National Library of Energy BETA

Sample records for wind ocean thermal

  1. Lyapunov Exponents of a Simple Stochastic Model of the Thermally and Wind-Driven Ocean Circulation

    E-Print Network [OSTI]

    Monahan, Adam Hugh

    Lyapunov Exponents of a Simple Stochastic Model of the Thermally and Wind-Driven Ocean Circulation, then the leading Lyapunov exponent of the circulation can become positive for sufficiently strong fluctuations of the leading Lyapunov exponent can have a substantial effect on the predictability of the system. 1 #12

  2. Ocean Thermal Energy Conversion Basics

    Broader source: Energy.gov [DOE]

    A process called ocean thermal energy conversion (OTEC) uses the heat energy stored in the Earth's oceans to generate electricity.

  3. Ocean Thermal Extractable Energy Visualization: Final Technical...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Ocean Thermal Extractable Energy Visualization: Final Technical Report Ocean Thermal Extractable Energy Visualization: Final Technical Report Report about the Ocean Thermal...

  4. Ocean Thermal Extractable Energy Visualization

    SciTech Connect (OSTI)

    Ascari, Matthew

    2012-10-28

    The Ocean Thermal Extractable Energy Visualization (OTEEV) project focuses on assessing the Maximum Practicably Extractable Energy (MPEE) from the world’s ocean thermal resources. MPEE is defined as being sustainable and technically feasible, given today’s state-of-the-art ocean energy technology. Under this project the OTEEV team developed a comprehensive Geospatial Information System (GIS) dataset and software tool, and used the tool to provide a meaningful assessment of MPEE from the global and domestic U.S. ocean thermal resources.

  5. OCEAN THERMAL ENERGY CONVERSION (OTEC) PROGRAMMATIC ENVIRONMENTAL ANALYSIS

    E-Print Network [OSTI]

    Sands, M. D.

    2011-01-01

    310, the Ocean the Ocean Energy Thermal Energy Conversionfor the commercialization of ocean thermal energy conversionOpen cycle ocean thermal energy conversion. A preliminary

  6. Thermal Wind The thermal wind is defined as the vector difference between the geostrophic winds at

    E-Print Network [OSTI]

    Hennon, Christopher C.

    ATMS 310 Thermal Wind The thermal wind is defined as the vector difference between the geostrophic winds at two levels. It is not really a wind at all, just a measure of the shear of the geostrophic wind. But there are good reasons for considering the geostrophic wind; mainly, it provides a convenient way of connecting

  7. Strong wind forcing of the ocean

    E-Print Network [OSTI]

    Zedler, Sarah E.

    2007-01-01

    forecast models requires a thorough understanding of the upper ocean thermodynamic response to wind andforecasts of hurricane intensity A Supplementary Formulae A.l W i n d Stress Windforecast models. This thesis investigates several aspects of the ocean's response to strong wind

  8. OCEAN THERMAL ENERGY CONVERSION: AN OVERALL ENVIRONMENTAL ASSESSMENT

    E-Print Network [OSTI]

    Sands, M.Dale

    2013-01-01

    M.D. (editor). 1980. Ocean Thermal Energy Conversion Draft1980 :. i l OCEAN THERMAL ENERGY CONVERSION: ENVIRONMENTALDevelopment Plan. Ocean Thermal Energy Conversion. U.S. DOE

  9. DRAFT. ENVIRONMENTAL ASSESSMENT OCEAN THERMAL ENERGY CONVERSION (OTEC) PILOT PLANTS

    E-Print Network [OSTI]

    Sullivan, S.M.

    2014-01-01

    1979. Commercial ocean thermal energy conversion ( OTEC)field of ocean thermal energy conversion discharges. I~. L.II of the Sixth Ocean Thermal Energy conversion Conference.

  10. ENVIRONMENTAL ASSESSMENT OCEAN THERMAL ENERGY CONVERSION (OTEC) PILOT PLANTS

    E-Print Network [OSTI]

    Sullivan, S.M.

    2014-01-01

    1979. Commercial ocean thermal energy conversion (OTEC)of the Fifth Ocean Thermal Energy Conversion Conference,Sands. 1980. Ocean thermal energy conversion (OTEC) pilot

  11. Near-inertial and thermal to atmospheric forcing in the North Atlantic Ocean

    E-Print Network [OSTI]

    Silverthorne, Katherine E

    2010-01-01

    Observational and modeling techniques are employed to investigate the thermal and inertial upper ocean response to wind and buoyancy forcing in the North Atlantic Ocean. First, the seasonal kinetic energy variability of ...

  12. High wind evaluation in the Southern Ocean Xiaojun Yuan

    E-Print Network [OSTI]

    Khatiwala, Samar

    1 High wind evaluation in the Southern Ocean Xiaojun Yuan Lamont-Doherty of Earth Observatory based scatterometer instruments provide crucial surface wind measurements with high resolution over winds at high wind bands because these regions host the strongest wind fields at the ocean surface

  13. On the Wind Power Input to the Ocean General Circulation

    E-Print Network [OSTI]

    Zhai, Xiaoming

    The wind power input to the ocean general circulation is usually calculated from the time-averaged wind products. Here, this wind power input is reexamined using available observations, focusing on the role of the synoptically ...

  14. Ocean Thermal Energy Conversion: Potential Environmental Impacts and Fisheries

    E-Print Network [OSTI]

    Hawai'i at Manoa, University of

    Ocean Thermal Energy Conversion: Potential Environmental Impacts and Fisheries Christina M Comfort Institute #12;Ocean Thermal Energy Conversion (OTEC) · Renewable energy ­ ocean thermal gradient · Large will unavoidably affect pelagic fish... ­ Noise and water pollution ­ FAD effects ­ Entrainment and Impingement

  15. Ocean Thermal Energy Conversion Basics | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Ocean Thermal Energy Conversion Basics Ocean Thermal Energy Conversion Basics August 16, 2013 - 4:22pm Addthis A process called ocean thermal energy conversion (OTEC) uses the heat...

  16. Assessment of ocean thermal energy conversion

    E-Print Network [OSTI]

    Muralidharan, Shylesh

    2012-01-01

    Ocean thermal energy conversion (OTEC) is a promising renewable energy technology to generate electricity and has other applications such as production of freshwater, seawater air-conditioning, marine culture and chilled-soil ...

  17. STATISTICAL CONDENSATION OF METEOROLOGICAL OCEAN DATA FOR WIND

    E-Print Network [OSTI]

    Sweetman, Bert

    Optimizing profitability of offshore wind farms requires matching those design parameters that can the first offshore wind farm in East China Sea, which will which will produce 267 GWh for the energy market Optimization, Offshore Wind Turbines, Met-Ocean statistics INTRODUCTION Wind-energy is increasingly gaining

  18. Strong wind forcing of the ocean

    E-Print Network [OSTI]

    Zedler, Sarah E.

    2007-01-01

    of mesoscale and steady wind driven 1. Introduction 2. Modelparameterization at high wind speeds 1. Introduction 2. DataSupplementary Formulae 1. Wind Stress 2. Rankine Vortex A .

  19. Wind turbine impacts on HF radar ocean surface measurements in

    E-Print Network [OSTI]

    Wyatt, Lucy

    Wind turbine impacts on HF radar ocean surface measurements in Liverpool Bay Alice Robinson School. The characterisation of the wind turbine interference is assessed and the radar cross section estimated. The modulation with wind turbine interference in a HF radar footprint are made. #12;Contents Contents iv List of Tables vii

  20. A PRELIMINARY EVALUATION OF IMPINGEMENT AND ENTRAINMENT BY OCEAN THERMAL ENERGY CONVERSION (OTEC) PLANTS

    E-Print Network [OSTI]

    Sullivan, S.M.

    2013-01-01

    nental Assessment, Ocean Thermal Energy Conversion (OTEC)Impact Assessment Ocean Thermal Energy Conversion (OTEC),Intake Screens for Ocean Thermal Energy M.S. Thesis. Oregon

  1. Ocean Thermal Energy Conversion LUIS A. VEGA

    E-Print Network [OSTI]

    demand due to emerging economies like China, India, and Brazil. Coal and natural gas resources 7296 OOcean Thermal Energy Conversion LUIS A. VEGA Hawaii Natural Energy Institute, School of Ocean the OTEC plant. The difference between gross power and in-plant power consumption needed to run all sweater

  2. Wind-driven changes in Southern Ocean residual circulation, ocean carbon reservoirs and atmospheric CO[subscript 2

    E-Print Network [OSTI]

    Lauderdale, Jonathan M.

    The effect of idealized wind-driven circulation changes in the Southern Ocean on atmospheric CO[subscript 2] and the ocean carbon inventory is investigated using a suite of coarse-resolution, global coupled ocean circulation ...

  3. On the Wind Power Input to the Ocean General Circulation XIAOMING ZHAI

    E-Print Network [OSTI]

    Wunsch, Carl

    On the Wind Power Input to the Ocean General Circulation XIAOMING ZHAI Atmospheric, Oceanic January 2012, in final form 3 May 2012) ABSTRACT The wind power input to the ocean general circulation is usually calculated from the time-averaged wind products. Here, this wind power input is reexamined using

  4. High-frequency P-wave seismic noise driven by ocean winds Jian Zhang,1

    E-Print Network [OSTI]

    Shearer, Peter

    with the offshore wind speed, demonstrating that these high-frequency P- waves are excited by distant ocean windsHigh-frequency P-wave seismic noise driven by ocean winds Jian Zhang,1 Peter Gerstoft,1 and Peter M, J., P. Gerstoft, and P. M. Shearer (2009), High-frequency P-wave seismic noise driven by ocean winds

  5. Statistical Characterization of Zonal and Meridional Ocean Wind Stress SARAH T. GILLE

    E-Print Network [OSTI]

    Griesel, Alexa

    SCAT) satellite was launched in 1999 and has now generated more than 4 yr of wind measurements over the globalStatistical Characterization of Zonal and Meridional Ocean Wind Stress SARAH T. GILLE Scripps) ABSTRACT Four years of ocean vector wind data are used to evaluate statistics of wind stress over the ocean

  6. SUBMITTED TO GRL 1 Thermal Anisotropies in the Solar Wind

    E-Print Network [OSTI]

    Richardson, John

    SUBMITTED TO GRL 1 E Thermal Anisotropies in the Solar Wind: vidence of Heating by Interstellar cyclotron instabilit s generated by newly created pickup ions and heats the thermal solar wind protons TO GRL 2 T Introduction he thermal anisotropy of the solar wind is the ratio between the temperatures p

  7. Open cycle ocean thermal energy conversion system

    DOE Patents [OSTI]

    Wittig, J. Michael (West Goshen, PA)

    1980-01-01

    An improved open cycle ocean thermal energy conversion system including a flash evaporator for vaporizing relatively warm ocean surface water and an axial flow, elastic fluid turbine having a vertical shaft and axis of rotation. The warm ocean water is transmitted to the evaporator through a first prestressed concrete skirt-conduit structure circumferentially situated about the axis of rotation. The unflashed warm ocean water exits the evaporator through a second prestressed concrete skirt-conduit structure located circumferentially about and radially within the first skirt-conduit structure. The radially inner surface of the second skirt conduit structure constitutes a cylinder which functions as the turbine's outer casing and obviates the need for a conventional outer housing. The turbine includes a radially enlarged disc element attached to the shaft for supporting at least one axial row of radially directed blades through which the steam is expanded. A prestressed concrete inner casing structure of the turbine has upstream and downstream portions respectively situated upstream and downstream from the disc element. The radially outer surfaces of the inner casing portions and radially outer periphery of the axially interposed disc cooperatively form a downwardly radially inwardly tapered surface. An annular steam flowpath of increasing flow area in the downward axial direction is radially bounded by the inner and outer prestressed concrete casing structures. The inner casing portions each include a transversely situated prestressed concrete circular wall for rotatably supporting the turbine shaft and associated structure. The turbine blades are substantially radially coextensive with the steam flowpath and receive steam from the evaporator through an annular array of prestressed concrete stationary vanes which extend between the inner and outer casings to provide structural support therefor and impart a desired flow direction to the steam.

  8. OCEAN THERMAL ENERGY CONVERSION PROGRAMMATIC ENVIRONMENTAL ASSESSMENT

    SciTech Connect (OSTI)

    Sands, M.Dale

    1980-08-01

    Significant achievements in Ocean Thermal Energy Conversion (OTEC) technology have increased the probability of producing OTEC-derived power in this decade with subsequent large-scale commercialization to follow by the turn of the century. Under U.S. Department of Energy funding, Interstate Electronics has prepared an OTEC Programmatic Environmental Assessment (EA) that considers tne development, demonstration, and commercialization of OTEC power systems. The EA considers several tecnnological designs (open cycle and closed cycle), plant configurations (land-based, moored, and plantship), and power usages (baseload electricity and production of ammonia and aluminum). Potencial environmental impacts, health and safety issues, and a status update of international, federal, and state plans and policies, as they may influence OTEC deployments, are included.

  9. Wind speed influence on phytoplankton bloom dynamics in the Southern Ocean Marginal Ice Zone

    E-Print Network [OSTI]

    Moore, Keith

    Wind speed influence on phytoplankton bloom dynamics in the Southern Ocean Marginal Ice Zone Dillon; published 7 August 2007. [1] Analysis of satellite ocean color and wind speed data within the seasonal ice. Moore (2007), Wind speed influence on phytoplankton bloom dynamics in the Southern Ocean Marginal Ice

  10. Coastal ocean response to summer upwelling favorable winds in a region of alongshore bottom

    E-Print Network [OSTI]

    Pierce, Stephen

    Coastal ocean response to summer upwelling favorable winds in a region of alongshore bottom structure of the velocity and hydrographic fields. The ocean response to wind forcing is compared between., and J. A. Barth (2005), Coastal ocean response to summer upwelling favorable winds in a region

  11. Ocean response to arbitrary wind perturbations in the low-frequency approximation: implications for ENSO and

    E-Print Network [OSTI]

    expansion about a small parameter that involves the dominant frequency of the wind forcing and the oceanic1 Ocean response to arbitrary wind perturbations in the low-frequency approximation: implications study the response of the ocean thermocline in the Pacific to arbitrary periodic wind stress

  12. ON THE OCEANIC RESPONSE TO WIND STRESS VARIATIONS ASSOCIATED WITH THE

    E-Print Network [OSTI]

    England, Matthew

    ON THE OCEANIC RESPONSE TO WIND STRESS VARIATIONS ASSOCIATED WITH THE ANTARCTIC OSCILLATION M shifts in the zonal wind field over the Southern Ocean in a global ocean model. The form of the north-south wind shift is chosen to resemble that associated with the Antarctic Oscillation (AAO). We examine both

  13. Model Wind over the Central and Southern California Coastal Ocean HSIAO-MING HSU

    E-Print Network [OSTI]

    Model Wind over the Central and Southern California Coastal Ocean HSIAO-MING HSU National Center of high-resolution wind in coastal ocean modeling. This paper tests the Coupled Ocean­Atmosphere Mesoscale Prediction System (COAMPS) at the 9-, 27-, and 81-km grid resolutions in simulating wind off the central

  14. On the role of wind driven ocean dynamics in tropical Atlantic variability 

    E-Print Network [OSTI]

    Da Silva, Meyre Pereira

    2006-08-16

    The response of the tropical Atlantic Ocean to wind stress forcing on seasonal and interannual time scales is examined using an ocean data assimilation product from the Geophysical Fluid Dynamics Laboratory (GFDL), and an ocean general circulation...

  15. Northerly surface wind events over the eastern North Pacific Ocean : spatial distribution, seasonality, atmospheric circulation, and forcing

    E-Print Network [OSTI]

    Taylor, Stephen V.

    2006-01-01

    atmosphere over the eastern Pacific Ocean in summer, volumeover the eastern North Pacific Ocean: Spatial distribution,winds over the eastern North Pacific Ocean in spring and

  16. On the Patterns of Wind-Power Input to the Ocean Circulation

    E-Print Network [OSTI]

    Roquet, Fabien

    Pathways of wind-power input into the ocean general circulation are analyzed using Ekman theory. Direct rates of wind work can be calculated through the wind stress acting on the surface geostrophic flow. However, because ...

  17. Wind speed influence on phytoplankton bloom dynamics in the Southern Ocean Marginal Ice Zone

    E-Print Network [OSTI]

    Fitch, Dillon T; Moore, J. Keith

    2007-01-01

    Niebauer, H. J. (1982), Wind and melt driven circulation inJ. K. Moore (2007), Wind speed influence on phytoplanktonby the NASA Ocean Vector Winds Science Team. Data are

  18. Correlations in thermal comfort and natural wind

    E-Print Network [OSTI]

    Kang, Ki-Nam; Song, Doosam; Schiavon, Stefano

    2013-01-01

    the average wind velocity and power spectrum exponent (?-of natural wind more accurately, power spectral analysisdata of natural wind versus the power spectral analysis

  19. Correlations in thermal comfort and natural wind

    E-Print Network [OSTI]

    Kang, Ki-Nam; Song, Doosam; Schiavon, Stefano

    2013-01-01

    Chaotic ?uctuation in natural wind and its application toof natural and mechanical wind in built environment usingcharacteristics of natural wind. Refrigeration 71 (821),

  20. Wind stress measurements from the QuikSCAT-SeaWinds scatterometer tandem mission and the impact on an ocean model

    E-Print Network [OSTI]

    Talley, Lynne D.

    Wind stress measurements from the QuikSCAT-SeaWinds scatterometer tandem mission and the impact by the QuikSCAT-SeaWinds scatterometer tandem mission (April­October 2003) and their impact on ocean model simulation. The diurnal variability captured by twice-daily scatterometer wind from the tandem mission

  1. Solar wind electron density and temperature over solar cycle 23: Thermal noise measurements on Wind

    E-Print Network [OSTI]

    California at Berkeley, University of

    Solar wind electron density and temperature over solar cycle 23: Thermal noise measurements on Wind; received in revised form 6 April 2005; accepted 25 April 2005 Abstract We present the solar wind plasma parameters obtained from the Wind spacecraft during more than nine years, encompassing almost the whole solar

  2. Scatterometer observations of wind variations induced by oceanic islands: Implications for

    E-Print Network [OSTI]

    Scatterometer observations of wind variations induced by oceanic islands: Implications for wind-driven of the Hawaiian and Cabo Verde islands on the mean atmospheric flow. A wake of weak winds, flanked by accelerated winds, appears for each major island of both archipelagos. The resulting wind stress curl displays

  3. Wind stress forcing of the Oregon coastal ocean during the 1999 upwelling season

    E-Print Network [OSTI]

    Balasubramanian, Ravi

    Wind stress forcing of the Oregon coastal ocean during the 1999 upwelling season R. Samelson, P November 2001; published 1 May 2002. [1] The wind stress forcing of the Oregon coastal ocean during June hypothesis that systematic variations in local wind stress may contribute to the observed offshore

  4. Wind ringing of the ocean in presence of mesoscale eddies P. Klein and G. Lapeyre

    E-Print Network [OSTI]

    Lapeyre, Guillaume

    Wind ringing of the ocean in presence of mesoscale eddies P. Klein and G. Lapeyre Laboratoire de frequency (HF) winds on the inertial motions and the consequences on the large-scale oceanic circulation the impact of HF winds on the inertial motions. However the eddies efficiently and permanently concentrate

  5. Lost at Sea: Hurricane Force Wind Fields and the North Pacific Ocean Environment

    E-Print Network [OSTI]

    Businger, Steven

    Lost at Sea: Hurricane Force Wind Fields and the North Pacific Ocean Environment 1 Steven Businger and Selen Yildiz SOEST at University of Hawaii at Manoa This research is supported by ONR Lost at Sea: Hurricane Force Wind Fields and the North Pacific Ocean Environment 2 Hurricane Force (HF) Wind Fields

  6. Eddy Heat Flux in the Southern Ocean: Response to Variable Wind Forcing ANDREW MCC. HOGG

    E-Print Network [OSTI]

    Miami, University of

    kinetic energy, and eddy heat transport to changes in winds is quantified. On interannual time scales- ern Ocean, wind appears to be the most likely energy source for the anomalously large EKE. MeredithEddy Heat Flux in the Southern Ocean: Response to Variable Wind Forcing ANDREW MCC. HOGG Australian

  7. Sensitivity of the Overturning Circulation in the Southern Ocean to Decadal Changes in Wind Forcing

    E-Print Network [OSTI]

    Naveira Garabato, Alberto

    Sensitivity of the Overturning Circulation in the Southern Ocean to Decadal Changes in Wind Forcing circulation in the Southern Ocean to the recent decadal strengthening of the overlying winds is being to changes in winds. Fundamental to reconciling these diverse views is to un- derstand properly the role

  8. Climatic variations of the work done by the wind on the ocean's general circulation

    E-Print Network [OSTI]

    Naveira Garabato, Alberto

    Climatic variations of the work done by the wind on the ocean's general circulation J. M for the deep overturning circulation. In a coarse-resolution ocean model, northward-shifted winds increase Circumpolar Current (ACC). Alternatively, energy supply is diminished by southward-shifted winds, primarily

  9. The relation between the statistics of open ocean currents and the temporal correlations of the wind

    E-Print Network [OSTI]

    Bel, Golan

    2013-01-01

    We study the statistics of wind-driven open ocean currents. Using the Ekman layer model for the integrated currents, we investigate, analytically and numerically, the relation between the wind distribution and its temporal correlations and the statistics of the open ocean currents. We find that temporally long-range correlated wind results in currents whose statistics is proportional to the wind-stress statistics. On the other hand, short-range correlated wind leads to Gaussian distributions of the current components, regardless of the stationary distribution of the winds, and therefore, to a Rayleigh distribution of the current amplitude if the wind stress is isotropic. An interesting result is the existence of an optimum in the amplitude of the ocean currents as a function of the correlation time of the wind stress. The results were validated using an oceanic general circulation model.

  10. title: On a Wind-Driven, Double-Gyre, Quasi-Geostrophic Ocean ...

    E-Print Network [OSTI]

    title: On a Wind-Driven, Double-Gyre, Quasi-Geostrophic Ocean Model: Numerical Simulations and Structuraln Analysis Authors: Jie Shen, T. Tachim Medjo and ...

  11. www.cesos.ntnu.no Author Centre for Ships and Ocean Structures Offshore Wind Turbine Operation

    E-Print Network [OSTI]

    Nørvåg, Kjetil

    1 www.cesos.ntnu.no Author ­ Centre for Ships and Ocean Structures Offshore Wind Turbine Operation Structures Outline · Introduction · Wind Turbine Operational Conditions · Wind Turbine Operation under Atmospheric Icing · Wind Turbine Operation under Fault Condition · Conclusions www.cesos.ntnu.no M. Etemaddar

  12. Global ocean wind power sensitivity to surface layer stability

    E-Print Network [OSTI]

    Capps, Scott B; Zender, Charles S

    2009-01-01

    Can satellite sampling of offshore wind speeds realisticallydata to evaluate the offshore wind power resource of

  13. East Pacific ocean eddies and their relationship to subseasonal variability in Central American wind jets

    E-Print Network [OSTI]

    Qiu, Bo

    flank of the wind jet and strengthens as it propagates offshore in the following two to three weeks Papagayo, ocean eddy formation is not well correlated with local wind jet variability. In both the GulfsEast Pacific ocean eddies and their relationship to subseasonal variability in Central American

  14. Northerly surface wind events over the eastern North Pacific Ocean : spatial distribution, seasonality, atmospheric circulation, and forcing

    E-Print Network [OSTI]

    Taylor, Stephen V.

    2006-01-01

    and C. D. Winant (1995), Buoy observations of the atmosphereQuikSCAT/SeaWinds using ocean buoy data, J. Atmos. Oceanicfield evaluation of NDBC moored buoy winds, J. Atmos. Ocean.

  15. Estimated global ocean wind power potential from QuikSCAT observations, accounting for turbine characteristics and siting

    E-Print Network [OSTI]

    Capps, Scott B; Zender, Charles S

    2010-01-01

    observations, accounting for turbine characteristics andobservations, accounting for turbine characteristics andglobal ocean 80 m wind power accounting for surface layer

  16. August 2011 Environmental Assessment of Ocean Thermal Energy

    E-Print Network [OSTI]

    August 2011 1 Environmental Assessment of Ocean Thermal Energy Conversion in Hawaii Available data and a protocol for baseline monitoring Christina M. Comfort and Luis Vega, Ph.D. Hawaii National Marine Renewable Energy Center Hawaii Natural Energy Institute University of Hawaii at Manoa Honolulu, HI ccomfort

  17. Global ocean wind power sensitivity to surface layer stability

    E-Print Network [OSTI]

    Capps, Scott B; Zender, Charles S

    2009-01-01

    2005), Evaluation of global wind power, J. Geophys. Res. ,Pryor (2003), Can satellite sampling of offshore wind speedsrealistically represent wind speed distributions? , J. Appl.

  18. Ocean Thermal Energy Conversion Mostly about USA

    E-Print Network [OSTI]

    to all US Island Territories. #12;OTEC 11 Other Applications: AC Cold deep water as the chiller fluid ? #12;Thermal Resource Temperature Difference between Surface Water and 1,000 m Water (want > 20 °C: Truisms · OTEC plants could supply all the electricity and potable water consumed in the State, {but

  19. Model-predicted distribution of wind-induced internal wave energy in the world's oceans

    E-Print Network [OSTI]

    Miami, University of

    Model-predicted distribution of wind-induced internal wave energy in the world's oceans Naoki 9 July 2008; published 30 September 2008. [1] The distribution of wind-induced internal wave energy-scaled kinetic energy are all consistent with the available observations in the regions of significant wind

  20. Interpreting wind-driven Southern Ocean variability in a stochastic framework

    E-Print Network [OSTI]

    Griesel, Alexa

    approximately linearly with increasing wind stress values. A multiplicative stochastic process generates a powerInterpreting wind-driven Southern Ocean variability in a stochastic framework by Philip Sura1,2 and Sarah T. Gille1 ABSTRACT A stochastic model is derived from wind stress and bottom pressure gauge data

  1. OCEAN MODEL SIMULATIONS OF A GAP WIND EVENT IN THE GULF OF TEHUANTEPEC

    E-Print Network [OSTI]

    Schultz, David

    winds", are generated as cold air masses surge southward across the Gulf of Mexico and are forced14B.6 OCEAN MODEL SIMULATIONS OF A GAP WIND EVENT IN THE GULF OF TEHUANTEPEC Jon M. Schrage1. INTRODUCTION Off the Pacific coast of southern Mexico, in the Gulf of Tehuantepec, strong northerly winds often

  2. Energetics of wind-driven barotropic variability in the Southern Ocean

    E-Print Network [OSTI]

    Griesel, Alexa

    Energetics of wind-driven barotropic variability in the Southern Ocean by Wilbert Weijer1-frequency wind forcing. A constant-density, multi-layer model is forced with a band of stochastically varying wind stress. The focus is on the interplay between the surface layer and the interior circulation

  3. The emergence of zonal ocean jets under large-scale stochastic wind forcing

    E-Print Network [OSTI]

    LaCasce, Joseph H.

    . But we will show how such forcing can in fact generate zonal jet-like structures. [5] Wind forcingThe emergence of zonal ocean jets under large-scale stochastic wind forcing Christopher H. O stochastic wind forcing is investigated. As found in many previous studies, long Rossby waves are excited

  4. Thermal Phenomena in Fiber-reinforced Thermoplastic Tape Winding Process

    E-Print Network [OSTI]

    Daraio, Chiara

    Thermal Phenomena in Fiber-reinforced Thermoplastic Tape Winding Process: Computational Simulations-reinforced thermoplastic tapes, thermal simulation, convective coefficient of gas torches, fiber-reinforced thermoplastic a pre-impregnated fiber-reinforced thermoplastic tape is bounded on-line to the substrate. The bonding

  5. On the Patterns of Wind-Power Input to the Ocean Circulation FABIEN ROQUET AND CARL WUNSCH

    E-Print Network [OSTI]

    Wunsch, Carl

    On the Patterns of Wind-Power Input to the Ocean Circulation FABIEN ROQUET AND CARL WUNSCH received 1 February 2011, in final form 12 July 2011) ABSTRACT Pathways of wind-power input into the ocean pumping, with a pattern determined by the wind curl rather than the wind itself. Regions of power

  6. Estimated global ocean wind power potential from QuikSCAT observations, accounting for turbine characteristics and siting

    E-Print Network [OSTI]

    Capps, Scott B; Zender, Charles S

    2010-01-01

    Evaluation of global wind power, J. Geophys. Res. , 110,2009), Global ocean wind power sensitivity to surface layerCO 2 reductions via offshore wind power matched to inherent

  7. Effects of variable wind stress on ocean heat content

    E-Print Network [OSTI]

    Klima, Kelly

    2008-01-01

    Ocean heat content change (ocean heat uptake) has an important role in variability of the Earth's heat balance. The understanding of which methods and physical processes control ocean heat uptake needs improvement in order ...

  8. Global ocean wind power sensitivity to surface layer stability

    E-Print Network [OSTI]

    Capps, Scott B; Zender, Charles S

    2009-01-01

    Evaluation of global wind power, J. Geophys. Res. , 110,W. Tang, and X. Xie (2008), Wind power distribution over theApproach to Short-Term Wind Power Prediction, 1st ed. ,

  9. Magneto-thermal Disk Wind from Protoplanetary Disks

    E-Print Network [OSTI]

    Bai, Xue-Ning; Goodman, Jeremy; Yuan, Feng

    2015-01-01

    Global evolution and dispersal of protoplanetary disks (PPDs) is governed by disk angular momentum transport and mass-loss processes. Recent numerical studies suggest that angular momentum transport in the inner region of PPDs is largely driven by magnetized disk wind, yet the wind mass-loss rate remains unconstrained. On the other hand, disk mass loss has conventionally been attributed to photoevaporation, where external heating on the disk surface drives a thermal wind. We unify the two scenarios by developing a 1D model of magnetized disk winds with a simple treatment of thermodynamics as a proxy for external heating. The wind properties largely depend on 1) the magnetic field strength at the wind base, characterized by the poloidal Alfv\\'en speed $v_{Ap}$, 2) the sound speed $c_s$ near the wind base, and 3) how rapidly poloidal field lines diverge (achieve $R^{-2}$ scaling). When $v_{Ap}\\gg c_s$, corotation is enforced near the wind base, resulting in centrifugal acceleration. Otherwise, the wind is accel...

  10. The Global Characteristics of the Wavenumber Spectrum of Ocean Surface Wind

    E-Print Network [OSTI]

    Xu, Yongsheng

    The wavenumber spectra of wind kinetic energy over the ocean from Quick Scatterometer (QuikSCAT) observations have revealed complex spatial variability in the wavelength range of 1000–3000 km, with spectral slopes varying ...

  11. GFD-2 OC-513 Spring 2013 P.B. Rhines MWF 10.30-11.20 Ocean Teaching Building 205

    E-Print Network [OSTI]

    => potential vorticity thermal wind · rotation and stratification: the layered, stiffened ocean fluid · Ekman: wind-stress and buoyancy flux · stratification and the `quiet' interior water column · mapping

  12. Low-frequency variability of the North Pacific Ocean: The roles of boundary-and wind-driven

    E-Print Network [OSTI]

    Qiu, Bo

    Low-frequency variability of the North Pacific Ocean: The roles of boundary- and wind in determining the low-frequency large-scale variability of the ocean interior through Rossby waves generated. The variability in the ocean interior is primarily driven by wind with only a minor influence from the boundary

  13. The Estimated Global Ocean Wind Power Potential from QuikSCAT Observations, Accounting for Turbine

    E-Print Network [OSTI]

    Zender, Charles

    The Estimated Global Ocean Wind Power Potential from QuikSCAT Observations, Accounting for Turbine offshore turbine characteristics including hub height, usable portion of the wind speed distri- bution hemisphere extratropics, respectively, between hub heights of 10 m and 100 m. A turbine with a cut-out speed

  14. Comparison of wind stress algorithms, datasets and oceanic power input

    E-Print Network [OSTI]

    Yuan, Shaoyu

    2009-01-01

    If the ocean is in a statistically steady state, energy balance is a strong constraint, suggesting that the energy input into the world ocean is dissipated simultaneously at the same rate. Energy conservation is one of the ...

  15. OCEAN THERMAL ENERGY CONVERSION: AN OVERALL ENVIRONMENTAL ASSESSMENT

    SciTech Connect (OSTI)

    Sands, M.Dale

    1980-08-01

    Significant acccrmplishments in Ocean Thermal Energy Conversion (OTEC) technology have increased the probability of producing OTEC-derived power within this decade with subsequent large scale commercialization following by the turn of the century. Under U.S. Department of Energy funding, the Oceanic Engineering Operations of Interstate Electronics Corporation has prepared several OTEC Environmental Assessments over the past years, in particular, the OTEC Programmatic Environmental Assessment. The Programmatic EA considers several technological designs (open- and closed-cycle), plant configuratlons (land-based, moored, and plant-ship), and power usages (baseload electricity, ammonia and aluminum production). Potential environmental impacts, health and safetv issues and a status update of the institutional issues as they influence OTEC deployments, are included.

  16. Ocean thermal energy conversion plants : experimental and analytical study of mixing and recirculation

    E-Print Network [OSTI]

    Jirka, Gerhard H.

    Ocean thermal energy conversion (OTEC) is a method of generating power using the vertical temperature gradient of the tropical ocean as an energy source. Experimental and analytical studies have been carried out to determine ...

  17. List of Ocean Thermal Incentives | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QA J-E-1 SECTION J APPENDIXsource History ViewInformationWindsCompressed airGeothermalList ofList ofThermal

  18. Estimates of wind energy input to the Ekman layer in the Southern Ocean from surface drifter data

    E-Print Network [OSTI]

    Estimates of wind energy input to the Ekman layer in the Southern Ocean from surface drifter data the contribution from the anticyclonic frequencies dominate the wind energy input. The latitudinal and seasonal variations of the wind energy input to the Ekman layer are closely related to the variations of the wind

  19. Ocean Response to Wind Variations, Warm Water Volume, and Simple Models of ENSO in the Low-Frequency Approximation

    E-Print Network [OSTI]

    Ocean Response to Wind Variations, Warm Water Volume, and Simple Models of ENSO in the Low the smallness of the ratio «k 5 Tk/T to expand solutions of the ocean shallow-water equations into power series- izontal redistribution of warm surface water along the equator: during an El Nin~o, weakened zonal winds

  20. Influence of Thermal Stratification on Wind Profiles for Heights up to 140 m

    E-Print Network [OSTI]

    Heinemann, Detlev

    Influence of Thermal Stratification on Wind Profiles for Heights up to 140 m Ulrich Focken, Detlev of the thermal stratification is well known normaly the neutral logarithmic wind profile is used, which leadsBruin for the thermal stratification is testet with measured data from the 200 m high met mast in Cabouw, Netherlands

  1. Hybrid Wind Power Balance Control Strategy using Thermal Power, Hydro Power and Flow Batteries

    E-Print Network [OSTI]

    MacDonald, Mark

    Hybrid Wind Power Balance Control Strategy using Thermal Power, Hydro Power and Flow Batteries the con- trolled use of hybrid flow battery, thermal and hydro power plant system, to support wind power on range of thermal and hydro power plant reaction times. This work suggests that power and energy

  2. WIND-DRIVEN NEAR INERTIAL OCEAN RESPONSE AND MIXING AT THE CRITICAL LATITUDE 

    E-Print Network [OSTI]

    Zhang, Xiaoqian

    2010-07-14

    ? latitude. Near 30? latitude, the maximum oceanic response to sea breeze moves offshore slowly because of the near-zero group speed of Poincare waves at this latitude. The lateral energy flux convergence plus the energy input from the wind is maximum near...

  3. Modeling the Physical and Biochemical Influence of Ocean Thermal Energy Conversion Plant Discharges into their Adjacent Waters

    Broader source: Energy.gov [DOE]

    Modeling the Physical and Biochemical Influence of Ocean Thermal Energy Conversion Plant Discharges into their Adjacent Waters

  4. On the Variability of Wind Power Input to the Oceans with a Focus on the Subpolar North Atlantic

    E-Print Network [OSTI]

    Wunsch, Carl

    On the Variability of Wind Power Input to the Oceans with a Focus on the Subpolar North Atlantic of power inputs from winds and buoyancy exchange is complex in part because it depends upon knowing a great determined mainly by the wind field itself. The input of buoyancy- derived power has been generally regarded

  5. On the Loss of Wind-Induced Near-Inertial Energy to Turbulent Mixing in the Upper Ocean

    E-Print Network [OSTI]

    Miami, University of

    On the Loss of Wind-Induced Near-Inertial Energy to Turbulent Mixing in the Upper Ocean XIAOMING received 27 March 2009, in final form 23 June 2009) ABSTRACT Wind-induced near-inertial energy has been find that nearly 70% of the wind-induced near-inertial energy at the sea surface is lost to turbulent

  6. Zhiyu Jiang, Department of Marine Technology & Centre for Ships and Ocean Structures Dynamic response of wind turbines in fault and

    E-Print Network [OSTI]

    Nørvåg, Kjetil

    response of wind turbines in fault and shutdown conditions Zhiyu Jiang Deptartment of Marine Technology://www.newscientist.com/blogs/onepercent/2011/12/why-did-a-wind-turbine-self-co.html #12;3 Zhiyu Jiang, Department of Marine Technology & Centre & Centre for Ships and Ocean Structures Control and protection of wind turbines Emergency shutdown Pitch

  7. Rapid generation of high-frequency internal waves beneath a wind and wave forced oceanic surface mixed layer

    E-Print Network [OSTI]

    Smith, Jerome A.

    Rapid generation of high-frequency internal waves beneath a wind and wave forced oceanic surface the wind) generates high- frequency internal waves in the stratified fluid below. The internal waves evolveKinnon, and A. E. Tejada-Marti´nez (2008), Rapid generation of high-frequency internal waves beneath a wind

  8. Semiannual Cycle in Zonal Wind over the Equatorial Indian Ocean TOMOMICHI OGATA AND SHANG-PING XIE

    E-Print Network [OSTI]

    Xie, Shang-Ping

    Semiannual Cycle in Zonal Wind over the Equatorial Indian Ocean TOMOMICHI OGATA AND SHANG-PING XIE December 2010, in final form 4 June 2011) ABSTRACT The semiannual cycle in zonal wind over the equatorial. In observations, the semiannual cycle in zonal wind is dominant on the equator and confined in the planetary

  9. Journal of Marine Research. 47, 81-109, 1989 The response of the coastal ocean to strong offshore winds

    E-Print Network [OSTI]

    the response of the coastal ocean to strong offshore winds: a linear 11/2-layer model, and a nonlinear 11 the wind strengthens there is an ageostrophic current (not Ekman drift) that is directed offshore toward its initial state. Throughout the wind event, cyclonic and anticyclonic gyres spin up offshore

  10. Lockheed Testing the Waters for Ocean Thermal Energy System

    Office of Energy Efficiency and Renewable Energy (EERE)

    The company is working to develop a system to produce electricity using temperature differences in the ocean.

  11. Northerly surface wind events over the eastern North Pacific Ocean : spatial distribution, seasonality, atmospheric circulation, and forcing

    E-Print Network [OSTI]

    Taylor, Stephen V.

    2006-01-01

    mean wind region off Punta Eugenia in central Baja, Mexico.wind events (middle panel of Figure 17) indicate a deeper thermal low over northwest mainland Mexicowinds at the southern buoys, from Pt. Conception to the California-Mexico

  12. Draft environmental assessment: Ocean Thermal Energy Conversion (OTEC) Pilot Plants

    SciTech Connect (OSTI)

    Sullivan, S.M.; Sands, M.D.; Donat, J.R.; Jepsen, P.; Smookler, M.; Villa, J.F.

    1981-02-01

    This Environmental Assessment (EA) has been prepared, in accordance with the National Environmental Policy Act of 1969, for the deployment and operation of a commercial 40-Megawatt (MW) Ocean Thermal Energy Conversion (OTEC) Pilot Plant (hereafter called the Pilot Plant). A description of the proposed action is presented, and a generic environment typical of the candidate Pilot Plant siting regions is described. An assessment of the potential environmental impacts associated with the proposed action is given, and the risk of credible accidents and mitigating measures to reduce these risks are considered. The Federal and State plans and policies the proposed action will encompass are described. Alternatives to the proposed action are presented. Appendix A presents the navigation and environmental information contained in the US Coast Pilot for each of the candidate sites; Appendix B provides a brief description of the methods and calculations used in the EA. It is concluded that environmental disturbances associated with Pilot Plant activities could potentially cause significant environmental impacts; however, the magnitude of these potential impacts cannot presently be assessed, due to insufficient engineering and environmental information. A site- and design-specific OTEC Pilot Plant Environmental Impact Statement (EIS) is required to resolve the potentially significant environmental effects associated with Pilot Plant deployment and operation. (WHK)

  13. Ocean Thermal Energy Conversion (OTEC) Programmatic Environmental Analysis--Appendices

    SciTech Connect (OSTI)

    Authors, Various

    1980-01-01

    The programmatic environmental analysis is an initial assessment of Ocean Thermal Energy Conversion (OTEC) technology considering development, demonstration and commercialization. It is concluded that the OTEC development program should continue because the development, demonstration, and commercialization on a single-plant deployment basis should not present significant environmental impacts. However, several areas within the OTEC program require further investigation in order to assess the potential for environmental impacts from OTEC operation, particularly in large-scale deployments and in defining alternatives to closed-cycle biofouling control: (1) Larger-scale deployments of OTEC clusters or parks require further investigations in order to assess optimal platform siting distances necessary to minimize adverse environmental impacts. (2) The deployment and operation of the preoperational platform (OTEC-1) and future demonstration platforms must be carefully monitored to refine environmental assessment predictions, and to provide design modifications which may mitigate or reduce environmental impacts for larger-scale operations. These platforms will provide a valuable opportunity to fully evaluate the intake and discharge configurations, biofouling control methods, and both short-term and long-term environmental effects associated with platform operations. (3) Successful development of OTEC technology to use the maximal resource capabilities and to minimize environmental effects will require a concerted environmental management program, encompassing many different disciplines and environmental specialties. This volume contains these appendices: Appendix A -- Deployment Scenario; Appendix B -- OTEC Regional Characterization; and Appendix C -- Impact and Related Calculations.

  14. Importance of thermal effects and sea surface roughness for offshore wind resource assessment

    E-Print Network [OSTI]

    Heinemann, Detlev

    Importance of thermal effects and sea surface roughness for offshore wind resource assessment National Laboratory, Roskilde, Denmark Abstract The economic feasibility of offshore wind power utilisation depends on the favourable wind conditions offshore compared to sites on land, which have to compensate

  15. Propagation of three--dimensional Alfv'en waves in a stratified, thermally conducting solar wind

    E-Print Network [OSTI]

    Propagation of three--dimensional Alfv'en waves in a stratified, thermally conducting solar wind S to the well--known thermal expansion of the solar corona [Parker, 1958, 1963, 1991]. In particular Alfv'en waves in the solar atmosphere and wind, taking into account relevant physical effects

  16. Wind Issues in Solar Thermal Performance Ratings: Preprint

    SciTech Connect (OSTI)

    Burch, J.; Casey, R.

    2009-04-01

    We suggest that wind bias against unglazed solar water heaters be mitigated by using a calibrated collector model to derive a wind correction to the measured efficiency curve.

  17. Direct Simulations of Wind-Driven Breaking Ocean Waves with Data Assimilation

    E-Print Network [OSTI]

    Dommermuth, Douglas G; Tran, Vu H; Valenciano, Miguel A

    2014-01-01

    A formulation is developed to assimilate ocean-wave data into the Numerical Flow Analysis (NFA) code. NFA is a Cartesian-based implicit Large-Eddy Simulation (LES) code with Volume of Fluid (VOF) interface capturing. The sequential assimilation of data into NFA permits detailed analysis of ocean-wave physics with higher bandwidths than is possible using either other formulations, such as High-Order Spectral (HOS) methods, or field measurements. A framework is provided for assimilating the wavy and vortical portions of the flow. Nudging is used to assimilate wave data at low wavenumbers, and the wave data at high wavenumbers form naturally through nonlinear interactions, wave breaking, and wind forcing. Similarly, the vertical profiles of the mean vortical flow in the wind and the wind drift are nudged, and the turbulent fluctuations are allowed to form naturally. As a demonstration, the results of a HOS of a JONSWAP wave spectrum are assimilated to study short-crested seas in equilibrium with the wind. Log pr...

  18. SMALL-SCALE VARIABILITY IN SEA SURFACE HEIGHTS AND SURFACE WINDS: IMPLICATIONS FOR ERRORS IN OCEAN MODELS AND OBSERVATIONS

    E-Print Network [OSTI]

    Kaplan, Alexey

    SMALL-SCALE VARIABILITY IN SEA SURFACE HEIGHTS AND SURFACE WINDS: IMPLICATIONS FOR ERRORS IN OCEAN on dispersion relationship of planetary waves 4. Small-scale variability in surface winds and sea surface of model and observational data sets. Imperfect parameterization of the small-scale variability (SSV

  19. Solar wind electron temperature and density measurements on the Solar Orbiter with thermal noise spectroscopy

    E-Print Network [OSTI]

    California at Berkeley, University of

    for the Solar Orbiter mission. One can already figure out what could be the Te gra- dients in this radial rangeSolar wind electron temperature and density measurements on the Solar Orbiter with thermal noise Abstract The measurement of the solar wind electron temperature in the unexplored region between 1 and 45

  20. Ocean Thermal Extractable Energy Visualization: Final Technical Report |

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE: Alternative Fuelsof EnergyApril 2014Department ofWindOPENOccurrence Reporting and

  1. NREL-Ocean Energy Thermal Conversion | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QAsource History ViewMayo, Maryland:NPI Ventures Ltd Jump to: navigation, search Name:NREL's RenewableOpenOcean

  2. Ocean Thermal Energy Conversion (OTEC) A New Secure Renewable Energy Source

    E-Print Network [OSTI]

    Ocean Thermal Energy Conversion (OTEC) A New Secure Renewable Energy Source For Defense load renewable energy system to achieve energy security for DoD facilities and bases Schofield Barracks and Commercial Applications 1 Dr. Ted Johnson Director of Alternative Energy Programs Development Lockheed Martin

  3. Open cycle ocean thermal energy conversion system structure

    DOE Patents [OSTI]

    Wittig, J. Michael (West Goshen, PA)

    1980-01-01

    A generally mushroom-shaped, open cycle OTEC system and distilled water producer which has a skirt-conduit structure extending from the enlarged portion of the mushroom to the ocean. The enlarged part of the mushroom houses a toroidal casing flash evaporator which produces steam which expands through a vertical rotor turbine, partially situated in the center of the blossom portion and partially situated in the mushroom's stem portion. Upon expansion through the turbine, the motive steam enters a shell and tube condenser annularly disposed about the rotor axis and axially situated beneath the turbine in the stem portion. Relatively warm ocean water is circulated up through the radially outer skirt-conduit structure entering the evaporator through a radially outer portion thereof, flashing a portion thereof into motive steam, and draining the unflashed portion from the evaporator through a radially inner skirt-conduit structure. Relatively cold cooling water enters the annular condenser through the radially inner edge and travels radially outwardly into a channel situated along the radially outer edge of the condenser. The channel is also included in the radially inner skirt-conduit structure. The cooling water is segregated from the potable, motive steam condensate which can be used for human consumption or other processes requiring high purity water. The expansion energy of the motive steam is partially converted into rotational mechanical energy of the turbine rotor when the steam is expanded through the shaft attached blades. Such mechanical energy drives a generator also included in the enlarged mushroom portion for producing electrical energy. Such power generation equipment arrangement provides a compact power system from which additional benefits may be obtained by fabricating the enclosing equipment, housings and component casings from low density materials, such as prestressed concrete, to permit those casings and housings to also function as a floating support vessel.

  4. A Temperature Dependent Correction to the Model for Microwave Excess Emissivity of the Ocean due to Surface Winds

    E-Print Network [OSTI]

    Ruf, Christopher

    A Temperature Dependent Correction to the Model for Microwave Excess Emissivity of the Ocean due, temperature, and microwave emissivity reveal a clear dependence of the slope of the emissivity versus windspeed on the temperature. Water at higher tempertures has a greater increase in emissivity per unit wind

  5. Anomalous Viscosity, Resistivity, and Thermal Diffusivity of the Solar Wind Plasma

    E-Print Network [OSTI]

    Mahendra K. Verma

    1995-09-05

    In this paper we have estimated typical anomalous viscosity, resistivity, and thermal difffusivity of the solar wind plasma. Since the solar wind is collsionless plasma, we have assumed that the dissipation in the solar wind occurs at proton gyro radius through wave-particle interactions. Using this dissipation length-scale and the dissipation rates calculated using MHD turbulence phenomenology [{\\it Verma et al.}, 1995a], we estimate the viscosity and proton thermal diffusivity. The resistivity and electron's thermal diffusivity have also been estimated. We find that all our transport quantities are several orders of magnitude higher than those calculated earlier using classical transport theories of {\\it Braginskii}. In this paper we have also estimated the eddy turbulent viscosity.

  6. A Study of Thermal Wind in the Vicinity of a Jet Stream 

    E-Print Network [OSTI]

    Cunningham, Newton William

    1960-01-01

    A STUDY OF THERMAL WIND IN THE VICINITY OF A JET STREAM A Thesis Newton W. Cunningham Submitted to the Graduate School of the Agricultural and Mechanical College of Texas in partial fulfillment of the requirements for the degree of MASTER... OF SCIENCE May I960 MAJOR SUBJECT - METEOROLOGY A STUDY OF THERMAL WIND IN THE VICINITY OF A JET STREAM A Thesis Newton W. Cunningham Approved as to style and content by: Chairman of mmittee f , / Head of Department May 3960 ACKNOWLEDGMENT Tbe...

  7. Ocean thermal plantships for production of ammonia as the hydrogen carrier.

    SciTech Connect (OSTI)

    Panchal, C.B.; Pandolfini, P. P.; Kumm, W. H.; Energy Systems; Johns Hopkins Univ.; Arctic Energies, Ltd.

    2009-12-02

    Conventional petroleum, natural gas, and coal are the primary sources of energy that have underpinned modern civilization. Their continued availability in the projected quantities required and the impacts of emission of greenhouse gases (GHGs) on the environment are issues at the forefront of world concerns. New primary sources of energy are being sought that would significantly reduce the emissions of GHGs. One such primary source that can help supply energy, water, and fertilizer without GHG emissions is available in the heretofore unexploited thermal gradients of the tropical oceans. The world's oceans are the largest natural collector and reservoir of solar energy. The potential of ocean energy is limitless for producing base-load electric power or ammonia as the hydrogen carrier and fresh water from seawater. However, until now, ocean energy has been virtually untapped. The general perception is that ocean thermal energy is limited to tropical countries. Therefore, the full potential of at-sea production of (1) ammonia as a hydrogen carrier and (2) desalinated water has not been adequately evaluated. Using ocean thermal plantships for the at-sea co-production of ammonia as a hydrogen carrier and desalinated water offer potential energy, environmental, and economic benefits that support the development of the technology. The introduction of a new widespread solution to our projected energy supply requires lead times of a decade or more. Although continuation of the ocean thermal program from the 1970s would likely have put us in a mitigating position in the early 2000s, we still have a window of opportunity to dedicate some of our conventional energy sources to the development of this renewable energy by the time new sources would be critically needed. The primary objective of this project is to evaluate the technical and economic viability of ocean thermal plantships for the production of ammonia as the hydrogen carrier. This objective is achieved by completing project tasks that consist of updating the John Hopkins University/Applied Physics Laboratory (JHU/APL) pilot plantship design and extrapolating it to commercial plantships, evaluating a new energy-efficient ammonia synthesis process, evaluating the co-production of desalinated water on plantships, and developing a conceptual design of a satellite plantships system for commercial-scale ammonia production. In addition, an industrial workshop was organized to present the results and develop future goals for commercialization of ocean thermal plantships by 2015. The following goals, arranged in chronological order, were examined at the workshop: (1) Global displacement of petroleum-fuel-based (diesel, fuel oil, naphtha) power generation for freeing up these fuels for transportation, chemical feedstock, and other high-valued uses; (2) At-sea production of desalinated water for regions of critical water shortages; (3) Displacement of carbon-based feed stocks and energy for production of ammonia fertilizers; (4) Development of hydrogen supply to allow economic processing of heavy crude oils and upgrading oil sands; (5) Development of ammonia-fueled distributed energy to displace natural-gas fueled power generation to free up natural gas for higher-value uses and the mitigation of issues associated with imported liquefied natural gas (LNG); and (6) Use of ammonia as a hydrogen carrier for transportation.

  8. Research on the external fluid mechanics of ocean thermal energy conversion plants : report covering experiments in a current

    E-Print Network [OSTI]

    Fry, David J. (David James)

    1981-01-01

    This report describes a set of experiments in a physical model study to explore plume transport and recirculation potential for a range of generic Ocean Thermal Energy Conversion (OTEC) plant designs and ambient conditions. ...

  9. Near and far field models of external fluid mechanics of Ocean Thermal Energy Conversion (OTEC) power plants

    E-Print Network [OSTI]

    Rodríguez Buño, Mariana

    2013-01-01

    The world is facing the challenge of finding new renewable sources of energy - first, in response to fossil fuel reserve depletion, and second, to reduce greenhouse gas emissions. Ocean Thermal Energy Conversion (OTEC) can ...

  10. On the Influence of Supernova Remnant Thermal Energy in Powering Galactic Winds

    E-Print Network [OSTI]

    Brad K. Gibson

    1994-10-11

    The fundamental tenet of the classical supernovae-driven wind model of elliptical galaxies is that the residual thermal energy of all supernovae remnants (SNRs) provide sufficient energy to overcome the binding energy of the remaining interstellar gas, thereby driving a global galactic wind. We re-examine model predictions of this epoch of wind ejection t_GW, highlighting a heretofore underappreciated sensitivity to the adopted remnant thermal energy formalism, and illustrating cases in which previous work may have substantially overestimated t_GW. Arguments based upon chemical evolution alone, put forth to reject the hypothesis of dark matter distributions similar to the luminous component in spheroids, are shown to be tenuous. Finally, the predicted enrichment of intracluster gas during the wind phase of cluster ellipticals, and its relation to the selected SNR interior thermal energy evolutionary scheme, is addressed. Despite the success of previous wind models, our results still call into question the correctness of the simple analytical approach used thus far, and imply that a more appropriate technique should be adopted in the future.

  11. The Operational Use of QuikSCAT Ocean Surface Vector Winds at the National Hurricane Center

    E-Print Network [OSTI]

    Hennon, Christopher C.

    wind retrievals from the NASA Quick Scatterometer (QuikSCAT) in operational forecast and analysis (TC) analysis and forecasting for center location/identification, intensity (maximum sustained wind wind areas, and improved forecasts of high-wind events. The development of a climatology of gap wind

  12. Geek-Up[04.01.2011]: Charting Wind, Thermal, Hydro Generation

    Office of Energy Efficiency and Renewable Energy (EERE)

    Check out Bonneville Power Administration’s new near real-time energy monitoring – it displays the output of all wind, thermal and hydro generation in the agency’s balancing authority against its load. Updated every five minutes, it’s a great resource for universities, research laboratories and other utilities.

  13. Chaotic mean wind in turbulent thermal convection and long-term correlations in solar activity

    E-Print Network [OSTI]

    A. Bershadskii

    2009-12-25

    It is shown that correlation function of the mean wind velocity in a turbulent thermal convection (Rayleigh number $Ra \\sim 10^{11}$) exhibits exponential decay with a very long correlation time, while corresponding largest Lyapunov exponent is certainly positive. These results together with the reconstructed phase portrait indicate presence of a chaotic component in the examined mean wind. Telegraph approximation is also used to study relative contribution of the chaotic and stochastic components to the mean wind fluctuations and an equilibrium between these components has been studied. Since solar activity is based on the thermal convection processes, it is reasoned that the observed solar activity long-term correlations can be an imprint of the mean wind chaotic properties. In particular, correlation function of the daily sunspots number exhibits exponential decay with a very long correlation time and corresponding largest Lyapunov exponent is certainly positive, also relative contribution of the chaotic and stochastic components follows the same pattern as for the convection mean wind.

  14. Ocean Thermal Energy Conversion Life Cycle Cost Assessment, Final Technical Report, 30 May 2012

    SciTech Connect (OSTI)

    Martel, Laura; Smith, Paul; Rizea, Steven; Van Ryzin, Joe; Morgan, Charles; Noland, Gary; Pavlosky, Rick; Thomas, Michael

    2012-06-30

    The Ocean Thermal Energy Conversion (OTEC) Life Cycle Cost Assessment (OLCCA) is a study performed by members of the Lockheed Martin (LM) OTEC Team under funding from the Department of Energy (DOE), Award No. DE-EE0002663, dated 01/01/2010. OLCCA objectives are to estimate procurement, operations and maintenance, and overhaul costs for two types of OTEC plants: -Plants moored to the sea floor where the electricity produced by the OTEC plant is directly connected to the grid ashore via a marine power cable (Grid Connected OTEC plants) -Open-ocean grazing OTEC plant-ships producing an energy carrier that is transported to designated ports (Energy Carrier OTEC plants) Costs are developed using the concept of levelized cost of energy established by DOE for use in comparing electricity costs from various generating systems. One area of system costs that had not been developed in detail prior to this analysis was the operations and sustainment (O&S) cost for both types of OTEC plants. Procurement costs, generally referred to as capital expense and O&S costs (operations and maintenance (O&M) costs plus overhaul and replacement costs), are assessed over the 30 year operational life of the plants and an annual annuity calculated to achieve a levelized cost (constant across entire plant life). Dividing this levelized cost by the average annual energy production results in a levelized cost of electricity, or LCOE, for the OTEC plants. Technical and production efficiency enhancements that could result in a lower value of the OTEC LCOE were also explored. The thermal OTEC resource for Oahu, Hawai�¢����i and projected build out plan were developed. The estimate of the OTEC resource and LCOE values for the planned OTEC systems enable this information to be displayed as energy supplied versus levelized cost of the supplied energy; this curve is referred to as an Energy Supply Curve. The Oahu Energy Supply Curve represents initial OTEC deployment starting in 2018 and demonstrates the predicted economies of scale as technology and efficiency improvements are realized and larger more economical plants deployed. Utilizing global high resolution OTEC resource assessment from the Ocean Thermal Extractable Energy Visualization (OTEEV) project (an independent DOE project), Global Energy Supply Curves were generated for Grid Connected and Energy Carrier OTEC plants deployed in 2045 when the predicted technology and efficiencies improvements are fully realized. The Global Energy Supply Curves present the LCOE versus capacity in ascending order with the richest, lowest cost resource locations being harvested first. These curves demonstrate the vast ocean thermal resource and potential OTEC capacity that can be harvested with little change in LCOE.

  15. Thermal creep assisted dust lifting on Mars: Wind tunnel experiments for the entrainment threshold velocity

    E-Print Network [OSTI]

    Küpper, Markus

    2015-01-01

    In this work we present laboratory measurements on the reduction of the threshold friction velocity necessary for lifting dust if the dust bed is illuminated. Insolation of a porous soil establishes a temperature gradient. At low ambient pressure this gradient leads to thermal creep gas flow within the soil. This flow leads to a sub-surface overpressure which supports lift imposed by wind. The wind tunnel was run with Mojave Mars Simulant and air at 3, 6 and 9 mbar, to cover most of the pressure range at martian surface levels. Our first measurements imply that the insolation of the martian surface can reduce the entrainment threshold velocity between 4 % and 19 % for the conditions sampled with our experiments. An insolation activated soil might therefore provide additional support for aeolian particle transport at low wind speeds.

  16. Non-thermal high-energy emission from colliding winds of massive stars

    E-Print Network [OSTI]

    A. Reimer; M. Pohl; O. Reimer

    2005-10-25

    Colliding winds of massive star binary systems are considered as potential sites of non-thermal high-energy photon production. This is motivated merely by the detection of synchrotron radio emission from the expected colliding wind location. Here we investigate the properties of high-energy photon production in colliding winds of long-period WR+OB-systems. We found that in the dominating leptonic radiation process anisotropy and Klein-Nishina effects may yield spectral and variability signatures in the gamma-ray domain at or above the sensitivity of current or upcoming gamma-ray telescopes. Analytical formulae for the steady-state particle spectra are derived assuming diffusive particle acceleration out of a pool of thermal wind particles, and taking into account adiabatic and all relevant radiative losses. For the first time we include their advection/convection in the wind collision zone, and distinguish two regions within this extended region: the acceleration region where spatial diffusion is superior to convective/advective motion, and the convection region defined by the convection time shorter than the diffusion time scale. The calculation of the Inverse Compton radiation uses the full Klein-Nishina cross section, and takes into account the anisotropic nature of the scattering process. This leads to orbital flux variations by up to several orders of magnitude which may, however, be blurred by the geometry of the system. The calculations are applied to the typical WR+OB-systems WR 140 and WR 147 to yield predictions of their expected spectral and temporal characteristica and to evaluate chances to detect high-energy emission with the current and upcoming gamma-ray experiments. (abridged)

  17. Estimated global ocean wind power potential from QuikSCAT observations, accounting for turbine characteristics and siting

    E-Print Network [OSTI]

    Capps, Scott B; Zender, Charles S

    2010-01-01

    Wind Energy Association (2009), American Wind Energy Asso-ciation annual wind industry report: Year ending 2008,2005), Evaluation of global wind power, J. Geophys. Res. ,

  18. Impact of the Southern ocean winds on sea-ice - ocean interaction and its associated global ocean circulation in a warming world 

    E-Print Network [OSTI]

    Cheon, Woo Geunn

    2009-05-15

    to the northern NA, and instead increases the NADW outflow substantially. To sum up, with respect to the SO winds perturbed by the global warming, the SH overturning cell and the NADW outflow increase, leading to an increase in the volume transport of the ACC....

  19. Our Ocean Backyard Santa Cruz Sentinel columns by Gary Griggs, Director, Institute of Marine Sciences, UC Santa Cruz.

    E-Print Network [OSTI]

    California at Santa Cruz, University of

    the ocean--wave power, tidal or current power, offshore wind power, and ocean thermal energy conversion Sciences, UC Santa Cruz. #15 November 8, 2008 Energy and the oceans­part 2 The San Onofre Power plant is one of only two commercial nuclear power plants in California. Important questions about energy

  20. Estimated global ocean wind power potential from QuikSCAT observations, accounting for turbine characteristics and siting

    E-Print Network [OSTI]

    Capps, Scott B; Zender, Charles S

    2010-01-01

    envisioned floating offshore wind turbines. Finally, globalfloating turbine depths. [ 32 ] The combined impact of wind turbine

  1. Estimated global ocean wind power potential from QuikSCAT observations, accounting for turbine characteristics and siting

    E-Print Network [OSTI]

    Capps, Scott B; Zender, Charles S

    2010-01-01

    multi?megawatt wind turbine, Renewable Energy, Matthews, J.wind turbines in Europe and North America, Renewable Energy,wind power poten- tial on Hong Kong islands—An analysis of wind power and wind turbine characteristics, Renewable Energy,

  2. Importance of thermal effects and sea surface roughness for wind resource and wind shear at offshore sites

    E-Print Network [OSTI]

    Heinemann, Detlev

    for Wind Energy Research Institute of Physics, University of Oldenburg, Germany Bernhard.Lange@uni-oldenburg.de # Department of Wind Energy Risø National Laboratory, Roskilde, Denmark $EVWUDFW The economic feasibility measured at 10-m height is extrapolated to 50-m height and the power production of a wind turbine

  3. Ocean Thermal Extractable Energy Visualization- Final Technical Report on Award DE-EE0002664. October 28, 2012

    SciTech Connect (OSTI)

    Ascari, Matthew B.; Hanson, Howard P.; Rauchenstein, Lynn; Van Zwieten, James; Bharathan, Desikan; Heimiller, Donna; Langle, Nicholas; Scott, George N.; Potemra, James; Nagurny, N. John; Jansen, Eugene

    2012-10-28

    The Ocean Thermal Extractable Energy Visualization (OTEEV) project focuses on assessing the Maximum Practicably Extractable Energy (MPEE) from the world's ocean thermal resources. MPEE is defined as being sustainable and technically feasible, given today's state-of-the-art ocean energy technology. Under this project the OTEEV team developed a comprehensive Geospatial Information System (GIS) dataset and software tool, and used the tool to provide a meaningful assessment of MPEE from the global and domestic U.S. ocean thermal resources. The OTEEV project leverages existing NREL renewable energy GIS technologies and integrates extractable energy estimated from quality-controlled data and projected optimal achievable energy conversion rates. Input data are synthesized from a broad range of existing in-situ measurements and ground-truthed numerical models with temporal and spatial resolutions sufficient to reflect the local resource. Energy production rates are calculated for regions based on conversion rates estimated for current technology, local energy density of the resource, and sustainable resource extraction. Plant spacing and maximum production rates are then estimated based on a default plant size and transmission mechanisms. The resulting data are organized, displayed, and accessed using a multi-layered GIS mapping tool, http://maps.nrel.gov/mhk_atlas with a user-friendly graphical user interface.

  4. Gravity and Zonal Flows of Giant Planets: From the Euler Equation to the Thermal Wind Equation

    E-Print Network [OSTI]

    Cao, Hao

    2015-01-01

    Any non-spherical distribution of density inside planets and stars gives rise to a non-spherical external gravity and change of shape. If part or all of the observed zonal flows at the cloud deck of giant planets represent deep interior dynamics, then the density perturbations associated with the deep zonal flows could generate gravitational signals detectable by the planned Juno mission and the Cassini Proximal Orbits. It is currently debated whether the thermal wind equation (TWE) can be used to calculate the gravity field associated with deep zonal flows. Here we present a critical comparison between the Euler equation and the thermal wind equation. Our analysis shows that the applicability of the TWE in calculating the gravity moments depends crucially on retaining the non-sphericity of the background density and gravity. Only when the background non-sphericity of the planet is taken into account, the TWE makes accurate enough prediction (with a few tens of percent errors) for the high-degree gravity mome...

  5. Estimated global ocean wind power potential from QuikSCAT observations, accounting for turbine characteristics and siting

    E-Print Network [OSTI]

    Capps, Scott B; Zender, Charles S

    2010-01-01

    envisioned floating offshore wind turbines. Finally, global35 ] For the three turbines considered, offshore wind farmsusable wind power is evaluated for modern offshore turbine

  6. Northerly surface wind events over the eastern North Pacific Ocean : spatial distribution, seasonality, atmospheric circulation, and forcing

    E-Print Network [OSTI]

    Taylor, Stephen V.

    2006-01-01

    D. (2005), California Wind Resources, CEC publication # CEC-level inversions with surface wind and temperature at PointD. W. Stuart (1986), Mesoscale wind variability near Point

  7. Estimated global ocean wind power potential from QuikSCAT observations, accounting for turbine characteristics and siting

    E-Print Network [OSTI]

    Capps, Scott B; Zender, Charles S

    2010-01-01

    has more than 30 offshore wind farms in operation oraway to be unheard, offshore wind farms can contain larger,turbines considered, offshore wind farms consisting of the

  8. Estimated global ocean wind power potential from QuikSCAT observations, accounting for turbine characteristics and siting

    E-Print Network [OSTI]

    Capps, Scott B; Zender, Charles S

    2010-01-01

    CO 2 reductions via offshore wind power matched to inherentsurface roughness for offshore wind resource assessment, J.data to evaluate the offshore wind power resource of

  9. Northerly surface wind events over the eastern North Pacific Ocean : spatial distribution, seasonality, atmospheric circulation, and forcing

    E-Print Network [OSTI]

    Taylor, Stephen V.

    2006-01-01

    the prospects for offshore wind energy production have2004) demonstrates the offshore wind field is not smooth andand the relatively smooth offshore winds in model generated

  10. Sensitivity of the ocean's deep overturning circulation to easterly Antarctic winds

    E-Print Network [OSTI]

    Thompson, Andrew

    and carbon [Lumpkin and Speer, 2007]. It is central to our understanding of both the modern climate and Speer [2012] have recently highlighted the essential role of wind-driven upwell- ing in the Southern), or transported south towards the Antarctic continental shelf [Speer et al., 2000]. In certain regions, largely

  11. HURRICANE IMAGING RADIOMETER WIND SPEED AND RAIN RATE RETRIEVAL: [PART-1] DEVELOPMENT OF AN IMPROVED OCEAN

    E-Print Network [OSTI]

    Ruf, Christopher

    HURRICANE IMAGING RADIOMETER WIND SPEED AND RAIN RATE RETRIEVAL: [PART-1] DEVELOPMENT U.S.A * selnimri@mail.ucf.edu 2 NOAA/AOML/Hurricane Research Division, Miami, Florida, USA 3 Space model has been developed to support the analysis and design of the new airborne Hurricane Imaging

  12. Non-Thermal X-ray Properties of Rotation Powered Pulsars and Their Wind Nebulae

    E-Print Network [OSTI]

    Xiang-Hua Li; Fang-Jun Lu; Zhuo Li

    2008-03-27

    We present a statistical study of the non-thermal X-ray emission of 27 young rotation powered pulsars (RPPs) and 24 pulsar wind nebulae (PWNe) by using the Chandra and the XMM-Newton observations, which with the high spatial resolutions enable us to spatially resolve pulsars from their surrounding PWNe. We obtain the X-ray luminosities and spectra separately for RPPs and PWNe, and then investigate their distribution and relation to each other as well as the relation with the pulsar rotational parameters. In the pair-correlation analysis we find that: (1) the X-ray (2-10 keV) luminosities of both pulsar and PWN (L_{psr} and L_{pwn}) display a strong correlation with pulsar spin down power Edot and characteristic age, and the scalings resulting from a simple linear fit to the data are L_{psr} \\propto Edot^{0.92 \\pm 0.04} and L_{pwn} \\propto Edot^{1.45 \\pm 0.08} (68% confidence level), respectively, however, both the fits are not statistically acceptable; (2) L_{psr} also shows a possible weak correlation with pulsar period P and period derivative Pdot, whereas L_{pwn} manifests a similar weak correlation with Pdot only; (3) The PWN photon index Gamma_{pwn} is positively correlated with L_{pwn} and L_{pwn}/Edot. We also found that the PWN X-ray luminosity is typically 1 to 10 times larger than that from the underlying pulsar, and the PWN photon indices span a range of ~1.5 to ~2. The statistic study of PWN spectral properties supports the particle wind model in which the X-ray emitting electrons are accelerated by the termination shock of the wind.

  13. Wind and Wave Extremes over the World Oceans From Very Large Forecast Ensembles

    E-Print Network [OSTI]

    Breivik, Øyvind; Abdalla, Saleh; Bidlot, Jean-Raymond

    2013-01-01

    Global return value estimates of significant wave height and 10-m neutral wind speed are estimated from very large aggregations of archived ECMWF ensemble forecasts at +240-h lead time from the period 2003-2012. The upper percentiles are found to match ENVISAT wind speed better than ERA-Interim (ERA-I), which tends to be biased low. The return estimates are significantly higher for both wind speed and wave height in the extratropics and the subtropics than what is found from ERA-I, but lower than what is reported by Caires and Sterl (2005) and Vinoth and Young (2011). The highest discrepancies between ERA-I and ENS240 are found in the hurricane-prone areas, suggesting that the ensemble comes closer than ERA-I in capturing the intensity of tropical cyclones. The width of the confidence intervals are typically reduced by 70% due to the size of the data sets. Finally, non-parametric estimates of return values were computed from the tail of the distribution. These direct return estimates compare very well with Ge...

  14. The soft and hard X-rays thermal emission from star cluster winds with a supernova explosion

    E-Print Network [OSTI]

    Castellanos-Ramirez, A; Esquivel, A; Toledo-Roy, J C; Olivares, J; Velazquez, P F

    2015-01-01

    Massive young star clusters contain dozens or hundreds of massive stars that inject mechanical energy in the form of winds and supernova explosions, producing an outflow which expands into their surrounding medium, shocking it and forming structures called superbubbles. The regions of shocked material can have temperatures in excess of 10$^6$ K, and emit mainly in thermal X-rays (soft and hard). This X-ray emission is strongly affected by the action of thermal conduction, as well as by the metallicity of the material injected by the massive stars. We present three-dimensional numerical simulations exploring these two effects, metallicity of the stellar winds and supernova explosions, as well as thermal conduction.

  15. Estimated global ocean wind power potential from QuikSCAT observations, accounting for turbine characteristics and siting

    E-Print Network [OSTI]

    Capps, Scott B; Zender, Charles S

    2010-01-01

    benefit analysis of offshore wind energy, Renewable Energy,sources. In contrast, offshore wind energy is currently 1.5–al. [2007] estimated offshore wind energy suitable to exceed

  16. Estimated global ocean wind power potential from QuikSCAT observations, accounting for turbine characteristics and siting

    E-Print Network [OSTI]

    Capps, Scott B; Zender, Charles S

    2010-01-01

    generator and gearbox inefficiencies. [ 37 ] The sensitivity of wind powergenerator/gearbox inefficiencies fur- ther reducing this limit. A wind turbine power

  17. Stochastic Real-Time Scheduling of Wind-thermal Generation Units ...

    E-Print Network [OSTI]

    2014-11-11

    time t (MW) wps,t. Percent of wind farm capacity available at scenario s and time t .... speeds at foreseen onshore and offshore wind farms locations is proposed.

  18. Wind Tunnel Building - 7 

    E-Print Network [OSTI]

    Unknown

    2005-06-30

    or gravitational energy to some extent. Moreover, wave energy provides “15-20 times more available energy per square meter than either wind or solar” [1]. Of these the most commercially viable resources studied so far are ocean currents and waves. Some... limited commercial development and is therefore of more interest. Ocean waves arise from the transfer of energy from the sun to wind then water. Solar energy creates wind, which then blows over the ocean, converting wind energy to wave energy. Once...

  19. On the Variability of Wind Power Input to the Oceans with a Focus on the Subpolar North Atlantic

    E-Print Network [OSTI]

    Zhai, Xiaoming

    Variations in power input to the ocean using a recent global “reanalysis” extending back to 1871 show a strong trend in the net power input since then, a trend dominated by the Southern Ocean region. This trend is interpreted ...

  20. On the World-wide Circulation of the Deeper Waters of the World Ocean

    E-Print Network [OSTI]

    Reid, Joseph L

    2009-01-01

    circulation of the Pacific Ocean: Flow patterns, tracers,in preparing the figures. Fig. 1 Pacific Ocean winds Fig.2 Pacific Ocean circulation Fig. 4 Pacific Ocean potential

  1. The Effects of Mesoscale Eddies on the Stratification and Transport of an Ocean with a Circumpolar Channel

    E-Print Network [OSTI]

    Vallis, Geoff

    would play a leading-order role in setting the channel stratification and hence (via thermal windThe Effects of Mesoscale Eddies on the Stratification and Transport of an Ocean with a Circumpolar in the channel are investigated. With small overlying winds, the channel stratification is largely set

  2. Estimated global ocean wind power potential from QuikSCAT observations, accounting for turbine characteristics and siting

    E-Print Network [OSTI]

    Capps, Scott B; Zender, Charles S

    2010-01-01

    wind power more cost competitive will require technological advancements, dwindling onshore siting space and larger, more powerful turbines.turbines with siting in deeper waters harnessing faster offshore winds. However, it is likely that costs

  3. Transport across 48N in the Atlantic Ocean RICK LUMPKIN

    E-Print Network [OSTI]

    , Tallahassee, Florida K. PETER KOLTERMANN Bundesamt für Seeschiffahrt und Hydrographie, Hamburg, Germany for thermal wind calculations or the specific flux dataset chosen. In addition, flux-based calculations do. Introduction The partition of energy and freshwater flux between the ocean and the atmosphere and among various

  4. Tidal and Wind Mixing versus Thermal Stratification in the South Atlantic Bight.

    E-Print Network [OSTI]

    North Carolina at Chapel Hill, University of

    ) these fluctuations are controlled by the cycles of tidally forced mixing, heat flux, wind and river discharge. During overcome the tendency for tidal power to produce a well-mixed system". Additionally, they expressed some: heat flux, evaporation-precipitation, fresh water input, wind stress work, bottom tidal work

  5. The circulation of the ocean is usually divided into two parts, a wind-driven circulation that

    E-Print Network [OSTI]

    measurements show that the thermohaline circulation turns over all the deep water in the ocean every 600 years, in the formation of new deep water in the North Atlantic and the Southern Ocean. Large volumes of cold polar water occurs and how upwelled deep water returns to the areas of deep-water formation. The main new development

  6. Economics of Ocean Thermal Energy Conversion (OTEC): Luis A. Vega Ph.D., National Marine Renewable Energy Center at the University of Hawai'i

    E-Print Network [OSTI]

    .D., National Marine Renewable Energy Center at the University of Hawai'i Copyright 2010, Offshore TechnologyOTC 21016 Economics of Ocean Thermal Energy Conversion (OTEC): An Update Luis A. Vega Ph for the production of electricity, desalinated water and energy intensive products. It is postulated that the US

  7. Ocean thermal energy conversion power system development. Final design report: PSD-I, Phase II

    SciTech Connect (OSTI)

    None

    1980-06-30

    The PSD-I program provides a heat exchanger sytem consisting of an evaporator, condenser and various ancillaries with ammonia used as a working fluid in a closed simulated Rankine cycle. It is to be installed on the Chepachet Research Vessel for test and evaluation of a number of OTEC concepts in a true ocean environment. It is one of several test articles to be tested. Primary design concerns include control of biofouling, corrosion and erosion of aluminum tubes, selection of materials, and the development of a basis for scale-up to large heat exchangers so as to ultimately demonstrate economic feasibility on a commercial scale. The PSD-I test article is devised to verify thermodynamic, environmental, and mechanical performance of basic design concepts. The detailed design, development, fabrication, checklist, delivery, installation support, and operation support for the Test Article Heat Exchangers are described. (WHK)

  8. The relationship between the statistics of open ocean currents and the temporal correlations of the wind stress

    E-Print Network [OSTI]

    Ashkenazy, Yossi "Yosef"

    The relationship between the statistics of open ocean currents and the temporal correlations Search Collections Journals About Contact us My IOPscience #12;The relationship between the statistics Department of Solar Energy and Environmental Physics, Blaustein Institutes for Desert Research, Ben

  9. Strong wind events across Greenland's coast and their influence on the ice sheet, sea ice and ocean

    E-Print Network [OSTI]

    Oltmanns, Marilena

    2012-01-01

    In winter, Greenland's coastline adjacent to the subpolar North Atlantic and Nordic Seas is characterized by a large land-sea temperature contrast. Therefore, winds across the coast advect air across a horizontal temperature ...

  10. Measurement of the Equivalent Thermal Resistance of Rooftop Lawns in a Hot-Climate Wind Tunnel 

    E-Print Network [OSTI]

    Meng, Q.; Zhang, Y.; Zhang, L.

    2006-01-01

    rooftop lawn. A hot-climate wind tunnel experiment was carried out in order to obtain and analyze the heat and moisture transport in the rooftop lawn. Furthermore, a calculation with the energy conservation equation was carried out using the results...

  11. Experiments on oxygen desorption from surface warm seawater under open-cycle ocean thermal energy conversion (OC-OTEC) conditions

    SciTech Connect (OSTI)

    Pesaran, A.A.

    1989-12-01

    This paper reports the results of scoping deaeration experiments conducted with warm surface seawater under open-cycle ocean thermal energy conversion (OC-OTEC). Concentrations of dissolved oxygen in seawater at three locations (in the supply water, water leaving a predeaerator, and discharge water from an evaporator) were measured and used to estimate oxygen desorption levels. The results suggest that 7% to 60% of dissolved oxygen in the supply water was desorbed from seawater in the predeaerator for pressures ranging from 9 to 35 kPa. Bubble injection in the upcomer increased the oxygen desorption rate by 20% to 60%. The dependence of oxygen desorption with flow rate could not be determined. The data also indicated that at typical OC-OTEC evaporator pressures when flashing occurred, 75% to 95% of dissolved oxygen was desorbed overall from the warm seawater. The uncertainty in results is larger than one would desire. These uncertainties are attributed to the uncertainties and difficulties in the dissolved oxygen measurements. Methods to improve the measurements for future gas desorption studies for warm surface and cold deep seawater under OC-OTEC conditions are recommended. 14 refs., 5 figs., 2 tabs.

  12. Results of scoping tests for open-cycle OTEC (ocean thermal energy conversion) components operating with seawater

    SciTech Connect (OSTI)

    Zangrando, F; Bharathan, D; Green, H J; Link, H F; Parsons, B K; Parsons, J M; Pesaran, A A [Solar Energy Research Inst., Golden, CO (USA); Panchal, C B [Argonne National Lab., IL (USA)

    1990-09-01

    This report presents comprehensive documentation of the experimental research conducted on open-cycle ocean thermal energy conversion (OC-OTEC) components operating with seawater as a working fluid. The results of this research are presented in the context of previous analysis and fresh-water testing; they provide a basis for understanding and predicting with confidence the performance of all components of an OC-OTEC system except the turbine. Seawater tests have confirmed the results that were obtained in fresh-water tests and predicted by the analytical models of the components. A sound technical basis has been established for the design of larger systems in which net power will be produced for the first time from OC-OTEC technology. Design and operation of a complete OC-OTEC system that produces power will provide sufficient confidence to warrant complete transfer of OC-OTEC technology to the private sector. Each components performance is described in a separate chapter written by the principal investigator responsible for technical aspects of the specific tests. Chapters have been indexed separately for inclusion on the data base.

  13. Conceptual design of an open-cycle ocean thermal energy conversion net power-producing experiment (OC-OTEC NPPE)

    SciTech Connect (OSTI)

    Bharathan, D.; Green, H.J.; Link, H.F.; Parsons, B.K.; Parsons, J.M.; Zangrando, F.

    1990-07-01

    This report describes the conceptual design of an experiment to investigate heat and mass transfer and to assess the viability of open-cycle ocean thermal energy conversion (OC-OTEC). The experiment will be developed in two stages, the Heat- and Mass-Transfer Experimental Apparatus (HMTEA) and the Net Power-Producing Experiment (NPPE). The goal for the HMTEA is to test heat exchangers. The goal for the NPPE is to experimentally verify OC-OTEC's feasibility by installing a turbine and testing the power-generating system. The design effort met the goals of both the HMTEA and the NPPE, and duplication of hardware was minimal. The choices made for the design resource water flow rates are consistent with the availability of cold and warm seawater as a result of the seawater systems upgrade carried out by the US Department of Energy (DOE), the state of Hawaii, and the Pacific International Center for High Technology Research. The choices regarding configuration of the system were made based on projected performance, degree of technical risk, schedule, and cost. The cost for the future phase of the design and the development of the HMTEA/NPPE is consistent with the projected future program funding levels. The HMTEA and NPPE were designed cooperatively by PICHTR, Argonne National Laboratory, and Solar Energy Research Institute under the guidance of DOE. The experiment will be located at the DOE's Seacoast Test Facility at the Natural Energy Laboratory of Hawaii, Kailua-Kona, Hawaii. 71 refs., 41 figs., 34 tabs.

  14. Toward an uncertainty budget for a coastal ocean model

    E-Print Network [OSTI]

    Kurapov, Alexander

    budget for a coastal ocean model in a wind-forced regime are made, based on numerical simulations with knowledge only of the wind forcing, and no ocean data, for wind fields with these estimated errors it are of increasing interest. For the wind-forced Oregon coastal ocean regime, Kim et al. (2009) recently examined

  15. Wind and tidal response of a semi-enclosed bay, Bahía Concepción, Baja California

    E-Print Network [OSTI]

    Ponte, Aurélien L. S.

    2009-01-01

    Observed response to diurnal winds . . . . . 4.1Thermal wind balance . . . . . . . . . . . . . . . . . . . .level response to wind . . . . . . . . . . . . 4.3 Current

  16. Thermal evolution of an early magma ocean in interaction with the atmosphere: conditions for the condensation of a

    E-Print Network [OSTI]

    Brandeis, Geneviève

    for the condensation of a water ocean T. Lebrun1 , H. Massol1 , E. Chassefière1 , A. Davaille2 , E. Marcq3 , P. Sarda1-planet distance. Our results suggest that a steam atmosphere delays the end of the magma ocean phase by typically 1 Myr. Water vapor condenses to an ocean after 0.1 Myr, 1.5 Myr and 10 Myr for, respectively, Mars

  17. Ocean Power (4 Activities) | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    our existing non-renewable resources. Ocean power is divided into three categories: wave energy, tidal energy, and ocean thermal energy conversion (OTEC) Systems. It is...

  18. The Future of Offshore Wind Energy

    E-Print Network [OSTI]

    Firestone, Jeremy

    1 The Future of Offshore Wind Energy #12;2 #12;3 Offshore Wind Works · Offshore wind parks: 28 in 10 countries · Operational since 1991 · Current installed capacity: 1,250 MW · Offshore wind parks in the waters around Europe #12;4 US Offshore Wind Projects Proposed Atlantic Ocean Gulf of Mexico Cape Wind

  19. Parametric design of floating wind turbines

    E-Print Network [OSTI]

    Tracy, Christopher (Christopher Henry)

    2007-01-01

    As the price of energy increases and wind turbine technology matures, it is evident that cost effective designs for floating wind turbines are needed. The next frontier for wind power is the ocean, yet development in near ...

  20. 2014-2015 Offshore Wind Technologies Market Report

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Consulting, the American Wind Energy Association, the Great Lakes Wind Collaborative, Green Giraffe Energy Bankers, Ocean and Coastal Consultants (a COWI company), and Tetra...

  1. PHYSICS OF OCEAN CIRCULATION Instructor: S. Riser

    E-Print Network [OSTI]

    Riser, Stephen C.

    Topography Tides Wind Geothermal heating Surface flows elsewhere #12;How deep is the ocean? The average ocean circulation #12;UNITS Horizontal distance: km (= 105 cm) Vertical distance: m Velocity: cm/sec Density: g/cm3

  2. Mesoscale coupled ocean-atmosphere interaction

    E-Print Network [OSTI]

    Seo, Hyodae

    2007-01-01

    coastal ocean to strong offshore winds: With application toand R. L. Smith, 1995: Offshore wind forcing in the Gulf ofwind stress maximum and CCS SST front located roughly 200 km further offshore

  3. Mesoscale Coupled Ocean-Atmosphere Interaction

    E-Print Network [OSTI]

    Seo, Hyodae

    2007-01-01

    coastal ocean to strong offshore winds: With application toand R. L. Smith, 1995: Offshore wind forcing in the Gulf ofwind stress maximum and CCS SST front located roughly 200 km further offshore

  4. Comparison of API & IEC Standards for Offshore Wind Turbine Applications in the U.S. Atlantic Ocean: Phase II; March 9, 2009 - September 9, 2009

    SciTech Connect (OSTI)

    Jha, A.; Dolan, D.; Gur, T.; Soyoz, S.; Alpdogan, C.

    2013-01-01

    This report compares two design guidelines for offshore wind turbines: Recommended Practice for Planning, Designing, and Constructing Fixed Offshore Platform Structures and the International Electrotechnical Commission 61400-3 Design Requirements for Offshore Wind Turbines.

  5. Recycling of wasted energy : thermal to electrical energy conversion

    E-Print Network [OSTI]

    Lim, Hyuck

    2011-01-01

    ocean thermal energy, distributed solar thermal energy,heat source can be solar thermal energy, biological thermaland concentrated solar thermal energy farms. They demand

  6. Warm Bias and Parameterization of Boundary Upwelling in Ocean Models

    SciTech Connect (OSTI)

    Cessi, Paola; Wolfe, Christopher

    2012-11-06

    It has been demonstrated that Eastern Boundary Currents (EBC) are a baroclinic intensification of the interior circulation of the ocean due to the emergence of mesoscale eddies in response to the sharp buoyancy gradients driven by the wind-stress and the thermal surface forcing. The eddies accomplish the heat and salt transport necessary to insure that the subsurface flow is adiabatic, compensating for the heat and salt transport effected by the mean currents. The EBC thus generated occurs on a cross-shore scale of order 20-100 km, and thus this scale needs to be resolved in climate models in order to capture the meridional transport by the EBC. Our result indicate that changes in the near shore currents on the oceanic eastern boundaries are linked not just to local forcing, such as coastal changes in the winds, but depend on the basin-wide circulation as well.

  7. Ocean thermal energy conversion preliminary data report for the November 1977 GOTEC-02 cruise to the Gulf of Mexico Mobile Site

    SciTech Connect (OSTI)

    Commins, M. L; Duncan, C. P.; Estrella, D. J.; Frisch, J. D.; Horne, A. J.; Jones, K.; Johnson, P. W.; Oldson, J. C.; Quinby-Hunt, M. S.; Ryan, C. J.; Sandusky, J. C.; Tatro, M.; Wilde, P.

    1980-03-01

    This is the second in a series of preliminary data reports from cruises to potential Ocean Thermal Energy Conversion (OTEC) sites in the Gulf of Mexico. The data are from the GOTEC-02 cruise to a site at approximately 29/sup 0/N, 88/sup 0/W, the Mobile Site. Twelve oceanographic stations were visited. Due to bad weather, the results are scanty. The reader will note that much of the data is questionable. Current meter results are presented elsewhere (Molinari, Hazelworth and Ortman, 1979). Determinations of the biomass indicators - chlorophyll a, phaeophytins and adenosine triphosphate - and zooplankton, are presented. Results were generally those that might have been predicted from previous studies in the area.

  8. Pacific Ocean Contribution to the Asymmetry in Eastern Indian Ocean Variability CAROLINE C. UMMENHOFER*

    E-Print Network [OSTI]

    Ummenhofer, Caroline C.

    Pacific Ocean Contribution to the Asymmetry in Eastern Indian Ocean Variability CAROLINE C is restricted to the Indian or Pacific Ocean only, support the interpretation of forcing mechanisms for large Indian Ocean atmospheric forcing versus remote influences from Pacific wind forcing: low events develop

  9. Wind Power

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Wind Power Bioenergy Power Systems Wind Power Wind Power Main Page Outreach Programs Image Gallery FAQs Links Software Hydro Power INL Home Wind Power Introduction The Wind Power...

  10. Modeling the Physical and Biochemical Influence of Ocean Thermal Energy Conversion Plant Discharges into their Adjacent Waters

    SciTech Connect (OSTI)

    PAT GRANDELLI, P.E.; GREG ROCHELEAU; JOHN HAMRICK, Ph.D.; MATT CHURCH, Ph.D.; BRIAN POWELL, Ph.D.

    2012-09-29

    This paper describes the modeling work by Makai Ocean Engineering, Inc. to simulate the biochemical effects of of the nutrient-enhanced seawater plumes that are discharged by one or several 100 megawatt OTEC plants. The modeling is needed to properly design OTEC plants that can operate sustainably with acceptably low biological impact. In order to quantify the effect of discharge configuration and phytoplankton response, Makai Ocean Engineering implemented a biological and physical model for the waters surrounding O`ahu, Hawai`i, using the EPA-approved Environmental Fluid Dynamics Code (EFDC). Each EFDC grid cell was approximately 1 square kilometer by 20 meters deep, and used a time step of three hours. The biological model was set up to simulate the biochemical response for three classes of organisms: Picoplankton (< 2 um) such as prochlorococccus, nanoplankton (2-20 um), and microplankton (> 20 um) e.g., diatoms. The dynamic biological phytoplankton model was calibrated using chemical and biological data collected for the Hawaii Ocean Time Series (HOTS) project. Peer review of the biological modeling was performed. The physical oceanography model uses boundary conditions from a surrounding Hawai'i Regional Ocean Model, (ROM) operated by the University of Hawai`i and the National Atmospheric and Oceanic Administration. The ROM provided tides, basin scale circulation, mesoscale variability, and atmospheric forcing into the edges of the EFDC computational domain. This model is the most accurate and sophisticated Hawai'ian Regional Ocean Model presently available, assimilating real-time oceanographic observations, as well as model calibration based upon temperature, current and salinity data collected during 2010 near the simulated OTEC site. The ROM program manager peer-reviewed Makai's implementation of the ROM output into our EFDC model. The supporting oceanographic data was collected for a Naval Facilities Engineering Command / Makai project. Results: The model was run for a 100 MW OTEC Plant consisting of four separate ducts, discharging a total combined flow rate of 420 m3/s of warm water and 320 m3/s of cold water in a mixed discharge at 70 meters deep. Each duct was assumed to have a discharge port diameter of 10.5m producing a downward discharge velocity of about 2.18 m/s. The natural system, as measured in the HOTS program, has an average concentration of 10-15 mgC/m3. To calibrate the biological model, we first ran the model with no OTEC plant and varied biological parameters until the simulated data was a good match to the HOTS observations. This modeling showed that phytoplankton concentration were patchy and highly dynamic. The patchiness was a good match with the data variability observed within the HOTS data sets. We then ran the model with simulated OTEC intake and discharge flows and associated nutrients. Directly under the OTEC plant, the near-field plume has an average terminal depth of 172 meters, with a volumetric dilution of 13:1. The average terminal plume temperature was 19.8oC. Nitrate concentrations are 1 to 2 umol/kg above ambient. The advecting plume then further dilutes to less than 1 umol/kg above ambient within a few kilometers downstream, while remaining at depth. Because this terminal near-field plume is well below the 1% light limited depths (~120m), no immediate biological utilization of the nutrients occurs. As the nitrate is advected and dispersed downstream, a fraction of the deep ocean nutrients (< 0.5 umol/kg perturbation) mix upward where they are utilized by the ambient phytoplankton population. This occurs approximately twenty-five kilometers downstream from the plant at 110 - 70 meters depth. For pico-phytoplankton, modeling results indicate that this nutrient perturbation causes a phytoplankton perturbation of approximately 1 mgC/m3 (~10% of average ambient concentrations) that covers an area 10x5 km in size at the 70 to 90m depth. Thus, the perturbations are well within the natural variability of the system, generally corresponding to a 10 to 15% increase above the a

  11. Wave loads on offshore wind turbines

    E-Print Network [OSTI]

    Zhang, Yu, S.M. Massachusetts Institute of Technology

    2015-01-01

    Ocean energy is one of the most important sources of alternative energy and offshore floating wind turbines are considered viable and economical means of harnessing ocean energy. The accurate prediction of nonlinear ...

  12. MOWII Webinar on Laufer Wind: Radar-Activated Obstruction Lighting

    Broader source: Energy.gov [DOE]

    Join the Maine Ocean and Wind Industry Initiative (MOWII) for a webinar exploring Laufer Wind’s Aircraft Detection System, designed to turn aviation warning lights on only when aircraft are in the...

  13. Oceans and Ecosystems Research Changing levels of Oceanic Carbon

    E-Print Network [OSTI]

    in the atmospheric, the remainder is taken up by land plants and oceans. · We study the uptake by the oceans both EPA qualified the increasing CO2 levels as a pollutant along with the other greenhouse gases Ch4, N2O & wind Algorithm development pCO2= f(SST, color) Co-located satellite data Regional satellite SST & color

  14. Local and synoptic mechanisms causing Southern California’s Santa Ana winds

    E-Print Network [OSTI]

    Hughes, Mimi; Hall, Alex

    2010-01-01

    California’s Santa Ana winds Oceans (Fig. 2). The timem s -1 ) Fig. 4 a Average winds for the Santa Ana cluster,2006). Arrows show total wind, color contours show wind

  15. Wind- and thermal-driven air flows and the buoyancy and advection effects on air exchange within urban environments

    E-Print Network [OSTI]

    Magnusson, Sigurður Pétur

    2014-01-01

    Human exposure to air pollutants and thermal stress in urban areas are public health concerns. The year 2008 was the first year when more than half of the human population lived in urban areas. Studies of the urban air ...

  16. The Impact of Hurricane Force Wind Fields on the North Pacific Ocean Environment STEVEN BUSINGER, SELEN YILDIZ, AND THOMAS E. ROBINSON

    E-Print Network [OSTI]

    Businger, Steven

    oil platform operations, and search and rescue missions (Kite-Powell 2011). A combination of high of miles away (Caldwell and Aucan 2007). Accurate estimates of cur- rent and future wind and sea state

  17. Remote sensing of total integrated water vapor, wind speed, and cloud liquid water over the ocean using the Special Sensor Microwave/Imager (SSM/I) 

    E-Print Network [OSTI]

    Manning, Norman Willis William

    1997-01-01

    A modified D-matrix retrieval method is the basis of the refined total integrated water vapor (TIWV), total integrated cloud liquid water (CLW), and surface wind speed (WS) retrieval methods that are developed. The 85 GHZ ...

  18. Thermal springs list for the United States; National Oceanic and Atmospheric Administration Key to Geophysical Records Documentation No. 12

    SciTech Connect (OSTI)

    Berry, G.W.; Grim, P.J.; Ikelman, J.A.

    1980-06-01

    The compilation has 1702 thermal spring locations in 23 of the 50 States, arranged alphabetically by State (Postal Service abbreviation) and degrees of latitude and longitude within the State. It shows spring name, surface temperature in degrees Fahrenheit and degrees Celsius; USGS Professional Paper 492 number, USGS Circular 790 number, NOAA number, north to south on each degree of latitude and longitude of the listed. USGS 1:250,000-scale (AMS) map; and the USGS topographic map coverage, 1:63360- or 1:62500-scale (15-minute) or 1:24000-scale (7.5-minute) quadrangle also included is an alphabetized list showing only the spring name and the State in which it is located. Unnamed springs are omitted. The list includes natural surface hydrothermal features: springs, pools, mud pots, mud volcanoes, geysers, fumaroles, and steam vents at temperature of 20{sup 0}C (68[sup 0}F) or greater. It does not include wells or mines, except at sites where they supplement or replace natural vents presently or recently active, or, in some places, where orifices are not distinguishable as natural or artificial. The listed springs are located on the USGS 1:250,000 (AMS) topographic maps. (MHR)

  19. The de-correlation of westerly winds and westerly-wind stress...

    Office of Scientific and Technical Information (OSTI)

    The de-correlation of westerly winds and westerly-wind stress over the Southern Ocean during the Last Glacial Maximum Citation Details In-Document Search Title: The de-correlation...

  20. The Response of Quasigeostrophic Oceanic Vortices to Tropical Cyclone Forcing BENJAMIN JAIMES AND LYNN K. SHAY

    E-Print Network [OSTI]

    Miami, University of

    . Idealized oceanic currents and wind fields derived from observational data acquired during Hurricane Katrina of wind-driven acceleration of oceanic mixed layer (OML) currents rather than a function of the windThe Response of Quasigeostrophic Oceanic Vortices to Tropical Cyclone Forcing BENJAMIN JAIMES

  1. Modeling of mesoscale coupled oceanatmosphere interaction and its feedback to ocean in the western Arabian Sea

    E-Print Network [OSTI]

    Jochum, Markus

    horizontal SST gradients in the ocean, developing in response to the southwest monsoon winds. This summertime of the ocean. The observed relationship between the near-surface winds and mesoscale SSTs generate Ekman pump by seasonally reversing monsoonal winds, which drive an in- tense oceanic response off the coast of Africa

  2. Controlled field experiments of wind effects on thermal signatures of buried and surface-laid land mines

    E-Print Network [OSTI]

    Borchers, Brian

    mines Remke L. van Dam , Brian Borchers, Jan M.H. Hendrickx, and Sung-ho Hong New Mexico Tech, 801 Leroy experiments at the outdoor land mine detection test facility at New Mexico Tech. Here, several anti by subsurface anomalies 3,4,5,6,7 . Inherent to the cyclic nature of the incoming solar radiation, the thermal

  3. Recycling of wasted energy : thermal to electrical energy conversion

    E-Print Network [OSTI]

    Lim, Hyuck

    2011-01-01

    and nuclear power plants, solar thermal energy, geothermalpower plants, distributed solar thermal energy, geo/ocean-power plants and concentrated solar thermal energy farms.

  4. Illuminating Spatial and Temporal Patterns of Ocean Mixing as Inferred from Argo Profiling Floats

    E-Print Network [OSTI]

    Whalen, Caitlin

    2015-01-01

    P. (2008). Propagation of wind energy into the deep oceanQuantifying High-Frequency Wind Energy Flux into Near-is particularly striking. Wind energy contributing to the

  5. GEOPHYSICAL RESEARCH LETTERS, VOL. ???, XXXX, DOI:10.1029/, Surface Winds, Divergence, and Vorticity in Stratocumulus

    E-Print Network [OSTI]

    Johnson, Richard H.

    in the subtropical highs are at a maximum. Past attempts to analyze wind fields over these vast oceanic, stratocumu) presented global maps of mean seasonal surface winds and divergence based on the Comprehensive Ocean the boreal summer, large- scale structure of surface winds and divergence in the eastern ocean stratocumulus

  6. Ocean Fertilization and Other Climate Change Mitigation Strategies: An Overview

    SciTech Connect (OSTI)

    Huesemann, Michael H.

    2008-07-29

    In order to evaluate ocean fertilization in the larger context of other proposed strategies for reducing the threat of the global warming, a wide range of different climate change mitigation approaches are compared in terms of their long-term potential, stage of development, relative costs and potential risks, as well as public acceptance. This broad comparative analysis is carried out for the following climate change mitigation strategies: supply-side and end-use efficiency improvements, terrestrial and geological carbon sequestration, CO2 ocean disposal and iron fertilization, nuclear power, and renewable energy generation from biomass, passive solar, solar thermal, photovoltaics, hydroelectric and wind. In addition, because of the inherent problems of conducting an objective comparative cost-benefit analysis, two non-technological solutions to global warming are also discussed: curbing population growth and transitioning to a steady-state economy.

  7. Ocean Systems Lecture 16 & 17

    E-Print Network [OSTI]

    Richerson, Peter J.

    to thrive in oceans and lakes they need sunlight and nutrients. But thermal stratification tends to separateOcean Systems Lecture 16 & 17 #12;Hydroclimate, heat budgets and stratification For plants the nature of stratification. Light, less dense, water floats on top of colder, less dense water. Plankton

  8. Wind Tunnel Building - 4 

    E-Print Network [OSTI]

    Unknown

    2005-06-30

    of the Sargassum loop system sheds light on the seasonal migration patterns of the macro-algae. Through use of NASA’s Landsat satellite imagery the presence and abundance of Sargassum has been analyzed. Based on several factors, such as ocean currents, wind...

  9. 11march2007 Blowing in the wind

    E-Print Network [OSTI]

    Genton, Marc G.

    in Scotland, the largest in the USA is planned for southern California, and the biggest offshore wind farm in development) can take advantage of stronger ocean breezes. Just over 15 offshore wind farms are currently a planned 1000 MW at a capital cost of £2 bil- lion. Most offshore wind farms are located in water less than

  10. Ocean Thermal | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QA J-E-1 SECTION J APPENDIXsourceII Jump to:Information 3rd|Northfork ElectricName01988) | OpenThePower

  11. Dynamics of Wind Setdown at Suez and the Eastern Nile Carl Drews1,2

    E-Print Network [OSTI]

    Han, Weiqing

    /s easterly wind forcing in the reconstructed model basin, the ocean model produces an area of exposed mud be significantly curtailed by wind setdown when strong winds blow offshore. Citation: Drews C, Han W (2010-07-1-0413. Weiqing Han is also supported by NASA Ocean Vector Wind Science Team 1283568 and NSF CAREER OCE 0847605

  12. Numerical Study On A SPAR Type Floating Offshore Wind Turbine Using COUPLE-FAST Code 

    E-Print Network [OSTI]

    Peng, Cheng

    2015-03-03

    Floating offshore wind turbine (FOWT) attracts more and more attention for harnessing wind power over the surface of relatively deep ocean water, where steady and strong wind occurs. Although it has been shown that the knowledge gained from...

  13. DOE-DOI Strategy Seeks to Harness U.S. Offshore Wind Energy Potential...

    Broader source: Energy.gov (indexed) [DOE]

    Image of the EERE National Offshore Wind Strategy report cover featuring a photo of a receding line of offshore wind turbines in the ocean. The winds of change are blowing for...

  14. Mesoscale Coupled Ocean-Atmosphere Interaction

    E-Print Network [OSTI]

    Seo, Hyodae

    2007-01-01

    2000: A Coupled Air-Sea Mesoscale Model: Experiments inWind Stress Curl from a Mesoscale Model. Mon. Wea. Rev. ,2006: Effect of Ocean Mesoscale Variability on the Mean

  15. Mesoscale coupled ocean-atmosphere interaction

    E-Print Network [OSTI]

    Seo, Hyodae

    2007-01-01

    2000: A Coupled Air-Sea Mesoscale Model: Experiments inWind Stress Curl from a Mesoscale Model. Mon. Wea. Rev. ,2006: Effect of Ocean Mesoscale Variability on the Mean

  16. OCEAN DRILLING PROGRAM LEG 112 SCIENTIFIC PROSPECTUS

    E-Print Network [OSTI]

    Science Foundation. Funding for the program is provided by the following agencies: Department of Energy, Mines and Resources (Canada) Deutsche Forschungsgemeinschaft (Federal Republic of Germany) Institut coast. The interplay of wind regime, oceanic circulation and biological productivity result

  17. Wind Tunnel 

    E-Print Network [OSTI]

    Unknown

    2011-08-17

    The increased interest in the offshore wind resource in both industry and academic and the extension of the wind field where offshore wind turbine can be deployed has stimulated quite a number of offshore wind turbines concepts. This thesis presents...

  18. Vertical mixing and the ocean circulation

    E-Print Network [OSTI]

    Jones, Peter JS

    Changing sources of mixing Hurricanes Tidal dissipation 2 #12;Zonal Mean Ocean Temperature 3 #12;Sandström's Theorem A circulation cannot be driven unless heat is input at a lower depth than it is lost in the ocean? Wind-driven stirring Tidal generation of internal waves Biota Hurricanes Nasa 6 #12;Sources

  19. WIND ENERGY Wind Energ. (2014)

    E-Print Network [OSTI]

    Peinke, Joachim

    2014-01-01

    to generate in this way wind speed fluctuations with similar statistics as observed in nature. Forces wereWIND ENERGY Wind Energ. (2014) Published online in Wiley Online Library (wileyonlinelibrary wind inflow conditions M. R. Luhur, J. Peinke, J. Schneemann and M. Wächter ForWind-Center for Wind

  20. Flexible ocean upwelling pipe

    DOE Patents [OSTI]

    Person, Abraham (Los Alamitos, CA)

    1980-01-01

    In an ocean thermal energy conversion facility, a cold water riser pipe is releasably supported at its upper end by the hull of the floating facility. The pipe is substantially vertical and has its lower end far below the hull above the ocean floor. The pipe is defined essentially entirely of a material which has a modulus of elasticity substantially less than that of steel, e.g., high density polyethylene, so that the pipe is flexible and compliant to rather than resistant to applied bending moments. The position of the lower end of the pipe relative to the hull is stabilized by a weight suspended below the lower end of the pipe on a flexible line. The pipe, apart from the weight, is positively buoyant. If support of the upper end of the pipe is released, the pipe sinks to the ocean floor, but is not damaged as the length of the line between the pipe and the weight is sufficient to allow the buoyant pipe to come to a stop within the line length after the weight contacts the ocean floor, and thereafter to float submerged above the ocean floor while moored to the ocean floor by the weight. The upper end of the pipe, while supported by the hull, communicates to a sump in the hull in which the water level is maintained below the ambient water level. The sump volume is sufficient to keep the pipe full during heaving of the hull, thereby preventing collapse of the pipe.

  1. Delayed upwelling alters nearshore coastal ocean ecosystems in the northern California current

    E-Print Network [OSTI]

    Balasubramanian, Ravi

    ecology Equatorward winds along the eastern boundaries of the world's oceans drive offshore surface Ekman, January 22, 2007 (sent for review December 9, 2006) Wind-driven coastal ocean upwelling supplies nutrientsDelayed upwelling alters nearshore coastal ocean ecosystems in the northern California current John

  2. Oceanography December 2008 53 THE WINDDRIVEN COASTAL OCEAN: NOW IN HIGHDEF

    E-Print Network [OSTI]

    Pierce, Stephen

    of wind-driven coastal ocean ecosystems. ese tools allowed us to probe the entire water column, the air (vertical sections), winds and ocean currents (arrows), and surface chlo- rophyll (green shades at seaOceanography December 2008 53 THE WINDDRIVEN COASTAL OCEAN: NOW IN HIGHDEF By John A. Barth, John M

  3. Collegiate Wind Competition Wind Tunnel Specifications | Department...

    Energy Savers [EERE]

    Wind Tunnel Specifications Collegiate Wind Competition Wind Tunnel Specifications Collegiate Wind Competition Wind Tunnel Specifications Teams competing in the U.S. Department of...

  4. Modeling the three-dimensional upper ocean heat budget and subduction rate during the Subduction Experiment

    E-Print Network [OSTI]

    the evolution of the upper ocean thermal structure and provide a useful tool for the analysis of air

  5. WIND ENERGY Wind Energ. (2014)

    E-Print Network [OSTI]

    2014-01-01

    , wind power has been expanding globally in recent years and it has become a dominant renewable energy the turbulent atmosphere and the wind turbine wake in order to optimize the design of the wind turbine as wellWIND ENERGY Wind Energ. (2014) Published online in Wiley Online Library (wileyonlinelibrary

  6. Ocean Sci., 5, 115139, 2009 www.ocean-sci.net/5/115/2009/

    E-Print Network [OSTI]

    is distributed under the Creative Commons Attribution 3.0 License. Ocean Science Ekman layers in the Southern to remove energy from the system by other means than shear-induced dissipation. How- ever, the Ekman depth is believed to be a primary location of surface ocean mixing as a result of wind energy input

  7. Wind Generation Challenges & New Technologies

    E-Print Network [OSTI]

    McCalley, James D.

    · Introduction · Grid Integration Challenges · "New" Technologies · Conclusions #12;Introduction #12;Proprietary · Testing and modeling thermal and renewable plants for grid code compliance GE Wind Generator & Electrical: AWEA, 1Q 2014 [1] #12;Wind Integration Challenges #12;Proprietary Information: This document contains

  8. GEOPHYSICAL RESEARCH LETTERS, VOL. 28, NO. 22, PAGES 4215-4218, NOVEMBER 15, 2001 Dynamical response of equatorial Indian Ocean to

    E-Print Network [OSTI]

    Han, Weiqing

    the eastern ocean boundary. 1. Introduction Moored current meter data in the western equatorial In- dian Ocean in the central Indian Ocean (73 10 E, 0 41 S) and found that zonal wind is highly coherent with zonal currents zonal current in the western equatorial Indian Ocean was forced by the zonal wind in the western basin

  9. wind energy

    National Nuclear Security Administration (NNSA)

    5%2A en Pantex to Become Wind Energy Research Center http:nnsa.energy.govfieldofficesnponpopressreleasespantex-become-wind-energy-research-center

  10. SCALAR WIND SPEED AND DIRECTION TROPICAL CYCLONE RETRIEVALS FOR CONICAL SCANNING SCATTEROMETERS

    E-Print Network [OSTI]

    Hennon, Christopher C.

    SCALAR WIND SPEED AND DIRECTION TROPICAL CYCLONE RETRIEVALS FOR CONICAL SCANNING SCATTEROMETERS--Scatterometer measurements of ocean vector winds (OVW) are significantly degraded in the presence of the precipitation, especially in tropical cyclones. This paper presents a new ocean hurricane/typhoon wind vector retrieval

  11. Comprehensive Ocean Drilling

    E-Print Network [OSTI]

    Comprehensive Ocean Drilling Bibliography containing citations related to the Deep Sea Drilling Project, Ocean Drilling Program, Integrated Ocean Drilling Program, and International Ocean Discovery Program Last updated: May 2014 #12;Comprehensive Bibliography Comprehensive Ocean Drilling Bibliography

  12. Modeling wind forcing in phase resolving simulation of nonlinear wind waves

    E-Print Network [OSTI]

    Kalmikov, Alexander G

    2010-01-01

    Wind waves in the ocean are a product of complex interaction of turbulent air flow with gravity driven water surface. The coupling is strong and the waves are non-stationary, irregular and highly nonlinear, which restricts ...

  13. OCEAN DRILLING PROGRAM LEG 198 SCIENTIFIC PROSPECTUS

    E-Print Network [OSTI]

    (successors to the Planning Committee) and the Pollution Prevention and Safety Panel. Technical Editor: Karen thermal maximum, the mid-Maastrichtian deep-water event, and the early Aptian Oceanic Anoxic Event

  14. Tax Credits, Rebates & Savings | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    Institutional Savings Category: Geothermal Electric, Solar Thermal Electric, Solar Photovoltaics, Wind (All), Biomass, Hydroelectric, Ocean Thermal, Wind (Small),...

  15. Ocean Climate Change: Comparison of Acoustic

    E-Print Network [OSTI]

    Frandsen, Jannette B.

    Ocean Climate Change: Comparison of Acoustic Tomography, Satellite Altimetry, and Modeling The ATOC to thermal expansion. Interpreting climate change signals from fluctuations in sea level is therefore in the advective heat flux. Changes in oceanic heat storage are a major expected element of future climate shifts

  16. Ann. Geophysicae 14, 1088--1094 (1996) EGS --Springer-Verlag 1996 Thermal, pressure and wind fields at ground level in the area

    E-Print Network [OSTI]

    Boyer, Edmond

    1996-01-01

    is of particular importance, as considerable energy exchanges take place between ocean and atmosphere. Mesoscale to Terra Nova Bay, the formation of mesoscale vortices is very frequent. Model studies have shown- ity have been simulated by mesoscale models (Galle´ e and Schayes, 1994; Galle´ e, 1995). It has been

  17. Our Ocean Backyard Santa Cruz Sentinel columns by Gary Griggs, Director, Institute of Marine Sciences, UC Santa Cruz.

    E-Print Network [OSTI]

    California at Santa Cruz, University of

    the ocean transfers energy to the sea surface, initially forming small ripples, which over time, if the wind typically see breaking at Mavericks or Steamer Lane, they are all generated by the wind. Wind blowing across persists, will begin to form discrete waves. The amount of energy transmitted to the ocean surface and

  18. A nonlinear wave load model for extreme and fatigue responses of offshore floating wind turbines

    E-Print Network [OSTI]

    Lee, Sungho, Ph. D. Massachusetts Institute of Technology

    2012-01-01

    Ocean energy is one of the most important sources of alternative energy and offshore floating wind turbines are considered viable and economical means of harnessing ocean energy. The accurate prediction of nonlinear ...

  19. Penetration of buoyancy driven current due to a wind forced river plume 

    E-Print Network [OSTI]

    Baek, Seong-Ho

    2009-05-15

    The long term response of a plume associated with freshwater penetration into ambient, ocean water under upwelling favorable winds is studied using the Regional Ocean Modeling System (ROMS) in an idealized domain. Three ...

  20. Dust Detection by the Wave Instrument on STEREO: Nanoparticles Picked up by the Solar Wind?

    E-Print Network [OSTI]

    2009-01-01

    the solar wind at 1 AU were produced by impacts of micron-solar wind during the Jupiter ?y-by, which are consistent with impactsimpacts and thus shows the ubiquitous plasma quasi-thermal noise in the solar wind,

  1. 12.003 Physics of Atmospheres and Oceans, Fall 2007

    E-Print Network [OSTI]

    Marshall, John C.

    The laws of classical mechanics and thermodynamics are used to explore how the properties of fluids on a rotating Earth manifest themselves in, and help shape, the global patterns of atmospheric winds, ocean currents, and ...

  2. Wind Farm

    Broader source: Energy.gov [DOE]

    The wind farm in Greensburg, Kansas, was completed in spring 2010, and consists of ten 1.25 megawatt (MW) wind turbines that supply enough electricity to power every house, business, and municipal...

  3. How Much Energy Is Transferred from the Winds to the Thermocline on ENSO Time Scales?

    E-Print Network [OSTI]

    How Much Energy Is Transferred from the Winds to the Thermocline on ENSO Time Scales? JACLYN N the winds (via wind power) and changes in the storage of available potential energy in the tropical ocean~o is characterized by a decrease in wind power that leads to a decrease in available potential energy, and hence

  4. Applied Ocean Research (2013) Contents lists available at ScienceDirect

    E-Print Network [OSTI]

    Sweetman, Bert

    2013-01-01

    as a viable contender for future offshore wind farm developments. The primary benefit of floating structuresApplied Ocean Research (2013) Contents lists available at ScienceDirect Applied Ocean Research journal homepage: www.elsevier.com/locate/apor Multibody dynamics of floating wind turbines with large

  5. Atmospheric forcing of the Oregon coastal ocean during the 2001 upwelling season

    E-Print Network [OSTI]

    Kurapov, Alexander

    by nonlinear internal ocean tides. The diurnal cycle of wind stress was similar for both southwardAtmospheric forcing of the Oregon coastal ocean during the 2001 upwelling season J. M. Bane,1 M. D. Southward wind stresses of 0.05À0.1 N mÀ2 occurred roughly 75% of the time, with a sustained period

  6. COOLING OF THE OCEANIC LITHOSPHERE AND OCEAN FLOOR (Copyright, 2001, David T. Sandwell)

    E-Print Network [OSTI]

    Sandwell, David T.

    1 COOLING OF THE OCEANIC LITHOSPHERE AND OCEAN FLOOR TOPOGRAPHY (Copyright, 2001, David T. Sandwell) Introduction This lecture is the development of the lithospheric cooling problem. For researchers in the areas important thermal boundary layer which is at the core-mantle boundary. As the lithosphere cools it becomes

  7. Accomplishments and future perspective of coastal ocean observing systems Coastal oceans are the most densely urbanized regions on the

    E-Print Network [OSTI]

    are the most densely urbanized regions on the planet with populations growing at rapid rate. In the near future as communities increasingly rely on the coastal ocean to provide additional sources of energy (wind, waves, oil, our ability to map and forecast the coastal ocean remains low. While certain areas are difficult

  8. Optimization Online - Stochastic Real-Time Scheduling of Wind ...

    E-Print Network [OSTI]

    Alireza Soroudi

    2015-01-03

    Jan 3, 2015 ... Stochastic Real-Time Scheduling of Wind-thermal Generation Units in an Electric Utility. Alireza Soroudi (alireza.soroudi ***at*** ucd.ie)

  9. Systems Performance Analyses of Alaska Wind-Diesel Projects; Selawik, Alaska (Fact Sheet)

    SciTech Connect (OSTI)

    Baring-Gould, I.

    2009-04-01

    This fact sheet summarizes a systems performance analysis of the wind-diesel project in Selawik, Alaska. Data provided for this project include community load data, wind turbine output, diesel plant output, thermal load data, average wind speed, average net capacity factor, optimal net capacity factor based on Alaska Energy Authority wind data, average net wind penetration, and estimated fuel savings.

  10. Systems Performance Analyses of Alaska Wind-Diesel Projects; Toksook Bay, Alaska (Fact Sheet)

    SciTech Connect (OSTI)

    Baring-Gould, I.

    2009-04-01

    This fact sheet summarizes a systems performance analysis of the wind-diesel project in Toksook Bay, Alaska. Data provided for this project include community load data, average wind turbine output, average diesel plant output, thermal load data, average net capacity factor, optimal net capacity factor based on Alaska Energy Authority wind data, average net wind penetration, estimated fuel savings, and wind system availability.

  11. GFD-2 Spring 2004 Syllabus Text: a nearly complete set of text handouts, plus A.E.Gill, Atmosphere-Ocean Dynamics

    E-Print Network [OSTI]

    geography of potential vorticity -lateral circulation: wind-driven ocean gyres and boundary currents -circumpolar ocean currents and the atmospheric westerly winds: stationary Rossby waves with mountains; waveGFD-2 Spring 2004 Syllabus Text: a nearly complete set of text handouts, plus A.E.Gill, Atmosphere-Ocean

  12. OCEAN DRILLING PROGRAM LEG 108 SCIENTIFIC PROSPECTUS

    E-Print Network [OSTI]

    of Energy, Mines and Resources (Canada) Deutsche Forschungsgemeinschaft (Federal Republic of Germany Federal Republic of Germany Dr. Jack G. Baldauf Staff Scientist, Leg 108 Ocean Drilling Program Texas-water paleoceanography with those of the zonal and meridional paleo-wind circulation. OBJECTIVES The eleven oroposed

  13. Wind Power Forecasting Data

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Operations Call 2012 Retrospective Reports 2012 Retrospective Reports 2011 Smart Grid Wind Integration Wind Integration Initiatives Wind Power Forecasting Wind Projects Email...

  14. Idaho_Wind_Data

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Site Bryans Run Cell Tower Site Wilson Peak Eckert Site Loertscher Boise State's Wind Data Link Wind Power Idaho Wind Data See also: Idaho Energy Resources - Wind, American...

  15. Air-sea interaction at an oceanic front: Implications for frontogenesis and primary production

    E-Print Network [OSTI]

    Chen, .Dake

    winds at sharp oceanic fronts, suggesting a potentially important role played by local airAir-sea interaction at an oceanic front: Implications for frontogenesis and primary production Dake a significant air-sea interaction at the shelf- break front in the East China Sea. An idealized ocean

  16. Satellite observations of mesoscale ocean features and copropagating atmospheric surface fields in the tropical belt

    E-Print Network [OSTI]

    Xie, Shang-Ping

    Satellite observations of mesoscale ocean features and copropagating atmospheric surface fields speed and sea surface temperature (SST) over mesoscale ocean features in certain frontal regions. The aim of this study is to determine to what extent mesoscale ocean dynamics modifies the surface wind

  17. Assessment of Offshore Wind System Design, Safety, and Operation...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Impacts in the United States: Four Regional Scenarios Characterization of U.S. Wave Energy Converter Test Sites: A Catalogue of Met-Ocean Data Wind Program Home About...

  18. Tracking large tabular icebergs using the SeaWinds Ku-band microwave scatterometer

    E-Print Network [OSTI]

    Long, David G.

    . Originally designed to measure wind speed and direction over the ocean, SeaWinds is a microwave scatterometer. For instance, iceberg positions affect shipping lanes, outline ocean currents, and influence biological. Optical sensors produce high-resolution images but are unable to penetrate cloud cover and are dependent

  19. THE SPECTRUM OF OCEANIC VARIABILITY (Part 1) Stephen Riser, University of Washington

    E-Print Network [OSTI]

    Riser, Stephen C.

    , heating/cooling, tides, geothermal heating (generally large spatial scales, > 1000 km) Energy dissipation gradient yields ocean pressure force to the east. wind wind sea level wind 100° W140° E #12;ENSO Atmosphere;13 April 1993 31 July 1993 Rossby wave propagation is clearly evident near the Equator; at other latitudes

  20. Wind Tunnel 

    E-Print Network [OSTI]

    Unknown

    2011-08-17

    Simulation of Cooling Effect of Wind Tower on Passively Ventilated Building John Seryak Kelly Kissock Project Engineer Associate Professor Department of Mechanical and Aerospace Engineering University of Dayton... Dayton, Ohio ABSTRACT Traditional buildings are cooled and ventilated by mechanically induced drafts. Natural ventilation aspires to cool and ventilate a building by natural means, such as cross ventilation or wind towers, without mechanical...

  1. NREL Computer Models Integrate Wind Turbines with Floating Platforms (Fact Sheet)

    SciTech Connect (OSTI)

    Not Available

    2011-07-01

    Far off the shores of energy-hungry coastal cities, powerful winds blow over the open ocean, where the water is too deep for today's seabed-mounted offshore wind turbines. For the United States to tap into these vast offshore wind energy resources, wind turbines must be mounted on floating platforms to be cost effective. Researchers at the National Renewable Energy Laboratory (NREL) are supporting that development with computer models that allow detailed analyses of such floating wind turbines.

  2. Offshore Wind Power USA

    Broader source: Energy.gov [DOE]

    The Offshore Wind Power USA conference provides the latest offshore wind market updates and forecasts.

  3. Wind Bias from Sub-optimal Estimation Due to Geophysical Modeling Error Paul E. Johnson and David G . Long

    E-Print Network [OSTI]

    Long, David G.

    Wind Bias from Sub-optimal Estimation Due to Geophysical Modeling Error -Wind I Paul E. Johnson (which relates the wind to the normalized radar cross section, NRCS, of the ocean surface) is uncertainty in the NRCS for given wind conditions. When the estimated variability is in- cluded in the maximum likelihood

  4. Wind Energy Leasing Handbook

    E-Print Network [OSTI]

    Balasundaram, Balabhaskar "Baski"

    Wind Energy Leasing Handbook Wind Energy Leasing Handbook E-1033 Oklahoma Cooperative Extension?..................................................................................................................... 31 What do wind developers consider in locating wind energy projects?............................................................................................ 37 How do companies and individuals invest in wind energy projects?....................................................................

  5. Wind Farm Diversification and Its Impact on Power System Reliability 

    E-Print Network [OSTI]

    Degeilh, Yannick

    2010-10-12

    enhancement of wind power output predictability is in itself desirable, as it would permit the accurate design of thermal conventional units dedicated only to the compensation of wind power erratic behavior. The turbines used in the studies are 3 MW Vestas...M the covariance matrix of the statistical single wind turbine power outputs ?? (i designating the farm number): 19...

  6. WIND OBSERVATIONS OF SUPRATHERMAL ELECTRONS IN THE INTERPLANETARY MEDIUM

    E-Print Network [OSTI]

    California at Berkeley, University of

    WIND OBSERVATIONS OF SUPRATHERMAL ELECTRONS IN THE INTERPLANETARY MEDIUM R. P. LIN Space Sciences Particle Instrument on the WIND spacecraft, which provides high sensitivity electron and ion measurements from solar wind thermal plasma up to &MeV energies. These results include: (1) the observation of solar

  7. Wind observations of foreshock cavities: A case study

    E-Print Network [OSTI]

    California at Berkeley, University of

    Wind observations of foreshock cavities: A case study D. G. Sibeck1 Applied Physics Laboratory seen by Wind in the dawn foreshock on 19 April 1996. A comparison with the results of hybrid in the ambient solar wind, ion temperatures do not rise greatly, thermal pressures are only slightly greater than

  8. Momentum Flux Budget across the AirSea Interface under Uniform and Tropical Cyclone Winds

    E-Print Network [OSTI]

    Rhode Island, University of

    into ocean currents is equal to the flux from air (wind stress). However, when the surface wave field grows into currents under TCs. 1. Introduction The passage of a tropical cyclone (TC) over a warm ocean represents one is mainly due to the vertical turbulent mixing induced by the strong momentum flux into ocean currents

  9. OCEAN THERMAL ENERGY CONVERSION PROGRAMMATIC ENVIRONMENTAL ASSESSMENT

    E-Print Network [OSTI]

    Sands, M.Dale

    2013-01-01

    boch open- and closed-power cycles in land-based, moored andopen- and closed-power cycle), plant configurations (land-demonstration. The closed-power cycle may be used for land-

  10. GEOPHYSICAL RESEARCH LETTERS, VOL. 0, NO. 0, PAGES 0-0, M 0, 2001 On the Pacific Ocean regime shift

    E-Print Network [OSTI]

    GEOPHYSICAL RESEARCH LETTERS, VOL. 0, NO. 0, PAGES 0-0, M 0, 2001 On the Pacific Ocean regime shift variability of Pacific Ocean upper ocean heat content is examined for the 1948-1998 period using gridded-wide phenomenon affecting the thermal structure from 60 S to 70 N. EOF analysis of the Pacific Ocean heat content

  11. 1 Energy Markets and Policy Group Energy Analysis Department The Impact of Wind Power Projects

    E-Print Network [OSTI]

    Firestone, Jeremy

    1 Energy Markets and Policy Group · Energy Analysis Department The Impact of Wind Power Projects Department The Impact of Wind Power Projects on Residential Property Values in the U.S. · Motivation, but not for wind power facilities $$ Average Home Highway Transmission Lines Green Space Ocean Front $ $ #12

  12. Coastal Wind Mapping from Satellite SAR: Possibilities and Limitations Charlotte Bay Hasager and Merete Bruun Christiansen

    E-Print Network [OSTI]

    - 21 - Coastal Wind Mapping from Satellite SAR: Possibilities and Limitations Charlotte Bay Hasager and Merete Bruun Christiansen Risø National Laboratory, Wind Energy Department, Meteorology Program, VEA-118 Abstract Satellite remote sensing of ocean wind fields from Synthetic Aperture Radar (SAR) observations

  13. Frontal circulation induced by up-front and coastal downwelling winds

    E-Print Network [OSTI]

    consequences to vertical exchanges of tracers and water masses. Keywords Ocean fronts . Wind-front interactionFrontal circulation induced by up-front and coastal downwelling winds Yu-Lin Chang & Lie-Yauw Oey-shelf and depth) circula- tion by downwelling wind in the presence of a prograding front (with isopycnals

  14. Intraseasonal variability in the summer South China Sea: Wind jet, cold filament, and recirculations

    E-Print Network [OSTI]

    Xie, Shang-Ping

    Intraseasonal variability in the summer South China Sea: Wind jet, cold filament of ocean-atmospheric response, including a wind jet and cold filament in the South China Sea (SCS). We variability in summer. Our analysis shows that the development of the wind jet and cold filament

  15. SPECTRAL DEPENDENCE OF THE RESPONSE TIME OF SEA STATE TO LOCAL WIND FORCING

    E-Print Network [OSTI]

    Ruf, Christopher

    resonant backscatter from the ocean, which is related to the wind- generated capillary wavesSPECTRAL DEPENDENCE OF THE RESPONSE TIME OF SEA STATE TO LOCAL WIND FORCING David D. Chen1 , Scott to respond to surface winds, propagate further before decaying, and are generally less directly coupled

  16. Quantifying Errors Associated with Satellite Sampling of Offshore Wind S.C. Pryor1,2

    E-Print Network [OSTI]

    1 Quantifying Errors Associated with Satellite Sampling of Offshore Wind Speeds S.C. Pryor1,2 , R, Bloomington, IN47405, USA. Tel: 1-812-855-5155. Fax: 1-812-855-1661 Email: spryor@indiana.edu 2 Dept. of Wind an attractive proposition for measuring wind speeds over the oceans because in principle they also offer

  17. Short Communication Three ocean state indices implemented in

    E-Print Network [OSTI]

    ), the tropical cyclone heat potential, showing the thermal energy available in the ocean to enhance or decrease-case scenario, they also allow users to anticipate the effects of environmental hazards and pollution crises

  18. Tax Credits, Rebates & Savings | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    Wind (All), Biomass, Hydroelectric, Hydrogen, Geothermal Heat Pumps, Combined Heat & Power, Landfill Gas, Tidal, Wave, Ocean Thermal, Wind (Small), Hydroelectric...

  19. Tax Credits, Rebates & Savings | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    Electric, Solar Photovoltaics, Wind (All), Biomass, Hydroelectric, Combined Heat & Power, Landfill Gas, Tidal, Wave, Ocean Thermal, Wind (Small), Hydroelectric (Small),...

  20. Tax Credits, Rebates & Savings | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    Solar Photovoltaics, Wind (All), Biomass, Hydroelectric, Hydrogen, Combined Heat & Power, Tidal, Wave, Ocean Thermal, Wind (Small), Hydroelectric (Small) Interconnection...

  1. Tax Credits, Rebates & Savings | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    Wind (All), Biomass, Hydroelectric, Combined Heat & Power, Landfill Gas, Tidal, Wave, Ocean Thermal, Wind (Small), Hydroelectric (Small), Anaerobic Digestion, Other...

  2. Tax Credits, Rebates & Savings | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Wind (All), Biomass, Hydroelectric, Geothermal Heat Pumps, Landfill Gas, Tidal, Wave, Ocean Thermal, Wind (Small) Alternative Energy Portfolio Standard Eligible...

  3. Wind Vision: Impacts

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Wind Vision: Impacts Rich Tusing New West Technologies, LLC For EERE's Wind and Water Power Technologies Office July 15, 2015 2 | Wind and Water Power Technologies Office...

  4. Wind Program News

    SciTech Connect (OSTI)

    2012-01-06

    Stay current on the news about the wind side of the Wind and Water Power Program and important wind energy events around the U.S.

  5. Wind Power Link

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Wind Power Links These other web sites may provide additional information of interest: American Wind Energy Association Idaho Department of Energy Wind Power Information Utah...

  6. Energy 101: Wind Turbines

    ScienceCinema (OSTI)

    None

    2013-05-29

    See how wind turbines generate clean electricity from the power of the wind. Highlighted are the various parts and mechanisms of a modern wind turbine.

  7. Energy 101: Wind Turbines

    SciTech Connect (OSTI)

    None

    2011-01-01

    See how wind turbines generate clean electricity from the power of the wind. Highlighted are the various parts and mechanisms of a modern wind turbine.

  8. Vandenberg_Wind_Data

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Air Force and other branches of the Department of Defense for several years doing wind data collection and assessment, wind power feasibility studies, and wind farm design....

  9. An implicit finite-element model for 3D non-hydrostatic mesoscale ocean M.A. Maidana1

    E-Print Network [OSTI]

    Politècnica de Catalunya, Universitat

    An implicit finite-element model for 3D non-hydrostatic mesoscale ocean flows M.A. Maidana1 , J-dimensional, non-hydrostatic mesoscale ocean flows. The model considered here incorporates surface wind stress and the idea of using unstructured grids for modelling mesoscale ocean dynamics sounds very attractive given

  10. THE ONLY SOURCE OF ENERGY

    E-Print Network [OSTI]

    Calvin, Genevieve J.

    2011-01-01

    sun — on climate (wind, hydro, ocean thermal gradients); on absorptive materials (solar cells and similar collectors);

  11. Systems Performance Analyses of Alaska Wind-Diesel Projects; Kasigluk, Alaska (Fact Sheet)

    SciTech Connect (OSTI)

    Baring-Gould, I.

    2009-04-01

    This fact sheet summarizes a systems performance analysis of the wind-diesel project in Kasigluk, Alaska. Data provided for this project include community load data, average wind turbine output, average diesel plant output, thermal load data, average net capacity factor, average net wind penetration, estimated fuel savings, and wind system availability.

  12. Wind-Energy based Path Planning For Electric Unmanned Aerial Vehicles Using Markov Decision Processes

    E-Print Network [OSTI]

    Smith, Ryan N.

    Wind-Energy based Path Planning For Electric Unmanned Aerial Vehicles Using Markov Decision wind-energy is one possible way to ex- tend flight duration for Unmanned Arial Vehicles. Wind-energy sources of wind energy available to exploit for this problem [5]: 1) Vertical air motion, such as thermal

  13. Temporal vs. Stochastic Granularity in Thermal Generation Capacity ...

    E-Print Network [OSTI]

    smryan

    2013-07-25

    [20] S. Jin, A. Botterud, S. Ryan, "Impact of demand response on thermal generation investment with high wind penetration,". Iowa State Univerity, Technical ...

  14. Wind turbine

    DOE Patents [OSTI]

    Cheney, Jr., Marvin C. (Glastonbury, CT)

    1982-01-01

    A wind turbine of the type having an airfoil blade (15) mounted on a flexible beam (20) and a pitch governor (55) which selectively, torsionally twists the flexible beam in response to wind turbine speed thereby setting blade pitch, is provided with a limiter (85) which restricts unwanted pitch change at operating speeds due to torsional creep of the flexible beam. The limiter allows twisting of the beam by the governor under excessive wind velocity conditions to orient the blades in stall pitch positions, thereby preventing overspeed operation of the turbine. In the preferred embodiment, the pitch governor comprises a pendulum (65,70) which responds to changing rotor speed by pivotal movement, the limiter comprising a resilient member (90) which engages an end of the pendulum to restrict further movement thereof, and in turn restrict beam creep and unwanted blade pitch misadjustment.

  15. Wind Program: Wind Vision | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    Wind Vision: A New Era for Wind Power in the United States With more than 4.5% of the nation's electricity supplied by wind energy today, the Department of Energy has collaborated...

  16. Wind | Department of Energy

    Office of Environmental Management (EM)

    Science & Innovation Energy Sources Renewable Energy Wind Wind Wind The United States is home to one of the largest and fastest growing wind markets in the world. To stay...

  17. Our Ocean Backyard Santa Cruz Sentinel columns by Gary Griggs, Director, Institute of Marine Sciences, UC Santa Cruz.

    E-Print Network [OSTI]

    California at Santa Cruz, University of

    , Steamer Lane, or Mavericks, are generated by the wind. Wind blowing across the ocean transfers energy to the sea surface, initially forming small ripples, which over time, if the wind persists, will grow to form distinct waves. Ultimately, the size of the waves is a function of the amount of energy transmitted

  18. Wind Integration National Dataset (WIND) Toolkit

    Office of Energy Efficiency and Renewable Energy (EERE)

    For utility companies, grid operators and other stakeholders interested in wind energy integration, collecting large quantities of high quality data on wind energy resources is vitally important....

  19. Matter & Energy Wind Energy

    E-Print Network [OSTI]

    Shepelyansky, Dima

    intuitive experience of a small wind not creating a storm, and that wind needs to reach a certain threshold

  20. AUTUMNAL BIRD MIGRATION OBSERVED FROM SHIPS IN THE WESTERN NORTH ATLANTIC OCEAN

    E-Print Network [OSTI]

    Holberton, Rebecca L.

    drifted offshore by winds. For three to sixweekseachfall from 1971 through 1974,we and D. Griffin, RAUTUMNAL BIRD MIGRATION OBSERVED FROM SHIPS IN THE WESTERN NORTH ATLANTIC OCEAN BY CAROLP

  1. Toward the Understanding and Prediction of Optical Variability in the Ocean

    E-Print Network [OSTI]

    California at Santa Barbara, University of

    , and organisms. 5. How do solar zenith angles, winds, surface waves and upper ocean optical properties affect, particles & organisms & exits sea Exiting light can be seen above water surface; sensed by airplanes

  2. The Influence of Boundary Layer Processes on the Diurnal Variation of the Climatological Near-Surface Wind Speed Probability Distribution over Land*

    E-Print Network [OSTI]

    He, Yanping

    -Surface Wind Speed Probability Distribution over Land* YANPING HE School of Earth and Ocean Sciences wind speed probability distribution is essential for surface flux estimation and wind power management. Global observations indicate that the surface wind speed probability density function (PDF

  3. Coastal Ohio Wind Project

    SciTech Connect (OSTI)

    Gorsevski, Peter; Afjeh, Abdollah; Jamali, Mohsin; Bingman, Verner

    2014-04-04

    The Coastal Ohio Wind Project intends to address problems that impede deployment of wind turbines in the coastal and offshore regions of Northern Ohio. The project evaluates different wind turbine designs and the potential impact of offshore turbines on migratory and resident birds by developing multidisciplinary research, which involves wildlife biology, electrical and mechanical engineering, and geospatial science. Firstly, the project conducts cost and performance studies of two- and three-blade wind turbines using a turbine design suited for the Great Lakes. The numerical studies comprised an analysis and evaluation of the annual energy production of two- and three-blade wind turbines to determine the levelized cost of energy. This task also involved wind tunnel studies of model wind turbines to quantify the wake flow field of upwind and downwind wind turbine-tower arrangements. The experimental work included a study of a scaled model of an offshore wind turbine platform in a water tunnel. The levelized cost of energy work consisted of the development and application of a cost model to predict the cost of energy produced by a wind turbine system placed offshore. The analysis found that a floating two-blade wind turbine presents the most cost effective alternative for the Great Lakes. The load effects studies showed that the two-blade wind turbine model experiences less torque under all IEC Standard design load cases considered. Other load effects did not show this trend and depending on the design load cases, the two-bladed wind turbine showed higher or lower load effects. The experimental studies of the wake were conducted using smoke flow visualization and hot wire anemometry. Flow visualization studies showed that in the downwind turbine configuration the wake flow was insensitive to the presence of the blade and was very similar to that of the tower alone. On the other hand, in the upwind turbine configuration, increasing the rotor blade angle of attack reduced the wake size and enhanced the vortices in the flow downstream of the turbine-tower compared with the tower alone case. Mean and rms velocity distributions from hot wire anemometer data confirmed that in a downwind configuration, the wake of the tower dominates the flow, thus the flow fields of a tower alone and tower-turbine combinations are nearly the same. For the upwind configuration, the mean velocity shows a narrowing of the wake compared with the tower alone case. The downwind configuration wake persisted longer than that of an upwind configuration; however, it was not possible to quantify this difference because of the size limitation of the wind tunnel downstream of the test section. The water tunnel studies demonstrated that the scale model studies could be used to adequately produce accurate motions to model the motions of a wind turbine platform subject to large waves. It was found that the important factors that affect the platform is whether the platform is submerged or surface piercing. In the former, the loads on the platform will be relatively reduced whereas in the latter case, the structure pierces the wave free surface and gains stiffness and stability. The other important element that affects the movement of the platform is depth of the sea in which the wind turbine will be installed. Furthermore, the wildlife biology component evaluated migratory patterns by different monitoring systems consisting of marine radar, thermal IR camera and acoustic recorders. The types of radar used in the project are weather surveillance radar and marine radar. The weather surveillance radar (1988 Doppler), also known as Next Generation Radar (NEXRAD), provides a network of weather stations in the US. Data generated from this network were used to understand general migratory patterns, migratory stopover habitats, and other patterns caused by the effects of weather conditions. At a local scale our marine radar was used to complement the datasets from NEXRAD and to collect additional monitoring parameters such as passage rates, flight paths, flight directi

  4. Ship Observations of the Tropical Pacific Ocean along the Coast of South America S. P. DE SZOEKE, C. W. FAIRALL, AND SERGIO PEZOA

    E-Print Network [OSTI]

    Kurapov, Alexander

    of upwelling, surface fluxes, and transport, which in turn depend on the wind and solar forcing at the ocean surface. Southeasterly winds blow parallel to the coast in the Southern Hemisphere, causing offshore EkmanShip Observations of the Tropical Pacific Ocean along the Coast of South America S. P. DE SZOEKE, C

  5. Wind Technologies & Evolving Opportunities (Presentation)

    SciTech Connect (OSTI)

    Robichaud, R.

    2014-07-01

    This presentation covers opportunities for wind technology; wind energy market trends; an overview of the National Wind Technology Center near Boulder, Colorado; wind energy price and cost trends; wind turbine technology improvements; and wind resource characterization improvements.

  6. Wind and Solar on the Power Grid: Myths and Misperceptions, Greening...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    SOLAR ON THE POWER GRID: MYTHS AND MISPERCEPTIONS GREENING THE GRID Wind and solar are inherently more variable and uncertain than the traditional dispatchable thermal and hydro...

  7. Sandia Energy - Grid System Planning for Wind: Wind Generator...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Grid System Planning for Wind: Wind Generator Modeling Home Stationary Power Energy Conversion Efficiency Wind Energy Siting and Barrier Mitigation Grid System Planning for Wind:...

  8. 2015 Iowa Wind Power Conference and Iowa Wind Energy Association...

    Office of Environmental Management (EM)

    2015 Iowa Wind Power Conference and Iowa Wind Energy Association Midwest Regional Energy Job Fair 2015 Iowa Wind Power Conference and Iowa Wind Energy Association Midwest Regional...

  9. Wind tunnel performance data for the Darrieus wind turbine with...

    Office of Scientific and Technical Information (OSTI)

    Wind tunnel performance data for the Darrieus wind turbine with NACA 0012 blades Citation Details In-Document Search Title: Wind tunnel performance data for the Darrieus wind...

  10. A National Offshore Wind Strategy: Creating an Offshore Wind...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    A National Offshore Wind Strategy: Creating an Offshore Wind Energy Industry in the United States A National Offshore Wind Strategy: Creating an Offshore Wind Energy Industry in...

  11. 20% Wind Energy by 2030 - Chapter 2: Wind Turbine Technology...

    Office of Environmental Management (EM)

    - Chapter 2: Wind Turbine Technology Summary Slides 20% Wind Energy by 2030 - Chapter 2: Wind Turbine Technology Summary Slides Summary slides for wind turbine technology, its...

  12. Indian Ocean Dipole Response to Global Warming in the CMIP5 Multimodel Ensemble*

    E-Print Network [OSTI]

    Xie, Shang-Ping

    Indian Ocean Dipole Response to Global Warming in the CMIP5 Multimodel Ensemble* XIAO-TONG ZHENG,1 The response of the Indian Ocean dipole (IOD) mode to global warming is investigated based on simu- lations- mospheric feedback and zonal wind variance weaken under global warming. The negative skewness in eastern

  13. Role of the ENSOIndian Ocean coupling on ENSO variability in a coupled GCM

    E-Print Network [OSTI]

    Li, Tim

    the key to the rapid transition to an opposite phase. This remote impact of the Indian Ocean SSTanomalyis Nino/La Nina. Without the involvement of the Indian Ocean, the phase transition is much slower linked to the change of zonal wind stress in the western Pacific, which leads to a rapid demise of El

  14. Center for Coastal & Ocean Mapping NOAA-UNH Joint Hydrographic Center

    E-Print Network [OSTI]

    New Hampshire, University of

    - age has been incorporated into standard software for offshore mapping and, as it continues to be refined, will be a boon not only for habitat mapping but ocean engineering projects--aquaculture, wind farms, deep-ocean struc- tures--that require highly accurate seafloor characterization. Seafloor

  15. 2008 WIND TECHNOLOGIES MARKET REPORT

    E-Print Network [OSTI]

    Bolinger, Mark

    2010-01-01

    AWEA). 2009b. AWEA Small Wind Turbine Global Market Study:will ultimately benefit wind. Small Wind ITC: EESA 2008

  16. Scattering Solar Thermal Concentrators

    Broader source: Energy.gov [DOE]

    "This fact sheet describes a scattering solar thermal concentrators project awarded under the DOE's 2012 SunShot Concentrating Solar Power R&D award program. The team, led by the Pennsylvania State University, is working to demonstrate a new, scattering-based approach to concentrating sunlight that aims to improve the overall performance and reliability of the collector field. The research team aims to show that scattering solar thermal collectors are capable of achieving optical performance equal to state-of-the-art parabolic trough systems, but with the added benefits of immunity to wind-load tracking error, more efficient land use, and utilization of stationary receivers."

  17. A comparison of wind products in the context of ENSO prediction Lamont-Doherty Earth Observatory of Columbia University, USA

    E-Print Network [OSTI]

    Chen, .Dake

    A comparison of wind products in the context of ENSO prediction Dake Chen Lamont-Doherty Earth 2002; published 4 February 2003. [1] Four different wind products are evaluated in terms of their application to ENSO prediction. These wind products have been used to initialize an intermediate ocean

  18. Methods and apparatus for cooling wind turbine generators

    DOE Patents [OSTI]

    Salamah, Samir A. (Niskayuna, NY); Gadre, Aniruddha Dattatraya (Rexford, NY); Garg, Jivtesh (Schenectady, NY); Bagepalli, Bharat Sampathkumaran (Niskayuna, NY); Jansen, Patrick Lee (Alplaus, NY); Carl, Jr., Ralph James (Clifton Park, NY)

    2008-10-28

    A wind turbine generator includes a stator having a core and a plurality of stator windings circumferentially spaced about a generator longitudinal axis. A rotor is rotatable about the generator longitudinal axis, and the rotor includes a plurality of magnetic elements coupled to the rotor and cooperating with the stator windings. The magnetic elements are configured to generate a magnetic field and the stator windings are configured to interact with the magnetic field to generate a voltage in the stator windings. A heat pipe assembly thermally engaging one of the stator and the rotor to dissipate heat generated in the stator or rotor.

  19. 2009 Wind Technologies Market Report

    E-Print Network [OSTI]

    Wiser, Ryan

    2010-01-01

    Public Service Wind Integration Cost Impact Study. Preparedequipment-related wind turbine costs, the overall importinstalled wind power project costs, wind turbine transaction

  20. 2010 Wind Technologies Market Report

    E-Print Network [OSTI]

    Wiser, Ryan

    2012-01-01

    Public Service Wind Integration Cost Impact Study. Preparedequipment-related wind turbine costs, the overall importinstalled wind power project costs, wind turbine transaction

  1. 2009 Wind Technologies Market Report

    E-Print Network [OSTI]

    Wiser, Ryan

    2010-01-01

    land- based wind energy technology. 2009 Wind TechnologiesRenewable Energy 2009 WIND TECHNOLOGIES MARKET REPORT AUGUSTfor a variety of energy technologies, including wind energy.

  2. 2011 Wind Technologies Market Report

    E-Print Network [OSTI]

    Bolinger, Mark

    2013-01-01

    land-based wind energy technology. 2011 Wind Technologiesfor a variety of energy technologies, including wind energy.Renewable Energy Laboratory’s National Wind Technology

  3. 2010 Wind Technologies Market Report

    E-Print Network [OSTI]

    Wiser, Ryan

    2012-01-01

    land-based wind energy technology. 2010 Wind Technologiesfor a variety of energy technologies, including wind energy.2010 Wind Technologies Market Report Federal Energy

  4. 2012 Wind Technologies Market Report

    E-Print Network [OSTI]

    Wiser, Ryan

    2014-01-01

    land-based wind energy technology. 2012 Wind Technologiesfor a variety of energy technologies, including wind energy.of Energy (DOE) Wind & Water Power Technology Office team

  5. 2009 Wind Technologies Market Report

    E-Print Network [OSTI]

    Wiser, Ryan

    2010-01-01

    wind power project costs, wind turbine transaction prices,increases in the cost of wind turbines over the last severaland components and wind turbine costs. Excluded from all

  6. 2010 Wind Technologies Market Report

    E-Print Network [OSTI]

    Wiser, Ryan

    2012-01-01

    A. 2010. Impact of Wind Energy Installations on DomesticJanuary 31, 2011. American Wind Energy Association (AWEA).D.C. : American Wind Energy Association. American Wind

  7. 2011 Wind Technologies Market Report

    E-Print Network [OSTI]

    Bolinger, Mark

    2013-01-01

    A. 2010. Impact of Wind Energy Installations on DomesticUniversity. American Wind Energy Association (AWEA). 2012a.D.C. : American Wind Energy Association. American Wind

  8. Shortwave aerosol radiative forcing over cloud-free oceans from Terra: 1. Angular models for aerosols

    E-Print Network [OSTI]

    Christopher, Sundar A.

    Sensor Microwave Imager (SSM/I) data to obtain near surface wind speed. The new aerosol ADMs are built to obtain aerosol properties within a Clouds and Earth Radiant Energy System (CERES) footprint and Special as functions of near-surface ocean wind speed and MODIS aerosol optical depth at 0.55 mm (t0.55). Among the new

  9. Wintertime Northern Bering Sea Tip Jets and their Impact on Oceanic Circulation

    E-Print Network [OSTI]

    Pickart, Robert S.

    Wintertime Northern Bering Sea Tip Jets and their Impact on Oceanic Circulation G, 12 #12; 2 Abstract: Low-level regions of high wind speed known as tip jets have been identified show that tips jets characterized by enhanced northeasterly winds occur in the vicinity of the two

  10. Ocean and Resources Engineering is the application of ocean science and engineering to the challenging conditions

    E-Print Network [OSTI]

    engineering, mixing and transport, water quality, ocean thermal energy conversion, hydrogen. GENO PAWLAK to waves and current, sediment transport, high pressure and temperature variations, and renewable energy methods, water wave mechanics, sediment transport. R. CENGIZ ERTEKIN Professor, PhD 1984, UC Berkeley

  11. Wind Power Software

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Wind Analysis ms - 3.0MB Excel Excel Wind Analysis Presentation - 8.2MB PowerPoint Excel Wind Analysis With Power Curves Included - 3.7MB Excel WindR.exe - 44kB Weibull Excel Wind...

  12. Mid-Atlantic Wind - Overcoming the Challenges

    SciTech Connect (OSTI)

    Daniel F. Ancona III; Kathryn E. George; Richard P. Bowers; Dr. Lynn Sparling; Bruce Buckheit; Daniel LoBue

    2012-05-31

    This study, supported by the US Department of Energy, Wind Powering America Program, Maryland Department of Natural Resources and Chesapeake Bay Foundation, analyzed barriers to wind energy development in the Mid-Atlantic region along with options for overcoming or mitigating them. The Mid-Atlantic States including Delaware, Maryland, North Carolina and Virginia, have excellent wind energy potential and growing demand for electricity, but only two utility-scale projects have been installed to date. Reasons for this apathetic development of wind resources were analyzed and quantified for four markets. Specific applications are: 1) Appalachian mountain ridgeline sites, 2) on coastal plains and peninsulas, 3) at shallow water sites in Delaware and Chesapeake Bays, Albemarle and Pamlico Sounds, and 4) at deeper water sites off the Atlantic coast. Each market has distinctly different opportunities and barriers. The primary barriers to wind development described in this report can be grouped into four categories; state policy and regulatory issues, wind resource technical uncertainty, economic viability, and public interest in environmental issues. The properties of these typologies are not mutually independent and do interact. The report concluded that there are no insurmountable barriers to land-based wind energy projects and they could be economically viable today. Likewise potential sites in sheltered shallow waters in regional bay and sounds have been largely overlooked but could be viable currently. Offshore ocean-based applications face higher costs and technical and wind resource uncertainties. The ongoing research and development program, revision of state incentive policies, additional wind measurement efforts, transmission system expansion, environmental baseline studies and outreach to private developers and stakeholders are needed to reduce barriers to wind energy development.

  13. Mid-Atlantic Wind - Overcoming the Challenges

    SciTech Connect (OSTI)

    Daniel F. Ancona III; Kathryn E. George; Lynn Sparling; Bruce C. Buckheit; Daniel LoBue; and Richard P. Bowers

    2012-06-29

    This study, supported by the US Department of Energy, Wind Powering America Program, Maryland Department of Natural Resources and Chesapeake Bay Foundation, analyzed barriers to wind energy development in the Mid-Atlantic region along with options for overcoming or mitigating them. The Mid-Atlantic States including Delaware, Maryland, North Carolina and Virginia, have excellent wind energy potential and growing demand for electricity, but only two utility-scale projects have been installed to date. Reasons for this apathetic development of wind resources were analyzed and quantified for four markets. Specific applications are: 1) Appalachian mountain ridgeline sites, 2) on coastal plains and peninsulas, 3) at shallow water sites in Delaware and Chesapeake Bays, Albemarle and Pamlico Sounds, and 4) at deeper water sites off the Atlantic coast. Each market has distinctly different opportunities and barriers. The primary barriers to wind development described in this report can be grouped into four categories; state policy and regulatory issues, wind resource technical uncertainty, economic viability, and public interest in environmental issues. The properties of these typologies are not mutually independent and do interact. The report concluded that there are no insurmountable barriers to land-based wind energy projects and they could be economically viable today. Likewise potential sites in sheltered shallow waters in regional bay and sounds have been largely overlooked but could be viable currently. Offshore ocean-based applications face higher costs and technical and wind resource uncertainties. The ongoing research and development program, revision of state incentive policies, additional wind measurement efforts, transmission system expansion, environmental baseline studies and outreach to private developers and stakeholders are needed to reduce barriers to wind energy development.

  14. MFR PAPER 1132 The ocean's yield of seafood

    E-Print Network [OSTI]

    of heat at the earth's surface is uneven, the result of dynamic processes. Heat transfer in the sea occurs by the slow, stately circulation of ocean currents; in the air heat is transferred by the wind . Heat transfer of South Carolina and Georgia, underwater gardens and parks in Florida and the Caribbean Islands and

  15. OCEAN STIRRING BY SWIMMING BODIES Jean-Luc Thiffeault

    E-Print Network [OSTI]

    proposed that the mechanical energy delivered by the swimming motions of the marine biosphere could amount to almost 1012 W, a figure comparable to the energy delivered by the winds and tides. This suggests that this energy is delivered to the top three kilometers of the oceans, they estimate an effective diffusivity

  16. Wind Integration

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity ofkandz-cm11 Outreach Home RoomPreservationBio-Inspired SolarAbout /Two0Photos andSeminarsDesign » DesignMay »helpWind

  17. Wind Power

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantityBonneville Power AdministrationRobust,Field-effectWorking WithTelecentricNCubicthe FOIA?ResourceMeasurement Buoy AdvancesWind

  18. Publications Indian Ocean

    E-Print Network [OSTI]

    : "Kinematics and Dynamics" and "Thermodynamics." The first section portrays sea level pressure, resultant wind (arrows and isotachs), directional steadiness of wind, divergence, relative vorticity, and cui of wind St., Madison, WI 53715; the cost is $70.00. EDIS Prints Great Lakes Data Catalog EDIS' National

  19. Sensitivity of Coastal Currents near Point Conception to Forcing by Three Different Winds: ECMWF, COAMPS, and Blended SSM/IECMWFBuoy Winds

    E-Print Network [OSTI]

    Sensitivity of Coastal Currents near Point Conception to Forcing by Three Different Winds: ECMWF, COAMPS, and Blended SSM/I­ECMWF­Buoy Winds CHANGMING DONG AND LIE-YAUW OEY Program in Atmospheric and Oceanic Sciences, Princeton University, Princeton, New Jersey (Manuscript received 16 January 2004

  20. Although tropical cyclones are still not fully understood, Professor Nick Shay was responsible for uncovering the role of the deep ocean on their possible intensification. Here, he

    E-Print Network [OSTI]

    Miami, University of

    of circulation and available upper ocean heat. The HF radar provides a means of mapping surface currents, winds and waves over the coastal ocean to as far as 200 km offshore. These measurements are useful to improve for uncovering the role of the deep ocean on their possible intensification. Here, he explains how his current

  1. Wind Power Today

    SciTech Connect (OSTI)

    Not Available

    2006-05-01

    Wind Power Today is an annual publication that provides an overview of the wind energy research conducted by the U.S. Department of Energy Wind and Hydropower Technologies Program.

  2. Scale Models & Wind Turbines

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Turbines * Readings about Cape Wind and other offshore and onshore siting debates for wind farms * Student Worksheet * A number of scale model items: Ken, Barbie or other dolls...

  3. Wind Power Outreach Campaign

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Wind Power Wind Power Main Page Outreach Programs Image Gallery FAQs Links Software Hydro Power INL Home Outreach Programs A team of educators and scientists from the Idaho...

  4. Wind/Hydro Study

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    WindHydro Integration Feasibility Study Announcements (Updated July 8, 2010) The Final WindHydro Integration Feasibility Study Report, dated June 2, 2009, has been submitted to...

  5. Wind for Schools (Poster)

    SciTech Connect (OSTI)

    Baring-Gould, I.

    2010-05-01

    As the United States dramatically expands wind energy deployment, the industry is challenged with developing a skilled workforce and addressing public resistance. Wind Powering America's Wind for Schools project addresses these issues by developing Wind Application Centers (WACs) at universities; WAC students assist in implementing school wind turbines and participate in wind courses, by installing small wind turbines at community "host" schools, by implementing teacher training with interactive curricula at each host school. This poster provides an overview of the first two years of the Wind for Schools project, primarily supporting activities in Colorado, Kansas, Nebraska, South Dakota, Montana, and Idaho.

  6. Wind energy bibliography

    SciTech Connect (OSTI)

    1995-05-01

    This bibliography is designed to help the reader search for information on wind energy. The bibliography is intended to help several audiences, including engineers and scientists who may be unfamiliar with a particular aspect of wind energy, university researchers who are interested in this field, manufacturers who want to learn more about specific wind topics, and librarians who provide information to their clients. Topics covered range from the history of wind energy use to advanced wind turbine design. References for wind energy economics, the wind energy resource, and environmental and institutional issues related to wind energy are also included.

  7. Small Wind Conference 2015

    Broader source: Energy.gov [DOE]

    The Small Wind Conference brings together small wind installers, site assessors, manufacturers, dealers and distributors, supply chain stakeholders, educators, public benefits program managers, and...

  8. Wind Turbine Tribology Seminar

    Broader source: Energy.gov [DOE]

    Wind turbine reliability issues are often linked to failures of contacting components, such as bearings, gears, and actuators. Therefore, special consideration to tribological design in wind...

  9. INTEGRATED OCEAN DRILLING PROGRAM 2011 OCEAN DRILLING CITATION REPORT

    E-Print Network [OSTI]

    INTEGRATED OCEAN DRILLING PROGRAM 2011 OCEAN DRILLING CITATION REPORT covering citations related to the Deep Sea Drilling Project, Ocean Drilling Program, and Integrated Ocean Drilling Program from Geo Drilling Program Publication Services September 2011 #12;OVERVIEW OF THE OCEAN DRILLING CITATION DATABASE

  10. CoastWatch/OceanWatch Proving Ground: VIIRS Ocean Color

    E-Print Network [OSTI]

    ;VIIRS Operational Ocean Color User: NWS/EMC · Phytoplankton alter the penetration of solar radiationCoastWatch/OceanWatch Proving Ground: VIIRS Ocean Color User Engagement, Quality Assessment Science Seminar #12;Outline Overview of VIIRS Ocean Color Proving Ground (Hughes) VIIRS Ocean Color

  11. Modeling pCO sub 2 in the upper ocean

    SciTech Connect (OSTI)

    Archer, D.

    1990-12-01

    This report summarizes our current understanding of the physical, chemical, and biological processes that control the natural cycling of carbon dioxide (CO{sub 2}) in the surface ocean. Because the physics of mixing at the ocean surface creates the essential framework for the chemistry and biology, and because the literature on surface ocean mixing is extensive, a major focus of the report is to review existing mixed layer models for the upper ocean and their implementation in global ocean circulation models. Three families of mixed layer models have been developed. The integrated turbulent kinetic energy'' (TKE) models construct a budget for surface ocean TKE, using the wind stress as source and dissipation as sink for TKE. The shear instability'' models maintain profiles of current velocity resulting from the wind stress. Turbulence closure'' models are the most general and the most complicated of the three types, and are based on laboratory studies of fluid turbulence. This paper explores behavioral distinctions between the three types of models, and summarizes previously published comparisons of the generality, accuracy, and computational requirements of the three models. The application of mixed layer models to treatment of sea ice is also reviewed. 101 refs., 7 figs., 1 tab.

  12. For Cape Wind, Summer Breeze Makes Offshore Wind Feel Fine |...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    For Cape Wind, Summer Breeze Makes Offshore Wind Feel Fine For Cape Wind, Summer Breeze Makes Offshore Wind Feel Fine July 1, 2014 - 8:44am Addthis For Cape Wind, Summer Breeze...

  13. Tax Credits, Rebates & Savings | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    Thermal Electric, Solar Photovoltaics, Wind (All), Biomass, Hydroelectric, Geothermal Heat Pumps, Municipal Solid Waste, Landfill Gas, Tidal, Wave, Ocean Thermal, Wind (Small),...

  14. Tax Credits, Rebates & Savings | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    Thermal Electric, Solar Photovoltaics, Wind (All), Biomass, Hydroelectric, Landfill Gas, Tidal, Wave, Ocean Thermal, Other EE, Wind (Small), Anaerobic Digestion Energy Efficiency...

  15. Tax Credits, Rebates & Savings | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Savings Category: Solar Water Heat, Solar Thermal Electric, Solar Photovoltaics, Wind (All), Biomass, Hydroelectric, Landfill Gas, Tidal, Wave, Ocean Thermal, Wind (Small),...

  16. Tax Credits, Rebates & Savings | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    Savings Category: Geothermal Electric, Solar Thermal Electric, Solar Photovoltaics, Wind (All), Biomass, Municipal Solid Waste, Landfill Gas, Tidal, Wave, Ocean Thermal, Wind...

  17. Tax Credits, Rebates & Savings | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    Solar Thermal Electric, Solar Photovoltaics, Wind (All), Biomass, Hydroelectric, Fuel Cells using Non-Renewable Fuels, Landfill Gas, Tidal, Wave, Ocean Thermal, Wind...

  18. the risk issue of wind measurement for wind turbine operation

    E-Print Network [OSTI]

    Leu, Tzong-Shyng "Jeremy"

    Sciences, National Taiwan University #12;outline · Wind measurement in meteorology and wind farm design-related issues on wind turbine operation 3/31/2011 2 #12;WIND MEASUREMENT IN METEOROLOGY & WIND FARM DESIGN 3://www.atm.ncu.edu.tw/93/wind/ MM5 simulation (1996~2000 database) Wind speed (m/s) at 50mWind power (100W/m2) at 50m http://wind.itri.org.tw/wind

  19. Ocean Energy Technology Overview

    SciTech Connect (OSTI)

    none,

    2009-08-05

    Introduction to and overview of ocean renewable energy resources and technologies prepared for the U.S. Department of Energy Federal Energy management Program.

  20. Study of directional ocean wavefield evolution and rogue wave occurrence using large-scale phase-resolved nonlinear simulations

    E-Print Network [OSTI]

    Xiao, Wenting, 1982-

    2013-01-01

    It is challenging to obtain accurate predictions of ocean surface wavefield evolutions due to several complex dynamic processes involved, including nonlinear wave interaction, wave breaking and wind forcing, and also wave ...

  1. b. Project Summary This is an experimental investigation of the oceanic circulation and its small-scale, yet

    E-Print Network [OSTI]

    focus. There, several external sources of circulation have been identified (wind, deep convection using a layered, hydrostatic ocean model. The specific experiments planned are (i), the concentration, also optically. The fourth set of experiments requires special comment. Numerical modeling

  2. Statistics of Met-Ocean Conditions Between West and Central Gulf of Mexico Based on Field Measurements 

    E-Print Network [OSTI]

    Su, Lin

    2012-07-16

    Statistics of met-ocean conditions including wind, current and wave at the location between west and central Gulf of Mexico (GOM) are derived based on about three year of field measurements. Two-parameter Weibull distribution has been employed...

  3. A DNS capability for obtaining underwater light field and retrieving upper ocean conditions via in-water light measurements

    E-Print Network [OSTI]

    Xu, Zao, Mech. E. Massachusetts Institute of Technology

    2011-01-01

    Predicting the ocean surface conditions (surface elevation, temperature, wind speed, etc.) becomes more and more important for both real life and military applications. This thesis presents a direct numerical simulation ...

  4. Our Ocean Backyard Santa Cruz Sentinel columns by Gary Griggs, Director, Institute of Marine Sciences, UC Santa Cruz.

    E-Print Network [OSTI]

    California at Santa Cruz, University of

    revealed that these giant waves often occur where ordinary wind waves encounter ocean currents. The strength of the current #12;seems to concentrate the wave energy, much like a lens will concentrate light

  5. 2009 Wind Technologies Market Report

    E-Print Network [OSTI]

    Wiser, Ryan

    2010-01-01

    of Energy’s (DOE) Wind & Water Power Program. For reviewingwere funded by the Wind & Water Power Program, Office ofWind Technologies Market Report Wind Energy Web Sites U.S. Department of Energy Wind and Water Power

  6. Wave-driven wind jets in the marine atmospheric boundary layer

    E-Print Network [OSTI]

    Reading, University of

    Wave-driven wind jets in the marine atmospheric boundary layer Kirsty E. Hanley Stephen E. Belcher;Abstract The interaction between ocean surface waves and the overlying wind leads to a transfer of momentum can also be transferred upwards when long wavelength waves, characteristic of re- motely generated

  7. Variability in satellite winds over the Benguela upwelling system during 19992000

    E-Print Network [OSTI]

    Kurapov, Alexander

    Variability in satellite winds over the Benguela upwelling system during 1999­­2000 C. M. Risien,1, Rondebosch, South Africa D. B. Chelton College of Oceanic and Atmospheric Sciences, Oregon State University March 2004. [1] Wind stress variability over the Benguela upwelling system is considered using 16 months

  8. Modeling the Atmospheric Boundary Layer Wind Response to Mesoscale Sea Surface Temperature Perturbations

    E-Print Network [OSTI]

    Kurapov, Alexander

    Modeling the Atmospheric Boundary Layer Wind Response to Mesoscale Sea Surface Temperature received 25 October 2013, in final form 24 July 2014) ABSTRACT The wind speed response to mesoscale SST Research and Forecasting (WRF) Model and the U.S. Navy Coupled Ocean­Atmosphere Mesoscale Prediction System

  9. Assessment of Offshore Wind Energy Leasing Areas for the BOEM Maryland Wind Energy Area

    SciTech Connect (OSTI)

    Musial, W.; Elliott, D.; Fields, J.; Parker, Z.; Scott, G.; Draxl, C.

    2013-06-01

    The National Renewable Energy Laboratory (NREL), under an interagency agreement with the Bureau of Ocean Energy Management (BOEM), is providing technical assistance to identify and delineate leasing areas for offshore wind energy development within the Atlantic Coast Wind Energy Areas (WEAs) established by BOEM. This report focuses on NREL's evaluation of the delineation proposed by the Maryland Energy Administration (MEA) for the Maryland (MD) WEA and two alternative delineations. The objectives of the NREL evaluation were to assess MEA's proposed delineation of the MD WEA, perform independent analysis, and recommend how the MD WEA should be delineated.

  10. Assessment of Offshore Wind System Design, Safety, and Operation Standards

    SciTech Connect (OSTI)

    Sirnivas, S.; Musial, W.; Bailey, B.; Filippelli, M.

    2014-01-01

    This report is a deliverable for a project sponsored by the U.S. Department of Energy (DOE) entitled National Offshore Wind Energy Resource and Design Data Campaign -- Analysis and Collaboration (contract number DE-EE0005372; prime contractor -- AWS Truepower). The project objective is to supplement, facilitate, and enhance ongoing multiagency efforts to develop an integrated national offshore wind energy data network. The results of this initiative are intended to 1) produce a comprehensive definition of relevant met-ocean resource assets and needs and design standards, and 2) provide a basis for recommendations for meeting offshore wind energy industry data and design certification requirements.

  11. Ocean General Circulation Models

    SciTech Connect (OSTI)

    Yoon, Jin-Ho; Ma, Po-Lun

    2012-09-30

    1. Definition of Subject The purpose of this text is to provide an introduction to aspects of oceanic general circulation models (OGCMs), an important component of Climate System or Earth System Model (ESM). The role of the ocean in ESMs is described in Chapter XX (EDITOR: PLEASE FIND THE COUPLED CLIMATE or EARTH SYSTEM MODELING CHAPTERS). The emerging need for understanding the Earth’s climate system and especially projecting its future evolution has encouraged scientists to explore the dynamical, physical, and biogeochemical processes in the ocean. Understanding the role of these processes in the climate system is an interesting and challenging scientific subject. For example, a research question how much extra heat or CO2 generated by anthropogenic activities can be stored in the deep ocean is not only scientifically interesting but also important in projecting future climate of the earth. Thus, OGCMs have been developed and applied to investigate the various oceanic processes and their role in the climate system.

  12. Estimation of Wind Speed in Connection to a Wind Turbine

    E-Print Network [OSTI]

    Estimation of Wind Speed in Connection to a Wind Turbine X. Ma #3; , N. K. Poulsen #3; , H. Bindner y December 20, 1995 Abstract The wind speed varies over the rotor plane of wind turbine making the wind speed on the rotor plane will be estimated by using a wind turbine as a wind measuring device

  13. Wind energy offers considerable promise; the wind itself is free,

    E-Print Network [OSTI]

    Langendoen, Koen

    Wind energy offers considerable promise; the wind itself is free, wind power is clean. One of these sources, wind energy, offers considerable promise; the wind itself is free, wind power is clean, and it is virtually inexhaustible. In recent years, research on wind energy has accelerated

  14. Wind Resource Maps (Postcard)

    SciTech Connect (OSTI)

    Not Available

    2011-07-01

    The U.S. Department of Energy's Wind Powering America initiative provides high-resolution wind maps and estimates of the wind resource potential that would be possible from development of the available windy land areas after excluding areas unlikely to be developed. This postcard is a marketing piece that stakeholders can provide to interested parties; it will guide them to Wind Powering America's online wind energy resource maps.

  15. Sinomatech Wind Power Blade aka Sinoma Science Technology Wind...

    Open Energy Info (EERE)

    Sinomatech Wind Power Blade aka Sinoma Science Technology Wind Turbine Blade Co Ltd Jump to: navigation, search Name: Sinomatech Wind Power Blade (aka Sinoma Science & Technology...

  16. Our Ocean Backyard Santa Cruz Sentinel columns by Gary Griggs, Director, Institute of Marine Sciences, UC Santa Cruz.

    E-Print Network [OSTI]

    California at Santa Cruz, University of

    energy from the ocean and it has become a far more involved topic than I originally envisioned, and also one that has generated considerable feedback. But, we're not finished with ocean energy quite yet. Tides are more predictable than the wind and solar radiation, but there is a periodicity to the tides

  17. Wind energy offers considerable promise

    E-Print Network [OSTI]

    Langendoen, Koen

    Wind energy offers considerable promise: the wind itself is free, wind power is clean: the wind itself is free, wind power is clean, and it is inexhaustible. In recent years, research on wind · Wind farm aerodynamics Rotor Design · Aerodynamics · Structure and design · Composite design, material

  18. Wind energy offers considerable promise

    E-Print Network [OSTI]

    Langendoen, Koen

    Wind energy offers considerable promise: the wind itself is free, wind power is clean, wind power is clean, and it is inexhaustible. In recent years, research on wind energy has accelerated that are offered are: Wind Physics · Atmospheric aerodynamics and turbulence · Wind farm aerodynamics Rotor Design

  19. Response of photosynthesis to ocean acidification

    E-Print Network [OSTI]

    Mackey, KRM; Morris, JJ; Morris, JJ; Morel, FMM; Kranz, SA

    2015-01-01

    sub- tropical North Pacific Ocean. Aquatic Microbial Ecologytropical Atlantic and Pacific Oceans and contributes sub-

  20. WIND DATA REPORT Presque Isle

    E-Print Network [OSTI]

    Massachusetts at Amherst, University of

    WIND DATA REPORT Presque Isle June 1, 2005 ­ August 31, 2005 Prepared for United States Department...................................................................................................................... 9 Wind Speed Time Series............................................................................................................. 9 Wind Speed Distributions

  1. WIND DATA REPORT Presque Isle

    E-Print Network [OSTI]

    Massachusetts at Amherst, University of

    WIND DATA REPORT Presque Isle December 1, 2004 ­ February 28, 2005 Prepared for United States.................................................................................................................... 10 Wind Speed Time Series........................................................................................................... 10 Wind Speed Distributions

  2. WIND DATA REPORT Presque Isle

    E-Print Network [OSTI]

    Massachusetts at Amherst, University of

    WIND DATA REPORT Presque Isle December 1, 2004 ­ December 1, 2005 Prepared for United States ......................................................................................................... 9 Wind Speed Time Series........................................................................................................... 10 Wind Speed Distributions

  3. WIND DATA REPORT Thompson Island

    E-Print Network [OSTI]

    Massachusetts at Amherst, University of

    WIND DATA REPORT Thompson Island June 1, 2003 ­ August 31, 2003 Prepared for Massachusetts...................................................................................................................... 9 Wind Speed Time Series............................................................................................................. 9 Wind Speed Distribution

  4. WIND DATA REPORT Thompson Island

    E-Print Network [OSTI]

    Massachusetts at Amherst, University of

    WIND DATA REPORT Thompson Island December 1, 2003 ­ February 29, 2004 Prepared for Massachusetts.................................................................................................................... 11 Wind Speed Time Series........................................................................................................... 11 Wind Speed Distribution

  5. WIND DATA REPORT Presque Isle

    E-Print Network [OSTI]

    Massachusetts at Amherst, University of

    WIND DATA REPORT Presque Isle March 1, 2005 ­ May 31, 2005 Prepared for United States Department.................................................................................................................... 10 Wind Speed Time Series........................................................................................................... 10 Wind Speed Distributions

  6. WIND DATA REPORT Thompson Island

    E-Print Network [OSTI]

    Massachusetts at Amherst, University of

    WIND DATA REPORT Thompson Island March 1, 2003 ­ May 31, 2003 Prepared for Massachusetts Technology...................................................................................................................... 9 Wind Speed Time Series............................................................................................................. 9 Wind Speed Distributions

  7. WIND DATA REPORT FALMOUTH, MA

    E-Print Network [OSTI]

    Massachusetts at Amherst, University of

    WIND DATA REPORT FALMOUTH, MA June1, 2004 to August 31, 2004. Prepared for Massachusetts Technology...................................................................................................................... 8 Wind Speed Time Series............................................................................................................. 8 Wind Speed Distributions

  8. WIND DATA REPORT Thompson Island

    E-Print Network [OSTI]

    Massachusetts at Amherst, University of

    WIND DATA REPORT Thompson Island September 1, 2003 ­ November 30, 2003 Prepared for Massachusetts...................................................................................................................... 9 Wind Speed Time Series............................................................................................................. 9 Wind Speed Distribution

  9. WIND DATA REPORT Thompson Island

    E-Print Network [OSTI]

    Massachusetts at Amherst, University of

    WIND DATA REPORT Thompson Island March 1, 2004 ­ May 31, 2004 Prepared for Massachusetts Technology...................................................................................................................... 9 Wind Speed Time Series............................................................................................................. 9 Wind Speed Distribution

  10. WIND DATA REPORT Thompson Island

    E-Print Network [OSTI]

    Massachusetts at Amherst, University of

    WIND DATA REPORT Thompson Island June 1, 2004 ­ August 31, 2004 Prepared for Massachusetts...................................................................................................................... 9 Wind Speed Time Series............................................................................................................. 9 Wind Speed Distribution

  11. 2012 Wind Technologies Market Report

    E-Print Network [OSTI]

    Wiser, Ryan

    2014-01-01

    with the section on offshore wind; Donna Heimiller and Billyof 2012, global cumulative offshore wind capacity stood ats (DOE’s) investments in offshore wind energy research and

  12. 2008 WIND TECHNOLOGIES MARKET REPORT

    E-Print Network [OSTI]

    Bolinger, Mark

    2010-01-01

    11 “advanced-stage” offshore wind project proposals totalingcontinued in 2008 (see Offshore Wind Development Activities,Market Report Offshore Wind Development Activities In

  13. 2010 Wind Technologies Market Report

    E-Print Network [OSTI]

    Wiser, Ryan

    2012-01-01

    for deepwater offshore wind and tidal energy demonstrationand Minnesota (12%). Offshore Wind Power Project and Policythe emergence of an offshore wind power market still faces

  14. 2010 Wind Technologies Market Report

    E-Print Network [OSTI]

    Wiser, Ryan

    2012-01-01

    and Minnesota (12%). Offshore Wind Power Project and Policythe emergence of an offshore wind power market still facesexists in developing offshore wind energy in several parts

  15. 2010 Wind Technologies Market Report

    E-Print Network [OSTI]

    Wiser, Ryan

    2012-01-01

    of Energy?s (DOE) Wind & Water Power Program. For reviewingfor offshore wind power development in federal waters fromof Water and Power (LADWP). 2011. Completion of Wind Power

  16. 2008 WIND TECHNOLOGIES MARKET REPORT

    E-Print Network [OSTI]

    Bolinger, Mark

    2010-01-01

    Table 8 Figure 30. Wind Integration Costs at Various LevelsOperations and Maintenance Costs Wind project operations andPublic Service Wind Integration Cost Impact Study. Prepared

  17. 2011 Wind Technologies Market Report

    E-Print Network [OSTI]

    Bolinger, Mark

    2013-01-01

    charging wind power projects for balancing services. 81 BPA,in balancing reserves with increased wind power penetrationin balancing reserves with increased wind power penetration

  18. 2010 Wind Technologies Market Report

    E-Print Network [OSTI]

    Wiser, Ryan

    2012-01-01

    charging wind power projects for balancing services. 88 BPA,in balancing reserves with increased wind power penetrationin balancing reserves with increased wind power penetration

  19. 2012 Wind Technologies Market Report

    E-Print Network [OSTI]

    Wiser, Ryan

    2014-01-01

    Xcel Energy. 2011. Wind Induced Coal Plant Cyclingand the Implications of Wind Curtailment for Public Serviceof Colorado 2 GW and 3 GW Wind Integration Cost Study.

  20. Wind Farms in North America

    E-Print Network [OSTI]

    Hoen, Ben

    2014-01-01

    Opinion About Large Offshore Wind Power: Underlying Factors.Delaware Opinion on Offshore Wind Power - Interim Report.Newark, DE. 16 pages. Global Wind Energy Council (GWEC) (

  1. 2010 Wind Technologies Market Report

    E-Print Network [OSTI]

    Wiser, Ryan

    2012-01-01

    be provided by wind power generators to provide frequencyof wind power capacity in that state) because generatorsgenerators to provide the needed flexibility to integrate wind power.

  2. 2010 Wind Technologies Market Report

    E-Print Network [OSTI]

    Wiser, Ryan

    2012-01-01

    2010. Status of Centralized Wind Power Forecasting in NorthInterconnection Policies and Wind Power: A Discussion ofLADWP). 2011. Completion of Wind Power Project Brings More

  3. 2011 Wind Technologies Market Report

    E-Print Network [OSTI]

    Bolinger, Mark

    2013-01-01

    and K. Porter. 2011. Wind Power and Electricity Markets.The Effects of Integrating Wind Power on Transmission System41 6. Wind Power Price

  4. 2011 Wind Technologies Market Report

    E-Print Network [OSTI]

    Bolinger, Mark

    2013-01-01

    exists in developing offshore wind energy in several partsexclusively on offshore wind energy will be published laterexclusively on offshore wind energy will be published later

  5. 2009 Wind Technologies Market Report

    E-Print Network [OSTI]

    Wiser, Ryan

    2010-01-01

    assistance with the offshore wind energy discussion; Donnaactivity in the offshore wind energy sector. Data fromexpanded discussion of offshore wind energy development, and

  6. 2010 Wind Technologies Market Report

    E-Print Network [OSTI]

    Wiser, Ryan

    2012-01-01

    exists in developing offshore wind energy in several partsstrides relating to offshore wind energy have been madeactivity in the offshore wind energy sector. Data from

  7. WIND DATA REPORT Nantucket, MA

    E-Print Network [OSTI]

    Massachusetts at Amherst, University of

    WIND DATA REPORT Nantucket, MA March 1st 2006 to May 31th 2006 Prepared for Massachusetts.................................................................................................................... 11 Wind Speed Time Series........................................................................................................... 11 Wind Speed Distribut

  8. 2009 Wind Technologies Market Report

    E-Print Network [OSTI]

    Wiser, Ryan

    2010-01-01

    2010. International Wind Energy Development: World MarketUniversity. American Wind Energy Association (AWEA). 2010a.Washington, DC: American Wind Energy Association. American

  9. 2008 WIND TECHNOLOGIES MARKET REPORT

    E-Print Network [OSTI]

    Bolinger, Mark

    2010-01-01

    2008. Washington, DC: American Wind Energy Association.American Wind Energy Association ( AWEA). 2009b. AWEA SmallWashington, DC: American Wind Energy Association. Bolinger,

  10. 2008 WIND TECHNOLOGIES MARKET REPORT

    E-Print Network [OSTI]

    Bolinger, Mark

    2010-01-01

    2008. Washington, DC: American Wind Energy Association.American Wind Energy Association ( AWEA).2009b. AWEA Small Wind Turbine Global Market Study: Year

  11. 2009 Wind Technologies Market Report

    E-Print Network [OSTI]

    Wiser, Ryan

    2010-01-01

    Prepared for the Utility Wind Integration Group. Arlington,Consult. 2010. International Wind Energy Development: WorldUBS Global I/O: Global Wind Sector. UBS Investment Research.

  12. AWEA Wind Energy Fall Symposium

    Broader source: Energy.gov [DOE]

    The AWEA Wind Energy Fall Symposium gathers wind energy professionals for informal yet productive interactions with industry peers. Jose Zayas, Director, Wind & Water Power Technologies Office,...

  13. Proceedings of the 28th International Conference on Ocean, Offshore and Arctic Engineering May 31 -June 5 , 2009, Honolulu, Hawaii

    E-Print Network [OSTI]

    Manuel, Lance

    Proceedings of the 28th International Conference on Ocean, Offshore and Arctic Engineering OMAE2009 IN RELIABILITY STUDIES FOR OFFSHORE WIND TURBINES P. Agarwal Stress Engineering Services Houston, TX 77041, USA cases according to the IEC guidelines for offshore wind turbines, designers are required to estimate

  14. MOWII Webinar: The ECO TLP, an Economical and Ecologically Sound Tension Leg Platform for Deep Water Wind Farms

    Office of Energy Efficiency and Renewable Energy (EERE)

    Join the Maine Ocean and Wind industry Initiative (MOWII) for a free webinar that describes the components and installation process of economical and ecologically sound tension leg platforms for...

  15. Mapping the Potential of U.S. Ocean Energy | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    undertaken to date to accurately define the magnitude and location of U.S. and global wave, tidal, ocean thermal, and continental U.S. river hydrokinetic resources. With more...

  16. The Effects Of High Pressure-High Temperature On Some Physical Properties Of Ocean Sediments

    E-Print Network [OSTI]

    Morin, Roger

    1983-01-01

    A series of laboratory experiments was conducted with four ocean sediments, two biogenic oozes and two clays. Permeability and thermal conductivity were directly measured as a function of porosity and the testing program ...

  17. Preprint submitted to the Proceedings of the European Wind Energy Conference EWEC in Madrid, Spain June 2003 PREVIENTO meets HORNS REV

    E-Print Network [OSTI]

    Heinemann, Detlev

    of future offshore wind farms. Surprisingly, in all possible thermal conditions measured speeds of westerly Horns Rev offshore wind farm has to be considered as a step to new dimensions in wind power production June 2003 1 PREVIENTO meets HORNS REV Short-Term Wind-Power Prediction ­ adaptation to Offshore Sites

  18. A magmatic trigger for the Paleocene-Eocene thermal maximum?

    E-Print Network [OSTI]

    Dubin, Andrea Rose

    2015-01-01

    Fifty-six million years ago Earth experienced rapid global warming (~6°C) that was caused by the release of large amounts of carbon into the ocean-atmosphere system. This Paleocene-Eocene Thermal Maximum (PETM) is often ...

  19. Wind Power Career Chat

    SciTech Connect (OSTI)

    L. Flowers

    2011-01-01

    This document will teach students about careers in the wind energy industry. Wind energy, both land-based and offshore, is expected to provide thousands of new jobs in the next several decades. Wind energy companies are growing rapidly to meet America's demand for clean, renewable, and domestic energy. These companies need skilled professionals. Wind power careers will require educated people from a variety of areas. Trained and qualified workers manufacture, construct, operate, and manage wind energy facilities. The nation will also need skilled researchers, scientists, and engineers to plan and develop the next generation of wind energy technologies.

  20. Wind energy information guide

    SciTech Connect (OSTI)

    1996-04-01

    This book is divided into nine chapters. Chapters 1--8 provide background and annotated references on wind energy research, development, and commercialization. Chapter 9 lists additional sources of printed information and relevant organizations. Four indices provide alphabetical access to authors, organizations, computer models and design tools, and subjects. A list of abbreviations and acronyms is also included. Chapter topics include: introduction; economics of using wind energy; wind energy resources; wind turbine design, development, and testing; applications; environmental issues of wind power; institutional issues; and wind energy systems development.

  1. EERE 2014 Wind Technologies Market Report Finds Wind Power at...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    2014 Wind Technologies Market Report Finds Wind Power at Record Low Prices EERE 2014 Wind Technologies Market Report Finds Wind Power at Record Low Prices August 10, 2015 - 11:00am...

  2. 20% Wind Energy by 2030: Increasing Wind Energy's Contribution...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    20% Wind Energy by 2030: Increasing Wind Energy's Contribution to U.S. Electricity Supply 20% Wind Energy by 2030: Increasing Wind Energy's Contribution to U.S. Electricity Supply...

  3. Ocean Energy Resource Basics

    Broader source: Energy.gov [DOE]

    Although the potential for ocean energy technologies is believed to be very large, no comprehensive studies have been conducted to date to determine an accurate resource assessment for the United States.

  4. ENCYCLOPEDIA OCEAN SCIENCES

    E-Print Network [OSTI]

    ENCYCLOPEDIA OF OCEAN SCIENCES Editor-in-Chief JOHN H. STEELE Editors STEVE A. THORPE KARL K in Marine Biology 26: 115-168. Rosland Rand Giske .I (1997) A dynamic model for tbe life history

  5. 2008 Wind Energy Projects, Wind Powering America (Poster)

    SciTech Connect (OSTI)

    Not Available

    2009-01-01

    The Wind Powering America program produces a poster at the end of every calendar year that depicts new U.S. wind energy projects. The 2008 poster includes the following projects: Stetson Wind Farm in Maine; Dutch Hill Wind Farm in New York; Grand Ridge Wind Energy Center in Illinois; Hooper Bay, Alaska; Forestburg, South Dakota; Elbow Creek Wind Project in Texas; Glacier Wind Farm in Montana; Wray, Colorado; Smoky Hills Wind Farm in Kansas; Forbes Park Wind Project in Massachusetts; Spanish Fork, Utah; Goodland Wind Farm in Indiana; and the Tatanka Wind Energy Project on the border of North Dakota and South Dakota.

  6. Wind Regimes in Complex Terrain of the Great Valley of Eastern Tennessee

    SciTech Connect (OSTI)

    Birdwell, Kevin R [ORNL

    2011-05-01

    This research was designed to provide an understanding of physical wind mechanisms within the complex terrain of the Great Valley of Eastern Tennessee to assess the impacts of regional air flow with regard to synoptic and mesoscale weather changes, wind direction shifts, and air quality. Meteorological data from 2008 2009 were analyzed from 13 meteorological sites along with associated upper level data. Up to 15 ancillary sites were used for reference. Two-step complete linkage and K-means cluster analyses, synoptic weather studies, and ambient meteorological comparisons were performed to generate hourly wind classifications. These wind regimes revealed seasonal variations of underlying physical wind mechanisms (forced channeled, vertically coupled, pressure-driven, and thermally-driven winds). Synoptic and ambient meteorological analysis (mixing depth, pressure gradient, pressure gradient ratio, atmospheric and surface stability) suggested up to 93% accuracy for the clustered results. Probabilistic prediction schemes of wind flow and wind class change were developed through characterization of flow change data and wind class succession. Data analysis revealed that wind flow in the Great Valley was dominated by forced channeled winds (45 67%) and vertically coupled flow (22 38%). Down-valley pressure-driven and thermally-driven winds also played significant roles (0 17% and 2 20%, respectively), usually accompanied by convergent wind patterns (15 20%) and large wind direction shifts, especially in the Central/Upper Great Valley. The behavior of most wind regimes was associated with detectable pressure differences between the Lower and Upper Great Valley. Mixing depth and synoptic pressure gradients were significant contributors to wind pattern behavior. Up to 15 wind classes and 10 sub-classes were identified in the Central Great Valley with 67 joined classes for the Great Valley at-large. Two-thirds of Great Valley at-large flow was defined by 12 classes. Winds flowed on-axis only 40% of the time. The Great Smoky Mountains helped create down-valley pressure-driven winds, downslope mountain breezes, and divergent air flow. The Cumberland Mountains and Plateau were associated with wind speed reductions in the Central Great Valley, Emory Gap Flow, weak thermally-driven winds, and northwesterly down sloping. Ridge-and-valley terrain enhanced wind direction reversals, pressure-driven winds, as well as locally and regionally produced thermally-driven flow.

  7. Cedar Rapids Wind Project | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QA J-E-1 SECTION J APPENDIX ECoopButte County,Camilla,Thermal Gradient Holes JumpHills Wind Facility JumpRapids Wind

  8. Ocean Wave Wind Energy Ltd OWWE | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QAsource History ViewMayo, Maryland:NPI VenturesNewSt. Louis,Energy Information AreaCountyEnergy Company

  9. Distributed Wind 2015

    Broader source: Energy.gov [DOE]

    Distributed Wind 2015 is committed to the advancement of both distributed and community wind energy. This two day event includes a Business Conference with sessions focused on advancing the...

  10. Wind Power FAQ

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Power Frequently Asked Questions QUESTION: Why was the time stamp on my first wind explorer data chip incorrect? ANSWER: You need to program the proper date and time in the wind...

  11. Airplane and the wind

    E-Print Network [OSTI]

    Airplane and the wind. An airplane starts from the point A and flies to B. The speed of the airplane with respect to the air is v (constant). There is also a wind of

  12. NREL: Wind Research - Events

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Events Below are upcoming events related to wind energy technology. December 2015 Wind and Water Power Small Business Voucher Open House December 2, 2015, 9:00 - 1:00 MST Boulder,...

  13. WINDExchange: Learn About Wind

    Wind Powering America (EERE)

    wind turbines in a row at sunset. The sky is varying hues of orange and the sun is halfway past the horizon. Wind power comes in many sizes. Here, several...

  14. Residential Wind Power

    E-Print Network [OSTI]

    Willis, Gary

    2011-12-16

    This research study will explore the use of residential wind power and associated engineering and environmental issues. There is various wind power generating devices available to the consumer. The study will discuss the dependencies of human...

  15. After the Wind Storm 

    E-Print Network [OSTI]

    Unknown

    2011-09-05

    Accidents and hazards continue to plague the construction industry. One often overlooked hazard to workers is the potential for flying debris and materials during high winds. This research was designed to evaluate the wind velocity required...

  16. 2008 WIND TECHNOLOGIES MARKET REPORT

    E-Print Network [OSTI]

    Bolinger, Mark

    2010-01-01

    AWEA). 2009b. AWEA Small Wind Turbine Global Market Study:will ultimately benefit wind. Small Wind ITC: EESA 2008to be relatively small, whereas the impacts of wind on load-

  17. 2010 Wind Technologies Market Report

    E-Print Network [OSTI]

    Wiser, Ryan

    2012-01-01

    AWEA). 2010. AWEA Small Wind Turbine Global Market Survey,levels. Small Wind Turbines Small wind turbines can providebelow summarizes sales of small wind turbines, 100 kW and

  18. 2008 WIND TECHNOLOGIES MARKET REPORT

    E-Print Network [OSTI]

    Bolinger, Mark

    2010-01-01

    wind project costs, wind turbine transaction prices, projectincreases in the cost of wind turbines over the last severalO&M costs given the dramatic changes in wind turbine

  19. 2011 Wind Technologies Market Report

    E-Print Network [OSTI]

    Bolinger, Mark

    2013-01-01

    AWEA’s Wind Energy Weekly, DOE/EPRI’s Turbine Verification10% Wind Energy Penetration New large-scale 8 wind turbines100 wind turbine installed at the National Renewable Energy

  20. 2011 Wind Technologies Market Report

    E-Print Network [OSTI]

    Bolinger, Mark

    2013-01-01

    Sites U.S. Department of Energy Wind Program wind.energy.govA. 2010. Impact of Wind Energy Installations on DomesticUniversity. American Wind Energy Association (AWEA). 2012a.

  1. 2011 Wind Technologies Market Report

    E-Print Network [OSTI]

    Bolinger, Mark

    2013-01-01

    AWEA). 2012b. 2011 U.S. Small Wind Turbine Market Report.a brief discussion on Small Wind This 100 kW thresholdAnnual Capacity (GW) Small Wind Turbines Small wind turbines

  2. 2012 Wind Technologies Market Report

    E-Print Network [OSTI]

    Wiser, Ryan

    2014-01-01

    a brief discussion on Small Wind Turbines is provided onO&M costs. 2012 Wind Technologies Market Report Small WindTurbines Small wind turbines can provide power directly to

  3. 2010 Wind Technologies Market Report

    E-Print Network [OSTI]

    Wiser, Ryan

    2012-01-01

    AWEA). 2010. AWEA Small Wind Turbine Global Market Survey,a brief discussion on Small Wind Turbines is provided onat 2008 and 2009 levels. Small Wind Turbines Small wind

  4. Thermal engine

    SciTech Connect (OSTI)

    Karnes, T.E.; Trupin, R.J.

    1984-01-03

    A thermal engine utilizing a strip of nitinol material or other thermally responsive shape memory effect material to drive a reciprocating output shaft, said strip of material forming a common wall between two different alternating temperature sources which thermally cycle the material.

  5. Wind Webinar Text Version

    Broader source: Energy.gov [DOE]

    Download the text version of the audio from the DOE Office of Indian Energy webinar on wind renewable energy.

  6. Wind powering America: Vermont

    SciTech Connect (OSTI)

    NREL

    2000-04-11

    Wind resources in the state of Vermont show great potential for wind energy development according to the wind resource assessment conducted by the state, its utilities, and NREL. This fact sheet provides a brief description of the resource assessment and a link to the resulting wind resource map produced by NREL. The fact sheet also provides a description of the state's net metering program, its financial incentives, and green power programs as well as a list of contacts for more information.

  7. WP2 IEA Wind Task 26:The Past and Future Cost of Wind Energy

    E-Print Network [OSTI]

    Lantz, Eric

    2014-01-01

    Prospects for Offshore Wind Farms. ” Wind Engineering, 28:Techniques for Offshore Wind Farms. ” Journal of Solar

  8. Wind Farms in North America

    E-Print Network [OSTI]

    Hoen, Ben

    2014-01-01

    Opinion About Large Offshore Wind Power: Underlying Factors.Delaware Opinion on Offshore Wind Power - Interim Report.

  9. 2010 Wind Technologies Market Report

    E-Print Network [OSTI]

    Wiser, Ryan

    2012-01-01

    by Canada (76%) and Mexico (17%). Wind turbine component30%), Mexico (21%), and China (21%)). Total wind turbine

  10. 2008 WIND TECHNOLOGIES MARKET REPORT

    E-Print Network [OSTI]

    Bolinger, Mark

    2010-01-01

    of larger balancing areas, the use of regional wind powerbalancing areas. The successful use of regional wind power

  11. 2009 Wind Technologies Market Report

    E-Print Network [OSTI]

    Wiser, Ryan

    2010-01-01

    directly charging wind power projects for balancing servicesin smaller balancing areas. The successful use of wind power

  12. Wind Farms in North America

    E-Print Network [OSTI]

    Hoen, Ben

    2014-01-01

    Public Opinion About Large Offshore Wind Power: UnderlyingA. (2007) Delaware Opinion on Offshore Wind Power - Interim

  13. Wind Farms in North America

    E-Print Network [OSTI]

    Hoen, Ben

    2014-01-01

    Renewable Energy (Wind and Water Technologies Program) ofWind Farms in North America 1 Ben Hoen Environmental Energy Technologies

  14. 2012 Wind Technologies Market Report

    E-Print Network [OSTI]

    Wiser, Ryan

    2014-01-01

    regulation and frequency response services charge to wind energyRegulation and Frequency Response Service rate for wind energy

  15. Wind for Schools Curriculum Brief

    SciTech Connect (OSTI)

    None

    2010-08-01

    This fact sheet provides an overview of wind energy curricula as it relates to the Wind for Schools project.

  16. Wind farm electrical system

    DOE Patents [OSTI]

    Erdman, William L.; Lettenmaier, Terry M.

    2006-07-04

    An approach to wind farm design using variable speed wind turbines with low pulse number electrical output. The output of multiple wind turbines are aggregated to create a high pulse number electrical output at a point of common coupling with a utility grid network. Power quality at each individual wind turbine falls short of utility standards, but the aggregated output at the point of common coupling is within acceptable tolerances for utility power quality. The approach for aggregating low pulse number electrical output from multiple wind turbines relies upon a pad mounted transformer at each wind turbine that performs phase multiplication on the output of each wind turbine. Phase multiplication converts a modified square wave from the wind turbine into a 6 pulse output. Phase shifting of the 6 pulse output from each wind turbine allows the aggregated output of multiple wind turbines to be a 24 pulse approximation of a sine wave. Additional filtering and VAR control is embedded within the wind farm to take advantage of the wind farm's electrical impedence characteristics to further enhance power quality at the point of common coupling.

  17. CONGRESSIONAL BRIEFING Offshore Wind

    E-Print Network [OSTI]

    Firestone, Jeremy

    CONGRESSIONAL BRIEFING Offshore Wind Lessons Learned from Europe: Reducing Costs and Creating Jobs Thursday, June 12, 2014 Capitol Visitors Center, Room SVC 215 Enough offshore wind capacity to power six the past decade. What has Europe learned that is applicable to a U.S. effort to deploy offshore wind off

  18. Wind Economic Development (Postcard)

    SciTech Connect (OSTI)

    Not Available

    2011-08-01

    The U.S. Department of Energy's Wind Powering America initiative provides information on the economic development benefits of wind energy. This postcard is a marketing piece that stakeholders can provide to interested parties; it will guide them to the economic development benefits section on the Wind Powering America website.

  19. Offshore Wind Geoff Sharples

    E-Print Network [OSTI]

    Kammen, Daniel M.

    Offshore Wind Geoff Sharples geoff@clearpathenergyllc.com #12;Frequently Unanswered Ques?ons · Why don't "they" build more offshore wind? · Why not make States Cape Wind PPA at 18 c/kWh #12;The cycle of non-innova?on Offshore

  20. Wind power outlook 2006

    SciTech Connect (OSTI)

    anon.

    2006-04-15

    This annual brochure provides the American Wind Energy Association's up-to-date assessment of the wind industry in the United States. This 2006 general assessment shows positive signs of growth, use and acceptance of wind energy as a vital component of the U.S. energy mix.

  1. Offshore Wind Energy Permitting: A Survey of U.S. Project Developers

    SciTech Connect (OSTI)

    Van Cleve, Frances B.; Copping, Andrea E.

    2010-11-30

    The U.S. Department of Energy (DOE) has adopted a goal to generate 20% of the nation’s electricity from wind power by 2030. Achieving this “20% Wind Scenario” in 2030 requires acceleration of the current rate of wind project development. Offshore wind resources contribute substantially to the nation’s wind resource, yet to date no offshore wind turbines have been installed in the U.S. Progress developing offshore wind projects has been slowed by technological challenges, uncertainties about impacts to the marine environment, siting and permitting challenges, and viewshed concerns. To address challenges associated with siting and permitting, Pacific Northwest National Laboratory (PNNL) surveyed offshore wind project developers about siting and project development processes, their experience with the environmental permitting process, and the role of coastal and marine spatial planning (CMSP) in development of the offshore wind industry. Based on the responses to survey questions, we identify several priority recommendations to support offshore wind development. Recommendations also include considerations for developing supporting industries in the U.S. and how to use Coastal and Marine Spatial Planning (CMSP) to appropriately consider ocean energy among existing ocean uses. In this report, we summarize findings, discuss the implications, and suggest actions to improve the permitting and siting process.

  2. Why do meteorologists use wind vanes? Wind vanes are used to determine the direction of the wind. Wind

    E-Print Network [OSTI]

    Nebraska-Lincoln, University of

    Fun Facts Why do meteorologists use wind vanes? Wind vanes are used to determine the direction of the wind. Wind· vanes are also called weather vanes. What do wind vanes look like on a weather station? Wind vanes that are on weather stations look a lot like the one you· made! The biggest differences

  3. Ocean energy conversion systems annual research report

    SciTech Connect (OSTI)

    Not Available

    1981-03-01

    Alternative power cycle concepts to the closed-cycle Rankine are evaluated and those that show potential for delivering power in a cost-effective and environmentally acceptable fashion are explored. Concepts are classified according to the ocean energy resource: thermal, waves, currents, and salinity gradient. Research projects have been funded and reported in each of these areas. The lift of seawater entrained in a vertical steam flow can provide potential energy for a conventional hydraulic turbine conversion system. Quantification of the process and assessment of potential costs must be completed to support concept evaluation. Exploratory development is being completed in thermoelectricity and 2-phase nozzles for other thermal concepts. Wave energy concepts are being evaluated by analysis and model testing with present emphasis on pneumatic turbines and wave focussing. Likewise, several conversion approaches to ocean current energy are being evaluated. The use of salinity resources requires further research in membranes or the development of membraneless processes. Using the thermal resource in a Claude cycle process as a power converter is promising, and a program of R and D and subsystem development has been initiated to provide confirmation of the preliminary conclusion.

  4. BRUCE HOWE Chair and Professor , PhD 1986, UC San Diego. Ocean observatories, ocean acoustic tomography, sensor webs

    E-Print Network [OSTI]

    . NIHOUS Associate Professor, PhD 1983, UC Berkeley. Ocean Thermal Energy Conversion (OTEC), marine renewable energy, hydrodynamics. EVA-MARIE NOSAL Assistant Professor, PhD 2007 Hawaii. Passive acoustic. JOHN C. WILTSHIRE Associate Specialist, PhD 1983, Hawaii. Marine mineral deposits, marine mining

  5. Mesoscale coupled ocean-atmosphere interaction

    E-Print Network [OSTI]

    Seo, Hyodae

    2007-01-01

    surface currents on wind stress, heat flux, and wind powerflux components (wind stress, heat flux and fresh-waterWest Coast Surface Heat Fluxes, Wind Stress, and Wind Stress

  6. Mesoscale Coupled Ocean-Atmosphere Interaction

    E-Print Network [OSTI]

    Seo, Hyodae

    2007-01-01

    surface currents on wind stress, heat flux, and wind powerflux components (wind stress, heat flux and fresh-waterWest Coast Surface Heat Fluxes, Wind Stress, and Wind Stress

  7. Wind energy applications guide

    SciTech Connect (OSTI)

    anon.

    2001-01-01

    The brochure is an introduction to various wind power applications for locations with underdeveloped transmission systems, from remote water pumping to village electrification. It includes an introductory section on wind energy, including wind power basics and system components and then provides examples of applications, including water pumping, stand-alone systems for home and business, systems for community centers, schools, and health clinics, and examples in the industrial area. There is also a page of contacts, plus two specific example applications for a wind-diesel system for a remote station in Antarctica and one on wind-diesel village electrification in Russia.

  8. EA-1782: University of Delaware Lewes Campus Onsite Wind Energy Project

    Broader source: Energy.gov [DOE]

    The University of Delaware has constructed a wind turbine adjacent to its College of Earth, Ocean, and Environment campus in Lewes, Delaware. DOE proposed to provide the University a $1.43 million grant for this Wind Energy Project from funding provided in the Omnibus Appropriations Act of 2009 (Public Law 111-8) and an additional $1 million provided in the Energy and Water Development Appropriations Act of Fiscal Year 2010. This EA analyzed the potential environmental impacts of the University of Delaware’s Wind Energy Project at its Lewes campus and, for purposes of comparison, an alternative that assumes the wind turbine had not been constructed.

  9. Mesoscale coupled ocean-atmosphere interaction

    E-Print Network [OSTI]

    Seo, Hyodae

    2007-01-01

    mesoscale oceanic features are current coarse resolutionmesoscale r current variability associated with oceanic ringthe TIW- currents. These mesoscale oceanic and atmospheric

  10. Mesoscale Coupled Ocean-Atmosphere Interaction

    E-Print Network [OSTI]

    Seo, Hyodae

    2007-01-01

    mesoscale oceanic features are current coarse resolutionmesoscale r current variability associated with oceanic ringthe TIW- currents. These mesoscale oceanic and atmospheric

  11. Wind energy conversion system

    DOE Patents [OSTI]

    Longrigg, Paul (Golden, CO)

    1987-01-01

    The wind energy conversion system includes a wind machine having a propeller connected to a generator of electric power, the propeller rotating the generator in response to force of an incident wind. The generator converts the power of the wind to electric power for use by an electric load. Circuitry for varying the duty factor of the generator output power is connected between the generator and the load to thereby alter a loading of the generator and the propeller by the electric load. Wind speed is sensed electro-optically to provide data of wind speed upwind of the propeller, to thereby permit tip speed ratio circuitry to operate the power control circuitry and thereby optimize the tip speed ratio by varying the loading of the propeller. Accordingly, the efficiency of the wind energy conversion system is maximized.

  12. Wind tower service lift

    DOE Patents [OSTI]

    Oliphant, David; Quilter, Jared; Andersen, Todd; Conroy, Thomas

    2011-09-13

    An apparatus used for maintaining a wind tower structure wherein the wind tower structure may have a plurality of legs and may be configured to support a wind turbine above the ground in a better position to interface with winds. The lift structure may be configured for carrying objects and have a guide system and drive system for mechanically communicating with a primary cable, rail or other first elongate member attached to the wind tower structure. The drive system and guide system may transmit forces that move the lift relative to the cable and thereby relative to the wind tower structure. A control interface may be included for controlling the amount and direction of the power into the guide system and drive system thereby causing the guide system and drive system to move the lift relative to said first elongate member such that said lift moves relative to said wind tower structure.

  13. Effects of winds and Caribbean eddies on the frequency of Loop Current eddy shedding: A numerical model study

    E-Print Network [OSTI]

    Effects of winds and Caribbean eddies on the frequency of Loop Current eddy shedding: A numerical of Mexico, Caribbean Current, Loop Current, eddy shedding, winds and eddies, numerical ocean model Citation of Loop Current eddy shedding: A numerical model study, J. Geophys. Res., 108(C10), 3324, doi:10

  14. Radiating instability and small-scale stochastic wind J. WANG, M. A. SPALL, J. PEDLOSKY AND I. KAMENKOVICH

    E-Print Network [OSTI]

    Griesel, Alexa

    1 Radiating instability and small-scale stochastic wind forcing J. WANG, M. A. SPALL, J. PEDLOSKY AND I. KAMENKOVICH Radiating instability and small-scale stochastic wind forcing Unlike of this book, to the generation of the quasi-zonal jets in the ocean. One interesting phenomenon

  15. AOML is an environmental laboratory of NOAA's Office of Oceanic and Atmospheric Research on Virginia Key in Miami, Florida ATLANTIC OCEANOGRAPHIC AND METEOROLOGICAL LABORATORY

    E-Print Network [OSTI]

    the thermal struc- ture of the upper ocean. SOOP is a global network of commer- cial vessels that aid NOAA are to investigate the variability of the ocean's upper thermal structure at high latitudes (AX01 and AX02 transects storage and the global transport of heat and fresh water, which are crucial for improving climate

  16. Dynamics of the Thermohaline Circulation under Wind forcing

    E-Print Network [OSTI]

    Hongjun Gao; Jinqiao Duan

    2001-08-12

    The ocean thermohaline circulation, also called meridional overturning circulation, is caused by water density contrasts. This circulation has large capacity of carrying heat around the globe and it thus affects the energy budget and further affects the climate. We consider a thermohaline circulation model in the meridional plane under external wind forcing. We show that, when there is no wind forcing, the stream function and the density fluctuation (under appropriate metrics) tend to zero exponentially fast as time goes to infinity. With rapidly oscillating wind forcing, we obtain an averaging principle for the thermohaline circulation model. This averaging principle provides convergence results and comparison estimates between the original thermohaline circulation and the averaged thermohaline circulation, where the wind forcing is replaced by its time average. This establishes the validity for using the averaged thermohaline circulation model for numerical simulations at long time scales.

  17. Wind resource assessment: San Nicolas Island, California

    SciTech Connect (OSTI)

    McKenna, E. [National Renewable Energy Lab., Golden, CO (United States); Olsen, T.L. [Timothy L. Olsen Consulting, (United States)

    1996-01-01

    San Nicolas Island (SNI) is the site of the Navy Range Instrumentation Test Site which relies on an isolated diesel-powered grid for its energy needs. The island is located in the Pacific Ocean 85 miles southwest of Los Angeles, California and 65 miles south of the Naval Air Weapons Station (NAWS), Point Mugu, California. SNI is situated on the continental shelf at latitude N33{degree}14` and longitude W119{degree}27`. It is approximately 9 miles long and 3.6 miles wide and encompasses an area of 13,370 acres of land owned by the Navy in fee title. Winds on San Nicolas are prevailingly northwest and are strong most of the year. The average wind speed is 7.2 m/s (14 knots) and seasonal variation is small. The windiest months, March through July, have wind speeds averaging 8.2 m/s (16 knots). The least windy months, August through February, have wind speeds averaging 6.2 m/s (12 knots).

  18. Massachusetts Ocean Management Plan (Massachusetts)

    Broader source: Energy.gov [DOE]

    The Massachusetts Ocean Act of 2008 required the state’s Secretary of Energy and Environmental Affairs to develop a comprehensive ocean management plan for the state by the end of 2009. That plan...

  19. Steroid estrogens in ocean sediments 

    E-Print Network [OSTI]

    Braga, O.; Smythe, G.A.; Schäfer, Andrea; Feitz, A.J.

    2005-01-01

    This paper gives results from a study measuring the abundance of steroid hormones in ocean sediments in the proximity of a deep ocean sewage outfall. The outfall is discharge point for an enhanced primary sewage treatment ...

  20. System-wide emissions implications of increased wind power penetration.

    SciTech Connect (OSTI)

    Valentino, L.; Valenzuela, V.; Botterud, A.; Zhou, Z.; Conzelmann, G. (Decision and Information Sciences); (Univ. of Illinois, Champaign/Urbana); (Georgia Institute of Technology)

    2012-01-01

    This paper discusses the environmental effects of incorporating wind energy into the electric power system. We present a detailed emissions analysis based on comprehensive modeling of power system operations with unit commitment and economic dispatch for different wind penetration levels. First, by minimizing cost, the unit commitment model decides which thermal power plants will be utilized based on a wind power forecast, and then, the economic dispatch model dictates the level of production for each unit as a function of the realized wind power generation. Finally, knowing the power production from each power plant, the emissions are calculated. The emissions model incorporates the effects of both cycling and start-ups of thermal power plants in analyzing emissions from an electric power system with increasing levels of wind power. Our results for the power system in the state of Illinois show significant emissions effects from increased cycling and particularly start-ups of thermal power plants. However, we conclude that as the wind power penetration increases, pollutant emissions decrease overall due to the replacement of fossil fuels.

  1. A Global Pattern of Thermal Adaptation in Marine Phytoplankton

    E-Print Network [OSTI]

    A Global Pattern of Thermal Adaptation in Marine Phytoplankton Mridul K. Thomas,1,2 * Colin T temperatures this century will cause poleward shifts in species' thermal niches and a sharp decline in tropical in ocean stratification, which in turn leads to a decrease in nutrient supply to sur- face waters. However

  2. Ocean Engineering Development Team

    E-Print Network [OSTI]

    Wood, Stephen L.

    the same conditions). 3) To demonstrate a working knowledge of fluid mechanics, naval architecture: Design/Fluid Mechanics Major: Ocean Engineering, Junior Focus: Naval Architecture and High Speed Small vessel under a variety of foil configurations, sea conditions, propulsion states and loads. 2) To perform

  3. Gansu Xinhui Wind Power | Open Energy Information

    Open Energy Info (EERE)

    Xinhui Wind Power Jump to: navigation, search Name: Gansu Xinhui Wind Power Place: China Sector: Wind energy Product: China-based joint venture engaged in developing wind projects....

  4. Ocean Circulation Lynne D Talley

    E-Print Network [OSTI]

    Talley, Lynne D.

    to the topography, with low pressure in the center. Ocean currents transport heat from the tropics to the poles have gone to sea. As knowledge about ocean currents and capabilities to observe it below the surfaceOcean Circulation Lynne D Talley Volume 1, The Earth system: physical and chemical dimensions

  5. 6, 51375162, 2006 Oceanic ozone

    E-Print Network [OSTI]

    Paris-Sud XI, Université de

    ACPD 6, 5137­5162, 2006 Oceanic ozone deposition velocity C. W. Fairall et al. Title Page Abstract Discussions Water-side turbulence enhancement of ozone deposition to the ocean C. W. Fairall1 , D. Helmig2 , L. Fairall (chris.fairall@noaa.gov) 5137 #12;ACPD 6, 5137­5162, 2006 Oceanic ozone deposition velocity C. W

  6. Strategic Plan National Ocean Service

    E-Print Network [OSTI]

    Strategic Plan of the National Ocean Service 2005-2010 U.S. Department of Commerce National Oceanic Strategic Plan for 2005 to 2010. This Plan heralds a new era for the ocean and coasts as NOS responds these challenges. The NOS Strategic Plan is synchronous with the NOAA Strategic Plan -- one NOAA, one workforce

  7. December 2001 OCEAN DRILLING PROGRAM

    E-Print Network [OSTI]

    December 2001 OCEAN DRILLING PROGRAM LEG 203 SCIENTIFIC PROSPECTUS DRILLING AT THE EQUATORIAL -------------------------------- Dr. Jack Bauldauf Deputy Director of Science Operations Ocean Drilling Program Texas A&M University. Acton Leg Project Manager and Staff Scientist Ocean Drilling Program Texas A&M University 1000 Discovery

  8. February 2002 OCEAN DRILLING PROGRAM

    E-Print Network [OSTI]

    February 2002 OCEAN DRILLING PROGRAM LEG 204 SCIENTIFIC PROSPECTUS DRILLING GAS HYDRATES ON HYDRATE -------------------------------- Dr. Jack Baldauf Deputy Director of Science Operations Ocean Drilling Program Texas A&M University Richter Leg Project Manager and Staff Scientist Ocean Drilling Program Texas A&M University 1000 Discovery

  9. November 2002 OCEAN DRILLING PROGRAM

    E-Print Network [OSTI]

    November 2002 OCEAN DRILLING PROGRAM LEG 208 SCIENTIFIC PROSPECTUS EARLY CENOZOIC EXTREME CLIMATES -------------------------------- Dr. Jack Baldauf Deputy Director of Science Operations Ocean Drilling Program Texas A&M University Leg Project Manager and Staff Scientist Ocean Drilling Program Texas A&M University 1000 Discovery

  10. Engineering by Design Ocean Engineering

    E-Print Network [OSTI]

    Virginia Tech

    Engineering by Design Ocean Engineering Bachelor of Science Degree Virginia Tech For more engineering is a diverse field. At Virginia Tech, the major focus areas are ocean energy systems and ocean in the aerospace and related industries and in the shipbuilding, naval engineering, and ship design fields. Some

  11. Ninth Annual Ocean Renewable Energy Conference

    Broader source: Energy.gov [DOE]

    The future of clean, renewable ocean wave energy will be discussed in depth at the 2014 Ocean Renewable Energy Conference.

  12. Tax Credits, Rebates & Savings | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    Wind (All), Biomass, Hydroelectric, Municipal Solid Waste, Landfill Gas, Tidal, Wave, Ocean Thermal, Anaerobic Digestion Interconnection Standards for Small Generators...

  13. Tax Credits, Rebates & Savings | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Photovoltaics, Wind (All), Biomass, Hydroelectric, Municipal Solid Waste, Landfill Gas, Tidal, Wave, Ocean Thermal, Yes; specific technologies not identified, Hydroelectric...

  14. Tax Credits, Rebates & Savings | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    Tidal, Wave, Ocean Thermal, Wind (Small), Anaerobic Digestion Property Tax Abatement for Production and Manufacturing Facilities Qualifying renewable energy manufacturing...

  15. Tax Credits, Rebates & Savings | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Wind (All), Biomass, Hydroelectric, Municipal Solid Waste, Landfill Gas, Tidal, Wave, Ocean Thermal, Yes; specific technologies not identified, Hydroelectric (Small),...

  16. Tax Credits, Rebates & Savings | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Ocean Thermal, Wind (Small), Fuel Cells using Renewable Fuels, Other Distributed Generation Technologies, Microturbines Interconnection Standards Utah's interconnection rules...

  17. Subseasonal Variability of the Southeast Pacific Stratus Cloud Deck* International Pacific Research Center, School of Ocean and Earth Science and Technology, University of Hawaii at Manoa,

    E-Print Network [OSTI]

    Xie, Shang-Ping

    Pacific Research Center, School of Ocean and Earth Science and Technology, University of Hawaii at Manoa of Meteorology, School of Ocean and Earth Science and Technology, University of Hawaii at Manoa, Honolulu, Hawaii in the stratus cloud deck is closely related to variations in surface wind velocity, water vapor, sea level

  18. Riverine input of macronutrients, iron, and organic matter to the coastal ocean off Oregon, U.S.A., during the winter

    E-Print Network [OSTI]

    Pierce, Stephen

    Riverine input of macronutrients, iron, and organic matter to the coastal ocean off Oregon, U near the coast and contained elevated macronutrient, iron, and organic carbon concentrations. Wind ecosystem structure. The coastal ocean plays a key role in global bio- geochemical cycles and marine food

  19. Wind Tunnel Building - 3 

    E-Print Network [OSTI]

    Unknown

    2005-06-30

    1 Energy Systems Laboratory 1 A METHODOLOGY FOR CALCULATING EMISSIONS REDUCTIONS FROM RENEWABLE ENERGY PROGRAMS AND ITS APPLICATION TO THE WIND FARMS IN THE TEXAS ERCOT REGION Zi Liu, Jeff Haberl, Juan-Carlos Baltazar, Kris Subbarao, Charles... on Sweetwater I Wind Farm Capacity Factor Analysis Application to All Wind Farms Uncertainty Analysis Emissions Reduction Summary Energy Systems Laboratory 3 SUMMARYEMISSIONS REDUCTION UNCERTAINTY ANALYSIS APPLICATIONMETHODOLOGYINTRODUCTION Background...

  20. The Colliding Winds of WR146: Seeing the Works

    E-Print Network [OSTI]

    E. P. O'Connor; S. M. Dougherty; J. M. Pittard; P. M. Williams

    2005-09-08

    WR146 is a WC6+O8 colliding-wind binary (CWB) system with thermal emission from the stellar winds of the two stars, and bright non-thermal emission from the wind-collision region (WCR) where the winds collide. We present high resolution radio observations from 1.4 to 43 GHz that give one of the best quality radio spectra of any CWB to date. Observations at 22 GHz now span 8 years, and reveal the proper motion of the system, allowing comparison of multi-epoch data. VLBI observations show the location of the WCR relative to the stellar components, from which the wind momentum ratio can be shown to be 0.06+/-0.15. The radio spectrum and the spatial distribution of emission are modelled, and we determine the contribution of both stellar winds and the WCR to the observed emission. We show that our current models fail to account for the high frequency spectrum of WR146, and also produce too much emission far from the stagnation point of the wind collision.

  1. Proceedings Nordic Wind Power Conference

    E-Print Network [OSTI]

    Estimation of Possible Power for Wind Plant Control Power Fluctuations from Offshore Wind Farms; Model Validation System grounding of wind farm medium voltage cable grids Faults in the Collection Grid of Offshore systems of wind turbines and wind farms. NWPC presents the newest research results related to technical

  2. Wind Energy and Spatial Technology

    E-Print Network [OSTI]

    Schweik, Charles M.

    2/3/2011 1 Wind Energy and Spatial Technology Lori Pelech Why Wind Energy? A clean, renewable 2,600 tons of carbon emissions annually ­ The economy · Approximately 85,000 wind energy workers to Construct a Wind Farm... Geo-Spatial Components of Wind Farm Development Process Selecting a Project Site

  3. Module Handbook Specialisation Wind Energy

    E-Print Network [OSTI]

    Habel, Annegret

    Module Handbook Specialisation Wind Energy 2nd Semester for the Master Programme REMA/EUREC Course 2008/2009 NTU Athens Specialisation Provider: Wind Energy #12;Specialisation Wind Energy, NTU Athens, 2nd Semester Module 1/Wind Energy: Wind potential, Aerodynamics & Loading

  4. Wind Engineering & Natural Disaster Mitigation

    E-Print Network [OSTI]

    Lennard, William N.

    Wind Engineering & Natural Disaster Mitigation For more than 45 years, Western University has been internationally recognized as the leading university for wind engineering and wind- related research. Its of environmental disaster mitigation, with specific strengths in wind and earthquake research. Boundary Layer Wind

  5. Accelerating Offshore Wind Development

    Broader source: Energy.gov [DOE]

    Today the Energy Department announced investments in seven offshore wind demonstration projects. Check out our map to see where these projects will be located.

  6. Wind/Water Nexus

    SciTech Connect (OSTI)

    Not Available

    2006-04-01

    Nobel laureate Richard Smalley cited energy and water as among humanity's top problems for the next 50 years as the world's population increases from 6.3 billion to 9 billion. The U.S. Department of Energy's Wind and Hydropower Program has initiated an effort to explore wind energy's role as a technical solution to this critically important issue in the United States and the world. This four-page fact sheet outlines five areas in which wind energy can contribute: thermoelectric power plant/water processes, irrigation, municipal water supply, desalination, and wind/hydropower integration.

  7. Vertical axis wind turbines

    DOE Patents [OSTI]

    Krivcov, Vladimir (Miass, RU); Krivospitski, Vladimir (Miass, RU); Maksimov, Vasili (Miass, RU); Halstead, Richard (Rohnert Park, CA); Grahov, Jurij (Miass, RU)

    2011-03-08

    A vertical axis wind turbine is described. The wind turbine can include a top ring, a middle ring and a lower ring, wherein a plurality of vertical airfoils are disposed between the rings. For example, three vertical airfoils can be attached between the upper ring and the middle ring. In addition, three more vertical airfoils can be attached between the lower ring and the middle ring. When wind contacts the vertically arranged airfoils the rings begin to spin. By connecting the rings to a center pole which spins an alternator, electricity can be generated from wind.

  8. Talkin’ Bout Wind Generation

    Office of Energy Efficiency and Renewable Energy (EERE)

    The amount of electricity generated by the wind industry started to grow back around 1999, and since 2007 has been increasing at a rapid pace.

  9. DOE Offers Conditional Commitment to Cape Wind Offshore Wind...

    Broader source: Energy.gov (indexed) [DOE]

    step toward issuing a 150 million loan guarantee to support the construction of the Cape Wind offshore wind project with a conditional commitment to Cape Wind Associates, LLC. The...

  10. Wind Power Today, 2010, Wind and Water Power Program (WWPP)

    SciTech Connect (OSTI)

    Not Available

    2010-05-01

    Wind Power Today is an annual publication that provides an overview of the wind energy research conducted by the U.S. Department of Energy Wind and Water Power Program.

  11. Wind Powering America's Wind for Schools Team Honored with Wirth...

    Office of Environmental Management (EM)

    Powering America's Wind for Schools Team Honored with Wirth Chair Award Wind Powering America's Wind for Schools Team Honored with Wirth Chair Award May 1, 2012 - 2:46pm Addthis...

  12. Solar Thermal Powered Evaporators

    E-Print Network [OSTI]

    Moe, Christian Robert

    2015-01-01

    Solar Thermal Collectors .is solar energy. Solar thermal collector arrays can be usedon integrating solar thermal collectors with desalination

  13. DISTRIBUTED ENERGY SYSTEMS IN CALIFORNIA'S FUTURE: A PRELIMINARY REPORT, VOLUME I

    E-Print Network [OSTI]

    Authors, Various

    2010-01-01

    Other Solar Technologies HYDROELECTRIC AND PUMPED STORAGEand Solar Thermal Hydroelectric Power Geothermal . Land UseOcean Wind Geothermal Hydroelectric Ocean Energy Fossil

  14. Economic Evaluation of Short-Term Wind Power Forecasts in ERCOT: Preliminary Results; Preprint

    SciTech Connect (OSTI)

    Orwig, K.; Hodge, B. M.; Brinkman, G.; Ela, E.; Milligan, M.; Banunarayanan, V.; Nasir, S.; Freedman, J.

    2012-09-01

    Historically, a number of wind energy integration studies have investigated the value of using day-ahead wind power forecasts for grid operational decisions. These studies have shown that there could be large cost savings gained by grid operators implementing the forecasts in their system operations. To date, none of these studies have investigated the value of shorter-term (0 to 6-hour-ahead) wind power forecasts. In 2010, the Department of Energy and National Oceanic and Atmospheric Administration partnered to fund improvements in short-term wind forecasts and to determine the economic value of these improvements to grid operators, hereafter referred to as the Wind Forecasting Improvement Project (WFIP). In this work, we discuss the preliminary results of the economic benefit analysis portion of the WFIP for the Electric Reliability Council of Texas. The improvements seen in the wind forecasts are examined, then the economic results of a production cost model simulation are analyzed.

  15. Solar Thermal Powered Evaporators

    E-Print Network [OSTI]

    Moe, Christian Robert

    2015-01-01

    and thermal energy storage in solar thermal applications,"aided or powered by solar thermal energy. A section is alsoexhaustive review of solar thermal energy systems has been

  16. Advanced Thermal Control

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    thermal models power density cost lifetime Advanced Thermal Interface Materials Advanced Heat Transfer Technologies Air Cooling Thermal System Performance and Integration Thermal...

  17. Community Wind Handbook/Understand Your Wind Resource and Conduct...

    Open Energy Info (EERE)

    Help Apps Datasets Community Login | Sign Up Search Page Edit History Community Wind HandbookUnderstand Your Wind Resource and Conduct a Preliminary Estimate < Community...

  18. American Wind Energy Association Wind Energy Finance and Investment Seminar

    Office of Energy Efficiency and Renewable Energy (EERE)

    The American Wind Energy Association Wind Energy Finance and Investment Seminar will be attended by representatives in the financial sector, businesses, bankers, government and other nonprofit...

  19. Public Acceptance of Wind: Foundational Study Near US Wind Facilities

    Wind Powering America (EERE)

    Group * Energy Analysis and Environmental Impacts Department Public Acceptance of Wind Power Ben Hoen Lawrence Berkeley National Laboratory WindExchange Webinar June 17, 2015...

  20. 20% Wind Energy by 2030: Increasing Wind Energy's Contribution...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Supply (Executive Summary) 20% Wind Energy by 2030: Increasing Wind Energy's Contribution to U.S. Electricity Supply (Executive Summary) Executive summary of a report on the...