1) test and validate floating LIDAR technology; 2) collect and access offshore wind data; 3) detect and measure bird and bat activity over Lake Michigan; 4) conduct an over water sound propagation study; 5) prepare and offer a college course on offshore energy, and; 6) collect other environmental, bathometric, and atmospheric data. Desk-top research was performed to select anchorage sites and to secure permits to deploy the buoy. The project also collected and analyzed data essential to wind industry investment decision-making including: deploying highly mobile floating equipment to gather offshore wind data; correlating offshore wind data with conventional on-shore MET tower data; and performing studies that can contribute to the advancement and deployment of offshore wind technologies. Related activities included: Siting, permitting, and deploying an offshore floating MET facility; Validating the accuracy of floating LWS using near shoreline cup anemometer MET instruments; Assessment of laser pulse technology (LIDAR) capability to establish hub height measurement of wind conditions at multiple locations on Lake Michigan; Utilizing an extended-season (9-10 month) strategy to collect hub height wind data and weather conditions on Lake Michigan; Investigation of technology best suited for wireless data transmission from distant offshore structures; Conducting field-validated sound propagation study for a hypothetical offshore wind farm from shoreline locations; Identifying the presence or absence of bird and bat species near wind assessment facilities; Identifying the presence or absence of benthic and pelagic species near wind assessment facilities; All proposed project activities were completed with the following major findings: Floating Laser Wind Sensors are capable of high quality measurement and recordings of wind resources. The WindSentinel presented no significant operational or statistical limitations in recording wind data technology at a at a high confidence level as compared to traditional an

Boezaart, Arnold [GVSU; Edmonson, James [GVSU; Standridge, Charles [GVSU; Pervez, Nahid [GVSU; Desai, Neel [University of Michigan; Williams, Bruce [University of Delaware; Clark, Aaron [GVSU; Zeitler, David [GVSU; Kendall, Scott [GVSU; Biddanda, Bopi [GVSU; Steinman, Alan [GVSU; Klatt, Brian [Michigan State University; Gehring, J. L. [Michigan State University; Walter, K. [Michigan State University; Nordman, Erik E. [GVSU

2014-06-30T23:59:59.000Z

290

Life-cycle cost analysis of floating offshore wind farms  

Science Journals Connector (OSTI)

Abstract The purpose of this article is to put forward a methodology in order to evaluate the Cost Breakdown Structure (CBS) of a Floating Offshore Wind Farm (FOWF). In this paper CBS is evaluated linked to Life-Cycle Cost System (LCS) and taking into account each of the phases of the FOWF life cycle. In this sense, six phases will be defined: definition, design, manufacturing, installation, exploitation and dismantling. Each and every one of these costs can be subdivided into different sub-costs in order to obtain the key variables that run the life-cycle cost. In addition, three different floating platforms will be considered: semisubmersible, Tensioned Leg Platform (TLP) and spar. Several types of results will be analysed according to each type of floating platform considered: the percentage of the costs, the value of the cost of each phase of the life-cycle and the value of the total cost in each point of the coast. The results obtained allow us to become conscious of what the most important costs are and minimize them, which is one of the most important contributions nowadays. It will be useful to improve the competitiveness of floating wind farms in the future.

Castro-Santos Laura; Diaz-Casas Vicente

2014-01-01T23:59:59.000Z

291

Evaluation of asbestos-abatement techniques. Phase 1. Removal. Final report  

SciTech Connect

Airborne asbestos levels were measured by transmission electron microscopy (TEM), scanning electron microscopy (SEM) and phase constrast microscopy (PCM) before, during, and after removal of sprayed-on acoustical plaster from the ceilings of four suburban schools. Air samples were collected at three types of sites: indoor sites with asbestos-containing material (ACM), indoor sites without ACM (indoor control), and sites outside the building (outdoor control). Bulk samples of the ACM were collected prior to the removal and analyzed by polarized light microscopy (PLM). A vigorous quality-assurance program was applied to all aspects of the study. Airborne asbestos levels were low before and after removal. Elevated, but still relatively low levels were measured outside the work area during removal. This emphasizes the need for careful containment of the work area.

Chesson, J.; Margeson, D.P.; Ogden, J.; Reichenbach, N.G.; Bauer, K.

1985-10-01T23:59:59.000Z

292

Wind pump systems  

Science Journals Connector (OSTI)

The application of wind mills for water pumping is of lesser importance ... it is useful to discuss this type of wind energy application in a wind energy book targeted at development and planning...

Prof. Dr.-Ing. Robert Gasch; Prof. Dr.-Ing. Jochen Twele

2012-01-01T23:59:59.000Z

293

NREL: Wind Research - Testing  

NLE Websites -- All DOE Office Websites (Extended Search)

the National Wind Technology Center (NWTC) support the installation and testing of wind turbines that range in size from 400 watts to 5.0 megawatts. Engineers provide wind...

294

Fixed Offshore Wind Turbines  

Science Journals Connector (OSTI)

In this chapter, a perspective of offshore wind farms, applied concepts for fixed offshore wind turbines, and related statistics are given. One example of a large wind farm, which is successfully operating, is st...

Madjid Karimirad

2014-01-01T23:59:59.000Z

295

Wind Power Today  

SciTech Connect

Wind Power Today is an annual publication that provides an overview of the wind energy research conducted by the U.S. Department of Energy Wind and Hydropower Technologies Program.

Not Available

2006-05-01T23:59:59.000Z

296

Wind Power Today  

SciTech Connect

Wind Power Today is an annual publication that provides an overview of the wind energy research conducted by the U.S. Department of Energy Wind and Hydropower Technologies Program.

Not Available

2007-05-01T23:59:59.000Z

297

Potential wind power generation in South Egypt  

Science Journals Connector (OSTI)

Egypt is one of the developing countries. The production of electricity in Egypt is basically on petroleum, natural gas, hydro-power and wind energy. The objective of this work to prove the availability of sufficient wind potential in the wide area of deep south Egypt for the operation of wind turbines there. Nevertheless, it gives in general an approximate profile which is useful to the wind parks design for this area. The data used in the calculation are published and analyzed for the first time. The diagrams of the measured wind data for three meteorological stations over a period of two years (wind speed, frequency, direction), wind shear coefficient, the mean monthly and annual wind speed profile for every location are presented. Monthly Weibull parameters, standard deviation and coefficient of variation have been statistically discussed. A comparison of the rose diagrams shows that the wind speed is more persistent and blow over this region of Egypt in two main sectors N and NNW with long duration of frequencies from 67% to 87% over the year with an average wind speed in the range 6.87.9m/s at the three stations. Evaluation of monthly wind energy density at 10m height by two different methods was carried out. And the final diagram for every site shows no significant difference between them. The annual natural wind energies at 70m A.G.L. lie between 333 and 377W/m2 for Dakhla South and Kharga stations, respectively, which is similar to the inland wind potential of Vindeby (Denmark) and some European countries. These results indicate that Kharga and Dakhla South locations are new explored sites for future wind power generation projects.

Ahmed Shata Ahmed

2012-01-01T23:59:59.000Z

298

Review of remote-sensor potential for wind-energy studies  

SciTech Connect

This report evaluates a number of remote-sensing systems such as radars, lidars, and acoustic echo sounders which are potential alternatives to the cup- and propeller anemometers routinely used in wind energy siting. The high costs and demanding operational requirements of these sensors currently preclude their use in the early stages of a multi-phase wind energy siting strategy such as that recently articulated by Hiester and Pennell (1981). Instead, these systems can be used most effectively in the lattermost stages of the siting process - what Hiester and Pennell (1981) refer to as the site development phase, necessary only for the siting of large wind-energy conversion systems (WECS) or WECS clusters. Even for this particular application only four techniques appear to be operational now; that is, if used properly, these techniques should provide the data sets currently considered adequate for wind-energy siting purposes. They are, in rough order of increasing expense and operating demands: optical transverse wind sensors; acoustic Doppler sounders; time-of-flight and continuous wave (CW) Doppler lidar; and frequency-modulated, continuous wave (FM-CW) Doppler radar.

Hooke, W.H.

1981-03-01T23:59:59.000Z

299

On the effect of spatial dispersion of wind power plants on the wind energy capacity credit  

Science Journals Connector (OSTI)

Wind energy is now a mature technology and can be considered as a significant contributor in reducing CO2 emissions and protecting the environment. To meet the wind energy national targets, effective implementation of massive wind power installed capacity in the power supply system is required. Additionally, capacity credit is an important issue for an unstable power supply system as in Greece. To achieve high and reliable wind energy penetration levels into the system, the effect of spatial dispersion of wind energy installations within a very wide area (e.g.national level) on the power capacity credit should be accounted for. In the present paper, a methodology for estimating the effect of spatial dispersion of wind farm installations on the capacity credit is presented and applied for the power supply system of Greece. The method is based on probability theory and makes use of wind forecasting models to represent the wind energy potential over any candidate area for future wind farm installations in the country. Representative wind power development scenarios are studied and evaluated. Results show that the spatial dispersion of wind power plants contributes beneficially to the wind capacity credit.

George Caralis; Yiannis Perivolaris; Konstantinos Rados; Arthouros Zervos

2008-01-01T23:59:59.000Z

300

Wind farm noise  

Science Journals Connector (OSTI)

Arrays of small wind turbines recently coined as wind farms offer several advantages over single larger wind turbines producing the same electrical power. Noise source characteristics of wind farms are also different from those associated with a single wind turbine. One?third octave band noise measurements from 2 Hz to 10 kHz have been made and will be compared to measurements of noise produced by a single large wind turbine. [J. R. Balombin Technical Memorandum 81486.

Gregory C. Tocci; Brion G. Koning

1981-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "wind phase evaluate" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


301

NREL: Wind Research - Offshore Wind Resource Characterization  

NLE Websites -- All DOE Office Websites (Extended Search)

Offshore Wind Resource Characterization Offshore Wind Resource Characterization Map of the United States, showing the wind potential of offshore areas across the country. Enlarge image US offshore wind speed estimates at 90-m height NREL scientists and engineers are leading efforts in resource mapping, remote sensor measurement and development, and forecasting that are essential for the development of offshore wind. Resource Mapping For more than 15 years, NREL's meteorologists, engineers, and Geographic Information System experts have led the production of wind resource characterization maps and reports used by policy makers, private industry, and other government organizations to inform and accelerate the development of wind energy in the United States. Offshore wind resource data and mapping has strategic uses. As with terrestrial developments, traditional

302

NREL: Wind Research - Midsize Wind Turbine Research  

NLE Websites -- All DOE Office Websites (Extended Search)

Midsize Wind Turbine Research Midsize Wind Turbine Research To facilitate the development and commercialization of midsize wind turbines (turbines with a capacity rating of more than 100 kW up to 1 MW), the U.S. Department of Energy (DOE) and NREL launched the Midsize Wind Turbine Development Project. In its latest study, NREL determined that there is a substantial market for midsize wind turbines. One of the most significant barriers to the midsize turbine market is the lack of turbines available for deployment; there are few midsize turbines on the market today. The objectives of the Midsize Wind Turbine Development Project are to reduce the barriers to wind energy expansion by filling an existing domestic technology gap; facilitate partnerships; accelerate maturation of existing U.S. wind energy businesses; and incorporate process improvement

303

Diablo Winds Wind Farm | Open Energy Information  

Open Energy Info (EERE)

Diablo Winds Wind Farm Diablo Winds Wind Farm Facility Diablo Winds Wind Farm Sector Wind energy Facility Type Commercial Scale Wind Facility Status In Service Owner NextEra Energy Resources Developer NextEra Energy Resources Energy Purchaser Pacific Gas & Electric Co Location Altamont Pass CA Coordinates 37.7347°, -121.652° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":37.7347,"lon":-121.652,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

304

Wind for Schools (Poster)  

SciTech Connect

As the United States dramatically expands wind energy deployment, the industry is challenged with developing a skilled workforce and addressing public resistance. Wind Powering America's Wind for Schools project addresses these issues by developing Wind Application Centers (WACs) at universities; WAC students assist in implementing school wind turbines and participate in wind courses, by installing small wind turbines at community "host" schools, by implementing teacher training with interactive curricula at each host school. This poster provides an overview of the first two years of the Wind for Schools project, primarily supporting activities in Colorado, Kansas, Nebraska, South Dakota, Montana, and Idaho.

Baring-Gould, I.

2010-05-01T23:59:59.000Z

305

Wind Turbine Tribology Seminar  

Energy.gov (U.S. Department of Energy (DOE))

Wind turbine reliability issues are often linked to failures of contacting components, such as bearings, gears, and actuators. Therefore, special consideration to tribological design in wind...

306

Wind energy bibliography  

SciTech Connect

This bibliography is designed to help the reader search for information on wind energy. The bibliography is intended to help several audiences, including engineers and scientists who may be unfamiliar with a particular aspect of wind energy, university researchers who are interested in this field, manufacturers who want to learn more about specific wind topics, and librarians who provide information to their clients. Topics covered range from the history of wind energy use to advanced wind turbine design. References for wind energy economics, the wind energy resource, and environmental and institutional issues related to wind energy are also included.

None

1995-05-01T23:59:59.000Z

307

Northern Wind Farm  

NLE Websites -- All DOE Office Websites (Extended Search)

a draft environmental assessment (EA) on the proposed interconnection of the Northern Wind Farm (Project) in Roberts County, near the city of Summit, South Dakota. Northern Wind,...

308

Wind Program News  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

eerewindwind-program-news en EERE Leadership Celebrates Offshore Wind in Maine http:energy.goveerearticleseere-leadership-celebrates-offshore-wind-maine

309

British wind band music.  

E-Print Network (OSTI)

??I have chosen to be assessed as an interpreter and conductor of British wind band music from the earliest writings for wind band up to, (more)

Jones, GO

2005-01-01T23:59:59.000Z

310

WINDExchange: Wind Energy Ordinances  

Wind Powering America (EERE)

Wind Energy Ordinances Federal, state, and local regulations govern many aspects of wind energy development. The exact nature of the project and its location will largely drive the...

311

Wind Program: WINDExchange  

Wind Powering America (EERE)

Version Bookmark and Share WINDExchange logo WINDExchange is the U.S. Department of Energy (DOE) Wind Program's platform for disseminating credible information about wind...

312

WINDExchange: Siting Wind Turbines  

Wind Powering America (EERE)

Wind Wildlife Institute (AWWI) facilitates timely and responsible development of wind energy, while protecting wildlife and wildlife habitat. AWWI was created and is sustained by...

313

WINDExchange: Collegiate Wind Competition  

Wind Powering America (EERE)

& Teaching Materials Resources Collegiate Wind Competition The U.S. Department of Energy (DOE) Collegiate Wind Competition challenges interdisciplinary teams of undergraduate...

314

ARM - Wind Chill Calculations  

NLE Websites -- All DOE Office Websites (Extended Search)

FAQ Just for Fun Meet our Friends Cool Sites Teachers Teachers' Toolbox Lesson Plans Wind Chill Calculations Wind Chill is the apparent temperature felt on the exposed human...

315

Tier I ecological evaluation for phase III channel improvements to the John. F. Baldwin ship channel  

SciTech Connect

To assist the US Army Corps of Engineers (USACE) in determing whether the material from proposed dredging of the John F. Baldwin Ship Channel (JFBSC) is suitable for unrestricted, unconfined open-ocean disposal, Battelle/Marine Sciences Laboratory (MSL) prepared this report. Based on these findings, sediments that would be removed during Phase III improvements to the JFBSC fail to meet the three suitability criteria for open-ocean disposal. Firstly, fine-grained sediments comprise a significant fraction of the bottom material in some areas of the channel, and this material is not exposed to high current or wave energy. Dredged material from the JFBSC is not being proposed for beach nourishment; therefore the second criterion is not met. JFBSC sediments do not meet the third criterion because, although they may be substantially similar to substrates at several of the proposed disposal sites, they are from an area that historically has experienced loading of contaminants, which toxicology studies have shown have the potential to result in acute toxicity or significant bioaccumulation.

Bienert, R.W.; Shreffler, D.K.; Word, J.Q.; Kohn, N.P. [Battelle/Marine Sciences Lab., Sequim, WA (United States)

1994-05-01T23:59:59.000Z

316

Wind Project Permitting | Open Energy Information  

Open Energy Info (EERE)

Project Permitting Project Permitting Jump to: navigation, search Invenergy is the developer of the 129-MW Forward Wind Energy Center project near Fond du Lac, Wisconsin, that came online in 2008. Photo by Ruth Baranowski, NREL 16412 As with other energy facility permitting processes, the goal of the wind project permitting process is to reach decisions that are timely, minimize challenges, and ensure compliance with laws and regulations that provide for necessary environmental protection.[1] Resources National Wind Coordinating Committee. (2002). Permitting of Wind Energy Facilities. Accessed August 28, 2013. This handbook is written for individuals and groups involved in evaluating wind projects: decision-makers and agency staff at all levels of government, wind developers, interested parties and the public.

317

Offshore winds using remote sensing techniques  

Science Journals Connector (OSTI)

Ground-based remote sensing instruments can observe winds at different levels in the atmosphere where the wind characteristics change with height: the range of heights where modern turbine rotors are operating. A six-month wind assessment campaign has been made with a LiDAR (Light Detection And Ranging) and a SoDAR (Sound Detection and Ranging) on the transformer/platform of the world's largest offshore wind farm located at the West coast of Denmark to evaluate their ability to observe offshore winds. The high homogeneity and low turbulence levels registered allow the comparison of LiDAR and SoDAR with measurements from cups on masts surrounding the wind farm showing good agreement for both the mean wind speed and the longitudinal component of turbulence. An extension of mean wind speed profiles from cup measurements on masts with LiDAR observations results in a good match for the free sectors at different wind speeds. The log-linear profile is fitted to the extended profiles (averaged over all stabilities and roughness lengths) and the deviations are small. Extended profiles of turbulence intensity are also shown for different wind speeds up to 161 m. Friction velocities and roughness lengths calculated from the fitted log-linear profile are compared with the Charnock model which seems to overestimate the sea roughness for the free sectors.

Alfredo Pea; Charlotte Bay Hasager; Sven-Erik Gryning; Michael Courtney; Ioannis Antoniou; Torben Mikkelsen; Paul Srensen

2007-01-01T23:59:59.000Z

318

Sandia National Laboratories: Wind Energy  

NLE Websites -- All DOE Office Websites (Extended Search)

specialprogramsslide5 windplantoptslide4 rotorinnovationslide3 offshorewindslide2 Materialsslide1 Wind Energy Wind Plant Optimization Materials,...

319

A Simplified Morphing Blade for Horizontal Axis Wind Turbines  

E-Print Network (OSTI)

A Simplified Morphing Blade for Horizontal Axis Wind Turbines Weijun WANG , St´ephane CARO, Fouad salinas@hotmail.com The aim of designing wind turbine blades is to improve the power capture ability by adjusting the twist of the blade's root and tip. To evaluate the performance of wind turbine blades

Recanati, Catherine

320

Phase 1 - Evaluation of a Functional Interconnect System for Solid Oxide Fuel Cells  

SciTech Connect

This project is focused on evaluating the suitability of materials and complex multi-materials systems for use as solid oxide fuel cell interconnects. ATI Allegheny Ludlum has generated promising results for interconnect materials which incorporate modified surfaces. Methods for producing these surfaces include cladding, which permits the use of novel materials, and modifications via unique thermomechanical processing, which allows for the modification of materials chemistry. The University of Pittsburgh is assisting in this effort by providing use of their in-place facilities for dual atmosphere testing and ASR measurements, along with substantial work to characterize post-exposure specimens. Carnegie Mellon is testing interconnects for chromia scale spallation resistance using macro-scale and nano-scale indentation tests. Chromia spallation can increase electrical resistance to unacceptable levels and interconnect systems must be developed that will not experience spallation within 40,000 hours at operating temperatures. Spallation is one of three interconnect failure mechanisms, the others being excessive growth of the chromia scale (increasing electrical resistance) and scale evaporation (which can poison the cathode). The goal of indentation fracture testing at Carnegie Mellon is to accelerate the evaluation of new interconnect systems (by inducing spalls at after short exposure times) and to use fracture mechanics to understand mechanisms leading to premature interconnect failure by spallation. Tests include bare alloys from ATI and coated systems from DOE Laboratories and industrial partners, using ATI alloy substrates. West Virginia University is working towards developing a cost-effective material for use as a contact material in the cathode chamber of the SOFC. Currently materials such as platinum are well suited for this purpose, but are cost-prohibitive. For the solid-oxide fuel cell to become a commercial reality it is imperative that lower cost components be developed. Based on the results obtained to date, it appears that sterling silver could be an inexpensive, dependable candidate for use as a contacting material in the cathode chamber of the solid-oxide fuel cell. Although data regarding pure silver samples show a lower rate of thickness reduction, the much lower cost of sterling silver makes it an attractive alternative for use in SOFC operation.

James M. Rakowski

2006-09-30T23:59:59.000Z

Note: This page contains sample records for the topic "wind phase evaluate" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


321

Estimation of capacity credit for wind power in Libya  

Science Journals Connector (OSTI)

This paper presents the results of a study that evaluated the wind potential at the central region of the Libyan coast and estimated the capacity credit of wind power in the national network. Several sites were investigated to choose the most suitable sites for wind farm establishment. Different sizes of Wind Energy Converter Systems (WECSs) were selected to estimate the wind potential. The sizes were selected to satisfy present and future market development as well as to satisfy technical, economic, and environmental aspects. Wind data from three meteorological stations in the proposed region were used in assessing the wind potential. The wind potential was estimated according to the characteristics of the sites and power curves of the WECSs, and considering certain assumptions. The results showed that the capacity credit varied from about 20% to 50%, depending on penetration levels of wind power, for the assumptions made in this study.

Wedad B. El-Osta; Mohamed Ali Ekhlat; Amal S. Yagoub; Yousef Khalifa; E. Borass

2005-01-01T23:59:59.000Z

322

Estimated global ocean wind power potential from QuikSCAT observations, accounting for turbine characteristics and siting  

E-Print Network (OSTI)

Evaluation of global wind power, J. Geophys. Res. , 110,2009), Global ocean wind power sensitivity to surface layerCO 2 reductions via offshore wind power matched to inherent

Capps, Scott B; Zender, Charles S

2010-01-01T23:59:59.000Z

323

Estimated global ocean wind power potential from QuikSCAT observations, accounting for turbine characteristics and siting  

E-Print Network (OSTI)

3. The sensitivity of wind power to height is then evaluatedthe sensitivity of wind power to height. At a height z37 ] The sensitivity of wind power to height is evaluated

Capps, Scott B; Zender, Charles S

2010-01-01T23:59:59.000Z

324

Environmental Impacts and Siting of Wind Projects | Department...  

Energy Savers (EERE)

Evaluation (IFT&E) effort, aimed at addressing the potential impacts of operating wind turbines on defense and civilian radar systems. The program characterized the impact of...

325

Domestic Demand Response to Increase the Value of Wind Power.  

E-Print Network (OSTI)

??This thesis describes a new method to evaluate the value of wind power combined with domestic demand response. The thesis gives a brief overview of (more)

Hamidi, Vandad

2009-01-01T23:59:59.000Z

326

West Winds Wind Farm | Open Energy Information  

Open Energy Info (EERE)

West Winds Wind Farm West Winds Wind Farm Facility West Winds Sector Wind energy Facility Type Commercial Scale Wind Facility Status In Service Owner Caithness Developer SeaWest Energy Purchaser Southern California Edison/PacifiCorp Location San Gorgonio CA Coordinates 33.9095°, -116.734° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":33.9095,"lon":-116.734,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

327

EA-1857: Wind Turbine Power Generation Complex at Idaho National Laboratory  

Energy.gov (U.S. Department of Energy (DOE))

This EA would evaluate the environmental impacts of the proposed wind turbine power generation complex at Idaho National Laboratory, Idaho.

328

Kickoff of Offshore Wind Power in China: Playoffs for China Wind Power Development  

Science Journals Connector (OSTI)

Year 2010 is the significant year of offshore wind power development in China. The first national offshore wind power project is connected to the grid, and the first round of concession projects marks the strong support from central government. It is foreseeable that offshore wind power capacity in China will expand rapidly in the future, and the understanding pattern of it is crucial for analyzing the overall wind market in China and global offshore wind power development. This paper firstly provides an overview of global offshore wind power development, then in China, including historical installation, potential of resources, demonstration and concession projects, and target of development. Based on this, analysis on current policies related to offshore wind power and their implementation, current wind farm developers and turbine manufacturers of China's offshore wind industry is done. All the previous analysis generates complete evaluation of current status and some issues and trends of China offshore wind power development, based on which some policy recommendations for sustainable development of offshore wind power are made.

Zhang Xiliang; Zhang Da; Michele Stua

2012-01-01T23:59:59.000Z

329

Howard County- Wind Ordinance  

Energy.gov (U.S. Department of Energy (DOE))

This ordinance sets up provisions for allowing small wind energy systems in various zoning districts.

330

Energy Yield Prediction of Offshore Wind Farm Clusters at the EERA-DTOC European Project  

Science Journals Connector (OSTI)

Abstract A new integrated design tool for optimization of offshore wind farm clusters is under development in the European Energy Research Alliance Design Tools for Offshore wind farm Cluster project (EERA DTOC). The project builds on already established design tools from the project partners and possibly third-party models. Wake models have been benchmarked on the Horns Rev and, currently, on the Lilgrund wind farm test cases. Dedicated experiments from BARD Offshore 1 wind farm will using scanning lidars will produce new data for the validation of wake models. Furthermore, the project includes power plant interconnection and energy yield models all interrelated with a simplified cost model for the evaluation of layout scenarios. The overall aim is to produce an efficient, easy to use and flexible tool - to facilitate the optimised design of individual and clusters of offshore wind farms. A demonstration phase at the end of the project will assess the value of the integrated design tool with the help of potential end-users from industry. This abstracts summarizes the objectives and preliminary results of work package 3. In order to provide an accurate value of the expected net energy yield, the offshore wind resource assessment process has been reviewed as well as the sources of uncertainty associated to each step. Methodologies for the assessment of offshore gross annual energy production are analyzed based on the Fino 1 test case. Measured data and virtual data from Numerical Weather Prediction models have been used to calculate long term wind speed, wind profile and gross energy.

E. Cantero; C.B. Hasager; P.-E. Rthor; A. Pea; K. Hansen; J. Badger; J.G. Schepers; L.M. Faiella; D. Iuga; G. Giebel; S. Lozano; J. Sanz; G. Sieros; P. Stuart; T. Young; A. Palomares; J. Navarro

2014-01-01T23:59:59.000Z

331

EVALUATION OF THOR MINERALIZED WASTE FORMS FOR THE DOE ADVANCED REMEDIATION TECHNOLOGIES PHASE 2 PROJECT  

SciTech Connect

The U.S. Department of Energy's (DOE) Office of River Protection (ORP) is responsible for the retrieval, treatment, immobilization, and disposal of Hanford's tank waste. Currently there are approximately 56 million gallons of highly radioactive mixed wastes awaiting treatment. A key aspect of the River Protection Project (RPP) cleanup mission is to construct and operate the Waste Treatment and Immobilization Plant (WTP). The WTP will separate the tank waste into high-level and low-activity waste (LAW) fractions, both of which will subsequently be vitrified. The projected throughput capacity of the WTP LAW Vitrification Facility is insufficient to complete the RPP mission in the time frame required by the Hanford Federal Facility Agreement and Consent Order, also known as the Tri-Party Agreement (TPA), i.e. December 31, 2047. Therefore, Supplemental Treatment is required both to meet the TPA treatment requirements as well as to more cost effectively complete the tank waste treatment mission. The Supplemental Treatment chosen will immobilize that portion of the retrieved LAW that is not sent to the WTP's LAW Vitrification facility into a solidified waste form. The solidified waste will then be disposed on the Hanford site in the Integrated Disposal Facility (IDF). In addition, the WTP LAW Vitrification facility off-gas condensate known as WTP Secondary Waste (WTP-SW) will be generated and enriched in volatile components such as Cs-137, I-129, Tc-99, Cl, F, and SO{sub 4} that volatilize at the vitrification temperature of 1150 C in the absence of a continuous cold cap. The current waste disposal path for the WTP-SW is to recycle it to the supplemental LAW treatment to avoid a large steady state accumulation in the pretreatment-vitrification loop. Fluidized Bed Steam Reforming (FBSR) offers a moderate temperature (700-750 C) continuous method by which LAW and/or WTP-SW wastes can be processed irrespective of whether they contain organics, nitrates, sulfates/sulfides, chlorides, fluorides, volatile radionuclides or other aqueous components. The FBSR technology can process these wastes into a crystalline ceramic (mineral) waste form. The mineral waste form that is produced by co-processing waste with kaolin clay in an FBSR process has been shown to be as durable as LAW glass. Monolithing of the granular FBSR product, which is one of the objectives of this current study, is being investigated to prevent dispersion during transport or burial/storage but is not necessary for performance. FBSR testing of a Hanford LAW simulant and a WTP-SW simulant at the pilot scale was performed by THOR Treatment Technologies, LLC at Hazen Research Inc. in April/May 2008. The Hanford LAW simulant was the Rassat 68 tank blend and the target concentrations for the LAW was increased by a factor of 10 for Sb, As, Ag, Cd, and Tl; 100 for Ba and Re (Tc surrogate); 1,000 for I; and 254,902 for Cs based on discussions with the DOE field office and the environmental regulators and an evaluation of the Hanford Tank Waste Envelopes A, B, and C. It was determined through the evaluation of the actual tank waste metals concentrations that some metal levels were not sufficient to achieve reliable detection in the off-gas sampling. Therefore, the identified metals concentrations were increased in the Rassat simulant processed by TTT at HRI to ensure detection and enable calculation of system removal efficiencies, product retention efficiencies, and mass balance closure without regard to potential results of those determinations or impacts on product durability response such as Toxicity Characteristic Leach Procedure (TCLP). A WTP-SW simulant based on melter off-gas analyses from Vitreous State Laboratory (VSL) was also tested at HRI in the 15-inch diameter Engineering Scale Test Demonstration (ESTD) dual reformer at HRI in 2008. The target concentrations for the Resource Conservation and Recovery Act (RCRA) metals were increased by 16X for Se, 29X for Tl, 42X for Ba, 48X for Sb, by 100X for Pb and Ni, 1000X for Ag, and 1297X for Cd to ensure detection by the an

Crawford, C.; Jantzen, C.

2012-02-02T23:59:59.000Z

332

WIND DATA REPORT Ragged Mt Maine  

E-Print Network (OSTI)

...................................................................................................................... 8 Wind Speed Time Series............................................................................................................. 9 Wind Speed Distributions........................................................................................................... 9 Monthly Average Wind Speeds

Massachusetts at Amherst, University of

333

Washington Phase II Fish Diversion Screen Evaluations in the Yakima River Basin, 2004-2005 Annual Report.  

SciTech Connect

In 2004, the Pacific Northwest National Laboratory (PNNL) evaluated 25 Phase II fish screen sites in the Yakima River Basin as part of a multi-year project for the Bonneville Power Administration on the effectiveness of fish screening devices. PNNL collected data to determine whether velocities in front of the screens and in the bypasses met the National Oceanic and Atmospheric Administration Fisheries (NOAA Fisheries, formerly the National Marine Fisheries Service (NMFS)) criteria to promote safe and timely fish passage. In addition, PNNL conducted underwater video surveys to evaluate the environmental and operational conditions of the screen sites with respect to fish passage. Based on evaluations in 2004, PNNL concluded that: (1) In general, water velocity conditions at the screen sites met fish passage criteria set by NOAA Fisheries. (2) Conditions at most facilities would be expected to provide for safe juvenile fish passage. (3) Automated cleaning brushes generally functioned properly; chains and other moving parts were typically well-greased and operative. (4) Removal of sediment buildup and accumulated leafy and woody debris could be improved at some sites. (5) Conditions at some facilities indicate that operation and/or maintenance should be modified to improve passage conditions for juvenile fish. For example, Taylor has had problems meeting bypass flow and submergence operating criteria since the main river channel shifted away from the site 2 years ago, and Fruitvale consistently has had problems meeting bypass flow criteria when the water is low. (6) Continued problems at Gleed point to design flaws. This site should be considered for redesign or replacement.

Vucelick, Jessica; McMichael, Geoffrey; Chamness, Mickie [Pacific Northwest National Laboratory

2006-02-01T23:59:59.000Z

334

Improvements in Low-Frequency, Ultrasonic Phased-Array Evaluation for Thick Section Cast Austenitic Stainless Steel Piping Components  

SciTech Connect

Research is being conducted for the U.S. Nuclear Regulatory Commission (NRC) at the Pacific Northwest National Laboratory (PNNL) to assess the effectiveness and reliability of advanced nondestructive examination (NDE) methods for the inspection of light water reactor (LWR) components. A primary objective of this work is to evaluate various NDE methods to assess their ability to detect, localize, and size cracks in coarse-grained steel components. This particular study focused on the evaluation of custom-designed, low-frequency (500 kHz) phased-array (PA) probes for examining welds in thick-section cast austenitic stainless steel (CASS) piping. In addition, research was conducted to observe ultrasonic sound field propagation effects from known coarse-grained microstructures found in parent CASS material. The study was conducted on a variety of thick-wall, coarse-grained CASS specimens that were previously inspected by an older generation 500-kHz PA-UT probe and acquisition instrument configuration. This comparative study describes the impact of the new PA probe design on flaw detection and sizing in a low signal-to-noise environment. The set of Pressurized Water Reactor Owners Group (PWROG) CASS specimens examined in this study are greater than 50.8-mm (2.0-in.) thick with documented flaws and microstructures. These specimens are on loan to PNNL from the Electric Power Research Institute (EPRI) NDE Center in Charlotte, North Carolina. The flaws contained within these specimens are thermal fatigue cracks (TFC) or mechanical fatigue cracks (MFC) and range from 13% to 42% in through-wall extent. In addition, ultrasonic signal continuity was evaluated on two CASS parent material ring sections by examining the edge-of-pipe response (corner geometry) for regions of signal loss.

Anderson, Michael T.; Crawford, Susan L.; Diaz, Aaron A.; Moran, Traci L.

2010-12-01T23:59:59.000Z

335

Wind Powering America  

Wind Powering America (EERE)

These news items are notable additions These news items are notable additions to the Wind Powering America Web site. The Wind Powering America Web site reports recent national and state wind market changes by cataloging wind activities such as wind resource maps, small wind consumer's guides, local wind workshops, news articles, and publications in the areas of policy, public power, small wind, Native Americans, agricultural sector, economic development, public lands, and schools. en-us julie.jones@nrel.gov (Julie Jones) http://www.windpoweringamerica.gov/images/wpa_logo_sm.jpg Wind Powering America http://www.windpoweringamerica.gov/ Nominate an Electric Cooperative for Wind Power Leadership Award by January 15 http://www.windpoweringamerica.gov/filter_detail.asp?itemid=4076 http://www.windpoweringamerica.gov/filter_detail.asp?itemid=4076 Mon, 16

336

Wind Energy 101 | Open Energy Information  

Open Energy Info (EERE)

Energy 101 Energy 101 Jump to: navigation, search The 63-MW Dry Lake Wind Power Project in Arizona is the first utility-scale power project. The Salt River Project is purchasing 100% of the power from the Phase I of this project for the next 20 years. Photo from Iberdrola Renewables, NREL 16692 Wind is a form of solar energy and is a result of the uneven heating of the atmosphere by the sun, the irregularities of the earth's surface, and the rotation of the earth. Wind flow patterns and speeds vary greatly across the United States and are modified by bodies of water, vegetation, and differences in terrain. Humans use this wind flow, or motion energy, for many purposes: sailing, flying a kite, and even generating electricity.[1] The following links provide more information about wind energy basics.

337

New England Wind Forum: New England Wind Resources  

Wind Powering America (EERE)

New England Wind Forum About the New England Wind Forum New England Wind Energy Education Project Historic Wind Development in New England State Activities Projects in New England Building Wind Energy in New England Wind Resources Wind Power Technology Economics Markets Siting Policy Technical Challenges Issues Small Wind Large Wind Newsletter Perspectives Events Quick Links to States CT MA ME NH RI VT Bookmark and Share New England Wind Resources Go to the Vermont wind resource map. Go to the New Hampshire wind resource map. Go to the Maine wind resource map. Go to the Massachusetts wind resource map. Go to the Connecticut wind resource map. Go to the Rhode Island wind resource map. New England Wind Resource Maps Wind resources maps of Connecticut, Massachusetts, Maine, New Hampshire, Rhode Island, and Vermont.

338

Wind Resource Maps (Postcard)  

SciTech Connect

The U.S. Department of Energy's Wind Powering America initiative provides high-resolution wind maps and estimates of the wind resource potential that would be possible from development of the available windy land areas after excluding areas unlikely to be developed. This postcard is a marketing piece that stakeholders can provide to interested parties; it will guide them to Wind Powering America's online wind energy resource maps.

Not Available

2011-07-01T23:59:59.000Z

339

Wind energy offers considerable promise; the wind itself is free,  

E-Print Network (OSTI)

Wind energy offers considerable promise; the wind itself is free, wind power is clean. One of these sources, wind energy, offers considerable promise; the wind itself is free, wind power is clean, and it is virtually inexhaustible. In recent years, research on wind energy has accelerated

Langendoen, Koen

340

Surface wind speed distributions| Implications for climate and wind power.  

E-Print Network (OSTI)

?? Surface constituent and energy fluxes, and wind power depend non-linearly on wind speed and are sensitive to the tails of the wind distribution. Until (more)

Capps, Scott Blair

2010-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "wind phase evaluate" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


341

Wind power resource assessment in complex urban environments: MIT campus case-study using CFD Analysis  

E-Print Network (OSTI)

around buildings. The software model has been used to evaluate the wind energy potential on the campus-site. Comparisons between the measurements and the predicted wind speeds allowed validation of the software results of Technology, 2Meteodyn Objectives Conclusions References [1] TopoWind software, User Manual [2] Wind Resource

342

Statistical Characterization of Zonal and Meridional Ocean Wind Stress SARAH T. GILLE  

E-Print Network (OSTI)

fully captures the range of extreme wind events seen in the raw swath data. Frequency spectraStatistical Characterization of Zonal and Meridional Ocean Wind Stress SARAH T. GILLE Scripps) ABSTRACT Four years of ocean vector wind data are used to evaluate statistics of wind stress over the ocean

Gille, Sarah T.

343

Wind | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Wind Wind Wind America is home to one of the largest and fastest growing wind markets in the world. Watch the video to learn more about the latest trends in the U.S. wind power market and join us this Thursday, August 8 at 3 pm ET for a Google+ Hangout on wind energy in America. The United States is home to one of the largest and fastest growing wind markets in the world. To stay competitive in this sector, the Energy Department invests in wind projects, both on land and offshore, to advance technology innovations, create job opportunities and boost economic growth. Moving forward, the U.S. wind industry remains a critical part of the Energy Department's all-of-the-above energy strategy to cut carbon pollution, diversify our energy economy and bring the next-generation of

344

Offshore Wind Projects | Department of Energy  

Office of Environmental Management (EM)

Offshore Wind Projects Offshore Wind Projects This report covers the Wind and Water Power Program's offshore wind energy projects from fiscal years 2006 to 2014. Offshore Wind...

345

NREL: Wind Research - Offshore Wind Research  

NLE Websites -- All DOE Office Websites (Extended Search)

standards Third-party design verification of innovative floating and fixed-bottom wind turbines NREL's standards and testing capabilities address the need to validate our...

346

2012 Wind Technologies Market Report  

E-Print Network (OSTI)

Colorado: Xcel Energy. 2012 Wind Technologies Market ReportOperator. 2012 Wind Technologies Market Report Chadbourne &Power Company. 2012 Wind Technologies Market Report EnerNex

Wiser, Ryan

2014-01-01T23:59:59.000Z

347

2011 Wind Technologies Market Report  

E-Print Network (OSTI)

2010. SPP WITF Wind Integration Study. Little Rock,GE Energy. 2011a. Oahu Wind Integration Study Final Report.PacifiCorp. 2010. 2010 Wind Integration Study. Portland,

Bolinger, Mark

2013-01-01T23:59:59.000Z

348

NREL: Wind Research - @NWTC Newsletter  

NLE Websites -- All DOE Office Websites (Extended Search)

NREL Investigates the Logistics of Transporting and Installing Bigger, Taller Wind Turbines NREL Plays Founding, Developmental Role in Major Wind Journal Boosting Wind Plant...

349

2012 Wind Technologies Market Report  

E-Print Network (OSTI)

Department of Energy (DOE). 2008. 20% Wind Energy by2030: Increasing Wind Energys Contribution to U.S.Integrating Midwest Wind Energy into Southeast Electricity

Wiser, Ryan

2014-01-01T23:59:59.000Z

350

Sandia National Laboratories: Wind Power  

NLE Websites -- All DOE Office Websites (Extended Search)

Wind Energy Staff On March 24, 2011, in Wind Energy On November 10, 2010, in Wind Plant Opt. Rotor Innovation Materials, Reliability & Standards Siting & Barrier Mitigation...

351

Sandia National Laboratories: wind manufacturing  

NLE Websites -- All DOE Office Websites (Extended Search)

manufacturing Wind Energy Manufacturing Lab Helps Engineers Improve Wind Power On November 15, 2011, in Energy, News, Partnership, Renewable Energy, Wind Energy Researchers at the...

352

Accretion vs colliding wind models for the gamma-ray binary LS I +61 303: an assessment  

E-Print Network (OSTI)

LS I +61 303 is a puzzling Be/X-ray binary with variable gamma-ray emission at up TeV energies. The nature of the compact object and the origin of the high-energy emission are unclear. One family of models invokes particle acceleration in shocks from the collision between the B-star wind and a relativistic pulsar wind, while another centers on a relativistic jet powered by accretion. Recent high-resolution radio observations showing a putative "cometary tail" pointing away from the Be star near periastron have been cited as support for the pulsar-wind model. We wish here to carry out a quantitative assessment of these competing models for this extraordinary source. We apply a 3D SPH code for dynamical simulations of both the pulsar-wind-interaction and accretion-jet models. The former yields a description of the shape of the wind-wind interaction surface. The latter provides an estimation of the accretion rate. The results allow critical evaluation of how the two distinct models confront the data in various wavebands under a range of conditions. When one accounts for the 3D dynamical wind interaction under realistic constraints for the relative strength of the B-star and pulsar winds, the resulting form of the interaction front does not match the putative "cometary tail" claimed from radio observations. On the other hand, dynamical simulations of the accretion-jet model indicate that the orbital phase variation of accretion power includes a secondary broad peak well away from periastron, thus providing a plausible way to explain the observed TeV gamma ray emission toward apastron. We conclude that the colliding-wind model is not clearly established for LS I +61 303, while the accretion-jet model can reproduce many key characteristics of the observed TeV gamma-ray emission.

G. E. Romero; A. T. Okazaki; M. Orellana; S. P. Owocki

2007-06-09T23:59:59.000Z

353

NREL: Wind Research - Environmental Impacts Research  

NLE Websites -- All DOE Office Websites (Extended Search)

Environmental Impacts Research Environmental Impacts Research Photo of a Greater Prairie-Chicken. Credit: James Shroyer. NREL is a partner in the Grassland Shrub Steppe Species Collaborative, a multi-year effort to study wind turbines in prairie chicken habitat. The Wind Program at NREL works to resolve environmental issues that may hinder acceptance of wind energy technologies. The program accomplishes this through activities that address the potential effects of wind development on wildlife and identifies corresponding mitigation strategies. As part of this effort, the program supports the work of the National Wind Coordinating Collaborative (NWCC) Wildlife Workgroup, which is focused on collaborative approaches for understanding and evaluating species- and habitat-specific impacts, mitigation tools, risk assessment, and nocturnal

354

Searchlight Wind Energy Project FEIS Appendix F  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

F F Page | F 22B Appendix F: Literature Review of Socioeconomic Effects of Wind Project and Transmission Lines Searchlight Wind Energy Project FEIS Appendix F Page | 1 Prepared for" The Bureau of Land Management For the Searchlight Wind Energy Project Prepared by Bootstrap Solutions 752 E. Braemere Road Boise, ID 83702 Literature on Property Value Impacts of Wind Projects The economic effects of wind energy projects have been well documented. Several studies that have evaluated potential property value impacts are highlighted below (organized chronologically). No clear inference can be drawn from these studies and available research as the analyses vary in terms of rigor; methodology (e.g., survey sampling, statistical analysis, and expert opinion); size, location and site

355

Installing and Maintaining a Small Wind Electric System | Department of  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Installing and Maintaining a Small Wind Electric System Installing and Maintaining a Small Wind Electric System Installing and Maintaining a Small Wind Electric System July 2, 2012 - 8:22pm Addthis Installing and Maintaining a Small Wind Electric System What does this mean for me? When installing a wind system, the location of the system, the energy budget for the site, the size of the system, and the height of the tower are important elements to consider. Deciding whether to connect the system to the electric grid or not is also an important decision. If you went through the planning steps to evaluate whether a small wind electric system will work at your location, you will already have a general idea about: The amount of wind at your site The zoning requirements and covenants in your area The economics, payback, and incentives of installing a wind system

356

EA-1903: Kansas State University Zond Wind Energy Project, Manhattan,  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

3: Kansas State University Zond Wind Energy Project, 3: Kansas State University Zond Wind Energy Project, Manhattan, Kansas EA-1903: Kansas State University Zond Wind Energy Project, Manhattan, Kansas SUMMARY This EA evaluates the potential environmental impacts of a proposal to use Congressional Directed funds to develop the Great Plains Wind Energy Consortium aimed at increasing the penetration of wind energy via distributed wind power generation throughout the region. PUBLIC COMMENT OPPORTUNITIES None available at this time. DOCUMENTS AVAILABLE FOR DOWNLOAD October 21, 2013 EA-1903: Notice of Extension Kansas State University Zond Wind Energy Project, Manhattan, Kansas September 11, 2013 EA-1903: Draft Environmental Assessment Kansas State University Zond Wind Energy Project, Manhattan, Kansas September 11, 2013

357

NREL: Wind Research - Projects  

NLE Websites -- All DOE Office Websites (Extended Search)

Projects Projects NREL's wind energy research and development projects focus on reducing the cost of wind technology and expanding access to wind energy sites. Our specialized technical expertise, comprehensive design and analysis tools, and unique testing facilities help industry overcome challenges to bringing new wind technology to the marketplace. Some of these success stories are described in NREL's Wind R&D Success Stories. We also work closely with universities and other national laboratories supporting fundamental research in wind technologies, including aerodynamics, aeroacoustics, and material sciences essential in the development of new blade technologies and advanced controls, power electronics, and testing to further refine drivetrain topology.

358

Wind power today  

SciTech Connect

This publication highlights initiatives of the US DOE`s Wind Energy Program. 1997 yearly activities are also very briefly summarized. The first article describes a 6-megawatt wind power plant installed in Vermont. Another article summarizes technical advances in wind turbine technology, and describes next-generation utility and small wind turbines in the planning stages. A village power project in Alaska using three 50-kilowatt turbines is described. Very brief summaries of the Federal Wind Energy Program and the National Wind Technology Center are also included in the publication.

NONE

1998-04-01T23:59:59.000Z

359

Wind Power Career Chat  

SciTech Connect

This document will teach students about careers in the wind energy industry. Wind energy, both land-based and offshore, is expected to provide thousands of new jobs in the next several decades. Wind energy companies are growing rapidly to meet America's demand for clean, renewable, and domestic energy. These companies need skilled professionals. Wind power careers will require educated people from a variety of areas. Trained and qualified workers manufacture, construct, operate, and manage wind energy facilities. The nation will also need skilled researchers, scientists, and engineers to plan and develop the next generation of wind energy technologies.

Not Available

2011-01-01T23:59:59.000Z

360

Wind energy information guide  

SciTech Connect

This book is divided into nine chapters. Chapters 1--8 provide background and annotated references on wind energy research, development, and commercialization. Chapter 9 lists additional sources of printed information and relevant organizations. Four indices provide alphabetical access to authors, organizations, computer models and design tools, and subjects. A list of abbreviations and acronyms is also included. Chapter topics include: introduction; economics of using wind energy; wind energy resources; wind turbine design, development, and testing; applications; environmental issues of wind power; institutional issues; and wind energy systems development.

NONE

1996-04-01T23:59:59.000Z

Note: This page contains sample records for the topic "wind phase evaluate" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


361

GREENHOUSE GAS EMISSIONS CONTROL BY OXYGEN FIRING IN CIRCULATING FLUID BED BOILERS (Phase II--Evaluation of the Oxyfuel CFB Concept)  

SciTech Connect

The overall project goal is to determine if carbon dioxide can be captured and sequestered at a cost of about $10/ton of carbon avoided, using a newly constructed Circulating Fluidized Bed combustor while burning coal with a mixture of oxygen and recycled flue gas, instead of air. This project is structured in two Phases. Phase I was performed between September 28, 2001 and May 15, 2002. Results from Phase I were documented in a Topical Report issued on May 15, 2003 (Nsakala, et al., 2003), with the recommendation to evaluate, during Phase II, the Oxyfuel-fired CFB concept. DOE NETL accepted this recommendation, and, hence approved the project continuation into Phase II. Phase 2. The second phase of the project--which includes pilot-scale tests of an oxygen-fired circulating fluidized bed test facility with performance and economic analyses--is currently underway at ALSTOM's Power Plant Laboratories, located in Windsor, CT (US). The objective of the pilot-scale testing is to generate detailed technical data needed to establish advanced CFB design requirements and performance when firing coals and delayed petroleum coke in oxygen/carbon dioxide mixtures. Results will be used in the design of oxygen-fired CFB boilers--both retrofit and new Greenfield--as well as to provide a generic performance database for other researchers. At the conclusion of Phase 2, revised costs and performance will be estimated for both retrofit and new Greenfield design concepts with CO2 capture, purification, compression, and liquefaction.

John L. Marion; Nsakala ya Nsakala

2003-11-09T23:59:59.000Z

362

Wind Powering America: A Key Influence on U.S. Wind Market (Fact Sheet)  

SciTech Connect

This fact sheet summarizes an evaluation of the effectiveness of the Wind Powering America initiative conducted by an independent consultant funded by the U.S. Department of Energy.

O'Dell, K.

2013-09-01T23:59:59.000Z

363

EA-1726: Kahuku Wind Power, LLC Wind Power Generation Facility...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

6: Kahuku Wind Power, LLC Wind Power Generation Facility, O'ahu, HI EA-1726: Kahuku Wind Power, LLC Wind Power Generation Facility, O'ahu, HI May 3, 2010 EA-1726: Final...

364

Women of Wind Energy Honor Wind Program Researchers | Department...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Women of Wind Energy Honor Wind Program Researchers Women of Wind Energy Honor Wind Program Researchers August 1, 2013 - 2:54pm Addthis This is an excerpt from the Second Quarter...

365

Review of Wind Energy Forecasting Methods for Modeling Ramping Events  

SciTech Connect

Tall onshore wind turbines, with hub heights between 80 m and 100 m, can extract large amounts of energy from the atmosphere since they generally encounter higher wind speeds, but they face challenges given the complexity of boundary layer flows. This complexity of the lowest layers of the atmosphere, where wind turbines reside, has made conventional modeling efforts less than ideal. To meet the nation's goal of increasing wind power into the U.S. electrical grid, the accuracy of wind power forecasts must be improved. In this report, the Lawrence Livermore National Laboratory, in collaboration with the University of Colorado at Boulder, University of California at Berkeley, and Colorado School of Mines, evaluates innovative approaches to forecasting sudden changes in wind speed or 'ramping events' at an onshore, multimegawatt wind farm. The forecast simulations are compared to observations of wind speed and direction from tall meteorological towers and a remote-sensing Sound Detection and Ranging (SODAR) instrument. Ramping events, i.e., sudden increases or decreases in wind speed and hence, power generated by a turbine, are especially problematic for wind farm operators. Sudden changes in wind speed or direction can lead to large power generation differences across a wind farm and are very difficult to predict with current forecasting tools. Here, we quantify the ability of three models, mesoscale WRF, WRF-LES, and PF.WRF, which vary in sophistication and required user expertise, to predict three ramping events at a North American wind farm.

Wharton, S; Lundquist, J K; Marjanovic, N; Williams, J L; Rhodes, M; Chow, T K; Maxwell, R

2011-03-28T23:59:59.000Z

366

Study of Pu consumption in light water reactors: Evaluation of GE advanced boiling water reactor plants, compilation of Phase 1C task reports  

SciTech Connect

This report summarizes the evaluations conducted during Phase 1C of the Pu Disposition Study have provided further results which reinforce the conclusions reached during Phase 1A & 1B: These conclusions clearly establish the benefits of the fission option and the use of the ABWR as a reliable, proven, well-defined and cost-effective means available to disposition the weapons Pu. This project could be implemented in the near-term at a cost and on a schedule being validated by reactor plants currently under construction in Japan and by cost and schedule history and validated plans for MOX plants in Europe. Evaluations conducted during this phase have established that (1) the MOX fuel is licensable based on existing criteria for new fuel with limited lead fuel rod testing, (2) that the applicable requirements for transport, handling and repository storage can be met, and (3) that all the applicable safeguards criteria can be met.

Not Available

1994-01-15T23:59:59.000Z

367

2008 Wind Energy Projects, Wind Powering America (Poster)  

SciTech Connect

The Wind Powering America program produces a poster at the end of every calendar year that depicts new U.S. wind energy projects. The 2008 poster includes the following projects: Stetson Wind Farm in Maine; Dutch Hill Wind Farm in New York; Grand Ridge Wind Energy Center in Illinois; Hooper Bay, Alaska; Forestburg, South Dakota; Elbow Creek Wind Project in Texas; Glacier Wind Farm in Montana; Wray, Colorado; Smoky Hills Wind Farm in Kansas; Forbes Park Wind Project in Massachusetts; Spanish Fork, Utah; Goodland Wind Farm in Indiana; and the Tatanka Wind Energy Project on the border of North Dakota and South Dakota.

Not Available

2009-01-01T23:59:59.000Z

368

Sandia National Laboratories: Sandia Develops Tool to Evaluate...  

NLE Websites -- All DOE Office Websites (Extended Search)

Converters Study Compares Floating-Platform Options for Offshore Vertical-Axis Wind Turbines Sandia Develops Tool to Evaluate Wind-TurbineRadar Impacts On December 3, 2014,...

369

DOE/NREL Advanced Wind Turbine Development Program  

SciTech Connect

The development of technologically advanced, high-efficiency wind turbines continues to be a high-priority activity of the US wind industry. The National Renewable Energy Laboratory (formerly the Solar Energy Research Institute), sponsored by the US Department of Energy (DOE), has initiated the Advanced Wind Turbine Program to assist the wind industry in the development of a new class of advanced wind turbines. The initial phase of the program focused on developing conceptual designs for near-term and advanced turbines. The goal of the second phase of this program is to use the experience gained over the last decade of turbine design and operation combined with the latest existing design tools to develop a turbine that will produce energy at $0.05 per kilowatt-hour (kWh) in a 5.8-m/s (13-mph) wind site. Three contracts have been awarded, and two more are under negotiation in the second phase. The third phase of the program will use new innovations and state-of-the-art wind turbine design technology to produce a turbine that will generate energy at $0.04/kWh in a 5.8-m/s wind site. Details of the third phase will be announced in early 1993.

Butterfield, C.P.; Smith, B.; Laxson, A.; Thresher, B. [National Renewable Energy Lab., Golden, CO (United States)] [National Renewable Energy Lab., Golden, CO (United States); Goldman, P. [USDOE Assistant Secretary for Conservation and Renewable Energy, Washington, DC (United States). Wind/Hydro/Ocean Technologies Div.] [USDOE Assistant Secretary for Conservation and Renewable Energy, Washington, DC (United States). Wind/Hydro/Ocean Technologies Div.

1993-05-01T23:59:59.000Z

370

Hualapai Wind Project Feasibility Report  

SciTech Connect

The Hualapai Department of Planning and Economic Development, with funding assistance from the U.S. Department of Energy, Tribal Energy Program, with the aid of six consultants has completed the four key prerequisites as follows: 1. Identify the site area for development and its suitability for construction. 2. Determine the wind resource potential for the identified site area. 3. Determine the electrical transmission and interconnection feasibility to get the electrical power produced to the marketplace. 4. Complete an initial permitting and environmental assessment to determine the feasibility for getting the project permitted. Those studies indicated a suitable wind resource and favorable conditions for permitting and construction. The permitting and environmental study did not reveal any fatal flaws. A review of the best power sale opportunities indicate southern California has the highest potential for obtaining a PPA that may make the project viable. Based on these results, the recommendation is for the Hualapai Tribal Nation to move forward with attracting a qualified wind developer to work with the Tribe to move the project into the second phase - determining the reality factors for developing a wind project. a qualified developer will bid to a utility or negotiate a PPA to make the project viable for financing.

Davidson, Kevin [Hualapai Tribe] [Hualapai Tribe; Randall, Mark [Daystar Consulting] [Daystar Consulting; Isham, Tom [Power Engineers] [Power Engineers; Horna, Marion J [MJH Power Consulting LLC] [MJH Power Consulting LLC; Koronkiewicz, T [SWCA Environmental, Inc.] [SWCA Environmental, Inc.; Simon, Rich [V-Bar, LLC] [V-Bar, LLC; Matthew, Rojas [Squire Sanders Dempsey] [Squire Sanders Dempsey; MacCourt, Doug C. [Ater Wynne, LLP] [Ater Wynne, LLP; Burpo, Rob [First American Financial Advisors, Inc.] [First American Financial Advisors, Inc.

2012-12-20T23:59:59.000Z

371

Western Wind and Solar Integration Study (Fact Sheet)  

SciTech Connect

Initiated in 2007 to examine the operational impact of up to 35% penetration of wind, photovoltaic (PV), and concentrating solar power (CSP) energy on the electric power system, the Western Wind and Solar Integration Study (WWSIS) is one of the largest regional wind and solar integration studies to date. The goal is to understand the effects of variability and uncertainty of wind, PV, and CSP on the grid. In the Western Wind and Solar Integration Study Phase 1, solar penetration was limited to 5%. Utility-scale PV was not included because of limited capability to model sub-hourly, utility-scale PV output . New techniques allow the Western Wind and Solar Integration Study Phase 2 to include high penetrations of solar - not only CSP and rooftop PV but also utility-scale PV plants.

Not Available

2012-09-01T23:59:59.000Z

372

NREL: Wind Research - National Wind Technology Center  

NLE Websites -- All DOE Office Websites (Extended Search)

Center Center The National Renewable Energy Laboratory's (NREL's) National Wind Technology Center (NWTC), located at the base of the foothills just south of Boulder, Colorado, is the nation's premier wind energy technology research facility. Built in 1993, the center provides an ideal environment for the development of advanced wind energy technologies. The goal of the research conducted at the center is to help industry reduce the cost of energy so that wind can compete with traditional energy sources, providing a clean, renewable alternative for our nation's energy needs. Research at the NWTC is organized under two main categories, Wind Technology Development and Testing and Operations. Illustration of the National Wind Technology Center's organization chart. Fort Felker is listed as the Center Director, with Mike Robinson, Deputy Center Director; Paul Veers, Chief Engineer, and Laura Davis and Dorothy Haldeman beneath him. The Associate Director position is empty. Beneath them is the Wind Technology Research and Development Group Manager, Mike Robinson; the Testing and Operations Group Manager, Dave Simms; and the Offshore Wind and Ocean Power Systems Acting Supervisor, Fort Felker.

373

Surface Wind Direction Variability  

Science Journals Connector (OSTI)

Common large shifts of wind direction in the weak-wind nocturnal boundary layer are poorly understood and are not adequately captured by numerical models and statistical parameterizations. The current study examines 15 datasets representing a ...

Larry Mahrt

2011-01-01T23:59:59.000Z

374

GSA Wind Supply Opportunity  

Office of Environmental Management (EM)

Wind Supply Opportunity 1 2 3 Proposed Location * Size: 100-210 MegaWatts *Location: Bureau County, IL *Planned COD: December 2014 or 2015 *Site Control: 17,000 acres *Wind...

375

Scale Models & Wind Turbines  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Scale Models and Wind Turbines Grades: 5-8, 9-12 Topics: Wind Energy Owner: Kidwind Project This educational material is brought to you by the U.S. Department of Energy's Office of...

376

Distributed Wind 2015  

Energy.gov (U.S. Department of Energy (DOE))

Distributed Wind 2015 is committed to the advancement of both distributed and community wind energy. This two day event includes a Business Conference with sessions focused on advancing the...

377

Competitive Wind Grants (Vermont)  

Energy.gov (U.S. Department of Energy (DOE))

The Clean Energy Development Fund Board will offer a wind grant program beginning October 1, 2013. The grant program will replace the wind incentives that were originally part of the [http:/...

378

NREL: Wind Research - Awards  

NLE Websites -- All DOE Office Websites (Extended Search)

Awards NREL has received many awards for its technical innovations in wind energy. In addition, the research conducted at the National Wind Technology Center (NWTC) at NREL has led...

379

Talbot County- Wind Ordinance  

Energy.gov (U.S. Department of Energy (DOE))

This ordinance amends the Talbot County Code, Chapter 190, Zoning, Subdivision and Land Development, to permit small wind turbine systems with wind turbine towers not to exceed 160 feet in total...

380

Wind Career Map  

K-12 Energy Lesson Plans and Activities Web site (EERE)

This wind career map explores an expanding universe of wind energy occupations, describing diverse jobs across the industry, charting possible progression between them, and identifying the high-quality training necessary to do them well.

Note: This page contains sample records for the topic "wind phase evaluate" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


381

WINDExchange: Wind Events  

Wind Powering America (EERE)

Sun, 15 Feb 2015 00:00:00 MST 2015 Iowa Wind Power Conference and Iowa Wind Energy Association Midwest Regional Energy Job Fair http:www.iowawindenergy.org...

382

WINDExchange: Wind Potential Capacity  

Wind Powering America (EERE)

area with a gross capacity factor1 of 35% and higher, which may be suitable for wind energy development. AWS Truepower LLC produced the wind resource data with a spatial...

383

Offshore wind metadata management  

Science Journals Connector (OSTI)

Offshore wind energy is gaining more and more attention from industry and research community due to its high potential in producing green energy and lowering price on electricity consumption. However, offshore wind is facing many challenges, and hence ...

Trinh Hoang Nguyen; Rocky Dunlap; Leo Mark; Andreas Prinz; Bjrn Mo stgren; Trond Friis

2014-10-01T23:59:59.000Z

384

Wind Resource Assessment in Europe Using Emergy  

E-Print Network (OSTI)

In context of increasing use of renewable sources, it is of importance to correctly evaluate the actual sustainability of their implementation. Emergy analysis is one of the possible methods useful for such an assessment. This work aims to demonstrate how the emergy approach can be used to assess the sustainability of wind energy resource in Europe. The Emergy Index of Sustainability (EIS) and the Emergy Yield Ratio (EYR) are used to analyze 90 stations of European regions for three types of wind turbines. To do so, the simplified Chou wind turbine model is used for different set of parameters as: nominal power and size of the wind turbines, and cut-in and cut-out wind speeds. Based on the calculation of the emergy indices, a mapping is proposed to identify the most appropriate locations for an implementation of wind turbines in European regions. The influence of the wind turbine type on the sustainability is also analyzed, in link with the local wind resource. Thus, it is concluded that the emergy sustainabi...

Paudel, Subodh; Martin, Viktoria; Lacarriere, Bruno; Corre, Olivier Le

2015-01-01T23:59:59.000Z

385

Performance Indicators of Wind Energy Production  

E-Print Network (OSTI)

Modeling wind speed is one of the key element when dealing with the production of energy through wind turbines. A good model can be used for forecasting, site evaluation, turbines design and many other purposes. In this work we are interested in the analysis of the future financial cash flows generated by selling the electrical energy produced. We apply an indexed semi-Markov model of wind speed that has been shown, in previous investigation, to reproduce accurately the statistical behavior of wind speed. The model is applied to the evaluation of financial indicators like the Internal Rate of Return, semi-Elasticity and relative Convexity that are widely used for the assessment of the profitability of an investment and for the measurement and analysis of interest rate risk. We compare the computation of these indicators for real and synthetic data. Moreover, we propose a new indicator that can be used to compare the degree of utilization of different power plants.

D'Amico, G; Prattico, F

2015-01-01T23:59:59.000Z

386

2008 WIND TECHNOLOGIES MARKET REPORT  

E-Print Network (OSTI)

Prepared for the Utility Wind Integration Group. Arlington,Wind Logics, Inc. 2004. Wind Integration StudyFinal Report.EnerNex Corp. 2006. Wind Integration Study for Public

Bolinger, Mark

2010-01-01T23:59:59.000Z

387

How Do Wind Turbines Work?  

Energy.gov (U.S. Department of Energy (DOE))

Instead of using electricity to make wind, like a fan, wind turbines use wind to make electricity. The wind turns the blades, which spin a shaft, which connects to a generator and makes electricity.

388

WINDExchange: Wind Basics and Education  

Wind Powering America (EERE)

locate higher education and training programs. Learn about Wind Learn about how wind energy generates power; where the best wind resources are; how you can get wind power; and...

389

WINDExchange: What Is Wind Power?  

Wind Powering America (EERE)

animation to see how a wind turbine works or take a look inside. Wind power or wind energy describes the process by which the wind is used to generate mechanical power or...

390

The Wind at Our Backs  

Science Journals Connector (OSTI)

...uncertainty that chills U.S. wind farm development. He...serious challenge of siting wind turbines in the United States...a community college wind training program, and...and the nation's first offshore wind project near Nantucket...

Dan Reicher

2012-05-11T23:59:59.000Z

391

Will 10 MW Wind Turbines Bring Down the Operation and Maintenance Cost of Offshore Wind Farms?  

Science Journals Connector (OSTI)

Abstract Larger wind turbines are believed to be advantageous from an investment and installation perspective, since costs for installation and inner cabling are dependent mainly on the number of wind turbines and not their size. Analogously, scaling up the turbines may also be argued to be advantageous from an operation and maintenance (O&M) perspective. For a given total power production of the wind farm, larger wind turbines give a smaller number of individual machines that needs to be maintained and could therefore give smaller O&M costs. However, the O&M costs are directly dependent on how failure rates, spare part costs, and time needed by technicians to perform each maintenance task and will develop for larger wind turbines. A simulation study is carried out with a discrete-event simulation model for the operational phase of an offshore wind farm, comparing the O&M costs of a wind farm consisting of 5 MW turbines with a wind farm consisting of 10 MW turbines. Simulation results confirm that O&M costs decrease when replacing two 5 MW turbines by one 10 MW turbine, if the total production capacity and all other parameters are kept equal. However, whether larger wind turbines can contribute to a reduction of cost of energy from an O&M perspective is first and foremost dependent on how the failure rates and maintenance durations for such wind turbines will develop compared to 5 MW wind turbines. Based on the results of this analysis, it is concluded that higher failure rates and maintenance durations rapidly are counterbalancing the benefits of larger wind turbines.

Matthias Hofmann; Iver Bakken Sperstad

2014-01-01T23:59:59.000Z

392

Kent County- Wind Ordinance  

Energy.gov (U.S. Department of Energy (DOE))

This ordinance establishes provisions and standards for small wind energy systems in various zoning districts in Kent County, Maryland.

393

Wind Energy Markets, 2. edition  

SciTech Connect

The report provides an overview of the global market for wind energy, including a concise look at wind energy development in key markets including installations, government incentives, and market trends. Topics covered include: an overview of wind energy including the history of wind energy production and the current market for wind energy; key business drivers of the wind energy market; barriers to the growth of wind energy; key wind energy trends and recent developments; the economics of wind energy, including cost, revenue, and government subsidy components; regional and national analyses of major wind energy markets; and, profiles of key wind turbine manufacturers.

NONE

2007-11-15T23:59:59.000Z

394

2009 Wind Technologies Market Report  

E-Print Network (OSTI)

is located in Europe. In contrast, all wind power projectsin Europe. In 2009, for example, more wind power was

Wiser, Ryan

2010-01-01T23:59:59.000Z

395

CONGRESSIONAL BRIEFING Offshore Wind  

E-Print Network (OSTI)

CONGRESSIONAL BRIEFING Offshore Wind Lessons Learned from Europe: Reducing Costs and Creating Jobs Thursday, June 12, 2014 Capitol Visitors Center, Room SVC 215 Enough offshore wind capacity to power six the past decade. What has Europe learned that is applicable to a U.S. effort to deploy offshore wind off

Firestone, Jeremy

396

Offshore Wind Potential Tables  

Wind Powering America (EERE)

Offshore wind resource by state and wind speed interval within 50 nm of shore. Wind Speed at 90 m (ms) 7.0 - 7.5 7.5 - 8.0 8.0 - 8.5 8.5 - 9.0 9.0 - 9.5 9.5 - 10.0 >10.0 Total...

397

Offshore wind energy systems  

Science Journals Connector (OSTI)

Wind energy systems deployed in the shallow but windy waters of the southern North Sea have the potential to provide more than 20% of UK electricity needs. With existing experience of windmills, and of aircraft and offshore structures, such wind energy systems could be developed within a relatively short timescale. A preliminary assessment of the economics of offshore wind energy systems is encouraging.

P Musgrove

1978-01-01T23:59:59.000Z

398

Making Offshore Wind Areas Available for Leasing  

Energy.gov (U.S. Department of Energy (DOE))

When the U.S. Department of the Interior's Bureau of Ocean Energy Management (BOEM) needed a process to delineate the bureau's proposed offshore Wind Energy Areas (WEA) into auctionable leasing areas, the agency turned to DOE's National Renewable Energy Laboratory (NREL). Under an interagency agreement, wind energy experts from NREL helped develop a process to evaluate BOEM's designated offshore WEAs in terms of energy production, resource, water depth, and other physical criteria and delineate specific WEAs into two or more leasing areas.

399

New England Wind Forum: New England Wind Projects  

Wind Powering America (EERE)

Projects in New England Building Wind Energy in New England Wind Resource Wind Power Technology Economics Markets Siting Policy Technical Challenges Issues Small Wind Large Wind Newsletter Perspectives Events Quick Links to States CT MA ME NH RI VT Bookmark and Share New England Wind Projects This page shows the location of installed and planned New England wind projects. Find windfarms, community-scale wind projects, customer-sited wind projects, small wind projects, and offshore wind projects. Read more information about how to use the Google Map and how to add your wind project to the map. Text version New England Wind Energy Projects Connecticut, East Canaan Wind Connecticut, Klug Farm Connecticut, Phoenix Press Connecticut, Wind Colebrook (South and North)

400

Evaluation of Flygt Mixers for Application in Savannah River Site Tank 19 Test Results from Phase B: Mid-Scale Testing at PNNL  

SciTech Connect

Pacific Northwest National Laboratory (PNNL) performed mixer tests using 3-kW (4-hp) Flygt mixers in 1.8- and 5.7-m-diameter tanks at the 336 building facility in Richland, Washington to evaluate candidate scaling relationships for Flygt mixers used for sludge mobilization and particle suspension. These tests constituted the second phase of a three-phase test program involving representatives from ITT Flygt Corporation, the Savannah River Site (SRS), the Oak Ridge National Laboratory (ORNL), and PNNL. The results of the first phase of tests, which were conducted at ITT Flygt's facility in a 0.45-m-diameter tank, are documented in Powell et al. (1999). Although some of the Phase B tests were geometrically similar to selected Phase A tests (0.45-m tank), none of the Phase B tests were geometrically, cinematically, and/or dynamically similar to the planned Tank 19 mixing system. Therefore, the mixing observed during the Phase B tests is not directly indicative of the mixing expected in Tank 19 and some extrapolation of the data is required to make predictions for Tank 19 mixing. Of particular concern is the size of the mixer propellers used for the 5.7-m tank tests. These propellers were more than three times larger than required by geometric scaling of the Tank 19 mixers. The implications of the lack of geometric similarity, as well as other factors that complicate interpretation of the test results, are discussed in Section 5.4.

Powell, M.R.; Combs, W.H.; Farmer, J.R.; Gladki, H.; Hatchell, B.K.; Johnson, M.A.; Poirier, M.R.; Rodwell, P.O.

1999-03-30T23:59:59.000Z

Note: This page contains sample records for the topic "wind phase evaluate" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


401

Wind: wind speed and wind power density maps at 10m and 50m above...  

Open Energy Info (EERE)

files of wind speed and wind power density at 10 and 50 m heights. Global data of offshore wind resource as generated by NASA's QuikSCAT SeaWinds scatterometer....

402

Wind: wind speed and wind power density GIS data at 10m and 50m...  

Open Energy Info (EERE)

files of wind speed and wind power density at 10 and 50 m heights. Global data of offshore wind resource as generated by NASA's QuikScat SeaWinds scatterometer....

403

Comparison of Wake Model Simulations with Offshore Wind Turbine Wake Profiles Measured by Sodar  

Science Journals Connector (OSTI)

This paper gives an evaluation of most of the commonly used models for predicting wind speed decrease (wake) downstream of a wind turbine. The evaluation is based on six experiments where free-stream and wake wind speed profiles were measured ...

R. J. Barthelmie; G. C. Larsen; S. T. Frandsen; L. Folkerts; K. Rados; S. C. Pryor; B. Lange; G. Schepers

2006-07-01T23:59:59.000Z

404

Prairie Winds Wind Farm | Open Energy Information  

Open Energy Info (EERE)

Prairie Winds Wind Farm Prairie Winds Wind Farm Facility Prairie Winds Sector Wind energy Facility Type Commercial Scale Wind Facility Status In Service Owner Basin Electric Power Coop/Central Power Electric Coop Developer Basin Electric Power Coop/Central Power Electric Coop Energy Purchaser Basin Electric Power Coop/Central Power Electric Coop Location Near Minot ND Coordinates 48.022927°, -101.291435° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":48.022927,"lon":-101.291435,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

405

Wind energy | Open Energy Information  

Open Energy Info (EERE)

(Redirected from Wind) (Redirected from Wind) Jump to: navigation, search Wind energy is a form of solar energy.[1] Wind energy (or wind power) describes the process by which wind is used to generate electricity. Wind turbines convert the kinetic energy in the wind into mechanical power. A generator can convert mechanical power into electricity[2]. Mechanical power can also be utilized directly for specific tasks such as pumping water. The US DOE developed a short wind power animation that provides an overview of how a wind turbine works and describes the wind resources in the United States. Contents 1 Wind Energy Basics 1.1 Equation for Wind Power 2 DOE Wind Programs and Information 3 Worldwide Installed Capacity 3.1 United States Installed Capacity 4 Wind Farm Development 4.1 Land Requirements

406

Vertical axis wind turbine  

SciTech Connect

Wind turbines are largely divided into vertical axis wind turbines and propeller (Horizontal axis) wind turbines. The present invention discloses a vertical axis high speed wind turbine provided with a starting and braking control system. This vertical axis wind turbine is formed by having blades of a proper airfoil fitted to respective supporting arms provided radially from a vertical rotary axis by keeping the blade span-wise direction in parallel with the axis and being provided with a low speed control windmill in which the radial position of each operating piece varies with a centrifugal force produced by the rotation of the vertical rotary axis.

Kato, Y.; Seki, K.; Shimizu, Y.

1981-01-27T23:59:59.000Z

407

Vertical axis wind turbine  

SciTech Connect

Wind turbines are largely divided into vertical axis wind turbines and propeller (Horizontal axis) wind turbines. The present invention discloses a vertical axis high speed wind turbine provided with rotational speed control systems. This vertical axis wind turbine is formed by having blades of a proper airfoil fitted to respective supporting arms provided radially from a vertical rotating shaft by keeping the blade span-wise direction in parallel with the shaft and being provided with aerodynamic control elements operating manually or automatically to control the rotational speed of the turbine.

Kato, Y.; Seki, K.; Shimizu, Y.

1981-01-27T23:59:59.000Z

408

Evaluation of Mixed-Phase Cloud Parameterizations in Short-Range Weather Forecasts with CAM3 and AM2 for Mixed-Phase Arctic Cloud Experiment  

SciTech Connect

By making use of the in-situ data collected from the recent Atmospheric Radiation Measurement Mixed-Phase Arctic Cloud Experiment, we have tested the mixed-phase cloud parameterizations used in the two major U.S. climate models, the National Center for Atmospheric Research Community Atmosphere Model version 3 (CAM3) and the Geophysical Fluid Dynamics Laboratory climate model (AM2), under both the single-column modeling framework and the U.S. Department of Energy Climate Change Prediction Program-Atmospheric Radiation Measurement Parameterization Testbed. An improved and more physically based cloud microphysical scheme for CAM3 has been also tested. The single-column modeling tests were summarized in the second quarter 2007 Atmospheric Radiation Measurement metric report. In the current report, we document the performance of these microphysical schemes in short-range weather forecasts using the Climate Chagne Prediction Program Atmospheric Radiation Measurement Parameterizaiton Testbest strategy, in which we initialize CAM3 and AM2 with realistic atmospheric states from numerical weather prediction analyses for the period when Mixed-Phase Arctic Cloud Experiment was conducted.

Xie, S; Boyle, J; Klein, S; Liu, X; Ghan, S

2007-06-01T23:59:59.000Z

409

Performance evaluation of polymer/clay nanocomposite thermal protection systems based on polyethylene glycol phase change material  

Science Journals Connector (OSTI)

Phase change materials (PCMs) are substances with a high ... can be utilized in designing the heat protective materials as well as in the thermal energy...

Ahmad Reza Bahramian; Leila Sadat Ahmadi; Mehrdad Kokabi

2014-03-01T23:59:59.000Z

410

Hawaii Utility Integration Initiatives to Enable Wind (Wind HUI) Final Technical Report  

SciTech Connect

To advance the state and nation toward clean energy, Hawaii is pursuing an aggressive Renewable Portfolio Standard (RPS), 40% renewable generation and 30% energy efficiency and transportation initiatives by 2030. Additionally, with support from federal, state and industry leadership, the Hawaii Clean Energy Initiative (HCEI) is focused on reducing Hawaii's carbon footprint and global warming impacts. To keep pace with the policy momentum and changing industry technologies, the Hawaiian Electric Companies are proactively pursuing a number of potential system upgrade initiatives to better manage variable resources like wind, solar and demand-side and distributed generation alternatives (i.e. DSM, DG). As variable technologies will continue to play a significant role in powering the future grid, practical strategies for utility integration are needed. Hawaiian utilities are already contending with some of the highest penetrations of renewables in the nation in both large-scale and distributed technologies. With island grids supporting a diverse renewable generation portfolio at penetration levels surpassing 40%, the Hawaiian utilities experiences can offer unique perspective on practical integration strategies. Efforts pursued in this industry and federal collaborative project tackled challenging issues facing the electric power industry around the world. Based on interactions with a number of western utilities and building on decades of national and international renewable integration experiences, three priority initiatives were targeted by Hawaiian utilities to accelerate integration and management of variable renewables for the islands. The three initiatives included: Initiative 1: Enabling reliable, real-time wind forecasting for operations by improving short-term wind forecasting and ramp event modeling capabilities with local site, field monitoring; Initiative 2: Improving operators situational awareness to variable resources via real-time grid condition monitoring using PMU devices and enhanced grid analysis tools; and Initiative 3: Identifying grid automation and smart technology architecture retrofit/improvement opportunities following a systematic review approach, inclusive of increasing renewables and variable distributed generation. Each of the initiative was conducted in partnership with industry technology and equipment providers to facilitate utility deployment experiences inform decision making, assess supporting infrastructure cost considerations, showcase state of the technology, address integration hurdles with viable workarounds. For each initiative, a multi-phased approach was followed that included 1) investigative planning and review of existing state-of-the-art, 2) hands on deployment experiences and 3) process implementation considerations. Each phase of the approach allowed for mid-course corrections, process review and change to any equipment/devices to be used by the utilities. To help the island grids transform legacy infrastructure, the Wind HUI provided more systematic approaches and exposure with vendor/manufacturers, hand-on review and experience with the equipment not only from the initial planning stages but through to deployment and assessment of field performance of some of the new, remote sensing and high-resolution grid monitoring technologies. HELCO became one of the first utilities in the nation to install and operate a high resolution (WindNet) network of remote sensing devices such as radiometers and SODARs to enable a short-term ramp event forecasting capability. This utility-industry and federal government partnership produced new information on wind energy forecasting including new data additions to the NOAA MADIS database; addressed remote sensing technology performance and O&M (operations and maintenance) challenges; assessed legacy equipment compatibility issues and technology solutions; evaluated cyber-security concerns; and engaged in community outreach opportunities that will help guide Hawaii and the nation toward more reliable adoption of clean energy resources. Resu

Dora Nakafuji; Lisa Dangelmaier; Chris Reynolds

2012-07-15T23:59:59.000Z

411

Implementation and economical study of HAWT under different wind scenarios  

Science Journals Connector (OSTI)

Abstract Wind energy has seen a tremendous growth over the past decade and continues to grow into a major player into the renewable energy market. More than 3% of global electricity supply comes from wind power in 2012. The technology continues to mature thereby reducing the deployment cost at a value competing with the least expensive natural gas power plant. Diligent analysis of the wind including average wind speed, wind gust, boundary layer, seasonal and diurnal wind pattern adding to land mortgage, public perception, road and grid accessibility are all key factors for successful and profitable wind turbine implementation. In this work, the implementation of wind energy in Abu Dhabi was considered. In this study the annual wind data recorded every 10min at Masdar metrological station over a period of three years from 2010 to 2012 are analyzed. The probability density distributions are derived from time series data and the distributional parameters are identified. It is followed by fitting the measured wind data with the maximum likelihood Weibull distribution. The power curves of two commercially available horizontal axis wind turbines (HAWTs) a large size 600kW and small size 3.5kW are coupled with the modelled data to account for the annual energy production and capacity factor. Considering the turbine efficiency, economical study that evaluates the cost of wind energy implementation, returns on investment are conducted accounting for capital cost, annuity, depreciation and operation and maintenance.

Franklyn Kanyako; Isam Janajreh

2014-01-01T23:59:59.000Z

412

Energy in the Wind  

NLE Websites -- All DOE Office Websites (Extended Search)

Provi and BP Energy in the Wind - Exploring Basic Electrical Concepts by Modeling Wind Turbines Curriculum: Wind Power (simple machines, aerodynamics, weather/climatology, leverage, mechanics, atmospheric pressure, and energy resources/transformations) Grade Level: High School Small groups: 2 students Time: Introductory packet will take 2-3 periods. Scientific investigation will take 2-3 periods. (45-50 minute periods) Summary: Students explore basic electrical concepts. Students are introduced to electrical concepts by using a hand held generator utilizing a multimeter, modeling, and designing a wind turbine in a wind tunnel (modifications are given if a wind tunnel is not available). Students investigate how wind nergy is used as a renewable energy resource. e

413

NREL: Wind Research - Publications  

NLE Websites -- All DOE Office Websites (Extended Search)

Publications Publications The NREL wind research program develops publications about its R&D activities in wind energy technologies. Below you'll find links to recently published publications, links to the NREL Avian Literature and Publications Databases, and information about the Technical Library at the National Wind Technology Center (NWTC). The NWTC's quarterly newsletter, @NWTC, contains articles on current wind energy research projects and highlights the latest reports, papers, articles, and events published or sponsored by NREL. Subscribe to @NWTC. Selected Publications Featured Publication Large-scale Offshore Wind Power in the United States: Assessment of Opportunities and Barriers Here are some selected NWTC publications: 2011 Cost of Wind Energy Review Built-Environment Wind Turbine Roadmap

414

Offshore wind metadata management  

Science Journals Connector (OSTI)

Offshore wind energy is gaining more and more attention from industry and research community due to its high potential in producing green energy and lowering price on electricity consumption. However, offshore wind is facing many challenges, and hence it is still expensive to install in large scale. It therefore needs to be considered from different aspects of technologies in order to overcome these challenges. One of the problems of the offshore wind is that information comes from different sources with diversity in types and format. Besides, there are existing wind databases that should be utilised in order to enrich the knowledge base of the wind domain. This paper describes an approach to managing offshore wind metadata effectively using semantic technologies. An offshore wind ontology has been developed. The semantic gap between the developed ontology and the relational database is investigated. A prototype system has been developed to demonstrate the use of the ontology.

Trinh Hoang Nguyen; Rocky Dunlap; Leo Mark; Andreas Prinz; Bjørn Mo ?stgren; Trond Friisø

2014-01-01T23:59:59.000Z

415

Wind energy conversion system  

DOE Patents (OSTI)

The wind energy conversion system includes a wind machine having a propeller connected to a generator of electric power, the propeller rotating the generator in response to force of an incident wind. The generator converts the power of the wind to electric power for use by an electric load. Circuitry for varying the duty factor of the generator output power is connected between the generator and the load to thereby alter a loading of the generator and the propeller by the electric load. Wind speed is sensed electro-optically to provide data of wind speed upwind of the propeller, to thereby permit tip speed ratio circuitry to operate the power control circuitry and thereby optimize the tip speed ratio by varying the loading of the propeller. Accordingly, the efficiency of the wind energy conversion system is maximized.

Longrigg, Paul (Golden, CO)

1987-01-01T23:59:59.000Z

416

Wind-energy assessment for the western Pacific based on ship reports  

SciTech Connect

Over 468,000 wind reports from ships traversing the Pacific Islands (Micronesia) affiliated with the United States have been examined. From these data, maps were prepared of annual and seasonal average wind speed and wind energy density and wind rose summaries for 100 2/sup 0/ by 5/sup 0/ (latitude by longitude) boxes. The Northern Marshall Islands possess the best wind energy resource in the region, the Northern Marianas the next best. Tropical storms exert a limited influence on the wind statistics. Future research should first concentrate on evaluating wind characteristics on one atoll, and then on one high island.

Schroeder, T.A.; Hori, A.M.

1982-11-01T23:59:59.000Z

417

Department of Mechanical and Nuclear Engineering Spring 2011 Wind Tunnel Automation Project  

E-Print Network (OSTI)

PENNSTATE Department of Mechanical and Nuclear Engineering Spring 2011 Wind Tunnel Automation Project Phase II - Automated Bike Turret Mount Overview SYNERGE LLC is a consulting company working

Demirel, Melik C.

418

Examining the Impact of Surface Currents on Satellite Scatterometer and Altimeter Ocean Winds  

Science Journals Connector (OSTI)

A 5-yr dataset collected over two surface current and meteorological moorings allows rigorous evaluation of questions surrounding wavecurrent interaction and the scatterometer. Results demonstrate that scatterometer winds represent winds relative ...

Amanda M. Plagge; Douglas Vandemark; Bertrand Chapron

2012-12-01T23:59:59.000Z

419

New England Wind Forum: Buying Wind Power  

Wind Powering America (EERE)

Buying Wind Power Buying Wind Power On this page find information about: Green Marketing Renewable Energy Certificates Green Pricing Green Marketing Green power marketing refers to selling green power in the competitive marketplace, in which multiple suppliers and service offerings exist. In states that have established retail competition, customers may be able to purchase green power from a competitive supplier. Connecticut Connecticut Clean Energy Options Beginning in April 2005, Connecticut's two investor-owned utilities, Connecticut Light and Power and United Illuminating, began to offer a simple, affordable program to their customers for purchasing clean energy such as wind power. In late 2006, stakeholders started to explore a new offering that would convey the price stability of wind energy (and other renewable energy resources) to Connecticut consumers. This new offering is still under development.

420

EA-1792: University of Maine's Deepwater Offshore Floating Wind Turbine  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

EA-1792: University of Maine's Deepwater Offshore Floating Wind EA-1792: University of Maine's Deepwater Offshore Floating Wind Turbine Testing and Demonstration Project, Gulf of Maine EA-1792: University of Maine's Deepwater Offshore Floating Wind Turbine Testing and Demonstration Project, Gulf of Maine Summary This EA evaluates the environmental impacts of a proposal to support research on floating offshore wind turbine platforms. This project would support the mission, vision, and goals of DOE's Office of Energy Efficiency and Renewable Energy Wind and Water Power Program to improve performance, lower costs, and accelerate deployment of innovative wind power technologies. Development of offshore wind energy technologies would help the nation reduce its greenhouse gas emissions, diversify its energy supply, provide cost-competitive electricity to key coastal regions, and

Note: This page contains sample records for the topic "wind phase evaluate" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


421

New Report: Integrating More Wind and Solar Reduces Utilities...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Carbon Emissions and Fuel Costs October 1, 2013 - 3:51pm Addthis The National Renewable Energy Laboratory (NREL) released Phase 2 of the Western Wind and Solar Integration Study...

422

DOE Science Showcase - Wind Power  

Office of Scientific and Technical Information (OSTI)

DOE Science Showcase - Wind Power DOE Science Showcase - Wind Power Wind Powering America Wind Powering America is a nationwide initiative of the U.S. Department of Energy's Wind Program designed to educate, engage, and enable critical stakeholders to make informed decisions about how wind energy contributes to the U.S. electricity supply. Wind Power Research Results in DOE Databases IEA Wind Task 26: The Past and Future Cost of Wind Energy, Work Package 2, Energy Citations Database NREL Triples Previous Estimates of U.S. Wind Power Potential, Energy Citations Database Dynamic Models for Wind Turbines and Wind Power Plants, DOE Information Bridge 2012 ARPA-E Energy Innovation Summit: Profiling General Compression: A River of Wind, ScienceCinema, multimedia Solar and Wind Energy Resource Assessment (SWERA) Data from the

423

New England Wind Forum: Selling Wind Power  

Wind Powering America (EERE)

Selling Wind Power Selling Wind Power Markets are either well-developed or developing for each of the 'products' produced by wind generators. These include electricity products and generation attributes. Electricity Electricity can be used in two ways: on-site (interconnected behind a retail customer's meter) of for sales of electricity over the electric grid. On-site generation can displace a portion of a customer's purchases of electricity from the grid. In addition, net metering rules are in place at the state level that in some cases allow generation in excess of on-site load to be sold back to the local utility (see state pages for net metering specifics). For sales over the electricity grid, the Independent System Operator of New England (ISO New England) creates and manages a wholesale market for electric energy, capacity, and ancillary services within the New England Power Pool (NEPOOL). Wind generators may sell their electric energy and capacity in spot markets organized by the ISO, or they may contract with wholesale buyers to sell these products for any term to buyers operating in the ISO New England marketplace. Wind generators do not generally produce other marketable ancillary services. The ISO has rules specific to the operation of wind generators reflecting operations, scheduling, calculation of installed capacity credit, and so forth.

424

The Wind of Variable C in M33  

E-Print Network (OSTI)

We discuss the spectrum of Var C in M33 obtained just before the onset of its current brightening and recent spectra during its present "eruption" or optically thick wind stage. These spectra illustrate the typical LBV transition in apparent spectral type or temperature that characterizes the classical LBV or S Dor-type variability. LBVs are known to have slow, dense winds during their maximum phase. Interestingly, Var C had a slow wind even during its hot, quiescent stage in comparison with the normal hot supergiants with similar temperatures. Its outflow or wind speeds also show very little change between these two states.

Humphreys, Roberta M; Gordon, Michael; Weis, Kerstin; Burggraf, Birgitta; Bomans, D J; Martin, John C

2014-01-01T23:59:59.000Z

425

Assessing the wind field over the continental shelf as a resource for electric power  

E-Print Network (OSTI)

for the comparison period) that the near-coast phase advantage is obviated. We also find more consistent wind powerAssessing the wind field over the continental shelf as a resource for electric power by Richard W. Garvine1,2 and Willett Kempton1,3,4 ABSTRACT To assess the wind power resources of a large continental

Firestone, Jeremy

426

Wind Energy Community Acceptance | Open Energy Information  

Open Energy Info (EERE)

source source History View New Pages Recent Changes All Special Pages Semantic Search/Querying Get Involved Help Apps Datasets Community Login | Sign Up Search Page Edit History Facebook icon Twitter icon » Wind Energy Community Acceptance Jump to: navigation, search In 2012 in Lamar, Colorado, Bob Emick (center, back to camera and Greg Emich (right in cowboy hat) talk about the 98 1.5-megawatt wind turbines on their ranch. Photo by Dennis Schroeder, NREL 21768 The following resources address community acceptance topics. Baring-Gould, I. (June 5, 2012). Social Acceptance of Wind Energy: Managing and Evaluating Its Market Impacts. National Renewable Energy Laboratory. Accessed August 14, 2013. This presentation offers background information on social acceptance issues, results of surveys conducted by the New England Wind Forum at a

427

NREL: Wind Research - News Release Archives  

NLE Websites -- All DOE Office Websites (Extended Search)

8 8 December 9, 2008 Extra-High-Voltage Line from AEP Would Connect Wind-Rich Dakotas American Electric Power is evaluating the feasibility of building a multi-state, extra-high-voltage transmission project across the Upper Midwest. December 9, 2008 Colorado Study Confirms Low Grid Integration Costs for Wind A new study released this week once again adds to the body of peer-reviewed literature confirming that the cost of integrating wind energy with the electric grid is quite low. December 2, 2008 Spanish Wind Power Hits Record 43% of Demand Renewable energy has boomed in recent years in Spain, as the country tries to cut greenhouse gas emissions and reduce its heavy dependence on fuel imports. Spain is also saving large sums of money in the process. November 11, 2008

428

A sensitivity study of the WRF model in wind simulation for an area of high wind energy  

Science Journals Connector (OSTI)

The performance of the Weather Research and Forecast (WRF) model in wind simulation was evaluated under different numerical and physical options for an area of Portugal, located in complex terrain and characterized by its significant wind energy resource. The grid nudging and integration time of the simulations were the tested numerical options. Since the goal is to simulate the near-surface wind, the physical parameterization schemes regarding the boundary layer were the ones under evaluation. Also, the influences of the local terrain complexity and simulation domain resolution on the model results were also studied. Data from three wind measuring stations located within the chosen area were compared with the model results, in terms of Root Mean Square Error, Standard Deviation Error and Bias. Wind speed histograms, occurrences and energy wind roses were also used for model evaluation. Globally, the model accurately reproduced the local wind regime, despite a significant underestimation of the wind speed. The wind direction is reasonably simulated by the model especially in wind regimes where there is a clear dominant sector, but in the presence of low wind speeds the characterization of the wind direction (observed and simulated) is very subjective and led to higher deviations between simulations and observations. Within the tested options, results show that the use of grid nudging in simulations that should not exceed an integration time of 2 days is the best numerical configuration, and the parameterization set composed by the physical schemes MM5Yonsei UniversityNoah are the most suitable for this site. Results were poorer in sites with higher terrain complexity, mainly due to limitations of the terrain data supplied to the model. The increase of the simulation domain resolution alone is not enough to significantly improve the model performance. Results suggest that error minimization in the wind simulation can be achieved by testing and choosing a suitable numerical and physical configuration for the region of interest together with the use of high resolution terrain data, if available.

David Carvalho; Alfredo Rocha; Moncho Gmez-Gesteira; Carlos Santos

2012-01-01T23:59:59.000Z

429

NREL: Wind Research - News  

NLE Websites -- All DOE Office Websites (Extended Search)

Below are some select news stories from the National Wind Technology Below are some select news stories from the National Wind Technology Center. Subscribe to the RSS feed RSS . Learn about RSS. January 3, 2014 New Modularization Framework Transforms FAST Wind Turbine Modeling Tool The U.S. Department of Energy's National Renewable Energy Laboratory (NREL) recently released an expanded version of its FAST wind turbine computer-aided engineering tool under a new modularization framework. January 2, 2014 The Denver Post Highlights the NWTC's New 5-MW Dynamometer On January 2, a reporter from The Denver Post toured the new 5-megawatt dynamometer test facility at the National Wind Technology Center (NWTC). Archives 2013 | 2012 | 2011 | 2010 | 2009 | 2008 | 2007 | 2006 Printable Version Wind Research Home Capabilities Projects Facilities

430

Wind energy conversion system  

SciTech Connect

This patent describes a wind energy conversion system comprising: a propeller rotatable by force of wind; a generator of electricity mechanically coupled to the propeller for converting power of the wind to electric power for use by an electric load; means coupled between the generator and the electric load for varying the electric power drawn by the electric load to alter the electric loading of the generator; means for electro-optically sensing the speed of the wind at a location upwind from the propeller; and means coupled between the sensing means and the power varying means for operating the power varying means to adjust the electric load of the generator in accordance with a sensed value of wind speed to thereby obtain a desired ratio of wind speed to the speed of a tip of a blade of the propeller.

Longrigg, P.

1987-03-17T23:59:59.000Z

431

Session: Offshore wind  

SciTech Connect

This session at the Wind Energy and Birds/Bats workshop consisted of two presentations. Due to time constraints, a discussion period was not possible. The session addressed the current state of offshore wind energy development. The first presentation ''Monitoring Program and Results: Horns Rev and Nysted'' by Jette Gaarde summarized selected environmental studies conducted to date at operating offshore wind turbine projects in Denmark and lessons from other offshore wind developments in Europe. Wildlife impacts studies from the Danish sites focused on birds, fish, and mammals. The second presentation ''What has the U.S. Wind Industry Learned from the European Example'' by Bonnie Ram provided an update on current permit applications for offshore wind developments in the U.S. as well as lessons that may be drawn from the European experience.

Gaarde, Jette; Ram, Bonnie

2004-09-01T23:59:59.000Z

432

Ben Ticha M. B., Ranchin T., Wald L., Using several data sources for offshore wind resource assessment, 2005, Copenhagen Offshore Wind conference 2005  

E-Print Network (OSTI)

Ben Ticha M. B., Ranchin T., Wald L., Using several data sources for offshore wind resource assessment, 2005, Copenhagen Offshore Wind conference 2005 1 Using several data sources for offshore wind of production. Nowadays, the resource is evaluated by interpolation of discrete measurements but offshore

Boyer, Edmond

433

Wind Turbine Blade Design  

K-12 Energy Lesson Plans and Activities Web site (EERE)

Blade engineering and design is one of the most complicated and important aspects of modern wind turbine technology. Engineers strive to design blades that extract as much energy from the wind as possible throughout a range of wind speeds and gusts, yet are still durable, quiet and cheap. A variety of ideas for building turbines and teacher handouts are included in this document and at the Web site.

434

Howden Wind Turbines Ltd | Open Energy Information  

Open Energy Info (EERE)

Howden Wind Turbines Ltd Jump to: navigation, search Name: Howden Wind Turbines Ltd Place: United Kingdom Sector: Wind energy Product: Howden was a manufacturer of wind turbines in...

435

ABO Wind AG | Open Energy Information  

Open Energy Info (EERE)

AG Place: Hessen, Germany Zip: 65193 Sector: Bioenergy, Wind energy Product: German developer of wind and bioenergy generation assets. ABO Wind has no direct holding in any wind...

436

TS Wind Power Developers | Open Energy Information  

Open Energy Info (EERE)

TS Wind Power Developers Jump to: navigation, search Name: TS Wind Power Developers Place: Satara, Maharashtra, India Sector: Wind energy Product: Setting up 30MW wind farm in...

437

Daqing Longjiang Wind Power | Open Energy Information  

Open Energy Info (EERE)

Longjiang Wind Power Jump to: navigation, search Name: Daqing Longjiang Wind Power Place: Daqing, Heilongjiang Province, China Zip: 163316 Sector: Wind energy Product: Local wind...

438

Heilongjiang Lishu Wind Power | Open Energy Information  

Open Energy Info (EERE)

Lishu Wind Power Jump to: navigation, search Name: Heilongjiang Lishu Wind Power Place: Heilongjiang Province, China Sector: Wind energy Product: China-based wind project developer...

439

WINDExchange Offshore Wind Webinar: Transmission Planning and...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Offshore Wind Webinar: Transmission Planning and Interconnection for Offshore Wind WINDExchange Offshore Wind Webinar: Transmission Planning and Interconnection for Offshore Wind...

440

Blyth Offshore Wind Ltd | Open Energy Information  

Open Energy Info (EERE)

Blyth Offshore Wind Ltd Jump to: navigation, search Name: Blyth Offshore Wind Ltd Place: United Kingdom Sector: Renewable Energy, Wind energy Product: Blyth Offshore Wind Limited,...

Note: This page contains sample records for the topic "wind phase evaluate" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


441

2013 Wind Technologies Market Report Presentation | Department...  

Office of Environmental Management (EM)

3 Wind Technologies Market Report Presentation 2013 Wind Technologies Market Report Presentation Presentation summarizing the 2013 Wind Technologies Market Report. 2013 Wind...

442

Environmental Wind Projects | Department of Energy  

Energy Savers (EERE)

Wind Projects Environmental Wind Projects This report covers the Wind and Water Power Technologies Office's environmental wind projects from fiscal years 2006 to 2014....

443

NREL: Wind Research - Research and Development  

NLE Websites -- All DOE Office Websites (Extended Search)

Printable Version Wind Research Home Research & Development Utility-Scale Wind Turbines Offshore Wind Turbines Small Wind Turbines Grid Integration Market Acceleration...

444

Workforce Development Wind Projects | Department of Energy  

Energy Savers (EERE)

Workforce Development Wind Projects Workforce Development Wind Projects This report covers the Wind and Water Power Technologies Office's workforce development wind projects from...

445

Environmental Wind Projects | Department of Energy  

Energy Savers (EERE)

Environmental Wind Projects Environmental Wind Projects This report covers the Wind and Water Power Technologies Office's environmental wind projects from fiscal years 2006 to...

446

Sandia National Laboratories: Wind Software Downloads  

NLE Websites -- All DOE Office Websites (Extended Search)

* SAND 2014-3685P * Wind software * wind tools Comments are closed. Renewable Energy Wind Energy Wind Plant Optimization Test Site Operations & Maintenance Safety: Test...

447

Wind turbine reliability : understanding and minimizing wind turbine operation and maintenance costs.  

SciTech Connect

Wind turbine system reliability is a critical factor in the success of a wind energy project. Poor reliability directly affects both the project's revenue stream through increased operation and maintenance (O&M) costs and reduced availability to generate power due to turbine downtime. Indirectly, the acceptance of wind-generated power by the financial and developer communities as a viable enterprise is influenced by the risk associated with the capital equipment reliability; increased risk, or at least the perception of increased risk, is generally accompanied by increased financing fees or interest rates. Cost of energy (COE) is a key project evaluation metric, both in commercial applications and in the U.S. federal wind energy program. To reflect this commercial reality, the wind energy research community has adopted COE as a decision-making and technology evaluation metric. The COE metric accounts for the effects of reliability through levelized replacement cost and unscheduled maintenance cost parameters. However, unlike the other cost contributors, such as initial capital investment and scheduled maintenance and operating expenses, costs associated with component failures are necessarily speculative. They are based on assumptions about the reliability of components that in many cases have not been operated for a complete life cycle. Due to the logistical and practical difficulty of replacing major components in a wind turbine, unanticipated failures (especially serial failures) can have a large impact on the economics of a project. The uncertainty associated with long-term component reliability has direct bearing on the confidence level associated with COE projections. In addition, wind turbine technology is evolving. New materials and designs are being incorporated in contemporary wind turbines with the ultimate goal of reducing weight, controlling loads, and improving energy capture. While the goal of these innovations is reduction in the COE, there is a potential impact on reliability whenever new technologies are introduced. While some of these innovations may ultimately improve reliability, in the short term, the technology risks and the perception of risk will increase. The COE metric used by researchers to evaluate technologies does not address this issue. This paper outlines the issues relevant to wind turbine reliability for wind turbine power generation projects. The first sections describe the current state of the industry, identify the cost elements associated with wind farm O&M and availability and discuss the causes of uncertainty in estimating wind turbine component reliability. The latter sections discuss the means for reducing O&M costs and propose O&M related research and development efforts that could be pursued by the wind energy research community to reduce COE.

Not Available

2004-11-01T23:59:59.000Z

448

Wind Power | Open Energy Information  

Open Energy Info (EERE)

Wind Power Wind Power Jump to: navigation, search Wind Power WIndfarm.Sunset.jpg Wind power is a form of solar energy.[1] Wind is caused by the uneven heating of the atmosphere by the sun, variations in the earth's surface, and rotation of the earth. Mountains, bodies of water, and vegetation all influence wind flow patterns[2], [3]. Wind energy (or wind power) describes the process by which wind is used to generate electricity. Wind turbines convert the energy in wind to electricity by rotating propeller-like blades around a rotor. The rotor turns the drive shaft, which turns an electric generator.[2] Three key factors affect the amount of energy a turbine can harness from the wind: wind speed, air density, and swept area.[4] Mechanical power can also be utilized directly for specific tasks such as

449

Wind Generation on Winnebago Tribal Lands  

SciTech Connect

The Winnebago Wind Energy Study evaluated facility-scale, community-scale and commercial-scale wind development on Winnebago Tribal lands in northeastern Nebraska. The Winnebago Tribe of Nebraska has been pursuing wind development in various forms for nearly ten years. Wind monitoring utilizing loaned met towers from NREL took place during two different periods. From April 2001 to April 2002, a 20-meter met tower monitored wind data at the WinnaVegas Casino on the far eastern edge of the Winnebago reservation in Iowa. In late 2006, a 50-meter tower was installed, and subsequently monitored wind data at the WinnaVegas site from late 2006 through late 2008. Significant challenges with the NREL wind monitoring equipment limited the availability of valid data, but based on the available data, average wind speeds between 13.6 14.3 miles were indicated, reflecting a 2+/3- wind class. Based on the anticipated cost of energy produced by a WinnaVegas wind turbine, and the utility policies and rates in place at this time, a WinnaVegas wind project did not appear to make economic sense. However, if substantial grant funding were available for energy equipment at the casino site, and if either Woodbury REC backup rates were lower, or NIPCO was willing to pay more for wind power, a WinnaVegas wind project could be feasible. With funding remaining in the DOE-funded project budget,a number of other possible wind project locations on the Winnebago reservation were considered. in early 2009, a NPPD-owned met tower was installed at a site identified in the study pursuant to a verbal agreement with NPPD which provided for power from any ultimately developed project on the Western Winnebago site to be sold to NPPD. Results from the first seven months of wind monitoring at the Western Winnebago site were as expected at just over 7 meters per second at 50-meter tower height, reflecting Class 4 wind speeds, adequate for commercial development. If wind data collected in the remaining months of the twelve-month collection period is consistent with that collected in the first seven months, the Western Winnebago site may present an interesting opportunity for Winnebago. Given the distance to nearby substations, and high cost of interconnection at higher voltage transmission lines, Winnebago would likely need to be part of a larger project in order to reduce power costs to more attractive levels. Another alternative would be to pursue grant funding for a portion of development or equipment costs, which would also help reduce the cost of power produced. The NREL tower from the WinnaVegas site was taken down in late 2008, re-instrumented and installation attempted on the Thunderway site south of the Winnebago community. Based on projected wind speeds, current equipment costs, and the projects proximity to substations for possible interconnection, a Thunderway community-scale wind project could also be feasible.

Multiple

2009-09-30T23:59:59.000Z

450

Gone with the Wind.  

E-Print Network (OSTI)

?? The purpose of this thesis is to explore disruptions Swedish wind turbines onshore are exposed to, and to estimate their economic impacts on the (more)

Duncker, Nadja; Kltzer, Anneke

2010-01-01T23:59:59.000Z

451

Barstow Wind Turbine Project  

Energy.gov (U.S. Department of Energy (DOE))

Presentation covers the Barstow Wind Turbine project for the Federal Utility Partnership Working Group (FUPWG) meeting, held on November 18-19, 2009.

452

Vertical axis wind turbines  

DOE Patents (OSTI)

A vertical axis wind turbine is described. The wind turbine can include a top ring, a middle ring and a lower ring, wherein a plurality of vertical airfoils are disposed between the rings. For example, three vertical airfoils can be attached between the upper ring and the middle ring. In addition, three more vertical airfoils can be attached between the lower ring and the middle ring. When wind contacts the vertically arranged airfoils the rings begin to spin. By connecting the rings to a center pole which spins an alternator, electricity can be generated from wind.

Krivcov, Vladimir (Miass, RU); Krivospitski, Vladimir (Miass, RU); Maksimov, Vasili (Miass, RU); Halstead, Richard (Rohnert Park, CA); Grahov, Jurij (Miass, RU)

2011-03-08T23:59:59.000Z

453

NREL: Innovation Impact - Wind  

NLE Websites -- All DOE Office Websites (Extended Search)

Manufacturing Manufacturing Energy Systems Integration Energy Systems Integration Wind turbines must withstand powerful aerodynamic forces unlike any other propeller-drive...

454

Wind energy analysis system .  

E-Print Network (OSTI)

??One of the most important steps to be taken before a site is to be selected for the extraction of wind energy is the analysis (more)

Koegelenberg, Johan

2014-01-01T23:59:59.000Z

455

Wind Power Forecasting  

Science Journals Connector (OSTI)

The National Center for Atmospheric Research (NCAR) has configured a Wind Power Forecasting System for Xcel Energy that integrates high resolution and ensemble...

Sue Ellen Haupt; William P. Mahoney; Keith Parks

2014-01-01T23:59:59.000Z

456

Wind Program: Publications  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

pres Details Bookmark & Share View Related Product Thumbnail Image 2014 Offshore Wind Market and Economic Analysis The objective of this report is to provide a...

457

Wind Success Stories  

Energy Savers (EERE)

+0000 843456 at http:energy.gov United States Launches First Grid-Connected Offshore Wind Turbine http:energy.goveeresuccess-storiesarticlesunited-states-launches-f...

458

wind_guidance  

Energy.gov (U.S. Department of Energy (DOE))

Guidance to Accompany Non-Availability Waiver of the Recovery Act Buy American Provisions for 5kW and 50kW Wind Turbines

459

Allegany County Wind Ordinance  

Energy.gov (U.S. Department of Energy (DOE))

This ordinance sets requirements for industrial wind energy conversion systems. These requirements include minimum separation distances, setback requirements, electromagnetic interference analysis ...

460

Wind Power , Introduction  

Science Journals Connector (OSTI)

Successful implementation of new technologies requires social acceptance. Historically, for the implementation of wind energy this was considered a relatively simple issue ... strategies. Without much study, soci...

Prof. Lennart Sder

2013-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "wind phase evaluate" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


461

Wind Power , Introduction  

Science Journals Connector (OSTI)

Successful implementation of new technologies requires social acceptance. Historically, for the implementation of wind energy this was considered a relatively simple issue ... strategies. Without much study, soci...

Prof. Lennart Sder

2012-01-01T23:59:59.000Z

462

Wind Energy Myths  

SciTech Connect

This two-sided fact sheet succinctly outlines and counters the top misconceptions about wind energy. It is well suited for general audiences.

Not Available

2005-05-01T23:59:59.000Z

463

Campbell County Wind Farm  

NLE Websites -- All DOE Office Websites (Extended Search)

environmental assessment (EA) on the proposed interconnection of the Campbell County Wind Farm (Project) in Campbell County, near the city of Pollock, South Dakota. Dakota...

464

Energy from the wind  

Science Journals Connector (OSTI)

The large?scale generation of electrical power by wind turbine fields is discussed. It is shown that the maximum power which can be extracted by a wind turbine is 16/27 or 59.3% of the power available in the wind. An estimate is made of the total electrical power which could be generated in the United States by utilizing wind energy. The material in this paper was presented by the authors in a one?semester course on energy science. It could also be used in an introductory physics class as an illustration of elementary fluid mechanics concepts and of the basic principles of energy and momentum conservation.

David G. Pelka; Robert T. Park; Runbir Singh

1978-01-01T23:59:59.000Z

465

What is Distributed Wind?  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

and refurbishers, including those from Canada, Mexico, Europe, China, and South Africa. In 2013, 30.4 MW of new distributed wind capacity was added, representing nearly...

466

Proceedings Nordic Wind Power Conference  

E-Print Network (OSTI)

Estimation of Possible Power for Wind Plant Control Power Fluctuations from Offshore Wind Farms; Model Validation System grounding of wind farm medium voltage cable grids Faults in the Collection Grid of Offshore systems of wind turbines and wind farms. NWPC presents the newest research results related to technical

467

Optimization of Wind Turbine Operation  

E-Print Network (OSTI)

inclination angle was about 1°. The spinner anemometer measurements were correlated with wind speed and windOptimization of Wind Turbine Operation by Use of Spinner Anemometer TF Pedersen, NN Sørensen, L Title: Optimization of Wind Turbine Operation by Use of Spinner Anemometer Department: Wind Energy

468

Michigan Wind II Wind Farm | Open Energy Information  

Open Energy Info (EERE)

Wind II Wind Farm Wind II Wind Farm Jump to: navigation, search Name Michigan Wind II Wind Farm Facility Michigan Wind II Wind Farm Sector Wind energy Facility Type Commercial Scale Wind Facility Status In Service Owner Exelon Wind Developer Exelon Wind Energy Purchaser Consumers Energy Location Minden City MI Coordinates 43.6572421°, -82.7681278° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":43.6572421,"lon":-82.7681278,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

469

20% Wind Energy by 2030: Increasing Wind Energy's Contribution...  

Office of Environmental Management (EM)

: Increasing Wind Energy's Contribution to U.S. Electricity Supply 20% Wind Energy by 2030: Increasing Wind Energy's Contribution to U.S. Electricity Supply Here you will find the...

470

NREL: Wind Research - Get to Know a Wind Energy Expert  

NLE Websites -- All DOE Office Websites (Extended Search)

Get to Know a Wind Energy Expert The Evolution of a Wind Expert A professional headshot photo of Maureen Hand Maureen Hand Maureen Hand knows wind. Growing up in Glenrock, Wyoming,...

471

American Wind Energy Association Wind Energy Finance and Investment...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Wind Energy Finance and Investment Seminar American Wind Energy Association Wind Energy Finance and Investment Seminar October 20, 2014 8:00AM EDT to October 21, 2014 5:00PM EDT...

472

United States Wind Resource Map: Annual Average Wind Speed at...  

Wind Powering America (EERE)

4.0 Source: Wind resource estimates developed by AWS Truepower, LLC for windNavigator . Web: http:www.windnavigator.com | http:www.awstruepower.com. Spatial resolution of wind...

473

WINDExchange: Offshore 90-Meter Wind Maps and Wind Resource Potential  

Wind Powering America (EERE)

Offshore 90-Meter Wind Maps and Wind Resource Potential The U.S. Department of Energy provides 90-meter (m) height, high-resolution wind maps and estimates of the total offshore...

474

LARGE SCALE WIND CLIMATOLOGICAL EXAMINATIONS OF WIND ENERGY UTILIZATION  

E-Print Network (OSTI)

The aim of this article is to describe the particular field of climatology which analyzes air movement characteristics regarding utilization of wind for energy generation. The article describes features of wind energy potential available in Hungary compared to wind conditions in other areas of the northern quarter sphere in order to assist the wind energy use development in Hungary. Information on wind climate gives a solid basis for financial and economic decisions of stakeholders in the field of wind energy utilization.

Andrea Kircsi

475

WIND BRAKING OF MAGNETARS  

SciTech Connect

We explore the wind braking of magnetars considering recent observations challenging the traditional magnetar model. There is evidence for strong multipole magnetic fields in active magnetars, but the dipole field inferred from spin-down measurements may be strongly biased by particle wind. Recent observations challenging the traditional model of magnetars may be explained naturally by the wind braking scenario: (1) the supernova energies of magnetars are of normal value; (2) the non-detection in Fermi observations of magnetars; (3) the problem posed by low magnetic field soft gamma-ray repeaters; (4) the relation between magnetars and high magnetic field pulsars; and (5) a decreasing period derivative during magnetar outbursts. Transient magnetars with L{sub x}<- E-dot{sub rot} may still be magnetic dipole braking. This may explain why low luminosity magnetars are more likely to have radio emissions. A strong reduction of the dipole magnetic field is possible only when the particle wind is very collimated at the star surface. A small reduction of the dipole magnetic field may result from detailed considerations of magnetar wind luminosity. In the wind braking scenario, magnetars are neutron stars with a strong multipole field. For some sources, a strong dipole field may no longer be needed. A magnetism-powered pulsar wind nebula will be one of the consequences of wind braking. For a magnetism-powered pulsar wind nebula, we should see a correlation between the nebula luminosity and the magnetar luminosity. Under the wind braking scenario, a braking index smaller than three is expected. Future braking index measurement of a magnetar may tell us whether magnetars are wind braking or magnetic dipole braking.

Tong, H. [Xinjiang Astronomical Observatory, Chinese Academy of Sciences, Urumqi, Xinjiang 830011 (China); Xu, R. X.; Qiao, G. J. [KIAA and School of Physics, Peking University, Beijing 100871 (China); Song, L. M., E-mail: tonghao@xao.ac.cn [Institute of High Energy Physics, Chinese Academy of Sciences, Beijing 100049 (China)

2013-05-10T23:59:59.000Z

476

Active Power Controls from Wind Power: Bridging the Gaps  

Energy.gov (U.S. Department of Energy (DOE))

This report evaluates how wind power can support power system reliability, and do so economically. The study includes a number of different power system simulations, control simulations, and actual field tests using turbines at the National Renewable Energy Laboratory's (NRELs) National Wind Technology Center (NWTC).

477

EA-1902: Northern Wind Project, Roberts County, South Dakota  

Energy.gov (U.S. Department of Energy (DOE))

DOEs Western Area Power Administration is preparing an EA that evaluates the potential environmental impacts of the proposed Northern Wind Project in Summit, Roberts County, South Dakota. Additional information is available on the project webpage, http://www.wapa.gov/ugp/Environment/NorthernWindFarm.htm.

478

Q-Winds satellite hurricane wind retrievals and H*Wind comparisons  

E-Print Network (OSTI)

tailored to extreme wind events. Because of this and precipitation effects, scatterometers have failed/passive scatterometer retrieval algorithm designed specifically for extreme wind events, hereafter identified1 Q-Winds satellite hurricane wind retrievals and H*Wind comparisons Pet Laupattarakasem and W

Hennon, Christopher C.

479

Offshore Wind Research (Fact Sheet), National Wind Technology Center (NWTC)  

NLE Websites -- All DOE Office Websites (Extended Search)

Offshore Offshore Wind Research The National Renewable Energy Laboratory is internationally recognized for offshore wind energy research and development (R&D). Its experience and capabilities cover a wide spectrum of wind energy disciplines. NREL's offshore wind R&D efforts focus on critical areas that address the long-term needs of the offshore wind energy industry and the Department of Energy (DOE). R&D efforts include: * Developing offshore design tools and methods * Collaborating with international partners * Testing offshore systems and developing standards * Conducting economic analyses * Characterizing offshore wind resources * Identifying and mitigating offshore wind grid integration challenges and barriers NREL documented the status of offshore wind energy in the United

480

NREL: Wind Research - Utility-Scale Wind Turbine Research  

NLE Websites -- All DOE Office Websites (Extended Search)

wind turbine research addresses performance and reliability issues that large wind turbines experience throughout their lifespan and reduces system costs through innovative...

Note: This page contains sample records for the topic "wind phase evaluate" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


First Page Previous Page 1 2 3 4 5 6 7