National Library of Energy BETA

Sample records for wind integration group

  1. Wind Integration

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Wind Generation - ScheduledActual Balancing Reserves - Deployed Near Real-time Wind Animation Wind Projects under Review Growth Forecast Fact Sheets Working together to address...

  2. The Chaninik Wind Group

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Energy Chaninik Wind Group Villages Kongiganak pop.359 Kwigillingok pop. 388 Kipnuk pop.644 Tuntutuliak pop. 370 On average, 24% of families are below the poverty line. ...

  3. Wind Energy Integration: Slides

    Wind Powering America (EERE)

    information about integrating wind energy into the electricity grid. Wind Energy Integration Photo by Dennis Schroeder, NREL 25907 Wind energy currently contributes significant power to energy portfolios around the world. *U.S. Department of Energy. (August 2015). 2014 Wind Technologies Market Report. Wind Energy Integration In 2014, Denmark led the way with wind power supplying roughly 39% of the country's electricity demand. Ireland, Portugal, and Spain provided more than 20% of their

  4. Illinois Wind Workers Group

    SciTech Connect (OSTI)

    David G. Loomis

    2012-05-28

    The Illinois Wind Working Group (IWWG) was founded in 2006 with about 15 members. It has grown to over 200 members today representing all aspects of the wind industry across the State of Illinois. In 2008, the IWWG developed a strategic plan to give direction to the group and its activities. The strategic plan identifies ways to address critical market barriers to the further penetration of wind. The key to addressing these market barriers is public education and outreach. Since Illinois has a restructured electricity market, utilities no longer have a strong control over the addition of new capacity within the state. Instead, market acceptance depends on willing landowners to lease land and willing county officials to site wind farms. Many times these groups are uninformed about the benefits of wind energy and unfamiliar with the process. Therefore, many of the project objectives focus on conferences, forum, databases and research that will allow these stakeholders to make well-educated decisions.

  5. NREL: Transmission Grid Integration - Wind Integration Datasets

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Wind Integration Datasets The datasets below provide energy professionals with a consistent set of ... Eastern and Western Wind Datasets WIND Toolkit Solar Integration Datasets ...

  6. Chaninik Wind Group: Harnessing Wind, Building Capacity

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Chaninik Wind Group: Harnessing Wind, Building Capacity Installation of Village Energy Information System Smart Grid Controller, Thermal Stoves and Meters to Enhance the Efficiency of Wind- Diesel Hybrid Power Generation in Tribal Regions of Alaska Department of Energy Tribal Energy Program Review November 16-20, 2009 The Chananik Wind Group Our goal is to become the "heartbeat of our region." Department of Energy Tribal Energy Program Review November 16-20, 2009 Department of Energy

  7. Wind Integration National Dataset (WIND) Toolkit

    Broader source: Energy.gov [DOE]

    For utility companies, grid operators and other stakeholders interested in wind energy integration, collecting large quantities of high quality data on wind energy resources is vitally important....

  8. Chaninik Wind Group Wind Heat Smart Grid

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Chaninik Wind Group Wind Heat Smart Grid Our Presentation * William Igkurak, President Chaninik Wind Group * the harness renewables to lower energy costs, * create economic opportunities * build human capacity * Dennis Meiners * Principal Intelligent Energy Systems, Anchorage Ak. * How it all works Program Highlights ²Award Tribal Energy funding 2009, Village Smart Grid ²Received funds November 2010 ²Project to be complete June 2011 ²Theme: "communities working together we can become

  9. Wind Capital Group | Open Energy Information

    Open Energy Info (EERE)

    Capital Group Jump to: navigation, search Name: Wind Capital Group Place: St. Louis, Missouri Zip: 63101 Sector: Wind energy Product: Missouri-based wind project developer, focused...

  10. Wind Energy Group WEG | Open Energy Information

    Open Energy Info (EERE)

    Group WEG Jump to: navigation, search Name: Wind Energy Group (WEG) Place: Irvine, California Zip: CA 92618 Sector: Wind energy Product: California based wind turbine manufacturer....

  11. Asia Wind Group Ltd | Open Energy Information

    Open Energy Info (EERE)

    Wind Group Ltd Jump to: navigation, search Name: Asia Wind Group Ltd Place: Beijing Municipality, China Zip: 100085 Sector: Wind energy Product: Investment company focused on the...

  12. Wind Alliance Group | Open Energy Information

    Open Energy Info (EERE)

    search Name: Wind Alliance Group Place: Valencia, Spain Sector: Wind energy Product: Spanish wind developer with subsidiaries throughout emerging Europe Coordinates: 39.468791,...

  13. NREL: Wind Research - Grid Integration

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Grid Integration Photoshop art created from two NREL-Image Gallery photos of sunset view of electrical power towers combined with wind machines. Photo Illustration by Raymond David / NREL At the National Wind Technology Center (NWTC), partners can study the interactions between wind power technologies and the utility grid to gain a greater understanding of how variable generation resources such as wind energy, impact the utility grid and how to increase the percentage of wind generation in our

  14. NREL: Transmission Grid Integration - Wind Integration National...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    of Energy Efficiency and Renewable Energy, Wind and Water Power Technologies Office, and ... Principles for Integration Studies Glossary News Did you find what you needed? ...

  15. Nebraska Statewide Wind Integration Study

    SciTech Connect (OSTI)

    none,

    2010-03-01

    This study of wind energy integration in Nebraska was conducted at the request of the Nebraska Power Association. Executive summary can be found here: http://www.nrel.gov/docs/fy10osti/47285.pdf

  16. BPA Wind Integration Team Update

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    BPA Wind Integration Team Update Customer Supplied Generation Imbalance (CSGI) Pilot Transmission Services Customer Forum 29 July 28, 2010 B O N N E V I L L E P O W E R A D M I N...

  17. Chaninik Wind Group: Wind Heat Smart Grids

    Office of Environmental Management (EM)

    Wind Heat System Components * ETS heat output at high is equivalent to a Toyostove Laser 56 * .10 per kwh is equivalent to buying diesel at 2.90 per gallon * Current diesel ...

  18. Chaninik Wind Group Wind Heat Smart Grids Final Report

    SciTech Connect (OSTI)

    Meiners, Dennis

    2013-06-29

    Final report summarizes technology used, system design and outcomes for US DoE Tribal Energy Program award to deploy Wind Heat Smart Grids in the Chaninik Wind Group communities in southwest Alaska.

  19. Wind Integration, Transmission, and Resource Assessment and

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Characterization Projects | Department of Energy Integration, Transmission, and Resource Assessment and Characterization Projects Wind Integration, Transmission, and Resource Assessment and Characterization Projects This report covers the Wind and Water Power Technologies Office's Wind integration, transmission, and resource assessment and characterization projects from fiscal years 2006 to 2014. Wind Integration, Transmission, and Resource Assessment and Characterization Projects (3.35 MB)

  20. The Wind Integration National Dataset (WIND) Toolkit (Presentation...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Wind Integration National Dataset (WIND) Toolkit Webinar Caroline Draxl and Bri-Mathias Hodge July 14, 2015 NRELPR-5000-64691 2 Content * Motivation * Creation of the WIND Toolkit ...

  1. NREL: Wind Research - Grid Integration of Offshore Wind

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Grid Integration of Offshore Wind Photograph of a wind turbine in the ocean. Located about 10 kilometers off the coast of Arklow, Ireland, the Arklow Bank offshore wind park ...

  2. Renewable Electricity Grid Integration Roadmap for Mexico. Supplement to the IEA Expert Group Report on Recommended Practices for Wind Integration Studies

    SciTech Connect (OSTI)

    Parsons, Brian; Cochran, Jaquelin; Watson, Andrea; Katz, Jessica; Bracho, Ricardo

    2015-08-19

    As a recognized leader in efforts to mitigate global climate change, the Government of Mexico (GOM) works proactively to reduce emissions, demonstrating strong political will and capacity to comprehensively address climate change. Since 2010, the U.S. government (USG) has supported these efforts by partnering with Mexico under the Enhancing Capacity for Low Emission Development Strategies (EC-LEDS) program. Through the program, the USG has partnered with Mexico’s Ministry of Energy (SENER), as well as other government agencies, to support GOM in reaching its clean energy and climate change goals. Specifically, the EC-LEDS program is supporting GOM’s clean energy goal of generating 35% of its electricity from renewable energy (RE) by 2024. EC-LEDS, through the U.S. Agency for International Development (USAID) and the U.S Department of Energy’s (DOE’s) National Renewable Energy Laboratory (NREL), has been collaborating with SENER and GOM interagency working group—the Consejo Consultivo para las Energías Renovables (Consultative Council on Renewable Energy)—to create a grid integration roadmap for variable RE. 1 A key objective in creating a grid integration roadmap is assessing likely impacts of wind and solar energy on the power system and modifying planning and operations accordingly. This paper applies best practices in conducting a grid integration study to the Mexican context.

  3. Advancements in Wind Integration Study Data Modeling: The Wind Integration National Dataset (WIND) Toolkit; Preprint

    SciTech Connect (OSTI)

    Draxl, C.; Hodge, B. M.; Orwig, K.; Jones, W.; Searight, K.; Getman, D.; Harrold, S.; McCaa, J.; Cline, J.; Clark, C.

    2013-10-01

    Regional wind integration studies in the United States require detailed wind power output data at many locations to perform simulations of how the power system will operate under high-penetration scenarios. The wind data sets that serve as inputs into the study must realistically reflect the ramping characteristics, spatial and temporal correlations, and capacity factors of the simulated wind plants, as well as be time synchronized with available load profiles. The Wind Integration National Dataset (WIND) Toolkit described in this paper fulfills these requirements. A wind resource dataset, wind power production time series, and simulated forecasts from a numerical weather prediction model run on a nationwide 2-km grid at 5-min resolution will be made publicly available for more than 110,000 onshore and offshore wind power production sites.

  4. Yantai Dongyuan Wind Power Group Co Ltd | Open Energy Information

    Open Energy Info (EERE)

    Yantai Dongyuan Wind Power Group Co Ltd Jump to: navigation, search Name: Yantai Dongyuan Wind Power Group Co Ltd Place: Yantai, Shandong Province, China Zip: 265000 Sector: Wind...

  5. Massachusetts Wind Working Group Meeting

    Broader source: Energy.gov [DOE]

    The meeting will feature a panel presentation and discussion on Shadow-Flicker, as well as updates related to the Community Wind Outreach Initiative.   Panel speakers so far include: Elizabeth King...

  6. Western Wind and Solar Integration Study

    SciTech Connect (OSTI)

    GE Energy

    2010-05-01

    This report provides a full description of the Western Wind and Solar Integration Study (WWSIS) and its findings.

  7. Wind Integration, Transmission, and Resource Assessment and

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Characterization Projects | Department of Energy Wind Integration, Transmission, and Resource Assessment and Characterization Projects Wind Integration, Transmission, and Resource Assessment and Characterization Projects From 2006 to 2014, DOE's Wind Program announced awards totaling more than $25 million for 41 projects focused on integration, transmission, and resource assessment and characterization. This report highlights each of these R&D efforts. Wind Integration, Transmission, and

  8. Chaninik Wind Group- 2010 Project

    Broader source: Energy.gov [DOE]

    The goals of this project are to reduce the consumption of fossil fuel by 40% in four Lower Kuskokwim Alaska villages and use wind energy to displace 200,000 gallons of diesel fuel, 70,000 of which is now being used to generate power, and 130,000 of which will be captured and stored for use as heat.

  9. The Wind Integration National Dataset (WIND) toolkit (Presentation)

    SciTech Connect (OSTI)

    Caroline Draxl: NREL

    2014-01-01

    Regional wind integration studies require detailed wind power output data at many locations to perform simulations of how the power system will operate under high penetration scenarios. The wind datasets that serve as inputs into the study must realistically reflect the ramping characteristics, spatial and temporal correlations, and capacity factors of the simulated wind plants, as well as being time synchronized with available load profiles.As described in this presentation, the WIND Toolkit fulfills these requirements by providing a state-of-the-art national (US) wind resource, power production and forecast dataset.

  10. Eastern Wind Integration and Transmission Study -- Preliminary Findings: Preprint

    SciTech Connect (OSTI)

    Corbus, D.; Milligan, M.; Ela, E.; Schuerger, M.; Zavadil, B.

    2009-09-01

    This paper reviews the Eastern Wind Integration and Transmission Study, the development of wind datasets, the transmission analysis, and the results of wind integration analysis for four scenarios.

  11. REAP Alaska Wind-Integration Workshop

    Office of Energy Efficiency and Renewable Energy (EERE)

    Renewable Energy Alaska Project (REAP) is hosting the Alaska Wind-Integration Workshop. This two-day conference will give attendees the opportunity to learn and share information on wind systems in...

  12. Southwest Wind Farm Private Limited ESS ARR Group | Open Energy...

    Open Energy Info (EERE)

    Southwest Wind Farm Private Limited ESS ARR Group Jump to: navigation, search Name: Southwest Wind Farm Private Limited (ESS ARR Group) Place: Coimbatore, Tamil Nadu, India Zip:...

  13. Wind Turbine Radar Interference Mitigation Working Group Releases...

    Broader source: Energy.gov (indexed) [DOE]

    Wind Turbine Radar Interference Mitigation Working Group to address these challenges. This new report lays out the plan for how the working group will address wind turbine radar ...

  14. Western Wind and Solar Integration Study: Executive Summary,...

    Broader source: Energy.gov (indexed) [DOE]

    GE Energy MAY 2010 WESTERN WIND AND SOLAR INTEGRATION STUDY: EXECUTIVE SUMMARY NOTICE This ... 20% postconsumer waste WESTERN WIND AND SOLAR INTEGRATION STUDY: EXECUTIVE SUMMARY May ...

  15. Western Wind Integration Data Set | Grid Modernization | NREL

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Western Wind Integration Data Set The Western Wind Integration Data Set was designed to help energy professionals perform wind integration studies and estimate power production from hypothetical wind power plants in the United States. Access the Western Wind Integration Data Set Resources ACCESS DATA SET DATA SET REPORT VALIDATION REPORT Methodology 3TIER created the Western Wind Integration Data Set with oversight and assistance from NREL. Numerical weather prediction models were used to

  16. Knight & Carver Wind Group | Open Energy Information

    Open Energy Info (EERE)

    City, California Zip: 91950 Region: Southern CA Area Sector: Wind energy Product: Blade design for wind turbines Website: www.kcwind.com Coordinates: 32.6609335,...

  17. Wind Working Group Toolkit | Open Energy Information

    Open Energy Info (EERE)

    wind energy costs and impacts to neighbors and the environment. At the same time, the benefits of wind energy and diversity of possible applications have continued to increase....

  18. NREL: Transmission Grid Integration - Eastern and Western Wind...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Eastern and Western Wind Integration Datasets These datasets were designed to help energy professionals perform wind ... Studies Glossary News Did you find what you needed? ...

  19. Wind Integration, Transmission, and Resource Assessment andCharacteri...

    Broader source: Energy.gov (indexed) [DOE]

    This report covers the Wind and Water Power Technologies Office's Wind integration, transmission, and resource assessment and characterization projects from fiscal years 2006 to ...

  20. Analysis of Mesoscale Model Data for Wind Integration (Poster)

    SciTech Connect (OSTI)

    Schwartz, M.; Elliott, D.; Lew, D.; Corbus, D.; Scott, G.; Haymes, S.; Wan, Y. H.

    2009-05-01

    Supports examination of implications of national 20% wind vision, and provides input to integration and transmission studies for operational impact of large penetrations of wind on the grid.

  1. Eastern and Western Wind Integration Data Sets | Grid Modernization | NREL

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    and Western Wind Integration Data Sets The Eastern Wind Integration Data Set and Western Wind Integration Data Set were designed to perform wind integration studies and estimate power production from hypothetical wind power plants in the United States. These data sets can help energy professionals such as transmission planners, utility planners, project developers, and university researchers: Perform spatial and temporal comparisons of sites, including: Geographic diversity Load correlation

  2. Fact Sheet: Multilateral Solar and Wind Working Group | Department...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Solar and Wind Working Group will focus its initial work on developing a Global Atlas for Solar and Wind Energy and a corresponding Long-Term Strategy on Joint Capacity ...

  3. Western Wind and Solar Integration Study | Grid Modernization...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Can we integrate large amounts of wind and solar energy into the electric power system of the ... Development of Regional Wind Resource and Wind Plant Output Datasets Phase 2 Research ...

  4. NREL: Transmission Grid Integration - Western Wind and Solar...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    of integrating up to 35% wind and solar energy in the WestConnect subregion and, more ... Development of Regional Wind Resource and Wind Plant Output Datasets This report ...

  5. Technology solutions for wind integration in ERCOT

    SciTech Connect (OSTI)

    None, None

    2015-01-03

    Texas has for more than a decade led all other states in the U.S. with the most wind generation capacity on the U.S. electric grid. The State recognized the value that wind energy could provide, and committed early on to build out the transmission system necessary to move power from the windy regions in West Texas to the major population centers across the state. It also signaled support for renewables on the grid by adopting an aggressive renewable portfolio standard (RPS). The joining of these conditions with favorable Federal tax credits has driven the rapid growth in Texas wind capacity since its small beginning in 2000. In addition to the major transmission grid upgrades, there have been a number of technology and policy improvements that have kept the grid reliable while adding more and more intermittent wind generation. Technology advancements such as better wind forecasting and deployment of a nodal market system have improved the grid efficiency of wind. Successful large scale wind integration into the electric grid, however, continues to pose challenges. The continuing rapid growth in wind energy calls for a number of technology additions that will be needed to reliably accommodate an expected 65% increase in future wind resources. The Center for the Commercialization of Electric Technologies (CCET) recognized this technology challenge in 2009 when it submitted an application for funding of a regional demonstration project under the Recovery Act program administered by the U.S. Department of Energy1. Under that program the administration announced the largest energy grid modernization investment in U.S. history, making available some $3.4 billion in grants to fund development of a broad range of technologies for a more efficient and reliable electric system, including the growth of renewable energy sources like wind and solar. At that time, Texas was (and still is) the nation’s leader in the integration of wind into the grid, and was investing heavily

  6. TECHNOLOGY SOLUTIONS FOR WIND INTEGRATION IN ERCOT

    SciTech Connect (OSTI)

    None, None

    2015-01-03

    Texas has for more than a decade led all other states in the U.S. with the most wind generation capacity on the U.S. electric grid. The State recognized the value that wind energy could provide, and committed early on to build out the transmission system necessary to move power from the windy regions in West Texas to the major population centers across the state. It also signaled support for renewables on the grid by adopting an aggressive renewable portfolio standard (RPS). The joining of these conditions with favorable Federal tax credits has driven the rapid growth in Texas wind capacity since its small beginning in 2000. In addition to the major transmission grid upgrades, there have been a number of technology and policy improvements that have kept the grid reliable while adding more and more intermittent wind generation. Technology advancements such as better wind forecasting and deployment of a nodal market system have improved the grid efficiency of wind. Successful large scale wind integration into the electric grid, however, continues to pose challenges. The continuing rapid growth in wind energy calls for a number of technology additions that will be needed to reliably accommodate an expected 65% increase in future wind resources. The Center for the Commercialization of Electric Technologies (CCET) recognized this technology challenge in 2009 when it submitted an application for funding of a regional demonstration project under the Recovery Act program administered by the U.S. Department of Energy1. Under that program the administration announced the largest energy grid modernization investment in U.S. history, making available some $3.4 billion in grants to fund development of a broad range of technologies for a more efficient and reliable electric system, including the growth of renewable energy sources like wind and solar. At that time, Texas was (and still is) the nation’s leader in the integration of wind into the grid, and was investing heavily

  7. Wind Integration Program: Balancing the Future

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Wind Integration Program: Balancing the Future Initial Discussions 3072012 2 B O N N E V I L L E P O W E R A D M I N I S T R A T I O N Background BPA has implemented a number...

  8. Winning the Future: Chaninik Wind Group Pursues Innovative Solutions to Native Alaska Energy Challenges

    Office of Energy Efficiency and Renewable Energy (EERE)

    Between 2010 and 2013, Chaninik Wind Group (CWG) implemented a multi-village wind heat smart grid in the Alaska Native villages of Kongiganak, Kwigillingok, and Tuntutuliak, integrating heating systems and a grid installed with partial funding through the DOE Tribal Energy Program with the five existing 95-kW wind turbines CWG had installed in each community. Each system produces wind capacity in excess of 200% of the peak load and uses an on-site wind-diesel smart grid control system to maximize efficiency.

  9. Category:Wind Working Group Toolkit | Open Energy Information

    Open Energy Info (EERE)

    search This wiki-based Wind Working Group Toolkit provides links to information, methods, and resources. This wiki is a work in progress, and we welcome your contributions....

  10. Distributed Energy Systems Integration Group (Fact Sheet)

    SciTech Connect (OSTI)

    Not Available

    2009-10-01

    Factsheet developed to describe the activites of the Distributed Energy Systems Integration Group within NREL's Electricity, Resources, and Buildings Systems Integration center.

  11. 2014 WIND POWER PROGRAM PEER REVIEW-ADVANCED GRID INTEGRATION

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Advanced Grid Integration March 24-27, 2014 Wind Energy Technologies PR-5000-62152 2 Contents Advanced Grid Integration Eastern Renewable Generation Integration Study (ERGIS)-Barbara O'Neill, National Renewable Energy Laboratory Western Wind and Solar Integration Study - Phase 2 and Phase 3-Kara Clark, National Renewable Energy Laboratory Integration Support/UVIG-Michael Milligan, National Renewable Energy Laboratory Mid-Atlantic Offshore Wind Interconnection and Transmission-Willett Kempton,

  12. GALAXY INTERACTIONS IN COMPACT GROUPS. I. THE GALACTIC WINDS OF HCG16

    SciTech Connect (OSTI)

    Vogt, Frederic P. A.; Dopita, Michael A.; Kewley, Lisa J.

    2013-05-10

    Using the WiFeS integral field spectrograph, we have undertaken a series of observations of star-forming galaxies in compact groups. In this first paper dedicated to the project, we present the analysis of the spiral galaxy NGC 838, a member of the Hickson Compact Group 16, and of its galactic wind. Our observations reveal that the wind forms an asymmetric, bipolar, rotating structure, powered by a nuclear starburst. Emission line ratio diagnostics indicate that photoionization is the dominant excitation mechanism at the base of the wind. Mixing from slow shocks (up to 20%) increases further out along the outflow axis. The asymmetry of the wind is most likely caused by one of the two lobes of the wind bubble bursting out of its H I envelope, as indicated by line ratios and radial velocity maps. The characteristics of this galactic wind suggest that it is caught early (a few Myr) in the wind evolution sequence. The wind is also quite different from the galactic wind in the partner galaxy NGC 839 which contains a symmetric, shock-excited wind. Assuming that both galaxies have similar interaction histories, the two different winds must be a consequence of the intrinsic properties of NGC 838 and NGC 839 and their starbursts.

  13. NREL Wind Integrated System Design and Engineering Model

    Energy Science and Technology Software Center (OSTI)

    2013-09-30

    NREL_WISDEM is an integrated model for wind turbines and plants developed In python based on the open source software OpenMDAO. NREL_WISDEM is a set of wrappers for various wind turbine and models that integrate pre-existing models together into OpenMDAO. It is organized into groups each with their own repositories including Plant_CostSE. Plant_EnergySE, Turbine_CostSE and TurbineSE. The wrappers are designed for licensed and non-licensed models though in both cases, one has to have access to andmore » install the individual models themselves before using them in the overall software platform.« less

  14. 20% Wind Energy by 2030 - Chapter 4: Transmission and Integration...

    Broader source: Energy.gov (indexed) [DOE]

    slides for chapter 4 of 20% Wind Energy by 2030 overviewing transmission and integration 20percentsummarychap4.pdf (1.78 MB) More Documents & Publications 20% Wind Energy by ...

  15. Nebraska Statewide Wind Integration Study: April 2008 - January 2010

    SciTech Connect (OSTI)

    EnerNex Corporation, Knoxville, Tennessee; Ventyx, Atlanta, Georgia; Nebraska Power Association, Lincoln, Nebraska

    2010-03-01

    Wind generation resources in Nebraska will play an increasingly important role in the environmental and energy security solutions for the state and the nation. In this context, the Nebraska Power Association conducted a state-wide wind integration study.

  16. EIS-0374: Klondike III/ Bigelow Canyon Wind Integration Project, OR

    Broader source: Energy.gov [DOE]

    This EIS analyzes BPA's decision to approve an interconnection requested by PPM Energy, Inc. (PPM) to integrate electrical power from their proposed Klondike III Wind roject (Wind Project) into the Federal Columbia River Transmission System (FCRTS).

  17. Western Wind and Solar Integration Study | Grid Modernization...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    The Western Wind and Solar Integration Study Value of Wind Power Forecasting Impact of ... Phase 2 of WWSIS was initiated to determine the wear-and-tear costs and emissions impacts ...

  18. Wind Integration Datasets from the National Renewable Energy Laboratory (NREL)

    DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

    The Wind Integration Datasets provide time-series wind data for 2004, 2005, and 2006. They are intended to be used by energy professionals such as transmission planners, utility planners, project developers, and university researchers, helping them to perform comparisons of sites and estimate power production from hypothetical wind plants. NREL cautions that the information from modeled data may not match wind resource information shown on NREL;s state wind maps as they were created for different purposes and using different methodologies.

  19. Operating Reserves and Wind Power Integration: An International Comparison

    SciTech Connect (OSTI)

    Milligan, M.; Donohoo, P.; Lew, D.; Ela, E.; Kirby, B.; Holttinen, H.; Lannoye, E.; Flynn, D.; O'Malley, M.; Miller, N.; Ericksen, P. B.; Gottig, A.; Rawn, B.; Frunt, J.; Kling, W. L.; Gibescu, M.; Gomez-Lazaro, E.; Robitaille, A.; Kamwa, I.

    2010-01-01

    The determination of additional operating reserves in power systems with high wind penetration is attracting a significant amount of attention and research. Wind integration analysis over the past several years has shown that the level of operating reserve that is induced by wind is not a constant function of the installed capacity. Observations and analysis of actual wind plant operating data has shown that wind does not change its output fast enough to be considered as a contingency event. However, the variability that wind adds to the system does require the activation or deactivation of additional operating reserves. This paper provides a high-level international comparison of methods and key results from both operating practice and integration analysis, based on the work in International Energy Agency IEA WIND Task 25 on Large-scale Wind Integration. The paper concludes with an assessment of the common themes and important differences, along with recent emerging trends.

  20. Integration of Wind Energy Systems into Power Engineering Education Program at UW-Madison

    SciTech Connect (OSTI)

    Venkataramanan, Giri; Lesieutre, Bernard; Jahns, Thomas; Desai, Ankur R

    2012-09-01

    This project has developed an integrated curriculum focused on the power engineering aspects of wind energy systems that builds upon a well-established graduate educational program at UW- Madison. Five new courses have been developed and delivered to students. Some of the courses have been offered on multiple occasions. The courses include: Control of electric drives for Wind Power applications, Utility Applications of Power Electronics (Wind Power), Practicum in Small Wind Turbines, Utility Integration of Wind Power, and Wind and Weather for Scientists and Engineers. Utility Applications of Power Electronics (Wind Power) has been provided for distance education as well as on-campus education. Several industrial internships for students have been organized. Numerous campus seminars that provide discussion on emerging issues related to wind power development have been delivered in conjunction with other campus events. Annual student conferences have been initiated, that extend beyond wind power to include sustainable energy topics to draw a large group of stakeholders. Energy policy electives for engineering students have been identified for students to participate through a certificate program. Wind turbines build by students have been installed at a UW-Madison facility, as a test-bed. A Master of Engineering program in Sustainable Systems Engineering has been initiated that incorporates specializations that include in wind energy curricula. The project has enabled UW-Madison to establish leadership at graduate level higher education in the field of wind power integration with the electric grid.

  1. EWIS European wind integration study (Smart Grid Project) (Germany...

    Open Energy Info (EERE)

    Germany) Jump to: navigation, search Project Name EWIS European wind integration study Country Germany Coordinates 51.165691, 10.451526 Loading map... "minzoom":false,"mapping...

  2. EWIS European wind integration study (Smart Grid Project) (Denmark...

    Open Energy Info (EERE)

    search Project Name EWIS European wind integration study Country Denmark Coordinates 56.26392, 9.501785 Loading map... "minzoom":false,"mappingservice":"googlemaps3","type...

  3. EWIS European wind integration study (Smart Grid Project) (Spain...

    Open Energy Info (EERE)

    Spain) Jump to: navigation, search Project Name EWIS European wind integration study Country Spain Coordinates 40.522152, -4.163818 Loading map... "minzoom":false,"mappingserv...

  4. EWIS European wind integration study (Smart Grid Project) (United...

    Open Energy Info (EERE)

    United Kingdom) Jump to: navigation, search Project Name EWIS European wind integration study Country United Kingdom Coordinates 55.378052, -3.435973 Loading map......

  5. Oahu Wind Integration and Transmission Study (OWITS): Hawaiian...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Oahu Wind Integration and Transmission Study (OWITS): Hawaiian Islands Transmission Interconnection Project This report provides an independent review included an initial ...

  6. Phase 2 Report: Oahu Wind Integration and Transmission Study...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Phase 2 Report: Oahu Wind Integration and Transmission Study (OWITS); Hawaiian Islands Transmission Interconnection Project This report provides an independent review included an ...

  7. EWIS European wind integration study (Smart Grid Project) (France...

    Open Energy Info (EERE)

    France) Jump to: navigation, search Project Name EWIS European wind integration study Country France Coordinates 45.897655, 2.021484 Loading map... "minzoom":false,"mappingser...

  8. New Forecasting Tools Enhance Wind Energy Integration In Idaho...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    ... RIT forecasting is saving costs and improving operational practices for IPC and helping integrate wind power more efficiently and cost effectively. Figure 3 shows how the ...

  9. Western Wind and Solar Integration Study: Executive Summary,...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    ... benefit of integrating wind and solar forecasting into grid operations? * How can hydro ... different interstate transmission build-outs and in- cluded these costs in the scenarios. ...

  10. OAHU Wind Integration And Transmission Study: Summary Report...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    OAHU Wind Integration And Transmission Study: Summary Report, NREL (National Renewable Energy Laboratory) This study was composed of several smaller studies done in cooperation ...

  11. Hawaii Solar and Wind Integration Studies | Grid Modernization...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    ... operate the island grids with interisland wind integration. A technical review committee of regional, national, and international technical experts with experience in electric ...

  12. EWIS European wind integration study (Smart Grid Project) (Czech...

    Open Energy Info (EERE)

    Czech Republic) Jump to: navigation, search Project Name EWIS European wind integration study Country Czech Republic Coordinates 49.817493, 15.472962 Loading map......

  13. Upstream Measurements of Wind Profiles with Doppler Lidar for Improved Wind Energy Integration

    SciTech Connect (OSTI)

    Rodney Frehlich

    2012-10-30

    New upstream measurements of wind profiles over the altitude range of wind turbines will be produced using a scanning Doppler lidar. These long range high quality measurements will provide improved wind power forecasts for wind energy integration into the power grid. The main goal of the project is to develop the optimal Doppler lidar operating parameters and data processing algorithms for improved wind energy integration by enhancing the wind power forecasts in the 30 to 60 minute time frame, especially for the large wind power ramps. Currently, there is very little upstream data at large wind farms, especially accurate wind profiles over the full height of the turbine blades. The potential of scanning Doppler lidar will be determined by rigorous computer modeling and evaluation of actual Doppler lidar data from the WindTracer system produced by Lockheed Martin Coherent Technologies, Inc. of Louisville, Colorado. Various data products will be investigated for input into numerical weather prediction models and statistically based nowcasting algorithms. Successful implementation of the proposed research will provide the required information for a full cost benefit analysis of the improved forecasts of wind power for energy integration as well as the added benefit of high quality wind and turbulence information for optimal control of the wind turbines at large wind farms.

  14. Low Wind Speed Technology Phase II: Integrated Wind Energy/Desalination System; General Electric Global Research

    SciTech Connect (OSTI)

    Not Available

    2006-03-01

    This fact sheet describes a subcontract with General Electric Global Research to explore wind power as a desirable option for integration with desalination technologies.

  15. WINS. Market Simulation Tool for Facilitating Wind Energy Integration

    SciTech Connect (OSTI)

    Shahidehpour, Mohammad

    2012-10-30

    Integrating 20% or more wind energy into the system and transmitting large sums of wind energy over long distances will require a decision making capability that can handle very large scale power systems with tens of thousands of buses and lines. There is a need to explore innovative analytical and implementation solutions for continuing reliable operations with the most economical integration of additional wind energy in power systems. A number of wind integration solution paths involve the adoption of new operating policies, dynamic scheduling of wind power across interties, pooling integration services, and adopting new transmission scheduling practices. Such practices can be examined by the decision tool developed by this project. This project developed a very efficient decision tool called Wind INtegration Simulator (WINS) and applied WINS to facilitate wind energy integration studies. WINS focused on augmenting the existing power utility capabilities to support collaborative planning, analysis, and wind integration project implementations. WINS also had the capability of simulating energy storage facilities so that feasibility studies of integrated wind energy system applications can be performed for systems with high wind energy penetrations. The development of WINS represents a major expansion of a very efficient decision tool called POwer Market Simulator (POMS), which was developed by IIT and has been used extensively for power system studies for decades. Specifically, WINS provides the following superiorities; (1) An integrated framework is included in WINS for the comprehensive modeling of DC transmission configurations, including mono-pole, bi-pole, tri-pole, back-to-back, and multi-terminal connection, as well as AC/DC converter models including current source converters (CSC) and voltage source converters (VSC); (2) An existing shortcoming of traditional decision tools for wind integration is the limited availability of user interface, i.e., decision

  16. Operating Reserves and Wind Power Integration: An International Comparison; Preprint

    SciTech Connect (OSTI)

    Milligan, M.; Donohoo, P.; Lew, D.; Ela, E.; Kirby, B.; Holttinen, H.; Lannoye, E.; Flynn, D.; O'Malley, M.; Miller, N.; Eriksen, P. B.; Gottig, A.; Rawn, B.; Gibescu, M.; Lazaro, E. G.; Robitaille, A.; Kamwa, I.

    2010-10-01

    This paper provides a high-level international comparison of methods and key results from both operating practice and integration analysis, based on an informal International Energy Agency Task 25: Large-scale Wind Integration.

  17. Wind energy and power system operations: a review of wind integration studies to date

    SciTech Connect (OSTI)

    Cesaro, Jennifer de; Porter, Kevin; Milligan, Michael

    2009-12-15

    Wind integration will not be accomplished successfully by doing ''more of the same.'' It will require significant changes in grid planning and operations, continued technical evolution in the design and operation of wind turbines, further adoption and implementation of wind forecasting in the control room, and incorporation of market and policy initiatives to encourage more flexible generation. (author)

  18. Western Wind and Solar Integration Study (Fact Sheet)

    SciTech Connect (OSTI)

    Not Available

    2012-09-01

    Initiated in 2007 to examine the operational impact of up to 35% penetration of wind, photovoltaic (PV), and concentrating solar power (CSP) energy on the electric power system, the Western Wind and Solar Integration Study (WWSIS) is one of the largest regional wind and solar integration studies to date. The goal is to understand the effects of variability and uncertainty of wind, PV, and CSP on the grid. In the Western Wind and Solar Integration Study Phase 1, solar penetration was limited to 5%. Utility-scale PV was not included because of limited capability to model sub-hourly, utility-scale PV output . New techniques allow the Western Wind and Solar Integration Study Phase 2 to include high penetrations of solar - not only CSP and rooftop PV but also utility-scale PV plants.

  19. Oahu Wind Integration and Transmission Study (OWITS): Hawaiian Islands

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Transmission Interconnection Project | Department of Energy Oahu Wind Integration and Transmission Study (OWITS): Hawaiian Islands Transmission Interconnection Project Oahu Wind Integration and Transmission Study (OWITS): Hawaiian Islands Transmission Interconnection Project This report provides an independent review included an initial evaluation of the technical configuration and capital costs of establishing an undersea cable system and examining impacts to the existing electric

  20. Phase 2 Report: Oahu Wind Integration and Transmission Study (OWITS);

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Hawaiian Islands Transmission Interconnection Project | Department of Energy Phase 2 Report: Oahu Wind Integration and Transmission Study (OWITS); Hawaiian Islands Transmission Interconnection Project Phase 2 Report: Oahu Wind Integration and Transmission Study (OWITS); Hawaiian Islands Transmission Interconnection Project This report provides an independent review included an initial evaluation of the technical configuration and capital costs of establishing an undersea cable system and

  1. Tennessee Valley and Eastern Kentucky Wind Working Group

    SciTech Connect (OSTI)

    Katie Stokes

    2012-05-03

    In December 2009, the Southern Alliance for Clean Energy (SACE), through a partnership with the Appalachian Regional Commission, EKPC, Kentucky's Department for Energy Development and Independence, SACE, Tennessee's Department of Environment and Conservation, and TVA, and through a contract with the Department of Energy, established the Tennessee Valley and Eastern Kentucky Wind Working Group (TVEKWWG). TVEKWWG consists of a strong network of people and organizations. Working together, they provide information to various organizations and stakeholders regarding the responsible development of wind power in the state. Members include representatives from utility interests, state and federal agencies, economic development organizations, non-government organizations, local decision makers, educational institutions, and wind industry representatives. The working group is facilitated by the Southern Alliance for Clean Energy. TVEKWWG supports the Department of Energy by helping educate and inform key stakeholders about wind energy in the state of Tennessee.

  2. Wind Integration Data Sets | Grid Modernization | NREL

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Wind Farm Growth Through the Years Wind Farm Growth Through the Years August 6, 2013 - 8:32am Addthis 1975 Start Slow Stop Year Wind Farms Homes Powered Added Current Year 833 Wind Farms Online. Enough to Power 15 M Homes Data provided by the EIA. The number of homes powered is estimated through conversion factors provided by the EIA. Daniel Wood Daniel Wood Data Visualization and Cartographic Specialist, Office of Public Affairs As we publish the 2012 Wind Technologies Market Report, we are

  3. How do Wind and Solar Power Affect Grid Operations: The Western Wind and Solar Integration Study; Preprint

    SciTech Connect (OSTI)

    Lew, D.; Milligan, M.; Jordan, G.; Freeman, L.; Miller, N.; Clark, K.; Piwko, R.

    2009-09-01

    This paper reviews the scope of the Western Wind and Solar Integration Study, the development of wind and solar datasets, and the results to date on three scenarios.

  4. Western Wind and Solar Integration Study Phase 3: Technical Overview

    SciTech Connect (OSTI)

    2015-11-01

    Technical fact sheet outlining the key findings of Phase 3 of the Western Wind and Solar Integration Study (WWSIS-3). NREL and GE find that with good system planning, sound engineering practices, and commercially available technologies, the Western grid can maintain reliability and stability during the crucial first minute after grid disturbances with high penetrations of wind and solar power.

  5. Western Wind and Solar Integration Study Phase 2 (Fact Sheet)

    SciTech Connect (OSTI)

    Not Available

    2013-09-01

    This is one-page, two-sided fact sheet presents high-level summary results of the Western Wind and Solar Integration Study Phase 2, which examined operational impacts of high penetrations of variable renewable generation in the West.

  6. New Report: Integrating More Wind and Solar Reduces Utilities...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Addthis The National Renewable Energy Laboratory (NREL) released Phase 2 of the Western Wind and Solar Integration Study (WWSIS-2), a follow-up to the initial WWSIS released in May ...

  7. The Western Wind and Solar Integration Study Phase 2

    Broader source: Energy.gov [DOE]

    Greg Brinkman will present the results of the Western Wind and Solar Integration Study (WWSIS), Phase 2. This study, which follows the first phase of WWSIS, focuses on potential emissions and wear...

  8. Western Wind and Solar Integration Study: Phase 2 (Presentation)

    SciTech Connect (OSTI)

    Lew, D.; Brinkman, G.; Ibanez, E.; Lefton, S.; Kumar, N.; Venkataraman, S.; Jordan, G.

    2013-09-01

    This presentation summarizes the scope and results of the Western Wind and Solar Integration Study Phase 2, which examined operational impacts of high penetrations of variable renewable generation in the West.

  9. Western Wind and Solar Integration Study Phase 2: Preprint

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Laboratory J. King RePPAE To be presented at the 11th Annual International Workshop on Large-Scale Integration of Wind Power into Power Systems as Well as on Transmission ...

  10. OAHU Wind Integration And Transmission Study: Summary Report, NREL

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    (National Renewable Energy Laboratory) | Department of Energy OAHU Wind Integration And Transmission Study: Summary Report, NREL (National Renewable Energy Laboratory) OAHU Wind Integration And Transmission Study: Summary Report, NREL (National Renewable Energy Laboratory) This study was composed of several smaller studies done in cooperation with other local entities and experts, all of which are summarized in this report. 48632.pdf (1.76 MB) More Documents & Publications Phase 2

  11. Wind Integration Cost and Cost-Causation: Preprint

    SciTech Connect (OSTI)

    Milligan, M.; Kirby, B.; Holttinen, H.; Kiviluoma, J.; Estanqueiro, A.; Martin-Martinez, S.; Gomez-Lazaro, E.; Peneda, I.; Smith, C.

    2013-10-01

    The question of wind integration cost has received much attention in the past several years. The methodological challenges to calculating integration costs are discussed in this paper. There are other sources of integration cost unrelated to wind energy. A performance-based approach would be technology neutral, and would provide price signals for all technology types. However, it is difficult to correctly formulate such an approach. Determining what is and is not an integration cost is challenging. Another problem is the allocation of system costs to one source. Because of significant nonlinearities, this can prove to be impossible to determine in an accurate and objective way.

  12. The Western Wind and Solar Integration Study Phase 2

    SciTech Connect (OSTI)

    Lew, D.; Brinkman, G.; Ibanez, E.; Hodge, B. M.; Hummon, M.; Florita, A.; Heaney, M.

    2013-09-01

    The electric grid is a highly complex, interconnected machine, and changing one part of the grid can have consequences elsewhere. Adding wind and solar affects the operation of the other power plants and adding high penetrations can induce cycling of fossil-fueled generators. Cycling leads to wear-and-tear costs and changes in emissions. Phase 2 of the Western Wind and Solar Integration Study (WWSIS-2) evaluated these costs and emissions and simulated grid operations for a year to investigate the detailed impact of wind and solar on the fossil-fueled fleet. This built on Phase 1, one of the largest wind and solar integration studies ever conducted, which examined operational impacts of high wind and solar penetrations in the West.

  13. The Western Wind and Solar Integration Study Phase 2

    SciTech Connect (OSTI)

    Lew, Debra; Brinkman, Greg; Ibanez, E.; Florita, A.; Heaney, M.; Hodge, B. -M.; Hummon, M.; Stark, G.; King, J.; Lefton, S. A.; Kumar, N.; Agan, D.; Jordan, G.; Venkataraman, S.

    2013-09-01

    The electric grid is a highly complex, interconnected machine, and changing one part of the grid can have consequences elsewhere. Adding wind and solar affects the operation of the other power plants and adding high penetrations can induce cycling of fossil-fueled generators. Cycling leads to wear-and-tear costs and changes in emissions. Phase 2 of the Western Wind and Solar Integration Study (WWSIS-2) evaluated these costs and emissions and simulated grid operations for a year to investigate the detailed impact of wind and solar on the fossil-fueled fleet. This built on Phase 1, one of the largest wind and solar integration studies ever conducted, which examined operational impacts of high wind and solar penetrations in the West(GE Energy 2010).

  14. Wind Turbine Radar Interference Mitigation Working Group Releases New Report

    Office of Energy Efficiency and Renewable Energy (EERE)

    While wind energy presents many benefits, spinning wind turbines can interfere with weather, air traffic control, and air surveillance radar systems. As advances in wind technology enable turbines...

  15. Wind Integration National Dataset (WIND) Toolkit; NREL (National Renewable Energy Laboratory)

    SciTech Connect (OSTI)

    Draxl, Caroline; Hodge, Bri-Mathias

    2015-07-14

    A webinar about the Wind Integration National Dataset (WIND) Toolkit was presented by Bri-Mathias Hodge and Caroline Draxl on July 14, 2015. It was hosted by the Southern Alliance for Clean Energy. The toolkit is a grid integration data set that contains meteorological and power data at a 5-minute resolution across the continental United States for 7 years and hourly power forecasts.

  16. IEA Wind Task 24 Integration of Wind and Hydropower Systems; Volume 2: Participant Case Studies

    SciTech Connect (OSTI)

    Acker, T.

    2011-12-01

    This report describes the background, concepts, issues and conclusions related to the feasibility of integrating wind and hydropower, as investigated by the members of IEA Wind Task 24. It is the result of a four-year effort involving seven IEA member countries and thirteen participating organizations. The companion report, Volume 2, describes in detail the study methodologies and participant case studies, and exists as a reference for this report.

  17. Overview and Meteorological Validation of the Wind Integration National Dataset toolkit

    SciTech Connect (OSTI)

    Draxl, C.; Hodge, B. M.; Clifton, A.; McCaa, J.

    2015-04-13

    The Wind Integration National Dataset (WIND) Toolkit described in this report fulfills these requirements, and constitutes a state-of-the-art national wind resource data set covering the contiguous United States from 2007 to 2013 for use in a variety of next-generation wind integration analyses and wind power planning. The toolkit is a wind resource data set, wind forecast data set, and wind power production and forecast data set derived from the Weather Research and Forecasting (WRF) numerical weather prediction model. WIND Toolkit data are available online for over 116,000 land-based and 10,000 offshore sites representing existing and potential wind facilities.

  18. Wind Integration, Transmission, and Resource Assessment and Characterization Projects, Fiscal Years 2006-2014

    SciTech Connect (OSTI)

    None, None

    2014-04-01

    This report covers the Wind and Water Power Technologies Office's Wind Integration, Transmission, and Resource Assessment and Characterization Projects from 2006 to 2014.

  19. Large Scale Wind and Solar Integration in Germany

    SciTech Connect (OSTI)

    Ernst, Bernhard; Schreirer, Uwe; Berster, Frank; Pease, John; Scholz, Cristian; Erbring, Hans-Peter; Schlunke, Stephan; Makarov, Yuri V.

    2010-02-28

    This report provides key information concerning the German experience with integrating of 25 gigawatts of wind and 7 gigawatts of solar power capacity and mitigating its impacts on the electric power system. The report has been prepared based on information provided by the Amprion GmbH and 50Hertz Transmission GmbH managers and engineers to the Bonneville Power Administration (BPA) and Pacific Northwest National Laboratory representatives during their visit to Germany in October 2009. The trip and this report have been sponsored by the BPA Technology Innovation office. Learning from the German experience could help the Bonneville Power Administration engineers to compare and evaluate potential new solutions for managing higher penetrations of wind energy resources in their control area. A broader dissemination of this experience will benefit wind and solar resource integration efforts in the United States.

  20. Western Wind and Solar Integration Study: Hydropower Analysis

    SciTech Connect (OSTI)

    Acker, T.; Pete, C.

    2012-03-01

    The U.S. Department of Energy's (DOE) study of 20% Wind Energy by 2030 was conducted to consider the benefits, challenges, and costs associated with sourcing 20% of U.S. energy consumption from wind power by 2030. This study found that with proactive measures, no insurmountable barriers were identified to meet the 20% goal. Following this study, DOE and the National Renewable Energy Laboratory (NREL) conducted two more studies: the Eastern Wind Integration and Transmission Study (EWITS) covering the eastern portion of the U.S., and the Western Wind and Solar Integration Study (WWSIS) covering the western portion of the United States. The WWSIS was conducted by NREL and research partner General Electric (GE) in order to provide insight into the costs, technical or physical barriers, and operational impacts caused by the variability and uncertainty of wind, photovoltaic, and concentrated solar power when employed to serve up to 35% of the load energy in the WestConnect region (Arizona, Colorado, Nevada, New Mexico, and Wyoming). WestConnect is composed of several utility companies working collaboratively to assess stakeholder and market needs to and develop cost-effective improvements to the western wholesale electricity market. Participants include the Arizona Public Service, El Paso Electric Company, NV Energy, Public Service of New Mexico, Salt River Project, Tri-State Generation and Transmission Cooperative, Tucson Electric Power, Xcel Energy and the Western Area Power Administration.

  1. Western Wind and Solar Integration Study Phase 2: Preprint

    SciTech Connect (OSTI)

    Lew, D.; Brinkman, G.; Ibanez, E.; Hodge, B.-M.; King, J.

    2012-09-01

    The Western Wind and Solar Integration Study (WWSIS) investigates the impacts of high penetrations of wind and solar power into the Western Interconnection of the United States. WWSIS2 builds on the Phase 1 study but with far greater refinement in the level of data inputs and production simulation. It considers the differences between wind and solar power on systems operations. It considers mitigation options to accommodate wind and solar when full costs of wear-and-tear and full impacts of emissions rates are taken into account. It determines wear-and-tear costs and emissions impacts. New data sets were created for WWSIS2, and WWSIS1 data sets were refined to improve realism of plant output and forecasts. Four scenarios were defined for WWSIS2 that examine the differences between wind and solar and penetration level. Transmission was built out to bring resources to load. Statistical analysis was conducted to investigate wind and solar impacts at timescales ranging from seasonal down to 5 minutes.

  2. Review and Status of Wind Integration and Transmission in the...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    ... Smith Utility Variable Generation Integration Group Beth ... cost from the National Renewable Energy Laboratory (NREL) at ... could be built to a site prior to that site being ...

  3. Introducing WISDEM:An Integrated System Modeling for Wind Turbines and Plant (Presentation)

    SciTech Connect (OSTI)

    Dykes, K.; Graf, P.; Scott, G.; Ning, A.; King, R.; Guo, Y.; Parsons, T.; Damiani, R.; Felker, F.; Veers, P.

    2015-01-01

    The National Wind Technology Center wind energy systems engineering initiative has developed an analysis platform to leverage its research capabilities toward integrating wind energy engineering and cost models across wind plants. This Wind-Plant Integrated System Design & Engineering Model (WISDEM) platform captures the important interactions between various subsystems to achieve a better National Wind Technology Center wind energy systems engineering initiative has developed an analysis platform to leverage its research capabilities toward integrating wind energy engineering and cost models across wind plants. This Wind-Plant Integrated System Design & Engineering Model (WISDEM) platform captures the important interactions between various subsystems to achieve a better understanding of how to improve system-level performance and achieve system-level cost reductions. This work illustrates a few case studies with WISDEM that focus on the design and analysis of wind turbines and plants at different system levels.

  4. IEA Wind Task 24 Integration of Wind and Hydropower Systems; Volume 1: Issues, Impacts, and Economics of Wind and Hydropower Integration

    SciTech Connect (OSTI)

    Acker, T.

    2011-12-01

    This report describes the background, concepts, issues and conclusions related to the feasibility of integrating wind and hydropower, as investigated by the members of IEA Wind Task 24. It is the result of a four-year effort involving seven IEA member countries and thirteen participating organizations. The companion report, Volume 2, describes in detail the study methodologies and participant case studies, and exists as a reference for this report.

  5. Western Wind and Solar Integration Study: Executive Summary

    Office of Energy Efficiency and Renewable Energy (EERE)

    This study investigates the operational impact of up to 35% energy penetration of wind, photovoltaics (PVs), and concentrating solar power (CSP) on the power system operated by the WestConnect group of utilities in Arizona, Colorado, Nevada, New Mexico, and Wyoming.

  6. Western Wind and Solar Integration Study: Executive Summary

    SciTech Connect (OSTI)

    none,

    2010-05-01

    This Study investigates the operational impact of up to 35% energy penetration of wind, photovoltaics (PVs), and concentrating solar power (CSP) on the power system operated by the WestConnect group of utilities in Arizona, Colorado, Nevada, New Mexico, and Wyoming.

  7. Integrated Wind Energy/Desalination System: October 11, 2004 -- July 29, 2005

    SciTech Connect (OSTI)

    GE Global Research

    2006-10-01

    This study investigates the feasibility of multiple concepts for integrating wind turbines and reverse osmosis desalination systems for water purification.

  8. Western Wind and Solar Integration Study: Executive Summary, (WWSIS) May 2010

    SciTech Connect (OSTI)

    R. Piwko; K. Clark; L. Freeman; G. Jordan; N. Miller

    2010-05-01

    This report provides a summary of background, approach, and findings of the Western Wind and Solar Integration Study (WWSIS).

  9. Unit commitment with wind power generation: integrating wind forecast uncertainty and stochastic programming.

    SciTech Connect (OSTI)

    Constantinescu, E. M.; Zavala, V. M.; Rocklin, M.; Lee, S.; Anitescu, M.

    2009-10-09

    We present a computational framework for integrating the state-of-the-art Weather Research and Forecasting (WRF) model in stochastic unit commitment/energy dispatch formulations that account for wind power uncertainty. We first enhance the WRF model with adjoint sensitivity analysis capabilities and a sampling technique implemented in a distributed-memory parallel computing architecture. We use these capabilities through an ensemble approach to model the uncertainty of the forecast errors. The wind power realizations are exploited through a closed-loop stochastic unit commitment/energy dispatch formulation. We discuss computational issues arising in the implementation of the framework. In addition, we validate the framework using real wind speed data obtained from a set of meteorological stations. We also build a simulated power system to demonstrate the developments.

  10. Evolution of Operating Reserve Determination in Wind Power Integration

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Evolution of Operating Reserve Determination in Wind Power Integration Studies Erik Ela and Michael Milligan National Renewable Energy Laboratory Brendan Kirby Private Consultant Eamonn Lannoye, Damian Flynn, and Mark O'Malley University College Dublin Bob Zavadil EnerNex Presented at the 2010 IEEE Power & Energy Society General Meeting Minneapolis, Minnesota July 25-29, 2010 Conference Paper NREL/CP-5500-49100 March 2011 NOTICE The submitted manuscript has been offered by an employee of the

  11. Hawaii Solar and Wind Integration Studies | Grid Modernization...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    the effects of high penetrations of solar and wind energy on the operations of the electric ... Development of Regional Wind Resource and Wind Plant Output Datasets for the ...

  12. Eastern Wind Integration and Transmission Study: Executive Summary...

    Broader source: Energy.gov (indexed) [DOE]

    three different 20 percent wind energy penetration scenarios and one 30 percent wind ... the U.S. Grid to Incorporate Variable Renewable Energy 2014 Wind Program Peer Review ...

  13. Eastern Wind Integration Data Set | Grid Modernization | NREL

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Wind power plant locations were determined using a proprietary AWS Truepower wind speed ... The wind speed and power output time series for each wind power plant were computed by ...

  14. SeaWest Energy Group Wind Farm | Open Energy Information

    Open Energy Info (EERE)

    Wind Facility Status In Service Owner SeaWest Developer SeaWest Energy Purchaser Pacific Gas & Electric Co Location Altamont Pass CA Coordinates 37.7347, -121.652 Show Map...

  15. Hawaii Utility Integration Initiatives to Enable Wind (Wind HUI) Final Technical Report

    SciTech Connect (OSTI)

    Dora Nakafuji; Lisa Dangelmaier; Chris Reynolds

    2012-07-15

    To advance the state and nation toward clean energy, Hawaii is pursuing an aggressive Renewable Portfolio Standard (RPS), 40% renewable generation and 30% energy efficiency and transportation initiatives by 2030. Additionally, with support from federal, state and industry leadership, the Hawaii Clean Energy Initiative (HCEI) is focused on reducing Hawaii's carbon footprint and global warming impacts. To keep pace with the policy momentum and changing industry technologies, the Hawaiian Electric Companies are proactively pursuing a number of potential system upgrade initiatives to better manage variable resources like wind, solar and demand-side and distributed generation alternatives (i.e. DSM, DG). As variable technologies will continue to play a significant role in powering the future grid, practical strategies for utility integration are needed. Hawaiian utilities are already contending with some of the highest penetrations of renewables in the nation in both large-scale and distributed technologies. With island grids supporting a diverse renewable generation portfolio at penetration levels surpassing 40%, the Hawaiian utilities experiences can offer unique perspective on practical integration strategies. Efforts pursued in this industry and federal collaborative project tackled challenging issues facing the electric power industry around the world. Based on interactions with a number of western utilities and building on decades of national and international renewable integration experiences, three priority initiatives were targeted by Hawaiian utilities to accelerate integration and management of variable renewables for the islands. The three initiatives included: Initiative 1: Enabling reliable, real-time wind forecasting for operations by improving short-term wind forecasting and ramp event modeling capabilities with local site, field monitoring; Initiative 2: Improving operators situational awareness to variable resources via real-time grid condition

  16. Systems and methods for an integrated electrical sub-system powered by wind energy

    DOE Patents [OSTI]

    Liu, Yan; Garces, Luis Jose

    2008-06-24

    Various embodiments relate to systems and methods related to an integrated electrically-powered sub-system and wind power system including a wind power source, an electrically-powered sub-system coupled to and at least partially powered by the wind power source, the electrically-powered sub-system being coupled to the wind power source through power converters, and a supervisory controller coupled to the wind power source and the electrically-powered sub-system to monitor and manage the integrated electrically-powered sub-system and wind power system.

  17. Integrated Operation Scenarios ITPA Topical Group Meeting | Princeton

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Plasma Physics Lab 20, 2010, 9:00am to April 23, 2010, 5:00pm Conference Princeton, NJ Integrated Operation Scenarios ITPA Topical Group Meeting Integrated Operation Scenarios ITPA Topical Group Meeting Contact Information Website: Integrated Operation Scenarios ITPA Topical Group Meeting Coordinator(s): Kathleen Lukazik KLukazik@pppl.gov Host(s): Chuck Kessel ckessel@pppl.gov PPPL Entrance Procedures Visitor Information, Directions, Security at PPPL As a federal facility, the Princeton

  18. How Do High Levels of Wind and Solar Impact the Grid? The Western Wind and Solar Integration Study

    SciTech Connect (OSTI)

    Lew, D.; Piwko, D.; Miller, N.; Jordan, G.; Clark, K.; Freeman, L.

    2010-12-01

    This paper is a brief introduction to the scope of the Western Wind and Solar Integration Study (WWSIS), inputs and scenario development, and the key findings of the study.

  19. Eastern Wind Integration and Transmission Study: Executive Summary...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    ... the weather of historical years and generate a four-dimensional gridded wind-speed data set. A wind speed time series data set can be extracted and converted to wind power output. ...

  20. Project Reports for Chaninik Wind Group- 2010 Project

    Office of Energy Efficiency and Renewable Energy (EERE)

    The goals of this project are to reduce the consumption of fossil fuel by 40% in four Lower Kuskokwim Alaska villages and use wind energy to displace 200,000 gallons of diesel fuel, 70,000 of which is now being used to generate power, and 130,000 of which will be captured and stored for use as heat.

  1. Installer Issues: Integrating Distributed Wind into Local Communities (Presentation)

    SciTech Connect (OSTI)

    Green, J.

    2006-06-01

    A presentation for the WindPower 2006 Conference in Pittsburgh, PA, regarding the issues facing installer of small wind electric systems.

  2. Ten Frequently Asked Questions and Answers About Wind Energy Grid Integration

    Office of Energy Efficiency and Renewable Energy (EERE)

    First presented to the Kansas State Legislature in 2008, these slides present 10 questions and answers regarding basic wind power issues including technology, transmission, and integration.

  3. Ten Frequently Asked Questions and Answers about Wind Energy Grid Integration

    SciTech Connect (OSTI)

    Milligan, M.

    2008-02-07

    First presented to the Kansas State Legislature in 2008, these slides present 11 questions and answers regarding basic wind power issues including technology, transmission, and integration.

  4. Eastern Wind Integration and Transmission Study: Executive Summary and Project Overview

    SciTech Connect (OSTI)

    none,

    2010-01-01

    This study evaluates the future operational and integration impacts of three different 20 percent wind energy penetration scenarios and one 30 percent wind penetration scenario, including a high-level analysis of transmission to deliver the wind energy to load centers, in the study year 2024.

  5. Eastern Wind Integration and Transmission Study: Executive Summary and Project Overview

    Office of Energy Efficiency and Renewable Energy (EERE)

    This study evaluates the future operational and integration impacts of three different 20 percent wind energy penetration scenarios and one 30 percent wind penetration scenario, including a high-level analysis of transmission to deliver the wind energy to load centers, in the study year 2024.

  6. Western Wind and Solar Integration Study Phase 2 (Presentation)

    SciTech Connect (OSTI)

    Lew, D.; Brinkman, G.; Ibanez, E.; Kumar, N.; Lefton, S.; Jordan, G.; Venkataraman, S.; King, J.

    2013-06-01

    This presentation accompanies Phase 2 of the Western Wind and Solar Integration Study, a follow-on to Phase 1, which examined the operational impacts of high penetrations of variable renewable generation on the electric power system in the West and was one of the largest variable generation studies to date. High penetrations of variable generation can induce cycling of fossil-fueled generators. Cycling leads to wear-and-tear costs and changes in emissions. Phase 2 calculated these costs and emissions, and simulated grid operations for a year to investigate the detailed impact of variable generation on the fossil-fueled fleet. The presentation highlights the scope of the study and results.

  7. 20% Wind Energy by 2030 - Chapter 4: Transmission and Integration into the

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    U.S. Electric System Summary Slides | Department of Energy 4: Transmission and Integration into the U.S. Electric System Summary Slides 20% Wind Energy by 2030 - Chapter 4: Transmission and Integration into the U.S. Electric System Summary Slides Summary slides for chapter 4 of 20% Wind Energy by 2030 overviewing transmission and integration 20percent_summary_chap4.pdf (1.78 MB) More Documents & Publications 20% Wind Energy by 2030: Increasing Wind Energy's Contribution to U.S.

  8. New Report: Integrating More Wind and Solar Reduces Utilities' Carbon Emissions and Fuel Costs

    Broader source: Energy.gov [DOE]

    The National Renewable Energy Laboratory (NREL) released Phase 2 of the Western Wind and Solar Integration Study (WWSIS-2), a follow-up to the initial WWSIS released in May 2010, which examined the viability, benefits, and challenges of integrating as much as 33% wind and solar power into the electricity grid of the western United States.

  9. The importance of combined cycle generating plants in integrating large levels of wind power generation

    SciTech Connect (OSTI)

    Puga, J. Nicolas

    2010-08-15

    Integration of high wind penetration levels will require fast-ramping combined cycle and steam cycles that, due to higher operating costs, will require proper pricing of ancillary services or other forms of compensation to remain viable. Several technical and policy recommendations are presented to help realign the generation mix to properly integrate the wind. (author)

  10. EA-1939: Reese Technology Center Wind and Battery Integration Project, Lubbock County, TX

    Broader source: Energy.gov [DOE]

    This EA will evaluate the potential environmental impacts of a proposal by the Center for Commercialization of Electric Technologies to demonstrate battery technology integration with wind generated electricity by deploying and evaluating utility-scale lithium battery technology to improve grid performance and thereby aid in the integration of wind generation into the local electricity supply.

  11. Developing Integrated National Design Standards for Offshore Wind Plants

    Office of Energy Efficiency and Renewable Energy (EERE)

    The DOE Wind Program and the National Renewable Energy Laboratory recently published a report that summarizes the regulations, standards, and guidelines for the design and operation of offshore wind projects in the United States.

  12. How Do High Levels of Wind and Solar Impact the Grid? The Western Wind and Solar Integration Study

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    How Do High Levels of Wind and Solar Impact the Grid? The Western Wind and Solar Integration Study Debra Lew National Renewable Energy Laboratory Dick Piwko, Nick Miller, Gary Jordan, Kara Clark, and Lavelle Freeman GE Energy Technical Report NREL/TP-5500-50057 December 2010 NREL is a national laboratory of the U.S. Department of Energy, Office of Energy Efficiency & Renewable Energy, operated by the Alliance for Sustainable Energy, LLC. National Renewable Energy Laboratory 1617 Cole

  13. Shane Canon! Group Leader for Technology Integration Biosciences

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Canon Group Leader for Technology Integration Biosciences Computing and Storage for JGI --- 1 --- February 1 2, 2 013 Why Biology in DOE * Biofuels - Engineering b e+er p lants f...

  14. Integrating High Penetrations of Solar in the Western United States: Results of the Western Wind and Solar Integration Study Phase 2 (Poster)

    SciTech Connect (OSTI)

    Bird, L.; Lew, D.

    2013-10-01

    This poster presents a summary of the results of the Western Wind and Solar Integration Study Phase 2.

  15. Eastern Wind Integration and Transmission Study (EWITS) (Revised)

    SciTech Connect (OSTI)

    Not Available

    2011-02-01

    EWITS was designed to answer questions about technical issues related to a 20% wind energy scenario for electric demand in the Eastern Interconnection.

  16. Wind Integration National Dataset Toolkit | Grid Modernization | NREL

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Industry Soars to New Heights Wind Industry Soars to New Heights August 5, 2013 - 8:13am Addthis Watch the video to learn more about the new records reached by the U.S. industry as found in the 2012 Wind Technologies Market Report. | Video by Matty Greene, Energy Department. Matty Greene Matty Greene Former Videographer Wind capacity additions in the United States reached record levels in 2012, as detailed in the 2012 Wind Technologies Market Report. In a video narrated by Jose Zayas, Director

  17. NREL: Distributed Grid Integration - Wind2Battery Project

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    system most economically for next-day forecasts Make wind energy consistent and available around the clock, while providing key grid ancillary services and being cost effective. ...

  18. Operating Reserves and Wind Power Integration; An International...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    ... As shown in Fig. 5 wind power forecasting errors can increase the cost associated to the operation of deviation management and the tertiary reserve. D. The Netherlands The ...

  19. Eastern Wind Integration and Transmission Study (EWITS) (Revised...

    Broader source: Energy.gov (indexed) [DOE]

    ... than installing wind plants, there is a sense of ... comment on study inputs, methods, and assumptions; assist ... REC renewable energy credit RET Coal coal plant retirement ...

  20. EWIS European wind integration study (Smart Grid Project) (Netherlands...

    Open Energy Info (EERE)

    of wind generation developers. The study will use results from detailed network and market models of the European transmission system for scenarios representing immediate and...

  1. EWIS European wind integration study (Smart Grid Project) (Greece...

    Open Energy Info (EERE)

    of wind generation developers. The study will use results from detailed network and market models of the European transmission system for scenarios representing immediate and...

  2. EWIS European wind integration study (Smart Grid Project) (Austria...

    Open Energy Info (EERE)

    of wind generation developers. The study will use results from detailed network and market models of the European transmission system for scenarios representing immediate and...

  3. EWIS European wind integration study (Smart Grid Project) (Poland...

    Open Energy Info (EERE)

    of wind generation developers. The study will use results from detailed network and market models of the European transmission system for scenarios representing immediate and...

  4. EWIS European wind integration study (Smart Grid Project) | Open...

    Open Energy Info (EERE)

    of wind generation developers. The study will use results from detailed network and market models of the European transmission system for scenarios representing immediate and...

  5. EWIS European wind integration study (Smart Grid Project) (Portugal...

    Open Energy Info (EERE)

    of wind generation developers. The study will use results from detailed network and market models of the European transmission system for scenarios representing immediate and...

  6. EWIS European wind integration study (Smart Grid Project) (Ireland...

    Open Energy Info (EERE)

    of wind generation developers. The study will use results from detailed network and market models of the European transmission system for scenarios representing immediate and...

  7. Eastern Wind Integration and Transmission Study (EWITS) (Revised)

    Office of Energy Efficiency and Renewable Energy (EERE)

    EWITS was designed to answer questions about technical issues related to a 20% wind energy scenario for electric demand in the Eastern Interconnection.

  8. New Report: Integrating Variable Wind Energy into the Grid |...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    The study also finds that decision support tools are also essential to helping grid operators incorporate wind forecasts and obtain optimal power flow in their grids. The study ...

  9. Empirical Analysis of the Variability of Wind Generation in India: Implications for Grid Integration

    SciTech Connect (OSTI)

    Phadke, Amol; Abhyankar, NIkit; Rao, Poorvi

    2014-06-17

    We analyze variability in load and wind generation in India to assess its implications for grid integration of large scale wind projects using actual wind generation and load data from two states in India, Karnataka and Tamil Nadu. We compare the largest variations in load and net load (load ?wind, i.e., load after integrating wind) that the generation fleet has to meet. In Tamil Nadu, where wind capacity is about 53percent of the peak demand, we find that the additional variation added due to wind over the current variation in load is modest; if wind penetration reaches 15percent and 30percent by energy, the additional hourly variation is less than 0.5percent and 4.5percent of the peak demand respectively for 99percent of the time. For wind penetration of 15percent by energy, Tamil Nadu system is found to be capable of meeting the additional ramping requirement for 98.8percent of the time. Potential higher uncertainty in net load compared to load is found to have limited impact on ramping capability requirements of the system if coal plants can me ramped down to 50percent of their capacity. Load and wind aggregation in Tamil Nadu and Karnataka is found to lower the variation by at least 20percent indicating the benefits geographic diversification. These findings suggest modest additional flexible capacity requirements and costs for absorbing variation in wind power and indicate that the potential capacity support (if wind does not generate enough during peak periods) may be the issue that has more bearing on the economics of integrating wind

  10. Integrating Wind and Solar Energy in the U.S. Bulk Power System: Lessons from Regional Integration Studies

    SciTech Connect (OSTI)

    Bird, L.; Lew, D.

    2012-09-01

    Two recent studies sponsored by the U.S. Department of Energy (DOE) and the National Renewable Energy Laboratory (NREL) have examined the impacts of integrating high penetrations of wind and solar energy on the Eastern and Western electric grids. The Eastern Wind Integration and Transmission Study (EWITS), initiated in 2007, examined the impact on power system operations of reaching 20% to 30% wind energy penetration in the Eastern Interconnection. The Western Wind and Solar Integration Study (WWSIS) examined the operational implications of adding up to 35% wind and solar energy penetration to the Western Interconnect. Both studies examined the costs of integrating variable renewable energy generation into the grid and transmission and operational changes that might be necessary to address higher penetrations of wind or solar generation. This paper identifies key insights from these regional studies for integrating high penetrations of renewables in the U.S. electric grid. The studies share a number of key findings, although in some instances the results vary due to differences in grid operations and markets, the geographic location of the renewables, and the need for transmission.

  11. Advancing Wind Integration Study Methodologies: Implications of Higher Levels of Wind

    SciTech Connect (OSTI)

    Milligan, M.; Ela, E.; Lew, D.; Corbus, D.; Wan, Y. H.

    2010-07-01

    The authors report on the evolution of techniques to better model high penetrations (generally, 20% or more energy penetration) of wind energy.

  12. Wind Power Forecasting Data

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Operations Call 2012 Retrospective Reports 2012 Retrospective Reports 2011 Smart Grid Wind Integration Wind Integration Initiatives Wind Power Forecasting Wind Projects Email...

  13. The symmetry groups of bifurcations of integrable Hamiltonian systems

    SciTech Connect (OSTI)

    Orlova, E I

    2014-11-30

    Two-dimensional atoms are investigated; these are used to code bifurcations of the Liouville foliations of nondegenerate integrable Hamiltonian systems. To be precise, the symmetry groups of atoms with complexity at most 3 are under study. Atoms with symmetry group Z{sub p}?Z{sub q} are considered. It is proved that Z{sub p}?Z{sub q} is the symmetry group of atoric atom. The symmetry groups of all nonorientable atoms with complexity at most 3 are calculated. The concept of ageodesic atom is introduced. Bibliography: 9 titles.

  14. The Western Wind and Solar Integration Study Phase 2 (Fact Sheet), NREL (National Renewable Energy Laboratory)

    Broader source: Energy.gov [DOE]

    This is one-page, two-sided fact sheet presents high-level summary results of the Western Wind and Solar Integration Study Phase 2, which examined operational impacts of high penetrations of variable renewable generation in the West.

  15. Final Report on the Creation of the Wind Integration National...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    ... was not considered, since DOE is investigating offshore floating platforms. ... speed for a cell with a single turbine to a 5% reduction in wind speed for a cell with 8 turbines ...

  16. NREL: Transmission Grid Integration - Western Wind and Solar...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    ... Power Plant Cycling Costs This report examines wear-and-tear costs and impacts of cycling and ramping on fossil-fueled generators. Analysis of Cycling Costs in Western Wind and ...

  17. OAHU Wind Integration And Transmission Study: Summary Report...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    ... the technical requirements and ... from wind and photovoltaic generation. 8 HECO Grid Background and ... The Oahu system has a daily peak of about 1200 MW and a daily minimum ...

  18. TECHNOLOGY SOLUTIONS FOR WIND INTEGRATION IN ERCOT (Technical...

    Office of Scientific and Technical Information (OSTI)

    grants to fund development of a broad range of technologies for a more efficient and reliable electric system, including the growth of renewable energy sources like wind and solar. ...

  19. 10 Questions for a Wind & Solar Integration Analyst: Kirsten Orwig

    Office of Energy Efficiency and Renewable Energy (EERE)

    Kirsten Orwig shares how her experiences in storm chasing led her to this position at National Renewable Energy Laboratory (NREL) and why understanding meteorology is important for advancing reliable solar and wind energy.

  20. Integrating wind turbines into the Orcas Island distribution system

    SciTech Connect (OSTI)

    Zaininger, H.W.

    1998-09-01

    This research effort consists of two years of wind data collection and analysis to investigate the possibility of strategically locating a megawatt (MW) scale wind farm near the end of an Orcas Power and light Company (OPALCO) 25-kilovolt (kV) distribution circuit to defer the need to upgrade the line to 69 kV. The results of this study support the results of previous work in which another year of wind data and collection was performed. Both this study and the previous study show that adding a MW-scale wind farm at the Mt. Constitution site is a feasible alternative to upgrading the OPALCO 25-kV distribution circuit to 69 kV.

  1. Role of Concentrating Solar Power in Integrating Solar and Wind Energy: Preprint

    SciTech Connect (OSTI)

    Denholm, P.; Mehos, M.

    2015-06-03

    As wind and solar photovoltaics (PV) increase in penetration it is increasingly important to examine enabling technologies that can help integrate these resources at large scale. Concentrating solar power (CSP) when deployed with thermal energy storage (TES) can provide multiple services that can help integrate variable generation (VG) resources such as wind and PV. CSP with TES can provide firm, highly flexible capacity, reducing minimum generation constraints which limit penetration and results in curtailment. By acting as an enabling technology, CSP can complement PV and wind, substantially increasing their penetration in locations with adequate solar resource.

  2. Integration Costs: Are They Unique to Wind and Solar Energy? Preprint

    SciTech Connect (OSTI)

    Milligan, M.; Hodge, B.; Kirby, B.; Clark, C.

    2012-05-01

    Over the past several years, there has been considerable interest in assessing wind integration costs. This is understandable because wind energy does increase the variability and uncertainty that must be managed on a power system. However, there are other sources of variability and uncertainty that also must be managed in the power system. This paper describes some of these sources and shows that even the introduction of base-load generation can cause additional ramping and cycling. The paper concludes by demonstrating that integration costs are not unique to wind and solar, and should perhaps instead be assessed by power plant and load performance instead of technology type.

  3. The Western Wind and Solar Integration Study Phase 2 (Executive Summary)

    SciTech Connect (OSTI)

    Lew, Debra; Brinkman, Greg

    2013-09-01

    The electric grid is a highly complex, interconnected machine, and changing one part of the grid can have consequences elsewhere. Adding wind and solar affects the operation of the other power plants and adding high penetrations can induce cycling of fossil-fueled generators. Cycling leads to wear-and-tear costs and changes in emissions. Phase 2 of the Western Wind and Solar Integration Study (WWSIS-2) evaluated these costs and emissions and simulated grid operations for a year to investigate the detailed impact of wind and solar on the fossil-fueled fleet. This built on Phase 1, one of the largest wind and solar integration studies ever conducted, which examined operational impacts of high wind and solar penetrations in the West(GE Energy 2010).

  4. Multiloop integral system test (MIST): Test Group 36, Pump operation

    SciTech Connect (OSTI)

    Gloudemans, J.R. . Nuclear Power Div.)

    1989-07-01

    The multiloop integral system test (MIST) was part of a multiphase program started in 1983 to address small-break loss-of-coolant accidents (SBLOCAs) specific to Babcock Wilcox-designed plants. MIST was sponsored by the US Nuclear Regulatory Commission, the Babcock Wilcox Owners Group, the Electric Power Research Institute, and Babcock Wilcox. The unique features of the Babcock Wilcox design, specifically the hot leg U-bends and steam generators, prevented the use of existing integral system data or existing integral system facilities to address the thermal-hydraulic SBLOCA questions. MIST and two other supporting facilities were specifically designed and constructed for this program, and an existing facility -- the once-through integral system (OTIS) -- was also used. Data from MIST and the other facilities will be used to benchmark the adequacy of system codes, such as RELAP-5 and TRAC, for predicting abnormal plant transients. 7 refs., 321 figs., 14 tabs.

  5. An Integrated Risk Framework for Gigawatt-scale Deployments of Renewable Energy: The U.S. Wind Energy Case

    SciTech Connect (OSTI)

    Ram, B.

    2010-04-01

    Assessing the potential environmental and human effects of deploying renewable wind energy requires a new way of evaluating potential environmental and human impacts. This paper explores an integrated risk framework for renewable wind energy siting decisionmaking.

  6. Klondike III/Biglow Canyon Wind Integration Project; Record of Decision, October 25, 2006.

    SciTech Connect (OSTI)

    United States. Bonneville Power Administration

    2006-10-25

    The Bonneville Power Administration (BPA) has decided to implement the Proposed Action identified in the Klondike III/Biglow Canyon Wind Integration Project Final Environmental Impact Statement (FEIS) (DOE/EIS-0374, September 2006). Under the Proposed Action, BPA will offer PPM Energy, Inc. (PPM) contract terms for interconnection of the proposed Klondike III Wind Project, located in Sherman County, Oregon, with the Federal Columbia River Transmission System (FCRTS). BPA will also offer Portland General Electric (PGE)1 contract terms for interconnection of its proposed Biglow Canyon Wind Farm, also located in Sherman County, Oregon, with the FCRTS, as proposed in the FEIS. To interconnect these wind projects, BPA will build and operate a 12-mile long, 230-kilovolt (kV) double-circuit transmission line between the wind projects and BPA's new 230-kV John Day Substation in Sherman County, Oregon. BPA will also expand its existing 500-kV John Day Substation.

  7. The Western Wind and Solar Integration Study Phase 2 (Fact Sheet)

    SciTech Connect (OSTI)

    2013-09-01

    This fact sheet is a basic overview of the Western Wind and Solar Integration Study, Phase 2. The electric grid is a highly complex, interconnected machine, and changing one part of the grid can have consequences elsewhere. Adding wind and solar affects the operation of the other power plants and adding high penetrations can induce cycling of fossil-fueled generators. Cycling leads to wear-and-tear costs and changes in emissions.

  8. International Piping Integrity Research Group (IPIRG) Program. Final report

    SciTech Connect (OSTI)

    Wilkowski, G.; Schmidt, R.; Scott, P.

    1997-06-01

    This is the final report of the International Piping Integrity Research Group (IPIRG) Program. The IPIRG Program was an international group program managed by the U.S. Nuclear Regulatory Commission and funded by a consortium of organizations from nine nations: Canada, France, Italy, Japan, Sweden, Switzerland, Taiwan, the United Kingdom, and the United States. The program objective was to develop data needed to verify engineering methods for assessing the integrity of circumferentially-cracked nuclear power plant piping. The primary focus was an experimental task that investigated the behavior of circumferentially flawed piping systems subjected to high-rate loadings typical of seismic events. To accomplish these objectives a pipe system fabricated as an expansion loop with over 30 meters of 16-inch diameter pipe and five long radius elbows was constructed. Five dynamic, cyclic, flawed piping experiments were conducted using this facility. This report: (1) provides background information on leak-before-break and flaw evaluation procedures for piping, (2) summarizes technical results of the program, (3) gives a relatively detailed assessment of the results from the pipe fracture experiments and complementary analyses, and (4) summarizes advances in the state-of-the-art of pipe fracture technology resulting from the IPIRG program.

  9. DOE: Integrating Southwest Power Pool Wind Energy into Southeast Electricity Markets

    SciTech Connect (OSTI)

    Brooks, Daniel, EPRI; Tuohy, Aidan, EPRI; Deb, Sidart, LCG Consulting; Jampani, Srinivas, LCG Consulting; Kirby, Brendan, Consultant; King, Jack, Consultant

    2011-11-29

    Wind power development in the United States is outpacing previous estimates for many regions, particularly those with good wind resources. The pace of wind power deployment may soon outstrip regional capabilities to provide transmission and integration services to achieve the most economic power system operation. Conversely, regions such as the Southeastern United States do not have good wind resources and will have difficulty meeting proposed federal Renewable Portfolio Standards with local supply. There is a growing need to explore innovative solutions for collaborating between regions to achieve the least cost solution for meeting such a renewable energy mandate. The DOE-funded project 'Integrating Southwest Power Pool Wind Energy into Southeast Electricity Markets' aims to evaluate the benefits of coordination of scheduling and balancing for Southwest Power Pool (SPP) wind transfers to Southeastern Electric Reliability Council (SERC) Balancing Authorities (BAs). The primary objective of this project is to analyze the benefits of different balancing approaches with increasing levels of inter-regional cooperation. Scenarios were defined, modeled and investigated to address production variability and uncertainty and the associated balancing of large quantities of wind power in SPP and delivery to energy markets in the southern regions of the SERC. The primary analysis of the project is based on unit commitment (UC) and economic dispatch (ED) simulations of the SPP-SERC regions as modeled for the year 2022. The UC/ED models utilized for the project were developed through extensive consultation with the project utility partners, to ensure the various regions and operational practices are represented as accurately as possible realizing that all such future scenario models are quite uncertain. SPP, Entergy, Oglethorpe Power Company (OPC), Southern Company, and the Tennessee Valley Authority (TVA) actively participated in the project providing input data for the models

  10. Western Wind and Solar Integration Study Phase 3A: Low Levels of Synchronous Generation

    SciTech Connect (OSTI)

    Miller, Nicholas W.; Leonardi, Bruno; D'Aquila, Robert; Clark, Kara

    2015-11-17

    The stability of the North American electric power grids under conditions of high penetrations of wind and solar is a significant concern and possible impediment to reaching renewable energy goals. The 33% wind and solar annual energy penetration considered in this study results in substantial changes to the characteristics of the bulk power system. This includes different power flow patterns, different commitment and dispatch of existing synchronous generation, and different dynamic behavior from wind and solar generation. The Western Wind and Solar Integration Study (WWSIS), sponsored by the U.S. Department of Energy, is one of the largest regional solar and wind integration studies to date. In multiple phases, it has explored different aspects of the question: Can we integrate large amounts of wind and solar energy into the electric power system of the West? The work reported here focused on the impact of low levels of synchronous generation on the transient stability performance in one part of the region in which wind generation has displaced synchronous thermal generation under highly stressed, weak system conditions. It is essentially an extension of WWSIS-3. Transient stability, the ability of the power system to maintain synchronism among all elements following disturbances, is a major constraint on operations in many grids, including the western U.S. and Texas systems. These constraints primarily concern the performance of the large-scale bulk power system. But grid-wide stability concerns with high penetrations of wind and solar are still not thoroughly understood. This work focuses on 'traditional' fundamental frequency stability issues, such as maintaining synchronism, frequency, and voltage. The objectives of this study are to better understand the implications of low levels of synchronous generation and a weak grid on overall system performance by: 1) Investigating the Western Interconnection under conditions of both high renewable generation (e

  11. Wind Energy Management System Integration Project Incorporating Wind Generation and Load Forecast Uncertainties into Power Grid Operations

    SciTech Connect (OSTI)

    Makarov, Yuri V.; Huang, Zhenyu; Etingov, Pavel V.; Ma, Jian; Guttromson, Ross T.; Subbarao, Krishnappa; Chakrabarti, Bhujanga B.

    2010-09-01

    features make this work a significant step forward toward the objective of incorporating of wind, solar, load, and other uncertainties into power system operations. In this report, a new methodology to predict the uncertainty ranges for the required balancing capacity, ramping capability and ramp duration is presented. Uncertainties created by system load forecast errors, wind and solar forecast errors, generation forced outages are taken into account. The uncertainty ranges are evaluated for different confidence levels of having the actual generation requirements within the corresponding limits. The methodology helps to identify system balancing reserve requirement based on a desired system performance levels, identify system “breaking points”, where the generation system becomes unable to follow the generation requirement curve with the user-specified probability level, and determine the time remaining to these potential events. The approach includes three stages: statistical and actual data acquisition, statistical analysis of retrospective information, and prediction of future grid balancing requirements for specified time horizons and confidence intervals. Assessment of the capacity and ramping requirements is performed using a specially developed probabilistic algorithm based on a histogram analysis incorporating all sources of uncertainty and parameters of a continuous (wind forecast and load forecast errors) and discrete (forced generator outages and failures to start up) nature. Preliminary simulations using California Independent System Operator (California ISO) real life data have shown the effectiveness of the proposed approach. A tool developed based on the new methodology described in this report will be integrated with the California ISO systems. Contractual work is currently in place to integrate the tool with the AREVA EMS system.

  12. Thermal Systems Group; Electricity, Resources, & Building Systems Integration (ERBSI) (Fact Sheet)

    SciTech Connect (OSTI)

    Not Available

    2009-11-01

    Factsheet developed to describe the activites of the Thermal Systems Group within NREL's Electricity, Resources, and Buildings Systems Integration center.

  13. An Innovative Technique for Evaluating the Integrity and Durability of Wind Turbine Blade Composites

    SciTech Connect (OSTI)

    Wang, Jy-An John; Ren, Fei

    2010-09-01

    Wind turbine blades are subjected to complex multiaxial stress states during operation. A review of the literature suggests that mixed mode fracture toughness can be significantly less than that of the tensile opening mode (Mode I), implying that fracture failure can occur at a much lower load capacity if the structure is subject to mixed-mode loading. Thus, it will be necessary to identify the mechanisms that might lead to failure in blade materials under mixed-mode loading conditions. Meanwhile, wind turbine blades are typically fabricated from fiber reinforced polymeric materials, e.g. fiber glass composites. Due to the large degree of anisotropy in mechanical properties that is usually associated with laminates, the fracture behavior of these composite materials is likely to be strongly dependent on the loading conditions. This may further strengthen the need to study the effect of mixed-mode loading on the integrity and durability of the wind turbine blade composites. To quantify the fracture behavior of composite structures under mixed mode loading conditions, particularly under combined Mode I (flexural or normal tensile stress) and Mode III (torsional shear stress) loading, a new testing technique is proposed based on the spiral notch torsion test (SNTT). As a 2002 R&D 100 Award winner, SNTT is a novel fracture testing technology. SNTT has many advantages over conventional fracture toughness methods and has been used to determine fracture toughness values on a wide spectrum of materials. The current project is the first attempt to utilize SNTT on polymeric and polymer-based composite materials. It is expected that mixed-mode failure mechanisms of wind turbine blades induced by typical in-service loading conditions, such as delamination, matrix cracking, fiber pull-out and fracture, can be effectively and economically investigated by using this methodology. This project consists of two phases. The Phase I (FY2010) effort includes (1) preparation of testing

  14. Integrating Wind into Transmission Planning: The Rocky Mountain Area Transmission Study (RMATS): Preprint

    SciTech Connect (OSTI)

    Hamilton, R.; Lehr, R.; Olsen, D.; Nielsen, J.; Acker, T.; Milligan, M.; Geller, H.

    2004-03-01

    Plans to expand the western grid are now underway. Bringing power from low-cost remote resources--including wind--to load centers could reduce costs for all consumers. But many paths appear to be already congested. Locational marginal price-based modeling is designed to identify the most cost-effective paths to be upgraded. The ranking of such paths is intended as the start of a process of political and regulatory approvals that are expected to result in the eventual construction of new and upgraded lines. This paper reviews the necessary data and analytical tasks to accurately represent wind in such modeling, and addresses some policy and regulatory issues that can help with wind integration into the grid. Providing wind fair access to the grid also (and more immediately) depends on tariff and regulatory changes. Expansion of the Rocky Mountain Area Transmission Study (RMATS) study scope to address operational issues supports the development of transmission solutions that enable wind to connect and deliver power in the next few years--much sooner than upgrades can be completed.

  15. An Energy Preserving Time Integration Method for Gyric Systems: Development of the Offshore Wind

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Energy Preserving Time Integration Method for Gyric Systems: Development of the Offshore Wind Energy Simulation Toolkit Brian C. Owens Texas A&M University brian_owens@tamu.edu John E. Hurtado Texas A&M University jehurtado@tamu.edu Matthew Barone Sandia National Laboratories* mbarone@sandia.gov Joshua A. Paquette Sandia National Laboratories* japaque@sandia.gov *Sandia National Laboratories is a multi-program laboratory managed and operated by Sandia Corporation, a wholly owned

  16. Analysis of Cycling Costs in Western Wind and Solar Integration Study

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Analysis of Cycling Costs in Western Wind and Solar Integration Study Gary Jordan and Sundar Venkataraman GE Energy Schenectady, New York NREL Technical Monitor: Debra Lew Subcontract Report NREL/SR-5500-54864 June 2012 NREL is a national laboratory of the U.S. Department of Energy, Office of Energy Efficiency & Renewable Energy, operated by the Alliance for Sustainable Energy, LLC. National Renewable Energy Laboratory 15013 Denver West Parkway Golden, Colorado 80401 303-275-3000 *

  17. Initial Economic Analysis of Utility-scale Wind Integration in Hawaii, NREL (National Renewable Energy Laboratory)

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    and Renewable Energy, operated by the Alliance for Sustainable Energy, LLC. INITIAL ECONOMIC ANALYSIS OF UTILITY-SCALE WIND INTEGRATION IN HAWAII NOTICE This report was prepared as an account of work sponsored by an agency of the United States government. Neither the United States government nor any agency thereof, nor any of their employees, makes any warranty, express or implied, or assumes any legal liability or responsibility for the accuracy, completeness, or usefulness of any informa-

  18. ARRA-Multi-Level Energy Storage and Controls for Large-Scale Wind Energy Integration

    SciTech Connect (OSTI)

    David Wenzhong Gao

    2012-09-30

    The Project Objective is to design innovative energy storage architecture and associated controls for high wind penetration to increase reliability and market acceptance of wind power. The project goals are to facilitate wind energy integration at different levels by design and control of suitable energy storage systems. The three levels of wind power system are: Balancing Control Center level, Wind Power Plant level, and Wind Power Generator level. Our scopes are to smooth the wind power fluctuation and also ensure adequate battery life. In the new hybrid energy storage system (HESS) design for wind power generation application, the boundary levels of the state of charge of the battery and that of the supercapacitor are used in the control strategy. In the controller, some logic gates are also used to control the operating time durations of the battery. The sizing method is based on the average fluctuation of wind profiles of a specific wind station. The calculated battery size is dependent on the size of the supercapacitor, state of charge of the supercapacitor and battery wear. To accommodate the wind power fluctuation, a hybrid energy storage system (HESS) consisting of battery energy system (BESS) and super-capacitor is adopted in this project. A probability-based power capacity specification approach for the BESS and super-capacitors is proposed. Through this method the capacities of BESS and super-capacitor are properly designed to combine the characteristics of high energy density of BESS and the characteristics of high power density of super-capacitor. It turns out that the super-capacitor within HESS deals with the high power fluctuations, which contributes to the extension of BESS lifetime, and the super-capacitor can handle the peaks in wind power fluctuations without the severe penalty of round trip losses associated with a BESS. The proposed approach has been verified based on the real wind data from an existing wind power plant in Iowa. An

  19. 20% Wind Energy by 2030 - Chapter 4: Transmission and Integration into the U.S. Electric System Summary Slides

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    4: Transmission and Integration into the U.S. Electric System Summary Slides Enhanced electricity delivery necessary with increased wind deployments Enhancement of electrical transmission system required in all electricity-growth scenarios, not just wind Transmission is needed to: * Relieve congestion in existing system * Improve system reliability for all customers * Increase access to lower-cost energy * Access new and remote generation resources Wind requires more transmission than some other

  20. Modeling Framework and Validation of a Smart Grid and Demand Response System for Wind Power Integration

    SciTech Connect (OSTI)

    Broeer, Torsten; Fuller, Jason C.; Tuffner, Francis K.; Chassin, David P.; Djilali, Ned

    2014-01-31

    Electricity generation from wind power and other renewable energy sources is increasing, and their variability introduces new challenges to the power system. The emergence of smart grid technologies in recent years has seen a paradigm shift in redefining the electrical system of the future, in which controlled response of the demand side is used to balance fluctuations and intermittencies from the generation side. This paper presents a modeling framework for an integrated electricity system where loads become an additional resource. The agent-based model represents a smart grid power system integrating generators, transmission, distribution, loads and market. The model incorporates generator and load controllers, allowing suppliers and demanders to bid into a Real-Time Pricing (RTP) electricity market. The modeling framework is applied to represent a physical demonstration project conducted on the Olympic Peninsula, Washington, USA, and validation simulations are performed using actual dynamic data. Wind power is then introduced into the power generation mix illustrating the potential of demand response to mitigate the impact of wind power variability, primarily through thermostatically controlled loads. The results also indicate that effective implementation of Demand Response (DR) to assist integration of variable renewable energy resources requires a diversity of loads to ensure functionality of the overall system.

  1. NREL Confirms Large Potential for Grid Integration of Wind, Solar Power (Fact Sheet)

    SciTech Connect (OSTI)

    Not Available

    2011-10-01

    To fully harvest the nation's bountiful wind and solar resources, it is critical to know how much electrical power from these renewable resources could be integrated reliably into the grid. To inform the discussion about the potential of such variable sources, the National Renewable Energy Laboratory (NREL) launched two key regional studies, examining the east and west sections of the U.S. power grid. The studies show that it is technically possible for U.S. power systems to integrate 20%-35% renewable electricity if infrastructure and operational improvements can be made.

  2. NAWIG News: The Quarterly Newsletter of the Native American Wind Interest Group; Summer 2005

    SciTech Connect (OSTI)

    Not Available

    2005-09-01

    The United States is home to more than 700 American Indian tribes and Native Alaska villages and corporations located on 96 million acres. Many of these tribes and villages have excellent wind resources that could be commercially developed to meet their electricity needs or for electricity export. The Wind Powering America program engages Native Americans in wind energy development, and as part of that effort, the NAWIG newsletter informs readers of events in the Native American/wind energy community.

  3. Western Wind and Solar Integration Study Phase 3 -- Frequency Response and Transient Stability (Report and Executive Summary)

    SciTech Connect (OSTI)

    Miller, N. W.; Shao, M.; Pajic, S.; D'Aquila, R.

    2014-12-01

    The primary objectives of Phase 3 of the Western Wind and Solar Integration Study (WWSIS-3) were to examine the large-scale transient stability and frequency response of the Western Interconnection with high wind and solar penetration, and to identify means to mitigate any adverse performance impacts via transmission reinforcements, storage, advanced control capabilities, or other alternatives.

  4. Best Practices in Grid Integration of Variable Wind Power: Summary of Recent US Case Study Results and Mitigation Measures

    SciTech Connect (OSTI)

    Smith, J. Charles (UWIG); Parsons, B.; (NREL), Acker, T.; (NAU), Milligan, M.; (NREL), Zavadil, R.

    2010-01-22

    This paper will summarize results from a number of utility wind integration case studies conducted recently in the US, and outline a number of mitigation measures based on insights from those studies.

  5. Analysis of Cycling Costs in Western Wind and Solar Integration Study

    SciTech Connect (OSTI)

    Jordan, G.; Venkataraman, S.

    2012-06-01

    The Western Wind and Solar Integration Study (WWSIS) examined the impact of up to 30% penetration of variable renewable generation on the Western Electricity Coordinating Council system. Although start-up costs and higher operating costs because of part-load operation of thermal generators were included in the analysis, further investigation of additional costs associated with thermal unit cycling was deemed worthwhile. These additional cycling costs can be attributed to increases in capital as well as operations and maintenance costs because of wear and tear associated with increased unit cycling. This analysis examines the additional cycling costs of the thermal fleet by leveraging the results of WWSIS Phase 1 study.

  6. Integrated Approach Using Condition Monitoring and Modeling to Investigate Wind Turbine Gearbox Design: Preprint

    SciTech Connect (OSTI)

    Sheng, S.; Guo, Y.

    2015-03-01

    Vibration-based condition monitoring (CM) of geared utility-scale turbine drivetrains has been used by the wind industry to help improve operation and maintenance (O&M) practices, increase turbine availability, and reduce O&M cost. This study is a new endeavor that integrates the vibration-based CM technique with wind turbine gearbox modeling to investigate various gearbox design options. A teamof researchers performed vibration-based CM measurements on a damaged wind turbine gearbox with a classic configuration, (i.e., one planetary stage and two parallel stages). We observed that the acceleration amplitudes around the first-order sidebands of the intermediate stage gear set meshing frequency were much lower than that measured at the high-speed gear set, and similar difference wasalso observed in a healthy gearbox. One factor for a reduction at the intermediate stage gear set is hypothesized to be the soft sun-spline configuration in the test gearbox. To evaluate this hypothesis, a multibody dynamic model of the healthy test gearbox was first developed and validated. Relative percent difference of the first-order sidebands--of the high-speed and intermediate stagegear-meshing frequencies--in the soft and the rigid sun spline configurations were compared. The results verified that the soft sun-spline configuration can reduce the sidebands of the intermediate stage gear set and also the locating bearing loads. The study demonstrates that combining vibration-based CM with appropriate modeling can provide insights for evaluating different wind turbinegearbox design options.

  7. Operation of Concentrating Solar Power Plants in the Western Wind and Solar Integration Phase 2 Study

    SciTech Connect (OSTI)

    Denholm, P.; Brinkman, G.; Lew, D.; Hummon, M.

    2014-05-01

    The Western Wind and Solar Integration Study (WWSIS) explores various aspects of the challenges and impacts of integrating large amounts of wind and solar energy into the electric power system of the West. The phase 2 study (WWSIS-2) is one of the first to include dispatchable concentrating solar power (CSP) with thermal energy storage (TES) in multiple scenarios of renewable penetration and mix. As a result, it provides unique insights into CSP plant operation, grid benefits, and how CSP operation and configuration may need to change under scenarios of increased renewable penetration. Examination of the WWSIS-2 results indicates that in all scenarios, CSP plants with TES provides firm system capacity, reducing the net demand and the need for conventional thermal capacity. The plants also reduced demand during periods of short-duration, high ramping requirements that often require use of lower efficiency peaking units. Changes in CSP operation are driven largely by the presence of other solar generation, particularly PV. Use of storage by the CSP plants increases in the higher solar scenarios, with operation of the plant often shifted to later in the day. CSP operation also becomes more variable, including more frequent starts. Finally, CSP output is often very low during the day in scenarios with significant PV, which helps decrease overall renewable curtailment (over-generation). However, the configuration studied is likely not optimal for High Solar Scenario implying further analysis of CSP plant configuration is needed to understand its role in enabling high renewable scenarios in the Western United States.

  8. A review of the international experience with integrating wind energy generation

    SciTech Connect (OSTI)

    Porter, Kevin; Yen-Nakafuji, Dora; Morgenstern, Brett

    2007-10-15

    Regions in the U.S. that are planning significant capacity additions of wind can learn from the experience of countries that have developed wind forecasting strategies and grid codes addressing wind power systems. (author)

  9. Lithium-Ion Ultracapacitors integrated with Wind Turbines Power Conversion Systems to Extend Operating Life and Improve Output Power Quality

    SciTech Connect (OSTI)

    Adel Nasiri

    2012-05-23

    In this project we designed and modeled a system for a full conversion wind turbine and built a scaled down model which utilizes Lithium-Ion Capacitors on the DC bus. One of the objectives is to reduce the mechanical stress on the gearbox and drivetrain of the wind turbine by adjusting the torque on generator side according to incoming wind power. Another objective is to provide short-term support for wind energy to be more “grid friendly” in order to ultimately increase wind energy penetration. These supports include power smoothing, power ramp rate limitation, low voltage ride through, and frequency (inertia) support. This research shows how energy storage in small scale and in an economical fashion can make a significant impact on performance of wind turbines. Gearbox and drivetrain premature failures are among high cost maintenance items for wind turbines. Since the capacitors are directly applied on the turbine DC bus and their integration does not require addition hardware, the cost of the additional system can be reasonable for the wind turbine manufacturers and utility companies.

  10. NREL Computer Models Integrate Wind Turbines with Floating Platforms (Fact Sheet)

    SciTech Connect (OSTI)

    Not Available

    2011-07-01

    Far off the shores of energy-hungry coastal cities, powerful winds blow over the open ocean, where the water is too deep for today's seabed-mounted offshore wind turbines. For the United States to tap into these vast offshore wind energy resources, wind turbines must be mounted on floating platforms to be cost effective. Researchers at the National Renewable Energy Laboratory (NREL) are supporting that development with computer models that allow detailed analyses of such floating wind turbines.

  11. Conception Wind Project | Open Energy Information

    Open Energy Info (EERE)

    Wind energy Facility Type Commercial Scale Wind Facility Status In Service Owner Wind Capital GroupJohn Deere Capital Developer Wind Capital GroupJohn Deere Capital Energy...

  12. Operating Reserve Implication of Alternative Implementations of an Energy Imbalance Service on Wind Integration in the Western Interconnection: Preprint

    SciTech Connect (OSTI)

    Milligan, M.; Kirby, B.; King, J.; Beuning, S.

    2011-07-01

    During the past few years, there has been significant interest in alternative ways to manage power systems over a larger effective electrical footprint. Large regional transmission organizations in the Eastern Interconnection have effectively consolidated balancing areas, achieving significant economies of scale that result in a reduction in required reserves. Conversely, in the Western Interconnection there are many balancing areas, which will result in challenges if there is significant wind and solar energy development in the region. A recent proposal to the Western Electricity Coordinating Council suggests a regional energy imbalance service (EIS). To evaluate this EIS, a number of analyses are in process or are planned. This paper describes one part of an analysis of the EIS's implication on operating reserves under several alternative scenarios of the market footprint and participation. We improve on the operating reserves method utilized in the Eastern Wind Integration and Transmission Study and apply this modified approach to data from the Western Wind and Solar Integration Study.

  13. Resource Information and Forecasting Group; Electricity, Resources, & Building Systems Integration (ERBSI) (Fact Sheet)

    SciTech Connect (OSTI)

    Not Available

    2009-11-01

    Researchers in the Resource Information and Forecasting group at NREL provide scientific, engineering, and analytical expertise to help characterize renewable energy resources and facilitate the integration of these clean energy sources into the electricity grid.

  14. Initial Economic Analysis of Utility-Scale Wind Integration in Hawaii

    SciTech Connect (OSTI)

    Not Available

    2012-03-01

    This report summarizes an analysis, conducted by the National Renewable Energy Laboratory (NREL) in May 2010, of the economic characteristics of a particular utility-scale wind configuration project that has been referred to as the 'Big Wind' project.

  15. An integrated solution for secure group communication in wide-area networks

    SciTech Connect (OSTI)

    Agarwal, Deborah A.; Chevassut, Olivier; Thompson, Mary; Tsudik, Gene

    2001-04-01

    Many distributed applications require a secure reliable group communication system to provide coordination among the application components. This paper describes a secure group layer (SGL) which bundles a reliable group communication system, a group authorization and access control mechanism, and a group key agreement protocol to provide a comprehensive and practical secure group communication platform. SGL also encapsulates the standard message security services (i.e, confidentiality, authenticity and integrity). A number of challenging issues encountered in the design of SGL are brought to light and experimental results obtained with a prototype implementation are discussed.

  16. Markets to Facilitate Wind and Solar Energy Integration in the Bulk Power Supply: An IEA Task 25 Collaboration; Preprint

    SciTech Connect (OSTI)

    Milligan, M.; Holttinen, H.; Soder, L.; Clark, C.; Pineda, I.

    2012-09-01

    Wind and solar power will give rise to challenges in electricity markets regarding flexibility, capacity adequacy, and the participation of wind and solar generators to markets. Large amounts of wind power will have impacts on bulk power system markets and electricity prices. If the markets respond to increased wind power by increasing investments in low-capital, high-cost or marginal-cost power, the average price may remain in the same range. However, experiences so far from Denmark, Germany, Spain, and Ireland are such that the average market prices have decreased because of wind power. This reduction may result in additional revenue insufficiency, which may be corrected with a capacity market, yet capacity markets are difficult to design. However, the flexibility attributes of the capacity also need to be considered. Markets facilitating wind and solar integration will include possibilities for trading close to delivery (either by shorter gate closure times or intraday markets). Time steps chosen for markets can enable more flexibility to be assessed. Experience from 5- and 10-minute markets has been encouraging.

  17. Wind Energy Management System EMS Integration Project: Incorporating Wind Generation and Load Forecast Uncertainties into Power Grid Operations

    SciTech Connect (OSTI)

    Makarov, Yuri V.; Huang, Zhenyu; Etingov, Pavel V.; Ma, Jian; Guttromson, Ross T.; Subbarao, Krishnappa; Chakrabarti, Bhujanga B.

    2010-01-01

    The power system balancing process, which includes the scheduling, real time dispatch (load following) and regulation processes, is traditionally based on deterministic models. Since the conventional generation needs time to be committed and dispatched to a desired megawatt level, the scheduling and load following processes use load and wind and solar power production forecasts to achieve future balance between the conventional generation and energy storage on the one side, and system load, intermittent resources (such as wind and solar generation), and scheduled interchange on the other side. Although in real life the forecasting procedures imply some uncertainty around the load and wind/solar forecasts (caused by forecast errors), only their mean values are actually used in the generation dispatch and commitment procedures. Since the actual load and intermittent generation can deviate from their forecasts, it becomes increasingly unclear (especially, with the increasing penetration of renewable resources) whether the system would be actually able to meet the conventional generation requirements within the look-ahead horizon, what the additional balancing efforts would be needed as we get closer to the real time, and what additional costs would be incurred by those needs. To improve the system control performance characteristics, maintain system reliability, and minimize expenses related to the system balancing functions, it becomes necessary to incorporate the predicted uncertainty ranges into the scheduling, load following, and, in some extent, into the regulation processes. It is also important to address the uncertainty problem comprehensively by including all sources of uncertainty (load, intermittent generation, generators’ forced outages, etc.) into consideration. All aspects of uncertainty such as the imbalance size (which is the same as capacity needed to mitigate the imbalance) and generation ramping requirement must be taken into account. The latter

  18. Eastern Renewable Generation Integration Study: Flexibility and High Penetrations of Wind and Solar; NREL (National Renewable Energy Laboratory)

    SciTech Connect (OSTI)

    Bloom, Aaron; Townsend, Aaron; Palchak, David

    2015-07-29

    Balancing wind and solar in a model is relatively easy. All you need to do is assume a very large system with infinite flexibility! But what if you don't have an infinitely flexible system? What if there are thousands of generators nestled in a handful of regions that are unlikely to change their operational practices? Would you still have enough flexibility to balance hundreds of gigawatts of wind and solar at a 5 minute level? At NREL, we think we can, and our industry partners agree. This presentation was presented at the IEEE Power and Energy Society General Meeting by Aaron Bloom, highlighting results of the Eastern Renewable Generation Integration Study.

  19. Review and Status of Wind Integration and Transmission in the United States. Key Issues and Lessons Learned

    SciTech Connect (OSTI)

    Milligan, M.; Kirby, B.; Acker, T.; Ahlstrom, M.; Frew, B.; Goggin, M.; Lasher, W.; Marquis, M.; Osborn, D.

    2015-03-01

    The objective in electric power system operation is to use generation and transmission resources within organizational constraints and operational rules and regulations to reliably and costeffectively balance load and generation. To meet this objective, system operational practices have been created to accommodate the innate variability and uncertainty that comes from a variety of sources, such as uncertainty of demand forecasts, whether a specific generating unit will be available when called upon, the variability of demand from many different types of customers, and others. As more wind power is connected to the power system, operating experiences acquired during the past several years have generally confirmed the findings of wind integration studies: wind energy increases the level of variability and uncertainty that a system operator must manage.

  20. Wind and Solar Energy Curtailment Practices (Presentation)

    SciTech Connect (OSTI)

    Bird, L.; Cochran, J.; Wang, X.

    2014-10-01

    This presentation to the fall 2014 technical meeting of the Utility Variable-Generation Integration Group summarizes experience with curtailment of wind and solar in the U.S.

  1. Wind-To-Hydrogen Project: Operational Experience, Performance Testing, and Systems Integration

    SciTech Connect (OSTI)

    Harrison, K. W.; Martin, G. D.; Ramsden, T. G.; Kramer, W. E.; Novachek, F. J.

    2009-03-01

    The Wind2H2 system is fully functional and continues to gather performance data. In this report, specifications of the Wind2H2 equipment (electrolyzers, compressor, hydrogen storage tanks, and the hydrogen fueled generator) are summarized. System operational experience and lessons learned are discussed. Valuable operational experience is shared through running, testing, daily operations, and troubleshooting the Wind2H2 system and equipment errors are being logged to help evaluate the reliability of the system.

  2. A First-Ever Global Examination of Successful Wind Energy Grid Integration Practices

    Broader source: Energy.gov [DOE]

    The Department of Energy (DOE) outlined a scenario where wind energy could account for 20% of America's total power generation portfolio by 2030.

  3. Eastern Wind Integration and Transmission Study: Executive Summary and Project Overview (Revised)

    SciTech Connect (OSTI)

    EnerNex Corporation; The Midwest ISO; Ventyx

    2011-02-01

    EWITS was designed to answer questions about technical issues related to a 20% wind energy scenario for electric demand in the Eastern Interconnection.

  4. Initial Economic Analysis of Utility-scale Wind Integration in Hawaii

    Broader source: Energy.gov [DOE]

    Summarizes analysis of the economic characteristics of the utility-scale wind configuration project that has been referred to as the “Big Wind” project.

  5. Klondike III/Biglow Canyon Wind Integration Project; Final Environmental Impact Statement, September 2006.

    SciTech Connect (OSTI)

    United States. Bonneville Power Administration

    2006-09-01

    BPA has been asked by PPM Energy, Inc. to interconnect 300 megawatts (MW) of electricity generated from the proposed Klondike III Wind Project to the Federal Columbia River Transmission System. Orion Energy LLC has also asked BPA to interconnect 400 MW of electricity from its proposed Biglow Canyon Wind Farm, located north and east of the proposed Klondike III Wind Project. (Portland General Electric recently bought the rights to develop the proposed Biglow Canyon Wind Farm from Orion Energy, LLC.) Both wind projects received Site Certificates from the Oregon Energy Facility Siting Council on June 30, 2006. To interconnect these projects, BPA would need to build and operate a 230-kV double-circuit transmission line about 12 miles long, expand one substation and build one new substation. The wind projects would require wind turbines, substation(s), access roads, and other facilities. Two routes for the transmission line are being considered. Both begin at PPM's Klondike Schoolhouse Substation then travel north (Proposed Action) or north and westerly (Middle Alternative) to a new BPA 230-kV substation next to BPA's existing John Day 500-kV Substation. BPA is also considering a No Action Alternative in which BPA would not build the transmission line and would not interconnect the wind projects. The proposed BPA and wind projects would be located on private land, mainly used for agriculture. If BPA decides to interconnect the wind projects, construction of the BPA transmission line and substation(s) could commence as early as the winter of 2006-07. Both wind projects would operate for much of each year for at least 20 years. The proposed projects would generally create no or low impacts. Wildlife resources and local visual resources are the only resources to receive an impact rating other than ''none'' or ''low''. The low to moderate impacts to wildlife are from the expected bird and bat mortality and the cumulative impact of this project on wildlife when combined with

  6. Multiloop integral system test (MIST): Test Group 34, Steam generator tube rupture

    SciTech Connect (OSTI)

    Gloudemans, J.R. . Nuclear Power Div.)

    1989-07-01

    The multiloop integral system test (MIST) is part of a multiphase program started in 1983 to address small-break loss-of-coolant accidents (SBLOCAs) specific to Babcock and Wilcox designed plants. MIST is sponsored by the US Nuclear Regulatory Commission, the Babcock Wilcox Owners Group, the Electric Power Research Institute, and Babcock and Wilcox. The unique features of the Babcock and Wilcox design, specifically the hot leg U-bends and steam generators, prevented the use of existing integral system data or existing integral facilities to address the thermal-hydraulic SBLOCA questions. MIST and two other supporting facilities were specifically designed and constructed for this program, and an existing facility--the Once Through Integral System (OTIS)--was also used. Data from MIST and the other facilities will be used to benchmark the adequacy of system codes, such as RELAP5 and TRAC, for predicting abnormal plant transients. The MIST program is reported in 11 volumes. The program is summarized in Volume 1; Volumes 2 through 8 describes groups of tests by test type; Volume 9 presents inter-group comparisons; Volume 10 provides comparisons between the calculations of RELAP5/MOD2 and MIST observations, and Volume 11 presents the later Phase 4 tests. This Volume 6 pertains to Test Group 34, Steam Generator Tube Rupture. The specifications, conduct, observations, and results of these tests are described. 6 refs., 189 figs., 16 tabs.

  7. Multiloop integral system test (MIST): Test Group 33, HPI-PORV cooling

    SciTech Connect (OSTI)

    Gloudemans, J.R. . Nuclear Power Div.)

    1989-07-01

    The multiloop integral system test (MIST) was part of a multiphase program started in 1983 to address small-break loss-of-coolant accidents (SBLOCAs) specific to Babcock Wilcox-designed plants. MIST was sponsored by the US Nuclear Regulatory Commission, the Babcock Wilcox Owners Group, the Electric Power Research Institute and Babcock Wilcox. The unique features of the Babcock Wilcox design, specifically the hot leg U-bends and steam generators, prevented the use of existing integral system data or existing integral system facilities to address the thermal-hydraulic SBLOCA questions. MIST and two other supporting facilities were specifically designed and constructed for this program, and an existing facility -- the once-through integral system (OTIS) -- was also used. Data from MIST and the other facilities will be used to benchmark the adequacy of system codes, such as RELAP-5 AND TRAC, for predicting abnormal plant transients. 5 refs., 136 figs., 13 tabs.

  8. Multiloop integral system test (MIST): Final report, Inter-group comparisons

    SciTech Connect (OSTI)

    Gloudemans, J.R.

    1989-07-01

    The multiloop integral system test (MIST) was part of a multiphase program started in 1983 to address small-break loss-of-coolant accidents (SBLOCAs) specific to Babcock and Wilcox-designed plants. MIST was sponsored by the US Nuclear Regulatory Commission, the Babcock and Wilcox Owners Group, the Electric Power Research Institute, and Babcock and Wilcox. The unique features of the Babcock and Wilcox design, specifically the hot leg U-bends and steam generators, prevented the use of existing integral system data or existing integral system facilities to address the thermal-hydraulic SBLOCA questions. MIST and two other supporting facilities were specifically designed and constructed for this program, and an existing facility -- the once-through integral system (OTIS) -- was also used. Data from MIST and the other facilities will be used to benchmark the adequacy of system codes, such as RELAP5 and TRAC, for predicting abnormal plant transients. The individual tests are described in detail in Volumes 2 through 8 and Volume 11, and are summarized in Volume 1. Inter-group comparisons are addressed in this document, Volume 9. These comparisons are grouped as follows: mapping versus SBLOCA transients, SBLOCA, pump effects, and the effects of noncondensible gases. Appendix A provides an index and description of the microfiched plots for each test, which are enclosed with the corresponding Volumes 2 through 8. 147 figs., 5 tabs.

  9. Analysis of the effects of integrating wind turbines into a conventional utility: a case study. Final report

    SciTech Connect (OSTI)

    Goldenblatt, M.K.; Wegley, H.L.; Miller, A.H.

    1982-08-01

    The impact on a utility incorporating wind turbine generation due to wind speed sampling frequency, wind turbine performance model, and wind speed forecasting accuracy is examined. The utility analyzed in the study was the Los Angeles Department of Water and Power and the wind turbine assumed was the MOD-2. The sensitivity of the economic value of wind turbine generation to wind speed sampling frequency and wind turbine modeling technique is examined as well as the impact of wind forecasting accuracy on utility operation and production costs. Wind speed data from San Gorgonio Pass, California during 1979 are used to estimate wind turbine performance using four different simulation methods. (LEW)

  10. Analysis of the effects of integrating wind turbines into a conventional utility: a case study. Revised final report

    SciTech Connect (OSTI)

    Goldenblatt, M.K.; Wegley, H.L.; Miller, A.H.

    1983-03-01

    The impact on a utility incorporating wind turbine generation due to wind speed sampling frequency, wind turbine performance model, and wind speed forecasting accuracy is examined. The utility analyzed in this study was the Los Angeles Department of Water and Power, and the wind turbine assumed was the MOD-2. The sensitivity of the economic value of wind turbine generation to wind speed sampling frequency and wind turbine modeling technique is examined as well as the impact of wind forecasting accuracy on utility operation and production costs. Wind speed data from San Gorgonio Pass, California during 1979 are used to estimate wind turbine performance using four different simulation methods. (LEW)

  11. Multiloop Integral System Test (MIST): Final report: Test group 30, mapping tests

    SciTech Connect (OSTI)

    Geissler, G.O. . Nuclear Power Div.)

    1989-12-01

    The Multiloop Integral System Test (MIST) is part of a multiphase program started in 1983 to address small-break loss-of-coolant accidents (SBLOCAs) specific to Babcock and Wilcox designed plants. MIST is sponsored by the US Nuclear Regulatory Commission, the Babcock Wilcox Owners Group, the Electric Power Research Institute, and Babcock and Wilcox. The unique features of the Babcock and Wilcox design, specifically the hot leg U-bends and steam generators, prevented the use of existing integral system data or existing integral facilities to address the thermal-hydraulic SBLOCA questions. MIST and two other supporting facilities were specifically designed and constructed for this program, and an existing facility -- the Once Through Integral System (OTIS) -- was also used. Data from MIST and the other facilities will be used to benchmark the adequacy of system codes, such as RELAP5 and TRAC, for predicting abnormal plant transients. The MIST program is reported in 11 volumes. The program is summarized in Volume 1; Volumes 2 through 8 describe groups of tests by test type; Volume 9 presents inter-group comparisons; Volume 10 provides comparisons between the calculations of RELAP5/MOD2 and MIST observations, and Volume 11 presents the later Phase 4 tests. This Volume 2 pertains to MIST mapping tests performed to traverse the early post-SBLOCA events slowly. The tests investigated the effect of test-to-test variations in boundary system controls, and only the primary fluid mass varied during a specific test in this test group. 5 refs., 415 figs., 12 tabs.

  12. DOE Fuel Cell Pre-Solicitation Workshop - Breakout Group 2: MEAs, Components, and Integration

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Solicitation Workshop 1 March 2010 BREAKOUT GROUP 2: MEAS, COMPONENTS AND INTEGRATION PARTICIPANTS NAME ORGANIZATION Jeff Allen Michigan Tech Guido Bender National Renewable Energy Laboratory Don Connors Ballard Material Products James Cross NUVERA Rick Daniels Advent Technologies North America Mark Debe 3M Emory DeCastro BASF Fuel Cell Mohammad Enayotullah Trenergi Corporation Jim Fenton University of Central Florida/FSEC Ashok Gidwani CFD Research Corporation Craig Gittleman General Motors

  13. NREL: Renewable Resource Data Center - Wind Resource Information

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Detailed wind resource information can be found on NREL's Wind Research website. This site provides access to state and international wind resource maps. Wind Integration Datasets ...

  14. NREL Energy Models Examine the Potential for Wind and Solar Grid Integration (Fact Sheet)

    SciTech Connect (OSTI)

    Not Available

    2013-11-01

    As renewable energy generating sources, such as wind turbines and solar power systems, reach high levels of penetration in parts of the United States, the National Renewable Energy Laboratory (NREL) is helping the utility industry to peer into the future. Using software modeling tools that the lab developed, NREL is examining the future operation of the electrical grid as renewable energy continues to grow.

  15. Model Wind Ordinance

    Broader source: Energy.gov [DOE]

    In July, 2008 the North Carolina Wind Working Group, a coalition of state government, non-profit and wind industry organizations, published a model wind ordinance to provide guidance for...

  16. SHELXT – Integrated space-group and crystal-structure determination

    SciTech Connect (OSTI)

    Sheldrick, George M.

    2015-01-01

    SHELXT automates routine small-molecule structure determination starting from single-crystal reflection data, the Laue group and a reasonable guess as to which elements might be present. The new computer program SHELXT employs a novel dual-space algorithm to solve the phase problem for single-crystal reflection data expanded to the space group P1. Missing data are taken into account and the resolution extended if necessary. All space groups in the specified Laue group are tested to find which are consistent with the P1 phases. After applying the resulting origin shifts and space-group symmetry, the solutions are subject to further dual-space recycling followed by a peak search and summation of the electron density around each peak. Elements are assigned to give the best fit to the integrated peak densities and if necessary additional elements are considered. An isotropic refinement is followed for non-centrosymmetric space groups by the calculation of a Flack parameter and, if appropriate, inversion of the structure. The structure is assembled to maximize its connectivity and centred optimally in the unit cell. SHELXT has already solved many thousand structures with a high success rate, and is optimized for multiprocessor computers. It is, however, unsuitable for severely disordered and twinned structures because it is based on the assumption that the structure consists of atoms.

  17. Mountain Wind II Wind Farm | Open Energy Information

    Open Energy Info (EERE)

    Wind energy Facility Type Commercial Scale Wind Facility Status In Service Owner Edison Mission Group Developer Edison Mission Group Energy Purchaser PacifiCorp Location WY...

  18. Mountain Wind I Wind Farm | Open Energy Information

    Open Energy Info (EERE)

    Wind energy Facility Type Commercial Scale Wind Facility Status In Service Owner Edison Mission Group Developer Edison Mission Group Energy Purchaser PacifiCorp Location WY...

  19. Odin Wind Farm | Open Energy Information

    Open Energy Info (EERE)

    Wind energy Facility Type Commercial Scale Wind Facility Status In Service Owner Edison Mission GroupRahn Group Developer Edison Mission GroupRahn Group Energy Purchaser...

  20. The Great Plains Wind Power Test Facility

    SciTech Connect (OSTI)

    Schroeder, John

    2014-01-31

    This multi-year, multi-faceted project was focused on the continued development of a nationally-recognized facility for the testing, characterization, and improvement of grid-connected wind turbines, integrated wind-water desalination systems, and related educational and outreach topics. The project involved numerous faculty and graduate students from various engineering departments, as well as others from the departments of Geosciences (in particular the Atmospheric Science Group) and Economics. It was organized through the National Wind Institute (NWI), which serves as an intellectual hub for interdisciplinary and transdisciplinary research, commercialization and education related to wind science, wind energy, wind engineering and wind hazard mitigation at Texas Tech University (TTU). Largely executed by an academic based team, the project resulted in approximately 38 peer-reviewed publications, 99 conference presentations, the development/expansion of several experimental facilities, and two provisional patents.

  1. Dynamic Models for Wind Turbines and Wind Power Plants

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    ... Each of these models includes representations of general turbine aerodynamics, the ... 9 1.1.2 Wind power integration and wind turbine modeling ......

  2. Integral group actions on symmetric spaces and discrete duality symmetries of supergravity theories

    SciTech Connect (OSTI)

    Carbone, Lisa; Murray, Scott H.; Sati, Hisham

    2015-10-15

    For G = G(ℝ), a split, simply connected, semisimple Lie group of rank n and K the maximal compact subgroup of G, we give a method for computing Iwasawa coordinates of K∖G using the Chevalley generators and the Steinberg presentation. When K∖G is a scalar coset for a supergravity theory in dimensions ≥3, we determine the action of the integral form G(ℤ) on K∖G. We give explicit results for the action of the discrete U-duality groups SL{sub 2}(ℤ) and E{sub 7}(ℤ) on the scalar cosets SO(2)∖SL{sub 2}(ℝ) and [SU(8)/( ± Id)]∖E{sub 7(+7)}(ℝ) for type IIB supergravity in ten dimensions and 11-dimensional supergravity reduced to D = 4 dimensions, respectively. For the former, we use this to determine the discrete U-duality transformations on the scalar sector in the Borel gauge and we describe the discrete symmetries of the dyonic charge lattice. We determine the spectrum-generating symmetry group for fundamental BPS solitons of type IIB supergravity in D = 10 dimensions at the classical level and we propose an analog of this symmetry at the quantum level. We indicate how our methods can be used to study the orbits of discrete U-duality groups in general.

  3. NREL: Wind Research - Research Staff

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Manager Dave Corbus Program Integration, Wind and Water Power Program Gene Holland Albert LiVecchi Dana Scholbrock Teresa Robinson Director, National Wind Technology Center...

  4. MTorres Group | Open Energy Information

    Open Energy Info (EERE)

    Group Jump to: navigation, search Name: MTorres Group Place: Murcia, Spain Zip: 30320 Sector: Wind energy Product: Wind turbine manufacturer References: MTorres Group1 This...

  5. INVESTIGATION OF A DYNAMIC POWER LINE RATING CONCEPT FOR IMPROVED WIND ENERGY INTEGRATION OVER COMPLEX TERRAIN

    SciTech Connect (OSTI)

    Jake P. Gentle; Kurt S Myers; Tyler B Phillips; Inanc Senocak; Phil Anderson

    2014-08-01

    Dynamic Line Rating (DLR) is a smart grid technology that allows the rating of power line to be based on real-time conductor temperature dependent on local weather conditions. In current practice overhead power lines are generally given a conservative rating based on worst case weather conditions. Using historical weather data collected over a test bed area, we demonstrate there is often additional transmission capacity not being utilized with the current static rating practice. We investigate a new dynamic line rating methodology using computational fluid dynamics (CFD) to determine wind conditions along transmission lines at dense intervals. Simulated results are used to determine conductor temperature by calculating the transient thermal response of the conductor under variable environmental conditions. In calculating the conductor temperature, we use both a calculation with steady-state assumption and a transient calculation. Under low wind conditions, steady-state assumption predicts higher conductor temperatures that could lead to curtailments, whereas transient calculations produce conductor temperatures that are significantly lower, implying the availability of additional transmission capacity.

  6. Integration of Wind Generation and Load Forecast Uncertainties into Power Grid Operations

    SciTech Connect (OSTI)

    Makarov, Yuri V.; Etingov, Pavel V.; Huang, Zhenyu; Ma, Jian; Chakrabarti, Bhujanga B.; Subbarao, Krishnappa; Loutan, Clyde; Guttromson, Ross T.

    2010-04-20

    In this paper, a new approach to evaluate the uncertainty ranges for the required generation performance envelope, including the balancing capacity, ramping capability and ramp duration is presented. The approach includes three stages: statistical and actual data acquisition, statistical analysis of retrospective information, and prediction of future grid balancing requirements for specified time horizons and confidence intervals. Assessment of the capacity and ramping requirements is performed using a specially developed probabilistic algorithm based on a histogram analysis incorporating all sources of uncertainty and parameters of a continuous (wind forecast and load forecast errors) and discrete (forced generator outages and failures to start up) nature. Preliminary simulations using California Independent System Operator (CAISO) real life data have shown the effectiveness and efficiency of the proposed approach.

  7. Idaho/Wind Resources/Full Version | Open Energy Information

    Open Energy Info (EERE)

    Wind Working Group Boise State University Wind for Schools Program Idaho Governor's Office of Energy resources AWEA State Wind Energy Statistics: Idaho Northwest Wind Resource...

  8. Offshore Wind Projects | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Projects Offshore Wind Projects This report covers the Wind and Water Power Program's offshore wind energy projects from fiscal years 2006 to 2016. Offshore Wind Energy Projects 2006-2016 (4.2 MB) More Documents & Publications Testing, Manufacturing, and Component Development Projects Wind Integration, Transmission, and Resource Assessment and Characterization Projects Wind Integration, Transmission, and Resource Assessment and Characterization Projects

  9. Environmental Wind Projects | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Environmental Wind Projects Environmental Wind Projects This report covers the Wind and Water Power Technologies Office's environmental wind projects from fiscal years 2006 to 2015. Environmental Projects Report 2006-2015 (2.24 MB) More Documents & Publications Testing, Manufacturing, and Component Development Projects Wind Integration, Transmission, and Resource Assessment and Characterization Projects Wind Integration, Transmission, and Resource Assessment and Characterization Pr

  10. Community Wind North | Open Energy Information

    Open Energy Info (EERE)

    Wind energy Facility Type Commercial Scale Wind Facility Status In Service Owner Edison Mission Group Developer Southwest Wind Consulting Community Energy Developers Board...

  11. Elkhorn Ridge Wind Farm | Open Energy Information

    Open Energy Info (EERE)

    Wind energy Facility Type Commercial Scale Wind Facility Status In Service Owner Edison Mission Group Developer Midwest Wind Energy Energy Purchaser Nebraska Public Power...

  12. Wildorado Wind Farm | Open Energy Information

    Open Energy Info (EERE)

    Wind energy Facility Type Commercial Scale Wind Facility Status In Service Owner Edison Mission Group Developer Cielo Wind Power Energy Purchaser Xcel Energy Location Oldham...

  13. Controls upon hydrocarbon reservoir evolution within the Rotliegende group: A fully integrated regional study

    SciTech Connect (OSTI)

    Howell, J.A.; Becker, A.; Turner, P.; Searl, A. ); Edwards, H.E.; Williams, G. )

    1993-09-01

    The collection of a large database, in conjunction with new understandings of sedimentology and structural controls upon diagenesis, has enabled the detailed mapping of the factors that control the distribution of hydrocarbon reservoirs within the Rotliegende Group of the United Kingdom southern North Sea. The results of this regional study incorporate detail previously confined to field scale studies. High resolution sedimentological and stratigraphic studies (4 km of core) have resulted in a twelve-fold subdivision of the Rotliegende Group based upon the recognition of climatically driven depositional cycles. These illustrate a progressive basin expansion controlled by the distribution of buried lower Paleozoic granites and post-Vanscan topography. This model incorporated with mapping of facies distribution has been used to document the distribution of potential reservoir rocks. Detailed diagenetic work has documented the distribution of all the principal mineral phases within the basin. Integration with structural studies has revealed the role of the fractures for introducing fluids to, and compartmentalizing reservoirs has led to significant understanding of the source and transport mechanism for the pore-occluding diagenetic phases. Regionally, an understanding of burial and inversion events has demonstrated that the distribution of clays, particularly permeability destroying illite, is controlled by both burial depth and source of reactants. Combination of sedimentological and diagenetic aspects has enabled the production predictive maps for the area. This, combined with the structural work, has highlighted the importance of timing of hydrocarbon migration in relation to reservoir structuration, particularly in areas away from the main Sole Pit source kitchen.

  14. NREL: Transmission Grid Integration - Data and Resources

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Wind Integration Datasets The Wind Integration Datasets provide energy professionals with a ... Solar Power Data for Integration Studies The Solar Power Data for Integration ...

  15. The Western Wind and Solar Integration Study Phase 2 (Fact Sheet), NREL (National Renewable Energy Laboratory)

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    The Water-Energy Nexus: Challenges and Opportunities The Water-Energy Nexus: Challenges and Opportunities The Department of Energy's Water-Energy Tech Team has prepared a new report -- The Water-Energy Nexus: Challenges and Opportunities -- that frames an integrated challenge and opportunity space around the water-energy nexus for the Department and its partners, laying the foundation for future efforts. When severe drought affected more than a third of the United States in 2012, limited water

  16. Maiden Winds | Open Energy Information

    Open Energy Info (EERE)

    Wind energy Facility Type Commercial Scale Wind Facility Status In Service Owner Edison Mission Group owns majority Developer Dan Juhl Energy Purchaser Xcel Energy Location...

  17. Final Report. An Integrated Partnership to Create and Lead the Solar Codes and Standards Working Group

    SciTech Connect (OSTI)

    Rosenthal, Andrew

    2013-12-30

    The DOE grant, “An Integrated Partnership to Create and Lead the Solar Codes and Standards Working Group,” to New Mexico State University created the Solar America Board for Codes and Standards (Solar ABCs). From 2007 – 2013 with funding from this grant, Solar ABCs identified current issues, established a dialogue among key stakeholders, and catalyzed appropriate activities to support the development of codes and standards that facilitated the installation of high quality, safe photovoltaic systems. Solar ABCs brought the following resources to the PV stakeholder community; Formal coordination in the planning or revision of interrelated codes and standards removing “stove pipes” that have only roofing experts working on roofing codes, PV experts on PV codes, fire enforcement experts working on fire codes, etc.; A conduit through which all interested stakeholders were able to see the steps being taken in the development or modification of codes and standards and participate directly in the processes; A central clearing house for new documents, standards, proposed standards, analytical studies, and recommendations of best practices available to the PV community; A forum of experts that invites and welcomes all interested parties into the process of performing studies, evaluating results, and building consensus on standards and code-related topics that affect all aspects of the market; and A biennial gap analysis to formally survey the PV community to identify needs that are unmet and inhibiting the market and necessary technical developments.

  18. Ostwind Group | Open Energy Information

    Open Energy Info (EERE)

    Ostwind Group Jump to: navigation, search Name: Ostwind Group Place: Regensburg, Germany Zip: D-93047 Sector: Biomass, Hydro, Wind energy Product: Develops wind projects, and also...

  19. Development of Eastern Regional Wind Resource and Wind Plant Output Datasets: March 3, 2008 -- March 31, 2010

    SciTech Connect (OSTI)

    Brower, M.

    2009-12-01

    The objective of this project was to provide wind resource inputs to the Eastern Wind Integration and Transmission Study.

  20. Wind Prospect Developments Ltd | Open Energy Information

    Open Energy Info (EERE)

    Sector: Wind energy Product: Wind Prospect Developments Limited was created as a 70:30 joint venture between EDF EN and the Wind Prospect Group in order to develop wind farms in...

  1. East Ridge Wind Farm | Open Energy Information

    Open Energy Info (EERE)

    Wind energy Facility Type Commercial Scale Wind Facility Status In Service Owner Edison Mission Group owns majority Developer Edison Mission Group Energy Purchaser Xcel...

  2. Bingham Lake Wind Farm | Open Energy Information

    Open Energy Info (EERE)

    Wind energy Facility Type Commercial Scale Wind Facility Status In Service Owner Edison Mission Group owns majority Developer Edison Mission Group Energy Purchaser Alliant...

  3. Forward Wind Farm | Open Energy Information

    Open Energy Info (EERE)

    Wind energy Facility Type Commercial Scale Wind Facility Status In Service Owner Edison Mission Group Developer Edison Mission Group Energy Purchaser Na Location Shade...

  4. Lookout Wind Farm | Open Energy Information

    Open Energy Info (EERE)

    Wind energy Facility Type Commercial Scale Wind Facility Status In Service Owner Edison Mission Group Developer Edison Mission Group Energy Purchaser Market Location...

  5. High Lonesome Wind Farm | Open Energy Information

    Open Energy Info (EERE)

    Wind energy Facility Type Commercial Scale Wind Facility Status In Service Owner Edison Mission Group Developer Edison Mission Group Location South of Willard NM Coordinates...

  6. Jeffers Wind Farm | Open Energy Information

    Open Energy Info (EERE)

    Wind energy Facility Type Commercial Scale Wind Facility Status In Service Owner Edison Mission GroupWED Developer Edison Mission GroupWED Energy Purchaser Northern States...

  7. Camp Grove Wind Farm | Open Energy Information

    Open Energy Info (EERE)

    Wind energy Facility Type Commercial Scale Wind Facility Status In Service Owner OEG (Orion Energy Group) Developer OEG (Orion Energy Group) Energy Purchaser AEP-Appalachian...

  8. NWTC Transmission and Grid Integration (Revised) (Fact Sheet)

    SciTech Connect (OSTI)

    Not Available

    2010-04-01

    The rapid growth of alternative power sources, especially wind power, is creating challenges that affect the existing electric grid. To keep up with this rapid growth, researchers in the Transmission and Grid Integration Group provide scientific, engineering, and analytical expertise to help advance alternative energy and accelerate its integration into the nation's electrical grid. For example, we evaluate U.S. wind energy resources and collect and analyze data about the impact of wind development on the electrical grid. Researchers in the Transmission and Grid Integration Group offer assistance to utility industry partners in the following integration areas.

  9. Techno-economic Modeling of the Integration of 20% Wind and Large-scale Energy Storage in ERCOT by 2030

    SciTech Connect (OSTI)

    Baldick, Ross; Webber, Michael; King, Carey; Garrison, Jared; Cohen, Stuart; Lee, Duehee

    2012-12-21

    This study's objective is to examine interrelated technical and economic avenues for the Electric Reliability Council of Texas (ERCOT) grid to incorporate up to and over 20% wind generation by 2030. Our specific interests are to look at the factors that will affect the implementation of both high level of wind power penetration (> 20% generation) and installation of large scale storage.

  10. Wind Integration Initiatives

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Expand Projects & Initiatives Finance & Rates Expand Finance & Rates Involvement & Outreach Expand Involvement & Outreach Doing Business Expand Doing Business...