Sample records for wind phase evaluate

  1. The Western Wind and Solar Integration Study Phase 2

    SciTech Connect (OSTI)

    Lew, D.; Brinkman, G.; Ibanez, E.; Hodge, B. M.; Hummon, M.; Florita, A.; Heaney, M.

    2013-09-01T23:59:59.000Z

    The electric grid is a highly complex, interconnected machine, and changing one part of the grid can have consequences elsewhere. Adding wind and solar affects the operation of the other power plants and adding high penetrations can induce cycling of fossil-fueled generators. Cycling leads to wear-and-tear costs and changes in emissions. Phase 2 of the Western Wind and Solar Integration Study (WWSIS-2) evaluated these costs and emissions and simulated grid operations for a year to investigate the detailed impact of wind and solar on the fossil-fueled fleet. This built on Phase 1, one of the largest wind and solar integration studies ever conducted, which examined operational impacts of high wind and solar penetrations in the West.

  2. Assessment of wind power predictability as a decision factor in the investment phase of wind farms

    E-Print Network [OSTI]

    Paris-Sud XI, Université de

    Assessment of wind power predictability as a decision factor in the investment phase of wind farms on market revenue of, respectively, the predictability and the capacity factor of a wind farm or a cluster of wind farms. This is done through a real-life case study in West Denmark, including wind farm production

  3. Energy Department Releases Report, Evaluates Potential for Wind...

    Energy Savers [EERE]

    Energy Department Releases Report, Evaluates Potential for Wind Power in All 50 States Energy Department Releases Report, Evaluates Potential for Wind Power in All 50 States May...

  4. Conceptual Model of Offshore Wind Environmental Risk Evaluation System

    SciTech Connect (OSTI)

    Anderson, Richard M.; Copping, Andrea E.; Van Cleve, Frances B.; Unwin, Stephen D.; Hamilton, Erin L.

    2010-06-01T23:59:59.000Z

    In this report we describe the development of the Environmental Risk Evaluation System (ERES), a risk-informed analytical process for estimating the environmental risks associated with the construction and operation of offshore wind energy generation projects. The development of ERES for offshore wind is closely allied to a concurrent process undertaken to examine environmental effects of marine and hydrokinetic (MHK) energy generation, although specific risk-relevant attributes will differ between the MHK and offshore wind domains. During FY10, a conceptual design of ERES for offshore wind will be developed. The offshore wind ERES mockup described in this report will provide a preview of the functionality of a fully developed risk evaluation system that will use risk assessment techniques to determine priority stressors on aquatic organisms and environments from specific technology aspects, identify key uncertainties underlying high-risk issues, compile a wide-range of data types in an innovative and flexible data organizing scheme, and inform planning and decision processes with a transparent and technically robust decision-support tool. A fully functional version of ERES for offshore wind will be developed in a subsequent phase of the project.

  5. High wind evaluation in the Southern Ocean Xiaojun Yuan

    E-Print Network [OSTI]

    Khatiwala, Samar

    1 High wind evaluation in the Southern Ocean Xiaojun Yuan Lamont-Doherty of Earth Observatory based scatterometer instruments provide crucial surface wind measurements with high resolution over winds at high wind bands because these regions host the strongest wind fields at the ocean surface

  6. The Western Wind and Solar Integration Study Phase 2

    Office of Energy Efficiency and Renewable Energy (EERE)

    Greg Brinkman will present the results of the Western Wind and Solar Integration Study (WWSIS), Phase 2. This study, which follows the first phase of WWSIS, focuses on potential emissions and wear...

  7. Energy Department Releases Report, Evaluates Potential for Wind...

    Energy Savers [EERE]

    Releases Report, Evaluates Potential for Wind Power in All 50 States Energy Department Releases Report, Evaluates Potential for Wind Power in All 50 States May 19, 2015 - 11:38am...

  8. Sandia National Laboratories Develops Tool for Evaluating Wind...

    Broader source: Energy.gov (indexed) [DOE]

    Develops Tool for Evaluating Wind Turbine-Radar Impacts Sandia National Laboratories Develops Tool for Evaluating Wind Turbine-Radar Impacts September 12, 2014 - 11:30am Addthis...

  9. LWST Phase I Project Conceptual Design Study: Evaluation of Design and Construction Approaches for Economical Hybrid Steel/Concrete Wind Turbine Towers; June 28, 2002 -- July 31, 2004

    SciTech Connect (OSTI)

    LaNier, M. W.

    2005-01-01T23:59:59.000Z

    The United States Department of Energy (DOE) Wind Energy Research Program has begun a new effort to partner with U.S. industry to develop wind technology that will allow wind systems to compete in regions of low wind speed. The Class 4 and 5 sites targeted by this effort have annual average wind speeds of 5.8 m/s (13 mph), measured at 10 m (33 ft) height. Such sites are abundant in the United States and would increase the land area available for wind energy production twenty-fold. The new program is targeting a levelized cost of energy of 3 cents/kWh at these sites by 2010. A three-element approach has been initiated. These efforts are concept design, component development, and system development. This work builds on previous activities under the WindPACT program and the Next Generation Turbine program. If successful, DOE estimates that his new technology could result in 35 to 45 gigawatts of additional wind capacity being installed by 2020.

  10. Helping Policymakers Evaluate Distributed Wind Options | Department...

    Energy Savers [EERE]

    distributed wind-wind turbines installed at homes, farms, and busi-nesses. Distributed wind allows Americans to generate their own clean electricity and cut their energy bills,...

  11. Western Wind and Solar Integration Study: Phase 2 (Presentation)

    SciTech Connect (OSTI)

    Lew, D.; Brinkman, G.; Ibanez, E.; Lefton, S.; Kumar, N.; Venkataraman, S.; Jordan, G.

    2013-09-01T23:59:59.000Z

    This presentation summarizes the scope and results of the Western Wind and Solar Integration Study Phase 2, which examined operational impacts of high penetrations of variable renewable generation in the West.

  12. Western Wind and Solar Integration Study Phase 2 (Fact Sheet)

    SciTech Connect (OSTI)

    Not Available

    2013-09-01T23:59:59.000Z

    This is one-page, two-sided fact sheet presents high-level summary results of the Western Wind and Solar Integration Study Phase 2, which examined operational impacts of high penetrations of variable renewable generation in the West.

  13. Wind Turbine Drivetrain Condition Monitoring During GRC Phase 1 and Phase 2 Testing

    SciTech Connect (OSTI)

    Sheng, S.; Link, H.; LaCava, W.; van Dam, J.; McNiff, B.; Veers, P.; Keller, J.; Butterfield, S.; Oyague, F.

    2011-10-01T23:59:59.000Z

    This report will present the wind turbine drivetrain condition monitoring (CM) research conducted under the phase 1 and phase 2 Gearbox Reliability Collaborative (GRC) tests. The rationale and approach for this drivetrain CM research, investigated CM systems, test configuration and results, and a discussion on challenges in wind turbine drivetrain CM and future research and development areas, will be presented.

  14. Western Wind and Solar Integration Study Phase 2: Preprint

    SciTech Connect (OSTI)

    Lew, D.; Brinkman, G.; Ibanez, E.; Hodge, B.-M.; King, J.

    2012-09-01T23:59:59.000Z

    The Western Wind and Solar Integration Study (WWSIS) investigates the impacts of high penetrations of wind and solar power into the Western Interconnection of the United States. WWSIS2 builds on the Phase 1 study but with far greater refinement in the level of data inputs and production simulation. It considers the differences between wind and solar power on systems operations. It considers mitigation options to accommodate wind and solar when full costs of wear-and-tear and full impacts of emissions rates are taken into account. It determines wear-and-tear costs and emissions impacts. New data sets were created for WWSIS2, and WWSIS1 data sets were refined to improve realism of plant output and forecasts. Four scenarios were defined for WWSIS2 that examine the differences between wind and solar and penetration level. Transmission was built out to bring resources to load. Statistical analysis was conducted to investigate wind and solar impacts at timescales ranging from seasonal down to 5 minutes.

  15. Environmental Risk Evaluation System (ERES) for Offshore Wind - Mock-Up of ERES, Fiscal Year 2010 Progress Report

    SciTech Connect (OSTI)

    Anderson, Richard M.; Copping, Andrea E.; Van Cleve, Frances B.

    2010-11-01T23:59:59.000Z

    The Environmental Risk Evaluation System (ERES) has been created to set priorities among the environmental risks from offshore wind development. This report follows the conceptual design for ERES and shows what the system would look like, using a web interface created as part of a Knowledge Management System (KMS) for offshore wind. The KMS, called Zephyrus, and ERES for offshore wind, will be populated and made operational in a later phase of the project.

  16. Short-term Wind Power Prediction for Offshore Wind Farms -Evaluation of Fuzzy-Neural Network Based Models

    E-Print Network [OSTI]

    Paris-Sud XI, Université de

    Short-term Wind Power Prediction for Offshore Wind Farms - Evaluation of Fuzzy-Neural Network Based of offshore farms and their secure integration to the grid. Modeling the behavior of large wind farms presents the new considerations that have to be made when dealing with large offshore wind farms

  17. Western Wind and Solar Integration Study Phase 2 (Presentation)

    SciTech Connect (OSTI)

    Lew, D.; Brinkman, G.; Ibanez, E.; Kumar, N.; Lefton, S.; Jordan, G.; Venkataraman, S.; King, J.

    2013-06-01T23:59:59.000Z

    This presentation accompanies Phase 2 of the Western Wind and Solar Integration Study, a follow-on to Phase 1, which examined the operational impacts of high penetrations of variable renewable generation on the electric power system in the West and was one of the largest variable generation studies to date. High penetrations of variable generation can induce cycling of fossil-fueled generators. Cycling leads to wear-and-tear costs and changes in emissions. Phase 2 calculated these costs and emissions, and simulated grid operations for a year to investigate the detailed impact of variable generation on the fossil-fueled fleet. The presentation highlights the scope of the study and results.

  18. Wind Power Plant Voltage Stability Evaluation: Preprint

    SciTech Connect (OSTI)

    Muljadi, E.; Zhang, Y. C.

    2014-09-01T23:59:59.000Z

    Voltage stability refers to the ability of a power system to maintain steady voltages at all buses in the system after being subjected to a disturbance from a given initial operating condition. Voltage stability depends on a power system's ability to maintain and/or restore equilibrium between load demand and supply. Instability that may result occurs in the form of a progressive fall or rise of voltages of some buses. Possible outcomes of voltage instability are the loss of load in an area or tripped transmission lines and other elements by their protective systems, which may lead to cascading outages. The loss of synchronism of some generators may result from these outages or from operating conditions that violate a synchronous generator's field current limit, or in the case of variable speed wind turbine generator, the current limits of power switches. This paper investigates the impact of wind power plants on power system voltage stability by using synchrophasor measurements.

  19. Appendix I3-1 to Wind HUI Initiative 1: AWST-WindNET-Phase 1 Final Report

    SciTech Connect (OSTI)

    John Zack

    2012-07-15T23:59:59.000Z

    This report is an appendix to the Hawaii WindHUI efforts to develop and operationalize short-term wind forecasting and wind ramp event forecasting capabilities. The report summarizes the WindNET Phase 1 efforts on the Big Island of Hawaii and includes descriptions of modeling methodologies, use of field validation data, results and recommendations. The objective of the WindNET project was to investigate the improvement that could be obtained in short-term wind power forecasting for wind generation facilities operating on the island grids operated by Hawaiian Electric Companies through the use of atmospheric sensors deployed at targeted locations. WindNET is envisioned as a multiphase project that will address the short-term wind forecasting issues of all of the wind generation facilities on the all of the Hawaiian Electric Companies' island grid systems. The first phase of the WindNET effort (referred to as WindNET-1) was focused on the wind generation facilities on the Big Island of Hawaii. With complex terrain and marine environment, emphasis was on improving the 0 to 6 hour forecasts of wind power ramps and periods of wind variability, with a particular interest in the intra-hour (0-1 hour) look-ahead period. The WindNET project was built upon a foundation that was constructed with the results from a previously completed observation targeting study for the Big Island that was conducted as part of a project supported by the National Renewable Energy Laboratory (NREL) and interactions with the western utilities. The observational targeting study provided guidance on which variables to measure and at what locations to get the most improvement in forecast performance at a target forecast site. The recommendations of the observation targeting study were based on the application two techniques: (1) an objective method called ensemble sensitivity analysis (ESA) (Ancell and Hakim, 2007; Torn and Hakim, 2008; Zack et al, 2010); and (2) a subjective method based on a diagnostic analysis of large ramp events. The analysis was completed for both the wind farm on the southern tip of the Big Island and on the northern tip of the island. The WindNET project was designed to also deploy sensors to validate the Big Island observational targeting study and enhance operator's understanding of predominate causes of wind variability conditions at the wind facilities. Compromises had to be made with the results from the observation targeting study to accommodate project resource limitations, availability of suitable sites, and other factors. To focus efforts, field sensor deployment activities focused on the wind facility on the southern point of Big Island.

  20. Different Virtual Stator Winding Configurations of Open-End Winding Five-Phase PM Machines for Wide Speed Range without Flux Weakening Operation

    E-Print Network [OSTI]

    Paris-Sud XI, Université de

    Different Virtual Stator Winding Configurations of Open-End Winding Five-Phase PM Machines for Wide of double-ended inverter system for wide-speed range of open- winding five phase PM machines. Different virtual winding configurations (star, pentagon, pentacle and bipolar) can be obtained by choosing

  1. Fowler Ridge Wind Farm Phase I (Clipper) | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are being directedAnnualPropertyd8c-a9ae-f8521cbb8489Information HydroFontana,datasetWind Farm JumpPhase I

  2. Fowler Ridge Wind Farm Phase I (Vestas) | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are being directedAnnualPropertyd8c-a9ae-f8521cbb8489Information HydroFontana,datasetWind Farm JumpPhase IFowler

  3. Oak Creek Phase I Wind Farm | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are beingZealand Jump to: navigation, searchOfRoseConcerns Jumpsource HistoryFractures below a19/2008Phase I Wind Farm

  4. Oak Creek Wind Power Phase 2 Wind Farm | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are beingZealand Jump to: navigation, searchOfRoseConcerns Jumpsource HistoryFractures below a19/2008Phase I Wind

  5. EVALUATION OF MODELS FOR THE VERTICAL EXTRAPOLATION OF WIND SPEED MEASUREMENTS AT OFFSHORE SITES

    E-Print Network [OSTI]

    Heinemann, Detlev

    sites. The first large offshore wind farms are currently being built in several countries in Europe. For the planning of offshore wind farms the vertical wind speed profile is needed for two main reasons: WindEVALUATION OF MODELS FOR THE VERTICAL EXTRAPOLATION OF WIND SPEED MEASUREMENTS AT OFFSHORE SITES

  6. Evaluation of the Impacts of Deep Penetration of Wind Resources on Transmission Utilization and

    E-Print Network [OSTI]

    Gross, George

    Terms--wind generation, grid integration, trans- mission utilization, stability analysis, dynamic perfor- tion of wind generation resources into the power grids requires the evaluation of the impacts of wind quantification of the impacts of wind resource integration on the system. The evaluation of these impacts

  7. Pole-phase modulated toroidal winding for an induction machine

    DOE Patents [OSTI]

    Miller, John Michael (Saline, MI); Ostovic, Vlado (Weinheim, DE)

    1999-11-02T23:59:59.000Z

    A stator (10) for an induction machine for a vehicle has a cylindrical core (12) with inner and outer slots (26, 28) extending longitudinally along the inner and outer peripheries between the end faces (22, 24). Each outer slot is associated with several adjacent inner slots. A plurality of toroidal coils (14) are wound about the core and laid in the inner and outer slots. Each coil occupies a single inner slot and is laid in the associated outer slot thereby minimizing the distance the coil extends from the end faces and minimizing the length of the induction machine. The toroidal coils are configured for an arbitrary pole phase modulation wherein the coils are configured with variable numbers of phases and poles for providing maximum torque for cranking and switchable to a another phase and pole configuration for alternator operation. An adaptor ring (36) circumferentially positioned about the stator improves mechanical strength, and provides a coolant channel manifold (34) for removing heat produced in stator windings during operation.

  8. Structural Composites Industries 4 kilowatt wind system development. Phase I: design and analysis, technical report

    SciTech Connect (OSTI)

    Malkine, N.; Bottrell, G.; Weingart, O.

    1981-05-01T23:59:59.000Z

    A 4 kW small wind energy conversion system (SWECS) has been designed for residential applications in which relatively low (10 mph) mean annual wind speeds prevail. The objectives were to develop such a machine to produce electrical energy at 6 cents per kWh while operating in parallel with a utility grid or auxiliary generator. The Phase I effort began in November, 1979 and was carried through the Final Design Review in February 1981. During this period extensive trade, optimization and analytical studies were performed in an effort to provide the optimum machine to best meet the objectives. Certain components, systems and manufacturing processes were tested and evaluated and detail design drawings were produced. The resulting design is a 31-foot diameter horizontal axis downwind machine rated 5.7 kW and incorporating the following unique features: Composite Blades; Free-Standing Composite Tower; Torque-Actuated Blade Pitch Control. The design meets or exceeds all contract requirements except that for cost of energy. The target 6 cents per kWh will be achieved in a mean wind speed slightly below 12 mph instead of the specified 10 mph.

  9. GIS-based wind farm site selection: Evaluating the case for New York State

    E-Print Network [OSTI]

    GIS-based wind farm site selection: Evaluating the case for New York State E-mail: rv2216@columbia Conference, Saratoga Springs, NY, November 15, 2011 #12;Where to build a 50 MW wind farm? 1. What sites.clca.columbia.edu GIS-based wind farm site selection: evaluating the case for New York State ­ NEARC GIS conference 2011

  10. Evaluating Southern Ocean Response to Wind Forcing Sarah T. Gille \\Lambda

    E-Print Network [OSTI]

    Gille, Sarah T.

    Evaluating Southern Ocean Response to Wind Forcing Sarah T. Gille \\Lambda School of Environmental author: Gille 1 Evaluating Southern Ocean Response to Wind Forcing Sarah T. Gille \\Lambda School Circumpolar Current (ACC) responds to changes in wind forcing, cross coherences are calculated between

  11. Evaluation of Offshore Wind Simulations with MM5 in the Japanese and Danish Coastal Waters

    E-Print Network [OSTI]

    Heinemann, Detlev

    Evaluation of Offshore Wind Simulations with MM5 in the Japanese and Danish Coastal Waters Teruo to evaluate the accuracy of offshore wind simulation with the mesoscale model MM5, long-term simulations to simulate offshore wind conditions in the Japanese coastal waters even using a mesoscale model, compared

  12. AN EVALUATION OF THE WILDLIFE IMPACTS OF OFFSHORE WIND DEVELOPMENT RELATIVE TO FOSSIL FUEL

    E-Print Network [OSTI]

    Firestone, Jeremy

    AN EVALUATION OF THE WILDLIFE IMPACTS OF OFFSHORE WIND DEVELOPMENT RELATIVE TO FOSSIL FUEL POWER. Jarvis All Rights Reserved #12;AN EVALUATION OF THE WILDLIFE IMPACTS OF OFFSHORE WIND DEVELOPMENT in offshore wind energy. I would also like to thank my committee members, Dr. Jeremy Firestone

  13. The Western Wind and Solar Integration Study Phase 2 (Fact Sheet), NREL (National Renewable Energy Laboratory)

    Broader source: Energy.gov [DOE]

    This is one-page, two-sided fact sheet presents high-level summary results of the Western Wind and Solar Integration Study Phase 2, which examined operational impacts of high penetrations of variable renewable generation in the West.

  14. Offshore Code Comparison Collaboration, Continuation within IEA Wind Task 30: Phase II Results Regarding a Floating Semisubmersible Wind System: Preprint

    SciTech Connect (OSTI)

    Robertson, A.; Jonkman, J.; Vorpahl, F.; Popko, W.; Qvist, J.; Froyd, L.; Chen, X.; Azcona, J.; Uzungoglu, E.; Guedes Soares, C.; Luan, C.; Yutong, H.; Pengcheng, F.; Yde, A.; Larsen, T.; Nichols, J.; Buils, R.; Lei, L.; Anders Nygard, T.; et al.

    2014-03-01T23:59:59.000Z

    Offshore wind turbines are designed and analyzed using comprehensive simulation tools (or codes) that account for the coupled dynamics of the wind inflow, aerodynamics, elasticity, and controls of the turbine, along with the incident waves, sea current, hydrodynamics, and foundation dynamics of the support structure. This paper describes the latest findings of the code-to-code verification activities of the Offshore Code Comparison Collaboration, Continuation (OC4) project, which operates under the International Energy Agency (IEA) Wind Task 30. In the latest phase of the project, participants used an assortment of simulation codes to model the coupled dynamic response of a 5-MW wind turbine installed on a floating semisubmersible in 200 m of water. Code predictions were compared from load-case simulations selected to test different model features. The comparisons have resulted in a greater understanding of offshore floating wind turbine dynamics and modeling techniques, and better knowledge of the validity of various approximations. The lessons learned from this exercise have improved the participants? codes, thus improving the standard of offshore wind turbine modeling.

  15. Offshore Code Comparison Collaboration within IEA Wind Task 23: Phase IV Results Regarding Floating Wind Turbine Modeling; Preprint

    SciTech Connect (OSTI)

    Jonkman, J.; Larsen, T.; Hansen, A.; Nygaard, T.; Maus, K.; Karimirad, M.; Gao, Z.; Moan, T.; Fylling, I.

    2010-04-01T23:59:59.000Z

    Offshore wind turbines are designed and analyzed using comprehensive simulation codes that account for the coupled dynamics of the wind inflow, aerodynamics, elasticity, and controls of the turbine, along with the incident waves, sea current, hydrodynamics, and foundation dynamics of the support structure. This paper describes the latest findings of the code-to-code verification activities of the Offshore Code Comparison Collaboration, which operates under Subtask 2 of the International Energy Agency Wind Task 23. In the latest phase of the project, participants used an assortment of codes to model the coupled dynamic response of a 5-MW wind turbine installed on a floating spar buoy in 320 m of water. Code predictions were compared from load-case simulations selected to test different model features. The comparisons have resulted in a greater understanding of offshore floating wind turbine dynamics and modeling techniques, and better knowledge of the validity of various approximations. The lessons learned from this exercise have improved the participants' codes, thus improving the standard of offshore wind turbine modeling.

  16. Phase 2 Report: Oahu Wind Integration and Transmission Study...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    cable transmission to Oahu from Molokai and Lanai is in the synchronization of the wind farms on Molokai and Lanai and the power system on Maui together with the voltage sourced...

  17. Evaluation of Advanced Wind Power Forecasting Models Results of the Anemos Project

    E-Print Network [OSTI]

    Paris-Sud XI, Université de

    1 Evaluation of Advanced Wind Power Forecasting Models ­ Results of the Anemos Project I. Martí1.kariniotakis@ensmp.fr Abstract An outstanding question posed today by end-users like power system operators, wind power producers or traders is what performance can be expected by state-of-the-art wind power prediction models. This paper

  18. EVALUATION OF MODELS FOR THE VERTICAL EXTRAPOLATION OF WIND SPEED MEASUREMENTS AT OFFSHORE SITES

    E-Print Network [OSTI]

    Heinemann, Detlev

    will come from offshore sites. The first large offshore wind farms are currently being built in severalEVALUATION OF MODELS FOR THE VERTICAL EXTRAPOLATION OF WIND SPEED MEASUREMENTS AT OFFSHORE SITES important for offshore wind energy utilisation are discussed and tested: Four models for the surface

  19. Modeling wind forcing in phase resolving simulation of nonlinear wind waves

    E-Print Network [OSTI]

    Kalmikov, Alexander G

    2010-01-01T23:59:59.000Z

    Wind waves in the ocean are a product of complex interaction of turbulent air flow with gravity driven water surface. The coupling is strong and the waves are non-stationary, irregular and highly nonlinear, which restricts ...

  20. EVALUATION OF HAND LAY-UP AND RESIN TRANSFER MOLDING IN COMPOSITE WIND TURBINE BLADE MANUFACTURING

    E-Print Network [OSTI]

    EVALUATION OF HAND LAY-UP AND RESIN TRANSFER MOLDING IN COMPOSITE WIND TURBINE BLADE MANUFACTURING..........................................................................................................1 Hand Lay-up in Turbine Blade Fabrication

  1. Observation Targeting for the Tehachapi Pass and Mid-Columbia Basin: WindSENSE Phase III Project Summary Report

    SciTech Connect (OSTI)

    Hanley, D

    2011-10-22T23:59:59.000Z

    The overall goal of this multi-phased research project known as WindSENSE is to develop an observation system deployment strategy that would improve wind power generation forecasts. The objective of the deployment strategy is to produce the maximum benefit for 1- to 6-hour ahead forecasts of wind speed at hub-height ({approx}80 m). In Phase III of the project, the focus was on the Mid-Columbia Basin region which encompasses the Bonneville Power Administration (BPA) wind generation area shown in Figure 1 that includes Klondike, Stateline, and Hopkins Ridge wind plants. The typical hub height of a wind turbine is approximately 80-m above ground level (AGL). So it would seem that building meteorological towers in the region upwind of a wind generation facility would provide data necessary to improve the short-term forecasts for the 80-m AGL wind speed. However, this additional meteorological information typically does not significantly improve the accuracy of the 0- to 6-hour ahead wind power forecasts because processes controlling wind variability change from day-to-day and, at times, from hour-to-hour. It is also important to note that some processes causing significant changes in wind power production function principally in the vertical direction. These processes will not be detected by meteorological towers at off-site locations. For these reasons, it is quite challenging to determine the best type of sensors and deployment locations. To address the measurement deployment problem, Ensemble Sensitivity Analysis (ESA) was applied in the Phase I portion of the WindSENSE project. The ESA approach was initially designed to produce spatial fields that depict the sensitivity of a forecast metric to a set of prior state variables selected by the user. The best combination of variables and locations to improve the forecast was determined using the Multiple Observation Optimization Algorithm (MOOA) developed in Phase I. In Zack et al. (2010a), the ESA-MOOA approach was applied and evaluated for the wind plants in the Tehachapi Pass region for a period during the warm season. That research demonstrated that forecast sensitivity derived from the dataset was characterized by well-defined, localized patterns for a number of state variables such as the 80-m wind and the 25-m to 1-km temperature difference prior to the forecast time. The sensitivity patterns produced as part of the Tehachapi Pass study were coherent and consistent with the basic physical processes that drive wind patterns in the Tehachapi area. In Phase II of the WindSENSE project, the ESA-MOOA approach was extended and applied to the wind plants located in the Mid-Columbia Basin wind generation area of Washington-Oregon during the summer and to the Tehachapi Pass region during the winter. The objective of this study was to identify measurement locations and variables that have the greatest positive impact on the accuracy of wind forecasts in the 0- to 6-hour look-ahead periods for the two regions and to establish a higher level of confidence in ESA-MOOA for mesoscale applications. The detailed methodology and results are provided in separate technical reports listed in the publications section below. Ideally, the data assimilation scheme used in the Phase III experiments would have been based upon an ensemble Kalman filter (EnKF) that was similar to the ESA method used to diagnose the Mid-Columbia Basin sensitivity patterns in the previous studies. However, running an EnKF system at high resolution is impractical because of the very high computational cost. Thus, it was decided to use a three-dimensional variational (3DVAR) analysis scheme that is less computationally intensive. The objective of this task is to develop an observation system deployment strategy for the mid Columbia Basin (i.e. the BPA wind generation region) that is designed to produce the maximum benefit for 1- to 6-hour ahead forecasts of hub-height ({approx}80 m) wind speed with a focus on periods of large changes in wind speed. There are two tasks in the current project effort designed to validate

  2. Ponnequin phase III (EUI) Wind Farm | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are beingZealand Jump to: navigation,Pillar Group BV Jump to: navigation, searchPocatelloIII Wind FarmEUI) Wind Farm

  3. Ponnequin phase III (PSCo) Wind Farm | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are beingZealand Jump to: navigation,Pillar Group BV Jump to: navigation, searchPocatelloIII Wind FarmEUI) Wind

  4. Is the Weibull distribution really suited for wind statistics modeling and wind power evaluation?

    E-Print Network [OSTI]

    Drobinski, Philippe

    2012-01-01T23:59:59.000Z

    Wind speed statistics is generally modeled using the Weibull distribution. This distribution is convenient since it fully characterizes analytically with only two parameters (the shape and scale parameters) the shape of distribution and the different moments of the wind speed (mean, standard deviation, skewness and kurtosis). This distribution is broadly used in the wind energy sector to produce maps of wind energy potential. However, the Weibull distribution is based on empirical rather than physical justification and might display strong limitations for its applications. The philosophy of this article is based on the modeling of the wind components instead of the wind speed itself. This provides more physical insights on the validity domain of the Weibull distribution as a possible relevant model for wind statistics and the quantification of the error made by using such a distribution. We thereby propose alternative expressions of more suited wind speed distribution.

  5. Experimental investigation of aerodynamic devices for wind turbine rotational speed control. Phase 1

    SciTech Connect (OSTI)

    Miller, L.S. [Wichita State Univ., KS (United States)

    1995-02-01T23:59:59.000Z

    An investigation was undertaken to identify the aerodynamic performance of five separate trailing-edge control devices, and to evaluate their potential for wind turbine overspeed and power modulation applications. A modular two-dimensional wind tunnel model was constructed and evaluated during extensive wind tunnel testing. Aerodynamic lift, drag, suction, and pressure coefficient data were acquired and analyzed for various control configurations and angles of attack. To further interpret their potential performance, the controls were evaluated numerically using a generic wind turbine geometry and a performance analysis computer program. Results indicated that the Spoiler-Flap control configuration was best softed for turbine braking applications. It exhibited a large negative suction coefficient over a broad angle-of-attack range, and good turbine braking capabilities, especially at low tip-speed ratio.

  6. Enertech 15-kW wind-system development. Phase II. Fabrication and test

    SciTech Connect (OSTI)

    Zickefoose, C.R.

    1982-12-01T23:59:59.000Z

    This Phase II report presents a description of the Enertech 15 kW prototype wind system hardware fabrication; results of component tests; and results of preliminary testing conducted at Norwich, VT and the RF Wind Energy Research Center. In addition, the assembly sequence is documented. During testing, the unit experienced several operational problems, but testing proved the design concept and demonstrated the system's ability to meet the contract design specifications for power output.

  7. North Wind Power Company 2-kilowatt high-reliability wind system. Phase I. Design and analysis. Technical report

    SciTech Connect (OSTI)

    Mayer, D J; Norton, Jr, J H

    1981-07-01T23:59:59.000Z

    Results are presented of Phase I of a program to design a 2kW high reliability wind turbine for use in remote locations and harsh environments. In phase I of the program, a predecessor of the proposed design was procured and tested in a wind tunnel and in the freestream to observe operational characteristics. An analytical procedure was developed for designing and modelling the proposed variable axis rotor control system (VARCS). This was then verified by extensive mobile testing of pre-prototype components. A low speed three phase alternator with a Lundel type rotor was designed. Prototypes were fabricated and tested to refine calculation procedures and develop an effective alternator with appropriate characteristics. A solid state field switching regulator was designed and tested successfully. All necessary support elements were designed and engineered. A complete analysis of system reliability was conducted including failure mode and effects analyses and reliability, maintenance and safety analyses. Cost estimates were performed for a mature product in production rates of 1000 per year. Analysis and testing conducted throughout the first phase is included.

  8. Evaluation of Global Onshore Wind Energy Potential and Generation Costs

    SciTech Connect (OSTI)

    Zhou, Yuyu; Luckow, Patrick; Smith, Steven J.; Clarke, Leon E.

    2012-06-20T23:59:59.000Z

    In this study, we develop an updated global estimate of onshore wind energy potential using reanalysis wind speed data, along with updated wind turbine technology performance and cost assumptions as well as explicit consideration of transmission distance in the calculation of transmission costs. We find that wind has the potential to supply a significant portion of world energy needs, although this potential varies substantially by region as well as with assumptions such as on what types of land can be used to site wind farms. Total global wind potential under central assumptions is estimated to be approximately 89 petawatt hours per year at less than 9 cents/kWh with substantial regional variations. One limitation of global wind analyses is that the resolution of current global wind speed reanalysis data can result in an underestimate of high wind areas. A sensitivity analysis of eight key parameters is presented. Wind potential is sensitive to a number of input parameters, particularly those related to land suitability and turbine density as well as cost and financing assumptions which have important policy implications. Transmission cost has a relatively small impact on total wind costs, changing the potential at a given cost by 20-30%. As a result of sensitivities studied here we suggest that further research intended to inform wind supply curve development focus not purely on physical science, such as better resolved wind maps, but also on these less well-defined factors, such as land-suitability, that will also have an impact on the long-term role of wind power.

  9. Solano Wind Project- phase II | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are beingZealand Jump to:Ezfeedflag JumpID-f < RAPID‎ |RippeyInformationSoda Springs,SolaicxSolanoWind

  10. Sweetwater Phase III Wind Farm | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are beingZealand Jump to:Ezfeedflag JumpID-f <Maintained By FaultSunpodsSweetwater 4a Jump to: navigation,III Wind

  11. Caprock Wind Ranch phase II | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are being directedAnnualProperty EditCalifornia:Power LPInformation 8thCalwind IICaney RiverSiemens) Wind

  12. INTERAGENCY FIELD TEST & EVALUATION OF WIND TURBINE - RADAR INTERFEREN...

    Energy Savers [EERE]

    Results of IFT&E More Documents & Publications Final Report DE-EE0005380 - Assessment of Offshore Wind Farm Effects on Sea Surface, Subsurface and Airborne Electronic Systems...

  13. Berry phase and pseudospin winding number in bilayer graphene

    E-Print Network [OSTI]

    Marzari, Nicola

    Ever since the novel quantum Hall effect in bilayer graphene was discovered, and explained by a Berry phase of 2? [ K. S. Novoselov et al. Nat. Phys. 2 177 (2006)], it has been widely accepted that the low-energy electronic ...

  14. DOE SBIR Phase II Final Technical Report - Assessing Climate Change Effects on Wind Energy

    SciTech Connect (OSTI)

    Whiteman, Cameron; Capps, Scott

    2014-11-05T23:59:59.000Z

    Specialized Vertum Partners software tools were prototyped, tested and commercialized to allow wind energy stakeholders to assess the uncertainties of climate change on wind power production and distribution. This project resulted in three commercially proven products and a marketing tool. The first was a Weather Research and Forecasting Model (WRF) based resource evaluation system. The second was a web-based service providing global 10m wind data from multiple sources to wind industry subscription customers. The third product addressed the needs of our utility clients looking at climate change effects on electricity distribution. For this we collaborated on the Santa Ana Wildfire Threat Index (SAWTi), which was released publicly last quarter. Finally to promote these products and educate potential users we released “Gust or Bust”, a graphic-novel styled marketing publication.

  15. Evaluation of Equivalent Static Wind Loads on Buildings Xinzhong Chen1

    E-Print Network [OSTI]

    Kareem, Ahsan

    Evaluation of Equivalent Static Wind Loads on Buildings Xinzhong Chen1 and Ahsan Kareem2 1 Professor of Engineering, University of Notre Dame, Indiana, USA, kareem@nd.edu ABSTRACT Wind loads or by high frequency force balance (HFFB) measurements. Although this loading infor- mation can be directly

  16. Evaluation of Wind Shear Patterns at Midwest Wind Energy Facilities: Preprint

    SciTech Connect (OSTI)

    Smith, K.; Randall, G.; Malcolm, D.; Kelley, N.; Smith, B.

    2002-05-01T23:59:59.000Z

    The U.S. Department of Energy-Electric Power Research Institute (DOE-EPRI) Wind Turbine Verification Program (TVP) has included several wind energy facilities in the Midwestern United States. At several of these projects, a strong diurnal shear pattern has been observed. During the day, low and sometimes negative shear has been measured. During night hours, very high positive shear is frequently observed. These high nighttime shear values are of concern due to the potential for high stresses across the rotor. The resulting loads on turbine components could result in failures. Conversely, the effects of high nighttime wind shear could benefit wind generated energy production in the Midwest by providing a source of greater hub-height wind speeds, particularly for multi-megawatt turbines that utilize tall towers. This paper presents an overview of the observed wind shear at each of the Midwest TVP projects, focusing on diurnal patterns and the frequency of very high nighttime shear at the sites. Turbine fault incidence is examined to determine the presence or absence of a correlation to periods of high shear. Implications of shear-related failures are discussed for other Midwest projects that use megawatt-scale turbines. In addition, this paper discusses the importance of accurate shear estimates for project development.

  17. New Report Evaluates Impacts of DOE's Wind Powering America Initiative...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Department of Energy (DOE) in 1999, was to facilitate a rapid increase in U.S. wind power capacity by engaging in activities that address barriers to deployment on national,...

  18. Sandia National Laboratories: evaluating wind-turbine/radar impacts

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Air Space (NAS) radar system, which has led to a blanket rejection of several wind-farm developments. To improve the siting and ... Last Updated: December 3, 2014 Go To...

  19. Kibby Mountain Phase I Wind Farm | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are beingZealand Jump to: navigation, searchOf Kilauea Volcano, Hawaii |Island,KasVinod Private investor JumpPhase I

  20. Maple Ridge Wind Farm phase II | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are beingZealand Jump to: navigation, searchOfRose Bend < MHKconvertersourcesource History View New5 portion)phase

  1. Nine Canyon Wind Farm Phase II | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are beingZealand Jump to: navigation, searchOfRoseConcerns Jump to:Neppelsource History(CTI PFAN) | OpenNimesFarm Phase

  2. Offshore Code Comparison Collaboration Continuation (OC4), Phase I - Results of Coupled Simulations of an Offshore Wind Turbine with Jacket Support Structure: Preprint

    SciTech Connect (OSTI)

    Popko, W.; Vorpahl, F.; Zuga, A.; Kohlmeier, M.; Jonkman, J.; Robertson, A.; Larsen, T. J.; Yde, A.; Saetertro, K.; Okstad, K. M.; Nichols, J.; Nygaard, T. A.; Gao, Z.; Manolas, D.; Kim, K.; Yu, Q.; Shi, W.; Park, H.; Vasquez-Rojas, A.

    2012-03-01T23:59:59.000Z

    This paper presents the results of the IEA Wind Task 30, Offshore Code Comparison Collaboration Continuation Project - Phase 1.

  3. Integrating High Penetrations of Solar in the Western United States: Results of the Western Wind and Solar Integration Study Phase 2 (Poster)

    SciTech Connect (OSTI)

    Bird, L.; Lew, D.

    2013-10-01T23:59:59.000Z

    This poster presents a summary of the results of the Western Wind and Solar Integration Study Phase 2.

  4. Offshore Code Comparison Collaboration, Continuation: Phase II Results of a Floating Semisubmersible Wind System: Preprint

    SciTech Connect (OSTI)

    Robertson, A.; Jonkman, J.; Musial, W.; Vorpahl, F.; Popko, W.

    2013-11-01T23:59:59.000Z

    Offshore wind turbines are designed and analyzed using comprehensive simulation tools that account for the coupled dynamics of the wind inflow, aerodynamics, elasticity, and controls of the turbine, along with the incident waves, sea current, hydrodynamics, and foundation dynamics of the support structure. The Offshore Code Comparison Collaboration (OC3), which operated under the International Energy Agency (IEA) Wind Task 23, was established to verify the accuracy of these simulation tools [1]. This work was then extended under the Offshore Code Comparison Collaboration, Continuation (OC4) project under IEA Wind Task 30 [2]. Both of these projects sought to verify the accuracy of offshore wind turbine dynamics simulation tools (or codes) through code-to-code comparison of simulated responses of various offshore structures. This paper describes the latest findings from Phase II of the OC4 project, which involved the analysis of a 5-MW turbine supported by a floating semisubmersible. Twenty-two different organizations from 11 different countries submitted results using 24 different simulation tools. The variety of organizations contributing to the project brought together expertise from both the offshore structure and wind energy communities. Twenty-one different load cases were examined, encompassing varying levels of model complexity and a variety of metocean conditions. Differences in the results demonstrate the importance and accuracy of the various modeling approaches used. Significant findings include the importance of mooring dynamics to the mooring loads, the role nonlinear hydrodynamic terms play in calculating drift forces for the platform motions, and the difference between global (at the platform level) and local (at the member level) modeling of viscous drag. The results from this project will help guide development and improvement efforts for these tools to ensure that they are providing the accurate information needed to support the design and analysis needs of the offshore wind community.

  5. Operational Impacts of Wind Energy Resources in the Bonneville Power Administration Control Area - Phase I Report

    SciTech Connect (OSTI)

    Makarov, Yuri V.; Lu, Shuai

    2008-07-15T23:59:59.000Z

    This report presents a methodology developed to study the future impact of wind on BPA power system load following and regulation requirements. The methodology uses historical data and stochastic processes to simulate the load balancing processes in the BPA power system, by mimicking the actual power system operations. Therefore, the results are close to reality, yet the study based on this methodology is convenient to conduct. Compared with the proposed methodology, existing methodologies for doing similar analysis include dispatch model simulation and standard deviation evaluation on load and wind data. Dispatch model simulation is constrained by the design of the dispatch program, and standard deviation evaluation is artificial in separating the load following and regulation requirements, both of which usually do not reflect actual operational practice. The methodology used in this study provides not only capacity requirement information, it also analyzes the ramp rate requirements for system load following and regulation processes. The ramp rate data can be used to evaluate generator response/maneuverability requirements, which is another necessary capability of the generation fleet for the smooth integration of wind energy. The study results are presented in an innovative way such that the increased generation capacity or ramp requirements are compared for two different years, across 24 hours a day. Therefore, the impact of different levels of wind energy on generation requirements at different times can be easily visualized.

  6. Evaluation of Single-Doppler Radar Wind Retrievals in Flat and Complex Terrain

    SciTech Connect (OSTI)

    Newsom, Rob K.; Berg, Larry K.; Pekour, Mikhail S.; Fast, Jerome D.; Xu, Qin; Zhang, Pengfei; Yang, Qing; Shaw, William J.; Flaherty, Julia E.

    2014-08-01T23:59:59.000Z

    The accuracy of winds derived from NEXRAD level II data is assessed by comparison with independent observations from 915 MHz radar wind profilers. The evaluation is carried out at two locations with very different terrain characteristics. One site is located in an area of complex terrain within the State Line Wind Energy Center in northeast Oregon. The other site is located in an area of flat terrain on the east-central Florida coast. The National Severe Storm Laboratory’s 2DVar algorithm is used to retrieve wind fields from the KPDT (Pendleton OR) and KMLB (Melbourne FL) NEXRAD radars. Comparisons between the 2DVar retrievals and the radar profilers were conducted over a period of about 6 months and at multiple height levels at each of the profiler sites. Wind speed correlations at most observation height levels fell in the range from 0.7 to 0.8, indicating that the retrieved winds followed temporal fluctuations in the profiler-observed winds reasonably well. The retrieved winds, however, consistently exhibited slow biases in the range of1 to 2 ms-1. Wind speed difference distributions were broad with standard deviations in the range from 3 to 4 ms-1. Results from the Florida site showed little change in the wind speed correlations and difference standard deviations with altitude between about 300 and 1400 m AGL. Over this same height range, results from the Oregon site showed a monotonic increase in the wind speed correlation and a monotonic decrease in the wind speed difference standard deviation with increasing altitude. The poorest overall agreement occurred at the lowest observable level (~300 m AGL) at the Oregon site, where the effects of the complex terrain were greatest.

  7. Western Wind and Solar Integration Study Phase 3 -- Frequency Response and Transient Stability (Report and Executive Summary)

    SciTech Connect (OSTI)

    Miller, N. W.; Shao, M.; Pajic, S.; D'Aquila, R.

    2014-12-01T23:59:59.000Z

    The primary objectives of Phase 3 of the Western Wind and Solar Integration Study (WWSIS-3) were to examine the large-scale transient stability and frequency response of the Western Interconnection with high wind and solar penetration, and to identify means to mitigate any adverse performance impacts via transmission reinforcements, storage, advanced control capabilities, or other alternatives.

  8. Evaluating the risk-reduction benefits of wind energy

    SciTech Connect (OSTI)

    Brower, M.C.; Bell, K.; Spinney, P. [and others

    1997-05-01T23:59:59.000Z

    The question of uncertainty and risk in electric utility resource planning has received considerable attention in recent years. During the 1980s, many utilities suffered financial losses because of unexpectedly high plant construction costs and low growth in electricity demand. In addition, the introduction of competition to the electric industry is creating new risks for power companies. No longer will utilities be able to count on regulatory protections and a base of captive consumers to provide a stable market and adequate return on their investments. Alternative risk management strategies will have to be considered instead. One approach to managing risk is for a utility company to invest in diverse power sources such as wind power plants. Since wind plants consume no fuel, can be built in relatively small increments with short construction lead times, and generate no pollutants, it is often said that they offer significant protection from risks associated with conventional fossil-fuel power plants. So far there have been few efforts to quantify these benefits, however. The study compares the costs and risks of two competing resource options, a gas-fired combined cycle plant and a wind plant, both utility-owned, through decision analysis. The case study utility is Texas Utilities Electric, a very large investor-owned company serving an area with substantial, high-quality wind resources. The authors chose a specific moment in the future - the year 2003 - when the utility currently plans to build a large fossil-fueled power plant, and examined the implications for the utility`s expected revenues, costs, and profits if a wind plant were to be built instead.

  9. Preliminary evaluation of wind energy potential: Cook Inlet area, Alaska

    SciTech Connect (OSTI)

    Hiester, T.R.

    1980-06-01T23:59:59.000Z

    This report summarizes work on a project performed under contract to the Alaska Power Administration (APA). The objective of this research was to make a preliminary assessment of the wind energy potential for interconnection with the Cook Inlet area electric power transmission and distribution systems, to identify the most likely candidate regions (25 to 100 square miles each) for energy potential, and to recommend a monitoring program sufficient to quantify the potential.

  10. Public Health Air Surveillance Evaluation Project Public Health Air Surveillance Evaluation (PHASE) Project

    E-Print Network [OSTI]

    Public Health Air Surveillance Evaluation Project Public Health Air Surveillance Evaluation (PHASE) Project Evaluating, Developing, and Delivering Air Quality Characterization Data to Environmental Public Public Health Tracking (EPHT) Network. The EPA is developing routinely available air quality information

  11. Evaluation of phase change materials for reconfigurable interconnects

    E-Print Network [OSTI]

    Khoo, Chee Ying

    2010-01-01T23:59:59.000Z

    The possible use of programmable integrated circuit interconnect vias using an indirectly heated phase change material is evaluated. Process development and materials investigations are examined. Devices capable of multiple ...

  12. A Feasibility Study to Evaluate Wind Energy Potential on the Navajo Nation

    SciTech Connect (OSTI)

    Terry Battiest

    2012-11-30T23:59:59.000Z

    The project, A Feasibility Study to Evaluate Wind Energy Potential on the Navajo Nation, is funded under a solicitation issued by the U.S. Department of Energy Tribal Energy Program. Funding provided by the grant allowed the Navajo Nation to measure wind potential at two sites, one located within the boundaries of the Navajo Nation and the other off-reservation during the project period (September 5, 2005 - September 30, 2009). The recipient for the grant award is the Navajo Tribal Utility Authority (NTUA). The grant allowed the Navajo Nation and NTUA manage the wind feasibility from initial site selection through the decision-making process to commit to a site for wind generation development. The grant activities help to develop human capacity at NTUA and help NTUA to engage in renewable energy generation activities, including not only wind but also solar and biomass. The final report also includes information about development activities regarding the sited included in the grant-funded feasibility study.

  13. Evaluating and Minimizing Distributed Cavity Phase Errors in Atomic Clocks

    E-Print Network [OSTI]

    Li, Ruoxin

    2010-01-01T23:59:59.000Z

    We perform 3D finite element calculations of the fields in microwave cavities and analyze the distributed cavity phase errors of atomic clocks that they produce. The fields of cylindrical cavities are treated as an azimuthal Fourier series. Each of the lowest components produces clock errors with unique characteristics that must be assessed to establish a clock's accuracy. We describe the errors and how to evaluate them. We prove that sharp structures in the cavity do not produce large frequency errors, even at moderately high powers, provided the atomic density varies slowly. We model the amplitude and phase imbalances of the feeds. For larger couplings, these can lead to increased phase errors. We show that phase imbalances produce a novel distributed cavity phase error that depends on the cavity detuning. We also design improved cavities by optimizing the geometry and tuning the mode spectrum so that there are negligible phase variations, allowing this source of systematic error to be dramatically reduced.

  14. Evaluating and Minimizing Distributed Cavity Phase Errors in Atomic Clocks

    E-Print Network [OSTI]

    Ruoxin Li; Kurt Gibble

    2010-08-09T23:59:59.000Z

    We perform 3D finite element calculations of the fields in microwave cavities and analyze the distributed cavity phase errors of atomic clocks that they produce. The fields of cylindrical cavities are treated as an azimuthal Fourier series. Each of the lowest components produces clock errors with unique characteristics that must be assessed to establish a clock's accuracy. We describe the errors and how to evaluate them. We prove that sharp structures in the cavity do not produce large frequency errors, even at moderately high powers, provided the atomic density varies slowly. We model the amplitude and phase imbalances of the feeds. For larger couplings, these can lead to increased phase errors. We show that phase imbalances produce a novel distributed cavity phase error that depends on the cavity detuning. We also design improved cavities by optimizing the geometry and tuning the mode spectrum so that there are negligible phase variations, allowing this source of systematic error to be dramatically reduced.

  15. Operation of Concentrating Solar Power Plants in the Western Wind and Solar Integration Phase 2 Study

    SciTech Connect (OSTI)

    Denholm, P.; Brinkman, G.; Lew, D.; Hummon, M.

    2014-05-01T23:59:59.000Z

    The Western Wind and Solar Integration Study (WWSIS) explores various aspects of the challenges and impacts of integrating large amounts of wind and solar energy into the electric power system of the West. The phase 2 study (WWSIS-2) is one of the first to include dispatchable concentrating solar power (CSP) with thermal energy storage (TES) in multiple scenarios of renewable penetration and mix. As a result, it provides unique insights into CSP plant operation, grid benefits, and how CSP operation and configuration may need to change under scenarios of increased renewable penetration. Examination of the WWSIS-2 results indicates that in all scenarios, CSP plants with TES provides firm system capacity, reducing the net demand and the need for conventional thermal capacity. The plants also reduced demand during periods of short-duration, high ramping requirements that often require use of lower efficiency peaking units. Changes in CSP operation are driven largely by the presence of other solar generation, particularly PV. Use of storage by the CSP plants increases in the higher solar scenarios, with operation of the plant often shifted to later in the day. CSP operation also becomes more variable, including more frequent starts. Finally, CSP output is often very low during the day in scenarios with significant PV, which helps decrease overall renewable curtailment (over-generation). However, the configuration studied is likely not optimal for High Solar Scenario implying further analysis of CSP plant configuration is needed to understand its role in enabling high renewable scenarios in the Western United States.

  16. Module Handbook Specialisation Wind Energy

    E-Print Network [OSTI]

    Habel, Annegret

    ;Specialisation Wind Energy, NTU Athens, 2nd Semester Module 1/Wind Energy: Wind potential, Aerodynamics & Loading of Wind Turbines Module name: Wind potential, Aerodynamics & Loading of Wind Turbines Section Classes Evaluation of Wind Energy Potential Wind turbine Aerodynamics Static and dynamic Loading of Wind turbines

  17. Enertech 2-kW high-reliability wind system. Phase II. Fabrication and testing

    SciTech Connect (OSTI)

    Cordes, J A; Johnson, B A

    1981-06-01T23:59:59.000Z

    A high-reliability wind machine rated for 2 kW in a 9 m/s wind has been developed. Activities are summarized that are centered on the fabrication and testing of prototypes of the wind machine. The test results verified that the wind machine met the power output specification and that the variable-pitch rotor effectively controlled the rotor speed for wind speeds up to 50 mph. Three prototypes of the wind machine were shipped to the Rocky Flats test center in September through November of 1979. Work was also performed to reduce the start-up wind speed. The start-up wind speed to the Enertech facility has been reduced to 4.5 m/s.

  18. Evaluation of Non-intrusive Traffic Detection Technologies Phase III

    E-Print Network [OSTI]

    Minnesota, University of

    TPF-5(171) Evaluation of Non-intrusive Traffic Detection Technologies Đ Phase III #12 not intrude into pavement for installation. ·! Sensors above, below or to the side of the roadway qualify;Miovision #12;Miovision #12;Laser-based sensors #12;PEEK AxleLight #12;TIRTL #12;TIRTL #12;#12;#12;#12;

  19. Initial laboratory evaluation of color video cameras: Phase 2

    SciTech Connect (OSTI)

    Terry, P.L.

    1993-07-01T23:59:59.000Z

    Sandia National Laboratories has considerable experience with monochrome video cameras used in alarm assessment video systems. Most of these systems, used for perimeter protection, were designed to classify rather than to identify intruders. The monochrome cameras were selected over color cameras because they have greater sensitivity and resolution. There is a growing interest in the identification function of security video systems for both access control and insider protection. Because color camera technology is rapidly changing and because color information is useful for identification purposes, Sandia National Laboratories has established an on-going program to evaluate the newest color solid-state cameras. Phase One of the Sandia program resulted in the SAND91-2579/1 report titled: Initial Laboratory Evaluation of Color Video Cameras. The report briefly discusses imager chips, color cameras, and monitors, describes the camera selection, details traditional test parameters and procedures, and gives the results reached by evaluating 12 cameras. Here, in Phase Two of the report, we tested 6 additional cameras using traditional methods. In addition, all 18 cameras were tested by newly developed methods. This Phase 2 report details those newly developed test parameters and procedures, and evaluates the results.

  20. White Knights: Will wind and solar come to the rescue of a looming capacity gap from nuclear phase-out or

    E-Print Network [OSTI]

    Paris-Sud XI, Université de

    rapidly but faces grid integration problems; yet the cost of PV solar panels has plummeted thanks1 White Knights: Will wind and solar come to the rescue of a looming capacity gap from nuclear renewable power generation from wind and solar as a non- emitting alternative to replace a nuclear phase

  1. Kaman 40-kW wind system. Phase II. Fabrication and tests. Volume II. Technical report

    SciTech Connect (OSTI)

    Howes, H; Perley, R

    1981-01-01T23:59:59.000Z

    A program is underway to design, fabricate and test a horizontal axis Wind Turbine Generator (WTG) capable of producing 40 kW electrical output power in a 20 mph wind. Results are presented of the program effort covering fabrication and testing of the Wing Turbine Generator designed earlier. A minimum of difficulties were experienced during fabrication and, after successful completion of Contractor tests through 20 mph winds, the WTG was shipped to Rocky Flats, assembled and operated there. The 40 kW WTG is presently undergoing extended tests at Rockwell's Rocky Flats test facility.

  2. SOWFA Super-Controller: A High-Fidelity Tool for Evaluating Wind Plant Control Approaches

    SciTech Connect (OSTI)

    Fleming, P.; Gebraad, P.; van Wingerden, J. W.; Lee, S.; Churchfield, M.; Scholbrock, A.; Michalakes, J.; Johnson, K.; Moriarty, P.

    2013-01-01T23:59:59.000Z

    This paper presents a new tool for testing wind plant controllers in the Simulator for Offshore Wind Farm Applications (SOWFA). SOWFA is a high-fidelity simulator for the interaction between wind turbine dynamics and the fluid flow in a wind plant. The new super-controller testing environment in SOWFA allows for the implementation of the majority of the wind plant control strategies proposed in the literature.

  3. An Innovative Technique for Evaluating the Integrity and Durability of Wind Turbine Blade Composites

    SciTech Connect (OSTI)

    Wang, Jy-An John [ORNL; Ren, Fei [ORNL

    2010-09-01T23:59:59.000Z

    Wind turbine blades are subjected to complex multiaxial stress states during operation. A review of the literature suggests that mixed mode fracture toughness can be significantly less than that of the tensile opening mode (Mode I), implying that fracture failure can occur at a much lower load capacity if the structure is subject to mixed-mode loading. Thus, it will be necessary to identify the mechanisms that might lead to failure in blade materials under mixed-mode loading conditions. Meanwhile, wind turbine blades are typically fabricated from fiber reinforced polymeric materials, e.g. fiber glass composites. Due to the large degree of anisotropy in mechanical properties that is usually associated with laminates, the fracture behavior of these composite materials is likely to be strongly dependent on the loading conditions. This may further strengthen the need to study the effect of mixed-mode loading on the integrity and durability of the wind turbine blade composites. To quantify the fracture behavior of composite structures under mixed mode loading conditions, particularly under combined Mode I (flexural or normal tensile stress) and Mode III (torsional shear stress) loading, a new testing technique is proposed based on the spiral notch torsion test (SNTT). As a 2002 R&D 100 Award winner, SNTT is a novel fracture testing technology. SNTT has many advantages over conventional fracture toughness methods and has been used to determine fracture toughness values on a wide spectrum of materials. The current project is the first attempt to utilize SNTT on polymeric and polymer-based composite materials. It is expected that mixed-mode failure mechanisms of wind turbine blades induced by typical in-service loading conditions, such as delamination, matrix cracking, fiber pull-out and fracture, can be effectively and economically investigated by using this methodology. This project consists of two phases. The Phase I (FY2010) effort includes (1) preparation of testing material and testing equipment set-up, including calibration of associated instruments/sensors, (2) development of design protocols for the proposed SNTT samples for both polymer and composite materials, such as sample geometries and fabrication techniques, (3) manufacture of SNTT samples, and (4) fracture toughness testing using the SNTT method. The major milestone achieved in Phase I is the understanding of fracture behaviors of polymeric matrix materials from testing numerous epoxy SNTT samples. Totals of 30 epoxy SNTT samples were fabricated from two types of epoxy materials provided by our industrial partners Gougeon Brothers, Inc. and Molded Fiber Glass Companies. These samples were tested with SNTT in three groups: (1) fracture due to monotonic loading, (2) fracture due to fatigue cyclic loading, and (3) monotonic loading applied to fatigue-precracked samples. Brittle fractures were observed on all tested samples, implying linear elastic fracture mechanics analysis can be effectively used to estimate the fracture toughness of these materials with confidence. Appropriate fatigue precracking protocols were established to achieve controllable crack growth using the SNTT approach under pure torsion loading. These fatigue protocols provide the significant insights of the mechanical behavior of epoxy polymeric materials and their associated rate-dependent characteristics. Effects of mixed-mode loading on the fracture behavior of epoxy materials was studied. It was found that all epoxy samples failed in brittle tensile failure mode; the fracture surfaces always follow a 45o spiral plane that corresponded to Mode I tensile failure, even when the initial pitch angle of the machined spiral grooves was not at 45o. In addition, general observation from the fatigue experiments implied that loading rate played an important role determining the fracture behavior of epoxy materials, such that a higher loading rate resulted in a shorter fatigue life. A detailed study of loading rate effect will be continued in the Phase II. On the other hand, analytical finite element ana

  4. ALTERNATE REDUCTANT COLD CAP EVALUATION FURNACE PHASE I TESTING

    SciTech Connect (OSTI)

    Johnson, F.; Miller, D.; Zamecnik, J.; Lambert, D.

    2014-04-22T23:59:59.000Z

    Savannah River Remediation (SRR) conducted a Systems Engineering Evaluation (SEE) to determine the optimum alternate reductant flowsheet for the Defense Waste Processing Facility (DWPF). Specifically, two proposed flowsheets (nitric–formic–glycolic and nitric–formic–sugar) were evaluated based upon results from preliminary testing. Comparison of the two flowsheets among evaluation criteria indicated a preference towards the nitric–formic–glycolic flowsheet. Further evaluation of this flowsheet eliminated the formic acid1, and as a result, the nitric–glycolic flowsheet was recommended for further testing. Based on the development of a roadmap for the nitric–glycolic acid flowsheet, Waste Solidification Engineering (WS-E) issued a Technical Task Request (TTR) to address flammability issues that may impact the implementation of this flowsheet. Melter testing was requested in order to define the DWPF flammability envelope for the nitric glycolic acid flowsheet. The Savannah River National Laboratory (SRNL) Cold Cap Evaluation Furnace (CEF), a 1/12th scale DWPF melter, was selected by the SRR Alternate Reductant project team as the melter platform for this testing. The overall scope was divided into the following sub-tasks as discussed in the Task Technical and Quality Assurance Plan (TTQAP): ? Phase I - A nitric–formic acid flowsheet melter test (unbubbled) to baseline the Cold Cap Evaluation Furnace (CEF) cold cap and vapor space data to the benchmark melter flammability models ? Phase II - A nitric–glycolic acid flowsheet melter test (unbubbled and bubbled) to: o Define new cold cap reactions and global kinetic parameters for the melter flammability models o Quantify off-gas surging potential of the feed o Characterize off-gas condensate for complete organic and inorganic carbon species Prior to startup, a number of improvements and modifications were made to the CEF, including addition of cameras, vessel support temperature measurement, and a heating element near the pour tube. After charging the CEF with cullet from a previous Sludge Batch 6 (SB6) run, the melter was slurry-fed with SB6-Frit 418 melter feed at 36% waste loading and was operated continuously for 6 days. Process data was collected throughout testing and included melter operation variables and off-gas chemistry. In order to satisfy the objective of Phase I testing, vapor space steady testing in the range of ~300°C-700°C was conducted without argon bubbling to baseline the melter data to the existing DWPF melter flammability model. Adjustments to heater outputs, air flows and feed rate were necessary in order to achieve the vapor space temperatures in this range. The results of the Phase I testing demonstrated that the CEF is capable of operating under the low vapor space temperatures A melter pressure of -5 inches of water was not sustained throughout the run, but the melter did remain slightly negative even with the maximum air flows required for the lowest temperature conditions were used. The auxiliary pour tube heater improved the pouring behavior at all test conditions, including reduced feed rates required for the low vapor space testing. Argon bubbling can be used to promote mixing and increase feed rate at multiple conditions. Improvements due to bubbling have been determined previously; however, the addition of the cameras to the CEF allows for visual observation during a range of bubbling configurations. The off-gas analysis system proved to be robust and capable of operating for long durations. The total operational hours on the melter vessel are approximately 385 hours. Dimensional measurements taken prior to Phase I testing and support block temperatures recorded during Phase I testing are available if an extension of service life beyond 1250 hours is desired in the future.

  5. Tune Evaluation From Phased BPM Turn-By-Turn Data

    E-Print Network [OSTI]

    Alexahin, Y; Marsh, W

    2012-01-01T23:59:59.000Z

    In fast ramping synchrotrons like the Fermilab Booster the conventional methods of betatron tune evaluation from the turn-by-turn data may not work due to rapid changes of the tunes (sometimes in a course of a few dozens of turns) and a high level of noise. We propose a technique based on phasing of signals from a large number of BPMs which significantly increases the signal to noise ratio. Implementation of the method in the Fermilab Booster control system is described and some measurement results are presented.

  6. Tune Evaluation From Phased BPM Turn-By-Turn Data

    SciTech Connect (OSTI)

    Alexahin, Y.; Gianfelice-Wendt, E.; Marsh, W.; /Fermilab

    2010-05-18T23:59:59.000Z

    In fast ramping synchrotrons like the Fermilab Booster the conventional methods of betatron tune evaluation from the turn-by-turn data may not work due to rapid changes of the tunes (sometimes in a course of a few dozens of turns) and a high level of noise. We propose a technique based on phasing of signals from a large number of BPMs which significantly increases the signal to noise ratio. Implementation of the method in the Fermilab Booster control system is described and some measurement results are presented.

  7. ALTERNATE REDUCTANT COLD CAP EVALUATION FURNACE PHASE II TESTING

    SciTech Connect (OSTI)

    Johnson, F.; Stone, M.; Miller, D.

    2014-09-03T23:59:59.000Z

    Savannah River Remediation (SRR) conducted a Systems Engineering Evaluation (SEE) to determine the optimum alternate reductant flowsheet for the Defense Waste Processing Facility (DWPF). Specifically, two proposed flowsheets (nitric–formic–glycolic and nitric–formic–sugar) were evaluated based upon results from preliminary testing. Comparison of the two flowsheets among evaluation criteria indicated a preference towards the nitric–formic–glycolic flowsheet. Further research and development of this flowsheet eliminated the formic acid, and as a result, the nitric–glycolic flowsheet was recommended for further testing. Based on the development of a roadmap for the nitric–glycolic acid flowsheet, Waste Solidification Engineering (WS-E) issued a Technical Task Request (TTR) to address flammability issues that may impact the implementation of this flowsheet. Melter testing was requested in order to define the DWPF flammability envelope for the nitric-glycolic acid flowsheet. The Savannah River National Laboratory (SRNL) Cold Cap Evaluation Furnace (CEF), a 1/12th scale DWPF melter, was selected by the SRR Alternate Reductant project team as the melter platform for this testing. The overall scope was divided into the following sub-tasks as discussed in the Task Technical and Quality Assurance Plan (TTQAP): ? Phase I - A nitric–formic acid flowsheet melter test (unbubbled) to baseline the CEF cold cap and vapor space data to the benchmark melter flammability models; ? Phase II - A nitric–glycolic acid flowsheet melter test (unbubbled and bubbled) to: o Define new cold cap reactions and global kinetic parameters in support of the melter flammability model development; o Quantify off-gas surging potential of the feed; o Characterize off-gas condensate for complete organic and inorganic carbon species. After charging the CEF with cullet from Phase I CEF testing, the melter was slurry-fed with glycolic flowsheet based SB6-Frit 418 melter feed at 36% waste loading and was operated continuously for 25 days. Process data was collected throughout testing and included melter operation parameters and off-gas chemistry. In order to generate off-gas data in support of the flammability model development for the nitric-glycolic flowsheet, vapor space steady state testing in the range of ~300-750°C was conducted under the following conditions, (i) 100% (nominal and excess antifoam levels) and 125% stoichiometry feed and (ii) with and without argon bubbling. Adjustments to feed rate, heater outputs and purge air flow were necessary in order to achieve vapor space temperatures in this range. Surge testing was also completed under nominal conditions for four days with argon bubbling and one day without argon bubbling.

  8. Evaluation of global wind power Cristina L. Archer and Mark Z. Jacobson

    E-Print Network [OSTI]

    here are representative of the global distribution of winds, global wind power generated at locations or greater) and can therefore be considered suitable for low-cost wind power generation. This estimate in northern Europe along the North Sea, the southern tip of the South American continent, the island

  9. Yakima River Basin Phase II Fish Screen Evaluations, 2003

    SciTech Connect (OSTI)

    Vucelick, Jessica A.; McMichael, Geoffrey A.; Chamness, Mickie A.

    2004-05-01T23:59:59.000Z

    In 2003, the Pacific Northwest National Laboratory (PNNL) evaluated 23 Phase II fish screen sites in the Yakima River Basin as part of a multi-year project for the Bonneville Power Administration on the effectiveness of fish screening devices. PNNL collected data to determine whether velocities in front of the screens and in the bypasses met the Nation Oceanic and Atmospheric Administration Fisheries (NOAA Fisheries, formerly the National Marine Fisheries Service (NMFS)) criteria to promote safe and timely fish passage. In addition, PNNL conducted underwater video surveys to evaluate the environmental and operational conditions of the screen sites with respect to fish passage. Based on evaluations in 2003, PNNL concluded that: (1) In general, water velocity conditions at the screen sites met fish passage criteria set by the National Oceanic and Atmospheric Administration Fisheries. (2) Conditions at most facilities would be expected to provide for safe juvenile fish passage. (3) Conditions at some facilities indicate that operation and/or maintenance should be modified to improve juvenile fish passage conditions. (4) Automated cleaning brushes generally functioned properly; chains and other moving parts were typically well greased and operative. (5) Removal of sediment buildup and accumulated leafy and woody debris could be improved at some sites.

  10. Yakima River Basin Phase II Fish Screen Evaluations, 2001.

    SciTech Connect (OSTI)

    Carter, J.A.; McMichael, Geoffrey A.; Chamness, M.A.

    2002-01-01T23:59:59.000Z

    In the summer and fall of 2001 the Pacific Northwest National Laboratory (PNNL) evaluated 23 Phase II fish screen sites in the Yakima River Basin as part of a multi-year study for the Bonneville Power Administration (BPA) on the effectiveness of fish screening devices. Data were collected to determine if velocities in front of the screens and in the bypasses met current National Marine Fisheries Service (NMFS) criteria to promote safe and timely fish passage and whether bypass outfall conditions allowed fish to safely return to the river. Based on our studies in 2001, we concluded that: in general, water velocity conditions at the screen sites met fish passage criteria set forth by the NMFS; most facilities efficiently protected juvenile fish from entrainment, impingement, or migration delay; automated cleaning brushes generally functioned properly; chains and other moving parts were well greased and operative; and removal of sediment build-up and accumulated leafy and woody debris are areas that continue to improve. Continued periodic screen evaluations will increase the effectiveness of screen operation and maintenance practices by confirming the effectiveness (or ineffectiveness) of screen operating procedures at individual sites. Where procedures are being followed and problems still occur, evaluation results can be used to suggest means to better protect fish at screening facilities. There has been a progressive improvement in the maintenance and effectiveness of fish screen facilities in the Yakima River Basin during the last several years, in part, as a result of regular screen evaluations and the rapid feedback of information necessary to improve operations and design of these important fish protection devices. Continued periodic screen evaluations will increase the effectiveness of screen operation and maintenance practices by confirming the effectiveness (or ineffectiveness) of screen operating procedures at individual sites. Where procedures are being followed and problems still occur, evaluation results can be used to suggest means to better protect fish at screening facilities. There has been a progressive improvement in the maintenance and effectiveness of fish screen facilities in the Yakima River Basin during the last several years, in part, as a result of regular screen evaluations and the rapid feedback of information necessary to improve operations and design of these important fish protection devices.

  11. Organization of Energetic Particles by the Solar Wind Structure During the Declining to Minimum Phase of Solar Cycle 23

    E-Print Network [OSTI]

    2010-01-01T23:59:59.000Z

    Feldman, W.C. : 1978, Solar wind stream interfaces. J.of large-scale solar wind structures. Ph.D. dissertation,R.M. : 2008, Weaker solar wind from the polar coronal holes

  12. West Village Student Housing Phase I: Apartment Monitoring and Evaluation

    SciTech Connect (OSTI)

    German, A.; Bell, C.; Dakin, B.; Hoeschele, M.

    2014-06-01T23:59:59.000Z

    Building America team Alliance for Residential Building Innovation (ARBI) worked with the University of California, Davis (UC Davis) and the developer partner West Village Community Partnership (WVCP) to evaluate performance on 192 student apartments completed in September, 2011 as part of Phase I of the multi-purpose West Village project. West Village, the largest planned zero net energy community in the United States. The campus neighborhood is designed to enable faculty, staff and students to affordably live near campus, take advantage of environmentally friendly transportation options, and participate fully in campus life. The aggressive energy efficiency measures that are incorporated in the design contribute to source energy reductions of 37% over the B10 Benchmark. The energy efficiency measures that are incorporated into these apartments include increased wall & attic insulation, high performance windows, high efficiency heat pumps for heating and cooling, central heat pump water heaters (HPWHs), 100% high efficacy lighting, and ENERGY STAR major appliances. Results discuss how measured energy use compares to modeling estimates over a 10 month monitoring period and includes a cost effective evaluation.

  13. Parking and routing information system phase 1 evaluation -- Individual evaluation test plans

    SciTech Connect (OSTI)

    Carter, R.J.

    1997-04-01T23:59:59.000Z

    A parking and routing information system (PARIS) is being designed and deployed at a test site on the Mountain Home Veterans Administration campus in Johnson City, Tennessee using three sensor technologies. The purpose of the PARIS project is to demonstrate innovative integration of vehicle sensing technologies with parking management strategies to improve mobility and relieve congestion associated with a growing medical/technology complex. This technical memorandum presents the four individual evaluation test plans, System Performance Individual Evaluation Test Plan, User Acceptance Individual Evaluation Test Plan, Institutional and Business Issues Individual Evaluation Test Plan, and Transportation Systems Individual Evaluation Test Plan, which were developed to support ORNL`s responsibilities and functions during the four studies. The plans define the level of effort required to satisfy the data collection, processing, and analysis requirements for the assessment of the system performance, user acceptance, institutional and business issues, and transportation systems components of the PARIS phase 1 evaluation. Each plan is divided into three subsections: executive summary, detailed study design, and study management.

  14. Three Offshore Wind Advanced Technology Demonstration Projects...

    Office of Environmental Management (EM)

    Offshore Wind Advanced Technology Demonstration Projects Receive Phase 2 Funding Three Offshore Wind Advanced Technology Demonstration Projects Receive Phase 2 Funding September...

  15. active stall wind: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    SeaWinds, and the Advanced Microwave Scanning Radiometer (AMSR). Scalar wind speed observed by AMSR was evaluated by using wind speed observed by SeaWinds. The...

  16. Economic Evaluation of Short-Term Wind Power Forecasts in ERCOT: Preliminary Results; Preprint

    SciTech Connect (OSTI)

    Orwig, K.; Hodge, B. M.; Brinkman, G.; Ela, E.; Milligan, M.; Banunarayanan, V.; Nasir, S.; Freedman, J.

    2012-09-01T23:59:59.000Z

    Historically, a number of wind energy integration studies have investigated the value of using day-ahead wind power forecasts for grid operational decisions. These studies have shown that there could be large cost savings gained by grid operators implementing the forecasts in their system operations. To date, none of these studies have investigated the value of shorter-term (0 to 6-hour-ahead) wind power forecasts. In 2010, the Department of Energy and National Oceanic and Atmospheric Administration partnered to fund improvements in short-term wind forecasts and to determine the economic value of these improvements to grid operators, hereafter referred to as the Wind Forecasting Improvement Project (WFIP). In this work, we discuss the preliminary results of the economic benefit analysis portion of the WFIP for the Electric Reliability Council of Texas. The improvements seen in the wind forecasts are examined, then the economic results of a production cost model simulation are analyzed.

  17. Evaluation of PM10 and Total Suspended Particulate Sampler Performance Through Wind Tunnel Testing

    E-Print Network [OSTI]

    Thelen, Mary Katherine

    2011-10-21T23:59:59.000Z

    .................................................... 86 APPENDIX F SHARP-EDGE ORIFICE METER CALIBRATION PROCEDURE ................................................................................ 89 APPENDIX G TEXAS A&M WIND TUNNEL OPERATION PROCEDURE ... 92 APPENDIX H MALVER MASTERSIZER 2000...

  18. Evaluating state markets for residential wind systems: Results from an economic and policy analysis tool

    E-Print Network [OSTI]

    Edwards, Jennifer L.; Wiser, Ryan; Bolinger, Mark; Forsyth, Trudy

    2004-01-01T23:59:59.000Z

    Administration (2003). Annual Energy Outlook 2003. DOE/EIA-SP SWAT TVA USDA Annual Energy Outlook American Wind Energyaccording to the 2003 Annual Energy Outlook. Although this

  19. Social Acceptance of Wind Energy: Managing and Evaluating Its Market Impacts (Presentation)

    SciTech Connect (OSTI)

    Baring-Gould, I.

    2012-06-01T23:59:59.000Z

    As with any industrial-scale technology, wind power has impacts. As wind technology deployment becomes more widespread, a defined opposition will form as a result of fear of change and competing energy technologies. As the easy-to-deploy sites are developed, the costs of developing at sites with deployment barriers will increase, therefore increasing the total cost of power. This presentation provides an overview of wind development stakeholders and related stakeholder engagement questions, Energy Department activities that provide wind project deployment information, and the quantification of deployment barriers and costs in the continental United States.

  20. Economic Development Impacts of Community Wind Projects: A Review and Empirical Evaluation; Preprint

    SciTech Connect (OSTI)

    Lantz, E.; Tegen, S.

    2009-04-01T23:59:59.000Z

    'Community wind' refers to a class of wind energy ownership structures. The extent of local ownership may range from a small minority share to full ownership by persons in the immediate area surrounding the wind project site. Potential project owners include local farmers, businesses, Native American tribes, universities, cooperatives, or any other local entity seeking to invest in wind energy. The opposite of community wind is an 'absentee' project, in which ownership is completely removed from the state and community surrounding the facility. Thus, there is little or no ongoing direct financial benefit to state and local populations aside from salaries for local repair technicians, local property tax payments, and land lease payments. In recent years, the community wind sector has been inhibited by manufacturers' preference for larger turbine orders. This often puts smaller community wind developers and projects at a competitive disadvantage. However, state policies specifically supporting community wind may become a more influential market factor as turbines are now more readily available given manufacturer ramp-ups and the slow-down in the industry that has accompanied the recent economic and financial crises. This report examines existing literature to provide an overview of economic impacts resulting from community wind projects, compares results, and explains variability.

  1. Spectrum of wind speed fluctuations encountered by a rotating blade of a wind energy conversion system: observations and theory

    SciTech Connect (OSTI)

    Connell, J.R.

    1981-11-01T23:59:59.000Z

    This report proves that the characteristics of turbulence that are experienced by a rotating wind turbine rotor blade are in principle and in practice very different than those experienced by a nonrotating rotor blade. Thus conventional wind characteristics, which are formulated for the nonrotating frame of reference, are more inaccurate than generally supposed. The measurements and mathematical model that are presented for turbulence observed in the rotating frame of reference represent the third phase of the Pacific Northwest Laboratory work aimed at providing an accurate turbulence description for use in the design and evaluation of the performance of wind turbines. The first phase of work was the measurement of wind with a vertical plane array of anemometers. The second phase was the physical interpretation of the measurements in terms of implications for wind turbine rotors and initiation of development of a model of wind/wind turbine interaction. The third phase involved measurement of turbulence by rotating sensors and mathematical development of a physical model of this representation of turbulence as independent checks and expansions of the vertical plane array results. A fourth phase, to correlate real wind turbine response with rotationally measured turbulence and thereby understand the wind/wind turbine interaction, is in progress and preliminary results are quite promising.

  2. Ponnequin phase I and II (PSCo) Wind Farm | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are beingZealand Jump to: navigation,Pillar Group BV Jump to: navigation, searchPocatelloIII Wind Farm

  3. The Western Wind and Solar Integration Study Phase 2: Executive Summary, NREL (National Renewable Energy Laboratory)

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level:Energy: Grid Integration Redefining What'sis Taking Over OurThe Iron Spin Transition in the Earth'sConnect,LLC THE WESTERN WIND AND SOLAR

  4. Economic Development Impacts of Community Wind Projects: A Review and Empirical Evaluation

    SciTech Connect (OSTI)

    Lantz, E.; Tegen, S.

    2009-01-01T23:59:59.000Z

    Community wind projects have long been touted (both anecdotally and in the literature) to increase the economic development impacts of wind projects, but most analyses of community wind have been based on expected results from hypothetical projects. This report provides a review of previous economic development analyses of community wind projects and compares these projected results with empirical impacts from projects currently in operation. A review of existing literature reveals two primary conclusions. First, construction-period impacts are often thought to be comparable for both community-and absentee-owned facilities. Second, operations-period economic impacts are observed to be greater for community-owned projects. The majority of studies indicate that the range of increased operations-period impact is on the order of 1.5 to 3.4 times. New retrospective analysis of operating community wind projects finds that total employment impacts from completed community wind projects are estimated to be on the order of four to six 1-year jobs per-MW during construction and 0.3 to 0.6 long-term jobs per-MW during operations. In addition, when comparing retrospective results of community wind to hypothetical average absentee projects, construction-period employment impacts are 1.1 to 1.3 times higher and operations-period impacts are 1.1 to 2.8 times higher for community wind. Comparing the average of the completed community wind projects studied here with retrospective analysis of the first 1,000 MW of wind in Colorado and Iowa indicates that construction-period impacts are as much as 3.1 times higher for community wind, and operations-period impacts are as much as 1.8 times higher. Ultimately, wind projects are a source of jobs and economic development, and community wind projects are shown to have increased impact both during the construction and operations-period of a wind power plant. The extent of increased impact is primarily a function of local ownership and return on investment. As such, policies that prioritize higher levels of local ownership are likely to result in increased economic development impacts. Furthermore, the increased economic development impact of community wind shown here should not be undervalued. As the wind industry grows and approaches penetrations in the U.S. electricity market of 20%, social opposition to new wind power projects may increase. Community wind could provide a valuable strategy for building community support of wind power - especially in communities that are new to wind power. This analysis finds that total employment impacts from completed community wind projects are on the order of four to six 1-year jobs per-MW during construction and 0.3 to 0.6 long-term jobs per-MW during operations. Furthermore, when comparing community wind to hypothetical average absentee projects, construction-period employment impacts are 1.1 to 1.3 times higher and operations-period impacts are 1.1 to 2.8 times higher for community wind. Comparing the average of the completed projects studied here with retrospective analysis of the first 1,000 MW of wind in Colorado and Iowa shows construction-period impacts are as much as 3.1 times higher for community wind, and operations-period impacts are as much as 1.8 times higher. As the wind industry has grown, community wind has largely been a peripheral development model. However, this analysis shows that wind projects are a source of jobs and economic development, and that community wind projects have greater economic development impacts than absentee-owned projects. As such, policies that prioritize higher levels of local ownership are likely to result in increased economic development impacts. While the magnitude of increased benefit is primarily a function of local ownership and project profitability, the increased economic development impact of all community wind projects should not be undervalued. The ability of community wind projects to disperse economic impacts within the states and communities where they are built and to engage local community members

  5. Evaluate fundamental approaches to longwall dust control. Phase III report

    SciTech Connect (OSTI)

    Babbitt, C.; Bartlett, P.; Kelly, J.; Ludlow, J.; Mangolds, A.; Rajan, S.; Ruggieri, S.; Varga, E.

    1984-03-31T23:59:59.000Z

    The overall objective of the contract is to evaluate the effectiveness of available dust control technology for double-drum shearer longwall sections in a coordinated, systematic program at a few longwall test sections and to make the results available to the entire coal mining industry. This program is investigating nine different dust control techniques. These nine subprograms encompass a broad range of dust control measures ranging from administrative controls to new hardware. They span not only presently employed methods but also those recently adopted in the United States and those proposed for the future. This report documents the Phase III effort on each of the subprograms. For clarity, the report is divided in sections by subprogram as follows: Section 2, Subprogram A - passive barriers/spray air movers for dust control; Section 3, Subprogram B - practical aspects of deep cutting; Section 4, Subprogram C - stage loader dust control; Section 5, Subprogram D - longwall automation technology; Section 6, Subprogram E - longwall application of ventilation curtains; Section 7, Subprogram F - reversed drum rotation; Section 8, Subprogram G - reduction of shield generated dust; Section 9, Subprogram H - air canopies for longwalls; and Section 10, Subprogram I - mining practices. 43 figures, 11 tables.

  6. Evaluating state markets for residential wind systems: Results from an economic and policy analysis tool

    E-Print Network [OSTI]

    Edwards, Jennifer L.; Wiser, Ryan; Bolinger, Mark; Forsyth, Trudy

    2004-01-01T23:59:59.000Z

    xii Figure ES-4. Incremental LCOE Without State16 Figure 5. LCOE Results from SWAT Base-Case60 Table A-5. Base Case Results for LCOE for Wind Classes 2-

  7. The U.S. wind production tax credit - evaluating its impact on wind deployment and assessing the cost of its renewal

    E-Print Network [OSTI]

    Ernst, Patrick C. (Patrick Charles)

    2013-01-01T23:59:59.000Z

    The desirability, viability, and cost effectiveness of policies designed to incentivize growth of the wind energy industry are subject to widespread debate within the U.S. government, wind industry groups, and the general ...

  8. Evaluating state markets for residential wind systems: Results from an economic and policy analysis tool

    SciTech Connect (OSTI)

    Edwards, Jennifer L.; Wiser, Ryan; Bolinger, Mark; Forsyth, Trudy

    2004-12-01T23:59:59.000Z

    The market for small wind systems in the United States, often defined as systems less than or equal to 100 kW that produce power on the customer side of the meter, is small but growing steadily. The installed capacity of domestic small wind systems in 2002 was reportedly 15-18 MW, though the market is estimated to be growing by as much as 40 percent annually (AWEA, 2002). This growth is driven in part by recent technology advancements and cost improvements and, perhaps more importantly, by favorable policy incentives targeted at small wind systems that are offered in several states. Currently, over half of all states have incentive policies for which residential small wind installations are eligible. These incentives range from low-interest loan programs and various forms of tax advantages to cash rebates that cover as much as 60 percent of the total system cost for turbines 10 kW or smaller installed in residential applications. Most of these incentives were developed to support a ran ge of emerging renewable technologies (most notably photovoltaic systems), and were therefore not specifically designed with small wind systems in mind. As such, the question remains as to which incentive types provide the greatest benefit to small wind systems, and how states might appropriately set the level and type of incentives in the future. Furthermore, given differences in incentive types and levels across states, as well as variations in retail electricity rates and other relevant factors, it is not immediately obvious which states offer the most promising markets for small wind turbine manufacturers and installers, as well as potential residential system owners. This paper presents results from a Berkeley Lab analysis of the impact of existing and proposed state and federal incentives on the economics of grid-connected, residential small wind systems. Berkeley Lab has designed the Small Wind Analysis Tool (SWAT) to compare system economics under current incentive structures a cross all 50 states. SWAT reports three metrics to characterize residential wind economics in each state and wind resource class: (1) Break-Even Turnkey Cost (BTC): The BTC is defined as the aggregate installed system cost that would balance total customer payments and revenue over the life of the system, allowing the customer to ''break-even'' while earning a specified rate of return on the small wind ''investment.'' (2) Simple Payback (SP): The SP is the number of years it takes a customer to recoup a cash payment for a wind system and all associated costs, assuming zero discount on future revenue and payments (i.e., ignoring the time value of money). (3) Levelized Cost of Energy (LCOE): The LCOE is the levelized cost of generating a kWh of electricity over the lifetime of the system, and is calculated assuming a cash purchase for the small wind system and a 5.5 percent real discount rate. This paper presents SWAT results for a 10 kW wind turbine and turbine power production is based on a Bergey Excel system. These results are not directly applicable to turbines with different power curves and rated outputs, especially given the fact that many state incentives are set as a fixed dollar amount, and the dollar per Watt amount will vary based on the total rated turbine capacity.

  9. Phase 2 Report: Oahu Wind Integration and Transmission Study (OWITS); Hawaiian Islands Transmission Interconnection Project

    SciTech Connect (OSTI)

    Woodford, D.

    2011-02-01T23:59:59.000Z

    This report provides an independent review including an initial evaluation of the technical configuration and capital costs of establishing an undersea cable system and examining impacts to the existing electric transmission systems as a result of interconnecting the islands

  10. Screening Analysis for the Environmental Risk Evaluation System Fiscal Year 2011 Report Environmental Effects of Offshore Wind Energy

    SciTech Connect (OSTI)

    Copping, Andrea E.; Hanna, Luke A.

    2011-11-01T23:59:59.000Z

    Potential environmental effects of offshore wind (OSW) energy development are not well understood, and yet regulatory agencies are required to make decisions in spite of substantial uncertainty about environmental impacts and their long-term consequences. An understanding of risks associated with interactions between OSW installations and avian and aquatic receptors, including animals, habitats, and ecosystems, can help define key uncertainties and focus regulatory actions and scientific studies on interactions of most concern. During FY 2011, Pacific Northwest National Laboratory (PNNL) scientists adapted and applied the Environmental Risk Evaluation System (ERES), first developed to examine the effects of marine and hydrokinetic energy devices on aquatic environments, to offshore wind development. PNNL scientists conducted a risk screening analysis on two initial OSW cases: a wind project in Lake Erie and a wind project off the Atlantic coast of the United States near Atlantic City, New Jersey. The screening analysis revealed that top-tier stressors in the two OSW cases were the dynamic effects of the device (e.g., strike), accidents/disasters, and effects of the static physical presence of the device, such as alterations in bottom habitats. Receptor interactions with these stressors at the highest tiers of risk were dominated by threatened and endangered animals. Risk to the physical environment from changes in flow regime also ranked high. Peer review of this process and results will be conducted during FY 2012. The ERES screening analysis provides an assessment of the vulnerability of environmental receptors to stressors associated with OSW installations; a probability analysis is needed to determine specific risk levels to receptors. As more data become available that document effects of offshore wind farms on specific receptors in U.S. coastal and Great Lakes waters, probability analyses will be performed.

  11. Wind Power Opportunities in St. Thomas, USVI: A Site-Specific Evaluation and Analysis

    SciTech Connect (OSTI)

    Lantz, E.; Warren, A.; Roberts, J. O.; Gevorgian, V.

    2012-09-01T23:59:59.000Z

    This NREL technical report utilizes a development framework originated by NREL and known by the acronym SROPTTC to assist the U.S. Virgin Islands in identifying and understanding concrete opportunities for wind power development in the territory. The report covers each of the seven components of the SROPTTC framework: Site, Resource, Off-take, Permitting, Technology, Team, and Capital as they apply to wind power in the USVI and specifically to a site in Bovoni, St. Thomas. The report concludes that Bovoni peninsula is a strong candidate for utility-scale wind generation in the territory. It represents a reasonable compromise in terms of wind resource, distance from residences, and developable terrain. Hurricane risk and variable terrain on the peninsula and on potential equipment transport routes add technical and logistical challenges but do not appear to represent insurmountable barriers. In addition, integration of wind power into the St. Thomas power system will present operational challenges, but based on experience in other islanded power systems, there are reasonable solutions for addressing these challenges.

  12. Low Wind Speed Turbine Project Phase II: The Application of Medium-Voltage Electrical Apparatus to the Class of Variable Speed Multi-Megawatt Low Wind Speed Turbines; 15 June 2004--30 April 2005

    SciTech Connect (OSTI)

    Erdman, W.; Behnke, M.

    2005-11-01T23:59:59.000Z

    Kilowatt ratings of modern wind turbines have progressed rapidly from 50 kW to 1,800 kW over the past 25 years, with 3.0- to 7.5-MW turbines expected in the next 5 years. The premise of this study is simple: The rapid growth of wind turbine power ratings and the corresponding growth in turbine electrical generation systems and associated controls are quickly making low-voltage (LV) electrical design approaches cost-ineffective. This report provides design detail and compares the cost of energy (COE) between commercial LV-class wind power machines and emerging medium-voltage (MV)-class multi-megawatt wind technology. The key finding is that a 2.5% reduction in the COE can be achieved by moving from LV to MV systems. This is a conservative estimate, with a 3% to 3.5% reduction believed to be attainable once purchase orders to support a 250-turbine/year production level are placed. This evaluation considers capital costs as well as installation, maintenance, and training requirements for wind turbine maintenance personnel. Subsystems investigated include the generator, pendant cables, variable-speed converter, and padmount transformer with switchgear. Both current-source and voltage-source converter/inverter MV topologies are compared against their low-voltage, voltage-source counterparts at the 3.0-, 5.0-, and 7.5-MW levels.

  13. Evaluation of 241-AZ tank farm supporting phase 1 privatization waste feed delivery

    SciTech Connect (OSTI)

    CARLSON, A.B.

    1998-11-19T23:59:59.000Z

    This evaluation is one in a series of evaluations determining the process needs and assessing the adequacy of existing and planned equipment in meeting those needs at various double-shell tank farms in support of Phase 1 privatization. A number of tank-to-tank transfers and waste preparation activities are needed to process and feed waste to the private contractor in support of Phase 1 privatization. The scope of this evaluation is limited to process needs associated with 241-AZ tank farm during the Phase 1 privatization.

  14. Characterization of winds through the rotor plane using a phased array SODAR and recommendations for future work.

    SciTech Connect (OSTI)

    Deola, Regina Anne

    2010-02-01T23:59:59.000Z

    Portable remote sensing devices are increasingly needed to cost effectively characterize the meteorology at a potential wind energy site as the size of modern wind turbines increase. A short term project co-locating a Sound Detection and Ranging System (SODAR) with a 200 meter instrumented meteorological tower at the Texas Tech Wind Technology Field Site was performed to collect and summarize wind information through an atmospheric layer typical of utility scale rotor plane depths. Data collected identified large speed shears and directional shears that may lead to unbalanced loads on the rotors. This report identifies suggestions for incorporation of additional data in wind resource assessments and a few thoughts on the potential for using a SODAR or SODAR data to quantify or investigate other parameters that may be significant to the wind industry.

  15. Phase II: Performance Evaluation of Permeable Reactive Barriers and Potential for Rejuvenation by Chemical Flushing

    Broader source: Energy.gov [DOE]

    Final ReportPhase II: Performance Evaluation of Permeable Reactive Barriers and Potential for Rejuvenation by Chemical FlushingU. S. Environmental Protection Agency Region 8 SupportJanuary 2004

  16. An Evaluation of Single Phase Ceramic Formulations for Plutonium Disposition

    SciTech Connect (OSTI)

    Stennett, Martin C.; Hyatt, Neil C. [Engineering Materials, University of Sheffield, Mappin Street, Sheffield, S1 3JD (United Kingdom); Maddrell, Ewan R.; Scales, Charlie R. [Nexia Solutions Ltd., Sellafield, Seascale, CA20 1PG (United Kingdom); Livens, Francis R.; Gilbert, Matthew [Chemistry, University of Manchester, Oxford Road, Manchester, M13 9PL (United Kingdom)

    2007-07-01T23:59:59.000Z

    Ceramics are promising potential hosts for the immobilization of actinide containing wastes. Work has been reported in the literature on multiphase systems, such as SYNROC [1], and on single phase systems such as pyrochlores [2] and zirconia [3], but assessment of the different waste-forms by direct comparison of literature data is not always easy due to the different processing and fabrication routes employed. In this study a potential range of different ceramic systems were investigated for plutonium disposition using the same processing scheme. Durable actinide containing minerals exist in nature and provided excellent target phases for the titanate, zirconate, silicate and phosphate based formulations examined here [4]. The Ce solid solution limits for each particular substitution mechanism were established and the processing parameters required to produce high quality ceramic specimens were optimised. Importantly, this was achieved within the constraints of a generic processing route suitable for fabrication of Pu bearing samples. (authors)

  17. Wind farm electrical system

    DOE Patents [OSTI]

    Erdman, William L.; Lettenmaier, Terry M.

    2006-07-04T23:59:59.000Z

    An approach to wind farm design using variable speed wind turbines with low pulse number electrical output. The output of multiple wind turbines are aggregated to create a high pulse number electrical output at a point of common coupling with a utility grid network. Power quality at each individual wind turbine falls short of utility standards, but the aggregated output at the point of common coupling is within acceptable tolerances for utility power quality. The approach for aggregating low pulse number electrical output from multiple wind turbines relies upon a pad mounted transformer at each wind turbine that performs phase multiplication on the output of each wind turbine. Phase multiplication converts a modified square wave from the wind turbine into a 6 pulse output. Phase shifting of the 6 pulse output from each wind turbine allows the aggregated output of multiple wind turbines to be a 24 pulse approximation of a sine wave. Additional filtering and VAR control is embedded within the wind farm to take advantage of the wind farm's electrical impedence characteristics to further enhance power quality at the point of common coupling.

  18. Wind Power Opportunities in St. Thomas, USVI: A Site-Specific Evaluation and Analysis

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels DataDepartment of Energy Your DensityEnergy U.S.-China Electric VehicleCenters | Department ofofto PurchaseAprilWind Power Opportunities

  19. Wind Power Opportunities in St. Thomas, USVI: A Site-Specific Evaluation

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page onYouTube YouTube Note: SinceDevelopment | Department ofPartnerships ToolkitWasteWho Will BeWhyWind Gallery

  20. Wind Turbine Competition Introduction

    E-Print Network [OSTI]

    Wang, Xiaorui "Ray"

    Wind Turbine Competition Introduction: The Society of Hispanic Professional Engineers, SHPE at UTK, wishes to invite you to participate in our first `Wind Turbine' competition as part of Engineer's Week). You will be evaluated by how much power your wind turbine generates at the medium setting of our fan

  1. Global ocean wind power sensitivity to surface layer stability

    E-Print Network [OSTI]

    Capps, Scott B; Zender, Charles S

    2009-01-01T23:59:59.000Z

    2005), Evaluation of global wind power, J. Geophys. Res. ,Pryor (2003), Can satellite sampling of offshore wind speedsrealistically represent wind speed distributions? , J. Appl.

  2. Wind Power: How Much, How Soon, and At What Cost?

    E-Print Network [OSTI]

    Wiser, Ryan H

    2010-01-01T23:59:59.000Z

    efforts to evaluate wind's potential have largely ignoredand deep offshore wind potential. Even assuming that the PTCof the global onshore wind potential (Grubb and Meyer 1993;

  3. Offshore Code Comparison Collaboration within IEA Wind Annex XXIII: Phase III Results Regarding Tripod Support Structure Modeling

    SciTech Connect (OSTI)

    Nichols, J.; Camp, T.; Jonkman, J.; Butterfield, S.; Larsen, T.; Hansen, A.; Azcona, J.; Martinez, A.; Munduate, X.; Vorpahl, F.; Kleinhansl, S.; Kohlmeier, M.; Kossel, T.; Boker, C.; Kaufer, D.

    2009-01-01T23:59:59.000Z

    Offshore wind turbines are designed and analyzed using comprehensive simulation codes. This paper describes the findings of code-to-code verification activities of the IEA Offshore Code Comparison Collaboration.

  4. Wind-To-Hydrogen Energy Pilot Project

    SciTech Connect (OSTI)

    Ron Rebenitsch; Randall Bush; Allen Boushee; Brad G. Stevens; Kirk D. Williams; Jeremy Woeste; Ronda Peters; Keith Bennett

    2009-04-24T23:59:59.000Z

    WIND-TO-HYDROGEN ENERGY PILOT PROJECT: BASIN ELECTRIC POWER COOPERATIVE In an effort to address the hurdles of wind-generated electricity (specifically wind's intermittency and transmission capacity limitations) and support development of electrolysis technology, Basin Electric Power Cooperative (BEPC) conducted a research project involving a wind-to-hydrogen system. Through this effort, BEPC, with the support of the Energy & Environmental Research Center at the University of North Dakota, evaluated the feasibility of dynamically scheduling wind energy to power an electrolysis-based hydrogen production system. The goal of this project was to research the application of hydrogen production from wind energy, allowing for continued wind energy development in remote wind-rich areas and mitigating the necessity for electrical transmission expansion. Prior to expending significant funding on equipment and site development, a feasibility study was performed. The primary objective of the feasibility study was to provide BEPC and The U.S. Department of Energy (DOE) with sufficient information to make a determination whether or not to proceed with Phase II of the project, which was equipment procurement, installation, and operation. Four modes of operation were considered in the feasibility report to evaluate technical and economic merits. Mode 1 - scaled wind, Mode 2 - scaled wind with off-peak, Mode 3 - full wind, and Mode 4 - full wind with off-peak In summary, the feasibility report, completed on August 11, 2005, found that the proposed hydrogen production system would produce between 8000 and 20,000 kg of hydrogen annually depending on the mode of operation. This estimate was based on actual wind energy production from one of the North Dakota (ND) wind farms of which BEPC is the electrical off-taker. The cost of the hydrogen produced ranged from $20 to $10 per kg (depending on the mode of operation). The economic sensitivity analysis performed as part of the feasibility study showed that several factors can greatly affect, both positively and negatively, the "per kg" cost of hydrogen. After a September 15, 2005, meeting to evaluate the advisability of funding Phase II of the project DOE concurred with BEPC that Phase I results did warrant a "go" recommendation to proceed with Phase II activities. The hydrogen production system was built by Hydrogenics and consisted of several main components: hydrogen production system, gas control panel, hydrogen storage assembly and hydrogen-fueling dispenser The hydrogen production system utilizes a bipolar alkaline electrolyzer nominally capable of producing 30 Nm3/h (2.7 kg/h). The hydrogen is compressed to 6000 psi and delivered to an on-site three-bank cascading storage assembly with 80 kg of storage capacity. Vehicle fueling is made possible through a Hydrogenics-provided gas control panel and dispenser able to fuel vehicles to 5000 psi. A key component of this project was the development of a dynamic scheduling system to control the wind energy's variable output to the electrolyzer cell stacks. The dynamic scheduling system received an output signal from the wind farm, processed this signal based on the operational mode, and dispatched the appropriate signal to the electrolyzer cell stacks. For the study BEPC chose to utilize output from the Wilton wind farm located in central ND. Site design was performed from May 2006 through August 2006. Site construction activities were from August to November 2006 which involved earthwork, infrastructure installation, and concrete slab construction. From April - October 2007, the system components were installed and connected. Beginning in November 2007, the system was operated in a start-up/shakedown mode. Because of numerous issues, the start-up/shakedown period essentially lasted until the end of January 2008, at which time a site acceptance test was performed. Official system operation began on February 14, 2008, and continued through the end of December 2008. Several issues continued to prevent consistent operation, resulting in operation o

  5. Space-time forecasting and evaluation of wind speed with statistical tests for comparing accuracy of spatial predictions

    E-Print Network [OSTI]

    Hering, Amanda S.

    2010-10-12T23:59:59.000Z

    High-quality short-term forecasts of wind speed are vital to making wind power a more reliable energy source. Gneiting et al. (2006) have introduced a model for the average wind speed two hours ahead based on both spatial and temporal information...

  6. Estimated global ocean wind power potential from QuikSCAT observations, accounting for turbine characteristics and siting

    E-Print Network [OSTI]

    Capps, Scott B; Zender, Charles S

    2010-01-01T23:59:59.000Z

    Wind Energy Association (2009), American Wind Energy Asso-ciation annual wind industry report: Year ending 2008,2005), Evaluation of global wind power, J. Geophys. Res. ,

  7. Test plan for the 34 meter vertical axis wind turbine test bed located at Bushland, Texas

    SciTech Connect (OSTI)

    Stephenson, W.A.

    1986-12-01T23:59:59.000Z

    A plan is presented for the testing and evaluation of a new 500 kw vertical axis wind turbine test bed. The plan starts with the initial measurements made during construction, proceeds through evaluation of the design, the development of control methods, and finally to the test bed phase where new concepts are evaluated and in-depth studies are performed.

  8. Value of Wind Power Forecasting

    SciTech Connect (OSTI)

    Lew, D.; Milligan, M.; Jordan, G.; Piwko, R.

    2011-04-01T23:59:59.000Z

    This study, building on the extensive models developed for the Western Wind and Solar Integration Study (WWSIS), uses these WECC models to evaluate the operating cost impacts of improved day-ahead wind forecasts.

  9. Solar Wind Sources in the Late Declining Phase of Cycle 23: Effects of the Weak Solar Polar Field on High Speed Streams

    E-Print Network [OSTI]

    2009-01-01T23:59:59.000Z

    Isenberg, P.A. (eds. ) Solar Wind Nine, AIP Conf. Proc. 471,AT SOLAR MINIMUM Solar Wind Sources in the Late Decliningfor their high speed solar wind streams that dominate the

  10. WIND ENERGY Wind Energ. (2014)

    E-Print Network [OSTI]

    Peinke, Joachim

    2014-01-01T23:59:59.000Z

    loads from the wind inflow through rotor aerodynamics, drive train and power electronics is stillWIND ENERGY Wind Energ. (2014) Published online in Wiley Online Library (wileyonlinelibrary wind inflow conditions M. R. Luhur, J. Peinke, J. Schneemann and M. Wächter ForWind-Center for Wind

  11. Wind Fins: Novel Lower-Cost Wind Power System

    SciTech Connect (OSTI)

    David C. Morris; Dr. Will D. Swearingen

    2007-10-08T23:59:59.000Z

    This project evaluated the technical feasibility of converting energy from the wind with a novel “wind fin” approach. This patent-pending technology has three major components: (1) a mast, (2) a vertical, hinged wind structure or fin, and (3) a power takeoff system. The wing structure responds to the wind with an oscillating motion, generating power. The overall project goal was to determine the basic technical feasibility of the wind fin technology. Specific objectives were the following: (1) to determine the wind energy-conversion performance of the wind fin and the degree to which its performance could be enhanced through basic design improvements; (2) to determine how best to design the wind fin system to survive extreme winds; (3) to determine the cost-effectiveness of the best wind fin designs compared to state-of-the-art wind turbines; and (4) to develop conclusions about the overall technical feasibility of the wind fin system. Project work involved extensive computer modeling, wind-tunnel testing with small models, and testing of bench-scale models in a wind tunnel and outdoors in the wind. This project determined that the wind fin approach is technically feasible and likely to be commercially viable. Project results suggest that this new technology has the potential to harvest wind energy at approximately half the system cost of wind turbines in the 10kW range. Overall, the project demonstrated that the wind fin technology has the potential to increase the economic viability of small wind-power generation. In addition, it has the potential to eliminate lethality to birds and bats, overcome public objections to the aesthetics of wind-power machines, and significantly expand wind-power’s contribution to the national energy supply.

  12. Low-Level waste phase 1 melter testing off gas and mass balance evaluation

    SciTech Connect (OSTI)

    Wilson, C.N.

    1996-06-28T23:59:59.000Z

    Commercially available melter technologies were tested during 1994-95 as part of a multiphase program to test candidate technologies for vitrification of the low-level waste (LLW) stream to be derived from retrieval and pretreatment of Hanford Site tank wastes. Seven vendors were selected for Phase 1 testing to demonstrate vitrification of a high sodium content liquid LLW simulant. The tested melter technologies included four Joule-heated melters, a carbon electrode melter, a combustion melter, and a plasma melter. Various dry and slurry melter feed preparation processes were also tested. Various feed material samples, product glass samples, and process offgas streams were characterized to provide data for evaluation of process decontamination factors and material mass balances for each vitrification technology. This report describes the melter mass balance evaluations and results for six of the Phase 1 LLW melter vendor demonstration tests.

  13. Evaluation of hydrothermal resources of North Dakota. Phase III final technical report

    SciTech Connect (OSTI)

    Harris, K.L.; Howell, F.L.; Wartman, B.L.; Anderson, S.B.

    1982-08-01T23:59:59.000Z

    The hydrothermal resources of North Dakota were evaluated. This evaluation was based on existing data on file with the North Dakota Geological Survey (NDGS) and other state and federal agencies, and field and laboratory studies conducted. The principal sources of data used during the study were WELLFILE, the computer library of oil and gas well data developed during the Phase I study, and WATERCAT, a computer library system of water well data assembled during the Phase II study. A field survey of the shallow geothermal gradients present in selected groundwater observation holes was conducted. Laboratory determinations of the thermal conductivity of core samples were done to facilitate heat-flow calculations on those holes-of-convenience cased.

  14. Wind Tunnel Building - 1 

    E-Print Network [OSTI]

    Unknown

    2005-06-30T23:59:59.000Z

    This paper describes a simple graphic tool that enables a building designer to evaluate the potential for wind induced ventilation cooling in several climate zones. Long term weather data were analyzed to determine the conditions for which available...

  15. U.S. Department of Energy Workshop Report - Research Needs for Wind Resource Characterization

    SciTech Connect (OSTI)

    Schreck, S.; Lundquist, J.; Shaw, W.

    2008-06-01T23:59:59.000Z

    This workshop brought the different atmospheric and wind technology specialists together to evaluate research needs for wind resource characterization.

  16. Facilitating Wind Development: The Importance of Electric Industry Structure

    SciTech Connect (OSTI)

    Kirby, B.; Milligan, M.

    2008-05-01T23:59:59.000Z

    This paper evaluates which wholesale elecricity market-structure characteristics best accommodate wind energy development.

  17. Impact of Electric Industry Structure on High Wind Penetration Potential

    SciTech Connect (OSTI)

    Milligan, M.; Kirby, B.; Gramlich, R.; Goggin, M.

    2009-07-01T23:59:59.000Z

    This paper attempts to evaluate which balancing area (BA) characteristics best accommodate wind energy.

  18. Lower Sioux Wind Feasibility & Development

    SciTech Connect (OSTI)

    Minkel, Darin

    2012-04-01T23:59:59.000Z

    This report describes the process and findings of a Wind Energy Feasibility Study (Study) conducted by the Lower Sioux Indian Community (Community). The Community is evaluating the development of a wind energy project located on tribal land. The project scope was to analyze the critical issues in determining advantages and disadvantages of wind development within the Community. This analysis addresses both of the Community's wind energy development objectives: the single turbine project and the Commerical-scale multiple turbine project. The main tasks of the feasibility study are: land use and contraint analysis; wind resource evaluation; utility interconnection analysis; and project structure and economics.

  19. Winding for linear pump

    DOE Patents [OSTI]

    Kliman, G.B.; Brynsvold, G.V.; Jahns, T.M.

    1989-08-22T23:59:59.000Z

    A winding and method of winding for a submersible linear pump for pumping liquid sodium are disclosed. The pump includes a stator having a central cylindrical duct preferably vertically aligned. The central vertical duct is surrounded by a system of coils in slots. These slots are interleaved with magnetic flux conducting elements, these magnetic flux conducting elements forming a continuous magnetic field conduction path along the stator. The central duct has placed therein a cylindrical magnetic conducting core, this core having a cylindrical diameter less than the diameter of the cylindrical duct. The core once placed to the duct defines a cylindrical interstitial pumping volume of the pump. This cylindrical interstitial pumping volume preferably defines an inlet at the bottom of the pump, and an outlet at the top of the pump. Pump operation occurs by static windings in the outer stator sequentially conveying toroidal fields from the pump inlet at the bottom of the pump to the pump outlet at the top of the pump. The winding apparatus and method of winding disclosed uses multiple slots per pole per phase with parallel winding legs on each phase equal to or less than the number of slots per pole per phase. The slot sequence per pole per phase is chosen to equalize the variations in flux density of the pump sodium as it passes into the pump at the pump inlet with little or no flux and acquires magnetic flux in passage through the pump to the pump outlet. 4 figs.

  20. Winding for linear pump

    DOE Patents [OSTI]

    Kliman, Gerald B. (Schenectady, NY); Brynsvold, Glen V. (San Jose, CA); Jahns, Thomas M. (Schenectady, NY)

    1989-01-01T23:59:59.000Z

    A winding and method of winding for a submersible linear pump for pumping liquid sodium is disclosed. The pump includes a stator having a central cylindrical duct preferably vertically aligned. The central vertical duct is surrounded by a system of coils in slots. These slots are interleaved with magnetic flux conducting elements, these magnetic flux conducting elements forming a continuous magnetic field conduction path along the stator. The central duct has placed therein a cylindrical magnetic conducting core, this core having a cylindrical diameter less than the diameter of the cylindrical duct. The core once placed to the duct defines a cylindrical interstitial pumping volume of the pump. This cylindrical interstitial pumping volume preferably defines an inlet at the bottom of the pump, and an outlet at the top of the pump. Pump operation occurs by static windings in the outer stator sequentially conveying toroidal fields from the pump inlet at the bottom of the pump to the pump outlet at the top of the pump. The winding apparatus and method of winding disclosed uses multiple slots per pole per phase with parallel winding legs on each phase equal to or less than the number of slots per pole per phase. The slot sequence per pole per phase is chosen to equalize the variations in flux density of the pump sodium as it passes into the pump at the pump inlet with little or no flux and acquires magnetic flux in passage through the pump to the pump outlet.

  1. Quantitative evaluation of mask phase defects from through-focus EUV aerial images

    SciTech Connect (OSTI)

    Mochi, Iacopo; Yamazoe, Kenji; Neureuther, Andrew; Goldberg, Kenneth A.

    2011-02-21T23:59:59.000Z

    Mask defects inspection and imaging is one of the most important issues for any pattern transfer lithography technology. This is especially true for EUV lithography where the wavelength-specific properties of masks and defects necessitate actinic inspection for a faithful prediction of defect printability and repair performance. In this paper we will present a technique to obtain a quantitative characterization of mask phase defects from EUV aerial images. We apply this technique to measure the aerial image phase of native defects on a blank mask, measured with the SEMATECH Berkeley Actinic Inspection Tool (AIT) an EUV zoneplate microscope that operates at Lawrence Berkeley National Laboratory. The measured phase is compared with predictions made from AFM top-surface measurements of those defects. While amplitude defects are usually easy to recognize and quantify with standard inspection techniques like scanning electron microscopy (SEM), defects or structures that have a phase component can be much more challenging to inspect. A phase defect can originate from the substrate or from any level of the multilayer. In both cases its effect on the reflected field is not directly related to the local topography of the mask surface, but depends on the deformation of the multilayer structure. Using the AIT, we have previously showed that EUV inspection provides a faithful and reliable way to predict the appearance of mask defect on the printed wafer; but to obtain a complete characterization of the defect we need to evaluate quantitatively its phase component. While aerial imaging doesn't provide a direct measurement of the phase of the object, this information is encoded in the through focus evolution of the image intensity distribution. Recently we developed a technique that allows us to extract the complex amplitude of EUV mask defects using two aerial images from different focal planes. The method for the phase reconstruction is derived from the Gerchberg-Saxton (GS) algorithm, an iterative method that can be used to reconstruct phase and amplitude of an object from the intensity distributions in the image and in the pupil plane. The GS algorithm is equivalent to a two-parameter optimization problem and it needs exactly two constraints to be solved, namely two intensity distributions in different focal planes. In some formulations, adding any other constraint would result in an ill posed problem. On the other hand, the solution's stability and convergence time can both be improved using more information. We modified our complex amplitude reconstruction algorithm to use an arbitrary number of through focus images and we compared its performance with the previous version in terms of convergence speed, robustness and accuracy. We have demonstrated the phase-reconstruction method on native, mask-blank phase defects and compared the results with phase-predictions made from AFM data collected before and after the multilayer deposition. The method and the current results could be extremely useful for improving the modeling and understanding of native phase defects, their detectability, and their printability.

  2. WIND ATLAS FOR EGYPT: MEASUREMENTS, MICRO-AND MESOSCALE MODELLING

    E-Print Network [OSTI]

    sets for evaluating the potential wind power output from large electricity-producing wind turbine and accurate wind atlas data sets for evaluating the potential wind power output from large electricityWIND ATLAS FOR EGYPT: MEASUREMENTS, MICRO- AND MESOSCALE MODELLING Niels G. Mortensen1 , Jens

  3. Development and evaluation of a workpiece temperature analyzer (WPTA) for industrial furances (Phase 1)

    SciTech Connect (OSTI)

    Not Available

    1991-10-01T23:59:59.000Z

    This project is directed toward the research, development, and evaluation of a viable commercial product-a workpiece temperature measurement analyzer (WPTA) for fired furnaces based on unique radiation properties of surfaces. This WPTA will provide for more uniform, higher quality products and reduce product rejects as well as permit the optimum use of energy. The WPTA may also be utilized in control system applications including metal heat treating, forging furnaces, and ceramic firing furnaces. A large market also exists in the chemical process and refining industry. WPTA applications include the verification of product temperature/time cycles, and use as a front-end sensor for automatic feedback control systems. This report summarizes the work performed in Phase 1 of this three-phase project. The work Phase 1 included the application evaluation; the evaluation of present technologies and limitations; and the development of a preliminary conceptual WPTA design, including identification of technical and economic benefits. Recommendations based on the findings of this report include near-term enhancement of the capabilities of the Pyrolaser, and long-term development of an instrument based on Raman Spectroscopy. Development of the Pyrofiber, fiberoptics version of the Pyrolaser, will be a key to solving present problems involving specularity, measurement angle, and costs of multipoint measurement. Extending the instrument's measurement range to include temperatures below 600{degrees}C will make the product useful for a wider range of applications. The development of Raman Spectroscopy would result in an instrument that could easily be adapted to incorporate a wealth of additional nondestructive analytical capabilities, including stress/stain indication, crystallography, species concentrations, corrosion studies, and catalysis studies, in addition to temperature measurement. 9 refs., 20 figs., 16 tabs.

  4. Comparison of API & IEC Standards for Offshore Wind Turbine Applications in the U.S. Atlantic Ocean: Phase II; March 9, 2009 - September 9, 2009

    SciTech Connect (OSTI)

    Jha, A.; Dolan, D.; Gur, T.; Soyoz, S.; Alpdogan, C.

    2013-01-01T23:59:59.000Z

    This report compares two design guidelines for offshore wind turbines: Recommended Practice for Planning, Designing, and Constructing Fixed Offshore Platform Structures and the International Electrotechnical Commission 61400-3 Design Requirements for Offshore Wind Turbines.

  5. Commonwealth Wind Commercial Wind Program

    Broader source: Energy.gov [DOE]

    Through the Commonwealth Wind Incentive Program – Commercial Wind Initiative the Massachusetts Clean Energy Center (MassCEC) offers site assessment grants of services, feasibility study grants, a...

  6. Evaluation of phase change materials for thermal regulation enhancement of building integrated photovoltaics

    SciTech Connect (OSTI)

    Hasan, A.; Norton, B. [Dublin Energy Lab., Focas Institute, School of Physics, Dublin Institute of Technology, Kevin St., Dublin 8 (Ireland); McCormack, S.J. [Department of Civil, Structure and Environmental Engineering, Trinity College Dublin, Dublin 1 (Ireland); Huang, M.J. [Centre for Sustainable Technologies, University of Ulster, Newtownabbey, N. Ireland, BT370QB (United Kingdom)

    2010-09-15T23:59:59.000Z

    Regulating the temperature of building integrated photovoltaics (BIPV) using phase change materials (PCMs) reduces the loss of temperature dependent photovoltaic (PV) efficiency. Five PCMs were selected for evaluation all with melting temperatures {proportional_to}25 {+-} 4 C and heat of fusion between 140 and 213 kJ/kg. Experiments were conducted at three insolation intensities to evaluate the performance of each PCM in four different PV/PCM systems. The effect on thermal regulation of PV was determined by changing the (i) mass of PCM and (ii) thermal conductivities of the PCM and PV/PCM system. A maximum temperature reduction of 18 C was achieved for 30 min while 10 C temperature reduction was maintained for 5 h at -1000 W/m{sup 2} insolation. (author)

  7. Evaluate and characterize mechanisms controlling transport, fate, and effects of army smokes in the aerosol wind tunnel: Transport, transformations, fate, and terrestrial ecological effects of hexachloroethane obscurant smokes

    SciTech Connect (OSTI)

    Cataldo, D.A.; Ligotke, M.W.; Bolton, H. Jr.; Fellows, R.J.; Van Voris, P.; McVeety, B.D.; Li, Shu-mei W.; McFadden, K.M.

    1989-09-01T23:59:59.000Z

    The terrestrial transport, chemical fate, and ecological effects of hexachloroethane (HC) smoke were evaluated under controlled wind tunnel conditions. The primary objectives of this research program are to characterize and assess the impacts of smoke and obscurants on: (1) natural vegetation characteristic of US Army training sites in the United States; (2) physical and chemical properties of soils representative of these training sites; and (3) soil microbiological and invertebrate communities. Impacts and dose/responses were evaluated based on exposure scenarios, including exposure duration, exposure rate, and sequential cumulative dosing. Key to understanding the environmental impacts of HC smoke/obscurants is establishing the importance of environmental parameters such as relative humidity and wind speed on airborne aerosol characteristics and deposition to receptor surfaces. Direct and indirect biotic effects were evaluated using five plant species and two soil types. HC aerosols were generated in a controlled atmosphere wind tunnel by combustion of hexachloroethane mixtures prepared to simulate normal pot burn rates and conditions. The aerosol was characterized and used to expose plant, soil, and other test systems. Particle sizes of airborne HC ranged from 1.3 to 2.1 {mu}m mass median aerodynamic diameter (MMAD), and particle size was affected by relative humidity over a range of 20% to 85%. Air concentrations employed ranged from 130 to 680 mg/m{sup 3}, depending on exposure scenario. Chlorocarbon concentrations within smokes, deposition rates for plant and soil surfaces, and persistence were determined. The fate of principal inorganic species (Zn, Al, and Cl) in a range of soils was assessed.

  8. Abstract--A novel methodology for economic evaluation of hydrogen storage for a mixed wind-nuclear power plant is

    E-Print Network [OSTI]

    Cañizares, Claudio A.

    -nuclear power plant is presented in this article in a context of a "Hydrogen Economy". The simulation power plant production (MW) NP : nuclear power plant production (MW) CP : electrolyzer consumption (MW, IEEE THE FEASIBILITY OF HYDROGEN STORAGE FOR MIXED WIND-NUCLEAR POWER PLANTS #12;price scenario p

  9. An Innovative Technique for Evaluating the Integrity and Durability of Wind Turbine Blade Composites - Final Project Report

    SciTech Connect (OSTI)

    Wang, Jy-An John [ORNL; Ren, Fei [ORNL; Tan, Ting [ORNL; Mandell, John [Montana State University; Agastra, Pancasatya [Montana State University

    2011-11-01T23:59:59.000Z

    To build increasingly larger, lightweight, and robust wind turbine blades for improved power output and cost efficiency, durability of the blade, largely resulting from its structural composites selection and aerodynamic shape design, is of paramount concern. The safe/reliable operation of structural components depends critically on the selection of materials that are resistant to damage and failure in the expected service environment. An effective surveillance program is also necessary to monitor the degradation of the materials in the course of service. Composite materials having high specific strength/stiffness are desirable for the construction of wind turbines. However, most high-strength materials tend to exhibit low fracture toughness. That is why the fracture toughness of the composite materials under consideration for the manufacture of the next generation of wind turbines deserves special attention. In order to achieve the above we have proposed to develop an innovative technology, based on spiral notch torsion test (SNTT) methodology, to effectively investigate the material performance of turbine blade composites. SNTT approach was successfully demonstrated and extended to both epoxy and glass fiber composite materials for wind turbine blades during the performance period. In addition to typical Mode I failure mechanism, the mixed-mode failure mechanism induced by the wind turbine service environments and/or the material mismatch of the composite materials was also effectively investigated using SNTT approach. The SNTT results indicate that the proposed protocol not only provides significant advance in understanding the composite failure mechanism, but also can be readily utilized to assist the development of new turbine blade composites.

  10. WIND ENERGY Wind Energ. (2014)

    E-Print Network [OSTI]

    2014-01-01T23:59:59.000Z

    in the near wake. In conclusion, WiTTS performs satisfactorily in the rotor region of wind turbine wakes under neutral stability. Copyright © 2014 John Wiley & Sons, Ltd. KEYWORDS wind turbine wake; wake model; self in wind farms along several rows and columns. Because wind turbines generate wakes that propagate downwind

  11. Sandia National Laboratories: support wind-energy development

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    support wind-energy development Sandia Develops Tool to Evaluate Wind-TurbineRadar Impacts On December 3, 2014, in Computational Modeling & Simulation, Energy, News, News &...

  12. Environmental restoration program pollution prevention checklist guide for the evaluation of alternatives project phase

    SciTech Connect (OSTI)

    Not Available

    1993-09-01T23:59:59.000Z

    Evaluation of alternative studies determine what decontamination and decommissioning (D&D) alternatives are presented to regulators for facility and site cleanup. A key consideration in this process is the waste to be generated. Minimizing the volume and toxicity of this waste will ultimately contribute to the selection of the best clean-up option. The purpose of this checklist guide is to assist the user with incorporating pollution prevention/waste minimization (PP/WM) in all Evaluation of Alternatives (EV) phase projects of the Environmental Restoration (ER) Program. This guide will assist users with documenting PP/WM activities for technology transfer and reporting requirements. Automated computer screens will be created from the checklist data to help users implement and evaluate waste reduction. Users can then establish numerical performance measures to measure progress in planning, training, self-assessments, field implementation, documentation, and technology transfer. Cost savings result as users train and assess themselves, eliminating expensive process waste assessments and audit teams.

  13. Washington Phase II Fish Diversion Screen Evaluations in the Yakima River Basin, 2003 Annual Report.

    SciTech Connect (OSTI)

    Vucelick, J.; McMichael, G.; Chamness, M. (Pacific Northwest National Laboratory)

    2004-05-01T23:59:59.000Z

    In 2003, the Pacific Northwest National Laboratory (PNNL) evaluated 23 Phase II fish screen sites in the Yakima River Basin as part of a multi-year project for the Bonneville Power Administration on the effectiveness of fish screening devices. PNNL collected data to determine whether velocities in front of the screens and in the bypasses met the National Oceanic and Atmospheric Administration Fisheries (NOAA Fisheries, formerly the National Marine Fisheries Service [NMFS]) criteria to promote safe and timely fish passage. In addition, PNNL conducted underwater video surveys to evaluate the environmental and operational conditions of the screen sites with respect to fish passage. Based on evaluations in 2003, PNNL concluded that: (1) In general, water velocity conditions at the screen sites met fish passage criteria set by the NOAA Fisheries. (2) Conditions at most facilities would be expected to provide for safe juvenile fish passage. (3) Conditions at some facilities indicate that operation and/or maintenance should be modified to improve juvenile fish passage conditions. (4) Automated cleaning brushes generally functioned properly; chains and other moving parts were typically well greased and operative. (5) Removal of sediment buildup and accumulated leafy and woody debris could be improved at some sites.

  14. Tribological evaluation of high-speed steels with a regulated carbide phase

    SciTech Connect (OSTI)

    Richter, Janusz

    2003-06-15T23:59:59.000Z

    Wear resistance of a commercial steel and titanium-niobium high-speed steels with a regulated carbide phase was evaluated by employing a micro-scale abrasive wear test with alumina particles. The worn volumes and corresponding wear coefficients were the lowest for the new non-ledeburitic grades containing titanium, then the two niobium grades, the conventional (both wrought and by powder metallurgy) steels exhibited the worse wear resistance. Fractography SEM observations together with energy-dispersive X-ray (EDX) chemical analysis revealed the decisive role of the steels' MC particles in the wear process. These carbides influenced the abrasion by stoppage of the wear scars and/or changing their trajectories. Directional and nondirectional abrasion modes in the steels tested using alumina and carborundum abrasives were found and are discussed.

  15. Global ocean wind power sensitivity to surface layer stability

    E-Print Network [OSTI]

    Capps, Scott B; Zender, Charles S

    2009-01-01T23:59:59.000Z

    Evaluation of global wind power, J. Geophys. Res. , 110,W. Tang, and X. Xie (2008), Wind power distribution over theApproach to Short-Term Wind Power Prediction, 1st ed. ,

  16. Wind Power: How Much, How Soon, and At What Cost?

    E-Print Network [OSTI]

    Wiser, Ryan H

    2010-01-01T23:59:59.000Z

    Evaluation of Global Wind Power." Journal of Geophysical2008. "The Economics of Wind Power with Energy Storage."Economics of Large-Scale Wind Power in a Carbon Constrained

  17. Low Wind Speed Technology Phase II: Design and Demonstration of On-Site Fabrication of Fluted-Steel Towers Using LITS-Form(TM) Process

    SciTech Connect (OSTI)

    Not Available

    2006-06-01T23:59:59.000Z

    This fact sheet describes NREL's subcontract with Native American Technologies to develop a new method of metal plate forming to produce wind turbine towers.

  18. Low Wind Speed Technology Phase II: Investigation of the Application of Medium-Voltage Variable-Speed Drive Technology to Improve the Cost of Energy from Low Wind Speed Turbines; Behnke, Erdman and Whitaker Engineering, Inc.

    SciTech Connect (OSTI)

    Not Available

    2006-03-01T23:59:59.000Z

    This fact sheet describes a subcontract with Behnke, Erdman & Whitaker Engineering, Inc. to test the feasibility of applying medium-voltage variable-speed drive technology to low wind speed turbines.

  19. LIDAR Wind Speed Measurements of Evolving Wind Fields

    SciTech Connect (OSTI)

    Simley, E.; Pao, L. Y.

    2012-07-01T23:59:59.000Z

    Light Detection and Ranging (LIDAR) systems are able to measure the speed of incoming wind before it interacts with a wind turbine rotor. These preview wind measurements can be used in feedforward control systems designed to reduce turbine loads. However, the degree to which such preview-based control techniques can reduce loads by reacting to turbulence depends on how accurately the incoming wind field can be measured. Past studies have assumed Taylor's frozen turbulence hypothesis, which implies that turbulence remains unchanged as it advects downwind at the mean wind speed. With Taylor's hypothesis applied, the only source of wind speed measurement error is distortion caused by the LIDAR. This study introduces wind evolution, characterized by the longitudinal coherence of the wind, to LIDAR measurement simulations to create a more realistic measurement model. A simple model of wind evolution is applied to a frozen wind field used in previous studies to investigate the effects of varying the intensity of wind evolution. LIDAR measurements are also evaluated with a large eddy simulation of a stable boundary layer provided by the National Center for Atmospheric Research. Simulation results show the combined effects of LIDAR errors and wind evolution for realistic turbine-mounted LIDAR measurement scenarios.

  20. Wind Farm

    Office of Energy Efficiency and Renewable Energy (EERE)

    The wind farm in Greensburg, Kansas, was completed in spring 2010, and consists of ten 1.25 megawatt (MW) wind turbines that supply enough electricity to power every house, business, and municipal...

  1. Wind Energy

    Broader source: Energy.gov [DOE]

    Presentation covers wind energy at the Federal Utility Partnership Working Group (FUPWG) meeting, held on November 18-19, 2009.

  2. Synoptic and local influences on boundary layer processes, with an application to California wind power

    E-Print Network [OSTI]

    Mansbach, David K.

    2010-01-01T23:59:59.000Z

    maps showing locations of wind power conversion facilities,of US winds and wind power at 80 m derived fromEvaluation of global wind power. Journal of Geo- physical

  3. Advanced wind turbine design studies: Advanced conceptual study. Final report

    SciTech Connect (OSTI)

    Hughes, P.; Sherwin, R. [Atlantic Orient Corp., Norwich, VT (United States)] [Atlantic Orient Corp., Norwich, VT (United States)

    1994-08-01T23:59:59.000Z

    In conjunction with the US Department of Energy and the National Renewable Energy Laboratory`s Advanced Wind Turbine Program, the Atlantic Orient Corporation developed preliminary designs for the next generation of wind turbines. These 50 kW and 350 kW turbines are based upon the concept of simplicity. By adhering to a design philosophy that emphasizes simplicity, we project that these turbines will produce energy at extremely competitive rates which will unlock the potential of wind energy domestically and internationally. The program consisted of three distinct phases. First, we evaluated the operational history of the Enertech 44 series wind turbines. As a result of this evaluation, we developed, in the second phase, a preliminary design for a new 50 kW turbine for the near-term market. In the third phase, we took a clean-sheet-of-paper approach to designing a 350 kW turbine focused on the mid-1990s utility market that incorporated past experience and advanced technology.

  4. MESOSCALE MODELLING OF WIND ENERGY OVER NON-HOMOGENEOUS TERRAIN

    E-Print Network [OSTI]

    Pielke, Roger A.

    MESOSCALE MODELLING OF WIND ENERGY OVER NON-HOMOGENEOUS TERRAIN (ReviewArticle) Y. MAHRER.1. OBSERVATIONALAPPROACHES Evaluations of wind energy based on wind observations (usually surface winds) at well, the resolution of the wind energy pattern throughout an extended area by this methodology requires a large number

  5. Health Monitoring of Drive Connected Three-Phase Induction Motors ----- From Wired Towards Wireless Sensor Networks

    E-Print Network [OSTI]

    Xue, Xin

    2009-01-01T23:59:59.000Z

    short circuits in the stator windings of operating motors,"turns in low voltage stator windings of 3-phase induction21 Stator Winding

  6. EXPERIMENTAL EVALUATION OF CHEMICAL SEQUESTRATION OF CARBON DIOXIDE IN DEEP AQUIFER MEDIA - PHASE II

    SciTech Connect (OSTI)

    Neeraj Gupta; Bruce Sass; Jennifer Ickes

    2000-11-28T23:59:59.000Z

    In 1998 Battelle was selected by the U.S. Department of Energy's (DOE) National Energy Technology Laboratory (NETL) under a Novel Concepts project grant to continue Phase II research on the feasibility of carbon dioxide (CO{sub 2}) sequestration in deep saline formations. The focus of this investigation is to conduct detailed laboratory experiments to examine factors that may affect chemical sequestration of CO{sub 2} in deep saline formations. Reactions between sandstone and other geologic media from potential host reservoirs, brine solutions, and CO{sub 2} are being investigated under high-pressure conditions. Some experiments also include sulfur dioxide (SO{sub 2}) gases to evaluate the potential for co-injection of CO{sub 2} and SO{sub 2} related gases in the deep formations. In addition, an assessment of engineering and economic aspects is being conducted. This current Technical Progress Report describes the status of the project as of September 2000. The major activities undertaken during the quarter included several experiments conducted to investigate the effects of pressure, temperature, time, and brine composition on rock samples from potential host reservoirs. Samples (both powder and slab) were taken from the Mt. Simon Sandstone, a potential CO{sub 2} host formation in the Ohio, the Eau Claire Shale, and Rome Dolomite samples that form the caprock for Mt. Simon Sandstone. Also, a sample with high calcium plagioclase content from Frio Formation in Texas was used. In addition, mineral samples for relatively pure Anorthite and glauconite were experimented on with and without the presence of additional clay minerals such as kaolinite and montmorillonite. The experiments were run for one to two months at pressures similar to deep reservoirs and temperatures set at 50 C or 150 C. Several enhancements were made to the experimental equipment to allow for mixing of reactants and to improve sample collection methods. The resulting fluids (gases and liquids) as well as the rock samples were characterized to evaluate the geochemical changes over the experimental period. Preliminary results from the analysis are presented in the report. More detailed interpretation of the results will be presented in the technical report at the end of Phase II.

  7. Plug-In Hybrid Electric Vehicle Value Proposition Study: Interim Report: Phase I Scenario Evaluation

    SciTech Connect (OSTI)

    Sikes, Karen R [ORNL; Markel, Lawrence C [ORNL; Hadley, Stanton W [ORNL; Hinds, Shaun [Sentech, Inc.; DeVault, Robert C [ORNL

    2009-01-01T23:59:59.000Z

    Plug-in hybrid electric vehicles (PHEVs) offer significant improvements in fuel economy, convenient low-cost recharging capabilities, potential environmental benefits, and decreased reliance on imported petroleum. However, the cost associated with new components (e.g., advanced batteries) to be introduced in these vehicles will likely result in a price premium to the consumer. This study aims to overcome this market barrier by identifying and evaluating value propositions that will increase the qualitative value and/or decrease the overall cost of ownership relative to the competing conventional vehicles and hybrid electric vehicles (HEVs) of 2030 During this initial phase of this study, business scenarios were developed based on economic advantages that either increase the consumer value or reduce the consumer cost of PHEVs to assure a sustainable market that can thrive without the aid of state and Federal incentives or subsidies. Once the characteristics of a thriving PHEV market have been defined for this timeframe, market introduction steps, such as supportive policies, regulations and temporary incentives, needed to reach this level of sustainability will be determined. PHEVs have gained interest over the past decade for several reasons, including their high fuel economy, convenient low-cost recharging capabilities, potential environmental benefits and reduced use of imported petroleum, potentially contributing to President Bush's goal of a 20% reduction in gasoline use in ten years, or 'Twenty in Ten'. PHEVs and energy storage from advanced batteries have also been suggested as enabling technologies to improve the reliability and efficiency of the electric power grid. However, PHEVs will likely cost significantly more to purchase than conventional or other hybrid electric vehicles (HEVs), in large part because of the cost of batteries. Despite the potential long-term savings to consumers and value to stakeholders, the initial cost of PHEVs presents a major market barrier to their widespread commercialization. The purpose of this project is to identify and evaluate value-added propositions for PHEVs that will help overcome this market barrier. Candidate value propositions for the initial case study were chosen to enhance consumer acceptance of PHEVs and/or compatibility with the grid. Potential benefits of such grid-connected vehicles include the ability to supply peak load or emergency power requirements of the grid, enabling utilities to size their generation capacity and contingency resources at levels below peak. Different models for vehicle/battery ownership, leasing, financing and operation, as well as the grid, communications, and vehicle infrastructure needed to support the proposed value-added functions were explored during Phase 1. Rigorous power system, vehicle, financial and emissions modeling were utilized to help identify the most promising value propositions and market niches to focus PHEV deployment initiatives.

  8. Phase II test plan for the evaluation of the performance of container filling systems

    SciTech Connect (OSTI)

    BOGER, R.M.

    1999-09-28T23:59:59.000Z

    The PHMC will provide tank wastes for final treatment by BNFL from Hanford's waste tanks. Concerns about the ability for ''grab'' sampling to provide large volumes of representative waste samples has led to the development of a nested, fixed-depth sampling system. Preferred concepts for filling sample containers that meet RCRA organic sample criteria were identified by a PHMC Decision Board. These systems will replace the needle based sampling ''T'' that is currently on the sampling system. This test plan document identifies cold tests with simulants that will demonstrate the preferred bottle filling concepts abilities to provide representative waste samples and will meet RCRA criteria. Additional tests are identified that evaluate the potential for cross-contamination between samples and the ability for the system to decontaminate surfaces which have contacted tank wastes. These tests will be performed with kaolid/water and sand/water slurry simulants in the test rig that was used by AEAT to complete Phase 1 tests in FY 1999.

  9. Sandia National Laboratories: Wind

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Wind Grid System Planning for Wind: Wind Generator Modeling On June 11, 2014, in Wind generation continues to dominate the interconnection queues and the need for generic,...

  10. Permitting of Wind Energy Facilities: A Handbook

    SciTech Connect (OSTI)

    NWCC Siting Work Group

    2002-08-01T23:59:59.000Z

    This handbook has been written for individuals and groups involved in evaluating wind projects: decision-makers and agency staff at all levels of government, wind developers, interested parties and the public. Its purpose is to help stakeholders make permitting wind facility decisions in a manner which assures necessary environmental protection and responds to public needs.

  11. EXPERIENCES WITH SONIC WIND SENSORS IN OPERATIONAL CONDITIONS Wiel M.F. Wauben

    E-Print Network [OSTI]

    Wauben, Wiel

    ) uses conventional cup anemometers and wind vanes to measure wind speed and direction. Although the KNMI sonic considered in the previous evaluation. The advanced sensor has the required wind speed range up. An uncertainty of the wind speed of maximally 2 % at all wind directions is required for the wind profile

  12. TECHNICAL EVALUATION REPORT TUBA CITY FINAL PHASE I GROUND-WATER COMPLIANCE ACTION PLAN

    E-Print Network [OSTI]

    unknown authors

    2000-01-01T23:59:59.000Z

    remediation at the site, and is expected to last approximately 3 years. Phase I includes installation of additional recovery wells and Phase II will include expansion of remediation capacity and monitoring to ensure the aquifer restoration standards are met. Phases I and II of ground-water remediation are expected to last approximately 12 years. DESCRIPTION OF THE REQUEST: The U.S. Department of Energy (DOE) has requested concurrence from the U.S. Nuclear

  13. Evaluating the relationship between use phase environmental impacts and manufacturing process precision

    E-Print Network [OSTI]

    Helu, Moneer; Vijayaraghavan, Athulan; Dornfeld, David

    2011-01-01T23:59:59.000Z

    between use phase environmental impacts and manufacturingprecision and environmental impacts may be developed forDewulf W (2009) Environmental Impact Analysis of Composite

  14. Comprehensive Evaluation of the Geothermal Resource Potential within the Pyramid Lake Paiute Reservation Phase III Report

    SciTech Connect (OSTI)

    Noel, Donna

    2013-12-01T23:59:59.000Z

    This project integrated state-of-the-art exploration technologies with a geologic framework and reservoir modeling to ultimately determine the efficacy of future geothermal production within the PLPT reservation. The information gained during this study should help the PLPT to make informed decisions regarding construction of a geothermal power plant. Additional benefits included the transfer of new technologies and geothermal data to the geothermal industry and it created and/or preserved nearly three dozen jobs accordance with the American Recovery and Reinvestment Act of 2009. A variety of tasks were conducted to achieve the above stated objectives. The following are the tasks completed within the project: 1. Permitting 2. Shallow temperature survey 3. Seismic data collection and analysis 4. Fracture stress analysis 5. Phase I reporting Permitting 7. Shallow temperature survey 8. Seismic data collection and analysis 9. Fracture stress analysis 10. Phase I reporting 11. Drilling two new wells 12. Borehole geophysics 13. Phase II reporting 14. Well testing and geochemical analysis 15. Three-dimensional geologic model 16. Three-dimensional reservoir analysis 17. Reservation wide geothermal potential analysis 18. Phase III reporting Phase I consisted of tasks 1 – 5, Phase II tasks 6 – 8, and Phase III tasks 9 – 13. This report details the results of Phase III tasks. Reports are available for Phase I, and II as separate documents.

  15. Ris-R-1334(EN) Identification of Damage to Wind

    E-Print Network [OSTI]

    Risř-R-1334(EN) Identification of Damage to Wind Turbine Blades by Modal Parameter Estimation April 2002 #12;Risř-R-1334(EN) Identification of Damage to Wind Turbine Blades by Modal Parameter condition monitoring of wind turbine blades (Phase I)". The goal of Phase I is to make a pre

  16. Offshore Wind Power USA

    Broader source: Energy.gov [DOE]

    The Offshore Wind Power USA conference provides the latest offshore wind market updates and forecasts.

  17. 20% Wind Energy 20% Wind Energy

    E-Print Network [OSTI]

    Powell, Warren B.

    (government, industry, utilities, NGOs) Analyzes wind's potential contributions to energy security, economic · Transmission a challenge #12;Wind Power Class Resource Potential Wind Power Density at 50 m W/m 2 Wind Speed20% Wind Energy by 2030 20% Wind Energy by 2030 #12;Presentation and Objectives Overview Background

  18. Wind Energy Leasing Handbook

    E-Print Network [OSTI]

    Balasundaram, Balabhaskar "Baski"

    Wind Energy Leasing Handbook Wind Energy Leasing Handbook E-1033 Oklahoma Cooperative Extension?..................................................................................................................... 31 What do wind developers consider in locating wind energy projects?............................................................................................ 37 How do companies and individuals invest in wind energy projects?....................................................................

  19. Evaluation of melter technologies for vitrification of Hanford site low-level tank waste - phase 1 testing summary report

    SciTech Connect (OSTI)

    Wilson, C.N., Westinghouse Hanford

    1996-06-27T23:59:59.000Z

    Following negotiation of the fourth amendment to the Tri- Party Agreement for Hanford Site cleanup, commercially available melter technologies were tested during 1994 and 1995 for vitrification of the low-level waste (LLW) stream to be derived from retrieval and pretreatment of the radioactive defense wastes stored in 177 underground tanks. Seven vendors were selected for Phase 1 testing to demonstrate vitrification of a high-sodium content liquid LLW simulant. The tested melter technologies included four Joule-heated melters, a carbon electrode melter, a combustion melter, and a plasma melter. Various dry and slurry melter feed preparation processes also were tested. The technologies and Phase 1 testing results were evaluated and a preliminary technology down-selection completed. This report describes the Phase 1 LLW melter vendor testing and the tested technologies, and summarizes the testing results and the preliminary technology recommendations.

  20. ART CCIM PHASE II-A OFF-GAS SYSTEM EVALUATION TEST REPORT

    SciTech Connect (OSTI)

    Nick Soelberg

    2009-04-01T23:59:59.000Z

    AREVA Federal Services (AFS) is performing a multi-year, multi-phase Advanced Remediation Technologies (ART) project, sponsored by the U.S. Department of Energy (DOE), to evaluate the feasibility and benefits of replacing the existing joule-heated melter (JHM) used to treat high level waste (HLW) in the Defense Waste Processing Facility (DWPF) at the Savannah River Site with a cold crucible induction melter (CCIM). The AFS ART CCIM project includes several collaborators from AREVA subsidiaries, French companies, and DOE national laboratories. The Savannah River National Laboratory and the Commissariat a l’Energie Atomique (CEA) have performed laboratory-scale studies and testing to determine a suitable, high-waste-loading glass matrix. The Idaho National Laboratory (INL) and CEA are performing CCIM demonstrations at two different pilot scales to assess CCIM design and operation for treating SRS sludge wastes that are currently being treated in the DWPF. SGN is performing engineering studies to validate the feasibility of retrofitting CCIM technology into the DWPF Melter Cell. The long-term project plan includes more lab-testing, pilot- and large-scale demonstrations, and engineering activities to be performed during subsequent project phases. A simulant of the DWPF SB4 feed was successfully fed and melted in a small pilot-scale CCIM system during two test series. The OGSE tests provide initial results that (a) provide melter operating conditions while feeding a DWPF SB4 simulant feed, (b) determine the fate of feed organic and metal feed constituents and metals partitioning, and (c) characterize the melter off-gas source term to a downstream off-gas system. The INL CCIM test system was operated continuously for about 30 hours during the parametric test series, and for about 58 hours during the OGSE test. As the DWPF simulant feed was continuously fed to the melter, the glass level gradually increased until a portion of the molten glass was drained from the melter. The glass drain was operated periodically on-demand. A cold cap of unmelted feed was controlled by adjusting the feedrate and melter power levels to obtain the target molten glass temperatures with varying cold cap levels. Three test conditions were performed per the test plan, during which the melter was operated with a target melt temperature of either 1,250oC or 1,300oC, and with either a partial or complete cold cap of unmelted feed on top of the molten glass. Samples of all input and output streams including the starting glass, the simulant feed, the off-gas particulate matter, product glass, and deposits removed from the crucible and off-gas pipe after the test were collected for analysis.

  1. Conceptual design for the field test and evaluation of the gas-phase UF/sub 6/ enrichment meter

    SciTech Connect (OSTI)

    Strittmatter, R.B.; Leavitt, J.N.; Slice, R.W.

    1980-12-01T23:59:59.000Z

    An in-line enrichment monitor is being developed to provide real-time enrichment data for the gas-phase UF/sub 6/ feed stream of an enrichment plant. Data from proof-of-principle measurements using a laboratory prototype system are presented. A conceptual design for an enrichment monitor to be field tested and evaluated at the Oak Ridge Gaseous Diffusion Plant is reported.

  2. Evaluate and characterize mechanisms controlling transport, fate and effects of army smokes in an aerosol wind tunnel: Transport, transformations, fate and terrestrial ecological effects of fog oil obscurant smokes: Final report

    SciTech Connect (OSTI)

    Cataldo, D.A.; Van Voris, P.; Ligotke, M.W.; Fellows, R.J.; McVeety, B.D.; Li, Shu-mei W.; Bolton, H. Jr.; Fredrickson, J.K.

    1989-01-01T23:59:59.000Z

    The terrestrial transport, chemical fate, and ecological effects of fog oil (FO) smoke obscurants were evaluated under controlled wind tunnel conditions. The primary objectives of this research program are to characterize and assess the impacts of smoke and obscurants on: (1) natural vegetation characteristic of US Army training sites in the United States; (2) physical and chemical properties of soils representative of these training sites; and (3) soil microbiological and invertebrate communities. Impacts and dose/responses were evaluated based on an exposure scenario, including exposure duration, exposure rate, and sequential cumulative dosing. Key to understanding the environmental impacts of fog oil smoke/obscurants is establishing the importance of environmental parameters, such as relative humidity and wind speed on airborne aerosol characteristics and deposition to receptor surfaces. Direct and indirect biotic effects were evaluated using five plant species and three soil types. 29 refs., 35 figs., 32 tabs.

  3. Evaluation on the thin-film phase change material-based technologies

    E-Print Network [OSTI]

    Guo, Qiang, M. Eng. Massachusetts Institute of Technology

    2006-01-01T23:59:59.000Z

    Two potential applications of thin film phase-change materials are considered, non-volatile electronic memories and MEMS (Micro-Electro-Mechanical Systems) actuators. The markets for those two applications are fast growing ...

  4. Evaluation of Alpha-Phased Zirconium Phosphate Nanoparticles as a Clay Stabilizer and an EOR Agent 

    E-Print Network [OSTI]

    Zhou, Yi

    2014-12-15T23:59:59.000Z

    fines migration in sandstone formations and recovery more oil in carbonate. To test the ability of ?-ZrP nanofluids as a clay stabilizer, coreflood tests were conducted using alpha phased zirconium phosphate based nanofluids as a clay stabilizer...

  5. Evaluation of the phase content and properties of a detonation gun coating

    SciTech Connect (OSTI)

    Whichard, G.C.; Stavros, A.J. [Praxair Surface Technologies, Inc., Indianapolis, IN (United States)

    1994-12-31T23:59:59.000Z

    X-ray diffraction techniques were used to identify the phases present in four molybdenum base D-Gun{trademark} coatings because the common method of an SEM equipped with energy dispersive spectroscopy could not distinguish between the phases. The overlapping diffraction peaks from the coatings were resolved using a profile fitting computer routine. Powder samples from each phase present in the coatings were obtained and reference samples prepared and measured. The Reference Intensity Ratio method was used to quantify the amount of each phase present in each coating. Regression analysis was used to relate coating hardness and laboratory wear test results to the amount of molybdenum in each coating. Hardness appears to be unrelated to molybdenum whereas the erosion and abrasion results can be represented by a linear relationship.

  6. Winding Trail 

    E-Print Network [OSTI]

    Unknown

    2011-09-05T23:59:59.000Z

    During the past decade, the demand for clean renewable energy continues to rise drastically in Europe, the US, and other countries. Wind energy in the ocean can possibly be one of those future renewable clean energy sources as long...

  7. Wind Energy Benefits, Wind Powering America (WPA) (Fact Sheet...

    Broader source: Energy.gov (indexed) [DOE]

    Energy Benefits, Wind Powering America (WPA) (Fact Sheet), Wind And Water Power Program (WWPP) Wind Energy Benefits, Wind Powering America (WPA) (Fact Sheet), Wind And Water Power...

  8. A new algorithm for evaluating the fields associated with HVDC power transmission lines in the presence of corona and strong wind

    SciTech Connect (OSTI)

    Yu, Ming; Kuffel, E. (Univ. of Manitoba, Winnipeg (Canada))

    1993-03-01T23:59:59.000Z

    A new algorithm for calculating HVDC fields in the presence of corona and strong wind based on boundary element method is presented. The new algorithm uses an auxiliary Poisson's equation for updating the space charge density during the iteration. The iteration process is convergent for wind velocities tested up to 12 m/s.

  9. Meteorological aspects of siting large wind turbines

    SciTech Connect (OSTI)

    Hiester, T.R.; Pennell, W.T.

    1981-01-01T23:59:59.000Z

    This report, which focuses on the meteorological aspects of siting large wind turbines (turbines with a rated output exceeding 100 kW), has four main goals. The first is to outline the elements of a siting strategy that will identify the most favorable wind energy sites in a region and that will provide sufficient wind data to make responsible economic evaluations of the site wind resource possible. The second is to critique and summarize siting techniques that were studied in the Department of Energy (DOE) Wind Energy Program. The third goal is to educate utility technical personnel, engineering consultants, and meteorological consultants (who may have not yet undertaken wind energy consulting) on meteorological phenomena relevant to wind turbine siting in order to enhance dialogues between these groups. The fourth goal is to minimize the chances of failure of early siting programs due to insufficient understanding of wind behavior.

  10. Energy 101: Wind Turbines

    ScienceCinema (OSTI)

    None

    2013-05-29T23:59:59.000Z

    See how wind turbines generate clean electricity from the power of the wind. Highlighted are the various parts and mechanisms of a modern wind turbine.

  11. WIND DATA REPORT Mattapoisett

    E-Print Network [OSTI]

    Massachusetts at Amherst, University of

    WIND DATA REPORT Mattapoisett Mattapoisett, Massachusetts December 1, 2006 ­ February 28, 2007...................................................................................................................... 9 Wind Speed Time Series........................................................................................................... 10 Wind Speed Distributions

  12. Energy 101: Wind Turbines

    SciTech Connect (OSTI)

    None

    2011-01-01T23:59:59.000Z

    See how wind turbines generate clean electricity from the power of the wind. Highlighted are the various parts and mechanisms of a modern wind turbine.

  13. Wind power and Wind power and

    E-Print Network [OSTI]

    Wind power and the CDM #12; Wind power and the CDM Emerging practices in developing wind power 2005 Jyoti P. Painuly, Niels-Erik Clausen, Jřrgen Fenhann, Sami Kamel and Romeo Pacudan #12; WIND POWER AND THE CDM Emerging practices in developing wind power projects for the Clean Development Mechanism Energy

  14. Evaluation of a slotted orifice plate flow meter using horizontal two phase flow

    E-Print Network [OSTI]

    Flores, Anita Elena

    2000-01-01T23:59:59.000Z

    the calibration coefficient (KY= flow coefficient (K) multiplied by the expansion factor (Y)), the Euler number, and the beta ratio. These results were analyzed to develop a calibration for the slotted orifice plate two-phase flow meter which can ultimately...

  15. Wind turbine

    DOE Patents [OSTI]

    Cheney, Jr., Marvin C. (Glastonbury, CT)

    1982-01-01T23:59:59.000Z

    A wind turbine of the type having an airfoil blade (15) mounted on a flexible beam (20) and a pitch governor (55) which selectively, torsionally twists the flexible beam in response to wind turbine speed thereby setting blade pitch, is provided with a limiter (85) which restricts unwanted pitch change at operating speeds due to torsional creep of the flexible beam. The limiter allows twisting of the beam by the governor under excessive wind velocity conditions to orient the blades in stall pitch positions, thereby preventing overspeed operation of the turbine. In the preferred embodiment, the pitch governor comprises a pendulum (65,70) which responds to changing rotor speed by pivotal movement, the limiter comprising a resilient member (90) which engages an end of the pendulum to restrict further movement thereof, and in turn restrict beam creep and unwanted blade pitch misadjustment.

  16. Electronically commutated serial-parallel switching for motor windings

    DOE Patents [OSTI]

    Hsu, John S. (Oak Ridge, TN)

    2012-03-27T23:59:59.000Z

    A method and a circuit for controlling an ac machine comprises controlling a full bridge network of commutation switches which are connected between a multiphase voltage source and the phase windings to switch the phase windings between a parallel connection and a series connection while providing commutation discharge paths for electrical current resulting from inductance in the phase windings. This provides extra torque for starting a vehicle from lower battery current.

  17. EA-1903: Kansas State University Zond Wind Energy Project, Manhattan, Kansas

    Broader source: Energy.gov [DOE]

    This EA evaluates the potential environmental impacts of a proposal to use Congressional Directed funds to develop the Great Plains Wind Energy Consortium aimed at increasing the penetration of wind energy via distributed wind power generation throughout the region.

  18. Wind Energy Facilities and Residential Properties: The Effect of Proximity and View on Sales Prices

    E-Print Network [OSTI]

    Hoen, Ben

    2010-01-01T23:59:59.000Z

    for Understanding Public Perceptions of Wind Energy.Wind Energy. 8(2): 125 - 139. Durbin, J. and Watson, G. S. (Evaluation of the Horizon Wind Energy Proposed Rail Splitter

  19. Sun, wind, and pedestrian comfort: a study of Toronto's Central Area

    E-Print Network [OSTI]

    Bosselmann, P.; Arens, Edward A; Dunker, K.; Wright, R.

    1990-01-01T23:59:59.000Z

    J. C. Mumford. "The Effects of Wind on People," Building andJackson. "The Evaluation of Wind Environments," Building andB. "Developing the San Francisco Wind Ordinance and its

  20. Observed and CAM3 GCM Sea Surface Wind Speed Distributions: Characterization, Comparison, and Bias Reduction

    E-Print Network [OSTI]

    Capps, Scott B; Zender, Charles S

    2008-01-01T23:59:59.000Z

    341–345. Yuan, X. , 2004: High-wind-speed evaluation in theCosca, 2004: Effects of wind speed and gas exchange param-dust emission caused by wind erosion. J. Geophys. Res. ,

  1. Wind Power

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level:Energy: Grid Integration Redefining What'sis Taking Over OurThe Iron SpinPrincetonUsingWhat is abig world of tinyWind Industry SoarsWind

  2. Evaluation of Cloud-Phase Retrieval Methods for SEVIRI on Meteosat-8 Using Ground-Based Lidar and Cloud Radar Data

    E-Print Network [OSTI]

    Stoffelen, Ad

    Evaluation of Cloud-Phase Retrieval Methods for SEVIRI on Meteosat-8 Using Ground-Based Lidar and Cloud Radar Data ERWIN L. A. WOLTERS, ROBERT A. ROEBELING, AND ARNOUT J. FEIJT Royal Netherlands 2007) ABSTRACT Three cloud-phase determination algorithms from passive satellite imagers are explored

  3. Upstream Measurements of Wind Profiles with Doppler Lidar for Improved Wind Energy Integration

    SciTech Connect (OSTI)

    Rodney Frehlich

    2012-10-30T23:59:59.000Z

    New upstream measurements of wind profiles over the altitude range of wind turbines will be produced using a scanning Doppler lidar. These long range high quality measurements will provide improved wind power forecasts for wind energy integration into the power grid. The main goal of the project is to develop the optimal Doppler lidar operating parameters and data processing algorithms for improved wind energy integration by enhancing the wind power forecasts in the 30 to 60 minute time frame, especially for the large wind power ramps. Currently, there is very little upstream data at large wind farms, especially accurate wind profiles over the full height of the turbine blades. The potential of scanning Doppler lidar will be determined by rigorous computer modeling and evaluation of actual Doppler lidar data from the WindTracer system produced by Lockheed Martin Coherent Technologies, Inc. of Louisville, Colorado. Various data products will be investigated for input into numerical weather prediction models and statistically based nowcasting algorithms. Successful implementation of the proposed research will provide the required information for a full cost benefit analysis of the improved forecasts of wind power for energy integration as well as the added benefit of high quality wind and turbulence information for optimal control of the wind turbines at large wind farms.

  4. Wind anisotropies and GRB progenitors

    E-Print Network [OSTI]

    Georges Meynet; Andre Maeder

    2007-01-17T23:59:59.000Z

    We study the effect of wind anisotropies on the stellar evolution leading to collapsars. Rotating models of a 60 M$_\\odot$ star with $\\Omega/\\Omega_{\\rm crit}=0.75$ on the ZAMS, accounting for shellular rotation and a magnetic field, with and without wind anisotropies, are computed at $Z$=0.002 until the end of the core He-burning phase. Only the models accounting for the effects of the wind anisotropies retain enough angular momentum in their core to produce a Gamma Ray Burst (GRB). The chemical composition is such that a type Ic supernova event occurs. Wind anisotropies appear to be a key physical ingredient in the scenario leading to long GRBs.

  5. Session: Poster Session + Poster Award + Scientific Award + Excellent young wind doctor award (PO.72) Track: Technical

    E-Print Network [OSTI]

    -term forecasting of wind power and wind resource assessment including offshore wakes in large wind farms. In both offshore wakes in large wind farms. For this, it is necessary to be able to evaluate state benchmarking exercises. The POWWOW project (Prediction of Waves, Wakes and Offshore Wind, a EU Coordination

  6. Coastal Ohio Wind Project for Reduced Barriers to Deployment of Offshore Wind Energy

    SciTech Connect (OSTI)

    Gorsevski, Peter; Afjeh, Abdollah; Jamali, Mohsin; Carroll, Michael

    2014-04-09T23:59:59.000Z

    The Coastal Ohio Wind Project was created to establish the viability of wind turbines on the coastal and offshore regions of Northern Ohio. The project’s main goal was to improve operational unit strategies used for environmental impact assessment of offshore turbines on lake wildlife by optimizing and fusing data from the multi-instrument surveillance system and providing an engineering analysis of potential design/operational alternatives for offshore wind turbines. The project also developed a general economic model for offshore WTG deployment to quantify potential revenue losses due to wind turbine shutdown related to ice and avian issues. In a previous phase of this project (Award Number: DE-FG36-06GO86096), we developed a surveillance system that was used to collect different parameters such as passage rates, flight paths, flight directions, and flight altitudes of nocturnal migrating species, movements of birds and bats, and bird calls for assessing patterns and peak passage rates during migration. To derive such parameters we used thermal IR imaging cameras, acoustic recorders, and marine radar Furuno (XANK250), which was coupled with a XIR3000B digitizing card from Russell Technologies and open source radR processing software. The integration yielded a development of different computational techniques and methods, which we further developed and optimized as a combined surveillance system. To accomplish this task we implemented marine radar calibration, optimization of processing parameters, and fusion of the multi-sensor data in order to make inferences about the potential avian targets. The main goal of the data fusion from the multi-sensor environment was aimed at reduction of uncertainties while providing acceptable confidence levels with detailed information about the migration patterns. Another component comprised of an assessment of wind resources in a near lake environment and an investigation of the effectiveness of ice coating materials to mitigate adverse effects of ice formation on wind turbine structures. Firstly, a Zephir LiDAR system was acquired and installed at Woodlands School in Huron, Ohio, which is located near Lake Erie. Wind resource data were obtained at ten measurement heights, 200m, 150m, 100m, 80m, 60m, 40m, 38m, 30m, 20m, and 10m. The Woodlands School’s wind turbine anemometer also measured the wind speed at the hub height. These data were collected for approximately one year. The hub anemometer data correlated well with the LiDAR wind speed measurements at the same height. The data also showed that on several days different power levels were recorded by the turbine at the same wind speed as indicated by the hub anemometer. The corresponding LiDAR data showed that this difference can be attributed to variability in the wind over the turbine rotor swept area, which the hub anemometer could not detect. The observation suggests that single point hub wind velocity measurements are inadequate to accurately estimate the power generated by a turbine at all times since the hub wind speed is not a good indicator of the wind speed over the turbine rotor swept area when winds are changing rapidly. To assess the effectiveness of ice coatings to mitigate the impact of ice on turbine structures, a closed-loop icing research tunnel (IRT) was designed and constructed. By controlling the temperature, air speed, water content and liquid droplet size, the tunnel enabled consistent and repeatable ice accretion under a variety of conditions with temperatures between approximately 0°C and -20°C and wind speeds up to 40 miles per hour in the tunnel’s test section. The tunnel’s cooling unit maintained the tunnel temperature within ±0.2°C. The coatings evaluated in the study were Boyd Coatings Research Company’s CRC6040R3, MicroPhase Coatings Inc.’s PhaseBreak TP, ESL and Flex coatings. Similar overall performance was observed in all coatings tested in that water droplets form on the test articles beginning at the stagnation region and spreading in the downstream direction in time. When compari

  7. ART CCIM Phase II-A Off-Gas System Evaluation Test Plan

    SciTech Connect (OSTI)

    Nick Soelberg; Jay Roach

    2009-01-01T23:59:59.000Z

    This test plan defines testing to be performed using the Idaho National Laboratory (INL) engineering-scale cold crucible induction melter (CCIM) test system for Phase II-A of the Advanced Remediation Technologies (ART) CCIM Project. The multi-phase ART-CCIM Project is developing a conceptual design for replacing the joule-heated melter (JHM) used to treat high level waste (HLW) in the Defense Waste Processing Facility (DWPF) at the Savannah River Site (SRS) with a cold crucible induction melter. The INL CCIM test system includes all feed, melter off-gas control, and process control subsystems needed for fully integrated operation and testing. Testing will include operation of the melter system while feeding a non-radioactive slurry mixture prepared to simulate the same type of waste feed presently being processed in the DWPF. Process monitoring and sample collection and analysis will be used to characterize the off-gas composition and properties, and to show the fate of feed constituents, to provide data that shows how the CCIM retrofit conceptual design can operate with the existing DWPF off-gas control system.

  8. INL Wind Farm Project Description Document

    SciTech Connect (OSTI)

    Gary Siefert

    2009-07-01T23:59:59.000Z

    The INL Wind Farm project proposes to install a 20 MW to 40 MW wind farm on government property, consisting of approximately ten to twenty full-sized (80-meter hub height) towers with 2 MW turbines, and access roads. This includes identifying the optimal turbine locations, building access roads, and pouring the tower foundations in preparation for turbine installation. The project successfully identified a location on INL lands with commercially viable wind resources (i.e., greater than 11 mph sustained winds) for a 20 to 40 MW wind farm. Additionally, the proposed Wind Farm was evaluated against other General Plant Projects, General Purpose Capital Equipment projects, and Line Item Construction Projects at the INL to show the relative importance of the proposed Wind Farm project.

  9. Coastal Ohio Wind Project

    SciTech Connect (OSTI)

    Gorsevski, Peter; Afjeh, Abdollah; Jamali, Mohsin; Bingman, Verner

    2014-04-04T23:59:59.000Z

    The Coastal Ohio Wind Project intends to address problems that impede deployment of wind turbines in the coastal and offshore regions of Northern Ohio. The project evaluates different wind turbine designs and the potential impact of offshore turbines on migratory and resident birds by developing multidisciplinary research, which involves wildlife biology, electrical and mechanical engineering, and geospatial science. Firstly, the project conducts cost and performance studies of two- and three-blade wind turbines using a turbine design suited for the Great Lakes. The numerical studies comprised an analysis and evaluation of the annual energy production of two- and three-blade wind turbines to determine the levelized cost of energy. This task also involved wind tunnel studies of model wind turbines to quantify the wake flow field of upwind and downwind wind turbine-tower arrangements. The experimental work included a study of a scaled model of an offshore wind turbine platform in a water tunnel. The levelized cost of energy work consisted of the development and application of a cost model to predict the cost of energy produced by a wind turbine system placed offshore. The analysis found that a floating two-blade wind turbine presents the most cost effective alternative for the Great Lakes. The load effects studies showed that the two-blade wind turbine model experiences less torque under all IEC Standard design load cases considered. Other load effects did not show this trend and depending on the design load cases, the two-bladed wind turbine showed higher or lower load effects. The experimental studies of the wake were conducted using smoke flow visualization and hot wire anemometry. Flow visualization studies showed that in the downwind turbine configuration the wake flow was insensitive to the presence of the blade and was very similar to that of the tower alone. On the other hand, in the upwind turbine configuration, increasing the rotor blade angle of attack reduced the wake size and enhanced the vortices in the flow downstream of the turbine-tower compared with the tower alone case. Mean and rms velocity distributions from hot wire anemometer data confirmed that in a downwind configuration, the wake of the tower dominates the flow, thus the flow fields of a tower alone and tower-turbine combinations are nearly the same. For the upwind configuration, the mean velocity shows a narrowing of the wake compared with the tower alone case. The downwind configuration wake persisted longer than that of an upwind configuration; however, it was not possible to quantify this difference because of the size limitation of the wind tunnel downstream of the test section. The water tunnel studies demonstrated that the scale model studies could be used to adequately produce accurate motions to model the motions of a wind turbine platform subject to large waves. It was found that the important factors that affect the platform is whether the platform is submerged or surface piercing. In the former, the loads on the platform will be relatively reduced whereas in the latter case, the structure pierces the wave free surface and gains stiffness and stability. The other important element that affects the movement of the platform is depth of the sea in which the wind turbine will be installed. Furthermore, the wildlife biology component evaluated migratory patterns by different monitoring systems consisting of marine radar, thermal IR camera and acoustic recorders. The types of radar used in the project are weather surveillance radar and marine radar. The weather surveillance radar (1988 Doppler), also known as Next Generation Radar (NEXRAD), provides a network of weather stations in the US. Data generated from this network were used to understand general migratory patterns, migratory stopover habitats, and other patterns caused by the effects of weather conditions. At a local scale our marine radar was used to complement the datasets from NEXRAD and to collect additional monitoring parameters such as passage rates, flight paths, flight directi

  10. Evaluation of hydrothermal resources of North Dakota. Phase II. Final report

    SciTech Connect (OSTI)

    Harris, K.L.; Howell, F.L.; Winczewski, L.M.; Wartman, B.L.; Umphrey, H.R.; Anderson, S.B.

    1981-06-01T23:59:59.000Z

    The Phase II activities dealt with three main topical areas: geothermal gradient and heat-flow studies, stratigraphic studies, and water quality studies. Efforts were concentrated on Mesozoic and Cenozoic rocks. The geothermal gradient and heat-flow studies involved running temperature logs in groundwater observation holes in areas of interest, and locating, obtaining access to, and casing holes of convenience to be used as heat-flow determination sites. The stratigraphic and water quality studies involved two main efforts: updating and expanding WELLFILE and assembling a computer library system (WELLCAT) for all water wells drilled in the state. WATERCAT combines data from the United States Geological Survey Water Resources Division's WATSTOR and GWST computer libraries; and includes physical, stratigraphic, and water quality data. Goals, methods, and results are presented.

  11. TWRS Privatization Phase I waste characterization data evaluation for the request for proposal

    SciTech Connect (OSTI)

    Patello, G.K.; Wiemers, K.D.

    1996-09-01T23:59:59.000Z

    Radioactive wastes have been stored in large underground tanks at Hanford since 1944. In 1991, The Tank Waste Remediation System (TWRS) program was established to manage, retrieve, treat, immobilize, and dispose of these wastes in a safe, effective manner. DOE believes that it is feasible to privatize portions of the TWRS program. Under the Privatization strategy embodied in the request for proposal, DOE will purchase services from a contractor-owned, contractor-operated facility under a fixed-price type of contract. Phase I is a proof-of- concept/commercial demonstration-scale effort. Method used to achieve the objective of producing a technically reviewed inventory is outlined. Organic speciation and physical properties were gathered for the tank wastes and may be found in the individual tank section of this document; reference reviews and tank volume and sampling summary graphs are also provided for each tank.

  12. Identification and evaluation of the nonradioactive toxic components in LLNL weapon designs, Phase 1

    SciTech Connect (OSTI)

    Johnson, J.A.; Lipska-Quinn, A.E.

    1994-01-01T23:59:59.000Z

    The proper industrial hygiene strategy and response to a weapons accident is dependent upon the nonradioactive toxic materials contained in each weapon system. For example, in order to use the proper sampling and support equipment, e.g., personal protective and air sampling equipment, the Accident Response Group (ARG) Team needs a detailed inventory of nonradioactive toxic and potentially toxic materials in the weapon systems. The DOE Albuquerque Office or Operations funded the Lawrence Livermore National Laboratory (LLNL), Los Alamos National Laboratory (LANL) and Sandia National Laboratory to identify and evaluate the nonradioactive toxic components of their respective weapons designs. This report summarizes LLNL`s first year`s activities and results.

  13. Wind Technologies & Evolving Opportunities (Presentation)

    SciTech Connect (OSTI)

    Robichaud, R.

    2014-07-01T23:59:59.000Z

    This presentation covers opportunities for wind technology; wind energy market trends; an overview of the National Wind Technology Center near Boulder, Colorado; wind energy price and cost trends; wind turbine technology improvements; and wind resource characterization improvements.

  14. 2015 Iowa Wind Power Conference and Iowa Wind Energy Association...

    Energy Savers [EERE]

    2015 Iowa Wind Power Conference and Iowa Wind Energy Association Midwest Regional Energy Job Fair 2015 Iowa Wind Power Conference and Iowa Wind Energy Association Midwest Regional...

  15. Community Wind Handbook/Understand Your Wind Resource and Conduct...

    Open Energy Info (EERE)

    Conduct a Preliminary Estimate < Community Wind Handbook Jump to: navigation, search WIND ENERGY STAKEHOLDER ENGAGEMENT & OUTREACHCommunity Wind Handbook WindTurbine-icon.png...

  16. American Wind Energy Association Wind Energy Finance and Investment...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    American Wind Energy Association Wind Energy Finance and Investment Seminar American Wind Energy Association Wind Energy Finance and Investment Seminar October 20, 2014 8:00AM EDT...

  17. 2010 Wind Technologies Market Report

    E-Print Network [OSTI]

    Wiser, Ryan

    2012-01-01T23:59:59.000Z

    wind turbine components (specifically, generators, bladeschangers. ” Wind turbine components such as blades, towers,17%). Wind turbine component exports (towers, blades,

  18. Evaluation of a New Mixed-Phase Cloud Microphysics Parameterization with CAM3 Single-Column Model and M-PACE Observations

    SciTech Connect (OSTI)

    Liu, Xiaohong; Xie, Shaocheng; Ghan, Steven J.

    2007-12-14T23:59:59.000Z

    Most global climate models generally prescribe the partitioning of condensed water into liquid droplets and ice crystals in mixed-phase clouds according to a temperature-dependent function, which affects modeled cloud phase, cloud lifetime and radiative properties. This study evaluates a new mixed-phase cloud microphysics parameterization (for ice nucleation and water vapor deposition) against the Atmospheric Radiation Measurement (ARM) Mixed-phase Arctic Cloud Experiment (M-PACE) observations using the NCAR Community Atmospheric Model Version 3 (CAM3) single column model (SCAM). It is shown that SCAM with the new scheme produces a more realistic simulation of the cloud phase structure and the partitioning of condensed waterinto liquid droplets against observations during the M-PACE than the standard CAM. Sensitivity test indicates that ice number concentration could play an important role in the simulated mixed-phase cloud microphysics, and thereby needs to be realistically represented in global climate models.

  19. EVALUATION OF ALTERNATIVE FILTER MEDIA FOR THE ROTARY MICROFILTER, PHASE 2

    SciTech Connect (OSTI)

    Fowley, M.

    2012-07-31T23:59:59.000Z

    Testing was conducted at the Savannah River National Laboratory (SRNL) to investigate filter membrane performance in an effort to increase rotary microfilter (RMF) throughput. Membranes were tested in the SpinTek Filtration, Inc. Static Test Cell (STC), which permitted quick and easy testing of several different membranes. Testing consisted of 100 hours tests with two different slurry feeds, based on recommendations from the phase 1 testing. One feed contained Monosodium Titanate (MST) solids in a simulated salt solution. The other feed contained simulated sludge batch 6 (SB6) solids in a simulated salt solution. Five membranes were tested, one each from filter manufactures Pall and Porvair and three from the Oak Ridge National Laboratory (ORNL). The membrane from Pall is the current membrane used on the latest generation RMF. The Porvair membrane performed well in previous STC tests as well as one of the ORNL membranes. The other two membranes from ORNL were recently developed and not available for the previous STC test. The results indicate that the Porvair filter performed best with the MST slurry and the ORNL SVB6-1B filter performed best with the SB6 slurry. Difficulty was encountered with the ORNL filters due to their dimensional thickness, which was greater than the recommended filter thickness for the STC. The STC equipment was modified to complete the testing of the ORNL filters.

  20. Tier I ecological evaluation for phase III channel improvements to the John. F. Baldwin ship channel

    SciTech Connect (OSTI)

    Bienert, R.W.; Shreffler, D.K.; Word, J.Q.; Kohn, N.P. [Battelle/Marine Sciences Lab., Sequim, WA (United States)

    1994-05-01T23:59:59.000Z

    To assist the US Army Corps of Engineers (USACE) in determing whether the material from proposed dredging of the John F. Baldwin Ship Channel (JFBSC) is suitable for unrestricted, unconfined open-ocean disposal, Battelle/Marine Sciences Laboratory (MSL) prepared this report. Based on these findings, sediments that would be removed during Phase III improvements to the JFBSC fail to meet the three suitability criteria for open-ocean disposal. Firstly, fine-grained sediments comprise a significant fraction of the bottom material in some areas of the channel, and this material is not exposed to high current or wave energy. Dredged material from the JFBSC is not being proposed for beach nourishment; therefore the second criterion is not met. JFBSC sediments do not meet the third criterion because, although they may be substantially similar to substrates at several of the proposed disposal sites, they are from an area that historically has experienced loading of contaminants, which toxicology studies have shown have the potential to result in acute toxicity or significant bioaccumulation.

  1. Postburn evaluation for Hanna II, Phases 2 and 3, underground coal gasification experiments, Hanna, Wyoming

    SciTech Connect (OSTI)

    Youngberg, A.D.; Sinks, D.J.; Craig, G.N. II; Ethridge, F.G.; Burns, L.K.

    1983-12-01T23:59:59.000Z

    During 1980 and 1981 the Laramie Energy Technology Center (LETC) conducted a post-burn study at the Hanna II, Phases 2 and 3 underground coal gasification (UCG) site, Hanna, Wyoming. This report contains a summary of the field and laboratory results from the study. Lithologic and geophysical well log data from twenty-two (22) drill holes, combined with high resolution seismic data delineate a reactor cavity 42.7m (140 ft.) long, 35.1 m (115 ft.) and 21.3 m (70 ft.) high that is partially filled with rubble, char and pyrometamorphic rock. Sedimentographic studies were completed on the overburden. Reflectance data on coal samples within the reactor cavity and cavity wall reveal that the coal was altered by temperatures ranging from 245/sup 0/C to 670/sup 0/C (472/sup 0/-1238/sup 0/F). Overburden rocks found within the cavity contain various pyrometamorphic minerals, indicating that temperatures of at least 1200/sup 0/C (2192/sup 0/F) were reached during the tests. The calcite cemented fine-grained sandstone and siltstone directly above the Hanna No. 1 coal bed formed a strong roof above the cavity, unlike other UCG sites such as Hoe Creek which is not calcite cemented. 30 references, 27 figures, 8 tables.

  2. DSO216_Phase_II_Summary_Updates

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Summary of DSO 216 - Phase II Update Limiting Wind Output to Scheduled Value and Curtailing Schedules to Actual Wind Generation Updated: December 13, 2013 I. PURPOSE The purpose of...

  3. Review of remote-sensor potential for wind-energy studies

    SciTech Connect (OSTI)

    Hooke, W.H.

    1981-03-01T23:59:59.000Z

    This report evaluates a number of remote-sensing systems such as radars, lidars, and acoustic echo sounders which are potential alternatives to the cup- and propeller anemometers routinely used in wind energy siting. The high costs and demanding operational requirements of these sensors currently preclude their use in the early stages of a multi-phase wind energy siting strategy such as that recently articulated by Hiester and Pennell (1981). Instead, these systems can be used most effectively in the lattermost stages of the siting process - what Hiester and Pennell (1981) refer to as the site development phase, necessary only for the siting of large wind-energy conversion systems (WECS) or WECS clusters. Even for this particular application only four techniques appear to be operational now; that is, if used properly, these techniques should provide the data sets currently considered adequate for wind-energy siting purposes. They are, in rough order of increasing expense and operating demands: optical transverse wind sensors; acoustic Doppler sounders; time-of-flight and continuous wave (CW) Doppler lidar; and frequency-modulated, continuous wave (FM-CW) Doppler radar.

  4. 2010 Wind Technologies Market Report

    E-Print Network [OSTI]

    Wiser, Ryan

    2012-01-01T23:59:59.000Z

    Public Service Wind Integration Cost Impact Study. Preparedequipment-related wind turbine costs, the overall importinstalled wind power project costs, wind turbine transaction

  5. 2009 Wind Technologies Market Report

    E-Print Network [OSTI]

    Wiser, Ryan

    2010-01-01T23:59:59.000Z

    Public Service Wind Integration Cost Impact Study. Preparedinstalled wind power project costs, wind turbine transactionand components and wind turbine costs. Excluded from all

  6. Sandia National Laboratories: wind energy

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Wind Energy Manufacturing Lab Helps Engineers Improve Wind Power On November 15, 2011, in Energy, News, Partnership, Renewable Energy, Wind Energy Researchers at the Wind Energy...

  7. Phase 1 - Evaluation of a Functional Interconnect System for Solid Oxide Fuel Cells

    SciTech Connect (OSTI)

    James M. Rakowski

    2006-09-30T23:59:59.000Z

    This project is focused on evaluating the suitability of materials and complex multi-materials systems for use as solid oxide fuel cell interconnects. ATI Allegheny Ludlum has generated promising results for interconnect materials which incorporate modified surfaces. Methods for producing these surfaces include cladding, which permits the use of novel materials, and modifications via unique thermomechanical processing, which allows for the modification of materials chemistry. The University of Pittsburgh is assisting in this effort by providing use of their in-place facilities for dual atmosphere testing and ASR measurements, along with substantial work to characterize post-exposure specimens. Carnegie Mellon is testing interconnects for chromia scale spallation resistance using macro-scale and nano-scale indentation tests. Chromia spallation can increase electrical resistance to unacceptable levels and interconnect systems must be developed that will not experience spallation within 40,000 hours at operating temperatures. Spallation is one of three interconnect failure mechanisms, the others being excessive growth of the chromia scale (increasing electrical resistance) and scale evaporation (which can poison the cathode). The goal of indentation fracture testing at Carnegie Mellon is to accelerate the evaluation of new interconnect systems (by inducing spalls at after short exposure times) and to use fracture mechanics to understand mechanisms leading to premature interconnect failure by spallation. Tests include bare alloys from ATI and coated systems from DOE Laboratories and industrial partners, using ATI alloy substrates. West Virginia University is working towards developing a cost-effective material for use as a contact material in the cathode chamber of the SOFC. Currently materials such as platinum are well suited for this purpose, but are cost-prohibitive. For the solid-oxide fuel cell to become a commercial reality it is imperative that lower cost components be developed. Based on the results obtained to date, it appears that sterling silver could be an inexpensive, dependable candidate for use as a contacting material in the cathode chamber of the solid-oxide fuel cell. Although data regarding pure silver samples show a lower rate of thickness reduction, the much lower cost of sterling silver makes it an attractive alternative for use in SOFC operation.

  8. Power Transformer Application for Wind Plant Substations

    SciTech Connect (OSTI)

    Behnke, M. R. [IEEE PES Wind Plant Collector System Design Working Group; Bloethe, W.G. [IEEE PES Wind Plant Collector System Design Working Group; Bradt, M. [IEEE PES Wind Plant Collector System Design Working Group; Brooks, C. [IEEE PES Wind Plant Collector System Design Working Group; Camm, E H [IEEE PES Wind Plant Collector System Design Working Group; Dilling, W. [IEEE PES Wind Plant Collector System Design Working Group; Goltz, B. [IEEE PES Wind Plant Collector System Design Working Group; Li, J. [IEEE PES Wind Plant Collector System Design Working Group; Niemira, J. [IEEE PES Wind Plant Collector System Design Working Group; Nuckles, K. [IEEE PES Wind Plant Collector System Design Working Group; Patino, J. [IEEE PES Wind Plant Collector System Design Working Group; Reza, M [IEEE PES Wind Plant Collector System Design Working Group; Richardson, B. [IEEE PES Wind Plant Collector System Design Working Group; Samaan, N. [IEEE PES Wind Plant Collector System Design Working Group; Schoene, Jens [IEEE PES Wind Plant Collector System Design Working Group; Smith, Travis M [ORNL; Snyder, Isabelle B [ORNL; Starke, Michael R [ORNL; Walling, R. [IEEE PES Wind Plant Collector System Design Working Group; Zahalka, G. [IEEE PES Wind Plant Collector System Design Working Group

    2010-01-01T23:59:59.000Z

    Wind power plants use power transformers to step plant output from the medium voltage of the collector system to the HV or EHV transmission system voltage. This paper discusses the application of these transformers with regard to the selection of winding configuration, MVA rating, impedance, loss evaluation, on-load tapchanger requirements, and redundancy.

  9. Active Power Control from Wind Power (Presentation)

    SciTech Connect (OSTI)

    Ela, E.; Brooks, D.

    2011-04-01T23:59:59.000Z

    In order to keep the electricity grid stable and the lights on, the power system relies on certain responses from its generating fleet. This presentation evaluates the potential for wind turbines and wind power plants to provide these services and assist the grid during critical times.

  10. Lake Michigan Offshore Wind Feasibility Assessment

    SciTech Connect (OSTI)

    Boezaart, Arnold [GVSU; Edmonson, James [GVSU; Standridge, Charles [GVSU; Pervez, Nahid [GVSU; Desai, Neel [University of Michigan; Williams, Bruce [University of Delaware; Clark, Aaron [GVSU; Zeitler, David [GVSU; Kendall, Scott [GVSU; Biddanda, Bopi [GVSU; Steinman, Alan [GVSU; Klatt, Brian [Michigan State University; Gehring, J. L. [Michigan State University; Walter, K. [Michigan State University; Nordman, Erik E. [GVSU

    2014-06-30T23:59:59.000Z

    The purpose of this project was to conduct the first comprehensive offshore wind assessment over Lake Michigan and to advance the body of knowledge needed to support future commercial wind energy development on the Great Lakes. The project involved evaluation and selection of emerging wind measurement technology and the permitting, installation and operation of the first mid-lake wind assessment meteorological (MET) facilities in Michigan’s Great Lakes. In addition, the project provided the first opportunity to deploy and field test floating LIDAR and Laser Wind Sensor (LWS) technology, and important research related equipment key to the sitting and permitting of future offshore wind energy development in accordance with public participation guidelines established by the Michigan Great Lakes Wind Council (GLOW). The project created opportunities for public dialogue and community education about offshore wind resource management and continued the dialogue to foster Great Lake wind resource utilization consistent with the focus of the GLOW Council. The technology proved to be effective, affordable, mobile, and the methods of data measurement accurate. The public benefited from a substantial increase in knowledge of the wind resources over Lake Michigan and gained insights about the potential environmental impacts of offshore wind turbine placements in the future. The unique first ever hub height wind resource assessment using LWS technology over water and development of related research data along with the permitting, sitting, and deployment of the WindSentinel MET buoy has captured public attention and has helped to increase awareness of the potential of future offshore wind energy development on the Great Lakes. Specifically, this project supported the acquisition and operation of a WindSentinel (WS) MET wind assessment buoy, and associated research for 549 days over multiple years at three locations on Lake Michigan. Four research objectives were defined for the project including to: 1) test and validate floating LIDAR technology; 2) collect and access offshore wind data; 3) detect and measure bird and bat activity over Lake Michigan; 4) conduct an over water sound propagation study; 5) prepare and offer a college course on offshore energy, and; 6) collect other environmental, bathometric, and atmospheric data. Desk-top research was performed to select anchorage sites and to secure permits to deploy the buoy. The project also collected and analyzed data essential to wind industry investment decision-making including: deploying highly mobile floating equipment to gather offshore wind data; correlating offshore wind data with conventional on-shore MET tower data; and performing studies that can contribute to the advancement and deployment of offshore wind technologies. Related activities included: • Siting, permitting, and deploying an offshore floating MET facility; • Validating the accuracy of floating LWS using near shoreline cup anemometer MET instruments; • Assessment of laser pulse technology (LIDAR) capability to establish hub height measurement of wind conditions at multiple locations on Lake Michigan; • Utilizing an extended-season (9-10 month) strategy to collect hub height wind data and weather conditions on Lake Michigan; • Investigation of technology best suited for wireless data transmission from distant offshore structures; • Conducting field-validated sound propagation study for a hypothetical offshore wind farm from shoreline locations; • Identifying the presence or absence of bird and bat species near wind assessment facilities; • Identifying the presence or absence of benthic and pelagic species near wind assessment facilities; All proposed project activities were completed with the following major findings: • Floating Laser Wind Sensors are capable of high quality measurement and recordings of wind resources. The WindSentinel presented no significant operational or statistical limitations in recording wind data technology at a at a high confidence level as compared to traditional an

  11. Evaluation of diurnal thermal energy storage combined with cogeneration systems. Phase 2

    SciTech Connect (OSTI)

    Somasundaram, S.; Brown, D.R.; Drost, M.K.

    1993-07-01T23:59:59.000Z

    This report describes the results of a study of thermal energy storage (TES) systems integrated with combined-cycle gas turbine cogeneration systems. Integrating thermal energy storage with conventional cogeneration equipment increases the initial cost of the combined system; but, by decoupling electric power and process heat production, the system offers two significant advantages. First, electric power can be generated on demand, irrespective of the process heat load profile, thus increasing the value of the power produced. Second, although supplementary firing could be used to serve independently varying electric and process heat loads, this approach is inefficient. Integrating TES with cogeneration can serve the two independent loads while firing all fuel in the gas turbine. An earlier study analyzed TES integrated with a simple-cycle cogeneration system. This follow-on study evaluated the cost of power produced by a combined-cycle electric power plant (CC), a combined-cycle cogeneration plant (CC/Cogen), and a combined-cycle cogeneration plant integrated with thermal energy storage (CC/TES/Cogen). Each of these three systems was designed to serve a fixed (24 hr/day) process steam load. The value of producing electricity was set at the levelized cost for a CC plant, while the value of the process steam was for a conventional stand-alone boiler. The results presented here compared the costs for CC/TES/Cogen system with those of the CC and the CC/Cogen plants. They indicate relatively poor economic prospects for integrating TES with a combined-cycle cogeneration power plant for the assumed designs. The major reason is the extremely close approach temperatures at the storage media heaters, which makes the heaters large and therefore expensive.

  12. Application of optical triangulation profilometry and optical phase ranging profilometry to the figure evaluation of solar mirrors

    SciTech Connect (OSTI)

    Griffin, J.W.; Lind, M.A.

    1980-12-01T23:59:59.000Z

    The techniques of optical triangulation profilometry (OTP) and optical phase ranging profilometry (OPRP) are proposed for evaluation of the figure of solar mirrors. The theoretical basis for each method is discussed and the results of initial feasibility experiments are reported. In OTP and OPRP the de-specularized mirror surface is probed with one or more visible laser beams. In OTP, two beams are required for the triangulation of coordinates on the mirror surface. In OPRP the second laser beam is retained within the instrument to form the reference leg of a long wavelength interferometer. Both methods are particularly adaptable to computer control for fast, automated analysis of mirror surfaces. In addition the proposed devices are compact and sturdy enough for easy implementation in field evaluation programs. The experimental resolution capability of the unoptimized OTP system is greater than or equal to 0.1 inch (2.54 mm). With further improvement of the beam projection and coincidence assessment systems, the design resolution goal of greater than or equal to 0.1 mm appears achievable. The results of the preliminary resolution capability experiments on the OPRP system are inconclusive. This is thought to be a result of poor performance of components comprising the modulation and detection subsystems. A full assessment of OPRP capability will require a further investigation effort.

  13. Wind Integration

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office of ScienceandMesa del SolStrengtheningWildfires may contribute more to global warmingGlobal »Wind

  14. Wind Power

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742EnergyOnItemResearch >Internship Program TheSiteEurekaWeekly UserWhat's New Today aboutWind

  15. Gille-SIO 221C 1 Wind Forcing of Geostrophic Currents

    E-Print Network [OSTI]

    Gille, Sarah T.

    Gille-SIO 221C 1 Wind Forcing of Geostrophic Currents Some of the strongest and most variable winds between ACC transport and wind forcing. What is the phase relationshp between U and x ? 3. What in the world blow over the Antarctic Circumpolar Current. How does the current respond to fluctuations in wind

  16. 1 INTRODUCTION Suitable sites for wind farms on land are scarce in

    E-Print Network [OSTI]

    Heinemann, Detlev

    viability of offshore wind farms depends on the compensation of the additional installation cost by a higher. In the current planing phase offshore wind measure- ments are being made at three prospective wind farm sites offshore wind farm which is lo- cated about 2 km from the coast. Thus the measure- ments cover

  17. RECYCLING AND REMOVAL OF OFFSHORE WIND TURBINES AN INTERACTIVE METHOD FOR REDUCTION OF NEGATIVE ENVIRONMENTAL EFFECTS

    E-Print Network [OSTI]

    phases of new wind turbines. There are plans about offshore wind farms in many countries e.g. in northernRECYCLING AND REMOVAL OF OFFSHORE WIND TURBINES ­ AN INTERACTIVE METHOD FOR REDUCTION OF NEGATIVE and an analysis of future removal and recycling processes of offshore wind turbines. The method is process

  18. Wind Energy Resource Assessment of the Caribbean and Central America

    SciTech Connect (OSTI)

    DL Elliott; CI Aspliden; GL Gower; CG Holladay, MN Schwartz

    1987-04-01T23:59:59.000Z

    A wind energy resource assessment of the Caribbean and Central America has identified many areas with good to outstanding wind resource potential for wind turbine applications. Annual average wind resource maps and summary tables have been developed for 35 island/country areas throughout the Caribbean and Central America region. The wind resource maps highlight the locations of major resource areas and provide estimates of the wind energy resource potential for typical well-exposed sites in these areas. The average energy in the wind flowing in the layer near the ground is expressed as a wind power class: the greater the average wind energy, the higher the wind power class. The summary tables that are included with each of the 35 island/country wind energy maps provide information on the frequency distribution of the wind speeds (expressed as estimates of the Weibull shape factor, k) and seasonal variations in the wind resource for the major wind resource areas identified on the maps. A new wind power class legend has been developed for relating the wind power classes to values of mean wind power density, mean wind speed, and Weibull k. Guidelines are presented on how to adjust these values to various heights above ground for different roughness and terrain characteristics. Information evaluated in preparing the assessment included existing meteorological data from airports and other weather stations, and from ships and buoys in offshore and coastal areas. In addition, new data from recent measurement sites established for wind energy siting studies were obtained for a few areas of the Caribbean. Other types of information evaluated in the assessment were climatological data and maps on winds aloft, surface pressure, air flow, and topography. The various data were screened and evaluated for their usefulness in preparing the wind resource assessment. Much of the surface data from airports and other land-based weather stations were determined to be from sheltered sites and were thus not very useful in assessing the wind resource at locations that are well exposed to the winds. Ship data were determined to be the most useful for estimating the large-scale wind flow and assessing the spatial distribution of the wind resource throughout the region. Techniques were developed for analyzing and correcting ship wind data and extrapolating these data to coastal and inland areas by considering terrain influences on the large-scale wind flow. In areas where extrapolation of ship wind data was not entirely feasible, such as interior areas of Central America, other techniques were developed for estimating the wind flow and distribution of the wind resource. Through the application of the various innovative techniques developed for assessing the wind resource throughout the Caribbean and Central America region, many areas with potentially good to outstanding wind resource were identified that had not been previously recognized. In areas where existing site data were available from exposed locations, the measured wind resource was compared with the estimated wind resource that was derived using the assessment techniques. In most cases, there was good agreement between the measured wind resource and the estimated wind resource. This assessment project supported activities being pursued by the U.S. Committee for Renewable Energy Commerce and Trade (CORECT), the U.S. government's interagency program to assist in overseas marketing and promote renewable energy exports. An overall goal of the program is to improve U.S. competitiveness in the world renewable energy market. The Caribbean and Central America assessment, which is the first of several possible follow-on international wind energy resource assessments, provides valuable information needed by the U.S. wind energy industry to identify suitable wind resource areas and concentrate their efforts on these areas.

  19. Improvements in Low-Frequency, Ultrasonic Phased-Array Evaluation for Thick Section Cast Austenitic Stainless Steel Piping Components

    SciTech Connect (OSTI)

    Anderson, Michael T.; Crawford, Susan L.; Diaz, Aaron A.; Moran, Traci L.

    2010-12-01T23:59:59.000Z

    Research is being conducted for the U.S. Nuclear Regulatory Commission (NRC) at the Pacific Northwest National Laboratory (PNNL) to assess the effectiveness and reliability of advanced nondestructive examination (NDE) methods for the inspection of light water reactor (LWR) components. A primary objective of this work is to evaluate various NDE methods to assess their ability to detect, localize, and size cracks in coarse-grained steel components. This particular study focused on the evaluation of custom-designed, low-frequency (500 kHz) phased-array (PA) probes for examining welds in thick-section cast austenitic stainless steel (CASS) piping. In addition, research was conducted to observe ultrasonic sound field propagation effects from known coarse-grained microstructures found in parent CASS material. The study was conducted on a variety of thick-wall, coarse-grained CASS specimens that were previously inspected by an older generation 500-kHz PA-UT probe and acquisition instrument configuration. This comparative study describes the impact of the new PA probe design on flaw detection and sizing in a low signal-to-noise environment. The set of Pressurized Water Reactor Owners Group (PWROG) CASS specimens examined in this study are greater than 50.8-mm (2.0-in.) thick with documented flaws and microstructures. These specimens are on loan to PNNL from the Electric Power Research Institute (EPRI) NDE Center in Charlotte, North Carolina. The flaws contained within these specimens are thermal fatigue cracks (TFC) or mechanical fatigue cracks (MFC) and range from 13% to 42% in through-wall extent. In addition, ultrasonic signal continuity was evaluated on two CASS parent material ring sections by examining the edge-of-pipe response (corner geometry) for regions of signal loss.

  20. Washington Phase II Fish Diversion Screen Evaluations in the Yakima River Basin, 2004-2005 Annual Report.

    SciTech Connect (OSTI)

    Vucelick, Jessica; McMichael, Geoffrey; Chamness, Mickie [Pacific Northwest National Laboratory

    2006-02-01T23:59:59.000Z

    In 2004, the Pacific Northwest National Laboratory (PNNL) evaluated 25 Phase II fish screen sites in the Yakima River Basin as part of a multi-year project for the Bonneville Power Administration on the effectiveness of fish screening devices. PNNL collected data to determine whether velocities in front of the screens and in the bypasses met the National Oceanic and Atmospheric Administration Fisheries (NOAA Fisheries, formerly the National Marine Fisheries Service (NMFS)) criteria to promote safe and timely fish passage. In addition, PNNL conducted underwater video surveys to evaluate the environmental and operational conditions of the screen sites with respect to fish passage. Based on evaluations in 2004, PNNL concluded that: (1) In general, water velocity conditions at the screen sites met fish passage criteria set by NOAA Fisheries. (2) Conditions at most facilities would be expected to provide for safe juvenile fish passage. (3) Automated cleaning brushes generally functioned properly; chains and other moving parts were typically well-greased and operative. (4) Removal of sediment buildup and accumulated leafy and woody debris could be improved at some sites. (5) Conditions at some facilities indicate that operation and/or maintenance should be modified to improve passage conditions for juvenile fish. For example, Taylor has had problems meeting bypass flow and submergence operating criteria since the main river channel shifted away from the site 2 years ago, and Fruitvale consistently has had problems meeting bypass flow criteria when the water is low. (6) Continued problems at Gleed point to design flaws. This site should be considered for redesign or replacement.

  1. EVALUATION OF THOR MINERALIZED WASTE FORMS FOR THE DOE ADVANCED REMEDIATION TECHNOLOGIES PHASE 2 PROJECT

    SciTech Connect (OSTI)

    Crawford, C.; Jantzen, C.

    2012-02-02T23:59:59.000Z

    The U.S. Department of Energy's (DOE) Office of River Protection (ORP) is responsible for the retrieval, treatment, immobilization, and disposal of Hanford's tank waste. Currently there are approximately 56 million gallons of highly radioactive mixed wastes awaiting treatment. A key aspect of the River Protection Project (RPP) cleanup mission is to construct and operate the Waste Treatment and Immobilization Plant (WTP). The WTP will separate the tank waste into high-level and low-activity waste (LAW) fractions, both of which will subsequently be vitrified. The projected throughput capacity of the WTP LAW Vitrification Facility is insufficient to complete the RPP mission in the time frame required by the Hanford Federal Facility Agreement and Consent Order, also known as the Tri-Party Agreement (TPA), i.e. December 31, 2047. Therefore, Supplemental Treatment is required both to meet the TPA treatment requirements as well as to more cost effectively complete the tank waste treatment mission. The Supplemental Treatment chosen will immobilize that portion of the retrieved LAW that is not sent to the WTP's LAW Vitrification facility into a solidified waste form. The solidified waste will then be disposed on the Hanford site in the Integrated Disposal Facility (IDF). In addition, the WTP LAW Vitrification facility off-gas condensate known as WTP Secondary Waste (WTP-SW) will be generated and enriched in volatile components such as Cs-137, I-129, Tc-99, Cl, F, and SO{sub 4} that volatilize at the vitrification temperature of 1150 C in the absence of a continuous cold cap. The current waste disposal path for the WTP-SW is to recycle it to the supplemental LAW treatment to avoid a large steady state accumulation in the pretreatment-vitrification loop. Fluidized Bed Steam Reforming (FBSR) offers a moderate temperature (700-750 C) continuous method by which LAW and/or WTP-SW wastes can be processed irrespective of whether they contain organics, nitrates, sulfates/sulfides, chlorides, fluorides, volatile radionuclides or other aqueous components. The FBSR technology can process these wastes into a crystalline ceramic (mineral) waste form. The mineral waste form that is produced by co-processing waste with kaolin clay in an FBSR process has been shown to be as durable as LAW glass. Monolithing of the granular FBSR product, which is one of the objectives of this current study, is being investigated to prevent dispersion during transport or burial/storage but is not necessary for performance. FBSR testing of a Hanford LAW simulant and a WTP-SW simulant at the pilot scale was performed by THOR Treatment Technologies, LLC at Hazen Research Inc. in April/May 2008. The Hanford LAW simulant was the Rassat 68 tank blend and the target concentrations for the LAW was increased by a factor of 10 for Sb, As, Ag, Cd, and Tl; 100 for Ba and Re (Tc surrogate); 1,000 for I; and 254,902 for Cs based on discussions with the DOE field office and the environmental regulators and an evaluation of the Hanford Tank Waste Envelopes A, B, and C. It was determined through the evaluation of the actual tank waste metals concentrations that some metal levels were not sufficient to achieve reliable detection in the off-gas sampling. Therefore, the identified metals concentrations were increased in the Rassat simulant processed by TTT at HRI to ensure detection and enable calculation of system removal efficiencies, product retention efficiencies, and mass balance closure without regard to potential results of those determinations or impacts on product durability response such as Toxicity Characteristic Leach Procedure (TCLP). A WTP-SW simulant based on melter off-gas analyses from Vitreous State Laboratory (VSL) was also tested at HRI in the 15-inch diameter Engineering Scale Test Demonstration (ESTD) dual reformer at HRI in 2008. The target concentrations for the Resource Conservation and Recovery Act (RCRA) metals were increased by 16X for Se, 29X for Tl, 42X for Ba, 48X for Sb, by 100X for Pb and Ni, 1000X for Ag, and 1297X for Cd to ensure detection by the an

  2. Wind Power Today

    SciTech Connect (OSTI)

    Not Available

    2006-05-01T23:59:59.000Z

    Wind Power Today is an annual publication that provides an overview of the wind energy research conducted by the U.S. Department of Energy Wind and Hydropower Technologies Program.

  3. Wind Power Today

    SciTech Connect (OSTI)

    Not Available

    2007-05-01T23:59:59.000Z

    Wind Power Today is an annual publication that provides an overview of the wind energy research conducted by the U.S. Department of Energy Wind and Hydropower Technologies Program.

  4. Sunflower Wind Farm EA

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Sunflower Wind Farm EA Sunflower Wind Farm Draft EA (25mb pdf) Note: If you have problems downloading this file, pelase contact Lou Hanebury at (406) 255-2812 Sunflower Wind Farm...

  5. Observed and CAM3 GCM Sea Surface Wind

    E-Print Network [OSTI]

    Zender, Charles

    Observed and CAM3 GCM Sea Surface Wind Speed Distributions: Characterization, Comparison, and Bias climatological surface wind speed probability density functions (PDFs) estimated from observations and use them to evaluate, for the first time, contemporaneous wind PDFs predicted by a GCM. The ob- servations include NASA

  6. A Simplified Morphing Blade for Horizontal Axis Wind Turbines

    E-Print Network [OSTI]

    Boyer, Edmond

    A Simplified Morphing Blade for Horizontal Axis Wind Turbines Weijun WANG , St´ephane CARO, Fouad salinas@hotmail.com The aim of designing wind turbine blades is to improve the power capture ability by adjusting the twist of the blade's root and tip. To evaluate the performance of wind turbine blades

  7. Wind power resource assessment in complex urban environments

    E-Print Network [OSTI]

    in Computational Fluid Dynamics (CFD) methods holds potential for the advancement of wind energy resource buildings. CFD simulations have been used to evaluate the wind energy potential on the campus. 2 Objectives The aim of this study is to assess wind energy resource on the MIT campus for potential

  8. Estimated global ocean wind power potential from QuikSCAT observations, accounting for turbine characteristics and siting

    E-Print Network [OSTI]

    Capps, Scott B; Zender, Charles S

    2010-01-01T23:59:59.000Z

    Evaluation of global wind power, J. Geophys. Res. , 110,2009), Global ocean wind power sensitivity to surface layerCO 2 reductions via offshore wind power matched to inherent

  9. Paper BL3.199 EWEC 2007 Wind Energy Conference and Exhibition BL3.199 Wake Modelling for intermediate and large wind farms

    E-Print Network [OSTI]

    for intermediate and large wind farms Ole Rathmann1, 3 , Sten Frandsen1 , and Rebecca Barthelmie2, 1 1 Wind Energy.rathmann@risoe.dk Summary Modern, very large wind farms require large-scale effects to be taken into account when evaluating academic models for infinitely large wind farms and present-day engineering models, which take into account

  10. Ben Ticha M. B., Ranchin T., Wald L., Using several data sources for offshore wind resource assessment, 2005, Copenhagen Offshore Wind conference 2005

    E-Print Network [OSTI]

    Boyer, Edmond

    financial risks associated to the installation of offshore wind farms. Usually, for evaluating the resourceBen Ticha M. B., Ranchin T., Wald L., Using several data sources for offshore wind resource assessment, 2005, Copenhagen Offshore Wind conference 2005 1 Using several data sources for offshore wind

  11. Stochastic Downscaling Method: Application to Wind Refinement

    E-Print Network [OSTI]

    Paris-Sud XI, Université de

    for applications such as pollutant diffusion evaluation, wind energy resource estimation and construction issues particular importance on society (e.g., the insurance industry, coastal erosion, forest and infrastruc- ture

  12. Eastern Wind Integration and Transmission Study: Executive Summary...

    Energy Savers [EERE]

    Study: Executive Summary and Project Overview Eastern Wind Integration and Transmission Study: Executive Summary and Project Overview This study evaluates the future operational...

  13. EA-1792: University of Maine's Deepwater Offshore Floating Wind...

    Broader source: Energy.gov (indexed) [DOE]

    This EA evaluates the environmental impacts of a proposal to support research on floating offshore wind turbine platforms. This project would support the mission, vision, and goals...

  14. EA-1857: Wind Turbine Power Generation Complex at Idaho National Laboratory

    Broader source: Energy.gov [DOE]

    This EA would evaluate the environmental impacts of the proposed wind turbine power generation complex at Idaho National Laboratory, Idaho.

  15. Wind/Hydro Study

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    WindHydro Integration Feasibility Study Announcements (Updated July 8, 2010) The Final WindHydro Integration Feasibility Study Report, dated June 2, 2009, has been submitted to...

  16. Wind energy bibliography

    SciTech Connect (OSTI)

    None

    1995-05-01T23:59:59.000Z

    This bibliography is designed to help the reader search for information on wind energy. The bibliography is intended to help several audiences, including engineers and scientists who may be unfamiliar with a particular aspect of wind energy, university researchers who are interested in this field, manufacturers who want to learn more about specific wind topics, and librarians who provide information to their clients. Topics covered range from the history of wind energy use to advanced wind turbine design. References for wind energy economics, the wind energy resource, and environmental and institutional issues related to wind energy are also included.

  17. Wind Turbine Tribology Seminar

    Broader source: Energy.gov [DOE]

    Wind turbine reliability issues are often linked to failures of contacting components, such as bearings, gears, and actuators. Therefore, special consideration to tribological design in wind...

  18. Commonwealth Wind Incentive Program – Micro Wind Initiative

    Broader source: Energy.gov [DOE]

    Through the Commonwealth Wind Incentive Program – Micro Wind Initiative the Massachusetts Clean Energy Center (MassCEC) offers rebates of up to $4/W with a maximum of $130,000 for design and...

  19. Ris-R-Report Improved design for large wind turbine blades

    E-Print Network [OSTI]

    for large wind turbine blades of fibre composites (Phase 4) - Summary report Division: 1 Materials Research of wind turbine blade involving geometric and material instabilities 30 5.2 Simulation of crack growthRisř-R-Report Improved design for large wind turbine blades of fibre composites (Phase 4) - Summary

  20. Ris-R-1526(EN) Improved design of large wind turbine

    E-Print Network [OSTI]

    Risř-R-1526(EN) Improved design of large wind turbine blades of fibre composites (Phase 2. Halling+ Title: Improved design of large wind turbine blades of fibre composites (Phase 2) - Summary in a wind turbine blade 7 2.1 Experimental investigations 7 2.2 Finite element models 7 2.3 Synthesis 8 2

  1. Ris-R-Report Improved design for large wind turbine blades

    E-Print Network [OSTI]

    Risø-R-Report Improved design for large wind turbine blades of fibre composites (Phase 3) - Summary: Improved design for large wind turbine blades of fibre composites (Phase 3) - Summary report Division: 1 char.): An overview is given of the activities of the project "Improved design for large wind turbine

  2. 2008 WIND TECHNOLOGIES MARKET REPORT

    E-Print Network [OSTI]

    Bolinger, Mark

    2010-01-01T23:59:59.000Z

    States. Specifically, Bluewater Wind and Delmarva PowerLLC Babcock & Brown Acquisition Bluewater Wind Good Energies

  3. 2008 WIND TECHNOLOGIES MARKET REPORT

    E-Print Network [OSTI]

    Bolinger, Mark

    2010-01-01T23:59:59.000Z

    policy support for other renewable energy sources, wind mayrenewable energy and climate policy initiatives. With wind

  4. GREENHOUSE GAS EMISSIONS CONTROL BY OXYGEN FIRING IN CIRCULATING FLUID BED BOILERS (Phase II--Evaluation of the Oxyfuel CFB Concept)

    SciTech Connect (OSTI)

    John L. Marion; Nsakala ya Nsakala

    2003-11-09T23:59:59.000Z

    The overall project goal is to determine if carbon dioxide can be captured and sequestered at a cost of about $10/ton of carbon avoided, using a newly constructed Circulating Fluidized Bed combustor while burning coal with a mixture of oxygen and recycled flue gas, instead of air. This project is structured in two Phases. Phase I was performed between September 28, 2001 and May 15, 2002. Results from Phase I were documented in a Topical Report issued on May 15, 2003 (Nsakala, et al., 2003), with the recommendation to evaluate, during Phase II, the Oxyfuel-fired CFB concept. DOE NETL accepted this recommendation, and, hence approved the project continuation into Phase II. Phase 2. The second phase of the project--which includes pilot-scale tests of an oxygen-fired circulating fluidized bed test facility with performance and economic analyses--is currently underway at ALSTOM's Power Plant Laboratories, located in Windsor, CT (US). The objective of the pilot-scale testing is to generate detailed technical data needed to establish advanced CFB design requirements and performance when firing coals and delayed petroleum coke in oxygen/carbon dioxide mixtures. Results will be used in the design of oxygen-fired CFB boilers--both retrofit and new Greenfield--as well as to provide a generic performance database for other researchers. At the conclusion of Phase 2, revised costs and performance will be estimated for both retrofit and new Greenfield design concepts with CO2 capture, purification, compression, and liquefaction.

  5. Wind Resource Assessment in Europe Using Emergy

    E-Print Network [OSTI]

    Paudel, Subodh; Santarelli, Massimo; Martin, Viktoria; Lacarriere, Bruno; Le Corre, Olivier

    2014-01-01T23:59:59.000Z

    mance characteristics of wind generator. The wind speed atcharacteristics of the wind generator. When wind speed is

  6. Ecological evaluation of proposed discharge of dredged material from Oakland Harbor into ocean waters (Phase 2 of -42-foot project)

    SciTech Connect (OSTI)

    Word, J.Q.; Ward, J.A.; Strand, J.A.; Kohn, N.P.; Squires, A.L. (Battelle Marine Research Lab., Sequim, WA (USA))

    1990-09-01T23:59:59.000Z

    The US Army Corps of Engineers (USACE), San Francisco District, was authorized by the Water Resources Development Act of 1986 to deepen and widen the navigation channels of Inner and Outer Oakland Harbor, California, to accommodate modern deep-draft vessels. The recommended plan consists of deepening the harbor channels from the presently authorized water depth of {minus}35 ft mean lower low water (MLLW) to {minus}42 ft MLLW and supplying the harbor with adequate turning basins and berthing areas. Offshore ocean disposal of the dredged sediment is being considered, provided there is no evident of harmful ecological effects. It harmful ecological effects are not evident then the appropriate certifications from state environmental quality agencies and concurrence from the Environmental Protection Agency can be obtained to allow disposal of sediment. To help provide the scientific basis for determining whether Oakland Harbor sediments are suitable for offshore disposal, the Battelle/Marine Sciences Laboratory (MSL) collected sediment cores from 23 stations in Inner and Outer Oakland Harbor, evaluated these sediment cores geologically, performed chemical analyses for selected contaminants in sediments, conducted a series of solid phase toxicity tests with four sensitive marine invertebrates and assessed the bioaccumulation potential of sediment-associated contaminants in the tissues of Macoma Nasuta. 43 refs., 26 figs., 61 tabs.

  7. Study of Pu consumption in light water reactors: Evaluation of GE advanced boiling water reactor plants, compilation of Phase 1C task reports

    SciTech Connect (OSTI)

    Not Available

    1994-01-15T23:59:59.000Z

    This report summarizes the evaluations conducted during Phase 1C of the Pu Disposition Study have provided further results which reinforce the conclusions reached during Phase 1A & 1B: These conclusions clearly establish the benefits of the fission option and the use of the ABWR as a reliable, proven, well-defined and cost-effective means available to disposition the weapons Pu. This project could be implemented in the near-term at a cost and on a schedule being validated by reactor plants currently under construction in Japan and by cost and schedule history and validated plans for MOX plants in Europe. Evaluations conducted during this phase have established that (1) the MOX fuel is licensable based on existing criteria for new fuel with limited lead fuel rod testing, (2) that the applicable requirements for transport, handling and repository storage can be met, and (3) that all the applicable safeguards criteria can be met.

  8. Advanced Coal Wind Hybrid: Economic Analysis

    E-Print Network [OSTI]

    Phadke, Amol

    2008-01-01T23:59:59.000Z

    Wind Generation2006. “ Integrating Wind Generation into Utility Systems”.Stand-Alone Wind Generation . 60

  9. Howard County- Wind Ordinance

    Broader source: Energy.gov [DOE]

    This ordinance sets up provisions for allowing small wind energy systems in various zoning districts.

  10. Testing Active Power Control from Wind Power at the National Wind Technology Center (NWTC) (Presentation)

    SciTech Connect (OSTI)

    Ela, E.

    2011-05-01T23:59:59.000Z

    In order to keep the electricity grid stable and the lights on, the power system relies on certain responses from its generating fleet. This presentation evaluates the potential for wind turbines and wind power plants to provide these services and assist the grid during critical times.

  11. Improved accuracy of the NPL-CsF2 primary frequency standard: evaluation of distributed cavity phase and microwave lensing frequency shifts

    E-Print Network [OSTI]

    Ruoxin Li; Kurt Gibble; Krzysztof Szymaniec

    2011-07-12T23:59:59.000Z

    We evaluate the distributed cavity phase and microwave lensing frequency shifts, which were the two largest sources of uncertainty for the NPL-CsF2 cesium fountain clock. We report measurements that confirm a detailed theoretical model of the microwave cavity fields and the frequency shifts of the clock that they produce. The model and measurements significantly reduce the distributed cavity phase uncertainty to $1.1 \\times 10^{-16}$. We derive the microwave lensing frequency shift for a cylindrical cavity with circular apertures. An analytic result with reasonable approximations is given, in addition to a full calculation that indicates a shift of $6.2 \\times 10^{-17}$. The measurements and theoretical models we report, along with improved evaluations of collisional and microwave leakage induced frequency shifts, reduce the frequency uncertainty of the NPL-CsF2 standard to $2.3 \\times 10^{-16}$, nearly a factor of two lower than its most recent complete evaluation.

  12. Wind energy offers considerable promise; the wind itself is free,

    E-Print Network [OSTI]

    Langendoen, Koen

    Wind energy offers considerable promise; the wind itself is free, wind power is clean. One of these sources, wind energy, offers considerable promise; the wind itself is free, wind power is clean, and it is virtually inexhaustible. In recent years, research on wind energy has accelerated

  13. Estimation of Wind Speed in Connection to a Wind Turbine

    E-Print Network [OSTI]

    Estimation of Wind Speed in Connection to a Wind Turbine X. Ma #3; , N. K. Poulsen #3; , H. Bindner y December 20, 1995 Abstract The wind speed varies over the rotor plane of wind turbine making the wind speed on the rotor plane will be estimated by using a wind turbine as a wind measuring device

  14. Environmental impact for offshore wind farms: Geolocalized Life Cycle Assessment (LCA) approach

    E-Print Network [OSTI]

    Boyer, Edmond

    Environmental impact for offshore wind farms: Geolocalized Life Cycle Assessment (LCA) approach and floating offshore wind farms. This work was undertaken within the EU- sponsored EnerGEO project, aiming, and its use for the evaluation of environmental impacts of wind energy. The effects of offshore wind farms

  15. Wind Power Outlook 2004

    SciTech Connect (OSTI)

    anon.

    2004-01-01T23:59:59.000Z

    The brochure, expected to be updated annually, provides the American Wind Energy Association's (AWAE's) up-to-date assessment of the wind industry. It provides a summary of the state of wind power in the U.S., including the challenges and opportunities facing the industry. It provides summary information on the growth of the industry, policy-related factors such as the federal wind energy production tax credit status, comparisons with natural gas, and public views on wind energy.

  16. Analyzing the Effects of Temporal Wind Patterns on the Value of Wind-Generated Electricity at Different Sites in California and the Northwest

    E-Print Network [OSTI]

    Fripp, Matthias; Wiser, Ryan

    2006-01-01T23:59:59.000Z

    Cost Analysis, Phase 1. CWEC-2003-06. Davis, California: California Windanalysis of the effect of wind timing and variability on the system integration costs

  17. Collegiate Wind Competition Engages Tomorrow's Wind Energy Innovators...

    Office of Environmental Management (EM)

    Engages Tomorrow's Wind Energy Innovators Collegiate Wind Competition Engages Tomorrow's Wind Energy Innovators January 6, 2014 - 10:00am Addthis 2014 Collegiate Teams Boise State...

  18. 20% Wind Energy by 2030: Increasing Wind Energy's Contribution...

    Energy Savers [EERE]

    : Increasing Wind Energy's Contribution to U.S. Electricity Supply (Executive Summary) 20% Wind Energy by 2030: Increasing Wind Energy's Contribution to U.S. Electricity Supply...

  19. National Wind Technology Center (Fact Sheet), National Wind Technology...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    NATIONAL WIND TECHNOLOGY CENTER www.nrel.govwind Wind energy is one of the fastest growing electricity generation sources in the world. NREL's National Wind Technology Center...

  20. Sinomatech Wind Power Blade aka Sinoma Science Technology Wind...

    Open Energy Info (EERE)

    Sinomatech Wind Power Blade aka Sinoma Science Technology Wind Turbine Blade Co Ltd Jump to: navigation, search Name: Sinomatech Wind Power Blade (aka Sinoma Science & Technology...

  1. 20% Wind Energy by 2030: Increasing Wind Energy's Contribution...

    Office of Environmental Management (EM)

    a new vision for wind energy through 2050. Taking into account all facets of wind energy (land-based, offshore, distributed), the new Wind Vision Report defines the...

  2. IEA Wind Task 26: The Past and Future Cost of Wind Energy, Work Package 2

    SciTech Connect (OSTI)

    Lantz, E.; Wiser, R.; Hand, M.

    2012-05-01T23:59:59.000Z

    Over the past 30 years, wind power has become a mainstream source of electricity generation around the world. However, the future of wind power will depend a great deal on the ability of the industry to continue to achieve cost of energy reductions. In this summary report, developed as part of the International Energy Agency Wind Implementing Agreement Task 26, titled 'The Cost of Wind Energy,' we provide a review of historical costs, evaluate near-term market trends, review the methods used to estimate long-term cost trajectories, and summarize the range of costs projected for onshore wind energy across an array of forward-looking studies and scenarios. We also highlight the influence of high-level market variables on both past and future wind energy costs.

  3. Tribal Wind Assessment by the Eastern Shoshone Tribe of the Wind River Reservation

    SciTech Connect (OSTI)

    Pete, Belvin; Perry, Jeremy W.; Stump, Raphaella Q.

    2009-08-28T23:59:59.000Z

    The Tribes, through its consultant and advisor, Distributed Generation Systems (Disgen) -Native American Program and Resources Division, of Lakewood CO, assessed and qualified, from a resource and economic perspective, a wind energy generation facility on tribal lands. The goal of this feasibility project is to provide wind monitoring and to engage in preproject planning activities designed to provide a preliminary evaluation of the technical, economic, social and environmental feasibility of developing a sustainable, integrated wind energy plan for the Eastern Shoshone and the Northern Arapahoe Tribes, who resides on the Wind River Indian Reservation. The specific deliverables of the feasibility study are: 1) Assessments of the wind resources on the Wind River Indian Reservation 2) Assessments of the potential environmental impacts of renewable development 3) Assessments of the transmission capacity and capability of a renewable energy project 4) Established an economic models for tribal considerations 5) Define economic, cultural and societal impacts on the Tribe

  4. Sandia Energy - Sandia Wind Turbine Loads Database

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Sandia Wind Turbine Loads Database Home Stationary Power Energy Conversion Efficiency Wind Energy Resources Wind Software Downloads Sandia Wind Turbine Loads Database Sandia Wind...

  5. Wind Powering America: A Key Influence on U.S. Wind Market (Fact Sheet)

    SciTech Connect (OSTI)

    O'Dell, K.

    2013-09-01T23:59:59.000Z

    This fact sheet summarizes an evaluation of the effectiveness of the Wind Powering America initiative conducted by an independent consultant funded by the U.S. Department of Energy.

  6. Danehy Park Wind Turbine Project Preliminary Assessment Report

    E-Print Network [OSTI]

    Danehy Park Wind Turbine Project Preliminary Assessment Report Danehy Park Project Group Wind turbine. Katherine Dykes and Sungho Lee for their leadership, guidance, and feedback. #12;1 Introduction sensors were mounted is marked with a yellow star. #12;2 Turbine Evaluation Set This report evaluates

  7. DOE/NREL Advanced Wind Turbine Development Program

    SciTech Connect (OSTI)

    Butterfield, C.P.; Smith, B.; Laxson, A.; Thresher, B. [National Renewable Energy Lab., Golden, CO (United States)] [National Renewable Energy Lab., Golden, CO (United States); Goldman, P. [USDOE Assistant Secretary for Conservation and Renewable Energy, Washington, DC (United States). Wind/Hydro/Ocean Technologies Div.] [USDOE Assistant Secretary for Conservation and Renewable Energy, Washington, DC (United States). Wind/Hydro/Ocean Technologies Div.

    1993-05-01T23:59:59.000Z

    The development of technologically advanced, high-efficiency wind turbines continues to be a high-priority activity of the US wind industry. The National Renewable Energy Laboratory (formerly the Solar Energy Research Institute), sponsored by the US Department of Energy (DOE), has initiated the Advanced Wind Turbine Program to assist the wind industry in the development of a new class of advanced wind turbines. The initial phase of the program focused on developing conceptual designs for near-term and advanced turbines. The goal of the second phase of this program is to use the experience gained over the last decade of turbine design and operation combined with the latest existing design tools to develop a turbine that will produce energy at $0.05 per kilowatt-hour (kWh) in a 5.8-m/s (13-mph) wind site. Three contracts have been awarded, and two more are under negotiation in the second phase. The third phase of the program will use new innovations and state-of-the-art wind turbine design technology to produce a turbine that will generate energy at $0.04/kWh in a 5.8-m/s wind site. Details of the third phase will be announced in early 1993.

  8. Sandia National Laboratories: Wind Power

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Wind Energy Staff On March 24, 2011, in Wind Energy On November 10, 2010, in Wind Plant Opt. Rotor Innovation Materials, Reliability & Standards Siting & Barrier Mitigation...

  9. 2009 Wind Technologies Market Report

    E-Print Network [OSTI]

    Wiser, Ryan

    2010-01-01T23:59:59.000Z

    the Impact of Significant Wind Generation Facilities on BulkOperations Impacts of Wind Generation Integration Study.Impacts of Integrating Wind Generation into Idaho Power's

  10. 2011 Wind Technologies Market Report

    E-Print Network [OSTI]

    Bolinger, Mark

    2013-01-01T23:59:59.000Z

    Operations Impacts of Wind Generation Integration Study.Impacts of Integrating Wind Generation into Idaho Power's2008. Analysis of Wind Generation Impact on ERCOT Ancillary

  11. 2008 WIND TECHNOLOGIES MARKET REPORT

    E-Print Network [OSTI]

    Bolinger, Mark

    2010-01-01T23:59:59.000Z

    the Impact of Significant Wind Generation Facilities on BulkOperations Impacts of Wind Generation Integration Study.Impacts of Integrating Wind Generation into Idaho Power's

  12. 2010 Wind Technologies Market Report

    E-Print Network [OSTI]

    Wiser, Ryan

    2012-01-01T23:59:59.000Z

    Operations Impacts of Wind Generation Integration Study.Impacts of Integrating Wind Generation into Idaho Power'sthe Impact of Significant Wind Generation Facilities on Bulk

  13. WIND DATA REPORT Presque Isle

    E-Print Network [OSTI]

    Massachusetts at Amherst, University of

    WIND DATA REPORT Presque Isle June 1, 2005 ­ August 31, 2005 Prepared for United States Department...................................................................................................................... 9 Wind Speed Time Series............................................................................................................. 9 Wind Speed Distributions

  14. WIND DATA REPORT Presque Isle

    E-Print Network [OSTI]

    Massachusetts at Amherst, University of

    WIND DATA REPORT Presque Isle December 1, 2004 ­ February 28, 2005 Prepared for United States.................................................................................................................... 10 Wind Speed Time Series........................................................................................................... 10 Wind Speed Distributions

  15. WIND DATA REPORT Presque Isle

    E-Print Network [OSTI]

    Massachusetts at Amherst, University of

    WIND DATA REPORT Presque Isle December 1, 2004 ­ December 1, 2005 Prepared for United States ......................................................................................................... 9 Wind Speed Time Series........................................................................................................... 10 Wind Speed Distributions

  16. WIND DATA REPORT Thompson Island

    E-Print Network [OSTI]

    Massachusetts at Amherst, University of

    WIND DATA REPORT Thompson Island June 1, 2003 ­ August 31, 2003 Prepared for Massachusetts...................................................................................................................... 9 Wind Speed Time Series............................................................................................................. 9 Wind Speed Distribution

  17. 2009 Wind Technologies Market Report

    E-Print Network [OSTI]

    Wiser, Ryan

    2010-01-01T23:59:59.000Z

    Prepared for the Utility Wind Integration Group. Arlington,Consult. 2010. International Wind Energy Development: WorldUBS Global I/O: Global Wind Sector. UBS Investment Research.

  18. WIND DATA REPORT Thompson Island

    E-Print Network [OSTI]

    Massachusetts at Amherst, University of

    WIND DATA REPORT Thompson Island December 1, 2003 ­ February 29, 2004 Prepared for Massachusetts.................................................................................................................... 11 Wind Speed Time Series........................................................................................................... 11 Wind Speed Distribution

  19. WIND DATA REPORT Presque Isle

    E-Print Network [OSTI]

    Massachusetts at Amherst, University of

    WIND DATA REPORT Presque Isle March 1, 2005 ­ May 31, 2005 Prepared for United States Department.................................................................................................................... 10 Wind Speed Time Series........................................................................................................... 10 Wind Speed Distributions

  20. WIND DATA REPORT Thompson Island

    E-Print Network [OSTI]

    Massachusetts at Amherst, University of

    WIND DATA REPORT Thompson Island March 1, 2003 ­ May 31, 2003 Prepared for Massachusetts Technology...................................................................................................................... 9 Wind Speed Time Series............................................................................................................. 9 Wind Speed Distributions

  1. WIND DATA REPORT FALMOUTH, MA

    E-Print Network [OSTI]

    Massachusetts at Amherst, University of

    WIND DATA REPORT FALMOUTH, MA June1, 2004 to August 31, 2004. Prepared for Massachusetts Technology...................................................................................................................... 8 Wind Speed Time Series............................................................................................................. 8 Wind Speed Distributions

  2. WIND DATA REPORT Thompson Island

    E-Print Network [OSTI]

    Massachusetts at Amherst, University of

    WIND DATA REPORT Thompson Island September 1, 2003 ­ November 30, 2003 Prepared for Massachusetts...................................................................................................................... 9 Wind Speed Time Series............................................................................................................. 9 Wind Speed Distribution

  3. WIND DATA REPORT Thompson Island

    E-Print Network [OSTI]

    Massachusetts at Amherst, University of

    WIND DATA REPORT Thompson Island March 1, 2004 ­ May 31, 2004 Prepared for Massachusetts Technology...................................................................................................................... 9 Wind Speed Time Series............................................................................................................. 9 Wind Speed Distribution

  4. 2008 WIND TECHNOLOGIES MARKET REPORT

    E-Print Network [OSTI]

    Bolinger, Mark

    2010-01-01T23:59:59.000Z

    2008. Washington, DC: American Wind Energy Association.American Wind Energy Association ( AWEA).2009b. AWEA Small Wind Turbine Global Market Study: Year

  5. WIND DATA REPORT Thompson Island

    E-Print Network [OSTI]

    Massachusetts at Amherst, University of

    WIND DATA REPORT Thompson Island June 1, 2004 ­ August 31, 2004 Prepared for Massachusetts...................................................................................................................... 9 Wind Speed Time Series............................................................................................................. 9 Wind Speed Distribution

  6. 2008 WIND TECHNOLOGIES MARKET REPORT

    E-Print Network [OSTI]

    Bolinger, Mark

    2010-01-01T23:59:59.000Z

    Table 8 Figure 30. Wind Integration Costs at Various LevelsOperations and Maintenance Costs Wind project operations andPublic Service Wind Integration Cost Impact Study. Prepared

  7. 2011 Wind Technologies Market Report

    E-Print Network [OSTI]

    Bolinger, Mark

    2013-01-01T23:59:59.000Z

    wind turbine components (specifically, generators, bladeschangers. ” Wind turbine components such as blades, towers,Canada (8%). Wind turbine component exports (towers, blades,

  8. 2012 Wind Technologies Market Report

    E-Print Network [OSTI]

    Wiser, Ryan

    2014-01-01T23:59:59.000Z

    with the section on offshore wind; Donna Heimiller and Billyof 2012, global cumulative offshore wind capacity stood ats (DOE’s) investments in offshore wind energy research and

  9. 2011 Wind Technologies Market Report

    E-Print Network [OSTI]

    Bolinger, Mark

    2013-01-01T23:59:59.000Z

    charging wind power projects for balancing services. 81 BPA,in balancing reserves with increased wind power penetrationin balancing reserves with increased wind power penetration

  10. 2010 Wind Technologies Market Report

    E-Print Network [OSTI]

    Wiser, Ryan

    2012-01-01T23:59:59.000Z

    charging wind power projects for balancing services. 88 BPA,in balancing reserves with increased wind power penetrationin balancing reserves with increased wind power penetration

  11. 2012 Wind Technologies Market Report

    E-Print Network [OSTI]

    Wiser, Ryan

    2014-01-01T23:59:59.000Z

    Xcel Energy. 2011. Wind Induced Coal Plant Cyclingand the Implications of Wind Curtailment for Public Serviceof Colorado 2 GW and 3 GW Wind Integration Cost Study.

  12. Wind Farms in North America

    E-Print Network [OSTI]

    Hoen, Ben

    2014-01-01T23:59:59.000Z

    Opinion About Large Offshore Wind Power: Underlying Factors.Delaware Opinion on Offshore Wind Power - Interim Report.Newark, DE. 16 pages. Global Wind Energy Council (GWEC) (

  13. 2010 Wind Technologies Market Report

    E-Print Network [OSTI]

    Wiser, Ryan

    2012-01-01T23:59:59.000Z

    2011. In March 2011, NRG Bluewater Wind?s Delaware projectPurchaser Delmarva NRG Bluewater Wind (Delaware) Universitythe project, while NRG Bluewater would retain the remaining

  14. 2011 Wind Technologies Market Report

    E-Print Network [OSTI]

    Bolinger, Mark

    2013-01-01T23:59:59.000Z

    natural gas prices), pushed wind energy to the top of (andperformance, and price of wind energy, policy uncertainty –cost, performance, and price of wind energy, some of these

  15. WIND DATA REPORT Thompson Island

    E-Print Network [OSTI]

    Massachusetts at Amherst, University of

    WIND DATA REPORT Thompson Island December 1, 2004 ­ February 28, 2005 Prepared for Massachusetts.................................................................................................................... 10 Wind Speed Time Series........................................................................................................... 10 Wind Speed Distribution

  16. WIND DATA REPORT DARTMOUTH, MA

    E-Print Network [OSTI]

    Massachusetts at Amherst, University of

    WIND DATA REPORT DARTMOUTH, MA March 26th 2005 to May 31st 2005. Prepared for Massachusetts...................................................................................................................... 9 Wind Speed Time Series............................................................................................................. 9 Wind Speed Distributions

  17. WIND DATA REPORT FALMOUTH, MA

    E-Print Network [OSTI]

    Massachusetts at Amherst, University of

    WIND DATA REPORT FALMOUTH, MA June 1st 2004- May 31st 2005 Prepared for Massachusetts Technology.................................................................................................................... 10 Wind Speed Distributions......................................................................................................... 11 Monthly Average Wind Speeds

  18. WIND DATA REPORT Kingston, MA

    E-Print Network [OSTI]

    Massachusetts at Amherst, University of

    WIND DATA REPORT Kingston, MA March 1, 2006 - May 31, 2006 Prepared for Massachusetts Technology.................................................................................................................... 10 Wind Speed Time Series........................................................................................................... 11 Wind Speed Distributions.......

  19. WIND DATA REPORT Nantucket, MA

    E-Print Network [OSTI]

    Massachusetts at Amherst, University of

    WIND DATA REPORT Nantucket, MA September 1st 2005 to November 30th 2005. Prepared for Massachusetts.................................................................................................................... 10 Wind Speed Time Series........................................................................................................... 10 Wind Speed Distributions

  20. WIND DATA REPORT Wellfleet, MA

    E-Print Network [OSTI]

    Massachusetts at Amherst, University of

    WIND DATA REPORT Wellfleet, MA December 1st , 2006 ­ February 28th , 2007 Prepared...................................................................................................................... 8 Wind Speed Time Series............................................................................................................. 9 Wind Speed Distributions

  1. WIND DATA REPORT Nantucket, MA

    E-Print Network [OSTI]

    Massachusetts at Amherst, University of

    WIND DATA REPORT Nantucket, MA June 1st 2006 to August 31th 2006 Prepared for Massachusetts.................................................................................................................... 11 Wind Speed Time Series........................................................................................................... 11 Wind Speed D

  2. WIND DATA REPORT Truro, Massachusetts

    E-Print Network [OSTI]

    Massachusetts at Amherst, University of

    WIND DATA REPORT Truro, Massachusetts March 24th to May 31st , 2006 Prepared for Massachusetts.................................................................................................................... 11 Wind Speed Time Series........................................................................................................... 11 Wind Speed Distributions

  3. WIND DATA REPORT Chester, MA

    E-Print Network [OSTI]

    Massachusetts at Amherst, University of

    WIND DATA REPORT Chester, MA December 2006 ­ February 2007 Prepared for Massachusetts Technology...................................................................................................................... 9 Wind Speed Time Series........................................................................................................... 10 Wind Speed Distributions

  4. WIND DATA REPORT Brewster, Massachusetts

    E-Print Network [OSTI]

    Massachusetts at Amherst, University of

    WIND DATA REPORT Brewster, Massachusetts December 1, 2005 - February 28, 2006 Prepared.................................................................................................................... 11 Wind Speed Time Series........................................................................................................... 12 Wind Speed Di

  5. WIND DATA REPORT Truro, Massachusetts

    E-Print Network [OSTI]

    Massachusetts at Amherst, University of

    WIND DATA REPORT Truro, Massachusetts December, 2006 1st to February 28th , 2007 Prepared...................................................................................................................... 9 Wind Speed Time Series........................................................................................................... 10 Wind Speed Distributions

  6. WIND DATA REPORT Brewster, Massachusetts

    E-Print Network [OSTI]

    Massachusetts at Amherst, University of

    WIND DATA REPORT Brewster, Massachusetts June 1, 2006 - August 31, 2006 Prepared for Massachusetts.................................................................................................................... 11 Wind Speed Time Series........................................................................................................... 11 Wind Speed Di

  7. WIND DATA REPORT Chester, MA

    E-Print Network [OSTI]

    Massachusetts at Amherst, University of

    WIND DATA REPORT Chester, MA March 2007 ­ May 2007 Prepared for Massachusetts Technology...................................................................................................................... 8 Wind Speed Time Series........................................................................................................... 10 Wind Speed Distributions

  8. WIND DATA REPORT Chester, MA

    E-Print Network [OSTI]

    Massachusetts at Amherst, University of

    WIND DATA REPORT Chester, MA September ­ November 2006 Prepared for Massachusetts Technology.................................................................................................................... 10 Wind Speed Time Series........................................................................................................... 11 Wind Speed Distributions

  9. WIND DATA REPORT DARTMOUTH, MA

    E-Print Network [OSTI]

    Massachusetts at Amherst, University of

    WIND DATA REPORT DARTMOUTH, MA September 1st 2005 to November 30th 2005. Prepared for Massachusetts.................................................................................................................... 10 Wind Speed Time Series........................................................................................................... 10 Wind Speed Distributions

  10. WIND DATA REPORT Kingston, MA

    E-Print Network [OSTI]

    Massachusetts at Amherst, University of

    WIND DATA REPORT Kingston, MA December 1, 2005 - February 28, 2006 Prepared for Massachusetts.................................................................................................................... 10 Wind Speed Time Series........................................................................................................... 11 Wind Speed Distribution

  11. WIND DATA REPORT Brewster, Massachusetts

    E-Print Network [OSTI]

    Massachusetts at Amherst, University of

    WIND DATA REPORT Brewster, Massachusetts September 1, 2006 - November 30, 2006 Prepared.................................................................................................................... 11 Wind Speed Time Series........................................................................................................... 11 Wind Speed Distributions..................

  12. WIND DATA REPORT Nantucket, MA

    E-Print Network [OSTI]

    Massachusetts at Amherst, University of

    WIND DATA REPORT Nantucket, MA December 1st 2005 to February 28th 2006 Prepared for Massachusetts.................................................................................................................... 11 Wind Speed Time Series........................................................................................................... 11 Wind Speed Distributions

  13. WIND DATA REPORT Gardner NCCI

    E-Print Network [OSTI]

    Massachusetts at Amherst, University of

    WIND DATA REPORT Gardner NCCI March 1, 2007 ­ May 31, 2007 Prepared for Massachusetts Technology...................................................................................................................... 8 Wind Speed Time Series............................................................................................................. 9 Wind Speed Distributions

  14. WIND DATA REPORT FALMOUTH, MA

    E-Print Network [OSTI]

    Massachusetts at Amherst, University of

    WIND DATA REPORT FALMOUTH, MA Sep 1st 2004 to Nov 30th 2004. Prepared for Massachusetts Technology...................................................................................................................... 9 Wind Speed Time Series............................................................................................................. 9 Wind Speed Distributions

  15. WIND DATA REPORT Chester, MA

    E-Print Network [OSTI]

    Massachusetts at Amherst, University of

    WIND DATA REPORT Chester, MA June ­ August 2006 Prepared for Massachusetts Technology Collaborative.................................................................................................................... 10 Wind Speed Time Series........................................................................................................... 11 Wind Speed Distributions

  16. WIND DATA REPORT September 2005

    E-Print Network [OSTI]

    Massachusetts at Amherst, University of

    WIND DATA REPORT Lynn, MA September 2005 Prepared for Massachusetts Technology Collaborative 75.................................................................................................................... 11 Wind Speed Time Series........................................................................................................... 11 Monthly Average Wind Speeds

  17. WIND DATA REPORT Nantucket, MA

    E-Print Network [OSTI]

    Massachusetts at Amherst, University of

    WIND DATA REPORT Nantucket, MA June 1st 2005 to August 31st 2005. Prepared for Massachusetts.................................................................................................................... 10 Wind Speed Time Series........................................................................................................... 10 Wind Speed Distributions

  18. WIND DATA REPORT Truro, Massachusetts

    E-Print Network [OSTI]

    Massachusetts at Amherst, University of

    WIND DATA REPORT Truro, Massachusetts September 1st to November 30th , 2006 Prepared.................................................................................................................... 11 Wind Speed Time Series........................................................................................................... 11 Wind Speed Distributions

  19. WIND DATA REPORT Truro, Massachusetts

    E-Print Network [OSTI]

    Massachusetts at Amherst, University of

    WIND DATA REPORT Truro, Massachusetts June 1st to August 31st , 2006 Prepared for Massachusetts.................................................................................................................... 11 Wind Speed Time Series........................................................................................................... 11 Wind Speed Distributions

  20. WIND DATA REPORT DARTMOUTH, MA

    E-Print Network [OSTI]

    Massachusetts at Amherst, University of

    WIND DATA REPORT DARTMOUTH, MA June 1st 2005 to August 31st 2005. Prepared for Massachusetts.................................................................................................................... 10 Wind Speed Time Series........................................................................................................... 10 Wind Speed Distributions

  1. WIND DATA REPORT Brewster, Massachusetts

    E-Print Network [OSTI]

    Massachusetts at Amherst, University of

    WIND DATA REPORT Brewster, Massachusetts March 1, 2006 - May 31, 2006 Prepared for Massachusetts.................................................................................................................... 11 Wind Speed Time Series........................................................................................................... 11 Wind Speed Distributi

  2. WIND DATA REPORT Thompson Island

    E-Print Network [OSTI]

    Massachusetts at Amherst, University of

    WIND DATA REPORT Thompson Island September 1, 2004 ­ November 30, 2004 Prepared for Massachusetts.................................................................................................................... 11 Wind Speed Time Series........................................................................................................... 11 Wind Speed Distribution.............

  3. WIND DATA REPORT DARTMOUTH, MA

    E-Print Network [OSTI]

    Massachusetts at Amherst, University of

    WIND DATA REPORT DARTMOUTH, MA December 1st 2005 to February 28th 2006. Prepared for Massachusetts.................................................................................................................... 11 Wind Speed Time Series........................................................................................................... 11 Wind Speed Distributions

  4. WIND DATA REPORT Dartmouth, MA

    E-Print Network [OSTI]

    Massachusetts at Amherst, University of

    WIND DATA REPORT Dartmouth, MA March 1st 2006 to May 31th 2006 Prepared for Massachusetts.................................................................................................................... 11 Wind Speed Time Series........................................................................................................... 11 Wind Speed Distributions

  5. WIND DATA REPORT Wellfleet, MA

    E-Print Network [OSTI]

    Massachusetts at Amherst, University of

    WIND DATA REPORT Wellfleet, MA March 1st , 2007 ­ May 31st , 2007 Prepared for Massachusetts...................................................................................................................... 8 Wind Speed Time Series............................................................................................................. 9 Wind Speed Distributions

  6. WIND DATA REPORT Gardner NCCI

    E-Print Network [OSTI]

    Massachusetts at Amherst, University of

    WIND DATA REPORT Gardner NCCI September 1, 2007 ­ November 30, 2007 Prepared for Massachusetts...................................................................................................................... 8 Wind Speed Time Series............................................................................................................. 9 Wind Speed Distributions

  7. WIND DATA REPORT Thompson Island

    E-Print Network [OSTI]

    Massachusetts at Amherst, University of

    WIND DATA REPORT Thompson Island March 1, 2005 ­ May 31, 2005 Prepared for Massachusetts Technology.................................................................................................................... 10 Wind Speed Time Series........................................................................................................... 10 Wind Speed Distribution

  8. WIND DATA REPORT Chester, MA

    E-Print Network [OSTI]

    Massachusetts at Amherst, University of

    WIND DATA REPORT Chester, MA April 14 ­ May 31, 2006 Prepared for Massachusetts Technology.................................................................................................................... 10 Wind Speed Time Series........................................................................................................... 11 Wind Speed Distributions

  9. WIND DATA REPORT FALMOUTH, MA

    E-Print Network [OSTI]

    Massachusetts at Amherst, University of

    WIND DATA REPORT FALMOUTH, MA Dec 1st 2004 to Feb 28th 2005. Prepared for Massachusetts Technology ...................................................................................................................... 9 Wind Speed Time Series............................................................................................................. 9 Wind Speed Distributions

  10. WIND DATA REPORT FALMOUTH, MA

    E-Print Network [OSTI]

    Massachusetts at Amherst, University of

    WIND DATA REPORT FALMOUTH, MA March 1st 2005 to May 31st 2005. Prepared for Massachusetts...................................................................................................................... 9 Wind Speed Time Series............................................................................................................. 9 Wind Speed Distributions

  11. WIND DATA REPORT Dartmouth, MA

    E-Print Network [OSTI]

    Massachusetts at Amherst, University of

    WIND DATA REPORT Dartmouth, MA June 1st 2006 to July 31th 2006 Prepared for Massachusetts.................................................................................................................... 11 Wind Speed Time Series........................................................................................................... 11 Wind Speed Distributions

  12. WIND DATA REPORT Gardner NCCI

    E-Print Network [OSTI]

    Massachusetts at Amherst, University of

    WIND DATA REPORT Gardner NCCI June 1, 2007 ­ August 31, 2007 Prepared for Massachusetts Technology...................................................................................................................... 8 Wind Speed Time Series............................................................................................................. 9 Wind Speed Distributions

  13. 2011 Wind Technologies Market Report

    E-Print Network [OSTI]

    Bolinger, Mark

    2013-01-01T23:59:59.000Z

    studies show that wind energy integration costs are below $do not represent wind energy generation costs. This sectioncomponent of the overall cost of wind energy, but can vary

  14. 2008 WIND TECHNOLOGIES MARKET REPORT

    E-Print Network [OSTI]

    Bolinger, Mark

    2010-01-01T23:59:59.000Z

    do not represent wind energy generation costs. Based on thisproduction-cost reduction value of wind energy, without anwith wind energy. Generally, these costs are associated with

  15. 2011 Wind Technologies Market Report

    E-Print Network [OSTI]

    Bolinger, Mark

    2013-01-01T23:59:59.000Z

    performance, and price of wind energy, policy uncertainty –The wind energy integration, transmission, and policyand absent supportive policies for wind energy. That said,

  16. 2010 Wind Technologies Market Report

    E-Print Network [OSTI]

    Wiser, Ryan

    2012-01-01T23:59:59.000Z

    The wind energy integration, transmission, and policy2012, however, federal policy towards wind energy remainsin federal policy towards wind energy after 2012 places such

  17. 2009 Wind Technologies Market Report

    E-Print Network [OSTI]

    Wiser, Ryan

    2010-01-01T23:59:59.000Z

    The wind energy integration, transmission, and policyPTC. Moreover, federal policy towards wind energy remainsand policy announcements demonstrate accelerated activity in the offshore wind energy

  18. WIND DATA REPORT Nantucket, MA

    E-Print Network [OSTI]

    Massachusetts at Amherst, University of

    WIND DATA REPORT Nantucket, MA March 1st 2006 to May 31th 2006 Prepared for Massachusetts.................................................................................................................... 11 Wind Speed Time Series........................................................................................................... 11 Wind Speed Distribut

  19. 2010 Wind Technologies Market Report

    E-Print Network [OSTI]

    Wiser, Ryan

    2012-01-01T23:59:59.000Z

    Market Report vii potential wind energy generation withinthat nearly 8% of potential wind energy generation withinAreas, in GWh (and % of potential wind generation) Electric

  20. 2009 Wind Technologies Market Report

    E-Print Network [OSTI]

    Wiser, Ryan

    2010-01-01T23:59:59.000Z

    capacity), with 17% of all potential wind energy generationthat roughly 17% of potential wind energy generation withinexample, roughly 1% of potential wind energy output in 2009

  1. Q-Winds satellite hurricane wind retrievals and H*Wind comparisons

    E-Print Network [OSTI]

    Hennon, Christopher C.

    of the hurricane surface winds from NOAA and U.S. Air Force Weather Squadron aircraft flights. Further, results1 Q-Winds satellite hurricane wind retrievals and H*Wind comparisons Pet Laupattarakasem and W This paper presents a new hurricane ocean vector wind (OVW) product known as Q-Winds produced from the SeaWinds

  2. Evaluation of Mixed-Phase Cloud Parameterizations in Short-Range Weather Forecasts with CAM3 and AM2 for Mixed-Phase Arctic Cloud Experiment

    SciTech Connect (OSTI)

    Xie, S; Boyle, J; Klein, S; Liu, X; Ghan, S

    2007-06-01T23:59:59.000Z

    By making use of the in-situ data collected from the recent Atmospheric Radiation Measurement Mixed-Phase Arctic Cloud Experiment, we have tested the mixed-phase cloud parameterizations used in the two major U.S. climate models, the National Center for Atmospheric Research Community Atmosphere Model version 3 (CAM3) and the Geophysical Fluid Dynamics Laboratory climate model (AM2), under both the single-column modeling framework and the U.S. Department of Energy Climate Change Prediction Program-Atmospheric Radiation Measurement Parameterization Testbed. An improved and more physically based cloud microphysical scheme for CAM3 has been also tested. The single-column modeling tests were summarized in the second quarter 2007 Atmospheric Radiation Measurement metric report. In the current report, we document the performance of these microphysical schemes in short-range weather forecasts using the Climate Chagne Prediction Program Atmospheric Radiation Measurement Parameterizaiton Testbest strategy, in which we initialize CAM3 and AM2 with realistic atmospheric states from numerical weather prediction analyses for the period when Mixed-Phase Arctic Cloud Experiment was conducted.

  3. Evaluation of Production Cost Savings from Consolidation of Balancing Authorities in the US Western Interconnection under High Wind and Solar Penetration

    SciTech Connect (OSTI)

    Nguyen, Tony B.; Samaan, Nader A.; Jin, Chunlian

    2014-12-24T23:59:59.000Z

    This paper introduces a comprehensive analysis to quantify the potential savings in production cost due to consolidation of 32 US western interconnection Balancing Authorities (BAs). Three simulation scenarios are developed: current Western Electricity Coordinating Council (WECC) BAs structure, full copper-sheet consolidation, and full consolidation with transmission congestion considered. The study uses WECC Transmission Expansion Planning Policy Committee (TEPPC) model that was developed for the year 2020. The model assumes 8% wind and 3% solar energy penetration as percentage of total WECC demand in 2020. Sensitivity analyses are carried out to assess the impact of transmission hurdle rates between WECC BAs on potential benefits. The study shows savings that ranges from $400 Million (2.4% of total one year production cost) to $600 Million (3.2%) per year in thermal units production cost due to consolidation can be achieved. The copper sheet consolidation scenario shows an extra savings of $240 Million (1.4%) per year.

  4. Review of Wind Energy Forecasting Methods for Modeling Ramping Events

    SciTech Connect (OSTI)

    Wharton, S; Lundquist, J K; Marjanovic, N; Williams, J L; Rhodes, M; Chow, T K; Maxwell, R

    2011-03-28T23:59:59.000Z

    Tall onshore wind turbines, with hub heights between 80 m and 100 m, can extract large amounts of energy from the atmosphere since they generally encounter higher wind speeds, but they face challenges given the complexity of boundary layer flows. This complexity of the lowest layers of the atmosphere, where wind turbines reside, has made conventional modeling efforts less than ideal. To meet the nation's goal of increasing wind power into the U.S. electrical grid, the accuracy of wind power forecasts must be improved. In this report, the Lawrence Livermore National Laboratory, in collaboration with the University of Colorado at Boulder, University of California at Berkeley, and Colorado School of Mines, evaluates innovative approaches to forecasting sudden changes in wind speed or 'ramping events' at an onshore, multimegawatt wind farm. The forecast simulations are compared to observations of wind speed and direction from tall meteorological towers and a remote-sensing Sound Detection and Ranging (SODAR) instrument. Ramping events, i.e., sudden increases or decreases in wind speed and hence, power generated by a turbine, are especially problematic for wind farm operators. Sudden changes in wind speed or direction can lead to large power generation differences across a wind farm and are very difficult to predict with current forecasting tools. Here, we quantify the ability of three models, mesoscale WRF, WRF-LES, and PF.WRF, which vary in sophistication and required user expertise, to predict three ramping events at a North American wind farm.

  5. SERI Advanced and Innovative Wind-Energy-Concepts Program

    SciTech Connect (OSTI)

    Mitchell, R.L.; Jacobs, E.W.

    1983-06-01T23:59:59.000Z

    In 1978 the Solar Energy Research Institute (SERI) was given the responsibility of managing the Advanced and Innovative Wind Energy Concepts (AIWEC) Task by the US Department of Energy (DOE). The objective of this program has been to determine the technical and economic potential of advanced wind energy concepts. Assessment and R and D efforts in the AIWEC program have included theoretical performance analyses, wind tunnel testing, and/or costing studies. Concepts demonstrating sufficient potential undergo prototype testing in a Proof-of-Concept research phase. Several concepts, such as the Dynamic Inducer, the Diffuser Augmented wind Turbine, the Electrofluid Dynamic Wind-Driven Generator, the Passive Cyclic Pitch concept, and higher performance airfoil configurations for vertical axis wind turbines, have recently made significant progress. The latter has currently reached the Proof-of-Concept phase. The present paper provides an overview of the technical progress and current status of these concepts.

  6. Western Wind and Solar Integration Study (Fact Sheet)

    SciTech Connect (OSTI)

    Not Available

    2012-09-01T23:59:59.000Z

    Initiated in 2007 to examine the operational impact of up to 35% penetration of wind, photovoltaic (PV), and concentrating solar power (CSP) energy on the electric power system, the Western Wind and Solar Integration Study (WWSIS) is one of the largest regional wind and solar integration studies to date. The goal is to understand the effects of variability and uncertainty of wind, PV, and CSP on the grid. In the Western Wind and Solar Integration Study Phase 1, solar penetration was limited to 5%. Utility-scale PV was not included because of limited capability to model sub-hourly, utility-scale PV output . New techniques allow the Western Wind and Solar Integration Study Phase 2 to include high penetrations of solar - not only CSP and rooftop PV but also utility-scale PV plants.

  7. Wind Power Career Chat

    SciTech Connect (OSTI)

    Not Available

    2011-01-01T23:59:59.000Z

    This document will teach students about careers in the wind energy industry. Wind energy, both land-based and offshore, is expected to provide thousands of new jobs in the next several decades. Wind energy companies are growing rapidly to meet America's demand for clean, renewable, and domestic energy. These companies need skilled professionals. Wind power careers will require educated people from a variety of areas. Trained and qualified workers manufacture, construct, operate, and manage wind energy facilities. The nation will also need skilled researchers, scientists, and engineers to plan and develop the next generation of wind energy technologies.

  8. Wind energy information guide

    SciTech Connect (OSTI)

    NONE

    1996-04-01T23:59:59.000Z

    This book is divided into nine chapters. Chapters 1--8 provide background and annotated references on wind energy research, development, and commercialization. Chapter 9 lists additional sources of printed information and relevant organizations. Four indices provide alphabetical access to authors, organizations, computer models and design tools, and subjects. A list of abbreviations and acronyms is also included. Chapter topics include: introduction; economics of using wind energy; wind energy resources; wind turbine design, development, and testing; applications; environmental issues of wind power; institutional issues; and wind energy systems development.

  9. Wind power today

    SciTech Connect (OSTI)

    NONE

    1998-04-01T23:59:59.000Z

    This publication highlights initiatives of the US DOE`s Wind Energy Program. 1997 yearly activities are also very briefly summarized. The first article describes a 6-megawatt wind power plant installed in Vermont. Another article summarizes technical advances in wind turbine technology, and describes next-generation utility and small wind turbines in the planning stages. A village power project in Alaska using three 50-kilowatt turbines is described. Very brief summaries of the Federal Wind Energy Program and the National Wind Technology Center are also included in the publication.

  10. Hualapai Wind Project Feasibility Report

    SciTech Connect (OSTI)

    Davidson, Kevin [Hualapai Tribe] [Hualapai Tribe; Randall, Mark [Daystar Consulting] [Daystar Consulting; Isham, Tom [Power Engineers] [Power Engineers; Horna, Marion J [MJH Power Consulting LLC] [MJH Power Consulting LLC; Koronkiewicz, T [SWCA Environmental, Inc.] [SWCA Environmental, Inc.; Simon, Rich [V-Bar, LLC] [V-Bar, LLC; Matthew, Rojas [Squire Sanders Dempsey] [Squire Sanders Dempsey; MacCourt, Doug C. [Ater Wynne, LLP] [Ater Wynne, LLP; Burpo, Rob [First American Financial Advisors, Inc.] [First American Financial Advisors, Inc.

    2012-12-20T23:59:59.000Z

    The Hualapai Department of Planning and Economic Development, with funding assistance from the U.S. Department of Energy, Tribal Energy Program, with the aid of six consultants has completed the four key prerequisites as follows: 1. Identify the site area for development and its suitability for construction. 2. Determine the wind resource potential for the identified site area. 3. Determine the electrical transmission and interconnection feasibility to get the electrical power produced to the marketplace. 4. Complete an initial permitting and environmental assessment to determine the feasibility for getting the project permitted. Those studies indicated a suitable wind resource and favorable conditions for permitting and construction. The permitting and environmental study did not reveal any fatal flaws. A review of the best power sale opportunities indicate southern California has the highest potential for obtaining a PPA that may make the project viable. Based on these results, the recommendation is for the Hualapai Tribal Nation to move forward with attracting a qualified wind developer to work with the Tribe to move the project into the second phase - determining the reality factors for developing a wind project. a qualified developer will bid to a utility or negotiate a PPA to make the project viable for financing.

  11. EA-1726: Kahuku Wind Power, LLC Wind Power Generation Facility...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    6: Kahuku Wind Power, LLC Wind Power Generation Facility, O'ahu, HI EA-1726: Kahuku Wind Power, LLC Wind Power Generation Facility, O'ahu, HI May 3, 2010 EA-1726: Final...

  12. Performance Indicators of Wind Energy Production

    E-Print Network [OSTI]

    D'Amico, G; Prattico, F

    2015-01-01T23:59:59.000Z

    Modeling wind speed is one of the key element when dealing with the production of energy through wind turbines. A good model can be used for forecasting, site evaluation, turbines design and many other purposes. In this work we are interested in the analysis of the future financial cash flows generated by selling the electrical energy produced. We apply an indexed semi-Markov model of wind speed that has been shown, in previous investigation, to reproduce accurately the statistical behavior of wind speed. The model is applied to the evaluation of financial indicators like the Internal Rate of Return, semi-Elasticity and relative Convexity that are widely used for the assessment of the profitability of an investment and for the measurement and analysis of interest rate risk. We compare the computation of these indicators for real and synthetic data. Moreover, we propose a new indicator that can be used to compare the degree of utilization of different power plants.

  13. 2008 Wind Energy Projects, Wind Powering America (Poster)

    SciTech Connect (OSTI)

    Not Available

    2009-01-01T23:59:59.000Z

    The Wind Powering America program produces a poster at the end of every calendar year that depicts new U.S. wind energy projects. The 2008 poster includes the following projects: Stetson Wind Farm in Maine; Dutch Hill Wind Farm in New York; Grand Ridge Wind Energy Center in Illinois; Hooper Bay, Alaska; Forestburg, South Dakota; Elbow Creek Wind Project in Texas; Glacier Wind Farm in Montana; Wray, Colorado; Smoky Hills Wind Farm in Kansas; Forbes Park Wind Project in Massachusetts; Spanish Fork, Utah; Goodland Wind Farm in Indiana; and the Tatanka Wind Energy Project on the border of North Dakota and South Dakota.

  14. Wind Resource Assessment in Europe Using Emergy

    E-Print Network [OSTI]

    Paudel, Subodh; Martin, Viktoria; Lacarriere, Bruno; Corre, Olivier Le

    2015-01-01T23:59:59.000Z

    In context of increasing use of renewable sources, it is of importance to correctly evaluate the actual sustainability of their implementation. Emergy analysis is one of the possible methods useful for such an assessment. This work aims to demonstrate how the emergy approach can be used to assess the sustainability of wind energy resource in Europe. The Emergy Index of Sustainability (EIS) and the Emergy Yield Ratio (EYR) are used to analyze 90 stations of European regions for three types of wind turbines. To do so, the simplified Chou wind turbine model is used for different set of parameters as: nominal power and size of the wind turbines, and cut-in and cut-out wind speeds. Based on the calculation of the emergy indices, a mapping is proposed to identify the most appropriate locations for an implementation of wind turbines in European regions. The influence of the wind turbine type on the sustainability is also analyzed, in link with the local wind resource. Thus, it is concluded that the emergy sustainabi...

  15. High-solids black liquor firing in pulp and paper industry kraft recovery boilers. Quarterly report, Phase 1a: Black liquor gasifier evaluation

    SciTech Connect (OSTI)

    NONE

    1996-07-01T23:59:59.000Z

    This project phase addresses the following workscope: Conduct bench-scale tests of a low temperature, partial combustion gasifier; Prepare a gasifier pilot-plant preliminary design and cost estimate and prepare a budgetary cost estimate of the balance of the program; Outline a test program to evaluate gasification; Prepare an economic/market analysis of gasification and solicit pulp and paper industry support for subsequent phases; and Prepare a final report and conduct a project review prior to commencement of work leading to construction of any pilot scale components or facilities. The primary accomplishments included completion of installation of the bench-scale black liquor gasifier and supporting systems, preparing test plans and related safety procedures and detailed operating procedures, defining the functional design requirements and outlining the test plans for the pilot-scale gasifier, and preparing a preliminary economic assessment of the black liquor gasifier. This work accomplished under Phase 1a during this period is further described by task.

  16. Horizontal wind rotor. Final technical report

    SciTech Connect (OSTI)

    Guard, E.J.

    1983-06-30T23:59:59.000Z

    A vertical axis wind machine called, ''Horizontal Wind Rotor'' conceived in 1979 by the Grantee E.J. Guard was an effort to marry a new high tech carousel type wind rotor to a basic building design for the purpose of generating practical amounts of electricty. This was directed especially towards high performance power generation, relative to low average wind velocity fields, typically found in Florida. From January 1980 to April 1983 two 1/30 scale wind tunnel type test models of buildings, one round and one square were built. An eight Hartzell shrouded wind tunnel fan machine was designed and built to supply uniform wind velocities for testing. All components of the Horizontal Wind Rotor (HWR) were fabricated, instrumented, mounted on the building models, and tested and modified repeatedly for performance optimization. Aerodynamic consultants, model makers, mechanical and computer engineers and technicians under the direction of E. Guard all teamed up to evolve the size, shape, and placement of the system components. It was recognized early that the machine had to be large in order to extract energy from low wind velocities. It was also noted that there were so many variables in the system, so as to elude analytical computation, that only testing could provide the answers. Consequently, this grant program has provided major contributions to the sparse available data in this little studied field, and set up valuable bench marks in design and power output parameters. This data will be the foundation for incorporating the newly discovered design improvements into the full scale prototype to follow. (Phase II) It is believed that this Rotor design is the only one in the world today that will produce as much power in the lower wind velocity ranges and it is also believed that every objective of the original grant proposal has been met or exceeded.

  17. An evaluation of the neutron radiography facility at the Nuclear Science Center for dynamic imaging of two-phase hydrogenous fluids

    E-Print Network [OSTI]

    Carlisle, Bruce Scott

    1994-01-01T23:59:59.000Z

    AN EVAI. UATION OF THE NEUTRON RADIOGRAPHY FACILITY AT THE NUCLEAR SCIENCF- CENTER FOR DYNAMIC IMAGING OF TWO-PHASE HYDROGENOUS FLUIDS A Thesis By BRUCE SCOTT CARLlSLE Submitted to the Office of Graduate Studies of Texas Ag-M University... in partiat fulfillment of the requirements for the degree of MASTER OF SCPENCF. August 1994 Major Subject: Nuclear Engineering AN EVALUATION OF THE NEUTRON RADIOGRAPHY FACILITY AT THE NUCLEAR SCIENCE CENTFR FOR THE DYNAMIC IMAGING OF TWO...

  18. ANALYSIS OF THE PERFORMANCE AND COST EFFECTIVENESS OF NINE SMALL WIND ENERGY CONVERSION SYSTEMS FUNDED BY THE DOE SMALL GRANTS PROGRAM

    E-Print Network [OSTI]

    Kay, J.

    2009-01-01T23:59:59.000Z

    as a Because this wind private cost with which to evaluateAllow 1 percent of wind machine costs for O&M: The averagein turn will make wind machines cost effective for investors

  19. 2010 Wind Technologies Market Report

    E-Print Network [OSTI]

    Wiser, Ryan

    2012-01-01T23:59:59.000Z

    AWEA?s Wind Energy Weekly, DOE/EPRI?s Turbine Verification10% Wind Energy Penetration New large-scale 9 wind turbineswind energy continues to decline as a result of lower wind turbine

  20. 2011 Wind Technologies Market Report

    E-Print Network [OSTI]

    Bolinger, Mark

    2013-01-01T23:59:59.000Z

    AWEA’s Wind Energy Weekly, DOE/EPRI’s Turbine Verification10% Wind Energy Penetration New large-scale 8 wind turbinesTurbine Market Report. Washington, D.C. : American Wind Energy

  1. Sandia Energy - Wind Plant Optimization

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Wind Plant Optimization Home Stationary Power Energy Conversion Efficiency Wind Energy Wind Plant Optimization Wind Plant OptimizationTara Camacho-Lopez2015-05-29T21:33:21+00:00...

  2. Wind Wave Float

    Broader source: Energy.gov (indexed) [DOE]

    Water Power Peer Review WindWaveFloat Alla Weinstein Principle Power, Inc. aweinstein@principlepowerinc.com November 1, 2011 2 | Wind and Water Power Program eere.energy.gov...

  3. Wind Energy Act (Maine)

    Broader source: Energy.gov [DOE]

    The Maine Wind Energy Act is a summary of legislative findings that indicate the state's strong interest in promoting the development of wind energy and establish the state's desire to ease the...

  4. Residential Wind Power

    E-Print Network [OSTI]

    Willis, Gary

    2011-12-16T23:59:59.000Z

    This research study will explore the use of residential wind power and associated engineering and environmental issues. There is various wind power generating devices available to the consumer. The study will discuss the dependencies of human...

  5. Airplane and the wind

    E-Print Network [OSTI]

    Airplane and the wind. An airplane starts from the point A and flies to B. The speed of the airplane with respect to the air is v (constant). There is also a wind of

  6. See the Wind

    Broader source: Energy.gov (indexed) [DOE]

    See the Wind Grades: 5-8 , 9-12 Topic: Wind Energy Owner: Kidwind Project This educational material is brought to you by the U.S. Department of Energy's Office of Energy Efficiency...

  7. Wind JOC Conference - Wind Control Changes

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    1 Wind Control Changes JOC August 10, 2012 Presentation updated on July 30, 2012 at 11:00 AM B O N N E V I L L E P O W E R A D M I N I S T R A T I O N 2 Wind Control Changes B O N...

  8. WP2 IEA Wind Task 26:The Past and Future Cost of Wind Energy

    E-Print Network [OSTI]

    Lantz, Eric

    2014-01-01T23:59:59.000Z

    Prospects for Offshore Wind Farms. ” Wind Engineering, 28:Techniques for Offshore Wind Farms. ” Journal of Solar

  9. Kent County- Wind Ordinance

    Broader source: Energy.gov [DOE]

    This ordinance establishes provisions and standards for small wind energy systems in various zoning districts in Kent County, Maryland.

  10. Wind Webinar Text Version

    Broader source: Energy.gov [DOE]

    Download the text version of the audio from the DOE Office of Indian Energy webinar on wind renewable energy.

  11. Department of Mechanical and Nuclear Engineering Spring 2011 Wind Tunnel Automation Project

    E-Print Network [OSTI]

    Demirel, Melik C.

    PENNSTATE Department of Mechanical and Nuclear Engineering Spring 2011 Wind Tunnel Automation Project Phase II - Automated Bike Turret Mount Overview SYNERGE LLC is a consulting company working

  12. 2012 Wind Technologies Market Report

    E-Print Network [OSTI]

    Wiser, Ryan

    2014-01-01T23:59:59.000Z

    regulation and frequency response services charge to wind energyRegulation and Frequency Response Service rate for wind energy

  13. Wind Farms in North America

    E-Print Network [OSTI]

    Hoen, Ben

    2014-01-01T23:59:59.000Z

    Opinion About Large Offshore Wind Power: Underlying Factors.Delaware Opinion on Offshore Wind Power - Interim Report.

  14. 2010 Wind Technologies Market Report

    E-Print Network [OSTI]

    Wiser, Ryan

    2012-01-01T23:59:59.000Z

    space constraints. Ohio: The Lake Erie Energy DevelopmentGreat Lakes Ohio Wind, and Great Lakes Wind Energy LLC. In

  15. 2008 WIND TECHNOLOGIES MARKET REPORT

    E-Print Network [OSTI]

    Bolinger, Mark

    2010-01-01T23:59:59.000Z

    of larger balancing areas, the use of regional wind powerbalancing areas. The successful use of regional wind power

  16. 2009 Wind Technologies Market Report

    E-Print Network [OSTI]

    Wiser, Ryan

    2010-01-01T23:59:59.000Z

    directly charging wind power projects for balancing servicesin smaller balancing areas. The successful use of wind power

  17. Hawaii Utility Integration Initiatives to Enable Wind (Wind HUI) Final Technical Report

    SciTech Connect (OSTI)

    Dora Nakafuji; Lisa Dangelmaier; Chris Reynolds

    2012-07-15T23:59:59.000Z

    To advance the state and nation toward clean energy, Hawaii is pursuing an aggressive Renewable Portfolio Standard (RPS), 40% renewable generation and 30% energy efficiency and transportation initiatives by 2030. Additionally, with support from federal, state and industry leadership, the Hawaii Clean Energy Initiative (HCEI) is focused on reducing Hawaii's carbon footprint and global warming impacts. To keep pace with the policy momentum and changing industry technologies, the Hawaiian Electric Companies are proactively pursuing a number of potential system upgrade initiatives to better manage variable resources like wind, solar and demand-side and distributed generation alternatives (i.e. DSM, DG). As variable technologies will continue to play a significant role in powering the future grid, practical strategies for utility integration are needed. Hawaiian utilities are already contending with some of the highest penetrations of renewables in the nation in both large-scale and distributed technologies. With island grids supporting a diverse renewable generation portfolio at penetration levels surpassing 40%, the Hawaiian utilities experiences can offer unique perspective on practical integration strategies. Efforts pursued in this industry and federal collaborative project tackled challenging issues facing the electric power industry around the world. Based on interactions with a number of western utilities and building on decades of national and international renewable integration experiences, three priority initiatives were targeted by Hawaiian utilities to accelerate integration and management of variable renewables for the islands. The three initiatives included: Initiative 1: Enabling reliable, real-time wind forecasting for operations by improving short-term wind forecasting and ramp event modeling capabilities with local site, field monitoring; Initiative 2: Improving operators situational awareness to variable resources via real-time grid condition monitoring using PMU devices and enhanced grid analysis tools; and Initiative 3: Identifying grid automation and smart technology architecture retrofit/improvement opportunities following a systematic review approach, inclusive of increasing renewables and variable distributed generation. Each of the initiative was conducted in partnership with industry technology and equipment providers to facilitate utility deployment experiences inform decision making, assess supporting infrastructure cost considerations, showcase state of the technology, address integration hurdles with viable workarounds. For each initiative, a multi-phased approach was followed that included 1) investigative planning and review of existing state-of-the-art, 2) hands on deployment experiences and 3) process implementation considerations. Each phase of the approach allowed for mid-course corrections, process review and change to any equipment/devices to be used by the utilities. To help the island grids transform legacy infrastructure, the Wind HUI provided more systematic approaches and exposure with vendor/manufacturers, hand-on review and experience with the equipment not only from the initial planning stages but through to deployment and assessment of field performance of some of the new, remote sensing and high-resolution grid monitoring technologies. HELCO became one of the first utilities in the nation to install and operate a high resolution (WindNet) network of remote sensing devices such as radiometers and SODARs to enable a short-term ramp event forecasting capability. This utility-industry and federal government partnership produced new information on wind energy forecasting including new data additions to the NOAA MADIS database; addressed remote sensing technology performance and O&M (operations and maintenance) challenges; assessed legacy equipment compatibility issues and technology solutions; evaluated cyber-security concerns; and engaged in community outreach opportunities that will help guide Hawaii and the nation toward more reliable adoption of clean energy resources. Resu

  18. Wind Economic Development (Postcard)

    SciTech Connect (OSTI)

    Not Available

    2011-08-01T23:59:59.000Z

    The U.S. Department of Energy's Wind Powering America initiative provides information on the economic development benefits of wind energy. This postcard is a marketing piece that stakeholders can provide to interested parties; it will guide them to the economic development benefits section on the Wind Powering America website.

  19. Wind power outlook 2006

    SciTech Connect (OSTI)

    anon.

    2006-04-15T23:59:59.000Z

    This annual brochure provides the American Wind Energy Association's up-to-date assessment of the wind industry in the United States. This 2006 general assessment shows positive signs of growth, use and acceptance of wind energy as a vital component of the U.S. energy mix.

  20. Offshore Wind Geoff Sharples

    E-Print Network [OSTI]

    Kammen, Daniel M.

    Offshore Wind Geoff Sharples geoff@clearpathenergyllc.com #12;Frequently Unanswered Ques?ons · Why don't "they" build more offshore wind? · Why not make States Cape Wind PPA at 18 c/kWh #12;The cycle of non-innova?on Offshore

  1. CONGRESSIONAL BRIEFING Offshore Wind

    E-Print Network [OSTI]

    Firestone, Jeremy

    CONGRESSIONAL BRIEFING Offshore Wind Lessons Learned from Europe: Reducing Costs and Creating Jobs Thursday, June 12, 2014 Capitol Visitors Center, Room SVC 215 Enough offshore wind capacity to power six the past decade. What has Europe learned that is applicable to a U.S. effort to deploy offshore wind off

  2. Why do meteorologists use wind vanes? Wind vanes are used to determine the direction of the wind. Wind

    E-Print Network [OSTI]

    Nebraska-Lincoln, University of

    Fun Facts Why do meteorologists use wind vanes? Wind vanes are used to determine the direction of the wind. Wind· vanes are also called weather vanes. What do wind vanes look like on a weather station? Wind vanes that are on weather stations look a lot like the one you· made! The biggest differences

  3. Spatial and Temporal Patterns of Global Onshore Wind Speed Distribution

    SciTech Connect (OSTI)

    Zhou, Yuyu; Smith, Steven J.

    2013-09-09T23:59:59.000Z

    Wind power, a renewable energy source, can play an important role in electrical energy generation. Information regarding wind energy potential is important both for energy related modeling and for decision-making in the policy community. While wind speed datasets with high spatial and temporal resolution are often ultimately used for detailed planning, simpler assumptions are often used in analysis work. An accurate representation of the wind speed frequency distribution is needed in order to properly characterize wind energy potential. Using a power density method, this study estimated global variation in wind parameters as fitted to a Weibull density function using NCEP/CFSR reanalysis data. The estimated Weibull distribution performs well in fitting the time series wind speed data at the global level according to R2, root mean square error, and power density error. The spatial, decadal, and seasonal patterns of wind speed distribution were then evaluated. We also analyzed the potential error in wind power estimation when a commonly assumed Rayleigh distribution (Weibull k = 2) is used. We find that the assumption of the same Weibull parameter across large regions can result in substantial errors. While large-scale wind speed data is often presented in the form of average wind speeds, these results highlight the need to also provide information on the wind speed distribution.

  4. american large wind: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    layer of the flow, waves whose phase velocity is equal to the horizontal wind speed have negligible energy. This indicates a nonlocal transfer of their energy to the mean...

  5. Wind energy applications guide

    SciTech Connect (OSTI)

    anon.

    2001-01-01T23:59:59.000Z

    The brochure is an introduction to various wind power applications for locations with underdeveloped transmission systems, from remote water pumping to village electrification. It includes an introductory section on wind energy, including wind power basics and system components and then provides examples of applications, including water pumping, stand-alone systems for home and business, systems for community centers, schools, and health clinics, and examples in the industrial area. There is also a page of contacts, plus two specific example applications for a wind-diesel system for a remote station in Antarctica and one on wind-diesel village electrification in Russia.

  6. Wind Resource Assessment Report: Mille Lacs Indian Reservation, Minnesota

    SciTech Connect (OSTI)

    Jimenez, A. C.

    2013-12-01T23:59:59.000Z

    The U.S. Environmental Protection Agency (EPA) launched the RE-Powering America's Land initiative to encourage development of renewable energy on potentially contaminated land and mine sites. EPA collaborated with the U.S. Department of Energy's (DOE's) National Renewable Energy Laboratory (NREL) and the Mille Lacs Band of Chippewa Indians to evaluate the wind resource and examine the feasibility of a wind project at a contaminated site located on the Mille Lacs Indian Reservation in Minnesota. The wind monitoring effort involved the installation of a 60-m met tower and the collection of 18 months of wind data at multiple heights above the ground. This report focuses on the wind resource assessment, the estimated energy production of wind turbines, and an assessment of the economic feasibility of a potential wind project sited this site.

  7. Evaluation of Mixed-Phase Cloud Microphysics Parameterizations with the NCAR Single Column Climate Model (SCAM) and ARM Observations

    SciTech Connect (OSTI)

    Liu, X; Ghan, SJ; Xie, S

    2007-04-01T23:59:59.000Z

    Mixed-phase stratus clouds are ubiquitous in the Arctic and play an important role in climate in this region. However, climate models have generally proven unsuccessful at simulating the partitioning of condensed water into liquid droplets and ice crystals in these Arctic clouds, which affect modeled cloud phase, cloud lifetime and radiative properties. An ice nucleation parameterization and a vapor deposition scheme were developed that together provide a physically-consistent treatment of mixed-phase clouds in global climate models. These schemes have been implemented in the National Center for Atmospheric Research (NCAR) Community Atmospheric Model Version 3 (CAM3). This report documents the performance of these schemes against ARM Mixed-phase Arctic Cloud Experiment (M-PACE) observations using the CAM single column model version (SCAM). SCAM with our new schemes has a more realistic simulation of the cloud phase structure and the partitioning of condensed water into liquid droplets against observations during the M-PACE than the standard CAM simulations.

  8. Are energetic electrons in the solar wind the source of the outer radiation belt?

    E-Print Network [OSTI]

    Li, Xinlin

    Are energetic electrons in the solar wind the source of the outer radiation belt? Xinlin Li,1 D. N in the solar wind are the source of the outer rela- tivistic electron radiation belt. Though there is some radiation belt, the phase space density of 20-200 keV electrons in the solar wind is not adequate to supply

  9. The impact of electricity market schemes on predictability being a decision factor in the wind farm

    E-Print Network [OSTI]

    Paris-Sud XI, Université de

    The impact of electricity market schemes on predictability being a decision factor in the wind farm used criterion of capacity factor on the investment phase of a wind farm and on spatial planning, it is now recognized that accurate short-term forecasts of wind farms´ power output over the next few hours

  10. The impact of electricity market schemes on predictability being a decision factor in the wind farm

    E-Print Network [OSTI]

    Paris-Sud XI, Université de

    The impact of electricity market schemes on predictability being a decision factor in the wind farm of capacity factor on the investment phase of a wind farm and on spatial planning in an electricity market, it is now recognized that accurate short-term forecasts of wind farms´ power output over the next few hours

  11. Assessing the wind field over the continental shelf as a resource for electric power

    E-Print Network [OSTI]

    Firestone, Jeremy

    Assessing the wind field over the continental shelf as a resource for electric power by Richard W. Garvine1,2 and Willett Kempton1,3,4 ABSTRACT To assess the wind power resources of a large continental for the comparison period) that the near-coast phase advantage is obviated. We also find more consistent wind power

  12. Comparison of Wake Model Simulations with Offshore Wind Turbine Wake Profiles Measured by Sodar

    E-Print Network [OSTI]

    Pryor, Sara C.

    a ship-mounted sodar at a small offshore wind farm. The experiments were conducted at varying distances Offshore wind farms have increased in size from the first phase of installation with up to 20 turbinesComparison of Wake Model Simulations with Offshore Wind Turbine Wake Profiles Measured by Sodar R

  13. RIS0-M-2432 SIMPLIFIED LAWS OF SIMIALRITY FOR WIND TURBINE ROTORS

    E-Print Network [OSTI]

    RIS0-M-2432 SIMPLIFIED LAWS OF SIMIALRITY FOR WIND TURBINE ROTORS Helge Petersen The Test Station for Small Windmills Abstract, Laws of similarity or scaling laws for the character- istics of a wind turbine rotor are of importance to the designer even during the initial design phase of a new wind turbine con

  14. Analysis and design of some new single phase to three phase static converters

    E-Print Network [OSTI]

    Rahman, Ashek

    1991-01-01T23:59:59.000Z

    to the slave relay winding. Slave relav winding is immediately energized to close the normally open contacts and energizes the start capacitor. The start capacitor accordingly energizes the stator winding C and shifts the phase of power brought in from... threshold voltage (usually within a few seconds after energizing the induction motor), potential relay winding senses the voltage value and actuates relay to open contacts. Immediately. he slave relay wmding is de-energized snd the contacts disconnect...

  15. Wind tower service lift

    DOE Patents [OSTI]

    Oliphant, David; Quilter, Jared; Andersen, Todd; Conroy, Thomas

    2011-09-13T23:59:59.000Z

    An apparatus used for maintaining a wind tower structure wherein the wind tower structure may have a plurality of legs and may be configured to support a wind turbine above the ground in a better position to interface with winds. The lift structure may be configured for carrying objects and have a guide system and drive system for mechanically communicating with a primary cable, rail or other first elongate member attached to the wind tower structure. The drive system and guide system may transmit forces that move the lift relative to the cable and thereby relative to the wind tower structure. A control interface may be included for controlling the amount and direction of the power into the guide system and drive system thereby causing the guide system and drive system to move the lift relative to said first elongate member such that said lift moves relative to said wind tower structure.

  16. Wind energy conversion system

    DOE Patents [OSTI]

    Longrigg, Paul (Golden, CO)

    1987-01-01T23:59:59.000Z

    The wind energy conversion system includes a wind machine having a propeller connected to a generator of electric power, the propeller rotating the generator in response to force of an incident wind. The generator converts the power of the wind to electric power for use by an electric load. Circuitry for varying the duty factor of the generator output power is connected between the generator and the load to thereby alter a loading of the generator and the propeller by the electric load. Wind speed is sensed electro-optically to provide data of wind speed upwind of the propeller, to thereby permit tip speed ratio circuitry to operate the power control circuitry and thereby optimize the tip speed ratio by varying the loading of the propeller. Accordingly, the efficiency of the wind energy conversion system is maximized.

  17. West Winds Wind Farm | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are beingZealand Jump to:Ezfeedflag JumpID-fTri GlobalJump to: navigation,Goff,Holt WindInformationWestWinds Wind

  18. the risk issue of wind measurement for wind turbine operation

    E-Print Network [OSTI]

    Leu, Tzong-Shyng "Jeremy"

    Sciences, National Taiwan University #12;outline · Wind measurement in meteorology and wind farm design-related issues on wind turbine operation 3/31/2011 2 #12;WIND MEASUREMENT IN METEOROLOGY & WIND FARM DESIGN 3.brainybetty.com 11 wind farm at ChangHwa Coastal Industrial Park 70m wind tower 70m 50m 30m 10m #12;1 2 3 4 5 1 (70M

  19. Wind Energy Guide for County Commissioners

    SciTech Connect (OSTI)

    Costanti, M.

    2006-10-01T23:59:59.000Z

    One of the key stakeholders associated with economic development are local government officials, who are often required to evaluate and vote on commercial wind energy project permits, as well as to determine and articulate what wind energy benefits accrue to their counties. Often these local officials lack experience with large-scale wind energy and need to make important decisions concerning what may be a complicated and controversial issue. These decisions can be confounded with diverse perspectives from various stakeholders. This project is designed to provide county commissioners, planners, and other local county government officials with a practical overview of information required to successfully implement commercial wind energy projects in their county. The guidebook provides readers with information on the following 13 topics: Brief Wind Energy Overview; Environmental Benefits; Wind Energy Myths and Facts; Economic Development Benefits; Wind Economics; The Development Process; Public Outreach; Siting Issues; Property Tax Incentives; Power System Impacts; Permitting, Zoning, and Siting Processes; Case Studies; and Further Information. For each of the above topics, the guidebook provides an introduction that identifies the topic, why local government should care, a topic snapshot, how the topic will arise, and a list of resources that define and assess the topic.

  20. Duration Test Report for the Viryd CS8 Wind Turbine

    SciTech Connect (OSTI)

    Roadman, J.; Murphy, M.; van Dam, J.

    2013-06-01T23:59:59.000Z

    This report summarizes the results of a duration noise test that the National Renewable Energy Laboratory (NREL) conducted on the Viryd CS8 wind turbine. This test was conducted in accordance with Clause 9.4 of the International Electrotechnical Commission's (IEC) standard, Wind turbines - Part 2: Design requirements for small wind turbines, IEC 61400-2 Ed. 2.0:2006-03. NREL researchers evaluated the turbine based on structural integrity and material degradation, quality of environmental protection, and dynamic behavior.

  1. Determination of wind from Nimbus-6 satellite sounding data

    E-Print Network [OSTI]

    Carle, William Everett

    1979-01-01T23:59:59.000Z

    -level and surface wind fields from Nimbus-6 satellite sounding data are developed. These methods are evaluated by comparing satellite-derived and rawinsonde wind fields on gridded constant-pressure charts in four geographical regions. Satellite... interpolated to correspond in time to the satellite pass. Wind direction was interpolated through the smaller angle. t. d ttt' fplt*t' l~h' ht dg t th' ' d Fields of geopotential height were computed from gridded satellite data by integrating...

  2. Analysis of Loads and Wind Energy Potential for Remote Power Stations in Alaska University of Massachusetts Amherst

    E-Print Network [OSTI]

    Massachusetts at Amherst, University of

    Analysis of Loads and Wind Energy Potential for Remote Power Stations in Alaska Mia Devine@avec.org ABSTRACT This report addresses the potential of utilizing wind energy in remote communities of Alaska. This report evaluates the village electric usage patterns, wind energy resource potential, and wind

  3. Quantitative Evaluation of Colloidal Stability of Antibody Solutions using PEG-Induced Liquid-Liquid Phase Separation

    E-Print Network [OSTI]

    Benedek, George B.

    , and Center for Materials Science and Engineering, Massachusetts Institute of Technology, 77 Massachusetts test. Finally, this equation defines a binding energy in the condensed phase, which can be determined in the PEG-induced LLPS test. This binding energy is a measure of attractive interactions between antibody

  4. Planning an Empirical Experiment To Evaluate The Effects Of Pair Work On The Design Phase Of The Software Lifecycle

    E-Print Network [OSTI]

    New South Wales, University of

    on the process and products of the design phase of the software development lifecycle. However, literature revealed that the product and process of pair programming work in the software development lifecycle have Of The Software Lifecycle Hiyam Al-Kilidar1 , Ross Jeffery1 , Aybuke Aurum2 , Cat Kutay1 1 School of Computer

  5. Laboratory Facility for Simulating Solar Wind Sails

    SciTech Connect (OSTI)

    Funaki, Ikkoh [Japan Aerospace Exploration Agency, Sagamihara, Kanagawa, 229-8510 (Japan); JST/CREST, Kawaguchi, Saitama, 332-0012 (Japan); Ueno, Kazuma; Oshio, Yuya [Graduate University for Advanced Studies, Sagamihara, Kanagawa, 229-8510 (Japan); Ayabe, Tomohiro; Horisawa, Hideyuki [Tokai University, Hiratsuka, Kanagawa, 259-1292 (Japan); Yamakawa, Hiroshi [Kyoto University, Uji, Kyoto, 611-0011 (Japan); JST/CREST, Kawaguchi, Saitama, 332-0012 (Japan)

    2008-12-31T23:59:59.000Z

    Magnetic sail (MagSail) is a deep space propulsion system, in which an artificial magnetic cavity captures the energy of the solar wind to propel a spacecraft in the direction leaving the sun. For a scale-model experiment of the plasma flow of MagSail, we employed a magnetoplasmadynamic arcjet as a solar wind simulator. It is observed that a plasma flow from the solar wind simulator reaches a quasi-steady state of about 0.8 ms duration after a transient phase when initiating the discharge. During this initial phase of the discharge, a blast-wave was observed to develop radially in a vacuum chamber. When a solenoidal coil (MagSail scale model) is immersed into the quasi-steady flow where the velocity is 45 km/s, and the number density is 10{sup 19} m-3, a bow shock as well as a magnetic cavity were formed in front of the coil. As a result of the interaction between the plasma flow and the magnetic cavity, the momentum of the simulated solar wind is decreased, and it is found from the thrust measurement that the solar wind momentum is transferred to the coil simulating MagSail.

  6. Wind Resource Assessment in Europe Using Emergy

    E-Print Network [OSTI]

    Paudel, Subodh; Santarelli, Massimo; Martin, Viktoria; Lacarriere, Bruno; Le Corre, Olivier

    2014-01-01T23:59:59.000Z

    Wind energy assessment and wind farm simulation in Triunfo- Pernambuco, Brazil,wind resources for electrical energy production. Wind resources as- sessment of Brazil

  7. Sandia Energy - Wind & Water Power Newsletter

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Wind & Water Power Newsletter Home Stationary Power Energy Conversion Efficiency Wind Energy Resources Wind & Water Power Newsletter Wind & Water Power NewsletterTara...

  8. Wind Generation on Winnebago Tribal Lands

    SciTech Connect (OSTI)

    Multiple

    2009-09-30T23:59:59.000Z

    The Winnebago Wind Energy Study evaluated facility-scale, community-scale and commercial-scale wind development on Winnebago Tribal lands in northeastern Nebraska. The Winnebago Tribe of Nebraska has been pursuing wind development in various forms for nearly ten years. Wind monitoring utilizing loaned met towers from NREL took place during two different periods. From April 2001 to April 2002, a 20-meter met tower monitored wind data at the WinnaVegas Casino on the far eastern edge of the Winnebago reservation in Iowa. In late 2006, a 50-meter tower was installed, and subsequently monitored wind data at the WinnaVegas site from late 2006 through late 2008. Significant challenges with the NREL wind monitoring equipment limited the availability of valid data, but based on the available data, average wind speeds between 13.6 – 14.3 miles were indicated, reflecting a 2+/3- wind class. Based on the anticipated cost of energy produced by a WinnaVegas wind turbine, and the utility policies and rates in place at this time, a WinnaVegas wind project did not appear to make economic sense. However, if substantial grant funding were available for energy equipment at the casino site, and if either Woodbury REC backup rates were lower, or NIPCO was willing to pay more for wind power, a WinnaVegas wind project could be feasible. With funding remaining in the DOE-funded project budget,a number of other possible wind project locations on the Winnebago reservation were considered. in early 2009, a NPPD-owned met tower was installed at a site identified in the study pursuant to a verbal agreement with NPPD which provided for power from any ultimately developed project on the Western Winnebago site to be sold to NPPD. Results from the first seven months of wind monitoring at the Western Winnebago site were as expected at just over 7 meters per second at 50-meter tower height, reflecting Class 4 wind speeds, adequate for commercial development. If wind data collected in the remaining months of the twelve-month collection period is consistent with that collected in the first seven months, the Western Winnebago site may present an interesting opportunity for Winnebago. Given the distance to nearby substations, and high cost of interconnection at higher voltage transmission lines, Winnebago would likely need to be part of a larger project in order to reduce power costs to more attractive levels. Another alternative would be to pursue grant funding for a portion of development or equipment costs, which would also help reduce the cost of power produced. The NREL tower from the WinnaVegas site was taken down in late 2008, re-instrumented and installation attempted on the Thunderway site south of the Winnebago community. Based on projected wind speeds, current equipment costs, and the project’s proximity to substations for possible interconnection, a Thunderway community-scale wind project could also be feasible.

  9. Wind Energy Finance (WEF): An Online Calculator for Economic Analysis of Wind Projects

    SciTech Connect (OSTI)

    Not Available

    2004-02-01T23:59:59.000Z

    This brochure provides an overview of Wind Energy Finance (WEF), a free online cost of energy calculator developed by the National Renewable Energy Laboratory that provides quick, detailed economic evaluation of potential utility-scale wind energy projects. The brochure lists the features of the tool, the inputs and outputs that a user can expect, visuals of the screens and a Cash Flow Results table, and contact information.

  10. Low Wind Speed Turbine Developments in Convoloid Gearing: Final Technical Report, June 2005 - October 2008

    SciTech Connect (OSTI)

    Genesis Partners LP

    2010-08-01T23:59:59.000Z

    This report presents the results of a study conducted by Genesis Partners LP as part of the United States Department of Energy Wind Energy Research Program to develop wind technology that will enable wind systems to compete in regions having low wind speeds. The purpose of the program is to reduce the cost of electricity from large wind systems in areas having Class 4 winds to 3 cents per kWh for onshore systems or 5 cents per kWh for offshore systems. This work builds upon previous activities under the WindPACT project, the Next Generation Turbine project, and Phase I of the Low Wind Speed Turbine (LWST) project. This project is concerned with the development of more cost-effective gearing for speed increasers for wind turbines.

  11. Plug-In Hybrid Electric Vehicle Value Proposition Study: Phase 1, Task 3: Technical Requirements and Procedure for Evaluation of One Scenario

    SciTech Connect (OSTI)

    Sikes, Karen R [ORNL; Hinds, Shaun [Sentech, Inc.; Hadley, Stanton W [ORNL; McGill, Ralph N [ORNL; Markel, Lawrence C [ORNL; Ziegler, Richard E [ORNL; Smith, David E [ORNL; Smith, Richard L [ORNL; Greene, David L [ORNL; Brooks, Daniel L [ORNL; Wiegman, Herman [GE Global Research; Miller, Nicholas [GE; Marano, Dr. Vincenzo [Ohio State University

    2008-07-01T23:59:59.000Z

    In Task 2, the project team designed the Phase 1 case study to represent the 'baseline' plug-in hybrid electric vehicle (PHEV) fleet of 2030 that investigates the effects of seventeen (17) value propositions (see Table 1 for complete list). By creating a 'baseline' scenario, a consistent set of assumptions and model parameters can be established for use in more elaborate Phase 2 case studies. The project team chose southern California as the Phase 1 case study location because the economic, environmental, social, and regulatory conditions are conducive to the advantages of PHEVs. Assuming steady growth of PHEV sales over the next two decades, PHEVs are postulated to comprise approximately 10% of the area's private vehicles (about 1,000,000 vehicles) in 2030. New PHEV models introduced in 2030 are anticipated to contain lithium-ion batteries and be classified by a blended mileage description (e.g., 100 mpg, 150 mpg) that demonstrates a battery size equivalence of a PHEV-30. Task 3 includes the determination of data, models, and analysis procedures required to evaluate the Phase 1 case study scenario. Some existing models have been adapted to accommodate the analysis of the business model and establish relationships between costs and value to the respective consumers. Other data, such as the anticipated California generation mix and southern California drive cycles, have also been gathered for use as inputs. The collection of models that encompasses the technical, economic, and financial aspects of Phase 1 analysis has been chosen and is described in this deliverable. The role of PHEV owners, utilities (distribution systems, generators, independent system operators (ISO), aggregators, or regional transmission operators (RTO)), facility owners, financing institutions, and other third parties are also defined.

  12. Wind Tunnel Building - 3 

    E-Print Network [OSTI]

    Unknown

    2005-06-30T23:59:59.000Z

    1 Energy Systems Laboratory 1 A METHODOLOGY FOR CALCULATING EMISSIONS REDUCTIONS FROM RENEWABLE ENERGY PROGRAMS AND ITS APPLICATION TO THE WIND FARMS IN THE TEXAS ERCOT REGION Zi Liu, Jeff Haberl, Juan-Carlos Baltazar, Kris Subbarao, Charles... on Sweetwater I Wind Farm Capacity Factor Analysis Application to All Wind Farms Uncertainty Analysis Emissions Reduction Summary Energy Systems Laboratory 3 SUMMARYEMISSIONS REDUCTION UNCERTAINTY ANALYSIS APPLICATIONMETHODOLOGYINTRODUCTION Background...

  13. Wind Energy and Spatial Technology

    E-Print Network [OSTI]

    Schweik, Charles M.

    2/3/2011 1 Wind Energy and Spatial Technology Lori Pelech Why Wind Energy? A clean, renewable 2,600 tons of carbon emissions annually ­ The economy · Approximately 85,000 wind energy workers to Construct a Wind Farm... Geo-Spatial Components of Wind Farm Development Process Selecting a Project Site

  14. Wind Engineering & Natural Disaster Mitigation

    E-Print Network [OSTI]

    Denham, Graham

    Wind Engineering & Natural Disaster Mitigation For more than 45 years, Western University has been internationally recognized as the leading university for wind engineering and wind- related research. Its of environmental disaster mitigation, with specific strengths in wind and earthquake research. Boundary Layer Wind

  15. Proceedings Nordic Wind Power Conference

    E-Print Network [OSTI]

    Estimation of Possible Power for Wind Plant Control Power Fluctuations from Offshore Wind Farms; Model Validation System grounding of wind farm medium voltage cable grids Faults in the Collection Grid of Offshore systems of wind turbines and wind farms. NWPC presents the newest research results related to technical

  16. Enabling Wind Power Nationwide

    Office of Environmental Management (EM)

    hub heights of 110 meters (m) (which are already in wide commercial deployment in Germany and other European countries), the technical potential for wind deployment is...

  17. Allegany County Wind Ordinance

    Broader source: Energy.gov [DOE]

    This ordinance sets requirements for industrial wind energy conversion systems. These requirements include minimum separation distances, setback requirements, electromagnetic interference analysis ...

  18. Talkin’ Bout Wind Generation

    Broader source: Energy.gov [DOE]

    The amount of electricity generated by the wind industry started to grow back around 1999, and since 2007 has been increasing at a rapid pace.

  19. Enabling Wind Power Nationwide

    Office of Environmental Management (EM)

    including natural gas, and competing renewable power resources such as solar photovoltaics. Figure 4-3. Wind turbine hub height trends in Germany from 2007 to 2014 Source:...

  20. Accelerating Offshore Wind Development

    Broader source: Energy.gov [DOE]

    Today the Energy Department announced investments in seven offshore wind demonstration projects. Check out our map to see where these projects will be located.

  1. wind_guidance

    Broader source: Energy.gov [DOE]

    Guidance to Accompany Non-Availability Waiver of the Recovery Act Buy American Provisions for 5kW and 50kW Wind Turbines

  2. Barstow Wind Turbine Project

    Broader source: Energy.gov [DOE]

    Presentation covers the Barstow Wind Turbine project for the Federal Utility Partnership Working Group (FUPWG) meeting, held on November 18-19, 2009.

  3. Vertical axis wind turbines

    DOE Patents [OSTI]

    Krivcov, Vladimir (Miass, RU); Krivospitski, Vladimir (Miass, RU); Maksimov, Vasili (Miass, RU); Halstead, Richard (Rohnert Park, CA); Grahov, Jurij (Miass, RU)

    2011-03-08T23:59:59.000Z

    A vertical axis wind turbine is described. The wind turbine can include a top ring, a middle ring and a lower ring, wherein a plurality of vertical airfoils are disposed between the rings. For example, three vertical airfoils can be attached between the upper ring and the middle ring. In addition, three more vertical airfoils can be attached between the lower ring and the middle ring. When wind contacts the vertically arranged airfoils the rings begin to spin. By connecting the rings to a center pole which spins an alternator, electricity can be generated from wind.

  4. Wind | Department of Energy

    Office of Environmental Management (EM)

    in the world. To stay competitive in this sector, the Energy Department invests in wind projects, both on land and offshore, to advance technology innovations, create job...

  5. Northern Wind Farm

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    facilities to accommodate the interconnection. The EA also includes a review of the potential environmental impacts of Northern Wind, LLC, constructing, operating, and...

  6. Wind Power Today, 2010, Wind and Water Power Program (WWPP)

    SciTech Connect (OSTI)

    Not Available

    2010-05-01T23:59:59.000Z

    Wind Power Today is an annual publication that provides an overview of the wind energy research conducted by the U.S. Department of Energy Wind and Water Power Program.

  7. DOE Offers Conditional Commitment to Cape Wind Offshore Wind...

    Broader source: Energy.gov (indexed) [DOE]

    step toward issuing a 150 million loan guarantee to support the construction of the Cape Wind offshore wind project with a conditional commitment to Cape Wind Associates, LLC. The...

  8. Wind turbulence characterization for wind energy development

    SciTech Connect (OSTI)

    Wendell, L.L.; Gower, G.L.; Morris, V.R.; Tomich, S.D.

    1991-09-01T23:59:59.000Z

    As part of its support of the US Department of Energy's (DOE's) Federal Wind Energy Program, the Pacific Northwest Laboratory (PNL) has initiated an effort to work jointly with the wind energy community to characterize wind turbulence in a variety of complex terrains at existing or potential sites of wind turbine installation. Five turbulence characterization systems were assembled and installed at four sites in the Tehachapi Pass in California, and one in the Green Mountains near Manchester, Vermont. Data processing and analyses techniques were developed to allow observational analyses of the turbulent structure; this analysis complements the more traditional statistical and spectral analyses. Preliminary results of the observational analyses, in the rotating framework or a wind turbine blade, show that the turbulence at a site can have two major components: (1) engulfing eddies larger than the rotor, and (2) fluctuating shear due to eddies smaller than the rotor disk. Comparison of the time series depicting these quantities at two sites showed that the turbulence intensity (the commonly used descriptor of turbulence) did not adequately characterize the turbulence at these sites. 9 refs., 10 figs.,

  9. Kahuku Wind Power (First Wind) | Department of Energy

    Office of Environmental Management (EM)

    The project employs the integration of Clipper LibertyTM wind turbine generators and a control system to more efficiently integrate wind power with the utility's power grid....

  10. American Wind Energy Association Wind Energy Finance and Investment Seminar

    Broader source: Energy.gov [DOE]

    The American Wind Energy Association Wind Energy Finance and Investment Seminar will be attended by representatives in the financial sector, businesses, bankers, government and other nonprofit...

  11. WIND POWER PROGRAM WIND PROGRAM ACCOMPLISHMENTS U.S. Department...

    Office of Environmental Management (EM)

    capturing more wind than ever before through the installation of innovative offshore wind turbines and systems in U.S. waters, the Atmosphere to Electrons initiative which...

  12. Public Acceptance of Wind: Foundational Study Near US Wind Facilities

    Wind Powering America (EERE)

    Group * Energy Analysis and Environmental Impacts Department Public Acceptance of Wind Power Ben Hoen Lawrence Berkeley National Laboratory WindExchange Webinar June 17, 2015...

  13. 20% Wind Energy by 2030 - Chapter 2: Wind Turbine Technology...

    Energy Savers [EERE]

    Wind Energy's Contribution to U.S. Electricity Supply Testing, Manufacturing, and Component Development Projects U.S. Offshore Wind Manufacturing and Supply Chain Development...

  14. Fort Carson Wind Resource Assessment

    SciTech Connect (OSTI)

    Robichaud, R.

    2012-10-01T23:59:59.000Z

    This report focuses on the wind resource assessment, the estimated energy production of wind turbines, and economic potential of a wind turbine project on a ridge in the southeastern portion of the Fort Carson Army base.

  15. 2010 Wind Technologies Market Report

    E-Print Network [OSTI]

    Wiser, Ryan

    2012-01-01T23:59:59.000Z

    and the drop in wind power plant installations, for example,the decrease in new wind power plant construction. A GrowingRelative Economics of Wind Power Plants Installed in Recent

  16. 2011 Wind Technologies Market Report

    E-Print Network [OSTI]

    Bolinger, Mark

    2013-01-01T23:59:59.000Z

    and the drop in wind power plant installations since 2009and the drop in wind power plant installations since 2009towers used in U.S. wind power plants increases from 80% in

  17. 2010 Wind Technologies Market Report

    E-Print Network [OSTI]

    Wiser, Ryan

    2012-01-01T23:59:59.000Z

    ET2/TL-08-1474. May 19, 2010 Wind Technologies Market ReportAssociates. 2010. SPP WITF Wind Integration Study. Little10, 2010. David, A. 2009. Wind Turbines: Industry and Trade

  18. 2011 Wind Technologies Market Report

    E-Print Network [OSTI]

    Bolinger, Mark

    2013-01-01T23:59:59.000Z

    Associates. 2010. SPP WITF Wind Integration Study. LittlePool. David, A. 2011. U.S. Wind Turbine Trade in a Changing2011. David, A. 2010. Impact of Wind Energy Installations on

  19. 2011 Wind Technologies Market Report

    E-Print Network [OSTI]

    Bolinger, Mark

    2013-01-01T23:59:59.000Z

    Public Service Wind Integration Cost Impact Study. Preparedused to estimate wind integration costs and the ability toColorado 2 GW and 3 GW Wind Integration Cost Study. Denver,

  20. Wind Farms in North America

    E-Print Network [OSTI]

    Hoen, Ben

    2014-01-01T23:59:59.000Z

    Economic Analysis of a Wind Farm in Nantucket Sound. BeaconP. and Mueller, A. (2010) Wind Farm Announcements and RuralProposed Rail Splitter Wind Farm. Prepared for Hinshaw &

  1. 2008 WIND TECHNOLOGIES MARKET REPORT

    E-Print Network [OSTI]

    Bolinger, Mark

    2010-01-01T23:59:59.000Z

    to natural gas. 2008 Wind Technologies Market Report 1% windforward gas market. 2008 Wind Technologies Market Report 4.Market Report Wind Penetration (Capacity Basis) Arizona Public Service Avista Utilities California RPS Idaho Power Xcel-PSCo-2008 at 2006 Gas

  2. 2009 Wind Technologies Market Report

    E-Print Network [OSTI]

    Wiser, Ryan

    2010-01-01T23:59:59.000Z

    forward gas market. 2009 Wind Technologies Market Report TheMarket Report Wind Penetration (Capacity Basis) Xcel-PSCo-2008 at 2006 Gasgas facilities run at even lower capacity factors. 2009 Wind Technologies Market Report

  3. 2011 Wind Technologies Market Report

    E-Print Network [OSTI]

    Bolinger, Mark

    2013-01-01T23:59:59.000Z

    Technologies Market Report Wind Gas Coal Other Renewablethe forward gas market. 2011 Wind Technologies Market ReportMarket Report Nameplate Capacity (GW) Entered queue in 2011 Total in queue at end of 2011 Wind Natural Gas

  4. 2009 Wind Technologies Market Report

    E-Print Network [OSTI]

    Wiser, Ryan

    2010-01-01T23:59:59.000Z

    AWEA’s Wind Energy Weekly, DOE/EPRI’s Turbine Verification10% Wind Energy Penetration New large-scale 10 wind turbineswind energy became more challenging, orders for new turbines

  5. Wind Farms in North America

    E-Print Network [OSTI]

    Hoen, Ben

    2014-01-01T23:59:59.000Z

    P. and Mueller, A. (2010) Wind Farm Announcements and RuralProposed Rail Splitter Wind Farm. Prepared for Hinshaw &Economic Analysis of a Wind Farm in Nantucket Sound. Beacon

  6. 2009 Wind Technologies Market Report

    E-Print Network [OSTI]

    Wiser, Ryan

    2010-01-01T23:59:59.000Z

    natural gas prices), pushed wind energy from the bottom toover the cost and price of wind energy that it receives. Asweighted-average price of wind energy in 1999 was $65/MWh (

  7. 2008 WIND TECHNOLOGIES MARKET REPORT

    E-Print Network [OSTI]

    Bolinger, Mark

    2010-01-01T23:59:59.000Z

    natural gas prices, though the economic value of wind energyenergy and climate policy initiatives. With wind turbine pricesprices reported here would be at least $20/MWh higher without the PTC), they do not represent wind energy

  8. 2010 Wind Technologies Market Report

    E-Print Network [OSTI]

    Wiser, Ryan

    2012-01-01T23:59:59.000Z

    weighted-average price of wind energy in 1999 was roughly $reduced near-term price expectations, wind energy?s primaryelectricity prices in 2009 pushed wind energy to the top of

  9. 2009 Wind Technologies Market Report

    E-Print Network [OSTI]

    Wiser, Ryan

    2010-01-01T23:59:59.000Z

    AWEA). 2010b. AWEA Small Wind Turbine Global Market Survey,html David, A. 2009. Wind Turbines: Industry and Tradewhich new large-scale wind turbines were installed in 2009 (

  10. 2011 Wind Technologies Market Report

    E-Print Network [OSTI]

    Bolinger, Mark

    2013-01-01T23:59:59.000Z

    shows that 8.5% of potential wind energy generation withinin GWh (and as a % of potential wind generation) Electricreport also laid out a potential wind power deployment path

  11. Distributed Wind Policy Comparison Tool Guidebook

    SciTech Connect (OSTI)

    Not Available

    2011-11-01T23:59:59.000Z

    Power through Policy: 'Best Practices' for Cost-Effective Distributed Wind is a U.S. Department of Energy (DOE)-funded project to identify distributed wind technology policy best practices and to help policymakers, utilities, advocates, and consumers examine their effectiveness using a pro forma model. Incorporating a customized feed from the Database of State Incentives for Renewables and Efficiency (DSIRE), the Web-based Distributed Wind Policy Comparison Tool (Policy Tool) is designed to assist state, local, and utility officials in understanding the financial impacts of different policy options to help reduce the cost of distributed wind technologies. The Policy Tool can be used to evaluate the ways that a variety of federal and state policies and incentives impact the economics of distributed wind (and subsequently its expected market growth). It also allows policymakers to determine the impact of policy options, addressing market challenges identified in the U.S. DOE's '20% Wind Energy by 2030' report and helping to meet COE targets.

  12. Wind Turbine Shutdowns and Upgrades in Denmark: Timing Decisions and the Impact of Government Policy

    E-Print Network [OSTI]

    Lin, C.-Y. Cynthia

    Wind Turbine Shutdowns and Upgrades in Denmark: Timing Decisions and the Impact of Government structural econometric model of wind turbine owners' decisions about whether and when to add new turbines the underlying profit structure for wind producers and evaluate the impact of technology and government policy

  13. Analysis of Long Span Bridge Response to Winds: Building Nexus between Flutter and Buffeting

    E-Print Network [OSTI]

    Chen, Xinzhong

    differences of buffeting force components with respect to wind fluctuations. In this paper, a unified analysis. Wind forces on bridge sections are modeled in terms of drag, lift, and pitching moment in the alongwind to the action of static wind forces. Evaluation of static deformation often requires the use of a nonlinear

  14. Ris-R-Report Verification test for three WindCubeTM

    E-Print Network [OSTI]

    sensors mounted at a meteorological mast. Results are presented for three tested units ­ in detail the evaluation of measured mean wind speeds, wind directions and wind speed standard deviations. The data.6 Specifications of reference sensors 10 2.7 Time synchronization 10 3 Procedure of testing (verification test

  15. Market penetration of wind turbine concepts over the years Anca D. Hansen1

    E-Print Network [OSTI]

    Market penetration of wind turbine concepts over the years Anca D. Hansen1 , Lars H. Hansen2 1 Risø wind turbine concepts over the years (1995-2005). A detailed overview is performed based on suppliers market data and concept evaluation for each individual wind turbine type sold by the suppliers

  16. A Critical Assessment of Computer Tools for Calculating Composite Wind Turbine Blade Properties

    E-Print Network [OSTI]

    Yu, Wenbin

    A Critical Assessment of Computer Tools for Calculating Composite Wind Turbine Blade Properties Hui assess several computer tools for calculating the inertial and structural properties of wind turbine, and a realistic composite wind turbine blade are used to evaluate the performance of different tools

  17. Influences of offshore environmental conditions on wind shear profile parameters in Nantucket Sound

    E-Print Network [OSTI]

    Massachusetts at Amherst, University of

    Influences of offshore environmental conditions on wind shear profile parameters in Nantucket Sound@ecs.umass.edu ABSTRACT Simultaneous wind resource and oceanographic data are available from an offshore monitoring tower how oceanographic data can be used to aid offshore wind resource assessment evaluations. This study

  18. The Estimated Global Ocean Wind Power Potential from QuikSCAT Observations, Accounting for Turbine

    E-Print Network [OSTI]

    Zender, Charles

    The Estimated Global Ocean Wind Power Potential from QuikSCAT Observations, Accounting for Turbine: (949) 824-3256 Abstract For the first time, global ocean usable wind power is evaluated for modern offshore turbine characteristics including hub height, usable portion of the wind speed distri- bution

  19. Evance Wind | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are being directedAnnual SiteofEvaluating A PotentialJumpGerman Aerospace Center (DLR)European FuelEvaderEvance Wind

  20. Candidate wind turbine generator site: annual data summary, January 1981-December 1981

    SciTech Connect (OSTI)

    Sandusky, W.F.; Buck, J.W.; Renne, D.S.; Hadley, D.L.; Abbey, O.B.

    1982-07-01T23:59:59.000Z

    Summarized hourly meteorological data for 34 candidate and wind turbine generator sites for calendar year 1981 are presented. These data are collected for the purpose of evaluating the wind energy potential at these sites and are used to assist in selection of potential sites for installation and testing of large wind turbines in electric utility systems. For each site, wind speed, direction, and distribution data are given in eight tables. Use of information from these tables, with information about specific wind turbines, should allow the user to estimate the potential for wind energy production at each site.

  1. EA-1920: Border Winds 2, North Dakota

    Broader source: Energy.gov [DOE]

    DOE’s Western Area Power Administration is preparing this EA to evaluate the environmental impacts of a proposed wind turbine generation facility in Rolette and Towner Counties in North Dakota. If the proposal is implemented, power generated by this facility would interconnect at an existing substation and would be distributed via an existing transmission line owned and operated by Western.

  2. Radar-cross-section reduction of wind turbines. part 1.

    SciTech Connect (OSTI)

    Brock, Billy C.; Loui, Hung; McDonald, Jacob J.; Paquette, Joshua A.; Calkins, David A.; Miller, William K.; Allen, Steven E.; Clem, Paul Gilbert; Patitz, Ward E.

    2012-03-05T23:59:59.000Z

    In recent years, increasing deployment of large wind-turbine farms has become an issue of growing concern for the radar community. The large radar cross section (RCS) presented by wind turbines interferes with radar operation, and the Doppler shift caused by blade rotation causes problems identifying and tracking moving targets. Each new wind-turbine farm installation must be carefully evaluated for potential disruption of radar operation for air defense, air traffic control, weather sensing, and other applications. Several approaches currently exist to minimize conflict between wind-turbine farms and radar installations, including procedural adjustments, radar upgrades, and proper choice of low-impact wind-farm sites, but each has problems with limited effectiveness or prohibitive cost. An alternative approach, heretofore not technically feasible, is to reduce the RCS of wind turbines to the extent that they can be installed near existing radar installations. This report summarizes efforts to reduce wind-turbine RCS, with a particular emphasis on the blades. The report begins with a survey of the wind-turbine RCS-reduction literature to establish a baseline for comparison. The following topics are then addressed: electromagnetic model development and validation, novel material development, integration into wind-turbine fabrication processes, integrated-absorber design, and wind-turbine RCS modeling. Related topics of interest, including alternative mitigation techniques (procedural, at-the-radar, etc.), an introduction to RCS and electromagnetic scattering, and RCS-reduction modeling techniques, can be found in a previous report.

  3. Carbon smackdown: wind warriors

    SciTech Connect (OSTI)

    Glen Dahlbacka of the Accelerator & Fusion Research Division and Ryan Wiser of the Environmental Energy Technologies Division are the speakers.

    2010-07-21T23:59:59.000Z

    July 16. 2010 carbon smackdown summer lecture: learn how Berkeley Lab scientists are developing wind turbines to be used in an urban setting, as well as analyzing what it will take to increase the adoption of wind energy in the U.S.

  4. VARIABLE SPEED WIND TURBINE

    E-Print Network [OSTI]

    Chatinderpal Singh

    Wind energy is currently the fastest-growing renewable source of energy in India; India is a key market for the wind industry, presenting substantial opportunities for both the international and domestic players. In India the research is carried out on wind energy utilization on big ways.There are still many unsolved challenges in expanding wind power, and there are numerous problems of interest to systems and control researchers. In this paper we study the pitch control mechanism of wind turbine. The pitch control system is one of the most widely used control techniques to regulate the output power of a wind turbine generator. The pitch angle is controlled to keep the generator power at rated power by reducing the angle of the blades. By regulating, the angle of stalling, fast torque changes from the wind will be reutilized. It also describes the design of the pitch controller and discusses the response of the pitch-controlled system to wind velocity variations. The pitch control system is found to have a large output power variation and a large settling time.

  5. Small Wind Information (Postcard)

    SciTech Connect (OSTI)

    Not Available

    2011-08-01T23:59:59.000Z

    The U.S. Department of Energy's Wind Powering America initiative maintains a website section devoted to information about small wind turbines for homeowners, ranchers, and small businesses. This postcard is a marketing piece that stakeholders can provide to interested parties; it will guide them to this online resource.

  6. Carbon smackdown: wind warriors

    ScienceCinema (OSTI)

    Glen Dahlbacka of the Accelerator & Fusion Research Division and Ryan Wiser of the Environmental Energy Technologies Division are the speakers.

    2010-09-01T23:59:59.000Z

    July 16. 2010 carbon smackdown summer lecture: learn how Berkeley Lab scientists are developing wind turbines to be used in an urban setting, as well as analyzing what it will take to increase the adoption of wind energy in the U.S.

  7. Diablo Winds Wind Farm | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are being directedAnnualPropertyd8c-a9ae-f8521cbb8489 No revision hasda62829c05bGabbs TypeWinds Wind Farm Jump to:

  8. EIS-0376: White Wind Farm Brookings County, South Dakota

    Broader source: Energy.gov [DOE]

    This EIS evaluates the potential environmental impacts of a proposal by Western to interconnect its proposed White Wind Farm Project (Project) to Western’s transmission system at the existing White...

  9. EA-1610: Windy Hollow Wind Project, Laramie County, Wyoming

    Broader source: Energy.gov [DOE]

    This EA will evaluate the environmental impacts of a proponent request to interconnect their proposed Windy Hollow Wind Project in Laramie County, Wyoming, to DOE’s Western Area Power Administration’s transmission system.

  10. Relativistic MHD Winds from Rotating Neutron Stars

    E-Print Network [OSTI]

    N. Bucciantini; T. A. Thompson; J. Arons; E. Quataert

    2006-12-22T23:59:59.000Z

    We solve the time-dependent dynamics of axisymmetric, general relativistic MHD winds from rotating neutron stars. The mass loss rate is obtained self consistently as a solution of the MHD equations, subject to a finite thermal pressure at the stellar surface. Conditions are chosen to be representative of the neutrino driven phase in newly born magnetars, which have been considered as a possible engine for GRBs. We compute the angular momentum and energy losses as a function of $\\sigma$ and compare them with the analytic expectation from the classical theory of pulsar winds. We observe the convergence to the force-free limit in the energy loss and we study the evolution of the closed zone for increasing magnetization. Results also show that the dipolar magnetic field and the presence of a closed zone do not modify significantly the acceleration and collimation properties of the wind.

  11. Illinois Wind Workers Group

    SciTech Connect (OSTI)

    David G. Loomis

    2012-05-28T23:59:59.000Z

    The Illinois Wind Working Group (IWWG) was founded in 2006 with about 15 members. It has grown to over 200 members today representing all aspects of the wind industry across the State of Illinois. In 2008, the IWWG developed a strategic plan to give direction to the group and its activities. The strategic plan identifies ways to address critical market barriers to the further penetration of wind. The key to addressing these market barriers is public education and outreach. Since Illinois has a restructured electricity market, utilities no longer have a strong control over the addition of new capacity within the state. Instead, market acceptance depends on willing landowners to lease land and willing county officials to site wind farms. Many times these groups are uninformed about the benefits of wind energy and unfamiliar with the process. Therefore, many of the project objectives focus on conferences, forum, databases and research that will allow these stakeholders to make well-educated decisions.

  12. 2011 Wind Technologies Market Report

    E-Print Network [OSTI]

    Bolinger, Mark

    2013-01-01T23:59:59.000Z

    regulation and frequency response services charge for wind energyRegulation and Frequency Response Service that charges a higher rate for wind energy

  13. Wind Events | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Below is an industry calendar with meetings, conferences, and webinars of interest to the wind energy technology communities. IEA Wind Task 34 (WREN) Quarterly Webinar 3:...

  14. 2010 Wind Technologies Market Report

    E-Print Network [OSTI]

    Wiser, Ryan

    2012-01-01T23:59:59.000Z

    forward gas market. 2010 Wind Technologies Market Report 4.Market Report Entered queue in 2010 Total in queue at end of 2010 Nameplate Capacity (GW) Wind Natural Gas

  15. 2008 WIND TECHNOLOGIES MARKET REPORT

    E-Print Network [OSTI]

    Bolinger, Mark

    2010-01-01T23:59:59.000Z

    AWEA’s Wind Energy Weekly, DOE/EPRI’s Turbine VerificationTurbine Global Market Study: Year Ending 2008. Washington, DC: American Wind Energy

  16. Wind Energy Resources and Technologies

    Broader source: Energy.gov [DOE]

    This page provides a brief overview of wind energy resources and technologies supplemented by specific information to apply wind energy within the Federal sector.

  17. Large Wind Property Tax Reduction

    Broader source: Energy.gov [DOE]

    In 2001, North Dakota established property tax reductions for commercial wind turbines constructed before 2011. Originally, the law reduced the taxable value of centrally-assessed* wind turbines...

  18. 2012 Wind Technologies Market Report

    E-Print Network [OSTI]

    Wiser, Ryan

    2014-01-01T23:59:59.000Z

    wind power projects in the United States to date have been installed on land,on developing wind power projects on public lands. State

  19. 2011 Wind Technologies Market Report

    E-Print Network [OSTI]

    Bolinger, Mark

    2013-01-01T23:59:59.000Z

    wind power projects in the United States to date have been installed on land,of developing wind power projects on public lands. State

  20. Operational risk of a wind farm energy production by Extreme Value Theory and Copulas

    E-Print Network [OSTI]

    D'Amico, Guglielmo; Prattico, Flavio

    2014-01-01T23:59:59.000Z

    In this paper we use risk management techniques to evaluate the potential effects of those operational risks that affect the energy production of a wind farm. We concentrate our attention on three major risk factors: wind speed uncertainty, wind turbine reliability and interactions of wind turbines due mainly to their placement. As a first contribution, we show that the Weibull distribution, commonly used to fit recorded wind speed data, underestimates rare events. Therefore, in order to achieve a better estimation of the tail of the wind speed distribution, we advance a Generalized Pareto distribution. The wind turbines reliability is considered by modeling the failures events as a compound Poisson process. Finally, the use of Copula able us to consider the correlation between wind turbines that compose the wind farm. Once this procedure is set up, we show a sensitivity analysis and we also compare the results from the proposed procedure with those obtained by ignoring the aforementioned risk factors.