Powered by Deep Web Technologies
Note: This page contains sample records for the topic "wind phase bring" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


1

Innovative company brings wind jobs to South Dakota | Department...  

Broader source: Energy.gov (indexed) [DOE]

to producing wind turbine blades. | Photo courtesy of Energetx Composites. Energetx Composites: Retooling Manufacturing, Creating Michigan Jobs Idahoans Saving Green by Going Green...

2

Western Wind and Solar Integration Study Phase 2: Preprint  

SciTech Connect (OSTI)

The Western Wind and Solar Integration Study (WWSIS) investigates the impacts of high penetrations of wind and solar power into the Western Interconnection of the United States. WWSIS2 builds on the Phase 1 study but with far greater refinement in the level of data inputs and production simulation. It considers the differences between wind and solar power on systems operations. It considers mitigation options to accommodate wind and solar when full costs of wear-and-tear and full impacts of emissions rates are taken into account. It determines wear-and-tear costs and emissions impacts. New data sets were created for WWSIS2, and WWSIS1 data sets were refined to improve realism of plant output and forecasts. Four scenarios were defined for WWSIS2 that examine the differences between wind and solar and penetration level. Transmission was built out to bring resources to load. Statistical analysis was conducted to investigate wind and solar impacts at timescales ranging from seasonal down to 5 minutes.

Lew, D.; Brinkman, G.; Ibanez, E.; Hodge, B.-M.; King, J.

2012-09-01T23:59:59.000Z

3

Blades of Glory: Wind Technology Bringing Us Closer To a Clean...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

the length of a football field. In the United States, energy generation from wind turbines has grown by 27 percent over the last year, with production facilities now in more...

4

Assessment of wind power predictability as a decision factor in the investment phase of wind farms  

E-Print Network [OSTI]

Assessment of wind power predictability as a decision factor in the investment phase of wind farms Antipolis, France. Abstract The ability to predict wind power production over the next few hours to days is prerequisites for the secure and economic operation of power systems with high wind power penetration. From

Paris-Sud XI, Université de

5

Phase 2 Report: Oahu Wind Integration and Transmission Study...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Phase 2 Report: Oahu Wind Integration and Transmission Study (OWITS) Hawaiian Islands Transmission Interconnection Project Dennis Woodford Electranix Corporation Winnipeg, Manitoba...

6

The Western Wind and Solar Integration Study Phase 2  

Office of Energy Efficiency and Renewable Energy (EERE)

Greg Brinkman will present the results of the Western Wind and Solar Integration Study (WWSIS), Phase 2. This study, which follows the first phase of WWSIS, focuses on potential emissions and wear...

7

North Wind 4-kW wind-system development. Phase II. Fabrication and test  

SciTech Connect (OSTI)

This report presents the results of Phase II (testing and fabrication) of a program funded by the US Department of Energy to design, fabricate, and test a cost-effective wind system in the 3 to 6 kW class. During Phase II, using the design developed during Phase I, a prototype 4 kW machine was fabricated and tested in Waitsfield, Vermont. Several problems were encountered and subsequently analyzed. Design modifications, including the use of a larger alternator, are described. Test performed by North Wind and by Rockwell International (which monitored the program) demonstrated the predicted performance characteristics and the validity of the North Wind design.

Lynch, J.; Coleman, C.; Mayer, D.J.

1983-01-01T23:59:59.000Z

8

Combined Experiment Phase 1. [Horizontal axis wind turbines: wind tunnel testing versus field testing  

SciTech Connect (OSTI)

How does wind tunnel airfoil data differ from the airfoil performance on an operating horizontal axis wind turbine (HAWT) The National Renewable Energy laboratory has been conducting a comprehensive test program focused on answering this question and understanding the basic fluid mechanics of rotating HAWT stall aerodynamics. The basic approach was to instrument a wind rotor, using an airfoil that was well documented by wind tunnel tests, and measure operating pressure distributions on the rotating blade. Based an the integrated values of the pressure data, airfoil performance coefficients were obtained, and comparisons were made between the rotating data and the wind tunnel data. Care was taken to the aerodynamic and geometric differences between the rotating and the wind tunnel models. This is the first of two reports describing the Combined Experiment Program and its results. This Phase I report covers background information such as test setup and instrumentation. It also includes wind tunnel test results and roughness testing.

Butterfield, C.P.; Musial, W.P.; Simms, D.A.

1992-10-01T23:59:59.000Z

9

Western Wind and Solar Integration Study Phase 2 (Fact Sheet)  

SciTech Connect (OSTI)

This is one-page, two-sided fact sheet presents high-level summary results of the Western Wind and Solar Integration Study Phase 2, which examined operational impacts of high penetrations of variable renewable generation in the West.

Not Available

2013-09-01T23:59:59.000Z

10

Western Wind and Solar Integration Study: Phase 2 (Presentation)  

SciTech Connect (OSTI)

This presentation summarizes the scope and results of the Western Wind and Solar Integration Study Phase 2, which examined operational impacts of high penetrations of variable renewable generation in the West.

Lew, D.; Brinkman, G.; Ibanez, E.; Lefton, S.; Kumar, N.; Venkataraman, S.; Jordan, G.

2013-09-01T23:59:59.000Z

11

The Western Wind and Solar Integration Study Phase 2  

SciTech Connect (OSTI)

The electric grid is a highly complex, interconnected machine, and changing one part of the grid can have consequences elsewhere. Adding wind and solar affects the operation of the other power plants and adding high penetrations can induce cycling of fossil-fueled generators. Cycling leads to wear-and-tear costs and changes in emissions. Phase 2 of the Western Wind and Solar Integration Study (WWSIS-2) evaluated these costs and emissions and simulated grid operations for a year to investigate the detailed impact of wind and solar on the fossil-fueled fleet. This built on Phase 1, one of the largest wind and solar integration studies ever conducted, which examined operational impacts of high wind and solar penetrations in the West.

Lew, D.; Brinkman, G.; Ibanez, E.; Hodge, B. M.; Hummon, M.; Florita, A.; Heaney, M.

2013-09-01T23:59:59.000Z

12

Wind Turbine Drivetrain Condition Monitoring During GRC Phase 1 and Phase 2 Testing  

SciTech Connect (OSTI)

This report will present the wind turbine drivetrain condition monitoring (CM) research conducted under the phase 1 and phase 2 Gearbox Reliability Collaborative (GRC) tests. The rationale and approach for this drivetrain CM research, investigated CM systems, test configuration and results, and a discussion on challenges in wind turbine drivetrain CM and future research and development areas, will be presented.

Sheng, S.; Link, H.; LaCava, W.; van Dam, J.; McNiff, B.; Veers, P.; Keller, J.; Butterfield, S.; Oyague, F.

2011-10-01T23:59:59.000Z

13

Western Wind and Solar Integration Study Phase 2 (Presentation)  

SciTech Connect (OSTI)

This presentation accompanies Phase 2 of the Western Wind and Solar Integration Study, a follow-on to Phase 1, which examined the operational impacts of high penetrations of variable renewable generation on the electric power system in the West and was one of the largest variable generation studies to date. High penetrations of variable generation can induce cycling of fossil-fueled generators. Cycling leads to wear-and-tear costs and changes in emissions. Phase 2 calculated these costs and emissions, and simulated grid operations for a year to investigate the detailed impact of variable generation on the fossil-fueled fleet. The presentation highlights the scope of the study and results.

Lew, D.; Brinkman, G.; Ibanez, E.; Kumar, N.; Lefton, S.; Jordan, G.; Venkataraman, S.; King, J.

2013-06-01T23:59:59.000Z

14

The Western Wind and Solar Integration Study Phase 2 (Fact Sheet...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

The Western Wind and Solar Integration Study Phase 2 An examination of how wind and solar power affect operations, costs, and emissions from fossil-fueled generators The electric...

15

Appendix I3-1 to Wind HUI Initiative 1: AWST-WindNET-Phase 1 Final Report  

SciTech Connect (OSTI)

This report is an appendix to the Hawaii WindHUI efforts to develop and operationalize short-term wind forecasting and wind ramp event forecasting capabilities. The report summarizes the WindNET Phase 1 efforts on the Big Island of Hawaii and includes descriptions of modeling methodologies, use of field validation data, results and recommendations. The objective of the WindNET project was to investigate the improvement that could be obtained in short-term wind power forecasting for wind generation facilities operating on the island grids operated by Hawaiian Electric Companies through the use of atmospheric sensors deployed at targeted locations. WindNET is envisioned as a multiphase project that will address the short-term wind forecasting issues of all of the wind generation facilities on the all of the Hawaiian Electric Companies' island grid systems. The first phase of the WindNET effort (referred to as WindNET-1) was focused on the wind generation facilities on the Big Island of Hawaii. With complex terrain and marine environment, emphasis was on improving the 0 to 6 hour forecasts of wind power ramps and periods of wind variability, with a particular interest in the intra-hour (0-1 hour) look-ahead period. The WindNET project was built upon a foundation that was constructed with the results from a previously completed observation targeting study for the Big Island that was conducted as part of a project supported by the National Renewable Energy Laboratory (NREL) and interactions with the western utilities. The observational targeting study provided guidance on which variables to measure and at what locations to get the most improvement in forecast performance at a target forecast site. The recommendations of the observation targeting study were based on the application two techniques: (1) an objective method called ensemble sensitivity analysis (ESA) (Ancell and Hakim, 2007; Torn and Hakim, 2008; Zack et al, 2010); and (2) a subjective method based on a diagnostic analysis of large ramp events. The analysis was completed for both the wind farm on the southern tip of the Big Island and on the northern tip of the island. The WindNET project was designed to also deploy sensors to validate the Big Island observational targeting study and enhance operator's understanding of predominate causes of wind variability conditions at the wind facilities. Compromises had to be made with the results from the observation targeting study to accommodate project resource limitations, availability of suitable sites, and other factors. To focus efforts, field sensor deployment activities focused on the wind facility on the southern point of Big Island.

John Zack

2012-07-15T23:59:59.000Z

16

Top Crop Wind Farm (Phase II) | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home5b9fcbce19 No revisionEnvReviewNonInvasiveExplorationUT-gTaguspark JumpDetective: TerminologyTolerableTop Crop Wind Farm (Phase

17

Condon Wind Project phase II | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Office of InspectorConcentratingRenewable Solutions LLC Jump to: navigation,AreaHigh School Wind Project Jump to:phase

18

Pole-phase modulated toroidal winding for an induction machine  

DOE Patents [OSTI]

A stator (10) for an induction machine for a vehicle has a cylindrical core (12) with inner and outer slots (26, 28) extending longitudinally along the inner and outer peripheries between the end faces (22, 24). Each outer slot is associated with several adjacent inner slots. A plurality of toroidal coils (14) are wound about the core and laid in the inner and outer slots. Each coil occupies a single inner slot and is laid in the associated outer slot thereby minimizing the distance the coil extends from the end faces and minimizing the length of the induction machine. The toroidal coils are configured for an arbitrary pole phase modulation wherein the coils are configured with variable numbers of phases and poles for providing maximum torque for cranking and switchable to a another phase and pole configuration for alternator operation. An adaptor ring (36) circumferentially positioned about the stator improves mechanical strength, and provides a coolant channel manifold (34) for removing heat produced in stator windings during operation.

Miller, John Michael (Saline, MI); Ostovic, Vlado (Weinheim, DE)

1999-11-02T23:59:59.000Z

19

Offshore Code Comparison Collaboration, Continuation within IEA Wind Task 30: Phase II Results Regarding a Floating Semisubmersible Wind System: Preprint  

SciTech Connect (OSTI)

Offshore wind turbines are designed and analyzed using comprehensive simulation tools (or codes) that account for the coupled dynamics of the wind inflow, aerodynamics, elasticity, and controls of the turbine, along with the incident waves, sea current, hydrodynamics, and foundation dynamics of the support structure. This paper describes the latest findings of the code-to-code verification activities of the Offshore Code Comparison Collaboration, Continuation (OC4) project, which operates under the International Energy Agency (IEA) Wind Task 30. In the latest phase of the project, participants used an assortment of simulation codes to model the coupled dynamic response of a 5-MW wind turbine installed on a floating semisubmersible in 200 m of water. Code predictions were compared from load-case simulations selected to test different model features. The comparisons have resulted in a greater understanding of offshore floating wind turbine dynamics and modeling techniques, and better knowledge of the validity of various approximations. The lessons learned from this exercise have improved the participants? codes, thus improving the standard of offshore wind turbine modeling.

Robertson, A.; Jonkman, J.; Vorpahl, F.; Popko, W.; Qvist, J.; Froyd, L.; Chen, X.; Azcona, J.; Uzungoglu, E.; Guedes Soares, C.; Luan, C.; Yutong, H.; Pengcheng, F.; Yde, A.; Larsen, T.; Nichols, J.; Buils, R.; Lei, L.; Anders Nygard, T.; et al.

2014-03-01T23:59:59.000Z

20

Offshore Code Comparison Collaboration within IEA Wind Task 23: Phase IV Results Regarding Floating Wind Turbine Modeling; Preprint  

SciTech Connect (OSTI)

Offshore wind turbines are designed and analyzed using comprehensive simulation codes that account for the coupled dynamics of the wind inflow, aerodynamics, elasticity, and controls of the turbine, along with the incident waves, sea current, hydrodynamics, and foundation dynamics of the support structure. This paper describes the latest findings of the code-to-code verification activities of the Offshore Code Comparison Collaboration, which operates under Subtask 2 of the International Energy Agency Wind Task 23. In the latest phase of the project, participants used an assortment of codes to model the coupled dynamic response of a 5-MW wind turbine installed on a floating spar buoy in 320 m of water. Code predictions were compared from load-case simulations selected to test different model features. The comparisons have resulted in a greater understanding of offshore floating wind turbine dynamics and modeling techniques, and better knowledge of the validity of various approximations. The lessons learned from this exercise have improved the participants' codes, thus improving the standard of offshore wind turbine modeling.

Jonkman, J.; Larsen, T.; Hansen, A.; Nygaard, T.; Maus, K.; Karimirad, M.; Gao, Z.; Moan, T.; Fylling, I.

2010-04-01T23:59:59.000Z

Note: This page contains sample records for the topic "wind phase bring" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


21

The Western Wind and Solar Integration Study Phase 2 (Fact Sheet), NREL (National Renewable Energy Laboratory)  

Broader source: Energy.gov [DOE]

This is one-page, two-sided fact sheet presents high-level summary results of the Western Wind and Solar Integration Study Phase 2, which examined operational impacts of high penetrations of variable renewable generation in the West.

22

Modeling wind forcing in phase resolving simulation of nonlinear wind waves  

E-Print Network [OSTI]

Wind waves in the ocean are a product of complex interaction of turbulent air flow with gravity driven water surface. The coupling is strong and the waves are non-stationary, irregular and highly nonlinear, which restricts ...

Kalmikov, Alexander G

2010-01-01T23:59:59.000Z

23

Enertech 15-kW wind-system development. Phase II. Fabrication and test  

SciTech Connect (OSTI)

This Phase II report presents a description of the Enertech 15 kW prototype wind system hardware fabrication; results of component tests; and results of preliminary testing conducted at Norwich, VT and the RF Wind Energy Research Center. In addition, the assembly sequence is documented. During testing, the unit experienced several operational problems, but testing proved the design concept and demonstrated the system's ability to meet the contract design specifications for power output.

Zickefoose, C.R.

1982-12-01T23:59:59.000Z

24

North Wind Power Company 2-kilowatt high-reliability wind system. Phase I. Design and analysis. Technical report  

SciTech Connect (OSTI)

Results are presented of Phase I of a program to design a 2kW high reliability wind turbine for use in remote locations and harsh environments. In phase I of the program, a predecessor of the proposed design was procured and tested in a wind tunnel and in the freestream to observe operational characteristics. An analytical procedure was developed for designing and modelling the proposed variable axis rotor control system (VARCS). This was then verified by extensive mobile testing of pre-prototype components. A low speed three phase alternator with a Lundel type rotor was designed. Prototypes were fabricated and tested to refine calculation procedures and develop an effective alternator with appropriate characteristics. A solid state field switching regulator was designed and tested successfully. All necessary support elements were designed and engineered. A complete analysis of system reliability was conducted including failure mode and effects analyses and reliability, maintenance and safety analyses. Cost estimates were performed for a mature product in production rates of 1000 per year. Analysis and testing conducted throughout the first phase is included.

Mayer, D J; Norton, Jr, J H

1981-07-01T23:59:59.000Z

25

Maple Ridge Wind Farm phase II | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home5b9fcbce19 No revision hasInformation Earth's Heat JumpIncMAKGalway Bay(HeldManhattan, Kansas: EnergyNo companiesa WindMaple

26

Victory Gardens Phase IV Wind Farm I | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home5b9fcbce19 NoPublic Utilities Address: 160 East 300 South Place: Salt Lake City, UtahResources/FullGarden Wind Farm I JumpIV

27

Victory Gardens Phase IV Wind Farm II | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home5b9fcbce19 NoPublic Utilities Address: 160 East 300 South Place: Salt Lake City, UtahResources/FullGarden Wind Farm I JumpIVFarm

28

Caprock Wind Ranch phase II | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Office of InspectorConcentrating SolarElectricEnergyCTBarreis aCallahan DivideCannon (Various) Wind Farm Jumpphase II

29

Milford Wind Corridor Phase II | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home5b9fcbce19 No revision hasInformation Earth's HeatMexico: Energy Resources JumpMicrelBirds Jump to: navigation, searchWind

30

Moulton Chandler Hills Wind Farm Phase II | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home5b9fcbce19 No revision hasInformation Earth's HeatMexico: EnergyMithun Jump to:Moe WindMontMoraine IIMorroMoulton Chandler

31

Solano Wind Project Phase I | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home5b9fcbce19 No revisionEnvReviewNonInvasiveExplorationUT-g Grant ofRichardtonManagement,SmartestEnergynotSola60County WindI Jump

32

Milford Wind Corridor Phase I (Clipper) Wind Farm | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home5b9fcbce19 No revision hasInformation Earth's HeatMexico: Energy Resources JumpMicrelBirds Jump to: navigation, search Wind

33

Berry phase and pseudospin winding number in bilayer graphene  

E-Print Network [OSTI]

Ever since the novel quantum Hall effect in bilayer graphene was discovered, and explained by a Berry phase of 2? [ K. S. Novoselov et al. Nat. Phys. 2 177 (2006)], it has been widely accepted that the low-energy electronic ...

Marzari, Nicola

34

Sweetwater Phase III Wind Farm | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home5b9fcbce19 No revisionEnvReviewNonInvasiveExplorationUT-g GrantAtlas (PACAOpenSummersideJump to:Jumpa FacilitySweetwater Phase

35

Fowler Ridge Wind Farm Phase I (Vestas) | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home5b9fcbce19 No revision has beenFfe2fb55-352f-473b-a2dd-50ae8b27f0a6Theoretical vsFlintFluxInputDam Pool Power AgencyPhase I

36

Offshore Code Comparison Collaboration Continuation (OC4), Phase I - Results of Coupled Simulations of an Offshore Wind Turbine with Jacket Support Structure: Preprint  

SciTech Connect (OSTI)

This paper presents the results of the IEA Wind Task 30, Offshore Code Comparison Collaboration Continuation Project - Phase 1.

Popko, W.; Vorpahl, F.; Zuga, A.; Kohlmeier, M.; Jonkman, J.; Robertson, A.; Larsen, T. J.; Yde, A.; Saetertro, K.; Okstad, K. M.; Nichols, J.; Nygaard, T. A.; Gao, Z.; Manolas, D.; Kim, K.; Yu, Q.; Shi, W.; Park, H.; Vasquez-Rojas, A.

2012-03-01T23:59:59.000Z

37

Integrating High Penetrations of Solar in the Western United States: Results of the Western Wind and Solar Integration Study Phase 2 (Poster)  

SciTech Connect (OSTI)

This poster presents a summary of the results of the Western Wind and Solar Integration Study Phase 2.

Bird, L.; Lew, D.

2013-10-01T23:59:59.000Z

38

Offshore Code Comparison Collaboration, Continuation: Phase II Results of a Floating Semisubmersible Wind System: Preprint  

SciTech Connect (OSTI)

Offshore wind turbines are designed and analyzed using comprehensive simulation tools that account for the coupled dynamics of the wind inflow, aerodynamics, elasticity, and controls of the turbine, along with the incident waves, sea current, hydrodynamics, and foundation dynamics of the support structure. The Offshore Code Comparison Collaboration (OC3), which operated under the International Energy Agency (IEA) Wind Task 23, was established to verify the accuracy of these simulation tools [1]. This work was then extended under the Offshore Code Comparison Collaboration, Continuation (OC4) project under IEA Wind Task 30 [2]. Both of these projects sought to verify the accuracy of offshore wind turbine dynamics simulation tools (or codes) through code-to-code comparison of simulated responses of various offshore structures. This paper describes the latest findings from Phase II of the OC4 project, which involved the analysis of a 5-MW turbine supported by a floating semisubmersible. Twenty-two different organizations from 11 different countries submitted results using 24 different simulation tools. The variety of organizations contributing to the project brought together expertise from both the offshore structure and wind energy communities. Twenty-one different load cases were examined, encompassing varying levels of model complexity and a variety of metocean conditions. Differences in the results demonstrate the importance and accuracy of the various modeling approaches used. Significant findings include the importance of mooring dynamics to the mooring loads, the role nonlinear hydrodynamic terms play in calculating drift forces for the platform motions, and the difference between global (at the platform level) and local (at the member level) modeling of viscous drag. The results from this project will help guide development and improvement efforts for these tools to ensure that they are providing the accurate information needed to support the design and analysis needs of the offshore wind community.

Robertson, A.; Jonkman, J.; Musial, W.; Vorpahl, F.; Popko, W.

2013-11-01T23:59:59.000Z

39

The Production Phase for the National Compact Stellarator Experiment (NCSX) Modular Coil Winding Forms  

SciTech Connect (OSTI)

The production phase for the NCSX modular coil winding forms has been underway for approximately one year as of this date. This is the culmination of R&D efforts performed in 2001-4. The R&D efforts included limited manufacturing studies while NCSX was in its conceptual design phase followed by more detailed manufacturing studies by two teams which included the fabrication of full scale prototypes. This provided the foundation necessary for the production parts to be produced under a firm price and schedule contract that was issued in September 2004. This paper will describe the winding forms, the production team and team management, details of the production process, and the achievements for the first year.

Heitzenroeder, P.; Brown, T.; Neilson, G.; Malinowski, F.; Sutton, L.; Nelson, B.; Williamson, D.; Horton, N.; Goddard, B.; Edwards, J.; Bowling, K.; Hatzilias, K.

2005-10-20T23:59:59.000Z

40

Western Wind and Solar Integration Study Phase 3 -- Frequency Response and Transient Stability (Report and Executive Summary)  

SciTech Connect (OSTI)

The primary objectives of Phase 3 of the Western Wind and Solar Integration Study (WWSIS-3) were to examine the large-scale transient stability and frequency response of the Western Interconnection with high wind and solar penetration, and to identify means to mitigate any adverse performance impacts via transmission reinforcements, storage, advanced control capabilities, or other alternatives.

Miller, N. W.; Shao, M.; Pajic, S.; D'Aquila, R.

2014-12-01T23:59:59.000Z

Note: This page contains sample records for the topic "wind phase bring" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


41

Phase resolved X-ray spectroscopy of HDE288766: Probing the wind of an extreme Of+/WNLha star  

E-Print Network [OSTI]

HDE228766 is a very massive binary system hosting a secondary component, which is probably in an intermediate evolutionary stage between an Of supergiant and an WN star. The wind of this star collides with the wind of its O8 II companion, leading to relatively strong X-ray emission. Measuring the orbital variations of the line-of-sight absorption toward the X-ray emission from the wind-wind interaction zone yields information on the wind densities of both stars. X-ray spectra have been collected at three key orbital phases to probe the winds of both stars. Optical photometry has been gathered to set constraints on the orbital inclination of the system. The X-ray spectra reveal prominent variations of the intervening column density toward the X-ray emission zone, which are in line with the expectations for a wind-wind collision. We use a toy model to set constraints on the stellar wind parameters by attempting to reproduce the observed variations of the relative fluxes and wind optical depths at 1 keV. The lac...

Rauw, G; Naze, Y; Eenens, P; Manfroid, J; Flores, C A

2014-01-01T23:59:59.000Z

42

Structural Composites Industries 4 kilowatt wind system development. Phase I: design and analysis, technical report  

SciTech Connect (OSTI)

A 4 kW small wind energy conversion system (SWECS) has been designed for residential applications in which relatively low (10 mph) mean annual wind speeds prevail. The objectives were to develop such a machine to produce electrical energy at 6 cents per kWh while operating in parallel with a utility grid or auxiliary generator. The Phase I effort began in November, 1979 and was carried through the Final Design Review in February 1981. During this period extensive trade, optimization and analytical studies were performed in an effort to provide the optimum machine to best meet the objectives. Certain components, systems and manufacturing processes were tested and evaluated and detail design drawings were produced. The resulting design is a 31-foot diameter horizontal axis downwind machine rated 5.7 kW and incorporating the following unique features: Composite Blades; Free-Standing Composite Tower; Torque-Actuated Blade Pitch Control. The design meets or exceeds all contract requirements except that for cost of energy. The target 6 cents per kWh will be achieved in a mean wind speed slightly below 12 mph instead of the specified 10 mph.

Malkine, N.; Bottrell, G.; Weingart, O.

1981-05-01T23:59:59.000Z

43

Multi-star multi-phase winding for a high power naval propulsion machine with low ripple torques  

E-Print Network [OSTI]

Permanent Magnet (SMPM) Machine designed for naval propulsion is proposed. The design objective of this high if the magnetic couplings between the stars is weak. The 4-star 3-phase winding proposed in this paper is designed star being magnetically shifted by an angle of 15 degrees. This 4-star 3-phase configuration allows

Boyer, Edmond

44

Operation of Concentrating Solar Power Plants in the Western Wind and Solar Integration Phase 2 Study  

SciTech Connect (OSTI)

The Western Wind and Solar Integration Study (WWSIS) explores various aspects of the challenges and impacts of integrating large amounts of wind and solar energy into the electric power system of the West. The phase 2 study (WWSIS-2) is one of the first to include dispatchable concentrating solar power (CSP) with thermal energy storage (TES) in multiple scenarios of renewable penetration and mix. As a result, it provides unique insights into CSP plant operation, grid benefits, and how CSP operation and configuration may need to change under scenarios of increased renewable penetration. Examination of the WWSIS-2 results indicates that in all scenarios, CSP plants with TES provides firm system capacity, reducing the net demand and the need for conventional thermal capacity. The plants also reduced demand during periods of short-duration, high ramping requirements that often require use of lower efficiency peaking units. Changes in CSP operation are driven largely by the presence of other solar generation, particularly PV. Use of storage by the CSP plants increases in the higher solar scenarios, with operation of the plant often shifted to later in the day. CSP operation also becomes more variable, including more frequent starts. Finally, CSP output is often very low during the day in scenarios with significant PV, which helps decrease overall renewable curtailment (over-generation). However, the configuration studied is likely not optimal for High Solar Scenario implying further analysis of CSP plant configuration is needed to understand its role in enabling high renewable scenarios in the Western United States.

Denholm, P.; Brinkman, G.; Lew, D.; Hummon, M.

2014-05-01T23:59:59.000Z

45

Enertech 2-kW high-reliability wind system. Phase II. Fabrication and testing  

SciTech Connect (OSTI)

A high-reliability wind machine rated for 2 kW in a 9 m/s wind has been developed. Activities are summarized that are centered on the fabrication and testing of prototypes of the wind machine. The test results verified that the wind machine met the power output specification and that the variable-pitch rotor effectively controlled the rotor speed for wind speeds up to 50 mph. Three prototypes of the wind machine were shipped to the Rocky Flats test center in September through November of 1979. Work was also performed to reduce the start-up wind speed. The start-up wind speed to the Enertech facility has been reduced to 4.5 m/s.

Cordes, J A; Johnson, B A

1981-06-01T23:59:59.000Z

46

Observation Targeting for the Tehachapi Pass and Mid-Columbia Basin: WindSENSE Phase III Project Summary Report  

SciTech Connect (OSTI)

The overall goal of this multi-phased research project known as WindSENSE is to develop an observation system deployment strategy that would improve wind power generation forecasts. The objective of the deployment strategy is to produce the maximum benefit for 1- to 6-hour ahead forecasts of wind speed at hub-height ({approx}80 m). In Phase III of the project, the focus was on the Mid-Columbia Basin region which encompasses the Bonneville Power Administration (BPA) wind generation area shown in Figure 1 that includes Klondike, Stateline, and Hopkins Ridge wind plants. The typical hub height of a wind turbine is approximately 80-m above ground level (AGL). So it would seem that building meteorological towers in the region upwind of a wind generation facility would provide data necessary to improve the short-term forecasts for the 80-m AGL wind speed. However, this additional meteorological information typically does not significantly improve the accuracy of the 0- to 6-hour ahead wind power forecasts because processes controlling wind variability change from day-to-day and, at times, from hour-to-hour. It is also important to note that some processes causing significant changes in wind power production function principally in the vertical direction. These processes will not be detected by meteorological towers at off-site locations. For these reasons, it is quite challenging to determine the best type of sensors and deployment locations. To address the measurement deployment problem, Ensemble Sensitivity Analysis (ESA) was applied in the Phase I portion of the WindSENSE project. The ESA approach was initially designed to produce spatial fields that depict the sensitivity of a forecast metric to a set of prior state variables selected by the user. The best combination of variables and locations to improve the forecast was determined using the Multiple Observation Optimization Algorithm (MOOA) developed in Phase I. In Zack et al. (2010a), the ESA-MOOA approach was applied and evaluated for the wind plants in the Tehachapi Pass region for a period during the warm season. That research demonstrated that forecast sensitivity derived from the dataset was characterized by well-defined, localized patterns for a number of state variables such as the 80-m wind and the 25-m to 1-km temperature difference prior to the forecast time. The sensitivity patterns produced as part of the Tehachapi Pass study were coherent and consistent with the basic physical processes that drive wind patterns in the Tehachapi area. In Phase II of the WindSENSE project, the ESA-MOOA approach was extended and applied to the wind plants located in the Mid-Columbia Basin wind generation area of Washington-Oregon during the summer and to the Tehachapi Pass region during the winter. The objective of this study was to identify measurement locations and variables that have the greatest positive impact on the accuracy of wind forecasts in the 0- to 6-hour look-ahead periods for the two regions and to establish a higher level of confidence in ESA-MOOA for mesoscale applications. The detailed methodology and results are provided in separate technical reports listed in the publications section below. Ideally, the data assimilation scheme used in the Phase III experiments would have been based upon an ensemble Kalman filter (EnKF) that was similar to the ESA method used to diagnose the Mid-Columbia Basin sensitivity patterns in the previous studies. However, running an EnKF system at high resolution is impractical because of the very high computational cost. Thus, it was decided to use a three-dimensional variational (3DVAR) analysis scheme that is less computationally intensive. The objective of this task is to develop an observation system deployment strategy for the mid Columbia Basin (i.e. the BPA wind generation region) that is designed to produce the maximum benefit for 1- to 6-hour ahead forecasts of hub-height ({approx}80 m) wind speed with a focus on periods of large changes in wind speed. There are two tasks in the current project effort designed to validate

Hanley, D

2011-10-22T23:59:59.000Z

47

White Knights: Will wind and solar come to the rescue of a looming capacity gap from nuclear phase-out or  

E-Print Network [OSTI]

rapidly but faces grid integration problems; yet the cost of PV solar panels has plummeted thanks1 White Knights: Will wind and solar come to the rescue of a looming capacity gap from nuclear renewable power generation from wind and solar as a non- emitting alternative to replace a nuclear phase

Paris-Sud XI, Université de

48

Kaman 40-kW wind system. Phase II. Fabrication and tests. Volume II. Technical report  

SciTech Connect (OSTI)

A program is underway to design, fabricate and test a horizontal axis Wind Turbine Generator (WTG) capable of producing 40 kW electrical output power in a 20 mph wind. Results are presented of the program effort covering fabrication and testing of the Wing Turbine Generator designed earlier. A minimum of difficulties were experienced during fabrication and, after successful completion of Contractor tests through 20 mph winds, the WTG was shipped to Rocky Flats, assembled and operated there. The 40 kW WTG is presently undergoing extended tests at Rockwell's Rocky Flats test facility.

Howes, H; Perley, R

1981-01-01T23:59:59.000Z

49

DOE SBIR Phase II Final Technical Report - Assessing Climate Change Effects on Wind Energy  

SciTech Connect (OSTI)

Specialized Vertum Partners software tools were prototyped, tested and commercialized to allow wind energy stakeholders to assess the uncertainties of climate change on wind power production and distribution. This project resulted in three commercially proven products and a marketing tool. The first was a Weather Research and Forecasting Model (WRF) based resource evaluation system. The second was a web-based service providing global 10m wind data from multiple sources to wind industry subscription customers. The third product addressed the needs of our utility clients looking at climate change effects on electricity distribution. For this we collaborated on the Santa Ana Wildfire Threat Index (SAWTi), which was released publicly last quarter. Finally to promote these products and educate potential users we released “Gust or Bust”, a graphic-novel styled marketing publication.

Whiteman, Cameron; Capps, Scott

2014-11-05T23:59:59.000Z

50

Operational Impacts of Wind Energy Resources in the Bonneville Power Administration Control Area - Phase I Report  

SciTech Connect (OSTI)

This report presents a methodology developed to study the future impact of wind on BPA power system load following and regulation requirements. The methodology uses historical data and stochastic processes to simulate the load balancing processes in the BPA power system, by mimicking the actual power system operations. Therefore, the results are close to reality, yet the study based on this methodology is convenient to conduct. Compared with the proposed methodology, existing methodologies for doing similar analysis include dispatch model simulation and standard deviation evaluation on load and wind data. Dispatch model simulation is constrained by the design of the dispatch program, and standard deviation evaluation is artificial in separating the load following and regulation requirements, both of which usually do not reflect actual operational practice. The methodology used in this study provides not only capacity requirement information, it also analyzes the ramp rate requirements for system load following and regulation processes. The ramp rate data can be used to evaluate generator response/maneuverability requirements, which is another necessary capability of the generation fleet for the smooth integration of wind energy. The study results are presented in an innovative way such that the increased generation capacity or ramp requirements are compared for two different years, across 24 hours a day. Therefore, the impact of different levels of wind energy on generation requirements at different times can be easily visualized.

Makarov, Yuri V.; Lu, Shuai

2008-07-15T23:59:59.000Z

51

Nationwide: Southeast Propane Autogas Development Program Brings...  

Energy Savers [EERE]

Nationwide: Southeast Propane Autogas Development Program Brings 1200 Propane Vehicles to the Road Nationwide: Southeast Propane Autogas Development Program Brings 1200 Propane...

52

Low Wind Speed Technology Phase I: Evaluation of Design and Construction Approaches for Economical Hybrid Steel/Concrete Wind Turbine Towers; BERGER/ABAM Engineers Inc.  

SciTech Connect (OSTI)

This fact sheet describes a subcontract with BERGER/ABAM Engineers Inc. to study the economic feasibility of concrete and hybrid concrete/steel wind turbine towers.

Not Available

2006-03-01T23:59:59.000Z

53

Ponnequin phase I and II (PSCo) Wind Farm | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home5b9fcbce19 No revision hasInformation Earth'sOklahoma/GeothermalOrangePeru:Job Corp Jump PartnerPonder, Texas:II (PSCo) Wind

54

Reduced vibration motor winding arrangement  

DOE Patents [OSTI]

An individual phase winding arrangement having a sixty electrical degree phase belt width for use with a three phase motor armature includes a delta connected phase winding portion and a wye connected phase winding portion. Both the delta and wye connected phase winding portions have a thirty electrical degree phase belt width. The delta and wye connected phase winding portions are each formed from a preselected number of individual coils each formed, in turn, from an unequal number of electrical conductor turns in the approximate ratio of {radical}3. The individual coils of the delta and wye connected phase winding portions may either be connected in series or parallel. This arrangement provides an armature winding for a three phase motor which retains the benefits of the widely known and utilized thirty degree phase belt concept, including improved mmf waveform and fundamental distribution factor, with consequent reduced vibrations and improved efficiency. 4 figs.

Slavik, C.J.; Rhudy, R.G.; Bushman, R.E.

1997-11-11T23:59:59.000Z

55

Rancher Brings Wind Power to Arizona | Department of Energy  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE:Year in3.pdfEnergyDepartmentEnergy Data Reporting Guide RadiationRafael L. BrasRancher

56

Wind Farm Brings Clean, Affordable Energy to Alaskan Cooperative |  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious RankCombustion |Energy Usage »of| Department ofDepartment ofAnnouncementAugust 30, 2007WhoPower3Department

57

Wind farm electrical system  

DOE Patents [OSTI]

An approach to wind farm design using variable speed wind turbines with low pulse number electrical output. The output of multiple wind turbines are aggregated to create a high pulse number electrical output at a point of common coupling with a utility grid network. Power quality at each individual wind turbine falls short of utility standards, but the aggregated output at the point of common coupling is within acceptable tolerances for utility power quality. The approach for aggregating low pulse number electrical output from multiple wind turbines relies upon a pad mounted transformer at each wind turbine that performs phase multiplication on the output of each wind turbine. Phase multiplication converts a modified square wave from the wind turbine into a 6 pulse output. Phase shifting of the 6 pulse output from each wind turbine allows the aggregated output of multiple wind turbines to be a 24 pulse approximation of a sine wave. Additional filtering and VAR control is embedded within the wind farm to take advantage of the wind farm's electrical impedence characteristics to further enhance power quality at the point of common coupling.

Erdman, William L.; Lettenmaier, Terry M.

2006-07-04T23:59:59.000Z

58

Michigan, Missouri: Innovative Mobile Exhibits Bring Electric...  

Broader source: Energy.gov (indexed) [DOE]

EERE has supported two innovative projects bringing hands-on education on electric drive vehicles to students. As part of a larger educational Recovery Act project, Michigan...

59

Offshore Code Comparison Collaboration within IEA Wind Annex XXIII: Phase III Results Regarding Tripod Support Structure Modeling  

SciTech Connect (OSTI)

Offshore wind turbines are designed and analyzed using comprehensive simulation codes. This paper describes the findings of code-to-code verification activities of the IEA Offshore Code Comparison Collaboration.

Nichols, J.; Camp, T.; Jonkman, J.; Butterfield, S.; Larsen, T.; Hansen, A.; Azcona, J.; Martinez, A.; Munduate, X.; Vorpahl, F.; Kleinhansl, S.; Kohlmeier, M.; Kossel, T.; Boker, C.; Kaufer, D.

2009-01-01T23:59:59.000Z

60

Different Virtual Stator Winding Configurations of Open-End Winding Five-Phase PM Machines for Wide Speed Range without Flux Weakening Operation  

E-Print Network [OSTI]

Permanent Magnet (PM) Machines whose excitation is insured by PM Magnet are even so used in spite is a solution. Moreover, with the recent increase of rare-earth Permanent Magnet, the use of a supplementary VSI of wye-coupled three phase drive supplied by only one 48V-VSI. The paper is considering simultaneously

Paris-Sud XI, Université de

Note: This page contains sample records for the topic "wind phase bring" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


61

Wind derivatives: hedging wind risk:.  

E-Print Network [OSTI]

??Wind derivatives are financial contracts that can be used to hedge or mitigate wind risk. In this thesis, the focus was on pricing these wind… (more)

Hoyer, S.A.

2013-01-01T23:59:59.000Z

62

Solar Wind Sources in the Late Declining Phase of Cycle 23: Effects of the Weak Solar Polar Field on High Speed Streams  

E-Print Network [OSTI]

Isenberg, P.A. (eds. ) Solar Wind Nine, AIP Conf. Proc. 471,AT SOLAR MINIMUM Solar Wind Sources in the Late Decliningfor their high speed solar wind streams that dominate the

2009-01-01T23:59:59.000Z

63

2014 Sandia Wind Turbine Blade Workshop  

Broader source: Energy.gov [DOE]

The U.S. Energy Department's Sandia National Laboratories will host its 2014 Sandia Wind Turbine Blade Workshop at the Marriott Pyramid North in Albuquerque, New Mexico. The workshop provides a unique, blade focused collaborative forum that will bring together wind energy leaders from industry, academia, and government. Stay tuned for updates. Information regarding past Wind Workshops can be found at: http://windworkshops.sandia.gov/.

64

Impacts of large quantities of wind energy on the electric power system  

E-Print Network [OSTI]

Wind energy has been surging on a global scale. Significant penetration of wind energy is expected to take place in the power system, bringing new challenges because of the variability and uncertainty of this renewable ...

Yao, Yuan, S.M. Massachusetts Institute of Technology

2011-01-01T23:59:59.000Z

65

Breakout Session: Bringing Solutions to the Solar Industry: Startups...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Bringing Solutions to the Solar Industry: Startups, Technology Development and Market Entry Breakout Session: Bringing Solutions to the Solar Industry: Startups, Technology...

66

Bringing Computing Power to the People  

E-Print Network [OSTI]

Bringing Computing Power to the People Honors Seminar Fall 2005 Arun Chauhan #12;Honors Seminar, Fall 2005 Computing Power to the People Collaborators Indiana Joshua Hursey Andrew Lumsdaine Pooja to the People Interface #12;Honors Seminar, Fall 2005 Computing Power to the People Interacting with Computers

Chauhan, Arun

67

BRINGING AROUND REAL CHANGE JOBS. ECONOMY. ENVIRONMENT.  

E-Print Network [OSTI]

BRINGING AROUND REAL CHANGE JOBS. ECONOMY. ENVIRONMENT. INNOVATIVE ENERGY EFFICIENCY FINANCE stewardship of public resources BENEFIT LOCAL COMMUNITY THROUGH JOB CREATION BENEFITS OF ENERGY EFFICIENCY SOLUTIONS #12;K-12 school districts spend more than $8B annually on energy Energy costs are second only

California at Davis, University of

68

WIND ENERGY Wind Energ. (2014)  

E-Print Network [OSTI]

WIND ENERGY Wind Energ. (2014) Published online in Wiley Online Library (wileyonlinelibrary Correspondence M. Wächter, ForWind-Center for Wind Energy Research, Institute of Physics, Carl Von Ossietzky on the operation of wind energy converters (WECs) imposing different risks especially in terms of highly dynamic

Peinke, Joachim

69

Winding for linear pump  

DOE Patents [OSTI]

A winding and method of winding for a submersible linear pump for pumping liquid sodium is disclosed. The pump includes a stator having a central cylindrical duct preferably vertically aligned. The central vertical duct is surrounded by a system of coils in slots. These slots are interleaved with magnetic flux conducting elements, these magnetic flux conducting elements forming a continuous magnetic field conduction path along the stator. The central duct has placed therein a cylindrical magnetic conducting core, this core having a cylindrical diameter less than the diameter of the cylindrical duct. The core once placed to the duct defines a cylindrical interstitial pumping volume of the pump. This cylindrical interstitial pumping volume preferably defines an inlet at the bottom of the pump, and an outlet at the top of the pump. Pump operation occurs by static windings in the outer stator sequentially conveying toroidal fields from the pump inlet at the bottom of the pump to the pump outlet at the top of the pump. The winding apparatus and method of winding disclosed uses multiple slots per pole per phase with parallel winding legs on each phase equal to or less than the number of slots per pole per phase. The slot sequence per pole per phase is chosen to equalize the variations in flux density of the pump sodium as it passes into the pump at the pump inlet with little or no flux and acquires magnetic flux in passage through the pump to the pump outlet.

Kliman, Gerald B. (Schenectady, NY); Brynsvold, Glen V. (San Jose, CA); Jahns, Thomas M. (Schenectady, NY)

1989-01-01T23:59:59.000Z

70

Comparison of API & IEC Standards for Offshore Wind Turbine Applications in the U.S. Atlantic Ocean: Phase II; March 9, 2009 - September 9, 2009  

SciTech Connect (OSTI)

This report compares two design guidelines for offshore wind turbines: Recommended Practice for Planning, Designing, and Constructing Fixed Offshore Platform Structures and the International Electrotechnical Commission 61400-3 Design Requirements for Offshore Wind Turbines.

Jha, A.; Dolan, D.; Gur, T.; Soyoz, S.; Alpdogan, C.

2013-01-01T23:59:59.000Z

71

WIND ENERGY Wind Energ. (2014)  

E-Print Network [OSTI]

in the near wake. In conclusion, WiTTS performs satisfactorily in the rotor region of wind turbine wakes under neutral stability. Copyright © 2014 John Wiley & Sons, Ltd. KEYWORDS wind turbine wake; wake model; self in wind farms along several rows and columns. Because wind turbines generate wakes that propagate downwind

2014-01-01T23:59:59.000Z

72

Cherokee Nation Enterprises Wind Energy Feasibility Study Final Report to U.S. DOE  

SciTech Connect (OSTI)

CNE has conducted a feasibility study on the Chilocco property in north-central Oklahoma since the grant award on July 20, 2003. This study has concluded that there is sufficient wind for a wind farm and that with the Production Tax Credits and Green Tags, there will be sufficient energy to, not only cover the costs of the Nation’s energy needs, but to provide a profit. CNE has developed a wind energy team and is working independently and with industry partners to bring its renewable energy resources to the marketplace. We are continuing with the next phase in conducting avian, cultural and transmission studies, as well as continuing to measure the wind with the SoDAR unit. Cherokee Nation Enterprises, Inc. is a wholly-owned corporation under Cherokee Nation and has managed the Department of Energy grant award since July 20, 2003. In summary, we have determined there is sufficient wind for a wind farm at the Chilocco property where Cherokee Nation owns approximately 4,275 acres. The primary goal would be more of a savings in light of the electricity used by Cherokee Nation and its entities which totals an estimated eight million dollars per year. Cherokee Nation Enterprises (CNE), working independently and with industry partners, plans to bring its renewable energy resources into the marketplace through a well-documented understanding of our undeveloped resource. Our plan is to cultivate this resource in a way that will ensure the development and use for our energy will be in an environmentally and culturally acceptable form.

Carol E. Wyatt

2006-04-30T23:59:59.000Z

73

Bringing Your Workplace Charging Story to Life  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE:YearRound-Up fromDepartmentTie Ltd: ScopeDepartment1,Energy For Persons Bringing Your Workplace

74

National Science Bowl Brings Best and Brightest to DC | Department...  

Broader source: Energy.gov (indexed) [DOE]

National Science Bowl Brings Best and Brightest to DC National Science Bowl Brings Best and Brightest to DC April 24, 2012 - 11:14am Addthis The National Science Bowl is the...

75

Rebates Bring Cool Air, Business to South Carolina | Department...  

Broader source: Energy.gov (indexed) [DOE]

Rebates Bring Cool Air, Business to South Carolina Rebates Bring Cool Air, Business to South Carolina July 8, 2010 - 11:10am Addthis Lindsay Gsell In the weeks leading up to the...

76

New Biorefinery Will Bring Jobs to Northeastern Oregon | Department...  

Broader source: Energy.gov (indexed) [DOE]

New Biorefinery Will Bring Jobs to Northeastern Oregon New Biorefinery Will Bring Jobs to Northeastern Oregon August 9, 2010 - 10:00am Addthis A computer-generate image shows the...

77

Factory Brings Solar Energy Jobs to Former Steel Town | Department...  

Broader source: Energy.gov (indexed) [DOE]

Factory Brings Solar Energy Jobs to Former Steel Town Factory Brings Solar Energy Jobs to Former Steel Town August 24, 2010 - 4:09pm Addthis An aerial view of AE Polysilicon's...

78

Wind Farm  

Office of Energy Efficiency and Renewable Energy (EERE)

The wind farm in Greensburg, Kansas, was completed in spring 2010, and consists of ten 1.25 megawatt (MW) wind turbines that supply enough electricity to power every house, business, and municipal...

79

Wasted Wind  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

why turbulent airflows are causing power losses and turbine failures in America's wind farms-and what to do about it April 1, 2014 Wasted Wind This aerial photo of Denmark's Horns...

80

Low Wind Speed Technology Phase II: Investigation of the Application of Medium-Voltage Variable-Speed Drive Technology to Improve the Cost of Energy from Low Wind Speed Turbines; Behnke, Erdman and Whitaker Engineering, Inc.  

SciTech Connect (OSTI)

This fact sheet describes a subcontract with Behnke, Erdman & Whitaker Engineering, Inc. to test the feasibility of applying medium-voltage variable-speed drive technology to low wind speed turbines.

Not Available

2006-03-01T23:59:59.000Z

Note: This page contains sample records for the topic "wind phase bring" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


81

Wind Energy  

Broader source: Energy.gov [DOE]

Presentation covers wind energy at the Federal Utility Partnership Working Group (FUPWG) meeting, held on November 18-19, 2009.

82

Low Wind Speed Turbine Project Phase II: The Application of Medium-Voltage Electrical Apparatus to the Class of Variable Speed Multi-Megawatt Low Wind Speed Turbines; 15 June 2004--30 April 2005  

SciTech Connect (OSTI)

Kilowatt ratings of modern wind turbines have progressed rapidly from 50 kW to 1,800 kW over the past 25 years, with 3.0- to 7.5-MW turbines expected in the next 5 years. The premise of this study is simple: The rapid growth of wind turbine power ratings and the corresponding growth in turbine electrical generation systems and associated controls are quickly making low-voltage (LV) electrical design approaches cost-ineffective. This report provides design detail and compares the cost of energy (COE) between commercial LV-class wind power machines and emerging medium-voltage (MV)-class multi-megawatt wind technology. The key finding is that a 2.5% reduction in the COE can be achieved by moving from LV to MV systems. This is a conservative estimate, with a 3% to 3.5% reduction believed to be attainable once purchase orders to support a 250-turbine/year production level are placed. This evaluation considers capital costs as well as installation, maintenance, and training requirements for wind turbine maintenance personnel. Subsystems investigated include the generator, pendant cables, variable-speed converter, and padmount transformer with switchgear. Both current-source and voltage-source converter/inverter MV topologies are compared against their low-voltage, voltage-source counterparts at the 3.0-, 5.0-, and 7.5-MW levels.

Erdman, W.; Behnke, M.

2005-11-01T23:59:59.000Z

83

An overview: Challenges in wind technology development  

SciTech Connect (OSTI)

Developing innovative wind turbine components and advanced turbine configurations is a primary focus for wind technology researchers. In their rush to bring these new components and systems to the marketplace, designers and developers should consider the lessons learned in the wind farms over the past 10 years. Experience has shown that a disciplined design approach is required that realistically accounts for the turbulence-induced loads, unsteady stall loading, and fatigue effects. This paper reviews past experiences and compares current modelling capabilities with experimental measurements in order to identify some of the knowledge gaps that challenge designers of advanced components and systems. 7 refs., 11 figs.

Thresher, R W; Hock, S M

1991-12-01T23:59:59.000Z

84

Wind turbine  

SciTech Connect (OSTI)

The improvement in a wind turbine comprises providing a tower with a freely liftable mount and adapting a nacelle which is fitted with a propeller windwheel consisting of a plurality of rotor blades and provided therein with means for conversion of wind energy to be shifted onto said mount attached to the tower. In case of a violent wind storm, the nacelle can be lowered down to the ground to protect the rotor blades from breakage due to the force of the wind. Required maintenance and inspection of the nacelle and replacement of rotor blades can be safely carried out on the ground.

Abe, M.

1982-01-19T23:59:59.000Z

85

Asymmetric Wolf-Rayet winds: implications for GRB afterglows  

E-Print Network [OSTI]

Recent observations of Wolf-Rayet (WR) binaries WR151 and WR155 infer that their stellar winds are asymmetric. We show that such asymmetries can alter the stellar-wind bubble structure, bringing the wind-termination shock closer to the WR star. If the wind asymmetry is caused by rotation, the wind density and distance to the wind-termination shock are both decreased along the rotation axis by a factor of a few for the observed equator-to-pole wind density ratio of WR151. If this asymmetry lasts until core-collapse the time taken to reach the wind-termination shock by supernova ejecta or a gamma-ray burst jet is reduced. This leads to a distorted structure of the supernova ejecta and makes it more likely a constant density environment is inferred from gamma-ray burst afterglow observations.

J. J. Eldridge

2007-01-25T23:59:59.000Z

86

Prototype system brings advantages of wireless technology to...  

National Nuclear Security Administration (NNSA)

Advantages of wireless, compared to a wired system, include lower cost, greater reliability and freedom of movement. Read more. Prototype system brings advantages of wireless...

87

NREL: News - NREL's Industry Growth Forum Brings Together Energy...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

4014 NREL's Industry Growth Forum Brings Together Energy Innovators Event recognizes the top clean energy technologies and startup businesses October 30, 2014 The Industry Growth...

88

Crown Ethers in Graphene Bring Strong, Selective Binding | ornl...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Materials Characterization Crown Ethers in Graphene Bring Strong, Selective Binding November 14, 2014 Schematic showing a graphene sheet containing an array of ideal crown ethers....

89

Sustainability brings BPA highest award in Federal Electronics...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Sustainability-brings-BPA-highest-award-in-Federal-Electronics-Challenge Sign In About | Careers | Contact | Investors | bpa.gov Search News & Us Expand News & Us Projects &...

90

Offshore Wind Turbine Transportation & Installation Analyses Planning Optimal Marine Operations for Offshore Wind Projects.  

E-Print Network [OSTI]

?? Transportation and installation of offshore wind turbines (Tower, Nacelle and Rotor) is a complete process conducted over several phases, usually in sequence. There are… (more)

Uraz, Emre

2011-01-01T23:59:59.000Z

91

Session 3230 Writing: A Novel Strategy to Bring Issues in  

E-Print Network [OSTI]

a specific topic in physics 16 . Science classes in particular, are seen by many students to be threateningSession 3230 Writing: A Novel Strategy to Bring Issues in Science and Engineering to Non into the curriculum for non- majors will be described. This technique was developed to bring science and engineering

Larkin, Teresa L.

92

20% Wind Energy 20% Wind Energy  

E-Print Network [OSTI]

(government, industry, utilities, NGOs) Analyzes wind's potential contributions to energy security, economic · Transmission a challenge #12;Wind Power Class Resource Potential Wind Power Density at 50 m W/m 2 Wind Speed20% Wind Energy by 2030 20% Wind Energy by 2030 #12;Presentation and Objectives Overview Background

Powell, Warren B.

93

Wind Energy Leasing Handbook  

E-Print Network [OSTI]

Wind Energy Leasing Handbook Wind Energy Leasing Handbook E-1033 Oklahoma Cooperative Extension?..................................................................................................................... 31 What do wind developers consider in locating wind energy projects?............................................................................................ 37 How do companies and individuals invest in wind energy projects?....................................................................

Balasundaram, Balabhaskar "Baski"

94

Ris-R-1334(EN) Identification of Damage to Wind  

E-Print Network [OSTI]

Risř-R-1334(EN) Identification of Damage to Wind Turbine Blades by Modal Parameter Estimation April 2002 #12;Risř-R-1334(EN) Identification of Damage to Wind Turbine Blades by Modal Parameter condition monitoring of wind turbine blades (Phase I)". The goal of Phase I is to make a pre

95

The Western Wind and Solar Integration Study: The Effects of...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Wind and Solar Power- Induced Cycling on Wear-and-Tear Costs and Emissions Results From the Western Wind and Solar Integration Study Phase 2 The electric grid is a highly complex,...

96

Wind Energy Benefits, Wind Powering America (WPA) (Fact Sheet...  

Broader source: Energy.gov (indexed) [DOE]

Energy Benefits, Wind Powering America (WPA) (Fact Sheet), Wind And Water Power Program (WWPP) Wind Energy Benefits, Wind Powering America (WPA) (Fact Sheet), Wind And Water Power...

97

2011 Wind Technologies Market Report  

E-Print Network [OSTI]

that includes wind turbine towers. 2011 Wind TechnologiesSets Other Wind Turbine Components Towers Wind-Poweredselected wind turbine components includes towers as well as

Bolinger, Mark

2013-01-01T23:59:59.000Z

98

2010 Wind Technologies Market Report  

E-Print Network [OSTI]

that includes wind turbine towers. 2010 Wind TechnologiesImports : Other Wind Turbine Components Towers Wind-Poweredselected wind turbine components includes towers as well as

Wiser, Ryan

2012-01-01T23:59:59.000Z

99

Jefferson Lab and Jefferson Science Associates Bring First School...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

and Jefferson Science Associates Bring First School of Physics to Sub-Saharan Africa NEWPORT NEWS, VA, July 29, 2010 - Students and scientists from African countries will have a...

100

Bringing Rainforest Alliance to Your School (Rainforest Alliance)  

Broader source: Energy.gov [DOE]

Register here. Join the Rainforest Alliance Education Program for a webinar designed to help you bring the Rainforest Alliance curriculum to your school. Implementing our local-to-global curriculum...

Note: This page contains sample records for the topic "wind phase bring" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


101

World Institute for Nuclear Security Workshop at Y-12 Brings...  

National Nuclear Security Administration (NNSA)

Institute for Nuclear Security Workshop at Y-12 Brings Together More than 20 Countries OAK RIDGE, TENN. - This week, more than 20 countries are represented at the first-ever...

102

Weatherization Brings New Job Opportunity in Arizona | Department...  

Broader source: Energy.gov (indexed) [DOE]

specialist in September 2009, several months after she was laid off of her last job as an office manager. Soper brings good experience to NACOG, having spent twenty years...

103

Balancing of Wind Power.  

E-Print Network [OSTI]

?? In the future, renewable energy share, especially wind power share, in electricity generation is expected to increase. Due to nature of the wind, wind… (more)

Ülker, Muhammed Akif

2011-01-01T23:59:59.000Z

104

Energy 101: Wind Turbines  

SciTech Connect (OSTI)

See how wind turbines generate clean electricity from the power of the wind. Highlighted are the various parts and mechanisms of a modern wind turbine.

None

2011-01-01T23:59:59.000Z

105

Energy 101: Wind Turbines  

ScienceCinema (OSTI)

See how wind turbines generate clean electricity from the power of the wind. Highlighted are the various parts and mechanisms of a modern wind turbine.

None

2013-05-29T23:59:59.000Z

106

NREL: Wind Research - Events  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Events Below are upcoming events related to wind energy technology. January 2015 2015 Wind Energy Systems Engineering Workshop January 14 - 15, 2015 Boulder, CO The third NREL Wind...

107

Wind power and Wind power and  

E-Print Network [OSTI]

Wind power and the CDM #12; Wind power and the CDM Emerging practices in developing wind power 2005 Jyoti P. Painuly, Niels-Erik Clausen, Jørgen Fenhann, Sami Kamel and Romeo Pacudan #12; WIND POWER AND THE CDM Emerging practices in developing wind power projects for the Clean Development Mechanism Energy

108

Keeping America Competitive: Bringing Down the Cost of Small Wind Turbines  

Broader source: Energy.gov (indexed) [DOE]

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) "of EnergyEnergyENERGYWomen OwnedofDepartment ofJared Temanson - Project Leader atDepartmentKate| Department

109

Wind turbine  

DOE Patents [OSTI]

A wind turbine of the type having an airfoil blade (15) mounted on a flexible beam (20) and a pitch governor (55) which selectively, torsionally twists the flexible beam in response to wind turbine speed thereby setting blade pitch, is provided with a limiter (85) which restricts unwanted pitch change at operating speeds due to torsional creep of the flexible beam. The limiter allows twisting of the beam by the governor under excessive wind velocity conditions to orient the blades in stall pitch positions, thereby preventing overspeed operation of the turbine. In the preferred embodiment, the pitch governor comprises a pendulum (65,70) which responds to changing rotor speed by pivotal movement, the limiter comprising a resilient member (90) which engages an end of the pendulum to restrict further movement thereof, and in turn restrict beam creep and unwanted blade pitch misadjustment.

Cheney, Jr., Marvin C. (Glastonbury, CT)

1982-01-01T23:59:59.000Z

110

Electronically commutated serial-parallel switching for motor windings  

DOE Patents [OSTI]

A method and a circuit for controlling an ac machine comprises controlling a full bridge network of commutation switches which are connected between a multiphase voltage source and the phase windings to switch the phase windings between a parallel connection and a series connection while providing commutation discharge paths for electrical current resulting from inductance in the phase windings. This provides extra torque for starting a vehicle from lower battery current.

Hsu, John S. (Oak Ridge, TN)

2012-03-27T23:59:59.000Z

111

Wind anisotropies and GRB progenitors  

E-Print Network [OSTI]

We study the effect of wind anisotropies on the stellar evolution leading to collapsars. Rotating models of a 60 M$_\\odot$ star with $\\Omega/\\Omega_{\\rm crit}=0.75$ on the ZAMS, accounting for shellular rotation and a magnetic field, with and without wind anisotropies, are computed at $Z$=0.002 until the end of the core He-burning phase. Only the models accounting for the effects of the wind anisotropies retain enough angular momentum in their core to produce a Gamma Ray Burst (GRB). The chemical composition is such that a type Ic supernova event occurs. Wind anisotropies appear to be a key physical ingredient in the scenario leading to long GRBs.

Georges Meynet; Andre Maeder

2007-01-17T23:59:59.000Z

112

Advanced wind turbine near-term product development. Final technical report  

SciTech Connect (OSTI)

In 1990 the US Department of Energy initiated the Advanced Wind Turbine (AWT) Program to assist the growth of a viable wind energy industry in the US. This program, which has been managed through the National Renewable Energy Laboratory (NREL) in Golden, Colorado, has been divided into three phases: (1) conceptual design studies, (2) near-term product development, and (3) next-generation product development. The goals of the second phase were to bring into production wind turbines which would meet the cost goal of $0.05 kWh at a site with a mean (Rayleigh) windspeed of 5.8 m/s (13 mph) and a vertical wind shear exponent of 0.14. These machines were to allow a US-based industry to compete domestically with other sources of energy and to provide internationally competitive products. Information is given in the report on design values of peak loads and of fatigue spectra and the results of the design process are summarized in a table. Measured response is compared with the results from mathematical modeling using the ADAMS code and is discussed. Detailed information is presented on the estimated costs of maintenance and on spare parts requirements. A failure modes and effects analysis was carried out and resulted in approximately 50 design changes including the identification of ten previously unidentified failure modes. The performance results of both prototypes are examined and adjusted for air density and for correlation between the anemometer site and the turbine location. The anticipated energy production at the reference site specified by NREL is used to calculate the final cost of energy using the formulas indicated in the Statement of Work. The value obtained is $0.0514/kWh in January 1994 dollars. 71 figs., 30 tabs.

None

1996-01-01T23:59:59.000Z

113

Wind Technologies & Evolving Opportunities (Presentation)  

SciTech Connect (OSTI)

This presentation covers opportunities for wind technology; wind energy market trends; an overview of the National Wind Technology Center near Boulder, Colorado; wind energy price and cost trends; wind turbine technology improvements; and wind resource characterization improvements.

Robichaud, R.

2014-07-01T23:59:59.000Z

114

A National Offshore Wind Strategy: Creating an Offshore Wind...  

Broader source: Energy.gov (indexed) [DOE]

A National Offshore Wind Strategy: Creating an Offshore Wind Energy Industry in the United States A National Offshore Wind Strategy: Creating an Offshore Wind Energy Industry in...

115

20% Wind Energy by 2030 - Chapter 2: Wind Turbine Technology...  

Office of Environmental Management (EM)

20% Wind Energy by 2030: Increasing Wind Energy's Contribution to U.S. Electricity Supply U.S. Offshore Wind Manufacturing and Supply Chain Development Wind Program Accomplishments...

116

Wind pro?le assessment for wind power purposes.  

E-Print Network [OSTI]

??Preliminary estimation of wind speed at the wind turbine hub height is critically important when planning new wind farms. Wind turbine power output is proportional… (more)

Sointu, Iida

2014-01-01T23:59:59.000Z

117

Wind Powering America Webinar: Wind Power Economics: Past, Present...  

Broader source: Energy.gov (indexed) [DOE]

Wind Powering America Webinar: Wind Power Economics: Past, Present, and Future Trends Wind Powering America Webinar: Wind Power Economics: Past, Present, and Future Trends November...

118

Community Wind Handbook/Understand Your Wind Resource and Conduct...  

Open Energy Info (EERE)

Wind Resource and Conduct a Preliminary Estimate < Community Wind Handbook Jump to: navigation, search WIND ENERGY STAKEHOLDER ENGAGEMENT & OUTREACHCommunity Wind Handbook...

119

2015 Iowa Wind Power Conference and Iowa Wind Energy Association...  

Energy Savers [EERE]

2015 Iowa Wind Power Conference and Iowa Wind Energy Association Midwest Regional Energy Job Fair 2015 Iowa Wind Power Conference and Iowa Wind Energy Association Midwest Regional...

120

2010 Wind Technologies Market Report  

E-Print Network [OSTI]

wind turbine components (specifically, generators, bladeschangers. ” Wind turbine components such as blades, towers,17%). Wind turbine component exports (towers, blades,

Wiser, Ryan

2012-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "wind phase bring" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


121

space for science, enterprise and environment Bringing Space Into School  

E-Print Network [OSTI]

space for science, enterprise and environment Bringing Space Into School Science The National Space Education Initiative #12;space for science, enterprise and environment National Space Education Initiative the consultations · Recommendations of the report #12;space for science, enterprise and environment Background

122

BERKELEY LAB Bringing Science Solutions to the World  

E-Print Network [OSTI]

BERKELEY LAB Bringing Science Solutions to the World lbl.gov #12;Lawrence Berkeley National Laboratory's science is a global enterprise. From the Lab's site in the hills overlooking the University of California Berkeley campus, to locations across the continent and around the world, Berkeley Lab scientists

123

Bringing Up Incentives: A Look at the Determinants of Poverty  

E-Print Network [OSTI]

Bringing Up Incentives: A Look at the Determinants of Poverty Alice Sheehan #12;Outline presentation What's going on out there? ­ Growth, Human Development indicators, Poverty rates, etc. A look at determinants of poverty on three different levels: Immediate, Community, and Regional/National ­ An example

New Hampshire, University of

124

Bringing Environmental Considerations into Water-use Optimization  

E-Print Network [OSTI]

Bringing Environmental Considerations into Water- use Optimization How can the US develop. In addition to developing an optimization framework focused on Chinook salmon, we are also contributing simplified environmental rules for use in a system-wide optimization tool being developed in collaboration

Jager, Henriette I.

125

CAN INTEGRATED WATERSHED MANAGEMENT BRING GREATER FOOD SECURITY IN ETHIOPIA?  

E-Print Network [OSTI]

CAN INTEGRATED WATERSHED MANAGEMENT BRING GREATER FOOD SECURITY IN ETHIOPIA? Oloro V. McHugh, Amy S, Ethiopia Gete Zeleke ARARI, Bahir Dar, Ethiopia Abstract: In the food insecure regions, short annual. Ethiopia's agricultural sector is driven by the subsistence strategies of smallholder farmers

Walter, M.Todd

126

2011 Wind Technologies Market Report  

E-Print Network [OSTI]

and K. Porter. 2011. Wind Power and Electricity Markets.41 6. Wind Power Priceat Various Levels of Wind Power Capacity Penetration Wind

Bolinger, Mark

2013-01-01T23:59:59.000Z

127

2009 Wind Technologies Market Report  

E-Print Network [OSTI]

Prepared for the Utility Wind Integration Group. Arlington,Arizona Public Service Wind Integration Cost Impact Study.an Order Revising the Wind Integration Rate for Wind Powered

Wiser, Ryan

2010-01-01T23:59:59.000Z

128

2010 Wind Technologies Market Report  

E-Print Network [OSTI]

2010. SPP WITF Wind Integration Study. Little Rock,an Order Revising the Wind Integration Rate for Wind PoweredPacifiCorp. 2010. 2010 Wind Integration Study. Portland,

Wiser, Ryan

2012-01-01T23:59:59.000Z

129

Los Alamos County Completes Abiquiu Hydropower Project, Bringing...  

Energy Savers [EERE]

installed by the Los Alamos County Department of Public Utilities at the Abiquiu Hydroelectric Facility on the Rio Chama River in New Mexico. DOE's Wind and Water Power Program...

130

Wind Power  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmosphericNuclear SecurityTensile Strain Switched FerromagnetismWaste and MaterialsWenjun DengWISPWind Industry Soars to New1Wind Power

131

Wind Power  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary)morphinanInformation Desert SouthwestTechnologies | Blandine Jerome Careers at WIPPCompletes aboutWind Energy

132

Wind Power Today  

SciTech Connect (OSTI)

Wind Power Today is an annual publication that provides an overview of the wind energy research conducted by the U.S. Department of Energy Wind and Hydropower Technologies Program.

Not Available

2006-05-01T23:59:59.000Z

133

Wind Power Today  

SciTech Connect (OSTI)

Wind Power Today is an annual publication that provides an overview of the wind energy research conducted by the U.S. Department of Energy Wind and Hydropower Technologies Program.

Not Available

2007-05-01T23:59:59.000Z

134

1 INTRODUCTION Suitable sites for wind farms on land are scarce in  

E-Print Network [OSTI]

viability of offshore wind farms depends on the compensation of the additional installation cost by a higher. In the current planing phase offshore wind measure- ments are being made at three prospective wind farm sites offshore wind farm which is lo- cated about 2 km from the coast. Thus the measure- ments cover

Heinemann, Detlev

135

Commonwealth Wind Incentive Program – Micro Wind Initiative  

Broader source: Energy.gov [DOE]

Through the Commonwealth Wind Incentive Program – Micro Wind Initiative the Massachusetts Clean Energy Center (MassCEC) offers rebates of up to $4/W with a maximum of $130,000 for design and...

136

Wind energy bibliography  

SciTech Connect (OSTI)

This bibliography is designed to help the reader search for information on wind energy. The bibliography is intended to help several audiences, including engineers and scientists who may be unfamiliar with a particular aspect of wind energy, university researchers who are interested in this field, manufacturers who want to learn more about specific wind topics, and librarians who provide information to their clients. Topics covered range from the history of wind energy use to advanced wind turbine design. References for wind energy economics, the wind energy resource, and environmental and institutional issues related to wind energy are also included.

None

1995-05-01T23:59:59.000Z

137

Wind for Schools (Poster)  

SciTech Connect (OSTI)

As the United States dramatically expands wind energy deployment, the industry is challenged with developing a skilled workforce and addressing public resistance. Wind Powering America's Wind for Schools project addresses these issues by developing Wind Application Centers (WACs) at universities; WAC students assist in implementing school wind turbines and participate in wind courses, by installing small wind turbines at community "host" schools, by implementing teacher training with interactive curricula at each host school. This poster provides an overview of the first two years of the Wind for Schools project, primarily supporting activities in Colorado, Kansas, Nebraska, South Dakota, Montana, and Idaho.

Baring-Gould, I.

2010-05-01T23:59:59.000Z

138

Team Massachusetts Brings a Fourth Dimension to the Solar Decathlon  

Broader source: Energy.gov [DOE]

Team Massachusetts is bringing a unique perspective to the Solar Decathlon this fall. You might say it is a fourth dimension because of the team’s newly constructed 4D Home. But it could also be argued that it is because the Massachusetts College of Art and Design and University of Massachusetts Lowell are collaborating for the team’s first entry into the biannual competition, and they’re both public institutions.

139

Module Handbook Specialisation Wind Energy  

E-Print Network [OSTI]

of Wind Turbines Module name: Wind potential, Aerodynamics & Loading of Wind Turbines Section Classes Evaluation of Wind Energy Potential Wind turbine Aerodynamics Static and dynamic Loading of Wind turbines Wind turbine Aerodynamics Static and dynamic Loading of Wind turbines Credit points 8 CP

Habel, Annegret

140

This document will help you understand the statistics commonly used to describe wind when it is studied  

E-Print Network [OSTI]

Collaborative's Renewable En- ergy Trust Fund, the Renewable Energy Research Laboratory brings you this seriesThis document will help you understand the statistics commonly used to describe wind when Renewable Energy Research Laboratory, University of Massachusetts at Amherst Community Wind Power Fact Sheet

Massachusetts at Amherst, University of

Note: This page contains sample records for the topic "wind phase bring" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


141

Ris-R-Report Improved design for large wind turbine blades  

E-Print Network [OSTI]

Risø-R-Report Improved design for large wind turbine blades of fibre composites (Phase 3) - Summary: Improved design for large wind turbine blades of fibre composites (Phase 3) - Summary report Division: 1 char.): An overview is given of the activities of the project "Improved design for large wind turbine

142

Ris-R-Report Improved design for large wind turbine blades  

E-Print Network [OSTI]

for large wind turbine blades of fibre composites (Phase 4) - Summary report Division: 1 Materials Research of wind turbine blade involving geometric and material instabilities 30 5.2 Simulation of crack growthRisř-R-Report Improved design for large wind turbine blades of fibre composites (Phase 4) - Summary

143

Ris-R-1526(EN) Improved design of large wind turbine  

E-Print Network [OSTI]

Risř-R-1526(EN) Improved design of large wind turbine blades of fibre composites (Phase 2. Halling+ Title: Improved design of large wind turbine blades of fibre composites (Phase 2) - Summary in a wind turbine blade 7 2.1 Experimental investigations 7 2.2 Finite element models 7 2.3 Synthesis 8 2

144

Wind Resource Assessment in Europe Using Emergy  

E-Print Network [OSTI]

mance characteristics of wind generator. The wind speed atcharacteristics of the wind generator. When wind speed is

Paudel, Subodh; Santarelli, Massimo; Martin, Viktoria; Lacarriere, Bruno; Le Corre, Olivier

2014-01-01T23:59:59.000Z

145

Howard County- Wind Ordinance  

Broader source: Energy.gov [DOE]

This ordinance sets up provisions for allowing small wind energy systems in various zoning districts.

146

Summary of proceedings: Oklahoma and Texas wind energy forum, April 2-3, 1981  

SciTech Connect (OSTI)

The Wind Energy Forum for Oklahoma and Texas was held at the Amarillo Quality Inn in Amarillo, Texas on April 2-3, 1981. Its purpose was to bring together the diverse groups involved in wind energy development in the Oklahoma and Texas region to explore the future commercial potential and current barriers to achieving this potential. Major topics of discussion included utility interconnection of wind machines and the buy-back rate for excess power, wind system reliability and maintenance concerns, machine performance standards, and state governmental incentives. A short summary of each presentation is included.

Nelson, S.C.; Ball, D.E.

1981-06-01T23:59:59.000Z

147

Bringing the Low NOx Diesel Under Control | Department of Energy  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE:YearRound-Up fromDepartmentTie Ltd: ScopeDepartment1,Energy For Persons Bringing Your

148

Estimation of Wind Speed in Connection to a Wind Turbine  

E-Print Network [OSTI]

Estimation of Wind Speed in Connection to a Wind Turbine X. Ma #3; , N. K. Poulsen #3; , H. Bindner y December 20, 1995 Abstract The wind speed varies over the rotor plane of wind turbine making the wind speed on the rotor plane will be estimated by using a wind turbine as a wind measuring device

149

Wind energy offers considerable promise; the wind itself is free,  

E-Print Network [OSTI]

Wind energy offers considerable promise; the wind itself is free, wind power is clean. One of these sources, wind energy, offers considerable promise; the wind itself is free, wind power is clean, and it is virtually inexhaustible. In recent years, research on wind energy has accelerated

Langendoen, Koen

150

Wind Power Outlook 2004  

SciTech Connect (OSTI)

The brochure, expected to be updated annually, provides the American Wind Energy Association's (AWAE's) up-to-date assessment of the wind industry. It provides a summary of the state of wind power in the U.S., including the challenges and opportunities facing the industry. It provides summary information on the growth of the industry, policy-related factors such as the federal wind energy production tax credit status, comparisons with natural gas, and public views on wind energy.

anon.

2004-01-01T23:59:59.000Z

151

Wind Resource Maps (Postcard)  

SciTech Connect (OSTI)

The U.S. Department of Energy's Wind Powering America initiative provides high-resolution wind maps and estimates of the wind resource potential that would be possible from development of the available windy land areas after excluding areas unlikely to be developed. This postcard is a marketing piece that stakeholders can provide to interested parties; it will guide them to Wind Powering America's online wind energy resource maps.

Not Available

2011-07-01T23:59:59.000Z

152

Surface wind speed distributions| Implications for climate and wind power.  

E-Print Network [OSTI]

?? Surface constituent and energy fluxes, and wind power depend non-linearly on wind speed and are sensitive to the tails of the wind distribution. Until… (more)

Capps, Scott Blair

2010-01-01T23:59:59.000Z

153

NREL: Wind Research - Boosting Wind Plant Power Output by 4%...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Boosting Wind Plant Power Output by 4%-5% through Coordinated Turbine Controls July 30, 2014 Wind plant underperformance has plagued wind plant developers for years. To address...

154

Collegiate Wind Competition Engages Tomorrow's Wind Energy Innovators...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Engages Tomorrow's Wind Energy Innovators Collegiate Wind Competition Engages Tomorrow's Wind Energy Innovators January 6, 2014 - 10:00am Addthis 2014 Collegiate Teams Boise State...

155

Sinomatech Wind Power Blade aka Sinoma Science Technology Wind...  

Open Energy Info (EERE)

Sinomatech Wind Power Blade aka Sinoma Science Technology Wind Turbine Blade Co Ltd Jump to: navigation, search Name: Sinomatech Wind Power Blade (aka Sinoma Science & Technology...

156

Final Technical Report - Kotzebue Wind Power Project - Volume II  

SciTech Connect (OSTI)

The Kotzebue Wind Power Project is a joint undertaking of the U.S. Department of Energy (DOE); Kotzebue Electric Association (KEA); and the Alaska Energy Authority (AEA). The goal of the project is to develop, construct, and operate a wind power plant interconnected to a small isolated utility grid in an arctic climate in Northwest Alaska. The primary objective of KEA’s wind energy program is to bring more affordable electricity and jobs to remote Alaskan communities. DOE funding has allowed KEA to develop a multi-faceted approach to meet these objectives that includes wind project planning and development, technology transfer, and community outreach. The first wind turbines were installed in the summer of 1997 and the newest turbines were installed in the spring of 2007. The total installed capacity of the KEA wind power project is 1.16 MW with a total of 17 turbines rated between 65 kW and 100 kW. The operation of the wind power plant has resulted in a wind penetration on the utility system in excess of 35% during periods of low loads. This document and referenced attachments are presented as the final technical report for the U.S. Department of Energy (DOE) grant agreement DE-FG36-97GO10199. Interim deliverables previously submitted are also referenced within this document and where reasonable to do so, specific sections are incorporated in the report or attached as appendices.

Rana Zucchi, Global Energy Concepts, LLC; Brad Reeve, Kotzebue Electric Association; DOE Project Officer - Doug Hooker

2007-10-31T23:59:59.000Z

157

EV Everywhere: Electric Drive Systems Bring Power to Plug-in...  

Broader source: Energy.gov (indexed) [DOE]

Electric Drive Systems Bring Power to Plug-in Electric Vehicles EV Everywhere: Electric Drive Systems Bring Power to Plug-in Electric Vehicles January 31, 2014 - 9:47am Addthis The...

158

Next-Generation Wind Technology  

Broader source: Energy.gov [DOE]

The Wind Program works with industry partners to increase the performance and reliability of next-generation wind technologies while lowering the cost of wind energy.

159

2011 Wind Technologies Market Report  

E-Print Network [OSTI]

natural gas prices), pushed wind energy to the top of (andperformance, and price of wind energy, policy uncertainty –cost, performance, and price of wind energy, some of these

Bolinger, Mark

2013-01-01T23:59:59.000Z

160

2012 Wind Technologies Market Report  

E-Print Network [OSTI]

The Effects of Integrating Wind Power on Transmission Systemat Various Levels of Wind Power Capacity Penetration 201242 6. Wind Power Price

Wiser, Ryan

2014-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "wind phase bring" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


161

Wind Farms in North America  

E-Print Network [OSTI]

About Large Offshore Wind Power: Underlying Factors. EnergyOpinion on Offshore Wind Power - Interim Report. University2002) Economic Impacts of Wind Power in Kittitas County, Wa.

Hoen, Ben

2014-01-01T23:59:59.000Z

162

WIND DATA REPORT Thompson Island  

E-Print Network [OSTI]

WIND DATA REPORT Thompson Island June 1, 2003 ­ August 31, 2003 Prepared for Massachusetts...................................................................................................................... 9 Wind Speed Time Series............................................................................................................. 9 Wind Speed Distribution

Massachusetts at Amherst, University of

163

WIND DATA REPORT Thompson Island  

E-Print Network [OSTI]

WIND DATA REPORT Thompson Island March 1, 2003 ­ May 31, 2003 Prepared for Massachusetts Technology...................................................................................................................... 9 Wind Speed Time Series............................................................................................................. 9 Wind Speed Distributions

Massachusetts at Amherst, University of

164

WIND DATA REPORT Presque Isle  

E-Print Network [OSTI]

WIND DATA REPORT Presque Isle June 1, 2005 ­ August 31, 2005 Prepared for United States Department...................................................................................................................... 9 Wind Speed Time Series............................................................................................................. 9 Wind Speed Distributions

Massachusetts at Amherst, University of

165

WIND DATA REPORT Thompson Island  

E-Print Network [OSTI]

WIND DATA REPORT Thompson Island June 1, 2004 ­ August 31, 2004 Prepared for Massachusetts...................................................................................................................... 9 Wind Speed Time Series............................................................................................................. 9 Wind Speed Distribution

Massachusetts at Amherst, University of

166

WIND DATA REPORT Thompson Island  

E-Print Network [OSTI]

WIND DATA REPORT Thompson Island December 1, 2003 ­ February 29, 2004 Prepared for Massachusetts.................................................................................................................... 11 Wind Speed Time Series........................................................................................................... 11 Wind Speed Distribution

Massachusetts at Amherst, University of

167

WIND DATA REPORT Presque Isle  

E-Print Network [OSTI]

WIND DATA REPORT Presque Isle December 1, 2004 ­ February 28, 2005 Prepared for United States.................................................................................................................... 10 Wind Speed Time Series........................................................................................................... 10 Wind Speed Distributions

Massachusetts at Amherst, University of

168

WIND DATA REPORT Thompson Island  

E-Print Network [OSTI]

WIND DATA REPORT Thompson Island March 1, 2004 ­ May 31, 2004 Prepared for Massachusetts Technology...................................................................................................................... 9 Wind Speed Time Series............................................................................................................. 9 Wind Speed Distribution

Massachusetts at Amherst, University of

169

2009 Wind Technologies Market Report  

E-Print Network [OSTI]

Prepared for the Utility Wind Integration Group. Arlington,Consult. 2010. International Wind Energy Development: WorldUBS Global I/O: Global Wind Sector. UBS Investment Research.

Wiser, Ryan

2010-01-01T23:59:59.000Z

170

2008 WIND TECHNOLOGIES MARKET REPORT  

E-Print Network [OSTI]

2008. Washington, DC: American Wind Energy Association.American Wind Energy Association ( AWEA).2009b. AWEA Small Wind Turbine Global Market Study: Year

Bolinger, Mark

2010-01-01T23:59:59.000Z

171

WIND DATA REPORT Thompson Island  

E-Print Network [OSTI]

WIND DATA REPORT Thompson Island September 1, 2003 ­ November 30, 2003 Prepared for Massachusetts...................................................................................................................... 9 Wind Speed Time Series............................................................................................................. 9 Wind Speed Distribution

Massachusetts at Amherst, University of

172

WIND DATA REPORT FALMOUTH, MA  

E-Print Network [OSTI]

WIND DATA REPORT FALMOUTH, MA June1, 2004 to August 31, 2004. Prepared for Massachusetts Technology...................................................................................................................... 8 Wind Speed Time Series............................................................................................................. 8 Wind Speed Distributions

Massachusetts at Amherst, University of

173

WIND DATA REPORT Presque Isle  

E-Print Network [OSTI]

WIND DATA REPORT Presque Isle March 1, 2005 ­ May 31, 2005 Prepared for United States Department.................................................................................................................... 10 Wind Speed Time Series........................................................................................................... 10 Wind Speed Distributions

Massachusetts at Amherst, University of

174

WIND DATA REPORT Presque Isle  

E-Print Network [OSTI]

WIND DATA REPORT Presque Isle December 1, 2004 ­ December 1, 2005 Prepared for United States ......................................................................................................... 9 Wind Speed Time Series........................................................................................................... 10 Wind Speed Distributions

Massachusetts at Amherst, University of

175

2011 Wind Technologies Market Report  

E-Print Network [OSTI]

2010. SPP WITF Wind Integration Study. Little Rock,GE Energy. 2011a. Oahu Wind Integration Study Final Report.PacifiCorp. 2010. 2010 Wind Integration Study. Portland,

Bolinger, Mark

2013-01-01T23:59:59.000Z

176

2011 Wind Technologies Market Report  

E-Print Network [OSTI]

wind turbine components (specifically, generators, bladeschangers. ” Wind turbine components such as blades, towers,Canada (8%). Wind turbine component exports (towers, blades,

Bolinger, Mark

2013-01-01T23:59:59.000Z

177

2012 Wind Technologies Market Report  

E-Print Network [OSTI]

Colorado: Xcel Energy. 2012 Wind Technologies Market ReportOperator. 2012 Wind Technologies Market Report Chadbourne &Power Company. 2012 Wind Technologies Market Report EnerNex

Wiser, Ryan

2014-01-01T23:59:59.000Z

178

2010 Wind Technologies Market Report  

E-Print Network [OSTI]

Market Report vii potential wind energy generation withinthat nearly 8% of potential wind energy generation withinAreas, in GWh (and % of potential wind generation) Electric

Wiser, Ryan

2012-01-01T23:59:59.000Z

179

2009 Wind Technologies Market Report  

E-Print Network [OSTI]

capacity), with 17% of all potential wind energy generationthat roughly 17% of potential wind energy generation withinexample, roughly 1% of potential wind energy output in 2009

Wiser, Ryan

2010-01-01T23:59:59.000Z

180

Wind energy information guide  

SciTech Connect (OSTI)

This book is divided into nine chapters. Chapters 1--8 provide background and annotated references on wind energy research, development, and commercialization. Chapter 9 lists additional sources of printed information and relevant organizations. Four indices provide alphabetical access to authors, organizations, computer models and design tools, and subjects. A list of abbreviations and acronyms is also included. Chapter topics include: introduction; economics of using wind energy; wind energy resources; wind turbine design, development, and testing; applications; environmental issues of wind power; institutional issues; and wind energy systems development.

NONE

1996-04-01T23:59:59.000Z

Note: This page contains sample records for the topic "wind phase bring" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


181

Wind Power Career Chat  

SciTech Connect (OSTI)

This document will teach students about careers in the wind energy industry. Wind energy, both land-based and offshore, is expected to provide thousands of new jobs in the next several decades. Wind energy companies are growing rapidly to meet America's demand for clean, renewable, and domestic energy. These companies need skilled professionals. Wind power careers will require educated people from a variety of areas. Trained and qualified workers manufacture, construct, operate, and manage wind energy facilities. The nation will also need skilled researchers, scientists, and engineers to plan and develop the next generation of wind energy technologies.

Not Available

2011-01-01T23:59:59.000Z

182

PowerJet Wind Turbine Project  

SciTech Connect (OSTI)

PROJECT OBJECTIVE The PowerJet wind turbine overcomes problems characteristic of the small wind turbines that are on the market today by providing reliable output at a wide range of wind speeds, durability, silent operation at all wind speeds, and bird-safe operation. Prime Energy�s objective for this project was to design and integrate a generator with an electrical controller and mechanical controls to maximize the generation of electricity by its wind turbine. The scope of this project was to design, construct and test a mechanical back plate to control rotational speed in high winds, and an electronic controller to maximize power output and to assist the base plate in controlling rotational speed in high winds. The test model will continue to operate beyond the time frame of the project, with the ultimate goal of manufacturing and marketing the PowerJet worldwide. Increased Understanding of Electronic & Mechanical Controls Integrated With Electricity Generator The PowerJet back plate begins to open as wind speed exceeds 13.5 mps. The pressure inside the turbine and the turbine rotational speed are held constant. Once the back plate has fully opened at approximately 29 mps, the controller begins pulsing back to the generator to limit the rotational speed of the turbine. At a wind speed in excess of 29 mps, the controller shorts the generator and brings the turbine to a complete stop. As the wind speed subsides, the controller releases the turbine and it resumes producing electricity. Data collection and instrumentation problems prevented identification of the exact speeds at which these events occur. However, the turbine, controller and generator survived winds in excess of 36 mps, confirming that the two over-speed controls accomplished their purpose. Technical Effectiveness & Economic Feasibility Maximum Electrical Output The output of electricity is maximized by the integration of an electronic controller and mechanical over-speed controls designed and tested during the course of this project. The output exceeds that of the PowerJet�s 3-bladed counterparts (see Appendix). Durability All components of the PowerJet turbine assembly�including the electronic and mechanical controls designed, manufactured and field tested during the course of this project�proved to be durable through severe weather conditions, with constant operation and no interruption in energy production. Low Cost Materials for the turbine, generator, tower, charge controllers and ancillary parts are available at reasonable prices. Fabrication of these parts is also readily available worldwide. The cost of assembling and installing the turbine is reduced because it has fewer parts and requires less labor to manufacture and assemble, making it competitively priced compared with turbines of similar output manufactured in the U.S. and Europe. The electronic controller is the unique part to be included in the turbine package. The controllers can be manufactured in reasonably-sized production runs to keep the cost below $250 each. The data logger and 24 sensors are for research only and will be unnecessary for the commercial product. Benefit To Public The PowerJet wind-electric system is designed for distributed wind generation in 3 and 4 class winds. This wind turbine meets DOE�s requirements for a quiet, durable, bird-safe turbine that eventually can be deployed as a grid-connected generator in urban and suburban settings. Results As described more fully below and illustrated in the Appendices, the goals and objectives outlined in 2060 SOPO were fully met. Electronic and mechanical controls were successfully designed, manufactured and integrated with the generator. The turbine, tower, controllers and generators operated without incident throughout the test period, surviving severe winter and summer weather conditions such as extreme temperatures, ice and sustained high winds. The electronic controls were contained in weather-proof electrical boxes and the elec

Bartlett, Raymond J

2008-11-30T23:59:59.000Z

183

DOE/NREL Advanced Wind Turbine Development Program  

SciTech Connect (OSTI)

The development of technologically advanced, high-efficiency wind turbines continues to be a high-priority activity of the US wind industry. The National Renewable Energy Laboratory (formerly the Solar Energy Research Institute), sponsored by the US Department of Energy (DOE), has initiated the Advanced Wind Turbine Program to assist the wind industry in the development of a new class of advanced wind turbines. The initial phase of the program focused on developing conceptual designs for near-term and advanced turbines. The goal of the second phase of this program is to use the experience gained over the last decade of turbine design and operation combined with the latest existing design tools to develop a turbine that will produce energy at $0.05 per kilowatt-hour (kWh) in a 5.8-m/s (13-mph) wind site. Three contracts have been awarded, and two more are under negotiation in the second phase. The third phase of the program will use new innovations and state-of-the-art wind turbine design technology to produce a turbine that will generate energy at $0.04/kWh in a 5.8-m/s wind site. Details of the third phase will be announced in early 1993.

Butterfield, C.P.; Smith, B.; Laxson, A.; Thresher, B. [National Renewable Energy Lab., Golden, CO (United States)] [National Renewable Energy Lab., Golden, CO (United States); Goldman, P. [USDOE Assistant Secretary for Conservation and Renewable Energy, Washington, DC (United States). Wind/Hydro/Ocean Technologies Div.] [USDOE Assistant Secretary for Conservation and Renewable Energy, Washington, DC (United States). Wind/Hydro/Ocean Technologies Div.

1993-05-01T23:59:59.000Z

184

EA-1726: Kahuku Wind Power, LLC Wind Power Generation Facility...  

Broader source: Energy.gov (indexed) [DOE]

6: Kahuku Wind Power, LLC Wind Power Generation Facility, O'ahu, HI EA-1726: Kahuku Wind Power, LLC Wind Power Generation Facility, O'ahu, HI May 3, 2010 EA-1726: Final...

185

Western Wind and Solar Integration Study (Fact Sheet)  

SciTech Connect (OSTI)

Initiated in 2007 to examine the operational impact of up to 35% penetration of wind, photovoltaic (PV), and concentrating solar power (CSP) energy on the electric power system, the Western Wind and Solar Integration Study (WWSIS) is one of the largest regional wind and solar integration studies to date. The goal is to understand the effects of variability and uncertainty of wind, PV, and CSP on the grid. In the Western Wind and Solar Integration Study Phase 1, solar penetration was limited to 5%. Utility-scale PV was not included because of limited capability to model sub-hourly, utility-scale PV output . New techniques allow the Western Wind and Solar Integration Study Phase 2 to include high penetrations of solar - not only CSP and rooftop PV but also utility-scale PV plants.

Not Available

2012-09-01T23:59:59.000Z

186

Hualapai Wind Project Feasibility Report  

SciTech Connect (OSTI)

The Hualapai Department of Planning and Economic Development, with funding assistance from the U.S. Department of Energy, Tribal Energy Program, with the aid of six consultants has completed the four key prerequisites as follows: 1. Identify the site area for development and its suitability for construction. 2. Determine the wind resource potential for the identified site area. 3. Determine the electrical transmission and interconnection feasibility to get the electrical power produced to the marketplace. 4. Complete an initial permitting and environmental assessment to determine the feasibility for getting the project permitted. Those studies indicated a suitable wind resource and favorable conditions for permitting and construction. The permitting and environmental study did not reveal any fatal flaws. A review of the best power sale opportunities indicate southern California has the highest potential for obtaining a PPA that may make the project viable. Based on these results, the recommendation is for the Hualapai Tribal Nation to move forward with attracting a qualified wind developer to work with the Tribe to move the project into the second phase - determining the reality factors for developing a wind project. a qualified developer will bid to a utility or negotiate a PPA to make the project viable for financing.

Davidson, Kevin [Hualapai Tribe] [Hualapai Tribe; Randall, Mark [Daystar Consulting] [Daystar Consulting; Isham, Tom [Power Engineers] [Power Engineers; Horna, Marion J [MJH Power Consulting LLC] [MJH Power Consulting LLC; Koronkiewicz, T [SWCA Environmental, Inc.] [SWCA Environmental, Inc.; Simon, Rich [V-Bar, LLC] [V-Bar, LLC; Matthew, Rojas [Squire Sanders Dempsey] [Squire Sanders Dempsey; MacCourt, Doug C. [Ater Wynne, LLP] [Ater Wynne, LLP; Burpo, Rob [First American Financial Advisors, Inc.] [First American Financial Advisors, Inc.

2012-12-20T23:59:59.000Z

187

2008 Wind Energy Projects, Wind Powering America (Poster)  

SciTech Connect (OSTI)

The Wind Powering America program produces a poster at the end of every calendar year that depicts new U.S. wind energy projects. The 2008 poster includes the following projects: Stetson Wind Farm in Maine; Dutch Hill Wind Farm in New York; Grand Ridge Wind Energy Center in Illinois; Hooper Bay, Alaska; Forestburg, South Dakota; Elbow Creek Wind Project in Texas; Glacier Wind Farm in Montana; Wray, Colorado; Smoky Hills Wind Farm in Kansas; Forbes Park Wind Project in Massachusetts; Spanish Fork, Utah; Goodland Wind Farm in Indiana; and the Tatanka Wind Energy Project on the border of North Dakota and South Dakota.

Not Available

2009-01-01T23:59:59.000Z

188

Wind-To-Hydrogen Energy Pilot Project  

SciTech Connect (OSTI)

WIND-TO-HYDROGEN ENERGY PILOT PROJECT: BASIN ELECTRIC POWER COOPERATIVE In an effort to address the hurdles of wind-generated electricity (specifically wind's intermittency and transmission capacity limitations) and support development of electrolysis technology, Basin Electric Power Cooperative (BEPC) conducted a research project involving a wind-to-hydrogen system. Through this effort, BEPC, with the support of the Energy & Environmental Research Center at the University of North Dakota, evaluated the feasibility of dynamically scheduling wind energy to power an electrolysis-based hydrogen production system. The goal of this project was to research the application of hydrogen production from wind energy, allowing for continued wind energy development in remote wind-rich areas and mitigating the necessity for electrical transmission expansion. Prior to expending significant funding on equipment and site development, a feasibility study was performed. The primary objective of the feasibility study was to provide BEPC and The U.S. Department of Energy (DOE) with sufficient information to make a determination whether or not to proceed with Phase II of the project, which was equipment procurement, installation, and operation. Four modes of operation were considered in the feasibility report to evaluate technical and economic merits. Mode 1 - scaled wind, Mode 2 - scaled wind with off-peak, Mode 3 - full wind, and Mode 4 - full wind with off-peak In summary, the feasibility report, completed on August 11, 2005, found that the proposed hydrogen production system would produce between 8000 and 20,000 kg of hydrogen annually depending on the mode of operation. This estimate was based on actual wind energy production from one of the North Dakota (ND) wind farms of which BEPC is the electrical off-taker. The cost of the hydrogen produced ranged from $20 to $10 per kg (depending on the mode of operation). The economic sensitivity analysis performed as part of the feasibility study showed that several factors can greatly affect, both positively and negatively, the "per kg" cost of hydrogen. After a September 15, 2005, meeting to evaluate the advisability of funding Phase II of the project DOE concurred with BEPC that Phase I results did warrant a "go" recommendation to proceed with Phase II activities. The hydrogen production system was built by Hydrogenics and consisted of several main components: hydrogen production system, gas control panel, hydrogen storage assembly and hydrogen-fueling dispenser The hydrogen production system utilizes a bipolar alkaline electrolyzer nominally capable of producing 30 Nm3/h (2.7 kg/h). The hydrogen is compressed to 6000 psi and delivered to an on-site three-bank cascading storage assembly with 80 kg of storage capacity. Vehicle fueling is made possible through a Hydrogenics-provided gas control panel and dispenser able to fuel vehicles to 5000 psi. A key component of this project was the development of a dynamic scheduling system to control the wind energy's variable output to the electrolyzer cell stacks. The dynamic scheduling system received an output signal from the wind farm, processed this signal based on the operational mode, and dispatched the appropriate signal to the electrolyzer cell stacks. For the study BEPC chose to utilize output from the Wilton wind farm located in central ND. Site design was performed from May 2006 through August 2006. Site construction activities were from August to November 2006 which involved earthwork, infrastructure installation, and concrete slab construction. From April - October 2007, the system components were installed and connected. Beginning in November 2007, the system was operated in a start-up/shakedown mode. Because of numerous issues, the start-up/shakedown period essentially lasted until the end of January 2008, at which time a site acceptance test was performed. Official system operation began on February 14, 2008, and continued through the end of December 2008. Several issues continued to prevent consistent operation, resulting in operation o

Ron Rebenitsch; Randall Bush; Allen Boushee; Brad G. Stevens; Kirk D. Williams; Jeremy Woeste; Ronda Peters; Keith Bennett

2009-04-24T23:59:59.000Z

189

Competitive Wind Grants (Vermont)  

Broader source: Energy.gov [DOE]

The Clean Energy Development Fund Board will offer a wind grant program beginning October 1, 2013. The grant program will replace the wind incentives that were originally part of the [http:/...

190

Residential Wind Power  

E-Print Network [OSTI]

This research study will explore the use of residential wind power and associated engineering and environmental issues. There is various wind power generating devices available to the consumer. The study will discuss the dependencies of human...

Willis, Gary

2011-12-16T23:59:59.000Z

191

See the Wind  

Broader source: Energy.gov (indexed) [DOE]

See the Wind Grades: 5-8 , 9-12 Topic: Wind Energy Owner: Kidwind Project This educational material is brought to you by the U.S. Department of Energy's Office of Energy Efficiency...

192

Talbot County- Wind Ordinance  

Broader source: Energy.gov [DOE]

This ordinance amends the Talbot County Code, Chapter 190, Zoning, Subdivision and Land Development, to permit small wind turbine systems with wind turbine towers not to exceed 160 feet in total...

193

Wind Energy Act (Maine)  

Broader source: Energy.gov [DOE]

The Maine Wind Energy Act is a summary of legislative findings that indicate the state's strong interest in promoting the development of wind energy and establish the state's desire to ease the...

194

2010 Wind Technologies Market Report  

E-Print Network [OSTI]

AWEA?s Wind Energy Weekly, DOE/EPRI?s Turbine Verification10% Wind Energy Penetration New large-scale 9 wind turbineswind energy continues to decline as a result of lower wind turbine

Wiser, Ryan

2012-01-01T23:59:59.000Z

195

2011 Wind Technologies Market Report  

E-Print Network [OSTI]

AWEA’s Wind Energy Weekly, DOE/EPRI’s Turbine Verification10% Wind Energy Penetration New large-scale 8 wind turbinesTurbine Market Report. Washington, D.C. : American Wind Energy

Bolinger, Mark

2013-01-01T23:59:59.000Z

196

2008 WIND TECHNOLOGIES MARKET REPORT  

E-Print Network [OSTI]

Prepared for the Utility Wind Integration Group. Arlington,Wind Logics, Inc. 2004. Wind Integration Study—Final Report.EnerNex Corp. 2006. Wind Integration Study for Public

Bolinger, Mark

2010-01-01T23:59:59.000Z

197

Kent County- Wind Ordinance  

Broader source: Energy.gov [DOE]

This ordinance establishes provisions and standards for small wind energy systems in various zoning districts in Kent County, Maryland.

198

American Chestnut Restoration: Can We Bring Back the Mighty Giant |  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May JunDatastreamsmmcrcalgovInstrumentsruc DocumentationP-Series to someone by E-mail Share AlternativeRightAlvaroX-ray, andofWind

199

2009 Wind Technologies Market Report  

E-Print Network [OSTI]

is located in Europe. In contrast, all wind power projectsin Europe. In 2009, for example, more wind power was

Wiser, Ryan

2010-01-01T23:59:59.000Z

200

CONGRESSIONAL BRIEFING Offshore Wind  

E-Print Network [OSTI]

CONGRESSIONAL BRIEFING Offshore Wind Lessons Learned from Europe: Reducing Costs and Creating Jobs Thursday, June 12, 2014 Capitol Visitors Center, Room SVC 215 Enough offshore wind capacity to power six the past decade. What has Europe learned that is applicable to a U.S. effort to deploy offshore wind off

Firestone, Jeremy

Note: This page contains sample records for the topic "wind phase bring" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


201

Wind power outlook 2006  

SciTech Connect (OSTI)

This annual brochure provides the American Wind Energy Association's up-to-date assessment of the wind industry in the United States. This 2006 general assessment shows positive signs of growth, use and acceptance of wind energy as a vital component of the U.S. energy mix.

anon.

2006-04-15T23:59:59.000Z

202

Wind Economic Development (Postcard)  

SciTech Connect (OSTI)

The U.S. Department of Energy's Wind Powering America initiative provides information on the economic development benefits of wind energy. This postcard is a marketing piece that stakeholders can provide to interested parties; it will guide them to the economic development benefits section on the Wind Powering America website.

Not Available

2011-08-01T23:59:59.000Z

203

Wind Energy's New Role in Supplying the World's Energy: What Role Will Structural Health Monitoring Play?  

SciTech Connect (OSTI)

Wind energy installations are leading all other forms of new energy installations in the United States and Europe. In Europe, large wind plants are supplying as much as 25% of Denmark's energy needs and 8% of the electric needs for Germany and Spain, who have more ambitious goals on the horizon. Although wind energy only produces about 2% of the current electricity demand in the United States, the U.S. Department of Energy, in collaboration with wind industry experts, has drafted a plan that would bring the U.S. installed wind capacity up to 20% of the nation's total electrical supply. To meet these expectations, wind energy must be extremely reliable. Structural health monitoring will play a critical role in making this goal successful.

Butterfield, S.; Sheng, S.; Oyague, F.

2009-12-01T23:59:59.000Z

204

Why do meteorologists use wind vanes? Wind vanes are used to determine the direction of the wind. Wind  

E-Print Network [OSTI]

Fun Facts Why do meteorologists use wind vanes? Wind vanes are used to determine the direction of the wind. Wind· vanes are also called weather vanes. What do wind vanes look like on a weather station? Wind vanes that are on weather stations look a lot like the one you· made! The biggest differences

Nebraska-Lincoln, University of

205

Wind: wind speed and wind power density maps at 10m and 50m above...  

Open Energy Info (EERE)

files of wind speed and wind power density at 10 and 50 m heights. Global data of offshore wind resource as generated by NASA's QuikSCAT SeaWinds scatterometer....

206

Wind: wind speed and wind power density GIS data at 10m and 50m...  

Open Energy Info (EERE)

files of wind speed and wind power density at 10 and 50 m heights. Global data of offshore wind resource as generated by NASA's QuikScat SeaWinds scatterometer....

207

Vertical axis wind turbine  

SciTech Connect (OSTI)

Wind turbines are largely divided into vertical axis wind turbines and propeller (Horizontal axis) wind turbines. The present invention discloses a vertical axis high speed wind turbine provided with a starting and braking control system. This vertical axis wind turbine is formed by having blades of a proper airfoil fitted to respective supporting arms provided radially from a vertical rotary axis by keeping the blade span-wise direction in parallel with the axis and being provided with a low speed control windmill in which the radial position of each operating piece varies with a centrifugal force produced by the rotation of the vertical rotary axis.

Kato, Y.; Seki, K.; Shimizu, Y.

1981-01-27T23:59:59.000Z

208

Vertical axis wind turbine  

SciTech Connect (OSTI)

Wind turbines are largely divided into vertical axis wind turbines and propeller (Horizontal axis) wind turbines. The present invention discloses a vertical axis high speed wind turbine provided with rotational speed control systems. This vertical axis wind turbine is formed by having blades of a proper airfoil fitted to respective supporting arms provided radially from a vertical rotating shaft by keeping the blade span-wise direction in parallel with the shaft and being provided with aerodynamic control elements operating manually or automatically to control the rotational speed of the turbine.

Kato, Y.; Seki, K.; Shimizu, Y.

1981-01-27T23:59:59.000Z

209

Wind energy applications guide  

SciTech Connect (OSTI)

The brochure is an introduction to various wind power applications for locations with underdeveloped transmission systems, from remote water pumping to village electrification. It includes an introductory section on wind energy, including wind power basics and system components and then provides examples of applications, including water pumping, stand-alone systems for home and business, systems for community centers, schools, and health clinics, and examples in the industrial area. There is also a page of contacts, plus two specific example applications for a wind-diesel system for a remote station in Antarctica and one on wind-diesel village electrification in Russia.

anon.

2001-01-01T23:59:59.000Z

210

Department of Mechanical and Nuclear Engineering Spring 2011 Wind Tunnel Automation Project  

E-Print Network [OSTI]

PENNSTATE Department of Mechanical and Nuclear Engineering Spring 2011 Wind Tunnel Automation Project Phase II - Automated Bike Turret Mount Overview SYNERGE LLC is a consulting company working

Demirel, Melik C.

211

Wind Program: Wind Vision | Department of Energy  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May JunDatastreamsmmcrcalgovInstrumentsrucLasDelivered energy consumption byAbout PrintableBlenderWhatFellows - PastFarmWindWind PowerWind

212

Wind energy conversion system  

DOE Patents [OSTI]

The wind energy conversion system includes a wind machine having a propeller connected to a generator of electric power, the propeller rotating the generator in response to force of an incident wind. The generator converts the power of the wind to electric power for use by an electric load. Circuitry for varying the duty factor of the generator output power is connected between the generator and the load to thereby alter a loading of the generator and the propeller by the electric load. Wind speed is sensed electro-optically to provide data of wind speed upwind of the propeller, to thereby permit tip speed ratio circuitry to operate the power control circuitry and thereby optimize the tip speed ratio by varying the loading of the propeller. Accordingly, the efficiency of the wind energy conversion system is maximized.

Longrigg, Paul (Golden, CO)

1987-01-01T23:59:59.000Z

213

Wind tower service lift  

DOE Patents [OSTI]

An apparatus used for maintaining a wind tower structure wherein the wind tower structure may have a plurality of legs and may be configured to support a wind turbine above the ground in a better position to interface with winds. The lift structure may be configured for carrying objects and have a guide system and drive system for mechanically communicating with a primary cable, rail or other first elongate member attached to the wind tower structure. The drive system and guide system may transmit forces that move the lift relative to the cable and thereby relative to the wind tower structure. A control interface may be included for controlling the amount and direction of the power into the guide system and drive system thereby causing the guide system and drive system to move the lift relative to said first elongate member such that said lift moves relative to said wind tower structure.

Oliphant, David; Quilter, Jared; Andersen, Todd; Conroy, Thomas

2011-09-13T23:59:59.000Z

214

the risk issue of wind measurement for wind turbine operation  

E-Print Network [OSTI]

Sciences, National Taiwan University #12;outline · Wind measurement in meteorology and wind farm design-related issues on wind turbine operation 3/31/2011 2 #12;WIND MEASUREMENT IN METEOROLOGY & WIND FARM DESIGN 3.brainybetty.com 11 wind farm at ChangHwa Coastal Industrial Park 70m wind tower 70m 50m 30m 10m #12;1 2 3 4 5 1 (70M

Leu, Tzong-Shyng "Jeremy"

215

NREL: Wind Research - WindPACT  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

the cost of wind energy Determine probable size ranges of advanced utility-scale turbines over the next decade for U.S. application Evaluate advanced concepts that are...

216

The impact of electricity market schemes on predictability being a decision factor in the wind farm  

E-Print Network [OSTI]

The impact of electricity market schemes on predictability being a decision factor in the wind farm used criterion of capacity factor on the investment phase of a wind farm and on spatial planning, it is now recognized that accurate short-term forecasts of wind farms´ power output over the next few hours

Paris-Sud XI, Université de

217

The impact of electricity market schemes on predictability being a decision factor in the wind farm  

E-Print Network [OSTI]

The impact of electricity market schemes on predictability being a decision factor in the wind farm of capacity factor on the investment phase of a wind farm and on spatial planning in an electricity market, it is now recognized that accurate short-term forecasts of wind farms´ power output over the next few hours

Paris-Sud XI, Université de

218

Assessing the wind field over the continental shelf as a resource for electric power  

E-Print Network [OSTI]

for the comparison period) that the near-coast phase advantage is obviated. We also find more consistent wind powerAssessing the wind field over the continental shelf as a resource for electric power by Richard W. Garvine1,2 and Willett Kempton1,3,4 ABSTRACT To assess the wind power resources of a large continental

Firestone, Jeremy

219

RIS0-M-2432 SIMPLIFIED LAWS OF SIMIALRITY FOR WIND TURBINE ROTORS  

E-Print Network [OSTI]

RIS0-M-2432 SIMPLIFIED LAWS OF SIMIALRITY FOR WIND TURBINE ROTORS Helge Petersen The Test Station for Small Windmills Abstract, Laws of similarity or scaling laws for the character- istics of a wind turbine rotor are of importance to the designer even during the initial design phase of a new wind turbine con

220

Comparison of Wake Model Simulations with Offshore Wind Turbine Wake Profiles Measured by Sodar  

E-Print Network [OSTI]

a ship-mounted sodar at a small offshore wind farm. The experiments were conducted at varying distances Offshore wind farms have increased in size from the first phase of installation with up to 20 turbinesComparison of Wake Model Simulations with Offshore Wind Turbine Wake Profiles Measured by Sodar R

Pryor, Sara C.

Note: This page contains sample records for the topic "wind phase bring" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


221

Single-loop controllers bring boilers in line  

SciTech Connect (OSTI)

The boiler process seems simple. Some type of fuel is burned in the presence of air, forming heat and combustion gases. The heat is then absorbed by the boiler drum and transferred to the water inside. The heated water changes to steam and is exhausted, which spins an electrical turbine that produces electricity, and exhausts lower pressure steam for condensing in the process. Although this process seems simple, anything could go wrong at any time. The flame could go out, the fuel could run low, or the drum could get dirty. Let`s take a look at how to avoid these problems. The first step is to take accurate measurements. Typically, these measurements include flow, pressure, conductivity, temperature, stack analysis, and a level or two. Ambient conditions can affect performance of each measuring device, so be sure to consider the hot, drafty conditions of boiler houses when selecting/installing devices. The second step is to bring the measurement signals back to the control room. Use two-wire, loop-powered devices to transmit all signals except the stack analysis signals. Two-wire, loop-powered technology increases reliability, lowers installation costs, and eliminates ground loops. Signal conditioning takes place at the microcontroller input points. Signal conditioning is done to provide a linear, overall loop response to the controller. It also simplified measurement. Examining four types of input signal characterization will help explain the signal conditioning process. The first signal is a zero-based pressure signal with a linear characteristic. The second is a temperature measurement made by a thermocouple whose output is nonlinear. Next is a flow measurement made with a conventional d/p cell and orifice plate. It needs a square root characterization. Last is a combustion air flow measurement from the pressure drop across part of the boiler or preheater. This flow measurement is quite tricky because of a large deviation from the simple square root relationship.

Harrelson, D.; Piechota, B.

1995-08-01T23:59:59.000Z

222

Analysis and design of some new single phase to three phase static converters  

E-Print Network [OSTI]

to the slave relay winding. Slave relav winding is immediately energized to close the normally open contacts and energizes the start capacitor. The start capacitor accordingly energizes the stator winding C and shifts the phase of power brought in from... threshold voltage (usually within a few seconds after energizing the induction motor), potential relay winding senses the voltage value and actuates relay to open contacts. Immediately. he slave relay wmding is de-energized snd the contacts disconnect...

Rahman, Ashek

1991-01-01T23:59:59.000Z

223

Materials for Math 13900 Bring to class each day: graph paper ...  

E-Print Network [OSTI]

Materials for Math 13900. Bring to class each day: graph paper isometric dot paper unlined paper cm ruler. We will also be using: compass small scissors.

Roames, Renee S

2015-01-08T23:59:59.000Z

224

Editorial – The Global Warming Fight is “Bringing Sexy Back,” Are You Ready?  

E-Print Network [OSTI]

2006, September 25). Is global warming raising a tempest?or her behavior towards global warming in 2007. *Timberlake,Editorial: The Global Warming Fight is “Bringing Sexy

Jankowska, Marta Maja

2006-01-01T23:59:59.000Z

225

Wind energy conversion system  

SciTech Connect (OSTI)

This patent describes a wind energy conversion system comprising: a propeller rotatable by force of wind; a generator of electricity mechanically coupled to the propeller for converting power of the wind to electric power for use by an electric load; means coupled between the generator and the electric load for varying the electric power drawn by the electric load to alter the electric loading of the generator; means for electro-optically sensing the speed of the wind at a location upwind from the propeller; and means coupled between the sensing means and the power varying means for operating the power varying means to adjust the electric load of the generator in accordance with a sensed value of wind speed to thereby obtain a desired ratio of wind speed to the speed of a tip of a blade of the propeller.

Longrigg, P.

1987-03-17T23:59:59.000Z

226

WINDExchange Offshore Wind Webinar: Transmission Planning and...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Offshore Wind Webinar: Transmission Planning and Interconnection for Offshore Wind WINDExchange Offshore Wind Webinar: Transmission Planning and Interconnection for Offshore Wind...

227

wind_guidance  

Broader source: Energy.gov [DOE]

Guidance to Accompany Non-Availability Waiver of the Recovery Act Buy American Provisions for 5kW and 50kW Wind Turbines

228

Barstow Wind Turbine Project  

Broader source: Energy.gov [DOE]

Presentation covers the Barstow Wind Turbine project for the Federal Utility Partnership Working Group (FUPWG) meeting, held on November 18-19, 2009.

229

Vertical axis wind turbines  

DOE Patents [OSTI]

A vertical axis wind turbine is described. The wind turbine can include a top ring, a middle ring and a lower ring, wherein a plurality of vertical airfoils are disposed between the rings. For example, three vertical airfoils can be attached between the upper ring and the middle ring. In addition, three more vertical airfoils can be attached between the lower ring and the middle ring. When wind contacts the vertically arranged airfoils the rings begin to spin. By connecting the rings to a center pole which spins an alternator, electricity can be generated from wind.

Krivcov, Vladimir (Miass, RU); Krivospitski, Vladimir (Miass, RU); Maksimov, Vasili (Miass, RU); Halstead, Richard (Rohnert Park, CA); Grahov, Jurij (Miass, RU)

2011-03-08T23:59:59.000Z

230

Wind Wave Float  

Broader source: Energy.gov (indexed) [DOE]

Weinstein Principle Power, Inc. aweinstein@principlepowerinc.com November 1, 2011 2 | Wind and Water Power Program eere.energy.gov Purpose, Objectives, & Integration Project...

231

Talkin’ Bout Wind Generation  

Broader source: Energy.gov [DOE]

The amount of electricity generated by the wind industry started to grow back around 1999, and since 2007 has been increasing at a rapid pace.

232

Wind Engineering & Natural Disaster Mitigation  

E-Print Network [OSTI]

Wind Engineering & Natural Disaster Mitigation For more than 45 years, Western University has been internationally recognized as the leading university for wind engineering and wind- related research. Its of environmental disaster mitigation, with specific strengths in wind and earthquake research. Boundary Layer Wind

Denham, Graham

233

Wind Energy and Spatial Technology  

E-Print Network [OSTI]

2/3/2011 1 Wind Energy and Spatial Technology Lori Pelech Why Wind Energy? A clean, renewable 2,600 tons of carbon emissions annually ­ The economy · Approximately 85,000 wind energy workers to Construct a Wind Farm... Geo-Spatial Components of Wind Farm Development Process Selecting a Project Site

Schweik, Charles M.

234

Proceedings Nordic Wind Power Conference  

E-Print Network [OSTI]

Estimation of Possible Power for Wind Plant Control Power Fluctuations from Offshore Wind Farms; Model Validation System grounding of wind farm medium voltage cable grids Faults in the Collection Grid of Offshore systems of wind turbines and wind farms. NWPC presents the newest research results related to technical

235

Robust quantum control using smooth pulses and topological winding  

E-Print Network [OSTI]

Powerful future technologies based on coherent quantum dynamical systems require an unprecedented level of control. Perhaps the greatest challenge in achieving such control is the decoherence induced by the environment, a problem which pervades experimental quantum physics and is particularly severe in the context of solid state quantum computing and nanoscale quantum devices because of the inherently strong coupling to the surrounding material. Recent years have seen rapid improvement in the quality of materials and in the design and fabrication of such systems, and it is crucial to match this progress with similar advances in the external control protocols used to manipulate quantum states so that the high levels of quantum coherence needed for technological applications persist despite the invariable presence of environmental noise. Here, we present an analytical approach that yields explicit constraints on the driving field which ensure that the leading-order noise-induced errors in a qubit's evolution cancel exactly. We derive constraints for two of the most common types of non-Markovian noise that arise in qubits: slow fluctuations of the qubit energy splitting and fluctuations in the driving field itself. By theoretically recasting a phase in the qubit's wavefunction as a topological winding number, we can satisfy the noise-cancelation conditions by adjusting driving field parameters without altering the target state or quantum evolution. We demonstrate our method by constructing robust quantum gates for two types of spin qubit: phosphorous donors in silicon and nitrogen-vacancy centers in diamond. Our results constitute an important step toward achieving robust generic control of quantum systems, bringing their novel applications closer to realization.

Edwin Barnes; Xin Wang; S. Das Sarma

2014-09-24T23:59:59.000Z

236

Wind Power Today, 2010, Wind and Water Power Program (WWPP)  

SciTech Connect (OSTI)

Wind Power Today is an annual publication that provides an overview of the wind energy research conducted by the U.S. Department of Energy Wind and Water Power Program.

Not Available

2010-05-01T23:59:59.000Z

237

American Wind Energy Association Wind Energy Finance and Investment...  

Broader source: Energy.gov (indexed) [DOE]

Wind Energy Finance and Investment Seminar American Wind Energy Association Wind Energy Finance and Investment Seminar October 20, 2014 8:00AM EDT to October 21, 2014 5:00PM EDT...

238

Wind Powering America's Wind for Schools Team Honored with Wirth...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

America's Wind for Schools Team Honored with Wirth Chair Award Wind Powering America's Wind for Schools Team Honored with Wirth Chair Award May 1, 2012 - 2:46pm Addthis This is an...

239

20% Wind Energy by 2030: Increasing Wind Energy's Contribution...  

Office of Environmental Management (EM)

: Increasing Wind Energy's Contribution to U.S. Electricity Supply 20% Wind Energy by 2030: Increasing Wind Energy's Contribution to U.S. Electricity Supply Here you will find the...

240

Low Wind Speed Turbine Developments in Convoloid Gearing: Final Technical Report, June 2005 - October 2008  

SciTech Connect (OSTI)

This report presents the results of a study conducted by Genesis Partners LP as part of the United States Department of Energy Wind Energy Research Program to develop wind technology that will enable wind systems to compete in regions having low wind speeds. The purpose of the program is to reduce the cost of electricity from large wind systems in areas having Class 4 winds to 3 cents per kWh for onshore systems or 5 cents per kWh for offshore systems. This work builds upon previous activities under the WindPACT project, the Next Generation Turbine project, and Phase I of the Low Wind Speed Turbine (LWST) project. This project is concerned with the development of more cost-effective gearing for speed increasers for wind turbines.

Genesis Partners LP

2010-08-01T23:59:59.000Z

Note: This page contains sample records for the topic "wind phase bring" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


241

LARGE SCALE WIND CLIMATOLOGICAL EXAMINATIONS OF WIND ENERGY UTILIZATION  

E-Print Network [OSTI]

The aim of this article is to describe the particular field of climatology which analyzes air movement characteristics regarding utilization of wind for energy generation. The article describes features of wind energy potential available in Hungary compared to wind conditions in other areas of the northern quarter sphere in order to assist the wind energy use development in Hungary. Information on wind climate gives a solid basis for financial and economic decisions of stakeholders in the field of wind energy utilization.

Andrea Kircsi

242

Q-Winds satellite hurricane wind retrievals and H*Wind comparisons  

E-Print Network [OSTI]

tailored to extreme wind events. Because of this and precipitation effects, scatterometers have failed/passive scatterometer retrieval algorithm designed specifically for extreme wind events, hereafter identified1 Q-Winds satellite hurricane wind retrievals and H*Wind comparisons Pet Laupattarakasem and W

Hennon, Christopher C.

243

20% Wind Energy by 2030: Increasing Wind Energy's Contribution...  

Office of Environmental Management (EM)

Summary) 20% Wind Energy by 2030: Increasing Wind Energy's Contribution to U.S. Electricity Supply (Executive Summary) Executive summary of a report on the requirements needed...

244

2009 Wind Technologies Market Report  

E-Print Network [OSTI]

AWEA’s Wind Energy Weekly, DOE/EPRI’s Turbine Verification10% Wind Energy Penetration New large-scale 10 wind turbineswind energy became more challenging, orders for new turbines

Wiser, Ryan

2010-01-01T23:59:59.000Z

245

Wind Farms in North America  

E-Print Network [OSTI]

P. and Mueller, A. (2010) Wind Farm Announcements and RuralProposed Rail Splitter Wind Farm. Prepared for Hinshaw &Economic Analysis of a Wind Farm in Nantucket Sound. Beacon

Hoen, Ben

2014-01-01T23:59:59.000Z

246

2009 Wind Technologies Market Report  

E-Print Network [OSTI]

natural gas prices), pushed wind energy from the bottom toover the cost and price of wind energy that it receives. Asweighted-average price of wind energy in 1999 was $65/MWh (

Wiser, Ryan

2010-01-01T23:59:59.000Z

247

2008 WIND TECHNOLOGIES MARKET REPORT  

E-Print Network [OSTI]

natural gas prices, though the economic value of wind energyenergy and climate policy initiatives. With wind turbine pricesprices reported here would be at least $20/MWh higher without the PTC), they do not represent wind energy

Bolinger, Mark

2010-01-01T23:59:59.000Z

248

2010 Wind Technologies Market Report  

E-Print Network [OSTI]

weighted-average price of wind energy in 1999 was roughly $reduced near-term price expectations, wind energy?s primaryelectricity prices in 2009 pushed wind energy to the top of

Wiser, Ryan

2012-01-01T23:59:59.000Z

249

Fort Carson Wind Resource Assessment  

SciTech Connect (OSTI)

This report focuses on the wind resource assessment, the estimated energy production of wind turbines, and economic potential of a wind turbine project on a ridge in the southeastern portion of the Fort Carson Army base.

Robichaud, R.

2012-10-01T23:59:59.000Z

250

2011 Wind Technologies Market Report  

E-Print Network [OSTI]

and the drop in wind power plant installations since 2009and the drop in wind power plant installations since 2009towers used in U.S. wind power plants increases from 80% in

Bolinger, Mark

2013-01-01T23:59:59.000Z

251

2010 Wind Technologies Market Report  

E-Print Network [OSTI]

and the drop in wind power plant installations, for example,the decrease in new wind power plant construction. A GrowingRelative Economics of Wind Power Plants Installed in Recent

Wiser, Ryan

2012-01-01T23:59:59.000Z

252

2009 Wind Technologies Market Report  

E-Print Network [OSTI]

AWEA). 2010b. AWEA Small Wind Turbine Global Market Survey,html David, A. 2009. Wind Turbines: Industry and Tradewhich new large-scale wind turbines were installed in 2009 (

Wiser, Ryan

2010-01-01T23:59:59.000Z

253

2010 Wind Technologies Market Report  

E-Print Network [OSTI]

ET2/TL-08-1474. May 19, 2010 Wind Technologies Market ReportAssociates. 2010. SPP WITF Wind Integration Study. Little10, 2010. David, A. 2009. Wind Turbines: Industry and Trade

Wiser, Ryan

2012-01-01T23:59:59.000Z

254

2011 Wind Technologies Market Report  

E-Print Network [OSTI]

Associates. 2010. SPP WITF Wind Integration Study. LittlePool. David, A. 2011. U.S. Wind Turbine Trade in a Changing2011. David, A. 2010. Impact of Wind Energy Installations on

Bolinger, Mark

2013-01-01T23:59:59.000Z

255

2011 Wind Technologies Market Report  

E-Print Network [OSTI]

shows that 8.5% of potential wind energy generation withinin GWh (and as a % of potential wind generation) Electricreport also laid out a potential wind power deployment path

Bolinger, Mark

2013-01-01T23:59:59.000Z

256

NREL: Wind Research - Wind Resource Assessment  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May JunDatastreamsmmcrcalgovInstrumentsrucLas Conchas recoveryLaboratory | NationalJohn F. Geisz,AerialStaff Here you willWind EnergyWind

257

West Winds Wind Farm | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home5b9fcbce19 NoPublic Utilities Address: 160 East 300 South Place: SaltTroyer & AssociatesWest CentralUkinrekWest Winds Wind

258

Wind Vision Wind Farm | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home5b9fcbce19 NoPublic Utilities Address: 160 East 300 South Place:ReferenceEdit JumpWill County, Illinois:4 Sector WindOaxacaWind

259

Small Wind Information (Postcard)  

SciTech Connect (OSTI)

The U.S. Department of Energy's Wind Powering America initiative maintains a website section devoted to information about small wind turbines for homeowners, ranchers, and small businesses. This postcard is a marketing piece that stakeholders can provide to interested parties; it will guide them to this online resource.

Not Available

2011-08-01T23:59:59.000Z

260

Offshore Wind Geoff Sharples  

E-Print Network [OSTI]

Offshore Wind Geoff Sharples geoff@clearpathenergyllc.com #12;Frequently Unanswered Ques?ons · Why don't "they" build more offshore wind? · Why not make the blades bigger? · How big will turbines get? #12;Offshore Resource is Good #12

Kammen, Daniel M.

Note: This page contains sample records for the topic "wind phase bring" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


261

Carbon smackdown: wind warriors  

ScienceCinema (OSTI)

July 16. 2010 carbon smackdown summer lecture: learn how Berkeley Lab scientists are developing wind turbines to be used in an urban setting, as well as analyzing what it will take to increase the adoption of wind energy in the U.S.

Glen Dahlbacka of the Accelerator & Fusion Research Division and Ryan Wiser of the Environmental Energy Technologies Division are the speakers.

2010-09-01T23:59:59.000Z

262

Carbon smackdown: wind warriors  

SciTech Connect (OSTI)

July 16. 2010 carbon smackdown summer lecture: learn how Berkeley Lab scientists are developing wind turbines to be used in an urban setting, as well as analyzing what it will take to increase the adoption of wind energy in the U.S.

Glen Dahlbacka of the Accelerator & Fusion Research Division and Ryan Wiser of the Environmental Energy Technologies Division are the speakers.

2010-07-21T23:59:59.000Z

263

VARIABLE SPEED WIND TURBINE  

E-Print Network [OSTI]

Wind energy is currently the fastest-growing renewable source of energy in India; India is a key market for the wind industry, presenting substantial opportunities for both the international and domestic players. In India the research is carried out on wind energy utilization on big ways.There are still many unsolved challenges in expanding wind power, and there are numerous problems of interest to systems and control researchers. In this paper we study the pitch control mechanism of wind turbine. The pitch control system is one of the most widely used control techniques to regulate the output power of a wind turbine generator. The pitch angle is controlled to keep the generator power at rated power by reducing the angle of the blades. By regulating, the angle of stalling, fast torque changes from the wind will be reutilized. It also describes the design of the pitch controller and discusses the response of the pitch-controlled system to wind velocity variations. The pitch control system is found to have a large output power variation and a large settling time.

Chatinderpal Singh

264

Illinois Wind Workers Group  

SciTech Connect (OSTI)

The Illinois Wind Working Group (IWWG) was founded in 2006 with about 15 members. It has grown to over 200 members today representing all aspects of the wind industry across the State of Illinois. In 2008, the IWWG developed a strategic plan to give direction to the group and its activities. The strategic plan identifies ways to address critical market barriers to the further penetration of wind. The key to addressing these market barriers is public education and outreach. Since Illinois has a restructured electricity market, utilities no longer have a strong control over the addition of new capacity within the state. Instead, market acceptance depends on willing landowners to lease land and willing county officials to site wind farms. Many times these groups are uninformed about the benefits of wind energy and unfamiliar with the process. Therefore, many of the project objectives focus on conferences, forum, databases and research that will allow these stakeholders to make well-educated decisions.

David G. Loomis

2012-05-28T23:59:59.000Z

265

Wind Wildlife Research Meeting X  

Broader source: Energy.gov [DOE]

The biennial Wind Wildlife Research Meeting provides an internationally recognized forum for researchers and wind-wildlife stakeholders to hear contributed papers, view research posters, and listen...

266

2008 WIND TECHNOLOGIES MARKET REPORT  

E-Print Network [OSTI]

AWEA’s Wind Energy Weekly, DOE/EPRI’s Turbine VerificationTurbine Global Market Study: Year Ending 2008. Washington, DC: American Wind Energy

Bolinger, Mark

2010-01-01T23:59:59.000Z

267

Wind and Solar Curtailment: Preprint  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Integration of Wind Power Into Power Systems as Well as on Transmission Networks for Offshore Wind Power Plants London, England October 22 - 24, 2013 Conference Paper NREL...

268

Wind Energy Resources and Technologies  

Broader source: Energy.gov [DOE]

This page provides a brief overview of wind energy resources and technologies supplemented by specific information to apply wind energy within the Federal sector.

269

Large Wind Property Tax Reduction  

Broader source: Energy.gov [DOE]

In 2001, North Dakota established property tax reductions for commercial wind turbines constructed before 2011. Originally, the law reduced the taxable value of centrally-assessed* wind turbines...

270

2010 Wind Technologies Market Report  

E-Print Network [OSTI]

wind turbine equipment-related costs are assumed to equal 85% of 2010 Wind Technologies Market Report periods to further avoid “noise”

Wiser, Ryan

2012-01-01T23:59:59.000Z

271

2009 Wind Technologies Market Report  

E-Print Network [OSTI]

selected wind turbine components that include towers (tradeWind turbine transactions differ in the services offered (e.g. , whether towers

Wiser, Ryan

2010-01-01T23:59:59.000Z

272

2008 WIND TECHNOLOGIES MARKET REPORT  

E-Print Network [OSTI]

wind turbine manufacturers: Vestas (nacelles, blades, and towersWind turbine transactions differ in the services offered (e.g. , whether towers

Bolinger, Mark

2010-01-01T23:59:59.000Z

273

Wind Events | Department of Energy  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Below is an industry calendar with meetings, conferences, and webinars of interest to the wind energy technology communities. IEA Wind Task 34 (WREN) Quarterly Webinar 3:...

274

Relativistic MHD Winds from Rotating Neutron Stars  

E-Print Network [OSTI]

We solve the time-dependent dynamics of axisymmetric, general relativistic MHD winds from rotating neutron stars. The mass loss rate is obtained self consistently as a solution of the MHD equations, subject to a finite thermal pressure at the stellar surface. Conditions are chosen to be representative of the neutrino driven phase in newly born magnetars, which have been considered as a possible engine for GRBs. We compute the angular momentum and energy losses as a function of $\\sigma$ and compare them with the analytic expectation from the classical theory of pulsar winds. We observe the convergence to the force-free limit in the energy loss and we study the evolution of the closed zone for increasing magnetization. Results also show that the dipolar magnetic field and the presence of a closed zone do not modify significantly the acceleration and collimation properties of the wind.

N. Bucciantini; T. A. Thompson; J. Arons; E. Quataert

2006-12-22T23:59:59.000Z

275

Ris National Laboratory DTU Wind Energy Department  

E-Print Network [OSTI]

wind speed, wind direction relative to the spinner and flow inclination angle. A wind tunnel concept anemometer is a wind measurement concept in which measurements of wind speed in the flow over a wind turbine on a modified 300kW wind turbine spinner, was mounted with three 1D sonic wind speed sensors. The flow around

276

Wind Energy Kit | Photosynthetic Antenna Research Center  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Wind Energy Kit Wind Energy Kit Wind Energy :: Kit Materials List Below is a list of the different Wind Energy kits available. For more details, download the Wind Energy Kit List....

277

Wind Energy Program: Top 10 Program Accomplishments  

Broader source: Energy.gov [DOE]

Brochure on the top accomplishments of the Wind Energy Program, including the development of large wind machines, small machines for the residential market, wind tunnel testing, computer codes for modeling wind systems, high definition wind maps, and successful collaborations.

278

Utilizing Wind: Optimal Wind Farm Placement in the United States  

E-Print Network [OSTI]

Utilizing Wind: Optimal Wind Farm Placement in the United States By: Yintao Sun Advisor: Professor Acknowledgements First and foremost, I would like to thank my advisor, Professor Warren Powell, for all the help he An Introduction to Wind Energy 1 1.1 Wind, a Brief History . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

Powell, Warren B.

279

Wind Energy at NREL's National Wind Technology Center  

ScienceCinema (OSTI)

It is a pure, plentiful natural resource. Right now wind is in high demand and it holds the potential to transform the way we power our homes and businesses. NREL is at the forefront of wind energy research and development. NREL's National Wind Technology Center (NWTC) is a world-class facility dedicated to accelerating and deploying wind technology.

None

2013-05-29T23:59:59.000Z

280

Wind Energy at NREL's National Wind Technology Center  

SciTech Connect (OSTI)

It is a pure, plentiful natural resource. Right now wind is in high demand and it holds the potential to transform the way we power our homes and businesses. NREL is at the forefront of wind energy research and development. NREL's National Wind Technology Center (NWTC) is a world-class facility dedicated to accelerating and deploying wind technology.

None

2010-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "wind phase bring" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


281

Reference wind farm selection for regional wind power prediction models  

E-Print Network [OSTI]

1 Reference wind farm selection for regional wind power prediction models Nils Siebert George.siebert@ensmp.fr, georges.kariniotakis@ensmp.fr Abstract Short-term wind power forecasting is recognized today as a major requirement for a secure and economic integration of wind generation in power systems. This paper deals

Paris-Sud XI, Université de

282

WIND ENERGY Wind Energ. 2013; 00:112  

E-Print Network [OSTI]

WIND ENERGY Wind Energ. 2013; 00:1­12 DOI: 10.1002/we RESEARCH ARTICLE Model predictive control in wind speed, ensuring certain power gradients, with an insignificant loss in energy production rejection, model predictive control, convex optimization, wind power control, energy storage, power output

283

WIND ENERGY Wind Energ. 2013; 16:7790  

E-Print Network [OSTI]

energy industry lags far behind the wind energy industry, it has the potential to become a role player is equal to the long-term potential of onshore wind energy.1,2 Therefore, the utilisation of marineWIND ENERGY Wind Energ. 2013; 16:77­90 Published online 19 March 2012 in Wiley Online Library

Papalambros, Panos

284

The Federal Advanced Wind Turbine Program  

SciTech Connect (OSTI)

The development of technologically advanced, higher efficiency wind turbines has been identified as a high priority activity by the US wind industry. The Department of Energy`s Wind Energy Program has begun a multi-year development program aimed at assisting the wind industry with the design, development, and testing of advanced wind turbine systems that can compete with conventional electric generation for $0.05/kWh at 13 mph sites by the mid-1990s and with fossil-fuel-based generators for $0.04/kWh at 13 mph sites by the year 2000. The development plan consists of four phases: (1) Conceptual Design Studies; (2) Near-Term Product Development; (3) Next Generation Technology Integration and Design, and (4) Next- Generation Technology Development and Testing. The Conceptual Design Studies were begun in late 1990, and are scheduled for completion in the Spring of 1992. Preliminary results from these analyses are very promising and indicate that the goals stated above are technically feasible. This paper includes a brief summary of the Conceptual Design Studies and presents initial plans for the follow-on activities. 3 refs., 4 figs.

Hock, S.M.; Thresher, R.W. [National Renewable Energy Lab., Golden, CO (United States); Goldman, P.R. [USDOE, Washington, DC (United States)

1991-12-01T23:59:59.000Z

285

The Federal Advanced Wind Turbine Program  

SciTech Connect (OSTI)

The development of technologically advanced, higher efficiency wind turbines has been identified as a high priority activity by the US wind industry. The Department of Energy's Wind Energy Program has begun a multi-year development program aimed at assisting the wind industry with the design, development, and testing of advanced wind turbine systems that can compete with conventional electric generation for $0.05/kWh at 13 mph sites by the mid-1990s and with fossil-fuel-based generators for $0.04/kWh at 13 mph sites by the year 2000. The development plan consists of four phases: (1) Conceptual Design Studies; (2) Near-Term Product Development; (3) Next Generation Technology Integration and Design, and (4) Next- Generation Technology Development and Testing. The Conceptual Design Studies were begun in late 1990, and are scheduled for completion in the Spring of 1992. Preliminary results from these analyses are very promising and indicate that the goals stated above are technically feasible. This paper includes a brief summary of the Conceptual Design Studies and presents initial plans for the follow-on activities. 3 refs., 4 figs.

Hock, S M; Thresher, R W [National Renewable Energy Lab., Golden, CO (United States); Goldman, P R [USDOE, Washington, DC (United States)

1991-12-01T23:59:59.000Z

286

Wind Power Outreach Campaign  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May JunDatastreamsmmcrcalgovInstrumentsrucLasDelivered energy consumption byAbout PrintableBlenderWhatFellows - PastFarmWindWind Power Wind

287

Combined Experiment Phase 1. Final report  

SciTech Connect (OSTI)

How does wind tunnel airfoil data differ from the airfoil performance on an operating horizontal axis wind turbine (HAWT)? The National Renewable Energy laboratory has been conducting a comprehensive test program focused on answering this question and understanding the basic fluid mechanics of rotating HAWT stall aerodynamics. The basic approach was to instrument a wind rotor, using an airfoil that was well documented by wind tunnel tests, and measure operating pressure distributions on the rotating blade. Based an the integrated values of the pressure data, airfoil performance coefficients were obtained, and comparisons were made between the rotating data and the wind tunnel data. Care was taken to the aerodynamic and geometric differences between the rotating and the wind tunnel models. This is the first of two reports describing the Combined Experiment Program and its results. This Phase I report covers background information such as test setup and instrumentation. It also includes wind tunnel test results and roughness testing.

Butterfield, C.P.; Musial, W.P.; Simms, D.A.

1992-10-01T23:59:59.000Z

288

WP2 IEA Wind Task 26:The Past and Future Cost of Wind Energy  

E-Print Network [OSTI]

Energy Efficiency and Renewable Energy, Wind and Hydropowerin Spain. Spanish Wind Energy Association (AEE) contributionin a Wind Turbine. ” Wind Energy (9:1–2); pp. 141–161.

Lantz, Eric

2014-01-01T23:59:59.000Z

289

20% Wind Energy by 2030 - Chapter 6: Wind Power Markets Summary...  

Broader source: Energy.gov (indexed) [DOE]

6: Wind Power Markets Summary Slides 20% Wind Energy by 2030 - Chapter 6: Wind Power Markets Summary Slides Summary slides overviewing wind power markets, growth, applications, and...

290

Collegiate Wind Competition Turbines go Blade-to-Blade in Wind...  

Broader source: Energy.gov (indexed) [DOE]

This wind tunnel constructed by NREL engineers will test the small wind turbines designed by 10 university teams competing in DOE's Collegiate Wind Competition. This wind tunnel...

291

Community Wind Benefits (Fact Sheet)  

SciTech Connect (OSTI)

This fact sheet explores the benefits of community wind projects, including citations to published research.

Not Available

2012-11-01T23:59:59.000Z

292

wind engineering & natural disaster mitigation  

E-Print Network [OSTI]

wind engineering & natural disaster mitigation #12;wind engineering & natural disaster mitigation Investment WindEEE Dome at Advanced Manufacturing Park $31million Insurance Research Lab for Better Homes $8million Advanced Facility for Avian Research $9million #12;wind engineering & natural disaster mitigation

Denham, Graham

293

Wind Electrolysis: Hydrogen Cost Optimization  

SciTech Connect (OSTI)

This report describes a hydrogen production cost analysis of a collection of optimized central wind based water electrolysis production facilities. The basic modeled wind electrolysis facility includes a number of low temperature electrolyzers and a co-located wind farm encompassing a number of 3MW wind turbines that provide electricity for the electrolyzer units.

Saur, G.; Ramsden, T.

2011-05-01T23:59:59.000Z

294

Optimization of Wind Turbine Operation  

E-Print Network [OSTI]

Optimization of Wind Turbine Operation by Use of Spinner Anemometer TF Pedersen, NN Sørensen, L Title: Optimization of Wind Turbine Operation by Use of Spinner Anemometer Department: Wind Energy prototype wind turbine. Statistics of the yaw error showed an average of about 10°. The average flow

295

2008 WIND TECHNOLOGIES MARKET REPORT  

E-Print Network [OSTI]

some wind turbine manufacturers experienced blade andwind turbine manufacturers: Vestas (nacelles, blades, and

Bolinger, Mark

2010-01-01T23:59:59.000Z

296

Kentish Flats Offshore Wind Farm  

E-Print Network [OSTI]

Kentish Flats Offshore Wind Farm #12;By August 2005 the offshore wind farm at Kentish Flats plateau just outside the main Thames shipping lanes. The Kentish Flats wind farm will comprise 30 of the wind farm could be up to 90 MW. For the benefit of the environment The British Government has set

Firestone, Jeremy

297

3-D SPH simulations of colliding winds in eta Carinae  

E-Print Network [OSTI]

We study colliding winds in the superluminous binary eta Carinae by performing three-dimensional, Smoothed Particle Hydrodynamics (SPH) simulations. For simplicity, we assume both winds to be isothermal. We also assume that wind particles coast without any net external forces. We find that the lower density, faster wind from the secondary carves out a spiral cavity in the higher density, slower wind from the primary. Because of the phase-dependent orbital motion, the cavity is very thin on the periastron side, whereas it occupies a large volume on the apastron side. The model X-ray light curve using the simulated density structure fits very well with the observed light curve for a viewing angle of i=54 degrees and phi=36 degrees, where i is the inclination angle and phi is the azimuth from apastron.

Atsuo T. Okazaki; Stanley P. Owocki; Christopher M. P. Russell; Michael F. Corcoran

2008-03-27T23:59:59.000Z

298

Wind Power in Alaska  

Broader source: Energy.gov [DOE]

In the past few years wind power has become more and more prevalent across Alaska, with big turbines sprouting up in all parts of the state. Sponsored by the Renewable Energy Alaska Project, event...

299

DOE Collegiate Wind Competition  

Broader source: Energy.gov [DOE]

The U.S. Department of Energy (DOE) Collegiate Wind Competition will take place concurrently with the 2014 AWEA WINDPOWER Conference and Exhibition in Las Vegas. Spectators are encouraged to attend...

300

Airborne Wind Turbine  

SciTech Connect (OSTI)

Broad Funding Opportunity Announcement Project: Makani Power is developing an Airborne Wind Turbine (AWT) that eliminates 90% of the mass of a conventional wind turbine and accesses a stronger, more consistent wind at altitudes of near 1,000 feet. At these altitudes, 85% of the country can offer viable wind resources compared to only 15% accessible with current technology. Additionally, the Makani Power wing can be economically deployed in deep offshore waters, opening up a resource which is 4 times greater than the entire U.S. electrical generation capacity. Makani Power has demonstrated the core technology, including autonomous launch, land, and power generation with an 8 meter wingspan, 20 kW prototype. At commercial scale, Makani Power aims to develop a 600 kW, 28 meter wingspan product capable of delivering energy at an unsubsidized cost competitive with coal, the current benchmark for low-cost power.

None

2010-09-01T23:59:59.000Z

Note: This page contains sample records for the topic "wind phase bring" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


301

Wind Turbines Benefit Crops  

ScienceCinema (OSTI)

Ames Laboratory associate scientist Gene Takle talks about research into the effect of wind turbines on nearby crops. Preliminary results show the turbines may have a positive effect by cooling and drying the crops and assisting with carbon dioxide uptake.

Takle, Gene

2013-03-01T23:59:59.000Z

302

Wind Agreements (Nebraska)  

Broader source: Energy.gov [DOE]

These regulations address leases or lease options securing land for the study or production of wind-generated energy. The regulations describe agreement terms, compliance, and a prohibition on land...

303

Model Wind Ordinance  

Broader source: Energy.gov [DOE]

''Note: This model ordinance was designed to provide guidance to local governments that wish to develop their own siting rules for wind turbines. While it was developed as part of a cooperative...

304

Solar and Wind Rights  

Broader source: Energy.gov [DOE]

Wisconsin has several laws that protect a resident's right to install and operate a solar or wind energy system. These laws cover zoning restrictions by local governments, private land use...

305

Wind Energy Systems Exemption  

Broader source: Energy.gov [DOE]

Tennessee House Bill 809, enacted into law in Public Chapter 377, Acts of 2003 and codified under Title 67, Chapter 5, states that wind energy systems operated by public utilities, businesses or...

306

Wind Energy Permitting Standards  

Broader source: Energy.gov [DOE]

All wind facilities larger than 0.5 megawatts (MW) that begin construction after July 1, 2010, must obtain a permit from any county in which the facility is located. Facilities must also obtain...

307

County Wind Ordinance Standards  

Broader source: Energy.gov [DOE]

[http://www.leginfo.ca.gov/pub/09-10/bill/asm/ab_0001-0050/ab_45_bill_200... Assembly Bill 45] of 2009 authorized counties to adopt ordinances to provide for the installation of small wind systems ...

308

Wind Energy Teachers Guide  

SciTech Connect (OSTI)

This guide, created by the American Wind Association, with support from the U.S. Department of Energy, is a learning tool about wind energy targeted toward grades K-12. The guide provides teacher information, ideas for sparking children's and students' interest, suggestions for activities to undertake in and outside the classroom, and research tools for both teachers and students. Also included is an additional resources section.

anon.

2003-01-01T23:59:59.000Z

309

Wind | Department of Energy  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE: Alternative Fuels Data CenterEnergyAuthorizationSunShot Initiative SolarVehiclesWind Wind EERE

310

Welcome to SupplyChainBrain: Timber!!! Updated Law Could Bring Chaos to U.S. Border Timber!!! Updated Law Could Bring Chaos to U.S. Border  

E-Print Network [OSTI]

companies are forced to compete with illegal foreign imports. Stopping the importation of illegal timberWelcome to SupplyChainBrain: Timber!!! Updated Law Could Bring Chaos to U.S. Border Timber October 08, 2008 Timber!!! Look out at the border. Unless several government agencies act quickly

311

Tornado type wind turbines  

DOE Patents [OSTI]

A tornado type wind turbine has a vertically disposed wind collecting tower with spaced apart inner and outer walls and a central bore. The upper end of the tower is open while the lower end of the structure is in communication with a wind intake chamber. An opening in the wind chamber is positioned over a turbine which is in driving communication with an electrical generator. An opening between the inner and outer walls at the lower end of the tower permits radially flowing air to enter the space between the inner and outer walls while a vertically disposed opening in the wind collecting tower permits tangentially flowing air to enter the central bore. A porous portion of the inner wall permits the radially flowing air to interact with the tangentially flowing air so as to create an intensified vortex flow which exits out of the top opening of the tower so as to create a low pressure core and thus draw air through the opening of the wind intake chamber so as to drive the turbine.

Hsu, Cheng-Ting (Ames, IA)

1984-01-01T23:59:59.000Z

312

Femtosecond Laser Brings 3-D to Microfluidics Microfluidic devices have submillimeter channels designed to control the  

E-Print Network [OSTI]

Femtosecond Laser Brings 3-D to Microfluidics Microfluidic devices have submillimeter channels capable biological assays for such applications as bedside clinical diagnostics. Traditional microfluidics-dimensional geometries. The investigators, in the Groisman Microfluidics and Kleinfeld Neurophysics laboratories, begin

Kleinfeld, David

313

The r-Process in Supersonic Neutrino-Driven Winds: The Roll of Wind Termination Shock  

E-Print Network [OSTI]

Recent hydrodynamic studies of core-collapse supernovae imply that the neutrino-heated ejecta from a nascent neutron star develops to supersonic outflows. These supersonic winds are influenced by the reverse shock from the preceding supernova ejecta, forming the wind termination shock. We investigate the effects of the termination shock in neutrino-driven winds and its roll on the r-process. Supersonic outflows are calculated with a semi-analytic neutrino-driven wind model. Subsequent termination-shocked, subsonic outflows are obtained by applying the Rankine-Hugoniot relations. We find a couple of effects that can be relevant for the r-process. First is the sudden slowdown of the temperature decrease by the wind termination. Second is the entropy jump by termination-shock heating, up to several 100NAk. Nucleosynthesis calculations in the obtained winds are performed to examine these effects on the r-process. We find that 1) the slowdown of the temperature decrease plays a decisive roll to determine the r-process abundance curves. This is due to the strong dependences of the nucleosynthetic path on the temperature during the r-process freezeout phase. Our results suggest that only the termination-shocked winds with relatively small shock radii (~500km) are relevant for the bulk of the solar r-process abundances (A~100-180). The heaviest part in the solar r-process curve (A~180-200), however, can be reproduced both in shocked and unshocked winds. These results may help to constrain the mass range of supernova progenitors relevant for the r-process. We find, on the other hand, 2) negligible roles of the entropy jump on the r-process. This is a consequence that the sizable entropy increase takes place only at a large shock radius (~10,000km) where the r-process has already ceased.

Takami Kuroda; Shinya Wanajo; Ken'ichi Nomoto

2007-09-17T23:59:59.000Z

314

Offshore Code Comparison Collaboration (OC3) for IEA Wind Task 23 Offshore Wind Technology and Deployment  

SciTech Connect (OSTI)

This final report for IEA Wind Task 23, Offshore Wind Energy Technology and Deployment, is made up of two separate reports, Subtask 1: Experience with Critical Deployment Issues and Subtask 2: Offshore Code Comparison Collaborative (OC3). Subtask 1 discusses ecological issues and regulation, electrical system integration, external conditions, and key conclusions for Subtask 1. Subtask 2 included here, is the larger of the two volumes and contains five chapters that cover background information and objectives of Subtask 2 and results from each of the four phases of the project.

Jonkman, J.; Musial, W.

2010-12-01T23:59:59.000Z

315

Electrical system using phase-shifted carrier signals and related operating methods  

DOE Patents [OSTI]

An automotive drive system and methods for making the same are provided. The system includes a three-phase motor and an inverter module. The three-phase motor includes a first set of windings each having a first magnetic polarity; and a second set of windings each having a second magnetic polarity that is opposite the first magnetic polarity. The first set of windings being electrically isolated from the second set of windings. The inverter module includes a first set of phase legs and a second set of phase legs. Each one of the first set of phase legs is coupled to a corresponding phase of the first set of windings, and each one of the second set of phase legs is coupled to a corresponding phase of the second set of windings.

Welchko, Brian A; Campbell, Jeremy B

2012-09-18T23:59:59.000Z

316

Gearbox Reliability Collaborative - Phase 1 and 2 Overview (Presentation)  

SciTech Connect (OSTI)

The presentation given at the Wind Turbine Reliability Workshop at Sandia National Laboratories, August 2-3, 2011, serves as an overview for the findings from the Gearbox Reliability Collaborative Project Report: Findings from Phase 1 and Phase 2 Testing

Link, H.

2011-08-01T23:59:59.000Z

317

Bringing ATLAS production to HPC resources - A use case with the Hydra supercomputer of the Max Planck Society  

E-Print Network [OSTI]

Bringing ATLAS production to HPC resources - A use case with the Hydra supercomputer of the Max Planck Society

Kluth, Stefan; The ATLAS collaboration; Mazzaferro, Luca; Walker, Rodney

2015-01-01T23:59:59.000Z

318

SAT-WIND project Final report  

E-Print Network [OSTI]

-2840 ISBN 87-550-3570-1 The SAT-WIND project `Winds from satellites for offshore and coastal wind energy) technologies for wind energy tools for wind resources and wind-indexing. The study area was the Danish Seas microwave polarimetric 223.3.1 History 3.3.2 Measurement principle 22 223.3.3 WindSat (passive microwave

319

MAPping Foehn Winds in the Austrian Alps  

E-Print Network [OSTI]

and the flow above mountain-top level 3. Study the vertical and cross-gap distribution of wind speed-valley horizontal wind speed ("measured") vertical wind speed (calculated) total wind speed & streamlines -20 -10 0 October 1999 ­ TEACO2 calculated 2D winds down-valley horizontal wind speed ("measured") vertical wind

Gohm, Alexander

320

Wind-To-Hydrogen Project: Electrolyzer Capital Cost Study  

SciTech Connect (OSTI)

This study is being performed as part of the U.S. Department of Energy and Xcel Energy's Wind-to-Hydrogen Project (Wind2H2) at the National Renewable Energy Laboratory. The general aim of the project is to identify areas for improving the production of hydrogen from renewable energy sources. These areas include both technical development and cost analysis of systems that convert renewable energy to hydrogen via water electrolysis. Increased efficiency and reduced cost will bring about greater market penetration for hydrogen production and application. There are different issues for isolated versus grid-connected systems, however, and these issues must be considered. The manner in which hydrogen production is integrated in the larger energy system will determine its cost feasibility and energy efficiency.

Saur, G.

2008-12-01T23:59:59.000Z

Note: This page contains sample records for the topic "wind phase bring" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


321

The Wind Integration National Dataset (WIND) toolkit (Presentation)  

SciTech Connect (OSTI)

Regional wind integration studies require detailed wind power output data at many locations to perform simulations of how the power system will operate under high penetration scenarios. The wind datasets that serve as inputs into the study must realistically reflect the ramping characteristics, spatial and temporal correlations, and capacity factors of the simulated wind plants, as well as being time synchronized with available load profiles.As described in this presentation, the WIND Toolkit fulfills these requirements by providing a state-of-the-art national (US) wind resource, power production and forecast dataset.

Caroline Draxl: NREL

2014-01-01T23:59:59.000Z

322

Wind Powering America Podcasts, Wind Powering America (WPA)  

SciTech Connect (OSTI)

Wind Powering America and the National Association of Farm Broadcasters produce a series of radio interviews featuring experts discussing wind energy topics. The interviews are aimed at a rural stakeholder audience and are available as podcasts. On the Wind Powering America website, you can access past interviews on topics such as: Keys to Local Wind Energy Development Success, What to Know about Installing a Wind Energy System on Your Farm, and Wind Energy Development Can Revitalize Rural America. This postcard is a marketing piece that stakeholders can provide to interested parties; it will guide them to this online resource for podcast episodes.

Not Available

2012-04-01T23:59:59.000Z

323

An experimental and numerical study of wind turbine seismic behavior  

E-Print Network [OSTI]

and Scope Wind energy is growing and turbines are regularlyfor Design of Wind Turbines. Wind Energy Department of Risřloads on wind turbines. ” European Wind Energy Conference

Prowell, I.

2011-01-01T23:59:59.000Z

324

Correlations in thermal comfort and natural wind  

E-Print Network [OSTI]

the average wind velocity and power spectrum exponent (?-of natural wind more accurately, power spectral analysisdata of natural wind versus the power spectral analysis

Kang, Ki-Nam; Song, Doosam; Schiavon, Stefano

2013-01-01T23:59:59.000Z

325

Helping Policymakers Evaluate Distributed Wind Options | Department...  

Energy Savers [EERE]

and consumers evaluate the effectiveness of policies that promote distributed wind-wind turbines installed at homes, farms, and busi-nesses. Distributed wind allows Americans to...

326

Strong wind forcing of the ocean  

E-Print Network [OSTI]

of mesoscale and steady wind driven 1. Introduction 2. Modelparameterization at high wind speeds 1. Introduction 2. DataSupplementary Formulae 1. Wind Stress 2. Rankine Vortex A .

Zedler, Sarah E.

2007-01-01T23:59:59.000Z

327

Wind Turbine Acoustic Noise A white paper  

E-Print Network [OSTI]

Wind Turbine Acoustic Noise A white paper Prepared by the Renewable Energy Research Laboratory...................................................................... 8 Sound from Wind Turbines .............................................................................................. 10 Sources of Wind Turbine Sound

Massachusetts at Amherst, University of

328

WIND DATA REPORT January -December, 2003  

E-Print Network [OSTI]

WIND DATA REPORT Vinalhaven January - December, 2003 Prepared for Fox Islands Electric Cooperative...................................................................................................................... 9 Wind Speed Time Series............................................................................................................. 9 Wind Speed Distributions

Massachusetts at Amherst, University of

329

WIND DATA REPORT January -March, 2004  

E-Print Network [OSTI]

WIND DATA REPORT Vinalhaven January - March, 2004 Prepared for Fox Islands Electric Cooperative...................................................................................................................... 9 Wind Speed Time Series............................................................................................................. 9 Wind Speed Distributions

Massachusetts at Amherst, University of

330

ANNUAL WIND DATA REPORT Thompson Island  

E-Print Network [OSTI]

ANNUAL WIND DATA REPORT Thompson Island March 1, 2002 ­ February 28, 2003 Prepared.................................................................................................................... 11 Wind Speed Time Series........................................................................................................... 11 Wind Speed Distributions

Massachusetts at Amherst, University of

331

WIND DATA REPORT Deer Island Parking Lot  

E-Print Network [OSTI]

WIND DATA REPORT Deer Island Parking Lot May 1, 2003 ­ July 15, 2003 Prepared for Massachusetts...................................................................................................................... 7 Wind Speed Time Series............................................................................................................. 7 Wind Speed Distributions

Massachusetts at Amherst, University of

332

WIND DATA REPORT Deer Island Outfall  

E-Print Network [OSTI]

WIND DATA REPORT Deer Island Outfall August 18, 2003 ­ December 4, 2003 Prepared for Massachusetts...................................................................................................................... 7 Wind Speed Time Series............................................................................................................. 7 Wind Speed Distributions

Massachusetts at Amherst, University of

333

Advanced Coal Wind Hybrid: Economic Analysis  

E-Print Network [OSTI]

Figure 12. Effect of Wind Integration and Resource Adequacy62 Table E-2. Estimates of Wind IntegrationAugust. Utility Wind Integration Group (UWIG), 2006. “

Phadke, Amol

2008-01-01T23:59:59.000Z

334

NREL: Wind Research - Wind Energy Videos  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May JunDatastreamsmmcrcalgovInstrumentsrucLas Conchas recoveryLaboratory | NationalJohn F. Geisz,AerialStaff Here you willWind Energy

335

Wind JOC Conference - Wind Control Changes  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmosphericNuclear SecurityTensile Strain Switched FerromagnetismWaste and MaterialsWenjun DengWISPWind Industry Soars to New1 Wind

336

Prairie Winds Wind Farm | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home5b9fcbce19 No revision hasInformation Earth'sOklahoma/GeothermalOrangePeru:Job CorpPowerVerde IncStar (07) Wind FarmND

337

NREL: Wind Research - Small Wind Turbine Development  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmosphericNuclear Security Administration the Contributions andData andFleet Test andField VerificationPossibleResearchSmall Wind

338

Previous Wind Power Announcements (generation/wind)  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmosphericNuclear Security Administration the1 - SeptemberMicroneedles for4-16 FOR IMMEDIATEPreviewing theMembers | Home |Wind

339

High Winds Wind Farm | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home5b9fcbce19 No revision hasInformation Earth's Heat Jump to:Photon Place:NetHealthHigganum, Connecticut:Wind Farm Jump to:

340

Offshore Wind Farms – the Impact on Wind Farm Planning and Cost of Generation  

E-Print Network [OSTI]

rates of planning and construction of new wind farms. Offshore wind farms typically offer the benefits

Jacob Ladeburg; Sanja Lutzeyer

Note: This page contains sample records for the topic "wind phase bring" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


341

Advancements in Wind Integration Study Data Modeling: The Wind Integration National Dataset (WIND) Toolkit; Preprint  

SciTech Connect (OSTI)

Regional wind integration studies in the United States require detailed wind power output data at many locations to perform simulations of how the power system will operate under high-penetration scenarios. The wind data sets that serve as inputs into the study must realistically reflect the ramping characteristics, spatial and temporal correlations, and capacity factors of the simulated wind plants, as well as be time synchronized with available load profiles. The Wind Integration National Dataset (WIND) Toolkit described in this paper fulfills these requirements. A wind resource dataset, wind power production time series, and simulated forecasts from a numerical weather prediction model run on a nationwide 2-km grid at 5-min resolution will be made publicly available for more than 110,000 onshore and offshore wind power production sites.

Draxl, C.; Hodge, B. M.; Orwig, K.; Jones, W.; Searight, K.; Getman, D.; Harrold, S.; McCaa, J.; Cline, J.; Clark, C.

2013-10-01T23:59:59.000Z

342

Chaninik Wind Group Wind Heat Smart Grids Final Report  

SciTech Connect (OSTI)

Final report summarizes technology used, system design and outcomes for US DoE Tribal Energy Program award to deploy Wind Heat Smart Grids in the Chaninik Wind Group communities in southwest Alaska.

Meiners, Dennis [Technical Contact

2013-06-29T23:59:59.000Z

343

Wind for Schools: A Wind Powering America Project  

SciTech Connect (OSTI)

This brochure serves as an introduction to Wind Powering America's Wind for Schools Project, including a description of the project, the participants, funding sources, and the basic configurations of the project.

Not Available

2007-12-01T23:59:59.000Z

344

NREL: Wind Research - Collegiate Wind Competition Set to Blow...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

23, 2014 The United States is among the world's largest and fastest growing wind energy markets. In fact, wind energy is now the number one source of new U.S. electricity...

345

Wind Energy Status and Future Wind Engineering Challenges: Preprint  

SciTech Connect (OSTI)

This paper describes the current status of wind energy technology, the potential for future wind energy development and the science and engineering challenges that must be overcome for the technology to meet its potential.

Thresher, R.; Schreck, S.; Robinson, M.; Veers, P.

2008-08-01T23:59:59.000Z

346

DOE Offers Conditional Commitment to Cape Wind Offshore Wind...  

Office of Environmental Management (EM)

Secretary Ernest Moniz. The proposed Cape Wind project would use 3.6-MW offshore wind turbines that would provide a majority of the electricity needed for Cape Cod, Nantucket,...

347

Responses of floating wind turbines to wind and wave excitation  

E-Print Network [OSTI]

The use of wind power has recently emerged as a promising alternative to conventional electricity generation. However, space requirements and public pressure to place unsightly wind turbines out of visual range make it ...

Lee, Kwang Hyun

2005-01-01T23:59:59.000Z

348

Development of Regional Wind Resource and Wind Plant Output Datasets...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

50-47676 March 2010 Development of Regional Wind Resource and Wind Plant Output Datasets Final Subcontract Report 15 October 2007 - 15 March 2009 3TIER Seattle, Washington National...

349

Wind Powering America Webinar Series (Postcard), Wind Powering America (WPA)  

SciTech Connect (OSTI)

Wind Powering America offers a free monthly webinar series that provides expert information on today?s key wind energy topics. This postcard is an outreach tool that provides a brief description of the webinars as well as the URL.

Not Available

2012-02-01T23:59:59.000Z

350

Wind for Schools: A Wind Powering America Project (Brochure)  

SciTech Connect (OSTI)

This brochure provides an overview of Wind Powering America's Wind for Schools Project, including a description of the project, the participants, funding sources, the basic configurations, and how interested parties can become involved.

Baring-Gould, I.

2009-08-01T23:59:59.000Z

351

Wind for Schools: A Wind Powering America Project (Alaska) (Brochure)  

SciTech Connect (OSTI)

This brochure provides an overview of Wind Powering America's Wind for Schools Project, including a description of the project, the participants, funding sources, the basic configurations, and how interested parties can become involved.

Not Available

2010-02-01T23:59:59.000Z

352

Superconductivity for Large Scale Wind Turbines  

SciTech Connect (OSTI)

A conceptual design has been completed for a 10MW superconducting direct drive wind turbine generator employing low temperature superconductors for the field winding. Key technology building blocks from the GE Wind and GE Healthcare businesses have been transferred across to the design of this concept machine. Wherever possible, conventional technology and production techniques have been used in order to support the case for commercialization of such a machine. Appendices A and B provide further details of the layout of the machine and the complete specification table for the concept design. Phase 1 of the program has allowed us to understand the trade-offs between the various sub-systems of such a generator and its integration with a wind turbine. A Failure Modes and Effects Analysis (FMEA) and a Technology Readiness Level (TRL) analysis have been completed resulting in the identification of high risk components within the design. The design has been analyzed from a commercial and economic point of view and Cost of Energy (COE) calculations have been carried out with the potential to reduce COE by up to 18% when compared with a permanent magnet direct drive 5MW baseline machine, resulting in a potential COE of 0.075 $/kWh. Finally, a top-level commercialization plan has been proposed to enable this technology to be transitioned to full volume production. The main body of this report will present the design processes employed and the main findings and conclusions.

R. Fair; W. Stautner; M. Douglass; R. Rajput-Ghoshal; M. Moscinski; P. Riley; D. Wagner; J. Kim; S. Hou; F. Lopez; K. Haran; J. Bray; T. Laskaris; J. Rochford; R. Duckworth

2012-10-12T23:59:59.000Z

353

Wind motor applications for transportation  

SciTech Connect (OSTI)

Motion equation for a vehicle equipped with a wind motor allows, taking into account the drag coefficients, to determine the optimal wind drag velocity in the wind motor`s plane, and hence, obtain all the necessary data for the wind wheel blades geometrical parameters definition. This optimal drag velocity significantly differs from the flow drag velocity which determines the maximum wind motor power. Solution of the motion equation with low drag coefficients indicates that the vehicle speed against the wind may be twice as the wind speed. One of possible transportation wind motor applications is its use on various ships. A ship with such a wind motor may be substantially easier to steer, and if certain devices are available, may proceed in autonomous control mode. Besides, it is capable of moving within narrow fairways. The cruise speed of a sailing boat and wind-motored ship were compared provided that the wind velocity direction changes along a harmonic law with regard to the motion direction. Mean dimensionless speed of the wind-motored ship appears to be by 20--25% higher than that of a sailing boat. There was analyzed a possibility of using the wind motors on planet rovers in Mars or Venus atmospheric conditions. A Mars rover power and motor system has been assessed for the power level of 3 kW.

Lysenko, G.P.; Grigoriev, B.V.; Karpin, K.B. [Moscow Aviation Inst. (Russian Federation)

1996-12-31T23:59:59.000Z

354

Wind Technology Advancements and Impacts on Western Wind Resources (Presentation)  

SciTech Connect (OSTI)

Robi Robichaud made this presentation at the Bureau of Land Management West-wide Wind Opportunities and Constraints Mapping (WWOCM) Project public meeting in Denver, Colorado in September 2014. This presentation outlines recent wind technology advancements, evolving turbine technologies, and industry challenges. The presentation includes maps of mean wind speeds at 50-m, 80-m, and 100-m hub heights on BLM lands. Robichaud also presented on the difference in mean wind speeds from 80m to 100m in Wyoming.

Robichaud, R.

2014-09-01T23:59:59.000Z

355

Optimum propeller wind turbines  

SciTech Connect (OSTI)

The Prandtl-Betz-Theodorsen theory of heavily loaded airscrews has been adapted to the design of propeller windmills which are to be optimized for maximum power coefficient. It is shown that the simpler, light-loading, constant-area wake assumption can generate significantly different ''optimum'' performance and geometry, and that it is therefore not appropriate to the design of propeller wind turbines when operating in their normal range of high-tip-speed-to-wind-speed ratio. Design curves for optimum power coefficient are presented and an example of the design of a typical two-blade optimum rotor is given.

Sanderson, R.J.; Archer, R.D.

1983-11-01T23:59:59.000Z

356

Wind Success Stories  

Office of Environmental Management (EM)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) "of EnergyEnergyENERGYWomen Owned SmallOf TheViolations | Department ofEnergy Wind Power06 Wind Success

357

TMCC WIND RESOURCE ASSESSMENT  

SciTech Connect (OSTI)

North Dakota has an outstanding resource--providing more available wind for development than any other state. According to U.S. Department of Energy (DOE) studies, North Dakota alone has enough energy from good wind areas, those of wind power Class 4 and higher, to supply 36% of the 1990 electricity consumption of the entire lower 48 states. At present, no more than a handful of wind turbines in the 60- to 100-kilowatt (kW) range are operating in the state. The first two utility-scale turbines were installed in North Dakota as part of a green pricing program, one in early 2002 and the second in July 2002. Both turbines are 900-kW wind turbines. Two more wind turbines are scheduled for installation by another utility later in 2002. Several reasons are evident for the lack of wind development. One primary reason is that North Dakota has more lignite coal than any other state. A number of relatively new minemouth power plants are operating in the state, resulting in an abundance of low-cost electricity. In 1998, North Dakota generated approximately 8.2 million megawatt-hours (MWh) of electricity, largely from coal-fired plants. Sales to North Dakota consumers totaled only 4.5 million MWh. In addition, the average retail cost of electricity in North Dakota was 5.7 cents per kWh in 1998. As a result of this surplus and the relatively low retail cost of service, North Dakota is a net exporter of electricity, selling approximately 50% to 60% of the electricity produced in North Dakota to markets outside the state. Keeping in mind that new electrical generation will be considered an export commodity to be sold outside the state, the transmission grid that serves to export electricity from North Dakota is at or close to its ability to serve new capacity. The markets for these resources are outside the state, and transmission access to the markets is a necessary condition for any large project. At the present time, technical assessments of the transmission network indicate that the ability to add and carry wind capacity outside of the state is limited. Identifying markets, securing long-term contracts, and obtaining a transmission path to export the power are all major steps that must be taken to develop new projects in North Dakota.

Turtle Mountain Community College

2003-12-30T23:59:59.000Z

358

Wind Power Link  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May JunDatastreamsmmcrcalgovInstrumentsrucLasDelivered energy consumption byAbout PrintableBlenderWhatFellows - PastFarmWindWind Power

359

Wind Power Software  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May JunDatastreamsmmcrcalgovInstrumentsrucLasDelivered energy consumption byAbout PrintableBlenderWhatFellows - PastFarmWindWind Power

360

Offshore Wind Potential Tables  

Wind Powering America (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data CenterFranconia, Virginia:FAQ < RAPID Jump to:SeadovCooperative JumpWilliamsonWoodsonCounty iscomfortNews Wind CollegiateOffshore wind

Note: This page contains sample records for the topic "wind phase bring" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


361

Quantifying Offshore Wind Resources from Satellite Wind Maps  

E-Print Network [OSTI]

Quantifying Offshore Wind Resources from Satellite Wind Maps: Study Area the North Sea C. B National Laboratory, Roskilde, Denmark Offshore wind resources are quantified from satellite synthetic site at Horns Rev is given based on satellite SAR observa- tions.The comparison of offshore satellite

Pryor, Sara C.

362

Computationally Efficient Winding Loss Calculation with Multiple Windings, Arbitrary  

E-Print Network [OSTI]

windings occurs at the level of individual turns, the method could be applied, but its advantages are lessComputationally Efficient Winding Loss Calculation with Multiple Windings, Arbitrary Waveforms and Two- or Three-Dimensional Field Geometry C. R. Sullivan From IEEE Transactions on Power Electronics

363

LIDAR Wind Speed Measurements of Evolving Wind Fields  

SciTech Connect (OSTI)

Light Detection and Ranging (LIDAR) systems are able to measure the speed of incoming wind before it interacts with a wind turbine rotor. These preview wind measurements can be used in feedforward control systems designed to reduce turbine loads. However, the degree to which such preview-based control techniques can reduce loads by reacting to turbulence depends on how accurately the incoming wind field can be measured. Past studies have assumed Taylor's frozen turbulence hypothesis, which implies that turbulence remains unchanged as it advects downwind at the mean wind speed. With Taylor's hypothesis applied, the only source of wind speed measurement error is distortion caused by the LIDAR. This study introduces wind evolution, characterized by the longitudinal coherence of the wind, to LIDAR measurement simulations to create a more realistic measurement model. A simple model of wind evolution is applied to a frozen wind field used in previous studies to investigate the effects of varying the intensity of wind evolution. LIDAR measurements are also evaluated with a large eddy simulation of a stable boundary layer provided by the National Center for Atmospheric Research. Simulation results show the combined effects of LIDAR errors and wind evolution for realistic turbine-mounted LIDAR measurement scenarios.

Simley, E.; Pao, L. Y.

2012-07-01T23:59:59.000Z

364

Saturation wind power potential and its implications for wind energy  

E-Print Network [OSTI]

Board August 14, 2012 (received for review May 31, 2012) Wind turbines convert kinetic to electrical. As the number of wind turbines increases over large geographic regions, power extraction first increases the number of wind turbines over a large geographic region, indepen- dent of societal, environmental

365

Modeling the line variations from the wind-wind shock emissions of WR 30a  

E-Print Network [OSTI]

The study of Wolf-Rayet stars plays an important role in evolutionary theories of massive stars. Among these objects, ~ 20% are known to be in binary systems and can therefore be used for the mass determination of these stars. Most of these systems are not spatially resolved and spectral lines can be used to constrain the orbital parameters. However, part of the emission may originate in the interaction zone between the stellar winds, modifying the line profiles and thus challenging us to use different models to interpret them. In this work, we analyzed the HeII4686\\AA + CIV4658\\AA blended lines of WR30a (WO4+O5) assuming that part of the emission originate in the wind-wind interaction zone. In fact, this line presents a quiescent base profile, attributed to the WO wind, and a superposed excess, which varies with the orbital phase along the 4.6 day period. Under these assumptions, we were able to fit the excess spectral line profile and central velocity for all phases, except for the longest wavelengths, where a spectral line with constant velocity seems to be present. The fit parameters provide the eccentricity and inclination of the binary orbit, from which it is possible to constrain the stellar masses.

D. Falceta-Goncalves; Z. Abraham; V. Jatenco-Pereira

2007-10-02T23:59:59.000Z

366

2011 Wind Technologies Market Report  

E-Print Network [OSTI]

wind power capacity stood at roughly 4,000 MW, with the vast majority located in Europe.in Europe. Just 470 MW of new offshore wind power capacity

Bolinger, Mark

2013-01-01T23:59:59.000Z

367

The Solar Wind Energy Flux  

E-Print Network [OSTI]

The solar-wind energy flux measured near the ecliptic is known to be independent of the solar-wind speed. Using plasma data from Helios, Ulysses, and Wind covering a large range of latitudes and time, we show that the solar-wind energy flux is independent of the solar-wind speed and latitude within 10%, and that this quantity varies weakly over the solar cycle. In other words the energy flux appears as a global solar constant. We also show that the very high speed solar-wind (VSW > 700 km/s) has the same mean energy flux as the slower wind (VSW < 700 km/s), but with a different histogram. We use this result to deduce a relation between the solar-wind speed and density, which formalizes the anti-correlation between these quantities.

Chat, G Le; Meyer-Vernet, N

2012-01-01T23:59:59.000Z

368

AWEA Wind Project Siting Seminar  

Broader source: Energy.gov [DOE]

The AWEA Wind Project Siting Seminar takes an in-depth look at the latest siting challenges and identify opportunities to reduce risks associated with the siting and operation of wind farms to...

369

2010 Wind Technologies Market Report  

E-Print Network [OSTI]

ET2/TL-08-1474. May 19, 2010 Wind Technologies Market ReportIndustry Annual Market Report: Year Ending 2010. Washington,Quarter 2011 Market Report. Washington, D.C. : American Wind

Wiser, Ryan

2012-01-01T23:59:59.000Z

370

20% Wind Energy by 2030  

SciTech Connect (OSTI)

This analysis explores one clearly defined scenario for providing 20% of our nations electricity demand with wind energy by 2030 and contrasts it to a scenario of no new wind power capacity.

Not Available

2008-07-01T23:59:59.000Z

371

Solar and Wind Permitting Laws  

Broader source: Energy.gov [DOE]

New Jersey has enacted three separate laws addressing local permitting practices for solar and wind energy facilities. The first deals with solar and wind facilities located in industrial-zoned...

372

Value of Wind Power Forecasting  

SciTech Connect (OSTI)

This study, building on the extensive models developed for the Western Wind and Solar Integration Study (WWSIS), uses these WECC models to evaluate the operating cost impacts of improved day-ahead wind forecasts.

Lew, D.; Milligan, M.; Jordan, G.; Piwko, R.

2011-04-01T23:59:59.000Z

373

Wind Energy Sales Tax Exemption  

Broader source: Energy.gov [DOE]

Wind-energy conversion systems used as electric-power sources are exempt from Minnesota's sales tax. Materials used to manufacture, install, construct, repair or replace wind-energy systems also...

374

2009 Wind Technologies Market Report  

E-Print Network [OSTI]

generating sets. Wind turbine blades, hubs, generators,wind turbine components that include towers (trade category is “towers and lattice masts”), generators (“AC generators from 750 to 10,000 kVA”), blades

Wiser, Ryan

2010-01-01T23:59:59.000Z

375

Wind Measurement Equipment: Registration (Nebraska)  

Broader source: Energy.gov [DOE]

All wind measurement equipment associated with the development or study of wind-powered electric generation, whether owned or leased, shall be registered with the Department of Aeronautics if the...

376

2010 Wind Technologies Market Report  

E-Print Network [OSTI]

a Changing Environment. WINDPOWER 2011. Poster Presentation.sources and others, e.g. , Windpower Monthly, the GlobalTurboWinds (1.6 MW), Nordic Windpower (2 MW), Emergya Wind

Wiser, Ryan

2012-01-01T23:59:59.000Z

377

Commercial Scale Wind Incentive Program  

Broader source: Energy.gov [DOE]

Energy Trust of Oregon’s Commercial Scale Wind offering provides resources and cash incentives to help communities, businesses land owners, and government entities install wind turbine systems up...

378

AIR-FLOW STRUCTURE IN THE VERY CLOSE VICINITY OF WIND GENERATED WATER-WAVES  

E-Print Network [OSTI]

to : , with the air-density, u and w the horizontal and vertical components of the wind speed, u* the friction and the viscous drag at the sea sur- face, we build two new microphysical devices: 1) the wind-speed vertical of the vertical profile of the normalized phase-averaged wind-speed in the air-viscous layer (1mm above water

Paris-Sud XI, Université de

379

Cost of Offshore Wind Energy Charlene Nalubega  

E-Print Network [OSTI]

Cost of Offshore Wind Energy and Industrial Engineering The focus of my research is to estimate the cost of floating offshore wind turbines water as well as on land based wind farms. The specific offshore wind energy case under consideration

Mountziaris, T. J.

380

The Inside of a Wind Turbine  

Broader source: Energy.gov [DOE]

Wind turbines harness the power of the wind and use it to generate electricity. Simply stated, a wind turbine works the opposite of a fan. Instead of using electricity to make wind, like a fan,...

Note: This page contains sample records for the topic "wind phase bring" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


381

Wind Technologies and Evolving Opportunities (Presentation)  

SciTech Connect (OSTI)

This presentation provides an overview of wind energy research being conducted at the National Wind Technology Center, market and technology trends in wind energy, and opportunities for wind technology.

Robi Robichaud

2014-03-01T23:59:59.000Z

382

Variables Affecting Economic Development of Wind Energy  

SciTech Connect (OSTI)

NREL's JEDI Wind model performed an analysis of wind-power-related economic development drivers. Economic development benefits for wind and coal were estimated using NREL's JEDI Wind and JEDI Coal models.

Lantz, E.; Tegen, S.

2008-07-01T23:59:59.000Z

383

Vertical axis wind turbine acoustics  

E-Print Network [OSTI]

Vertical Axis Wind Turbine Acoustics Charlie Pearson Corpus Christi College Cambridge University Engineering Department A thesis submitted for the degree of Doctor of Philosophy September 2013 Declaration Described in this dissertation is work... quickly to changing wind conditions, small- scale vertical axis wind turbines (VAWTs) have been proposed as an efficient solution for deployment in built up areas, where the wind is more gusty in nature. If VAWTs are erected in built up areas...

Pearson, Charlie

2014-04-08T23:59:59.000Z

384

2010 Wind Technologies Market Report  

E-Print Network [OSTI]

wind energy in some quarters, planning, siting, and permitting can be challenging, as demonstrated in the long history

Wiser, Ryan

2012-01-01T23:59:59.000Z

385

Coastal Ohio Wind Project  

SciTech Connect (OSTI)

The Coastal Ohio Wind Project intends to address problems that impede deployment of wind turbines in the coastal and offshore regions of Northern Ohio. The project evaluates different wind turbine designs and the potential impact of offshore turbines on migratory and resident birds by developing multidisciplinary research, which involves wildlife biology, electrical and mechanical engineering, and geospatial science. Firstly, the project conducts cost and performance studies of two- and three-blade wind turbines using a turbine design suited for the Great Lakes. The numerical studies comprised an analysis and evaluation of the annual energy production of two- and three-blade wind turbines to determine the levelized cost of energy. This task also involved wind tunnel studies of model wind turbines to quantify the wake flow field of upwind and downwind wind turbine-tower arrangements. The experimental work included a study of a scaled model of an offshore wind turbine platform in a water tunnel. The levelized cost of energy work consisted of the development and application of a cost model to predict the cost of energy produced by a wind turbine system placed offshore. The analysis found that a floating two-blade wind turbine presents the most cost effective alternative for the Great Lakes. The load effects studies showed that the two-blade wind turbine model experiences less torque under all IEC Standard design load cases considered. Other load effects did not show this trend and depending on the design load cases, the two-bladed wind turbine showed higher or lower load effects. The experimental studies of the wake were conducted using smoke flow visualization and hot wire anemometry. Flow visualization studies showed that in the downwind turbine configuration the wake flow was insensitive to the presence of the blade and was very similar to that of the tower alone. On the other hand, in the upwind turbine configuration, increasing the rotor blade angle of attack reduced the wake size and enhanced the vortices in the flow downstream of the turbine-tower compared with the tower alone case. Mean and rms velocity distributions from hot wire anemometer data confirmed that in a downwind configuration, the wake of the tower dominates the flow, thus the flow fields of a tower alone and tower-turbine combinations are nearly the same. For the upwind configuration, the mean velocity shows a narrowing of the wake compared with the tower alone case. The downwind configuration wake persisted longer than that of an upwind configuration; however, it was not possible to quantify this difference because of the size limitation of the wind tunnel downstream of the test section. The water tunnel studies demonstrated that the scale model studies could be used to adequately produce accurate motions to model the motions of a wind turbine platform subject to large waves. It was found that the important factors that affect the platform is whether the platform is submerged or surface piercing. In the former, the loads on the platform will be relatively reduced whereas in the latter case, the structure pierces the wave free surface and gains stiffness and stability. The other important element that affects the movement of the platform is depth of the sea in which the wind turbine will be installed. Furthermore, the wildlife biology component evaluated migratory patterns by different monitoring systems consisting of marine radar, thermal IR camera and acoustic recorders. The types of radar used in the project are weather surveillance radar and marine radar. The weather surveillance radar (1988 Doppler), also known as Next Generation Radar (NEXRAD), provides a network of weather stations in the US. Data generated from this network were used to understand general migratory patterns, migratory stopover habitats, and other patterns caused by the effects of weather conditions. At a local scale our marine radar was used to complement the datasets from NEXRAD and to collect additional monitoring parameters such as passage rates, flight paths, flight directi

Gorsevski, Peter; Afjeh, Abdollah; Jamali, Mohsin; Bingman, Verner

2014-04-04T23:59:59.000Z

386

Matter & Energy Wind Energy  

E-Print Network [OSTI]

See Also: Matter & Energy Wind Energy Energy Technology Physics Nuclear Energy Petroleum 27, 2012) -- Energy flowing from large-scale to small-scale places may be prevented from flowing, indicating that there are energy flows from large to small scale in confined space. Indeed, under a specific

Shepelyansky, Dima

387

Low-Maintenance Wind Power System  

E-Print Network [OSTI]

Improved Vertical Axis Wind Turbine and Aerodynamic ControlDarrieus Vertical Axis Wind Turbines and Aerodynamic Control

Rasson, Joseph E

2010-01-01T23:59:59.000Z

388

PRINCETON UNIVERSITY Wind Farm Valuation  

E-Print Network [OSTI]

PRINCETON UNIVERSITY Wind Farm Valuation Kimlee Wong 13th April 2009 Professor Warren B. Powell was generous and encouraged me to participate in the group to perform research pertaining to wind farm, and has helped me think of hedging strategies for wind farm operations. I have learnt a lot from my

Powell, Warren B.

389

Wind Energy Information Guide 2004  

SciTech Connect (OSTI)

The guide provides a list of contact information and Web site addresses for resources that provide a range of general and technical information about wind energy, including general information, wind and renewable energy, university programs and research institutes, international wind energy associations and others.

anon.

2004-01-01T23:59:59.000Z

390

Model Predictive Control Wind Turbines  

E-Print Network [OSTI]

Model Predictive Control of Wind Turbines Martin Klauco Kongens Lyngby 2012 IMM-MSc-2012-65 #12;Summary Wind turbines are the biggest part of the green energy industry. Increasing interest control strategies. Control strategy has a significant impact on the wind turbine operation on many levels

391

Bird orientation: compensation for wind  

E-Print Network [OSTI]

Bird orientation: compensation for wind drift in migrating raptors is age dependent Kasper Thorup1 14.04.03 Despite the potentially strong effect of wind on bird orientation, our understanding of how wind drift affects migrating birds is still very limited. Using data from satellite-based radio

Thorup, Kasper

392

CCPExecutiveSummary Storing Wind  

E-Print Network [OSTI]

CCPExecutiveSummary July 2011 Storing Wind for a Rainy Day W: www.uea.ac.uk/ccp T: +44 (0)1603 593715 A: UEA, Norwich, NR4 7TJ Storing Wind for a Rainy Day: What kind of electricity does Denmark export? BACKGROUND The last decade has seen a remarkable increase in the number of wind installations

Feigon, Brooke

393

Wind Turbine Blockset General Overview  

E-Print Network [OSTI]

Wind Turbine Blockset in Saber General Overview and Description of the Models Florin Iov, Adrian Turbine Blockset in Saber Abstract. This report presents a new developed Saber Toolbox for wind turbine, optimize and design wind turbines". The report provides a quick overview of the Saber and then explains

394

SPRING 2014 wind energy's impact  

E-Print Network [OSTI]

SPRING 2014 wind energy's impact on birds, bats......... 2-3 school news........... 4-5 alumni news measurable benefits reaped by the use of wind energy. But, it is a fact: all energy sources, alternative Interactions with Offshore Wind Energy Facilities," involves the design, deployment and testing

Tullos, Desiree

395

The Future of Offshore Wind Energy  

E-Print Network [OSTI]

1 The Future of Offshore Wind Energy #12;2 #12;3 Offshore Wind Works · Offshore wind parks: 28 in 10 countries · Operational since 1991 · Current installed capacity: 1,250 MW · Offshore wind parks in the waters around Europe #12;4 US Offshore Wind Projects Proposed Atlantic Ocean Gulf of Mexico Cape Wind

Firestone, Jeremy

396

Steve Kropper WindPole Ventures, LLC  

E-Print Network [OSTI]

On Wind Is More Valuable Than Wind Power "The Bloomberg of Wind" #12;PROBLEM 300 MW wind needs backup. No construction. No tech risk. Big economic advantage $15k vs $65k. Invenergy, #5 in wind asset. 6 states prepaidSteve Kropper WindPole Ventures, LLC Lexington, MA 617-306-9312 kropper@windpole.com Information

397

Energy 101: Wind Turbines - 2014 Update  

ScienceCinema (OSTI)

See how wind turbines generate clean electricity from the power of wind. The video highlights the basic principles at work in wind turbines, and illustrates how the various components work to capture and convert wind energy to electricity. This updated version also includes information on the Energy Department's efforts to advance offshore wind power. Offshore wind energy footage courtesy of Vestas.

None

2014-06-05T23:59:59.000Z

398

Energy 101: Wind Turbines - 2014 Update  

SciTech Connect (OSTI)

See how wind turbines generate clean electricity from the power of wind. The video highlights the basic principles at work in wind turbines, and illustrates how the various components work to capture and convert wind energy to electricity. This updated version also includes information on the Energy Department's efforts to advance offshore wind power. Offshore wind energy footage courtesy of Vestas.

None

2014-05-06T23:59:59.000Z

399

Version:April 2014 Wind Energy EFA  

E-Print Network [OSTI]

Version:April 2014 Wind Energy EFA Wind energy has become a major source of clean energy. Wind backgrounds and knowledge of wind energy fundamentals are needed to fill these jobs. The Wind Energy EFA prepares students for a career in wind energy, and allows for completing all requirements

Kusiak, Andrew

400

Structural responses and power output of a wind turbine are strongly affected by the wind field acting on the wind turbine. Knowledge about the wind field and its  

E-Print Network [OSTI]

ABSTRACT Structural responses and power output of a wind turbine are strongly affected by the wind field acting on the wind turbine. Knowledge about the wind field and its variations is essential not only for designing, but also for cost-efficiently managing wind turbines. Wind field monitoring

Stanford University

Note: This page contains sample records for the topic "wind phase bring" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


401

Site insolation and wind power characteristics: technical report Midwest region  

SciTech Connect (OSTI)

This phase of the Site Insolation and Wind Power Characteristics Study was performed to provide statistical information on the expected future availability of solar and wind power at various sites in the Midwest Region of the US Historic data (SOLMET), at 22 National Weather Service stations with hourly solar insolation and collateral meteorological information, were interrogated to provide an estimate of future trends. Solar data are global radiation incident on a horizontal surface, and wind data represent wind power normal to the air flow. Selected insolation and wind power conditions were investigated for their occurrence and persistence, for defined periods of time, on a monthly basis. Global horizontal insolation is related to inclined surfaces at each site. Ratios are provided, monthly, for multiplying global insolation to obtain insolation estimates on south-facing surfaces inclined at different angles with respect to the horizontal. Also, joint probability distribution tables are constructed showing the number of occurrences, out of a finite sample size, of daily average solar and wind power within selected intervals, by month. Information of this nature is intended as an aid to preliminary planning activities for the design and operation of solar and wind energy utilization and conversion systems.

None

1980-08-01T23:59:59.000Z

402

Theoretical X-ray Line Profiles from Colliding Wind Binaries  

E-Print Network [OSTI]

We present theoretical X-ray line profiles from a range of model colliding wind systems. In particular, we investigate the effects of varying the stellar mass-loss rates, the wind speeds, and the viewing orientation. We find that a wide range of theoretical line profile shapes is possible, varying with orbital inclination and phase. At or near conjunction, the lines have approximately Gaussian profiles, with small widths (HWHM ~ 0.1 v_infty) and definite blue- or redshifts (depending on whether the star with the weaker wind is in front or behind). When the system is viewed at quadrature, the lines are generally much broader (HWHM ~ v_infty), flat-topped and unshifted. Local absorption can have a major effect on the observed profiles - in systems with mass-loss rates of a few times 10^{-6} Msol/yr the lower energy lines (E wind of the primary. The orbital variation ...

Henley, D B; Pittard, J M

2003-01-01T23:59:59.000Z

403

Wind shear climatology for large wind turbine generators  

SciTech Connect (OSTI)

Climatological wind shear analyses relevant to the design and operation of multimegawatt wind turbines are provided. Insight is provided for relating the wind experienced by a rotating blade in a shear flow to the analysis results. A simple analysis of the wind experienced by a rotating blade for three types of wind shear profiles under steady-state conditions is presented in graphical form. Comparisons of the magnitude and frequency of the variations in 1) the wind sensed by a single blade element, 2) the sum, and 3) the difference of the winds sensed by opposite blade elements show strong sensitivity to profile shape. These three items represent forcing functions that can be related to 1) flatwise bending moment, 2) torque on the shaft, and 3) teeter angle. A computer model was constructed to simulate rotational sampling of 10-s sampled winds from a tall tower for three different types of large wind turbines. Time series produced by the model indicated that the forcing functions on a rotating blade vary according to the shear profile encountered during each revolution as opposed to a profile derived from average wind conditions, e.g., hourly average winds. An analysis scheme was developed to establish a climatology of wind shear profiles derived from 10-s sampled winds and hourly average winds measured over a one-year period at several levels on a tall tower. Because of the sensitivity of the forcing function variability to profile shape, the analyses performed and presented are in the form of joint frequency distributions of velocity differences of the the top-to-hub versus the hub-to-bottom portion of disks of rotation for the three turbine configurations.

Elliott, D.L.; Wendell, L.L.; Heflick, S.K.

1982-10-01T23:59:59.000Z

404

2013 Wind Technologies Market Report  

SciTech Connect (OSTI)

This annual report provides a detailed overview of developments and trends in the U.S. wind power market, with a particular focus on 2013. This 2013 edition updates data presented in previous editions while highlighting key trends and important new developments. The report includes an overview of key installation-related trends; trends in wind power capacity growth; how that growth compares to other countries and generation sources; the amount and percentage of wind energy in individual states; the status of offshore wind power development and the quantity of proposed wind power capacity in various interconnection queues in the United States.

Wiser, R.; Bolinger, M.; Barbose, G.; Darghouth, N.; Hoen, B.; Mills, A.; Weaver, S.; Porter, K.; Buckley, M.; Oteri, F.; Tegen, S.

2014-08-01T23:59:59.000Z

405

Lower Sioux Wind Feasibility & Development  

SciTech Connect (OSTI)

This report describes the process and findings of a Wind Energy Feasibility Study (Study) conducted by the Lower Sioux Indian Community (Community). The Community is evaluating the development of a wind energy project located on tribal land. The project scope was to analyze the critical issues in determining advantages and disadvantages of wind development within the Community. This analysis addresses both of the Community's wind energy development objectives: the single turbine project and the Commerical-scale multiple turbine project. The main tasks of the feasibility study are: land use and contraint analysis; wind resource evaluation; utility interconnection analysis; and project structure and economics.

Minkel, Darin

2012-04-01T23:59:59.000Z

406

PROGRESS OF WIND ENERGY TECHNOLOGY  

E-Print Network [OSTI]

This paper provides an overview of the progress of wind energy technology, along with the current status of wind power worldwide. Over the period of 2000-2012 grid-connected installed wind power has increased by a factor of more than 16. Due to the fast growth in wind market, wind turbine technology has developed different design approaches during this period. In addition to this, issues such as power grid integration, environmental impact, and economics are studied and discussed briefly in this paper, as well.

Bar?? Özerdem

407

A Stochastic DEVS Wind Turbine Component Model for Wind Farm Simulation  

E-Print Network [OSTI]

A Stochastic DEVS Wind Turbine Component Model for Wind Farm Simulation Eduardo P´erez, Lewis, wind turbine, DEVS, STDEVS Abstract Wind farms use several wind turbines to generate electricity variations in wind speed and direction, wind turbines experience stochastic loading that of- ten lead

Ding, Yu

408

BRINGING SIMULATION TO APPLICATION : PRESENTATION OF A GLOBAL APPROACH IN THE DESIGN OF  

E-Print Network [OSTI]

1 BRINGING SIMULATION TO APPLICATION : PRESENTATION OF A GLOBAL APPROACH IN THE DESIGN OF PASSIVE to defining optimized bio-climatic urban planning and architectural designs featuring the use of passive SOLAR BUILDINGS UNDER HUMID TROPICAL CLIMATES F. GARDE,* H. BOYER,* R. CELAIRE** Laboratoire de GĂ©nie

409

Tyrosinase maturation through the mammalian secretory pathway: bringing color to life  

E-Print Network [OSTI]

Tyrosinase maturation through the mammalian secretory pathway: bringing color to life Ning Wang-mail: dhebert@biochem.umass.edu Summary Tyrosinase has been extensively utilized as a model substrate to study in the matur- ation of tyrosinase from when it is first synthesized by cytosolic ribosomes until the mature

Hebert, Daniel N.

410

On Facebook, Most Ties are Weak The emergence of pervasive socio-technical networks brings new  

E-Print Network [OSTI]

On Facebook, Most Ties are Weak Abstract The emergence of pervasive socio-technical networks brings's theory can be extended to online social networks like Facebook, suggesting to use interaction data requires knowledge of the topology of the social network, e.g., who is friend with whom on Facebook. Our

Ferrara, Emilio

411

Why Study Chemistry at ESF A Rigorous Education: Chemistry faculty bring their  

E-Print Network [OSTI]

Why Study Chemistry at ESF A Rigorous Education: Chemistry faculty bring their expertise in cutting and real-world examples. Also, in addition to the usual chemistry courses, undergraduates take three our students receive: 95% of our students are employed in chemistry or accepted into graduate

Chatterjee, Avik P.

412

Bringing you a prosperous future where energy is clean, abundant, reliable and affordable Industrial Technologies Program  

E-Print Network [OSTI]

Technologies Program A Strong Energy Portfolio for a Strong America Energy efficiency and clean, renewableBringing you a prosperous future where energy is clean, abundant, reliable and affordable Industrial Technologies Program U.S. Department of Energy Office of Energy Efficiency and Renewable Energy

Beckermann, Christoph

413

Bringing you a prosperous future where energy is clean, abundant, reliable and affordable Industrial Technologies Program  

E-Print Network [OSTI]

Bringing you a prosperous future where energy is clean, abundant, reliable and affordable Industrial Technologies Program U.S. Department of Energy Office of Energy Efficiency and Renewable Energy for a comprehensive, physics- based model of dimensional changes and hot tearing. Hot Tear #12;Industrial Technologies

Beckermann, Christoph

414

Stellar Winds on the Main-Sequence I: Wind Model  

E-Print Network [OSTI]

Aims: We develop a method for estimating the properties of stellar winds for low-mass main-sequence stars between masses of 0.4 and 1.1 solar masses at a range of distances from the star. Methods: We use 1D thermal pressure driven hydrodynamic wind models run using the Versatile Advection Code. Using in situ measurements of the solar wind, we produce models for the slow and fast components of the solar wind. We consider two radically different methods for scaling the base temperature of the wind to other stars: in Model A, we assume that wind temperatures are fundamentally linked to coronal temperatures, and in Model B, we assume that the sound speed at the base of the wind is a fixed fraction of the escape velocity. In Paper II of this series, we use observationally constrained rotational evolution models to derive wind mass loss rates. Results: Our model for the solar wind provides an excellent description of the real solar wind far from the solar surface, but is unrealistic within the solar corona. We run ...

Johnstone, C P; Lüftinger, T; Toth, G; Brott, I

2015-01-01T23:59:59.000Z

415

Wind turbine spoiler  

DOE Patents [OSTI]

An aerodynamic spoiler system for a vertical axis wind turbine includes spoilers on the blades initially stored near the rotor axis to minimize drag. A solenoid latch adjacent the central support tower releases the spoilers and centrifugal force causes the spoilers to move up the turbine blades away from the rotor axis, thereby producing a braking effect and actual slowing of the associated wind turbine, if desired. The spoiler system can also be used as an infinitely variable power control by regulated movement of the spoilers on the blades over the range between the undeployed and fully deployed positions. This is done by the use of a suitable powered reel and cable located at the rotor tower to move the spoilers.

Sullivan, William N. (Albuquerque, NM)

1985-01-01T23:59:59.000Z

416

Airfoils for wind turbine  

DOE Patents [OSTI]

Airfoils are disclosed for the blade of a wind turbine wherein each airfoil is characterized by a thickness in a range from 16%-24% and a maximum lift coefficient designed to be largely insensitive to roughness effects. The airfoils include a family of airfoils for a blade 15 to 25 meters in length, a family of airfoils for a blade 1 to 5 meters in length, and a family of airfoils for a blade 5 to 10 meters in length. 10 figs.

Tangler, J.L.; Somers, D.M.

1996-10-08T23:59:59.000Z

417

Airfoils for wind turbine  

DOE Patents [OSTI]

Airfoils for the blade of a wind turbine wherein each airfoil is characterized by a thickness in a range from 16%-24% and a maximum lift coefficient designed to be largely insensitive to roughness effects. The airfoils include a family of airfoils for a blade 15 to 25 meters in length, a family of airfoils for a blade 1 to 5 meters in length, and a family of airfoils for a blade 5 to 10 meters in length.

Tangler, James L. (Boulder, CO); Somers, Dan M. (State College, PA)

1996-01-01T23:59:59.000Z

418

Wind Program: Publications  

Energy Savers [EERE]

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious RankCombustion |Energyon ArmedWaste and Materials Disposition InformationWind Program As a follow up to

419

Direct drive wind turbine  

DOE Patents [OSTI]

A wind turbine is provided that minimizes the size of the drive train and nacelle while maintaining the power electronics and transformer at the top of the tower. The turbine includes a direct drive generator having an integrated disk brake positioned radially inside the stator while minimizing the potential for contamination. The turbine further includes a means for mounting a transformer below the nacelle within the tower.

Bywaters, Garrett; Danforth, William; Bevington, Christopher; Jesse, Stowell; Costin, Daniel

2006-10-10T23:59:59.000Z

420

Direct drive wind turbine  

DOE Patents [OSTI]

A wind turbine is provided that minimizes the size of the drive train and nacelle while maintaining the power electronics and transformer at the top of the tower. The turbine includes a direct drive generator having an integrated disk brake positioned radially inside the stator while minimizing the potential for contamination. The turbine further includes a means for mounting a transformer below the nacelle within the tower.

Bywaters, Garrett; Danforth, William; Bevington, Christopher; Stowell, Jesse; Costin, Daniel

2006-07-11T23:59:59.000Z

Note: This page contains sample records for the topic "wind phase bring" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


421

Direct drive wind turbine  

DOE Patents [OSTI]

A wind turbine is provided that minimizes the size of the drive train and nacelle while maintaining the power electronics and transformer at the top of the tower. The turbine includes a direct drive generator having an integrated disk brake positioned radially inside the stator while minimizing the potential for contamination. The turbine further includes a means for mounting a transformer below the nacelle within the tower.

Bywaters, Garrett Lee; Danforth, William; Bevington, Christopher; Stowell, Jesse; Costin, Daniel

2006-09-19T23:59:59.000Z

422

Direct drive wind turbine  

DOE Patents [OSTI]

A wind turbine is provided that minimizes the size of the drive train and nacelle while maintaining the power electronics and transformer at the top of the tower. The turbine includes a direct drive generator having an integrated disk brake positioned radially inside the stator while minimizing the potential for contamination. The turbine further includes a means for mounting a transformer below the nacelle within the tower.

Bywaters, Garrett; Danforth, William; Bevington, Christopher; Jesse, Stowell; Costin, Daniel

2007-02-27T23:59:59.000Z

423

Balancing of Wind Power - Optimization of power systems which include wind power systems.  

E-Print Network [OSTI]

?? In the future, renewable energy share, especially wind power share, in electricity generation is expected to increase. Due to nature of the wind, wind… (more)

Ülker, Muhammed Akif

2011-01-01T23:59:59.000Z

424

Trends of Wind and Wind Power Over the Coterminous United States.  

E-Print Network [OSTI]

??The trends of wind and wind power at a typical wind turbine hub height (80 m) are analyzed using the North American Regional Reanalysis (NARR)… (more)

Holt, Eric M

2011-01-01T23:59:59.000Z

425

Improving the reliability of wind power through spatially distributed wind generation.  

E-Print Network [OSTI]

??Wind power is a fast-growing, sustainable energy source. However, the problem of wind variability as it relates to wind power reliability is an obstacle to… (more)

Fisher, Samuel Martin

2012-01-01T23:59:59.000Z

426

20% Wind Energy by 2030 - Chapter 5: Wind Power Siting and Environment...  

Broader source: Energy.gov (indexed) [DOE]

5: Wind Power Siting and Environmental Effects Summary Slides 20% Wind Energy by 2030 - Chapter 5: Wind Power Siting and Environmental Effects Summary Slides Environment and siting...

427

WP2 IEA Wind Task 26:The Past and Future Cost of Wind Energy  

E-Print Network [OSTI]

Energy Efficiency and Renewable Energy, Wind and HydropowerSpeed Sites. ” European Wind Energy Association. Marseille,Innovation and the price of wind energy in the US. ” Energy

Lantz, Eric

2014-01-01T23:59:59.000Z

428

WP2 IEA Wind Task 26:The Past and Future Cost of Wind Energy  

E-Print Network [OSTI]

Speed Sites. ” European Wind Energy Association. Marseille,Innovation and the price of wind energy in the US. ” EnergyThe Economics of Wind Energy. ” Renewable and Sustainable

Lantz, Eric

2014-01-01T23:59:59.000Z

429

Gone with the Wind - The Potential Tragedy of the Common Wind  

E-Print Network [OSTI]

or erection of wind turbine towers, relay stations, and/orof Wind Turbine Generator Operation Using Tower Shadowbetween wind turbines and cell phone towers). 152. Guzek,

Lifshitz-Goldberg, Yaei

2010-01-01T23:59:59.000Z

430

Wind for Schools (Presentation)  

SciTech Connect (OSTI)

Schools are key to achieving the goal of producing 20% of the nation's electricity demand. Most significantly, schools are training the scientists, technicians, businesspeople, decisionmakers, and teachers of the future. What students learn and believe about wind energy will impact the United States' ability to create markets and policy, develop and improve technology, finance and implement projects, and create change in all of our public and private institutions. In the nearer term, school districts have large facility costs, electrical loads, and utility costs. They are always in search of ways to reduce costs or obtain revenue to improve educational programs. Schools value teaching about the science and technology of renewable energy. They are important opinion leaders, particularly in rural communities. And their financial structures are quite different from other institutions (funding, incentives, restrictions, etc.). Learning objectives: The presentation will use case studies, project experience, and discussion with the audience to convey the current status of wind energy applications and education in U.S. schools and understanding of the elements that create a successful school wind energy project. The presentation will provide attendees with a background in the current level of knowledge and generate discussion on several themes.

Kelly, M.

2007-06-01T23:59:59.000Z

431

Wind power generating system  

SciTech Connect (OSTI)

Normally feathered propeller blades of a wind power generating system unfeather in response to the actuation of a power cylinder that responds to actuating signals. Once operational, the propellers generate power over a large range of wind velocities. A maximum power generation design point signals a feather response of the propellers so that once the design point is reached no increase in power results, but the system still generates power. At wind speeds below this maximum point, propeller speed and power output optimize to preset values. The propellers drive a positive displacement pump that in turn drives a positive displacement motor of the swash plate type. The displacement of the motor varies depending on the load on the system, with increasing displacement resulting in increasing propeller speeds, and the converse. In the event of dangerous but not clandestine problems developing in the system, a control circuit dumps hydraulic pressure from the unfeathering cylinder resulting in a predetermined, lower operating pressure produced by the pump. In the event that a problem of potentially cladestine consequence arises, the propeller unfeathering cylinder immediately unloads. Upon startup, a bypass around the motor is blocked, applying a pressure across the motor. The motor drives the generator until the generator reaches a predetermined speed whereupon the generator is placed in circuit with a utility grid and permitted to motor up to synchronous speed.

Schachle, Ch.; Schachle, E. C.; Schachle, J. R.; Schachle, P. J.

1985-03-12T23:59:59.000Z

432

CgWind: A high-order accurate simulation tool for wind turbines and wind farms  

SciTech Connect (OSTI)

CgWind is a high-fidelity large eddy simulation (LES) tool designed to meet the modeling needs of wind turbine and wind park engineers. This tool combines several advanced computational technologies in order to model accurately the complex and dynamic nature of wind energy applications. The composite grid approach provides high-quality structured grids for the efficient implementation of high-order accurate discretizations of the incompressible Navier-Stokes equations. Composite grids also provide a natural mechanism for modeling bodies in relative motion and complex geometry. Advanced algorithms such as matrix-free multigrid, compact discretizations and approximate factorization will allow CgWind to perform highly resolved calculations efficiently on a wide class of computing resources. Also in development are nonlinear LES subgrid-scale models required to simulate the many interacting scales present in large wind turbine applications. This paper outlines our approach, the current status of CgWind and future development plans.

Chand, K K; Henshaw, W D; Lundquist, K A; Singer, M A

2010-02-22T23:59:59.000Z

433

KANSAS WIND POWERING AMERICAN STATE OUTREACH: KANSAS WIND WORKING GROUP  

SciTech Connect (OSTI)

The Kansas Wind Working Group (WWG) is a 33-member group announced by former Governor Kathleen Sebelius on Jan. 7, 2008. Formed through Executive Order 08-01, the WWG will educate stakeholder groups with the current information on wind energy markets, technologies, economics, policies, prospects and issues. Governor Mark Parkinson serves as chair of the Kansas Wind Working Group. The group has been instrumental in focusing on the elements of government and coordinating government and private sector efforts in wind energy development. Those efforts have moved Kansas from 364 MW of wind three years ago to over 1000 MW today. Further, the Wind Working Group was instrumental in fleshing out issues such as a state RES and net metering, fundamental parts of HB 2369 that was passed and is now law in Kansas. This represents the first mandatory RES and net metering in Kansas history.

HAMMARLUND, RAY

2010-10-27T23:59:59.000Z

434

Variable speed wind turbine generator with zero-sequence filter  

DOE Patents [OSTI]

A variable speed wind turbine generator system to convert mechanical power into electrical power or energy and to recover the electrical power or energy in the form of three phase alternating current and return the power or energy to a utility or other load with single phase sinusoidal waveform at sixty (60) hertz and unity power factor includes an excitation controller for generating three phase commanded current, a generator, and a zero sequence filter. Each commanded current signal includes two components: a positive sequence variable frequency current signal to provide the balanced three phase excitation currents required in the stator windings of the generator to generate the rotating magnetic field needed to recover an optimum level of real power from the generator; and a zero frequency sixty (60) hertz current signal to allow the real power generated by the generator to be supplied to the utility. The positive sequence current signals are balanced three phase signals and are prevented from entering the utility by the zero sequence filter. The zero sequence current signals have zero phase displacement from each other and are prevented from entering the generator by the star connected stator windings. The zero sequence filter allows the zero sequence current signals to pass through to deliver power to the utility. 14 figs.

Muljadi, E.

1998-08-25T23:59:59.000Z

435

Variable speed wind turbine generator with zero-sequence filter  

DOE Patents [OSTI]

A variable speed wind turbine generator system to convert mechanical power into electrical power or energy and to recover the electrical power or energy in the form of three phase alternating current and return the power or energy to a utility or other load with single phase sinusoidal waveform at sixty (60) hertz and unity power factor includes an excitation controller for generating three phase commanded current, a generator, and a zero sequence filter. Each commanded current signal includes two components: a positive sequence variable frequency current signal to provide the balanced three phase excitation currents required in the stator windings of the generator to generate the rotating magnetic field needed to recover an optimum level of real power from the generator; and a zero frequency sixty (60) hertz current signal to allow the real power generated by the generator to be supplied to the utility. The positive sequence current signals are balanced three phase signals and are prevented from entering the utility by the zero sequence filter. The zero sequence current signals have zero phase displacement from each other and are prevented from entering the generator by the star connected stator windings. The zero sequence filter allows the zero sequence current signals to pass through to deliver power to the utility.

Muljadi, Eduard (Golden, CO)

1998-01-01T23:59:59.000Z

436

Variable Speed Wind Turbine Generator with Zero-sequence Filter  

DOE Patents [OSTI]

A variable speed wind turbine generator system to convert mechanical power into electrical power or energy and to recover the electrical power or energy in the form of three phase alternating current and return the power or energy to a utility or other load with single phase sinusoidal waveform at sixty (60) hertz and unity power factor includes an excitation controller for generating three phase commanded current, a generator, and a zero sequence filter. Each commanded current signal includes two components: a positive sequence variable frequency current signal to provide the balanced three phase excitation currents required in the stator windings of the generator to generate the rotating magnetic field needed to recover an optimum level of real power from the generator; and a zero frequency sixty (60) hertz current signal to allow the real power generated by the generator to be supplied to the utility. The positive sequence current signals are balanced three phase signals and are prevented from entering the utility by the zero sequence filter. The zero sequence current signals have zero phase displacement from each other and are prevented from entering the generator by the star connected stator windings. The zero sequence filter allows the zero sequence current signals to pass through to deliver power to the utility.

Muljadi, Eduard (Golden, CO)

1998-08-25T23:59:59.000Z

437

Distributed Wind Energy in Idaho  

SciTech Connect (OSTI)

Project Objective: This project is a research and development program aimed at furthering distributed wind technology. In particular, this project addresses some of the barriers to distributed wind energy utilization in Idaho. Background: At its core, the technological challenge inherent in Wind Energy is the transformation of a highly variable form of energy to one which is compatible with the commercial power grid or another useful application. A major economic barrier to the success of distributed wind technology is the relatively high capital investment (and related long payback periods) associated with wind turbines. This project will carry out fundamental research and technology development to address both the technological and economic barriers. � Active drive train control holds the potential to improve the overall efficiency of a turbine system by allowing variable speed turbine operation while ensuring a tight control of generator shaft speed, thus greatly simplifying power conditioning. � Recent blade aerodynamic advancements have been focused on large, utility-scale wind turbine generators (WTGs) as opposed to smaller WTGs designed for distributed generation. Because of Reynolds Number considerations, blade designs do not scale well. Blades which are aerodynamically optimized for distributed-scale WTGs can potentially reduce the cost of electricity by increasing shaft-torque in a given wind speed. � Grid-connected electric generators typically operate at a fixed speed. If a generator were able to economically operate at multiple speeds, it could potentially convert more of the wind�s energy to electricity, thus reducing the cost of electricity. This research directly supports the stated goal of the Wind and Hydropower Technologies Program for Distributed Wind Energy Technology: By 2007, reduce the cost of electricity from distributed wind systems to 10 to 15 cents/kWh in Class 3 wind resources, the same level that is currently achievable in Class 5 winds.

Gardner, John; Ferguson, James; Ahmed-Zaid, Said; Johnson, Kathryn; Haynes, Todd; Bennett, Keith

2009-01-31T23:59:59.000Z

438

Wind Powering America's Wind for Schools Project: Summary Report  

SciTech Connect (OSTI)

This report provides an overview of the U.S. Department of Energy, Wind Powering America, Wind for Schools project. It outlines teacher-training activities and curriculum development; discusses the affiliate program that allows school districts and states to replicate the program; and contains reports that provide an update on activities and progress in the 11 states in which the Wind for Schools project operates.

Baring-Gould, I.; Newcomb, C.

2012-06-01T23:59:59.000Z

439

Dynamic analysis of a 5 megawatt offshore floating wind turbine  

E-Print Network [OSTI]

Why offshore wind energy? Offshore wind turbines have theturbine will also uncover potential problems that exist with offshore wind energy.

Harriger, Evan Michael

2011-01-01T23:59:59.000Z

440

The Political Economy of Wind Power in China  

E-Print Network [OSTI]

of wind power, as the integration of wind power, and thecompany, found that the integration of wind power into the

Swanson, Ryan Landon

2011-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "wind phase bring" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


441

The divergent wind component in data sparse tropical wind fields  

E-Print Network [OSTI]

THE DIVERGENT WIND COMPONENT IN DATA SPARSE TROPICAL WIND FIELDS A Thesis by BRUCE ALAN SNYDER Submitted to the Graduate College of Texas A&M University in partial fulfillment of the requirements for the degree of MASTER OF SCIENCE December... 1985 Major Subject: Meteorology THE DIVERGENT WIND COMPONENT IN DATA SPARSE TROPICAL WIND FIELDS A Thesis by BRUCE ALAN SNYDER Approved as to style and content by: James P. McGuirk (Co-Chairman) Aylmer IL Thompson (Co-Chairman) W. Homer...

Snyder, Bruce Alan

1985-01-01T23:59:59.000Z

442

National Wind Technology Center (Fact Sheet), National Wind Technology...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

hydrokinetic (MHK) energy devices are high-force, low-speed machines, similar to wind turbines that convert the kinetic energy of a moving fluid into electrical energy....

443

Utility Wind Integration Group Distributed Wind/Solar Interconnection Workshop  

Broader source: Energy.gov [DOE]

This two-day workshop will answer your questions about interconnecting wind and solar plants and other distributed generation applications to electric distribution systems while providing insight...

444

NREL: Wind Research - NREL Analyzes Floating Offshore Wind Technology...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

representatives regarding NREL's analysis of Statoil's Hywind II offshore floating wind turbine design. Statoil's Hywind II is a 6-MW turbine on a floating spar-buoy...

445

Wind Energy Benefits, Wind Powering America (WPA) (Fact Sheet)  

SciTech Connect (OSTI)

This fact sheet outlines the top 10 benefits of wind energy, including cost, water savings, job creation, indigenous resource, and low operating costs.

Not Available

2011-04-01T23:59:59.000Z

446

1. Wind-splash erosion 4. Relationships between rainfall intensity, wind-speed, wind direction and erosion  

E-Print Network [OSTI]

from the surface but unless it corresponds to a high wind-speed (the potential to transport a single rainfall event. When high wind-speeds and heavy rainfall combine there is an increased potential1. Wind-splash erosion 4. Relationships between rainfall intensity, wind-speed, wind direction

447

Coastal Ohio Wind Project for Reduced Barriers to Deployment of Offshore Wind Energy  

SciTech Connect (OSTI)

The Coastal Ohio Wind Project was created to establish the viability of wind turbines on the coastal and offshore regions of Northern Ohio. The project’s main goal was to improve operational unit strategies used for environmental impact assessment of offshore turbines on lake wildlife by optimizing and fusing data from the multi-instrument surveillance system and providing an engineering analysis of potential design/operational alternatives for offshore wind turbines. The project also developed a general economic model for offshore WTG deployment to quantify potential revenue losses due to wind turbine shutdown related to ice and avian issues. In a previous phase of this project (Award Number: DE-FG36-06GO86096), we developed a surveillance system that was used to collect different parameters such as passage rates, flight paths, flight directions, and flight altitudes of nocturnal migrating species, movements of birds and bats, and bird calls for assessing patterns and peak passage rates during migration. To derive such parameters we used thermal IR imaging cameras, acoustic recorders, and marine radar Furuno (XANK250), which was coupled with a XIR3000B digitizing card from Russell Technologies and open source radR processing software. The integration yielded a development of different computational techniques and methods, which we further developed and optimized as a combined surveillance system. To accomplish this task we implemented marine radar calibration, optimization of processing parameters, and fusion of the multi-sensor data in order to make inferences about the potential avian targets. The main goal of the data fusion from the multi-sensor environment was aimed at reduction of uncertainties while providing acceptable confidence levels with detailed information about the migration patterns. Another component comprised of an assessment of wind resources in a near lake environment and an investigation of the effectiveness of ice coating materials to mitigate adverse effects of ice formation on wind turbine structures. Firstly, a Zephir LiDAR system was acquired and installed at Woodlands School in Huron, Ohio, which is located near Lake Erie. Wind resource data were obtained at ten measurement heights, 200m, 150m, 100m, 80m, 60m, 40m, 38m, 30m, 20m, and 10m. The Woodlands School’s wind turbine anemometer also measured the wind speed at the hub height. These data were collected for approximately one year. The hub anemometer data correlated well with the LiDAR wind speed measurements at the same height. The data also showed that on several days different power levels were recorded by the turbine at the same wind speed as indicated by the hub anemometer. The corresponding LiDAR data showed that this difference can be attributed to variability in the wind over the turbine rotor swept area, which the hub anemometer could not detect. The observation suggests that single point hub wind velocity measurements are inadequate to accurately estimate the power generated by a turbine at all times since the hub wind speed is not a good indicator of the wind speed over the turbine rotor swept area when winds are changing rapidly. To assess the effectiveness of ice coatings to mitigate the impact of ice on turbine structures, a closed-loop icing research tunnel (IRT) was designed and constructed. By controlling the temperature, air speed, water content and liquid droplet size, the tunnel enabled consistent and repeatable ice accretion under a variety of conditions with temperatures between approximately 0°C and -20°C and wind speeds up to 40 miles per hour in the tunnel’s test section. The tunnel’s cooling unit maintained the tunnel temperature within ±0.2°C. The coatings evaluated in the study were Boyd Coatings Research Company’s CRC6040R3, MicroPhase Coatings Inc.’s PhaseBreak TP, ESL and Flex coatings. Similar overall performance was observed in all coatings tested in that water droplets form on the test articles beginning at the stagnation region and spreading in the downstream direction in time. When compari

Gorsevski, Peter; Afjeh, Abdollah; Jamali, Mohsin; Carroll, Michael

2014-04-09T23:59:59.000Z

448

Wind load reduction for heliostats  

SciTech Connect (OSTI)

This report presents the results of wind-tunnel tests supported through the Solar Energy Research Institute (SERI) by the Office of Solar Thermal Technology of the US Department of Energy as part of the SERI research effort on innovative concentrators. As gravity loads on drive mechanisms are reduced through stretched-membrane technology, the wind-load contribution of the required drive capacity increases in percentage. Reduction of wind loads can provide economy in support structure and heliostat drive. Wind-tunnel tests have been directed at finding methods to reduce wind loads on heliostats. The tests investigated primarily the mean forces, moments, and the possibility of measuring fluctuating forces in anticipation of reducing those forces. A significant increase in ability to predict heliostat wind loads and their reduction within a heliostat field was achieved.

Peterka, J.A.; Hosoya, N.; Bienkiewicz, B.; Cermak, J.E.

1986-05-01T23:59:59.000Z

449

Tensor renormalization group: Local magnetizations, correlation functions, and phase diagrams of systems with quenched randomness  

E-Print Network [OSTI]

The tensor renormalization-group method, developed by Levin and Nave, brings systematic improvability to the position-space renormalization-group method and yields essentially exact results for phase diagrams and entire ...

Guven, Can

450

Wind Powering America's Regional Stakeholder Meetings and Priority State Reports: FY11 Summary  

SciTech Connect (OSTI)

Beginning in 2010, DOE conducted an assessment of Wind Powering America (WPA) activities to determine whether the methods the department had used to help grow the wind industry to provide 2% of the nation's electrical energy should be the same methods used to achieve 20% of the nation's energy from wind (as described in the report 20% Wind Energy by 2030: Increasing Wind Energy's Contribution to U.S. Electricity Supply). After the assessment, it was determined that the initiative's state-based activities should be phased out as part of a shift to regional-based approaches. To assist with this transition, WPA hosted a series of 1-day regional meetings at six strategic locations around the country and a single teleconference for island states, U.S. territories, and remote communities. This report summarizes the results of the inaugural regional meetings and the state reports with a focus on ongoing wind deployment barriers in each region.

Not Available

2013-06-01T23:59:59.000Z

451

The Political Economy of Wind Power in China  

E-Print Network [OSTI]

by which wind turbine technology converts wind energy intoWind energy developers – usually power companies combined with a wind turbine

Swanson, Ryan Landon

2011-01-01T23:59:59.000Z

452

Sandia National Laboratories: Grid System Planning for Wind:...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Wind: Wind Generator Modeling A typical wind power plant may contain hundreds of wind turbines that are interconnected through a collector system. Though the impact of...

453

Next-Generation Wind Technology | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

Next-Generation Wind Technology Next-Generation Wind Technology The Wind Program works with industry partners to increase the performance and reliability of next-generation wind...

454

Wind Vision Testimonials (Text Version) | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

Wind Vision Testimonials (Text Version) Wind Vision Testimonials (Text Version) Below is the text version for the Wind Vision Testimonials video. The video opens with the "Wind...

455

Proceedings from the Wind Manufacturing Workshop: Achieving 20...  

Office of Environmental Management (EM)

Proceedings from the Wind Manufacturing Workshop: Achieving 20% Wind Energy in the U.S. by 2030, May 2009 Proceedings from the Wind Manufacturing Workshop: Achieving 20% Wind...

456

Reassessing Wind Potential Estimates for India: Economic and Policy Implications  

E-Print Network [OSTI]

Wind Project Performance,”WindPower 2010, pp. 10-11. ErnestWind Project Performance,”WindPower 2010, pp. 10- Table 6:

Phadke, Amol

2012-01-01T23:59:59.000Z

457

An experimental and numerical study of wind turbine seismic behavior  

E-Print Network [OSTI]

of Seismic and Wind Load Combinations 8.5.2 Extremeextrapolation for wind turbine extreme loads. ” Wind Energy,extrapolation for wind turbine extreme loads. ” 46th AIAA

Prowell, I.

2011-01-01T23:59:59.000Z

458

Wind Resource Assessment of Gujarat (India)  

SciTech Connect (OSTI)

India is one of the largest wind energy markets in the world. In 1986 Gujarat was the first Indian state to install a wind power project. In February 2013, the installed wind capacity in Gujarat was 3,093 MW. Due to the uncertainty around existing wind energy assessments in India, this analysis uses the Weather Research and Forecasting (WRF) model to simulate the wind at current hub heights for one year to provide more precise estimates of wind resources in Gujarat. The WRF model allows for accurate simulations of winds near the surface and at heights important for wind energy purposes. While previous resource assessments published wind power density, we focus on average wind speeds, which can be converted to wind power densities by the user with methods of their choice. The wind resource estimates in this study show regions with average annual wind speeds of more than 8 m/s.

Draxl, C.; Purkayastha, A.; Parker, Z.

2014-07-01T23:59:59.000Z

459

Conceptual Model of Offshore Wind Environmental Risk Evaluation System  

SciTech Connect (OSTI)

In this report we describe the development of the Environmental Risk Evaluation System (ERES), a risk-informed analytical process for estimating the environmental risks associated with the construction and operation of offshore wind energy generation projects. The development of ERES for offshore wind is closely allied to a concurrent process undertaken to examine environmental effects of marine and hydrokinetic (MHK) energy generation, although specific risk-relevant attributes will differ between the MHK and offshore wind domains. During FY10, a conceptual design of ERES for offshore wind will be developed. The offshore wind ERES mockup described in this report will provide a preview of the functionality of a fully developed risk evaluation system that will use risk assessment techniques to determine priority stressors on aquatic organisms and environments from specific technology aspects, identify key uncertainties underlying high-risk issues, compile a wide-range of data types in an innovative and flexible data organizing scheme, and inform planning and decision processes with a transparent and technically robust decision-support tool. A fully functional version of ERES for offshore wind will be developed in a subsequent phase of the project.

Anderson, Richard M.; Copping, Andrea E.; Van Cleve, Frances B.; Unwin, Stephen D.; Hamilton, Erin L.

2010-06-01T23:59:59.000Z

460

Xi an Nordex Wind Turbine Co Ltd aka Xi an Weide Wind Power Equipment...  

Open Energy Info (EERE)

Wind Turbine Co Ltd aka Xi an Weide Wind Power Equipment Co Ltd Jump to: navigation, search Name: Xi'an Nordex Wind Turbine Co Ltd (aka Xi'an Weide Wind Power Equipment Co Ltd)...

Note: This page contains sample records for the topic "wind phase bring" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


461

Subhourly wind forecasting techniques for wind turbine operations  

SciTech Connect (OSTI)

Three models for making automated forecasts of subhourly wind and wind power fluctuations were examined to determine the models' appropriateness, accuracy, and reliability in wind forecasting for wind turbine operation. Such automated forecasts appear to have value not only in wind turbine control and operating strategies, but also in improving individual wind turbine control and operating strategies, but also in improving individual wind turbine operating strategies (such as determining when to attempt startup). A simple persistence model, an autoregressive model, and a generalized equivalent Markhov (GEM) model were developed and tested using spring season data from the WKY television tower located near Oklahoma City, Oklahoma. The three models represent a pure measurement approach, a pure statistical method and a statistical-dynamical model, respectively. Forecasting models of wind speed means and measures of deviations about the mean were developed and tested for all three forecasting techniques for the 45-meter level and for the 10-, 30- and 60-minute time intervals. The results of this exploratory study indicate that a persistence-based approach, using onsite measurements, will probably be superior in the 10-minute time frame. The GEM model appears to have the most potential in 30-minute and longer time frames, particularly when forecasting wind speed fluctuations. However, several improvements to the GEM model are suggested. In comparison to the other models, the autoregressive model performed poorly at all time frames; but, it is recommended that this model be upgraded to an autoregressive moving average (ARMA or ARIMA) model. The primary constraint in adapting the forecasting models to the production of wind turbine cluster power output forecasts is the lack of either actual data, or suitable models, for simulating wind turbine cluster performance.

Wegley, H.L.; Kosorok, M.R.; Formica, W.J.

1984-08-01T23:59:59.000Z

462

Breeze Wind Power In China.  

E-Print Network [OSTI]

?? China is an energy production and consumption country, wind power is one of the greatest development potential energy.The authors use literature research methodology, case… (more)

wang, zhong tao

2012-01-01T23:59:59.000Z

463

Wind Energy Benefits (Fact Sheet)  

SciTech Connect (OSTI)

This fact sheet outlines the top 10 benefits of wind energy, including cost, water savings, job creation, indigenous resource, and low operating costs.

Not Available

2015-01-01T23:59:59.000Z

464

2011 Wind Technologies Market Report  

SciTech Connect (OSTI)

This report describes the status of the U.S. wind energy industry market in 2011; its trends, performance, market drivers and future outlook.

Wiser, R.; Bolinger, M.

2012-08-01T23:59:59.000Z

465

2010 Wind Technologies Market Report  

SciTech Connect (OSTI)

This report describes the status of the U.S. wind energy industry market in 2010; its trends, performance, market drivers and future outlook.

Wiser, R.; Bolinger, M.

2011-06-01T23:59:59.000Z

466

Wind Development on the Rosebud  

Broader source: Energy.gov [DOE]

Presentation covers the Wind Development on the Rosebud, given at the Spring 2010 Federal Utility Partnership Working Group (FUPWG) meeting in Rapid City, South Dakota.

467

Wind and Solar Curtailment: Preprint  

SciTech Connect (OSTI)

High penetrations of wind and solar generation on power systems are resulting in increasing curtailment. Wind and solar integration studies predict increased curtailment as penetration levels grow. This paper examines experiences with curtailment on bulk power systems internationally. It discusses how much curtailment is occurring, how it is occurring, why it is occurring, and what is being done to reduce curtailment. This summary is produced as part of the International Energy Agency Wind Task 25 on Design and Operation of Power Systems with Large Amounts of Wind Power.

Lew, D.; Bird, L.; Milligan, M.; Speer, B.; Wang, X.; Carlini, E. M.; Estanqueiro, A.; Flynn, D.; Gomez-Lazaro, E.; Menemenlis, N.; Orths, A.; Pineda, I.; Smith, J. C.; Soder, L.; Sorensen, P.; Altiparmakis, A.; Yoh, Y.

2013-09-01T23:59:59.000Z

468

2012 Wind Technologies Market Report  

SciTech Connect (OSTI)

This report describes the status of the U.S. wind energy industry market in 2012; its trends, performance, market drivers and future outlook.

Wiser, R.; Bolinger, M.; Barbose, G.; Darghouth, N.; Hoen, B.; Mills, A.; Weaver, S.; Porter, K.; Buckley, M.; Fink, S.; Oteri, F.; Tegen, S.

2013-08-01T23:59:59.000Z

469

2011 Wind Technologies Market Report  

E-Print Network [OSTI]

at the National Renewable Energy Laboratory’s National WindGolden, CO: National Renewable Energy Laboratory. ElectricColorado: National Renewable Energy Laboratory. EnerNex

Bolinger, Mark

2013-01-01T23:59:59.000Z

470

Compensation Packages Wind Energy Easements  

E-Print Network [OSTI]

to provide rural landowners with information about the wind industry, which was just beginning to emerge in the Midwest and Great Plains. In particular, we focused on land leases and wind energy easements because such agreements provided the primary means for farmers to participate in wind energy development. Since then, the U.S. wind industry has grown dramatically, with commercial-scale installations in more than 30 states and the expectation of a record year for new installations in 2005. As wind energy development has spread, the knowledge base among landowners and rural communities has grown, and options for local participation have increased substantially. With more options and information sources on wind basics available, we believed this was the right time for Windustry to revisit our work on what continues to be the principal means for landowners to participate in wind development: land leases and wind energy easements. This work addresses the ever more sophisticated questions landowners have raised about hosting wind turbines, and also begins to define good practices for developers as many new companies, large and small, enter the industry. Our primary goals are:

Lease Agreement

471

2009 Wind Technologies Market Report  

E-Print Network [OSTI]

Wind Technologies Market Report References Acker, T. 2007.Industry Annual Market Report: Year Ending 2009. Washington,AWEA Mid-Year 2010 Market Report. Washington, DC: American

Wiser, Ryan

2010-01-01T23:59:59.000Z

472

Commercial Wind Energy Property Valuation  

Broader source: Energy.gov [DOE]

Prior to 2007, wind energy devices generating electricity for commercial sale were assessed differently depending on where they were located. Some counties valued the entire turbine structure ...

473

2009 Wind Technologies Market Report  

E-Print Network [OSTI]

federal loan programme. ” Windpower Monthly. Bloomberg NewWind 102. Presentation at AWEA’s WINDPOWER 2010 Conference &discussion at AWEA’s WINDPOWER 2010 Conference & Exhibition,

Wiser, Ryan

2010-01-01T23:59:59.000Z

474

Nebraska Wind Conference and Exhibition  

Office of Energy Efficiency and Renewable Energy (EERE)

The theme of the conference is "Harvesting Nebraska's Potential," which focuses on Nebraska's competitive position for attracting wind development. More information will be available on the 6th...

475

2008 WIND TECHNOLOGIES MARKET REPORT  

SciTech Connect (OSTI)

The U.S. wind industry experienced a banner year in 2008, again surpassing even optimistic growth projections from years past. At the same time, the last year has been one of upheaval, with the global financial crisis impacting near-term growth prospects for the wind industry, and with federal policy changes enacted to push the industry towards continued aggressive expansion. This rapid pace of development has made it difficult to keep up with trends in the marketplace. Yet, the need for timely, objective information on the industry and its progress has never been greater. This report - the third of an ongoing annual series - attempts to meet this need by providing a detailed overview of developments and trends in the U.S. wind power market, with a particular focus on 2008. As with previous editions, this report begins with an overview of key wind power installation-related trends: trends in wind capacity growth in the U.S., how that growth compares to other countries and generation sources, the amount and percentage of wind in individual states and serving specific utilities, and the quantity of proposed wind capacity in various interconnection queues in the United States. Next, the report covers an array of wind industry trends, including developments in turbine manufacturer market share, manufacturing and supply-chain investments, wind turbine and wind project size, project financing developments, and trends among wind power developers, project owners, and power purchasers. The report then turns to a discussion of wind project price, cost, and performance trends. In so doing, it reviews the price of wind power in the United States, and how those prices compare to the cost of fossil-fueled generation, as represented by wholesale power prices. It also describes trends in installed wind project costs, wind turbine transaction prices, project performance, and operations and maintenance expenses. Next, the report examines other policy and market factors impacting the domestic wind power market, including federal and state policy drivers, transmission issues, and grid integration. Finally, the report concludes with a preview of possible near- to medium-term market developments. This version of the Annual Report updates data presented in the previous editions, while highlighting key trends and important new developments from 2008. New to this edition is an executive summary of the report and an expanded final section on near- to medium-term market development. The report concentrates on larger-scale wind applications, defined here as individual turbines or projects that exceed 50 kW in size. The U.S. wind power sector is multifaceted, however, and also includes smaller, customer-sited wind turbines used to power the needs of residences, farms, and businesses. Data on these applications are not the focus of this report, though a brief discussion on Distributed Wind Power is provided on page 4. Much of the data included in this report were compiled by Berkeley Lab, and come from a variety of sources, including the American Wind Energy Association (AWEA), the Energy Information Administration (EIA), and the Federal Energy Regulatory Commission (FERC). The Appendix provides a summary of the many data sources used in the report. Data on 2008 wind capacity additions in the United States are based on information provided by AWEA; some minor adjustments to those data may be expected. In other cases, the data shown here represent only a sample of actual wind projects installed in the United States; furthermore, the data vary in quality. As such, emphasis should be placed on overall trends, rather than on individual data points. Finally, each section of this document focuses on historical market information, with an emphasis on 2008; with the exception of the final section, the report does not seek to forecast future trends.

Wiser, Ryan H.; Bolinger, Mark; Barbose, G.; Mills, A.; Rosa, A.; Porter, K.; Fink, S.; Tegen, S.; Musial, W.; Oteri, F.; Heimiller, D.; Rberts, B.; Belyeu, K.; Stimmel, R.

2009-07-15T23:59:59.000Z

476

Wind Power Systems 1.0 Overview  

E-Print Network [OSTI]

Wind Power Systems 1.0 Overview 2.0 Simulation model for wind farm operation 3.0 Research topics #12;Contents 1. Overview of wind power systems 2. Simulation model of wind farm operations 3. Research area of wind power systems 3.0 Overview 3.1 Economic dispatch 3.2 Correlation analysis 3.3 Energy

Ding, Yu

477

Rhaglen Ynni Gwynt Wind Energy Programme  

E-Print Network [OSTI]

Rhaglen Ynni Gwynt Wind Energy Programme Rhaglen Ynni Gwynt Wind Energy Programme Calculations supporting indicative figures used for the Wind Energy Programme Wind Energy (page) The energy to make,000,000 = 162.73 Therefore 4.5kWh/d/p = approximately 163 cups of tea per day per person Wind Energy Programme

478

Doppler Radar Wind Profiles Iwan Holleman  

E-Print Network [OSTI]

). The potential impact of a network of boundary layer wind profilers and sodars for mesoscale wind analysisDoppler Radar Wind Profiles Iwan Holleman Scientific Report, KNMI WR-2003-02, 2003 #12;2 #12 Strategy 18 3 Methods for Wind Profile Retrieval 25 3.1 Radial Velocity from Local Wind Model 25 3

Stoffelen, Ad

479

GSA Wind Supply Opportunity  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE:YearRound-UpHeatMulti-Dimensional Subject: Guidance for natural gas asWind Supply Opportunity 1 2 3

480

NREL: Innovation Impact - Wind  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May JunDatastreamsmmcrcalgovInstrumentsrucLas Conchas recoveryLaboratory | National NuclearoverAcquisitionEnergy SystemsSolar EnergyWind

Note: This page contains sample records for the topic "wind phase bring" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


481

Wind | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) "of EnergyEnergyENERGYWomen Owned SmallOfCoal_Budget_Fact_Sheet.pdf MoreDaily wholesaleDepartment ofWind The

482

ARM - Word Seek: Wind  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May JunDatastreamsmmcrcalgovInstrumentsruc Documentation RUCProductstwrmrAre the Effects of Global Warming? OutreachStorms OutreachWind

483

Wind Power Forecasting Data  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmosphericNuclear SecurityTensile Strain Switched FerromagnetismWaste and MaterialsWenjun DengWISPWind Industry Soars to New1Wind

484

WINDExchange: Learn About Wind  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May JunDatastreamsmmcrcalgovInstrumentsrucLasDelivered energy consumption byAbout Printable Version Bookmark and Share About Wind Power

485

WINDExchange: Wind Energy Ordinances  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May JunDatastreamsmmcrcalgovInstrumentsrucLasDelivered energy consumption byAbout Printable Version Bookmark and ShareDevelopmentWind

486

WINDExchange: Wind Potential Capacity  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May JunDatastreamsmmcrcalgovInstrumentsrucLasDelivered energy consumption byAbout Printable Version Bookmark and Wind Potential Capacity

487

Wind Power FAQ  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May JunDatastreamsmmcrcalgovInstrumentsrucLasDelivered energy consumption byAbout PrintableBlenderWhatFellows - PastFarmWind Power

488

Wind Power Forecasting  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May JunDatastreamsmmcrcalgovInstrumentsrucLasDelivered energy consumption byAbout PrintableBlenderWhatFellows - PastFarmWind

489

Innovative project bridges art and science: Libraries bring artists and faculty together in online effort  

E-Print Network [OSTI]

12/5/13 KU Libraries: Innovative project bridges art and science; KU Libraries bring artists and faculty together in online effort www.lib.ku.edu/news/fromthegroundup.shtml 1/2 The University of Kansas Libraries Libraries Home Articles & Databases... Catalog: books & more E-journals Research by Subject Course Reserves Library Pages A-Z Images KU ScholarWorks KU Digital Collections Hours My Account Request Articles, Books,… Friends & Benefactors Suggestions Innovative project bridges art and science...

2008-01-01T23:59:59.000Z

490

How to Bring Solar Energy to Seven Billion People (LBNL Science at the Theater)  

ScienceCinema (OSTI)

By exploiting the powers of nanotechnology and taking advantage of non-toxic, Earth-abundant materials, Berkeley Lab's Cyrus Wadia has fabricated new solar cell devices that have the potential to be several orders of magnitude less expensive than conventional solar cells. And by mastering the chemistry of these materials-and the economics of solar energy-he envisions bringing electricity to the 1.2 billion people now living without it.

Wadia, Cyrus

2011-04-28T23:59:59.000Z

491

Bringing ‘Place’ Back in: Regional Clusters, Project Governance, and New Product Outcomes  

E-Print Network [OSTI]

they are governed (Arikan and Schilling 2011). The effects of cluster centralization can be understood in terms of a control logic. In highly centralized clusters, hub firms assume a lead role in building common purpose and lending legitimacy to other members... . In fact, the ability to bring common governance practices to bear on a new project offers coordination benefits which affect the entire product development process; from the initial idea and the “fuzzy front end” to final commercialization. The paper...

Tracey, Paul; Heide, Jan B.; Bell, Simon J.

2014-08-27T23:59:59.000Z

492

Advanced wind turbine design studies: Advanced conceptual study. Final report  

SciTech Connect (OSTI)

In conjunction with the US Department of Energy and the National Renewable Energy Laboratory`s Advanced Wind Turbine Program, the Atlantic Orient Corporation developed preliminary designs for the next generation of wind turbines. These 50 kW and 350 kW turbines are based upon the concept of simplicity. By adhering to a design philosophy that emphasizes simplicity, we project that these turbines will produce energy at extremely competitive rates which will unlock the potential of wind energy domestically and internationally. The program consisted of three distinct phases. First, we evaluated the operational history of the Enertech 44 series wind turbines. As a result of this evaluation, we developed, in the second phase, a preliminary design for a new 50 kW turbine for the near-term market. In the third phase, we took a clean-sheet-of-paper approach to designing a 350 kW turbine focused on the mid-1990s utility market that incorporated past experience and advanced technology.

Hughes, P.; Sherwin, R. [Atlantic Orient Corp., Norwich, VT (United States)] [Atlantic Orient Corp., Norwich, VT (United States)

1994-08-01T23:59:59.000Z

493

Power control of a wind farm with active stall wind turbines and AC grid connection  

E-Print Network [OSTI]

Power control of a wind farm with active stall wind turbines and AC grid connection Anca D. Hansen1 controller for a wind farm made-up exclusively of active stall wind turbines with AC grid connection wind farm control involves both the control on wind turbine level as well as the central control

494

Wind energy and SAR wind mapping Charlotte Hasager(2) and merete christiansen(1)  

E-Print Network [OSTI]

offshore wind farms are operating and more are in construction. Thus the study is focussed on an area is ongoing, and the series of wind maps are used for investigation of offshore wind resources. In wind energy the siting of a wind farm is dependent upon reliable information about the wind climate within the area

495

Electron energy transport in the solar wind: Ulysses observations  

SciTech Connect (OSTI)

Previous analysis suggests that the whistler heat flux instability is responsible for the regulation of the electron heat flux of the solar wind. For an interval of quiescent solar wind during the in-ecliptic phase of the Ulysses mission, the plasma wave data in the whistler frequency regime are compared to the predictions of the whistler heat flux instability model. The data is well constrained by the predicted upper bound on the electron heat flux and a clear correlation between wave activity and electron heat flux dissipation is observed.

Scime, Earl E.; Gary, S. Peter; Phillips, John L.; Balogh, Andre; Lengyel-Frey, Denise [West Virginia University, Morgantown, West Virginia (United States); Los Alamos National Laboratory, Los Alamos, New Mexico (United States); Blackett Laboratory, Imperial College, London (United Kingdom); University of Maryland, College Park, Maryland (United States)

1996-07-20T23:59:59.000Z

496

Radio emission from Colliding-Wind Binaries: Observations and Models  

E-Print Network [OSTI]

We have developed radiative transfer models of the radio emission from colliding-wind binaries (CWB) based on a hydrodynamical treatment of the wind-collision region (WCR). The archetype of CWB systems is the 7.9-yr period binary WR140, which exhibits dramatic variations at radio wavelengths. High-resolution radio observations of WR140 permit a determination of several system parameters, particularly orbit inclination and distance, that are essential for any models of this system. A model fit to data at orbital phase 0.9 is shown, and some short comings of our model described.

S. M. Dougherty; J. M. Pittard; E. P. O'Connor

2005-10-18T23:59:59.000Z

497

Standards for Municipal Small Wind Regulations and Small Wind Model Wind Ordinance  

Broader source: Energy.gov [DOE]

In July 2008, New Hampshire enacted legislation designed to prevent municipalities from adopting ordinances or regulations that place unreasonable limits or hinder the performance of wind energy...

498

Wind Energy Benefits, Wind Powering America (WPA) (Fact Sheet), Wind And Water Power Program (WWPP)  

Broader source: Energy.gov [DOE]

This fact sheet outlines the top 10 benefits of wind energy, including cost, water savings, job creation, indigenous resource, and low operating costs.

499

Pulsar Wind Nebulae Modeling  

E-Print Network [OSTI]

Pulsar Wind Nebulae (PWNe) are ideal astrophysical laboratories where high energy relativistic phenomena can be investigated. They are close, well resolved in our observations, and the knowledge derived in their study has a strong impact in many other fields, from AGNs to GRBs. Yet there are still unresolved issues, that prevent us from a full clear understanding of these objects. The lucky combination of high resolution X-ray imaging and numerical codes to handle the outflow and dynamical properties of relativistic MHD, has opened a new avenue of investigation that has lead to interesting progresses in the last years. Despite all of this, we do not understand yet how particles are accelerated, and the functioning of the pulsar wind and pulsar magnetosphere, that power PWNe. I will review what is now commonly known as the MHD paradigm, and in particular I will focus on various approaches that have been and are currently used to model these systems. For each I will highlight its advantages, limitations, and de...

Bucciantini, N

2013-01-01T23:59:59.000Z

500

Wind Speed Forecasting for Power System Operation  

E-Print Network [OSTI]

In order to support large-scale integration of wind power into current electric energy system, accurate wind speed forecasting is essential, because the high variation and limited predictability of wind pose profound challenges to the power system...

Zhu, Xinxin

2013-07-22T23:59:59.000Z