National Library of Energy BETA

Sample records for wind manufacturing facilities

  1. Wind Manufacturing Facilities | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Manufacturing Facilities Wind Manufacturing Facilities Wind Manufacturing Facilities America's wind energy industry supports a growing domestic industrial base. Check out this map to find manufacturing facilities in your state

  2. EPAct at One Event - Clipper Wind Manufacturing Facility | Department of

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Energy EPAct at One Event - Clipper Wind Manufacturing Facility EPAct at One Event - Clipper Wind Manufacturing Facility August 2, 2006 - 8:37am Addthis Remarks for Energy Secretary Samuel Bodman Thank you, Tom, for the introduction. I enjoyed my tour of your new manufacturing facility this morning, and am very excited about the tremendous strides being made here in the development of wind turbine technology, and its integration into our national economy. I'd also like to thank Senator

  3. Economic Development Impacts in Colorado from Four Vestas Manufacturing Facilities, Wind Powering America Fact Sheet Series

    SciTech Connect (OSTI)

    Not Available

    2009-04-01

    This case study summarizes the economic development benefits to Colorado from four Vestas manufacturing facilities: one in Windsor, two in Brighton, and one in Pueblo (which is planned to be the world's largest tower-manufacturing facility). In the midst of an economic slowdown during which numerous U.S. manufacturers have closed their doors, wind energy component manufacturing is one U.S. industry that has experienced unprecedented growth during the past few years. As demand for wind power in the United States has increased and transportation costs have increased around the world, states have seen a significant increase in the number of manufacturers that produce wind turbine components in the United States. Vestas' Colorado operations will bring approximately $700 million in capital investment and nearly 2,500 jobs to the state.

  4. Manufacturing Demonstration Facility

    Energy Savers [EERE]

    of Energy Manufacturing Demonstration Facility DOE Advanced Manufacturing Office Merit Review Craig Blue Director, Manufacturing Demonstration Facility Energy and ...

  5. NREL: Wind Research - Facilities

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    support the growth of wind energy development across the United States. National Wind Technology Center Facilities Our facilities are contained within a 305-acre area that...

  6. Oak Ridge Manufacturing Demonstration Facility (MDF) | Department...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Facilities Oak Ridge Manufacturing Demonstration Facility (MDF) Oak Ridge Manufacturing Demonstration Facility (MDF) The Manufacturing Demonstration Facility (MDF) is a ...

  7. Baseline Wind Energy Facility | Open Energy Information

    Open Energy Info (EERE)

    Wind Energy Facility Jump to: navigation, search Name Baseline Wind Energy Facility Facility Baseline Wind Energy Facility Sector Wind energy Facility Type Commercial Scale Wind...

  8. American Wind Manufacturing | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    American Wind Manufacturing Addthis 1 of 9 Nordex USA -- a global manufacturer of wind turbines -- delivered and installed turbine components for the Power County Wind...

  9. Manufacturing Demonstration Facility Workshop Videos | Department...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Manufacturing Demonstration Facility Workshop Videos Manufacturing Demonstration Facility Workshop Videos Dr. Leo Christodoulou, Program Manager, EERE Advanced Manufacturing ...

  10. Exploring the Wind Manufacturing Map | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Wind Manufacturing Map Exploring the Wind Manufacturing Map August 15, 2012 - 5:01pm Addthis America's wind energy industry supports a growing domestic industrial base. Check out this map to find manufacturing facilities in your state. Matthew Loveless Matthew Loveless Data Integration Specialist, Office of Public Affairs What are the key facts? The domestic wind manufacturing industry has grown dramatically in the last 5 years, and now nearly 70 percent of the turbines installed in the United

  11. Wind Energy In America: Supporting Our Manufacturers | Department...

    Office of Environmental Management (EM)

    Nordex USA -- a global manufacturer of wind turbines -- delivered and installed turbine ... Since opening the Jonesboro facility, Nordex USA has shipped turbine components made in ...

  12. Spearville Wind Energy Facility | Open Energy Information

    Open Energy Info (EERE)

    Wind Energy Facility Jump to: navigation, search Name Spearville Wind Energy Facility Facility Spearville Wind Energy Facility Sector Wind energy Facility Type Commercial Scale...

  13. Ainsworth Wind Energy Facility | Open Energy Information

    Open Energy Info (EERE)

    Ainsworth Wind Energy Facility Jump to: navigation, search Name Ainsworth Wind Energy Facility Facility Ainsworth Wind Energy Facility Sector Wind energy Facility Type Commercial...

  14. Searsburg Wind Energy Facility | Open Energy Information

    Open Energy Info (EERE)

    Searsburg Wind Energy Facility Jump to: navigation, search Name Searsburg Wind Energy Facility Facility Searsburg Wind Energy Facility Sector Wind energy Facility Type Commercial...

  15. Property Tax Abatement for Production and Manufacturing Facilities

    Broader source: Energy.gov [DOE]

    Qualifying renewable energy manufacturing facilities are those that (1) produce materials, components or systems to convert solar, wind, geothermal, biomass, biogas or waste heat resources into...

  16. Wind Energy & Manufacturing | Open Energy Information

    Open Energy Info (EERE)

    Wind Energy & Manufacturing Jump to: navigation, search Blades manufactured at Gamesa's factory in Ebensburg, Pennsylvania, will be delivered to wind farms across the United...

  17. Manufacturing Demonstration Facilities Workshop Agenda, March...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Manufacturing Demonstration Facilities Workshop Marriott Springhill Suites O'Hare - ... mechanics of the Manufacturing Demonstration Facility (MDF) concept and the ...

  18. Manufacturing Demonstration Facility

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    to develop broad dissemination of additive manufacturing Industry Collaborations * ... 5 DOE-AMO 2015 Peer Review Understanding Additive Manufacturing Mainstream applications ...

  19. Sandia Energy - Wind Energy Manufacturing Lab Helps Engineers...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Wind Energy Manufacturing Lab Helps Engineers Improve Wind Power Home Renewable Energy Energy Partnership News Wind Energy Wind Energy Manufacturing Lab Helps Engineers Improve...

  20. Proceedings from the Wind Manufacturing Workshop: Achieving 20...

    Office of Environmental Management (EM)

    Proceedings from the Wind Manufacturing Workshop: Achieving 20% Wind Energy in the U.S. by 2030, May 2009 Proceedings from the Wind Manufacturing Workshop: Achieving 20% Wind...

  1. Advanced Battery Manufacturing Facilities and Equipment Program...

    Broader source: Energy.gov (indexed) [DOE]

    More Documents & Publications Advanced Battery Manufacturing Facilities and Equipment Program Advanced Battery Manufacturing Facilities and Equipment Program Fact Sheet: Grid-Scale ...

  2. Electric Drive Component Manufacturing Facilities | Department...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Component Manufacturing Facilities Electric Drive Component Manufacturing Facilities 2013 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Program Annual Merit Review ...

  3. Electric Drive Component Manufacturing Facilities | Department...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Component Manufacturing Facilities Electric Drive Component Manufacturing Facilities 2012 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Program Annual Merit Review ...

  4. Manufacturing Demonstration Facility Workshop | Department of...

    Broader source: Energy.gov (indexed) [DOE]

    March 12, 2012 The Manufacturing Demonstration Facility Workshop (held in Chicago, IL, on ... aspects of planning a series of Manufacturing Demonstration Facilities (MDFs). ...

  5. Manufacturing Demonstration Facilities Workshop Agenda, March...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Manufacturing Demonstration Facilities Workshop Agenda, March 2012 mdfworkshopagenda.pdf (263.06 KB) More Documents & Publications Manufacturing Demonstration Facility Workshop ...

  6. Proceedings from the Wind Manufacturing Workshop: Achieving 20% Wind Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    in the U.S. by 2030, May 2009 | Department of Energy Proceedings from the Wind Manufacturing Workshop: Achieving 20% Wind Energy in the U.S. by 2030, May 2009 Proceedings from the Wind Manufacturing Workshop: Achieving 20% Wind Energy in the U.S. by 2030, May 2009 Proceedings from the August 27-28, 2008 Wind Manufacturing Workshop held by the Wind and Hydropower Technologies Program wind_manuf_wkshp_proceedings_05-19-09.pdf (1.15 MB) More Documents & Publications 20% Wind Energy by 2030

  7. Manufacturing Demonstration Facilities Workshop Agenda, March 2012

    Broader source: Energy.gov [DOE]

    Agenda for the Manufacturing Demonstration Facilities Workshop on March 12, 2012 outlining objectives and times

  8. Wind Turbine Manufacturing Process Monitoring

    SciTech Connect (OSTI)

    Waseem Faidi; Chris Nafis; Shatil Sinha; Chandra Yerramalli; Anthony Waas; Suresh Advani; John Gangloff; Pavel Simacek

    2012-04-26

    To develop a practical inline inspection that could be used in combination with automated composite material placement equipment to economically manufacture high performance and reliable carbon composite wind turbine blade spar caps. The approach technical feasibility and cost benefit will be assessed to provide a solid basis for further development and implementation in the wind turbine industry. The program is focused on the following technology development: (1) Develop in-line monitoring methods, using optical metrology and ultrasound inspection, and perform a demonstration in the lab. This includes development of the approach and performing appropriate demonstration in the lab; (2) Develop methods to predict composite strength reduction due to defects; and (3) Develop process models to predict defects from leading indicators found in the uncured composites.

  9. Scaled Wind Farm Technology (SWIFT) Facility Wind Turbine Controller...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    (SWIFT) Facility Wind Turbine Controller Ground Testing - Sandia Energy Energy Search Icon ... Scaled Wind Farm Technology (SWIFT) Facility Wind Turbine Controller Ground Testing Home...

  10. Miracle Wind Power Components Manufacture Co Ltd | Open Energy...

    Open Energy Info (EERE)

    Wind Power Components Manufacture Co Ltd Jump to: navigation, search Name: Miracle Wind Power Components Manufacture Co Ltd Place: Wuxi, Jiangsu Province, China Sector: Wind energy...

  11. Iskra Wind Turbine Manufacturers Ltd | Open Energy Information

    Open Energy Info (EERE)

    Iskra Wind Turbine Manufacturers Ltd Jump to: navigation, search Name: Iskra Wind Turbine Manufacturers Ltd Place: Nottingham, United Kingdom Sector: Wind energy Product: Iskra...

  12. Advanced Battery Manufacturing Facilities and Equipment Program...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    D.C. PDF icon esarravt002flicker2010p.pdf More Documents & Publications Advanced Battery Manufacturing Facilities and Equipment Program Advanced Battery Manufacturing...

  13. Lincoln Wind Energy Facility I | Open Energy Information

    Open Energy Info (EERE)

    I Jump to: navigation, search Name Lincoln Wind Energy Facility I Facility Lincoln Wind Energy Facility Sector Wind energy Facility Type Community Wind Facility Status In Service...

  14. Lincoln Wind Energy Facility II | Open Energy Information

    Open Energy Info (EERE)

    II Jump to: navigation, search Name Lincoln Wind Energy Facility II Facility Lincoln Wind Energy Facility Sector Wind energy Facility Type Community Wind Facility Status In Service...

  15. Solar Assembly Line at Manufacturing Facility

    Broader source: Energy.gov [DOE]

    In this photograph, an associate oversees the automatic sorting of solar cells after final tests at a BP manufacturing facility.

  16. EA-1726: Kahuku Wind Power, LLC Wind Power Generation Facility...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    6: Kahuku Wind Power, LLC Wind Power Generation Facility, O'ahu, HI EA-1726: Kahuku Wind Power, LLC Wind Power Generation Facility, O'ahu, HI EA-1726: Final Environmental ...

  17. Conneaut Wastewater Facility Wind Turbine | Open Energy Information

    Open Energy Info (EERE)

    Wastewater Facility Wind Turbine Jump to: navigation, search Name Conneaut Wastewater Facility Wind Turbine Facility Conneaut Wastewater Facility Wind Turbine Sector Wind energy...

  18. Transforming Wind Turbine Blade Mold Manufacturing with 3D Printing...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Transforming Wind Turbine Blade Mold Manufacturing with 3D Printing Transforming Wind Turbine Blade Mold Manufacturing with 3D Printing Addthis Description Innovation in the design ...

  19. Transforming Wind Turbine Blade Mold Manufacturing with 3D Printing

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    WORKING TOGETHER TO BUILD A FASTER AND LEANER FUTURE FOR WIND TURBINE BLADE MANUFACTURING ... For the wind industry, 3D printing could transform turbine blade mold manufacturing, ...

  20. Hebei Yeelong Wind Power Equipment Manufacturing Co Ltd | Open...

    Open Energy Info (EERE)

    Yeelong Wind Power Equipment Manufacturing Co Ltd Jump to: navigation, search Name: Hebei Yeelong Wind Power Equipment Manufacturing Co Ltd Place: Hebei Province, China Sector:...

  1. Shenyang Tianxiang Wind Equipments Manufacturing Co Ltd | Open...

    Open Energy Info (EERE)

    Tianxiang Wind Equipments Manufacturing Co Ltd Jump to: navigation, search Name: Shenyang Tianxiang Wind Equipments Manufacturing Co., Ltd Place: Shenyang, Liaoning Province, China...

  2. Nordex Yinchuan Wind Power Equipment Manufacturing Co Ltd | Open...

    Open Energy Info (EERE)

    Yinchuan Wind Power Equipment Manufacturing Co Ltd Jump to: navigation, search Name: Nordex (Yinchuan) Wind Power Equipment Manufacturing Co. Ltd Place: Yinchuan, Ningxia...

  3. Nordex Dongying Wind Power Equipment Manufacturing Co Ltd | Open...

    Open Energy Info (EERE)

    Dongying Wind Power Equipment Manufacturing Co Ltd Jump to: navigation, search Name: Nordex (Dongying) Wind Power Equipment Manufacturing Co. Ltd. Place: Dongying, Shandong...

  4. Nantong Casc Wanyuan Acciona Wind Turbine Manufacture Co Ltd...

    Open Energy Info (EERE)

    Casc Wanyuan Acciona Wind Turbine Manufacture Co Ltd NCWA Jump to: navigation, search Name: Nantong Casc Wanyuan Acciona Wind Turbine Manufacture Co Ltd (NCWA) Place: Nantong,...

  5. Beijing Goldwind Kechuang Wind Turbine Manufacturer | Open Energy...

    Open Energy Info (EERE)

    Goldwind Kechuang Wind Turbine Manufacturer Jump to: navigation, search Name: Beijing Goldwind Kechuang Wind Turbine Manufacturer Place: Beijing, Beijing Municipality, China Zip:...

  6. Indian Wind Turbine Manufacturers Association | Open Energy Informatio...

    Open Energy Info (EERE)

    Turbine Manufacturers Association Jump to: navigation, search Name: Indian Wind Turbine Manufacturers Association Place: Chennai, India Zip: 600 041 Sector: Wind energy Product:...

  7. Recovery Act Incentives for Wind Energy Equipment Manufacturing...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Recovery Act Incentives for Wind Energy Equipment Manufacturing Recovery Act Incentives for Wind Energy Equipment Manufacturing Document that lists some of the major federal ...

  8. Oak Ridge Manufacturing Demonstration Facility (MDF)

    Broader source: Energy.gov [DOE]

    The Manufacturing Demonstration Facility (MDF) is a collabora­tive manufacturing community that shares a common RD&D infrastructure. This shared infrastructure provides affordable access to advanced physical and virtual tools for rapidly demonstrating new manufacturing technologies and optimizing critical processes. Oak Ridge National Laboratory is home to AMO's MDF focused on Additive Manufacturing and Low-cost Carbon Fiber.

  9. Advanced Battery Manufacturing Facilities and Equipment Program...

    Broader source: Energy.gov (indexed) [DOE]

    and Equipment Program Advanced Battery Manufacturing Facilities and Equipment Program AVTA: 2010 Honda Civic HEV with Experimental Ultra Lead Acid Battery Testing Results

  10. Manufacturing Demonstration Facilities Workshop, March 12, 2012...

    Broader source: Energy.gov (indexed) [DOE]

    More Documents & Publications Manufacturing Demonstration Facility Workshop Microwave and Radio Frequency Workshop Microwave (MW) and Radio Frequency (RF) as Enabling Technologies ...

  11. Characterizing Scaled Wind Farm Technology Facility Inflow

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Scaled Wind Farm Technology Facility Inflow - Sandia Energy Energy Search Icon Sandia Home ... Stationary Power Energy Conversion Efficiency Solar Energy Wind Energy Water Power ...

  12. 20% Wind Energy by 2030 - Chapter 3: Manufacturing, Materials...

    Energy Savers [EERE]

    3: Manufacturing, Materials, and Resources Summary Slides 20% Wind Energy by 2030 - Chapter 3: Manufacturing, Materials, and Resources Summary Slides Summary Slides for Chapter 3: ...

  13. Energy Report: U.S. Wind Energy Production and Manufacturing...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Report: U.S. Wind Energy Production and Manufacturing Surges, Supporting Jobs and Diversifying U.S. Energy Economy Energy Report: U.S. Wind Energy Production and Manufacturing ...

  14. Transforming Wind Turbine Blade Mold Manufacturing with 3D Printing...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Transforming Wind Turbine Blade Mold Manufacturing with 3D Printing Transforming Wind Turbine Blade Mold Manufacturing with 3D Printing A screenshot of the cover of the 3D blade ...

  15. EA-1638: Solyndra, Inc. Photovoltaic Manufacturing Facility in...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    8: Solyndra, Inc. Photovoltaic Manufacturing Facility in Fremont, CA EA-1638: Solyndra, Inc. Photovoltaic Manufacturing Facility in Fremont, CA March 2, 2009 EA-1638: Final ...

  16. U.S. Offshore Wind Manufacturing and Supply Chain Development...

    Broader source: Energy.gov (indexed) [DOE]

    an organized, analytical approach to identifying and bounding uncertainties around offshore wind manufacturing and supply chain capabilities; projecting potential...

  17. Wind Manufacturing and Supply Chain | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Research & Development » Wind Manufacturing and Supply Chain Wind Manufacturing and Supply Chain The U.S. Department of Energy (DOE) works with wind technology suppliers to promote advanced manufacturing capabilities. Its goals are to increase reliability while lowering production costs, and to promote an industry that can meet all demands domestically while competing in the global market. The Wind Program supports industry partnerships and targeted R&D investments that integrate new

  18. 20% Wind Energy by 2030 - Chapter 3: Manufacturing, Materials, and

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Resources Summary Slides | Department of Energy 3: Manufacturing, Materials, and Resources Summary Slides 20% Wind Energy by 2030 - Chapter 3: Manufacturing, Materials, and Resources Summary Slides Summary Slides for Chapter 3: Manufacturing, Material Resources, and Impacts on the Nation's Economy 20percent_summary_chap3.pdf (818.34 KB) More Documents & Publications 20% Wind Energy by 2030 - Chapter 2: Wind Turbine Technology Summary Slides 20% Wind Energy by 2030 - Chapter 1: Executive

  19. Hyde County- Wind Energy Facility Ordinance

    Broader source: Energy.gov [DOE]

    Hyde County, located in eastern North Carolina, adopted a wind ordinance in 2008 to regulate the use of wind energy facilities throughout the county, including waters within the boundaries of Hyde...

  20. Tyrrell County- Wind Energy Facility Ordinance

    Broader source: Energy.gov [DOE]

    Tyrrell County, located in northeastern North Carolina, adopted a wind ordinance in 2009 to regulate the use of wind energy facilities in the unincorporated areas of the county. The ordinance is...

  1. Number of Large Energy User Manufacturing Facilities by Sector...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Number of Large Energy User Manufacturing Facilities by Sector and State (with Industrial Energy Consumption by State and Manufacturing Energy Consumption by Sector) State...

  2. High Wind Penetration Impact on U.S. Wind Manufacturing Capacity and Critical Resources

    SciTech Connect (OSTI)

    Laxson, A.; Hand, M. M.; Blair, N.

    2006-10-01

    This study used two different models to analyze a number of alternative scenarios of annual wind power capacity expansion to better understand the impacts of high levels of wind generated electricity production on wind energy manufacturing and installation rates.

  3. Wind Turbine Manufacturers in the U. S.: Locations and Local...

    Wind Powering America (EERE)

    Efficiency and Renewable Energy, operated by the Alliance for Sustainable Energy, LLC. Wind Turbine Manufacturers in the U.S.: Locations and Local Impacts WINDPOWER 2010 Conference...

  4. Permitting of Wind Energy Facilities: A Handbook

    SciTech Connect (OSTI)

    NWCC Siting Work Group

    2002-08-01

    This handbook has been written for individuals and groups involved in evaluating wind projects: decision-makers and agency staff at all levels of government, wind developers, interested parties and the public. Its purpose is to help stakeholders make permitting wind facility decisions in a manner which assures necessary environmental protection and responds to public needs.

  5. Wind Turbine Manufacturing Transforms with Three-Dimensional Printing |

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Department of Energy Turbine Manufacturing Transforms with Three-Dimensional Printing Wind Turbine Manufacturing Transforms with Three-Dimensional Printing May 19, 2016 - 12:57pm Addthis From medical devices to airplane components, three-dimensional (3-D) printing (also called additive manufacturing) is transforming the manufacturing industry. Now, research that supports the Energy Department's Atmosphere to Electrons (A2e) initiative is applying 3-D-printing processes to create wind turbine

  6. Manufacturing Demonstration Facility: Low Temperature Materials Synthesis

    SciTech Connect (OSTI)

    Graham, David E.; Moon, Ji-Won; Armstrong, Beth L.; Datskos, Panos G.; Duty, Chad E.; Gresback, Ryan; Ivanov, Ilia N.; Jacobs, Christopher B.; Jellison, Gerald Earle; Jang, Gyoung Gug; Joshi, Pooran C.; Jung, Hyunsung; Meyer, III, Harry M.; Phelps, Tommy

    2015-06-30

    The Manufacturing Demonstration Facility (MDF) low temperature materials synthesis project was established to demonstrate a scalable and sustainable process to produce nanoparticles (NPs) for advanced manufacturing. Previous methods to chemically synthesize NPs typically required expensive, high-purity inorganic chemical reagents, organic solvents and high temperatures. These processes were typically applied at small laboratory scales at yields sufficient for NP characterization, but insufficient to support roll-to-roll processing efforts or device fabrication. The new NanoFermentation processes described here operated at a low temperature (~60 C) in low-cost, aqueous media using bacteria that produce extracellular NPs with controlled size and elemental stoichiometry. Up-scaling activities successfully demonstrated high NP yields and quality in a 900-L pilot-scale reactor, establishing this NanoFermentation process as a competitive biomanufacturing strategy to produce NPs for advanced manufacturing of power electronics, solid-state lighting and sensors.

  7. New Wind Test Facilities Open in Colorado and South Carolina

    Broader source: Energy.gov [DOE]

    Two state-of-the-art wind testing facilities will accelerate development and deployment of wind energy technologies.

  8. The Great Plains Wind Power Test Facility

    SciTech Connect (OSTI)

    Schroeder, John

    2014-01-31

    This multi-year, multi-faceted project was focused on the continued development of a nationally-recognized facility for the testing, characterization, and improvement of grid-connected wind turbines, integrated wind-water desalination systems, and related educational and outreach topics. The project involved numerous faculty and graduate students from various engineering departments, as well as others from the departments of Geosciences (in particular the Atmospheric Science Group) and Economics. It was organized through the National Wind Institute (NWI), which serves as an intellectual hub for interdisciplinary and transdisciplinary research, commercialization and education related to wind science, wind energy, wind engineering and wind hazard mitigation at Texas Tech University (TTU). Largely executed by an academic based team, the project resulted in approximately 38 peer-reviewed publications, 99 conference presentations, the development/expansion of several experimental facilities, and two provisional patents.

  9. NREL, Clemson University Collaborate on Wind Energy Testing Facilities...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    NREL, Clemson University Collaborate on Wind Energy Testing Facilities June 8, 2015 Two of our nation's most advanced wind energy research and test facilities have joined forces to ...

  10. Sandia Energy - Scaled Wind Farm Technology Facility Baselining...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Project Accelerates Work Home Renewable Energy Energy SWIFT Facilities Partnership News Wind Energy News & Events Systems Analysis Scaled Wind Farm Technology Facility Baselining...

  11. New Research Facility to Remove Hurdles to Offshore Wind and...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Research Facility to Remove Hurdles to Offshore Wind and Water Power Development New Research Facility to Remove Hurdles to Offshore Wind and Water Power Development January 10, ...

  12. Wind Program Manufacturing Research Advances Processes and Reduces Costs

    Broader source: Energy.gov [DOE]

    Knowing that reducing the overall cost of wind energy begins on the factory floor, the Wind Program supports R&D efforts and funding opportunities that integrate new designs, materials, and advanced techniques into the manufacturing process, making wind a more affordable source of renewable energy for communities nationwide.

  13. Astraeus Wind Modifies Manufacturing in Michigan

    Broader source: Energy.gov [DOE]

    Astraeus Wind LLC. wants to experiment with new materials to strengthen the wind blades and assemble them a faster, more efficient manner.

  14. NREL: Energy Systems Integration Facility - Manufacturing and...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Manufacturing and Material Diagnostics Manufacturing and material diagnostics help manufacturers of clean energy technologies scale up production to volumes that meet U.S....

  15. EA-1638: Solyndra, Inc. Photovoltaic Manufacturing Facility in Fremont, CA

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    | Department of Energy 8: Solyndra, Inc. Photovoltaic Manufacturing Facility in Fremont, CA EA-1638: Solyndra, Inc. Photovoltaic Manufacturing Facility in Fremont, CA March 2, 2009 EA-1638: Final Environmental Assessment Loan Guarantee to Solyndra, Inc. for Construction of A Photovoltaic Manufacturing Facility and Leasing of an Existing Commercial Facility in Fremont, California March 31, 2009 EA-1638: Finding of No Significant Impact Loan Guarantee to Solyndra, Inc. for Construction of a

  16. Model Wind Energy Facility Ordinance

    Broader source: Energy.gov [DOE]

    Note: This model ordinance was designed to provide guidance to local governments that wish to develop their own siting rules for wind turbines. While it was developed as part of a cooperative...

  17. SLIDESHOW: America's Wind Testing Facilities | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    SLIDESHOW: America's Wind Testing Facilities SLIDESHOW: America's Wind Testing Facilities July 17, 2012 - 4:51pm Addthis National Wind Technology Center - Colorado 1 of 7 National Wind Technology Center - Colorado The first of 4 towers is lifted as work continues on the 2 MW Gamesa wind turbine being installed at NREL's National Wind Technology Center (NWTC). | Photo by Dennis Schroeder. Date taken: 2011-09-15 13:53 National Wind Technology Center - Colorado 2 of 7 National Wind Technology

  18. Wind power manufacturing and supply chain summit USA.

    SciTech Connect (OSTI)

    Hill, Roger Ray

    2010-12-01

    The area of wind turbine component manufacturing represents a business opportunity in the wind energy industry. Modern wind turbines can provide large amounts of electricity, cleanly and reliably, at prices competitive with any other new electricity source. Over the next twenty years, the US market for wind power is expected to continue to grow, as is the domestic content of installed turbines, driving demand for American-made components. Between 2005 and 2009, components manufactured domestically grew eight-fold to reach 50 percent of the value of new wind turbines installed in the U.S. in 2009. While that growth is impressive, the industry expects domestic content to continue to grow, creating new opportunities for suppliers. In addition, ever-growing wind power markets around the world provide opportunities for new export markets.

  19. U.S. Offshore Wind Manufacturing and Supply Chain Development

    SciTech Connect (OSTI)

    Hamilton, Bruce

    2013-02-22

    This report seeks to provide an organized, analytical approach to identifying and bounding uncertainties around offshore wind manufacturing and supply chain capabilities; projecting potential component-level supply chain needs under three demand scenarios; and identifying key supply chain challenges and opportunities facing the future U.S. market and current suppliers of the nation’s landbased wind market.

  20. U.S. Wind Energy Manufacturing & Supply Chain Cover Photo | Department of

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Energy Wind Energy Manufacturing & Supply Chain Cover Photo U.S. Wind Energy Manufacturing & Supply Chain Cover Photo GLWN Cover Photo.JPG (67.35 KB) More Documents & Publications U.S. Wind Energy Manufacturing & Supply Chain: A Competitiveness Analysis 2014 Offshore Wind Market & Economic Analysis Cover Photo Testing, Manufacturing, and Component Development Projects

  1. New Wind Turbine Dynamometer Test Facility Dedicated at NREL...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    New Wind Turbine Dynamometer Test Facility Dedicated at NREL November 19, 2013 Today, the ... dynamometer test, a powerful motor replaces the rotor and blades of a wind turbine. ...

  2. Sandia Energy - Increasing the Scaled Wind Farm Technology Facility...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Power Production Home Renewable Energy Energy SWIFT Facilities Partnership News Wind Energy News & Events Systems Analysis Increasing the Scaled Wind Farm Technology...

  3. EA-1726: Kahuku Wind Power, LLC Wind Power Generation Facility, O'ahu, HI

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    | Department of Energy 6: Kahuku Wind Power, LLC Wind Power Generation Facility, O'ahu, HI EA-1726: Kahuku Wind Power, LLC Wind Power Generation Facility, O'ahu, HI May 3, 2010 EA-1726: Final Environmental Assessment Loan Guarantee to Kahuku Wind Power, LLC for Construction of the Kahuku Wind Power Facility in Kahuku, O'ahu, Hawai'i May 13, 2010 Kahuku Wind Power Biological Opinion Kahuku Wind Power, LLC, Construction of the Kahuku Wind Power Facility in Kahuku, O'ahu, Hawaii May 27, 2010

  4. Wooden wind turbine blade manufacturing process

    DOE Patents [OSTI]

    Coleman, Clint

    1986-01-01

    A wooden wind turbine blade is formed by laminating wood veneer in a compression mold having the exact curvature needed for one side of the blade, following which the other side of the blade is ground flat along its length but twisted with respect to the blade axis.

  5. NREL, Clemson University Collaborate on Wind Energy Testing Facilities

    Broader source: Energy.gov [DOE]

    In May, two of our nation’s most advanced wind research and test facilities joined forces to help the wind energy industry improve the performance of wind turbine drivetrains and better understand...

  6. New Wind Test Facilities Open in Colorado and South Carolina...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Wind Test Facilities Open in Colorado and South Carolina New Wind Test Facilities Open in Colorado and South Carolina January 1, 2014 - 12:00am Addthis Two of the world's largest ...

  7. Advanced Wind Energy Projects Test Facility Moving to Texas Tech...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Wind Energy Projects Test Facility Moving to Texas Tech University Advanced Wind Energy Projects Test Facility Moving to Texas Tech University December 19, 2011 - 1:32pm Addthis ...

  8. Two Facilities, One Goal: Advancing America's Wind Industry | Department

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    of Energy Two Facilities, One Goal: Advancing America's Wind Industry Two Facilities, One Goal: Advancing America's Wind Industry November 27, 2013 - 1:35pm Addthis Energy Deputy Secretary Daniel Poneman speaks at the Clemson University Wind Turbine Drivetrain Testing Facility dedication in South Carolina. | Photo courtesy of Clemson University Energy Deputy Secretary Daniel Poneman speaks at the Clemson University Wind Turbine Drivetrain Testing Facility dedication in South Carolina. |

  9. South Carolina Opens Nation's Largest Wind Drivetrain Testing Facility |

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Department of Energy South Carolina Opens Nation's Largest Wind Drivetrain Testing Facility South Carolina Opens Nation's Largest Wind Drivetrain Testing Facility November 27, 2013 - 12:00am Addthis The Energy Department and Clemson University officials on November 21 dedicated the nation's largest wind energy testing facility in North Charleston, South Carolina. The facility will help test and validate new turbines, particularly for offshore wind- €helping to speed deployment of next

  10. U.S. Wind Energy Manufacturing and Supply Chain: A Competitiveness Analysis

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Wind Energy Manufacturing and Supply Chain: A Competitiveness Analysis Prepared for: U.S. Department of Energy GLWN, Global Wind Network 4855 W. 130 th St. Cleveland, OH 44135 216-588-1440 www.glwn.org June 15, 2014 U.S. Wind Energy Manufacturing and Supply Chain: A Competitiveness Analysis This page intentionally left blank U.S. Wind Energy Manufacturing and Supply Chain: A Competitiveness Analysis U.S. Wind Energy Manufacturing and Supply Chain: A Competitiveness Analysis Document

  11. First Solar Manufacturing Facility in Ohio

    Broader source: Energy.gov [DOE]

    This photograph features the First Solar facilty, which manufactures more than 1 gigawatt (GW) of solar modules and announced capacity in excess of 1.4 GW by the end of 2010. The company is an...

  12. Recovery Act Incentives for Wind Energy Equipment Manufacturing

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    2009, the U.S. had 29,440 MW of installed wind power capacity. continued > Tax incentives The federal government uses several tax-based policy incentives to stimulate the deployment of wind power. The Department of the Treasury's Internal Revenue Service administers these incentives. The federal renewable energy Production Tax Credit (PTC), established by the Energy Policy Act of 1992, allows owners of qualified renewable energy facilities to receive tax credits for each kilowatt-hour (kWh)

  13. 2014 WIND POWER PROGRAM PEER REVIEW-TEST FACILITIES

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Test Facilities March 24-27, 2014 Wind Energy Technologies PR-5000-62152 2 Contents Test Facilities Blade Test Facilities-Scott Hughes, National Renewable Energy Laboratory Massachusetts Large Blade Testing Facility-Rahul Yarala, WTTC, Massachusetts Clean Energy Center NREL Dynamometer Facilities-Robb Wallen, National Renewable Energy Laboratory Clemson University Wind Turbine Drivetrain Testing Facility-Nikolaos Rigas, Clemson University Controllable Grid Interface (CGI)-Mark McDade, National

  14. Underground Manufacturing Facility, Sterling, Virginia. Final report

    SciTech Connect (OSTI)

    Barlow, R.M.

    1981-09-25

    The author set out to build an earth-sheltered light manufacturing plant (to produce expanded polystyrene insulation) and also an earth-sheltered passive solar residence. Results are presented of waterproofing, thermal monitoring, and life cycle study on the plant. It is concluded that the added cost of providing a support for carrying the earth deadload far outweighs the energy savings. (DLC)

  15. Sales Tax Exemption for Manufacturing Facilities

    Broader source: Energy.gov [DOE]

    Energy efficiency projects must decrease the measurable amount of energy used by the facility by at least 15% percent while maintaining or increasing the production for the same period.

  16. U.S. Offshore Wind Manufacturing and Supply Chain Development

    SciTech Connect (OSTI)

    Hamilton, Bruce Duncan

    2013-02-22

    The objective of the report is to provide an assessment of the domestic supply chain and manufacturing infrastructure supporting the U.S. offshore wind market. The report provides baseline information and develops a strategy for future development of the supply chain required to support projected offshore wind deployment levels. A brief description of each of the key chapters includes: » Chapter 1: Offshore Wind Plant Costs and Anticipated Technology Advancements. Determines the cost breakdown of offshore wind plants and identifies technical trends and anticipated advancements in offshore wind manufacturing and construction. » Chapter 2: Potential Supply Chain Requirements and Opportunities. Provides an organized, analytical approach to identifying and bounding the uncertainties associated with a future U.S. offshore wind market. It projects potential component-level supply chain needs under three demand scenarios and identifies key supply chain challenges and opportunities facing the future U.S. market as well as current suppliers of the nation’s land-based wind market. » Chapter 3: Strategy for Future Development. Evaluates the gap or competitive advantage of adding manufacturing capacity in the U.S. vs. overseas, and evaluates examples of policies that have been successful . » Chapter 4: Pathways for Market Entry. Identifies technical and business pathways for market entry by potential suppliers of large-scale offshore turbine components and technical services. The report is intended for use by the following industry stakeholder groups: (a) Industry participants who seek baseline cost and supplier information for key component segments and the overall U.S. offshore wind market (Chapters 1 and 2). The component-level requirements and opportunities presented in Section 2.3 will be particularly useful in identifying market sizes, competition, and risks for the various component segments. (b) Federal, state, and local policymakers and economic development

  17. U.S. Wind Energy Manufacturing & Supply Chain: A Competitiveness Analysis |

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Department of Energy U.S. Wind Energy Manufacturing & Supply Chain: A Competitiveness Analysis U.S. Wind Energy Manufacturing & Supply Chain: A Competitiveness Analysis The Global Wind Network (GLWN) assessed the key factors that determine wind energy component manufacturing costs and pricing on a global basis in order to provide a better understanding of the factors that will help enhance the competitiveness of U.S. manufacturers, and reduce installed system costs. GLWN Cover

  18. Manufactured Home Testing in Simulated and Naturally Occurring High Winds

    SciTech Connect (OSTI)

    W. D. Richins; T. K. Larson

    2006-08-01

    A typical double-wide manufactured home was tested in simulated and naturally occurring high winds to understand structural behavior and improve performance during severe windstorms. Seven (7) lateral load tests were conducted on a double-wide manufactured home at a remote field test site in Wyoming. An extensive instrumentation package monitored the overall behavior of the home and collected data vital to validating computational software for the manufactured housing industry. The tests were designed to approach the design load of the home without causing structural damage, thus allowing the behavior of the home to be accessed when the home was later exposed to high winds (to 80-mph). The data generally show near-linear initial system response with significant non-linear behavior as the applied loads increase. Load transfer across the marriage line is primarily compression. Racking, while present, is very small. Interface slip and shear displacement along the marriage line are nearly insignificant. Horizontal global displacements reached 0.6 inch. These tests were designed primarily to collect data necessary to calibrate a desktop analysis and design software tool, MHTool, under development at the Idaho National Laboratory specifically for manufactured housing. Currently available analysis tools are, for the most part, based on methods developed for stick built structures and are inappropriate for manufactured homes. The special materials utilized in manufactured homes, such as rigid adhesives used in the connection of the sheathing materials to the studs, significantly alter the behavior of manufactured homes under lateral loads. Previous full scale tests of laterally loaded manufactured homes confirm the contention that conventional analysis methods are not applicable. System behavior dominates the structural action of manufactured homes and its prediction requires a three dimensional analysis of the complete unit, including tiedowns. This project was

  19. Wind Turbine Manufacturers in the United States: Locations and Local Impacts (Presentation)

    SciTech Connect (OSTI)

    Tegen, S.

    2010-05-26

    Suzanne Tegen's presentation about U.S. wind energy manufacturing (presented at WINDPOWER 2010 in Dallas) provides information about challenges to modeling renewables; wind energy's economic "ripple effect"; case studies about wind-related manufacturing in Colorado, Iowa, Ohio, and Indiana; manufacturing maps for the Great Lakes region, Arkansas, and the United States; sample job announcements; and U.S. Treasury Grant 1603 funding.

  20. Property:WindTurbineManufacturer | Open Energy Information

    Open Energy Info (EERE)

    + Northern Power Systems + Adair Wind Farm I + Vestas + Adair Wind Farm II + Siemens + Adams Wind Project + Alstom + Aeroman Repower Wind Farm + GE Energy + Affinity Wind Farm +...

  1. Energy Department Helps Manufacturers of Small and Mid-Size Wind Turbines

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Meet Certification Requirements | Department of Energy Manufacturers of Small and Mid-Size Wind Turbines Meet Certification Requirements Energy Department Helps Manufacturers of Small and Mid-Size Wind Turbines Meet Certification Requirements October 1, 2015 - 1:04pm Addthis Energy Department Helps Manufacturers of Small and Mid-Size Wind Turbines Meet Certification Requirements Mark Higgins Operations Supervisor, Wind & Water Power Technologies Office On October 1, the Energy

  2. Energy Department Helps Manufacturers of Small and Mid-Size Wind Turbines

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Meet Certification Requirements | Department of Energy Helps Manufacturers of Small and Mid-Size Wind Turbines Meet Certification Requirements Energy Department Helps Manufacturers of Small and Mid-Size Wind Turbines Meet Certification Requirements May 11, 2016 - 5:01pm Addthis NREL has awarded four subcontracts to manufacturers of small and mid-size wind turbines to improve their turbine design and manufacturing processes while reducing costs and improving efficiency as they work toward

  3. NREL: Wind Research - Dynamometer Test Facilities

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Dynamometer test configuration for a wind turbine drivetrain. Enlarge image Dynamometers ... dynamometer test, a powerful motor replaces the rotor and blades of a wind turbine. ...

  4. EERE Success Story—New Wind Test Facilities Open in Colorado and South Carolina

    Broader source: Energy.gov [DOE]

    Two state-of-the-art wind testing facilities will accelerate development and deployment of wind energy technologies.

  5. America's Wind Testing Facilities | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Date taken: 2011-09-15 13:53 National Wind Technology Center - Colorado 2 of 7 National Wind Technology Center - Colorado Workers use a giant crane for lifting the blade assembly ...

  6. Memorandum of Understanding between the U.S. Wind Turbine Manufacturer...

    Broader source: Energy.gov (indexed) [DOE]

    and the signing members of the wind turbine industry (the Parties) agree to work ... of Understanding between the U.S. Wind Turbine Manufacturers and the U.S. Department of ...

  7. Energy Department Helps Manufacturers of Small and Mid-Size Wind...

    Office of Environmental Management (EM)

    turbines to improve their turbine design and manufacturing processes while reducing costs and improving efficiency as they work toward certification. Photo of a small wind turbine. ...

  8. Manufacturing Demonstration Facility: Roll-to-Roll Processing

    SciTech Connect (OSTI)

    Datskos, Panos G; Joshi, Pooran C; List III, Frederick Alyious; Duty, Chad E; Armstrong, Beth L; Ivanov, Ilia N; Jacobs, Christopher B; Graham, David E; Moon, Ji Won

    2015-08-01

    This Manufacturing Demonstration Facility (MDF)e roll-to-roll processing effort described in this report provided an excellent opportunity to investigate a number of advanced manufacturing approaches to achieve a path for low cost devices and sensors. Critical to this effort is the ability to deposit thin films at low temperatures using nanomaterials derived from nanofermentation. The overarching goal of this project was to develop roll-to-roll manufacturing processes of thin film deposition on low-cost flexible substrates for electronics and sensor applications. This project utilized ORNL s unique Pulse Thermal Processing (PTP) technologies coupled with non-vacuum low temperature deposition techniques, ORNL s clean room facility, slot dye coating, drop casting, spin coating, screen printing and several other equipment including a Dimatix ink jet printer and a large-scale Kyocera ink jet printer. The roll-to-roll processing project had three main tasks: 1) develop and demonstrate zinc-Zn based opto-electronic sensors using low cost nanoparticulate structures manufactured in a related MDF Project using nanofermentation techniques, 2) evaluate the use of silver based conductive inks developed by project partner NovaCentrix for electronic device fabrication, and 3) demonstrate a suite of low cost printed sensors developed using non-vacuum deposition techniques which involved the integration of metal and semiconductor layers to establish a diverse sensor platform technology.

  9. South Carolina Opens Nation's Largest Wind Drivetrain Testing Facility

    Broader source: Energy.gov [DOE]

    Today, U.S. Deputy Secretary of Energy Daniel Poneman joined with officials from Clemson University to dedicate the nation's largest and one of the world's most advanced wind energy testing facilities in North Charleston, S.C.

  10. Big Sky Wind Facility | Open Energy Information

    Open Energy Info (EERE)

    :"","icon":"","group":"","inlineLabel":"","visitedicon":"" References "Wind Energy Data and Information Gateway (WENDI)" Retrieved from "http:en.openei.orgw...

  11. U.S. Wind Energy Manufacturing & Supply Chain: A Competitive Analysis

    SciTech Connect (OSTI)

    Fullenkamp, Patrick

    2014-06-15

    The Global Wind Network (GLWN) assessed the key factors that determine wind energy component manufacturing costs and pricing on a global basis in order to provide a better understanding of the factors that will help enhance the competitiveness of U.S. manufacturers, and reduce installed system costs.

  12. Testing, Manufacturing, and Component Development Projects for Utility-Scale and Distributed Wind Energy, Fiscal Years 2006-2014

    SciTech Connect (OSTI)

    None, None

    2014-04-01

    This report covers the Wind and Water Power Technologies Office's Testing, Manufacturing, and Component Development Projects for Utility-Scale and Distributed Wind Energy from 2006 to 2014.

  13. WIND TURBINE DRIVETRAIN TEST FACILITY DATA ACQUISITION SYSTEM

    SciTech Connect (OSTI)

    Mcintosh, J.

    2012-01-03

    The Wind Turbine Drivetrain Test Facility (WTDTF) is a state-of-the-art industrial facility used for testing wind turbine drivetrains and generators. Large power output wind turbines are primarily installed for off-shore wind power generation. The facility includes two test bays: one to accommodate turbine nacelles up to 7.5 MW and one for nacelles up to 15 MW. For each test bay, an independent data acquisition system (DAS) records signals from various sensors required for turbine testing. These signals include resistance temperature devices, current and voltage sensors, bridge/strain gauge transducers, charge amplifiers, and accelerometers. Each WTDTF DAS also interfaces with the drivetrain load applicator control system, electrical grid monitoring system and vibration analysis system.

  14. New Facility to Shed Light on Offshore Wind Resource (Fact Sheet)

    SciTech Connect (OSTI)

    Not Available

    2013-05-01

    Chesapeake Light Tower facility will gather key data for unlocking the nation's vast offshore wind resource.

  15. Energy Dept. Reports: U.S. Wind Energy Production and Manufacturing Reaches

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Record Highs | Department of Energy Wind Energy Production and Manufacturing Reaches Record Highs Energy Dept. Reports: U.S. Wind Energy Production and Manufacturing Reaches Record Highs August 6, 2013 - 8:00am Addthis WASHINGTON - The Energy Department released two new reports today showcasing record growth across the U.S. wind market -- increasing America's share of clean, renewable energy and supporting tens of thousands of jobs nationwide. According to these reports, the United States

  16. DOE Announces Effort to Advance U.S. Wind Power Manufacturing Capacity |

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Department of Energy Effort to Advance U.S. Wind Power Manufacturing Capacity DOE Announces Effort to Advance U.S. Wind Power Manufacturing Capacity June 2, 2008 - 12:51pm Addthis MOU Launches Government-Industry Effort to Define and Develop Technologies and Siting Strategies Necessary to Achieve 20% Wind Energy by 2030 HOUSTON, TEXAS -The U.S. Department of Energy (DOE) Assistant Secretary of Energy Efficiency and Renewable Energy Andy Karsner today announced a Memorandum of Understanding

  17. `Climate wise` program at the Cosmair, Inc. Clark Manufacturing Facility

    SciTech Connect (OSTI)

    Kraly, K.

    1997-12-31

    Viewgraphs from the conference presentation are reproduced in this paper, which outlines energy efficiency improvements and emissions reductions at a hair care products manufacturing facility. Program management focuses on employee involvement in internal audits, utility tracking, public relations, and preventative maintenance. Energy savings, cost savings, and emission reductions are presented for 1996 and projected to the year 2000. Other program aspects outlined include a summary of utility costs; solid waste; chilled water system modifications; lighting modifications; boiler upgrades; and heating, ventilating, and air conditioning improvements.

  18. U.S. Offshore Wind Manufacturing and Supply Chain Development | Department

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    of Energy Manufacturing and Supply Chain Development U.S. Offshore Wind Manufacturing and Supply Chain Development This report seeks to provide an organized, analytical approach to identifying and bounding uncertainties around offshore wind manufacturing and supply chain capabilities; projecting potential component-level supply chain needs under three demand scenarios; and identifying key supply chain challenges and opportunities facing the future U.S. market and current suppliers of the

  19. Memorandum of Understanding between the U.S. Wind Turbine Manufacturers and

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    the U.S. Department of Energy on Developing a Shared Strategy to Achieve 20% Wind Energy in 2030 | Department of Energy between the U.S. Wind Turbine Manufacturers and the U.S. Department of Energy on Developing a Shared Strategy to Achieve 20% Wind Energy in 2030 Memorandum of Understanding between the U.S. Wind Turbine Manufacturers and the U.S. Department of Energy on Developing a Shared Strategy to Achieve 20% Wind Energy in 2030 this Memorandum of Understanding (MOU), the U.S.

  20. Wind Program Manufacturing Research Advances Processes and Reduces...

    Office of Environmental Management (EM)

    cost of wind energy begins on the factory floor, the Department of Energy's (DOE's) Wind Program supports research ... source of renewable energy for communities nationwide. ...

  1. Assessment of U.S. Manufacturing Capability for Next-Generation Wind Turbine Drivetrains

    SciTech Connect (OSTI)

    Cotrell, J.; Stelhy, T.

    2013-09-01

    Robust U.S. wind turbine manufacturing capabilities and supply chains are important for the United States to reduce the cost of electricity generated from wind turbines. These capabilities and supply chains are also critical to the invention and commercialization of new wind turbine technologies while providing high-quality jobs. The development of advanced drivetrain technologies for windturbine applications is advancing the state of the art for drivetrain design by producing higher capacity and operating reliability than conventional drivetrains. Advanced drivetrain technologies such as medium-speed and direct-drive generators, silicon-carbide (SiC) IGBT-based power electronics, and high torque density speed increasers require different manufacturing and supply chaincapabilities that present both risks and opportunities for U.S. wind turbine manufacturers and the wind industry as a whole. The primary objective of this project is to assess how advanced drivetrain technologies and trends will impact U.S. wind turbine manufacturing and its supply chains. The U.S. Department of Energy and other industry participants will use the information from this study toidentify domestic manufacturing gaps, barriers, and opportunities for developing U.S. wind turbine manufacturing capabilities and supply chains for next-generation drivetrain technologies. This report also includes recommendations for prioritizing technology areas for possible investments by public, private, or nonprofit entities that will reduce the cost of wind-generated electricity. Suchinvestments foster opportunities to invent and commercialize new wind turbine technologies, and provide high-quality jobs in the United States.

  2. Proof-of-Concept Manufacturing and Testing of Composite Wind Generator Blades Made by HCBMP (High Compression Bladder Molded Prepreg)

    SciTech Connect (OSTI)

    William C. Leighty; DOE Project Officer - Keith Bennett

    2005-10-04

    Proof-of-Concept Manufacturing and Testing of Composite Wind Generator Blades Made by HCBMP (High Compression Bladder Molded Prepreg)

  3. Wind and Water Power Program - Wind Power Opens Door To Diverse Opportunities (Green Jobs)

    SciTech Connect (OSTI)

    2010-04-01

    The strong projected growth of wind power will require a stream of trained and qualified workers to manufacture, construct, operate, and maintain the wind energy facilities.

  4. Rationale for wind-borne missile criteria for DOE facilities

    SciTech Connect (OSTI)

    McDonald, J R; Murray, R

    1999-09-01

    High winds tend to pick up and transport various objects and debris, which are referred to as wind-borne missiles or tornado missiles, depending on the type of storm. Missiles cause damage by perforating the building envelope or by collapsing structural elements such as walls, columns or frames. The primary objectives of this study are as follows: (1) to provide a basis for wind-borne or tornado missile criteria for the design and evaluation of DOE facilities, and (2) to provide guidelines for the design and evaluation of impact-resistant missile barriers for DOE facilities The first objective is accomplished through a synthesis of information from windstorm damage documentation experience and computer simulation of missile trajectories. The second objective is accomplished by reviewing the literature, which describes various missile impact tests, and by conducting a series of impact tests at a Texas Tech University facility to fill in missing information.

  5. West Winds Wind Farm | Open Energy Information

    Open Energy Info (EERE)

    Winds Wind Farm Jump to: navigation, search Name West Winds Wind Farm Facility West Winds Sector Wind energy Facility Type Commercial Scale Wind Facility Status In Service Owner...

  6. Wind Turbine Manufacturing Transforms with Three-Dimensional...

    Broader source: Energy.gov (indexed) [DOE]

    (A2e) initiative is applying 3-D-printing processes to create wind turbine blade molds. ... overall, as blades represent one of the most expensive components of a wind turbine. ...

  7. U.S. Wind Energy Manufacturing and Supply Chain: A Competitiveness Analysis

    SciTech Connect (OSTI)

    Fullenkamp, Patrick H; Holody, Diane S

    2014-06-15

    The goal of the project was to develop a greater understanding of the key factors determining wind energy component manufacturing costs and pricing on a global basis in order to enhance the competitiveness of U.S. manufacturers, and to reduce installed systems cost. Multiple stakeholders including DOE, turbine OEMs, and large component manufactures will all benefit by better understanding the factors determining domestic competitiveness in the emerging offshore and next generation land-based wind industries. Major objectives of this project were to: 1. Carry out global cost and process comparisons for 5MW jacket foundations, blades, towers, and permanent magnet generators; 2. Assess U.S. manufacturers’ competitiveness and potential for cost reduction; 3. Facilitate informed decision-making on investments in U.S. manufacturing; 4. Develop an industry scorecard representing the readiness of the U.S. manufacturers’ to produce components for the next generations of wind turbines, nominally 3MW land-based and 5MW offshore; 5. Disseminate results through the GLWN Wind Supply Chain GIS Map, a free website that is the most comprehensive public database of U.S. wind energy suppliers; 6. Identify areas and develop recommendations to DOE on potential R&D areas to target for increasing domestic manufacturing competitiveness, per DOE’s Clean Energy Manufacturing Initiative (CEMI). Lists of Deliverables 1. Cost Breakdown Competitive Analyses of four product categories: tower, jacket foundation, blade, and permanent magnet (PM) generator. The cost breakdown for each component includes a complete Bill of Materials with net weights; general process steps for labor; and burden adjusted by each manufacturer for their process categories of SGA (sales general and administrative), engineering, logistics cost to a common U.S. port, and profit. 2. Value Stream Map Competitiveness Analysis: A tool that illustrates both information and material flow from the point of getting a

  8. Wind turbine composite blade manufacturing : the need for understanding defect origins, prevalence, implications and reliability.

    SciTech Connect (OSTI)

    Cairns, Douglas S.; Riddle, Trey; Nelson, Jared

    2011-02-01

    Renewable energy is an important element in the US strategy for mitigating our dependence on non-domestic oil. Wind energy has emerged as a viable and commercially successful renewable energy source. This is the impetus for the 20% wind energy by 2030 initiative in the US. Furthermore, wind energy is important on to enable a global economy. This is the impetus for such rapid, recent growth. Wind turbine blades are a major structural element of a wind turbine blade. Wind turbine blades have near aerospace quality demands at commodity prices; often two orders of magnitude less cost than a comparable aerospace structure. Blade failures are currently as the second most critical concern for wind turbine reliability. Early blade failures typically occur at manufacturing defects. There is a need to understand how to quantify, disposition, and mitigate manufacturing defects to protect the current wind turbine fleet, and for the future. This report is an overview of the needs, approaches, and strategies for addressing the effect of defects in wind turbine blades. The overall goal is to provide the wind turbine industry with a hierarchical procedure for addressing blade manufacturing defects relative to wind turbine reliability.

  9. Teaming Up to Apply Advanced Manufacturing Methods to Wind Turbine Production

    Office of Energy Efficiency and Renewable Energy (EERE)

    Last spring, a 3D-printed replica Shelby Cobra, manufactured at Oak Ridge National Laboratory (ORNL), visited the U.S. Department of Energy (DOE) headquarters in Washington, DC. Now, DOE’s Wind...

  10. EA-1645: Sage Electrochromics SageGlass High Volume Manufacturing Facility

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    in Fairbault, MN | Department of Energy 45: Sage Electrochromics SageGlass High Volume Manufacturing Facility in Fairbault, MN EA-1645: Sage Electrochromics SageGlass High Volume Manufacturing Facility in Fairbault, MN July 1, 2009 EA-1645: Final Environmental Assessment Sage Electrochromics Sageglass® High Volume Manufacturing (Hvm) Facility in Faribault, Minnesota July 1, 2009 EA-1645: Finding of No Significant Impact Loan Guarantee for Sage Electrochromics SageGlass High Volume

  11. EERE Success Story-Manufacturing Facility Opened Using EERE-Supported

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Low-Cost Fuel Cell Manufacturing Methods | Department of Energy Manufacturing Facility Opened Using EERE-Supported Low-Cost Fuel Cell Manufacturing Methods EERE Success Story-Manufacturing Facility Opened Using EERE-Supported Low-Cost Fuel Cell Manufacturing Methods July 26, 2013 - 12:00am Addthis Working with BASF of Florham Park, EERE-supported efforts led to a 75% reduction of the manufacturing cost of gas diffusion electrodes-a key component of fuel cells. To accomplish this cost

  12. 20% Wind Energy by 2030 - Chapter 3: Manufacturing, Materials, and Resources Summary Slides

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    by 2030 Chapter 3: Manufacturing, Materials, and Resources Summary Slides Manufacturing, materials, and resource challenges Materials * Demand for steel will increase significantly * Improved availability of critical materials needed: fiberglass, resins and permanent magnets could be a constraint Manufacturing * The 20% Wind Scenario would require a 20% annual growth in installations for nearly a decade and then require maintaining that installation level through 2030 Education and workforce *

  13. Energy Report: U.S. Wind Energy Production and Manufacturing Surges,

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Supporting Jobs and Diversifying U.S. Energy Economy | Department of Energy Report: U.S. Wind Energy Production and Manufacturing Surges, Supporting Jobs and Diversifying U.S. Energy Economy Energy Report: U.S. Wind Energy Production and Manufacturing Surges, Supporting Jobs and Diversifying U.S. Energy Economy August 14, 2012 - 9:00am Addthis News Media Contact (202) 586-4940 WASHINGTON - The Energy Department released a new report today highlighting strong growth in the U.S. wind energy

  14. Supply Chain and Blade Manufacturing Considerations in the Global Wind Industry (Presentation)

    SciTech Connect (OSTI)

    James, T.; Goodrich, A.

    2013-12-01

    This briefing provides an overview of supply chain developments in the global wind industry and a detailed assessment of blade manufacturing considerations for U.S. end-markets. The report discusses the international trade flows of wind power equipment, blade manufacturing and logistical costs, and qualitative issues that often influence factory location decisions. To help guide policy and research and development strategy decisions, this report offers a comprehensive perspective of both quantitative and qualitative factors that affect selected supply chain developments in the growing wind power industry.

  15. File:Permitting of Wind Energy Facilities 2002.pdf | Open Energy...

    Open Energy Info (EERE)

    Permitting of Wind Energy Facilities 2002.pdf Jump to: navigation, search File File history File usage File:Permitting of Wind Energy Facilities 2002.pdf Size of this preview: 463...

  16. Supply Chain and Blade Manufacturing Considerations in the Global Wind Industry

    Broader source: Energy.gov [DOE]

    Over the past decade, significant wind manufacturing capacity has been built in the United States in response to an increasingly large domestic market. Recent U.S. manufacturing production levels exceed anticipated near-term domestic demand for select parts of the supply chain, in part due to policy uncertainty, and this is resulting in some restructuring in the industry. Factor location decisions are influenced by a combination of quantitative and qualitative factors; proximity to end-markets is often a key consideration, especially for manufacturers of large wind turbine components. Technology advancements in the wind sector are continuing , and larger blade designs are being pursued in the market, which may increase U.S.-based manufacturing opportunities.

  17. SUMMARY OF REVISED TORNADO, HURRICANE AND EXTREME STRAIGHT WIND CHARACTERISTICS AT NUCLEAR FACILITY SITES

    Office of Energy Efficiency and Renewable Energy (EERE)

    Summary of Revised Tornado, Hurricane and Extreme Straight Wind Characteristics at Nuclear Facility Sites BY: John D. Stevenson Consulting Engineer

  18. U.S. Offshore Wind Manufacturing and Supply Chain Development

    Office of Environmental Management (EM)

    ... the land-based wind market, with some potential concerns over supplies of rare earth elements (for permanent magnet generators) and larger-sized bearings and forgings (BTM 2011). ...

  19. Transforming Wind Turbine Blade Mold Manufacturing with 3D Printing

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    (ORNL) Big Area Additive Manufacturing (BAAM) system. BAAM is 500 to 1,000 times faster and capable of printing polymer components over 10 times larger than today's industrial additive machines. With research blades measuring 13 meters (42 feet) in length, BAAM provides the necessary scale and foundation for this ground-breaking advancement in blade research and manufacturing. The U.S. Department of Energy's (DOE's) Office of Energy Efficiency and Renewable Energy (EERE) plays a strategic role

  20. Transforming Wind Turbine Blade Mold Manufacturing with 3D Printing

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Big Area Additive Manufacturing, or BAAM machine developed in collaboration with Cincinnati Incorporated. BAAM is 500 to 1,000 times faster and capable of printing polymer components over 10 times larger than today's industrial additive machines. With research blades measuring 13 meters (42 feet) in length, BAAM provides the necessary scale and foundation for this ground-breaking advancement in blade research and manufacturing. The U.S. Department of Energy's (DOE's) Office of Energy Efficiency

  1. Prairie Winds Wind Farm | Open Energy Information

    Open Energy Info (EERE)

    Wind Farm Jump to: navigation, search Name Prairie Winds Wind Farm Facility Prairie Winds Sector Wind energy Facility Type Commercial Scale Wind Facility Status In Service Owner...

  2. Building State-of-the-Art Wind Technology Testing Facilities (Fact Sheet)

    SciTech Connect (OSTI)

    Not Available

    2012-03-01

    The new Wind Technology Test Center is the only facility in the nation capable of testing wind turbine blades up to 90 meters in length. A critical factor to wind turbine design and development is the ability to test new designs, components, and materials. In addition, wind turbine blade manufacturers are required to test their blades as part of the turbine certification process. The National Renewable Energy Laboratory (NREL) partnered with the U.S. Department of Energy (DOE) Wind Program and the Massachusetts Clean Energy Center (MassCEC) to design, construct, and operate the Wind Technology Center (WTTC) in Boston, Massachusetts. The WTTC offers a full suite of certification tests for turbine blades up to 90 meters in length. NREL worked closely with MTS Systems Corporation to develop the novel large-scale test systems needed to conduct the static and fatigue tests required for certification. Static tests pull wind turbine blades horizontally and vertically to measure blade deflection and strains. Fatigue tests cycle the blades millions of times to simulate what a blade goes through in its lifetime on a wind turbine. For static testing, the WTTC is equipped with servo-hydraulic winches and cylinders that are connected to the blade through cables to apply up to an 84-mega Newton meter maximum static bending moment. For fatigue testing, MTS developed a commercial version of NREL's patented resonant excitation system with hydraulic cylinders that actuate linear moving masses on the blade at one or more locations. This system applies up to a 21-meter tip-to-tip fatigue test tip displacement to generate 20-plus years of cyclic field loads in a matter of months. NREL also developed and supplied the WTTC with an advanced data acquisition system capable of measuring and recording hundreds of data channels at very fast sampling rates while communicating with test control systems.

  3. Twin Groves Wind Energy Facility Cut-in Speeds

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    SYNTHESIS OF OPERATIONAL MITIGATION STUDIES TO REDUCE BAT FATALITIES AT WIND ENERGY FACILITIES IN NORTH AMERICA Prepared for: The National Renewable Energy Laboratory 15013 Denver West Parkway Golden, CO 80401 Prepared by: Edward B. Arnett 1 , Gregory D. Johnson 2 , Wally P. Erickson 2 , and Cris D. Hein 3 1 Theordore Roosevelt Conservation Partnership 2 Western EcoSystems Technology, Inc. 3 Bat Conservation International March 2013 CITATION Arnett, E. B., G. D. Johnson, W. P. Erickson, and C.

  4. Manufacturing Demonstration Facility: Roll-to-Roll Processing...

    Office of Scientific and Technical Information (OSTI)

    effort described in this report provided an excellent opportunity to investigate a number of advanced manufacturing approaches to achieve a path for low cost devices and sensors. ...

  5. Wind Energy Facilities and Residential Properties: The Effect of Proximity and View on Sales Prices

    SciTech Connect (OSTI)

    Hoen, Ben; Wiser, Ryan; Cappers, Peter; Thayer, Mark; Sethi, Gautam

    2010-04-01

    With an increasing number of communities considering nearby wind power developments, there is a need to empirically investigate community concerns about wind project development. One such concern is that property values may be adversely affected by wind energy facilities, and relatively little research exists on the subject. The present research investigates roughly 7,500 sales of single-family homes surrounding 24 existing U.S. wind facilities. Across four different hedonic models the results are consistent: neither the view of the wind facilities nor the distance of the home to those facilities is found to have a statistically significant effect on home sales prices.

  6. Cisco Wind Energy Wind Farm | Open Energy Information

    Open Energy Info (EERE)

    Cisco Wind Energy Wind Farm Jump to: navigation, search Name Cisco Wind Energy Wind Farm Facility Cisco Wind Energy Sector Wind energy Facility Type Commercial Scale Wind Facility...

  7. NREL: Wind Research - Testing

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Testing Photo of a large wind turbine blade sticking out of the structural testing laboratory; it is perpendicular to a building at the National Wind Technology Center. A multimegawatt wind turbine blade extends outside of the structural testing facility at the NWTC. PIX #19010 Testing capabilities at the National Wind Technology Center (NWTC) support the installation and testing of wind turbines that range in size from 400 watts to 5.0 megawatts. Engineers provide wind industry manufacturers,

  8. Construction Completed on Wind Plant Optimization R&D Facility | Department

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    of Energy Construction Completed on Wind Plant Optimization R&D Facility Construction Completed on Wind Plant Optimization R&D Facility April 1, 2013 - 12:33pm Addthis This is an excerpt from the First Quarter 2013 edition of the Wind Program R&D Newsletter. The U.S. Department of Energy (DOE) and Sandia National Laboratories (SNL) have completed construction of a new state-of-the-art wind plant research facility at Texas Tech University in Lubbock, Texas. The Scaled Wind Farm

  9. New Facility to Shed Light on Offshore Wind Resource (Fact Sheet...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Photo by Rick Driscoll, NREL 25660 Chesapeake Light Tower facility will gather key data for unlocking the nation's vast offshore wind resource. According to the National Offshore ...

  10. Effect of Manufacturing-Induced Defects on Reliability of Composite Wind Turbine Blades

    SciTech Connect (OSTI)

    Julie Chen; Christopher Niezrecki; James Sherwood; Peter Avitabile; Mark Rumsey; Scott Hughes; Stephen Nolet; et al.

    2012-08-31

    In support of DOE’s efforts on developing “affordable, reliable domestic wind power”, this ARRA project brought together a strong, complementary team from academia (University of Massachusetts Lowell), two DOE laboratories (NREL and Sandia), and a major wind turbine blade manufacturer (TPI) to address one of the key issues affecting wind power cost and reliability – manufacturing-induced defects in the blades. The complexity of this problem required the assembled team’s expertise in materials – specifically textile and composite structures – finite element modeling, composites manufacturing, mechanical characterization, structural dynamics, nondestructive inspection (NDI) and structural health monitoring (SHM), sensors, and wind turbine blade testing. This final report summarizes the results of this project.

  11. Manufactured Home Testing in Simulated and Naturally Occurring High Winds for WCTE Conference

    SciTech Connect (OSTI)

    William D. Richins; Thomas K. Larson; Jeffrey M. Lacy; Ryan G. Kobbe

    2006-08-01

    A typical double-wide manufactured home was tested in simulated and naturally occurring high winds to understand structural behavior and improve performance during severe windstorms. Seven (7) lateral load tests were conducted on a double-wide manufactured home at a remote field test site in Wyoming. An extensive instrumentation package monitored the overall behavior of the home and collected data vital to validating computational software for the manufactured housing industry. The tests were designed to approach the design load of the home without causing structural damage, thus allowing the behavior of the home to be accessed when the home was later exposed to high winds (to 80-mph). The data generally show near-linear initial system response with significant non-linear behavior as the applied loads increase. Load transfer across the marriage line is primarily compression. Racking, while present, is very small. Interface slip and shear displacement along the marriage line are nearly insignificant. Horizontal global displacements reached 0.6 inch. These tests were designed primarily to collect data necessary to calibrate a desktop analysis and design software tool, MHTool, under development at the Idaho National Laboratory specifically for manufactured housing. Currently available analysis tools are, for the most part, based on methods developed for "stick built" structures and are inappropriate for manufactured homes. The special materials utilized in manufactured homes, such as rigid adhesives used in the connection of the sheathing materials to the studs, significantly alter the behavior of manufactured homes under lateral loads. Previous full scale tests of laterally loaded manufactured homes confirm the contention that conventional analysis methods are not applicable. System behavior dominates the structural action of manufactured homes and its prediction requires a three dimensional analysis of the complete unit, including tie-downs. This project was

  12. SMART Wind Consortium Composites Subgroup Virtual Meeting: Advanced Manufacturing of Wind Turbine Blades

    Broader source: Energy.gov [DOE]

    Funded by the U.S. Department of Commerce, the SMART Wind Consortium is connecting collaborators to form consensus on near-term and mid-term plans needed to increase cost competitiveness of U.S....

  13. Wind Power Partners '94 Wind Farm | Open Energy Information

    Open Energy Info (EERE)

    4 Wind Farm Jump to: navigation, search Name Wind Power Partners '94 Wind Farm Facility Wind Power Partners '94 Sector Wind energy Facility Type Commercial Scale Wind Facility...

  14. New Research Facility to Remove Hurdles to Offshore Wind and Water Power

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Development | Department of Energy Research Facility to Remove Hurdles to Offshore Wind and Water Power Development New Research Facility to Remove Hurdles to Offshore Wind and Water Power Development January 10, 2013 - 1:59pm Addthis This is an excerpt from the Fourth Quarter 2012 edition of the Wind Program R&D Newsletter. Virginia Beach, Virginia - A new U.S. Department of Energy (DOE) research facility could help bring the United States closer to generating power from the winds and

  15. Wind Energy Facilities and Residential Properties: The Effect of Proximity and View on Sales Prices

    SciTech Connect (OSTI)

    Hoen, Ben; Wiser, Ryan; Cappers, Peter; Thayer, Mark; Sethi, Gautam

    2010-04-01

    With wind energy expanding rapidly in the U.S. and abroad, and with an increasing number of communities considering nearby wind power developments, there is a need to empirically investigate community concerns about wind project development. One such concern is that property values may be adversely affected by wind energy facilities, and relatively little existing research exists on the subject. The present research is based on almost 7,500 sales of single-family homes situated within ten miles of 24 existing wind facilities in nine different U.S. states. The conclusions of the study are drawn from four different hedonic pricing models. The model results are consistent in that neither the view of the wind facilities nor the distance of the home to those facilities is found to have a statistically significant effect on home sales prices.

  16. Danielson Wind | Open Energy Information

    Open Energy Info (EERE)

    Wind Jump to: navigation, search Name Danielson Wind Facility Danielson Wind Sector Wind energy Facility Type Commercial Scale Wind Facility Status In Service Developer Juhl Wind...

  17. Kawailoa Wind | Open Energy Information

    Open Energy Info (EERE)

    Wind Jump to: navigation, search Name Kawailoa Wind Facility Kawailoa Wind Sector Wind energy Facility Type Commercial Scale Wind Facility Status In Service Owner First Wind...

  18. Palouse Wind | Open Energy Information

    Open Energy Info (EERE)

    Wind Jump to: navigation, search Name Palouse Wind Facility Palouse Wind Sector Wind energy Facility Type Commercial Scale Wind Facility Status In Service Owner First Wind...

  19. Harbor Wind | Open Energy Information

    Open Energy Info (EERE)

    Wind Jump to: navigation, search Name Harbor Wind Facility Harbor Wind Sector Wind energy Facility Type Commercial Scale Wind Facility Status In Service Owner Harbor Wind LLC...

  20. Kahuku Wind | Open Energy Information

    Open Energy Info (EERE)

    Kahuku Wind Jump to: navigation, search Name Kahuku Wind Facility Kahuku Wind Sector Wind energy Facility Type Commercial Scale Wind Facility Status In Service Owner First Wind...

  1. Wiota Wind | Open Energy Information

    Open Energy Info (EERE)

    Wiota Wind Jump to: navigation, search Name Wiota Wind Facility Wiota Wind Sector Wind energy Facility Type Community Wind Facility Status In Service Owner Wiota Wind Energy LLC...

  2. Bravo Wind | Open Energy Information

    Open Energy Info (EERE)

    Bravo Wind Jump to: navigation, search Name Bravo Wind Facility Bravo Wind Sector Wind energy Facility Type Commercial Scale Wind Facility Status Proposed Developer Bravo Wind LLC...

  3. Auwahi Wind | Open Energy Information

    Open Energy Info (EERE)

    Auwahi Wind Jump to: navigation, search Name Auwahi Wind Facility Auwahi Wind Sector Wind energy Facility Type Commercial Scale Wind Facility Status In Service Owner BP Wind Energy...

  4. Traer Wind | Open Energy Information

    Open Energy Info (EERE)

    Traer Wind Jump to: navigation, search Name Traer Wind Facility Traer Wind Sector Wind energy Facility Type Community Wind Facility Status In Service Owner Norsemen Wind Energy LLC...

  5. Sheffield Wind | Open Energy Information

    Open Energy Info (EERE)

    Wind Jump to: navigation, search Name Sheffield Wind Facility Sheffield Wind Sector Wind energy Facility Type Commercial Scale Wind Facility Status In Service Owner First Wind...

  6. Rollins Wind | Open Energy Information

    Open Energy Info (EERE)

    Wind Jump to: navigation, search Name Rollins Wind Facility Rollins Wind Sector Wind energy Facility Type Commercial Scale Wind Facility Status In Service Owner First Wind...

  7. Large Wind Turbine Blade Test Facilities to be in Mass., Texas - News

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Releases | NREL Large Wind Turbine Blade Test Facilities to be in Mass., Texas Access to waterways key; NREL to continue testing smaller blades in Colorado June 25, 2007 The U.S. Department of Energy's National Renewable Energy Laboratory (NREL) will work with consortiums from Texas and Massachusetts to design, build and operate new facilities to test the next generation of giant wind turbine blades. The Department of Energy (DOE) announced the blade test facility cooperative research and

  8. Wind Power Career Chat, Wind And Water Power Program (WWPP)

    Wind Powering America (EERE)

    WIND AND WATER POWER PROGRAM Wind Power Career Chat Overview Students will learn about careers in the wind energy industry. Wind energy, both land-based and offshore, is expected to provide thousands of new jobs in the next several decades. Wind energy companies are growing rapidly to meet America's demand for clean, renewable, and domestic energy. These companies need skilled professionals. Trained and qualified workers manufacture, construct, operate, and manage wind energy facilities. In

  9. Effectiveness of Changing Wind Turbine Cut-in Speed to Reduce Bat Fatalities at Wind Facilities

    SciTech Connect (OSTI)

    Huso, Manuela M. P.; Hayes, John P.

    2009-04-01

    This report details an experiment on the effectiveness of changing wind turbine cut-in speed on reducing bat fatality from wind turbines at the Casselman Wind Project in Somerset County, Pennsylvania.

  10. Wind Energy Facilities and Residential Properties: The Effect of Proximity and View on Sales Prices

    SciTech Connect (OSTI)

    San Diego State University; Bard Center for Environmental Policy at Bard College; Hoen, Ben; Wiser, Ryan; Cappers, Peter; Thayer, Mark; Sethi, Gautam

    2011-06-23

    With increasing numbers of communities considering wind power developments, empirical investigations regarding related community concerns are needed. One such concern is that proximate property values may be adversely affected, yet relatively little research exists on the subject. The present research investigates roughly 7,500 sales of single-family homes surrounding 24 existing U.S. wind facilities. Across four different hedonic models, and a variety of robustness tests, the results are consistent: neither the view of the wind facilities nor the distance of the home to those facilities is found to have a statistically significant effect on sales prices, yet further research is warranted.

  11. Evaluation of Hand Lay-Up and Resin Transfer Molding in Composite Wind Turbine Blade Manufacturing

    SciTech Connect (OSTI)

    CAIRNS,DOUGLAS S.; SHRAMSTAD,JON D.

    2000-06-01

    The majority of the wind turbine blade industry currently uses low cost hand lay-up manufacturing techniques to process composite blades. While there are benefits to the hand lay-up process, drawbacks inherent to this process along with advantages of other techniques suggest that better manufacturing alternatives may be available. Resin Transfer Molding (RTM) was identified as a processing alternative and shows promise in addressing the shortcomings of hand lay-up. This report details a comparison of the RTM process to hand lay-up of composite wind turbine blade structures. Several lay-up schedules and critical turbine blade structures were chosen for comparison of their properties resulting from RTM and hand lay-up processing. The geometries investigated were flat plate, thin and thick flanged T-stiffener, I-beam, and root connection joint. It was found that the manufacturing process played an important role in laminate thickness, fiber volume, and weight for the geometries investigated. RTM was found to reduce thickness and weight and increase fiber volumes for all substructures. RTM resulted in tighter material transition radii and eliminated the need for most secondary bonding operations. These results would significantly reduce the weight of wind turbine blades. Hand lay-up was consistently slower in fabrication times for the structures investigated. A comparison of mechanical properties showed no significant differences after employing fiber volume normalization techniques to account for geometry differences resulting from varying fiber volumes. The current root specimen design does not show significant mechanical property differences according to process and exceeds all static and fatigue requirements.

  12. Two Facilities, One Goal: Advancing America's Wind Industry | Department of

    Office of Environmental Management (EM)

    of Energy Twelve Collegiate Teams Gear Up to Compete at WINDPOWER 2016 Twelve Collegiate Teams Gear Up to Compete at WINDPOWER 2016 May 18, 2015 - 2:38pm Addthis Twelve collegiate teams are gearing up to participate in the U.S. Department of Energy's (DOE's) second Collegiate Wind Competition that will take place at the annual American Wind Energy Association (AWEA) WINDPOWER Conference and Exhibition in New Orleans, Louisiana, from May 23 to 26, 2016. The Collegiate Wind Competition

  13. Advanced Wind Energy Projects Test Facility Moving to Texas Tech University

    Office of Energy Efficiency and Renewable Energy (EERE)

    The Department of Energy (DOE) Sandia National Laboratories (SNL) is moving its wind energy test facility to a new location near the campus of Texas Tech University in Lubbock, Texas.

  14. South Carolina Opens Nation’s Largest Wind Drivetrain Testing Facility

    Broader source: Energy.gov [DOE]

    Today, U.S. Deputy Secretary of Energy Daniel Poneman joined with officials from Clemson University to dedicate the nation's largest and one of the world's most advanced wind energy testing facilities in North Charleston, S.C.

  15. DOE/SNL Scaled Wind-Farm Technology facility

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Energy Conversion Efficiency Solar Energy Wind Energy Water Power Supercritical CO2 Geothermal Natural Gas Safety, ... variable-pitch Vestas V27 turbines and two 60 m anemometer ...

  16. NREL, Clemson University Collaborate on Wind Energy Testing Facilities...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    example of how a university and a national laboratory can work together," said Brian Smith, acting center director for the National Wind Technology Center at NREL. "The ...

  17. Smith River Rancheria - Wind and Biomass Power Generation Facility...

    Broader source: Energy.gov (indexed) [DOE]

    Greg Retzlaff Strategic Energy Solutions, Inc. Wind & Biomass Power Generation Smith River Rancheria 2 Smith River Rancheria * Coastal Community of 600 in Northern California and ...

  18. Garnet Wind | Open Energy Information

    Open Energy Info (EERE)

    Wind Jump to: navigation, search Name Garnet Wind Facility Garnet Wind Sector Wind energy Facility Type Commercial Scale Wind Facility Status In Service Owner Azusa Light & Water...

  19. Lime Wind | Open Energy Information

    Open Energy Info (EERE)

    Wind Jump to: navigation, search Name Lime Wind Facility Lime Wind Sector Wind energy Facility Type Commercial Scale Wind Facility Status In Service Owner Joseph Millworks Inc...

  20. Fairhaven Wind | Open Energy Information

    Open Energy Info (EERE)

    Wind Jump to: navigation, search Name Fairhaven Wind Facility Fairhaven Wind Sector Wind energy Facility Type Community Wind Facility Status In Service Owner Solaya Energy Palmer...

  1. Scituate Wind | Open Energy Information

    Open Energy Info (EERE)

    Wind Jump to: navigation, search Name Scituate Wind Facility Scituate Wind Sector Wind energy Facility Type Community Wind Facility Status In Service Owner Solaya Energy ...

  2. Pacific Wind | Open Energy Information

    Open Energy Info (EERE)

    Wind Jump to: navigation, search Name Pacific Wind Facility Pacific Wind Sector Wind energy Facility Type Commercial Scale Wind Facility Status In Service Owner enXco Developer...

  3. Galactic Wind | Open Energy Information

    Open Energy Info (EERE)

    Wind Jump to: navigation, search Name Galactic Wind Facility Galactic Wind Sector Wind energy Facility Type Commercial Scale Wind Facility Status In Service Owner Epic Systems...

  4. Rockland Wind | Open Energy Information

    Open Energy Info (EERE)

    Wind Jump to: navigation, search Name Rockland Wind Facility Rockland Wind Sector Wind energy Facility Type Commercial Scale Wind Facility Status In Service Developer Ridgeline...

  5. Greenfield Wind | Open Energy Information

    Open Energy Info (EERE)

    Jump to: navigation, search Name Greenfield Wind Facility Greenfield Wind Sector Wind energy Facility Type Community Wind Facility Status In Service Owner Greenfield Wind Power...

  6. Willmar Wind | Open Energy Information

    Open Energy Info (EERE)

    Wind Jump to: navigation, search Name Willmar Wind Facility Willmar Wind Sector Wind energy Facility Type Commercial Scale Wind Facility Status In Service Owner Willmar...

  7. Stetson Wind Expansion Wind Farm | Open Energy Information

    Open Energy Info (EERE)

    Stetson Wind Expansion Wind Farm Jump to: navigation, search Name Stetson Wind Expansion Wind Farm Facility Stetson Wind Expansion Sector Wind energy Facility Type Commercial Scale...

  8. Wethersfield Wind Power Wind Farm | Open Energy Information

    Open Energy Info (EERE)

    Wethersfield Wind Power Wind Farm Jump to: navigation, search Name Wethersfield Wind Power Wind Farm Facility Wethersfield Wind Power Sector Wind energy Facility Type Commercial...

  9. Harbec Plastic Wind Turbine Wind Farm | Open Energy Information

    Open Energy Info (EERE)

    Harbec Plastic Wind Turbine Wind Farm Jump to: navigation, search Name Harbec Plastic Wind Turbine Wind Farm Facility Harbec Plastic Wind Turbine Sector Wind energy Facility Type...

  10. Interim Action Determination Flexible Manufacturing Capability for the Mixed Fuel Fabrication Facility (MFFF)

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Flexible Manufacturing Capability for the Mixed Fuel Fabrication Facility (MFFF) The Department of Energy (DOE) is preparing the Surplus Plutonium Disposition Supplemental Environmental Impact Statement (SPD SEIS), DOE/EIS-0283-S2. DOE is evaluating, among many other things, the environmental impacts of any design and operations changes to the MFFF, which is under construction at the Savannah River Site near Aiken, South Carolina. DOE evaluated the impacts of construction and operation of the

  11. Facilities

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Facilities The the WTGa1 turbine (aka DOE/SNL #1) retuns to power as part of a final series of commissioning tests. Permalink Gallery First Power for SWiFT Turbine Achieved during Recommissioning Facilities, News, Renewable Energy, SWIFT, Wind Energy, Wind News First Power for SWiFT Turbine Achieved during Recommissioning The Department of Energy's Scaled Wind Farm Technology (SWiFT) Facility reached an exciting milestone with the return to power production of the WTGa1 turbine (aka DOE/SNL #1)

  12. Wildcat Ridge Wind Farm | Open Energy Information

    Open Energy Info (EERE)

    Wildcat Ridge Wind Farm Facility Wildcat Ridge Wind Farm Sector Wind energy Facility Type Offshore Wind Facility Status Proposed Owner Midwest Wind Energy Developer Midwest Wind...

  13. Radial Wind Farm | Open Energy Information

    Open Energy Info (EERE)

    search Name Radial Wind Farm Facility Radial Wind Farm Sector Wind energy Facility Type Offshore Wind Facility Status Proposed Owner Radial Wind Developer Radial Wind Location...

  14. Crow Lake Wind | Open Energy Information

    Open Energy Info (EERE)

    Wind Jump to: navigation, search Name Crow Lake Wind Facility Crow Lake Wind Sector Wind energy Facility Type Commercial Scale Wind Facility Status In Service Owner Prairie Winds...

  15. Zirbel Wind Farm | Open Energy Information

    Open Energy Info (EERE)

    to: navigation, search Name Zirbel Wind Farm Facility Zirbel Wind Farm (Glenmore Wind Energy Facility) Sector Wind energy Facility Type Commercial Scale Wind Facility Status In...

  16. NREL, Clemson University Collaborate on Wind Energy Testing Facilities...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    that can help engineers better understand how wind turbines will react to grid disturbances. Supported by a 45.6 million DOE investment that is cost matched with over 70 million ...

  17. Manufacturing

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Flow of Materials through Industry / Sustainable 1 Manufacturing 2 Technology Assessment 3 Contents 4 1. Introduction to the Technology/System ............................................................................................... 1 5 1.1 Supply chain and material flow analysis ....................................................................................... 1 6 2. Technology Assessment and Potential

  18. From the Start: NREL Nurtures a Growing Wind Industry - Continuum...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Photo of a wind turbine nacelle bolted to a coupling device that, in turn, is connected to ... and dynamometer test facilities draw wind turbine manufacturers from around the world. ...

  19. Marketing prospect and assessment for local manufacture of wind converters in Indonesia

    SciTech Connect (OSTI)

    Pakpahan, S.; Utami, N.S.

    1996-12-31

    Wind energy resources in Indonesia provide opportunities to improve the delivery of electricity consumption for small and medium scale applications particularly for rural and remote areas and will be developed as the part of national rural electrification programs. By proper selection of design, this kind of energy source has shown to be a technically proven and affordable means of providing electricity at those areas. The promotion of WECS technology have been initiated in Indonesia by establishing some pilot projects at selected areas while in commercialization efforts, several private companies are now being involved. Dissemination of WECS technology should be based on proper selection of WECS types including economic consideration and marketing programs; for obtaining this, manufacturing of some WECS components / parts have been initiating using available materials and components; while other components that`s still not producible in Indonesia will be produced by cooperation with industry. In addition, wind resource assessments will be extended sustainably in order to identify more potential areas and locations. 7 refs., 5 figs.

  20. DECOMMISSIONING OF THE 247-F FUEL MANUFACTURING FACILITY AT THE SAVANNAH RIVER SITE

    SciTech Connect (OSTI)

    Santos, J; Stephen Chostner, S

    2007-05-22

    Building 247-F at SRS was a roughly 110,000 ft{sup 2} two-story facility designed and constructed during the height of the cold war naval buildup to provide additional naval nuclear fuel manufacturing capacity in early 1980s. The building layout is shown in Fig. 1. A photograph of the facility is shown in Fig. 2. The manufacturing process employed a wide variety of acids, bases, and other hazardous materials. As the cold war wound down, the need for naval fuel declined. Consequently, the facility was shut down and underwent initial deactivation. All process systems were flushed with water and drained using the existing process drain valves. However, since these drains were not always installed at the lowest point in piping and equipment systems, a significant volume of liquid remained after initial deactivation was completed in 1990. At that time, a non-destructive assay of the process area identified approximately 17 (+/- 100%) kg of uranium held up in equipment and piping.

  1. Wind Power Career Chat

    SciTech Connect (OSTI)

    L. Flowers

    2011-01-01

    This document will teach students about careers in the wind energy industry. Wind energy, both land-based and offshore, is expected to provide thousands of new jobs in the next several decades. Wind energy companies are growing rapidly to meet America's demand for clean, renewable, and domestic energy. These companies need skilled professionals. Wind power careers will require educated people from a variety of areas. Trained and qualified workers manufacture, construct, operate, and manage wind energy facilities. The nation will also need skilled researchers, scientists, and engineers to plan and develop the next generation of wind energy technologies.

  2. Largest Federally Owned Wind Farm Breaks Ground at U.S. Weapons Facility |

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Y-12 National Security Complex Largest Federally Owned ... Largest Federally Owned Wind Farm Breaks Ground at U.S. Weapons Facility Posted: August 13, 2013 - 12:01pm WASHINGTON - Building on President Obama's Climate Action Plan, which calls for steady, responsible steps to reduce carbon pollution, the Energy Department today broke ground on the nation's largest federally owned wind project at the Pantex Plant in Amarillo, Texas. Once completed, this five-turbine 11.5 megawatt project will

  3. Energy Department Reports Highlight Strength of U.S. Wind Energy...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    ... off-grid homes and farms as well as local schools and manufacturing facilities. ... Industry New Report Shows Domestic Offshore Wind Industry Potential, 21 Projects Planned ...

  4. NREL: Innovation Impact - Wind

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Wind Energy Menu Home Home Solar Solar Wind Wind Analysis Analysis Bioenergy Bioenergy Buildings Buildings Transportation Transportation Manufacturing Manufacturing Energy Systems ...

  5. Milford Wind Corridor Phase I (Clipper) Wind Farm | Open Energy...

    Open Energy Info (EERE)

    Clipper) Wind Farm Jump to: navigation, search Name Milford Wind Corridor Phase I (Clipper) Wind Farm Facility Milford Wind Corridor Phase I (Clipper) Sector Wind energy Facility...

  6. Proceedings from the Wind Manufacturing Workshop: Achieving 20% Wind Energy in the U.S. by 2030, May 2009

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    About the Wind and Hydropower Technologies Program The Wind and Hydropower Technologies Program (WHTP) within the Department of Energy's Office of Energy Efficiency and Renewable Energy (DOE-EERE) is leading the nation's efforts to improve the performance and operability of wind energy technologies and lower the costs, to investigate emerging water power technologies, and to enhance the environmental performance and efficiencies of conventional hydropower technologies. To find more information

  7. JD Wind 6 Wind Farm | Open Energy Information

    Open Energy Info (EERE)

    JD Wind 6 Wind Farm Jump to: navigation, search Name JD Wind 6 Wind Farm Facility JD Wind 6 Sector Wind energy Facility Type Commercial Scale Wind Facility Status In Service Owner...

  8. JD Wind 7 Wind Farm | Open Energy Information

    Open Energy Info (EERE)

    JD Wind 7 Wind Farm Jump to: navigation, search Name JD Wind 7 Wind Farm Facility JD Wind 7 Sector Wind energy Facility Type Commercial Scale Wind Facility Status In Service Owner...

  9. Metro Wind LLC Wind Farm | Open Energy Information

    Open Energy Info (EERE)

    Wind LLC Wind Farm Jump to: navigation, search Name Metro Wind LLC Wind Farm Facility Metro Wind LLC Sector Wind energy Facility Type Commercial Scale Wind Facility Status In...

  10. Michigan Wind II Wind Farm | Open Energy Information

    Open Energy Info (EERE)

    II Wind Farm Jump to: navigation, search Name Michigan Wind II Wind Farm Facility Michigan Wind II Wind Farm Sector Wind energy Facility Type Commercial Scale Wind Facility Status...

  11. Creation of a U.S. Phosphorescent OLED Lighting Panel Manufacturing Facility

    SciTech Connect (OSTI)

    Hack, Michael

    2013-09-30

    Universal Display Corporation (UDC) has pioneered high efficacy phosphorescent OLED (PHOLED™) technology to enable the realization of an exciting new form of high quality, energy saving solid-date lighting. In laboratory test devices, we have demonstrated greater than 100 lm/W conversion efficacy. In this program, Universal Display will demonstrate the scalability of its proprietary UniversalPHOLED technology and materials for the manufacture of white OLED lighting panels that meet commercial lighting targets. Moser Baer Technologies will design and build a U.S.- based pilot facility. The objective of this project is to establish a pilot phosphorescent OLED (PHOLED) manufacturing line in the U.S. Our goal is that at the end of the project, prototype lighting panels could be provided to U.S. luminaire manufacturers for incorporation into products to facilitate the testing of design concepts and to gauge customer acceptance, so as to facilitate the growth of the embryonic U.S. OLED lighting industry. In addition, the team will provide a cost of ownership analysis to quantify production costs including OLED performance metrics which relate to OLED cost such as yield, materials usage, cycle time, substrate area, and capital depreciation. This project was part of a new DOE initiative designed to help establish and maintain U.S. leadership in this program will support key DOE objectives by showing a path to meet Department of Energy Solid-State Lighting Manufacturing Roadmap cost targets, as well as meeting its efficiency targets by demonstrating the energy saving potential of our technology through the realization of greater than 76 lm/W OLED lighting panels by 2012.

  12. Olsen Wind Farm | Open Energy Information

    Open Energy Info (EERE)

    Olsen Wind Farm Jump to: navigation, search Name Olsen Wind Farm Facility Olsen Wind Farm Sector Wind energy Facility Type Commercial Scale Wind Facility Status In Service Owner...

  13. Blue Creek Wind Farm | Open Energy Information

    Open Energy Info (EERE)

    Creek Wind Farm Jump to: navigation, search Name Blue Creek Wind Farm Facility Blue Creek Wind Farm Sector Wind energy Facility Type Commercial Scale Wind Facility Status In...

  14. Tuana Springs Wind Farm | Open Energy Information

    Open Energy Info (EERE)

    Springs Wind Farm Jump to: navigation, search Name Tuana Springs Wind Farm Facility Tuana Springs Wind Farm Sector Wind energy Facility Type Commercial Scale Wind Facility Status...

  15. Thousand Springs Wind Park | Open Energy Information

    Open Energy Info (EERE)

    Springs Wind Park Jump to: navigation, search Name Thousand Springs Wind Park Facility Thousand Springs Wind Park Sector Wind energy Facility Type Commercial Scale Wind Facility...

  16. Red Canyon Wind Farm | Open Energy Information

    Open Energy Info (EERE)

    Canyon Wind Farm Jump to: navigation, search Name Red Canyon Wind Farm Facility Red Canyon Wind Farm Sector Wind energy Facility Type Commercial Scale Wind Facility Status In...

  17. Shane Cowell Wind Farm | Open Energy Information

    Open Energy Info (EERE)

    Shane Cowell Wind Farm Jump to: navigation, search Name Shane Cowell Wind Farm Facility Shane Cowell Wind Farm Sector Wind energy Facility Type Commercial Scale Wind Facility...

  18. Antelope Ridge Wind Farm | Open Energy Information

    Open Energy Info (EERE)

    Antelope Ridge Wind Farm Jump to: navigation, search Name Antelope Ridge Wind Farm Facility Antelope Ridge Wind Farm Sector Wind energy Facility Type Commercial Scale Wind Facility...

  19. Locust Ridge Wind Farm | Open Energy Information

    Open Energy Info (EERE)

    Locust Ridge Wind Farm Jump to: navigation, search Name Locust Ridge Wind Farm Facility Locust Ridge Wind Farm Sector Wind energy Facility Type Commercial Scale Wind Facility...

  20. Rosiere Wind Farm | Open Energy Information

    Open Energy Info (EERE)

    Rosiere Wind Farm Jump to: navigation, search Name Rosiere Wind Farm Facility Rosiere Wind Farm Sector Wind energy Facility Type Commercial Scale Wind Facility Status In Service...

  1. Paynes Ferry Wind Farm | Open Energy Information

    Open Energy Info (EERE)

    Paynes Ferry Wind Farm Jump to: navigation, search Name Paynes Ferry Wind Farm Facility Paynes Ferry Wind Farm Sector Wind energy Facility Type Commercial Scale Wind Facility...

  2. Marengo Wind Farm | Open Energy Information

    Open Energy Info (EERE)

    Marengo Wind Farm Jump to: navigation, search Name Marengo Wind Farm Facility Marengo Wind Farm Sector Wind energy Facility Type Commercial Scale Wind Facility Status In Service...

  3. Stoney Corners Wind Farm | Open Energy Information

    Open Energy Info (EERE)

    Stoney Corners Wind Farm Jump to: navigation, search Name Stoney Corners Wind Farm Facility Stoney Corners Wind Farm Sector Wind energy Facility Type Commercial Scale Wind Facility...

  4. Marshall Wind Farm | Open Energy Information

    Open Energy Info (EERE)

    Marshall Wind Farm Jump to: navigation, search Name Marshall Wind Farm Facility Marshall Wind Farm Sector Wind energy Facility Type Commercial Scale Wind Facility Status In Service...

  5. Laredo Ridge Wind Farm | Open Energy Information

    Open Energy Info (EERE)

    Laredo Ridge Wind Farm Jump to: navigation, search Name Laredo Ridge Wind Farm Facility Laredo Ridge Wind Farm Sector Wind energy Facility Type Commercial Scale Wind Facility...

  6. Nine Canyon Wind Farm | Open Energy Information

    Open Energy Info (EERE)

    Nine Canyon Wind Farm Jump to: navigation, search Name Nine Canyon Wind Farm Facility Nine Canyon Wind Farm Sector Wind energy Facility Type Commercial Scale Wind Facility Status...

  7. Casper Wind Farm | Open Energy Information

    Open Energy Info (EERE)

    Casper Wind Farm Jump to: navigation, search Name Casper Wind Farm Facility Casper Wind Farm Sector Wind energy Facility Type Commercial Scale Wind Facility Status In Service...

  8. Wallys Wind Farm | Open Energy Information

    Open Energy Info (EERE)

    Wallys Wind Farm Jump to: navigation, search Name Wallys Wind Farm Facility Wallys Wind Farm Sector Wind energy Facility Type Commercial Scale Wind Facility Status In Service Owner...

  9. Cassia Wind Farm | Open Energy Information

    Open Energy Info (EERE)

    Cassia Wind Farm Jump to: navigation, search Name Cassia Wind Farm Facility Cassia Wind Farm Sector Wind energy Facility Type Commercial Scale Wind Facility Status In Service Owner...

  10. Hatchet Ridge Wind Farm | Open Energy Information

    Open Energy Info (EERE)

    Hatchet Ridge Wind Farm Jump to: navigation, search Name Hatchet Ridge Wind Farm Facility Hatchet Ridge Wind Farm Sector Wind energy Facility Type Commercial Scale Wind Facility...

  11. Cedar Point Wind Farm | Open Energy Information

    Open Energy Info (EERE)

    Cedar Point Wind Farm Jump to: navigation, search Name Cedar Point Wind Farm Facility Cedar Point Wind Farm Sector Wind energy Facility Type Commercial Scale Wind Facility Status...

  12. Greensburg Wind Farm | Open Energy Information

    Open Energy Info (EERE)

    Greensburg Wind Farm Jump to: navigation, search Name Greensburg Wind Farm Facility Greensburg Wind Farm Sector Wind energy Facility Type Commercial Scale Wind Facility Status In...

  13. Wheatfield Wind Farm | Open Energy Information

    Open Energy Info (EERE)

    Wheatfield Wind Farm Jump to: navigation, search Name Wheatfield Wind Farm Facility Wheatfield Wind Farm Sector Wind energy Facility Type Commercial Scale Wind Facility Status In...

  14. Ewington Wind Farm | Open Energy Information

    Open Energy Info (EERE)

    Ewington Wind Farm Jump to: navigation, search Name Ewington Wind Farm Facility Ewington Wind Farm Sector Wind energy Facility Type Commercial Scale Wind Facility Status In Service...

  15. Uilk Wind Farm | Open Energy Information

    Open Energy Info (EERE)

    Uilk Wind Farm Jump to: navigation, search Name Uilk Wind Farm Facility Uilk Wind Farm Sector Wind energy Facility Type Commercial Scale Wind Facility Status In Service Developer...

  16. Octotillo Wind Farm | Open Energy Information

    Open Energy Info (EERE)

    Octotillo Wind Farm Jump to: navigation, search Name Octotillo Wind Farm Facility Octotillo Wind Farm Sector Wind energy Facility Type Commercial Scale Wind Facility Status In...

  17. First State Marine Wind | Open Energy Information

    Open Energy Info (EERE)

    State Marine Wind Jump to: navigation, search Name First State Marine Wind Facility First State Marine Wind Sector Wind energy Facility Type Offshore Wind Facility Status Proposed...

  18. Minco Wind Energy Center | Open Energy Information

    Open Energy Info (EERE)

    Wind Energy Center Jump to: navigation, search Name Minco Wind Energy Center Facility Minco Wind Energy Center Sector Wind energy Facility Type Commercial Scale Wind Facility...

  19. Howard Wind Energy Project | Open Energy Information

    Open Energy Info (EERE)

    Wind Energy Project Jump to: navigation, search Name Howard Wind Energy Project Facility Howard Wind Energy Project Sector Wind energy Facility Type Community Wind Facility Status...

  20. Cape Wind Project | Open Energy Information

    Open Energy Info (EERE)

    Project Jump to: navigation, search Name Cape Wind Project Facility Cape Wind Sector Wind energy Facility Type Offshore wind Facility Status Proposed Owner Cape Wind Developer Cape...

  1. Wales Wind Energy Project | Open Energy Information

    Open Energy Info (EERE)

    Wales Wind Energy Project Jump to: navigation, search Name Wales Wind Energy Project Facility Wales Wind Energy Project Sector Wind energy Facility Type Small Scale Wind Facility...

  2. Wyoming Wind Energy Center | Open Energy Information

    Open Energy Info (EERE)

    Wind Energy Center Jump to: navigation, search Name Wyoming Wind Energy Center Facility Wyoming Wind Energy Center Sector Wind energy Facility Type Commercial Scale Wind Facility...

  3. Vantage Wind Energy Center | Open Energy Information

    Open Energy Info (EERE)

    Wind Energy Center Jump to: navigation, search Name Vantage Wind Energy Center Facility Vantage Wind Energy Center Sector Wind energy Facility Type Commercial Scale Wind Facility...

  4. Gary Wind Energy Project | Open Energy Information

    Open Energy Info (EERE)

    Gary Wind Energy Project Jump to: navigation, search Name Gary Wind Energy Project Facility Gary Wind Energy Project Sector Wind energy Facility Type Small Scale Wind Facility...

  5. Oliver Wind Energy Center | Open Energy Information

    Open Energy Info (EERE)

    Wind Energy Center Jump to: navigation, search Name Oliver Wind Energy Center Facility Oliver Wind Energy Center Sector Wind energy Facility Type Commercial Scale Wind Facility...

  6. Don Sneve Wind Project | Open Energy Information

    Open Energy Info (EERE)

    Sneve Wind Project Jump to: navigation, search Name Don Sneve Wind Project Facility Don Sneve Wind Project Sector Wind energy Facility Type Commercial Scale Wind Facility Status In...

  7. Green Mountain Wind Farm | Open Energy Information

    Open Energy Info (EERE)

    Wind Farm Jump to: navigation, search Name Green Mountain Wind Farm Facility Green Mountain Wind Farm Sector Wind energy Facility Type Commercial Scale Wind Facility Status In...

  8. Spring Canyon Wind Farm | Open Energy Information

    Open Energy Info (EERE)

    Spring Canyon Wind Farm Jump to: navigation, search Name Spring Canyon Wind Farm Facility Spring Canyon Wind Farm Sector Wind energy Facility Type Commercial Scale Wind Facility...

  9. Flat Water Wind Farm | Open Energy Information

    Open Energy Info (EERE)

    Water Wind Farm Jump to: navigation, search Name Flat Water Wind Farm Facility Flat Water Wind Farm Sector Wind energy Facility Type Commercial Scale Wind Facility Status In...

  10. Deepwater Wind Farm | Open Energy Information

    Open Energy Info (EERE)

    Name Deepwater Wind Farm Facility Deepwater Wind Farm Sector Wind energy Facility Type Offshore Wind Facility Status Proposed Owner PSEG Renewable Generation Deepwater Wind...