National Library of Energy BETA

Sample records for wind integration studies

  1. Nebraska Statewide Wind Integration Study

    SciTech Connect (OSTI)

    none,

    2010-03-01

    This study of wind energy integration in Nebraska was conducted at the request of the Nebraska Power Association. Executive summary can be found here: http://www.nrel.gov/docs/fy10osti/47285.pdf

  2. Western Wind and Solar Integration Study

    SciTech Connect (OSTI)

    GE Energy

    2010-05-01

    This report provides a full description of the Western Wind and Solar Integration Study (WWSIS) and its findings.

  3. Eastern Wind Integration and Transmission Study -- Preliminary Findings: Preprint

    SciTech Connect (OSTI)

    Corbus, D.; Milligan, M.; Ela, E.; Schuerger, M.; Zavadil, B.

    2009-09-01

    This paper reviews the Eastern Wind Integration and Transmission Study, the development of wind datasets, the transmission analysis, and the results of wind integration analysis for four scenarios.

  4. Advancements in Wind Integration Study Data Modeling: The Wind Integration National Dataset (WIND) Toolkit; Preprint

    SciTech Connect (OSTI)

    Draxl, C.; Hodge, B. M.; Orwig, K.; Jones, W.; Searight, K.; Getman, D.; Harrold, S.; McCaa, J.; Cline, J.; Clark, C.

    2013-10-01

    Regional wind integration studies in the United States require detailed wind power output data at many locations to perform simulations of how the power system will operate under high-penetration scenarios. The wind data sets that serve as inputs into the study must realistically reflect the ramping characteristics, spatial and temporal correlations, and capacity factors of the simulated wind plants, as well as be time synchronized with available load profiles. The Wind Integration National Dataset (WIND) Toolkit described in this paper fulfills these requirements. A wind resource dataset, wind power production time series, and simulated forecasts from a numerical weather prediction model run on a nationwide 2-km grid at 5-min resolution will be made publicly available for more than 110,000 onshore and offshore wind power production sites.

  5. Phase 2 Report: Oahu Wind Integration and Transmission Study...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Phase 2 Report: Oahu Wind Integration and Transmission Study (OWITS); Hawaiian Islands Transmission Interconnection Project Phase 2 Report: Oahu Wind Integration and Transmission ...

  6. Western Wind and Solar Integration Study: Executive Summary | Department of

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Energy Western Wind and Solar Integration Study: Executive Summary Western Wind and Solar Integration Study: Executive Summary This study investigates the operational impact of up to 35% energy penetration of wind, photovoltaics (PVs), and concentrating solar power (CSP) on the power system operated by the WestConnect group of utilities in Arizona, Colorado, Nevada, New Mexico, and Wyoming. PDF icon western_wind_solar_integration More Documents & Publications Eastern Wind Integration and

  7. Eastern Wind Integration and Transmission Study: Executive Summary and

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Project Overview | Department of Energy Eastern Wind Integration and Transmission Study: Executive Summary and Project Overview Eastern Wind Integration and Transmission Study: Executive Summary and Project Overview This study evaluates the future operational and integration impacts of three different 20 percent wind energy penetration scenarios and one 30 percent wind penetration scenario, including a high-level analysis of transmission to deliver the wind energy to load centers, in the

  8. Eastern Wind Integration and Transmission Study (EWITS) (Revised) |

    Office of Environmental Management (EM)

    Department of Energy Eastern Wind Integration and Transmission Study (EWITS) (Revised) Eastern Wind Integration and Transmission Study (EWITS) (Revised) EWITS was designed to answer questions about technical issues related to a 20% wind energy scenario for electric demand in the Eastern Interconnection. PDF icon 47078.pdf More Documents & Publications Eastern Wind Integration and Transmission Study: Executive Summary and Project Overview Proceedings of the March 25-26, 2009 Conference

  9. Nebraska Statewide Wind Integration Study: April 2008 - January 2010

    SciTech Connect (OSTI)

    EnerNex Corporation, Knoxville, Tennessee; Ventyx, Atlanta, Georgia; Nebraska Power Association, Lincoln, Nebraska

    2010-03-01

    Wind generation resources in Nebraska will play an increasingly important role in the environmental and energy security solutions for the state and the nation. In this context, the Nebraska Power Association conducted a state-wide wind integration study.

  10. EWIS European wind integration study (Smart Grid Project) (France...

    Open Energy Info (EERE)

    France) Jump to: navigation, search Project Name EWIS European wind integration study Country France Coordinates 45.897655, 2.021484 Loading map... "minzoom":false,"mappingser...

  11. OAHU Wind Integration And Transmission Study: Summary Report...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    PDF icon 48632.pdf More Documents & Publications Phase 2 Report: Oahu Wind Integration and Transmission Study (OWITS); Hawaiian Islands Transmission Interconnection Project Oahu ...

  12. Oahu Wind Integration and Transmission Study (OWITS): Hawaiian...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    PDF icon 50411.pdf More Documents & Publications Phase 2 Report: Oahu Wind Integration and Transmission Study (OWITS); Hawaiian Islands Transmission Interconnection Project OAHU ...

  13. Western Wind and Solar Integration Study Phase 3 … Frequency...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    DE-AC36-08GO28308 Western Wind and Solar Integration Study Phase 3 - Frequency Response ... Interface CSP concentrating solar thermal power DC direct current DG ...

  14. EWIS European wind integration study (Smart Grid Project) (Denmark...

    Open Energy Info (EERE)

    search Project Name EWIS European wind integration study Country Denmark Coordinates 56.26392, 9.501785 Loading map... "minzoom":false,"mappingservice":"googlemaps3","type...

  15. EWIS European wind integration study (Smart Grid Project) (Spain...

    Open Energy Info (EERE)

    Spain) Jump to: navigation, search Project Name EWIS European wind integration study Country Spain Coordinates 40.522152, -4.163818 Loading map... "minzoom":false,"mappingserv...

  16. EWIS European wind integration study (Smart Grid Project) (United...

    Open Energy Info (EERE)

    United Kingdom) Jump to: navigation, search Project Name EWIS European wind integration study Country United Kingdom Coordinates 55.378052, -3.435973 Loading map......

  17. EWIS European wind integration study (Smart Grid Project) (Czech...

    Open Energy Info (EERE)

    Czech Republic) Jump to: navigation, search Project Name EWIS European wind integration study Country Czech Republic Coordinates 49.817493, 15.472962 Loading map......

  18. EWIS European wind integration study (Smart Grid Project) (Germany...

    Open Energy Info (EERE)

    Germany) Jump to: navigation, search Project Name EWIS European wind integration study Country Germany Coordinates 51.165691, 10.451526 Loading map... "minzoom":false,"mapping...

  19. Oahu Wind Integration and Transmission Study (OWITS): Hawaiian Islands

    Energy Savers [EERE]

    Transmission Interconnection Project | Department of Energy Oahu Wind Integration and Transmission Study (OWITS): Hawaiian Islands Transmission Interconnection Project Oahu Wind Integration and Transmission Study (OWITS): Hawaiian Islands Transmission Interconnection Project This report provides an independent review included an initial evaluation of the technical configuration and capital costs of establishing an undersea cable system and examining impacts to the existing electric

  20. Phase 2 Report: Oahu Wind Integration and Transmission Study (OWITS);

    Energy Savers [EERE]

    Hawaiian Islands Transmission Interconnection Project | Department of Energy Phase 2 Report: Oahu Wind Integration and Transmission Study (OWITS); Hawaiian Islands Transmission Interconnection Project Phase 2 Report: Oahu Wind Integration and Transmission Study (OWITS); Hawaiian Islands Transmission Interconnection Project This report provides an independent review included an initial evaluation of the technical configuration and capital costs of establishing an undersea cable system and

  1. Western Wind and Solar Integration Study (Fact Sheet)

    SciTech Connect (OSTI)

    Not Available

    2012-09-01

    Initiated in 2007 to examine the operational impact of up to 35% penetration of wind, photovoltaic (PV), and concentrating solar power (CSP) energy on the electric power system, the Western Wind and Solar Integration Study (WWSIS) is one of the largest regional wind and solar integration studies to date. The goal is to understand the effects of variability and uncertainty of wind, PV, and CSP on the grid. In the Western Wind and Solar Integration Study Phase 1, solar penetration was limited to 5%. Utility-scale PV was not included because of limited capability to model sub-hourly, utility-scale PV output . New techniques allow the Western Wind and Solar Integration Study Phase 2 to include high penetrations of solar - not only CSP and rooftop PV but also utility-scale PV plants.

  2. The Western Wind and Solar Integration Study Phase 2

    Broader source: Energy.gov [DOE]

    Greg Brinkman will present the results of the Western Wind and Solar Integration Study (WWSIS), Phase 2. This study, which follows the first phase of WWSIS, focuses on potential emissions and wear...

  3. OAHU Wind Integration And Transmission Study: Summary Report, NREL

    Energy Savers [EERE]

    (National Renewable Energy Laboratory) | Department of Energy OAHU Wind Integration And Transmission Study: Summary Report, NREL (National Renewable Energy Laboratory) OAHU Wind Integration And Transmission Study: Summary Report, NREL (National Renewable Energy Laboratory) This study was composed of several smaller studies done in cooperation with other local entities and experts, all of which are summarized in this report. PDF icon 48632.pdf More Documents & Publications Phase 2 Report:

  4. Western Wind and Solar Integration Study: Phase 2 (Presentation)

    SciTech Connect (OSTI)

    Lew, D.; Brinkman, G.; Ibanez, E.; Lefton, S.; Kumar, N.; Venkataraman, S.; Jordan, G.

    2013-09-01

    This presentation summarizes the scope and results of the Western Wind and Solar Integration Study Phase 2, which examined operational impacts of high penetrations of variable renewable generation in the West.

  5. Western Wind and Solar Integration Study Phase 2 (Fact Sheet)

    SciTech Connect (OSTI)

    Not Available

    2013-09-01

    This is one-page, two-sided fact sheet presents high-level summary results of the Western Wind and Solar Integration Study Phase 2, which examined operational impacts of high penetrations of variable renewable generation in the West.

  6. Western Wind and Solar Integration Study Phase 3: Technical Overview

    SciTech Connect (OSTI)

    2015-11-01

    Technical fact sheet outlining the key findings of Phase 3 of the Western Wind and Solar Integration Study (WWSIS-3). NREL and GE find that with good system planning, sound engineering practices, and commercially available technologies, the Western grid can maintain reliability and stability during the crucial first minute after grid disturbances with high penetrations of wind and solar power.

  7. The Western Wind and Solar Integration Study Phase 2

    SciTech Connect (OSTI)

    Lew, Debra; Brinkman, Greg; Ibanez, E.; Florita, A.; Heaney, M.; Hodge, B. -M.; Hummon, M.; Stark, G.; King, J.; Lefton, S. A.; Kumar, N.; Agan, D.; Jordan, G.; Venkataraman, S.

    2013-09-01

    The electric grid is a highly complex, interconnected machine, and changing one part of the grid can have consequences elsewhere. Adding wind and solar affects the operation of the other power plants and adding high penetrations can induce cycling of fossil-fueled generators. Cycling leads to wear-and-tear costs and changes in emissions. Phase 2 of the Western Wind and Solar Integration Study (WWSIS-2) evaluated these costs and emissions and simulated grid operations for a year to investigate the detailed impact of wind and solar on the fossil-fueled fleet. This built on Phase 1, one of the largest wind and solar integration studies ever conducted, which examined operational impacts of high wind and solar penetrations in the West(GE Energy 2010).

  8. The Western Wind and Solar Integration Study Phase 2

    SciTech Connect (OSTI)

    Lew, D.; Brinkman, G.; Ibanez, E.; Hodge, B. M.; Hummon, M.; Florita, A.; Heaney, M.

    2013-09-01

    The electric grid is a highly complex, interconnected machine, and changing one part of the grid can have consequences elsewhere. Adding wind and solar affects the operation of the other power plants and adding high penetrations can induce cycling of fossil-fueled generators. Cycling leads to wear-and-tear costs and changes in emissions. Phase 2 of the Western Wind and Solar Integration Study (WWSIS-2) evaluated these costs and emissions and simulated grid operations for a year to investigate the detailed impact of wind and solar on the fossil-fueled fleet. This built on Phase 1, one of the largest wind and solar integration studies ever conducted, which examined operational impacts of high wind and solar penetrations in the West.

  9. Western Wind and Solar Integration Study Phase 2: Preprint

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Western Wind and Solar Integration Study Phase 2 Preprint D. Lew, G. Brinkman, E. Ibanez, and B.-M. Hodge National Renewable Energy Laboratory J. King RePPAE To be presented at the 11th Annual International Workshop on Large-Scale Integration of Wind Power into Power Systems as Well as on Transmission Networks for Offshore Wind Power Plants Conference Lisbon, Portugal November 13-15, 2012 Conference Paper NREL/CP-5500-56217 September 2012 NOTICE The submitted manuscript has been offered by an

  10. Eastern Wind Integration and Transmission Study: Executive Summary...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    evaluates the future operational and integration impacts of three different 20 percent wind energy penetration scenarios and one 30 percent wind penetration scenario, including a...

  11. How do Wind and Solar Power Affect Grid Operations: The Western Wind and Solar Integration Study; Preprint

    SciTech Connect (OSTI)

    Lew, D.; Milligan, M.; Jordan, G.; Freeman, L.; Miller, N.; Clark, K.; Piwko, R.

    2009-09-01

    This paper reviews the scope of the Western Wind and Solar Integration Study, the development of wind and solar datasets, and the results to date on three scenarios.

  12. Western Wind and Solar Integration Study: Hydropower Analysis

    SciTech Connect (OSTI)

    Acker, T.; Pete, C.

    2012-03-01

    The U.S. Department of Energy's (DOE) study of 20% Wind Energy by 2030 was conducted to consider the benefits, challenges, and costs associated with sourcing 20% of U.S. energy consumption from wind power by 2030. This study found that with proactive measures, no insurmountable barriers were identified to meet the 20% goal. Following this study, DOE and the National Renewable Energy Laboratory (NREL) conducted two more studies: the Eastern Wind Integration and Transmission Study (EWITS) covering the eastern portion of the U.S., and the Western Wind and Solar Integration Study (WWSIS) covering the western portion of the United States. The WWSIS was conducted by NREL and research partner General Electric (GE) in order to provide insight into the costs, technical or physical barriers, and operational impacts caused by the variability and uncertainty of wind, photovoltaic, and concentrated solar power when employed to serve up to 35% of the load energy in the WestConnect region (Arizona, Colorado, Nevada, New Mexico, and Wyoming). WestConnect is composed of several utility companies working collaboratively to assess stakeholder and market needs to and develop cost-effective improvements to the western wholesale electricity market. Participants include the Arizona Public Service, El Paso Electric Company, NV Energy, Public Service of New Mexico, Salt River Project, Tri-State Generation and Transmission Cooperative, Tucson Electric Power, Xcel Energy and the Western Area Power Administration.

  13. Western Wind and Solar Integration Study Phase 2: Preprint

    SciTech Connect (OSTI)

    Lew, D.; Brinkman, G.; Ibanez, E.; Hodge, B.-M.; King, J.

    2012-09-01

    The Western Wind and Solar Integration Study (WWSIS) investigates the impacts of high penetrations of wind and solar power into the Western Interconnection of the United States. WWSIS2 builds on the Phase 1 study but with far greater refinement in the level of data inputs and production simulation. It considers the differences between wind and solar power on systems operations. It considers mitigation options to accommodate wind and solar when full costs of wear-and-tear and full impacts of emissions rates are taken into account. It determines wear-and-tear costs and emissions impacts. New data sets were created for WWSIS2, and WWSIS1 data sets were refined to improve realism of plant output and forecasts. Four scenarios were defined for WWSIS2 that examine the differences between wind and solar and penetration level. Transmission was built out to bring resources to load. Statistical analysis was conducted to investigate wind and solar impacts at timescales ranging from seasonal down to 5 minutes.

  14. Wind Integration

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Wind Generation - ScheduledActual Balancing Reserves - Deployed Near Real-time Wind Animation Wind Projects under Review Growth Forecast Fact Sheets Working together to address...

  15. IEA Wind Task 24 Integration of Wind and Hydropower Systems; Volume 2: Participant Case Studies

    SciTech Connect (OSTI)

    Acker, T.

    2011-12-01

    This report describes the background, concepts, issues and conclusions related to the feasibility of integrating wind and hydropower, as investigated by the members of IEA Wind Task 24. It is the result of a four-year effort involving seven IEA member countries and thirteen participating organizations. The companion report, Volume 2, describes in detail the study methodologies and participant case studies, and exists as a reference for this report.

  16. Western Wind and Solar Integration Study: Executive Summary, (WWSIS) May 2010

    SciTech Connect (OSTI)

    R. Piwko; K. Clark; L. Freeman; G. Jordan; N. Miller

    2010-05-01

    This report provides a summary of background, approach, and findings of the Western Wind and Solar Integration Study (WWSIS).

  17. NREL: Transmission Grid Integration - Wind Integration Datasets

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    2005, and 2006. These datasets were designed to help energy professionals perform wind integration studies and estimate power production from hypothetical wind plants. For the...

  18. Wind energy and power system operations: a review of wind integration studies to date

    SciTech Connect (OSTI)

    Cesaro, Jennifer de; Porter, Kevin; Milligan, Michael

    2009-12-15

    Wind integration will not be accomplished successfully by doing ''more of the same.'' It will require significant changes in grid planning and operations, continued technical evolution in the design and operation of wind turbines, further adoption and implementation of wind forecasting in the control room, and incorporation of market and policy initiatives to encourage more flexible generation. (author)

  19. EWIS European wind integration study (Smart Grid Project) (Netherlands...

    Open Energy Info (EERE)

    of wind generation developers. The study will use results from detailed network and market models of the European transmission system for scenarios representing immediate and...

  20. EWIS European wind integration study (Smart Grid Project) (Greece...

    Open Energy Info (EERE)

    of wind generation developers. The study will use results from detailed network and market models of the European transmission system for scenarios representing immediate and...

  1. EWIS European wind integration study (Smart Grid Project) (Austria...

    Open Energy Info (EERE)

    of wind generation developers. The study will use results from detailed network and market models of the European transmission system for scenarios representing immediate and...

  2. EWIS European wind integration study (Smart Grid Project) (Poland...

    Open Energy Info (EERE)

    of wind generation developers. The study will use results from detailed network and market models of the European transmission system for scenarios representing immediate and...

  3. EWIS European wind integration study (Smart Grid Project) | Open...

    Open Energy Info (EERE)

    of wind generation developers. The study will use results from detailed network and market models of the European transmission system for scenarios representing immediate and...

  4. EWIS European wind integration study (Smart Grid Project) (Portugal...

    Open Energy Info (EERE)

    of wind generation developers. The study will use results from detailed network and market models of the European transmission system for scenarios representing immediate and...

  5. EWIS European wind integration study (Smart Grid Project) (Ireland...

    Open Energy Info (EERE)

    of wind generation developers. The study will use results from detailed network and market models of the European transmission system for scenarios representing immediate and...

  6. Western Wind and Solar Integration Study Phase 2 (Presentation)

    SciTech Connect (OSTI)

    Lew, D.; Brinkman, G.; Ibanez, E.; Kumar, N.; Lefton, S.; Jordan, G.; Venkataraman, S.; King, J.

    2013-06-01

    This presentation accompanies Phase 2 of the Western Wind and Solar Integration Study, a follow-on to Phase 1, which examined the operational impacts of high penetrations of variable renewable generation on the electric power system in the West and was one of the largest variable generation studies to date. High penetrations of variable generation can induce cycling of fossil-fueled generators. Cycling leads to wear-and-tear costs and changes in emissions. Phase 2 calculated these costs and emissions, and simulated grid operations for a year to investigate the detailed impact of variable generation on the fossil-fueled fleet. The presentation highlights the scope of the study and results.

  7. NREL: Transmission Grid Integration - Wind Integration National Dataset

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    (WIND) Toolkit Wind Integration National Dataset (WIND) Toolkit Obtain the WIND Toolkit Please note: the WIND Toolkit is simulated wind power data to be used in renewable integration studies. Please read the associated validation reports and use the data appropriately. The Wind Integration National Dataset (WIND) Toolkit is an update and expansion of the Eastern and Western Wind Datasets, and is intended to support the next generation of integration studies. The WIND Toolkit includes

  8. NREL: Wind Research - Grid Integration of Offshore Wind

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Grid Integration of Offshore Wind Photograph of a wind turbine in the ocean. Located about 10 kilometers off the coast of Arklow, Ireland, the Arklow Bank offshore wind park consists of seven GE Wind 3.6-MW wind turbines. Much can be learned from the existing land-based integration research for handling the variability and uncertainty of the wind resource. Integration and Transmission One comprehensive grid integration study is the Eastern Wind Integration and Transmission Study (EWITS), in

  9. Wind Energy Integration: Slides

    Wind Powering America (EERE)

    provide information about integrating wind energy into the electricity grid. Wind Energy Integration Photo by Dennis Schroeder, NREL 25907 Wind energy currently contributes significant power to energy portfolios around the world. *U.S. Department of Energy. (August 2015). 2014 Wind Technologies Market Report. Wind Energy Integration In 2014, Denmark led the way with wind power supplying roughly 39% of the country's electricity demand. Ireland, Portugal, and Spain provided more than 20% of their

  10. How Do High Levels of Wind and Solar Impact the Grid? The Western Wind and Solar Integration Study

    SciTech Connect (OSTI)

    Lew, D.; Piwko, D.; Miller, N.; Jordan, G.; Clark, K.; Freeman, L.

    2010-12-01

    This paper is a brief introduction to the scope of the Western Wind and Solar Integration Study (WWSIS), inputs and scenario development, and the key findings of the study.

  11. Eastern Wind Integration and Transmission Study: Executive Summary and Project Overview

    SciTech Connect (OSTI)

    none,

    2010-01-01

    This study evaluates the future operational and integration impacts of three different 20 percent wind energy penetration scenarios and one 30 percent wind penetration scenario, including a high-level analysis of transmission to deliver the wind energy to load centers, in the study year 2024.

  12. Western Wind and Solar Integration Study: Executive Summary

    SciTech Connect (OSTI)

    none,

    2010-05-01

    This Study investigates the operational impact of up to 35% energy penetration of wind, photovoltaics (PVs), and concentrating solar power (CSP) on the power system operated by the WestConnect group of utilities in Arizona, Colorado, Nevada, New Mexico, and Wyoming.

  13. The Western Wind and Solar Integration Study Phase 2: Executive...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AND SOLAR INTEGRATION STUDY PHASE 2: Executive Summary Debra Lew and Greg Brinkman National Renewable Energy ... Power Output Data 7 Production Simulations and ...

  14. NREL: Transmission Grid Integration - Western Wind and Solar...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Renewable Generation Integration Study Oahu Wind Integration & Transmission Study Hawaii Solar Integration Study Solar Integration National Dataset Toolkit Wholesale Electricity...

  15. The Western Wind and Solar Integration Study Phase 2 (Fact Sheet), NREL (National Renewable Energy Laboratory)

    Broader source: Energy.gov [DOE]

    This is one-page, two-sided fact sheet presents high-level summary results of the Western Wind and Solar Integration Study Phase 2, which examined operational impacts of high penetrations of variable renewable generation in the West.

  16. Eastern Wind Integration and Transmission Study: Executive Summary and Project Overview

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    for: The National Renewable Energy Laboratory Prepared by: EnerNex Corporation January 2010 EASTERN WIND INTEGRATION AND TRANSMISSION STUDY: Executive Summary and Project Overview 2 3 EASTERN WIND INTEGRATION AND TRANSMISSION STUDY: Executive Summary and Project Overview January 2010 Prepared for NREL by: EnerNex Corporation Knoxville, Tennessee NREL Technical Monitor: David Corbus Prepared under Subcontract No. AAM-8-88513-01 Subcontract Report NREL/SR-550-47086 National Renewable Energy

  17. Integrating High Penetrations of Solar in the Western United States: Results of the Western Wind and Solar Integration Study Phase 2 (Poster)

    SciTech Connect (OSTI)

    Bird, L.; Lew, D.

    2013-10-01

    This poster presents a summary of the results of the Western Wind and Solar Integration Study Phase 2.

  18. Eastern Wind Integration and Transmission Study (EWITS) (Revised)

    SciTech Connect (OSTI)

    Not Available

    2011-02-01

    EWITS was designed to answer questions about technical issues related to a 20% wind energy scenario for electric demand in the Eastern Interconnection.

  19. Wind Integration National Dataset (WIND) Toolkit

    Broader source: Energy.gov [DOE]

    For utility companies, grid operators and other stakeholders interested in wind energy integration, collecting large quantities of high quality data on wind energy resources is vitally important....

  20. Integrating Wind and Solar Energy in the U.S. Bulk Power System: Lessons from Regional Integration Studies

    SciTech Connect (OSTI)

    Bird, L.; Lew, D.

    2012-09-01

    Two recent studies sponsored by the U.S. Department of Energy (DOE) and the National Renewable Energy Laboratory (NREL) have examined the impacts of integrating high penetrations of wind and solar energy on the Eastern and Western electric grids. The Eastern Wind Integration and Transmission Study (EWITS), initiated in 2007, examined the impact on power system operations of reaching 20% to 30% wind energy penetration in the Eastern Interconnection. The Western Wind and Solar Integration Study (WWSIS) examined the operational implications of adding up to 35% wind and solar energy penetration to the Western Interconnect. Both studies examined the costs of integrating variable renewable energy generation into the grid and transmission and operational changes that might be necessary to address higher penetrations of wind or solar generation. This paper identifies key insights from these regional studies for integrating high penetrations of renewables in the U.S. electric grid. The studies share a number of key findings, although in some instances the results vary due to differences in grid operations and markets, the geographic location of the renewables, and the need for transmission.

  1. The Western Wind and Solar Integration Study Phase 2 (Executive Summary)

    SciTech Connect (OSTI)

    Lew, Debra; Brinkman, Greg

    2013-09-01

    The electric grid is a highly complex, interconnected machine, and changing one part of the grid can have consequences elsewhere. Adding wind and solar affects the operation of the other power plants and adding high penetrations can induce cycling of fossil-fueled generators. Cycling leads to wear-and-tear costs and changes in emissions. Phase 2 of the Western Wind and Solar Integration Study (WWSIS-2) evaluated these costs and emissions and simulated grid operations for a year to investigate the detailed impact of wind and solar on the fossil-fueled fleet. This built on Phase 1, one of the largest wind and solar integration studies ever conducted, which examined operational impacts of high wind and solar penetrations in the West(GE Energy 2010).

  2. The Western Wind and Solar Integration Study Phase 2 (Fact Sheet)

    SciTech Connect (OSTI)

    2013-09-01

    This fact sheet is a basic overview of the Western Wind and Solar Integration Study, Phase 2. The electric grid is a highly complex, interconnected machine, and changing one part of the grid can have consequences elsewhere. Adding wind and solar affects the operation of the other power plants and adding high penetrations can induce cycling of fossil-fueled generators. Cycling leads to wear-and-tear costs and changes in emissions.

  3. NREL: Transmission Grid Integration - Eastern and Western Wind Integration

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Datasets Eastern and Western Wind Integration Datasets These datasets were designed to help energy professionals perform wind integration studies and estimate power production from hypothetical wind plants. Eastern Wind Dataset For the Eastern dataset, more than 1,326 simulated wind farms data points are available across the eastern United States. Western Wind Dataset For the Western dataset, more than 30,000 data points are available across the western United States. About the Eastern and

  4. Advancing Wind Integration Study Methodologies: Implications of Higher Levels of Wind

    SciTech Connect (OSTI)

    Milligan, M.; Ela, E.; Lew, D.; Corbus, D.; Wan, Y. H.

    2010-07-01

    The authors report on the evolution of techniques to better model high penetrations (generally, 20% or more energy penetration) of wind energy.

  5. OAHU Wind Integration And Transmission Study: Summary Report

    SciTech Connect (OSTI)

    Corbus, D.; Schuerger, M.; Roose, L.; Strickler, J.; Surles, T.; Manz, D.; Burlingame, D.; Woodford, D.

    2010-11-01

    This study was composed of several smaller studies done in cooperation with other local entities and experts, all of which are summarized in this report.

  6. Evolution of Operating Reserve Determination in Wind Power Integration Studies

    SciTech Connect (OSTI)

    Ela, E.; Kirby, B.; Lannoye, E.; Milligan, M.; Flynn, D.; Zavadil, B.; O'Malley, M.

    2011-03-01

    This paper describes different assumptions and methods utilized to calculate the amount of different types of reserves carried, and how these methods have evolved as more studies have been performed.

  7. Western Wind and Solar Integration Study Phase 3A: Low Levels of Synchronous Generation

    SciTech Connect (OSTI)

    Miller, Nicholas W.; Leonardi, Bruno; D'Aquila, Robert; Clark, Kara

    2015-11-17

    The stability of the North American electric power grids under conditions of high penetrations of wind and solar is a significant concern and possible impediment to reaching renewable energy goals. The 33% wind and solar annual energy penetration considered in this study results in substantial changes to the characteristics of the bulk power system. This includes different power flow patterns, different commitment and dispatch of existing synchronous generation, and different dynamic behavior from wind and solar generation. The Western Wind and Solar Integration Study (WWSIS), sponsored by the U.S. Department of Energy, is one of the largest regional solar and wind integration studies to date. In multiple phases, it has explored different aspects of the question: Can we integrate large amounts of wind and solar energy into the electric power system of the West? The work reported here focused on the impact of low levels of synchronous generation on the transient stability performance in one part of the region in which wind generation has displaced synchronous thermal generation under highly stressed, weak system conditions. It is essentially an extension of WWSIS-3. Transient stability, the ability of the power system to maintain synchronism among all elements following disturbances, is a major constraint on operations in many grids, including the western U.S. and Texas systems. These constraints primarily concern the performance of the large-scale bulk power system. But grid-wide stability concerns with high penetrations of wind and solar are still not thoroughly understood. This work focuses on 'traditional' fundamental frequency stability issues, such as maintaining synchronism, frequency, and voltage. The objectives of this study are to better understand the implications of low levels of synchronous generation and a weak grid on overall system performance by: 1) Investigating the Western Interconnection under conditions of both high renewable generation (e.g., wind and solar) and low synchronous generation (e.g., significant coal power plant decommitment or retirement); and 2) Analyzing both the large-scale stability of the Western Interconnection and regional stability issues driven by more geographically dispersed renewable generation interacting with a transmission grid that evolved with large, central station plants at key nodes. As noted above, the work reported here is an extension of the research performed in WWSIS-3.

  8. NREL: Transmission Grid Integration - Oahu Wind Integration and

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Transmission Study Oahu Wind Integration and Transmission Study The Oahu Wind Integration and Transmission Study examined the integration of renewable energy as part of the Hawaii Clean Energy Initiative's Energy Agreement. The agreement includes a commitment to integrate up to 400 megawatts (MW) of offshore wind energy from Molokai or Lanai and transmit it to Oahu via undersea cable systems. The Hawaii Clean Energy Initiative also includes an aggressive mandate for the state of Hawaii to

  9. Western Wind and Solar Integration Study: Executive Summary, (WWSIS) May 2010

    Broader source: Energy.gov (indexed) [DOE]

    GE Energy MAY 2010 WESTERN WIND AND SOLAR INTEGRATION STUDY: EXECUTIVE SUMMARY NOTICE This report was prepared as an account of work sponsored by an agency of the United States government. Neither the United States government nor any agency thereof, nor any of their employees, makes any warranty, express or implied, or assumes any legal liability or responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or represents that its

  10. The Wind Integration National Dataset (WIND) toolkit (Presentation)

    SciTech Connect (OSTI)

    Caroline Draxl: NREL

    2014-01-01

    Regional wind integration studies require detailed wind power output data at many locations to perform simulations of how the power system will operate under high penetration scenarios. The wind datasets that serve as inputs into the study must realistically reflect the ramping characteristics, spatial and temporal correlations, and capacity factors of the simulated wind plants, as well as being time synchronized with available load profiles.As described in this presentation, the WIND Toolkit fulfills these requirements by providing a state-of-the-art national (US) wind resource, power production and forecast dataset.

  11. Best Practices in Grid Integration of Variable Wind Power: Summary of Recent US Case Study Results and Mitigation Measures

    SciTech Connect (OSTI)

    Smith, J. Charles (UWIG); Parsons, B.; (NREL), Acker, T.; (NAU), Milligan, M.; (NREL), Zavadil, R.

    2010-01-22

    This paper will summarize results from a number of utility wind integration case studies conducted recently in the US, and outline a number of mitigation measures based on insights from those studies.

  12. Analysis of Cycling Costs in Western Wind and Solar Integration Study

    SciTech Connect (OSTI)

    Jordan, G.; Venkataraman, S.

    2012-06-01

    The Western Wind and Solar Integration Study (WWSIS) examined the impact of up to 30% penetration of variable renewable generation on the Western Electricity Coordinating Council system. Although start-up costs and higher operating costs because of part-load operation of thermal generators were included in the analysis, further investigation of additional costs associated with thermal unit cycling was deemed worthwhile. These additional cycling costs can be attributed to increases in capital as well as operations and maintenance costs because of wear and tear associated with increased unit cycling. This analysis examines the additional cycling costs of the thermal fleet by leveraging the results of WWSIS Phase 1 study.

  13. Western Wind and Solar Integration Study Phase 3 -- Frequency Response and Transient Stability (Report and Executive Summary)

    SciTech Connect (OSTI)

    Miller, N. W.; Shao, M.; Pajic, S.; D'Aquila, R.

    2014-12-01

    The primary objectives of Phase 3 of the Western Wind and Solar Integration Study (WWSIS-3) were to examine the large-scale transient stability and frequency response of the Western Interconnection with high wind and solar penetration, and to identify means to mitigate any adverse performance impacts via transmission reinforcements, storage, advanced control capabilities, or other alternatives.

  14. Western Wind and Solar Integration Study Phase 3A: Low Levels of Synchronous Generation

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Western Wind and Solar Integration Study Phase 3A: Low Levels of Synchronous Generation Nicholas W. Miller, Bruno Leonardi, and Robert D'Aquila GE Energy Management Kara Clark National Renewable Energy Laboratory Technical Report NREL/TP-5D00-64822 November 2015 NREL is a national laboratory of the U.S. Department of Energy Office of Energy Efficiency & Renewable Energy Operated by the Alliance for Sustainable Energy, LLC This report is available at no cost from the National Renewable Energy

  15. Operation of Concentrating Solar Power Plants in the Western Wind and Solar Integration Phase 2 Study

    SciTech Connect (OSTI)

    Denholm, P.; Brinkman, G.; Lew, D.; Hummon, M.

    2014-05-01

    The Western Wind and Solar Integration Study (WWSIS) explores various aspects of the challenges and impacts of integrating large amounts of wind and solar energy into the electric power system of the West. The phase 2 study (WWSIS-2) is one of the first to include dispatchable concentrating solar power (CSP) with thermal energy storage (TES) in multiple scenarios of renewable penetration and mix. As a result, it provides unique insights into CSP plant operation, grid benefits, and how CSP operation and configuration may need to change under scenarios of increased renewable penetration. Examination of the WWSIS-2 results indicates that in all scenarios, CSP plants with TES provides firm system capacity, reducing the net demand and the need for conventional thermal capacity. The plants also reduced demand during periods of short-duration, high ramping requirements that often require use of lower efficiency peaking units. Changes in CSP operation are driven largely by the presence of other solar generation, particularly PV. Use of storage by the CSP plants increases in the higher solar scenarios, with operation of the plant often shifted to later in the day. CSP operation also becomes more variable, including more frequent starts. Finally, CSP output is often very low during the day in scenarios with significant PV, which helps decrease overall renewable curtailment (over-generation). However, the configuration studied is likely not optimal for High Solar Scenario implying further analysis of CSP plant configuration is needed to understand its role in enabling high renewable scenarios in the Western United States.

  16. Analysis of Mesoscale Model Data for Wind Integration (Poster)

    SciTech Connect (OSTI)

    Schwartz, M.; Elliott, D.; Lew, D.; Corbus, D.; Scott, G.; Haymes, S.; Wan, Y. H.

    2009-05-01

    Supports examination of implications of national 20% wind vision, and provides input to integration and transmission studies for operational impact of large penetrations of wind on the grid.

  17. BPA Wind Integration Team Update

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    BPA Wind Integration Team Update Customer Supplied Generation Imbalance (CSGI) Pilot Transmission Services Customer Forum 29 July 28, 2010 B O N N E V I L L E P O W E R A D M I N...

  18. Wind Integration, Transmission, and Resource Assessment and

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Characterization Projects | Department of Energy Integration, Transmission, and Resource Assessment and Characterization Projects Wind Integration, Transmission, and Resource Assessment and Characterization Projects This report covers the Wind and Water Power Technologies Office's Wind integration, transmission, and resource assessment and characterization projects from fiscal years 2006 to 2014. PDF icon Wind Integration, Transmission, and Resource Assessment and Characterization Projects

  19. Analysis of the effects of integrating wind turbines into a conventional utility: a case study. Revised final report

    SciTech Connect (OSTI)

    Goldenblatt, M.K.; Wegley, H.L.; Miller, A.H.

    1983-03-01

    The impact on a utility incorporating wind turbine generation due to wind speed sampling frequency, wind turbine performance model, and wind speed forecasting accuracy is examined. The utility analyzed in this study was the Los Angeles Department of Water and Power, and the wind turbine assumed was the MOD-2. The sensitivity of the economic value of wind turbine generation to wind speed sampling frequency and wind turbine modeling technique is examined as well as the impact of wind forecasting accuracy on utility operation and production costs. Wind speed data from San Gorgonio Pass, California during 1979 are used to estimate wind turbine performance using four different simulation methods. (LEW)

  20. Analysis of the effects of integrating wind turbines into a conventional utility: a case study. Final report

    SciTech Connect (OSTI)

    Goldenblatt, M.K.; Wegley, H.L.; Miller, A.H.

    1982-08-01

    The impact on a utility incorporating wind turbine generation due to wind speed sampling frequency, wind turbine performance model, and wind speed forecasting accuracy is examined. The utility analyzed in the study was the Los Angeles Department of Water and Power and the wind turbine assumed was the MOD-2. The sensitivity of the economic value of wind turbine generation to wind speed sampling frequency and wind turbine modeling technique is examined as well as the impact of wind forecasting accuracy on utility operation and production costs. Wind speed data from San Gorgonio Pass, California during 1979 are used to estimate wind turbine performance using four different simulation methods. (LEW)

  1. Eastern Renewable Generation Integration Study: Flexibility and High Penetrations of Wind and Solar; NREL (National Renewable Energy Laboratory)

    SciTech Connect (OSTI)

    Bloom, Aaron; Townsend, Aaron; Palchak, David

    2015-07-29

    Balancing wind and solar in a model is relatively easy. All you need to do is assume a very large system with infinite flexibility! But what if you don't have an infinitely flexible system? What if there are thousands of generators nestled in a handful of regions that are unlikely to change their operational practices? Would you still have enough flexibility to balance hundreds of gigawatts of wind and solar at a 5 minute level? At NREL, we think we can, and our industry partners agree. This presentation was presented at the IEEE Power and Energy Society General Meeting by Aaron Bloom, highlighting results of the Eastern Renewable Generation Integration Study.

  2. REAP Alaska Wind-Integration Workshop

    Office of Energy Efficiency and Renewable Energy (EERE)

    Renewable Energy Alaska Project (REAP) is hosting the Alaska Wind-Integration Workshop. This two-day conference will give attendees the opportunity to learn and share information on wind systems in...

  3. New Report: Integrating More Wind and Solar Reduces Utilities' Carbon

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Emissions and Fuel Costs | Department of Energy New Report: Integrating More Wind and Solar Reduces Utilities' Carbon Emissions and Fuel Costs New Report: Integrating More Wind and Solar Reduces Utilities' Carbon Emissions and Fuel Costs October 1, 2013 - 3:51pm Addthis The National Renewable Energy Laboratory (NREL) released Phase 2 of the Western Wind and Solar Integration Study (WWSIS-2), a follow-up to the initial WWSIS released in May 2010, which examined the viability, benefits, and

  4. Eastern Wind Integration and Transmission Study: Executive Summary and Project Overview (Revised)

    SciTech Connect (OSTI)

    EnerNex Corporation; The Midwest ISO; Ventyx

    2011-02-01

    EWITS was designed to answer questions about technical issues related to a 20% wind energy scenario for electric demand in the Eastern Interconnection.

  5. NREL: Transmission Grid Integration - Western Wind and Solar Integration

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Study Phase 2 Research 2 Research Phase 2 of the Western Wind and Solar Integration Study (WWSIS-2) was initiated to determine the wear-and-tear costs and emissions impacts of cycling and to simulate grid operations to investigate the detailed impacts of wind and solar power on the fossil-fueled fleet in the West. Key Findings The negative impact of cycling on overall plant emissions is relatively small. The increase in plant emissions from cycling to accommodate variable renewables are more

  6. Initial Economic Analysis of Utility-scale Wind Integration in Hawaii |

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Department of Energy Initial Economic Analysis of Utility-scale Wind Integration in Hawaii Initial Economic Analysis of Utility-scale Wind Integration in Hawaii Summarizes analysis of the economic characteristics of the utility-scale wind configuration project that has been referred to as the "Big Wind" project. PDF icon Initial Economic Analysis of Utility-scale Wind Integration in Hawaii More Documents & Publications OAHU Wind Integration And Transmission Study: Summary

  7. WINS. Market Simulation Tool for Facilitating Wind Energy Integration

    SciTech Connect (OSTI)

    Shahidehpour, Mohammad

    2012-10-30

    Integrating 20% or more wind energy into the system and transmitting large sums of wind energy over long distances will require a decision making capability that can handle very large scale power systems with tens of thousands of buses and lines. There is a need to explore innovative analytical and implementation solutions for continuing reliable operations with the most economical integration of additional wind energy in power systems. A number of wind integration solution paths involve the adoption of new operating policies, dynamic scheduling of wind power across interties, pooling integration services, and adopting new transmission scheduling practices. Such practices can be examined by the decision tool developed by this project. This project developed a very efficient decision tool called Wind INtegration Simulator (WINS) and applied WINS to facilitate wind energy integration studies. WINS focused on augmenting the existing power utility capabilities to support collaborative planning, analysis, and wind integration project implementations. WINS also had the capability of simulating energy storage facilities so that feasibility studies of integrated wind energy system applications can be performed for systems with high wind energy penetrations. The development of WINS represents a major expansion of a very efficient decision tool called POwer Market Simulator (POMS), which was developed by IIT and has been used extensively for power system studies for decades. Specifically, WINS provides the following superiorities; (1) An integrated framework is included in WINS for the comprehensive modeling of DC transmission configurations, including mono-pole, bi-pole, tri-pole, back-to-back, and multi-terminal connection, as well as AC/DC converter models including current source converters (CSC) and voltage source converters (VSC); (2) An existing shortcoming of traditional decision tools for wind integration is the limited availability of user interface, i.e., decision results are often text-based demonstrations. WINS includes a powerful visualization tool and user interface capability for transmission analyses, planning, and assessment, which will be of great interest to power market participants, power system planners and operators, and state and federal regulatory entities; and (3) WINS can handle extended transmission models for wind integration studies. WINS models include limitations on transmission flow as well as bus voltage for analyzing power system states. The existing decision tools often consider transmission flow constraints (dc power flow) alone which could result in the over-utilization of existing resources when analyzing wind integration. WINS can be used to assist power market participants including transmission companies, independent system operators, power system operators in vertically integrated utilities, wind energy developers, and regulatory agencies to analyze economics, security, and reliability of various options for wind integration including transmission upgrades and the planning of new transmission facilities. WINS can also be used by industry for the offline training of reliability and operation personnel when analyzing wind integration uncertainties, identifying critical spots in power system operation, analyzing power system vulnerabilities, and providing credible decisions for examining operation and planning options for wind integration. Researches in this project on wind integration included (1) Development of WINS; (2) Transmission Congestion Analysis in the Eastern Interconnection; (3) Analysis of 2030 Large-Scale Wind Energy Integration in the Eastern Interconnection; (4) Large-scale Analysis of 2018 Wind Energy Integration in the Eastern U.S. Interconnection. The research resulted in 33 papers, 9 presentations, 9 PhD degrees, 4 MS degrees, and 7 awards. The education activities in this project on wind energy included (1) Wind Energy Training Facility Development; (2) Wind Energy Course Development.

  8. Renewable Electricity Grid Integration Roadmap for Mexico. Supplement to the IEA Expert Group Report on Recommended Practices for Wind Integration Studies

    SciTech Connect (OSTI)

    Parsons, Brian; Cochran, Jaquelin; Watson, Andrea; Katz, Jessica; Bracho, Ricardo

    2015-08-19

    As a recognized leader in efforts to mitigate global climate change, the Government of Mexico (GOM) works proactively to reduce emissions, demonstrating strong political will and capacity to comprehensively address climate change. Since 2010, the U.S. government (USG) has supported these efforts by partnering with Mexico under the Enhancing Capacity for Low Emission Development Strategies (EC-LEDS) program. Through the program, the USG has partnered with Mexico’s Ministry of Energy (SENER), as well as other government agencies, to support GOM in reaching its clean energy and climate change goals. Specifically, the EC-LEDS program is supporting GOM’s clean energy goal of generating 35% of its electricity from renewable energy (RE) by 2024. EC-LEDS, through the U.S. Agency for International Development (USAID) and the U.S Department of Energy’s (DOE’s) National Renewable Energy Laboratory (NREL), has been collaborating with SENER and GOM interagency working group—the Consejo Consultivo para las Energías Renovables (Consultative Council on Renewable Energy)—to create a grid integration roadmap for variable RE. 1 A key objective in creating a grid integration roadmap is assessing likely impacts of wind and solar energy on the power system and modifying planning and operations accordingly. This paper applies best practices in conducting a grid integration study to the Mexican context.

  9. Integrated Wind Energy/Desalination System: October 11, 2004 -- July 29, 2005

    SciTech Connect (OSTI)

    GE Global Research

    2006-10-01

    This study investigates the feasibility of multiple concepts for integrating wind turbines and reverse osmosis desalination systems for water purification.

  10. NREL: Transmission Grid Integration - Western Wind and Solar Integration

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Study Phase 3 Research 3 Research All of the large-scale regional wind and solar integration studies performed by NREL and others have identified the lack of power system dynamic analysis as a significant research gap. Acceptable dynamic performance of the grid in the fractions of a second to one minute following a large disturbance (e.g., loss of a large power plant or a major transmission line) is critical to system reliability, thus there is a need to analyze the dynamic behavior of North

  11. NREL: Wind Research - Grid Integration

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    characterize the potential benefits and impacts of variable generation on electric power system operations. Technology development: Energy systems integration research and...

  12. Introducing WISDEM:An Integrated System Modeling for Wind Turbines and Plant (Presentation)

    SciTech Connect (OSTI)

    Dykes, K.; Graf, P.; Scott, G.; Ning, A.; King, R.; Guo, Y.; Parsons, T.; Damiani, R.; Felker, F.; Veers, P.

    2015-01-01

    The National Wind Technology Center wind energy systems engineering initiative has developed an analysis platform to leverage its research capabilities toward integrating wind energy engineering and cost models across wind plants. This Wind-Plant Integrated System Design & Engineering Model (WISDEM) platform captures the important interactions between various subsystems to achieve a better National Wind Technology Center wind energy systems engineering initiative has developed an analysis platform to leverage its research capabilities toward integrating wind energy engineering and cost models across wind plants. This Wind-Plant Integrated System Design & Engineering Model (WISDEM) platform captures the important interactions between various subsystems to achieve a better understanding of how to improve system-level performance and achieve system-level cost reductions. This work illustrates a few case studies with WISDEM that focus on the design and analysis of wind turbines and plants at different system levels.

  13. Design and Commissioning of a Wind Tunnel for Integrated Physical...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Commissioning of a Wind Tunnel for Integrated Physical and Chemical Measurements of PM Dispersing Plume of Heavy Duty Diesel Truck Design and Commissioning of a Wind Tunnel for ...

  14. Wind Integration, Transmission, and Resource Assessment andCharacteri...

    Energy Savers [EERE]

    and Resource Assessment and Characterization Projects This report covers the Wind and Water Power Technologies Office's Wind integration, transmission, and resource assessment...

  15. Wind Integration Program: Balancing the Future

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Wind Integration Program: Balancing the Future Initial Discussions 3072012 2 B O N N E V I L L E P O W E R A D M I N I S T R A T I O N Background BPA has implemented a number...

  16. Technology solutions for wind integration in ERCOT

    SciTech Connect (OSTI)

    None, None

    2015-01-03

    Texas has for more than a decade led all other states in the U.S. with the most wind generation capacity on the U.S. electric grid. The State recognized the value that wind energy could provide, and committed early on to build out the transmission system necessary to move power from the windy regions in West Texas to the major population centers across the state. It also signaled support for renewables on the grid by adopting an aggressive renewable portfolio standard (RPS). The joining of these conditions with favorable Federal tax credits has driven the rapid growth in Texas wind capacity since its small beginning in 2000. In addition to the major transmission grid upgrades, there have been a number of technology and policy improvements that have kept the grid reliable while adding more and more intermittent wind generation. Technology advancements such as better wind forecasting and deployment of a nodal market system have improved the grid efficiency of wind. Successful large scale wind integration into the electric grid, however, continues to pose challenges. The continuing rapid growth in wind energy calls for a number of technology additions that will be needed to reliably accommodate an expected 65% increase in future wind resources. The Center for the Commercialization of Electric Technologies (CCET) recognized this technology challenge in 2009 when it submitted an application for funding of a regional demonstration project under the Recovery Act program administered by the U.S. Department of Energy1. Under that program the administration announced the largest energy grid modernization investment in U.S. history, making available some $3.4 billion in grants to fund development of a broad range of technologies for a more efficient and reliable electric system, including the growth of renewable energy sources like wind and solar. At that time, Texas was (and still is) the nation’s leader in the integration of wind into the grid, and was investing heavily in the infrastructure needed to increase the viability of this important resource. To help Texas and the rest of the nation address the challenges associated with the integration of large amounts of renewables, CCET seized on the federal opportunity to undertake a multi-faceted project aimed at demonstrating the viability of new “smart grid” technologies to facilitate larger amounts of wind energy through better system monitoring capabilities, enhanced operator visualization, and improved load management. In early 2010, CCET was awarded a $27 million grant, half funded by the Department of Energy and half-funded by project participants. With this funding, CCET undertook the project named Discovery Across Texas which has demonstrated how existing and new technologies can better integrate wind power into the state’s grid. The following pages summarize the results of seven technology demonstrations that will help Texas and the nation meet this wind integration challenge.

  17. National Offshore Wind Energy Grid Interconnection Study

    SciTech Connect (OSTI)

    Daniel, John P.; Liu, Shu; Ibanez, Eduardo; Pennock, Ken; Reed, Greg; Hanes, Spencer

    2014-07-30

    The National Offshore Wind Energy Grid Interconnection Study (NOWEGIS) considers the availability and potential impacts of interconnecting large amounts of offshore wind energy into the transmission system of the lower 48 contiguous United States. A total of 54GW of offshore wind was assumed to be the target for the analyses conducted. A variety of issues are considered including: the anticipated staging of offshore wind; the offshore wind resource availability; offshore wind energy power production profiles; offshore wind variability; present and potential technologies for collection and delivery of offshore wind energy to the onshore grid; potential impacts to existing utility systems most likely to receive large amounts of offshore wind; and regulatory influences on offshore wind development. The technologies considered the reliability of various high-voltage ac (HVAC) and high-voltage dc (HVDC) technology options and configurations. The utility system impacts of GW-scale integration of offshore wind are considered from an operational steady-state perspective and from a regional and national production cost perspective.

  18. IEA Wind Task 24 Integration of Wind and Hydropower Systems; Volume 1: Issues, Impacts, and Economics of Wind and Hydropower Integration

    SciTech Connect (OSTI)

    Acker, T.

    2011-12-01

    This report describes the background, concepts, issues and conclusions related to the feasibility of integrating wind and hydropower, as investigated by the members of IEA Wind Task 24. It is the result of a four-year effort involving seven IEA member countries and thirteen participating organizations. The companion report, Volume 2, describes in detail the study methodologies and participant case studies, and exists as a reference for this report.

  19. EIS-0374: Klondike III/ Bigelow Canyon Wind Integration Project, OR

    Broader source: Energy.gov [DOE]

    This EIS analyzes BPA's decision to approve an interconnection requested by PPM Energy, Inc. (PPM) to integrate electrical power from their proposed Klondike III Wind roject (Wind Project) into the Federal Columbia River Transmission System (FCRTS).

  20. Wind Integration Datasets from the National Renewable Energy Laboratory (NREL)

    DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

    The Wind Integration Datasets provide time-series wind data for 2004, 2005, and 2006. They are intended to be used by energy professionals such as transmission planners, utility planners, project developers, and university researchers, helping them to perform comparisons of sites and estimate power production from hypothetical wind plants. NREL cautions that the information from modeled data may not match wind resource information shown on NREL;s state wind maps as they were created for different purposes and using different methodologies.

  1. Upstream Measurements of Wind Profiles with Doppler Lidar for Improved Wind Energy Integration

    SciTech Connect (OSTI)

    Rodney Frehlich

    2012-10-30

    New upstream measurements of wind profiles over the altitude range of wind turbines will be produced using a scanning Doppler lidar. These long range high quality measurements will provide improved wind power forecasts for wind energy integration into the power grid. The main goal of the project is to develop the optimal Doppler lidar operating parameters and data processing algorithms for improved wind energy integration by enhancing the wind power forecasts in the 30 to 60 minute time frame, especially for the large wind power ramps. Currently, there is very little upstream data at large wind farms, especially accurate wind profiles over the full height of the turbine blades. The potential of scanning Doppler lidar will be determined by rigorous computer modeling and evaluation of actual Doppler lidar data from the WindTracer system produced by Lockheed Martin Coherent Technologies, Inc. of Louisville, Colorado. Various data products will be investigated for input into numerical weather prediction models and statistically based nowcasting algorithms. Successful implementation of the proposed research will provide the required information for a full cost benefit analysis of the improved forecasts of wind power for energy integration as well as the added benefit of high quality wind and turbulence information for optimal control of the wind turbines at large wind farms.

  2. New Report: Integrating More Wind and Solar Reduces Utilities' Carbon Emissions and Fuel Costs

    Broader source: Energy.gov [DOE]

    The National Renewable Energy Laboratory (NREL) released Phase 2 of the Western Wind and Solar Integration Study (WWSIS-2), a follow-up to the initial WWSIS released in May 2010, which examined the viability, benefits, and challenges of integrating as much as 33% wind and solar power into the electricity grid of the western United States.

  3. Operating Reserves and Wind Power Integration: An International Comparison; Preprint

    SciTech Connect (OSTI)

    Milligan, M.; Donohoo, P.; Lew, D.; Ela, E.; Kirby, B.; Holttinen, H.; Lannoye, E.; Flynn, D.; O'Malley, M.; Miller, N.; Eriksen, P. B.; Gottig, A.; Rawn, B.; Gibescu, M.; Lazaro, E. G.; Robitaille, A.; Kamwa, I.

    2010-10-01

    This paper provides a high-level international comparison of methods and key results from both operating practice and integration analysis, based on an informal International Energy Agency Task 25: Large-scale Wind Integration.

  4. 20% Wind Energy by 2030 - Chapter 4: Transmission and Integration...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    4: Transmission and Integration into the U.S. Electric System Summary Slides 20% Wind Energy by 2030 - Chapter 4: Transmission and Integration into the U.S. Electric System Summary ...

  5. Aleutian Pribilof Islands Wind Energy Feasibility Study

    SciTech Connect (OSTI)

    Bruce A. Wright

    2012-03-27

    Under this project, the Aleutian Pribilof Islands Association (APIA) conducted wind feasibility studies for Adak, False Pass, Nikolski, Sand Point and St. George. The DOE funds were also be used to continue APIA's role as project coordinator, to expand the communication network quality between all participants and with other wind interest groups in the state and to provide continued education and training opportunities for regional participants. This DOE project began 09/01/2005. We completed the economic and technical feasibility studies for Adak. These were funded by the Alaska Energy Authority. Both wind and hydro appear to be viable renewable energy options for Adak. In False Pass the wind resource is generally good but the site has high turbulence. This would require special care with turbine selection and operations. False Pass may be more suitable for a tidal project. APIA is funded to complete a False Pass tidal feasibility study in 2012. Nikolski has superb potential for wind power development with Class 7 wind power density, moderate wind shear, bi-directional winds and low turbulence. APIA secured nearly $1M from the United States Department of Agriculture Rural Utilities Service Assistance to Rural Communities with Extremely High Energy Costs to install a 65kW wind turbine. The measured average power density and wind speed at Sand Point measured at 20m (66ft), are 424 W/m2 and 6.7 m/s (14.9 mph) respectively. Two 500kW Vestas turbines were installed and when fully integrated in 2012 are expected to provide a cost effective and clean source of electricity, reduce overall diesel fuel consumption estimated at 130,000 gallons/year and decrease air emissions associated with the consumption of diesel fuel. St. George Island has a Class 7 wind resource, which is superior for wind power development. The current strategy, led by Alaska Energy Authority, is to upgrade the St. George electrical distribution system and power plant. Avian studies in Nikolski and Sand Point have allowed for proper wind turbine siting without killing birds, especially endangered species and bald eagles. APIA continues coordinating and looking for funding opportunities for regional renewable energy projects. An important goal for APIA has been, and will continue to be, to involve community members with renewable energy projects and energy conservation efforts.

  6. TECHNOLOGY SOLUTIONS FOR WIND INTEGRATION IN ERCOT (Technical Report) |

    Office of Scientific and Technical Information (OSTI)

    SciTech Connect TECHNOLOGY SOLUTIONS FOR WIND INTEGRATION IN ERCOT Citation Details In-Document Search Title: TECHNOLOGY SOLUTIONS FOR WIND INTEGRATION IN ERCOT Texas has for more than a decade led all other states in the U.S. with the most wind generation capacity on the U.S. electric grid. The State recognized the value that wind energy could provide, and committed early on to build out the transmission system necessary to move power from the windy regions in West Texas to the major

  7. Technology solutions for wind integration in ERCOT (Technical Report) |

    Office of Scientific and Technical Information (OSTI)

    SciTech Connect Technology solutions for wind integration in ERCOT Citation Details In-Document Search Title: Technology solutions for wind integration in ERCOT Texas has for more than a decade led all other states in the U.S. with the most wind generation capacity on the U.S. electric grid. The State recognized the value that wind energy could provide, and committed early on to build out the transmission system necessary to move power from the windy regions in West Texas to the major

  8. PNNL Study Helping Improve Wind Predictions

    Broader source: Energy.gov [DOE]

    Led by the Department of Energy (DOE) Pacific Northwest National Laboratory, the Columbia Basin Wind Energy Study gathered massive amounts of wind data between November 2010 and November 2011 with a variety of wind instruments placed right next to an operating wind farm, the 300-MW Stateline Wind Energy Center.

  9. Manzanita Wind Energy Feasibility Study

    SciTech Connect (OSTI)

    Trisha Frank

    2004-09-30

    The Manzanita Indian Reservation is located in southeastern San Diego County, California. The Tribe has long recognized that the Reservation has an abundant wind resource that could be commercially utilized to its benefit. Manzanita has explored the wind resource potential on tribal land and developed a business plan by means of this wind energy feasibility project, which enables Manzanita to make informed decisions when considering the benefits and risks of encouraging large-scale wind power development on their lands. Technical consultant to the project has been SeaWest Consulting, LLC, an established wind power consulting company. The technical scope of the project covered the full range of feasibility assessment activities from site selection through completion of a business plan for implementation. The primary objectives of this feasibility study were to: (1) document the quality and suitability of the Manzanita Reservation as a site for installation and long-term operation of a commercially viable utility-scale wind power project; and, (2) develop a comprehensive and financeable business plan.

  10. TECHNOLOGY SOLUTIONS FOR WIND INTEGRATION IN ERCOT (Technical Report) |

    Office of Scientific and Technical Information (OSTI)

    SciTech Connect Technical Report: TECHNOLOGY SOLUTIONS FOR WIND INTEGRATION IN ERCOT Citation Details In-Document Search Title: TECHNOLOGY SOLUTIONS FOR WIND INTEGRATION IN ERCOT × You are accessing a document from the Department of Energy's (DOE) SciTech Connect. This site is a product of DOE's Office of Scientific and Technical Information (OSTI) and is provided as a public service. Visit OSTI to utilize additional information resources in energy science and technology. A paper copy of

  11. Wind Integration Cost and Cost-Causation: Preprint

    SciTech Connect (OSTI)

    Milligan, M.; Kirby, B.; Holttinen, H.; Kiviluoma, J.; Estanqueiro, A.; Martin-Martinez, S.; Gomez-Lazaro, E.; Peneda, I.; Smith, C.

    2013-10-01

    The question of wind integration cost has received much attention in the past several years. The methodological challenges to calculating integration costs are discussed in this paper. There are other sources of integration cost unrelated to wind energy. A performance-based approach would be technology neutral, and would provide price signals for all technology types. However, it is difficult to correctly formulate such an approach. Determining what is and is not an integration cost is challenging. Another problem is the allocation of system costs to one source. Because of significant nonlinearities, this can prove to be impossible to determine in an accurate and objective way.

  12. Wind Integration National Dataset (WIND) Toolkit; NREL (National Renewable Energy Laboratory)

    SciTech Connect (OSTI)

    Draxl, Caroline; Hodge, Bri-Mathias

    2015-07-14

    A webinar about the Wind Integration National Dataset (WIND) Toolkit was presented by Bri-Mathias Hodge and Caroline Draxl on July 14, 2015. It was hosted by the Southern Alliance for Clean Energy. The toolkit is a grid integration data set that contains meteorological and power data at a 5-minute resolution across the continental United States for 7 years and hourly power forecasts.

  13. NREL: Transmission Grid Integration - Data and Resources

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Western Wind Dataset, and Wind Integration National Dataset (WIND) Toolkit. Solar Power Data for Integration Studies The Solar Power Data for Integration Studies consist of...

  14. Wind energy systems information user study

    SciTech Connect (OSTI)

    Belew, W.W.; Wood, B.L.; Marle, T.L.; Reinhardt, C.L.

    1981-01-01

    This report describes the results of a series of telephone interviews with potential users of information on wind energy conversion. These interviews, part of a larger study covering nine different solar technologies, attempted to identify: the type of information each distinctive group of information users needed, and the best way of getting information to that group. Groups studied include: wind energy conversion system researchers; wind energy conversion system manufacturer representatives; wind energy conversion system distributors; wind turbine engineers; utility representatives; educators; county agents and extension service agents; and wind turbine owners.

  15. Overview and Meteorological Validation of the Wind Integration National Dataset toolkit

    SciTech Connect (OSTI)

    Draxl, C.; Hodge, B. M.; Clifton, A.; McCaa, J.

    2015-04-13

    The Wind Integration National Dataset (WIND) Toolkit described in this report fulfills these requirements, and constitutes a state-of-the-art national wind resource data set covering the contiguous United States from 2007 to 2013 for use in a variety of next-generation wind integration analyses and wind power planning. The toolkit is a wind resource data set, wind forecast data set, and wind power production and forecast data set derived from the Weather Research and Forecasting (WRF) numerical weather prediction model. WIND Toolkit data are available online for over 116,000 land-based and 10,000 offshore sites representing existing and potential wind facilities.

  16. Wind Integration, Transmission, and Resource Assessment and Characterization Projects, Fiscal Years 2006-2014

    SciTech Connect (OSTI)

    None, None

    2014-04-01

    This report covers the Wind and Water Power Technologies Office's Wind Integration, Transmission, and Resource Assessment and Characterization Projects from 2006 to 2014.

  17. NREL Study Shows 20 Percent Wind is Possible by 2024 - News Releases | NREL

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    NREL Study Shows 20 Percent Wind is Possible by 2024 Analysis Shows Transmission Upgrades, Offshore Wind, and Operational Changes Needed to Incorporate 20 to 30 Percent Wind January 20, 2010 Today, the U.S. Department of Energy's (DOE) National Renewable Energy Laboratory (NREL) released the Eastern Wind Integration and Transmission Study (EWITS). This unprecedented two-and-a-half year technical study of future high-penetration wind scenarios was designed to analyze the economic, operational,

  18. NREL: Transmission Grid Integration - Hawaii Solar Integration Study

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Hawaii Solar Integration Study The Hawaii Solar Integration Study was a detailed technical examination of the effects of high penetrations of solar and wind energy on the operations of the electric grids of two Hawaiian islands: Maui and Oahu. Carried out under the auspices of the Hawaii Clean Energy Initiative, the study was jointly sponsored by the Hawaii Natural Energy Institute, the U.S. Department of Energy, and the Hawaiian Electric Company. Unlike mainland power grids, island power grids

  19. Large Scale Wind and Solar Integration in Germany

    SciTech Connect (OSTI)

    Ernst, Bernhard; Schreirer, Uwe; Berster, Frank; Pease, John; Scholz, Cristian; Erbring, Hans-Peter; Schlunke, Stephan; Makarov, Yuri V.

    2010-02-28

    This report provides key information concerning the German experience with integrating of 25 gigawatts of wind and 7 gigawatts of solar power capacity and mitigating its impacts on the electric power system. The report has been prepared based on information provided by the Amprion GmbH and 50Hertz Transmission GmbH managers and engineers to the Bonneville Power Administration (BPA) and Pacific Northwest National Laboratory representatives during their visit to Germany in October 2009. The trip and this report have been sponsored by the BPA Technology Innovation office. Learning from the German experience could help the Bonneville Power Administration engineers to compare and evaluate potential new solutions for managing higher penetrations of wind energy resources in their control area. A broader dissemination of this experience will benefit wind and solar resource integration efforts in the United States.

  20. Integrating wind turbines into the Orcas Island distribution system

    SciTech Connect (OSTI)

    Zaininger, H.W.

    1998-09-01

    This research effort consists of two years of wind data collection and analysis to investigate the possibility of strategically locating a megawatt (MW) scale wind farm near the end of an Orcas Power and light Company (OPALCO) 25-kilovolt (kV) distribution circuit to defer the need to upgrade the line to 69 kV. The results of this study support the results of previous work in which another year of wind data and collection was performed. Both this study and the previous study show that adding a MW-scale wind farm at the Mt. Constitution site is a feasible alternative to upgrading the OPALCO 25-kV distribution circuit to 69 kV.

  1. System Impact Study of the Eastern Grid of Sumba Island, Indonesia: Steady-State and Dynamic System Modeling for the Integration of One and Two 850-kW Wind Turbine Generators

    SciTech Connect (OSTI)

    Oswal, R.; Jain, P.; Muljadi, Eduard; Hirsch, Brian; Castermans, B.; Chandra, J.; Raharjo, S.; Hardison, R.

    2016-01-01

    The goal of this project was to study the impact of integrating one and two 850-kW wind turbine generators into the eastern power system network of Sumba Island, Indonesia. A model was created for the 20-kV distribution network as it existed in the first quarter of 2015 with a peak load of 5.682 MW. Detailed data were collected for each element of the network. Load flow, short-circuit, and transient analyses were performed using DIgSILENT PowerFactory 15.2.1.

  2. Unit commitment with wind power generation: integrating wind forecast uncertainty and stochastic programming.

    SciTech Connect (OSTI)

    Constantinescu, E. M.; Zavala, V. M.; Rocklin, M.; Lee, S.; Anitescu, M.

    2009-10-09

    We present a computational framework for integrating the state-of-the-art Weather Research and Forecasting (WRF) model in stochastic unit commitment/energy dispatch formulations that account for wind power uncertainty. We first enhance the WRF model with adjoint sensitivity analysis capabilities and a sampling technique implemented in a distributed-memory parallel computing architecture. We use these capabilities through an ensemble approach to model the uncertainty of the forecast errors. The wind power realizations are exploited through a closed-loop stochastic unit commitment/energy dispatch formulation. We discuss computational issues arising in the implementation of the framework. In addition, we validate the framework using real wind speed data obtained from a set of meteorological stations. We also build a simulated power system to demonstrate the developments.

  3. Avian study protocols and wind energy development

    SciTech Connect (OSTI)

    Fisher, K.

    1995-12-01

    This paper identifies the need to develop and use standardized avian study protocols to determine avian impacts at new and existing wind energy facilities. This will allow data collected from various sites to be correlated for better understanding wind energy related avian impacts. Factors contributing to an increased interest in wind energy facilities by electric utilities include: (1) Increased demand for electricity;(2) increased constraints on traditional electrical generating facilities (i.e. hydroelectric and nuclear power plants);(3) improved wind turbine technology. During the 1980`s generous tax credits spawned the development of wind energy facilities, known as wind farms, in California. Commercial scale wind farm proposals are being actively considered in states across the country - Washington, Oregon, Wyoming, Wisconsin, Texas, and Vermont to name a few. From the wind farms in California the unexpected issue of avian impacts, especially to birds-of-prey, or raptor, surfaced and continues to plague the wind industry. However, most of the avian studies did not followed a standardized protocol or methodology and, therefore, data is unavailable to analyze and compare impacts at different sites or with differing technologies and configurations. Effective mitigation can not be designed and applied until these differences are understood. The Bonneville Power Administration is using comparable avian study protocols to collect data for two environmental impact statements being prepared for two separate wind farm proposals. Similar protocol will be required for any other avian impact analysis performed by the agency on proposed or existing wind farms. The knowledge gained from these studies should contribute to a better understanding of avian interactions with wind energy facilities and the identification of effective mitigation measures.

  4. Modeling for System Integration Studies (Presentation)

    SciTech Connect (OSTI)

    Orwig, K. D.

    2012-05-01

    This presentation describes some the data requirements needed for grid integration modeling and provides real-world examples of such data and its format. Renewable energy integration studies evaluate the operational impacts of variable generation. Transmission planning studies investigate where new transmission is needed to transfer energy from generation sources to load centers. Both use time-synchronized wind and solar energy production and load as inputs. Both examine high renewable energy penetration scenarios in the future.

  5. NREL: Transmission Grid Integration - NREL Study Indicates Economic

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Potential for Wyoming Wind Transmission to California Study Indicates Economic Potential for Wyoming Wind Transmission to California March 24, 2014 A new study from the Energy Department's National Renewable Energy Laboratory (NREL) finds that the economic benefit of transmitting wind energy from Wyoming to the California energy market are likely to exceed the cost. The study, "California-Wyoming Grid Integration Study, Phase 1-Economic Analysis" was conducted by NREL for the

  6. Hawaii Utility Integration Initiatives to Enable Wind (Wind HUI) Final Technical Report

    SciTech Connect (OSTI)

    Dora Nakafuji; Lisa Dangelmaier; Chris Reynolds

    2012-07-15

    To advance the state and nation toward clean energy, Hawaii is pursuing an aggressive Renewable Portfolio Standard (RPS), 40% renewable generation and 30% energy efficiency and transportation initiatives by 2030. Additionally, with support from federal, state and industry leadership, the Hawaii Clean Energy Initiative (HCEI) is focused on reducing Hawaii's carbon footprint and global warming impacts. To keep pace with the policy momentum and changing industry technologies, the Hawaiian Electric Companies are proactively pursuing a number of potential system upgrade initiatives to better manage variable resources like wind, solar and demand-side and distributed generation alternatives (i.e. DSM, DG). As variable technologies will continue to play a significant role in powering the future grid, practical strategies for utility integration are needed. Hawaiian utilities are already contending with some of the highest penetrations of renewables in the nation in both large-scale and distributed technologies. With island grids supporting a diverse renewable generation portfolio at penetration levels surpassing 40%, the Hawaiian utilities experiences can offer unique perspective on practical integration strategies. Efforts pursued in this industry and federal collaborative project tackled challenging issues facing the electric power industry around the world. Based on interactions with a number of western utilities and building on decades of national and international renewable integration experiences, three priority initiatives were targeted by Hawaiian utilities to accelerate integration and management of variable renewables for the islands. The three initiatives included: Initiative 1: Enabling reliable, real-time wind forecasting for operations by improving short-term wind forecasting and ramp event modeling capabilities with local site, field monitoring; Initiative 2: Improving operators situational awareness to variable resources via real-time grid condition monitoring using PMU devices and enhanced grid analysis tools; and Initiative 3: Identifying grid automation and smart technology architecture retrofit/improvement opportunities following a systematic review approach, inclusive of increasing renewables and variable distributed generation. Each of the initiative was conducted in partnership with industry technology and equipment providers to facilitate utility deployment experiences inform decision making, assess supporting infrastructure cost considerations, showcase state of the technology, address integration hurdles with viable workarounds. For each initiative, a multi-phased approach was followed that included 1) investigative planning and review of existing state-of-the-art, 2) hands on deployment experiences and 3) process implementation considerations. Each phase of the approach allowed for mid-course corrections, process review and change to any equipment/devices to be used by the utilities. To help the island grids transform legacy infrastructure, the Wind HUI provided more systematic approaches and exposure with vendor/manufacturers, hand-on review and experience with the equipment not only from the initial planning stages but through to deployment and assessment of field performance of some of the new, remote sensing and high-resolution grid monitoring technologies. HELCO became one of the first utilities in the nation to install and operate a high resolution (WindNet) network of remote sensing devices such as radiometers and SODARs to enable a short-term ramp event forecasting capability. This utility-industry and federal government partnership produced new information on wind energy forecasting including new data additions to the NOAA MADIS database; addressed remote sensing technology performance and O&M (operations and maintenance) challenges; assessed legacy equipment compatibility issues and technology solutions; evaluated cyber-security concerns; and engaged in community outreach opportunities that will help guide Hawaii and the nation toward more reliable adoption of clean energy resources. Results from these efforts are helping to inform Hawaiian utilities continue to Transform infrastructure, Incorporate renewable considerations and priorities into new processes/procedures, and Demonstrate the technical effectiveness and feasibility of new technologies to shape our pathways forward. Lessons learned and experience captured as part of this effort will hopefully provide practical guidance for others embarking on major legacy infrastructure transformations and renewable integration projects.

  7. Systems and methods for an integrated electrical sub-system powered by wind energy

    DOE Patents [OSTI]

    Liu, Yan (Ballston Lake, NY); Garces, Luis Jose (Niskayuna, NY)

    2008-06-24

    Various embodiments relate to systems and methods related to an integrated electrically-powered sub-system and wind power system including a wind power source, an electrically-powered sub-system coupled to and at least partially powered by the wind power source, the electrically-powered sub-system being coupled to the wind power source through power converters, and a supervisory controller coupled to the wind power source and the electrically-powered sub-system to monitor and manage the integrated electrically-powered sub-system and wind power system.

  8. Iowa Tribe of Oklahoma Wind Feasibility Study

    Office of Environmental Management (EM)

    Oklahoma Wind Feasibility Study ORGANIZATION * Iowa Tribe of Oklahoma Federally Recognized Indian Tribe Central Oklahoma (between OKC & Tulsa) Strong Commitment to Energy Efficiency & Renewables * BKJ Solutions, Inc. Tribally Owned Construction Company Construction with USACE, IHS, BIA & Tribe Iowa Tribe of Oklahoma's traditional jurisdictional lands FEASIBILITY GRANT * Objectives Conduct in-Depth Feasibility Study of Wind Energy Identify & Address Technical

  9. Small Wind Guidebook/Case Studies | Open Energy Information

    Open Energy Info (EERE)

    search Case Studies The Small Wind Guidebook's collection of distributed wind turbine case studies is intended to reflect project-specific details for a variety of...

  10. Review and Status of Wind Integration and Transmission in the...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Laboratory 2 Consult Kirby 3 Northern Arizona University 4 WindLogics 5 American Wind Energy Association 6 Electric Reliability Council of Texas 7 National Oceanic and ...

  11. Installer Issues: Integrating Distributed Wind into Local Communities (Presentation)

    SciTech Connect (OSTI)

    Green, J.

    2006-06-01

    A presentation for the WindPower 2006 Conference in Pittsburgh, PA, regarding the issues facing installer of small wind electric systems.

  12. 20% Wind Energy by 2030 - Chapter 4: Transmission and Integration...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    necessary with increased wind deployments Enhancement of electrical transmission system required in all electricity-growth scenarios, not just wind Transmission is needed to: * ...

  13. Ten Frequently Asked Questions and Answers about Wind Energy Grid Integration

    SciTech Connect (OSTI)

    Milligan, M.

    2008-02-07

    First presented to the Kansas State Legislature in 2008, these slides present 11 questions and answers regarding basic wind power issues including technology, transmission, and integration.

  14. Ten Frequently Asked Questions and Answers About Wind Energy Grid Integration

    Broader source: Energy.gov [DOE]

    First presented to the Kansas State Legislature in 2008, these slides present 10 questions and answers regarding basic wind power issues including technology, transmission, and integration.

  15. Study Shows Active Power Controls from Wind May Increase Revenues...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Shows Active Power Controls from Wind May Increase Revenues and Improve System Reliability Study Shows Active Power Controls from Wind May Increase Revenues and Improve System ...

  16. NREL Confirms Large Potential for Grid Integration of Wind, Solar Power (Fact Sheet)

    SciTech Connect (OSTI)

    Not Available

    2011-10-01

    To fully harvest the nation's bountiful wind and solar resources, it is critical to know how much electrical power from these renewable resources could be integrated reliably into the grid. To inform the discussion about the potential of such variable sources, the National Renewable Energy Laboratory (NREL) launched two key regional studies, examining the east and west sections of the U.S. power grid. The studies show that it is technically possible for U.S. power systems to integrate 20%-35% renewable electricity if infrastructure and operational improvements can be made.

  17. Development of Eastern Regional Wind Resource and Wind Plant Output Datasets: March 3, 2008 -- March 31, 2010

    SciTech Connect (OSTI)

    Brower, M.

    2009-12-01

    The objective of this project was to provide wind resource inputs to the Eastern Wind Integration and Transmission Study.

  18. Eastern Renewable Generation Integration Study: Initial Results (Poster)

    SciTech Connect (OSTI)

    Bloom, A.; Townsend, A.; Hummon, M.; Weekley, A.; Clark, K.; King, J.

    2013-10-01

    This poster presents an overview of the Eastern Renewable Generation Integration Study, which aims to answer critical questions about the future of the Eastern Interconnection under high levels of solar and wind generation penetration.

  19. 20% Wind Energy by 2030 - Chapter 4: Transmission and Integration into the

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    U.S. Electric System Summary Slides | Department of Energy 4: Transmission and Integration into the U.S. Electric System Summary Slides 20% Wind Energy by 2030 - Chapter 4: Transmission and Integration into the U.S. Electric System Summary Slides Summary slides for chapter 4 of 20% Wind Energy by 2030 overviewing transmission and integration PDF icon 20percent_summary_chap4.pdf More Documents & Publications 20% Wind Energy by 2030: Increasing Wind Energy's Contribution to U.S.

  20. NREL: Distributed Grid Integration - Wind2Battery Project

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Wind2Battery Project photo of the Wind2Battery site near Luverne, Minnesota. Wind2Battery site near Luverne, Minnesota. Courtesy of Xcel Energy NREL is working with Xcel Energy to test the storage of wind energy in batteries. This is the first installation of a battery as a direct wind energy storage device in the United States and is important for demonstrating the capability and economic potential of large-scale renewable energy coupled with energy storage. The test site is located at a wind

  1. Integration of Wind Energy Systems into Power Engineering Education Program at UW-Madison

    SciTech Connect (OSTI)

    Venkataramanan, Giri; Lesieutre, Bernard; Jahns, Thomas; Desai, Ankur R

    2012-09-01

    This project has developed an integrated curriculum focused on the power engineering aspects of wind energy systems that builds upon a well-established graduate educational program at UW- Madison. Five new courses have been developed and delivered to students. Some of the courses have been offered on multiple occasions. The courses include: Control of electric drives for Wind Power applications, Utility Applications of Power Electronics (Wind Power), Practicum in Small Wind Turbines, Utility Integration of Wind Power, and Wind and Weather for Scientists and Engineers. Utility Applications of Power Electronics (Wind Power) has been provided for distance education as well as on-campus education. Several industrial internships for students have been organized. Numerous campus seminars that provide discussion on emerging issues related to wind power development have been delivered in conjunction with other campus events. Annual student conferences have been initiated, that extend beyond wind power to include sustainable energy topics to draw a large group of stakeholders. Energy policy electives for engineering students have been identified for students to participate through a certificate program. Wind turbines build by students have been installed at a UW-Madison facility, as a test-bed. A Master of Engineering program in Sustainable Systems Engineering has been initiated that incorporates specializations that include in wind energy curricula. The project has enabled UW-Madison to establish leadership at graduate level higher education in the field of wind power integration with the electric grid.

  2. The importance of combined cycle generating plants in integrating large levels of wind power generation

    SciTech Connect (OSTI)

    Puga, J. Nicolas

    2010-08-15

    Integration of high wind penetration levels will require fast-ramping combined cycle and steam cycles that, due to higher operating costs, will require proper pricing of ancillary services or other forms of compensation to remain viable. Several technical and policy recommendations are presented to help realign the generation mix to properly integrate the wind. (author)

  3. EA-1939: Reese Technology Center Wind and Battery Integration Project, Lubbock County, TX

    Broader source: Energy.gov [DOE]

    This EA will evaluate the potential environmental impacts of a proposal by the Center for Commercialization of Electric Technologies to demonstrate battery technology integration with wind generated electricity by deploying and evaluating utility-scale lithium battery technology to improve grid performance and thereby aid in the integration of wind generation into the local electricity supply.

  4. Developing Integrated National Design Standards for Offshore Wind Plants

    Broader source: Energy.gov [DOE]

    The DOE Wind Program and the National Renewable Energy Laboratory recently published a report that summarizes the regulations, standards, and guidelines for the design and operation of offshore wind projects in the United States.

  5. Wind to Hydrogen in California: Case Study

    SciTech Connect (OSTI)

    Antonia, O.; Saur, G.

    2012-08-01

    This analysis presents a case study in California for a large scale, standalone wind electrolysis site. This is a techno-economic analysis of the 40,000 kg/day renewable production of hydrogen and subsequent delivery by truck to a fueling station in the Los Angeles area. This quantity of hydrogen represents about 1% vehicle market penetration for a city such as Los Angeles (assuming 0.62 kg/day/vehicle and 0.69 vehicles/person) [8]. A wind site near the Mojave Desert was selected for proximity to the LA area where hydrogen refueling stations are already built.

  6. Cherokee Nation - Wind Energy Feasibility Study

    Office of Environmental Management (EM)

    8, 2005 Oklahoma - 8 th in the Nation for wind 13 Month Wind Energy Feasibility Study - U.S. Dept of Energy grant Cherokee Nation, 2nd largest Indian Tribe - 256,938 members 14-County area jurisdiction - 90,000 acres Employs approx. 6,000 people in Oklahoma Cherokee Nation Chilocco Property 4,275 acres KAW PAWNEE TONKAW A PONCA OTOE-MISSOURI CHEROKEE Acres: 2,633.348 CHEROKEE Acres: 1,641.687 CHEROKEE NATION Kay County Chilocco Property DATA SOURCES: US Census Bureau (Tiger Files) DOQQ's, USGS D

  7. Eastern Shoshone Tribe - Wind Feasibility Study on the Wind River Reservation

    Office of Environmental Management (EM)

    Northern Arapahoe Tribe Tatanka Energy - DISGEN Native American Programs and Resources Eastern Shoshone & Northern Arapaho Tribes on the Wind River Reservation Project Overview Participants Project Location Project Status Tatanka Energy - DISGEN Native American Programs and Resources Eastern Shoshone & Northern Arapaho Tribes on the Wind River Reservation Project Overview Developing a sustainable, integrated wind energy plan for the benefit of the Tribes. Provide a preliminary evaluation

  8. ARRA-Multi-Level Energy Storage and Controls for Large-Scale Wind Energy Integration

    SciTech Connect (OSTI)

    David Wenzhong Gao

    2012-09-30

    The Project Objective is to design innovative energy storage architecture and associated controls for high wind penetration to increase reliability and market acceptance of wind power. The project goals are to facilitate wind energy integration at different levels by design and control of suitable energy storage systems. The three levels of wind power system are: Balancing Control Center level, Wind Power Plant level, and Wind Power Generator level. Our scopes are to smooth the wind power fluctuation and also ensure adequate battery life. In the new hybrid energy storage system (HESS) design for wind power generation application, the boundary levels of the state of charge of the battery and that of the supercapacitor are used in the control strategy. In the controller, some logic gates are also used to control the operating time durations of the battery. The sizing method is based on the average fluctuation of wind profiles of a specific wind station. The calculated battery size is dependent on the size of the supercapacitor, state of charge of the supercapacitor and battery wear. To accommodate the wind power fluctuation, a hybrid energy storage system (HESS) consisting of battery energy system (BESS) and super-capacitor is adopted in this project. A probability-based power capacity specification approach for the BESS and super-capacitors is proposed. Through this method the capacities of BESS and super-capacitor are properly designed to combine the characteristics of high energy density of BESS and the characteristics of high power density of super-capacitor. It turns out that the super-capacitor within HESS deals with the high power fluctuations, which contributes to the extension of BESS lifetime, and the super-capacitor can handle the peaks in wind power fluctuations without the severe penalty of round trip losses associated with a BESS. The proposed approach has been verified based on the real wind data from an existing wind power plant in Iowa. An intelligent controller that increases battery life within hybrid energy storage systems for wind application was developed. Comprehensive studies have been conducted and simulation results are analyzed. A permanent magnet synchronous generator, coupled with a variable speed wind turbine, is connected to a power grid (14-bus system). A rectifier, a DC-DC converter and an inverter are used to provide a complete model of the wind system. An Energy Storage System (ESS) is connected to a DC-link through a DC-DC converter. An intelligent controller is applied to the DC-DC converter to help the Voltage Source Inverter (VSI) to regulate output power and also to control the operation of the battery and supercapacitor. This ensures a longer life time for the batteries. The detailed model is simulated in PSCAD/EMTP. Additionally, economic analysis has been done for different methods that can reduce the wind power output fluctuation. These methods are, wind power curtailment, dumping loads, battery energy storage system and hybrid energy storage system. From the results, application of single advanced HESS can save more money for wind turbines owners. Generally the income would be the same for most of methods because the wind does not change and maximum power point tracking can be applied to most systems. On the other hand, the cost is the key point. For short term and small wind turbine, the BESS is the cheapest and applicable method while for large scale wind turbines and wind farms the application of advanced HESS would be the best method to reduce the power fluctuation. The key outcomes of this project include a new intelligent controller that can reduce energy exchanged between the battery and DC-link, reduce charging/discharging cycles, reduce depth of discharge and increase time interval between charge/discharge, and lower battery temperature. This improves the overall lifetime of battery energy storages. Additionally, a new design method based on probability help optimize the power capacity specification for BESS and super-capacitors. Recommendations include experimental implementation of the controller and energy storage systems in laboratory environment for further testing and verification, which will help commercialization of the proposed system design and controller.

  9. 2014 WIND POWER PROGRAM PEER REVIEW-ADVANCED GRID INTEGRATION

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    30% combined wind and solar targets and informing stakeholders about the operational ... an international forum for exchange of knowledge - Recommend methods and guidelines * 15 ...

  10. Empirical Analysis of the Variability of Wind Generation in India: Implications for Grid Integration

    SciTech Connect (OSTI)

    Phadke, Amol; Abhyankar, NIkit; Rao, Poorvi

    2014-06-17

    We analyze variability in load and wind generation in India to assess its implications for grid integration of large scale wind projects using actual wind generation and load data from two states in India, Karnataka and Tamil Nadu. We compare the largest variations in load and net load (load ?wind, i.e., load after integrating wind) that the generation fleet has to meet. In Tamil Nadu, where wind capacity is about 53percent of the peak demand, we find that the additional variation added due to wind over the current variation in load is modest; if wind penetration reaches 15percent and 30percent by energy, the additional hourly variation is less than 0.5percent and 4.5percent of the peak demand respectively for 99percent of the time. For wind penetration of 15percent by energy, Tamil Nadu system is found to be capable of meeting the additional ramping requirement for 98.8percent of the time. Potential higher uncertainty in net load compared to load is found to have limited impact on ramping capability requirements of the system if coal plants can me ramped down to 50percent of their capacity. Load and wind aggregation in Tamil Nadu and Karnataka is found to lower the variation by at least 20percent indicating the benefits geographic diversification. These findings suggest modest additional flexible capacity requirements and costs for absorbing variation in wind power and indicate that the potential capacity support (if wind does not generate enough during peak periods) may be the issue that has more bearing on the economics of integrating wind

  11. Studies Show No Evidence of Impacts from Wind on Residential...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Studies Show No Evidence of Impacts from Wind on Residential Property Values Studies Show No Evidence of Impacts from Wind on Residential Property Values January 6, 2014 - 10:00am...

  12. Study Determines Wind-Induced Cycling Impacts are Minimal | Department...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Study Determines Wind-Induced Cycling Impacts are Minimal Study Determines Wind-Induced Cycling Impacts are Minimal January 10, 2013 - 2:34pm Addthis This is an excerpt from the ...

  13. Wind Energy Curtailment Case Studies: May 2008 - May 2009

    SciTech Connect (OSTI)

    Fink, S.; Mudd, C.; Porter, K.; Morgenstern, B.

    2009-10-01

    This paper presents a series of case studies on how wind curtailment is being used by different entities.

  14. Innovative Study Helps Offshore Wind Developers Protect Wildlife |

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Department of Energy Study Helps Offshore Wind Developers Protect Wildlife Innovative Study Helps Offshore Wind Developers Protect Wildlife October 27, 2015 - 9:33am Addthis Innovative Study Helps Offshore Wind Developers Protect Wildlife Jocelyn Brown-Saracino Jocelyn Brown-Saracino Environmental Research Manager, Wind and Water Power Technologies Office Thanks to a first-of-its-kind in-depth study of wildlife distribution and movements, the nation's Eastern Seaboard is better prepared than

  15. Wind Power Forecasting Data

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Operations Call 2012 Retrospective Reports 2012 Retrospective Reports 2011 Smart Grid Wind Integration Wind Integration Initiatives Wind Power Forecasting Wind Projects Email...

  16. Operating Reserve Implication of Alternative Implementations of an Energy Imbalance Service on Wind Integration in the Western Interconnection: Preprint

    SciTech Connect (OSTI)

    Milligan, M.; Kirby, B.; King, J.; Beuning, S.

    2011-07-01

    During the past few years, there has been significant interest in alternative ways to manage power systems over a larger effective electrical footprint. Large regional transmission organizations in the Eastern Interconnection have effectively consolidated balancing areas, achieving significant economies of scale that result in a reduction in required reserves. Conversely, in the Western Interconnection there are many balancing areas, which will result in challenges if there is significant wind and solar energy development in the region. A recent proposal to the Western Electricity Coordinating Council suggests a regional energy imbalance service (EIS). To evaluate this EIS, a number of analyses are in process or are planned. This paper describes one part of an analysis of the EIS's implication on operating reserves under several alternative scenarios of the market footprint and participation. We improve on the operating reserves method utilized in the Eastern Wind Integration and Transmission Study and apply this modified approach to data from the Western Wind and Solar Integration Study.

  17. Design and Commissioning of a Wind Tunnel for Integrated Physical and

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Chemical Measurements of PM Dispersing Plume of Heavy Duty Diesel Truck | Department of Energy Commissioning of a Wind Tunnel for Integrated Physical and Chemical Measurements of PM Dispersing Plume of Heavy Duty Diesel Truck Design and Commissioning of a Wind Tunnel for Integrated Physical and Chemical Measurements of PM Dispersing Plume of Heavy Duty Diesel Truck Presents plume characterization of three vehicles with different aftertreatment configuration, representative of legacy, current

  18. 10 Questions for a Wind & Solar Integration Analyst: Kirsten Orwig

    Broader source: Energy.gov [DOE]

    Kirsten Orwig shares how her experiences in storm chasing led her to this position at National Renewable Energy Laboratory (NREL) and why understanding meteorology is important for advancing reliable solar and wind energy.

  19. National Offshore Wind Energy Grid Interconnection Study (NOWEGIS) |

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Department of Energy National Offshore Wind Energy Grid Interconnection Study (NOWEGIS) National Offshore Wind Energy Grid Interconnection Study (NOWEGIS) The National Offshore Wind Energy Grid Interconnection Study (NOWEGIS) considers the availability and potential impacts of interconnecting large amounts of offshore wind energy into the transmission system of the lower 48 contiguous United States. PDF icon NOWEGIS Full Report.pdf PDF icon NOWEGIS Executive Summary.pdf More Documents &

  20. Wind Power Forecasting Error Frequency Analyses for Operational Power System Studies: Preprint

    SciTech Connect (OSTI)

    Florita, A.; Hodge, B. M.; Milligan, M.

    2012-08-01

    The examination of wind power forecasting errors is crucial for optimal unit commitment and economic dispatch of power systems with significant wind power penetrations. This scheduling process includes both renewable and nonrenewable generators, and the incorporation of wind power forecasts will become increasingly important as wind fleets constitute a larger portion of generation portfolios. This research considers the Western Wind and Solar Integration Study database of wind power forecasts and numerical actualizations. This database comprises more than 30,000 locations spread over the western United States, with a total wind power capacity of 960 GW. Error analyses for individual sites and for specific balancing areas are performed using the database, quantifying the fit to theoretical distributions through goodness-of-fit metrics. Insights into wind-power forecasting error distributions are established for various levels of temporal and spatial resolution, contrasts made among the frequency distribution alternatives, and recommendations put forth for harnessing the results. Empirical data are used to produce more realistic site-level forecasts than previously employed, such that higher resolution operational studies are possible. This research feeds into a larger work of renewable integration through the links wind power forecasting has with various operational issues, such as stochastic unit commitment and flexible reserve level determination.

  1. Virginia Offshore Wind Cost Reduction Through Innovation Study (VOWCRIS) (Poster)

    SciTech Connect (OSTI)

    Maples, B.; Campbell, J.; Arora, D.

    2014-10-01

    The VOWCRIS project is an integrated systems approach to the feasibility-level design, performance, and cost-of-energy estimate for a notional 600-megawatt offshore wind project using site characteristics that apply to the Wind Energy Areas of Virginia, Maryland and North Carolina.

  2. Wind Data Inputs for Regional Wind Integration Studies: Preprint

    SciTech Connect (OSTI)

    Lew, D.; Alonge, C.; Brower, M.; Frank, J.; Freeman, L.; Orwig, K.; Potter, C.; Wan, Y. H.

    2011-03-01

    This paper examines the methodologies used to create these datasets, the pitfalls that may be encountered, and the tradeoffs between different methodological approaches.

  3. National Offshore Wind Energy Grid Interconnection Study Executive Summary

    SciTech Connect (OSTI)

    Daniel, John P.; Liu, Shu; Ibanez, Eduardo; Pennock, Ken; Reed, Gregory; Hanes, Spencer

    2014-07-30

    The National Offshore Wind Energy Grid Interconnection Study (NOWEGIS) considers the availability and potential impacts of interconnecting large amounts of offshore wind energy into the transmission system of the lower 48 contiguous United States.

  4. National Offshore Wind Energy Grid Interconnection Study Full Report

    SciTech Connect (OSTI)

    Daniel, John P.; Liu, Shu; Ibanez, Eduardo; Pennock, Ken; Reed, Gregory; Hanes, Spencer

    2014-07-30

    The National Offshore Wind Energy Grid Interconnection Study (NOWEGIS) considers the availability and potential impacts of interconnecting large amounts of offshore wind energy into the transmission system of the lower 48 contiguous United States.

  5. Role of Concentrating Solar Power in Integrating Solar and Wind Energy: Preprint

    SciTech Connect (OSTI)

    Denholm, P.; Mehos, M.

    2015-06-03

    As wind and solar photovoltaics (PV) increase in penetration it is increasingly important to examine enabling technologies that can help integrate these resources at large scale. Concentrating solar power (CSP) when deployed with thermal energy storage (TES) can provide multiple services that can help integrate variable generation (VG) resources such as wind and PV. CSP with TES can provide firm, highly flexible capacity, reducing minimum generation constraints which limit penetration and results in curtailment. By acting as an enabling technology, CSP can complement PV and wind, substantially increasing their penetration in locations with adequate solar resource.

  6. Integration Costs: Are They Unique to Wind and Solar Energy? Preprint

    SciTech Connect (OSTI)

    Milligan, M.; Hodge, B.; Kirby, B.; Clark, C.

    2012-05-01

    Over the past several years, there has been considerable interest in assessing wind integration costs. This is understandable because wind energy does increase the variability and uncertainty that must be managed on a power system. However, there are other sources of variability and uncertainty that also must be managed in the power system. This paper describes some of these sources and shows that even the introduction of base-load generation can cause additional ramping and cycling. The paper concludes by demonstrating that integration costs are not unique to wind and solar, and should perhaps instead be assessed by power plant and load performance instead of technology type.

  7. Wind to Hydrogen in California: Case Study

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    to Hydrogen in California: Case Study O. Antonia and G. Saur Technical Report NREL/TP-5600-53045 August 2012 NREL is a national laboratory of the U.S. Department of Energy, Office of Energy Efficiency & Renewable Energy, operated by the Alliance for Sustainable Energy, LLC. National Renewable Energy Laboratory 15013 Denver West Parkway Golden, Colorado 80401 303-275-3000 * www.nrel.gov Contract No. DE-AC36-08GO28308 Wind to Hydrogen in California: Case Study O. Antonia and G. Saur Prepared

  8. University of Minnesota Boosts Studies with Wind Power | Department of

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Energy Boosts Studies with Wind Power University of Minnesota Boosts Studies with Wind Power October 27, 2011 - 10:53am Addthis Time-lapse of the University of Minnesota's wind turbine construction, from September 6 - 23, 2011. | Courtesy of the University of Minnesota College of Science and Engineering Eric Escudero Eric Escudero Senior Public Affairs Specialist & Contractor, Golden Field Office What does this project do? The American-made Clipper Liberty wind turbine and a 426-foot

  9. Cherokee Nation - Wind Power Generation Feasibility Study

    Office of Environmental Management (EM)

    Wyatt, CNE 24 October 2006 - Tribal Energy Program Denver, Colorado Presented by: Carol Wyatt, CNE 24 October 2006 - Tribal Energy Program Denver, Colorado Cherokee Wind Project Synopsis Cherokee Wind Project Synopsis Financially Feasible Wind Resource Electrical Load for all Cherokee Entities is $8 million 100 megawatt (40 Wind Turbines) Offset Entire $8 million Tribal Electrical costs Recover Initial Project Investment in 5 Years Gross $198,764,490.00 in Years 6 - 20 Other Commercial,

  10. Integrated Approach Using Condition Monitoring and Modeling to Investigate Wind Turbine Gearbox Design: Preprint

    SciTech Connect (OSTI)

    Sheng, S.; Guo, Y.

    2015-03-01

    Vibration-based condition monitoring (CM) of geared utility-scale turbine drivetrains has been used by the wind industry to help improve operation and maintenance (O&M) practices, increase turbine availability, and reduce O&M cost. This study is a new endeavor that integrates the vibration-based CM technique with wind turbine gearbox modeling to investigate various gearbox design options. A teamof researchers performed vibration-based CM measurements on a damaged wind turbine gearbox with a classic configuration, (i.e., one planetary stage and two parallel stages). We observed that the acceleration amplitudes around the first-order sidebands of the intermediate stage gear set meshing frequency were much lower than that measured at the high-speed gear set, and similar difference wasalso observed in a healthy gearbox. One factor for a reduction at the intermediate stage gear set is hypothesized to be the soft sun-spline configuration in the test gearbox. To evaluate this hypothesis, a multibody dynamic model of the healthy test gearbox was first developed and validated. Relative percent difference of the first-order sidebands--of the high-speed and intermediate stagegear-meshing frequencies--in the soft and the rigid sun spline configurations were compared. The results verified that the soft sun-spline configuration can reduce the sidebands of the intermediate stage gear set and also the locating bearing loads. The study demonstrates that combining vibration-based CM with appropriate modeling can provide insights for evaluating different wind turbinegearbox design options.

  11. Economic Development Benefits of the Mars Hill Wind Farm, Wind Powering America Rural Economic Development, Case Study (Fact Sheet)

    SciTech Connect (OSTI)

    Not Available

    2009-06-01

    This case study summarizes the economic development benefits of the Mars Hill Wind Farm to the community of Mars Hill, Maine. The Mars Hill Wind Farm is New England's first utility-scale wind farm.

  12. Modelling renewable electric resources: A case study of wind

    SciTech Connect (OSTI)

    Bernow, S.; Biewald, B.; Hall, J.; Singh, D.

    1994-07-01

    The central issue facing renewables in the integrated resource planning process is the appropriate assessment of the value of renewables to utility systems. This includes their impact on both energy and capacity costs (avoided costs), and on emissions and environmental impacts, taking account of the reliability, system characteristics, interactions (in dispatch), seasonality, and other characteristics and costs of the technologies. These are system-specific considerations whose relationships may have some generic implications. In this report, we focus on the reliability contribution of wind electric generating systems, measured as the amount of fossil capacity they can displace while meeting the system reliability criterion. We examine this issue for a case study system at different wind characteristics and penetration, for different years, with different system characteristics, and with different modelling techniques. In an accompanying analysis we also examine the economics of wind electric generation, as well as its emissions and social costs, for the case study system. This report was undertaken for the {open_quotes}Innovative IRP{close_quotes} program of the U.S. Department of Energy, and is based on work by both Union of Concerned Scientists (UCS) and Tellus Institute, including America`s Energy Choices and the UCS Midwest Renewables Project.

  13. An Integrated Risk Framework for Gigawatt-scale Deployments of Renewable Energy: The U.S. Wind Energy Case

    SciTech Connect (OSTI)

    Ram, B.

    2010-04-01

    Assessing the potential environmental and human effects of deploying renewable wind energy requires a new way of evaluating potential environmental and human impacts. This paper explores an integrated risk framework for renewable wind energy siting decisionmaking.

  14. NREL Studies Wind Farm Aerodynamics to Improve Siting (Fact Sheet), Innovation Impact: Wind, NREL (National Renewable Energy Laboratory)

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Studies Wind Farm Aerodynamics to Improve Siting NREL researchers are using advanced remote sensing instruments and high- performance computing to understand atmospheric turbulence and turbine wake behavior-a key to improving wind turbine design and siting within wind farms. As turbines and wind farms grow in size, they create bigger wakes and present more complex challenges to wind turbine and wind farm designers and operators. NREL researchers have confirmed through both observation and

  15. Navajo Nation: Navajo Tribal Utility Authority - Wind Energy Feasibility Study

    Office of Environmental Management (EM)

    Wind Energy Feasibility Study on the Navajo Nation Navajo Wind Energy Feasibility Navajo Wind Energy Feasibility Study on the Navajo Nation Study on the Navajo Nation Navajo Tribal Utility Authority Navajo Tribal Navajo Tribal Utility Authority Utility Authority Office of Energy Efficiency and Office of Energy Efficiency and Renewable Energy Renewable Energy TRIBAL ENERGY PROGRAM TRIBAL ENERGY PROGRAM 2007 Program Review Meeting 2007 Program Review Meeting Denver, Colorado November 06, 2007

  16. Study Finds 54 Gigawatts of Offshore Wind Capacity Technically...

    Office of Environmental Management (EM)

    According to a new study funded by DOE, the United States has sufficient offshore wind energy ... the national annual electricity production costs by approximately 7.68 ...

  17. NREL: Wind Research - New Study Reveals Potential 30% Penetration...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    New Study Reveals Potential 30% Penetration of Wind and Solar for the Eastern Interconnection An illustrated map of the U.S. northeast and midwest showing transmission lines...

  18. ARM - Field Campaign - Columbia Basin Wind Energy Study

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    govCampaignsColumbia Basin Wind Energy Study Campaign Links Outsmarting the Wind -- U.S. News Science Old meteorological techniques used in new wind farm study -- EcoSeed ARM Data Discovery Browse Data Comments? We would love to hear from you! Send us a note below or call us at 1-888-ARM-DATA. Send Campaign : Columbia Basin Wind Energy Study 2010.09.27 - 2011.05.31 Lead Scientist : Larry Berg For data sets, see below. Abstract The primary focus of this study was to obtain a multi-season data set

  19. Lower Sioux Indian Community Wind Energy Feasibility Study

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    LOWER SIOUX INDIAN COMMUNITY Wind Energy Feasibility Study April 2012 Prepared For: Prepared By: Dakota Futures, Inc. Lower Sioux Indian Community 39375 County Highway 24 Morton, MN 56270 April 11, 2012 Page 1 Lower Sioux Indian Community Wind Energy Feasibility Study Westwood Professional Services Table of Contents 1. EXECUTIVE SUMMARY 3 1.1. Project Background 3 1.2. Feasibility Study Scope and Objectives 4 1.3. Feasibility Study Results 6 1.4. Wind Turbine Selections 8 1.5. Wind Energy

  20. Description of the Columbia Basin Wind Energy Study (CBWES)

    SciTech Connect (OSTI)

    Berg, Larry K.; Pekour, Mikhail S.; Nelson, Danny A.

    2012-10-01

    The purpose of this Technical Report is to provide background information about the Columbia Basin Wind Energy Study (CBWES). This study, which was supported by the U.S. Department of Energy’s Wind and Water Power Program, was conducted from 16 November 2010 through 21 March 2012 at a field site in northeastern Oregon. The primary goal of the study was to provide profiles of wind speed and wind direction over the depth of the boundary layer in an operating wind farm located in an area of complex terrain. Measurements from propeller and vane anemometers mounted on a 62 m tall tower, Doppler Sodar, and Radar Wind Profiler were combined into a single data product to provide the best estimate of the winds above the site during the first part of CBWES. An additional goal of the study was to provide measurements of Turbulence Kinetic Energy (TKE) near the surface. To address this specific goal, sonic anemometers were mounted at two heights on the 62 m tower on 23 April 2011. Prior to the deployment of the sonic anemometers on the tall tower, a single sonic anemometer was deployed on a short tower 3.1 m tall that was located just to the south of the radar wind profiler. Data from the radar wind profiler, as well as the wind profile data product are available from the Atmospheric Radiation Measurements (ARM) Data Archive (http://www.arm.gov/data/campaigns). Data from the sonic anemometers are available from the authors.

  1. Review and Status of Wind Integration and Transmission in the United States. Key Issues and Lessons Learned

    SciTech Connect (OSTI)

    Milligan, M.; Kirby, B.; Acker, T.; Ahlstrom, M.; Frew, B.; Goggin, M.; Lasher, W.; Marquis, M.; Osborn, D.

    2015-03-01

    The objective in electric power system operation is to use generation and transmission resources within organizational constraints and operational rules and regulations to reliably and costeffectively balance load and generation. To meet this objective, system operational practices have been created to accommodate the innate variability and uncertainty that comes from a variety of sources, such as uncertainty of demand forecasts, whether a specific generating unit will be available when called upon, the variability of demand from many different types of customers, and others. As more wind power is connected to the power system, operating experiences acquired during the past several years have generally confirmed the findings of wind integration studies: wind energy increases the level of variability and uncertainty that a system operator must manage.

  2. DOE: Integrating Southwest Power Pool Wind Energy into Southeast Electricity Markets

    SciTech Connect (OSTI)

    Brooks, Daniel, EPRI; Tuohy, Aidan, EPRI; Deb, Sidart, LCG Consulting; Jampani, Srinivas, LCG Consulting; Kirby, Brendan, Consultant; King, Jack, Consultant

    2011-11-29

    Wind power development in the United States is outpacing previous estimates for many regions, particularly those with good wind resources. The pace of wind power deployment may soon outstrip regional capabilities to provide transmission and integration services to achieve the most economic power system operation. Conversely, regions such as the Southeastern United States do not have good wind resources and will have difficulty meeting proposed federal Renewable Portfolio Standards with local supply. There is a growing need to explore innovative solutions for collaborating between regions to achieve the least cost solution for meeting such a renewable energy mandate. The DOE-funded project 'Integrating Southwest Power Pool Wind Energy into Southeast Electricity Markets' aims to evaluate the benefits of coordination of scheduling and balancing for Southwest Power Pool (SPP) wind transfers to Southeastern Electric Reliability Council (SERC) Balancing Authorities (BAs). The primary objective of this project is to analyze the benefits of different balancing approaches with increasing levels of inter-regional cooperation. Scenarios were defined, modeled and investigated to address production variability and uncertainty and the associated balancing of large quantities of wind power in SPP and delivery to energy markets in the southern regions of the SERC. The primary analysis of the project is based on unit commitment (UC) and economic dispatch (ED) simulations of the SPP-SERC regions as modeled for the year 2022. The UC/ED models utilized for the project were developed through extensive consultation with the project utility partners, to ensure the various regions and operational practices are represented as accurately as possible realizing that all such future scenario models are quite uncertain. SPP, Entergy, Oglethorpe Power Company (OPC), Southern Company, and the Tennessee Valley Authority (TVA) actively participated in the project providing input data for the models and review of simulation results and conclusions. While other SERC utility systems are modeled, the listed SERC utilities were explicitly included as active participants in the project due to the size of their load and relative proximity to SPP for importing wind energy. The analysis aspects of the project comprised 4 primary tasks: (1) Development of SCUC/SCED model of the SPP-SERC footprint for the year 2022 with only 7 GW of installed wind capacity in SPP for internal SPP consumption with no intended wind exports to SERC. This model is referred to as the 'Non-RES' model as it does not reflect the need for the SPP or SERC BAs to meet a federal Renewable Energy Standard (RES). (2) Analysis of hourly-resolution simulation results of the Non-RES model for the year 2022 to provide project stakeholders with confidence in the model and analytical framework for a scenario that is similar to the existing system and more easily evaluated than the high-wind transfer scenarios that are analyzed subsequently. (3) Development of SCUC/SCED model of the SPP-SERC footprint for the year 2022 with sufficient installed wind capacity in SPP (approximately 48 GW) for both SPP and the participating SERC BAs to meet an RES of 20% energy. This model is referred to as the 'High-Wind Transfer' model with several different scenarios represented. The development of the High-Wind Transfer model not only included identification and allocation of SPP wind to individual SERC BAs, but also included the evaluation of various methods to allow the model to export the SPP wind to SERC without developing an actual transmission plan to support the transfers. (4) Analysis of hourly-resolution simulation results of several different High-Wind Transfer model scenarios for the year 2022 to determine balancing costs and potential benefits of collaboration among SPP and SERC BAs to provide the required balancing.

  3. Value of Wind Power Forecasting

    SciTech Connect (OSTI)

    Lew, D.; Milligan, M.; Jordan, G.; Piwko, R.

    2011-04-01

    This study, building on the extensive models developed for the Western Wind and Solar Integration Study (WWSIS), uses these WECC models to evaluate the operating cost impacts of improved day-ahead wind forecasts.

  4. Market-Based Indian Grid Integration Study Options: Preprint

    SciTech Connect (OSTI)

    Stoltenberg, B.; Clark, K.; Negi, S. K.

    2012-03-01

    The Indian state of Gujarat is forecasting solar and wind generation expansion from 16% to 32% of installed generation capacity by 2015. Some states in India are already experiencing heavy wind power curtailment. Understanding how to integrate variable generation (VG) into the grid is of great interest to local transmission companies and India's Ministry of New and Renewable Energy. This paper describes the nature of a market-based integration study and how this approach, while new to Indian grid operation and planning, is necessary to understand how to operate and expand the grid to best accommodate the expansion of VG. Second, it discusses options in defining a study's scope, such as data granularity, generation modeling, and geographic scope. The paper also explores how Gujarat's method of grid operation and current system reliability will affect how an integration study can be performed.

  5. Feasibility Study for a Hopi Utility-Scale Wind Project

    SciTech Connect (OSTI)

    Kendrick Lomayestewa

    2011-05-31

    The goal of this project was to investigate the feasibility for the generation of energy from wind and to parallel this work with the development of a tribal utility organization capable of undertaking potential joint ventures in utility businesses and projects on the Hopi reservation. The goal of this project was to investigate the feasibility for the generation of energy from wind and to parallel this work with the development of a tribal utility organization capable of undertaking potential joint ventures in utility businesses and projects on the Hopi reservation. Wind resource assessments were conducted at two study sites on Hopi fee simple lands located south of the city of Winslow. Reports from the study were recently completed and have not been compared to any existing historical wind data nor have they been processed under any wind assessment models to determine the output performance and the project economics of turbines at the wind study sites. Ongoing analysis of the wind data and project modeling will determine the feasibility of a tribal utility-scale wind energy generation.

  6. Development of Regional Wind Resource and Wind Plant Output Datasets. Final Subcontract Report, 15 October 2007 - 15 March 2009

    SciTech Connect (OSTI)

    Lew, Debra

    2010-03-01

    This report describes the development of the necessary and needed wind and solar datasets used in the Western Wind and Solar Integration Study (WWSIS).

  7. New Report: Integrating More Wind and Solar Reduces Utilities...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    and Energy Reliability, and NREL, the new study found that incorporating these renewable energies did increase cycling, but the increased costs and emissions generated from...

  8. Confederated Tribes of Warm Springs - Wind Feasibility Study

    Office of Environmental Management (EM)

    Water Enterprises Wind Energy Development Feasibility Study Warm Springs Indian Reservation Oregon Confederated Tribes of Warm Springs Warm Springs, Oregon US Department of Energy Tribal Energy Program Review October 23-27 2006 Project Participants * Warm Springs Power & Water Enterprises * CTWS Dept. of Natural Resources * DW McClain and Associates: Project Management * OSU Energy Research Laboratory: Wind Modeling * Elcon Associates: Transmission System Studies * Northwest Wildlife

  9. An Energy Preserving Time Integration Method for Gyric Systems: Development of the Offshore Wind

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Energy Preserving Time Integration Method for Gyric Systems: Development of the Offshore Wind Energy Simulation Toolkit Brian C. Owens Texas A&M University brian_owens@tamu.edu John E. Hurtado Texas A&M University jehurtado@tamu.edu Matthew Barone Sandia National Laboratories* mbarone@sandia.gov Joshua A. Paquette Sandia National Laboratories* japaque@sandia.gov *Sandia National Laboratories is a multi-program laboratory managed and operated by Sandia Corporation, a wholly owned

  10. Initial Economic Analysis of Utility-scale Wind Integration in Hawaii, NREL (National Renewable Energy Laboratory)

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    and Renewable Energy, operated by the Alliance for Sustainable Energy, LLC. INITIAL ECONOMIC ANALYSIS OF UTILITY-SCALE WIND INTEGRATION IN HAWAII NOTICE This report was prepared as an account of work sponsored by an agency of the United States government. Neither the United States government nor any agency thereof, nor any of their employees, makes any warranty, express or implied, or assumes any legal liability or responsibility for the accuracy, completeness, or usefulness of any informa-

  11. New Forecasting Tools Enhance Wind Energy Integration In Idaho and Oregon

    Office of Environmental Management (EM)

    New Forecasting Tools Enhance Wind Energy Integration in Idaho and Oregon Page 1 Under the American Recovery and Reinvestment Act of 2009, the U.S. Department of Energy and the electricity industry have jointly invested over $7.9 billion in 99 cost-shared Smart Grid Investment Grant projects to modernize the electric grid, strengthen cybersecurity, improve interoperability, and collect an unprecedented level of data on smart grid and customer operations. 1. Summary Idaho Power Company (IPC)

  12. Integrated nonthermal treatment system study

    SciTech Connect (OSTI)

    Biagi, C.; Bahar, D.; Teheranian, B.; Vetromile, J. [Morrison Knudsen Corp. (United States); Quapp, W.J. [Nuclear Metals (United States); Bechtold, T.; Brown, B.; Schwinkendorf, W. [Lockheed Martin Idaho Technologies Co., Idaho Falls, ID (United States); Swartz, G. [Swartz and Associates (United States)

    1997-01-01

    This report presents the results of a study of nonthermal treatment technologies. The study consisted of a systematic assessment of five nonthermal treatment alternatives. The treatment alternatives consist of widely varying technologies for safely destroying the hazardous organic components, reducing the volume, and preparing for final disposal of the contact-handled mixed low-level waste (MLLW) currently stored in the US Department of Energy complex. The alternatives considered were innovative nonthermal treatments for organic liquids and sludges, process residue, soil and debris. Vacuum desorption or various washing approaches are considered for treatment of soil, residue and debris. Organic destruction methods include mediated electrochemical oxidation, catalytic wet oxidation, and acid digestion. Other methods studied included stabilization technologies and mercury separation of treatment residues. This study is a companion to the integrated thermal treatment study which examined 19 alternatives for thermal treatment of MLLW waste. The quantities and physical and chemical compositions of the input waste are based on the inventory database developed by the US Department of Energy. The Integrated Nonthermal Treatment Systems (INTS) systems were evaluated using the same waste input (2,927 pounds per hour) as the Integrated Thermal Treatment Systems (ITTS). 48 refs., 68 figs., 37 tabs.

  13. NREL: Transmission Grid Integration - Publications

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Publications Want updates about future transmission grid integration webinars and publications? Join our mailing list. NREL has an extensive collection of publications related to transmission integration research. Explore the resources below to learn more. Selected Project Publications Read selected publications related to these transmission integration projects: Western Wind and Solar Integration Study Eastern Renewable Generation Integration Study Oahu Wind Integration and Transmission Study

  14. Modeling Framework and Validation of a Smart Grid and Demand Response System for Wind Power Integration

    SciTech Connect (OSTI)

    Broeer, Torsten; Fuller, Jason C.; Tuffner, Francis K.; Chassin, David P.; Djilali, Ned

    2014-01-31

    Electricity generation from wind power and other renewable energy sources is increasing, and their variability introduces new challenges to the power system. The emergence of smart grid technologies in recent years has seen a paradigm shift in redefining the electrical system of the future, in which controlled response of the demand side is used to balance fluctuations and intermittencies from the generation side. This paper presents a modeling framework for an integrated electricity system where loads become an additional resource. The agent-based model represents a smart grid power system integrating generators, transmission, distribution, loads and market. The model incorporates generator and load controllers, allowing suppliers and demanders to bid into a Real-Time Pricing (RTP) electricity market. The modeling framework is applied to represent a physical demonstration project conducted on the Olympic Peninsula, Washington, USA, and validation simulations are performed using actual dynamic data. Wind power is then introduced into the power generation mix illustrating the potential of demand response to mitigate the impact of wind power variability, primarily through thermostatically controlled loads. The results also indicate that effective implementation of Demand Response (DR) to assist integration of variable renewable energy resources requires a diversity of loads to ensure functionality of the overall system.

  15. An Innovative Technique for Evaluating the Integrity and Durability of Wind Turbine Blade Composites

    SciTech Connect (OSTI)

    Wang, Jy-An John; Ren, Fei

    2010-09-01

    Wind turbine blades are subjected to complex multiaxial stress states during operation. A review of the literature suggests that mixed mode fracture toughness can be significantly less than that of the tensile opening mode (Mode I), implying that fracture failure can occur at a much lower load capacity if the structure is subject to mixed-mode loading. Thus, it will be necessary to identify the mechanisms that might lead to failure in blade materials under mixed-mode loading conditions. Meanwhile, wind turbine blades are typically fabricated from fiber reinforced polymeric materials, e.g. fiber glass composites. Due to the large degree of anisotropy in mechanical properties that is usually associated with laminates, the fracture behavior of these composite materials is likely to be strongly dependent on the loading conditions. This may further strengthen the need to study the effect of mixed-mode loading on the integrity and durability of the wind turbine blade composites. To quantify the fracture behavior of composite structures under mixed mode loading conditions, particularly under combined Mode I (flexural or normal tensile stress) and Mode III (torsional shear stress) loading, a new testing technique is proposed based on the spiral notch torsion test (SNTT). As a 2002 R&D 100 Award winner, SNTT is a novel fracture testing technology. SNTT has many advantages over conventional fracture toughness methods and has been used to determine fracture toughness values on a wide spectrum of materials. The current project is the first attempt to utilize SNTT on polymeric and polymer-based composite materials. It is expected that mixed-mode failure mechanisms of wind turbine blades induced by typical in-service loading conditions, such as delamination, matrix cracking, fiber pull-out and fracture, can be effectively and economically investigated by using this methodology. This project consists of two phases. The Phase I (FY2010) effort includes (1) preparation of testing material and testing equipment set-up, including calibration of associated instruments/sensors, (2) development of design protocols for the proposed SNTT samples for both polymer and composite materials, such as sample geometries and fabrication techniques, (3) manufacture of SNTT samples, and (4) fracture toughness testing using the SNTT method. The major milestone achieved in Phase I is the understanding of fracture behaviors of polymeric matrix materials from testing numerous epoxy SNTT samples. Totals of 30 epoxy SNTT samples were fabricated from two types of epoxy materials provided by our industrial partners Gougeon Brothers, Inc. and Molded Fiber Glass Companies. These samples were tested with SNTT in three groups: (1) fracture due to monotonic loading, (2) fracture due to fatigue cyclic loading, and (3) monotonic loading applied to fatigue-precracked samples. Brittle fractures were observed on all tested samples, implying linear elastic fracture mechanics analysis can be effectively used to estimate the fracture toughness of these materials with confidence. Appropriate fatigue precracking protocols were established to achieve controllable crack growth using the SNTT approach under pure torsion loading. These fatigue protocols provide the significant insights of the mechanical behavior of epoxy polymeric materials and their associated rate-dependent characteristics. Effects of mixed-mode loading on the fracture behavior of epoxy materials was studied. It was found that all epoxy samples failed in brittle tensile failure mode; the fracture surfaces always follow a 45o spiral plane that corresponded to Mode I tensile failure, even when the initial pitch angle of the machined spiral grooves was not at 45o. In addition, general observation from the fatigue experiments implied that loading rate played an important role determining the fracture behavior of epoxy materials, such that a higher loading rate resulted in a shorter fatigue life. A detailed study of loading rate effect will be continued in the Phase II. On the other hand, analytical finite element ana

  16. An Optimized Autoregressive Forecast Error Generator for Wind and Load Uncertainty Study

    SciTech Connect (OSTI)

    De Mello, Phillip; Lu, Ning; Makarov, Yuri V.

    2011-01-17

    This paper presents a first-order autoregressive algorithm to generate real-time (RT), hour-ahead (HA), and day-ahead (DA) wind and load forecast errors. The methodology aims at producing random wind and load forecast time series reflecting the autocorrelation and cross-correlation of historical forecast data sets. Five statistical characteristics are considered: the means, standard deviations, autocorrelations, and cross-correlations. A stochastic optimization routine is developed to minimize the differences between the statistical characteristics of the generated time series and the targeted ones. An optimal set of parameters are obtained and used to produce the RT, HA, and DA forecasts in due order of succession. This method, although implemented as the first-order regressive random forecast error generator, can be extended to higher-order. Results show that the methodology produces random series with desired statistics derived from real data sets provided by the California Independent System Operator (CAISO). The wind and load forecast error generator is currently used in wind integration studies to generate wind and load inputs for stochastic planning processes. Our future studies will focus on reflecting the diurnal and seasonal differences of the wind and load statistics and implementing them in the random forecast generator.

  17. Feasibility Study for a Hopi Utility-Scale Wind Project

    Office of Environmental Management (EM)

    1 October 19, 2005 Feasibility Study for a Hopi Utility-Scale Wind Project Slide 2 WIND ENERGY CAN BENEFIT HOPI TRIBE New Economic Development * Electricity export sales create new revenues for Nation (lease royalties and equity return on investment) * Potentially fund rural electrification and smaller off-grid renewable applications * Contracting work in development and construction phases * New jobs Environmental * No air pollution or toxic emissions * Virtually no water use * Low land impact,

  18. Native Village of Eyak Wind Energy Feasibility Study

    Office of Environmental Management (EM)

    Eyak Wind Energy Feasibility Study Prepared by Heath Kocan & Casey Pape Presented by Casey Pape Alternative Energy Coordinator Native Village of Eyak * Federally Recognized Tribe in Cordova, AK * Governed by a five- member tribal council * Provides health and social services, economic development, job training and environmental and resource management * 525 Tribal members Location of Project Cordova Why Wind Power? *Reduces petroleum use *Reduces carbon footprint *Cost can be competitive

  19. IEA Wind Task 26 - Multi-national Case Study of the Financial...

    Open Energy Info (EERE)

    Wind Task 26 - Multi-national Case Study of the Financial Cost of Wind Energy, Work Package 1, Final Report Jump to: navigation, search Tool Summary LAUNCH TOOL Name: IEA Wind Task...

  20. Solar Reserve Methodology for Renewable Energy Integration Studies Based on Sub-Hourly Variability Analysis: Preprint

    SciTech Connect (OSTI)

    Ibanez, E.; Brinkman, G.; Hummon, M.; Lew, D.

    2012-08-01

    Increasing penetrations of wind a solar energy are raising concerns among electric system operators because of the variability and uncertainty associated with power sources. Previous work focused on the quantification of reserves for systems with wind power. This paper presents a new methodology that allows the determination of necessary reserves for high penetrations of photovoltaic (PV) power and compares it to the wind-based methodology. The solar reserve methodology is applied to Phase 2 of the Western Wind and Solar Integration Study. A summary of the results is included.

  1. Eastern Renewable Generation Integration Study (Presentation)

    SciTech Connect (OSTI)

    Bloom, A.

    2014-05-01

    This presentation provides a high-level overview of the Eastern Renewable Generation Integration Study process, scenarios, tools, and goals.

  2. Wind Forecast Improvement Project Southern Study Area Final Report |

    Broader source: Energy.gov (indexed) [DOE]

    Department of Energy PDF icon Wind Forecast Improvement Project Southern Study Area Final Report.pdf More Documents & Publications QER - Comment of Edison Electric Institute (EEI) 1 QER - Comment of Canadian Hydropower Association QER - Comment of Edison Electric Institute (EEI) 2

  3. A review of the international experience with integrating wind energy generation

    SciTech Connect (OSTI)

    Porter, Kevin; Yen-Nakafuji, Dora; Morgenstern, Brett

    2007-10-15

    Regions in the U.S. that are planning significant capacity additions of wind can learn from the experience of countries that have developed wind forecasting strategies and grid codes addressing wind power systems. (author)

  4. NREL: Transmission Grid Integration - Technical Review Committee Principles

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    for Integration Studies Technical Review Committee Principles for Integration Studies Working with the U.S. Department of Energy's National Renewable Energy Laboratory (NREL), the Utility Wind Integration Group has issued a set of principles for Technical Review Committee participation in wind integration studies. Coming from years of Utility Wind Integration Group and NREL Technical Review Committee involvement in a number of wind integration studies, this document provides guidance for

  5. Lithium-Ion Ultracapacitors integrated with Wind Turbines Power Conversion Systems to Extend Operating Life and Improve Output Power Quality

    SciTech Connect (OSTI)

    Adel Nasiri

    2012-05-23

    In this project we designed and modeled a system for a full conversion wind turbine and built a scaled down model which utilizes Lithium-Ion Capacitors on the DC bus. One of the objectives is to reduce the mechanical stress on the gearbox and drivetrain of the wind turbine by adjusting the torque on generator side according to incoming wind power. Another objective is to provide short-term support for wind energy to be more ???¢????????grid friendly???¢??????? in order to ultimately increase wind energy penetration. These supports include power smoothing, power ramp rate limitation, low voltage ride through, and frequency (inertia) support. This research shows how energy storage in small scale and in an economical fashion can make a significant impact on performance of wind turbines. Gearbox and drivetrain premature failures are among high cost maintenance items for wind turbines. Since the capacitors are directly applied on the turbine DC bus and their integration does not require addition hardware, the cost of the additional system can be reasonable for the wind turbine manufacturers and utility companies.

  6. Advanced wind turbine design studies: Advanced conceptual study. Final report

    SciTech Connect (OSTI)

    Hughes, P.; Sherwin, R.

    1994-08-01

    In conjunction with the US Department of Energy and the National Renewable Energy Laboratory`s Advanced Wind Turbine Program, the Atlantic Orient Corporation developed preliminary designs for the next generation of wind turbines. These 50 kW and 350 kW turbines are based upon the concept of simplicity. By adhering to a design philosophy that emphasizes simplicity, we project that these turbines will produce energy at extremely competitive rates which will unlock the potential of wind energy domestically and internationally. The program consisted of three distinct phases. First, we evaluated the operational history of the Enertech 44 series wind turbines. As a result of this evaluation, we developed, in the second phase, a preliminary design for a new 50 kW turbine for the near-term market. In the third phase, we took a clean-sheet-of-paper approach to designing a 350 kW turbine focused on the mid-1990s utility market that incorporated past experience and advanced technology.

  7. DOE Study finds U.S. Wind Industry Competitive, Efficient, and Capable on a

    Broader source: Energy.gov (indexed) [DOE]

    Global Scale | Department of Energy Wind turbine blades wind their way by train through Denver. | Photo by Dennis Schroeder of NREL. Wind turbine blades wind their way by train through Denver. | Photo by Dennis Schroeder of NREL. The Global Wind Network Study found that the United States was more competitive in a cost breakdown analysis of international suppliers. (Note: Results based solely on data from participating component suppliers in each country.) | Graphic courtesy of the Global

  8. NREL Computer Models Integrate Wind Turbines with Floating Platforms (Fact Sheet)

    SciTech Connect (OSTI)

    Not Available

    2011-07-01

    Far off the shores of energy-hungry coastal cities, powerful winds blow over the open ocean, where the water is too deep for today's seabed-mounted offshore wind turbines. For the United States to tap into these vast offshore wind energy resources, wind turbines must be mounted on floating platforms to be cost effective. Researchers at the National Renewable Energy Laboratory (NREL) are supporting that development with computer models that allow detailed analyses of such floating wind turbines.

  9. Wind & Hydro Energy Feasibility Study for the Yurok Tribe

    Energy Savers [EERE]

    Wind & Hydro Energy Feasibility Study for the Yurok Tribe DOE Tribal Energy Program Review Meeting Award #DE-FG36-07GO17078 October 27, 2010 Presented By: Austin Nova, Yurok Tribe Jim Zoellick, Schatz Energy Research Center Background/Location Located in Yurok northwest Reservation corner of Straddles the California lower stem of the Klamath River, 2 miles wide and 44 miles long) Background * Largest Indian Tribe in California * Traditional livelihood on the Yurok Reservation is based upon

  10. Eastern Renewable Generation Integration Study (Fact Sheet)

    SciTech Connect (OSTI)

    Not Available

    2014-02-01

    This one-page, two-sided fact sheet provides an overview of the Eastern Renewable Generation and Integration Study process.

  11. Grand Traverse Band Renewable Energy Feasibility Study in Wind, Biomass and Solar

    SciTech Connect (OSTI)

    Suzanne McSawby, Project Director Steve Smiley, Principle Investigator Grand Traverse Resort, Cost Sharing Partner

    2008-12-31

    Renewable Energy Feasibility Study for wind, biomass, solar on the Grand Traverse Band tribal lands from 2005 - 2008

  12. Validation of Power Output for the WIND Toolkit

    SciTech Connect (OSTI)

    King, J.; Clifton, A.; Hodge, B. M.

    2014-09-01

    Renewable energy integration studies require wind data sets of high quality with realistic representations of the variability, ramping characteristics, and forecast performance for current wind power plants. The Wind Integration National Data Set (WIND) Toolkit is meant to be an update for and expansion of the original data sets created for the weather years from 2004 through 2006 during the Western Wind and Solar Integration Study and the Eastern Wind Integration Study. The WIND Toolkit expands these data sets to include the entire continental United States, increasing the total number of sites represented, and it includes the weather years from 2007 through 2012. In addition, the WIND Toolkit has a finer resolution for both the temporal and geographic dimensions. Three separate data sets will be created: a meteorological data set, a wind power data set, and a forecast data set. This report describes the validation of the wind power data set.

  13. NREL: Wind Research - Offshore Wind Research

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Standards and Testing NREL's Offshore Wind Testing Capabilities 35 years of wind turbine testing experience Custom high speed data acquisition system integrated for offshore...

  14. ANL Study Shows Wind Power Decreases Power Sector Emissions | Department of

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Energy ANL Study Shows Wind Power Decreases Power Sector Emissions ANL Study Shows Wind Power Decreases Power Sector Emissions May 1, 2012 - 3:38pm Addthis This is an excerpt from the Second Quarter 2012 edition of the Wind Program R&D Newsletter. A study recently published by the Energy Department's Argonne National Laboratory (ANL) examined the effects of introducing wind energy into the electric power system. After conducting a detailed emissions analysis based on a comprehensive

  15. Initial Economic Analysis of Utility-Scale Wind Integration in Hawaii

    SciTech Connect (OSTI)

    Not Available

    2012-03-01

    This report summarizes an analysis, conducted by the National Renewable Energy Laboratory (NREL) in May 2010, of the economic characteristics of a particular utility-scale wind configuration project that has been referred to as the 'Big Wind' project.

  16. Study Finds 54 Gigawatts of Offshore Wind Capacity Technically Possible by 2030

    Broader source: Energy.gov [DOE]

    DOE recently funded a study that finds the deployment of at least 54 gigawatts of offshore wind power to be technically possible by 2030. The National Offshore Wind Energy Grid Interconnection Study (NOWEGIS), which focused on two DOE objectives in reducing barriers to deployment of offshore wind, cost of energy and timeline of deployment.

  17. Flow visualization study of the MOD-2 wind turbine wake

    SciTech Connect (OSTI)

    Liu H.T.; Waite, J.W.; Hiester, T.R.; Tacheron, P.H.; Srnsky, R.A.

    1983-06-01

    The specific objectives of the study reported were: to determine the geometry of the MOD-2 wind turbine wake in terms of wake height and width as a function of downstream distance under two conditions of atmospheric stability; to estimate the mean velocity deficit at several downstream stations in the turbine wake; and to investigate the behavior of the rotor-generated vortices, particularly their configuration and persistence. The background of the wake problem is briefly examined, including a discussion of the critical issues that the flow visualization study addresses. Experimental techniques and data analysis methods are described in detail. (LEW)

  18. Markets to Facilitate Wind and Solar Energy Integration in the Bulk Power Supply: An IEA Task 25 Collaboration; Preprint

    SciTech Connect (OSTI)

    Milligan, M.; Holttinen, H.; Soder, L.; Clark, C.; Pineda, I.

    2012-09-01

    Wind and solar power will give rise to challenges in electricity markets regarding flexibility, capacity adequacy, and the participation of wind and solar generators to markets. Large amounts of wind power will have impacts on bulk power system markets and electricity prices. If the markets respond to increased wind power by increasing investments in low-capital, high-cost or marginal-cost power, the average price may remain in the same range. However, experiences so far from Denmark, Germany, Spain, and Ireland are such that the average market prices have decreased because of wind power. This reduction may result in additional revenue insufficiency, which may be corrected with a capacity market, yet capacity markets are difficult to design. However, the flexibility attributes of the capacity also need to be considered. Markets facilitating wind and solar integration will include possibilities for trading close to delivery (either by shorter gate closure times or intraday markets). Time steps chosen for markets can enable more flexibility to be assessed. Experience from 5- and 10-minute markets has been encouraging.

  19. Study Shows Active Power Controls from Wind May Increase Revenues and

    Energy Savers [EERE]

    Improve System Reliability | Department of Energy Study Shows Active Power Controls from Wind May Increase Revenues and Improve System Reliability Study Shows Active Power Controls from Wind May Increase Revenues and Improve System Reliability January 6, 2014 - 10:00am Addthis This is an excerpt from the Fourth Quarter 2013 edition of the Wind Program R&D Newsletter. The U.S. Department of Energy's Wind Program and the National Renewable Energy Laboratory (NREL) recently published a

  20. Study Shows Active Power Controls from Wind May Increase Revenues and

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Improve System Reliability | Department of Energy Study Shows Active Power Controls from Wind May Increase Revenues and Improve System Reliability Study Shows Active Power Controls from Wind May Increase Revenues and Improve System Reliability January 6, 2014 - 10:00am Addthis This is an excerpt from the Fourth Quarter 2013 edition of the Wind Program R&D Newsletter. The U.S. Department of Energy's Wind Program and the National Renewable Energy Laboratory (NREL) recently published a

  1. Wind Energy Management System EMS Integration Project: Incorporating Wind Generation and Load Forecast Uncertainties into Power Grid Operations

    SciTech Connect (OSTI)

    Makarov, Yuri V.; Huang, Zhenyu; Etingov, Pavel V.; Ma, Jian; Guttromson, Ross T.; Subbarao, Krishnappa; Chakrabarti, Bhujanga B.

    2010-01-01

    The power system balancing process, which includes the scheduling, real time dispatch (load following) and regulation processes, is traditionally based on deterministic models. Since the conventional generation needs time to be committed and dispatched to a desired megawatt level, the scheduling and load following processes use load and wind and solar power production forecasts to achieve future balance between the conventional generation and energy storage on the one side, and system load, intermittent resources (such as wind and solar generation), and scheduled interchange on the other side. Although in real life the forecasting procedures imply some uncertainty around the load and wind/solar forecasts (caused by forecast errors), only their mean values are actually used in the generation dispatch and commitment procedures. Since the actual load and intermittent generation can deviate from their forecasts, it becomes increasingly unclear (especially, with the increasing penetration of renewable resources) whether the system would be actually able to meet the conventional generation requirements within the look-ahead horizon, what the additional balancing efforts would be needed as we get closer to the real time, and what additional costs would be incurred by those needs. To improve the system control performance characteristics, maintain system reliability, and minimize expenses related to the system balancing functions, it becomes necessary to incorporate the predicted uncertainty ranges into the scheduling, load following, and, in some extent, into the regulation processes. It is also important to address the uncertainty problem comprehensively by including all sources of uncertainty (load, intermittent generation, generators forced outages, etc.) into consideration. All aspects of uncertainty such as the imbalance size (which is the same as capacity needed to mitigate the imbalance) and generation ramping requirement must be taken into account. The latter unique features make this work a significant step forward toward the objective of incorporating of wind, solar, load, and other uncertainties into power system operations. Currently, uncertainties associated with wind and load forecasts, as well as uncertainties associated with random generator outages and unexpected disconnection of supply lines, are not taken into account in power grid operation. Thus, operators have little means to weigh the likelihood and magnitude of upcoming events of power imbalance. In this project, funded by the U.S. Department of Energy (DOE), a framework has been developed for incorporating uncertainties associated with wind and load forecast errors, unpredicted ramps, and forced generation disconnections into the energy management system (EMS) as well as generation dispatch and commitment applications. A new approach to evaluate the uncertainty ranges for the required generation performance envelope including balancing capacity, ramping capability, and ramp duration has been proposed. The approach includes three stages: forecast and actual data acquisition, statistical analysis of retrospective information, and prediction of future grid balancing requirements for specified time horizons and confidence levels. Assessment of the capacity and ramping requirements is performed using a specially developed probabilistic algorithm based on a histogram analysis, incorporating all sources of uncertainties of both continuous (wind and load forecast errors) and discrete (forced generator outages and start-up failures) nature. A new method called the flying brick technique has been developed to evaluate the look-ahead required generation performance envelope for the worst case scenario within a user-specified confidence level. A self-validation algorithm has been developed to validate the accuracy of the confidence intervals.

  2. NREL Studies Wind Farm Aerodynamics to Improve Siting (Fact Sheet)

    SciTech Connect (OSTI)

    Not Available

    2012-04-01

    NREL researchers have used high-tech instruments and high-performance computing to understand atmospheric turbulence and turbine wake behavior in order to improve wind turbine design and siting within wind farms.

  3. Wind-To-Hydrogen Project: Operational Experience, Performance Testing, and Systems Integration

    SciTech Connect (OSTI)

    Harrison, K. W.; Martin, G. D.; Ramsden, T. G.; Kramer, W. E.; Novachek, F. J.

    2009-03-01

    The Wind2H2 system is fully functional and continues to gather performance data. In this report, specifications of the Wind2H2 equipment (electrolyzers, compressor, hydrogen storage tanks, and the hydrogen fueled generator) are summarized. System operational experience and lessons learned are discussed. Valuable operational experience is shared through running, testing, daily operations, and troubleshooting the Wind2H2 system and equipment errors are being logged to help evaluate the reliability of the system.

  4. Eastern Shoshone & Northern Arapahoe Tribes on the Wind River Reservation - Wind Feasibility Study

    Office of Environmental Management (EM)

    Office of Energy Efficiency and Renewable Energy Tribal Energy Program Eastern Shoshone Tribe Northern Arapahoe Tribe Tatanka Energy - DISGEN Native American Programs and Resources Eastern Shoshone & Northern Arapaho Tribes on the Wind River Reservation Project Overview Participants Project Location Project Status Tatanka Energy - DISGEN Native American Programs and Resources Eastern Shoshone & Northern Arapaho Tribes on the Wind River Reservation Project Overview Developing a

  5. A First-Ever Global Examination of Successful Wind Energy Grid Integration Practices

    Broader source: Energy.gov [DOE]

    The Department of Energy (DOE) outlined a scenario where wind energy could account for 20% of America's total power generation portfolio by 2030.

  6. WindPACT Turbine Rotor Design Study: June 2000--June 2002 (Revised)

    SciTech Connect (OSTI)

    Malcolm, D. J.; Hansen, A. C.

    2006-04-01

    This report presents the results of the turbine rotor study completed by Global Energy Concepts (GEC) as part of the U.S. Department of Energy's WindPACT (Wind Partnership for Advanced Component Technologies) project. The purpose of the WindPACT project is to identify technology improvements that will enable the cost of energy from wind turbines to fall to a target of 3.0 cents/kilowatt-hour in low wind speed sites. The study focused on different rotor configurations and the effect of scale on those rotors.

  7. DOE's NREL and LLNL team with NOAA and University of Colorado to Study Wind

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Inflow Conditions | Department of Energy NREL and LLNL team with NOAA and University of Colorado to Study Wind Inflow Conditions DOE's NREL and LLNL team with NOAA and University of Colorado to Study Wind Inflow Conditions October 3, 2011 - 12:33pm Addthis This is an excerpt from the Third Quarter 2011 edition of the Wind Program R&D Newsletter. Invisible to the eye, wind wakes created by multimegawatt wind turbines can nevertheless strongly impact performance of other turbines

  8. Western Wind and Solar Integration Study Phase 3 … Frequency...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    ... National Renewable Energy Laboratory (NREL) at ... CSP concentrating solar thermal power DC direct current DG distributed ... results from the production simulation results ...

  9. Eastern Wind Integration and Transmission Study (EWITS) (Revised...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    ... the end of 2008. Despite the global financial crisis, another 4.5 GW was installed in the ... The investigation, which began in 2007, was the first of its kind in terms of scope, ...

  10. OAHU Wind Integration And Transmission Study: Summary Report...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    ... This delay is not expected to be a problem because electrically it is a very tight system. Although the analysis showed ... power surges and provide time for transfer-tripping or ...

  11. The Western Wind and Solar Integration Study Phase 3: Technical...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Department of Energy, Office of Energy Efficiency and Renewable Energy, operated by the Alliance for Sustainable Energy, LLC. Light Spring Base Light Spring High Renewables Light...

  12. Lessons from Large-Scale Renewable Energy Integration Studies...

    Office of Scientific and Technical Information (OSTI)

    the WWSIS examined the planning and operational implications of adding up to 35% wind and solar energy penetration to the Western Interconnect of the United States. The study...

  13. Techno-economic Modeling of the Integration of 20% Wind and Large-scale Energy Storage in ERCOT by 2030

    SciTech Connect (OSTI)

    Ross Baldick; Michael Webber; Carey King; Jared Garrison; Stuart Cohen; Duehee Lee

    2012-12-21

    This study’s objective is to examine interrelated technical and economic avenues for the Electric Reliability Council of Texas (ERCOT) grid to incorporate up to and over 20% wind generation by 2030. Our specific interests are to look at the factors that will affect the implementation of both high level of wind power penetration (> 20% generation) and installation of large scale storage.

  14. Evolution of turbulence in the expanding solar wind, a numerical study

    SciTech Connect (OSTI)

    Dong, Yue; Grappin, Roland; Verdini, Andrea E-mail: verdini@arcetri.astro.it

    2014-10-01

    We study the evolution of turbulence in the solar wind by solving numerically the full three-dimensional (3D) magnetohydrodynamic (MHD) equations embedded in a radial mean wind. The corresponding equations (expanding box model or EBM) have been considered earlier but never integrated in 3D simulations. Here, we follow the development of turbulence from 0.2 AU up to about 1.5 AU. Starting with isotropic spectra scaling as k {sup 1}, we observe a steepening toward a k {sup 5/3} scaling in the middle of the wave number range and formation of spectral anisotropies. The advection of a plasma volume by the expanding solar wind causes a non-trivial stretching of the volume in directions transverse to radial and the selective decay of the components of velocity and magnetic fluctuations. These two effects combine to yield the following results. (1) Spectral anisotropy: gyrotropy is broken, and the radial wave vectors have most of the power. (2) Coherent structures: radial streams emerge that resemble the observed microjets. (3) Energy spectra per component: they show an ordering in good agreement with the one observed in the solar wind at 1 AU. The latter point includes a global dominance of the magnetic energy over kinetic energy in the inertial and f {sup 1} range and a dominance of the perpendicular-to-the-radial components over the radial components in the inertial range. We conclude that many of the above properties are the result of evolution during transport in the heliosphere, and not just the remnant of the initial turbulence close to the Sun.

  15. New Study Reveals Multiple Pathways to 30% Penetration of Wind...

    Energy Savers [EERE]

    Penetration of Wind and Solar September 16, 2015 - 6:36pm ... (DOE's) National Renewable Energy Laboratory (NREL) found ... of 30% decrease production costs and emissions by ...

  16. Wind-To-Hydrogen Project: Electrolyzer Capital Cost Study

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    2008 Technical Report Wind-To-Hydrogen Project: NREL... H271.3730 National Renewable Energy Laboratory 1617 Cole ... hydrogen on a scale much greater than current production. ...

  17. Building America Case Study: Investigating Solutions to Wind...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Investigating Solutions to Wind Washing Issues in Two-Story Florida Homes: Phase 2 ... Building Component: Attic-floor cavity intersections Application: Retrofit, single-family ...

  18. Avian Collisions with Wind Turbines: Summary of Studies to Date...

    Office of Scientific and Technical Information (OSTI)

    ... obtained by the American Wind Energy ...worship, public assembly, offices, mercantileservices, lodging, health care, food ... Journal of Raptor Research 27(4): 210-213. ...

  19. Klondike III/Biglow Canyon Wind Integration Project; Final Environmental Impact Statement, September 2006.

    SciTech Connect (OSTI)

    United States. Bonneville Power Administration

    2006-09-01

    BPA has been asked by PPM Energy, Inc. to interconnect 300 megawatts (MW) of electricity generated from the proposed Klondike III Wind Project to the Federal Columbia River Transmission System. Orion Energy LLC has also asked BPA to interconnect 400 MW of electricity from its proposed Biglow Canyon Wind Farm, located north and east of the proposed Klondike III Wind Project. (Portland General Electric recently bought the rights to develop the proposed Biglow Canyon Wind Farm from Orion Energy, LLC.) Both wind projects received Site Certificates from the Oregon Energy Facility Siting Council on June 30, 2006. To interconnect these projects, BPA would need to build and operate a 230-kV double-circuit transmission line about 12 miles long, expand one substation and build one new substation. The wind projects would require wind turbines, substation(s), access roads, and other facilities. Two routes for the transmission line are being considered. Both begin at PPM's Klondike Schoolhouse Substation then travel north (Proposed Action) or north and westerly (Middle Alternative) to a new BPA 230-kV substation next to BPA's existing John Day 500-kV Substation. BPA is also considering a No Action Alternative in which BPA would not build the transmission line and would not interconnect the wind projects. The proposed BPA and wind projects would be located on private land, mainly used for agriculture. If BPA decides to interconnect the wind projects, construction of the BPA transmission line and substation(s) could commence as early as the winter of 2006-07. Both wind projects would operate for much of each year for at least 20 years. The proposed projects would generally create no or low impacts. Wildlife resources and local visual resources are the only resources to receive an impact rating other than ''none'' or ''low''. The low to moderate impacts to wildlife are from the expected bird and bat mortality and the cumulative impact of this project on wildlife when combined with other proposed wind projects in the region. The low to high impacts to visual resources reflect the effect that the transmission line and the turbine strings from both wind projects would have on viewers in the local area, but this impact diminishes with distance from the project.

  20. IEA Wind Task 26 - Multi-national Case Study of the Financial Cost of Wind Energy; Work Package 1 Final Report

    SciTech Connect (OSTI)

    Schwabe, P.; Lensink, S.; Hand, M.

    2011-03-01

    The lifetime cost of wind energy is comprised of a number of components including the investment cost, operation and maintenance costs, financing costs, and annual energy production. Accurate representation of these cost streams is critical in estimating a wind plant's cost of energy. Some of these cost streams will vary over the life of a given project. From the outset of project development, investors in wind energy have relatively certain knowledge of the plant's lifetime cost of wind energy. This is because a wind energy project's installed costs and mean wind speed are known early on, and wind generation generally has low variable operation and maintenance costs, zero fuel cost, and no carbon emissions cost. Despite these inherent characteristics, there are wide variations in the cost of wind energy internationally, which is the focus of this report. Using a multinational case-study approach, this work seeks to understand the sources of wind energy cost differences among seven countries under International Energy Agency (IEA) Wind Task 26 - Cost of Wind Energy. The participating countries in this study include Denmark, Germany, the Netherlands, Spain, Sweden, Switzerland, and the United States. Due to data availability, onshore wind energy is the primary focus of this study, though a small sample of reported offshore cost data is also included.

  1. NREL: Wind Research - NREL and Partners Review Key Issues, Lessons...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    NREL and Partners Review Key Issues, Lessons Learned from U.S. Wind Integration Studies and Operating Practices April 17, 2015 As a complement to DOE's recently released Wind...

  2. Final Project Report, Bristol Bay Native Corporation Wind and Hydroelectric Feasibility Study

    SciTech Connect (OSTI)

    Vaught, Douglas J.

    2007-03-31

    The Bristol Bay Native Corporation (BBNC) grant project focused on conducting nine wind resource studies in eight communities in the Bristol Bay region of southwest Alaska and was administered as a collaborative effort between BBNC, the Alaska Energy Authority, Alaska Village Electric Cooperative, Nushagak Electric Cooperative (NEC), Naknek Electric Association (NEA), and several individual village utilities in the region. BBNCs technical contact and the project manager for this study was Douglas Vaught, P.E., of V3 Energy, LLC, in Eagle River, Alaska. The Bristol Bay region of Alaska is comprised of 29 communities ranging in size from the hub community of Dillingham with a population of approximately 3,000 people, to a few Native Alaska villages that have a few tens of residents. Communities chosen for inclusion in this project were Dillingham, Naknek, Togiak, New Stuyahok, Kokhanok, Perryville, Clarks Point, and Koliganek. Selection criteria for conduction of wind resource assessments in these communities included population and commercial activity, utility interest, predicted Class 3 or better wind resource, absence of other sources of renewable energy, and geographical coverage of the region. Beginning with the first meteorological tower installation in October 2003, wind resource studies were completed at all sites with at least one year, and as much as two and a half years, of data. In general, the study results are very promising for wind power development in the region with Class 6 winds measured in Kokhanok; Class 4 winds in New Stuyahok, Clarks Point, and Koliganek; Class 3 winds in Dillingham, Naknek, and Togiak; and Class 2 winds in Perryville. Measured annual average wind speeds and wind power densities at the 30 meter level varied from a high of 7.87 meters per second and 702 watts per square meter in Kokhanok (Class 6 winds), to a low of 4.60 meters per second and 185 watts per square meter in Perryville (Class 2 winds).

  3. NREL Study Shows Power Grid can Accommodate Large Increase in Wind and

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Solar Generation - News Releases | NREL Study Shows Power Grid can Accommodate Large Increase in Wind and Solar Generation Increased Coordination Over Wider Areas and More Frequent Scheduling Needed; Wind and Solar Significantly Reduce Carbon and Fuel Costs May 20, 2010 The National Renewable Energy Laboratory (NREL) today released an initial study assessing the operational impacts and economics of increased contributions from wind and solar energy producers on the power grid. The Western

  4. Hawaii Solar Integration Study: Executive Summary

    Broader source: Energy.gov [DOE]

    Detailed technical examination of the effects of high penetrations of solar and wind energy on the operations of the electric grids of Maui and Oahu. 

  5. Eastern Shoshone Tribe - Wind Feasibility Study on the Wind River Reservation

    Office of Environmental Management (EM)

    Northern Arapaho Tribe Objectives  Assess wind resources on tribal lands  Assess development costs/impacts: Environmental Cultural Wildlife Aesthetics  Assess transmission capacity now & projected  Assess gas co-generation feasibility  Prepare economic models for tribal leaders  Educate tribal members on project benefits  Prepare DOE final report Project Participants  Landowners / Project Developers - Eastern Shoshone Tribe - Northern Arapaho Tribe  Funding

  6. Studies Show No Evidence of Impacts from Wind on Residential Property

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Values | Department of Energy Studies Show No Evidence of Impacts from Wind on Residential Property Values Studies Show No Evidence of Impacts from Wind on Residential Property Values January 6, 2014 - 10:00am Addthis Multi-story farm buildings, grain silos, and trees look small compared to the two multimegawatt wind turbines. This is an excerpt from the Fourth Quarter 2013 edition of the Wind Program R&D Newsletter. The U.S. Department of Energy's Lawrence Berkeley National Laboratory

  7. Lower Sioux Indian Community Wind Energy Feasibility Study

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    ... For a longer-term analysis, Westwood contracted with WindLogics to explore the long-term ... is compared against limits set by IEEE Std. 519-1992 "IEEE Recommended Practices ...

  8. Final Report - Wind and Hydro Energy Feasibility Study - June 2011

    SciTech Connect (OSTI)

    Jim Zoellick; Richard Engel; Rubin Garcia; Colin Sheppard

    2011-06-17

    This feasibility examined two of the Yurok Tribe's most promising renewable energy resources, wind and hydro, to provide the Tribe detailed, site specific information that will result in a comprehensive business plan sufficient to implement a favorable renewable energy project.

  9. NREL: Innovation Impact - Wind

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Wind Energy Menu Home Home Solar Solar Wind Wind Analysis Analysis Bioenergy Bioenergy Buildings Buildings Transportation Transportation Manufacturing Manufacturing Energy Systems Integration Energy Systems Integration Wind turbines must withstand powerful aerodynamic forces unlike any other propeller-drive machines. Close NREL's work with industry has improved the efficiency and durability of turbine blades and gearboxes. Innovations include: Specialized airfoils Variable-speed turbines

  10. Demand Response and Energy Storage Integration Study - Past Workshops...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Demand Response and Energy Storage Integration Study - Past Workshops Demand Response and Energy Storage Integration Study - Past Workshops The project was initiated and informed...

  11. Smith River Rancheria - Wind and Biomass Power Generation Feasibility Study

    Energy Savers [EERE]

    DOE Tribal Energy Program Program Review Meeting October 17 - 21, 2005 Greg Retzlaff Strategic Energy Solutions, Inc. Wind & Biomass Power Generation Smith River Rancheria 2 Smith River Rancheria * Coastal Community of 600 * Members Living in Oregon * Next Door to Booming Community * Additional Development Opportunities Wind & Biomass Power Generation Smith River Rancheria 3 Location * Northern California Location * Members in Oregon * Multiple Jurisdictions - Federal - Del Norte County

  12. Navajo Nation: Navajo Tribal Utility Authority - Wind Energy Feasibility Study

    Office of Environmental Management (EM)

    Niyol (Wind) Project Navajo Niyol (Wind) Project DE DE - - FG36 FG36 - - 05GO15180 05GO15180 - - A000 A000 NAVAJO TRIBAL UTILITY AUTHORITY NAVAJO TRIBAL UTILITY AUTHORITY 2006 2006 Tribal Energy Review Tribal Energy Review Denver, Colorado Denver, Colorado United States Department United States Department of of Energy Energy October 25, 2006 October 25, 2006 Presented by: Larry Ahasteen, Renewable Energy Specialist Project Overview Project Location Project Participants Objectives On-going

  13. NREL Energy Models Examine the Potential for Wind and Solar Grid Integration (Fact Sheet)

    SciTech Connect (OSTI)

    Not Available

    2013-11-01

    As renewable energy generating sources, such as wind turbines and solar power systems, reach high levels of penetration in parts of the United States, the National Renewable Energy Laboratory (NREL) is helping the utility industry to peer into the future. Using software modeling tools that the lab developed, NREL is examining the future operation of the electrical grid as renewable energy continues to grow.

  14. Wind and Solar Curtailment: Preprint

    SciTech Connect (OSTI)

    Lew, D.; Bird, L.; Milligan, M.; Speer, B.; Wang, X.; Carlini, E. M.; Estanqueiro, A.; Flynn, D.; Gomez-Lazaro, E.; Menemenlis, N.; Orths, A.; Pineda, I.; Smith, J. C.; Soder, L.; Sorensen, P.; Altiparmakis, A.; Yoh, Y.

    2013-09-01

    High penetrations of wind and solar generation on power systems are resulting in increasing curtailment. Wind and solar integration studies predict increased curtailment as penetration levels grow. This paper examines experiences with curtailment on bulk power systems internationally. It discusses how much curtailment is occurring, how it is occurring, why it is occurring, and what is being done to reduce curtailment. This summary is produced as part of the International Energy Agency Wind Task 25 on Design and Operation of Power Systems with Large Amounts of Wind Power.

  15. Feasibility Study for Photovoltaics, Wind, solar Hot Water and Hybrid Systems

    SciTech Connect (OSTI)

    Hooks, Ronald; Montoya, Valerie

    2008-03-26

    Southwestern Indian Polytechnic Institute (SIPI) located in Albuquerque New Mexico is a community college that serves American Indians and Alaska Natives. SIPIs student body represents over 100 Native American Tribes. SIPI completed a renewable energy feasibility study program and established renewable energy hardware on the SIPI campus, which supplements and creates an educational resource to teach renewable energy courses. The SIPI campus is located, and has as student origins, areas, in which power is an issue in remote reservations. The following hardware was installed and integrated into the campus facilities: small wind turbine, large photovoltaic array that is grid-connected, two photovoltaic arrays, one thin film type, and one polycrystalline type, one dual-axis active tracker and one passive tracker, a hot air system for heating a small building, a portable hybrid photovoltaic system for remote power, and a hot water system to preheat water used in the SIPI Child Care facility. Educational curriculum has been developed for two renewable energy courses one being the study of energy production and use, and especially the roles renewable energy forms like solar, wind, geothermal, hydro, and biomass plays, and the second course being a more advanced in-depth study of renewable energy system design, maintenance, installation, and applications. Both courses rely heavily on experiential learning techniques so that installed renewable energy hardware is continuously utilized in hand-on laboratory activities and are part of the Electronics program of studies. Renewable energy technologies and science has also been included in other SIPI programs of study such as Environmental Science, Natural Resources, Agriculture, Engineering, Network Management, and Geospatial Technology.

  16. Wind Turbine Gearbox Condition Monitoring Round Robin Study - Vibration Analysis

    SciTech Connect (OSTI)

    Sheng, S.

    2012-07-01

    The Gearbox Reliability Collaborative (GRC) at the National Wind Technology Center (NWTC) tested two identical gearboxes. One was tested on the NWTCs 2.5 MW dynamometer and the other was field tested in a turbine in a nearby wind plant. In the field, the test gearbox experienced two oil loss events that resulted in damage to its internal bearings and gears. Since the damage was not severe, the test gearbox was removed from the field and retested in the NWTCs dynamometer before it was disassembled. During the dynamometer retest, some vibration data along with testing condition information were collected. These data enabled NREL to launch a Wind Turbine Gearbox Condition Monitoring Round Robin project, as described in this report. The main objective of this project was to evaluate different vibration analysis algorithms used in wind turbine condition monitoring (CM) and find out whether the typical practices are effective. With involvement of both academic researchers and industrial partners, the project sets an example on providing cutting edge research results back to industry.

  17. The Cost of Transmission for Wind Energy: A Review of Transmission Planning Studies

    SciTech Connect (OSTI)

    Mills, Andrew D.; Wiser, Ryan; Porter, Kevin

    2009-02-02

    The rapid development of wind power that the United States has experienced over the last several years has been coupled with a growing concern that wind development will require substantial additions to the nation's transmission infrastructure. Transmission is particularly important for wind power due to the locational dependence of wind resources, the relatively low capacity factor of wind plants, and the mismatch between the short lead time to build a new wind project and the longer lead time often needed to plan, permit, and construct transmission. It is clear that institutional issues related to transmission planning, siting, and cost allocation will pose major obstacles to accelerated wind power deployment, but also of concern is the potential cost of this infrastructure build out. Simply put, how much extra cost will society bear to deliver wind power to load centers? Without an answer to this question, there can be no consensus on whether or not the cost of developing transmission for wind will be a major barrier to further wind deployment, or whether the institutional barriers to transmission expansion are likely to be of more immediate concern. In this report, we review a sample of 40 detailed transmission studies that have included wind power. These studies cover a broad geographic area, and were completed from 2001-2008. Our primary goal in reviewing these studies is to develop a better understanding of the transmission costs needed to access growing quantities of wind generation. A secondary goal is to gain a better appreciation of the differences in transmission planning approaches in order to identify those methodologies that seem most able to estimate the incremental transmission costs associated with wind development. Finally, we hope that the resulting dataset and discussion might be used to inform the assumptions, methods, and results of higher-level assessment models that are sometimes used to estimate the cost of wind deployment (e.g. NEMS and WinDS). The authors and general location of the 40 detailed transmission studies included in our review are illustrated in Figure ES-1. As discussed in the body of the report, these studies vary considerably in scope, authorship, objectives, methodology, and tools. Though we recognize this diversity and are cognizant that comparisons among these studies are therefore somewhat inappropriate, we nonetheless emphasize such simple comparisons in this report. We do so in order to improve our understanding of the range of transmission costs needed to access greater quantities of wind, and to highlight some of the drivers of those costs. In so doing, we gloss over many important details and differences among the studies in our sample. In emphasizing simple comparisons, our analysis focuses primarily on the unit cost of transmission implied by each of the studies. The unit cost of transmission for wind in $/kW terms on a capacity-weighted basis is estimated by simply dividing the total transmission cost in a study by the total amount of incremental generation capacity (wind and non-wind) modeled in that study. In so doing, this metric assumes that within any individual study all incremental generation capacity imposes transmission costs in proportion to its nameplate capacity rating. The limitations to this approach are described in some detail in the body of the report.

  18. Worldwide wind/diesel hybrid power system study: Potential applications and technical issues

    SciTech Connect (OSTI)

    King, W.R.; Johnson, B.L. III )

    1991-04-01

    The world market potential for wind/diesel hybrid technology is a function of the need for electric power, the availability of sufficient wind resource to support wind/diesel power, and the existence of buyers with the financial means to invest in the technology. This study includes data related to each of these three factors. This study does not address market penetration, which would require analysis of application specific wind/diesel economics. Buyer purchase criteria, which are vital to assessing market penetration, are discussed only generally. Countries were screened for a country-specific market analysis based on indicators of need and wind resource. Both developed countries and less developed countries'' (LDCs) were screened for wind/diesel market potential. Based on the results of the screening, ten countries showing high market potential were selected for more extensive market analyses. These analyses provide country-specific market data to guide wind/diesel technology developers in making design decisions that will lead to a competitive product. Section 4 presents the country-specific data developed for these analyses, including more extensive wind resource characterization, application-specific market opportunities, business conditions, and energy market characterizations. An attempt was made to identify the potential buyers with ability to pay for wind/diesel technology required to meet the application-specific market opportunities identified for each country. Additionally, the country-specific data are extended to corollary opportunities in countries not covered by the study. Section 2 gives recommendations for wind/diesel research based on the findings of the study. 86 refs.

  19. New Study Reveals Multiple Pathways to 30% Penetration of Wind and Solar |

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Department of Energy New Study Reveals Multiple Pathways to 30% Penetration of Wind and Solar New Study Reveals Multiple Pathways to 30% Penetration of Wind and Solar September 16, 2015 - 6:36pm Addthis A new study published by the U.S. Department of Energy's (DOE's) National Renewable Energy Laboratory (NREL) found that the U.S. Eastern Interconnection-one of the largest power systems in the world-can reliably support up to a 30% penetration of wind and solar power. Using high-performance

  20. Large-Scale PV Integration Study

    SciTech Connect (OSTI)

    Lu, Shuai; Etingov, Pavel V.; Diao, Ruisheng; Ma, Jian; Samaan, Nader A.; Makarov, Yuri V.; Guo, Xinxin; Hafen, Ryan P.; Jin, Chunlian; Kirkham, Harold; Shlatz, Eugene; Frantzis, Lisa; McClive, Timothy; Karlson, Gregory; Acharya, Dhruv; Ellis, Abraham; Stein, Joshua; Hansen, Clifford; Chadliev, Vladimir; Smart, Michael; Salgo, Richard; Sorensen, Rahn; Allen, Barbara; Idelchik, Boris

    2011-07-29

    This research effort evaluates the impact of large-scale photovoltaic (PV) and distributed generation (DG) output on NV Energy’s electric grid system in southern Nevada. It analyzes the ability of NV Energy’s generation to accommodate increasing amounts of utility-scale PV and DG, and the resulting cost of integrating variable renewable resources. The study was jointly funded by the United States Department of Energy and NV Energy, and conducted by a project team comprised of industry experts and research scientists from Navigant Consulting Inc., Sandia National Laboratories, Pacific Northwest National Laboratory and NV Energy.

  1. NREL: Transmission Grid Integration - Solar Integration National...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    solar generation integration studies by providing modeled, coherent sub-hour solar power data, information, and tools. Sub-hour solar power data are used in the Western Wind...

  2. Cherokee Nation Enterprises Wind Energy Feasibility Study Grant Report, October 19, 2004

    Office of Environmental Management (EM)

    ENERGY WIND ENERGY FEASIBILITY STUDY FEASIBILITY STUDY Grant Report Grant Report October 19, 2004 October 19, 2004 Cherokee Nation Enterprises Cherokee Nation Enterprises Cherokee Nation Enterprises * Cherokee Nation - 2 nd Largest Tribe in the United States - 14-county Jurisdiction in Northeastern Oklahoma * 13-month study - Approximately $270,000 - Location in Kay County, Oklahoma on 4,275 acre property Cherokee Nation Enterprises * Model 4000 MiniSODAR High Frequency Doppler Equipment - Wind

  3. Chu in Ireland: A Case Study in Wind Power | Department of Energy

    Office of Environmental Management (EM)

    Ireland: A Case Study in Wind Power Chu in Ireland: A Case Study in Wind Power November 5, 2010 - 5:37pm Addthis Dan Leistikow Dan Leistikow Former Director, Office of Public Affairs Secretary Chu is currently in Ireland, a country which shares many of the same energy challenges and opportunities as the United States. Like the U.S., Ireland has the potential to tap enormous renewable energy resources. In particular, Ireland has significant wind and wave power potential, and is moving quickly to

  4. Analysis of Unit-Level Changes in Operations with Increased SPP Wind from EPRI/LCG Balancing Study

    SciTech Connect (OSTI)

    Hadley, Stanton W

    2012-01-01

    Wind power development in the United States is outpacing previous estimates for many regions, particularly those with good wind resources. The pace of wind power deployment may soon outstrip regional capabilities to provide transmission and integration services to achieve the most economic power system operation. Conversely, regions such as the Southeastern United States do not have good wind resources and will have difficulty meeting proposed federal Renewable Portfolio Standards with local supply. There is a growing need to explore innovative solutions for collaborating between regions to achieve the least cost solution for meeting such a renewable energy mandate. The Department of Energy funded the project 'Integrating Midwest Wind Energy into Southeast Electricity Markets' to be led by EPRI in coordination with the main authorities for the regions: SPP, Entergy, TVA, Southern Company and OPC. EPRI utilized several subcontractors for the project including LCG, the developers of the model UPLAN. The study aims to evaluate the operating cost benefits of coordination of scheduling and balancing for Southwest Power Pool (SPP) wind transfers to Southeastern Electric Reliability Council (SERC) Balancing Authorities (BAs). The primary objective of this project is to analyze the benefits of regional cooperation for integrating mid-western wind energy into southeast electricity markets. Scenarios were defined, modeled and investigated to address production variability and uncertainty and the associated balancing of large quantities of wind power in SPP and delivery to energy markets in the southern regions of the SERC. DOE funded Oak Ridge National Laboratory to provide additional support to the project, including a review of results and any side analysis that may provide additional insight. This report is a unit-by-unit analysis of changes in operations due to the different scenarios used in the overall study. It focuses on the change in capacity factors and the number of start-ups required for each unit since those criteria summarize key aspects of plant operations, how often are they called upon and how much do they operate. The primary analysis of the overall project is based on security-constrained unit commitment (SCUC) and economic dispatch (SCED) simulations of the SPP-SERC regions as modeled for the year 2022. The SCUC/SCED models utilized for the project were developed through extensive consultation with the project utility partners, to ensure the various regions and operational practices are represented as best as possible in the model. SPP, Entergy, Oglethorpe Power Company (OPC), Southern Company, and the Tennessee Valley Authority (TVA) actively participated in the project providing input data for the models and review of simulation results and conclusions. While other SERC utility systems are modeled, the listed SERC utilities were explicitly included as active participants in the project due to the size of their load and relative proximity to SPP for importing wind energy.

  5. INVESTIGATION OF A DYNAMIC POWER LINE RATING CONCEPT FOR IMPROVED WIND ENERGY INTEGRATION OVER COMPLEX TERRAIN

    SciTech Connect (OSTI)

    Jake P. Gentle; Kurt S Myers; Tyler B Phillips; Inanc Senocak; Phil Anderson

    2014-08-01

    Dynamic Line Rating (DLR) is a smart grid technology that allows the rating of power line to be based on real-time conductor temperature dependent on local weather conditions. In current practice overhead power lines are generally given a conservative rating based on worst case weather conditions. Using historical weather data collected over a test bed area, we demonstrate there is often additional transmission capacity not being utilized with the current static rating practice. We investigate a new dynamic line rating methodology using computational fluid dynamics (CFD) to determine wind conditions along transmission lines at dense intervals. Simulated results are used to determine conductor temperature by calculating the transient thermal response of the conductor under variable environmental conditions. In calculating the conductor temperature, we use both a calculation with steady-state assumption and a transient calculation. Under low wind conditions, steady-state assumption predicts higher conductor temperatures that could lead to curtailments, whereas transient calculations produce conductor temperatures that are significantly lower, implying the availability of additional transmission capacity.

  6. Sandia Energy - Wind Generator Modeling

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Wind Generator Modeling Home Infrastructure Security Renewable Energy Energy Surety Energy Grid Integration News Wind Energy News & Events SMART Grid Systems Analysis Modeling...

  7. NREL: Wind Research - Research Staff

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Manager Dave Corbus Program Integration, Wind and Water Power Program Gene Holland Albert LiVecchi Dana Scholbrock Teresa Robinson Director, National Wind Technology Center...

  8. NREL Study: Active Power Control of Wind Turbines Can Improve Power Grid

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Reliability - News Releases | NREL Study: Active Power Control of Wind Turbines Can Improve Power Grid Reliability January 20, 2014 The Energy Department's National Renewable Energy Laboratory (NREL), along with partners from the Electric Power Research Institute and the University of Colorado have completed a comprehensive study to understand how wind power technology can assist the power grid by controlling the active power output being placed onto the system. The rest of the power

  9. Wind and Hydroelectric Feasibility Study - Bristol Bay Native Corporation Anchorage, Alaska

    Energy Savers [EERE]

    Bristol Bristol Bay Bay Native Native Corporation Corporation Wind and Wind and Hydroelectric Hydroelectric Feasibility Feasibility Study Study Tiel Smith Tiel Smith - - BBNC BBNC Doug Vaught, PE Doug Vaught, PE - - Consultant Consultant A Landscape of Promise Bristol Bay Native Corporation Invested in the Region * Southwest Alaska - 29 communities - 7,800 residents - 10,000 brown bears - 55,000,000 salmon * 40,000 square miles- about size of Ohio * 68% Native - Yup'ik Eskimo - Athabascan -

  10. Wind Energy Applications for Municipal Water Services: Opportunities, Situation Analyses, and Case Studies; Preprint

    SciTech Connect (OSTI)

    Flowers, L.; Miner-Nordstrom, L.

    2006-01-01

    As communities grow, greater demands are placed on water supplies, wastewater services, and the electricity needed to power the growing water services infrastructure. Water is also a critical resource for thermoelectric power plants. Future population growth in the United States is therefore expected to heighten competition for water resources. Many parts of the United States with increasing water stresses also have significant wind energy resources. Wind power is the fastest-growing electric generation source in the United States and is decreasing in cost to be competitive with thermoelectric generation. Wind energy can offer communities in water-stressed areas the option of economically meeting increasing energy needs without increasing demands on valuable water resources. Wind energy can also provide targeted energy production to serve critical local water-system needs. The research presented in this report describes a systematic assessment of the potential for wind power to support water utility operation, with the objective to identify promising technical applications and water utility case study opportunities. The first section describes the current situation that municipal providers face with respect to energy and water. The second section describes the progress that wind technologies have made in recent years to become a cost-effective electricity source. The third section describes the analysis employed to assess potential for wind power in support of water service providers, as well as two case studies. The report concludes with results and recommendations.

  11. Integration of Wind Generation and Load Forecast Uncertainties into Power Grid Operations

    SciTech Connect (OSTI)

    Makarov, Yuri V.; Etingov, Pavel V.; Huang, Zhenyu; Ma, Jian; Chakrabarti, Bhujanga B.; Subbarao, Krishnappa; Loutan, Clyde; Guttromson, Ross T.

    2010-04-20

    In this paper, a new approach to evaluate the uncertainty ranges for the required generation performance envelope, including the balancing capacity, ramping capability and ramp duration is presented. The approach includes three stages: statistical and actual data acquisition, statistical analysis of retrospective information, and prediction of future grid balancing requirements for specified time horizons and confidence intervals. Assessment of the capacity and ramping requirements is performed using a specially developed probabilistic algorithm based on a histogram analysis incorporating all sources of uncertainty and parameters of a continuous (wind forecast and load forecast errors) and discrete (forced generator outages and failures to start up) nature. Preliminary simulations using California Independent System Operator (CAISO) real life data have shown the effectiveness and efficiency of the proposed approach.

  12. European Experience and Case study of SCR Passenger Car Integration...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Experience and Case study of SCR Passenger Car Integration European Experience and Case study of SCR Passenger Car Integration Presentation given at DEER 2006, August 20-24, 2006, ...

  13. Hawaii Solar Integration Study: Solar Modeling Developments and Study Results; Preprint

    SciTech Connect (OSTI)

    Orwig, K.; Corbus, D.; Piwko, R.; Schuerger, M.; Matsuura, M.; Roose, L.

    2012-12-01

    The Hawaii Solar Integration Study (HSIS) is a follow-up to the Oahu Wind Integration and Transmission Study completed in 2010. HSIS focuses on the impacts of higher penetrations of solar energy on the electrical grid and on other generation. HSIS goes beyond the island of Oahu and investigates Maui as well. The study examines reserve strategies, impacts on thermal unit commitment and dispatch, utilization of energy storage, renewable energy curtailment, and other aspects of grid reliability and operation. For the study, high-frequency (2-second) solar power profiles were generated using a new combined Numerical Weather Prediction model/ stochastic-kinematic cloud model approach, which represents the 'sharp-edge' effects of clouds passing over solar facilities. As part of the validation process, the solar data was evaluated using a variety of analysis techniques including wavelets, power spectral densities, ramp distributions, extreme values, and cross correlations. This paper provides an overview of the study objectives, results of the solar profile validation, and study results.

  14. Demand Response and Energy Storage Integration Study

    Broader source: Energy.gov [DOE]

    Demand response and energy storage resources present potentially important sources of bulk power system services that can aid in integrating variable renewable generation. While renewable...

  15. Variability of Load and Net Load in Case of Large Scale Distributed Wind Power

    SciTech Connect (OSTI)

    Holttinen, H.; Kiviluoma, J.; Estanqueiro, A.; Gomez-Lazaro, E.; Rawn, B.; Dobschinski, J.; Meibom, P.; Lannoye, E.; Aigner, T.; Wan, Y. H.; Milligan, M.

    2011-01-01

    Large scale wind power production and its variability is one of the major inputs to wind integration studies. This paper analyses measured data from large scale wind power production. Comparisons of variability are made across several variables: time scale (10-60 minute ramp rates), number of wind farms, and simulated vs. modeled data. Ramp rates for Wind power production, Load (total system load) and Net load (load minus wind power production) demonstrate how wind power increases the net load variability. Wind power will also change the timing of daily ramps.

  16. Wind Generation Feasibility Study for Sac & Fox Tribe of the Mississippi in Iowa (Meskwaki Nation)

    SciTech Connect (OSTI)

    Lasley, Larry C.

    2013-03-19

    1.2 Overview The Meskwaki Nation will obtain an anemometer tower. Install the tower at the site that has been pre-qualified as the site most likely to produce maximum electric power from the wind. It will collect meteorological data from the towerâ??s sensors for a one year period, as required for due diligence to identify the site as appropriate for the installation of a wind turbine to provide electric power for the community. Have the collected data analyzed by a meteorologist and a professionally certified wind engineer to produce the reports of expected power generation at the site, for the specific wind turbine(s) under consideration for installation. 1.2.1 Goals of the Tribe The feasibility study reports, including technical and business analyses will be used to obtain contracts and financing required to develop and implement a wind turbine project on the Meskwaki Settlement. Our goal is to produce two (2) mega watts of power and to reduce the cost for electricity currently being paid by the Meskwaki Casino. 1.2.2 Project Objectives Meet the energy needs of the community with clean energy. Bring renewable energy to the settlement in a responsible, affordable manner. Maximize both the economic and the spiritual benefits to the tribe from energy independence. Integrate the Tribeâ??s energy policies with its economic development goals. Contribute to achieving the Tribeâ??s long-term goals of self-determination and sovereignty. 1.2.3 Project Location The precise location proposed for the tower is at the following coordinates: 92 Degrees, 38 Minutes, 46.008 Seconds West Longitude 41 Degrees, 59 Minutes, 45.311 Seconds North Latitude. A circle of radius 50.64 meters, enclosing and area of 1.98 acres in PLSS Township T83N, Range R15W, in Iowa. In relative directions, the site is 1,650 feet due west of the intersection of Highway 30 and 305th Street in Tama, Iowa, as approached from the direction of Toledo, Iowa. It is bounded on the north by Highway 30 and on the south by 305th Street, a street which runs along a meandering west-south-west heading from this intersection with Highway 30. In relation to Settlement landmarks, it is 300 meters west of the Meskwaki water tower found in front of the Meskwaki Public Works Department, and is due north of the athletic playing fields of the Meskwaki Settlement School. The accompanying maps (in the Site Resource Maps File) use a red pushpin marker to indicate the exact location, both in the overview frames and in the close-up frame. 1.2.4 Long Term Energy Vision The Meskwaki Tribe is committed to becoming energy self-sufficient, improving the economic condition of the tribe, and maintaining Tribal Values of closeness with Grandmother Earth. The details of the Tribeâ??s long-term vision continues to evolve. A long term vision exists of: 1) a successful assessment program; 2) a successful first wind turbine project reducing the Tribeâ??s cost of electricity; 3) creation of a Meskwaki Tribal Power Utility/Coop under the auspices of the new tribal Corporation, as we implement a master plan for economic and business development; 4), and opening the doors for additional wind turbines/renewable energy sources on the community. The additional turbines could lead directly to energy self-sufficiency, or might be the one leg of a multi-leg approach using multiple forms of renewable energy to achieve self-sufficiency. We envision current and future assessment projects providing the data needed to qualify enough renewable energy projects to provide complete coverage for the entire Meskwaki Settlement, including meeting future economic development projectsâ?? energy needs. While choosing not to engage in excessive optimism, we can imagine that in the future the Iowa rate-setting bodies will mandate that grid operators pay fair rates (tariffs) to renewable suppliers. We will be ready to expand renewable production of electricity for export, when that time comes. The final report includes the Wind

  17. Integrated Agent-Based and Production Cost Modeling Framework for Renewable Energy Studies: Preprint

    SciTech Connect (OSTI)

    Gallo, Giulia

    2015-10-07

    The agent-based framework for renewable energy studies (ARES) is an integrated approach that adds an agent-based model of industry actors to PLEXOS and combines the strengths of the two to overcome their individual shortcomings. It can examine existing and novel wholesale electricity markets under high penetrations of renewables. ARES is demonstrated by studying how increasing levels of wind will impact the operations and the exercise of market power of generation companies that exploit an economic withholding strategy. The analysis is carried out on a test system that represents the Electric Reliability Council of Texas energy-only market in the year 2020. The results more realistically reproduce the operations of an energy market under different and increasing penetrations of wind, and ARES can be extended to address pressing issues in current and future wholesale electricity markets.

  18. Workforce Development Wind Projects | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Workforce Development Wind Projects Workforce Development Wind Projects This report covers the Wind and Water Power Technologies Office's workforce development wind projects from fiscal years 2008 to 2014. PDF icon Workforce Development Wind Projects.pdf More Documents & Publications Testing, Manufacturing, and Component Development Projects Wind Integration, Transmission, and Resource Assessment and Characterization Projects Environmental Wind Projects

  19. New Report Characterizes Existing Offshore Wind Grid Interconnection

    Energy Savers [EERE]

    Capabilities | Department of Energy Characterizes Existing Offshore Wind Grid Interconnection Capabilities New Report Characterizes Existing Offshore Wind Grid Interconnection Capabilities September 3, 2014 - 10:49am Addthis The Energy Department today released the first National Offshore Wind Energy Grid Interconnection Study (NOWEGIS). The NOWEGIS investigated the key economic and technological factors that will influence the integration of offshore wind energy onto the national grid.

  20. Correlation studies between solar wind parameters and the decimetric radio emission from Jupiter

    SciTech Connect (OSTI)

    Bolton, S.J.; Gulkis, S.; Klein, M.J.; De Pater, I.; Thompson, T.J.

    1989-01-01

    Results of a study comparing long-term time variations (years) in Jupiter's synchrotron radio emission with a variety of solar wind parameters and the 10.7-cm solar flux are reported. Data from 1963 through 1985 were analyzed, and the results suggest that many solar wind parameters are correlated with the intensity of the synchrotron emission produced by the relativistic electrons in the Jovian Van Allen radiation belts. Significant nonzero correlation coefficients appear to be associated with solar wind ion density, ram pressure, thermal pressure, flow velocity, momentum, and ion temperature. The highest correlation coefficients are obtained for solar wind ram pressure (NV/sup 2/) and thermal pressure (NT). The correlation analysis suggests that the delay time between fluctuations in the solar wind and changes in the Jovian synchrotron emission is typically about 2 years. The delay time of the correlation places important constraints on the theoretical models describing the radiation belts. The implication of these results, if the correlations are real, is that the solar wind is influencing the supply and/or loss of electrons to Jupiter's inner magnetosphere. We note that the data for this work spans only about two periods of the solar activity cycle, and because of the long time scales of the observed variations, it is important to confirm these results with additional observations. copyright American Geophysical Union 1989

  1. Strategies and Decision Support Systems for Integrating Variable Energy Resources in Control Centers for Reliable Grid Operations

    SciTech Connect (OSTI)

    Jones, Lawrence E.

    2012-01-05

    A variety of studies have recently evaluated the opportunities for the large-scale integration of wind energy into the US power system. These studies have included, but are not limited to, "20 Percent Wind Energy by 2030: Increasing Wind Energy's Contribution to US Electricity Supply", the "Western Wind and Solar Integration Study", and the "Eastern Wind Integration and Transmission Study." Each of these US based studies have evaluated a variety of activities that can be undertaken by utilities to help integrate wind energy.

  2. Statistical study of reconnection exhausts in the solar wind

    SciTech Connect (OSTI)

    Enl, J.; P?ech, L.; afrnkov, J.; N?me?ek, Z.

    2014-11-20

    Magnetic reconnection is a fundamental process that changes magnetic field configuration and converts a magnetic energy to flow energy and plasma heating. This paper presents a survey of the plasma and magnetic field parameters inside 418 reconnection exhausts identified in the WIND data from 1995-2012. The statistical analysis is oriented on the re-distribution of the magnetic energy released due to reconnection between a plasma acceleration and its heating. The results show that both the portion of the energy deposited into heat as well as the energy spent on the acceleration of the exhaust plasma rise with the magnetic shear angle in accord with the increase of the magnetic flux available for reconnection. The decrease of the normalized exhaust speed with the increasing magnetic shear suggests a decreasing efficiency of the acceleration and/or the increasing efficiency of heating in high-shear events. However, we have found that the already suggested relation between the exhaust speed and temperature enhancement would be rather considered as an upper limit of the plasma heating during reconnection regardless of the shear angle.

  3. Guide to Using the WIND Toolkit Validation Code

    SciTech Connect (OSTI)

    Lieberman-Cribbin, W.; Draxl, C.; Clifton, A.

    2014-12-01

    In response to the U.S. Department of Energy's goal of using 20% wind energy by 2030, the Wind Integration National Dataset (WIND) Toolkit was created to provide information on wind speed, wind direction, temperature, surface air pressure, and air density on more than 126,000 locations across the United States from 2007 to 2013. The numerical weather prediction model output, gridded at 2-km and at a 5-minute resolution, was further converted to detail the wind power production time series of existing and potential wind facility sites. For users of the dataset it is important that the information presented in the WIND Toolkit is accurate and that errors are known, as then corrective steps can be taken. Therefore, we provide validation code written in R that will be made public to provide users with tools to validate data of their own locations. Validation is based on statistical analyses of wind speed, using error metrics such as bias, root-mean-square error, centered root-mean-square error, mean absolute error, and percent error. Plots of diurnal cycles, annual cycles, wind roses, histograms of wind speed, and quantile-quantile plots are created to visualize how well observational data compares to model data. Ideally, validation will confirm beneficial locations to utilize wind energy and encourage regional wind integration studies using the WIND Toolkit.

  4. Final Technical Report: Supporting Wind Turbine Research and Testing - Gearbox Durability Study

    SciTech Connect (OSTI)

    Matthew Malkin

    2012-04-30

    The combination of premature failure of wind turbine gearboxes and the downtime caused by those failures leads to an increase in the cost of electricity produced by the wind. There is a need for guidance to asset managers regarding how to maximize the longevity of their gearboxes in order to help keep the cost of wind energy as low as possible. A low cost of energy supports the US Department of Energy's goal of achieving 20% of the electricity in the United States produced by wind by the year 2030. DNV KEMA has leveraged our unique position in the industry as an independent third party engineering organization to study the problem of gearbox health management and develop guidance to project operators. This report describes the study. The study was conducted in four tasks. In Task 1, data that may be related to gearbox health and are normally available to wind project operators were collected for analysis. Task 2 took a more in-depth look at a small number of gearboxes to gain insight in to relevant failure modes. Task 3 brought together the previous tasks by evaluating the available data in an effort to identify data that could provide early indications of impending gearbox failure. Last, the observations from the work were collected to develop recommendations regarding gearbox health management.

  5. A Feasibility Study to Evaluate Wind Energy Potential on the Navajo Nation

    SciTech Connect (OSTI)

    Terry Battiest

    2012-11-30

    The project, A Feasibility Study to Evaluate Wind Energy Potential on the Navajo Nation, is funded under a solicitation issued by the U.S. Department of Energy Tribal Energy Program. Funding provided by the grant allowed the Navajo Nation to measure wind potential at two sites, one located within the boundaries of the Navajo Nation and the other off-reservation during the project period (September 5, 2005 - September 30, 2009). The recipient for the grant award is the Navajo Tribal Utility Authority (NTUA). The grant allowed the Navajo Nation and NTUA manage the wind feasibility from initial site selection through the decision-making process to commit to a site for wind generation development. The grant activities help to develop human capacity at NTUA and help NTUA to engage in renewable energy generation activities, including not only wind but also solar and biomass. The final report also includes information about development activities regarding the sited included in the grant-funded feasibility study.

  6. NREL: Wind Research - News Release Archives

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    8 December 9, 2008 Colorado Study Confirms Low Grid Integration Costs for Wind A new study released this week once again adds to the body of peer-reviewed literature confirming that the cost of integrating wind energy with the electric grid is quite low. December 9, 2008 Extra-High-Voltage Line from AEP Would Connect Wind-Rich Dakotas American Electric Power is evaluating the feasibility of building a multi-state, extra-high-voltage transmission project across the Upper Midwest. December 2, 2008

  7. Wind resource characterization results to support the Sandia Wind Farm Feasibility Study : August 2008 through March 2009.

    SciTech Connect (OSTI)

    Deola, Regina Anne

    2010-01-01

    Sandia National Laboratories Wind Technology Department is investigating the feasibility of using local wind resources to meet the requirements of Executive Order 13423 and DOE Order 430.2B. These Orders, along with the DOE TEAM initiative, identify the use of on-site renewable energy projects to meet specified renewable energy goals over the next 3 to 5 years. A temporary 30-meter meteorological tower was used to perform interim monitoring while the National Environmental Policy Act (NEPA) process for the larger Wind Feasibility Project ensued. This report presents the analysis of the data collected from the 30-meter meteorological tower.

  8. Integrated Genome-Based Studies of Shewanella Ecophysiology (Technical

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Report) | SciTech Connect Integrated Genome-Based Studies of Shewanella Ecophysiology Citation Details In-Document Search Title: Integrated Genome-Based Studies of Shewanella Ecophysiology As a part of the Shewanella Federation project, we have used integrated genomic, proteomic and computational technologies to study various aspects of energy metabolism of two Shewanella strains from a systems-level perspective. Authors: Zhou, Jizhong ; He, Zhili Publication Date: 2014-04-08 OSTI

  9. A preliminary benefit-cost study of a Sandia wind farm.

    SciTech Connect (OSTI)

    Ehlen, Mark Andrew; Griffin, Taylor; Loose, Verne W.

    2011-03-01

    In response to federal mandates and incentives for renewable energy, Sandia National Laboratories conducted a feasibility study of installing an on-site wind farm on Sandia National Laboratories and Kirtland Air Force Base property. This report describes this preliminary analysis of the costs and benefits of installing and operating a 15-turbine, 30-MW-capacity wind farm that delivers an estimated 16 percent of 2010 onsite demand. The report first describes market and non-market economic costs and benefits associated with operating a wind farm, and then uses a standard life-cycle costing and benefit-cost framework to estimate the costs and benefits of a wind farm. Based on these 'best-estimates' of costs and benefits and on factor, uncertainty and sensitivity analysis, the analysis results suggest that the benefits of a Sandia wind farm are greater than its costs. The analysis techniques used herein are applicable to the economic assessment of most if not all forms of renewable energy.

  10. Development of Regional Wind Resource and Wind Plant Output Datasets for the Hawaiian Islands

    SciTech Connect (OSTI)

    Manobianco, J.; Alonge, C.; Frank, J.; Brower, M.

    2010-07-01

    In March 2009, AWS Truepower was engaged by the National Renewable Energy Laboratory (NREL) to develop a set of wind resource and plant output data for the Hawaiian Islands. The objective of this project was to expand the methods and techniques employed in the Eastern Wind Integration and Transmission Study (EWITS) to include the state of Hawaii.

  11. Cherokee Nation Enterprises Wind Energy Feasibility Study Final Report to U.S. DOE

    SciTech Connect (OSTI)

    Carol E. Wyatt

    2006-04-30

    CNE has conducted a feasibility study on the Chilocco property in north-central Oklahoma since the grant award on July 20, 2003. This study has concluded that there is sufficient wind for a wind farm and that with the Production Tax Credits and Green Tags, there will be sufficient energy to, not only cover the costs of the Nations energy needs, but to provide a profit. CNE has developed a wind energy team and is working independently and with industry partners to bring its renewable energy resources to the marketplace. We are continuing with the next phase in conducting avian, cultural and transmission studies, as well as continuing to measure the wind with the SoDAR unit. Cherokee Nation Enterprises, Inc. is a wholly-owned corporation under Cherokee Nation and has managed the Department of Energy grant award since July 20, 2003. In summary, we have determined there is sufficient wind for a wind farm at the Chilocco property where Cherokee Nation owns approximately 4,275 acres. The primary goal would be more of a savings in light of the electricity used by Cherokee Nation and its entities which totals an estimated eight million dollars per year. Cherokee Nation Enterprises (CNE), working independently and with industry partners, plans to bring its renewable energy resources into the marketplace through a well-documented understanding of our undeveloped resource. Our plan is to cultivate this resource in a way that will ensure the development and use for our energy will be in an environmentally and culturally acceptable form.

  12. Distributed Wind Case Study: Cross Island Farms, Wellesley Island, New York

    SciTech Connect (OSTI)

    2012-04-30

    Installing a small wind turbine can sometimes be challenging due to economics, zoning issues, public perception, and other barriers. Persistence and innovation, however, can result in a successful installation. Dani Baker and David Belding own Cross Island Farms, a 102-acre certified organic farm on Wellesley Island in northern New York. In 2009, they took their interest in renewable energy to the next level by researching the logistics of a small wind installation on their land to make their farm even more sustainable. Their renewable energy system consists of one 10-kilowatt Bergey Excel wind turbine, a solar array, and a propane-powered generator. This case study describes funding for the project and the installation process.

  13. Distributed Wind Case Study: Cross Island Farms, Wellesley Island, New York (Fact Sheet)

    SciTech Connect (OSTI)

    Not Available

    2012-04-01

    Installing a small wind turbine can sometimes be difficult due to economics, zoning issues, public perception, and other barriers. Persistence and innovation, however, can result in a successful installation. Dani Baker and David Belding own Cross Island Farms, a 102-acre certified organic farm on Wellesley Island in northern New York. In 2009, they took their interest in renewable energy to the next level by researching the logistics of a small wind installation on their land to make their farm even more sustainable. Their renewable energy system consists of one 10-kilowatt Bergey Excel wind turbine, a solar array, and a propane-powered generator. This case study describes funding for the project and the installation process.

  14. Collegiate Wind Competition Wind Tunnel Specifications | Department...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Collegiate Wind Competition Wind Tunnel Specifications Collegiate Wind Competition Wind Tunnel Specifications Collegiate Wind Competition Wind Tunnel Specifications Teams competing...

  15. NREL: Transmission Grid Integration - Eastern Renewable Generation

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Integration Study Eastern Renewable Generation Integration Study The Eastern Renewable Generation Integration Study (ERGIS) is a multi-year U.S. Department of Energy-funded research project designed to simulate operations of the largest power system in the world with high penetrations of wind and solar generation. The study will inform critical questions on how system operations could be impacted by various wind and solar deployment strategies and operational paradigms. It is the first study

  16. NREL: Technology Transfer - NREL and Partners Review Integration...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Integration Studies, Show Wind and Solar Can Support Proposed EPA Goal of 30% Carbon Dioxide Emissions Reduction June 15, 2015 The proposed Environmental Protection Agency (EPA)...

  17. Short-Term Load Forecasting Error Distributions and Implications for Renewable Integration Studies: Preprint

    SciTech Connect (OSTI)

    Hodge, B. M.; Lew, D.; Milligan, M.

    2013-01-01

    Load forecasting in the day-ahead timescale is a critical aspect of power system operations that is used in the unit commitment process. It is also an important factor in renewable energy integration studies, where the combination of load and wind or solar forecasting techniques create the net load uncertainty that must be managed by the economic dispatch process or with suitable reserves. An understanding of that load forecasting errors that may be expected in this process can lead to better decisions about the amount of reserves necessary to compensate errors. In this work, we performed a statistical analysis of the day-ahead (and two-day-ahead) load forecasting errors observed in two independent system operators for a one-year period. Comparisons were made with the normal distribution commonly assumed in power system operation simulations used for renewable power integration studies. Further analysis identified time periods when the load is more likely to be under- or overforecast.

  18. Wind Forecast Improvement Project Southern Study Area Final Report...

    Office of Environmental Management (EM)

    Southern Study Area Final Report.pdf More Documents & Publications QER - Comment of Edison Electric Institute (EEI) 1 QER - Comment of Canadian Hydropower Association QER -...

  19. Articles about Offshore Wind | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Offshore Wind Articles about Offshore Wind RSS Below are stories about offshore wind featured by the U.S. Department of Energy (DOE) Wind Program. December 7, 2015 Articles about Offshore Wind Wind Measurement Buoy Advances Offshore Wind Energy A next-generation buoy will provide unprecedented information on offshore wind patterns, making it possible to harness wind power in entirely new locations. October 27, 2015 Articles about Offshore Wind Innovative Study Helps Offshore Wind Developers

  20. Environmental Wind Projects | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Wind Projects Environmental Wind Projects This report covers the Wind and Water Power Technologies Office's environmental wind projects from fiscal years 2006 to 2015. PDF icon Environmental Projects Report 2006-2015 More Documents & Publications Testing, Manufacturing, and Component Development Projects Wind Integration, Transmission, and Resource Assessment and Characterization Projects Offshore Wind Projects

  1. Offshore Wind Projects | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Projects Offshore Wind Projects This report covers the Wind and Water Power Program's offshore wind energy projects from fiscal years 2006 to 2015. PDF icon Offshore Wind Projects 2006-2015 More Documents & Publications Wind Integration, Transmission, and Resource Assessment and Characterization Projects Testing, Manufacturing, and Component Development Projects Environmental Wind Projects

  2. Wind & Hydro Energy Feasiblity Study for the Yurok Tribe

    Energy Savers [EERE]

    Study for the Yurok Tribe DOE Tribal Energy Program Review Meeting Award #DE-FG36-07GO17078 November 19, 2009 Presented By: Austin Nova, Yurok Tribe Background/Location Yurok Reservation Straddles the lower stem of the Klamath River, 2 miles wide and 44 miles long) Located in northwest corner of California Background * Largest Indian Tribe in California * Traditional livelihood on the Yurok Reservation is based upon subsistence harvest of salmon on the Klamath River Background A large portion of

  3. Distributed Wind Case Study: Cross Island Farms, Wellesley Island, New York (Fact Sheet), NREL (National Renewable Energy Laboratory)

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Distributed Wind Case Study: Cross Island Farms, Wellesley Island, New York www.nrel.gov Baker and Belding installed a 10-kW Bergey Excel wind turbine in August 2011. Photo from Cross Island Farms, NREL/PIX 19923 Funding Summary * Total cost of wind turbine, including first developer: $82,000 * Total cost of wind turbine, excluding first developer: $73,000 * Total cost of solar: $40,000 * Propane generator: $8,000; including equipment, installation, and propane: $13,000 * USDA REAP grant:

  4. Wind Integration Initiatives

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Expand Projects & Initiatives Finance & Rates Expand Finance & Rates Involvement & Outreach Expand Involvement & Outreach Doing Business Expand Doing Business...

  5. An Integrated Geophysical Study Of The Northern Kenya Rift |...

    Open Energy Info (EERE)

    Geophysical Study Of The Northern Kenya Rift Jump to: navigation, search OpenEI Reference LibraryAdd to library Journal Article: An Integrated Geophysical Study Of The Northern...

  6. INTEGRATED GENOME-BASED STUDIES OF SHEWANELLA ECOPHYSIOLOGY (Technical

    Office of Scientific and Technical Information (OSTI)

    Report) | SciTech Connect Technical Report: INTEGRATED GENOME-BASED STUDIES OF SHEWANELLA ECOPHYSIOLOGY Citation Details In-Document Search Title: INTEGRATED GENOME-BASED STUDIES OF SHEWANELLA ECOPHYSIOLOGY The aim of the work reported is to study Shewanella population genomics, and to understand the evolution, ecophysiology, and speciation of Shewanella. The tasks supporting this aim are: to study genetic and ecophysiological bases defining the core and diversification of Shewanella

  7. INTEGRATED GENOME-BASED STUDIES OF SHEWANELLA ECOPHYSIOLOGY (Technical

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Report) | SciTech Connect INTEGRATED GENOME-BASED STUDIES OF SHEWANELLA ECOPHYSIOLOGY Citation Details In-Document Search Title: INTEGRATED GENOME-BASED STUDIES OF SHEWANELLA ECOPHYSIOLOGY The aim of the work reported is to study Shewanella population genomics, and to understand the evolution, ecophysiology, and speciation of Shewanella. The tasks supporting this aim are: to study genetic and ecophysiological bases defining the core and diversification of Shewanella species; to determine

  8. Wind Energy 101.

    SciTech Connect (OSTI)

    Karlson, Benjamin; Orwig, Kirsten

    2010-12-01

    This presentation on wind energy discusses: (1) current industry status; (2) turbine technologies; (3) assessment and siting; and (4) grid integration. There are no fundamental technical barriers to the integration of 20% wind energy into the nation's electrical system, but there needs to be a continuing evolution of transmission planning and system operation policy and market development for this to be most economically achieved.

  9. NWTC Aerodynamics Studies Improve Energy Capture and Lower Costs of Wind-Generated Electricity (Fact Sheet), NREL (National Renewable Energy Laboratory)

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Aerodynamics Studies Improve Energy Capture and Lower Costs of Wind-Generated Electricity Researchers at the National Wind Technology Center (NWTC) at the National Renewable Energy Laboratory (NREL) have expanded wind turbine aerodynamics research from blade and rotor aerodynamics to wind plant and atmospheric inflow effects. The energy capture from wind plants is dependent on all of these aerodynamic interactions, which impact the cumulative fatigue damage of turbine structural compo- nents

  10. Demand Response and Energy Storage Integration Study

    Broader source: Energy.gov [DOE]

    This study is a multi-national laboratory effort to assess the potential value of demand response and energy storage to electricity systems with different penetration levels of variable renewable...

  11. West Winds Wind Farm | Open Energy Information

    Open Energy Info (EERE)

    Winds Wind Farm Jump to: navigation, search Name West Winds Wind Farm Facility West Winds Sector Wind energy Facility Type Commercial Scale Wind Facility Status In Service Owner...

  12. Native Village of Eyak Wind Energy Feasibility Study: A Summary of Sites Evaluated for Development

    Office of Environmental Management (EM)

    Eyak Wind Energy Feasibility Study A summary of Sites evaluated for development. John C. Whissel Director Department of the Environment and Natural Resources Background  Cordova, AK is a rural, remote, landlocked community in Southcentral Alaska, located between Prince William Sound and the Copper River Delta  Electricity is generated by two run-of-the-river hydro power plants  During winter months, hydro is supplemented by diesel generators. Electricity can cost over $0.50/kwh. 

  13. Scientists study ways to integrate biofuels and food crops on...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    courtesy Patty Campbell; click to view larger. Scientists study ways to integrate biofuels and food crops on farms By Payal Marathe * July 7, 2015 Tweet EmailPrint We ask a lot...

  14. INTEGRATED GENOME-BASED STUDIES OF SHEWANELLA ECOPHYSIOLOGY (Technical

    Office of Scientific and Technical Information (OSTI)

    Report) | SciTech Connect Technical Report: INTEGRATED GENOME-BASED STUDIES OF SHEWANELLA ECOPHYSIOLOGY Citation Details In-Document Search Title: INTEGRATED GENOME-BASED STUDIES OF SHEWANELLA ECOPHYSIOLOGY × You are accessing a document from the Department of Energy's (DOE) SciTech Connect. This site is a product of DOE's Office of Scientific and Technical Information (OSTI) and is provided as a public service. Visit OSTI to utilize additional information resources in energy science and

  15. Integrated Genome-Based Studies of Shewanella Ecophysiology (Technical

    Office of Scientific and Technical Information (OSTI)

    Report) | SciTech Connect Integrated Genome-Based Studies of Shewanella Ecophysiology Citation Details In-Document Search Title: Integrated Genome-Based Studies of Shewanella Ecophysiology × You are accessing a document from the Department of Energy's (DOE) SciTech Connect. This site is a product of DOE's Office of Scientific and Technical Information (OSTI) and is provided as a public service. Visit OSTI to utilize additional information resources in energy science and technology. A paper

  16. Investigation of a FAST-OrcaFlex Coupling Module for Integrating Turbine and Mooring Dynamics of Offshore Floating Wind Turbines: Preprint

    SciTech Connect (OSTI)

    Masciola, M.; Robertson, A.; Jonkman, J.; Driscoll, F.

    2011-10-01

    To enable offshore floating wind turbine design, the following are required: accurate modeling of the wind turbine structural dynamics, aerodynamics, platform hydrodynamics, a mooring system, and control algorithms. Mooring and anchor design can appreciably affect the dynamic response of offshore wind platforms that are subject to environmental loads. From an engineering perspective, system behavior and line loads must be studied well to ensure the overall design is fit for the intended purpose. FAST (Fatigue, Aerodynamics, Structures and Turbulence) is a comprehensive simulation tool used for modeling land-based and offshore wind turbines. In the case of a floating turbine, continuous cable theory is used to emulate mooring line dynamics. Higher modeling fidelity can be gained through the use of finite element mooring theory. This can be achieved through the FASTlink coupling module, which couples FAST with OrcaFlex, a commercial simulation tool used for modeling mooring line dynamics. In this application, FAST is responsible for capturing the aerodynamic loads and flexure of the wind turbine and its tower, and OrcaFlex models the mooring line and hydrodynamic effects below the water surface. This paper investigates the accuracy and stability of the FAST/OrcaFlex coupling operation.

  17. NWTC Aerodynamics Studies Improve Energy Capture and Lower Costs of Wind-Generated Electricity

    SciTech Connect (OSTI)

    2015-08-01

    Researchers at the National Wind Technology Center (NWTC) at the National Renewable Energy Laboratory (NREL) have expanded wind turbine aerodynamic research from blade and rotor aerodynamics to wind plant and atmospheric inflow effects. The energy capture from wind plants is dependent on all of these aerodynamic interactions. Research at the NWTC is crucial to understanding how wind turbines function in large, multiple-row wind plants. These conditions impact the cumulative fatigue damage of turbine structural components that ultimately effect the useful lifetime of wind turbines. This work also is essential for understanding and maximizing turbine and wind plant energy production. Both turbine lifetime and wind plant energy production are key determinants of the cost of wind-generated electricity.

  18. Tribal Wind Assessment by the Eastern Shoshone Tribe of the Wind River Reservation

    SciTech Connect (OSTI)

    Pete, Belvin; Perry, Jeremy W.; Stump, Raphaella Q.

    2009-08-28

    The Tribes, through its consultant and advisor, Distributed Generation Systems (Disgen) -Native American Program and Resources Division, of Lakewood CO, assessed and qualified, from a resource and economic perspective, a wind energy generation facility on tribal lands. The goal of this feasibility project is to provide wind monitoring and to engage in preproject planning activities designed to provide a preliminary evaluation of the technical, economic, social and environmental feasibility of developing a sustainable, integrated wind energy plan for the Eastern Shoshone and the Northern Arapahoe Tribes, who resides on the Wind River Indian Reservation. The specific deliverables of the feasibility study are: 1) Assessments of the wind resources on the Wind River Indian Reservation 2) Assessments of the potential environmental impacts of renewable development 3) Assessments of the transmission capacity and capability of a renewable energy project 4) Established an economic models for tribal considerations 5) Define economic, cultural and societal impacts on the Tribe

  19. ARM - Wind Chill Calculations

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    CalculatorsWind Chill Calculations Outreach Home Room News Publications Traditional Knowledge Kiosks Barrow, Alaska Tropical Western Pacific Site Tours Contacts Students Study Hall About ARM Global Warming FAQ Just for Fun Meet our Friends Cool Sites Teachers Teachers' Toolbox Lesson Plans Wind Chill Calculations Wind Chill is the apparent temperature felt on the exposed human body owing to the combination of temperature and wind speed. From 1945 to 2001, Wind Chill was calculated by the Siple

  20. 20% Wind Energy by 2030 - Chapter 6: Wind Power Markets Summary Slides |

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Department of Energy 6: Wind Power Markets Summary Slides 20% Wind Energy by 2030 - Chapter 6: Wind Power Markets Summary Slides Summary slides overviewing wind power markets, growth, applications, and market features PDF icon 20percent_summary_chap6.pdf More Documents & Publications 20% Wind Energy by 2030 - Chapter 2: Wind Turbine Technology Summary Slides 20% Wind Energy by 2030 - Chapter 4: Transmission and Integration into the U.S. Electric System Summary Slides 20% Wind Energy by

  1. EA-1750: Smart Grid, Center for Commercialization of Electric Technology, Technology Solutions for Wind Integration in ERCOT, Houston, Texas

    Broader source: Energy.gov [DOE]

    This EA evaluates the potential environmental impacts of providing a financial assistance grant under the American Recovery and Reinvestment Act of 2009 to the Center for Commercialization of Electric Technology to facilitate the development and demonstration of a multi-faceted, synergistic approach to managing fluctuations in wind power within the Electric Reliability Council of Texas transmission grid.

  2. An Innovative Technique for Evaluating the Integrity and Durability of Wind Turbine Blade Composites - Final Project Report

    SciTech Connect (OSTI)

    Wang, Jy-An John; Ren, Fei; Tan, Ting; Mandell, John; Agastra, Pancasatya

    2011-11-01

    To build increasingly larger, lightweight, and robust wind turbine blades for improved power output and cost efficiency, durability of the blade, largely resulting from its structural composites selection and aerodynamic shape design, is of paramount concern. The safe/reliable operation of structural components depends critically on the selection of materials that are resistant to damage and failure in the expected service environment. An effective surveillance program is also necessary to monitor the degradation of the materials in the course of service. Composite materials having high specific strength/stiffness are desirable for the construction of wind turbines. However, most high-strength materials tend to exhibit low fracture toughness. That is why the fracture toughness of the composite materials under consideration for the manufacture of the next generation of wind turbines deserves special attention. In order to achieve the above we have proposed to develop an innovative technology, based on spiral notch torsion test (SNTT) methodology, to effectively investigate the material performance of turbine blade composites. SNTT approach was successfully demonstrated and extended to both epoxy and glass fiber composite materials for wind turbine blades during the performance period. In addition to typical Mode I failure mechanism, the mixed-mode failure mechanism induced by the wind turbine service environments and/or the material mismatch of the composite materials was also effectively investigated using SNTT approach. The SNTT results indicate that the proposed protocol not only provides significant advance in understanding the composite failure mechanism, but also can be readily utilized to assist the development of new turbine blade composites.

  3. Standing Rock Sioux Tribe - Lakota/Dakota Nation Feasibility Study Supporting Wind Development and Establishment of Renewable Energy and Energy Development Office

    Energy Savers [EERE]

    (Washee Zee) 701-854-3437 fwasinzi@standingrock.org Standing Rock Sioux Tribe - Lakota/Dakota Nation  BACKGROUND INFORMATION ON STANDING ROCK RESERVATION  SITTING BULL COLLEGE WIND TURBINE  EECBG ENERGY EFFICIENCY & WIND TURBINE INSTALLATION AT SITTING BULL COLLEGE  WIND ASSESSMENT STUDY  ESTABLISHMENT OF RENEWABLE ENERGY & ENERGY DEVELOPMENT OFFICE (REEDO)  WIND FEASIBILITY STUDY  OCETI SAKOWIN POWER PROJECT  ONE OF SEVEN RESERVATIONS OF THE GREAT SIOUX NATION

  4. DOE/SNL-TTU scaled wind farm technology facility : research opportunities for study of turbine-turbine interaction.

    SciTech Connect (OSTI)

    Barone, Matthew Franklin; White, Jonathan

    2011-09-01

    The proposed DOE/Sandia Scaled Wind Farm Technology Facility (SWiFT) hosted by Texas Tech University at Reese Technology Center in Lubbock, TX, will provide a facility for experimental study of turbine-turbine interaction and complex wind farm aerodynamics. This document surveys the current status of wind turbine wake and turbine-turbine interaction research, identifying knowledge and data gaps that the proposed test site can potentially fill. A number of turbine layouts is proposed, allowing for up to ten turbines at the site.

  5. Assessment and Optimization of Lidar Measurement Availability for Wind Turbine Control (Poster)

    SciTech Connect (OSTI)

    Scholbrock, F. A.; Fleming, P.; Wright, A.; Davoust, S.; Jehu, A.; Bouillet, M.; Bardon M.; Vercherin, B.

    2014-02-01

    Integrating Lidar to improve wind turbine controls is a potential breakthrough for reducing the cost of wind energy. By providing undisturbed wind measurements up to 400m in front of the rotor, Lidar may provide an accurate update of the turbine inflow with a preview time of several seconds. Focusing on loads, several studies have evaluated potential reductions using integrated Lidar, either by simulation or full scale field testing.

  6. Final report: Task 4a.2 20% wind scenario assessment of electric grid operational features

    SciTech Connect (OSTI)

    Toole, Gasper L.

    2009-01-01

    Wind integration modeling in electricity generation capacity expansion models is important in that these models are often used to inform political or managerial decisions. Poor representation of wind technology leads to under-estimation of wind's contribution to future energy scenarios which may hamper growth of the industry. The NREL's Wind Energy Deployment System (WinDS) model provides the most detailed representation of geographically disperse renewable resources and the optimization of transmission expansion to access these resources. Because WinDS was selected as the primary modeling tool for the 20% Wind Energy by 2030 study, it is the ideal tool for supplemental studies of the transmission expansion results. However, as the wind industry grows and knowledge related to the wind resource and integration of wind energy into the electric system develops, the WinDS model must be continually improved through additional data and innovative algorithms to capture the primary effects of variable wind generation. The detailed representation of wind technology in the WinDS model can be used to provide improvements to the simplified representation of wind technology in other capacity expansion models. This task did not employ the WinDS model, but builds from it and its results. Task 4a.2 provides an assessment of the electric grid operational features of the 20% Wind scenario and was conducted using power flow models accepted by the utility industry. Tasks 2 provides information regarding the physical flow of electricity on the electric grid which is a critical aspect of infrastructure expansion scenarios. Expanding transmission infrastructure to access remote wind resource in a physically realizable way is essential to achieving 20% wind energy by 2030.

  7. European Experience and Case study of SCR Passenger Car Integration |

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Department of Energy Experience and Case study of SCR Passenger Car Integration European Experience and Case study of SCR Passenger Car Integration Presentation given at DEER 2006, August 20-24, 2006, Detroit, Michigan. Sponsored by the U.S. DOE's EERE FreedomCar and Fuel Partnership and 21st Century Truck Programs. PDF icon 2006_deer_vanschaftingen.pdf More Documents & Publications SCR Systems for Heavy Duty Trucks: Progress Towards Meeting Euro 4 Emission Standards in 2005 Safe and

  8. Prairie Winds Wind Farm | Open Energy Information

    Open Energy Info (EERE)

    Wind Farm Jump to: navigation, search Name Prairie Winds Wind Farm Facility Prairie Winds Sector Wind energy Facility Type Commercial Scale Wind Facility Status In Service Owner...

  9. Developing Integrated National Design Standards for Offshore...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Developing Integrated National Design Standards for Offshore Wind Plants Developing Integrated National Design Standards for Offshore Wind Plants January 6, 2014 - 10:00am Addthis ...

  10. California-Wyoming Grid Integration Study: Phase 1 -- Economic Analysis

    SciTech Connect (OSTI)

    Corbus, D.; Hurlbut, D.; Schwabe, P.; Ibanez, E.; Milligan, M.; Brinkman, G.; Paduru, A.; Diakov, V.; Hand, M.

    2014-03-01

    This study presents a comparative analysis of two different renewable energy options for the California energy market between 2017 and 2020: 12,000 GWh per year from new California in-state renewable energy resources; and 12,000 GWh per year from Wyoming wind delivered to the California marketplace. Either option would add to the California resources already existing or under construction, theoretically providing the last measure of power needed to meet (or to slightly exceed) the state's 33% renewable portfolio standard. Both options have discretely measurable differences in transmission costs, capital costs (due to the enabling of different generation portfolios), capacity values, and production costs. The purpose of this study is to compare and contrast the two different options to provide additional insight for future planning.

  11. Study Reveals Challenges and Opportunities Related to Vessels for U.S. Offshore Wind

    Broader source: Energy.gov [DOE]

    The installation of offshore wind farms requires a highly specialized fleet of vessels--but no such fleet currently exists in the United States. As part of a broader DOE initiative to accelerate the growth of the U.S. offshore wind industry, energy research group Douglas-Westwood identified national vessel requirements under several offshore wind industry growth scenarios.

  12. Economic and Technical Feasibility Study of Utility-Scale Wind Generation for the New York Buffalo River and South Buffalo Brownfield Opportunity Areas

    SciTech Connect (OSTI)

    Roberts, J. O.; Mosey, G.

    2014-04-01

    Through the RE-Powering America's Land initiative, the economic and technical feasibility of utilizing contaminated lands in the Buffalo, New York, area for utility-scale wind development is explored. The study found that there is available land, electrical infrastructure, wind resource, and local interest to support a commercial wind project; however, economies of scale and local electrical markets may need further investigation before significant investment is made into developing a wind project at the Buffalo Reuse Authority site.

  13. Impacts of Large Amounts of Wind Power on Design and Operation of Power Systems; Results of IEA Collaboration

    SciTech Connect (OSTI)

    Parsons, B. and Ela, E.; Holttinen, H.; Meibom, P.; Orths, A.; O'Malley, M.; Ummels, B.C.; Tande, J.

    2008-06-01

    There are a multitude of studies completed and ongoing related to the cost of wind integration. However, the results are not easy to compare. An international forum for exchange of knowledge of power system impacts of wind power has been formed under the IEA Implementing Agreement on Wind Energy. IEA WIND R&D Task 25 on Design and Operation of Power Systems with Large Amounts of Wind Power produced a state-of-the-art report in October 2007, where the most relevant wind-power grid integration studies were analyzed, especially regarding methodologies and input data. This paper summarizes the results from 18 case studies, with discussion on differences in methodology as well as issues that have been identified to impact the cost of wind integration.

  14. Study of magnetic activity effects on the thermospheric winds in the low ionosphere. Master`s thesis

    SciTech Connect (OSTI)

    Davila, R.C.

    1994-09-01

    The purpose of this thesis is to examine the effects of magnetic activity on the low latitude F-region thermospheric winds. The F-region (120-1600 km) is a partially ionized medium where O+ and O are the major ion and neutral species, respectively. The thermospheric winds at these altitudes are driven primarily by pressure gradient forces resulting from the solar heating during the day and cooling at night. For this study, the author used measured Fabry-Perot Interferometer (FPI) winds at Arequipa (16.5 deg S, 71.5 deg W) and measured FPI and incoherent Scatter Radar (ISR) winds at Arecibo (18.6 deg N, 66.8 deg W).

  15. Eastern Renewable Generation Integration Study Solar Dataset (Presentation)

    SciTech Connect (OSTI)

    Hummon, M.

    2014-04-01

    The National Renewable Energy Laboratory produced solar power production data for the Eastern Renewable Generation Integration Study (ERGIS) including "real time" 5-minute interval data, "four hour ahead forecast" 60-minute interval data, and "day-ahead forecast" 60-minute interval data for the year 2006. This presentation provides a brief overview of the three solar power datasets.

  16. Lessons from Large-Scale Renewable Energy Integration Studies: Preprint

    SciTech Connect (OSTI)

    Bird, L.; Milligan, M.

    2012-06-01

    In general, large-scale integration studies in Europe and the United States find that high penetrations of renewable generation are technically feasible with operational changes and increased access to transmission. This paper describes other key findings such as the need for fast markets, large balancing areas, system flexibility, and the use of advanced forecasting.

  17. A Study of the Effects of Different Urban Wind Models on Dispersion Patterns Using Joint Urban 2003 Data

    SciTech Connect (OSTI)

    Gowardhan, A A; Brown, M J

    2012-02-21

    The Quick Urban & Industrial Complex (QUIC) Dispersion Modeling System has been developed to rapidly compute the transport and dispersion of toxic agent releases in the vicinity of buildings. It is composed of a wind solver, an 'urbanized' Lagrangian random-walk model, and a graphical user interface. QUIC has two different wind models: (a) The QUIC-URB wind solver, an empirically-based diagnostic wind model and (b) The QUIC-CFD (RANS) solver, based on the 3D Reynolds-Averaged Navier-Stokes (RANS) equations. In this paper, we discuss the effect of different wind models on dispersion patterns in dense built-up areas. The model-computed wind from the two urban wind models- QUIC-URB and QUIC-CFD are used to drive the dispersion model. The concentration fields are then compared to measurements from the Oklahoma City Joint Urban 2003 field experiment. QUIC produces high-resolution 3-D mean wind and concentration fields around buildings, in addition to deposition on the ground and building surfaces. It has options for different release types, including point, moving point, line, area, and volumetric sources, as well as dense gas, explosive buoyant rise, multi-particle size, bioslurry, and two-phase releases. Other features include indoor infiltration, a pressure solver, outer grid simulations, vegetative canopies, and population exposure calculations. It has been used for biological agent sensor siting in cities, vulnerability assessments for heavier-than-air chemical releases at industrial facilities, and clean-up assessments for radiological dispersal device (RDD) releases in cities (e.g., see Linger et al., 2005; Brown, 2006a, b). QUIC has also been used for dust transport studies (Bowker et al., 2007a) and for the impact of highway sound barriers on the transport and dispersion of vehicle emissions (Bowker et al., 2007b).

  18. Wind/Water Nexus

    SciTech Connect (OSTI)

    Not Available

    2006-04-01

    Nobel laureate Richard Smalley cited energy and water as among humanity's top problems for the next 50 years as the world's population increases from 6.3 billion to 9 billion. The U.S. Department of Energy's Wind and Hydropower Program has initiated an effort to explore wind energy's role as a technical solution to this critically important issue in the United States and the world. This four-page fact sheet outlines five areas in which wind energy can contribute: thermoelectric power plant/water processes, irrigation, municipal water supply, desalination, and wind/hydropower integration.

  19. Wind Power: Options for Industry

    SciTech Connect (OSTI)

    Not Available

    2003-03-01

    This six-page brochure outlines ways for industry to integrate wind power, including assessing wind power, building wind farms, using a developer, capitalizing on technology, enhancing the corporate image, and preparing RFPs. Company examples and information resources are also provided.

  20. Structural health and prognostics management for offshore wind turbines : case studies of rotor fault and blade damage with initial O&M cost modeling.

    SciTech Connect (OSTI)

    Myrent, Noah J.; Kusnick, Joshua F.; Barrett, Natalie C.; Adams, Douglas E.; Griffith, Daniel Todd

    2013-04-01

    Operations and maintenance costs for offshore wind plants are significantly higher than the current costs for land-based (onshore) wind plants. One way to reduce these costs would be to implement a structural health and prognostic management (SHPM) system as part of a condition based maintenance paradigm with smart load management and utilize a state-based cost model to assess the economics associated with use of the SHPM system. To facilitate the development of such a system a multi-scale modeling approach developed in prior work is used to identify how the underlying physics of the system are affected by the presence of damage and faults, and how these changes manifest themselves in the operational response of a full turbine. This methodology was used to investigate two case studies: (1) the effects of rotor imbalance due to pitch error (aerodynamic imbalance) and mass imbalance and (2) disbond of the shear web; both on a 5-MW offshore wind turbine in the present report. Based on simulations of damage in the turbine model, the operational measurements that demonstrated the highest sensitivity to the damage/faults were the blade tip accelerations and local pitching moments for both imbalance and shear web disbond. The initial cost model provided a great deal of insight into the estimated savings in operations and maintenance costs due to the implementation of an effective SHPM system. The integration of the health monitoring information and O&M cost versus damage/fault severity information provides the initial steps to identify processes to reduce operations and maintenance costs for an offshore wind farm while increasing turbine availability, revenue, and overall profit.

  1. DOE Study finds U.S. Wind Industry Competitive, Efficient, and...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    ... manufacturers could focus on product & process design for lean serial production, or invest in facilities able to produce large parts for marine transport to offshore wind farms. ...

  2. Wind Career Map | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Wind Career Map Wind Career Map This wind career map explores an expanding universe of wind energy occupations, describing diverse jobs across the industry, charting possible progression between them, and identifying the high-quality training necessary to do them well. View the text version here. While the Wind Career Map endeavors to cover many of the careers in wind energy, there are many occupations in this industry that are not included in this map, but are integral to the success of the

  3. Overview of Two Hydrogen Energy Storage Studies: Wind Hydrogen in California and Blending in Natural Gas Pipelines (Presentation)

    SciTech Connect (OSTI)

    Melaina, M. W.

    2013-05-01

    This presentation provides an overview of two NREL energy storage studies: Wind Hydrogen in California: Case Study and Blending Hydrogen Into Natural Gas Pipeline Networks: A Review of Key Issues. The presentation summarizes key issues, major model input assumptions, and results.

  4. The Wind Forecast Improvement Project (WFIP). A Public/Private Partnership for Improving Short Term Wind Energy Forecasts and Quantifying the Benefits of Utility Operations -- the Northern Study Area

    SciTech Connect (OSTI)

    Finley, Cathy

    2014-04-30

    This report contains the results from research aimed at improving short-range (0-6 hour) hub-height wind forecasts in the NOAA weather forecast models through additional data assimilation and model physics improvements for use in wind energy forecasting. Additional meteorological observing platforms including wind profilers, sodars, and surface stations were deployed for this study by NOAA and DOE, and additional meteorological data at or near wind turbine hub height were provided by South Dakota State University and WindLogics/NextEra Energy Resources over a large geographical area in the U.S. Northern Plains for assimilation into NOAA research weather forecast models. The resulting improvements in wind energy forecasts based on the research weather forecast models (with the additional data assimilation and model physics improvements) were examined in many different ways and compared with wind energy forecasts based on the current operational weather forecast models to quantify the forecast improvements important to power grid system operators and wind plant owners/operators participating in energy markets. Two operational weather forecast models (OP_RUC, OP_RAP) and two research weather forecast models (ESRL_RAP, HRRR) were used as the base wind forecasts for generating several different wind power forecasts for the NextEra Energy wind plants in the study area. Power forecasts were generated from the wind forecasts in a variety of ways, from very simple to quite sophisticated, as they might be used by a wide range of both general users and commercial wind energy forecast vendors. The error characteristics of each of these types of forecasts were examined and quantified using bulk error statistics for both the local wind plant and the system aggregate forecasts. The wind power forecast accuracy was also evaluated separately for high-impact wind energy ramp events. The overall bulk error statistics calculated over the first six hours of the forecasts at both the individual wind plant and at the system-wide aggregate level over the one year study period showed that the research weather model-based power forecasts (all types) had lower overall error rates than the current operational weather model-based power forecasts, both at the individual wind plant level and at the system aggregate level. The bulk error statistics of the various model-based power forecasts were also calculated by season and model runtime/forecast hour as power system operations are more sensitive to wind energy forecast errors during certain times of year and certain times of day. The results showed that there were significant differences in seasonal forecast errors between the various model-based power forecasts. The results from the analysis of the various wind power forecast errors by model runtime and forecast hour showed that the forecast errors were largest during the times of day that have increased significance to power system operators (the overnight hours and the morning/evening boundary layer transition periods), but the research weather model-based power forecasts showed improvement over the operational weather model-based power forecasts at these times.

  5. Wind energy applications for municipal water services: Opportunities, situational analyses, and case studies

    SciTech Connect (OSTI)

    Flowers, L.; Miner-Nordstrom, L.

    2006-01-01

    As communities grow, greater demands are placed on water supplies, wastewater services, and the electricity needed to power the growing water services infrastructure. Water is also a critical resource for thermoelectric power plants. Future population growth in the United States is therefore expected to heighten competition for water resources. Especially in arid U.S. regions, communities may soon face hard choices with respect to water and electric power. Many parts of the United States with increasing water stresses also have significant wind energy resources. Wind power is the fastest-growing electric generation source in the United States and is decreasing in cost to be competitive with thermoelectric generation. Wind energy can potentially offer communities in water-stressed areas the option of economically meeting increasing energy needs without increasing demands on valuable water resources. Wind energy can also provide targeted energy production to serve critical local water-system needs. The U.S. Department of Energy (DOE) Wind Energy Technologies Program has been exploring the potential for wind power to meet growing challenges for water supply and treatment. The DOE is currently characterizing the U.S. regions that are most likely to benefit from wind-water applications and is also exploring the associated technical and policy issues associated with bringing wind energy to bear on water resource challenges.

  6. State of the Art in Floating Wind Turbine Design Tools

    SciTech Connect (OSTI)

    Cordle, A.; Jonkman, J.

    2011-10-01

    This paper presents an overview of the simulation codes available to the offshore wind industry that are capable of performing integrated dynamic calculations for floating offshore wind turbines.

  7. Wind Simulation

    Energy Science and Technology Software Center (OSTI)

    2008-12-31

    The Software consists of a spreadsheet written in Microsoft Excel that provides an hourly simulation of a wind energy system, which includes a calculation of wind turbine output as a power-curve fit of wind speed.

  8. Wind Energy

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Wind Energy - CompositeTesting-BNaughton Permalink Gallery New report highlights key composite testing trends for more reliable and lower cost wind blade designs News, Partnership, Publications, Renewable Energy, Research & Capabilities, Wind Energy, Wind News New report highlights key composite testing trends for more reliable and lower cost wind blade designs Sandia National Laboratories recently published "Analysis of SNL/MSU/DOE Fatigue Database Trends for Wind Turbine Blade

  9. wind energy

    National Nuclear Security Administration (NNSA)

    5%2A en Pantex to Become Wind Energy Research Center http:nnsa.energy.govfieldofficesnponpopressreleasespantex-become-wind-energy-research-center

  10. Oahu Wind Integration and Transmission Study (OWITS): Hawaiian Islands Transmission Interconnection Project

    SciTech Connect (OSTI)

    Woodford, D.

    2011-02-01

    This report provides an independent review included an initial evaluation of the technical configuration and capital costs of establishing an undersea cable system and examining impacts to the existing electric transmission systems as a result of interconnecting the islands.

  11. Phase 2 Report: Oahu Wind Integration and Transmission Study (OWITS); Hawaiian Islands Transmission Interconnection Project

    SciTech Connect (OSTI)

    Woodford, D.

    2011-02-01

    This report provides an independent review including an initial evaluation of the technical configuration and capital costs of establishing an undersea cable system and examining impacts to the existing electric transmission systems as a result of interconnecting the islands

  12. DOE Office of Indian Energy Partners with ACEP to Study Wind...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    with the University of Alaska Fairbanks ACEP (Alaska Center for Energy and Power) to support in-depth technical and economic analysis of wind-diesel energy systems in rural Alaska. ...

  13. Process modeling for the Integrated Thermal Treatment System (ITTS) study

    SciTech Connect (OSTI)

    Liebelt, K.H.; Brown, B.W.; Quapp, W.J.

    1995-09-01

    This report describes the process modeling done in support of the integrated thermal treatment system (ITTS) study, Phases 1 and 2. ITTS consists of an integrated systems engineering approach for uniform comparison of widely varying thermal treatment technologies proposed for treatment of the contact-handled mixed low-level wastes (MLLW) currently stored in the U.S. Department of Energy complex. In the overall study, 19 systems were evaluated. Preconceptual designs were developed that included all of the various subsystems necessary for a complete installation, from waste receiving through to primary and secondary stabilization and disposal of the processed wastes. Each system included the necessary auxiliary treatment subsystems so that all of the waste categories in the complex were fully processed. The objective of the modeling task was to perform mass and energy balances of the major material components in each system. Modeling of trace materials, such as pollutants and radioactive isotopes, were beyond the present scope. The modeling of the main and secondary thermal treatment, air pollution control, and metal melting subsystems was done using the ASPEN PLUS process simulation code, Version 9.1-3. These results were combined with calculations for the remainder of the subsystems to achieve the final results, which included offgas volumes, and mass and volume waste reduction ratios.

  14. Integrated thermal treatment system study: Phase 1 results. Volume 1

    SciTech Connect (OSTI)

    Feizollahi, F.; Quapp, W.J.; Hempill, H.G.; Groffie, F.J.

    1994-07-01

    An integrated systems engineering approach is used for uniform comparison of widely varying thermal treatment technologies proposed for management of contact-handled mixed low-level waste (MLLW) currently stored in the US Department of Energy complex. Ten different systems encompassing several incineration design options are studied. All subsystems, including facilities, equipment, and methods needed for integration of each of the ten systems are identified. Typical subsystems needed for complete treatment of MLLW are incoming waste receiving and preparation (characterization, sorting, sizing, and separation), thermal treatment, air pollution control, primary and secondary stabilization, metal decontamination, metal melting, mercury recovery, lead recovery, and special waste and aqueous waste treatment. The evaluation is performed by developing a preconceptual design package and planning life-cycle cost (PLCC) estimates for each system. As part of the preconceptual design process, functional and operational requirements, flow sheets and mass balances, and conceptual equipment layouts are developed for each system. The PLCC components estimated are technology development, production facility construction, pre-operation, operation and maintenance, and decontamination and decommissioning. Preconceptual design data and other technology information gathered during the study are examined and areas requiring further development, testing, and evaluation are identified and recommended. Using a qualitative method, each of the ten systems are ranked.

  15. Commonwealth Wind Program

    Broader source: Energy.gov [DOE]

    Through the Commonwealth Wind Program, the Massachusetts Clean Energy Center (MassCEC) offers site assessment grants of services, feasibility study grants, and development grants and loans for...

  16. Lessons learned from CIRFT testing on SNF vibration integrity study

    SciTech Connect (OSTI)

    Wang, Jy-An John; Wang, Hong; Jiang, Hao; Bevard, Bruce Balkcom; Howard, Rob L; Scaglione, John M

    2015-01-01

    A cyclic integrated reversible-bending fatigue tester (CIRFT) was developed to support U.S. NRC and DOE Used Fuel Disposition Campaign studies on high burn-up (HBU) spent nuclear fuel (SNF) transportation during normal conditions of transport (NCT). Two devices were developed; the first CIRFT was successfully installed and operated in the ORNL hot-cells in September 2013. Since hot cell testing commenced several HBU SNF samples from both Zr-4 and M5 clads were investigated. The second CIRFT device was developed in February 2014, and has been used to test clad/fuel surrogate rods (stainless steel with alumina pellet inserts). The second CIRFT machine has also been used for sensor development and test sensitivity analyses, as well as loading boundary condition parameter studies. The lessons learned from CIRFT testing will be presented in this paper.

  17. Idaho Power Develops Renewable Integration Tool for More Cost...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Idaho Power Develops Renewable Integration Tool for More Cost Effective Use of Wind Power Idaho Power Develops Renewable Integration Tool for More Cost Effective Use of Wind Power ...

  18. Space reactor electric systems: system integration studies, Phase 1 report

    SciTech Connect (OSTI)

    Anderson, R.V.; Bost, D.; Determan, W.R.; Harty, R.B.; Katz, B.; Keshishian, V.; Lillie, A.F.; Thomson, W.B.

    1983-03-29

    This report presents the results of preliminary space reactor electric system integration studies performed by Rockwell International's Energy Systems Group (ESG). The preliminary studies investigated a broad range of reactor electric system concepts for powers of 25 and 100 KWe. The purpose of the studies was to provide timely system information of suitable accuracy to support ongoing mission planning activities. The preliminary system studies were performed by assembling the five different subsystems that are used in a system: the reactor, the shielding, the primary heat transport, the power conversion-processing, and the heat rejection subsystems. The subsystem data in this report were largely based on Rockwell's recently prepared Subsystem Technology Assessment Report. Nine generic types of reactor subsystems were used in these system studies. Several levels of technology were used for each type of reactor subsystem. Seven generic types of power conversion-processing subsystems were used, and several levels of technology were again used for each type. In addition, various types and levels of technology were used for the shielding, primary heat transport, and heat rejection subsystems. A total of 60 systems were studied.

  19. Sensor integration study for a shallow tunnel detection system.

    SciTech Connect (OSTI)

    Yee, Mark L.; Abbott, Robert E.; Bonal, Nedra; Elbring, Gregory Jay; Senglaub, Michael E.

    2010-02-01

    During the past several years, there has been a growing recognition of the threats posed by the use of shallow tunnels against both international border security and the integrity of critical facilities. This has led to the development and testing of a variety of geophysical and surveillance techniques for the detection of these clandestine tunnels. The challenges of detection of these tunnels arising from the complexity of the near surface environment, the subtlety of the tunnel signatures themselves, and the frequent siting of these tunnels in urban environments with a high level of cultural noise, have time and again shown that any single technique is not robust enough to solve the tunnel detection problem in all cases. The question then arises as to how to best combine the multiple techniques currently available to create an integrated system that results in the best chance of detecting these tunnels in a variety of clutter environments and geologies. This study utilizes Taguchi analysis with simulated sensor detection performance to address this question. The analysis results show that ambient noise has the most effect on detection performance over the effects of tunnel characteristics and geological factors.

  20. Lower Brule Sioux Tribe Wind-Pump Storage Feasibility Study Project

    SciTech Connect (OSTI)

    Shawn A. LaRoche; Tracey LeBeau; Innovation Investments, LLC

    2007-04-20

    The Lower Brule Sioux Tribe is a federally recognized Indian tribe organized pursuant to the 1934 Wheeler-Howard Act (“Indian Reorganization Act”). The Lower Brule Sioux Indian Reservation lies along the west bank of Lake Francis Case and Lake Sharpe, which were created by the Fort Randall and Big Bend dams of the Missouri River pursuant to the Pick Sloan Act. The grid accessible at the Big Bend Dam facility operated by the U.S. Army Corps of Engineers is less than one mile of the wind farm contemplated by the Tribe in this response. The low-head hydroelectric turbines further being studied would be placed below the dam and would be turned by the water released from the dam itself. The riverbed at this place is within the exterior boundaries of the reservation. The low-head turbines in the tailrace would be evaluated to determine if enough renewable energy could be developed to pump water to a reservoir 500 feet above the river.

  1. An examination of capacity and ramping impacts of wind energy on power systems

    SciTech Connect (OSTI)

    Kirby, Brendan; Milligan, Michael

    2008-08-15

    When wind serves load outside of the host balancing area, there can be additional capacity requirements - mitigated by faster markets and exacerbated by slower markets. A series of simple thought experiments is useful in illustrating the implications for wind integration studies. (author)

  2. Wind Energy Resource Atlas of the Philippines

    SciTech Connect (OSTI)

    Elliott, D.; Schwartz, M.; George, R.; Haymes, S.; Heimiller, D.; Scott, G.; McCarthy, E.

    2001-03-06

    This report contains the results of a wind resource analysis and mapping study for the Philippine archipelago. The study's objective was to identify potential wind resource areas and quantify the value of those resources within those areas. The wind resource maps and other wind resource characteristic information will be used to identify prospective areas for wind-energy applications.

  3. Impact of Utility-Scale Distributed Wind on Transmission-Level System Operations

    SciTech Connect (OSTI)

    Brancucci Martinez-Anido, C.; Hodge, B. M.

    2014-09-01

    This report presents a new renewable integration study that aims to assess the potential for adding distributed wind to the current power system with minimal or no upgrades to the distribution or transmission electricity systems. It investigates the impacts of integrating large amounts of utility-scale distributed wind power on bulk system operations by performing a case study on the power system of the Independent System Operator-New England (ISO-NE).

  4. Wind Vision Testimonials | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Testimonials Wind Vision Testimonials Addthis Description Five years after its initial release, wind industry leaders reflect on the impacts of the 2008 20% Wind Energy by 2030 study. Video from the Wind Energy Foundation. Text Version The video opens with the "Wind Energy Foundation" logo. The first slide shows the first report published and its cover: 20% Wind Energy by 2030: Increasing Wind Energy's Contribution to U.S. Electricity Supply July 2008 Five years later... The Impacts of

  5. NREL: Wind Research - Systems Engineering Home Page

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Systems Engineering Wind Research The National Wind Technology Center (NWTC) wind energy systems engineering initiative has developed an analysis platform to leverage its research capabilities toward integrating wind energy engineering and cost models across wind plants. This platform captures the important interactions between various subsystems to achieve a better understanding of how to improve system-level performance and achieve system-level cost reductions. The initiative's goal is to

  6. Review of remote-sensor potential for wind-energy studies

    SciTech Connect (OSTI)

    Hooke, W.H.

    1981-03-01

    This report evaluates a number of remote-sensing systems such as radars, lidars, and acoustic echo sounders which are potential alternatives to the cup- and propeller anemometers routinely used in wind energy siting. The high costs and demanding operational requirements of these sensors currently preclude their use in the early stages of a multi-phase wind energy siting strategy such as that recently articulated by Hiester and Pennell (1981). Instead, these systems can be used most effectively in the lattermost stages of the siting process - what Hiester and Pennell (1981) refer to as the site development phase, necessary only for the siting of large wind-energy conversion systems (WECS) or WECS clusters. Even for this particular application only four techniques appear to be operational now; that is, if used properly, these techniques should provide the data sets currently considered adequate for wind-energy siting purposes. They are, in rough order of increasing expense and operating demands: optical transverse wind sensors; acoustic Doppler sounders; time-of-flight and continuous wave (CW) Doppler lidar; and frequency-modulated, continuous wave (FM-CW) Doppler radar.

  7. Today's Forecast: Improved Wind Predictions | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Today's Forecast: Improved Wind Predictions Today's Forecast: Improved Wind Predictions July 20, 2011 - 6:30pm Addthis Stan Calvert Wind Systems Integration Team Lead, Wind & Water Power Program What does this project do? It will increase the accuracy of weather forecast models for predicting substantial changes in winds at heights important for wind energy up to six hours in advance, allowing grid operators to predict expected wind power production. Accurate weather forecasts are critical

  8. Wind Energy Assessment Study for Nevada -- Tall Tower Deployment (Stone Cabin): 26 June 2005 - 31 December 2007

    SciTech Connect (OSTI)

    Koracin, D.; Reinhardt, R.; McCurdy, G.; Liddle, M.; McCord, T.; Vellore, R.; Minor, T.; Lyles, B.; Miller, D.; Ronchetti, L.

    2009-12-01

    The objective of this work effort was to characterize wind shear and turbulence for representative wind-developable areas in Nevada.

  9. Nonlinear interaction of proton whistler with kinetic Alfvn wave to study solar wind turbulence

    SciTech Connect (OSTI)

    Goyal, R.; Sharma, R. P.; Goldstein, M. L.; Dwivedi, N. K.

    2013-12-15

    This paper presents the nonlinear interaction between small but finite amplitude kinetic Alfvn wave (KAW) and proton whistler wave using two-fluid model in intermediate beta plasma, applicable to solar wind. The nonlinearity is introduced by modification in the background density. This change in density is attributed to the nonlinear ponderomotive force due to KAW. The solutions of the model equations, governing the nonlinear interaction (and its effect on the formation of localized structures), have been obtained using semi-analytical method in solar wind at 1AU. It is concluded that the KAW properties significantly affect the threshold field required for the filament formation and their critical size (for proton whistler). The magnetic and electric field power spectra have been obtained and their relevance with the recent observations of solar wind turbulence by Cluster spacecraft has been pointed out.

  10. An Integrated Study Method For Exploration Of Gas Hydrate Reservoirs...

    Open Energy Info (EERE)

    based on the analysis of geochemical anomalies to the main components, such as methane and hydrocarbon series, an integrated assessment of prospective gas hydrate...

  11. Integrated thermal treatment system study -- Phase 2 results. Revision 1

    SciTech Connect (OSTI)

    Feizollahi, F.; Quapp, W.J.

    1996-02-01

    This report presents the second phase of a study on thermal treatment technologies. The study consists of a systematic assessment of nineteen thermal treatment alternatives for the contact-handled mixed low-level waste (MLLW) currently stored in the US Department of Energy complex. The treatment alternatives consist of widely varying technologies for safely destroying the hazardous organic components, reducing the volume, and preparing for final disposal of the MLLW. The alternatives considered in Phase 2 were innovative thermal treatments with nine types of primary processing units. Other variations in the study examined the effect of combustion gas, air pollution control system design, and stabilization technology for the treatment residues. The Phase 1 study examined ten initial thermal treatment alternatives. The Phase 2 systems were evaluated in essentially the same manner as the Phase 1 systems. The alternatives evaluated were: rotary kiln, slagging kiln, plasma furnace, plasma gasification, molten salt oxidation, molten metal waste destruction, steam gasification, Joule-heated vitrification, thermal desorption and mediated electrochemical oxidation, and thermal desorption and supercritical water oxidation. The quantities, and physical and chemical compositions, of the input waste used in the Phase 2 systems differ from those in the Phase 1 systems, which were based on a preliminary waste input database developed at the onset of the Integrated Thermal Treatment System study. The inventory database used in the Phase 2 study incorporates the latest US Department of Energy information. All systems, both primary treatment systems and subsystem inputs, have now been evaluated using the same waste input (2,927 lb/hr). 28 refs., 88 figs., 41 tabs.

  12. Wind Energy Impacts: Slides

    Wind Powering America (EERE)

    help to alleviate common misconceptions about wind energy. Wind Energy Impacts Photo from Invenergy LLC, NREL 14371 Wildlife impacts vary by location,* and new developments have helped to reduce these effects. Photo from LuRay Parker, NREL 17429 Wind Energy Impacts Pre- and post-development studies, educated siting, and curtailment during high-activity periods have decreased wildlife impacts.** Additional strategies are being researched to better understand and further decrease impacts.

  13. ARM - Lesson Plans: Winds

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Winds Outreach Home Room News Publications Traditional Knowledge Kiosks Barrow, Alaska Tropical Western Pacific Site Tours Contacts Students Study Hall About ARM Global Warming FAQ Just for Fun Meet our Friends Cool Sites Teachers Teachers' Toolbox Lesson Plans Lesson Plans: Winds Objective The objective of this activity is to investigate how pressure differences create wind. Materials Each student or group of students will need the following: Balloon (long balloons or round ones) Bicycle pump

  14. Integrated geologic/engineering study of Kurten field waterflood project

    SciTech Connect (OSTI)

    Gay, A.L.

    1989-03-01

    An integrated interpretation of petrographic, geochemical, engineering, and electric-log data is used to evaluate a current waterflood project in Kurten field, Brazos County, Texas. Petrographic studies reveal three sand facies deposited in a dynamic sand ridge environment. Although electric-log porosity is relatively constant throughout the sand body, SEM, thin-section, and engineering profile studies reveal the clean well-sorted sand facies to be impermeable due to quartz overgrowths. A quartz-rich bioturbated sand is identified as the reservoir facies, having fewer quartz overgrowths and more authigenic clays. The third sand facies, a clay-rich bioturbated sand, is impermeable due to an overabundance of authigenic and detrital clays. Engineering and production data support this interpretation. A comparison of hydrocarbon composition of the oils using capillary gas chromatography supports the conclusion that the well-sorted clean sand contains many permeability barriers and is not a continuous reservoir conductive to waterflooding. Interactive computer interpretation of electric logs, using a combination of sonic and density porosities, deep resistivity, and SP, allows the mapping of the sand facies. Water saturation and net oil-in-place maps reveal the best portions of the field on which to focus the revised waterflood project. This revision should concentrate on the quartz-rich bioturbated sand in the central portion of the original unit to result in a more efficient, economical, secondary recovery program.

  15. Integrated geologic/engineering study of the Kurten Field waterflood

    SciTech Connect (OSTI)

    Gay, A.L. )

    1990-05-01

    An integrated interpretation of petrographic, geochemical, engineering, and electric-log data was used to evaluate a current waterflood project in Kurten field, Brazos County, Texas. Petrographic studies reveal three sand facies deposited in a dynamic sand ridge environment. Although electric-log porosity is relatively constant throughout the sand body, scanning electron microscope thin section and engineering profile studies reveal the clean well-sorted sand facies to be impermeable due to quartz overgrowths. A quartz-rich bioturbated sand is identified as the reservoir facies, having fewer quartz overgrowths and more authigenic clays. The third sand facies, a clay-rich bioturbated sand, is impermeable due to an overabundance of authigenic and detrital clays. Engineering and production data support this interpretation. A comparison of hydrocarbon composition of the oils, using capillary gas chromatography, supports the conclusion that the well-sorted clean sand contains many permeability barriers and is not a continuous reservoir conducive to waterflooding. Interactive computer interpretation of electric logs, using a combination of sonic and density porosities, deep resistivity, and spontaneous potential, allows the mapping of the sand facies. Water saturations and net oil in place maps reveal the best parts of the field on which to focus the revised waterflood project. This revision should concentrate on the quartz-rich bioturbated sand in the central part of the original unit to result in a more efficient economical secondary recovery program.

  16. Cisco Wind Energy Wind Farm | Open Energy Information

    Open Energy Info (EERE)

    Cisco Wind Energy Wind Farm Jump to: navigation, search Name Cisco Wind Energy Wind Farm Facility Cisco Wind Energy Sector Wind energy Facility Type Commercial Scale Wind Facility...

  17. Duke Energy Photovoltaic Integration Study: Carolinas Service Areas

    SciTech Connect (OSTI)

    Lu, Shuai; Samaan, Nader A.; Meng, Da; Chassin, Forrest S.; Zhang, Yu; Vyakaranam, Bharat; Warwick, William M.; Fuller, Jason C.; Diao, Ruisheng; Nguyen, Tony B.; Jin, Chunlian

    2014-03-01

    Solar energy collected using photovoltaic (PV) technology is a clean and renewable energy source that offers multiple benefits to the electric utility industry and its customers, such as cost predictability, reduced emissions, and loss reduction by distributed installations. Renewable energy goals established in North Carolina Senate Bill 3 (SB3), in combination with the state tax credit and decreases in the cost of energy from PV panels, have resulted in rapid solar power penetration within the Carolinas services areas of Duke Energy. Continued decreases in PV prices are expected to lead to greater PV penetration rates than currently required in SB3. Despite the potential benefits, significant penetration of PV energy is of concern to the utility industry because of its impact on operating reliability and integration cost to customers, and equally important, how any additional costs may be allocated to different customer groups. Some of these impacts might become limiting factors for PV energy, especially growing distributed generation installed at customer sites. Recognizing the importance of renewable energy developments for a sustainable energy future and economic growth, Duke Energy has commissioned this study to simulate the effects of high-PV penetration rates and to initiate the process of quantifying the impacts. The objective of the study is to inform resource plans, guide operation improvements, and drive infrastructure investments for a steady and smooth transition to a new energy mix that provides optimal values to customers. The study team consists of experts from Pacific Northwest National Laboratory (PNNL), Power Costs, Inc. (PCI), Clean Power Research (CPR), Alstom Grid, and Duke Energy. PNNL, PCI, and CPR performed the study on generation impacts; Duke Energy modeled the transmission cases; and distribution simulations were conducted by Alstom Grid. PNNL analyzed the results from each work stream and produced the report.

  18. Wind Farm

    Broader source: Energy.gov [DOE]

    The wind farm in Greensburg, Kansas, was completed in spring 2010, and consists of ten 1.25 megawatt (MW) wind turbines that supply enough electricity to power every house, business, and municipal...

  19. Wind Power

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Wind Power As the accompanying map of New Mexico shows, the best wind power generation potential near WIPP is along the Delaware Mountain ridge line of the southern Guadalupe...

  20. Wind Program | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Wind Program Innovative Study Helps Protect Wildlife Innovative Study Helps Protect Wildlife Thanks to a first-of-its-kind in-depth study of wildlife distribution and movements, the nation's Eastern Seaboard is better prepared than ever for offshore wind energy. Read more New Wind Technology Resource Center Launched New Wind Technology Resource Center Launched The Energy Department recently announced the launch of its new, user-friendly online information resources portal that provides a central

  1. Wind Energy

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Stationary Power/Energy Conversion Efficiency/Wind Energy - Wind EnergyTara Camacho-Lopez2016-02-16T22:30:00+00:00 Conducting applied research to increase the viability of wind technology by improving wind turbine performance, reliability, and reducing the cost of energy. Advancing the state of knowledge in the areas of materials, structurally efficient airfoil designs, active-flow aerodynamic control, and sensors. Rotor Innovation Advancing rotor technology such that they capture more energy,

  2. High Penetration Solar Distributed Generation Study on Oahu ...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    OAHU Wind Integration And Transmission Study: Summary Report, NREL (National Renewable Energy Laboratory) Hawai'i's Evolution: Hawai'i Powered. Technology Driven. Energy Transition ...

  3. 2014 WIND POWER PROGRAM PEER REVIEW-DISTRIBUTED WIND

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    ... Integration Group (UVIG) and IEEE JEDI Model Version W1.09.03e 6 | Wind and ... on SWCC board * Support UVIG and IEEE in distributed generation-related ...

  4. Field studies of the potential for wind transport of plutonium- contaminated soils at sites in Areas 6 and 11, Nevada Test Site

    SciTech Connect (OSTI)

    Lancaster, N.; Bamford, R.; Metzger, S.

    1995-07-01

    This report describes and documents a series of field experiments carried out in Areas 6 and 11 of the Nevada Test Site in June and July 1994 to determine parameters of boundary layer winds, surface characteristics, and vegetation cover that can be used to predict dust emissions from the affected sites. Aerodynamic roughness of natural sites is determined largely by the lateral cover of the larger and more permanent roughness elements (shrubs). These provide a complete protection of the surface from wind erosion. Studies using a field-portable wind tunnel demonstrated that natural surfaces in the investigated areas of the Nevada Test Site are stable except at very high wind speeds (probably higher than normally occur, except perhaps in dust devils). However, disturbance of silty-clay surfaces by excavation devices and vehicles reduces the entrainment threshold by approximately 50% and makes these areas potentially very susceptible to wind erosion and transport of sediments.

  5. Wind Resource Assessment of Gujarat (India)

    SciTech Connect (OSTI)

    Draxl, C.; Purkayastha, A.; Parker, Z.

    2014-07-01

    India is one of the largest wind energy markets in the world. In 1986 Gujarat was the first Indian state to install a wind power project. In February 2013, the installed wind capacity in Gujarat was 3,093 MW. Due to the uncertainty around existing wind energy assessments in India, this analysis uses the Weather Research and Forecasting (WRF) model to simulate the wind at current hub heights for one year to provide more precise estimates of wind resources in Gujarat. The WRF model allows for accurate simulations of winds near the surface and at heights important for wind energy purposes. While previous resource assessments published wind power density, we focus on average wind speeds, which can be converted to wind power densities by the user with methods of their choice. The wind resource estimates in this study show regions with average annual wind speeds of more than 8 m/s.

  6. Sandia Energy - Grid Integration

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    of Sandia's larger portfolio of renewable energy technology programs (Wind, Solar Power, Geothermal, and Energy Systems Analysis). Transmission Grid Integration The goal of...

  7. Economic Evaluation of Short-Term Wind Power Forecasts in ERCOT: Preliminary Results; Preprint

    SciTech Connect (OSTI)

    Orwig, K.; Hodge, B. M.; Brinkman, G.; Ela, E.; Milligan, M.; Banunarayanan, V.; Nasir, S.; Freedman, J.

    2012-09-01

    Historically, a number of wind energy integration studies have investigated the value of using day-ahead wind power forecasts for grid operational decisions. These studies have shown that there could be large cost savings gained by grid operators implementing the forecasts in their system operations. To date, none of these studies have investigated the value of shorter-term (0 to 6-hour-ahead) wind power forecasts. In 2010, the Department of Energy and National Oceanic and Atmospheric Administration partnered to fund improvements in short-term wind forecasts and to determine the economic value of these improvements to grid operators, hereafter referred to as the Wind Forecasting Improvement Project (WFIP). In this work, we discuss the preliminary results of the economic benefit analysis portion of the WFIP for the Electric Reliability Council of Texas. The improvements seen in the wind forecasts are examined, then the economic results of a production cost model simulation are analyzed.

  8. Ramp Forecasting Performance from Improved Short-Term Wind Power Forecasting: Preprint

    SciTech Connect (OSTI)

    Zhang, J.; Florita, A.; Hodge, B. M.; Freedman, J.

    2014-05-01

    The variable and uncertain nature of wind generation presents a new concern to power system operators. One of the biggest concerns associated with integrating a large amount of wind power into the grid is the ability to handle large ramps in wind power output. Large ramps can significantly influence system economics and reliability, on which power system operators place primary emphasis. The Wind Forecasting Improvement Project (WFIP) was performed to improve wind power forecasts and determine the value of these improvements to grid operators. This paper evaluates the performance of improved short-term wind power ramp forecasting. The study is performed for the Electric Reliability Council of Texas (ERCOT) by comparing the experimental WFIP forecast to the current short-term wind power forecast (STWPF). Four types of significant wind power ramps are employed in the study; these are based on the power change magnitude, direction, and duration. The swinging door algorithm is adopted to extract ramp events from actual and forecasted wind power time series. The results show that the experimental short-term wind power forecasts improve the accuracy of the wind power ramp forecasting, especially during the summer.

  9. A study of pitch oscillation and roughness on airfoils used for horizontal axis wind turbines

    SciTech Connect (OSTI)

    Gregorek, G.M.; Hoffmann, M.J.; Ramsay, R.R.; Janiszewska, J.M. [Ohio State Univ., Columbus, OH (United States)

    1995-12-01

    Under subcontract XF-1-11009-3 the Ohio State University Aeronautical and Astronautical Research Laboratory (OSU/AARL) with the National Renewable Energy Laboratory (NREL) developed an extensive database of empirical aerodynamic data. These data will assist in the development of analytical models and in the design of new airfoils for wind turbines. To accomplish the main objective, airfoil models were designed, built and wind tunnel tested with and without model leading edge grit roughness (LEGR). LEGR simulates surface irregularities due to the accumulation of insect debris, ice, and/or the aging process. This report is a summary of project project activity for Phase III, which encompasses the time period from September 17, 1 993 to September 6, 1 994.

  10. DOE Office of Indian Energy Partners with ACEP to Study Wind-Diesel Systems in Alaska

    Broader source: Energy.gov [DOE]

    Department of Energy's Office of Indian Energy is collaborating with the University of Alaska Fairbanks ACEP (Alaska Center for Energy and Power) to support in-depth technical and economic analysis of wind-diesel energy systems in rural Alaska. The resulting report will evaluate the costs and benefits of installing hybrid power systems in Alaska Native villages to alleviate high energy costs by reducing dependence on imported fossil fuels.

  11. Grid Integration | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Research & Development » Grid Integration Grid Integration Grid Integration The Wind Program works with electric grid operators, utilities, regulators, and industry to create new strategies for incorporating increasing amounts of wind energy into the power system while maintaining economic and reliable operation of the grid. Utilities have been increasingly deploying wind power to provide larger portions of electricity generation. However, many utilities also express concerns about wind

  12. ARM - Word Seek: Wind

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Wind Outreach Home Room News Publications Traditional Knowledge Kiosks Barrow, Alaska Tropical Western Pacific Site Tours Contacts Students Study Hall About ARM Global Warming FAQ Just for Fun Meet our Friends Cool Sites Teachers Teachers' Toolbox Lesson Plans Word Seek: Wind

  13. A study of density modulation index in the inner heliospheric solar wind during solar cycle 23

    SciTech Connect (OSTI)

    Bisoi, Susanta Kumar; Janardhan, P.; Ingale, M.; Subramanian, P.; Ananthakrishnan, S.; Tokumaru, M.; Fujiki, K. E-mail: jerry@prl.res.in E-mail: p.subramanian@iiserpune.ac.in E-mail: tokumaru@stelab.nagoya-u.ac.jp

    2014-11-01

    The ratio of the rms electron density fluctuations to the background density in the solar wind (density modulation index, ? {sub N} ? ?N/N) is of vital importance for understanding several problems in heliospheric physics related to solar wind turbulence. In this paper, we have investigated the behavior of ? {sub N} in the inner heliosphere from 0.26 to 0.82 AU. The density fluctuations ?N have been deduced using extensive ground-based observations of interplanetary scintillation at 327 MHz, which probe spatial scales of a few hundred kilometers. The background densities (N) have been derived using near-Earth observations from the Advanced Composition Explorer. Our analysis reveals that 0.001 ? ? {sub N} ? 0.02 and does not vary appreciably with heliocentric distance. We also find that ? {sub N} declines by 8% from 1998 to 2008. We discuss the impact of these findings on problems ranging from our understanding of Forbush decreases to the behavior of the solar wind dynamic pressure over the recent peculiar solar minimum at the end of cycle 23.

  14. Offshore Wind Research (Fact Sheet)

    SciTech Connect (OSTI)

    Not Available

    2011-10-01

    This 2-page fact sheet describes NREL's offshore wind research and development efforts and capabilities. The National Renewable Energy Laboratory is internationally recognized for offshore wind energy research and development (R&D). Its experience and capabilities cover a wide spectrum of wind energy disciplines. NREL's offshore wind R&D efforts focus on critical areas that address the long-term needs of the offshore wind energy industry and the Department of Energy (DOE). R&D efforts include: (1) Developing offshore design tools and methods; (2) Collaborating with international partners; (3) Testing offshore systems and developing standards; (4) Conducting economic analyses; (5) Characterizing offshore wind resources; and (6) Identifying and mitigating offshore wind grid integration challenges and barriers. NREL has developed and maintains a robust, open-source, modular computer-aided engineering (CAE) tool, known as FAST. FAST's state-of-the-art capabilities provide full dynamic system simulation for a range of offshore wind systems. It models the coupled aerodynamic, hydrodynamic, control system, and structural response of offshore wind systems to support the development of innovative wind technologies that are reliable and cost effective. FAST also provides dynamic models of wind turbines on offshore fixed-bottom systems for shallow and transitional depths and floating-platform systems in deep water, thus enabling design innovation and risk reduction and facilitating higher performance designs that will meet DOE's cost of energy, reliability, and deployment objectives.

  15. Byers Auto Group: A Case Study Into The Economics, Zoning, and Overall Process of Installing Small Wind Turbines at Two Automotive Dealerships in Ohio (Presentation)

    SciTech Connect (OSTI)

    Sinclair, K.; Oteri, F.

    2011-05-01

    This presentation provides the talking points about a case study on the installation of a $600,000 small wind project, the installation process, estimated annual energy production and percentage of energy needs met by the turbines.

  16. Byers Auto Group: A Case Study Into The Economics, Zoning, and Overall Process of Installing Small Wind Turbines at Two Automotive Dealerships in Ohio

    SciTech Connect (OSTI)

    Oteri, F.; Sinclair, K.

    2011-11-01

    This paper provides the talking points about a case study on the installation of a $600,000 small wind project, the installation process, estimated annual energy production and percentage of energy needs met by the turbines.

  17. Solar cyclical trend study of the mid-latitude, quiet-time, meridional, neutral winds at winter solstice conditions. Master's thesis

    SciTech Connect (OSTI)

    Breninger, R.L.

    1989-01-01

    Located within the region of the thermosphere is the major portion of the ionosphere. Distribution of the ionospheric plasma within this region is a function of atmospheric mass and energy transport. For the current study, the component of the neutral wind along the magnetic meridian is derived from ground-based ionosonde measurements of the F2 peak layer height. Meridional wind variations with respect to location, universal time, and level of solar activity are the focal points on this investigation. The primary timescale of interest covers a period of one solar cycle, from 1977 to 1987. Data from one station have been extended to 1965 to study the repetitive nature of solar activity on the meridional winds. Results of this study indicate a definite variation of wind speed and direction, which correlates with changing levels of solar activity. It is hoped that the results of this study will aid current efforts to develop ionospheric models and enhance their forecasting capabilities.

  18. NREL: Wind Research - Small Wind Turbine Development

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Small Wind Turbine Development A photo of Southwest Windpower's Skystream wind turbine in front of a home. PIX14936 Southwest Windpower's Skystream wind turbine. A photo of the Endurance wind turbine. PIX15006 The Endurance wind turbine. A photo of the Atlantic Orient Corporation 15/50 wind turbine at the National Wind Technology Center. PIX07301 The Atlantic Orient Corporation 15/50 wind turbine at the National Wind Technology Center. NREL supports continued market expansion of small wind

  19. Impacts of Large Amounts of Wind Power on Design and Operation of Power Systems; Results of IEA Collaboration

    SciTech Connect (OSTI)

    Ela, E.; Parsons, B.; Holttinen, H.; Meibom, P.; Orths, A.; O'Malley, M.; Ummels, B. C.; Tande, J. O.; Estanqueiro, A.; Gomez, E.; Smith, J. C.

    2008-06-01

    This paper summarizes the results from 18 case studies, with discussion on differences in methodology as well as issues that have been identified to impact the cost of wind integration.

  20. Integrating Nuclear Energy to Oilfield Operations – Two Case Studies

    SciTech Connect (OSTI)

    Eric P. Robertson; Lee O. Nelson; Michael G. McKellar; Anastasia M. Gandrik; Mike W. Patterson

    2011-11-01

    Fossil fuel resources that require large energy inputs for extraction, such as the Canadian oil sands and the Green River oil shale resource in the western USA, could benefit from the use of nuclear power instead of power generated by natural gas combustion. This paper discusses the technical and economic aspects of integrating nuclear energy with oil sands operations and the development of oil shale resources. A high temperature gas reactor (HTGR) that produces heat in the form of high pressure steam (no electricity production) was selected as the nuclear power source for both fossil fuel resources. Both cases were based on 50,000 bbl/day output. The oil sands case was a steam-assisted, gravity-drainage (SAGD) operation located in the Canadian oil sands belt. The oil shale development was an in-situ oil shale retorting operation located in western Colorado, USA. The technical feasibility of the integrating nuclear power was assessed. The economic feasibility of each case was evaluated using a discounted cash flow, rate of return analysis. Integrating an HTGR to both the SAGD oil sands operation and the oil shale development was found to be technically feasible for both cases. In the oil sands case, integrating an HTGR eliminated natural gas combustion and associated CO2 emissions, although there were still some emissions associated with imported electrical power. In the in situ oil shale case, integrating an HTGR reduced CO2 emissions by 88% and increased natural gas production by 100%. Economic viabilities of both nuclear integrated cases were poorer than the non-nuclear-integrated cases when CO2 emissions were not taxed. However, taxing the CO2 emissions had a significant effect on the economics of the non-nuclear base cases, bringing them in line with the economics of the nuclear-integrated cases. As we move toward limiting CO2 emissions, integrating non-CO2-emitting energy sources to the development of energy-intense fossil fuel resources is becoming increasingly important. This paper attempts to reduce the barriers that have traditionally separated fossil fuel development and application of nuclear power and to promote serious discussion of ideas about hybrid energy systems.

  1. LIDAR Wind Speed Measurements of Evolving Wind Fields

    SciTech Connect (OSTI)

    Simley, E.; Pao, L. Y.

    2012-07-01

    Light Detection and Ranging (LIDAR) systems are able to measure the speed of incoming wind before it interacts with a wind turbine rotor. These preview wind measurements can be used in feedforward control systems designed to reduce turbine loads. However, the degree to which such preview-based control techniques can reduce loads by reacting to turbulence depends on how accurately the incoming wind field can be measured. Past studies have assumed Taylor's frozen turbulence hypothesis, which implies that turbulence remains unchanged as it advects downwind at the mean wind speed. With Taylor's hypothesis applied, the only source of wind speed measurement error is distortion caused by the LIDAR. This study introduces wind evolution, characterized by the longitudinal coherence of the wind, to LIDAR measurement simulations to create a more realistic measurement model. A simple model of wind evolution is applied to a frozen wind field used in previous studies to investigate the effects of varying the intensity of wind evolution. LIDAR measurements are also evaluated with a large eddy simulation of a stable boundary layer provided by the National Center for Atmospheric Research. Simulation results show the combined effects of LIDAR errors and wind evolution for realistic turbine-mounted LIDAR measurement scenarios.

  2. Lower Sioux Wind Feasibility & Development

    SciTech Connect (OSTI)

    Minkel, Darin

    2012-04-01

    This report describes the process and findings of a Wind Energy Feasibility Study (Study) conducted by the Lower Sioux Indian Community (Community). The Community is evaluating the development of a wind energy project located on tribal land. The project scope was to analyze the critical issues in determining advantages and disadvantages of wind development within the Community. This analysis addresses both of the Community's wind energy development objectives: the single turbine project and the Commerical-scale multiple turbine project. The main tasks of the feasibility study are: land use and contraint analysis; wind resource evaluation; utility interconnection analysis; and project structure and economics.

  3. Western Wind Strategy: Addressing Critical Issues for Wind Deployment

    SciTech Connect (OSTI)

    Douglas Larson; Thomas Carr

    2012-03-30

    The goal of the Western Wind Strategy project was to help remove critical barriers to wind development in the Western Interconnection. The four stated objectives of this project were to: (1) identify the barriers, particularly barriers to the operational integration of renewables and barriers identified by load-serving entities (LSEs) that will be buying wind generation, (2) communicate the barriers to state officials, (3) create a collaborative process to address those barriers with the Western states, utilities and the renewable industry, and (4) provide a role model for other regions. The project has been on the forefront of identifying and informing state policy makers and utility regulators of critical issues related to wind energy and the integration of variable generation. The project has been a critical component in the efforts of states to push forward important reforms and innovations that will enable states to meet their renewable energy goals and lower the cost to consumers of integrating variable generation.

  4. SMART Wind Turbine Rotor: Data Analysis and Conclusions | Department of

    Energy Savers [EERE]

    Energy Data Analysis and Conclusions SMART Wind Turbine Rotor: Data Analysis and Conclusions Data analysis and conclusions from the SMART Rotor project, a wind turbine rotor with integrated trailing-edge flaps designed for active control of the rotor aerodynamics. PDF icon SMART Wind Turbine Rotor: Data Analysis and Conclusions More Documents & Publications SMART Wind Turbine Rotor: Data Analysis and Conclusions SMART Wind Turbine Rotor: Design and Field Test SMART Wind Turbine Rotor:

  5. Commonwealth Wind Commercial Wind Program | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    depending on applicant type (public vs. non-public) and grant type (site assessment, feasibility study, onsite wind monitoring, acoustic studies, business planning, and...

  6. Offshore Wind

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Lab Photovoltaic Systems Evaluation Laboratory PV Regional ... Facility Geomechanics and Drilling Labs National ... Twitter Google + Vimeo GovDelivery SlideShare Offshore Wind ...

  7. Accelerating Offshore Wind Development | Department of Energy

    Energy Savers [EERE]

    Offshore Wind Development Accelerating Offshore Wind Development December 12, 2012 - 2:15pm Addthis Matthew Loveless Matthew Loveless Data Integration Specialist, Office of Public Affairs What does this project do? The 2012 investments support innovative offshore installations for commercial deployment by 2017. The 2011 grants were targeted at projects that aim to either improve the technology used for offshore wind generation or remove the market barriers to offshore wind generation. View the

  8. NREL: Wind Research - Wind Career Map Shows Wind Industry Career...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Wind Career Map Shows Wind Industry Career Opportunities, Paths A screenshot of the wind career map showing the various points on a chart that show different careers in the wind...

  9. High Wind Penetration Impact on U.S. Wind Manufacturing Capacity and Critical Resources

    SciTech Connect (OSTI)

    Laxson, A.; Hand, M. M.; Blair, N.

    2006-10-01

    This study used two different models to analyze a number of alternative scenarios of annual wind power capacity expansion to better understand the impacts of high levels of wind generated electricity production on wind energy manufacturing and installation rates.

  10. Portsmouth Abbey School Wind Turbine Wind Farm | Open Energy...

    Open Energy Info (EERE)

    Abbey School Wind Turbine Wind Farm Jump to: navigation, search Name Portsmouth Abbey School Wind Turbine Wind Farm Facility Portsmouth Abbey School Wind Turbine Sector Wind energy...

  11. Harbec Plastic Wind Turbine Wind Farm | Open Energy Information

    Open Energy Info (EERE)

    Harbec Plastic Wind Turbine Wind Farm Jump to: navigation, search Name Harbec Plastic Wind Turbine Wind Farm Facility Harbec Plastic Wind Turbine Sector Wind energy Facility Type...

  12. Stetson Wind Expansion Wind Farm | Open Energy Information

    Open Energy Info (EERE)

    Stetson Wind Expansion Wind Farm Jump to: navigation, search Name Stetson Wind Expansion Wind Farm Facility Stetson Wind Expansion Sector Wind energy Facility Type Commercial Scale...

  13. Wind Power Partners '94 Wind Farm | Open Energy Information

    Open Energy Info (EERE)

    4 Wind Farm Jump to: navigation, search Name Wind Power Partners '94 Wind Farm Facility Wind Power Partners '94 Sector Wind energy Facility Type Commercial Scale Wind Facility...

  14. Wethersfield Wind Power Wind Farm | Open Energy Information

    Open Energy Info (EERE)

    Wethersfield Wind Power Wind Farm Jump to: navigation, search Name Wethersfield Wind Power Wind Farm Facility Wethersfield Wind Power Sector Wind energy Facility Type Commercial...

  15. State Fair Wind Energy Education Center Wind Farm | Open Energy...

    Open Energy Info (EERE)

    Fair Wind Energy Education Center Wind Farm Jump to: navigation, search Name State Fair Wind Energy Education Center Wind Farm Facility Wind Energy Education Center Sector Wind...

  16. Updated Eastern Interconnect Wind Power Output and Forecasts for ERGIS: July 2012

    SciTech Connect (OSTI)

    Pennock, K.

    2012-10-01

    AWS Truepower, LLC (AWST) was retained by the National Renewable Energy Laboratory (NREL) to update wind resource, plant output, and wind power forecasts originally produced by the Eastern Wind Integration and Transmission Study (EWITS). The new data set was to incorporate AWST's updated 200-m wind speed map, additional tall towers that were not included in the original study, and new turbine power curves. Additionally, a primary objective of this new study was to employ new data synthesis techniques developed for the PJM Renewable Integration Study (PRIS) to eliminate diurnal discontinuities resulting from the assimilation of observations into mesoscale model runs. The updated data set covers the same geographic area, 10-minute time resolution, and 2004?2006 study period for the same onshore and offshore (Great Lakes and Atlantic coast) sites as the original EWITS data set.

  17. Documentation, User Support, and Verification of Wind Turbine and Plant Models

    SciTech Connect (OSTI)

    Robert Zavadil; Vadim Zheglov; Yuriy Kazachkov; Bo Gong; Juan Sanchez; Jun Li

    2012-09-18

    As part of the Utility Wind Energy Integration Group (UWIG) and EnerNex's Wind Turbine Modeling Project, EnerNex has received ARRA (federal stimulus) funding through the Department of Energy (DOE) to further the progress of wind turbine and wind plant models. Despite the large existing and planned wind generation deployment, industry-standard models for wind generation have not been formally adopted. Models commonly provided for interconnection studies are not adequate for use in general transmission planning studies, where public, non-proprietary, documented and validated models are needed. NERC MOD (North American Electric Reliability Corporation) reliability standards require that power flow and dynamics models be provided, in accordance with regional requirements and procedures. The goal of this project is to accelerate the appropriate use of generic wind turbine models for transmission network analysis by: (1) Defining proposed enhancements to the generic wind turbine model structures that would allow representation of more advanced; (2) Comparative testing of the generic models against more detailed (and sometimes proprietary) versions developed by turbine vendors; (3) Developing recommended parameters for the generic models to best mimic the performance of specific commercial wind turbines; (4) Documenting results of the comparative simulations in an application guide for users; (5) Conducting technology transfer activities in regional workshops for dissemination of knowledge and information gained, and to engage electric power and wind industry personnel in the project while underway; (6) Designing of a "living" homepage to establish an online resource for transmission planners.

  18. Appendix I1-2 to Wind HUI Initiative 1: Field Campaign Report

    SciTech Connect (OSTI)

    John Zack; Deborah Hanley; Dora Nakafuji

    2012-07-15

    This report is an appendix to the Hawaii WindHUI efforts to dev elop and operationalize short-term wind forecasting and wind ramp event forecasting capabilities. The report summarizes the WindNET field campaign deployment experiences and challenges. As part of the WindNET project on the Big Island of Hawaii, AWS Truepower (AWST) conducted a field campaign to assess the viability of deploying a network of monitoring systems to aid in local wind energy forecasting. The data provided at these monitoring locations, which were strategically placed around the Big Island of Hawaii based upon results from the Oahu Wind Integration and Transmission Study (OWITS) observational targeting study (Figure 1), provided predictive indicators for improving wind forecasts and developing responsive strategies for managing real-time, wind-related system events. The goal of the field campaign was to make measurements from a network of remote monitoring devices to improve 1- to 3-hour look ahead forecasts for wind facilities.

  19. Integrated genome-based studies of Shewanella ecophysiology

    SciTech Connect (OSTI)

    Segre Daniel; Beg Qasim

    2012-02-14

    This project was a component of the Shewanella Federation and, as such, contributed to the overall goal of applying the genomic tools to better understand eco-physiology and speciation of respiratory-versatile members of Shewanella genus. Our role at Boston University was to perform bioreactor and high throughput gene expression microarrays, and combine dynamic flux balance modeling with experimentally obtained transcriptional and gene expression datasets from different growth conditions. In the first part of project, we designed the S. oneidensis microarray probes for Affymetrix Inc. (based in California), then we identified the pathways of carbon utilization in the metal-reducing marine bacterium Shewanella oneidensis MR-1, using our newly designed high-density oligonucleotide Affymetrix microarray on Shewanella cells grown with various carbon sources. Next, using a combination of experimental and computational approaches, we built algorithm and methods to integrate the transcriptional and metabolic regulatory networks of S. oneidensis. Specifically, we combined mRNA microarray and metabolite measurements with statistical inference and dynamic flux balance analysis (dFBA) to study the transcriptional response of S. oneidensis MR-1 as it passes through exponential, stationary, and transition phases. By measuring time-dependent mRNA expression levels during batch growth of S. oneidensis MR-1 under two radically different nutrient compositions (minimal lactate and nutritionally rich LB medium), we obtain detailed snapshots of the regulatory strategies used by this bacterium to cope with gradually changing nutrient availability. In addition to traditional clustering, which provides a first indication of major regulatory trends and transcription factors activities, we developed and implemented a new computational approach for Dynamic Detection of Transcriptional Triggers (D2T2). This new method allows us to infer a putative topology of transcriptional dependencies, with special emphasis on the nodes at which external stimuli are expected to affect the internal dynamics. In parallel, we addressed the question of how to compare transcriptional profiles across different time-course experiments. Our growth derivative mapping (GDM) method makes it possible to relate with each other points that correspond to the same relative growth rate in different media sets. This mapping allowed us to discriminate between genes that display an environment-independent behavior, and genes whose transcription seems to be tuned by specific environmental factors. Our analysis highlighted the importance of some specific pathways, whose metabolic relevance was confirmed by dynamic flux balance analysis (dFBA) calculations. In particular, we found that oxygen limitation potentially triggers the activation of genes previously shown to be relevant for anaerobic respiration, and that nitrogen limitation is coupled to storage of glycogen. Both observations have been corroborated by measurement of relevant intracellular and extracellular metabolites, as well as by complementary analyses of literature information and competitive fitness assay data. The pipeline of experimental and computational approaches applied and developed for this work could be extended to other microbes and additional conditions.

  20. Radionuclide disequilibria studies for investigating the integrity of potential nuclear waste disposal sites: subseabed studies.

    SciTech Connect (OSTI)

    Laul, J.C.; Thomas, C.W.; Petersen, M.R.; Perkins, R.W.

    1981-09-01

    This study of subseabed sediments indicates that natural radionuclides can be employed to define past long-term migration rates and thereby evaluate the integrity of potential disposal sites in ocean sediments. The study revealed the following conclusions: (1) the sedimentation rate of both the long and short cores collected in the North Pacific is 2.5 mm/1000 yr or 2.5 m/m.yr in the upper 3 meters; (2) the sedimentation rate has been rather constant over the last one million years; and (3) slow diffusive processes dominate within the sediment. Reworking of the sediment by physical processes or organisms is not observed.

  1. Danielson Wind | Open Energy Information

    Open Energy Info (EERE)

    Wind Jump to: navigation, search Name Danielson Wind Facility Danielson Wind Sector Wind energy Facility Type Commercial Scale Wind Facility Status In Service Developer Juhl Wind...

  2. Kawailoa Wind | Open Energy Information

    Open Energy Info (EERE)

    Wind Jump to: navigation, search Name Kawailoa Wind Facility Kawailoa Wind Sector Wind energy Facility Type Commercial Scale Wind Facility Status In Service Owner First Wind...

  3. Palouse Wind | Open Energy Information

    Open Energy Info (EERE)

    Wind Jump to: navigation, search Name Palouse Wind Facility Palouse Wind Sector Wind energy Facility Type Commercial Scale Wind Facility Status In Service Owner First Wind...

  4. Harbor Wind | Open Energy Information

    Open Energy Info (EERE)

    Wind Jump to: navigation, search Name Harbor Wind Facility Harbor Wind Sector Wind energy Facility Type Commercial Scale Wind Facility Status In Service Owner Harbor Wind LLC...

  5. Kahuku Wind | Open Energy Information

    Open Energy Info (EERE)

    Kahuku Wind Jump to: navigation, search Name Kahuku Wind Facility Kahuku Wind Sector Wind energy Facility Type Commercial Scale Wind Facility Status In Service Owner First Wind...

  6. Wiota Wind | Open Energy Information

    Open Energy Info (EERE)

    Wiota Wind Jump to: navigation, search Name Wiota Wind Facility Wiota Wind Sector Wind energy Facility Type Community Wind Facility Status In Service Owner Wiota Wind Energy LLC...

  7. Bravo Wind | Open Energy Information

    Open Energy Info (EERE)

    Bravo Wind Jump to: navigation, search Name Bravo Wind Facility Bravo Wind Sector Wind energy Facility Type Commercial Scale Wind Facility Status Proposed Developer Bravo Wind LLC...

  8. Auwahi Wind | Open Energy Information

    Open Energy Info (EERE)

    Auwahi Wind Jump to: navigation, search Name Auwahi Wind Facility Auwahi Wind Sector Wind energy Facility Type Commercial Scale Wind Facility Status In Service Owner BP Wind Energy...

  9. Traer Wind | Open Energy Information

    Open Energy Info (EERE)

    Traer Wind Jump to: navigation, search Name Traer Wind Facility Traer Wind Sector Wind energy Facility Type Community Wind Facility Status In Service Owner Norsemen Wind Energy LLC...

  10. Sheffield Wind | Open Energy Information

    Open Energy Info (EERE)

    Wind Jump to: navigation, search Name Sheffield Wind Facility Sheffield Wind Sector Wind energy Facility Type Commercial Scale Wind Facility Status In Service Owner First Wind...

  11. Rollins Wind | Open Energy Information

    Open Energy Info (EERE)

    Wind Jump to: navigation, search Name Rollins Wind Facility Rollins Wind Sector Wind energy Facility Type Commercial Scale Wind Facility Status In Service Owner First Wind...

  12. Integrated Genome-Based Studies of Shewanella Ecophysiology

    SciTech Connect (OSTI)

    Andrei L. Osterman, Ph.D.

    2012-12-17

    Integration of bioinformatics and experimental techniques was applied to mapping and characterization of the key components (pathways, enzymes, transporters, regulators) of the core metabolic machinery in Shewanella oneidensis and related species with main focus was on metabolic and regulatory pathways involved in utilization of various carbon and energy sources. Among the main accomplishments reflected in ten joint publications with other participants of Shewanella Federation are: (i) A systems-level reconstruction of carbohydrate utilization pathways in the genus of Shewanella (19 species). This analysis yielded reconstruction of 18 sugar utilization pathways including 10 novel pathway variants and prediction of > 60 novel protein families of enzymes, transporters and regulators involved in these pathways. Selected functional predictions were verified by focused biochemical and genetic experiments. Observed growth phenotypes were consistent with bioinformatic predictions providing strong validation of the technology and (ii) Global genomic reconstruction of transcriptional regulons in 16 Shewanella genomes. The inferred regulatory network includes 82 transcription factors, 8 riboswitches and 6 translational attenuators. Of those, 45 regulons were inferred directly from the genome context analysis, whereas others were propagated from previously characterized regulons in other species. Selected regulatory predictions were experimentally tested. Integration of this analysis with microarray data revealed overall consistency and provided additional layer of interactions between regulons. All the results were captured in the new database RegPrecise, which is a joint development with the LBNL team. A more detailed analysis of the individual subsystems, pathways and regulons in Shewanella spp included bioinfiormatics-based prediction and experimental characterization of: (i) N-Acetylglucosamine catabolic pathway; (ii)Lactate utilization machinery; (iii) Novel NrtR regulator of NAD biosynthesis; (iv) HexR-controlled global regulon in central metabolism. In addition to numerous specific findings contributing to basic understanding of ecophysiology and evolution of Shewanella, the key components of the integrative genomic methodology of general utility for the community were optimized, validated and disseminated.

  13. Wyoming Wind Power Project (generation/wind)

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Wind Power > Generation Hydro Power Wind Power Monthly GSP BPA White Book Dry Year Tools Firstgov Wyoming Wind Power Project (Foote Creek Rim I and II) Thumbnail image of wind...

  14. Offshore Wind Power USA

    Broader source: Energy.gov [DOE]

    The Offshore Wind Power USA conference provides the latest offshore wind market updates and forecasts.

  15. Study of the Advantages of Internal Permanent Magnet Drive Motor with Selectable Windings for Hybrid-Electric Vehicles

    SciTech Connect (OSTI)

    Otaduy, P.J.; Hsu, J.S.; Adams, D.J.

    2007-11-30

    This report describes research performed on the viability of changing the effectively active number of turns in the stator windings of an internal permanent magnet (IPM) electric motor to strengthen or weaken the magnetic fields in order to optimize the motor's performance at specific operating speeds and loads. Analytical and simulation studies have been complemented with research on switching mechanisms to accomplish the task. The simulation studies conducted examine the power and energy demands on a vehicle following a series of standard driving cycles and the impact on the efficiency and battery size of an electrically propelled vehicle when it uses an IPM motor with turn-switching capabilities. Both full driving cycle electric propulsion and propulsion limited starting from zero to a set speed have been investigated.

  16. Integrated Genome-Based Studies of Shewanella Echophysiology

    SciTech Connect (OSTI)

    Margrethe H. Serres

    2012-06-29

    Shewanella oneidensis MR-1 is a motile, facultative {gamma}-Proteobacterium with remarkable respiratory versatility; it can utilize a range of organic and inorganic compounds as terminal electronacceptors for anaerobic metabolism. The ability to effectively reduce nitrate, S0, polyvalent metals andradionuclides has established MR-1 as an important model dissimilatory metal-reducing microorganism for genome-based investigations of biogeochemical transformation of metals and radionuclides that are of concern to the U.S. Department of Energy (DOE) sites nationwide. Metal-reducing bacteria such as Shewanella also have a highly developed capacity for extracellular transfer of respiratory electrons to solid phase Fe and Mn oxides as well as directly to anode surfaces in microbial fuel cells. More broadly, Shewanellae are recognized free-living microorganisms and members of microbial communities involved in the decomposition of organic matter and the cycling of elements in aquatic and sedimentary systems. To function and compete in environments that are subject to spatial and temporal environmental change, Shewanella must be able to sense and respond to such changes and therefore require relatively robust sensing and regulation systems. The overall goal of this project is to apply the tools of genomics, leveraging the availability of genome sequence for 18 additional strains of Shewanella, to better understand the ecophysiology and speciation of respiratory-versatile members of this important genus. To understand these systems we propose to use genome-based approaches to investigate Shewanella as a system of integrated networks; first describing key cellular subsystems - those involved in signal transduction, regulation, and metabolism - then building towards understanding the function of whole cells and, eventually, cells within populations. As a general approach, this project will employ complimentary "top-down" - bioinformatics-based genome functional predictions, high-throughput expression analyses, and functional genomics approaches to uncover key genes as well as metabolic and regulatory networks. The "bottom-up" component employs more traditional approaches including genetics, physiology and biochemistry to test or verify predictions. This information will ultimately be linked to analyses of signal transduction and transcriptional regulatory systems and used to develop a linked model that will contribute to understanding the ecophysiology of Shewanella in redox stratified environments. A central component of this effort is the development of a data and knowledge integration environment that will allow investigators to query across the individual research domains, link to analysis applications, visualize data in a cell systems context, and produce new knowledge, while minimizing the effort, time and complexity to participating institutions.

  17. DOE Wind Energy R&D is Linked to Innovations Within and Outside Wind Power

    Office of Environmental Management (EM)

    Industry, Study Finds | Department of Energy Wind Energy R&D is Linked to Innovations Within and Outside Wind Power Industry, Study Finds DOE Wind Energy R&D is Linked to Innovations Within and Outside Wind Power Industry, Study Finds DOE Wind Energy R&D is Linked to Innovations Within and Outside Wind Power Industry, Study Finds, an EERE Retrospective Study Brief, September 2009. Advances in today's commercial wind energy generation are extensively linked to the Department of

  18. WINDExchange: Selling Wind Power

    Wind Powering America (EERE)

    Market Sectors Printable Version Bookmark and Share Utility-Scale Wind Distributed Wind Motivations for Buying Wind Power Buying Wind Power Selling Wind Power Selling Wind Power Owners of wind turbines interconnected directly to the transmission or distribution grid, or that produce more power than the host consumes, can sell wind power as well as other generation attributes. Wind-Generated Electricity Electricity generated by wind turbines can be used to cover on-site energy needs

  19. Winnebago Tribe - Wind Assessment

    Energy Savers [EERE]

    Winnebago Tribe of Nebraska Wind Energy Feasibility Project Update November 18, 2008 Discussion Outline * Winnebago Tribe of Nebraska * Project Objectives and Overview * Project Location * Project Participants * Project Status ƒ Accomplishments ƒ Lessons Learned * Next Steps © 2008 All Rights Reserved Winnebago Tribe of Nebraska © 2008 All Rights Reserved Winnebago Tribe of Nebraska © 2008 All Rights Reserved DOE Wind Project: Purpose * To initiate a study to determine feasibility of

  20. Data analysis and conclusions from the SMART Rotor project, a wind turbine rotor with integrated trailing-edge flaps designed for active control of the rotor aerodynamics.

    Office of Environmental Management (EM)

    681 Unlimited Release Printed January 2014 SMART Wind Turbine Rotor: Design and Field Test Jonathan C. Berg, Brian R. Resor, Joshua A. Paquette, and Jonathan R. White Prepared by Sandia National Laboratories Albuquerque, New Mexico 87185 and Livermore, California 94550 Sandia National Laboratories is a multi-program laboratory managed and operated by Sandia Corporation, a wholly owned subsidiary of Lockheed Martin Corporation, for the U.S. Department of Energy's National Nuclear Security

  1. Direct drive wind turbine

    DOE Patents [OSTI]

    Bywaters, Garrett; Danforth, William; Bevington, Christopher; Jesse, Stowell; Costin, Daniel

    2006-10-10

    A wind turbine is provided that minimizes the size of the drive train and nacelle while maintaining the power electronics and transformer at the top of the tower. The turbine includes a direct drive generator having an integrated disk brake positioned radially inside the stator while minimizing the potential for contamination. The turbine further includes a means for mounting a transformer below the nacelle within the tower.

  2. Direct drive wind turbine

    DOE Patents [OSTI]

    Bywaters, Garrett Lee; Danforth, William; Bevington, Christopher; Stowell, Jesse; Costin, Daniel

    2006-09-19

    A wind turbine is provided that minimizes the size of the drive train and nacelle while maintaining the power electronics and transformer at the top of the tower. The turbine includes a direct drive generator having an integrated disk brake positioned radially inside the stator while minimizing the potential for contamination. The turbine further includes a means for mounting a transformer below the nacelle within the tower.

  3. Direct drive wind turbine

    DOE Patents [OSTI]

    Bywaters, Garrett; Danforth, William; Bevington, Christopher; Stowell, Jesse; Costin, Daniel

    2006-07-11

    A wind turbine is provided that minimizes the size of the drive train and nacelle while maintaining the power electronics and transformer at the top of the tower. The turbine includes a direct drive generator having an integrated disk brake positioned radially inside the stator while minimizing the potential for contamination. The turbine further includes a means for mounting a transformer below the nacelle within the tower.

  4. Direct drive wind turbine

    DOE Patents [OSTI]

    Bywaters, Garrett; Danforth, William; Bevington, Christopher; Jesse, Stowell; Costin, Daniel

    2007-02-27

    A wind turbine is provided that minimizes the size of the drive train and nacelle while maintaining the power electronics and transformer at the top of the tower. The turbine includes a direct drive generator having an integrated disk brake positioned radially inside the stator while minimizing the potential for contamination. The turbine further includes a means for mounting a transformer below the nacelle within the tower.

  5. wind turbines

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    wind turbines - Sandia Energy Energy Search Icon Sandia Home Locations Contact Us Employee Locator Energy & Climate Secure & Sustainable Energy Future Stationary Power Energy Conversion Efficiency Solar Energy Wind Energy Water Power Supercritical CO2 Geothermal Natural Gas Safety, Security & Resilience of the Energy Infrastructure Energy Storage Nuclear Power & Engineering Grid Modernization Battery Testing Nuclear Fuel Cycle Defense Waste Management Programs Advanced Nuclear

  6. INTEGRATED GENOME-BASED STUDIES OF SHEWANELLA ECOPHYSIOLOGY TIEDJE...

    Office of Scientific and Technical Information (OSTI)

    BIOLOGICAL SCIENCES The aim of the work reported is to study Shewanella population genomics, and to understand the evolution, ecophysiology, and speciation of Shewanella. The...

  7. Integrated Genome-Based Studies of Shewanella Ecophysiology ...

    Office of Scientific and Technical Information (OSTI)

    genomic, proteomic and computational technologies to study various aspects of energy metabolism of two Shewanella strains from a systems-level perspective. Authors: Zhou, Jizhong ;...

  8. Cost-Causation and Integration Cost Analysis for Variable Generation

    SciTech Connect (OSTI)

    Milligan, M.; Ela, E.; Hodge, B. M.; Kirby, B.; Lew, D.; Clark, C.; DeCesaro, J.; Lynn, K.

    2011-06-01

    This report examines how wind and solar integration studies have evolved, what analysis techniques work, what common mistakes are still made, what improvements are likely to be made in the near future, and why calculating integration costs is such a difficult problem and should be undertaken carefully, if at all.

  9. A Comparison of Platform Options for Deep-water Floating Offshore Vertical Axis Wind Turbines: An Initial Study.

    SciTech Connect (OSTI)

    Bull, Diana L; Fowler, Matthew; Goupee, Andrew

    2014-08-01

    This analysis utilizes a 5 - MW VAWT topside design envelope created by Sandia National Laborator ies to compare floating platform options fo r each turbine in the design space. The platform designs are based on two existing designs, the OC3 Hywind spar - buoy and Principal Power's WindFloat semi - submersible. These designs are scaled using Froude - scaling relationships to determine an appropriately sized spar - buoy and semi - submersible design for each topside. Both the physical size of the required platform as well as mooring configurations are considered. Results are compared with a comparable 5 - MW HAWT in order to identify potential differences in the platform and mooring sizing between the VAWT and HAWT . The study shows that there is potential for cost savings due to reduced platform size requirements for the VAWT.

  10. Capacity Requirements to Support Inter-Balancing Area Wind Delivery

    SciTech Connect (OSTI)

    Kirby, B.; Milligan, M.

    2009-07-01

    Paper examines the capacity requirements that arise as wind generation is integrated into the power system and how those requirements change depending on where the wind energy is delivered.

  11. Offshore Wind Project Surges Ahead in South Carolina

    Broader source: Energy.gov [DOE]

    The Center for Marine and Wetland Studies studies wind speed data from buoys, which have been measuring wind speed and direction for the past year.

  12. Impact of Wind Power Plants on Voltage and Transient Stability of Power Systems

    SciTech Connect (OSTI)

    Muljadi, E.; Nguyen, Tony B.; Pai, M. A.

    2008-09-30

    A standard three-machine, nine-bus wind power system is studied and augmented by a radially connected wind power plant that contains 22 wind turbine generators.

  13. Integrated seismic studies at the Rye Patch geothermal reservoir...

    Open Energy Info (EERE)

    seismic studies at the Rye Patch geothermal reservoir Authors R. Gritto, T.M. Daley and E.L. Majer Published Journal Geothermal Resources Council Transactions, 2002 DOI Not...

  14. Grid Integration | Department of Energy

    Energy Savers [EERE]

    You are here Home » Research & Development » Grid Integration Grid Integration Grid Integration The Wind Program works with electric grid operators, utilities, regulators, and industry to create new strategies for incorporating increasing amounts of wind energy into the power system while maintaining economic and reliable operation of the grid. Utilities have been increasingly deploying wind power to provide larger portions of electricity generation. However, many utilities also express

  15. NREL, Clemson University Collaborate on Wind Energy Testing Facilities |

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Department of Energy NREL, Clemson University Collaborate on Wind Energy Testing Facilities NREL, Clemson University Collaborate on Wind Energy Testing Facilities September 16, 2015 - 6:55pm Addthis A photo of a large dynamometer in a warehouse. In May, two of our nation's most advanced wind research and test facilities joined forces to help the wind energy industry improve the performance of wind turbine drivetrains and better understand how the turbines can integrate effectively with the

  16. Milford Wind Corridor Phase I (Clipper) Wind Farm | Open Energy...

    Open Energy Info (EERE)

    Clipper) Wind Farm Jump to: navigation, search Name Milford Wind Corridor Phase I (Clipper) Wind Farm Facility Milford Wind Corridor Phase I (Clipper) Sector Wind energy Facility...

  17. Coastal Ohio Wind Project

    SciTech Connect (OSTI)

    Gorsevski, Peter; Afjeh, Abdollah; Jamali, Mohsin; Bingman, Verner

    2014-04-04

    The Coastal Ohio Wind Project intends to address problems that impede deployment of wind turbines in the coastal and offshore regions of Northern Ohio. The project evaluates different wind turbine designs and the potential impact of offshore turbines on migratory and resident birds by developing multidisciplinary research, which involves wildlife biology, electrical and mechanical engineering, and geospatial science. Firstly, the project conducts cost and performance studies of two- and three-blade wind turbines using a turbine design suited for the Great Lakes. The numerical studies comprised an analysis and evaluation of the annual energy production of two- and three-blade wind turbines to determine the levelized cost of energy. This task also involved wind tunnel studies of model wind turbines to quantify the wake flow field of upwind and downwind wind turbine-tower arrangements. The experimental work included a study of a scaled model of an offshore wind turbine platform in a water tunnel. The levelized cost of energy work consisted of the development and application of a cost model to predict the cost of energy produced by a wind turbine system placed offshore. The analysis found that a floating two-blade wind turbine presents the most cost effective alternative for the Great Lakes. The load effects studies showed that the two-blade wind turbine model experiences less torque under all IEC Standard design load cases considered. Other load effects did not show this trend and depending on the design load cases, the two-bladed wind turbine showed higher or lower load effects. The experimental studies of the wake were conducted using smoke flow visualization and hot wire anemometry. Flow visualization studies showed that in the downwind turbine configuration the wake flow was insensitive to the presence of the blade and was very similar to that of the tower alone. On the other hand, in the upwind turbine configuration, increasing the rotor blade angle of attack reduced the wake size and enhanced the vortices in the flow downstream of the turbine-tower compared with the tower alone case. Mean and rms velocity distributions from hot wire anemometer data confirmed that in a downwind configuration, the wake of the tower dominates the flow, thus the flow fields of a tower alone and tower-turbine combinations are nearly the same. For the upwind configuration, the mean velocity shows a narrowing of the wake compared with the tower alone case. The downwind configuration wake persisted longer than that of an upwind configuration; however, it was not possible to quantify this difference because of the size limitation of the wind tunnel downstream of the test section. The water tunnel studies demonstrated that the scale model studies could be used to adequately produce accurate motions to model the motions of a wind turbine platform subject to large waves. It was found that the important factors that affect the platform is whether the platform is submerged or surface piercing. In the former, the loads on the platform will be relatively reduced whereas in the latter case, the structure pierces the wave free surface and gains stiffness and stability. The other important element that affects the movement of the platform is depth of the sea in which the wind turbine will be installed. Furthermore, the wildlife biology component evaluated migratory patterns by different monitoring systems consisting of marine radar, thermal IR camera and acoustic recorders. The types of radar used in the project are weather surveillance radar and marine radar. The weather surveillance radar (1988 Doppler), also known as Next Generation Radar (NEXRAD), provides a network of weather stations in the US. Data generated from this network were used to understand general migratory patterns, migratory stopover habitats, and other patterns caused by the effects of weather conditions. At a local scale our marine radar was used to complement the datasets from NEXRAD and to collect additional monitoring parameters such as passage rates, flight paths, flight directions, and flight altitudes of nocturnal migrating species. Our work focused on the design and development of custom built marine radar that used t-bar and parabolic dish antennas. The marine radar used in the project was Furuno (XANK250) which was coupled with a XIR3000B digitizing card from Russell Technologies for collection of the radar data. The radar data was processed by open source radR processing software using different computational techniques and methods. Additional data from thermal IR imaging cameras were collected to detect heat emitted from objects and provide information on movements of birds and bats, data which we used for different animal flight behavior analysis. Lastly, the data from the acoustic recorders were used to provide the number of bird calls for assessing patterns and peak passage rates during migration. The development of the geospatial database included collection of different data sources that are used to support offshore wind turbine development. Many different data sets were collected and organized using initial version of web-based repository software tools that can accommodate distribution of rectified pertinent data sets such as the lake depth, lake bottom engineering parameters, extent of ice, navigation pathways, wind speed, important bird habitats, fish efforts and other layers that are relevant for supporting robust offshore wind turbine developments. Additional geospatial products developed during the project included few different prototypes for offshore wind farm suitability which can involve different stakeholders and participants for solving complex planning problems and building consensus. Some of the prototypes include spatial decision support system (SDSS) for collaborative decision making, a web-based Participatory Geographic Information System (PGIS) framework for evaluating importance of different decision alternatives using different evaluation criteria, and an Android application for collection of field data using mobile and tablet devices . In summary, the simulations of two- and three-blade wind turbines suggested that two-bladed machines could produce comparable annual energy as the three-blade wind turbines but have a lighter tower top weight, which leads to lower cost of energy. In addition, the two-blade rotor configuration potentially costs 20% less than a three blade configuration that produces the same power at the same site. The cost model analysis predicted a potential cost savings of approximately 15% for offshore two-blade wind turbines. The foundation design for a wind turbine in Lake Erie is likely to be driven by ice loads based on the currently available ice data and ice mechanics models. Hence, for Lake Eire, the cost savings will be somewhat smaller than the other lakes in the Great Lakes. Considering the size of cranes and vessels currently available in the Great Lakes, the cost optimal wind turbine size should be 3 MW, not larger. The surveillance data from different monitoring systems suggested that bird and bat passage rates per hour were comparable during heavy migrations in both spring and fall seasons while passage rates were significantly correlated to wind directions and wind speeds. The altitude of migration was higher during heavy migrations and higher over water relative to over land. Notable portions of migration on some spring nights occurred parallel the shoreline, often moving perpendicular to southern winds. The birds approaching the Western basin have a higher propensity to cross than birds approaching the Central basin of Lake Erie and as such offshore turbine development might be a better option further east towards Cleveland than in the Western basin. The high stopover density was more strongly associated with migration volume the following night rather than the preceding night. The processed mean scalar wind speeds with temporal resolutions as fine as 10-minute intervals near turbine height showed that August is the month with the weakest winds while December is the month, which typically has the strongest winds. The ice data suggests that shallow western basin of Lake Erie has higher ice cover duration many times exceeding 90 days during some winters.

  18. Demand Response and Energy Storage Integration Study- Past Workshops

    Broader source: Energy.gov [DOE]

    The project was initiated and informed by the results of two DOE workshops; one on energy storage and the other on demand response. The workshops were attended by members of the electric power industry, researchers, and policy makers; and the study design and goals reflect their contributions to the collective thinking of the project team.

  19. Wind Plant Power Optimization through Yaw Control using a Parametric Model for Wake Effects -- A CFD Simulation Study

    SciTech Connect (OSTI)

    Gebraad, P. M. O.; Teeuwisse, F. W.; van Wingerden, J. W.; Fleming, Paul A.; Ruben, S. D.; Marden, J. R.; Pao, L. Y.

    2016-01-01

    This article presents a wind plant control strategy that optimizes the yaw settings of wind turbines for improved energy production of the whole wind plant by taking into account wake effects. The optimization controller is based on a novel internal parametric model for wake effects, called the FLOw Redirection and Induction in Steady-state (FLORIS) model. The FLORIS model predicts the steady-state wake locations and the effective flow velocities at each turbine, and the resulting turbine electrical energy production levels, as a function of the axial induction and the yaw angle of the different rotors. The FLORIS model has a limited number of parameters that are estimated based on turbine electrical power production data. In high-fidelity computational fluid dynamics simulations of a small wind plant, we demonstrate that the optimization control based on the FLORIS model increases the energy production of the wind plant, with a reduction of loads on the turbines as an additional effect.

  20. WindFloat Feasibility Study Support. Cooperative Research and Development Final Report, CRADA Number CRD-11-419

    SciTech Connect (OSTI)

    Sirnivas, Senu

    2015-05-07

    This shared resource CRADA defines research collaborations between the National Renewable Energy Laboratory and Principle Power, Inc. and its subsidiaries (“Principle Power”). Under the terms and conditions described in this CRADA agreement, NREL and Principle Power will collaborate on the DEMOWFLOAT project, a full-scale 2-MW demonstration project of a novel floating support structure for large offshore wind turbines, called WindFloat. The purpose of the project is to demonstrate the longterm field performance of the WindFloat design, thus enabling the future commercialized deployment of floating deepwater offshore wind power plants. NREL is the leading U.S. Department of Energy (DOE) laboratory for the development and advancement of renewable energy and has a strong interest in offshore wind and the development of deepwater offshore wind systems. NREL will provide expertise and resources to the DEMOWFLOAT project in assessing the environmental impacts, independent technical performance validation, and engineering analysis. Principle Power is a Seattle, Washington-based renewable energy company that owns all the intellectual property associated with the WindFloat. In return for NREL’s support of the DEMOWFLOAT project, Principle Power will provide NREL with valuable test data from the project that will be used to validate the numerical tools developed by NREL for analyzing offshore wind turbines. In addition, NREL will gain experience and knowledge in offshore wind designs and testing methods through this collaboration. 2 This report is available at no cost from the National Renewable Energy Laboratory (NREL) at www.nrel.gov/publications. NREL and Principle Power will work together to advance floating offshore wind technology, and demonstrate its viability for supplying the world with a new clean energy source.

  1. Wind power: executive summary on research on network wind power over the Pacific Northwest. Progress report, October 1979-September 1980

    SciTech Connect (OSTI)

    Baker, R.W.; Hewson, E.W.

    1980-10-01

    This research in FY80 is composed of six primary tasks. These tasks include data collection and analysis, wind flow studies around an operational wind turbine generator (WTG), kite anemometer calibration, wind flow analysis and prediction, the Klickitat County small wind energy conversion system (SWECS) program, and network wind power analysis. The data collection and analysis task consists of four sections, three of which deal with wind flow site surveys and the fourth with collecting and analyzing wind data from existing data stations.

  2. Kauai Island Utility Co-op (KIUC) PV integration study.

    SciTech Connect (OSTI)

    Ellis, Abraham; Mousseau, Tom

    2011-08-01

    This report investigates the effects that increased distributed photovoltaic (PV) generation would have on the Kauai Island Utility Co-op (KIUC) system operating requirements. The study focused on determining reserve requirements needed to mitigate the impact of PV variability on system frequency, and the impact on operating costs. Scenarios of 5-MW, 10-MW, and 15-MW nameplate capacity of PV generation plants distributed across the Kauai Island were considered in this study. The analysis required synthesis of the PV solar resource data and modeling of the KIUC system inertia. Based on the results, some findings and conclusions could be drawn, including that the selection of units identified as marginal resources that are used for load following will change; PV penetration will displace energy generated by existing conventional units, thus reducing overall fuel consumption; PV penetration at any deployment level is not likely to reduce system peak load; and increasing PV penetration has little effect on load-following reserves. The study was performed by EnerNex under contract from Sandia National Laboratories with cooperation from KIUC.

  3. SMART Wind Turbine Rotor: Design and Field Test | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Design and Field Test SMART Wind Turbine Rotor: Design and Field Test This report documents the design, fabrication, and testing of the SMART Wind Turbine Rotor. This work established hypothetical approaches for integrating active aerodynamic devices (AADs) into the wind turbine structure and controllers. PDF icon smart_wind_turbine_design_pdf. More Documents & Publications SMART Wind Turbine Rotor: Design and Field Test SMART Wind Turbine Rotor: Data Analysis and Conclusions SMART Wind

  4. JD Wind 6 Wind Farm | Open Energy Information

    Open Energy Info (EERE)

    JD Wind 6 Wind Farm Jump to: navigation, search Name JD Wind 6 Wind Farm Facility JD Wind 6 Sector Wind energy Facility Type Commercial Scale Wind Facility Status In Service Owner...

  5. JD Wind 7 Wind Farm | Open Energy Information

    Open Energy Info (EERE)

    JD Wind 7 Wind Farm Jump to: navigation, search Name JD Wind 7 Wind Farm Facility JD Wind 7 Sector Wind energy Facility Type Commercial Scale Wind Facility Status In Service Owner...

  6. Michigan Wind II Wind Farm | Open Energy Information

    Open Energy Info (EERE)

    II Wind Farm Jump to: navigation, search Name Michigan Wind II Wind Farm Facility Michigan Wind II Wind Farm Sector Wind energy Facility Type Commercial Scale Wind Facility Status...

  7. Metro Wind LLC Wind Farm | Open Energy Information

    Open Energy Info (EERE)

    Wind LLC Wind Farm Jump to: navigation, search Name Metro Wind LLC Wind Farm Facility Metro Wind LLC Sector Wind energy Facility Type Commercial Scale Wind Facility Status In...

  8. Integration of hydrothermal-energy economics: related quantitative studies

    SciTech Connect (OSTI)

    Not Available

    1982-08-01

    A comparison of ten models for computing the cost of hydrothermal energy is presented. This comparison involved a detailed examination of a number of technical and economic parameters of the various quantitative models with the objective of identifying the most important parameters in the context of accurate estimates of cost of hydrothermal energy. Important features of various models, such as focus of study, applications, marked sectors covered, methodology, input data requirements, and output are compared in the document. A detailed sensitivity analysis of all the important engineering and economic parameters is carried out to determine the effect of non-consideration of individual parameters.

  9. Study of the impacts of regulations affecting the acceptance of integrated

    Office of Scientific and Technical Information (OSTI)

    community energy systems. Final report (Technical Report) | SciTech Connect Study of the impacts of regulations affecting the acceptance of integrated community energy systems. Final report Citation Details In-Document Search Title: Study of the impacts of regulations affecting the acceptance of integrated community energy systems. Final report A detailed description is presented of the laws and programs of the State of North Carolina governing the regulation of public energy utilities, the

  10. Study of the impacts of regulations affecting the acceptance of integrated

    Office of Scientific and Technical Information (OSTI)

    community energy systems. Final report (Technical Report) | SciTech Connect Study of the impacts of regulations affecting the acceptance of integrated community energy systems. Final report Citation Details In-Document Search Title: Study of the impacts of regulations affecting the acceptance of integrated community energy systems. Final report × You are accessing a document from the Department of Energy's (DOE) SciTech Connect. This site is a product of DOE's Office of Scientific and

  11. Garnet Wind | Open Energy Information

    Open Energy Info (EERE)

    Wind Jump to: navigation, search Name Garnet Wind Facility Garnet Wind Sector Wind energy Facility Type Commercial Scale Wind Facility Status In Service Owner Azusa Light & Water...

  12. Lime Wind | Open Energy Information

    Open Energy Info (EERE)

    Wind Jump to: navigation, search Name Lime Wind Facility Lime Wind Sector Wind energy Facility Type Commercial Scale Wind Facility Status In Service Owner Joseph Millworks Inc...

  13. Fairhaven Wind | Open Energy Information

    Open Energy Info (EERE)

    Wind Jump to: navigation, search Name Fairhaven Wind Facility Fairhaven Wind Sector Wind energy Facility Type Community Wind Facility Status In Service Owner Solaya Energy Palmer...

  14. Scituate Wind | Open Energy Information

    Open Energy Info (EERE)

    Wind Jump to: navigation, search Name Scituate Wind Facility Scituate Wind Sector Wind energy Facility Type Community Wind Facility Status In Service Owner Solaya Energy ...

  15. Pacific Wind | Open Energy Information

    Open Energy Info (EERE)

    Wind Jump to: navigation, search Name Pacific Wind Facility Pacific Wind Sector Wind energy Facility Type Commercial Scale Wind Facility Status In Service Owner enXco Developer...

  16. Galactic Wind | Open Energy Information

    Open Energy Info (EERE)

    Wind Jump to: navigation, search Name Galactic Wind Facility Galactic Wind Sector Wind energy Facility Type Commercial Scale Wind Facility Status In Service Owner Epic Systems...

  17. Rockland Wind | Open Energy Information

    Open Energy Info (EERE)

    Wind Jump to: navigation, search Name Rockland Wind Facility Rockland Wind Sector Wind energy Facility Type Commercial Scale Wind Facility Status In Service Developer Ridgeline...

  18. Greenfield Wind | Open Energy Information

    Open Energy Info (EERE)

    Jump to: navigation, search Name Greenfield Wind Facility Greenfield Wind Sector Wind energy Facility Type Community Wind Facility Status In Service Owner Greenfield Wind Power...

  19. Willmar Wind | Open Energy Information

    Open Energy Info (EERE)

    Wind Jump to: navigation, search Name Willmar Wind Facility Willmar Wind Sector Wind energy Facility Type Commercial Scale Wind Facility Status In Service Owner Willmar...

  20. 2008 WIND TECHNOLOGIES MARKET REPORT

    SciTech Connect (OSTI)

    Wiser, Ryan H.; Bolinger, Mark; Barbose, G.; Mills, A.; Rosa, A.; Porter, K.; Fink, S.; Tegen, S.; Musial, W.; Oteri, F.; Heimiller, D.; Rberts, B.; Belyeu, K.; Stimmel, R.

    2009-07-15

    The U.S. wind industry experienced a banner year in 2008, again surpassing even optimistic growth projections from years past. At the same time, the last year has been one of upheaval, with the global financial crisis impacting near-term growth prospects for the wind industry, and with federal policy changes enacted to push the industry towards continued aggressive expansion. This rapid pace of development has made it difficult to keep up with trends in the marketplace. Yet, the need for timely, objective information on the industry and its progress has never been greater. This report - the third of an ongoing annual series - attempts to meet this need by providing a detailed overview of developments and trends in the U.S. wind power market, with a particular focus on 2008. As with previous editions, this report begins with an overview of key wind power installation-related trends: trends in wind capacity growth in the U.S., how that growth compares to other countries and generation sources, the amount and percentage of wind in individual states and serving specific utilities, and the quantity of proposed wind capacity in various interconnection queues in the United States. Next, the report covers an array of wind industry trends, including developments in turbine manufacturer market share, manufacturing and supply-chain investments, wind turbine and wind project size, project financing developments, and trends among wind power developers, project owners, and power purchasers. The report then turns to a discussion of wind project price, cost, and performance trends. In so doing, it reviews the price of wind power in the United States, and how those prices compare to the cost of fossil-fueled generation, as represented by wholesale power prices. It also describes trends in installed wind project costs, wind turbine transaction prices, project performance, and operations and maintenance expenses. Next, the report examines other policy and market factors impacting the domestic wind power market, including federal and state policy drivers, transmission issues, and grid integration. Finally, the report concludes with a preview of possible near- to medium-term market developments. This version of the Annual Report updates data presented in the previous editions, while highlighting key trends and important new developments from 2008. New to this edition is an executive summary of the report and an expanded final section on near- to medium-term market development. The report concentrates on larger-scale wind applications, defined here as individual turbines or projects that exceed 50 kW in size. The U.S. wind power sector is multifaceted, however, and also includes smaller, customer-sited wind turbines used to power the needs of residences, farms, and businesses. Data on these applications are not the focus of this report, though a brief discussion on Distributed Wind Power is provided on page 4. Much of the data included in this report were compiled by Berkeley Lab, and come from a variety of sources, including the American Wind Energy Association (AWEA), the Energy Information Administration (EIA), and the Federal Energy Regulatory Commission (FERC). The Appendix provides a summary of the many data sources used in the report. Data on 2008 wind capacity additions in the United States are based on information provided by AWEA; some minor adjustments to those data may be expected. In other cases, the data shown here represent only a sample of actual wind projects installed in the United States; furthermore, the data vary in quality. As such, emphasis should be placed on overall trends, rather than on individual data points. Finally, each section of this document focuses on historical market information, with an emphasis on 2008; with the exception of the final section, the report does not seek to forecast future trends.

  1. Wind Program News

    SciTech Connect (OSTI)

    2012-01-06

    Stay current on the news about the wind side of the Wind and Water Power Program and important wind energy events around the U.S.

  2. Energy 101: Wind Turbines

    ScienceCinema (OSTI)

    None

    2013-05-29

    See how wind turbines generate clean electricity from the power of the wind. Highlighted are the various parts and mechanisms of a modern wind turbine.

  3. Impact of High Wind Power Penetration on Hydroelectric Unit Operations

    SciTech Connect (OSTI)

    Hodge, B. M.; Lew, D.; Milligan, M.

    2011-01-01

    The Western Wind and Solar Integration Study (WWSIS) investigated the operational impacts of very high levels of variable generation penetration rates (up to 35% by energy) in the western United States. This work examines the impact of this large amount of wind penetration on hydroelectric unit operations. Changes in hydroelectric unit operating unit patterns are examined for an aggregation of all hydro generators. The cost impacts of maintaining hydro unit flexibility are assessed and compared for a number of different modes of system operation.

  4. Wind turbine

    DOE Patents [OSTI]

    Cheney, Jr., Marvin C. (Glastonbury, CT)

    1982-01-01

    A wind turbine of the type having an airfoil blade (15) mounted on a flexible beam (20) and a pitch governor (55) which selectively, torsionally twists the flexible beam in response to wind turbine speed thereby setting blade pitch, is provided with a limiter (85) which restricts unwanted pitch change at operating speeds due to torsional creep of the flexible beam. The limiter allows twisting of the beam by the governor under excessive wind velocity conditions to orient the blades in stall pitch positions, thereby preventing overspeed operation of the turbine. In the preferred embodiment, the pitch governor comprises a pendulum (65,70) which responds to changing rotor speed by pivotal movement, the limiter comprising a resilient member (90) which engages an end of the pendulum to restrict further movement thereof, and in turn restrict beam creep and unwanted blade pitch misadjustment.

  5. Forecastability as a Design Criterion in Wind Resource Assessment: Preprint

    SciTech Connect (OSTI)

    Zhang, J.; Hodge, B. M.

    2014-04-01

    This paper proposes a methodology to include the wind power forecasting ability, or 'forecastability,' of a site as a design criterion in wind resource assessment and wind power plant design stages. The Unrestricted Wind Farm Layout Optimization (UWFLO) methodology is adopted to maximize the capacity factor of a wind power plant. The 1-hour-ahead persistence wind power forecasting method is used to characterize the forecastability of a potential wind power plant, thereby partially quantifying the integration cost. A trade-off between the maximum capacity factor and the forecastability is investigated.

  6. NREL: Wind Research - Wind Resource Assessment

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Wind Resource Assessment A map of the United States is color-coded to indicate the high winds at 80 meters. This map shows the wind resource at 80 meters for both land-based and...

  7. The Great Plains Wind Power Test Facility

    SciTech Connect (OSTI)

    Schroeder, John

    2014-01-31

    This multi-year, multi-faceted project was focused on the continued development of a nationally-recognized facility for the testing, characterization, and improvement of grid-connected wind turbines, integrated wind-water desalination systems, and related educational and outreach topics. The project involved numerous faculty and graduate students from various engineering departments, as well as others from the departments of Geosciences (in particular the Atmospheric Science Group) and Economics. It was organized through the National Wind Institute (NWI), which serves as an intellectual hub for interdisciplinary and transdisciplinary research, commercialization and education related to wind science, wind energy, wind engineering and wind hazard mitigation at Texas Tech University (TTU). Largely executed by an academic based team, the project resulted in approximately 38 peer-reviewed publications, 99 conference presentations, the development/expansion of several experimental facilities, and two provisional patents.

  8. NREL: Wind Research - International Wind Resource Maps

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    International Wind Resource Maps NREL is helping to develop high-resolution projections of wind resources worldwide. This allows for more accurate siting of wind turbines and has led to the recognition of higher class winds in areas where none were thought to exist. This page provides access to NREL-developed wind resource maps and atlases for several countries. NREL's wind mapping projects have been supported by the U.S. Department of Energy, U.S. Agency for International Development, and

  9. Argonne National Laboratory Develops Extreme-Scale Wind Farm...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    studies of complex flow and wind turbine interactions in large land-based and offshore wind farms that will improve wind plant design and reduce the levelized cost of energy. ...

  10. Soil erosion rates from mixed soil and gravel surfaces in a wind tunnel

    SciTech Connect (OSTI)

    Ligotke, M.W.; Klopfer, D.C.

    1990-08-01

    Protective barriers have been identified as integral components of plans to isolate defense waste on the Hanford Site. The use of natural materials to construct protective barriers over waste site is being considered. Design requirements for protective barriers include preventing exposure of buried waste, and restricting penetration or percolation of surface waters through the waste zone. Studies were initiated to evaluate the effects of wind erosion on candidate protective barrier surfaces. A wind tunnel was used to provide controlled erosive stresses and to investigate the erosive effects of wind forces on proposed surface layers for protective barriers. Mixed soil and gravel surfaces were prepared and tested for resistance to wind erosion at the Pacific Northwest Laboratory Aerosol Wind Tunnel Research Facility. These tests were performed to investigate surface deflation caused by suspension of soil from various surface layer configurations and to provide a comparison of the relative resistance of the different surfaces to wind erosion. Planning, testing, and analyzing phases of this wind erosion project were coordinated with other tasks supporting the development of protective barriers. These tasks include climate-change predictions, field studies and modeling efforts. This report provides results of measurements of deflation caused by wind forces over level surfaces. Section 2.0 reviews surface layer characteristics and previous relevant studies on wind erosion, describes effects of erosion, and discusses wind tunnel modeling. Materials and methods of the wind tunnel tests are discussed in Section 3.0. Results and discussion are presented in Section 4.0, and conclusions and recommendations Section 5.0. 53 refs., 29 figs., 7 tabs.

  11. Wind Farm Recommendation Report

    SciTech Connect (OSTI)

    John Reisenauer

    2011-05-01

    On April 21, 2011, an Idaho National Laboratory (INL) Land Use Committee meeting was convened to develop a wind farm recommendation for the Executive Council and a list of proposed actions for proceeding with the recommendation. In terms of land use, the INL Land Use Committee unanimously agrees that Site 6 is the preferred location of the alternatives presented for an INL wind farm. However, further studies and resolution to questions raised (stated in this report) by the INL Land Use Committee are needed for the preferred location. Studies include, but are not limited to, wind viability (6 months), bats (2 years), and the visual impact of the wind farm. In addition, cultural resource surveys and consultation (1 month) and the National Environmental Policy Act process (9 to 12 months) need to be completed. Furthermore, there is no documented evidence of developers expressing interest in constructing a small wind farm on INL, nor a specific list of expectations or concessions for which a developer might expect INL to cover the cost. To date, INL assumes the National Environmental Policy Act activities will be paid for by the Department of Energy and INL (the environmental assessment has only received partial funding). However, other concessions also may be expected by developers such as roads, fencing, power line installation, tie-ins to substations, annual maintenance, snow removal, access control, down-time, and remediation. These types of concessions have not been documented, as a request, from a developer and INL has not identified the short and long-term cost liabilities for such concessions should a developer expect INL to cover these costs. INL has not identified a go-no-go funding level or the priority this Wind Farm Project might have with respect to other nuclear-related projects, should the wind farm remain an unfunded mandate. The Land Use Committee recommends Legal be consulted to determine what, if any, liabilities exist with the Wind Farm Project and INLs rights and responsibilities in regards to access to the wind farm once constructed. An expression of interest is expected to go out soon to developers. However, with the potential of 2 years of study remaining for Site 6, the expectation of obtaining meaningful interest from developers should be questioned.

  12. Microsoft Word - Wind RD Brief_FINAL.doc

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Planning, Budget and Analysis U.S. Department of Energy * Office of Energy Efficiency and Renewable Energy DOE Wind Energy R&D is Linked to Innovations Within and Outside Wind Power Industry, Study Finds Advances in today's commercial wind energy generation are extensively linked to the Department of Energy's (DOE) three decades of investments in wind energy research, according to an independent evaluation study. Prior to DOE's Wind Energy Program, wind technology performed poorly, cost

  13. Wind and Solar Energy Curtailment Practices (Presentation)

    SciTech Connect (OSTI)

    Bird, L.; Cochran, J.; Wang, X.

    2014-10-01

    This presentation to the fall 2014 technical meeting of the Utility Variable-Generation Integration Group summarizes experience with curtailment of wind and solar in the U.S.

  14. DOE Wind Energy R&D is Linked to Innovations Within and Outside...

    Energy Savers [EERE]

    Wind Energy R&D is Linked to Innovations Within and Outside Wind Power Industry, Study Finds DOE Wind Energy R&D is Linked to Innovations Within and Outside Wind Power Industry, ...

  15. The Wind Forecast Improvement Project (WFIP): A Public/Private Partnership for Improving Short Term Wind Energy Forecasts and Quantifying the Benefits of Utility Operations. The Southern Study Area, Final Report

    SciTech Connect (OSTI)

    Freedman, Jeffrey M.; Manobianco, John; Schroeder, John; Ancell, Brian; Brewster, Keith; Basu, Sukanta; Banunarayanan, Venkat; Hodge, Bri-Mathias; Flores, Isabel

    2014-04-30

    This Final Report presents a comprehensive description, findings, and conclusions for the Wind Forecast Improvement Project (WFIP) -- Southern Study Area (SSA) work led by AWS Truepower (AWST). This multi-year effort, sponsored by the Department of Energy (DOE) and National Oceanographic and Atmospheric Administration (NOAA), focused on improving short-term (15-minute - 6 hour) wind power production forecasts through the deployment of an enhanced observation network of surface and remote sensing instrumentation and the use of a state-of-the-art forecast modeling system. Key findings from the SSA modeling and forecast effort include: 1. The AWST WFIP modeling system produced an overall 10 - 20% improvement in wind power production forecasts over the existing Baseline system, especially during the first three forecast hours; 2. Improvements in ramp forecast skill, particularly for larger up and down ramps; 3. The AWST WFIP data denial experiments showed mixed results in the forecasts incorporating the experimental network instrumentation; however, ramp forecasts showed significant benefit from the additional observations, indicating that the enhanced observations were key to the model systems’ ability to capture phenomena responsible for producing large short-term excursions in power production; 4. The OU CAPS ARPS simulations showed that the additional WFIP instrument data had a small impact on their 3-km forecasts that lasted for the first 5-6 hours, and increasing the vertical model resolution in the boundary layer had a greater impact, also in the first 5 hours; and 5. The TTU simulations were inconclusive as to which assimilation scheme (3DVAR versus EnKF) provided better forecasts, and the additional observations resulted in some improvement to the forecasts in the first 1 - 3 hours.

  16. Wind Energy

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    2 - Sandia Energy Energy Search Icon Sandia Home Locations Contact Us Employee Locator Energy & Climate Secure & Sustainable Energy Future Stationary Power Energy Conversion Efficiency Solar Energy Wind Energy Water Power Supercritical CO2 Geothermal Natural Gas Safety, Security & Resilience of the Energy Infrastructure Energy Storage Nuclear Power & Engineering Grid Modernization Battery Testing Nuclear Fuel Cycle Defense Waste Management Programs Advanced Nuclear Energy Nuclear

  17. Wind News

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Page 2 - Sandia Energy Energy Search Icon Sandia Home Locations Contact Us Employee Locator Energy & Climate Secure & Sustainable Energy Future Stationary Power Energy Conversion Efficiency Solar Energy Wind Energy Water Power Supercritical CO2 Geothermal Natural Gas Safety, Security & Resilience of the Energy Infrastructure Energy Storage Nuclear Power & Engineering Grid Modernization Battery Testing Nuclear Fuel Cycle Defense Waste Management Programs Advanced Nuclear Energy

  18. Wind News

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Sandia Energy Energy Search Icon Sandia Home Locations Contact Us Employee Locator Energy & Climate Secure & Sustainable Energy Future Stationary Power Energy Conversion Efficiency Solar Energy Wind Energy Water Power Supercritical CO2 Geothermal Natural Gas Safety, Security & Resilience of the Energy Infrastructure Energy Storage Nuclear Power & Engineering Grid Modernization Battery Testing Nuclear Fuel Cycle Defense Waste Management Programs Advanced Nuclear Energy Nuclear

  19. Wind Plant Power Optimization through Yaw Control using a Parametric Model for Wake Effects -- A CFD Simulation Study

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Gebraad, P. M. O.; Teeuwisse, F. W.; van Wingerden, J. W.; Fleming, Paul A.; Ruben, S. D.; Marden, J. R.; Pao, L. Y.

    2016-01-01

    This article presents a wind plant control strategy that optimizes the yaw settings of wind turbines for improved energy production of the whole wind plant by taking into account wake effects. The optimization controller is based on a novel internal parametric model for wake effects, called the FLOw Redirection and Induction in Steady-state (FLORIS) model. The FLORIS model predicts the steady-state wake locations and the effective flow velocities at each turbine, and the resulting turbine electrical energy production levels, as a function of the axial induction and the yaw angle of the different rotors. The FLORIS model has a limitedmore » number of parameters that are estimated based on turbine electrical power production data. In high-fidelity computational fluid dynamics simulations of a small wind plant, we demonstrate that the optimization control based on the FLORIS model increases the energy production of the wind plant, with a reduction of loads on the turbines as an additional effect.« less

  20. North Dakota Wind II Wind Farm | Open Energy Information

    Open Energy Info (EERE)

    II Wind Farm Jump to: navigation, search Name North Dakota Wind II Wind Farm Facility North Dakota Wind II Sector Wind energy Facility Type Commercial Scale Wind Facility Status In...