Powered by Deep Web Technologies
Note: This page contains sample records for the topic "wind installation project" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


1

Environmental assessment: Kotzebue Wind Installation Project, Kotzebue, Alaska  

SciTech Connect (OSTI)

The DOE is proposing to provide financial assistance to the Kotzebue Electric Association to expand its existing wind installation near Kotzebue, Alaska. Like many rural Alaska towns, Kotzebue uses diesel-powered generators to produce its electricity, the high cost of which is currently subsidized by the Alaska State government. In an effort to provide a cost effective and clean source of electricity, reduce dependence on diesel fuel, and reduce air pollutants, the DOE is proposing to fund an experimental wind installation to test commercially available wind turbines under Arctic conditions. The results would provide valuable information to other Alaska communities experiencing similar dependence on diesel-powered generators. The environmental assessment for the proposed wind installation assessed impacts to biological resources, land use, electromagnetic interference, coastal zone, air quality, cultural resources, and noise. It was determined that the project does not constitute a major Federal action significantly affecting the quality of the human environment. Therefore, the preparation of an environmental impact statement is not required, and DOE has issued a Finding of No Significant Impact.

NONE

1998-05-01T23:59:59.000Z

2

Offshore Wind Turbine Transportation & Installation Analyses Planning Optimal Marine Operations for Offshore Wind Projects.  

E-Print Network [OSTI]

?? Transportation and installation of offshore wind turbines (Tower, Nacelle and Rotor) is a complete process conducted over several phases, usually in sequence. There are… (more)

Uraz, Emre

2011-01-01T23:59:59.000Z

3

Installing Small Wind Turbines Seminar and Workshop  

E-Print Network [OSTI]

Seminar and Workshop Installing Small Wind Turbines Seminar and Workshop Location: Murdoch January 2011 Details for Registration and Payment: Mr Daniel Jones, National Small Wind Turbine Test: The National Small Wind Turbine Centre at Murdoch University is holding a Small Wind Turbine short training

4

EA-1852: Cloud County Community College Wind Energy Project,...  

Energy Savers [EERE]

County Community College (CCCC) for a wind energy project. CCCC has installed three wind turbines and proposed to install a fourth turbine on their campus in Concordia, Kansas, for...

5

PNNL Reports Distributed Wind Installations Down, Exports Up...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

PNNL Reports Distributed Wind Installations Down, Exports Up in 2013 PNNL Reports Distributed Wind Installations Down, Exports Up in 2013 March 31, 2014 - 11:14am Addthis According...

6

INL Wind Farm Project Description Document  

SciTech Connect (OSTI)

The INL Wind Farm project proposes to install a 20 MW to 40 MW wind farm on government property, consisting of approximately ten to twenty full-sized (80-meter hub height) towers with 2 MW turbines, and access roads. This includes identifying the optimal turbine locations, building access roads, and pouring the tower foundations in preparation for turbine installation. The project successfully identified a location on INL lands with commercially viable wind resources (i.e., greater than 11 mph sustained winds) for a 20 to 40 MW wind farm. Additionally, the proposed Wind Farm was evaluated against other General Plant Projects, General Purpose Capital Equipment projects, and Line Item Construction Projects at the INL to show the relative importance of the proposed Wind Farm project.

Gary Siefert

2009-07-01T23:59:59.000Z

7

Barstow Wind Turbine Project  

Broader source: Energy.gov [DOE]

Presentation covers the Barstow Wind Turbine project for the Federal Utility Partnership Working Group (FUPWG) meeting, held on November 18-19, 2009.

8

Coastal Ohio Wind Project  

SciTech Connect (OSTI)

The Coastal Ohio Wind Project intends to address problems that impede deployment of wind turbines in the coastal and offshore regions of Northern Ohio. The project evaluates different wind turbine designs and the potential impact of offshore turbines on migratory and resident birds by developing multidisciplinary research, which involves wildlife biology, electrical and mechanical engineering, and geospatial science. Firstly, the project conducts cost and performance studies of two- and three-blade wind turbines using a turbine design suited for the Great Lakes. The numerical studies comprised an analysis and evaluation of the annual energy production of two- and three-blade wind turbines to determine the levelized cost of energy. This task also involved wind tunnel studies of model wind turbines to quantify the wake flow field of upwind and downwind wind turbine-tower arrangements. The experimental work included a study of a scaled model of an offshore wind turbine platform in a water tunnel. The levelized cost of energy work consisted of the development and application of a cost model to predict the cost of energy produced by a wind turbine system placed offshore. The analysis found that a floating two-blade wind turbine presents the most cost effective alternative for the Great Lakes. The load effects studies showed that the two-blade wind turbine model experiences less torque under all IEC Standard design load cases considered. Other load effects did not show this trend and depending on the design load cases, the two-bladed wind turbine showed higher or lower load effects. The experimental studies of the wake were conducted using smoke flow visualization and hot wire anemometry. Flow visualization studies showed that in the downwind turbine configuration the wake flow was insensitive to the presence of the blade and was very similar to that of the tower alone. On the other hand, in the upwind turbine configuration, increasing the rotor blade angle of attack reduced the wake size and enhanced the vortices in the flow downstream of the turbine-tower compared with the tower alone case. Mean and rms velocity distributions from hot wire anemometer data confirmed that in a downwind configuration, the wake of the tower dominates the flow, thus the flow fields of a tower alone and tower-turbine combinations are nearly the same. For the upwind configuration, the mean velocity shows a narrowing of the wake compared with the tower alone case. The downwind configuration wake persisted longer than that of an upwind configuration; however, it was not possible to quantify this difference because of the size limitation of the wind tunnel downstream of the test section. The water tunnel studies demonstrated that the scale model studies could be used to adequately produce accurate motions to model the motions of a wind turbine platform subject to large waves. It was found that the important factors that affect the platform is whether the platform is submerged or surface piercing. In the former, the loads on the platform will be relatively reduced whereas in the latter case, the structure pierces the wave free surface and gains stiffness and stability. The other important element that affects the movement of the platform is depth of the sea in which the wind turbine will be installed. Furthermore, the wildlife biology component evaluated migratory patterns by different monitoring systems consisting of marine radar, thermal IR camera and acoustic recorders. The types of radar used in the project are weather surveillance radar and marine radar. The weather surveillance radar (1988 Doppler), also known as Next Generation Radar (NEXRAD), provides a network of weather stations in the US. Data generated from this network were used to understand general migratory patterns, migratory stopover habitats, and other patterns caused by the effects of weather conditions. At a local scale our marine radar was used to complement the datasets from NEXRAD and to collect additional monitoring parameters such as passage rates, flight paths, flight directi

Gorsevski, Peter; Afjeh, Abdollah; Jamali, Mohsin; Bingman, Verner

2014-04-04T23:59:59.000Z

9

WINDExchange: U.S. Installed Wind Capacity  

Wind Powering America (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data CenterFranconia, Virginia:FAQ < RAPID Jump to:SeadovCooperative JumpWilliamsonWoodsonCounty iscomfortNews This page lists all About Wind

10

AWEA Wind Project Siting Seminar  

Broader source: Energy.gov [DOE]

The AWEA Wind Project Siting Seminar takes an in-depth look at the latest siting challenges and identify opportunities to reduce risks associated with the siting and operation of wind farms to...

11

Byers Auto Group: A Case Study Into The Economics, Zoning, and Overall Process of Installing Small Wind Turbines at Two Automotive Dealerships in Ohio (Presentation)  

SciTech Connect (OSTI)

This presentation provides the talking points about a case study on the installation of a $600,000 small wind project, the installation process, estimated annual energy production and percentage of energy needs met by the turbines.

Sinclair, K.; Oteri, F.

2011-05-01T23:59:59.000Z

12

Byers Auto Group: A Case Study Into The Economics, Zoning, and Overall Process of Installing Small Wind Turbines at Two Automotive Dealerships in Ohio  

SciTech Connect (OSTI)

This paper provides the talking points about a case study on the installation of a $600,000 small wind project, the installation process, estimated annual energy production and percentage of energy needs met by the turbines.

Oteri, F.; Sinclair, K.

2011-11-01T23:59:59.000Z

13

2008 Wind Energy Projects, Wind Powering America (Poster)  

SciTech Connect (OSTI)

The Wind Powering America program produces a poster at the end of every calendar year that depicts new U.S. wind energy projects. The 2008 poster includes the following projects: Stetson Wind Farm in Maine; Dutch Hill Wind Farm in New York; Grand Ridge Wind Energy Center in Illinois; Hooper Bay, Alaska; Forestburg, South Dakota; Elbow Creek Wind Project in Texas; Glacier Wind Farm in Montana; Wray, Colorado; Smoky Hills Wind Farm in Kansas; Forbes Park Wind Project in Massachusetts; Spanish Fork, Utah; Goodland Wind Farm in Indiana; and the Tatanka Wind Energy Project on the border of North Dakota and South Dakota.

Not Available

2009-01-01T23:59:59.000Z

14

Wind-To-Hydrogen Energy Pilot Project  

SciTech Connect (OSTI)

WIND-TO-HYDROGEN ENERGY PILOT PROJECT: BASIN ELECTRIC POWER COOPERATIVE In an effort to address the hurdles of wind-generated electricity (specifically wind's intermittency and transmission capacity limitations) and support development of electrolysis technology, Basin Electric Power Cooperative (BEPC) conducted a research project involving a wind-to-hydrogen system. Through this effort, BEPC, with the support of the Energy & Environmental Research Center at the University of North Dakota, evaluated the feasibility of dynamically scheduling wind energy to power an electrolysis-based hydrogen production system. The goal of this project was to research the application of hydrogen production from wind energy, allowing for continued wind energy development in remote wind-rich areas and mitigating the necessity for electrical transmission expansion. Prior to expending significant funding on equipment and site development, a feasibility study was performed. The primary objective of the feasibility study was to provide BEPC and The U.S. Department of Energy (DOE) with sufficient information to make a determination whether or not to proceed with Phase II of the project, which was equipment procurement, installation, and operation. Four modes of operation were considered in the feasibility report to evaluate technical and economic merits. Mode 1 - scaled wind, Mode 2 - scaled wind with off-peak, Mode 3 - full wind, and Mode 4 - full wind with off-peak In summary, the feasibility report, completed on August 11, 2005, found that the proposed hydrogen production system would produce between 8000 and 20,000 kg of hydrogen annually depending on the mode of operation. This estimate was based on actual wind energy production from one of the North Dakota (ND) wind farms of which BEPC is the electrical off-taker. The cost of the hydrogen produced ranged from $20 to $10 per kg (depending on the mode of operation). The economic sensitivity analysis performed as part of the feasibility study showed that several factors can greatly affect, both positively and negatively, the "per kg" cost of hydrogen. After a September 15, 2005, meeting to evaluate the advisability of funding Phase II of the project DOE concurred with BEPC that Phase I results did warrant a "go" recommendation to proceed with Phase II activities. The hydrogen production system was built by Hydrogenics and consisted of several main components: hydrogen production system, gas control panel, hydrogen storage assembly and hydrogen-fueling dispenser The hydrogen production system utilizes a bipolar alkaline electrolyzer nominally capable of producing 30 Nm3/h (2.7 kg/h). The hydrogen is compressed to 6000 psi and delivered to an on-site three-bank cascading storage assembly with 80 kg of storage capacity. Vehicle fueling is made possible through a Hydrogenics-provided gas control panel and dispenser able to fuel vehicles to 5000 psi. A key component of this project was the development of a dynamic scheduling system to control the wind energy's variable output to the electrolyzer cell stacks. The dynamic scheduling system received an output signal from the wind farm, processed this signal based on the operational mode, and dispatched the appropriate signal to the electrolyzer cell stacks. For the study BEPC chose to utilize output from the Wilton wind farm located in central ND. Site design was performed from May 2006 through August 2006. Site construction activities were from August to November 2006 which involved earthwork, infrastructure installation, and concrete slab construction. From April - October 2007, the system components were installed and connected. Beginning in November 2007, the system was operated in a start-up/shakedown mode. Because of numerous issues, the start-up/shakedown period essentially lasted until the end of January 2008, at which time a site acceptance test was performed. Official system operation began on February 14, 2008, and continued through the end of December 2008. Several issues continued to prevent consistent operation, resulting in operation o

Ron Rebenitsch; Randall Bush; Allen Boushee; Brad G. Stevens; Kirk D. Williams; Jeremy Woeste; Ronda Peters; Keith Bennett

2009-04-24T23:59:59.000Z

15

Searchlight Wind Energy Project DEIS Appendix A  

Broader source: Energy.gov (indexed) [DOE]

Searchlight Wind Energy Project DEIS Appendix A Page | A Appendix A: Public Scoping Report SCOPING SUMMARY REPORT SEARCHLIGHT WIND ENERGY PROJECT ENVIRONMENTAL IMPACT STATEMENT...

16

Wind for Schools: A Wind Powering America Project  

SciTech Connect (OSTI)

This brochure serves as an introduction to Wind Powering America's Wind for Schools Project, including a description of the project, the participants, funding sources, and the basic configurations of the project.

Not Available

2007-12-01T23:59:59.000Z

17

Annual Report on U.S. Wind Power Installation, Cost, and Performance Trends: 2006  

E-Print Network [OSTI]

Annual Report on U.S. Wind Power Installation, Cost, and3 U.S. Wind Power Capacity Increased by 27% inAre Significant. . . . . . . 9 Wind Power Prices Are Up in

2008-01-01T23:59:59.000Z

18

Project examples Install new HVAC, electrical, fire protection,  

E-Print Network [OSTI]

Project examples Install new HVAC, electrical, fire protection, and plumbing systems in Mechanical. · Totransformthisspaceandincreaseaccessibility, anelevatorisrequired.Currently,Blakelydoesnot haveone. Replace HVAC and electrical system

Blanchette, Robert A.

19

SAT-WIND project Final report  

E-Print Network [OSTI]

-2840 ISBN 87-550-3570-1 The SAT-WIND project `Winds from satellites for offshore and coastal wind energy) technologies for wind energy tools for wind resources and wind-indexing. The study area was the Danish Seas microwave polarimetric 223.3.1 History 3.3.2 Measurement principle 22 223.3.3 WindSat (passive microwave

20

Installation, Operation, and Maintenance Strategies to Reduce the Cost of Offshore Wind Energy  

SciTech Connect (OSTI)

Currently, installation, operation, and maintenance (IO&M) costs contribute approximately 30% to the LCOE of offshore wind plants. To reduce LCOE while ensuring safety, this paper identifies principal cost drivers associated with IO&M and quantifies their impacts on LCOE. The paper identifies technology improvement opportunities and provides a basis for evaluating innovative engineering and scientific concepts developed subsequently to the study. Through the completion of a case study, an optimum IO&M strategy for a hypothetical offshore wind project is identified.

Maples, B.; Saur, G.; Hand, M.; van de Pieterman, R.; Obdam, T.

2013-07-01T23:59:59.000Z

Note: This page contains sample records for the topic "wind installation project" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


21

Great Plains Wind Energy Transmission Development Project  

SciTech Connect (OSTI)

In fiscal year 2005, the Energy & Environmental Research Center (EERC) received funding from the U.S. Department of Energy (DOE) to undertake a broad array of tasks to either directly or indirectly address the barriers that faced much of the Great Plains states and their efforts to produce and transmit wind energy at the time. This program, entitled Great Plains Wind Energy Transmission Development Project, was focused on the central goal of stimulating wind energy development through expansion of new transmission capacity or development of new wind energy capacity through alternative market development. The original task structure was as follows: Task 1 - Regional Renewable Credit Tracking System (later rescoped to Small Wind Turbine Training Center); Task 2 - Multistate Transmission Collaborative; Task 3 - Wind Energy Forecasting System; and Task 4 - Analysis of the Long-Term Role of Hydrogen in the Region. As carried out, Task 1 involved the creation of the Small Wind Turbine Training Center (SWTTC). The SWTTC, located Grand Forks, North Dakota, consists of a single wind turbine, the Endurance S-250, on a 105-foot tilt-up guyed tower. The S-250 is connected to the electrical grid on the 'load side' of the electric meter, and the power produced by the wind turbine is consumed locally on the property. Establishment of the SWTTC will allow EERC personnel to provide educational opportunities to a wide range of participants, including grade school through college-level students and the general public. In addition, the facility will allow the EERC to provide technical training workshops related to the installation, operation, and maintenance of small wind turbines. In addition, under Task 1, the EERC hosted two small wind turbine workshops on May 18, 2010, and March 8, 2011, at the EERC in Grand Forks, North Dakota. Task 2 involved the EERC cosponsoring and aiding in the planning of three transmission workshops in the midwest and western regions. Under Task 3, the EERC, in collaboration with Meridian Environmental Services, developed and demonstrated the efficacy of a wind energy forecasting system for use in scheduling energy output from wind farms for a regional electrical generation and transmission utility. With the increased interest at the time of project award in the production of hydrogen as a critical future energy source, many viewed hydrogen produced from wind-generated electricity as an attractive option. In addition, many of the hydrogen production-related concepts involve utilization of energy resources without the need for additional electrical transmission. For this reason, under Task 4, the EERC provided a summary of end uses for hydrogen in the region and focused on one end product in particular (fertilizer), including several process options and related economic analyses.

Brad G. Stevens, P.E.; Troy K. Simonsen; Kerryanne M. Leroux

2012-06-09T23:59:59.000Z

22

Final Technical Report - Kotzebue Wind Power Project - Volume II  

SciTech Connect (OSTI)

The Kotzebue Wind Power Project is a joint undertaking of the U.S. Department of Energy (DOE); Kotzebue Electric Association (KEA); and the Alaska Energy Authority (AEA). The goal of the project is to develop, construct, and operate a wind power plant interconnected to a small isolated utility grid in an arctic climate in Northwest Alaska. The primary objective of KEA’s wind energy program is to bring more affordable electricity and jobs to remote Alaskan communities. DOE funding has allowed KEA to develop a multi-faceted approach to meet these objectives that includes wind project planning and development, technology transfer, and community outreach. The first wind turbines were installed in the summer of 1997 and the newest turbines were installed in the spring of 2007. The total installed capacity of the KEA wind power project is 1.16 MW with a total of 17 turbines rated between 65 kW and 100 kW. The operation of the wind power plant has resulted in a wind penetration on the utility system in excess of 35% during periods of low loads. This document and referenced attachments are presented as the final technical report for the U.S. Department of Energy (DOE) grant agreement DE-FG36-97GO10199. Interim deliverables previously submitted are also referenced within this document and where reasonable to do so, specific sections are incorporated in the report or attached as appendices.

Rana Zucchi, Global Energy Concepts, LLC; Brad Reeve, Kotzebue Electric Association; DOE Project Officer - Doug Hooker

2007-10-31T23:59:59.000Z

23

PowerJet Wind Turbine Project  

SciTech Connect (OSTI)

PROJECT OBJECTIVE The PowerJet wind turbine overcomes problems characteristic of the small wind turbines that are on the market today by providing reliable output at a wide range of wind speeds, durability, silent operation at all wind speeds, and bird-safe operation. Prime Energy�s objective for this project was to design and integrate a generator with an electrical controller and mechanical controls to maximize the generation of electricity by its wind turbine. The scope of this project was to design, construct and test a mechanical back plate to control rotational speed in high winds, and an electronic controller to maximize power output and to assist the base plate in controlling rotational speed in high winds. The test model will continue to operate beyond the time frame of the project, with the ultimate goal of manufacturing and marketing the PowerJet worldwide. Increased Understanding of Electronic & Mechanical Controls Integrated With Electricity Generator The PowerJet back plate begins to open as wind speed exceeds 13.5 mps. The pressure inside the turbine and the turbine rotational speed are held constant. Once the back plate has fully opened at approximately 29 mps, the controller begins pulsing back to the generator to limit the rotational speed of the turbine. At a wind speed in excess of 29 mps, the controller shorts the generator and brings the turbine to a complete stop. As the wind speed subsides, the controller releases the turbine and it resumes producing electricity. Data collection and instrumentation problems prevented identification of the exact speeds at which these events occur. However, the turbine, controller and generator survived winds in excess of 36 mps, confirming that the two over-speed controls accomplished their purpose. Technical Effectiveness & Economic Feasibility Maximum Electrical Output The output of electricity is maximized by the integration of an electronic controller and mechanical over-speed controls designed and tested during the course of this project. The output exceeds that of the PowerJet�s 3-bladed counterparts (see Appendix). Durability All components of the PowerJet turbine assembly�including the electronic and mechanical controls designed, manufactured and field tested during the course of this project�proved to be durable through severe weather conditions, with constant operation and no interruption in energy production. Low Cost Materials for the turbine, generator, tower, charge controllers and ancillary parts are available at reasonable prices. Fabrication of these parts is also readily available worldwide. The cost of assembling and installing the turbine is reduced because it has fewer parts and requires less labor to manufacture and assemble, making it competitively priced compared with turbines of similar output manufactured in the U.S. and Europe. The electronic controller is the unique part to be included in the turbine package. The controllers can be manufactured in reasonably-sized production runs to keep the cost below $250 each. The data logger and 24 sensors are for research only and will be unnecessary for the commercial product. Benefit To Public The PowerJet wind-electric system is designed for distributed wind generation in 3 and 4 class winds. This wind turbine meets DOE�s requirements for a quiet, durable, bird-safe turbine that eventually can be deployed as a grid-connected generator in urban and suburban settings. Results As described more fully below and illustrated in the Appendices, the goals and objectives outlined in 2060 SOPO were fully met. Electronic and mechanical controls were successfully designed, manufactured and integrated with the generator. The turbine, tower, controllers and generators operated without incident throughout the test period, surviving severe winter and summer weather conditions such as extreme temperatures, ice and sustained high winds. The electronic controls were contained in weather-proof electrical boxes and the elec

Bartlett, Raymond J

2008-11-30T23:59:59.000Z

24

Wind for Schools: A Wind Powering America Project (Brochure)  

SciTech Connect (OSTI)

This brochure provides an overview of Wind Powering America's Wind for Schools Project, including a description of the project, the participants, funding sources, the basic configurations, and how interested parties can become involved.

Baring-Gould, I.

2009-08-01T23:59:59.000Z

25

Wind for Schools: A Wind Powering America Project (Alaska) (Brochure)  

SciTech Connect (OSTI)

This brochure provides an overview of Wind Powering America's Wind for Schools Project, including a description of the project, the participants, funding sources, the basic configurations, and how interested parties can become involved.

Not Available

2010-02-01T23:59:59.000Z

26

New England Wind Energy Education Project (NEWEEP)  

SciTech Connect (OSTI)

Project objective is to develop and disseminate accurate, objective information on critical wind energy issues impacting market acceptance of hundreds of land-based projects and vast off-shore wind developments proposed in the 6-state New England region, thereby accelerating the pace of wind installation from today's 140 MW towards the region's 20% by 2030 goals of 12,500 MW. Methodology: This objective will be accomplished by accumulating, developing, assembling timely, accurate, objective and detailed information representing the 'state of the knowledge' on critical wind energy issues impacting market acceptance, and widely disseminating such information. The target audience includes state agencies and local governments; utilities and grid operators; wind developers; agricultural and environmental groups and other NGOs; research organizations; host communities and the general public, particularly those in communities with planned or operating wind projects. Information will be disseminated through: (a) a series of topic-specific web conference briefings; (b) a one-day NEWEEP conference, back-to-back with a Utility Wind Interest Group one-day regional conference organized for this project; (c) posting briefing and conference materials on the New England Wind Forum (NEWF) web site and featuring the content on NEWF electronic newsletters distributed to an opt-in list of currently over 5000 individuals; (d) through interaction with and participation in Wind Powering America (WPA) state Wind Working Group meetings and WPA's annual All-States Summit, and (e) through the networks of project collaborators. Sustainable Energy Advantage, LLC (lead) and the National Renewable Energy Laboratory will staff the project, directed by an independent Steering Committee composed of a collaborative regional and national network of organizations. Major Participants - the Steering Committee: In addition to the applicants, the initial collaborators committing to form a Steering Committee consists of the Massachusetts Renewable Energy Trust; Maine Public Utilities Commission; New Hampshire office of Energy & Planning, the Connecticut Clean Energy Fund;, ISO New England; Utility Wind Interest Group; University of Massachusetts Wind Energy Center; Renewable Energy New England (a new partnership between the renewable energy industry and environmental public interest groups), and Lawrence Berkeley National Laboratory (conditionally). The Steering Committee will: (1) identify and prioritize topics of greatest interest or concern where detailed, objective and accurate information will advance the dialogue in the region; (2) identify critical outreach venues, influencers and experts; (3) direct and coordinate project staff; (4) assist project staff in planning briefings and conferences described below; (5) identify topics needing additional research or technical assistance and (6) identify and recruit additional steering committee members. Impacts/Benefits/Outcomes: By cutting through the clutter of competing and conflicting information on critical issues, this project is intended to encourage the market's acceptance of appropriately-sited wind energy generation.

Grace, Robert C.; Craddock, Kathryn A.; von Allmen, Daniel R.

2012-04-25T23:59:59.000Z

27

Offshore Wind Project Map  

Broader source: Energy.gov [DOE]

Image that shows the demonstration project site and developer headquarters for two funding opportunity announcements: the 2011 Grants for Technology Development and the 2011 Grants for Removing Market Barriers.

28

Hualapai Wind Project Feasibility Report  

SciTech Connect (OSTI)

The Hualapai Department of Planning and Economic Development, with funding assistance from the U.S. Department of Energy, Tribal Energy Program, with the aid of six consultants has completed the four key prerequisites as follows: 1. Identify the site area for development and its suitability for construction. 2. Determine the wind resource potential for the identified site area. 3. Determine the electrical transmission and interconnection feasibility to get the electrical power produced to the marketplace. 4. Complete an initial permitting and environmental assessment to determine the feasibility for getting the project permitted. Those studies indicated a suitable wind resource and favorable conditions for permitting and construction. The permitting and environmental study did not reveal any fatal flaws. A review of the best power sale opportunities indicate southern California has the highest potential for obtaining a PPA that may make the project viable. Based on these results, the recommendation is for the Hualapai Tribal Nation to move forward with attracting a qualified wind developer to work with the Tribe to move the project into the second phase - determining the reality factors for developing a wind project. a qualified developer will bid to a utility or negotiate a PPA to make the project viable for financing.

Davidson, Kevin [Hualapai Tribe] [Hualapai Tribe; Randall, Mark [Daystar Consulting] [Daystar Consulting; Isham, Tom [Power Engineers] [Power Engineers; Horna, Marion J [MJH Power Consulting LLC] [MJH Power Consulting LLC; Koronkiewicz, T [SWCA Environmental, Inc.] [SWCA Environmental, Inc.; Simon, Rich [V-Bar, LLC] [V-Bar, LLC; Matthew, Rojas [Squire Sanders Dempsey] [Squire Sanders Dempsey; MacCourt, Doug C. [Ater Wynne, LLP] [Ater Wynne, LLP; Burpo, Rob [First American Financial Advisors, Inc.] [First American Financial Advisors, Inc.

2012-12-20T23:59:59.000Z

29

Gravity base foundations for offshore wind farms : marine operations and installation processes.  

E-Print Network [OSTI]

??ABSTRACT. Marine operations required in the installation of gravity base foundations for offshore wind farms were studied. This dissertation analyses the operations of transport, seabed… (more)

Ruiz de Temiño Alonso, Ismael

2013-01-01T23:59:59.000Z

30

Wind Forecast Improvement Project Southern Study Area Final Report...  

Office of Environmental Management (EM)

Wind Forecast Improvement Project Southern Study Area Final Report Wind Forecast Improvement Project Southern Study Area Final Report Wind Forecast Improvement Project Southern...

31

EIS-0470: Cape Wind Energy Project, Final General Conformity...  

Broader source: Energy.gov (indexed) [DOE]

70: Cape Wind Energy Project, Final General Conformity Determination EIS-0470: Cape Wind Energy Project, Final General Conformity Determination Cape Wind Energy Project, Final...

32

Video Installation Design: Appropriation and Assemblage As Projection Surface Geometry  

E-Print Network [OSTI]

This area of research focuses on the use of video projections in the context of fine art. Emphasis is placed on creating a unique video installation work that incorporates assemblage and appropriation as a means to develop multiple complex...

Weaver, Timothy A.

2010-07-14T23:59:59.000Z

33

Abstract--The offshore wind farm with installed back-to-back power converter in wind turbines is studied. As an  

E-Print Network [OSTI]

Abstract--The offshore wind farm with installed back-to- back power converter in wind turbines is studied. As an example the Burbo Bank offshore wind farm with Siemens Wind Power wind turbines is taken installed in wind turbines are presented. Harmonic load flow analysis and impedance frequency

Bak, Claus Leth

34

Three Offshore Wind Advanced Technology Demonstration Projects...  

Office of Environmental Management (EM)

commercial operation by 2017. Dominion Power will install two 6-MW direct-drive wind turbines off the coast of Virginia Beach on twisted jacket foundations designed by Keystone...

35

U.S. Offshore Wind Advanced Technology Demonstration Projects...  

Broader source: Energy.gov (indexed) [DOE]

Offshore Wind Advanced Technology Demonstration Projects Public Meeting Transcript for Offshore Wind Demonstrations U.S. Offshore Wind Advanced Technology Demonstration Projects...

36

Benefits of Stochastic Scheduling for Power Systems with Significant Installed Wind Power  

E-Print Network [OSTI]

Benefits of Stochastic Scheduling for Power Systems with Significant Installed Wind Power Aidan a stochastic element due to the uncertainty of wind power forecasts. By explicitly taking into account the stochastic nature of wind power, it is expected that better schedules should be produced, thereby reducing

37

EA-1852: Cloud County Community College Wind Energy Project, Cloud County, Kansas  

Broader source: Energy.gov [DOE]

This EA was to evaluate the environmental impacts of a proposal to authorize the expenditure of federal funds by Cloud County Community College (CCCC) for a wind energy project. CCCC has installed three wind turbines and proposed to install a fourth turbine on their campus in Concordia, Kansas, for use in their wind energy training curriculum and to provide electricity for their campus. This EA has been canceled.

38

Digital Book Showcases Washington Wind Project | Department of...  

Broader source: Energy.gov (indexed) [DOE]

It will be one of the largest wind farms in the United States and supply energy for California municipalities. Addthis Related Articles Genoa Township, Mich., installed five wind...

39

Advanced Wind Energy Projects Test Facility Moving to Texas Tech...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

The Lubbock site will include an initial installation of two 225-kilowatt wind turbines and three anemometer towers, with the potential to expand to nine or more wind...

40

Wind Energy Education and Outreach Project  

SciTech Connect (OSTI)

The purpose of Illinois State Universityâ??s wind project was to further the education and outreach of the university concerning wind energy. This project had three major components: to initiate and coordinate a Wind Working Group for the State of Illinois, to launch a Renewable Energy undergraduate program, and to develop the Center for Renewable Energy that will sustain the Illinois Wind Working Group and the undergraduate program.

David G. Loomis

2011-04-15T23:59:59.000Z

Note: This page contains sample records for the topic "wind installation project" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


41

Wind Powering America's Wind for Schools Project: Summary Report  

SciTech Connect (OSTI)

This report provides an overview of the U.S. Department of Energy, Wind Powering America, Wind for Schools project. It outlines teacher-training activities and curriculum development; discusses the affiliate program that allows school districts and states to replicate the program; and contains reports that provide an update on activities and progress in the 11 states in which the Wind for Schools project operates.

Baring-Gould, I.; Newcomb, C.

2012-06-01T23:59:59.000Z

42

Certification for Small Wind Turbine Installers: What's the Hang Up?; Preprint  

SciTech Connect (OSTI)

Several programs have been implemented to support the advancement of a professional, mature small wind industry and to ensure that this industry moves forward in a sustainable direction. The development of a standard for small wind turbine systems and the creation of the Small Wind Certification Council support small wind technology that is reliable and safe. Consumers and incentive programs will ultimately rely on certification to differentiate among systems sold in the U.S. market. Certification of small wind installers is yet another component deemed necessary for this industry to expand. The National Renewable Energy Laboratory, under the guidance and funding support of the U.S. Department of Energy, supported the development of small wind system installer certification provided via the North American Board of Certified Energy Practitioners. However, the small wind community is not supportive of the installer certification. There are currently only nine certified installers in the U.S. pool. This paper provides an overview of the installer certification program and why more small wind turbine installers are not pursuing this certification.

Oteri, F.; Sinclair, K.

2012-03-01T23:59:59.000Z

43

Wind for Schools Project Power System Brief  

SciTech Connect (OSTI)

This fact sheet provides an overview of the system components of a Wind Powering America Wind for Schools project. Wind Powering America's (WPA's) Wind for Schools project uses a basic system configuration for each school project. The system incorporates a single SkyStream(TM) wind turbine, a 70-ft guyed tower, disconnect boxes at the base of the turbine and at the school, and an interconnection to the school's electrical system. A detailed description of each system component is provided in this document.

Not Available

2007-08-01T23:59:59.000Z

44

Community Wind: Once Again Pushing the Envelope of Project Finance  

SciTech Connect (OSTI)

In the United States, the 'community wind' sector - loosely defined here as consisting of relatively small utility-scale wind power projects that sell power on the wholesale market and that are developed and owned primarily by local investors - has historically served as a 'test bed' or 'proving grounds' for up-and-coming wind turbine manufacturers that are trying to break into the U.S. wind power market. For example, community wind projects - and primarily those located in the state of Minnesota - have deployed the first U.S. installations of wind turbines from Suzlon (in 2003), DeWind (2008), Americas Wind Energy (2008) and later Emergya Wind Technologies (2010), Goldwind (2009), AAER/Pioneer (2009), Nordic Windpower (2010), Unison (2010), and Alstom (2011). Thus far, one of these turbine manufacturers - Suzlon - has subsequently achieved some success in the broader U.S. wind market as well. Just as it has provided a proving grounds for new turbines, so too has the community wind sector served as a laboratory for experimentation with innovative new financing structures. For example, a variation of one of the most common financing arrangements in the U.S. wind market today - the special allocation partnership flip structure (see Figure 1 in Section 2.1) - was first developed by community wind projects in Minnesota more than a decade ago (and is therefore sometimes referred to as the 'Minnesota flip' model) before being adopted by the broader wind market. More recently, a handful of community wind projects built over the past year have been financed via new and creative structures that push the envelope of wind project finance in the U.S. - in many cases, moving beyond the now-standard partnership flip structures involving strategic tax equity investors. These include: (1) a 4.5 MW project in Maine that combines low-cost government debt with local tax equity, (2) a 25.3 MW project in Minnesota using a sale/leaseback structure, (3) a 10.5 MW project in South Dakota financed by an intrastate offering of both debt and equity, (4) a 6 MW project in Washington state that taps into New Markets Tax Credits using an 'inverted' or 'pass-through' lease structure, and (5) a 9 MW project in Oregon that combines a variety of state and federal incentives and loans with unconventional equity from high-net-worth individuals. In most cases, these are first-of-their-kind structures that could serve as useful examples for other projects - both community and commercial wind alike. This report describes each of these innovative new financing structures in some detail, using a case-study approach. The purpose is twofold: (1) to disseminate useful information on these new financial structures, most of which are widely replicable; and (2) to highlight the recent policy changes - many of them temporary unless extended - that have facilitated this innovation. Although the community wind market is currently only a small sub-sector of the U.S. wind market - as defined here, less than 2% of the overall market at the end of 2009 (Wiser and Bolinger 2010) - its small size belies its relevance to the broader market. As such, the information provided in this report has relevance beyond its direct application to the community wind sector. The next two sections of this report briefly summarize how most community wind projects in the U.S. have been financed historically (i.e., prior to this latest wave of innovation) and describe the recent federal policy changes that have enabled a new wave of financial innovation to occur, respectively. Section 4 contains brief case studies of how each of the five projects mentioned above were financed, noting the financial significance of each. Finally, Section 5 concludes by distilling a number of general observations or pertinent lessons learned from the experiences of these five projects.

bolinger, Mark A.

2011-01-18T23:59:59.000Z

45

Open PV Project: Unlocking PV Installation Data (Brochure)  

SciTech Connect (OSTI)

This brochure summarizes the Open PV Project, a collaborative effort of government, industry, and the public to compile a comprehensive database of PV installations in the United States. The brochure outlines the purpose and history of the project as well as the main capabilities and benefits of the online Open PV tool. The brochure also introduces how features of the tool are used, and it describes the sources and characteristics of Open PV's data and data collection processes.

Not Available

2012-04-01T23:59:59.000Z

46

Colorado Highlands Wind Project, Western's RM Environment  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

by adding 11 wind turbine generators (WTGs) on approximately 1,200 acres of State and private land adjoining the eastern border of the existing Project. The electricity...

47

Searchlight Wind Energy Project FEIS Appendix B  

Office of Environmental Management (EM)

Bird and Bat Conservation Strategy Searchlight BBCS i October 2012 Searchlight Wind Energy Project Bird and Bat Conservation Strategy Prepared for: Duke Energy Renewables 550...

48

Monitoring and Mitigation Alternatives for Protection of North Atlantic Right Whales during Offshore Wind Farm Installation  

SciTech Connect (OSTI)

Progress report on defining and determining monitoring and mitigation measures for protecting North Atlantic Right Whales from the effects of pile driving and other activities associated with installation of offshore wind farms.

Carlson, Thomas J.; Halvorsen, Michele B.; Matzner, Shari; Copping, Andrea E.; Stavole, Jessica

2012-09-01T23:59:59.000Z

49

Project Title: Residential wind turbine design Project Description: This project aims to  

E-Print Network [OSTI]

that wind is expected to come. Therefore it may be a good idea to consider a vertical-axis wind turbine of the conventional wind turbines use horizontal- axis configuration (see Fig. 1) and is aligned with the directionPROJECT 1: Project Title: Residential wind turbine design Project Description: This project aims

Muradoglu, Metin

50

NREL Wind to Hydrogen Project: Renewable Hydrogen Production...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Wind to Hydrogen Project: Renewable Hydrogen Production for Energy Storage & Transportation NREL Wind to Hydrogen Project: Renewable Hydrogen Production for Energy Storage &...

51

EA-2004: Seneca Nation of Indians Wind Turbine Project, Cattaraugus...  

Energy Savers [EERE]

EA-2004: Seneca Nation of Indians Wind Turbine Project, Cattaraugus Territory, New York EA-2004: Seneca Nation of Indians Wind Turbine Project, Cattaraugus Territory, New York...

52

EIS-0470: Cape Wind Energy Project, Nantucket Sound, Offshore...  

Broader source: Energy.gov (indexed) [DOE]

0: Cape Wind Energy Project, Nantucket Sound, Offshore of Massachusetts EIS-0470: Cape Wind Energy Project, Nantucket Sound, Offshore of Massachusetts June 25, 2014 EIS-0470: Cape...

53

EA-2004: Seneca Nation of Indians Wind Turbine Project, Cattaraugus...  

Office of Environmental Management (EM)

of Indians Wind Turbine Project, Cattaraugus Territory, Chautauqua County, Irving, New York EA-2004: Seneca Nation of Indians Wind Turbine Project, Cattaraugus Territory,...

54

The Impact of Wind Development on County-Level Income and Employment: A Review of Methods and an Empirical Analysis (Fact Sheet). Wind And Water Power Program (WWPP).  

E-Print Network [OSTI]

development potential from wind power installations has beendevelopment potential of wind power projects, however,is whether new investment in wind power projects stimulates

Brown, Jason P.

2014-01-01T23:59:59.000Z

55

Spain Installed Wind Capacity Website | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home5b9fcbce19 No revisionEnvReviewNonInvasiveExplorationUT-g GrantAtlas (PACA Region -SonelgazSunbelt Wind FarmSouthwestSpain

56

Lessons Learned: Milwaukee’s Wind Turbine Project  

Office of Energy Efficiency and Renewable Energy (EERE)

U.S. Department of Energy Community and Renewable Energy Success Stories webinar series titled Wind Energy in Urban Environments. This presentation describes a mid-size wind turbine installation near downtown Milwaukee, Wisconsin.

57

Optimizing Installation, Operation, and Maintenance at Offshore Wind  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE:Year in3.pdfEnergyDepartment ofOil's Impact on Our National-Projects in the United States |

58

Environmental Assessment Expanded Ponnequin Wind Energy Project Weld County, Colorado  

SciTech Connect (OSTI)

The U.S.Department of Energy (DOE) has considered a proposal from the State of Colorado, Office of Energy Conservation (OEC), for funding construction of the Expanded Ponnequin Wind Project in Weld County, Colorado. OEC plans to enter into a contracting arrangement with Public Service Company of Colorado (PSCO) for the completion of these activities. PSCo, along with its subcontractors and business partners, are jointly developing the Expanded Ponnequin Wind Project. DOE completed an environmental assessment of the original proposed project in August 1997. Since then, the geographic scope and the design of the project changed, necessitating additional review of the project under the National Environmental Policy Act. The project now calls for the possible construction of up to 48 wind turbines on State and private lands. PSCo and its partners have initiated construction of the project on private land in Weld County, Colorado. A substation, access road and some wind turbines have been installed. However, to date, DOE has not provided any funding for these activities. DOE, through its Commercialization Ventures Program, has solicited applications for financial assistance from state energy offices, in a teaming arrangement with private-sector organizations, for projects that will accelerate the commercialization of emerging renewable energy technologies. The Commercialization Ventures Program was established by the Renewable Energy and Energy Efficiency Technology Competitiveness Act of 1989 (P.L. 101-218) as amended by the Energy Policy Act of 1992 (P.L. 102-486). The Program seeks to assist entry into the marketplace of newly emerging renewable energy technologies, or of innovative applications of existing technologies. In short, an emerging renewable energy technology is one which has already proven viable but which has had little or no operational experience. The Program is managed by the Department of Energy, Office of Energy Efficiency and Renewable Energy. The Federal action triggering the preparation of this EA is the need for DOE to decide whether to release the requested funding to support the construction of the Expanded Ponnequin Wind Project. The purpose of this Final Environmental Assessment (EA) is to provide DOE and the public with information on potential environmental impacts associated with the Expanded Ponnequin Wind Energy Project. This EA, and public comments received on it, were used in DOE's deliberations on whether to release funding for the expanded project under the Commercialization Ventures Program.

N /A

1999-03-02T23:59:59.000Z

59

The Wind Forecast Improvement Project (WFIP): A Public/Private...  

Energy Savers [EERE]

The Wind Forecast Improvement Project (WFIP): A PublicPrivate Partnership for Improving Short Term Wind Energy Forecasts and Quantifying the Benefits of Utility Operations The...

60

AWEA Wind Project Operations and Maintenance and Safety Seminar  

Office of Energy Efficiency and Renewable Energy (EERE)

The AWEA Wind Project O&M and Safety Seminar is designed for owners, operators, turbine manufactures, material suppliers, wind technicians, managers, supervisors, engineers, and occupational...

Note: This page contains sample records for the topic "wind installation project" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


61

Wind Power Project Repowering: History, Economics, and Demand...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Wind Power Project Repowering: History, Economics, and Demand Wind Exchange Webinar Eric Lantz January 21, 2015 NRELPR-6A20-63591 2 Presentation Overview 1. Background - Concepts...

62

EA-1970: Fishermen's Energy LLC Offshore Wind Demonstration Project...  

Office of Environmental Management (EM)

to Fishermen's Atlantic City Windfarm, LLC to construct and operate up to six wind turbine generators, for an offshore wind demonstration project, approximately 2.8 nautical...

63

WINDExchange: School Wind Project Locations  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May JunDatastreamsmmcrcalgovInstrumentsrucLasDelivered energy consumption byAbout Printable Version Bookmark and Share AboutSchool Wind

64

WINDExchange: Wind for Schools Project  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May JunDatastreamsmmcrcalgovInstrumentsrucLasDelivered energy consumption byAbout Printable Version Bookmark and Wind Potential Capacity

65

Abstract--This paper introduces the power quality issues of wind power installations in a historic perspective, as the  

E-Print Network [OSTI]

1 Abstract--This paper introduces the power quality issues of wind power installations large offshore wind farms connected at transmission level. In this perspective, the power quality issues and global issues related to the power system control and stability. Power quality characteristics of wind

66

NREL Releases RFP for Distributed Wind Turbine Competitiveness Improvement Projects  

Broader source: Energy.gov [DOE]

In support of DOE's efforts to further develop distributed wind technology, NREL's National Wind Technology Center has released a Request for Proposal for the following Distributed Wind Turbine Competitiveness Improvement Projects on the Federal Business

67

Cambridge Danehy Park Wind Turbine Preliminary Project Assessment  

E-Print Network [OSTI]

Cambridge Danehy Park Wind Turbine Preliminary Project Assessment Overview MIT Wind Energy Projects 4 / 25 2.5 / 25 Rated Wind Speed (m/s) 13 10 14.5 ~15 12 The above turbines were chosen to provide, several recent studies examining birds and wind turbines have observed that most birds usually avoid

68

EIS-0418: PrairieWinds Project, South Dakota  

Broader source: Energy.gov [DOE]

This EIS analyzes DOE's decision to approve the interconnection request from PrairieWinds for their South Dakota PrairieWinds Project, a 151.5-megawatt (MW) nameplate capacity wind powered generation facility, including 101 General Electric 1.5-MW wind turbine generators, electrical collector lines, collector substation, transmission line, communications system, and wind turbine service access roads.

69

Offshore wind project surges ahead in South Carolina | Department...  

Broader source: Energy.gov (indexed) [DOE]

wind project surges ahead in South Carolina Offshore wind project surges ahead in South Carolina October 12, 2010 - 10:00am Addthis Researchers pull buoys from waters off South...

70

Offshore Wind Project Surges Ahead in South Carolina | Department...  

Broader source: Energy.gov (indexed) [DOE]

Wind Project Surges Ahead in South Carolina Offshore Wind Project Surges Ahead in South Carolina October 13, 2010 - 11:21am Addthis Stephen Graff Former Writer & editor for Energy...

71

Wind for Schools Project Curriculum Brief (Fact Sheet)  

SciTech Connect (OSTI)

The U.S. Department of Energy's (DOE's) 20% Wind Energy by 2030 report recommends expanding education to ensure a trained workforce to meet the projected growth of the wind industry and deployment. Although a few U.S. higher education institutions offer wind technology education programs, most are found in community and technical colleges, resulting in a shortage of programs preparing highly skilled graduates for wind industry careers. Further, the United States lags behind Europe (which has more graduate programs in wind technology design and manufacturing) and is in danger of relinquishing the economic benefits of domestic production of wind turbines and related components and services to European countries. DOE's Wind Powering America initiative launched the Wind for Schools project to develop a wind energy knowledge base among future leaders of our communities, states, and nation while raising awareness about wind energy's benefits. This fact sheet provides an overview of wind energy curricula as it relates to the Wind for Schools project.

Not Available

2010-08-01T23:59:59.000Z

72

Lessons Learned: Milwaukees Wind Turbine Project  

Energy Savers [EERE]

City of Milwaukee: Wind Turbine Project Matt Howard, Environmental Sustainability Director Project Best Practices * Transparency and information * Find the most appropriate site -...

73

Lessons Learned from Net Zero Energy Assessments and Renewable Energy Projects at Military Installations  

SciTech Connect (OSTI)

Report highlights the increase in resources, project speed, and scale that is required to achieve the U.S. Department of Defense (DoD) energy efficiency and renewable energy goals and summarizes the net zero energy installation assessment (NZEI) process and the lessons learned from NZEI assessments and large-scale renewable energy projects implementations at DoD installations.

Callahan, M.; Anderson, K.; Booth, S.; Katz, J.; Tetreault, T.

2011-09-01T23:59:59.000Z

74

EA-1581: Sand Hills Wind Project, Wyoming  

Broader source: Energy.gov [DOE]

The Bureau of Land Management, with DOE’s Western Area Power Administration as a cooperating agency, was preparing this EA to evaluate the environmental impacts of a proposal to construct, operate, and maintain the Sand Hills Wind Energy Facility on private and federal lands in Albany County, Wyoming. If the proposed action had been implemented, Western would have interconnected the proposed facility to an existing transmission line. This project has been canceled.

75

Conception Wind Project | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Office of InspectorConcentratingRenewable Solutions LLC Jump to: navigation,Area (Keith, Et Al.,Conception Wind Project

76

Condon Wind Project | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Office of InspectorConcentratingRenewable Solutions LLC Jump to: navigation,AreaHigh School Wind Project Jump

77

Ponnequin Wind Energy Project Weld County, Colorado  

SciTech Connect (OSTI)

The purpose of this environmental assessment (EA) is to provide the U.S. Department of Energy (DOE) and the public with information on potential environmental impacts associated with the development of the Ponnequin Wind Energy Project in Colorado. This EA and public comments received on it will be used in DOE`s deliberations on whether to release funding for the project. This document provides a detailed description of the proposed project and an assessment of potential impacts associated with its construction and operations. Resources and conditions considered in the analysis include streams; wetlands; floodplains; water quality; soils; vegetation; air quality; socioeconomic conditions; energy resources; noise; transportation; cultural resources; visual and land use resources; public health and safety; wildlife; threatened, endangered, and candidate species; and cumulative impacts. The analysis found that the project would have minimal impacts on these resources and conditions, and would not create impacts that exceed the significance criteria defined in this document. 90 refs., 5 figs.

NONE

1997-08-01T23:59:59.000Z

78

In 2001 Massachusetts' first modern wind turbine was installed in at Windmill Point, at the tip of the  

E-Print Network [OSTI]

potential wind power projects with the Hull Municipal Light Plant (HMLP) in the 1980's and 1990's. Work by the Hull Municipal Light Plant (HMLP), a municipally owned utility. Annual average power consumption for more wind power. Wind Power On the Community Scale Community Wind Case Study: Hull Renewable Energy

Massachusetts at Amherst, University of

79

New England Wind Forum: A Wind Powering America Project; Volume 1, Issue 2 -- December 2006  

SciTech Connect (OSTI)

The New England Wind Forum electronic newsletter summarizes the latest news in wind energy development activity, markets, education, and policy in the New England region. It also features an interview with a key figure influencing New England's wind energy development. Volume 1, Issue 2 features an interview with John MacLeod of Hull Municipal Light Plant. Hull 2, a 1.8-MW Vestas turbine installed in the Town of Hull in Massachusetts in 2006, is the largest wind turbine in New England and the first U.S. installation on a capped landfill.

Grace, R. C.; Gifford, J.

2006-12-01T23:59:59.000Z

80

ACOUSTIC STUDY OF THE UD / GAMESA WIND TURBINE PROJECT  

E-Print Network [OSTI]

ACOUSTIC STUDY OF THE UD / GAMESA WIND TURBINE PROJECT LEWES, DELAWARE January 2009 #12;ACOUSTIC STUDY OF THE UNIVERSITY OF DELAWARE / GAMESA WIND TURBINE PROJECT LEWES, DELAWARE Prepared for SUMMARY The University of Delaware (UD), Lewes proposes to locate a Gamesa G90 2.0MW wind turbine

Firestone, Jeremy

Note: This page contains sample records for the topic "wind installation project" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


81

Engineering task plan for the development, fabrication and installation of rotary mode core sample truck grapple hoist box level wind system  

SciTech Connect (OSTI)

This Engineering Task Plan is to design, generate fabrication drawings, fabricate, test, and install the grapple hoist level wind system for Rotary Mode Core Sample Trucks (RMCST) 3 and 4. Deliverables will include generating fabrication drawings, fabrication of one level wind system, updating fabrication drawings as required, and installation of level wind systems on RMCST 3 or 4. The installation of the level wind systems will be done during a preventive maintenance outage.

BOGER, R.M.

1999-05-12T23:59:59.000Z

82

Winds of change?: Projections of near-surface winds under climate change scenarios  

E-Print Network [OSTI]

a downscaling technique to generate probability distributions of wind speeds at sites in northern Europe on renewable energy resources including wind-power. 2. Data [4] Ten coupled Global Climate Models (GCMs) fromWinds of change?: Projections of near-surface winds under climate change scenarios S. C. Pryor,1 J

Pryor, Sara C.

83

EIS-0374: Klondike III/ Bigelow Canyon Wind Integration Project, OR  

Broader source: Energy.gov [DOE]

This EIS analyzes BPA's decision to approve an interconnection requested by PPM Energy, Inc. (PPM) to integrate electrical power from their proposed Klondike III Wind roject (Wind Project) into the Federal Columbia River Transmission System (FCRTS).

84

Selawik Wind Project | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home5b9fcbce19 No revisionEnvReviewNonInvasiveExplorationUT-g Grant ofRichardton AbbeyARaft River, Idaho | OpenSelawik Wind Project

85

Snyder Wind Project | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home5b9fcbce19 No revisionEnvReviewNonInvasiveExplorationUT-g Grant ofRichardtonManagement,SmartestEnergy LtdSnyder Wind Project

86

Springview II Wind Project | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home5b9fcbce19 No revisionEnvReviewNonInvasiveExplorationUT-g GrantAtlas (PACA RegionSpringview II Wind Project Jump to: navigation,

87

Stateline Wind Energy Project | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home5b9fcbce19 No revisionEnvReviewNonInvasiveExplorationUT-g GrantAtlas (PACA RegionSpringviewName Stateline Wind Energy Project

88

Offshore Wind Projects | Department of Energy  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE: AlternativeEnvironment, SafetyWaterMaryAbout Us »Services »Energy About UsWind Projects

89

Gaines Cavern Wind Project | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home5b9fcbce19 No revision has beenFfe2fb55-352f-473b-a2dd-50ae8b27f0a6TheoreticalFuelCell Energy IncFOR EGSGWPSCavern Wind Project

90

Hackberry Wind Project | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home5b9fcbce19 No revision hasInformation Earth's Heat Jump to:Photon Place:Net JumpStrategy | OpenHackberry Wind Project Jump

91

Hoosier Wind Project | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home5b9fcbce19 No revision hasInformation Earth's Heat Jump to:PhotonHolyName Housing Cooperation JumpKongHoosier Wind Project

92

Wind for Schools Project Power System Brief, Wind Powering America Fact Sheet Series  

SciTech Connect (OSTI)

Wind Powering America's (WPA's) Wind for Schools project uses a basic system configuration for each school project. The system incorporates a single SkyStream wind turbine, a 70-ft guyed tower, disconnect boxes at the base of the turbine and at the school, and an interconnection to the school's electrical system. This document provides a detailed description of each system component.

Baring-Gould, I.

2009-05-01T23:59:59.000Z

93

Final Project Report, Bristol Bay Native Corporation Wind and Hydroelectric Feasibility Study  

SciTech Connect (OSTI)

The Bristol Bay Native Corporation (BBNC) grant project focused on conducting nine wind resource studies in eight communities in the Bristol Bay region of southwest Alaska and was administered as a collaborative effort between BBNC, the Alaska Energy Authority, Alaska Village Electric Cooperative, Nushagak Electric Cooperative (NEC), Naknek Electric Association (NEA), and several individual village utilities in the region. BBNC’s technical contact and the project manager for this study was Douglas Vaught, P.E., of V3 Energy, LLC, in Eagle River, Alaska. The Bristol Bay region of Alaska is comprised of 29 communities ranging in size from the hub community of Dillingham with a population of approximately 3,000 people, to a few Native Alaska villages that have a few tens of residents. Communities chosen for inclusion in this project were Dillingham, Naknek, Togiak, New Stuyahok, Kokhanok, Perryville, Clark’s Point, and Koliganek. Selection criteria for conduction of wind resource assessments in these communities included population and commercial activity, utility interest, predicted Class 3 or better wind resource, absence of other sources of renewable energy, and geographical coverage of the region. Beginning with the first meteorological tower installation in October 2003, wind resource studies were completed at all sites with at least one year, and as much as two and a half years, of data. In general, the study results are very promising for wind power development in the region with Class 6 winds measured in Kokhanok; Class 4 winds in New Stuyahok, Clark’s Point, and Koliganek; Class 3 winds in Dillingham, Naknek, and Togiak; and Class 2 winds in Perryville. Measured annual average wind speeds and wind power densities at the 30 meter level varied from a high of 7.87 meters per second and 702 watts per square meter in Kokhanok (Class 6 winds), to a low of 4.60 meters per second and 185 watts per square meter in Perryville (Class 2 winds).

Vaught, Douglas J.

2007-03-31T23:59:59.000Z

94

Annual Report on U.S. Wind Power Installation, Cost, and Performance Trends: 2006  

E-Print Network [OSTI]

Western Wind, and Midwest Wind Energy. Table 4. Merger andHorizon) Noble Power CPV Wind Catamount Western Wind EnergyCoastal Wind Energy LLC Tierra Energy, LLC Renewable

2008-01-01T23:59:59.000Z

95

Webinar: Wind-to-Hydrogen Cost Modeling and Project Findings  

Broader source: Energy.gov [DOE]

Video recording and text version of the webinar titled, Wind-to-Hydrogen Cost Modeling and Project Findings, originally presented on January 17, 2013.

96

Coastal Ohio Wind Project for Reduced Barriers to Deployment of Offshore Wind Energy  

SciTech Connect (OSTI)

The Coastal Ohio Wind Project was created to establish the viability of wind turbines on the coastal and offshore regions of Northern Ohio. The project’s main goal was to improve operational unit strategies used for environmental impact assessment of offshore turbines on lake wildlife by optimizing and fusing data from the multi-instrument surveillance system and providing an engineering analysis of potential design/operational alternatives for offshore wind turbines. The project also developed a general economic model for offshore WTG deployment to quantify potential revenue losses due to wind turbine shutdown related to ice and avian issues. In a previous phase of this project (Award Number: DE-FG36-06GO86096), we developed a surveillance system that was used to collect different parameters such as passage rates, flight paths, flight directions, and flight altitudes of nocturnal migrating species, movements of birds and bats, and bird calls for assessing patterns and peak passage rates during migration. To derive such parameters we used thermal IR imaging cameras, acoustic recorders, and marine radar Furuno (XANK250), which was coupled with a XIR3000B digitizing card from Russell Technologies and open source radR processing software. The integration yielded a development of different computational techniques and methods, which we further developed and optimized as a combined surveillance system. To accomplish this task we implemented marine radar calibration, optimization of processing parameters, and fusion of the multi-sensor data in order to make inferences about the potential avian targets. The main goal of the data fusion from the multi-sensor environment was aimed at reduction of uncertainties while providing acceptable confidence levels with detailed information about the migration patterns. Another component comprised of an assessment of wind resources in a near lake environment and an investigation of the effectiveness of ice coating materials to mitigate adverse effects of ice formation on wind turbine structures. Firstly, a Zephir LiDAR system was acquired and installed at Woodlands School in Huron, Ohio, which is located near Lake Erie. Wind resource data were obtained at ten measurement heights, 200m, 150m, 100m, 80m, 60m, 40m, 38m, 30m, 20m, and 10m. The Woodlands School’s wind turbine anemometer also measured the wind speed at the hub height. These data were collected for approximately one year. The hub anemometer data correlated well with the LiDAR wind speed measurements at the same height. The data also showed that on several days different power levels were recorded by the turbine at the same wind speed as indicated by the hub anemometer. The corresponding LiDAR data showed that this difference can be attributed to variability in the wind over the turbine rotor swept area, which the hub anemometer could not detect. The observation suggests that single point hub wind velocity measurements are inadequate to accurately estimate the power generated by a turbine at all times since the hub wind speed is not a good indicator of the wind speed over the turbine rotor swept area when winds are changing rapidly. To assess the effectiveness of ice coatings to mitigate the impact of ice on turbine structures, a closed-loop icing research tunnel (IRT) was designed and constructed. By controlling the temperature, air speed, water content and liquid droplet size, the tunnel enabled consistent and repeatable ice accretion under a variety of conditions with temperatures between approximately 0°C and -20°C and wind speeds up to 40 miles per hour in the tunnel’s test section. The tunnel’s cooling unit maintained the tunnel temperature within ±0.2°C. The coatings evaluated in the study were Boyd Coatings Research Company’s CRC6040R3, MicroPhase Coatings Inc.’s PhaseBreak TP, ESL and Flex coatings. Similar overall performance was observed in all coatings tested in that water droplets form on the test articles beginning at the stagnation region and spreading in the downstream direction in time. When compari

Gorsevski, Peter; Afjeh, Abdollah; Jamali, Mohsin; Carroll, Michael

2014-04-09T23:59:59.000Z

97

Hull Wind II: A Case Study of the Development of a Second Large Wind Turbine Installation in the Town of Hull, MA  

E-Print Network [OSTI]

; a capped landfill was chosen. Resource assessment took advantage of the Hull Wind I experience, nearby data made the wind power projects economically feasible; and a citizenry willing to participate actively for salt production. Hull's pursuit of modern wind power began more than 20 years ago, with the 1985

Massachusetts at Amherst, University of

98

Offshore Wind Farm Layout Optimization (OWFLO) Project: Preliminary Results  

E-Print Network [OSTI]

Offshore Wind Farm Layout Optimization (OWFLO) Project: Preliminary Results Christopher N. Elkinton the layout of an offshore wind farm presents a significant engineering challenge. Most of the optimization literature to date has focused on land-based wind farms, rather than on offshore farms. Typically, energy

Massachusetts at Amherst, University of

99

Fast Verification of Wind Turbine Power Summary of Project Results  

E-Print Network [OSTI]

Fast Verification of Wind Turbine Power Curves: Summary of Project Results by: Cameron Brown ­ s equation on high frequency wind turbine measurement data sampled at one sample per second or more. The aim's Nordtank wind turbine at the Risø site, the practical application of this new method was tested

100

Annual Report on U.S. Wind Power Installation, Cost, and Performance Trends: 2006  

E-Print Network [OSTI]

Results from Major Wind Integration Studies Completed 2003-a mini- mum) show that wind integration costs are generallyA number of additional wind integration analyses are planned

2008-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "wind installation project" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


101

Annual Report on U.S. Wind Power Installation, Cost, and Performance Trends: 2006  

E-Print Network [OSTI]

of the U.S. DOE’s Wind & Hydropower Technologies Program. Weand Renewable Energy (Wind & Hydropower Technologies ProgramManager Office of Wind and Hydropower Technologies Energy

2008-01-01T23:59:59.000Z

102

Feasibility Study --Project Full Breeze By the Wind Energy Projects in Action (WEPA) Full Breeze Project team  

E-Print Network [OSTI]

Feasibility Study -- Project Full Breeze By the Wind Energy Projects in Action (WEPA) Full Breeze Department of Facilities approached the wind energy sub-community in the spring of 2009 to assist in a study

103

AWEA Wind Resource & Project Energy Assessment Seminar 2014 ...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Resource & Project Energy Assessment Seminar 2014 AWEA Wind Resource & Project Energy Assessment Seminar 2014 December 2, 2014 8:00AM EST to December 3, 2014 5:00PM EST Wyndham...

104

EA-1902: Northern Wind Project, Roberts County, South Dakota  

Broader source: Energy.gov [DOE]

DOE’s Western Area Power Administration is preparing an EA that evaluates the potential environmental impacts of the proposed Northern Wind Project in Summit, Roberts County, South Dakota. Additional information is available on the project webpage, http://www.wapa.gov/ugp/Environment/NorthernWindFarm.htm.

105

Danehy Park Wind Turbine Project Preliminary Assessment Report  

E-Print Network [OSTI]

Danehy Park Wind Turbine Project Preliminary Assessment Report Danehy Park Project Group Wind turbine. Katherine Dykes and Sungho Lee for their leadership, guidance, and feedback. #12;1 Introduction sensors were mounted is marked with a yellow star. #12;2 Turbine Evaluation Set This report evaluates

106

Annual Report on U.S. Wind Power Installation, Cost, and Performance Trends: 2006  

E-Print Network [OSTI]

result, these prices do not represent wind energy generationprices presumably reflect only the value of energy, whereas wind

2008-01-01T23:59:59.000Z

107

M. Bahrami ENSC 283 (S 11) Wind Turbine Project 1 ENSC 283 Project  

E-Print Network [OSTI]

and the vertical-axis wind turbine (VAWT) in Figure 2-b. The designation simply depends on the axis of rotationM. Bahrami ENSC 283 (S 11) Wind Turbine Project 1 ENSC 283 Project Assigned date: Feb. 23, 2011 family), but also important are those which extract energy form the fluid such as turbines. Wind turbines

Bahrami, Majid

108

Final Scientific Report - Wind Powering America State Outreach Project  

SciTech Connect (OSTI)

The goal of the Wind Powering America State Outreach Project was to facilitate the adoption of effective state legislation, policy, finance programs, and siting best practices to accelerate public acceptance and development of wind energy. This was accomplished by Clean Energy States Alliance (CESA) through provision of informational tools including reports and webinars as well as the provision of technical assistance to state leaders on wind siting, policy, and finance best practices, identification of strategic federal-state partnership activities for both onshore and offshore wind, and participation in regional wind development collaboratives. The Final Scientific Report - Wind Powering America State Outreach Project provides a summary of the objectives, activities, and outcomes of this project as accomplished by CESA over the period 12/1/2009 - 11/30/2011.

Sinclair, Mark; Margolis, Anne

2012-02-01T23:59:59.000Z

109

Feasibility Study for a Hopi Utility-Scale Wind Project  

SciTech Connect (OSTI)

The goal of this project was to investigate the feasibility for the generation of energy from wind and to parallel this work with the development of a tribal utility organization capable of undertaking potential joint ventures in utility businesses and projects on the Hopi reservation. The goal of this project was to investigate the feasibility for the generation of energy from wind and to parallel this work with the development of a tribal utility organization capable of undertaking potential joint ventures in utility businesses and projects on the Hopi reservation. Wind resource assessments were conducted at two study sites on Hopi fee simple lands located south of the city of Winslow. Reports from the study were recently completed and have not been compared to any existing historical wind data nor have they been processed under any wind assessment models to determine the output performance and the project economics of turbines at the wind study sites. Ongoing analysis of the wind data and project modeling will determine the feasibility of a tribal utility-scale wind energy generation.

Kendrick Lomayestewa

2011-05-31T23:59:59.000Z

110

EA-1611: Colorado Highlands Wind Project, Logan County, Colorado  

Broader source: Energy.gov [DOE]

DOE’s Western Area Power Administration prepared an EA in 2009 to assess the potential environmental impacts of interconnecting the proposed Colorado Highlands Wind Project to Western’s transmission system. The EA analyzed a proposal for 60 wind turbine generators with a total output nameplate capacity of 90 megawatts (MW). Western is preparing a supplemental EA to assess the potential environmental impacts of the proposed expansion of the project by 11 wind turbine generators that would add approximately 20 MW. Additional information is available on the Western Area Power Administration webpage for this project.

111

Annual Report on U.S. Wind Power Installation, Cost, and Performance Trends: 2006  

E-Print Network [OSTI]

AWEA’s Wind Energy Weekly, DOE/EPRI’s Turbine Verificationthe latest turbine models. The U.S. DOE Wind Energy Program

2008-01-01T23:59:59.000Z

112

Searchlight Wind Energy Project FEIS Appendix F  

Office of Environmental Management (EM)

1996. The first empirical study specifically addressing the potential impact of wind turbines on property values was based on property values in Denmark in 1996. In this study,...

113

OFFSHORE WIND FARM LAYOUT OPTIMIZATION (OWFLO) PROJECT: AN INTRODUCTION  

E-Print Network [OSTI]

OFFSHORE WIND FARM LAYOUT OPTIMIZATION (OWFLO) PROJECT: AN INTRODUCTION C. N. Elkinton* , J. F Governors Dr., Amherst, MA 01003, USA * celkinto@ecs.umass.edu ABSTRACT Optimizing the layout of an offshore focused on land-based wind farms, rather than on offshore farms. The conventional method used to lay out

Massachusetts at Amherst, University of

114

Obtaining data for wind farm development and management: the EO-WINDFARM project  

E-Print Network [OSTI]

, there are huge wind resources and European companies are world leaders at converting it into electric power. Wind). That sector has a mean growth rate of 30% for the last two years. The total installed wind power capacity objective for 2010 in Europe amounts to 75 GW (EWEA, 2004). The total power currently installed (mid 2004

115

EA-1610: Windy Hollow Wind Project, Laramie County, Wyoming  

Broader source: Energy.gov [DOE]

This EA will evaluate the environmental impacts of a proponent request to interconnect their proposed Windy Hollow Wind Project in Laramie County, Wyoming, to DOE’s Western Area Power Administration’s transmission system.

116

Optimizing Installation, Operation, and Maintenance at Offshore...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

wind industries, and significant first-hand knowledge of offshore installation, operation and maintenance (IO&M) activities. The aim of the GL GH study was to enable project...

117

Moraine Wind Power Project | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home5b9fcbce19 No revision hasInformation Earth's HeatMexico: EnergyMithun Jump to:Moe WindMontMoraine II Wind Farm Jump to:Wind

118

The Future of Offshore Wind Energy  

E-Print Network [OSTI]

1 The Future of Offshore Wind Energy #12;2 #12;3 Offshore Wind Works · Offshore wind parks: 28 in 10 countries · Operational since 1991 · Current installed capacity: 1,250 MW · Offshore wind parks in the waters around Europe #12;4 US Offshore Wind Projects Proposed Atlantic Ocean Gulf of Mexico Cape Wind

Firestone, Jeremy

119

Secretary Chu Unveils 41 New Offshore Wind Power R&D Projects...  

Broader source: Energy.gov (indexed) [DOE]

Unveils 41 New Offshore Wind Power R&D Projects Secretary Chu Unveils 41 New Offshore Wind Power R&D Projects September 8, 2011 - 11:13am Addthis Chris Hart Offshore Wind Team...

120

Solano Wind Project Wind Farm | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home5b9fcbce19 No revisionEnvReviewNonInvasiveExplorationUT-g Grant ofRichardtonManagement,SmartestEnergynotSola60County WindI

Note: This page contains sample records for the topic "wind installation project" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


121

Annual Report on U.S. Wind Power Installation, Cost, and Performance Trends: 2007 (Revised)  

SciTech Connect (OSTI)

This report focuses on key trends in the U.S. wind power market, with an emphasis on the latest year, and presents a wealth of data, some of which has not historically been mined by wind power analysts.

Wiser, R.; Bolinger, M.

2008-05-01T23:59:59.000Z

122

EIS-0441: Mohave County Wind Farm Project, Mohave County, Arizona  

Broader source: Energy.gov [DOE]

This EIS, prepared by the Bureau of Land Management with DOE’s Western Area Power Administration as a cooperating agency, evaluated the environmental impacts of a proposed wind energy project on public lands in Mohave County, Arizona. Power generated by this project would tie to the electrical power grid through an interconnection to one of Western’s transmission lines.

123

Cedar Rapids Wind Project | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Office of InspectorConcentrating SolarElectricEnergyCTBarreis aCallahanWindSyracuse, NYCedar Creek Wind FarmPoint

124

Dakota Valley Wind Project | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Office of InspectorConcentratingRenewable Solutions LLC JumpCrow Lake Wind107 CX at North BrawleyDNADTE JumpWind

125

Omaha Wind Project | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home5b9fcbce19 No revision hasInformation Earth'sOklahoma/Geothermal < Oklahoma Jump to: navigation,Olene GapWindOmaha Wind

126

Highland Wind Project | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home5b9fcbce19 No revision hasInformation Earth's Heat Jump to:Photon Place:NetHealthHigganum, Connecticut:WindHighland Wind

127

EA-1992: Funding for Principle Power, Inc., for the WindFloat Pacific Offshore Wind Demonstration Project, offshore of Coos Bay, Oregon  

Broader source: Energy.gov [DOE]

Funding for Principle Power, Inc., for the WindFloat Pacific Offshore Wind Demonstration Project, offshore of Coos Bay, Oregon

128

Environmental assessment, expanded Ponnequin wind energy project, Weld County, Colorado  

SciTech Connect (OSTI)

The US Department of Energy (DOE) has considered a proposal from the State of Colorado, Office of Energy Conservation (OEC), for funding construction of the Expanded Ponnequin Wind Project in Weld County, Colorado. OEC plans to enter into a contracting arrangement with Public Service Company of Colorado (PSCo) for the completion of these activities. PSCo, along with its subcontractors and business partners, are jointly developing the Expanded Ponnequin Wind Project. The purpose of this Final Environmental Assessment (EA) is to provide DOE and the public with information on potential environmental impacts associated with the Expanded Ponnequin Wind Energy Project. This EA, and public comments received on it, were used in DOE`s deliberations on whether to release funding for the expanded project under the Commercialization Ventures Program.

NONE

1999-02-01T23:59:59.000Z

129

Wind for Schools (Poster)  

SciTech Connect (OSTI)

As the United States dramatically expands wind energy deployment, the industry is challenged with developing a skilled workforce and addressing public resistance. Wind Powering America's Wind for Schools project addresses these issues by developing Wind Application Centers (WACs) at universities; WAC students assist in implementing school wind turbines and participate in wind courses, by installing small wind turbines at community "host" schools, by implementing teacher training with interactive curricula at each host school. This poster provides an overview of the first two years of the Wind for Schools project, primarily supporting activities in Colorado, Kansas, Nebraska, South Dakota, Montana, and Idaho.

Baring-Gould, I.

2010-05-01T23:59:59.000Z

130

Session: Monitoring wind turbine project sites for avian impacts  

SciTech Connect (OSTI)

This third session at the Wind Energy and Birds/Bats workshop consisted of one presentation followed by a discussion/question and answer period. The focus of the session was on existing wind projects that are monitored for their impacts on birds and bats. The presentation given was titled ''Bird and Bat Fatality Monitoring Methods'' by Wally Erickson, West, Inc. Sections included protocol development and review, methodology, adjusting for scavenging rates, and adjusting for observer detection bias.

Erickson, Wally

2004-09-01T23:59:59.000Z

131

Century Wind Project Expansion | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Office of InspectorConcentrating SolarElectricEnergyCTBarreis aCallahanWindSyracuse,CER.png El CER es

132

Chamberlain Wind Project | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Office of InspectorConcentrating SolarElectricEnergyCTBarreis aCallahanWindSyracuse,CER.png El CERChai Energy

133

A Review of Wind Project Financing Structures in the USA  

SciTech Connect (OSTI)

The rapid pace of wind power development in the U.S. over the last decade has outstripped the ability of most project developers to provide adequate equity capital and make efficient use of project-related tax benefits. In response, the sector has created novel project financing structures that feature varying combinations of equity capital from project developers and third-party tax-oriented investors, and in some cases commercial debt. While their origins stem from variations in the financial capacity and business objectives of wind project developers, as well as the risk tolerances and objectives of equity and debt providers, each structure is, at its core, designed to manage project risk and allocate federal tax incentives to those entities that can use them most efficiently. This article surveys the six principal financing structures through which most new utility-scale wind projects (excluding utility-owned projects) in the U.S. have been financed from 1999 to the present. These structures include simple balance-sheet finance, several varieties of all-equity special allocation partnership 'flip' structures, and two leveraged structures. In addition to describing each structure's mechanics, the article also discusses its rationale for use, the types of investors that find it appealing and why, and its relative frequency of use in the market. The article concludes with a generalized summary of how a developer might choose one structure over another.

Bolinger, Mark A; Harper, John; Karcher, Matthew

2008-09-24T23:59:59.000Z

134

Solar Schools Assessment and Implementation Project: Financing Options for Solar Installations on K-12 Schools  

SciTech Connect (OSTI)

This report focuses on financial options developed specifically for renewable energy and energy efficiency projects in three California public school districts. Solar energy systems installed on public schools have a number of benefits that include utility bill savings, reductions in greenhouse gas emissions (GHGs) and other toxic air contaminants, job creation, demonstrating environmental leadership, and creating learning opportunities for students. In the 2011 economic environment, the ability to generate general-fund savings as a result of reducing utility bills has become a primary motivator for school districts trying to cut costs. To achieve meaningful savings, the size of the photovoltaic (PV) systems installed (both individually on any one school and collectively across a district) becomes much more important; larger systems are required to have a material impact on savings. Larger PV systems require a significant financial commitment and financing therefore becomes a critical element in the transaction. In simple terms, school districts can use two primary types of ownership models to obtain solar installations and cost savings across a school district. The PV installations can be financed and owned directly by the districts themselves. Alternatively, there are financing structures whereby another entity, such as a solar developer or its investors, actually own and operate the PV systems on behalf of the school district. This is commonly referred to as the 'third-party ownership model.' Both methods have advantages and disadvantages that should be weighed carefully.

Coughlin, J.; Kandt, A.

2011-10-01T23:59:59.000Z

135

Victorville Wind Project | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home5b9fcbce19 NoPublic Utilities Address: 160 East 300 South Place: Salt Lake City, UtahResources/Full VersionVertigroViaWind

136

Casselman Wind Project | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Office of InspectorConcentrating SolarElectricEnergyCTBarreis aCallahanWind Farm Jump to:Case WesternCasper

137

Century Wind Project | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Office of InspectorConcentrating SolarElectricEnergyCTBarreis aCallahanWindSyracuse,CER.png El CER esMidAmerican Energy

138

Miller Schools Wind Project | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home5b9fcbce19 No revision hasInformation Earth's HeatMexico: Energy Resources JumpMicrelBirds Jump to:Wind Power.979942°

139

Montezuma Wind Project | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home5b9fcbce19 No revision hasInformation Earth's HeatMexico: EnergyMithun Jump to:Moe WindMont VistaMontezuma Hot

140

Sawtooth Wind Project | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home5b9fcbce19 No revisionEnvReviewNonInvasiveExplorationUT-g Grant ofRichardton AbbeyA Jump to: navigation,Savoonga Wind

Note: This page contains sample records for the topic "wind installation project" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


141

Sherrod Elementary Wind Project | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home5b9fcbce19 No revisionEnvReviewNonInvasiveExplorationUT-g Grant ofRichardton AbbeyARaftPadoma Wind Power DeveloperSherrod

142

Shiloh Wind Power Project | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home5b9fcbce19 No revisionEnvReviewNonInvasiveExplorationUT-g Grant ofRichardton AbbeyARaftPadoma Wind PowerHills

143

St. Olaf Wind Project | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home5b9fcbce19 No revisionEnvReviewNonInvasiveExplorationUT-g GrantAtlas (PACA RegionSpringview IISt. Mary's Wind Farm FacilityOlaf

144

Stateline Wind Project | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home5b9fcbce19 No revisionEnvReviewNonInvasiveExplorationUT-g GrantAtlas (PACA RegionSpringviewName Stateline Wind Energy

145

Wales Wind Energy Project | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home5b9fcbce19 NoPublic Utilities Address: 160 East 300 South Place: Salt Lake City,Division of OilGuyane8031909°,Wales Wind Energy

146

Dunlap Wind Energy Project | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home5b9fcbce19 No revision has beenFfe2fb55-352f-473b-a2dd-50ae8b27f0a6 No revision has TypeGeothermalII Wind

147

Gary Wind Energy Project | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home5b9fcbce19 No revision has beenFfe2fb55-352f-473b-a2dd-50ae8b27f0a6TheoreticalFuelCell Energy IncFORTechnologyGammaGary Wind

148

Oak Glen Wind Project | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home5b9fcbce19 No revision hasInformation Earth's HeatMexico:CommunityNorthwest BasinOahu, Hawaii: Energy ResourcesOakWind

149

Hardscrabble Wind Power Project | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home5b9fcbce19 No revision hasInformation Earth's Heat Jump to:Photon Place:Net JumpStrategy |HammerfestHardscrabble Wind Power

150

Highmore Wind Energy Project | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home5b9fcbce19 No revision hasInformation Earth's Heat Jump to:Photon Place:NetHealthHigganum, Connecticut:WindHighlandis

151

Howard Wind Energy Project | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home5b9fcbce19 No revision hasInformation Earth's Heat Jump to:PhotonHolyName HousingIII Wind FarmWould You

152

Hyannis Wind Project | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home5b9fcbce19 No revision hasInformation Earth's Heat Jump to:PhotonHolyName HousingIII Wind FarmWouldOpenSchoolsHyRadixHyannis

153

KDOT Osborne Wind Project | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home5b9fcbce19 No revision hasInformation Earth's Heat JumpInc Place: EdenOverview JumpJessi3bl'sJustin,KDOT Osborne Wind

154

First U.S. Grid-Connected Offshore Wind Turbine Installed Off...  

Office of Environmental Management (EM)

deepwater offshore floating wind turbine near Bangor. When the turbine was turned on and electricity began flowing through an undersea cable to Central Maine Power on June 13, the...

155

EIS-0427: Grapevine Canyon Wind Project, Coconino County, Arizona  

Broader source: Energy.gov [DOE]

This EIS evaluates the environmental impacts of a proposed wind energy generation project in Coconino County, Arizona, on privately owned ranch lands and trust lands administered by the Arizona State Land Department. The proposed project includes a new transmission tie-line that would cross lands administered by Coconino National Forest and interconnect with DOE’s Western Area Power Administration’s existing Glen Canyon-Pinnacle Peak transmission lines.

156

Wind Power Project Repowering: History, Economics, and Demand (Presentation)  

SciTech Connect (OSTI)

This presentation summarizes a related NREL technical report and seeks to capture the current status of wind power project repowering in the U.S. and globally, analyze the economic and financial decision drivers that surround repowering, and to quantify the level and timing of demand for new turbine equipment to supply the repowering market.

Lantz, E.

2015-01-01T23:59:59.000Z

157

EA-1909: South Table Wind Farm Project, Kimball County, Nebraska  

Broader source: Energy.gov [DOE]

DOE’s Western Area Power Administration is preparing this EA to evaluate the environmental impacts of interconnecting the proposed South Table Wind Project, which would generate approximately 60 megawatts from about 40 turbines, to Western’s existing Archer-Sidney 115-kV Transmission Line in Kimball County, Nebraska.

158

Large-Scale Wind Training Program  

SciTech Connect (OSTI)

Project objective is to develop a credit-bearing wind technician program and a non-credit safety training program, train faculty, and purchase/install large wind training equipment.

Porter, Richard L. [Hudson Valley Community College

2013-07-01T23:59:59.000Z

159

Wind Energy Research Project under the 6th Framework Programme Peter Hjuler Jensen, Ris National Laboratory,  

E-Print Network [OSTI]

UpWind Wind Energy Research Project under the 6th Framework Programme Peter Hjuler Jensen, Risø National Laboratory, Denmark 1. Abstract. The paper presents the until now largest EU wind energy research of the project and dissemination of results. 2. Objectives UpWind develops and verify substantially improved

160

Systems Performance Analyses of Alaska Wind-Diesel Projects; St. Paul, Alaska (Fact Sheet)  

SciTech Connect (OSTI)

This fact sheet summarizes a systems performance analysis of the wind-diesel project in St. Paul, Alaska. Data provided for this project include load data, average wind turbine output, average diesel plant output, dump (controlling) load, average net capacity factor, average net wind penetration, estimated fuel savings, and wind system availability.

Baring-Gould, I.

2009-04-01T23:59:59.000Z

Note: This page contains sample records for the topic "wind installation project" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


161

The Impact of Wind Power Projects on Residential Property Values in the United States: A Multi-Site Hedonic Analysis  

E-Print Network [OSTI]

such concern is the potential impact of wind energy projectshas investigated the potential impact of wind projects onassessment of the potential impact of wind facilities on the

Hoen, Ben

2010-01-01T23:59:59.000Z

162

29-11-061ETSAP Wind power in the EC RES2020 project  

E-Print Network [OSTI]

29-11-061ETSAP Wind power in the EC RES2020 project Wind power in technology-rich energy system of Stuttgart, Germany #12;29-11-062ETSAP Wind power in technology-rich energy system optimisation models 1 ­ Implementation of wind power in TIMES 3. Wind Power Integration in Liberalised Electricity Markets ­ EU 5th

163

WINDExchange: Wind for Schools Pilot Project Results  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmosphericNuclear SecurityTensile Strain Switched Ferromagnetism inS-4500IIVasudhaSurface.Laboratory in Golden,WIMapPilot Project

164

Fire Island Wind Project | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home5b9fcbce19 No revision has beenFfe2fb55-352f-473b-a2dd-50ae8b27f0a6Theoretical vs Actual Data LessonType.Countries |Project Jump

165

NREL: Wind Research - Field Verification Project  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmosphericNuclear Security Administration the Contributions andData andFleet Test andField Verification Project The mission of the

166

Waste-to-Energy Projects at ArmyWaste to Energy Projects at Army Installations  

E-Print Network [OSTI]

Now!)p ( gy ) 2009 RDECOM WTE Technology Assessment Selected Army WTE Projects ERDC F l C ll D ERDC natural gas and steam by Oct 2016 [EISA 2007] Electricity use for federal government from renewable, NDAA 2007] Total consumption from renewable sources · At least 50% of required annual renewable energy

167

Low Wind Speed Turbine Development Project Report: November 4, 2002 - December 31, 2006  

SciTech Connect (OSTI)

This report summarizes work conducted by Clipper Windpower under the DOE Low Wind Speed Turbine project. The objective of this project was to produce a wind turbine that can lower the cost of energy.

Mikhail, A.

2009-01-01T23:59:59.000Z

168

Wind-to-Hydrogen Cost Modeling and Project Findings (Text Version...  

Broader source: Energy.gov (indexed) [DOE]

Wind-to-Hydrogen Cost Modeling and Project Findings (Text Version) Wind-to-Hydrogen Cost Modeling and Project Findings (Text Version) Below is the text version of the webinar...

169

Annual Report on U.S. Wind Power Installation, Cost, and Performance Trends: 2006  

SciTech Connect (OSTI)

This report--the first in what is envisioned to be an ongoing annual series--attempts to fill this need by providing a detailed overview of developments and trends in the U.S. wind power market, with a particular focus on 2006.

Wiser, R.; Bolinger, M.

2007-05-01T23:59:59.000Z

170

EA-1966: Sunflower Wind Project, Hebron, North Dakota  

Broader source: Energy.gov [DOE]

Western Area Power Administration (Western) prepared an EA to evaluate potential environmental impacts of interconnecting a proposed 80 MW generating facility south of Hebron in Morton and Stark Counties, North Dakota. The proposed wind generating facility of 30-50 wind turbines encompassed approximately 9,000 acres. Ancillary facilities included an underground collection line system, a project substation, one mile of new transmission line, a new switchyard facility on the existing Dickinson-Mandan 230 kV line owned and operated by Western, one permanent meteorological tower, new access roads, and an operations and maintenance building.

171

Agua Caliente Wind/Solar Project at Whitewater Ranch  

SciTech Connect (OSTI)

Agua Caliente Band of Cahuilla Indians (ACBCI) was awarded a grant by the Department of Energy (DOE) to study the feasibility of a wind and/or solar renewable energy project at the Whitewater Ranch (WWR) property of ACBCI. Red Mountain Energy Partners (RMEP) was engaged to conduct the study. The ACBCI tribal lands in the Coachella Valley have very rich renewable energy resources. The tribe has undertaken several studies to more fully understand the options available to them if they were to move forward with one or more renewable energy projects. With respect to the resources, the WWR property clearly has excellent wind and solar resources. The DOE National Renewable Energy Laboratory (NREL) has continued to upgrade and refine their library of resource maps. The newer, more precise maps quantify the resources as among the best in the world. The wind and solar technology available for deployment is also being improved. Both are reducing their costs to the point of being at or below the costs of fossil fuels. Technologies for energy storage and microgrids are also improving quickly and present additional ways to increase the wind and/or solar energy retained for later use with the network management flexibility to provide power to the appropriate locations when needed. As a result, renewable resources continue to gain more market share. The transitioning to renewables as the major resources for power will take some time as the conversion is complex and can have negative impacts if not managed well. While the economics for wind and solar systems continue to improve, the robustness of the WWR site was validated by the repeated queries of developers to place wind and/or solar there. The robust resources and improving technologies portends toward WWR land as a renewable energy site. The business case, however, is not so clear, especially when the potential investment portfolio for ACBCI has several very beneficial and profitable alternatives.

Hooks, Todd; Stewart, Royce

2014-12-16T23:59:59.000Z

172

Wind-To-Hydrogen Project: Electrolyzer Capital Cost Study  

SciTech Connect (OSTI)

This study is being performed as part of the U.S. Department of Energy and Xcel Energy's Wind-to-Hydrogen Project (Wind2H2) at the National Renewable Energy Laboratory. The general aim of the project is to identify areas for improving the production of hydrogen from renewable energy sources. These areas include both technical development and cost analysis of systems that convert renewable energy to hydrogen via water electrolysis. Increased efficiency and reduced cost will bring about greater market penetration for hydrogen production and application. There are different issues for isolated versus grid-connected systems, however, and these issues must be considered. The manner in which hydrogen production is integrated in the larger energy system will determine its cost feasibility and energy efficiency.

Saur, G.

2008-12-01T23:59:59.000Z

173

Concordia High School Wind Project | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Office of InspectorConcentratingRenewable Solutions LLC Jump to: navigation,AreaHigh School Wind Project Jump to:

174

Community Wind: Once Again Pushing the Envelope of Project Finance  

E-Print Network [OSTI]

Ormand (Oregon Trail Wind Farm, LLC). 2010. PersonalOrmand Hilderbrand (Oregon Trail Wind Farm, LLC); Joaquin17 4.5 PáTu Wind Farm,

bolinger, Mark A.

2011-01-01T23:59:59.000Z

175

Reliability analysis for wind turbines with incomplete failure data collected from after the date of initial installation  

E-Print Network [OSTI]

Reliability analysis for wind turbines with incomplete failure data collected from after the date model Maximum likelihood Least squares Wind turbines a b s t r a c t Reliability has an impact on wind analysis. In wind energy industry, wind farm operators have greater interest in recording wind turbine

McCalley, James D.

176

| | | | |Monday, July 16, 2012 Three Northeast Ohio offshore wind power projects  

E-Print Network [OSTI]

| | | | |Monday, July 16, 2012 Home Three Northeast Ohio offshore wind power projects secure federal money By SCOTT SUTTELL 1:52 pm, September 9, 2011 Three Northeast Ohio offshore wind power." Three Northeast Ohio offshore wind power projects secure federal money... http

Rollins, Andrew M.

177

Final Map Draft Comparison Report WIND ENERGY RESOURCE MODELING AND MEASUREMENT PROJECT  

E-Print Network [OSTI]

II Final Map Draft Comparison Report #12;WIND ENERGY RESOURCE MODELING AND MEASUREMENT PROJECT Tel: 978-749-9591 Fax: 978-749-9713 mbrower@awstruewind.com August 10, 2004 #12;2 WIND ENERGY RESOURCE issues. 1 Background In Task 2 of the project, five promising areas of the state for wind energy

178

GEOL 467/667/MAST 667 -GEOLOGICAL ASPECTS OF OFFSHORE WIND PROJECTS **TENTATIVE** COURSE SYLLABUS  

E-Print Network [OSTI]

GEOL 467/667/MAST 667 - GEOLOGICAL ASPECTS OF OFFSHORE WIND PROJECTS **TENTATIVE** COURSE SYLLABUS Description: Investigation of the geological and geotechnical aspects of offshore wind projects. Emphasis will be designed around geological and geotechnical topics that are relevant to the development of offshore wind

Firestone, Jeremy

179

PREDICTION OF WAVES, WAKES AND OFFSHORE WIND THE RESULTS OF THE POW'WOW PROJECT  

E-Print Network [OSTI]

PREDICTION OF WAVES, WAKES AND OFFSHORE WIND ­ THE RESULTS OF THE POW'WOW PROJECT Gregor Giebel: The POWWOW project (Prediction of Waves, Wakes and Offshore Wind, a EU Coordination Action) aimed to develop. Keywords: Wind resource, wave resource, offshore, short-term prediction, wakes 1 Introduction The nearly

Paris-Sud XI, Université de

180

EIS-0437: Interconnection of the Buffalo Ridge III Wind Project, Brookings and Deuel Counties, South Dakota  

Broader source: Energy.gov [DOE]

This EIS evaluates the environmental impacts of a proposal to interconnect the Heartland Wind, LLC, proposed Buffalo Ridge III Wind Project in Brookings and Deuel Counties, South Dakota, to DOE’s Western Area Power Administration transmission system.

Note: This page contains sample records for the topic "wind installation project" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


181

Mill Run Wind Power Project | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home5b9fcbce19 No revision hasInformation Earth's HeatMexico: Energy Resources JumpMicrelBirds Jump to:Wind Power Project Jump

182

Condon Wind Project phase II | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Office of InspectorConcentratingRenewable Solutions LLC Jump to: navigation,AreaHigh School Wind Project Jump to:phase

183

What Is a Small Community Wind Project? | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home5b9fcbce19 NoPublic Utilities Address: 160 East 300 South Place: SaltTroyer & AssociatesWestIL NumberPower Wind FarmProject?

184

Florence High School Wind Project | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home5b9fcbce19 No revision has beenFfe2fb55-352f-473b-a2dd-50ae8b27f0a6Theoretical vs Actual DataNext 25High School Wind Project

185

Hayes Center Public Schools Wind Project | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home5b9fcbce19 No revision hasInformation Earth's Heat Jump to:Photon Place:NetHealth Division | OpenReleaseWindProjectHay

186

Potential Presence of Endangered Wildlife Species at the University of Delaware Wind Power Project Site  

E-Print Network [OSTI]

Potential Presence of Endangered Wildlife Species at the University of Delaware Wind Power Project wind power project site, we conducted an analysis of the suitability of habitat within the project of potential risk to the species. #12;Corn Snake ­ Fairly common in Delaware, but is not likely to be present

Firestone, Jeremy

187

Record of Decision for the Electrical Interconnection of the Windy Point Wind Energy Project.  

SciTech Connect (OSTI)

The Bonneville Power Administration (BPA) has decided to offer contract terms for interconnection of 250 megawatts (MW) of power to be generated by the proposed Windy Point Wind Energy Project (Wind Project) into the Federal Columbia River Transmission System (FCRTS). Windy Point Partners, LLC (WPP) propose to construct and operate the proposed Wind Project and has requested interconnection to the FCRTS. The Wind Project will be interconnected at BPA's Rock Creek Substation, which is under construction in Klickitat County, Washington. The Rock Creek Substation will provide transmission access for the Wind Project to BPA's Wautoma-John Day No.1 500-kilovolt (kV) transmission line. BPA's decision to offer terms to interconnect the Wind Project is consistent with BPA's Business Plan Final Environmental Impact Statement (BP EIS) (DOE/EIS-0183, June 1995), and the Business Plan Record of Decision (BP ROD, August 15, 1995). This decision thus is tiered to the BP ROD.

United States. Bonneville Power Administration.

2006-11-01T23:59:59.000Z

188

Wind Resource Assessment of Gujarat (India)  

SciTech Connect (OSTI)

India is one of the largest wind energy markets in the world. In 1986 Gujarat was the first Indian state to install a wind power project. In February 2013, the installed wind capacity in Gujarat was 3,093 MW. Due to the uncertainty around existing wind energy assessments in India, this analysis uses the Weather Research and Forecasting (WRF) model to simulate the wind at current hub heights for one year to provide more precise estimates of wind resources in Gujarat. The WRF model allows for accurate simulations of winds near the surface and at heights important for wind energy purposes. While previous resource assessments published wind power density, we focus on average wind speeds, which can be converted to wind power densities by the user with methods of their choice. The wind resource estimates in this study show regions with average annual wind speeds of more than 8 m/s.

Draxl, C.; Purkayastha, A.; Parker, Z.

2014-07-01T23:59:59.000Z

189

EA-1812: Haxtun Wind Energy Project, Logan and Phillips County, Colorado  

Broader source: Energy.gov [DOE]

This EA evaluates the environmental impacts of a proposal to authorize the expenditure of Federal funding through the Community Renewable Energy Deployment Program to Phillips County for design, permitting, and construction of an approximately 30-megawatt wind energy project, known as Haxtun Wind Project, within Phillips and Logan counties in northeastern Colorado. The proposed project consists of 18 wind turbines that would interconnect to the Highline Electric Cooperative equipment inside Western Area Power Administration's Haxtun substation just south of the Town of Haxtun.

190

EA-1801: Granite Reliable Power Wind Park Project in Coos County...  

Broader source: Energy.gov (indexed) [DOE]

June 25, 2010 EA-1801: Final Environmental Impact Granite Reliable Power Wind Project, Coos County, New Hampshire July 23, 2010 EA-1801: Finding of No Significant Impact Granite...

191

RECIPIENT:City of Ann Arbor PROJECT TITLE: Ann Arbor Wind Generator  

Broader source: Energy.gov (indexed) [DOE]

Ann Arbor PROJECT TITLE: Ann Arbor Wind Generator " ) STATE: MI Funding Opportunity Announcement Number ProcurementInstrument Number NEPA Control Number CID Number DE-EE0000447...

192

NREL Wind to Hydrogen Project: Renewable Hydrogen Production for Energy Storage & Transportation (Presentation)  

SciTech Connect (OSTI)

Presentation about NREL's Wind to Hydrogen Project and producing renewable hydrogen for both energy storage and transporation, including the challenges, sustainable pathways, and analysis results.

Ramsden, T.; Harrison, K.; Steward, D.

2009-11-16T23:59:59.000Z

193

Department of Mechanical and Nuclear Engineering Spring 2011 Wind Tunnel Automation Project  

E-Print Network [OSTI]

PENNSTATE Department of Mechanical and Nuclear Engineering Spring 2011 Wind Tunnel Automation Project Phase II - Automated Bike Turret Mount Overview SYNERGE LLC is a consulting company working

Demirel, Melik C.

194

Community Wind: Once Again Pushing the Envelope of Project Finance  

E-Print Network [OSTI]

lease financing has been popular in the commercial solarlease financing in the wind sector due to wind power’s greater inter-year variability relative to solar (

bolinger, Mark A.

2011-01-01T23:59:59.000Z

195

COE projection for the modular WARP{trademark} wind power system for wind farms and electric utility power transmission  

SciTech Connect (OSTI)

Wind power has emerged as an attractive alternative source of electricity for utilities. Turbine operating experience from wind farms has provided corroborating data of wind power potential for electric utility application. Now, a patented modular wind power technology, the Toroidal Accelerator Rotor Platform (TARP{trademark}) Windframe{trademark}, forms the basis for next generation megawatt scale wind farm and/or distributed wind power plants. When arranged in tall vertically clustered TARP{trademark} module stacks, such power plant units are designated Wind Amplified Rotor Platform (WARP{trademark}) Systems. While heavily building on proven technology, these systems are projected to surpass current technology windmills in terms of performance, user-friendly operation and ease of maintenance. In its unique generation and transmission configuration, the WARP{trademark}-GT System combines both electricity generation through wind energy conversion and electric power transmission. Furthermore, environmental benefits include dramatically less land requirement, architectural appearance, lower noise and EMI/TV interference, and virtual elimination of bird mortality potential. Cost-of-energy (COE) is projected to be from under $0.02/kWh to less than $0.05/kWh in good to moderate wind resource sites.

Weisbrich, A.L. [ENECO, West Simsbury, CT (United States); Ostrow, S.L.; Padalino, J. [Raytheon Engineers and Constructors, New York, NY (United States)

1995-09-01T23:59:59.000Z

196

Evaluation of Advanced Wind Power Forecasting Models Results of the Anemos Project  

E-Print Network [OSTI]

1 Evaluation of Advanced Wind Power Forecasting Models ­ Results of the Anemos Project I. Martí1.kariniotakis@ensmp.fr Abstract An outstanding question posed today by end-users like power system operators, wind power producers or traders is what performance can be expected by state-of-the-art wind power prediction models. This paper

Paris-Sud XI, Université de

197

1 Energy Markets and Policy Group Energy Analysis Department The Impact of Wind Power Projects  

E-Print Network [OSTI]

1 Energy Markets and Policy Group · Energy Analysis Department The Impact of Wind Power Projects, Wind & Hydropower Technologies Program #12;2 Energy Markets and Policy Group · Energy Analysis Concerns for Wind Energy Fall Into Three Potential Categories 1. Area Stigma: Concern that rural areas

Firestone, Jeremy

198

After the wind resource and project site have been determined and the community outreach effort has  

E-Print Network [OSTI]

permit application. See the Fact Sheets on resource assessment and wind resource data for more: Technology Performance Impacts & Issues Siting Resource Assessment Wind Data Permitting Case Studies 1. 2. 3After the wind resource and project site have been determined and the community outreach effort has

Massachusetts at Amherst, University of

199

Scoping and Framing Social Opposition to U.S. Wind Projects (Poster)  

SciTech Connect (OSTI)

Historical barriers to wind power include cost and reliability. However, rapid growth has increased the footprint of wind power in the United States, and some parts of the country have begun to observe conflicts between local communities and wind energy development. Thus, while questions of economic viability and the ability of grid operators to effectively manage wind energy have become less significant, community acceptance issues have emerged as a barrier to wind and associated transmission projects. Increasing community acceptance is likely to be a growing challenge as the wind industry seeks electricity sector penetration levels approaching 20%.

Lantz, E.; Flowers, L.

2010-05-01T23:59:59.000Z

200

Advanced Wind Turbine Program Next Generation Turbine Development Project: June 17, 1997--April 30, 2005  

SciTech Connect (OSTI)

This document reports the technical results of the Next Generation Turbine Development Project conducted by GE Wind Energy LLC. This project is jointly funded by GE and the U.S. Department of Energy's National Renewable Energy Laboratory.The goal of this project is for DOE to assist the U.S. wind industry in exploring new concepts and applications of cutting-edge technology in pursuit of the specific objective of developing a wind turbine that can generate electricity at a levelized cost of energy of $0.025/kWh at sites with an average wind speed of 15 mph (at 10 m height).

GE Wind Energy, LLC

2006-05-01T23:59:59.000Z

Note: This page contains sample records for the topic "wind installation project" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


201

New England Wind Forum: A Wind Powering America Project - Newsletter #6 - September 2010, (NEWF)  

SciTech Connect (OSTI)

Wind Powering America program launched the New England Wind Forum (NEWF) in 2005 to provide a single comprehensive source of up-to-date, Web-based information on a broad array of wind energy issues pertaining to New England. The NEWF newsletter provides New England stakeholders with updates on wind energy development in the region.

Grace, R.; Gifford, J.; Leeds, T.; Bauer, S.

2010-09-01T23:59:59.000Z

202

New England Wind Forum: A Wind Powering America Project, Newsletter #5 -- January 2010, Wind and Hydropower Technologies Program (WHTP)  

SciTech Connect (OSTI)

Wind Powering America program launched the New England Wind Forum (NEWF) in 2005 to provide a single comprehensive source of up-to-date, Web-based information on a broad array of wind energy issues pertaining to New England. The NEWF newsletter provides New England stakeholders with updates on wind energy development in the region. In addition to regional updates, Issue #5 offers an interview with Angus King, former governor of Maine and co-founder of Independence Wind.

Grace, R. C.; Gifford, J.

2010-01-01T23:59:59.000Z

203

Map of BPA wind interconnection projects - May 2009  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

5 Condon Wind MW 50 Kittitas Valley MW 108 Desert Claim MW 159 Wild Horse (PSE) 225 MW Columbia Wind MW150 Nine Canyon III MW 32 Nine Canyon III MW 63 Sand Ridge II MW 700 East...

204

Klondike III/Biglow Canyon Wind Integration Project; Final Environmental Impact Statement, September 2006.  

SciTech Connect (OSTI)

BPA has been asked by PPM Energy, Inc. to interconnect 300 megawatts (MW) of electricity generated from the proposed Klondike III Wind Project to the Federal Columbia River Transmission System. Orion Energy LLC has also asked BPA to interconnect 400 MW of electricity from its proposed Biglow Canyon Wind Farm, located north and east of the proposed Klondike III Wind Project. (Portland General Electric recently bought the rights to develop the proposed Biglow Canyon Wind Farm from Orion Energy, LLC.) Both wind projects received Site Certificates from the Oregon Energy Facility Siting Council on June 30, 2006. To interconnect these projects, BPA would need to build and operate a 230-kV double-circuit transmission line about 12 miles long, expand one substation and build one new substation. The wind projects would require wind turbines, substation(s), access roads, and other facilities. Two routes for the transmission line are being considered. Both begin at PPM's Klondike Schoolhouse Substation then travel north (Proposed Action) or north and westerly (Middle Alternative) to a new BPA 230-kV substation next to BPA's existing John Day 500-kV Substation. BPA is also considering a No Action Alternative in which BPA would not build the transmission line and would not interconnect the wind projects. The proposed BPA and wind projects would be located on private land, mainly used for agriculture. If BPA decides to interconnect the wind projects, construction of the BPA transmission line and substation(s) could commence as early as the winter of 2006-07. Both wind projects would operate for much of each year for at least 20 years. The proposed projects would generally create no or low impacts. Wildlife resources and local visual resources are the only resources to receive an impact rating other than ''none'' or ''low''. The low to moderate impacts to wildlife are from the expected bird and bat mortality and the cumulative impact of this project on wildlife when combined with other proposed wind projects in the region. The low to high impacts to visual resources reflect the effect that the transmission line and the turbine strings from both wind projects would have on viewers in the local area, but this impact diminishes with distance from the project.

United States. Bonneville Power Administration

2006-09-01T23:59:59.000Z

205

Structural evaluation of mixer pump installed in Tank 241-AN-107 for caustic addition project  

SciTech Connect (OSTI)

This report documents the structural analysis and evaluation of a mixer pump and caustic addition system to be used in Tank 107-AN. This pump will be installed in the central pump pit of this double- shell tank for the purpose of bringing the hydroxide ion concentration into compliance with Tank Farm operating specifications.

Leshikar, G.A.

1995-06-16T23:59:59.000Z

206

Klondike III/Biglow Canyon Wind Integration Project; Record of Decision, October 25, 2006.  

SciTech Connect (OSTI)

The Bonneville Power Administration (BPA) has decided to implement the Proposed Action identified in the Klondike III/Biglow Canyon Wind Integration Project Final Environmental Impact Statement (FEIS) (DOE/EIS-0374, September 2006). Under the Proposed Action, BPA will offer PPM Energy, Inc. (PPM) contract terms for interconnection of the proposed Klondike III Wind Project, located in Sherman County, Oregon, with the Federal Columbia River Transmission System (FCRTS). BPA will also offer Portland General Electric (PGE)1 contract terms for interconnection of its proposed Biglow Canyon Wind Farm, also located in Sherman County, Oregon, with the FCRTS, as proposed in the FEIS. To interconnect these wind projects, BPA will build and operate a 12-mile long, 230-kilovolt (kV) double-circuit transmission line between the wind projects and BPA's new 230-kV John Day Substation in Sherman County, Oregon. BPA will also expand its existing 500-kV John Day Substation.

United States. Bonneville Power Administration

2006-10-25T23:59:59.000Z

207

EA-1782: University of Delaware Lewes Campus Onsite Wind Energy Project  

Broader source: Energy.gov [DOE]

The University of Delaware has constructed a wind turbine adjacent to its College of Earth, Ocean, and Environment campus in Lewes, Delaware. DOE proposed to provide the University a $1.43 million grant for this Wind Energy Project from funding provided in the Omnibus Appropriations Act of 2009 (Public Law 111-8) and an additional $1 million provided in the Energy and Water Development Appropriations Act of Fiscal Year 2010. This EA analyzed the potential environmental impacts of the University of Delaware’s Wind Energy Project at its Lewes campus and, for purposes of comparison, an alternative that assumes the wind turbine had not been constructed.

208

NREL Small Wind Turbine Test Project: Mariah Power's Windspire Wind Turbine Test Chronology  

SciTech Connect (OSTI)

This report presents a chronology of tests conducted at NREL's National Wind Technology Center on Mariah Power's Windspire 1.2-kW wind turbine and a letter of response from Mariah Power.

Huskey, A.; Forsyth, T.

2009-06-01T23:59:59.000Z

209

EA-1809: White Earth Nation Wind Energy Project II, Becker and Mahnomen Counties, MN  

Broader source: Energy.gov [DOE]

This EA evaluates the environmental impacts of a proposal to provide Congressionally Directed funds to the White Earth Nation to purchase and install up to four small mid-sized wind turbines at two sites near the towns of Waubun and Naytahwaush on the White Earth Reservation in Mahnomen County in western Minnesota .

210

Conceptual design report for the project to install leak detection in FAST-FT-534/548/549  

SciTech Connect (OSTI)

This report provides conceptual designs and design recommendations for installing secondary containment and leak detection systems for three sumps at the Fluorinel and Storage Facility (FAST), CPP-666. The FAST facility is located at the Idaho Chemical Processing Plant (ICPP) at the Idaho National Engineering Laboratory (INEL). The three sumps receive various materials from the FAST water treatment process. This project involves sump upgrades to meet appropriate environmental requirements. The steps include: providing sump modifications or designs for the installation of leak chases and/or leakage accumulation, coating the sump concrete with a chemical resistant sealant (except for sump VES-FT-534 which is already lined with stainless steel) to act as secondary containment, lining the sumps with a primary containment system, and providing a means to detect and remove primary containment leakage that may occur.

Galloway, K.J.

1992-07-01T23:59:59.000Z

211

New England Wind Forum: A Wind Powering America Project, Volume 1, Issue 4 -- May 2008 (Newsletter)  

SciTech Connect (OSTI)

The New England Wind Forum electronic newsletter summarizes the latest news in wind energy development activity, markets, education, and policy in the New England region. It also features an interview with a key figure influencing New England's wind energy development. Volume 1, Issue 4 features an interview with Brian Fairbank, president and CEO of Jiminy Peak Mountain Resort.

Grace, R. C.; Gifford, J.

2008-05-01T23:59:59.000Z

212

Offshore Wind Market Acceleration Projects | Department of Energy  

Energy Savers [EERE]

on wildlife and the marine environment, and mitigating the impact of offshore wind turbines on radar and other communication and navigation equipment. The links below will...

213

New Report Highlights Trends in Offshore Wind with 14 Projects...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

the advanced stages of development- together representing nearly 4,900 megawatts (MW) of potential offshore wind energy capacity for the United States. Further, this year's report...

214

EA-1970: Fishermen’s Energy LLC Offshore Wind Demonstration Project, offshore Atlantic City, New Jersey  

Broader source: Energy.gov [DOE]

DOE is proposing to provide funding to Fishermen’s Energy LLC to construct and operate up to five 5.0 MW wind turbine generators, for an offshore wind demonstration project, approximately 2.8 nautical miles off the coast of Atlantic City, NJ. The proposed action includes a cable crossing from the turbines to an on-shore existing substation.

215

Short-term Forecasting of Offshore Wind Farm Production Developments of the Anemos Project  

E-Print Network [OSTI]

Short-term Forecasting of Offshore Wind Farm Production ­ Developments of the Anemos Project J.a.brownsword@rl.ac.uk 6 Overspeed GmBH & Co.KG, 26129 Oldenburg, Germany Email: h.p.waldl@overspeed.de Key words: Offshore to the large dimensions of offshore wind farms, their electricity production must be known well in advance

Paris-Sud XI, Université de

216

EA-1884: Invenergy Interconnection for the Wray Wind Energy Project, Town of Wray, Yuma County, CO  

Broader source: Energy.gov [DOE]

DOE’s Western Area Power Administration is preparing this EA to evaluate the environmental impacts of interconnecting the proposed Wray Wind Energy Project, for approximately 90 megawatts of wind generation, to Western’s existing Wray Substation in Yuma County, Colorado.

217

Wind River Watershed Project; Volume I of III Reports A thru E, 1998 Annual Report.  

SciTech Connect (OSTI)

This report describes the ongoing efforts to document life history strategies of steelhead in the Wind River watershed and to formulate criteria for ranking restoration needs and proposed projects.

Connolly, Patrick J.

1999-11-01T23:59:59.000Z

218

EA-1923: Green Energy School Wind Turbine Project on Saipan, Commonwealth of the Northern Mariana Islands  

Broader source: Energy.gov [DOE]

This EA will evaluate the potential environmental impacts of a proposal to provide funding for the Green Energy School Project which partially consists of eight 20 kW wind turbines at the Saipan Southern High School.

219

EIS-0438: Interconnection of the Proposed Hermosa West Wind Farm Project, Albany County, Wyoming  

Broader source: Energy.gov [DOE]

After the applicant withdrew its request to interconnect the proposed Hermosa West Wind Farm Project with Western Area Power Administration’s transmission system, Western cancelled preparation of an EIS to evaluate the potential environmental impacts of the proposal.

220

EIS-0469: Proposed Wilton IV Wind Energy Center Project, Burleigh County, North Dakota  

Broader source: Energy.gov [DOE]

Western Area Power Administration is evaluating the potential environmental impacts of interconnecting NextEra Energy Resources proposed Wilton IV Wind Energy Center Project, near Bismarck, North Dakota, to Western’s existing Wilton/Baldwin substation and allowing NextEra’s existing wind projects in this area to operate above 50 annual MW. Western is preparing a Supplemental Draft EIS to address substantial changes to the proposal, including 30 turbine locations and 5 alternate turbine locations in Crofte Township.

Note: This page contains sample records for the topic "wind installation project" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


221

Rosebud Sioux Wind Energy Project | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home5b9fcbce19 No revisionEnvReviewNonInvasiveExplorationUT-g Grant ofRichardton Abbey Wind Farm ItRoscoe Wind Farm Jump to:Wind

222

Roth Rock Wind Power Project | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home5b9fcbce19 No revisionEnvReviewNonInvasiveExplorationUT-g Grant ofRichardton Abbey Wind Farm ItRoscoe Wind Owner Gestamp Wind

223

Wind Speed Data Analysis using Wavelet Transform  

E-Print Network [OSTI]

Abstract—Renewable energy systems are becoming a topic of great interest and investment in the world. In recent years wind power generation has experienced a very fast development in the whole world. For planning and successful implementations of good wind power plant projects, wind potential measurements are required. In these projects, of great importance is the effective choice of the micro location for wind potential measurements, installation of the measurement station with the appropriate measuring equipment, its maintenance and analysis of the gained data on wind potential characteristics. In this paper, a wavelet transform has been applied to analyze the wind speed data in the context of insight in the characteristics of the wind and the selection of suitable locations that could be the subject of a wind farm construction. This approach shows that it can be a useful tool in investigation of wind potential. Keywords—Wind potential, Wind speed data, Wavelet transform.

S. Avdakovic; A. Lukac; A. Nuhanovic; M. Music

224

“What Efficiency Projects are Being Installed in the Pulp and Paper Industry”  

E-Print Network [OSTI]

for this industrial sector. This paper would discuss these projects and trends to show what is working for the real investments in efficiency for the Pulp and Paper Sector. Also included in this paper will be a description of the Pulp and Paper Energy Best Practices...

Nicol, J.

2008-01-01T23:59:59.000Z

225

Rigby High School Wind Project | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home5b9fcbce19 No revisionEnvReviewNonInvasiveExplorationUT-g Grant ofRichardton Abbey Wind Farm Jump to:Sector WindRigby High

226

Rigby Midway School Wind Project | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home5b9fcbce19 No revisionEnvReviewNonInvasiveExplorationUT-g Grant ofRichardton Abbey Wind Farm Jump to:Sector WindRigby HighMidway

227

Generic TriBITS PRoject, Build, Test, and Install Quick Reference Guide  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmospheric Optical Depth7-1D: Vegetation ProposedUsingFun with Big Sky Learning Fun withGenepoolCrystals. |Generic TriBITS PRoject,

228

EA-1955: Campbell County Wind Project, Pollock, South Dakota  

Broader source: Energy.gov [DOE]

DOE’s Western Area Power Administration (Western) is preparing an EA to analyze the potential environmental impacts of a proposal to interconnect, via a proposed new substation, a proposed Dakota Plains Energy, LLC, 99-megawatt wind farm near Pollock, South Dakota, to Western’s existing transmission line at that location.

229

Washoe Wisk'e'em Project  

SciTech Connect (OSTI)

The Washoe Tribe Wiskem Project (Project) was a Congressionally Directed Project identified for funding in the Energy and Water Development and Related Agencies Appropriations Act, 2010. The Project focused on installing up to four small vertical wind turbines at designated locations on Tribal lands to offset energy costs for the Tribe. The Washoe Tribe will use and analyze data collected from the wind turbines to better understand the wind resource.

Tara Hess-McGeown

2012-03-26T23:59:59.000Z

230

EA-1970: Fishermen’s Energy LLC Offshore Wind Demonstration Project, offshore Atlantic City, New Jersey  

Broader source: Energy.gov [DOE]

Draft EA: Public Comment Period Ends 04/03/15DOE is proposing to provide funding to Fishermen’s Atlantic City Windfarm, LLC to construct and operate up to six wind turbine generators, for an offshore wind demonstration project, approximately 2.8 nautical miles off the coast of Atlantic City, NJ. The proposed action includes a cable crossing from the turbines to an on-shore existing substation.

231

Regional Community Wind Conferences, Great Plains Windustry Project  

SciTech Connect (OSTI)

Windustry organized and produced five regional Community Wind Across America (CWAA) conferences in 2010 and 2011 and held two CWAA webinars in 2011 and 2012. The five conferences were offered in regions throughout the United States: Denver, Colorado Â? October 2010 St. Paul, Minnesota Â? November 2010 State College, Pennsylvania Â? February 2011 Ludington, Michigan (co-located with the Michigan Energy Fair) June 2011 Albany, New York October 2011

Daniels, Lisa [Windustry

2013-02-28T23:59:59.000Z

232

EIS-0413: Searchlight Wind Energy Project, Searchlight, NV  

Broader source: Energy.gov [DOE]

The Department of the Interior’s Bureau of Land Management, with DOE’s Western Area Power Administration as a cooperating agency, is preparing this EIS to evaluate the environmental impacts of a proposal to construct and operate 156 wind turbine generators and related facilities on public lands surrounding the town of Searchlight, Nevada. The proposal includes a substation that would be operated by Western.

233

Centennial Wind Energy Project (2007) | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Office of InspectorConcentrating SolarElectricEnergyCTBarreis aCallahanWindSyracuse, NYCedar CreekCellennium6)

234

Central High School Wind Project | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Office of InspectorConcentrating SolarElectricEnergyCTBarreis aCallahanWindSyracuse, NYCedarCAPSCentral High School

235

Wind Turbine Safety and Function Test Report for the Gaia-Wind 11-kW Wind Turbine  

SciTech Connect (OSTI)

This test was conducted as part of the U.S. Department of Energy's (DOE) Independent Testing project. This project was established to help reduce the barriers to wind energy expansion by providing independent testing results for small wind turbines (SWT). In total, four turbines were tested at the National Wind Technology Center (NWTC) as a part of this project. Safety and function testing is one of up to five tests performed on the turbines, including power performance, duration, noise, and power-quality tests. The results of the testing provide the manufacturers with reports that can be used for small wind turbine certification. The test equipment includes a Gaia-Wind 11-kW wind turbine mounted on an 18-m monopole tower. Gaia-Wind Ltd. manufactured the turbine in Denmark. The system was installed by the NWTC site operations group with guidance and assistance from Gaia-Wind.

Huskey, A.; Bowen, A.; Jager, D.

2010-01-01T23:59:59.000Z

236

Logan View Public Schools Wind Project | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home5b9fcbce19 No revision hasInformation Earth's Heat JumpInc Place:KeystoneSolarListLiveFuels Inc JumpLoess Hills Wind°,

237

Loup City High School Wind Project | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home5b9fcbce19 No revision hasInformation Earth's Heat JumpInc Place:KeystoneSolarListLiveFuelsLoup City High School Wind

238

Distributed connected wind farms (Smart Grid Project) (Limerick, Ireland) |  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home5b9fcbce19 NoPublic Utilities Address:011-DNA Jump to:52c8ff988c1Dering Harbor,Discount PowerEmerlingEnergyDistributed WindOpen

239

Offshore Wind Technology Development Projects | Department of Energy  

Office of Environmental Management (EM)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) "of EnergyEnergyENERGY TAXBalanced ScorecardReactor TechnologyOFFICE: I Oak4SmallGeneralOffshore Wind »

240

USD 393 Solomon High School Wind Project | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home5b9fcbce19 No revisionEnvReviewNonInvasiveExplorationUT-gTagusparkCalculator Jump to: navigation, searchSolomon High School Wind

Note: This page contains sample records for the topic "wind installation project" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


241

Centennial Wind Energy Project (2006) | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Office of InspectorConcentrating SolarElectricEnergyCTBarreis aCallahanWindSyracuse, NYCedar CreekCellennium6) Facility

242

Montana State University Wind Project | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home5b9fcbce19 No revision hasInformation Earth's HeatMexico: EnergyMithun Jump to:Moe WindMont Vista Capital LLCFish, Name:MT

243

Mount Wachusetts Community College Wind Project | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home5b9fcbce19 No revision hasInformation Earth's HeatMexico: EnergyMithun Jump to:Moe WindMontMoraineAbbey Jump to:

244

Mt. Edgecumbe High School Wind Project | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home5b9fcbce19 No revision hasInformation Earth's HeatMexico: EnergyMithun Jump to:Moe WindMontMoraineAbbeyIMozartEdgecumbe High

245

Solano Wind Project Phase I | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home5b9fcbce19 No revisionEnvReviewNonInvasiveExplorationUT-g Grant ofRichardtonManagement,SmartestEnergynotSola60County WindI Jump

246

Spotsylvania Career and Tech Center Wind Project | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home5b9fcbce19 No revisionEnvReviewNonInvasiveExplorationUT-g GrantAtlas (PACA Region -SonelgazSunbeltSpinning Spur WindSchoolCareer

247

St. Michael Indian School Wind Project | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home5b9fcbce19 No revisionEnvReviewNonInvasiveExplorationUT-g GrantAtlas (PACA RegionSpringview IISt. Mary's Wind Farm Facility

248

Story County Wind Project II | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home5b9fcbce19 No revisionEnvReviewNonInvasiveExplorationUT-g GrantAtlas (PACAOpen Energy InformationStony CreekCounty Wind

249

Superior Public Schools Wind Project | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home5b9fcbce19 No revisionEnvReviewNonInvasiveExplorationUT-g GrantAtlas (PACAOpenSummerside WindSolar EnergySuperior Farms

250

Western Illinois University Wind Project | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home5b9fcbce19 NoPublic Utilities Address: 160 East 300 South Place: SaltTroyer & AssociatesWestIL Number of Units 1 Wind

251

White Creek Wind Power Project | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home5b9fcbce19 NoPublic Utilities Address: 160 East 300 South Place: SaltTroyer & AssociatesWestILI Wind Farm FacilityArrow

252

Elkhorn Valley Public Schools Wind Project | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home5b9fcbce19 No revision has beenFfe2fb55-352f-473b-a2dd-50ae8b27f0a6 No revisionWind,Soils and RocksElement PowerElk831329°

253

Elkton Schools District Wind Project | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home5b9fcbce19 No revision has beenFfe2fb55-352f-473b-a2dd-50ae8b27f0a6 No revisionWind,Soils and RocksElement

254

Hope Street Academy Wind Project | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home5b9fcbce19 No revision hasInformation Earth's Heat Jump to:PhotonHolyName Housing Cooperation JumpKongHoosier Wind

255

Hydrogen Pilot Project Wind Farm | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home5b9fcbce19 No revision hasInformation Earth's Heat Jump to:PhotonHolyName HousingIII WindHybridsCar Co Place:Status In

256

Lamar Wind Energy Project I | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home5b9fcbce19 No revision hasInformation Earth's Heat JumpInc Place:Keystone Clean AirjoinLakeshore TechnicalLakotaLamar Wind

257

Community Wind: Once Again Pushing the Envelope of Project Finance  

E-Print Network [OSTI]

Energy Projects to Pair 1603 Grants with NMTCs” Novogradaccash grant (the “Section 1603 grant”) in lieu of the PTC.The ITC and Section 1603 grant also reduce performance risk

bolinger, Mark A.

2011-01-01T23:59:59.000Z

258

Revealing the Hidden Value that the Federal Investment Tax Credit and Treasury Cash Grant Provide To Community Wind Projects  

SciTech Connect (OSTI)

Although the global financial crisis of 2008/2009 has slowed wind power development in general, the crisis has, in several respects, been a blessing in disguise for community wind project development in the United States. For xample, the crisis-induced slowdown in the broader commercial wind market has, for the first time since 2004, created slack in the supply chain, creating an opportunity for shovel-ready community wind projects to finally proceed towards onstruction. Many such projects had been forced to wait on the sidelines as the commercial wind boom of 2005-2008 consumed virtually all available resources needed to complete a wind project (e.g., turbines, cranes, contractors).

Bolinger, Mark A.

2009-12-14T23:59:59.000Z

259

EA-1985: Virginia Offshore Wind Technology Advancement Project (VOWTAP), 24 nautical miles offshore of Virginia Beach, Virginia  

Broader source: Energy.gov [DOE]

DOE is proposing to fund Virginia Electric and Power Company's Virginia Offshore Wind Technology Advancement Project (VOWTAP). The proposed VOWTAP project consists of design, construction and operation of a 12 megawatt offshore wind facility located approximately 24 nautical miles off the coast of Virginia Beach, VA on the Outer Continental Shelf.

260

Valuation of wind energy projects and statistical analysis of wind power  

E-Print Network [OSTI]

As energy becomes an increasingly important issue for generations to come, it is crucial to develop tools for valuing and understanding energy projects from an economic perspective since ultimately only economically viable ...

Nanopoulos, Andrew

2012-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "wind installation project" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


261

EIS-0333: Maiden Wind Farm Project, Benton and Yakima Counties, Washington  

Broader source: Energy.gov [DOE]

This EIS analyzes BPA’s proposed action to execute power purchase and interconnection agreements for the purpose of acquiring up to 50 average megawatts (aMW) (up to about 200 MW) of the project developer’s proposed Maiden Wind Farm.

262

EIS-0462: Crowned Ridge Wind Energy Center Project, Grant and Codington Counties, South Dakota  

Broader source: Energy.gov [DOE]

This EIS analyzes DOE's decision to approve a grid interconnection request by NextEra Energy Resources for its proposed 150-megawatt (MW) Crowned Ridge Wind Energy Center Project with the Western Area Power Administration's existing Watertown Substation in Codington County, South Dakota.

263

Wind Energy Leasing Handbook  

E-Print Network [OSTI]

Wind Energy Leasing Handbook Wind Energy Leasing Handbook E-1033 Oklahoma Cooperative Extension?..................................................................................................................... 31 What do wind developers consider in locating wind energy projects?............................................................................................ 37 How do companies and individuals invest in wind energy projects?....................................................................

Balasundaram, Balabhaskar "Baski"

264

Yolo County, California, made history in July when officials installed a 1 MW solar photovoltaic (PV) project to supply power  

E-Print Network [OSTI]

Yolo County, California, made history in July when officials installed a 1 MW solar photovoltaic both buildings in Woodland, California, for the 1 MW ground-mounted solar PV system. Energy Analysis by examining the feasibility of installing a solar system, according to information provided by Ray Groom

265

Wind Projects Providing Hope for Penn. Workers | Department of Energy  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious RankCombustion |Energy Usage »of| Department ofDepartment ofAnnouncementAugust 30,PowerJune 17,Projects

266

2011 Wind Technologies Market Report  

E-Print Network [OSTI]

and the drop in wind power plant installations since 2009and the drop in wind power plant installations since 2009towers used in U.S. wind power plants increases from 80% in

Bolinger, Mark

2013-01-01T23:59:59.000Z

267

2010 Wind Technologies Market Report  

E-Print Network [OSTI]

and the drop in wind power plant installations, for example,the decrease in new wind power plant construction. A GrowingRelative Economics of Wind Power Plants Installed in Recent

Wiser, Ryan

2012-01-01T23:59:59.000Z

268

Wind-electric icemaking project: Analysis and dynamometer testing. Volume 1  

SciTech Connect (OSTI)

The wind/hybrid systems group at the National Renewable Energy Laboratory has been researching the most practical and cost-effective methods for producing ice from off-grid wind-electric power systems. The first phase of the project, conducted in 1993--1994, included full-scale dynamometer and field testing of two different electric ice makers directly connected to a permanent magnet alternator. The results of that phase were encouraging and the second phase of the project was launched in which steady-state and dynamic numerical models of these systems were developed and experimentally validated. The third phase of the project was the dynamometer testing of the North Star ice maker, which is powered by a 12-kilowatt Bergey Windpower Company, Inc., alternator. This report describes both the second and third project phases. Also included are detailed economic analyses and a discussion of the future prospects of wind-electric ice-making systems. The main report is contained in Volume 1. Volume 2 consists of the report appendices, which include the actual computer programs used in the analysis and the detailed test results.

Holz, R.; Gervorgian, V.; Drouilhet, S.; Muljadi, E.

1998-07-01T23:59:59.000Z

269

Wind-electric icemaking project: Analysis and dynamometer testing. Volume 2  

SciTech Connect (OSTI)

The wind/hybrid systems group at the National Renewable Energy Laboratory has been researching the most practical and cost-effective methods for producing ice from off-grid wind-electric power systems. The first phase of the project, conducted in 1993--1994, included full-scale dynamometer and field testing of two different electric ice makers directly connected to a permanent magnet alternator. The results of that phase were encouraging and the second phase of the project was launched in which steady-state and dynamic numerical models of these systems were developed and experimentally validated. The third phase of the project was the dynamometer testing of the North Star ice maker, which is powered by a 12-kilowatt Bergey Windpower Company, Inc., alternator. This report describes both the second and third project phases. Also included are detailed economic analyses and a discussion of the future prospects of wind-electric ice-making systems. The main report is contained in Volume 1. Volume 2 consists of the report appendices, which include the actual computer programs used in the analysis and the detailed test results.

Holz, R.; Gervorgian, V.; Drouilhet, S.; Muljadi, E.

1998-07-01T23:59:59.000Z

270

U.S. Offshore Wind Advanced Technology Demonstration Projects Public Meeting Transcript for Offshore Wind Demonstrations  

Energy Savers [EERE]

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Office of Inspector GeneralDepartment of EnergyofProject is on Track |Weatherized BySolarBodman U.S. DEPARTMENT OF

271

Wind Power Project Repowering: Financial Feasibility, Decision Drivers, and Supply Chain Effects  

SciTech Connect (OSTI)

As wind power facilities age, project owners are faced with plant end of life decisions. This report is intended to inform policymakers and the business community regarding the history, opportunities, and challenges associated with plant end of life actions, in particular repowering. Specifically, the report details the history of repowering, examines the plant age at which repowering becomes financially attractive, and estimates the incremental market investment and supply chain demand that might result from future U.S. repowering activities.

Lantz, E.; Leventhal, M.; Baring-Gould, I.

2013-12-01T23:59:59.000Z

272

2008 WIND TECHNOLOGIES MARKET REPORT  

SciTech Connect (OSTI)

The U.S. wind industry experienced a banner year in 2008, again surpassing even optimistic growth projections from years past. At the same time, the last year has been one of upheaval, with the global financial crisis impacting near-term growth prospects for the wind industry, and with federal policy changes enacted to push the industry towards continued aggressive expansion. This rapid pace of development has made it difficult to keep up with trends in the marketplace. Yet, the need for timely, objective information on the industry and its progress has never been greater. This report - the third of an ongoing annual series - attempts to meet this need by providing a detailed overview of developments and trends in the U.S. wind power market, with a particular focus on 2008. As with previous editions, this report begins with an overview of key wind power installation-related trends: trends in wind capacity growth in the U.S., how that growth compares to other countries and generation sources, the amount and percentage of wind in individual states and serving specific utilities, and the quantity of proposed wind capacity in various interconnection queues in the United States. Next, the report covers an array of wind industry trends, including developments in turbine manufacturer market share, manufacturing and supply-chain investments, wind turbine and wind project size, project financing developments, and trends among wind power developers, project owners, and power purchasers. The report then turns to a discussion of wind project price, cost, and performance trends. In so doing, it reviews the price of wind power in the United States, and how those prices compare to the cost of fossil-fueled generation, as represented by wholesale power prices. It also describes trends in installed wind project costs, wind turbine transaction prices, project performance, and operations and maintenance expenses. Next, the report examines other policy and market factors impacting the domestic wind power market, including federal and state policy drivers, transmission issues, and grid integration. Finally, the report concludes with a preview of possible near- to medium-term market developments. This version of the Annual Report updates data presented in the previous editions, while highlighting key trends and important new developments from 2008. New to this edition is an executive summary of the report and an expanded final section on near- to medium-term market development. The report concentrates on larger-scale wind applications, defined here as individual turbines or projects that exceed 50 kW in size. The U.S. wind power sector is multifaceted, however, and also includes smaller, customer-sited wind turbines used to power the needs of residences, farms, and businesses. Data on these applications are not the focus of this report, though a brief discussion on Distributed Wind Power is provided on page 4. Much of the data included in this report were compiled by Berkeley Lab, and come from a variety of sources, including the American Wind Energy Association (AWEA), the Energy Information Administration (EIA), and the Federal Energy Regulatory Commission (FERC). The Appendix provides a summary of the many data sources used in the report. Data on 2008 wind capacity additions in the United States are based on information provided by AWEA; some minor adjustments to those data may be expected. In other cases, the data shown here represent only a sample of actual wind projects installed in the United States; furthermore, the data vary in quality. As such, emphasis should be placed on overall trends, rather than on individual data points. Finally, each section of this document focuses on historical market information, with an emphasis on 2008; with the exception of the final section, the report does not seek to forecast future trends.

Wiser, Ryan H.; Bolinger, Mark; Barbose, G.; Mills, A.; Rosa, A.; Porter, K.; Fink, S.; Tegen, S.; Musial, W.; Oteri, F.; Heimiller, D.; Rberts, B.; Belyeu, K.; Stimmel, R.

2009-07-15T23:59:59.000Z

273

New Report Shows Trend Toward Larger Offshore Wind Systems, with 11 Advanced Stage Projects Proposed in U.S. Waters  

Broader source: Energy.gov [DOE]

The Energy Department today released a new report showing progress for the U.S. offshore wind energy market in 2012, including the completion of two commercial lease auctions for federal Wind Energy Areas and 11 commercial-scale U.S. projects repre

274

Displacement of diesel fuel with wind energy in rural Alaskan villages. Final progress and project closeout report  

SciTech Connect (OSTI)

The basic concept behind this project was to construct a wind diesel hybrid power system which combines and maximizes the intermittent and variable energy output of wind turbine(s) with diesel generator(s) to provide continuous high quality electric power to weak isolated mini-grids.

Meiners, Dennis; Drouhilet, Steve; Reeve, Brad; Bergen, Matt

2002-03-11T23:59:59.000Z

275

Main Coast Winds - Final Scientific Report  

SciTech Connect (OSTI)

The Maine Coast Wind Project was developed to investigate the cost-effectiveness of small, distributed wind systems on coastal sites in Maine. The restructuring of Maine's electric grid to support net metering allowed for the installation of small wind installations across the state (up to 100kW). The study performed adds insight to the difficulties of developing cost-effective distributed systems in coastal environments. The technical hurdles encountered with the chosen wind turbine, combined with the lower than expected wind speeds, did not provide a cost-effective return to make a distributed wind program economically feasible. While the turbine was accepted within the community, the low availability has been a negative.

Jason Huckaby; Harley Lee

2006-03-15T23:59:59.000Z

276

Comparison of Feed in Tariff, Quota and Auction Mechanisms to Support Wind Power Development  

E-Print Network [OSTI]

A comparison of policy instruments employed to support onshore wind projects suggests that in terms of capacity installed, policies adopted in Germany have been more effective than those adopted in the UK. Price comparisons have frequently...

Butler, Lucy; Neuhoff, Karsten

2006-03-14T23:59:59.000Z

277

Wind Spires as an Alternative Energy Source  

SciTech Connect (OSTI)

This report discloses the design and development of an innovative wind tower system having an axisymmetric wind deflecting structure with a plurality of symmetrically mounted rooftop size wind turbines near the axisymmetric structure. The purpose of the wind deflecting structure is to increase the ambient wind speed that in turn results in an overall increase in the power capacity of the wind turbines. Two working prototypes were constructed and installed in the summer of 2009 and 2012 respectively. The system installed in the Summer of 2009 has a cylindrical wind deflecting structure, while the tower installed in 2012 has a spiral-shape wind deflecting structure. Each tower has 4 turbines, each rated at 1.65 KW Name-Plate-Rating. Before fabricating the full-size prototypes, computational fluid dynamic (CFD) analyses and scaled-down table-top models were used to predict the performance of the full-scale models. The performance results obtained from the full-size prototypes validated the results obtained from the computational models and those of the scaled-down models. The second prototype (spiral configuration) showed at a wind speed of 11 miles per hour (4.9 m/s) the power output of the system could reach 1,288 watt, when a typical turbine installation, with no wind deflecting structure, could produce only 200 watt by the same turbines at the same wind speed. At a wind speed of 18 miles per hour (8 m/sec), the spiral prototype produces 6,143 watt, while the power generated by the same turbines would be 1,412 watt in the absence of a wind deflecting structure under the same wind speed. Four US patents were allowed, and are in print, as the results of this project (US 7,540,706, US 7,679,209, US 7,845,904, and US 8,002,516).

Majid Rashidi, Ph.D., P.E.

2012-10-30T23:59:59.000Z

278

Proposed Columbia Wind Farm No. 1 : Final Environmental Impact Statement, Joint NEPA/SEPA.  

SciTech Connect (OSTI)

CARES proposes to construct and operate the 25 megawatt Columbia Wind Farm No. 1 (Project) in the Columbia Hills area of Klickitat County, Washington known as Juniper Point. Wind is not a constant resource and based on the site wind measurement data, it is estimated that the Project would generate approximately 7 average annual MWs of electricity. BPA proposes to purchase the electricity generated by the Project. CARES would execute a contractual agreement with a wind developer, to install approximately 91 wind turbines and associated facilities to generate electricity. The Project`s construction and operation would include: install concrete pier foundations for each wind turbine; install 91 model AWT-26 wind turbines using 43 m high guyed tubular towers on the pier foundations; construct a new 115/24-kv substation; construct a 149 m{sup 2} steel operations and maintenance building; install 25 pad mount transformers along the turbine access roads; install 4.0 km of underground 24 kv power collection lines to collect power from individual turbines to the end of turbine strings; install 1.2 km of underground communication and transmission lines from each turbine to a pad mount transformer; install 5.6 km of 24 kv wood pole transmission lines to deliver electricity from the pad mount transformers to the Project substation; install 3.2 km of 115 kv wood pole transmission lines to deliver electricity from the Project substation to the Public Utility District No. 1 of Klickitat County(PUD)115 kv Goldendale line; interconnect with the BPA transmission system through the Goldendale line and Goldendale substation owned by the PUD; reconstruct, upgrade, and maintain 8.0 km of existing roads; construct and maintain 6.4 km of new graveled roads along the turbine strings and to individual turbines; and install meteorological towers guyed with rebar anchors on the Project site.

United States. Bonneville Power Administration; Klickitat County (Wash.)

1995-09-01T23:59:59.000Z

279

Helping Policymakers Evaluate Distributed Wind Options | Department...  

Energy Savers [EERE]

and consumers evaluate the effectiveness of policies that promote distributed wind-wind turbines installed at homes, farms, and busi-nesses. Distributed wind allows Americans to...

280

Establishing a Comprehensive Wind Energy Program  

SciTech Connect (OSTI)

This project was directed at establishing a comprehensive wind energy program in Indiana, including both educational and research components. A graduate/undergraduate course ME-514 - Fundamentals of Wind Energy has been established and offered and an interactive prediction of VAWT performance developed. Vertical axis wind turbines for education and research have been acquired, instrumented and installed on the roof top of a building on the Calumet campus and at West Lafayette (Kepner Lab). Computational Fluid Dynamics (CFD) calculations have been performed to simulate these urban wind environments. Also, modal dynamic testing of the West Lafayette VAWT has been performed and a novel horizontal axis design initiated. The 50-meter meteorological tower data obtained at the Purdue Beck Agricultural Research Center have been analyzed and the Purdue Reconfigurable Micro Wind Farm established and simulations directed at the investigation of wind farm configurations initiated. The virtual wind turbine and wind turbine farm simulation in the Visualization Lab has been initiated.

Fleeter, Sanford [Purdue University

2012-09-30T23:59:59.000Z

Note: This page contains sample records for the topic "wind installation project" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


281

Radioactive air emissions notice of construction for installation and operation of a waste retrieval system and tanks 241-AP-102 and 241-AP-104 project  

SciTech Connect (OSTI)

This document serves as a notice of construction (NOC) pursuant to the requirements of Washington Administrative Code (WAC) 246 247-060, and as a request for approval to modify pursuant to 40 Code of Federal Regulations (CFR) 61 07 for the installation and operation of one waste retrieval system in the 24 1 AP-102 Tank and one waste retrieval system in the 241 AP 104 Tank Pursuant to 40 CFR 61 09 (a)( 1) this application is also intended to provide anticipated initial start up notification Its is requested that EPA approval of this application will also constitute EPA acceptance of the initial start up notification Project W 211 Initial Tank Retrieval Systems (ITRS) is scoped to install a waste retrieval system in the following double-shell tanks 241-AP 102-AP 104 AN 102, AN 103, AN-104, AN 105, AY 102 AZ 102 and SY-102 between now and the year 2011. Because of the extended installation schedules and unknowns about specific activities/designs at each tank, it was decided to submit NOCs as that information became available This NOC covers the installation and operation of a waste retrieval system in tanks 241 AP-102 and 241 AP 104 Generally this includes removal of existing equipment installation of new equipment and construction of new ancillary equipment and buildings Tanks 241 AP 102 and 241 AP 104 will provide waste feed for immobilization into a low activity waste (LAW) product (i.e. glass logs) The total effective dose equivalent (TEDE) to the offsite maximally exposed individual (MEI) from the construction activities is 0 045 millirem per year The unabated TEDE to the offsite ME1 from operation of the mixer pumps is 0 042 millirem per year.

DEXTER, M.L.

1999-11-15T23:59:59.000Z

282

Ex post analysis of economic impacts from wind power development in U.S. counties  

E-Print Network [OSTI]

Figure 1. Location of Wind Power Development in the UnitedFigure 4: Total Installed Wind Power Capacity (MW): 2000 -development impacts of wind power installations. References

Brown, Jason P

2014-01-01T23:59:59.000Z

283

Offshore wind resource assessment in European Seas, state-of-the art. A survey within the FP6 "POW'WOW" Coordination Action Project.  

E-Print Network [OSTI]

Offshore wind resource assessment in European Seas, state-of- the ­art. A survey within the FP6, Germany (5) FORWIND, University of Oldenburg, Germany ABSTRACT To plan an offshore wind farm, a careful the sea within about 50 km from the coast. However, installation of offshore high masts is very expensive

284

Colorado Wind Resource Map with 17 school locations for a potential pilot project  

Wind Powering America (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data CenterFranconia, Virginia:FAQ < RAPID Jump to:SeadovCooperative JumpWilliamsonWoodsonCounty iscomfortNewsAffiliate Projects TheWind An

285

NREL: Hydrogen and Fuel Cells Research - Wind-to-Hydrogen Project  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmosphericNuclear Security Administration the Contributions and Achievements ofLiz TorresSolectriaProjects PhotoWind-to-Hydrogen

286

A comparative analysis of business structures suitable forfarmer-owned wind power projects in the United States  

SciTech Connect (OSTI)

For years, farmers in the United States have looked with envy on their European counterparts' ability to profitably farm the wind through ownership of distributed, utility-scale wind projects. Only within the past few years, however, has farmer- or community-owned wind power development become a reality in the United States. The primary hurdle to this type of development in the United States has been devising and implementing suitable business and legal structures that enable such projects to take advantage of tax-based federal incentives for wind power. This article discusses the limitations of such incentives in supporting farmer- or community-owned wind projects, describes four ownership structures that potentially overcome such limitations, and finally conducts comparative financial analysis on those four structures, using as an example a hypothetical 1.5 MW farmer-owned project located in the state of Oregon. We find that material differences in the competitiveness of each structure do exist, but that choosing the best structure for a given project will largely depend on the conditions at hand; e.g., the ability of the farmer(s) to utilize tax credits, preference for individual versus ''cooperative'' ownership, and the state and utility service territory in which the project will be located.

Bolinger, Mark; Wiser, Ryan

2004-11-11T23:59:59.000Z

287

Next Generation Short-Term Forecasting of Wind Power Overview of the ANEMOS Project.  

E-Print Network [OSTI]

of difficulties to the power system operation. This is due to the fluctuating nature of wind generation to the management of wind generation. Accurate and reliable forecasting systems of the wind production are widely

Boyer, Edmond

288

EA-1903: Kansas State University Zond Wind Energy Project, Manhattan, Kansas  

Broader source: Energy.gov [DOE]

This EA evaluates the potential environmental impacts of a proposal to use Congressional Directed funds to develop the Great Plains Wind Energy Consortium aimed at increasing the penetration of wind energy via distributed wind power generation throughout the region.

289

Feasibility analysis of coordinated offshore wind project development in the U.S.  

E-Print Network [OSTI]

Wind energy is one of the cleanest and most available resources in the world, and advancements in wind technology are making it more cost effective. Though wind power is rapidly developing in many regions, its variable ...

Zhang, Mimi Q

2008-01-01T23:59:59.000Z

290

NREL Improves System Efficiency and Increases Energy Transfer with Wind2H2 Project, Enabling Reduced Cost Electrolysis Production (Fact Sheet)  

SciTech Connect (OSTI)

This fact sheet describes NREL's accomplishments in improving energy transfer within a wind turbine-based hydrogen production system. Work was performed by the Wind2H2 Project team at the National Wind Technology Center in partnership with Xcel Energy.

Not Available

2010-11-01T23:59:59.000Z

291

MODEL REQUEST FOR PROPOSALS TO PROVIDE ENERGY AND OTHER ATTRIBUTES FROM AN OFFSHORE WIND POWER PROJECT  

SciTech Connect (OSTI)

This document provides a model RFP for new generation. The 'base' RFP is for a single-source offshore wind RFP. Required modifications are noted should a state or utility seek multi-source bids (e.g., all renewables or all sources). The model is premised on proposals meeting threshold requirements (e.g., a MW range of generating capacity and a range in terms of years), RFP issuer preferences (e.g., likelihood of commercial operation by a date certain, price certainty, and reduction in congestion), and evaluation criteria, along with a series of plans (e.g., site, environmental effects, construction, community outreach, interconnection, etc.). The Model RFP places the most weight on project risk (45%), followed by project economics (35%), and environmental and social considerations (20%). However, if a multi-source RFP is put forward, the sponsor would need to either add per-MWh technology-specific, life-cycle climate (CO2), environmental and health impact costs to bid prices under the 'Project Economics' category or it should increase the weight given to the 'Environmental and Social Considerations' category.

Jeremy Firestone; Dawn Kurtz Crompton

2011-10-22T23:59:59.000Z

292

Wind Turbine Safety and Function Test Report for the Mariah Windspire Wind Turbine  

SciTech Connect (OSTI)

This test was conducted as part of the U.S. Department of Energy's (DOE) Independent Testing project. This project was established to help reduce the barriers to wind energy expansion by providing independent testing results for small wind turbines (SWT). In total, five turbines were tested at the National Wind Technology Center (NWTC) as a part of this project. Safety and function testing is one of up to five tests performed on the turbines, including power performance, duration, noise, and power-quality tests. NWTC testing results provide manufacturers with reports that may be used to meet part of small wind turbine certification requirements. The test equipment includes a Mariah Windspire wind turbine mounted on a monopole tower. L&E Machine manufactured the turbine in the United States. The inverter was manufactured separately by Technology Driven Products in the United States. The system was installed by the NWTC site operations group with guidance and assistance from Mariah Power.

Huskey, A.; Bowen, A.; Jager, D.

2010-07-01T23:59:59.000Z

293

Data Collection for Current U.S. Wind Energy Projects: Component Costs, Financing, Operations, and Maintenance; January 2011 - September 2011  

SciTech Connect (OSTI)

DNV Renewables (USA) Inc. (DNV) used an Operations and Maintenance (O&M) Cost Model to evaluate ten distinct cost scenarios encountered under variations in wind turbine component failure rates. The analysis considers: (1) a Reference Scenario using the default part failure rates within the O&M Cost Model, (2) High Failure Rate Scenarios that increase the failure rates of three major components (blades, gearboxes, and generators) individually, (3) 100% Replacement Scenarios that model full replacement of these components over a 20 year operating life, and (4) Serial Failure Scenarios that model full replacement of blades, gearboxes, and generators in years 4 to 6 of the wind project. DNV selected these scenarios to represent a broad range of possible operational experiences. Also in this report, DNV summarizes the predominant financing arrangements used to develop wind energy projects over the past several years and provides summary data on various financial metrics describing those arrangements.

Martin-Tretton, M.; Reha, M.; Drunsic, M.; Keim, M.

2012-01-01T23:59:59.000Z

294

Wind Resource Assessment Report: Mille Lacs Indian Reservation, Minnesota  

SciTech Connect (OSTI)

The U.S. Environmental Protection Agency (EPA) launched the RE-Powering America's Land initiative to encourage development of renewable energy on potentially contaminated land and mine sites. EPA collaborated with the U.S. Department of Energy's (DOE's) National Renewable Energy Laboratory (NREL) and the Mille Lacs Band of Chippewa Indians to evaluate the wind resource and examine the feasibility of a wind project at a contaminated site located on the Mille Lacs Indian Reservation in Minnesota. The wind monitoring effort involved the installation of a 60-m met tower and the collection of 18 months of wind data at multiple heights above the ground. This report focuses on the wind resource assessment, the estimated energy production of wind turbines, and an assessment of the economic feasibility of a potential wind project sited this site.

Jimenez, A. C.

2013-12-01T23:59:59.000Z

295

Regional Field Verification -- Case Study of Small Wind Turbines in the Pacific Northwest: Preprint  

SciTech Connect (OSTI)

The U.S. Department of Energy/National Renewable Energy Laboratory's (DOE/NREL) Regional Field Verification (RFV) project supports industry needs for gaining initial field operation experience with small wind turbines and verify the performance, reliability, maintainability, and cost of small wind turbines in diverse applications. In addition, RFV aims to help expand opportunities for wind energy in new regions of the United States by tailoring projects to meet unique regional requirements and document and communicate the experience from these projects for the benefit of others in the wind power development community and rural utilities. Between August 2003 and August 2004, six turbines were installed at different host sites. At least one year of data has been collected from five of these sites. This paper describes DOE/NREL's RFV project, reviews some of the lessons learned with regards to small wind turbine installations, summarizes operations data from these sites, and provides preliminary BOS costs.

Sinclair, K.

2005-05-01T23:59:59.000Z

296

2009 Wind Technologies Market Report  

E-Print Network [OSTI]

AWEA). 2010b. AWEA Small Wind Turbine Global Market Survey,html David, A. 2009. Wind Turbines: Industry and Tradewhich new large-scale wind turbines were installed in 2009 (

Wiser, Ryan

2010-01-01T23:59:59.000Z

297

2011 Wind Technologies Market Report  

E-Print Network [OSTI]

Associates. 2010. SPP WITF Wind Integration Study. LittlePool. David, A. 2011. U.S. Wind Turbine Trade in a Changing2011. David, A. 2010. Impact of Wind Energy Installations on

Bolinger, Mark

2013-01-01T23:59:59.000Z

298

Wind Development on Tribal Lands  

SciTech Connect (OSTI)

Background: The Rosebud Sioux Tribe (RST) is located in south central South Dakota near the Nebraska border. The nearest community of size is Valentine, Nebraska. The RST is a recipient of several Department of Energy grants, written by Distributed Generation Systems, Inc. (Disgen), for the purposes of assessing the feasibility of its wind resource and subsequently to fund the development of the project. Disgen, as the contracting entity to the RST for this project, has completed all the pre-construction activities, with the exception of the power purchase agreement and interconnection agreement, to commence financing and construction of the project. The focus of this financing is to maximize the economic benefits to the RST while achieving commercially reasonable rates of return and fees for the other parties involved. Each of the development activities required and its status is discussed below. Land Resource: The Owl Feather War Bonnet 30 MW Wind Project is located on RST Tribal Trust Land of approximately 680 acres adjacent to the community of St. Francis, South Dakota. The RST Tribal Council has voted on several occasions for the development of this land for wind energy purposes, as has the District of St. Francis. Actual footprint of wind farm will be approx. 50 acres. Wind Resource Assessment: The wind data has been collected from the site since May 1, 2001 and continues to be collected and analyzed. The latest projections indicate a net capacity factor of 42% at a hub height of 80 meters. The data has been collected utilizing an NRG 9300 Data logger System with instrumentation installed at 30, 40 and 65 meters on an existing KINI radio tower. The long-term annual average wind speed at 65-meters above ground level is 18.2 mph (8.1 mps) and 18.7 mph (8.4 mps) at 80-meters agl. The wind resource is excellent and supports project financing.

Ken Haukaas; Dale Osborn; Belvin Pete

2008-01-18T23:59:59.000Z

299

The Political Economy of Wind Power in China  

E-Print Network [OSTI]

Building a national wind turbine industry: experiences fromthe world‘s largest manufacturer of wind turbines. 1 Inthe world‘s installed wind turbines were erected in China,

Swanson, Ryan Landon

2011-01-01T23:59:59.000Z

300

Net Zero Energy Installations (Presentation)  

SciTech Connect (OSTI)

A net zero energy installation (NZEI) is one that produces as much energy from on-site renewable sources as it consumes. NZEI assessment provides a systematic approach to energy projects.

Booth, S.

2012-05-01T23:59:59.000Z

Note: This page contains sample records for the topic "wind installation project" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


301

Reassessing Wind Potential Estimates for India: Economic and Policy Implications  

E-Print Network [OSTI]

Wind Project Performance,”WindPower 2010, pp. 10-11. ErnestWind Project Performance,”WindPower 2010, pp. 10- Table 6:

Phadke, Amol

2012-01-01T23:59:59.000Z

302

Lake Michigan Offshore Wind Feasibility Assessment  

SciTech Connect (OSTI)

The purpose of this project was to conduct the first comprehensive offshore wind assessment over Lake Michigan and to advance the body of knowledge needed to support future commercial wind energy development on the Great Lakes. The project involved evaluation and selection of emerging wind measurement technology and the permitting, installation and operation of the first mid-lake wind assessment meteorological (MET) facilities in Michigan’s Great Lakes. In addition, the project provided the first opportunity to deploy and field test floating LIDAR and Laser Wind Sensor (LWS) technology, and important research related equipment key to the sitting and permitting of future offshore wind energy development in accordance with public participation guidelines established by the Michigan Great Lakes Wind Council (GLOW). The project created opportunities for public dialogue and community education about offshore wind resource management and continued the dialogue to foster Great Lake wind resource utilization consistent with the focus of the GLOW Council. The technology proved to be effective, affordable, mobile, and the methods of data measurement accurate. The public benefited from a substantial increase in knowledge of the wind resources over Lake Michigan and gained insights about the potential environmental impacts of offshore wind turbine placements in the future. The unique first ever hub height wind resource assessment using LWS technology over water and development of related research data along with the permitting, sitting, and deployment of the WindSentinel MET buoy has captured public attention and has helped to increase awareness of the potential of future offshore wind energy development on the Great Lakes. Specifically, this project supported the acquisition and operation of a WindSentinel (WS) MET wind assessment buoy, and associated research for 549 days over multiple years at three locations on Lake Michigan. Four research objectives were defined for the project including to: 1) test and validate floating LIDAR technology; 2) collect and access offshore wind data; 3) detect and measure bird and bat activity over Lake Michigan; 4) conduct an over water sound propagation study; 5) prepare and offer a college course on offshore energy, and; 6) collect other environmental, bathometric, and atmospheric data. Desk-top research was performed to select anchorage sites and to secure permits to deploy the buoy. The project also collected and analyzed data essential to wind industry investment decision-making including: deploying highly mobile floating equipment to gather offshore wind data; correlating offshore wind data with conventional on-shore MET tower data; and performing studies that can contribute to the advancement and deployment of offshore wind technologies. Related activities included: • Siting, permitting, and deploying an offshore floating MET facility; • Validating the accuracy of floating LWS using near shoreline cup anemometer MET instruments; • Assessment of laser pulse technology (LIDAR) capability to establish hub height measurement of wind conditions at multiple locations on Lake Michigan; • Utilizing an extended-season (9-10 month) strategy to collect hub height wind data and weather conditions on Lake Michigan; • Investigation of technology best suited for wireless data transmission from distant offshore structures; • Conducting field-validated sound propagation study for a hypothetical offshore wind farm from shoreline locations; • Identifying the presence or absence of bird and bat species near wind assessment facilities; • Identifying the presence or absence of benthic and pelagic species near wind assessment facilities; All proposed project activities were completed with the following major findings: • Floating Laser Wind Sensors are capable of high quality measurement and recordings of wind resources. The WindSentinel presented no significant operational or statistical limitations in recording wind data technology at a at a high confidence level as compared to traditional an

Boezaart, Arnold [GVSU; Edmonson, James [GVSU; Standridge, Charles [GVSU; Pervez, Nahid [GVSU; Desai, Neel [University of Michigan; Williams, Bruce [University of Delaware; Clark, Aaron [GVSU; Zeitler, David [GVSU; Kendall, Scott [GVSU; Biddanda, Bopi [GVSU; Steinman, Alan [GVSU; Klatt, Brian [Michigan State University; Gehring, J. L. [Michigan State University; Walter, K. [Michigan State University; Nordman, Erik E. [GVSU

2014-06-30T23:59:59.000Z

303

Estimate of Extreme Wind, Wave, Surge, and Current Conditions Wilmington Canyon Integrated Design Project  

E-Print Network [OSTI]

1 Estimate of Extreme Wind, Wave, Surge, and Current Conditions for the Wilmington Canyon. In order to estimate loads during extreme wind and wave events, these events must be defined. The design. This paper does not treat wave spectral analysis, extreme wind shear, veer, clocking, turbulence intensity

Firestone, Jeremy

304

Observation Targeting for the Tehachapi Pass and Mid-Columbia Basin: WindSENSE Phase III Project Summary Report  

SciTech Connect (OSTI)

The overall goal of this multi-phased research project known as WindSENSE is to develop an observation system deployment strategy that would improve wind power generation forecasts. The objective of the deployment strategy is to produce the maximum benefit for 1- to 6-hour ahead forecasts of wind speed at hub-height ({approx}80 m). In Phase III of the project, the focus was on the Mid-Columbia Basin region which encompasses the Bonneville Power Administration (BPA) wind generation area shown in Figure 1 that includes Klondike, Stateline, and Hopkins Ridge wind plants. The typical hub height of a wind turbine is approximately 80-m above ground level (AGL). So it would seem that building meteorological towers in the region upwind of a wind generation facility would provide data necessary to improve the short-term forecasts for the 80-m AGL wind speed. However, this additional meteorological information typically does not significantly improve the accuracy of the 0- to 6-hour ahead wind power forecasts because processes controlling wind variability change from day-to-day and, at times, from hour-to-hour. It is also important to note that some processes causing significant changes in wind power production function principally in the vertical direction. These processes will not be detected by meteorological towers at off-site locations. For these reasons, it is quite challenging to determine the best type of sensors and deployment locations. To address the measurement deployment problem, Ensemble Sensitivity Analysis (ESA) was applied in the Phase I portion of the WindSENSE project. The ESA approach was initially designed to produce spatial fields that depict the sensitivity of a forecast metric to a set of prior state variables selected by the user. The best combination of variables and locations to improve the forecast was determined using the Multiple Observation Optimization Algorithm (MOOA) developed in Phase I. In Zack et al. (2010a), the ESA-MOOA approach was applied and evaluated for the wind plants in the Tehachapi Pass region for a period during the warm season. That research demonstrated that forecast sensitivity derived from the dataset was characterized by well-defined, localized patterns for a number of state variables such as the 80-m wind and the 25-m to 1-km temperature difference prior to the forecast time. The sensitivity patterns produced as part of the Tehachapi Pass study were coherent and consistent with the basic physical processes that drive wind patterns in the Tehachapi area. In Phase II of the WindSENSE project, the ESA-MOOA approach was extended and applied to the wind plants located in the Mid-Columbia Basin wind generation area of Washington-Oregon during the summer and to the Tehachapi Pass region during the winter. The objective of this study was to identify measurement locations and variables that have the greatest positive impact on the accuracy of wind forecasts in the 0- to 6-hour look-ahead periods for the two regions and to establish a higher level of confidence in ESA-MOOA for mesoscale applications. The detailed methodology and results are provided in separate technical reports listed in the publications section below. Ideally, the data assimilation scheme used in the Phase III experiments would have been based upon an ensemble Kalman filter (EnKF) that was similar to the ESA method used to diagnose the Mid-Columbia Basin sensitivity patterns in the previous studies. However, running an EnKF system at high resolution is impractical because of the very high computational cost. Thus, it was decided to use a three-dimensional variational (3DVAR) analysis scheme that is less computationally intensive. The objective of this task is to develop an observation system deployment strategy for the mid Columbia Basin (i.e. the BPA wind generation region) that is designed to produce the maximum benefit for 1- to 6-hour ahead forecasts of hub-height ({approx}80 m) wind speed with a focus on periods of large changes in wind speed. There are two tasks in the current project effort designed to validate

Hanley, D

2011-10-22T23:59:59.000Z

305

The Impact of Wind Power Projects on Residential Property Values in the United States: A Multi-Site Hedonic Analysis  

SciTech Connect (OSTI)

With wind energy expanding rapidly in the U.S. and abroad, and with an increasing number of communities considering wind power development nearby, there is an urgent need to empirically investigate common community concerns about wind project development. The concern that property values will be adversely affected by wind energy facilities is commonly put forth by stakeholders. Although this concern is not unreasonable, given property value impacts that have been found near high voltage transmission lines and other electric generation facilities, the impacts of wind energy facilities on residential property values had not previously been investigated thoroughly. The present research collected data on almost 7,500 sales of singlefamily homes situated within 10 miles of 24 existing wind facilities in nine different U.S. states. The conclusions of the study are drawn from eight different hedonic pricing models, as well as both repeat sales and sales volume models. The various analyses are strongly consistent in that none of the models uncovers conclusive evidence of the existence of any widespread property value impacts that might be present in communities surrounding wind energy facilities. Specifically, neither the view of the wind facilities nor the distance of the home to those facilities is found to have any consistent, measurable, and statistically significant effect on home sales prices. Although the analysis cannot dismiss the possibility that individual homes or small numbers of homes have been or could be negatively impacted, it finds that if these impacts do exist, they are either too small and/or too infrequent to result in any widespread, statistically observable impact.

Hoen, Ben; Wiser, Ryan; Cappers, Peter; Thayer, Mark; Sethi, Gautam

2009-12-02T23:59:59.000Z

306

EIS-0470: U.S. Department of Energy Loan Guarantee for the Cape Wind Energy Project on the Outer Continental Shelf off Massachusetts, Nantucket Sound  

Broader source: Energy.gov [DOE]

The DOE Loan Programs Office is proposing to offer a loan guarantee to Cape Wind Associates, LLC for the construction and start-up of the Cape Wind Energy Project in Nantucket Sound, offshore of Massachusetts. The proposed Cape Wind Energy Project would consist of up to 130, 3.6-MW turbine generators, in an area of roughly 25-square miles, and would include 12.5 miles of 115-kilovolt submarine transmission cable and an electric service platform. To inform DOE's decision regarding a loan guarantee, DOE adopted the Department of the Interior’s 2009 Final Cape Wind Energy Project EIS, in combination with two Cape Wind Environmental Assessments dated May 2010 and April 2011 (per 40 CFR 1506.4), as a DOE Final EIS (DOE/EIS-0470). The adequacy of the Department of the Interior final EIS adopted by DOE is the subject of a judicial action. This project is inactive.

307

Wind Generation on Winnebago Tribal Lands  

SciTech Connect (OSTI)

The Winnebago Wind Energy Study evaluated facility-scale, community-scale and commercial-scale wind development on Winnebago Tribal lands in northeastern Nebraska. The Winnebago Tribe of Nebraska has been pursuing wind development in various forms for nearly ten years. Wind monitoring utilizing loaned met towers from NREL took place during two different periods. From April 2001 to April 2002, a 20-meter met tower monitored wind data at the WinnaVegas Casino on the far eastern edge of the Winnebago reservation in Iowa. In late 2006, a 50-meter tower was installed, and subsequently monitored wind data at the WinnaVegas site from late 2006 through late 2008. Significant challenges with the NREL wind monitoring equipment limited the availability of valid data, but based on the available data, average wind speeds between 13.6 – 14.3 miles were indicated, reflecting a 2+/3- wind class. Based on the anticipated cost of energy produced by a WinnaVegas wind turbine, and the utility policies and rates in place at this time, a WinnaVegas wind project did not appear to make economic sense. However, if substantial grant funding were available for energy equipment at the casino site, and if either Woodbury REC backup rates were lower, or NIPCO was willing to pay more for wind power, a WinnaVegas wind project could be feasible. With funding remaining in the DOE-funded project budget,a number of other possible wind project locations on the Winnebago reservation were considered. in early 2009, a NPPD-owned met tower was installed at a site identified in the study pursuant to a verbal agreement with NPPD which provided for power from any ultimately developed project on the Western Winnebago site to be sold to NPPD. Results from the first seven months of wind monitoring at the Western Winnebago site were as expected at just over 7 meters per second at 50-meter tower height, reflecting Class 4 wind speeds, adequate for commercial development. If wind data collected in the remaining months of the twelve-month collection period is consistent with that collected in the first seven months, the Western Winnebago site may present an interesting opportunity for Winnebago. Given the distance to nearby substations, and high cost of interconnection at higher voltage transmission lines, Winnebago would likely need to be part of a larger project in order to reduce power costs to more attractive levels. Another alternative would be to pursue grant funding for a portion of development or equipment costs, which would also help reduce the cost of power produced. The NREL tower from the WinnaVegas site was taken down in late 2008, re-instrumented and installation attempted on the Thunderway site south of the Winnebago community. Based on projected wind speeds, current equipment costs, and the project’s proximity to substations for possible interconnection, a Thunderway community-scale wind project could also be feasible.

Multiple

2009-09-30T23:59:59.000Z

308

Jay Apt, Paulina Jaramillo, and Stephen Rose Carnegie Mellon Electricity Industry Center (CEIC)'s RenewElec Project  

E-Print Network [OSTI]

electric generators. 9 · Solar: ­ Photovoltaic (solar panels) ­ Solar thermal (concentrated solar power at 15-20 cents per kWh. · If installed prices fall 40%, PV can match the current price of wind) supporting wind projects and the investment tax credits (ITC) supporting solar projects. Electric Generation

McGaughey, Alan

309

Wind Energy Management System Integration Project Incorporating Wind Generation and Load Forecast Uncertainties into Power Grid Operations  

SciTech Connect (OSTI)

The power system balancing process, which includes the scheduling, real time dispatch (load following) and regulation processes, is traditionally based on deterministic models. Since the conventional generation needs time to be committed and dispatched to a desired megawatt level, the scheduling and load following processes use load and wind power production forecasts to achieve future balance between the conventional generation and energy storage on the one side, and system load, intermittent resources (such as wind and solar generation) and scheduled interchange on the other side. Although in real life the forecasting procedures imply some uncertainty around the load and wind forecasts (caused by forecast errors), only their mean values are actually used in the generation dispatch and commitment procedures. Since the actual load and intermittent generation can deviate from their forecasts, it becomes increasingly unclear (especially, with the increasing penetration of renewable resources) whether the system would be actually able to meet the conventional generation requirements within the look-ahead horizon, what the additional balancing efforts would be needed as we get closer to the real time, and what additional costs would be incurred by those needs. In order to improve the system control performance characteristics, maintain system reliability, and minimize expenses related to the system balancing functions, it becomes necessary to incorporate the predicted uncertainty ranges into the scheduling, load following, and, in some extent, into the regulation processes. It is also important to address the uncertainty problem comprehensively, by including all sources of uncertainty (load, intermittent generation, generators’ forced outages, etc.) into consideration. All aspects of uncertainty such as the imbalance size (which is the same as capacity needed to mitigate the imbalance) and generation ramping requirement must be taken into account. The latter unique features make this work a significant step forward toward the objective of incorporating of wind, solar, load, and other uncertainties into power system operations. In this report, a new methodology to predict the uncertainty ranges for the required balancing capacity, ramping capability and ramp duration is presented. Uncertainties created by system load forecast errors, wind and solar forecast errors, generation forced outages are taken into account. The uncertainty ranges are evaluated for different confidence levels of having the actual generation requirements within the corresponding limits. The methodology helps to identify system balancing reserve requirement based on a desired system performance levels, identify system “breaking points”, where the generation system becomes unable to follow the generation requirement curve with the user-specified probability level, and determine the time remaining to these potential events. The approach includes three stages: statistical and actual data acquisition, statistical analysis of retrospective information, and prediction of future grid balancing requirements for specified time horizons and confidence intervals. Assessment of the capacity and ramping requirements is performed using a specially developed probabilistic algorithm based on a histogram analysis incorporating all sources of uncertainty and parameters of a continuous (wind forecast and load forecast errors) and discrete (forced generator outages and failures to start up) nature. Preliminary simulations using California Independent System Operator (California ISO) real life data have shown the effectiveness of the proposed approach. A tool developed based on the new methodology described in this report will be integrated with the California ISO systems. Contractual work is currently in place to integrate the tool with the AREVA EMS system.

Makarov, Yuri V.; Huang, Zhenyu; Etingov, Pavel V.; Ma, Jian; Guttromson, Ross T.; Subbarao, Krishnappa; Chakrabarti, Bhujanga B.

2010-09-01T23:59:59.000Z

310

Statewide Air Emissions Calculations from Energy Efficiency, Wind and Renewables  

E-Print Network [OSTI]

AND RENEWABLES May 2008 Energy Systems Laboratory p. 2 Electricity Production from Wind Farms (2002-2007) ? Installed capacity of wind turbines was 3,026 MW (March 2007). ? Announced new project capacity is 3,125 MW by 2010. ? Lowest electricity period... Speed (MPH) T u rb in e P o w er (k W h /h ) Hourly electricity produced vs on- site wind data acceptable for hourly modeling. Issue: hourly on-site data not always available. Calculating NOx Reductions from Wind Farms Energy...

Haberl, J.; Yazdani, B.; Culp, C.

311

Factors driving wind power development in the United States  

SciTech Connect (OSTI)

In the United States, there has been substantial recent growth in wind energy generating capacity, with growth averaging 24 percent annually during the past five years. About 1,700 MW of wind energy capacity was installed in 2001, while another 410 MW became operational in 2002. This year (2003) shows promise of significant growth with more than 1,500 MW planned. With this growth, an increasing number of states are experiencing investment in wind energy projects. Wind installations currently exist in about half of all U.S. states. This paper explores the key factors at play in the states that have achieved a substantial amount of wind energy investment. Some of the factors that are examined include policy drivers, such as renewable portfolio standards (RPS), federal and state financial incentives, and integrated resource planning; as well as market drivers, such as consumer demand for green power, natural gas price volatility, and wholesale market rules.

Bird, Lori A.; Parsons, Brian; Gagliano, Troy; Brown, Matthew H.; Wiser, Ryan H.; Bolinger, Mark

2003-05-15T23:59:59.000Z

312

Wind-To-Hydrogen Project: Operational Experience, Performance Testing, and Systems Integration  

SciTech Connect (OSTI)

The Wind2H2 system is fully functional and continues to gather performance data. In this report, specifications of the Wind2H2 equipment (electrolyzers, compressor, hydrogen storage tanks, and the hydrogen fueled generator) are summarized. System operational experience and lessons learned are discussed. Valuable operational experience is shared through running, testing, daily operations, and troubleshooting the Wind2H2 system and equipment errors are being logged to help evaluate the reliability of the system.

Harrison, K. W.; Martin, G. D.; Ramsden, T. G.; Kramer, W. E.; Novachek, F. J.

2009-03-01T23:59:59.000Z

313

Wind power and Wind power and  

E-Print Network [OSTI]

Wind power and the CDM #12; Wind power and the CDM Emerging practices in developing wind power 2005 Jyoti P. Painuly, Niels-Erik Clausen, Jørgen Fenhann, Sami Kamel and Romeo Pacudan #12; WIND POWER AND THE CDM Emerging practices in developing wind power projects for the Clean Development Mechanism Energy

314

Meta-analysis of net energy return for wind power systems Ida Kubiszewski a,*, Cutler J. Cleveland b  

E-Print Network [OSTI]

in the global annual installed wind power capacity graph created by the Global Wind Energy Council (Fig. 1. Global electricity use is projected to double from 2005 to 2030, with its share of final energy the comparison of the electricity generated to the amount of primary energy used in the manufac- ture, transport

Vermont, University of

315

Eastern Wind Integration and Transmission Study: Executive Summary and Project Overview (Revised)  

SciTech Connect (OSTI)

EWITS was designed to answer questions about technical issues related to a 20% wind energy scenario for electric demand in the Eastern Interconnection.

EnerNex Corporation; The Midwest ISO; Ventyx

2011-02-01T23:59:59.000Z

316

Aleutian Pribilof Islands Wind Energy Feasibility Study  

SciTech Connect (OSTI)

Under this project, the Aleutian Pribilof Islands Association (APIA) conducted wind feasibility studies for Adak, False Pass, Nikolski, Sand Point and St. George. The DOE funds were also be used to continue APIA's role as project coordinator, to expand the communication network quality between all participants and with other wind interest groups in the state and to provide continued education and training opportunities for regional participants. This DOE project began 09/01/2005. We completed the economic and technical feasibility studies for Adak. These were funded by the Alaska Energy Authority. Both wind and hydro appear to be viable renewable energy options for Adak. In False Pass the wind resource is generally good but the site has high turbulence. This would require special care with turbine selection and operations. False Pass may be more suitable for a tidal project. APIA is funded to complete a False Pass tidal feasibility study in 2012. Nikolski has superb potential for wind power development with Class 7 wind power density, moderate wind shear, bi-directional winds and low turbulence. APIA secured nearly $1M from the United States Department of Agriculture Rural Utilities Service Assistance to Rural Communities with Extremely High Energy Costs to install a 65kW wind turbine. The measured average power density and wind speed at Sand Point measured at 20m (66ft), are 424 W/m2 and 6.7 m/s (14.9 mph) respectively. Two 500kW Vestas turbines were installed and when fully integrated in 2012 are expected to provide a cost effective and clean source of electricity, reduce overall diesel fuel consumption estimated at 130,000 gallons/year and decrease air emissions associated with the consumption of diesel fuel. St. George Island has a Class 7 wind resource, which is superior for wind power development. The current strategy, led by Alaska Energy Authority, is to upgrade the St. George electrical distribution system and power plant. Avian studies in Nikolski and Sand Point have allowed for proper wind turbine siting without killing birds, especially endangered species and bald eagles. APIA continues coordinating and looking for funding opportunities for regional renewable energy projects. An important goal for APIA has been, and will continue to be, to involve community members with renewable energy projects and energy conservation efforts.

Bruce A. Wright

2012-03-27T23:59:59.000Z

317

EA-1939: Reese Technology Center Wind and Battery Integration Project, Lubbock County, TX  

Broader source: Energy.gov [DOE]

This EA will evaluate the potential environmental impacts of a proposal by the Center for Commercialization of Electric Technologies to demonstrate battery technology integration with wind generated electricity by deploying and evaluating utility-scale lithium battery technology to improve grid performance and thereby aid in the integration of wind generation into the local electricity supply.

318

TMCC WIND RESOURCE ASSESSMENT  

SciTech Connect (OSTI)

North Dakota has an outstanding resource--providing more available wind for development than any other state. According to U.S. Department of Energy (DOE) studies, North Dakota alone has enough energy from good wind areas, those of wind power Class 4 and higher, to supply 36% of the 1990 electricity consumption of the entire lower 48 states. At present, no more than a handful of wind turbines in the 60- to 100-kilowatt (kW) range are operating in the state. The first two utility-scale turbines were installed in North Dakota as part of a green pricing program, one in early 2002 and the second in July 2002. Both turbines are 900-kW wind turbines. Two more wind turbines are scheduled for installation by another utility later in 2002. Several reasons are evident for the lack of wind development. One primary reason is that North Dakota has more lignite coal than any other state. A number of relatively new minemouth power plants are operating in the state, resulting in an abundance of low-cost electricity. In 1998, North Dakota generated approximately 8.2 million megawatt-hours (MWh) of electricity, largely from coal-fired plants. Sales to North Dakota consumers totaled only 4.5 million MWh. In addition, the average retail cost of electricity in North Dakota was 5.7 cents per kWh in 1998. As a result of this surplus and the relatively low retail cost of service, North Dakota is a net exporter of electricity, selling approximately 50% to 60% of the electricity produced in North Dakota to markets outside the state. Keeping in mind that new electrical generation will be considered an export commodity to be sold outside the state, the transmission grid that serves to export electricity from North Dakota is at or close to its ability to serve new capacity. The markets for these resources are outside the state, and transmission access to the markets is a necessary condition for any large project. At the present time, technical assessments of the transmission network indicate that the ability to add and carry wind capacity outside of the state is limited. Identifying markets, securing long-term contracts, and obtaining a transmission path to export the power are all major steps that must be taken to develop new projects in North Dakota.

Turtle Mountain Community College

2003-12-30T23:59:59.000Z

319

Renewable Energy Assessment Methodology for Japanese OCONUS Army Installations  

SciTech Connect (OSTI)

Since 2005, Pacific Northwest National Laboratory (PNNL) has been asked by Installation Management Command (IMCOM) to conduct strategic assessments at selected US Army installations of the potential use of renewable energy resources, including solar, wind, geothermal, biomass, waste, and ground source heat pumps (GSHPs). IMCOM has the same economic, security, and legal drivers to develop alternative, renewable energy resources overseas as it has for installations located in the US. The approach for continental US (CONUS) studies has been to use known, US-based renewable resource characterizations and information sources coupled with local, site-specific sources and interviews. However, the extent to which this sort of data might be available for outside the continental US (OCONUS) sites was unknown. An assessment at Camp Zama, Japan was completed as a trial to test the applicability of the CONUS methodology at OCONUS installations. It was found that, with some help from Camp Zama personnel in translating and locating a few Japanese sources, there was relatively little difficulty in finding sources that should provide a solid basis for conducting an assessment of comparable depth to those conducted for US installations. Project implementation will likely be more of a challenge, but the feasibility analysis will be able to use the same basic steps, with some adjusted inputs, as PNNL’s established renewable resource assessment methodology.

Solana, Amy E.; Horner, Jacob A.; Russo, Bryan J.; Gorrissen, Willy J.; Kora, Angela R.; Weimar, Mark R.; Hand, James R.; Orrell, Alice C.; Williamson, Jennifer L.

2010-08-30T23:59:59.000Z

320

Wind Farm Monitoring at Lake Benton II Wind Power Project - Equipment Only: Cooperative Research and Development Final Report, CRADA Number CRD-08-275  

SciTech Connect (OSTI)

Long-term, high-resolution wind turbine and wind power plant output data are important to assess the impact of wind power on grid operations and to derive meaningful statistics for better understanding of the variability nature of wind power. These data are used for many research and analyses activities consistent with the Wind Program mission: Establish a database of long-term wind power similar to other long-term renewable energy resource databases (e.g. solar irradiance and hydrology); produce meaningful statistics about long-term variation of wind power, spatial and temporal diversity of wind power, and the correlation of wind power, other renewable energy resources, and utility load; provide high quality, realistic wind power output data for system operations impact studies and wind plant and forecasting model validation.

Gevorgian, V.

2014-06-01T23:59:59.000Z

Note: This page contains sample records for the topic "wind installation project" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


321

The Impact of Wind Power Projects on Residential Property Values in the United States: A Multi-Site Hedonic Analysis  

E-Print Network [OSTI]

2002) Economic Impacts of Wind Power in Kittitas County, WA.about Large Offshore Wind Power: Underlying Factors. EnergyOpinion on Offshore Wind Power - Interim Report. University

Hoen, Ben

2010-01-01T23:59:59.000Z

322

Statewide Air Emissions Calculations from Wind and Other Renewables. Summary Report.  

E-Print Network [OSTI]

, the capacity of installed wind turbine totals was 12,372 MW with another 7,582 MW announced for new projects by 2016. Figure 1-1 shows the growth pattern of the installed wind power capacity in Texas and their power generation in the ERCOT region from...ESL-TR-14-07-01 STATEWIDE AIR EMISSIONS CALCULATIONS FROM WIND AND OTHER RENEWABLES SUMMARY REPORT A Report to the Texas Commission on Environmental Quality For the Period January 2013 – December 2013 Jeff...

Haberl, J.S.; Baltazar, J.C.; Yazdani, B.; Claridge, D.; Do, S.L.; Oh, S.

323

Shallow Water Offshore Wind Optimization for the Great Lakes (DE-FOA-0000415) Final Report: A Conceptual Design for Wind Energy in the Great Lakes  

SciTech Connect (OSTI)

The primary objective of the project was to develop a innovative Gravity Base Foundation (GBF) concepts, including fabrication yards, launching systems and installation equipment, for a 500MW utility scale project in the Great Lakes (Lake Erie). The goal was to lower the LCOE by 25%. The project was the first to investigate an offshore wind project in the Great Lakes and it has furthered the body of knowledge for foundations and installation methods within Lake Erie. The project collected historical geotechnical information for Lake Erie and also used recently obtained data from the LEEDCo Icebreaker Project (FOA DE-EE0005989) geotechnical program to develop the conceptual designs. Using these data-sets, the project developed design wind and wave conditions from actual buoy data in order to develop a concept that would de-risk a project using a GBF. These wind and wave conditions were then utilized to create reference designs for various foundations specific to installation in Lake Erie. A project partner on the project (Weeks Marine) provided input for construction and costing the GBF fabrication and installation. By having a marine contractor with experience with large marine projects as part of the team provides credibility to the LCOE developed by NREL. NREL then utilized the design and construction costing information as part of the LCOE model. The report summarizes the findings of the project. • Developed a cost model and “baseline” LCOE • Documented Site Conditions within Lake Erie • Developed Fabrication, Installation and Foundations Innovative Concept Designs • Evaluated LCOE Impact of Innovations • Developed Assembly line “Rail System” for GBF Construction and Staging • Developed Transit-Inspired Foundation Designs which incorporated: Semi-Floating Transit with Supplemental Pontoons Barge mounted Winch System • Developed GBF with “Penetration Skirt” • Developed Integrated GBF with Turbine Tower • Developed Turbine, Plant Layout and O&M Strategies The report details lowering LCOE by 22.3% and identified additional strategies that could further lower LCOE when building an utility scale wind farm in the Great Lakes.

Wissemann, Chris [Freshwater Wind I, LLC] [Freshwater Wind I, LLC; White, Stanley M [Stanley White Engineering LLC] [Stanley White Engineering LLC

2014-02-28T23:59:59.000Z

324

Live Webinar on the Funding Opportunity for Wind Forecasting Improvement Project in Complex Terrain  

Broader source: Energy.gov [DOE]

On April 21, 2014 from 3:00 to 5:00 PM EST the Wind Program will hold a live webinar to provide information to potential applicants for this Funding Opportunity Announcement. There is no cost to...

325

Wind Turbine Generator System Duration Test Report for the Gaia-Wind 11 kW Wind Turbine  

SciTech Connect (OSTI)

This test was conducted as part of the U.S. Department of Energy's (DOE) Independent Testing project. This project was established to help reduce the barriers of wind energy expansion by providing independent testing results for small turbines. In total, five turbines are being tested at the National Renewable Energy Laboratory's (NRELs) National Wind Technology Center (NWTC) as a part of this project. Duration testing is one of up to five tests that may be performed on the turbines, including power performance, safety and function, noise, and power quality tests. The results of the testing will provide the manufacturers with reports that may be used for small wind turbine certification. The test equipment includes a Gaia-Wind 11 kW wind turbine mounted on an 18 m monopole tower. Gaia-Wind Ltd. manufactured the turbine in Denmark, although the company is based in Scotland. The system was installed by the NWTC Site Operations group with guidance and assistance from Gaia-Wind.

Huskey, A.; Bowen, A.; Jager, D.

2010-09-01T23:59:59.000Z

326

Revealing the Hidden Value that the Federal Investment Tax Credit and Treasury Cash Grant Provide To Community Wind Projects  

E-Print Network [OSTI]

it realize the full potential of wind’s temporary ability tobase, community wind has the potential to tap into aof community wind belies its potential significance to the

Bolinger, Mark A.

2011-01-01T23:59:59.000Z

327

Wind Integration, Transmission, and Resource Assessment andCharacteri...  

Energy Savers [EERE]

& Publications Wind Integration, Transmission, and Resource Assessment and Characterization Projects Offshore Wind Projects Testing, Manufacturing, and Component Development...

328

Diffuser Augmented Wind Turbine Analysis Code  

E-Print Network [OSTI]

, it is necessary to develop innovative wind capturing devices that can produce energy in the locations where large conventional horizontal axis wind turbines (HAWTs) are too impractical to install and operate. A diffuser augmented wind turbine (DAWT) is one...

Carroll, Jonathan

2014-05-31T23:59:59.000Z

329

Community Wind Benefits (Fact Sheet)  

SciTech Connect (OSTI)

This fact sheet explores the benefits of community wind projects, including citations to published research.

Not Available

2012-11-01T23:59:59.000Z

330

IEA Wind Task 26 - Multi-national Case Study of the Financial Cost of Wind Energy; Work Package 1 Final Report  

SciTech Connect (OSTI)

The lifetime cost of wind energy is comprised of a number of components including the investment cost, operation and maintenance costs, financing costs, and annual energy production. Accurate representation of these cost streams is critical in estimating a wind plant's cost of energy. Some of these cost streams will vary over the life of a given project. From the outset of project development, investors in wind energy have relatively certain knowledge of the plant's lifetime cost of wind energy. This is because a wind energy project's installed costs and mean wind speed are known early on, and wind generation generally has low variable operation and maintenance costs, zero fuel cost, and no carbon emissions cost. Despite these inherent characteristics, there are wide variations in the cost of wind energy internationally, which is the focus of this report. Using a multinational case-study approach, this work seeks to understand the sources of wind energy cost differences among seven countries under International Energy Agency (IEA) Wind Task 26 - Cost of Wind Energy. The participating countries in this study include Denmark, Germany, the Netherlands, Spain, Sweden, Switzerland, and the United States. Due to data availability, onshore wind energy is the primary focus of this study, though a small sample of reported offshore cost data is also included.

Schwabe, P.; Lensink, S.; Hand, M.

2011-03-01T23:59:59.000Z

331

Wind Energy Sales Tax Exemption  

Broader source: Energy.gov [DOE]

Wind-energy conversion systems used as electric-power sources are exempt from Minnesota's sales tax. Materials used to manufacture, install, construct, repair or replace wind-energy systems also...

332

Commercial Scale Wind Incentive Program  

Broader source: Energy.gov [DOE]

Energy Trust of Oregon’s Commercial Scale Wind offering provides resources and cash incentives to help communities, businesses land owners, and government entities install wind turbine systems up...

333

Economic Impacts of Wind Turbine Development in U.S. Counties  

E-Print Network [OSTI]

15 percent)). Cumulative wind turbine capacity installed inper capita income of wind turbine development (measured inour sample, cumulative wind turbine capacity on a per person

J., Brown

2012-01-01T23:59:59.000Z

334

E-Print Network 3.0 - american large wind Sample Search Results  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

installation capacity, growth rate, costs of wind power, small versus large wind turbines, and onshore ver- sus... strategies. Many large wind power generation facilities...

335

Perceived Socioeconomic Impacts of Wind Energy in West Texas  

E-Print Network [OSTI]

Wind power is a fast growing alternative energy source. Since 2000, wind energy capacity has increased 24 percent per year with Texas leading the U.S. in installed wind turbine capacity. Most socioeconomic research in wind energy has focused...

Persons, Nicole D.

2010-07-14T23:59:59.000Z

336

Value Capture in the Global Wind Energy Industry  

E-Print Network [OSTI]

Wind Energy Council, 2011 New installation in 2010 The wind industry value chain Wind turbineWind Energy Council (GWEC, 2011) domestic content in U.S. -deployed turbines

Dedrick, Jason; Kraemer, Kenneth L.

2011-01-01T23:59:59.000Z

337

Distributed Wind Case Study: Cross Island Farms, Wellesley Island, New York (Fact Sheet)  

SciTech Connect (OSTI)

Installing a small wind turbine can sometimes be difficult due to economics, zoning issues, public perception, and other barriers. Persistence and innovation, however, can result in a successful installation. Dani Baker and David Belding own Cross Island Farms, a 102-acre certified organic farm on Wellesley Island in northern New York. In 2009, they took their interest in renewable energy to the next level by researching the logistics of a small wind installation on their land to make their farm even more sustainable. Their renewable energy system consists of one 10-kilowatt Bergey Excel wind turbine, a solar array, and a propane-powered generator. This case study describes funding for the project and the installation process.

Not Available

2012-04-01T23:59:59.000Z

338

Low Wind Speed Turbine Project Phase II: The Application of Medium-Voltage Electrical Apparatus to the Class of Variable Speed Multi-Megawatt Low Wind Speed Turbines; 15 June 2004--30 April 2005  

SciTech Connect (OSTI)

Kilowatt ratings of modern wind turbines have progressed rapidly from 50 kW to 1,800 kW over the past 25 years, with 3.0- to 7.5-MW turbines expected in the next 5 years. The premise of this study is simple: The rapid growth of wind turbine power ratings and the corresponding growth in turbine electrical generation systems and associated controls are quickly making low-voltage (LV) electrical design approaches cost-ineffective. This report provides design detail and compares the cost of energy (COE) between commercial LV-class wind power machines and emerging medium-voltage (MV)-class multi-megawatt wind technology. The key finding is that a 2.5% reduction in the COE can be achieved by moving from LV to MV systems. This is a conservative estimate, with a 3% to 3.5% reduction believed to be attainable once purchase orders to support a 250-turbine/year production level are placed. This evaluation considers capital costs as well as installation, maintenance, and training requirements for wind turbine maintenance personnel. Subsystems investigated include the generator, pendant cables, variable-speed converter, and padmount transformer with switchgear. Both current-source and voltage-source converter/inverter MV topologies are compared against their low-voltage, voltage-source counterparts at the 3.0-, 5.0-, and 7.5-MW levels.

Erdman, W.; Behnke, M.

2005-11-01T23:59:59.000Z

339

Developer Installed Treatment Plants  

E-Print Network [OSTI]

-installed treatment plants. These treatment plants are more commonly known as package wastewater treatment plants. 1

unknown authors

2008-01-01T23:59:59.000Z

340

20th Century Reanalysis Project Ensemble Gateway: 56 Estimates of World Temperature, Pressure, Humidity, and Wind, 1871-2010  

DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

This site provides data from the 20th Century Reanalysis Project, offering temperature, pressure, humidity, and wind predictions in 200 km sections all around the earth from 1871 to 2010, every 6 hours, based on historical data. The ensemble mean and standard deviation for each value were calculated over a set of 56 simulations. Data for each of the 56 ensemble members are included here. The dataset consists of files in netCDF 4 format that are available for download from the National Energy Research. The goal of the 20th Century Reanalysis Project is to use a Kalman filter-based technique to produce a global trophospheric circulation dataset at four-times-daily resolution back to 1871. The only dataset available for the early 20th century consists of error-ridden hand-drawn analyses of the mean sea level pressure field over the Northern Hemisphere. Modern data assimilation systems have the potential to improve upon these maps, but prior to 1948, few digitized upper-air sounding observations are available for such a reanalysis. The global tropospheric circulation dataset will provide an important validation check on the climate models used to make 21st century climate projections....[copied from http://portal.nersc.gov/project/20C_Reanalysis/

Note: This page contains sample records for the topic "wind installation project" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


341

EA-2004: Seneca Nation of Indians Wind Turbine Project, Cattaraugus Territory, Chautauqua County, Irving, New York  

Broader source: Energy.gov [DOE]

The U.S. Department of Energy (DOE) is proposing to authorize the expenditure of federal funding to the Seneca Nation of Indians, to design, permit, and construct a 1.7-megawatt wind turbine on Tribal common lands in the Cattaraugus Territory, New York. The turbine would be located near Lucky Lane and Gil Lay Arena. An Environmental Assessment (EA) will be prepared by DOE pursuant to the requirements of the National Environmental Policy Act (NEPA).

342

High Wind Penetration Impact on U.S. Wind Manufacturing Capacity and Critical Resources  

SciTech Connect (OSTI)

This study used two different models to analyze a number of alternative scenarios of annual wind power capacity expansion to better understand the impacts of high levels of wind generated electricity production on wind energy manufacturing and installation rates.

Laxson, A.; Hand, M. M.; Blair, N.

2006-10-01T23:59:59.000Z

343

Equilibrium pricing in electricity markets with wind power.  

E-Print Network [OSTI]

?? Estimates from the World Wind Energy Association assert that world total wind power installed capacity climbed from 18 Gigawatt (GW) to 152 GW from… (more)

Rubin, Ofir David

2010-01-01T23:59:59.000Z

344

Equilibrium pricing in electricity markets with wind power.  

E-Print Network [OSTI]

??Estimates from the World Wind Energy Association assert that world total wind power installed capacity climbed from 18 Gigawatt (GW) to 152 GW from 2000… (more)

Rubin, Ofir David

2010-01-01T23:59:59.000Z

345

Winning the Future: Chaninik Wind Group Pursues Innovative Solutions...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

training in Kwigillingok, AK. Photo from Intelligent Energy Systems, NREL 29205 Wind turbines installed in Kwigillingok, Alaska, as part of the Chaninik Wind Group...

346

The Political Economy of Wind Power in China  

E-Print Network [OSTI]

solar panels are too expensive to install domestically, China‘China,? as Chinese wind resources are abundant and wind power is cheaper than solar

Swanson, Ryan Landon

2011-01-01T23:59:59.000Z

347

1.5 MW turbine installation at NREL's NWTC on Aug. 21  

ScienceCinema (OSTI)

Generating 20 percent of the nation's electricity from clean wind resources will require more and bigger wind turbines. NREL is installing two large wind turbines at the National Wind Technology Center to examine some of the industry's largest machines and address issues to expand wind energy on a commercial scale.

None

2013-05-29T23:59:59.000Z

348

Surpassing Expectations: State of the U.S. Wind Power Market  

E-Print Network [OSTI]

The Annual Report on U.S. Wind Power Installation, Cost, andState of the U.S. Wind Power Market Intro Sidebar: The U.S.Annual Report on U.S. Wind Power Installation, Cost, and

Bolinger, Mark A

2009-01-01T23:59:59.000Z

349

Surpassing Expectations: State of the U.S. Wind Power Market  

E-Print Network [OSTI]

States, new large-scale wind turbines were installed in 18The average size of wind turbines installed in the Uniteddominant manufacturer of wind turbines supplying the U.S.

Bolinger, Mark A

2009-01-01T23:59:59.000Z

350

Solar and Wind Rights  

Broader source: Energy.gov [DOE]

Wisconsin has several laws that protect a resident's right to install and operate a solar or wind energy system. These laws cover zoning restrictions by local governments, private land use...

351

County Wind Ordinance Standards  

Broader source: Energy.gov [DOE]

[http://www.leginfo.ca.gov/pub/09-10/bill/asm/ab_0001-0050/ab_45_bill_200... Assembly Bill 45] of 2009 authorized counties to adopt ordinances to provide for the installation of small wind systems ...

352

Structural health monitoring of wind turbine blades : SE 265 Final Project.  

SciTech Connect (OSTI)

ACME Wind Turbine Corporation has contacted our dynamic analysis firm regarding structural health monitoring of their wind turbine blades. ACME has had several failures in previous years. Examples are shown in Figure 1. These failures have resulted in economic loss for the company due to down time of the turbines (lost revenue) and repair costs. Blade failures can occur in several modes, which may depend on the type of construction and load history. Cracking and delamination are some typical modes of blade failure. ACME warranties its turbines and wishes to decrease the number of blade failures they have to repair and replace. The company wishes to implement a real time structural health monitoring system in order to better understand when blade replacement is necessary. Because of warranty costs incurred to date, ACME is interested in either changing the warranty period for the blades in question or predicting imminent failure before it occurs. ACME's current practice is to increase the number of physical inspections when blades are approaching the end of their fatigue lives. Implementation of an in situ monitoring system would eliminate or greatly reduce the need for such physical inspections. Another benefit of such a monitoring system is that the life of any given component could be extended since real conditions would be monitored. The SHM system designed for ACME must be able to operate while the wind turbine is in service. This means that wireless communication options will likely be implemented. Because blade failures occur due to cyclic stresses in the blade material, the sensing system will focus on monitoring strain at various points.

Barkley, W. C. (Walter C.); Jacobs, Laura D.; Rutherford, A. C. (Amanda C.); Puckett, Anthony

2006-03-23T23:59:59.000Z

353

EA-2004: Seneca Nation of Indians Wind Turbine Project, Cattaraugus Territory, New York  

Broader source: Energy.gov [DOE]

Draft EA: Comment Period Ends 02/04/15The U.S. Department of Energy (DOE) is proposing to authorize the expenditure of federal funding to the Seneca Nation of Indians, to design, permit, and construct a 1.7-megawatt wind turbine on Tribal common lands in the Cattaraugus Territory, New York. The turbine would be located near Lucky Lane and Gil Lay Arena. An Environmental Assessment (EA) will be prepared by DOE pursuant to the requirements of the National Environmental Policy Act (NEPA).

354

Advanced Wind Energy Projects Test Facility Moving to Texas Tech University  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE:Year in Review: Top Five EERE Blog Posts1-034 Advance| Department of Energy Advanced Wind

355

UMore Park Wind Turbine Project Loggerhead Shrike Survey, DOE/EA-1791 (June 2010)  

Broader source: Energy.gov [DOE]

The project area is located in a region of the state where Loggerhead Shrikes (Lanius ludovicianus) are consistently observed and known to be nesting. With populations steadily declining throughout...

356

Photovoltaic Installations at Williams College Ruth Aronoff  

E-Print Network [OSTI]

generation using solar power. Photovoltaic (PV) panel installations are a simple way for the College facilities, it is now evaluating in detail the environmental impact of these actions. In addition to making1 Photovoltaic Installations at Williams College Ruth Aronoff Williams Luce Project SUMMARY

Aalberts, Daniel P.

357

Map: Projected Growth of the Wind Industry From Now Until 2050 | Department  

Energy Savers [EERE]

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious RankCombustion |Energy UsageAUDITVehicles »Exchange Visitorsfor ShadeProject Manhattan Project Manhattan|of

358

Mid-Atlantic Wind - Overcoming the Challenges  

SciTech Connect (OSTI)

This study, supported by the US Department of Energy, Wind Powering America Program, Maryland Department of Natural Resources and Chesapeake Bay Foundation, analyzed barriers to wind energy development in the Mid-Atlantic region along with options for overcoming or mitigating them. The Mid-Atlantic States including Delaware, Maryland, North Carolina and Virginia, have excellent wind energy potential and growing demand for electricity, but only two utility-scale projects have been installed to date. Reasons for this apathetic development of wind resources were analyzed and quantified for four markets. Specific applications are: 1) Appalachian mountain ridgeline sites, 2) on coastal plains and peninsulas, 3) at shallow water sites in Delaware and Chesapeake Bays, Albemarle and Pamlico Sounds, and 4) at deeper water sites off the Atlantic coast. Each market has distinctly different opportunities and barriers. The primary barriers to wind development described in this report can be grouped into four categories; state policy and regulatory issues, wind resource technical uncertainty, economic viability, and public interest in environmental issues. The properties of these typologies are not mutually independent and do interact. The report concluded that there are no insurmountable barriers to land-based wind energy projects and they could be economically viable today. Likewise potential sites in sheltered shallow waters in regional bay and sounds have been largely overlooked but could be viable currently. Offshore ocean-based applications face higher costs and technical and wind resource uncertainties. The ongoing research and development program, revision of state incentive policies, additional wind measurement efforts, transmission system expansion, environmental baseline studies and outreach to private developers and stakeholders are needed to reduce barriers to wind energy development.

Daniel F. Ancona III; Kathryn E. George; Richard P. Bowers; Dr. Lynn Sparling; Bruce Buckheit; Daniel LoBue

2012-05-31T23:59:59.000Z

359

Mid-Atlantic Wind - Overcoming the Challenges  

SciTech Connect (OSTI)

This study, supported by the US Department of Energy, Wind Powering America Program, Maryland Department of Natural Resources and Chesapeake Bay Foundation, analyzed barriers to wind energy development in the Mid-Atlantic region along with options for overcoming or mitigating them. The Mid-Atlantic States including Delaware, Maryland, North Carolina and Virginia, have excellent wind energy potential and growing demand for electricity, but only two utility-scale projects have been installed to date. Reasons for this apathetic development of wind resources were analyzed and quantified for four markets. Specific applications are: 1) Appalachian mountain ridgeline sites, 2) on coastal plains and peninsulas, 3) at shallow water sites in Delaware and Chesapeake Bays, Albemarle and Pamlico Sounds, and 4) at deeper water sites off the Atlantic coast. Each market has distinctly different opportunities and barriers. The primary barriers to wind development described in this report can be grouped into four categories; state policy and regulatory issues, wind resource technical uncertainty, economic viability, and public interest in environmental issues. The properties of these typologies are not mutually independent and do interact. The report concluded that there are no insurmountable barriers to land-based wind energy projects and they could be economically viable today. Likewise potential sites in sheltered shallow waters in regional bay and sounds have been largely overlooked but could be viable currently. Offshore ocean-based applications face higher costs and technical and wind resource uncertainties. The ongoing research and development program, revision of state incentive policies, additional wind measurement efforts, transmission system expansion, environmental baseline studies and outreach to private developers and stakeholders are needed to reduce barriers to wind energy development.

Daniel F. Ancona III; Kathryn E. George; Lynn Sparling; Bruce C. Buckheit; Daniel LoBue; and Richard P. Bowers

2012-06-29T23:59:59.000Z

360

Projected Impact of Federal Policies on U.S. Wind Market Potential: Preprint  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmosphericNuclear Security Administration the1 - SeptemberMicroneedles for4-16Hamada winsProgressProjectPeerProject of the

Note: This page contains sample records for the topic "wind installation project" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


361

Proposal for the award of a contract for the supply and installation of an air-handling plant for the CNGS project  

E-Print Network [OSTI]

This document concerns the award of a contract for the supply and installation of an air-handling plant for the CNGS underground structures. Following a market survey carried out among 85 firms in fourteen Member States, a call for tenders (IT-3078/ST/CNGS) was sent on 5 September 2003 to five firms and four consortia in seven Member States. By the closing date, CERN had received four tenders from three firms and one consortium in four Member States. The Finance Committee is invited to agree to the negotiation of a contract with AMEC SPIE (DE), the lowest bidder, for the supply and installation of an air-handling plant for the CNGS underground structures for a total amount of 984 493 euros (1 523 512 Swiss francs), not subject to revision, with options for additional equipment for an additional amount not exceeding 88 161 euros (136 430 Swiss francs), not subject to revision, bringing the total amount to 1 072 654 euros (1 659 942 Swiss francs), not subject to revision. The rate of exchange used is that stipu...

2003-01-01T23:59:59.000Z

362

Fort Carson Wind Resource Assessment  

SciTech Connect (OSTI)

This report focuses on the wind resource assessment, the estimated energy production of wind turbines, and economic potential of a wind turbine project on a ridge in the southeastern portion of the Fort Carson Army base.

Robichaud, R.

2012-10-01T23:59:59.000Z

363

The amount of power in the wind is very dependent on the speed of the wind. Because the power in the wind  

E-Print Network [OSTI]

the potential benefits of a wind power installation, wind speeds and other characteristics of a site's wind for potential wind power sites. However, these maps do not elimi- nate the need for more precise and thoroughThe amount of power in the wind is very dependent on the speed of the wind. Because the power

Massachusetts at Amherst, University of

364

2012 Market Report on U.S. Wind Technologies in Distributed Applications  

SciTech Connect (OSTI)

At the end of 2012, U.S. wind turbines in distributed applications reached a 10-year cumulative installed capacity of more than 812 MW from more than 69,000 units across all 50 states. In 2012 alone, nearly 3,800 wind turbines totaling 175 MW of distributed wind capacity were documented in 40 states and in the U.S. Virgin Islands, with 138 MW using utility-scale turbines (i.e., greater than 1 MW in size), 19 MW using mid-size turbines (i.e., 101 kW to 1 MW in size), and 18.4 MW using small turbines (i.e., up to 100 kW in size). Distributed wind is defined in terms of technology application based on a wind project’s location relative to end-use and power-distribution infrastructure, rather than on technology size or project size. Distributed wind systems are either connected on the customer side of the meter (to meet the onsite load) or directly to distribution or micro grids (to support grid operations or offset large loads nearby). Estimated capacity-weighted average costs for 2012 U.S. distributed wind installations was $2,540/kW for utility-scale wind turbines, $2,810/kW for mid-sized wind turbines, and $6,960/kW for newly manufactured (domestic and imported) small wind turbines. An emerging trend observed in 2012 was an increased use of refurbished turbines. The estimated capacity-weighted average cost of refurbished small wind turbines installed in 2012 was $4,080/kW. As a result of multiple projects using utility-scale turbines, Iowa deployed the most new overall distributed wind capacity, 37 MW, in 2012. Nevada deployed the most small wind capacity in 2012, with nearly 8 MW of small wind turbines installed in distributed applications. In the case of mid-size turbines, Ohio led all states in 2012 with 4.9 MW installed in distributed applications. State and federal policies and incentives continued to play a substantial role in the development of distributed wind projects. In 2012, U.S. Treasury Section 1603 payments and grants and loans from the U.S. Department of Agriculture’s Rural Energy for America Program were the main sources of federal funding for distributed wind projects. State and local funding varied across the country, from rebates to loans, tax credits, and other incentives. Reducing utility bills and hedging against potentially rising electricity rates remain drivers of distributed wind installations. In 2012, other drivers included taking advantage of the expiring U.S. Treasury Section 1603 program and a prosperous year for farmers. While 2012 saw a large addition of distributed wind capacity, considerable barriers and challenges remain, such as a weak domestic economy, inconsistent state incentives, and very competitive solar photovoltaic and natural gas prices. The industry remains committed to improving the distributed wind marketplace by advancing the third-party certification process and introducing alternative financing models, such as third-party power purchase agreements and lease-to-own agreements more typical in the solar photovoltaic market. Continued growth is expected in 2013.

Orrell, Alice C.; Flowers, L. T.; Gagne, M. N.; Pro, B. H.; Rhoads-Weaver, H. E.; Jenkins, J. O.; Sahl, K. M.; Baranowski, R. E.

2013-08-06T23:59:59.000Z

365

Process Improvement at Army Installations  

E-Print Network [OSTI]

recommendations are for the Fill and Press line where most of the Level I focused LESSONS LEARNED On completion of the project, the researchers assessed the results and some of the 198 ESL-IE-97-04-31 Proceedings from the Nineteenth Industrial Energy.... Finally, the energy issues included initiate an energy team; install energy efficient lighting; and decommission unused steam lines. After the first cost, savings, and simple payback time was calculated for all of the proposed improvements, a...

Northrup, J.; Smith, E. D.; Lin, M.; Baird, J.

366

See the Wind  

Broader source: Energy.gov (indexed) [DOE]

See the Wind Grades: 5-8 , 9-12 Topic: Wind Energy Owner: Kidwind Project This educational material is brought to you by the U.S. Department of Energy's Office of Energy Efficiency...

367

Lower Brule Sioux Tribe Wind-Pump Storage Feasibility Study Project  

SciTech Connect (OSTI)

The Lower Brule Sioux Tribe is a federally recognized Indian tribe organized pursuant to the 1934 Wheeler-Howard Act (“Indian Reorganization Act”). The Lower Brule Sioux Indian Reservation lies along the west bank of Lake Francis Case and Lake Sharpe, which were created by the Fort Randall and Big Bend dams of the Missouri River pursuant to the Pick Sloan Act. The grid accessible at the Big Bend Dam facility operated by the U.S. Army Corps of Engineers is less than one mile of the wind farm contemplated by the Tribe in this response. The low-head hydroelectric turbines further being studied would be placed below the dam and would be turned by the water released from the dam itself. The riverbed at this place is within the exterior boundaries of the reservation. The low-head turbines in the tailrace would be evaluated to determine if enough renewable energy could be developed to pump water to a reservoir 500 feet above the river.

Shawn A. LaRoche; Tracey LeBeau; Innovation Investments, LLC

2007-04-20T23:59:59.000Z

368

RESEARCH ARTICLE Dynamic wind loads and wake characteristics of a wind turbine  

E-Print Network [OSTI]

installed in onshore or/and offshore wind farms in order to meet the 20% electricity generation goal. WindRESEARCH ARTICLE Dynamic wind loads and wake characteristics of a wind turbine model in an atmospheric boundary layer wind Hui Hu · Zifeng Yang · Partha Sarkar Received: 16 August 2011 / Revised: 1

Hu, Hui

369

The Impact of Wind Power Projects on Residential Property Values in the United States: A Multi-Site Hedonic Analysis  

E-Print Network [OSTI]

towers are not visible (Des-Rosiers, 2002) and, similarly, decreases in annoyance with wind facility sounds if turbines

Hoen, Ben

2010-01-01T23:59:59.000Z

370

CCPExecutiveSummary Storing Wind  

E-Print Network [OSTI]

CCPExecutiveSummary July 2011 Storing Wind for a Rainy Day W: www.uea.ac.uk/ccp T: +44 (0)1603 593715 A: UEA, Norwich, NR4 7TJ Storing Wind for a Rainy Day: What kind of electricity does Denmark export? BACKGROUND The last decade has seen a remarkable increase in the number of wind installations

Feigon, Brooke

371

EIS-0183: Shepherds Flat Wind Project in Gilliam and Morrow counties, OR |  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE:YearRound-UpHeat Pump Models |Conduct,Final9:Department ofofGNA Cliffs Energy ProjectOffer

372

Wind Energy and Spatial Technology  

E-Print Network [OSTI]

2/3/2011 1 Wind Energy and Spatial Technology Lori Pelech Why Wind Energy? A clean, renewable 2,600 tons of carbon emissions annually ­ The economy · Approximately 85,000 wind energy workers to Construct a Wind Farm... Geo-Spatial Components of Wind Farm Development Process Selecting a Project Site

Schweik, Charles M.

373

CONMOW: Condition Monitoring for Offshore Wind Farms  

E-Print Network [OSTI]

practice the European project CONMOW (Condition Monitoring for Offshore Wind Farms) was started in November

Edwin Wiggelinkhuizen; Theo Verbruggen; Henk Braam; Luc Rademakers; Miguel Catalin Tipluica; Andrew Maclean; Axel Juhl Christensen; Edwin Becker; Pr?ftechnik Cm Gmbh (d; Dirk Scheffler; Nordex Energy Gmbh (d

374

Reviewing Post-Installation and Annual Reports for Federal ESPC...  

Broader source: Energy.gov (indexed) [DOE]

reviews of post-installation and annual reports for federal ESPC projects. These procedures will allow for consistent evaluations of performance reports, produce...

375

A comparative analysis of business structures suitable for farmer-owned wind power projects in the United States  

E-Print Network [OSTI]

Wisconsin Community Based Windpower Project Business Plan.Wisconsin Community Based Windpower Project Business Plan

Bolinger, Mark; Wiser, Ryan

2004-01-01T23:59:59.000Z

376

Installation and Acceptance Stage  

Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

This chapter addresses activities required to install the software, data bases, or data that comprise the software product onto the hardware platform at sites of operation.

1997-05-21T23:59:59.000Z

377

Energy Department Announces Offshore Wind Demonstration Awardees...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

will help address key challenges associated with installing utility-scale offshore wind turbines, connecting offshore turbines to the power grid, and navigating new permitting and...

378

Solar and Wind Easements and Rights Laws  

Broader source: Energy.gov [DOE]

Nevada's general statutes provide owners of solar and wind energy systems protection against restrictions that would otherwise prevent them from installing these systems on their property. NRS §...

379

10th Annual Small Wind Conference  

Broader source: Energy.gov [DOE]

This conference is designed for small wind professionals, including installers, manufacturers, dealers, distributors, educators, and advocates. The conference features presentations, exhibits,...

380

Accelerating Offshore Wind Development | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

and support innovative offshore installations for commercial deployment by 2017. Offshore wind is a large, untapped energy resource, with the potential to generate 4,000 gigawatts...

Note: This page contains sample records for the topic "wind installation project" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


381

Boulder Wind Power Advanced Gearless Drivetrain: Cooperative Research and Development Final Report, CRADA Number CRD-12-00463  

SciTech Connect (OSTI)

The Boulder Wind Power (BWP) Advanced Gearless Drivetrain Project explored the application of BWP's innovative, axial-gap, air-core, permanent-magnet direct-drive generator in offshore wind turbines. The objective of this CRADA is to assess the benefits that result from reduced towerhead mass of BWP's technology when used in 6 MW offshore turbines installed on a monopile or a floating spar foundation.

Cotrell, J.

2013-04-01T23:59:59.000Z

382

Counting Jobs and Economic Impacts from Distributed Wind in the United States (Poster)  

SciTech Connect (OSTI)

This conference poster describes the distributed wind Jobs and Economic Development Imapcts (JEDI) model. The goal of this work is to provide a model that estimates jobs and other economic effects associated with the domestic distributed wind industry. The distributed wind JEDI model is a free input-output model that estimates employment and other impacts resulting from an investment in distributed wind installations. Default inputs are from installers and industry experts and are based on existing projects. User input can be minimal (use defaults) or very detailed for more precise results. JEDI can help evaluate potential scenarios, current or future; inform stakeholders and decision-makers; assist businesses in evaluating economic development impacts and estimating jobs; assist government organizations with planning and evaluating and developing communities.

Tegen, S.

2014-05-01T23:59:59.000Z

383

Camden County- Wind Energy Systems Ordinance  

Broader source: Energy.gov [DOE]

In September 2007, Camden County adopted a wind ordinance to regulate the use of wind-energy systems in the county and to describe the conditions by which a permit for installing such a system may...

384

Watauga County- Wind Energy System Ordinance  

Broader source: Energy.gov [DOE]

In 2006, Watauga County adopted a wind ordinance to regulate the use of wind-energy systems in the county and to describe the conditions by which a permit for installing such a system may be...

385

Currituck County- Wind Energy Systems Ordinance  

Broader source: Energy.gov [DOE]

In January 2008, Currituck County adopted an ordinance to regulate the use of wind-energy systems. The ordinance directs any individual or organization wishing to install a wind-energy system to...

386

Work plan for monitor well installation water and sediment sample collection aquifer testing and topographic surveying at the Riverton, Wyoming, UMTRA Project Site  

SciTech Connect (OSTI)

Investigations conducted during preparation of the site observational work plan (SOWP) at the Uranium Mill Tailings Remedial Action (UMTRA) Project site support a proposed natural flushing ground water compliance strategy, with institutional controls. However, additional site-specific data are needed to reduce uncertainties in order to confirm the applicability and feasibility of this proposed compliance strategy option. This proposed strategy will be analyzed in the site-specific environmental assessment. The purpose of this work plan is to summarize the data collection objectives to fill those data needs, describe the data collection activities that will be undertaken to meet those objectives, and elaborate on the data quality objectives which define the procedures that will be followed to ensure that the quality of these data meet UMTRA Project needs.

NONE

1995-06-01T23:59:59.000Z

387

Wind Wave Float  

Broader source: Energy.gov (indexed) [DOE]

Weinstein Principle Power, Inc. aweinstein@principlepowerinc.com November 1, 2011 2 | Wind and Water Power Program eere.energy.gov Purpose, Objectives, & Integration Project...

388

Development of Eastern Regional Wind Resource and Wind Plant Output Datasets: March 3, 2008 -- March 31, 2010  

SciTech Connect (OSTI)

The objective of this project was to provide wind resource inputs to the Eastern Wind Integration and Transmission Study.

Brower, M.

2009-12-01T23:59:59.000Z

389

Securing Clean, Domestic, Affordable Energy with Wind (Fact Sheet...  

Office of Environmental Management (EM)

research and development efforts. eerewindwater.pdf More Documents & Publications Wind Program Accomplishments Offshore Wind Projects Wind Program FY 2015 Budget At-A-Glance...

390

Sandia National Laboratories: Installation  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Generator Modeling Radar Friendly Blades Special Programs Techno-Economic Modeling, Analysis, and Support Analysis, Modeling, Cost of Energy, and Policy Impact: Wind Vision 2014...

391

Wind Powering America Podcasts, Wind Powering America (WPA)  

SciTech Connect (OSTI)

Wind Powering America and the National Association of Farm Broadcasters produce a series of radio interviews featuring experts discussing wind energy topics. The interviews are aimed at a rural stakeholder audience and are available as podcasts. On the Wind Powering America website, you can access past interviews on topics such as: Keys to Local Wind Energy Development Success, What to Know about Installing a Wind Energy System on Your Farm, and Wind Energy Development Can Revitalize Rural America. This postcard is a marketing piece that stakeholders can provide to interested parties; it will guide them to this online resource for podcast episodes.

Not Available

2012-04-01T23:59:59.000Z

392

Lower Sioux Wind Feasibility & Development  

SciTech Connect (OSTI)

This report describes the process and findings of a Wind Energy Feasibility Study (Study) conducted by the Lower Sioux Indian Community (Community). The Community is evaluating the development of a wind energy project located on tribal land. The project scope was to analyze the critical issues in determining advantages and disadvantages of wind development within the Community. This analysis addresses both of the Community's wind energy development objectives: the single turbine project and the Commerical-scale multiple turbine project. The main tasks of the feasibility study are: land use and contraint analysis; wind resource evaluation; utility interconnection analysis; and project structure and economics.

Minkel, Darin

2012-04-01T23:59:59.000Z

393

Client Configuration and Installation  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Instructions below. In certain environments (e.g., if your installation is on a machine which has more than one network interface or has a high bandwidth network connection...

394

HVAC Installed Performance  

Broader source: Energy.gov [DOE]

This presentation was given at the Summer 2012 DOE Building America meeting on July 25, 2012, and addressed the question HVAC proper installation energy savings: over-promising or under-delivering?"

395

The EPRI/DOE Utility Wind Turbine Performance Verification Program  

SciTech Connect (OSTI)

In 1992, the Electric Power Research Institute (EPRI) and the US Department of Energy (DOE) initiated the Utility Wind Turbine Performance Verification Program (TVP). This paper provides an overview of the TVP, its purpose and goals, and the participating utility projects. Improved technology has significantly reduced the cost of energy from wind turbines since the early 1980s. In 1992, turbines were producing electricity for about $0.07--$0.09/kilowatt-hour (kWh) (at 7 m/s [16 mph sites]), compared with more than $0.30/kWh in 1980. Further technology improvements were expected to lower the cost of energy from wind turbines to $0.05/kWh. More than 17,000 wind turbines, totaling more than 1,500 MW capacity, were installed in the US, primarily in California and Hawaii. The better wind plants had availabilities above 95%, capacity factors exceeding 30%, and operation and maintenance costs of $0.01/kWh. However, despite improving technology, EPRI and DOE recognized that utility use of wind turbines was still largely limited to turbines installed in California and Hawaii during the 1980s. Wind resource assessments showed that other regions of the US, particularly the Midwest, had abundant wind resources. EPRI and DOE sought to provide a bridge from utility-grade turbine development programs under way to commercial purchases of the wind turbines. The TVP was developed to allow utilities to build and operate enough candidate turbines to gain statistically significant operating and maintenance data.

Calvert, S.; Goldman, P. [Department of Energy, Washington, DC (United States); DeMeo, E.; McGowin, C. [Electric Power Research Inst., Palo Alto, CA (United States); Smith, B.; Tromly, K. [National Renewable Energy Lab., Golden, CO (United States)

1997-01-01T23:59:59.000Z

396

Testing and Modeling of a 3-MW Wind Turbine Using Fully Coupled Simulation Codes (Poster)  

SciTech Connect (OSTI)

This poster describes the NREL/Alstom Wind testing and model verification of the Alstom 3-MW wind turbine located at NREL's National Wind Technology Center. NREL,in collaboration with ALSTOM Wind, is studying a 3-MW wind turbine installed at the National Wind Technology Center(NWTC). The project analyzes the turbine design using a state-of-the-art simulation code validated with detailed test data. This poster describes the testing and the model validation effort, and provides conclusions about the performance of the unique drive train configuration used in this wind turbine. The 3-MW machine has been operating at the NWTC since March 2011, and drive train measurements will be collected through the spring of 2012. The NWTC testing site has particularly turbulent wind patterns that allow for the measurement of large transient loads and the resulting turbine response. This poster describes the 3-MW turbine test project, the instrumentation installed, and the load cases captured. The design of a reliable wind turbine drive train increasingly relies on the use of advanced simulation to predict structural responses in a varying wind field. This poster presents a fully coupled, aero-elastic and dynamic model of the wind turbine. It also shows the methodology used to validate the model, including the use of measured tower modes, model-to-model comparisons of the power curve, and mainshaft bending predictions for various load cases. The drivetrain is designed to only transmit torque to the gearbox, eliminating non-torque moments that are known to cause gear misalignment. Preliminary results show that the drivetrain is able to divert bending loads in extreme loading cases, and that a significantly smaller bending moment is induced on the mainshaft compared to a three-point mounting design.

LaCava, W.; Guo, Y.; Van Dam, J.; Bergua, R.; Casanovas, C.; Cugat, C.

2012-06-01T23:59:59.000Z

397

Underground Storage Tank Regulations for the Certification of Persons Who Install, Alter, and Remove Underground Storage Tanks (Mississippi)  

Broader source: Energy.gov [DOE]

The Underground Storage Tank Regulations for the Certification of Persons who Install, Alter, and Remove Underground Storage Tanks applies to any project that will install, alter or remove...

398

Wind Speed Prediction Via Time Series Modeling.  

E-Print Network [OSTI]

??Projected construction of nearby wind farms motivates this study of statistical forecasting of wind speed, for which accurate prediction is critically important to the fluid… (more)

Alexander, Daniel

2009-01-01T23:59:59.000Z

399

Solar and Wind Contractor Licensing  

Broader source: Energy.gov [DOE]

All solar and wind energy installations must be performed by a contractor duly licensed by and in good standing with the Louisiana Contractors Licensing Board with a classification of "Solar Energy...

400

Eastern Wind Integration and Transmission Study: Executive Summary...  

Office of Environmental Management (EM)

Eastern Wind Integration and Transmission Study: Executive Summary and Project Overview Eastern Wind Integration and Transmission Study: Executive Summary and Project Overview This...

Note: This page contains sample records for the topic "wind installation project" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


401

WREF 2012: THE PAST AND FUTURE COST OF WIND ENERGY  

E-Print Network [OSTI]

wind resource where projects are located, transmission, grid integration,wind resource in which projects are located, as well as development, transmission, integration,

Wiser, Ryan

2013-01-01T23:59:59.000Z

402

The Impact of Wind Power Projects on Residential Property Values in the United States: A Multi-Site Hedonic Analysis  

E-Print Network [OSTI]

and Annoyance due to Wind Turbine Noise: A Dose-Responsewind turbine, for example, might also have an impact if various nuisance effects are prominent, such as turbine noise,

Hoen, Ben

2010-01-01T23:59:59.000Z

403

MS Thesis project Date: September 2013 Optimising data communication for urban climate  

E-Print Network [OSTI]

and wind velocity and a solar panel for energy supply used in the project. Introduction: A network of 14 meteo stations has been installed in the city of Rotterdam for the purpose of climate monitoring. The stations are equipped with 6 sensors, generating a total of 11 different data signals. Energy is supplied

Kuzmanov, Georgi

404

WREF 2012: THE PAST AND FUTURE COST OF WIND ENERGY  

SciTech Connect (OSTI)

The future of wind power will depend on the ability of the industry to continue to achieve cost reductions. To better understand the potential for cost reductions, this report provides a review of historical costs, evaluates near-term market trends, and summarizes the range of projected costs. It also notes potential sources of future cost reductions. Our findings indicate that steady cost reductions were interrupted between 2004 and 2010, but falling turbine prices and improved turbine performance are expected to drive a historically low LCOE for current installations. In addition, the majority of studies indicate continued cost reductions on the order of 20%-30% through 2030. Moreover, useful cost projections are likely to benefit from stronger consideration of the interactions between capital cost and performance as well as trends in the quality of the wind resource where projects are located, transmission, grid integration, and other cost variables.

NREL,; Wiser, Ryan; Lantz, Eric; Hand, Maureen

2012-03-26T23:59:59.000Z

405

Economic Development Impacts of Colorado's First 1000 Megawatts of Wind Energy  

SciTech Connect (OSTI)

This report analyzes the economic impacts of the installation of 1000 MW of wind power in the state of Colorado.

Reategui, S.; Tegen, S.

2008-08-01T23:59:59.000Z

406

EV Project Overview Report  

Broader source: Energy.gov (indexed) [DOE]

Report Project to date through March 2013 Charging Infrastructure Region Number of EV Project Charging Units Installed To Date Number of Charging Events Performed Electricity...

407

Solar Installation Contractor  

Broader source: Energy.gov [DOE]

Alternate Title(s):General Contractor, Electrical or Plumbing Contractor, Construction Manager, Project Superintendant

408

Offshore Wind Plant Balance-of-Station Cost Drivers and Sensitivities (Poster)  

SciTech Connect (OSTI)

With Balance of System (BOS) costs contributing up to 70% of the installed capital cost, it is fundamental to understanding the BOS costs for offshore wind projects as well as potential cost trends for larger offshore turbines. NREL developed a BOS model using project cost estimates developed by GL Garrad Hassan. Aspects of BOS covered include engineering and permitting, ports and staging, transportation and installation, vessels, foundations, and electrical. The data introduce new scaling relationships for each BOS component to estimate cost as a function of turbine parameters and size, project parameters and size, and soil type. Based on the new BOS model, an analysis to understand the non-turbine costs associated with offshore turbine sizes ranging from 3 MW to 6 MW and offshore wind plant sizes ranging from 100 MW to 1000 MW has been conducted. This analysis establishes a more robust baseline cost estimate, identifies the largest cost components of offshore wind project BOS, and explores the sensitivity of the levelized cost of energy to permutations in each BOS cost element. This presentation shows results from the model that illustrates the potential impact of turbine size and project size on the cost of energy from US offshore wind plants.

Saur, G.; Maples, B.; Meadows, B.; Hand, M.; Musial, W.; Elkington, C.; Clayton, J.

2012-09-01T23:59:59.000Z

409

Land-Based Wind Plant Balance-of-System Cost Drivers and Sensitivities (Poster)  

SciTech Connect (OSTI)

With Balance of System (BOS) costs contributing up to 30% of the installed capital cost, it is fundamental to understand the BOS costs for wind projects as well as potential cost trends for larger turbines. NREL developed a BOS model using project cost estimates developed by industry partners. Aspects of BOS covered include engineering and permitting, foundations for various wind turbines, transportation, civil work, and electrical arrays. The data introduce new scaling relationships for each BOS component to estimate cost as a function of turbine parameters and size, project parameters and size, and geographic characteristics. Based on the new BOS model, an analysis to understand the non?turbine wind plant costs associated with turbine sizes ranging from 1-6 MW and wind plant sizes ranging from 100-1000 MW has been conducted. This analysis establishes a more robust baseline cost estimate, identifies the largest cost components of wind project BOS, and explores the sensitivity of the capital investment cost and the levelized cost of energy to permutations in each BOS cost element. This presentation shows results from the model that illustrate the potential impact of turbine size and project size on the cost of energy from US wind plants.

Mone, C.; Maples, B.; Hand, M.

2014-04-01T23:59:59.000Z

410

Offshore Code Comparison Collaboration, Continuation within IEA Wind Task 30: Phase II Results Regarding a Floating Semisubmersible Wind System: Preprint  

SciTech Connect (OSTI)

Offshore wind turbines are designed and analyzed using comprehensive simulation tools (or codes) that account for the coupled dynamics of the wind inflow, aerodynamics, elasticity, and controls of the turbine, along with the incident waves, sea current, hydrodynamics, and foundation dynamics of the support structure. This paper describes the latest findings of the code-to-code verification activities of the Offshore Code Comparison Collaboration, Continuation (OC4) project, which operates under the International Energy Agency (IEA) Wind Task 30. In the latest phase of the project, participants used an assortment of simulation codes to model the coupled dynamic response of a 5-MW wind turbine installed on a floating semisubmersible in 200 m of water. Code predictions were compared from load-case simulations selected to test different model features. The comparisons have resulted in a greater understanding of offshore floating wind turbine dynamics and modeling techniques, and better knowledge of the validity of various approximations. The lessons learned from this exercise have improved the participants? codes, thus improving the standard of offshore wind turbine modeling.

Robertson, A.; Jonkman, J.; Vorpahl, F.; Popko, W.; Qvist, J.; Froyd, L.; Chen, X.; Azcona, J.; Uzungoglu, E.; Guedes Soares, C.; Luan, C.; Yutong, H.; Pengcheng, F.; Yde, A.; Larsen, T.; Nichols, J.; Buils, R.; Lei, L.; Anders Nygard, T.; et al.

2014-03-01T23:59:59.000Z

411

DOE Offers Conditional Commitment to Cape Wind Offshore Wind...  

Office of Environmental Management (EM)

Secretary Ernest Moniz. The proposed Cape Wind project would use 3.6-MW offshore wind turbines that would provide a majority of the electricity needed for Cape Cod, Nantucket,...

412

Preliminary Evaluation of the Section 1603 Treasury Grant Program for Renewable Power Projects in the United States  

E-Print Network [OSTI]

large wind power projects, the financing advantage providedestimate how Wind power projects have the advantage of beingall 40 wind power projects, the face value advantage of the

Bolinger, Mark

2012-01-01T23:59:59.000Z

413

Financial Innovation Among the Community Wind Sector in the United States  

SciTech Connect (OSTI)

In the relatively brief history of utility-scale wind generation, the 'community wind' sector - defined here as consisting of relatively small utility-scale wind power projects that are at least partly owned by one or more members of the local community - has played a vitally important role as a 'test bed' or 'proving ground' for wind turbine manufacturers. In the 1980s and 1990s, for example, Vestas and other now-established European wind turbine manufacturers relied heavily on community wind projects in Scandinavia and Germany to install - and essentially field-test - new turbine designs. The fact that orders from community wind projects seldom exceeded more than a few turbines at a time enabled the manufacturers to correct any design flaws or manufacturing defects fairly rapidly, and without the risk of extensive (and expensive) serial defects that can accompany larger orders. Community wind has been slower to take root in the United States - the first such projects were installed in the state of Minnesota around the year 2000. Just as in Europe, however, the community wind sector in the U.S. has similarly served as a proving ground - but in this case for up-and-coming wind turbine manufacturers that are trying to break into the broader U.S. wind power market. For example, community wind projects have deployed the first U.S. installations of wind turbines from Suzlon (in 2003), DeWind (2008), Americas Wind Energy (2008) and later Emergya Wind Technologies (2010),1 Goldwind (2009), AAER/Pioneer (2009), Nordic Windpower (2010), Unison (2010), and Alstom (2011). Just as it has provided a proving ground for new turbines, so too has the community wind sector in the United States served as a laboratory for experimentation with innovative new financing structures. For example, a variation of one of the most common financing arrangements in the U.S. wind market today - the 'partnership flip structure' - was first developed by community wind projects in Minnesota more than a decade ago (and is therefore sometimes referred to as the 'Minnesota flip' model) before being adapted by the broader wind market. More recently, a handful of community wind projects built in the United States over the past year have been financed via new and creative structures that push the envelope of wind project finance in the U.S. - in many cases, moving beyond the now-standard partnership flip structures. These projects include: (1) a 4.5 MW project in Maine that combines low-cost government debt with local tax equity, (2) a 25.3 MW project in Minnesota using a sale/leaseback structure, (3) a 10.5 MW project in South Dakota financed by an intrastate offering of both debt and equity, (4) a 6 MW project in Washington state that taps into 'New Markets Tax Credits' using an 'inverted' or 'pass-through' lease structure, and (5) a 9 MW project in Oregon that combines a variety of state and federal incentives and loans with unconventional equity from high-net-worth individuals. In most cases, these are first-of-their-kind financing structures that could serve as useful examples for other projects - both community and commercial wind alike. This new wave of financial innovation occurring in the community wind sector has been facilitated by policy changes, most of them recent. Most notably, the American Recovery and Reinvestment Act of 2009 ('the Recovery Act') enables, for a limited time, wind power (and other types of) projects to elect either a 30% investment tax credit ('ITC') or a 30% cash grant (the 'Section 1603 grant') in lieu of the federal incentive that has historically been available to wind projects in the U.S. - a 10-year production tax credit ('PTC'). This flexibility, in turn, enables wind power projects to pursue lease financing for the first time - leasing is not possible under the PTC. Because they are based on a project's cost rather than energy generation, the 30% ITC and Section 1603 grant also reduce performance risk relative to the PTC - this, too, is an important enabler of lease financing. Finally, by providing a cash rather than ta

Bolinger, Mark

2011-01-19T23:59:59.000Z

414

Wind Energy Assessment using a Wind Turbine with Dynamic Yaw Control.  

E-Print Network [OSTI]

??The goal of this project was to analyze the wind energy potential over Lake Michigan. For this purpose, a dynamic model of a utility-scale wind… (more)

Pervez, Md Nahid

2013-01-01T23:59:59.000Z

415

U.S. Department of Energy Wind and Water Power Program Funding in the United States: Conventional Hydropower Projects, FY 2008 … FY 2010  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE:YearRound-Up from theDepartment of EnergyTheDepartmentFeedContractor |OFFSHORE WIND PROJECTS

416

2013 Wind Technologies Market Report  

SciTech Connect (OSTI)

This annual report provides a detailed overview of developments and trends in the U.S. wind power market, with a particular focus on 2013. This 2013 edition updates data presented in previous editions while highlighting key trends and important new developments. The report includes an overview of key installation-related trends; trends in wind power capacity growth; how that growth compares to other countries and generation sources; the amount and percentage of wind energy in individual states; the status of offshore wind power development and the quantity of proposed wind power capacity in various interconnection queues in the United States.

Wiser, R.; Bolinger, M.; Barbose, G.; Darghouth, N.; Hoen, B.; Mills, A.; Weaver, S.; Porter, K.; Buckley, M.; Oteri, F.; Tegen, S.

2014-08-01T23:59:59.000Z

417

PROGRESS OF WIND ENERGY TECHNOLOGY  

E-Print Network [OSTI]

This paper provides an overview of the progress of wind energy technology, along with the current status of wind power worldwide. Over the period of 2000-2012 grid-connected installed wind power has increased by a factor of more than 16. Due to the fast growth in wind market, wind turbine technology has developed different design approaches during this period. In addition to this, issues such as power grid integration, environmental impact, and economics are studied and discussed briefly in this paper, as well.

Bar?? Özerdem

418

VAX/ASPEN installation guide  

SciTech Connect (OSTI)

Information necessary to install the ASPEN computerized simulation program on the VAX system is provided.

Williams, K.E.

1984-11-01T23:59:59.000Z

419

20% Wind Energy By 2030 Meeting The Challenges Proceedings of...  

Office of Environmental Management (EM)

from the Wind Manufacturing Workshop: Achieving 20% Wind Energy in the U.S. by 2030, May 2009 U.S. Offshore Wind Manufacturing and Supply Chain Development Offshore Wind Projects...

420

Wind Integration, Transmission, and Resource Assessment andCharacteri...  

Broader source: Energy.gov (indexed) [DOE]

Integration, Transmission, and Resource Assessment and Characterization Projects Wind Integration, Transmission, and Resource Assessment and Characterization Projects From 2006 to...

Note: This page contains sample records for the topic "wind installation project" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


421

Workforce Development and Wind for Schools (Poster)  

SciTech Connect (OSTI)

As the United States dramatically expands wind energy deployment, the industry is faced with the need to quickly develop a skilled workforce and to address public acceptance. Wind Powering America's Wind for Schools project addresses these challenges. This poster, produced for the American Wind Energy Association's annual WINDPOWER conference, provides an overview of the project, including objectives, methods, and results.

Newcomb, C.; Baring-Gould, I.

2012-06-01T23:59:59.000Z

422

Hilbert Transform-Based Bearing Failure Detection in DFIG-Based Wind Turbines  

E-Print Network [OSTI]

Hilbert Transform-Based Bearing Failure Detection in DFIG-Based Wind Turbines Yassine Amirat1 and proactive maintenance of wind turbines assumes more importance with the increasing number of installed wind current sensors installed within the wind turbine generator. This paper describes then an approach based

Boyer, Edmond

423

An Innovative Technique for Evaluating the Integrity and Durability of Wind Turbine Blade Composites - Final Project Report  

SciTech Connect (OSTI)

To build increasingly larger, lightweight, and robust wind turbine blades for improved power output and cost efficiency, durability of the blade, largely resulting from its structural composites selection and aerodynamic shape design, is of paramount concern. The safe/reliable operation of structural components depends critically on the selection of materials that are resistant to damage and failure in the expected service environment. An effective surveillance program is also necessary to monitor the degradation of the materials in the course of service. Composite materials having high specific strength/stiffness are desirable for the construction of wind turbines. However, most high-strength materials tend to exhibit low fracture toughness. That is why the fracture toughness of the composite materials under consideration for the manufacture of the next generation of wind turbines deserves special attention. In order to achieve the above we have proposed to develop an innovative technology, based on spiral notch torsion test (SNTT) methodology, to effectively investigate the material performance of turbine blade composites. SNTT approach was successfully demonstrated and extended to both epoxy and glass fiber composite materials for wind turbine blades during the performance period. In addition to typical Mode I failure mechanism, the mixed-mode failure mechanism induced by the wind turbine service environments and/or the material mismatch of the composite materials was also effectively investigated using SNTT approach. The SNTT results indicate that the proposed protocol not only provides significant advance in understanding the composite failure mechanism, but also can be readily utilized to assist the development of new turbine blade composites.

Wang, Jy-An John [ORNL; Ren, Fei [ORNL; Tan, Ting [ORNL; Mandell, John [Montana State University; Agastra, Pancasatya [Montana State University

2011-11-01T23:59:59.000Z

424

The Wind Forecast Improvement Project (WFIP): A Public/Private Partnership for Improving Short Term Wind Energy Forecasts and Quantifying the Benefits of Utility Operations – the Southern Study Area  

SciTech Connect (OSTI)

This Final Report presents a comprehensive description, findings, and conclusions for the Wind Forecast Improvement Project (WFIP)--Southern Study Area (SSA) work led by AWS Truepower (AWST). This multi-year effort, sponsored by the Department of Energy (DOE) and National Oceanographic and Atmospheric Administration (NOAA), focused on improving short-term (15-minute – 6 hour) wind power production forecasts through the deployment of an enhanced observation network of surface and remote sensing instrumentation and the use of a state-of-the-art forecast modeling system. Key findings from the SSA modeling and forecast effort include: 1. The AWST WFIP modeling system produced an overall 10 – 20% improvement in wind power production forecasts over the existing Baseline system, especially during the first three forecast hours; 2. Improvements in ramp forecast skill, particularly for larger up and down ramps; 3. The AWST WFIP data denial experiments showed mixed results in the forecasts incorporating the experimental network instrumentation; however, ramp forecasts showed significant benefit from the additional observations, indicating that the enhanced observations were key to the model systems’ ability to capture phenomena responsible for producing large short-term excursions in power production; 4. The OU CAPS ARPS simulations showed that the additional WFIP instrument data had a small impact on their 3-km forecasts that lasted for the first 5-6 hours, and increasing the vertical model resolution in the boundary layer had a greater impact, also in the first 5 hours; and 5. The TTU simulations were inconclusive as to which assimilation scheme (3DVAR versus EnKF) provided better forecasts, and the additional observations resulted in some improvement to the forecasts in the first 1 – 3 hours.

Freedman, Jeffrey M.; Manobianco, John; Schroeder, John; Ancell, Brian; Brewster, Keith; Basu, Sukanta; Banunarayanan, Venkat; Hodge, Bri-Mathias; Flores, Isabel

2014-04-30T23:59:59.000Z

425

Impacts from Deployment Barriers on the United States Wind Power Industry: Overview & Preliminary Findings (Presentation)  

SciTech Connect (OSTI)

Regardless of cost and performance some wind projects are unable to proceed to commissioning as a result of deployment barriers. Principal deployment barriers in the industry today include: wildlife, public acceptance, access to transmission, and radar. To date, methods for understanding these non-technical barriers have failed to accurately characterize the costs imposed by deployment barriers and the degree of impact to the industry. Analytical challenges include limited data and modeling capabilities. Changes in policy and regulation, among other factors, also add complexity to analysis of impacts from deployment barriers. This presentation details preliminary results from new NREL analysis focused on quantifying the impact of deployment barriers on the wind resource of the United States, the installed cost of wind projects, and the total electric power system cost of a 20% wind energy future. In terms of impacts to wind project costs and developable land, preliminary findings suggest that deployment barriers are secondary to market drivers such as demand. Nevertheless, impacts to wind project costs are on the order of $100/kW and a substantial share of the potentially developable windy land in the United States is indeed affected by deployment barriers.

Lantz, E.; Tegen, S.; Hand, M.; Heimiller, D.

2012-09-01T23:59:59.000Z

426

Wind Power Development in the United States: Current Progress, Future Trends  

E-Print Network [OSTI]

Annual Report on U.S. Wind Power Installation, Cost, andWind Power Development in the United States: Current94720 Abstract: The U.S. wind power industry is in an era of

Wiser, Ryan H

2009-01-01T23:59:59.000Z

427

Lillgrund Wind Farm Modelling and Reactive Power Control.  

E-Print Network [OSTI]

?? The installation of wind power plant has significantly increased since several years due to the recent necessity of creating renewable and clean energy sources.… (more)

Boulanger, Isabelle

2009-01-01T23:59:59.000Z

428

September 18, 2012, Webinar: Wind Energy in Urban Environments  

Office of Energy Efficiency and Renewable Energy (EERE)

This webinar was held September 18, 2012, and provided information on wind energy installations in Boston Harbor in Hull, Massachusetts, and near downtown Milwaukee, Wisconsin. Download the...

429

The impact of climate change on the U.S. wind energy resource  

SciTech Connect (OSTI)

The growing need for low-carbon emitting electricity sources has resulted in rapid growth in the wind power industry. The size and steadiness of the offshore wind resource has attracted growing investment in the planning of offshore wind turbine installations. Decisions about the location and character of wind farms should be made with an eye not only to present but also future wind resource, which may change as increasing carbon dioxide forces reductions in the poleward temperature gradient, and thus potentially in the mean tropospheric westerly winds. I propose to use the new North American Regional Climate Change Assessment Program climate projections to estimate the change of the wind power resource under various carbon dioxide loading scenarios and for a range of climate models. We will compare our assessment with both our assessment based on the IPCC AR4 model runs, to explore the extent to which improved model resolution changes the prediction for the wind power resource, and with present day estimates from reanalysis and scatterometer winds.

Daniel Kirk-Davidoff; Daniel Barrie

2013-03-19T23:59:59.000Z

430

Targeting Net Zero Energy for Military Installations (Presentation)  

SciTech Connect (OSTI)

Targeting Net Zero Energy for Military Installations in Kaneohe Bay, Hawaii. A net zero energy installation (NZEI) is one that produces as much energy from on-site renewable sources as it consumes. NZEI assessment provides a systematic approach to energy projects.

Burman, K.

2012-05-01T23:59:59.000Z

431

Energy Report: U.S. Wind Energy Production and Manufacturing...  

Energy Savers [EERE]

seventy percent of the equipment installed at U.S. wind farms last year - including wind turbines and components like towers, blades, gears, and generators - is now from domestic...

432

Town of Kill Devil Hills- Wind Energy Systems Ordinance  

Broader source: Energy.gov [DOE]

In October 2007, the town of Kill Devil Hills adopted an ordinance to regulate the use of wind-energy systems. The ordinance directs any individual or organization wishing to install a wind-energy...

433

The Potential Wind Power Resource in Australia: A New Perspective  

E-Print Network [OSTI]

Australia is considered to have very good wind resources, and the utilization of this renewable energy resource is increasing. Wind power installed capacity increased by 35% from 2006 to 2011 and is predicted to account ...

Hallgren, Willow

434

The Potential Wind Power Resource in Australia: A New Perspective  

E-Print Network [OSTI]

Australia’s wind resource is considered to be very good, and the utilization of this renewable energy resource is increasing rapidly: wind power installed capacity increased by 35% from 2006 to 2011 and is predicted to ...

Hallgren, Willow

435

WP2 IEA Wind Task 26:The Past and Future Cost of Wind Energy  

E-Print Network [OSTI]

Cost of Energy From U.S. Wind Power Projects. PresentationTrust. (2008). Offshore Wind Power: Big Challenge, BigAgency (DEA). (1999). Wind Power in Denmark: Technologies,

Lantz, Eric

2014-01-01T23:59:59.000Z

436

Gone with the Wind - The Potential Tragedy of the Common Wind  

E-Print Network [OSTI]

of pollutants by the wind and the various factors at play,2005). 12. Id. GONE WITH THE WIND? increased concerns aboutthe Impacts of Large Wind Turbine Projects to Encourage

Lifshitz-Goldberg, Yaei

2010-01-01T23:59:59.000Z

437

EA-1792-S1: University of Maine's Deepwater Offshore Floating Wind Turbine Testing and Demonstration Project – Castine Harbor Test Site  

Broader source: Energy.gov [DOE]

This Supplemental EA evaluates the environmental impacts of the University of Maine proposal to use Congressionally directed federal funding, from DOE, to deploy, test and retrieve one 1/8-scale floating wind turbine (20kw) prototype in Castine Harbor, offshore of Castine Maine. This test would be conducted prior to testing at the site 2 miles from Monhegan Island (evaluated under DOE EA-1792).

438

A New Wind Turbine Control Method to Smooth Power Generation. Modelling and Comparison to Wind Turbine Frequency Control.  

E-Print Network [OSTI]

??Following the significant increase of world wide installed wind power during the first decade of the 21st century, transmission system operators are faced with new… (more)

Solberg, Olov

2012-01-01T23:59:59.000Z

439

DOE: Integrating Southwest Power Pool Wind Energy into Southeast Electricity Markets  

SciTech Connect (OSTI)

Wind power development in the United States is outpacing previous estimates for many regions, particularly those with good wind resources. The pace of wind power deployment may soon outstrip regional capabilities to provide transmission and integration services to achieve the most economic power system operation. Conversely, regions such as the Southeastern United States do not have good wind resources and will have difficulty meeting proposed federal Renewable Portfolio Standards with local supply. There is a growing need to explore innovative solutions for collaborating between regions to achieve the least cost solution for meeting such a renewable energy mandate. The DOE-funded project 'Integrating Southwest Power Pool Wind Energy into Southeast Electricity Markets' aims to evaluate the benefits of coordination of scheduling and balancing for Southwest Power Pool (SPP) wind transfers to Southeastern Electric Reliability Council (SERC) Balancing Authorities (BAs). The primary objective of this project is to analyze the benefits of different balancing approaches with increasing levels of inter-regional cooperation. Scenarios were defined, modeled and investigated to address production variability and uncertainty and the associated balancing of large quantities of wind power in SPP and delivery to energy markets in the southern regions of the SERC. The primary analysis of the project is based on unit commitment (UC) and economic dispatch (ED) simulations of the SPP-SERC regions as modeled for the year 2022. The UC/ED models utilized for the project were developed through extensive consultation with the project utility partners, to ensure the various regions and operational practices are represented as accurately as possible realizing that all such future scenario models are quite uncertain. SPP, Entergy, Oglethorpe Power Company (OPC), Southern Company, and the Tennessee Valley Authority (TVA) actively participated in the project providing input data for the models and review of simulation results and conclusions. While other SERC utility systems are modeled, the listed SERC utilities were explicitly included as active participants in the project due to the size of their load and relative proximity to SPP for importing wind energy. The analysis aspects of the project comprised 4 primary tasks: (1) Development of SCUC/SCED model of the SPP-SERC footprint for the year 2022 with only 7 GW of installed wind capacity in SPP for internal SPP consumption with no intended wind exports to SERC. This model is referred to as the 'Non-RES' model as it does not reflect the need for the SPP or SERC BAs to meet a federal Renewable Energy Standard (RES). (2) Analysis of hourly-resolution simulation results of the Non-RES model for the year 2022 to provide project stakeholders with confidence in the model and analytical framework for a scenario that is similar to the existing system and more easily evaluated than the high-wind transfer scenarios that are analyzed subsequently. (3) Development of SCUC/SCED model of the SPP-SERC footprint for the year 2022 with sufficient installed wind capacity in SPP (approximately 48 GW) for both SPP and the participating SERC BAs to meet an RES of 20% energy. This model is referred to as the 'High-Wind Transfer' model with several different scenarios represented. The development of the High-Wind Transfer model not only included identification and allocation of SPP wind to individual SERC BAs, but also included the evaluation of various methods to allow the model to export the SPP wind to SERC without developing an actual transmission plan to support the transfers. (4) Analysis of hourly-resolution simulation results of several different High-Wind Transfer model scenarios for the year 2022 to determine balancing costs and potential benefits of collaboration among SPP and SERC BAs to provide the required balancing.

Brooks, Daniel, EPRI; Tuohy, Aidan, EPRI; Deb, Sidart, LCG Consulting; Jampani, Srinivas, LCG Consulting; Kirby, Brendan, Consultant; King, Jack, Consultant

2011-11-29T23:59:59.000Z

440

Defense Energy Support Center: Installation Energy Commodity Business Unit  

Broader source: Energy.gov [DOE]

Presentation—given at the Spring 2009 Federal Utility Partnership Working Group (FUPWG) meeting—discusses the Defense Energy Support Center's (DESC's) Installation Energy Commodity Business Unit (CBU) including its intent, commitment, pilot project, lessons learned, and impending barriers.

Note: This page contains sample records for the topic "wind installation project" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


441

Wind Energy Facilities and Residential Properties: The Effect of Proximity and View on Sales Prices  

E-Print Network [OSTI]

by exploring the potential impact of wind projects on homethe three potential stigmas surrounding wind facilities.investigated the potential impacts of wind power facilities

Hoen, Ben

2010-01-01T23:59:59.000Z

442

Wind derivatives: hedging wind risk:.  

E-Print Network [OSTI]

??Wind derivatives are financial contracts that can be used to hedge or mitigate wind risk. In this thesis, the focus was on pricing these wind… (more)

Hoyer, S.A.

2013-01-01T23:59:59.000Z

443

2011 Cost of Wind Energy Review  

SciTech Connect (OSTI)

This report describes the levelized cost of energy (LCOE) for a typical land-based wind turbine installed in the United States in 2011, as well as the modeled LCOE for a fixed-bottom offshore wind turbine installed in the United States in 2011. Each of the four major components of the LCOE equation are explained in detail, such as installed capital cost, annual energy production, annual operating expenses, and financing, and including sensitivity ranges that show how each component can affect LCOE. These LCOE calculations are used for planning and other purposes by the U.S. Department of Energy's Wind Program.

Tegen, S.; Lantz, E.; Hand, M.; Maples, B.; Smith, A.; Schwabe, P.

2013-03-01T23:59:59.000Z

444

Wind Power in Alaska  

Broader source: Energy.gov [DOE]

In the past few years wind power has become more and more prevalent across Alaska, with big turbines sprouting up in all parts of the state. Sponsored by the Renewable Energy Alaska Project, event...

445

Offshore Code Comparison Collaboration within IEA Wind Task 23: Phase IV Results Regarding Floating Wind Turbine Modeling; Preprint  

SciTech Connect (OSTI)

Offshore wind turbines are designed and analyzed using comprehensive simulation codes that account for the coupled dynamics of the wind inflow, aerodynamics, elasticity, and controls of the turbine, along with the incident waves, sea current, hydrodynamics, and foundation dynamics of the support structure. This paper describes the latest findings of the code-to-code verification activities of the Offshore Code Comparison Collaboration, which operates under Subtask 2 of the International Energy Agency Wind Task 23. In the latest phase of the project, participants used an assortment of codes to model the coupled dynamic response of a 5-MW wind turbine installed on a floating spar buoy in 320 m of water. Code predictions were compared from load-case simulations selected to test different model features. The comparisons have resulted in a greater understanding of offshore floating wind turbine dynamics and modeling techniques, and better knowledge of the validity of various approximations. The lessons learned from this exercise have improved the participants' codes, thus improving the standard of offshore wind turbine modeling.

Jonkman, J.; Larsen, T.; Hansen, A.; Nygaard, T.; Maus, K.; Karimirad, M.; Gao, Z.; Moan, T.; Fylling, I.

2010-04-01T23:59:59.000Z

446

Wind Energy Workforce Development: A Roadmap to a Wind Energy Educational Infrastructure (Presentation)  

SciTech Connect (OSTI)

Wind Powering America national technical director Ian Baring-Gould made this presentation about workforce development in the wind energy industry to an audience at the American Wind Energy Association's annual WINDPOWER conference in Anaheim. The presentation outlines job projections from the 20% Wind Energy by 2030 report and steps to take at all levels of educational institutions to meet those projections.

Baring-Gould, I.

2011-05-01T23:59:59.000Z

447

WInd engineering and Renewable Energy laboratory Gnie Mcanique  

E-Print Network [OSTI]

WInd engineering and Renewable Energy laboratory Section de Génie Mécanique - Master Project - Wind tunnel investigations on wind farms Juliette Coëffé (juliette.coeffe@epfl.ch) ABSTRACT Wind energy efficient and optimized wind energy systems are needed. To this end, this master project, carried out

Lausanne, Ecole Polytechnique Fédérale de

448

The Effect of Wind Speed and Electric Rates On Wind Turbine Economics  

E-Print Network [OSTI]

The Effect of Wind Speed and Electric Rates On Wind Turbine Economics Economics of wind power depends mainly on the wind speeds and the turbine make and model. Definition: Simple Payback The "Simple period of a small wind power project. All the figures are per turbine, so it can be used for a one, two

Massachusetts at Amherst, University of

449

Improved Performance of an Air Cooled Condenser (ACC) Using SPX Wind Guide Technology at Coal-Based Thermoelectric Power Plants  

SciTech Connect (OSTI)

This project added a new airflow enhancement technology to an existing ACC cooling process at a selected coal power plant. Airflow parameters and efficiency improvement for the main plant cooling process using the applied technology were determined and compared with the capabilities of existing systems. The project required significant planning and pre-test execution in order to reach the required Air Cooled Condenser system configuration for evaluation. A host Power Plant ACC system had to be identified, agreement finalized, and addition of the SPX ACC Wind Guide Technology completed on that site. Design of the modification, along with procurement, fabrication, instrumentation, and installation of the new airflow enhancement technology were executed. Baseline and post-modification cooling system data was collected and evaluated. The improvement of ACC thermal performance after SPX wind guide installation was clear. Testing of the improvement indicates there is a 5% improvement in heat transfer coefficient in high wind conditions and 1% improvement at low wind speed. The benefit increased with increasing wind speed. This project was completed on schedule and within budget.

Ken Mortensen

2010-12-31T23:59:59.000Z

450

This project is funded by an MIT Martin Family Fellowship and a MITEI Seed Fund Grant Leveraging High Performance Computation for Statistical Wind Power Prediction  

E-Print Network [OSTI]

High Performance Computation for Statistical Wind Power Prediction Cy Chan*, James Stalker**, Alan for wind power forecasting is becoming imperative as wind energy becomes a larger contributor to the energy learning techniques for improving wind power prediction, with the goal of finding better ways to deliver

451

Wind Technology Advancements and Impacts on Western Wind Resources (Presentation)  

SciTech Connect (OSTI)

Robi Robichaud made this presentation at the Bureau of Land Management West-wide Wind Opportunities and Constraints Mapping (WWOCM) Project public meeting in Denver, Colorado in September 2014. This presentation outlines recent wind technology advancements, evolving turbine technologies, and industry challenges. The presentation includes maps of mean wind speeds at 50-m, 80-m, and 100-m hub heights on BLM lands. Robichaud also presented on the difference in mean wind speeds from 80m to 100m in Wyoming.

Robichaud, R.

2014-09-01T23:59:59.000Z

452

Wind energy, with an annual growth of about 30%, represents one of the fastest growing renewable energy sources. Continuous long-term monitoring of wind turbines can greatly reduce maintenance  

E-Print Network [OSTI]

renewable energy sources. Continuous long-term monitoring of wind turbines can greatly reduce maintenance the profitability of wind turbines. A decentralized wind turbine monitoring system has been developed and installed on a 500 kW wind turbine in Germany. During its operation, temporary malfunctions of the installed sensing

Stanford University

453

Compensation Packages Wind Energy Easements  

E-Print Network [OSTI]

to provide rural landowners with information about the wind industry, which was just beginning to emerge in the Midwest and Great Plains. In particular, we focused on land leases and wind energy easements because such agreements provided the primary means for farmers to participate in wind energy development. Since then, the U.S. wind industry has grown dramatically, with commercial-scale installations in more than 30 states and the expectation of a record year for new installations in 2005. As wind energy development has spread, the knowledge base among landowners and rural communities has grown, and options for local participation have increased substantially. With more options and information sources on wind basics available, we believed this was the right time for Windustry to revisit our work on what continues to be the principal means for landowners to participate in wind development: land leases and wind energy easements. This work addresses the ever more sophisticated questions landowners have raised about hosting wind turbines, and also begins to define good practices for developers as many new companies, large and small, enter the industry. Our primary goals are:

Lease Agreement

454

Local Content Requirements in British Columbia's Wind Power Industry  

E-Print Network [OSTI]

Local Content Requirements in British Columbia's Wind Power Industry May Hao, Matt Mackenzie, Alex..................................................................................8 4.1 Current Wind Power Projects

Pedersen, Tom

455

Introduction to Small-Scale Wind Energy Systems (Including RETScreen...  

Open Energy Info (EERE)

Programs DeploymentPrograms: Project Development This video teaches the viewer about wind turbines and RETscreen's wind...

456

DOE Announces Webinars on an Offshore Wind Economic Impacts Model...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

an Offshore Wind Economic Impacts Model, Resources for Tribal Energy Efficiency Projects, and More DOE Announces Webinars on an Offshore Wind Economic Impacts Model, Resources for...

457

EA-1792: University of Maine's Deepwater Offshore Floating Wind...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

: University of Maine's Deepwater Offshore Floating Wind Turbine Testing and Demonstration Project, Gulf of Maine EA-1792: University of Maine's Deepwater Offshore Floating Wind...

458

University of Michigan Gets Offshore Wind Ready for Winter on...  

Energy Savers [EERE]

Project Overview Positive Impact Understanding the impact of ice on offshore wind turbines. Modeling tool to analyze the ice buildup on wind turbine blades. Locations...

459

NREL: Wind Research - NREL Assesses National Design Standards...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Assesses National Design Standards for Offshore Wind Energy Projects This photo shows a row of offshore wind turbines from a vertical perspective. The blades from each turbine are...

460

Wind Energy R&D Opportunity: Energy Department Announces $125...  

Energy Savers [EERE]

Wind Energy R&D Opportunity: Energy Department Announces 125 Million for Transformational Energy Projects Wind Energy R&D Opportunity: Energy Department Announces 125 Million for...

Note: This page contains sample records for the topic "wind installation project" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


461

Oahu Wind Integration and Transmission Study (OWITS): Hawaiian...  

Energy Savers [EERE]

Oahu Wind Integration and Transmission Study (OWITS): Hawaiian Islands Transmission Interconnection Project Oahu Wind Integration and Transmission Study (OWITS): Hawaiian Islands...

462

Design of PM generator for avertical axis wind turbine.  

E-Print Network [OSTI]

?? The task in this project is to design a generator for a vertical axis wind turbine withpower rated to 20kW at a wind speed… (more)

Rynkiewicz, Mateusz

2012-01-01T23:59:59.000Z

463

Xcel Energy Wind and Biomass Generation Mandate  

Broader source: Energy.gov [DOE]

Minnesota law (Minn. Stat. § 216B.2423) requires Xcel Energy to build or contract for 225 megawatts (MW) of installed wind-energy capacity in the state by December 31, 1998, and to build or...

464

2012-2013_Wind_Data.xls  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

MW would be counted as 24, no matter when in the hour the action occurred.) Installed Wind Capacity (as of the end of each month) Curtail Events (INC) 4516 Limit Events (DEC)...

465

Wind Power Price Trends in the United States: Struggling to Remain Competitive in the Face of Strong Growth  

E-Print Network [OSTI]

Build a Durable Market for Wind Power in the United States”Annual Report on U.S. Wind Power Installation, Cost, andcrisis on the U.S. wind power market. A sizable literature

Bolinger, Mark A

2009-01-01T23:59:59.000Z

466

Wind for Schools: Developing Education Programs to Train the Next Generation of the Wind Energy Workforce  

SciTech Connect (OSTI)

This paper provides an overview of the Wind for Schools project elements, including a description of host and collegiate school curricula developed for wind energy and the status of the current projects. The paper also provides focused information on how schools, regions, or countries can become involved or implement similar projects to expand the social acceptance and understanding of wind energy.

Baring-Gould, I.; Flowers, L.; Kelly, M.; Barnett, L.; Miles, J.

2009-08-01T23:59:59.000Z

467

Dynamic valuation model For wind development in regard to land value, proximity to transmission lines, and capacity factor  

E-Print Network [OSTI]

Developing a wind farm involves many variables that can make or break the success of a potential wind farm project. Some variables such as wind data (capacity factor, wind rose, wind speed, etc.) are readily available in ...

Nikandrou, Paul

2009-01-01T23:59:59.000Z

468

Can Wind Turbines be Bad for You? Alec N. Salt, Ph.D.  

E-Print Network [OSTI]

Can Wind Turbines be Bad for You? Alec N. Salt, Ph.D. Department of Otolaryngology there happens to be a castle nearby). #12;Wind turbines haveWind turbines have been getting biggerbeen getting MegaWatts(MW) Total Installed Change by year 3% of US Energy Needs Wind turbines are "green" and areWind

Salt, Alec N.

469

Infrasound, the Ear and Wind Turbines Alec N. Salt, Ph.D.  

E-Print Network [OSTI]

Infrasound, the Ear and Wind Turbines Alec N. Salt, Ph.D. Department of Otolaryngology there happens to be a castle nearby). #12;Wind turbines haveWind turbines have been getting biggerbeen getting MegaWatts(MW) Total Installed Change by year 3% of US Energy Needs Wind turbines are "green" and areWind

Salt, Alec N.

470

Wyoming Wind Power Project (generation/wind)  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmosphericNuclear SecurityTensile Strain Switched FerromagnetismWaste and MaterialsWenjun1of Energy Worldwide CarbonWrap

471

Computational methods in wind power meteorology  

E-Print Network [OSTI]

Computational methods in wind power meteorology Bo Hoffmann Jørgensen, Søren Ott, Niels Nørmark, Jakob Mann and Jake Badger Title: Computational methods in wind power meteorology Department: Wind in connection with the project called Computational meth- ods in wind power meteorology which was supported

472

Intelligent wind power prediction systems final report  

E-Print Network [OSTI]

Intelligent wind power prediction systems ­ final report ­ Henrik Aalborg Nielsen (han (FU 4101) Ens. journal number: 79029-0001 Project title: Intelligent wind power prediction systems #12;#12;Intelligent wind power prediction systems 1/36 Contents 1 Introduction 6 2 The Wind Power Prediction Tool 7 3

473

US LHC Accelerator Project Baseline Change Request BCR Number 58  

E-Print Network [OSTI]

to correspond to the current LHC installation schedule, constrained by the U.S. LHC Project end-of-project

Large Hadron Collider Program

474

National Wind Technology Center sitewide, Golden, CO: Environmental assessment  

SciTech Connect (OSTI)

The National Renewable Energy Laboratory (NREL), the nation`s primary solar and renewable energy research laboratory, proposes to expand its wind technology research and development program activities at its National Wind Technology Center (NWTC) near Golden, Colorado. NWTC is an existing wind energy research facility operated by NREL for the US Department of Energy (DOE). Proposed activities include the construction and reuse of buildings and facilities, installation of up to 20 wind turbine test sites, improvements in infrastructure, and subsequent research activities, technology testing, and site operations. In addition to wind turbine test activities, NWTC may be used to support other NREL program activities and small-scale demonstration projects. This document assesses potential consequences to resources within the physical, biological, and human environment, including potential impacts to: air quality, geology and soils, water resources, biological resources, cultural and historic resources, socioeconomic resources, land use, visual resources, noise environment, hazardous materials and waste management, and health and safety conditions. Comment letters were received from several agencies in response to the scoping and predecisional draft reviews. The comments have been incorporated as appropriate into the document with full text of the letters contained in the Appendices. Additionally, information from the Rocky Flats Environmental Technology Site on going sitewide assessment of potential environmental impacts has been reviewed and discussed by representatives of both parties and incorporated into the document as appropriate.

NONE

1996-11-01T23:59:59.000Z

475

Capacity Building in Wind Energy for PICs  

E-Print Network [OSTI]

indicates that significant wind energy potential exists. · A monitoring project showed that in Rarotonga system. · About 30 other islands could have potential for grid connected wind turbines in the 100-1000 k1 Capacity Building in Wind Energy for PICs Presentation of the project Regional Workshop Suva

476

ORIGINAL PAPER Insect attraction to wind turbines: does colour play a role?  

E-Print Network [OSTI]

ORIGINAL PAPER Insect attraction to wind turbines: does colour play a role? C. V. Long & J. A at wind turbine installations has been generating increasing con- cern, both for the continued development the phenomenon of avian and bat mortality at wind turbine installations, an issue that could potentially

Paris-Sud XI, Université de

477

Simulation of electricity supply of an Atlantic island by offshore wind turbines and wave  

E-Print Network [OSTI]

Simulation of electricity supply of an Atlantic island by offshore wind turbines and wave energy community. Key words: Wave energy, offshore wind turbines, marine energy 1 Introduction Marine renewables installations of a few kW like small wind turbines or photovoltaic cells installed to provide electricity

Paris-Sud XI, Université de

478

RECIPIENT:Bowling Green State University STATE: OH PROJECT TITLE...  

Broader source: Energy.gov (indexed) [DOE]

OH PROJECT TITLE: Coastal Ohio Wind Project for Reduced Barriers to Deployment of Offshore Wind Energy Funding Opportunity Announcement Number Procurement Instrument Number...

479

WIND ENERGY Wind Energ. (2014)  

E-Print Network [OSTI]

WIND ENERGY Wind Energ. (2014) Published online in Wiley Online Library (wileyonlinelibrary Correspondence M. Wächter, ForWind-Center for Wind Energy Research, Institute of Physics, Carl Von Ossietzky on the operation of wind energy converters (WECs) imposing different risks especially in terms of highly dynamic

Peinke, Joachim

480

Job and Economic Development Impact (JEDI) Model: A User-Friendly Tool to Calculate Economic Impacts from Wind Projects; Preprint  

Wind Powering America (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data CenterFranconia, Virginia:FAQ < RAPID Jump to:SeadovCooperative JumpWilliamsonWoodsonCounty iscomfortNewsAffiliate ProjectsJob and

Note: This page contains sample records for the topic "wind installation project" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


481

Renewable Energy Opportunities at the Kanto Installations, Japan  

SciTech Connect (OSTI)

This document provides an overview of renewable resource development potential at the U.S. Army installations in the Kanto region in Japan, which includes Camp Zama, Yokohama North Dock, Sagamihara Family Housing Area (SFHA), Sagami General Depot, and Akasaka Press Center. This effort focuses on grid-connected generation of electricity from renewable energy sources and also on ground source heat pumps for heating and cooling buildings. The effort was funded by the Huntsville Army Corps of Engineers, and includes the development of a methodology for renewable resource assessment at Army installations located on foreign soil. The methodology is documented in Renewable Energy Assessment Methodology for Japanese OCONUS Army Installations. The site visit to the Kanto installations took place on April 5 and 6, 2010. At the current time, there are some renewable technologies that show economic potential. Because of siting restrictions and the small size of these installations, development of most renewable energy technologies will likely be limited to Camp Zama. Project feasibility is based on installation-specific resource availability and energy costs and projections based on accepted life-cycle cost methods. Development of any renewable energy project will be challenging, as it will require investigation into existing contractual obligations, new contracts that could be developed, the legality of certain partnerships, and available financing avenues, which involves the U.S. Forces Japan (USFJ), the Government of Japan (GOJ), and a number of other parties on both sides. The Army will not be able to implement a project without involvement and approval from the other services and multiple levels of Japanese government. However, implementation of renewable energy projects could be an attractive method for GOJ to reduce greenhouse gas emissions and lower annual utility payments to USFJ. This report recommends projects to pursue and offers approaches to use. The most promising opportunities include waste-to-energy and ground source heat pumps. Solar photovoltaics (PV) may also prove successful. Other resources were found to be insufficient on the Kanto installations.

Solana, Amy E.; Horner, Jacob A.; Russo, Bryan J.; Gorrissen, Willy J.; Kora, Angela R.; Weimar, Mark R.; Hand, James R.; Orrell, Alice C.; Williamson, Jennifer L.

2010-09-24T23:59:59.000Z

482

Final Technical Report Recovery Act: Online Nonintrusive Condition Monitoring and Fault Detection for Wind Turbines  

SciTech Connect (OSTI)

The penetration of wind power has increased greatly over the last decade in the United States and across the world. The U.S. wind power industry installed 1,118 MW of new capacity in the first quarter of 2011 alone and entered the second quarter with another 5,600 MW under construction. By 2030, wind energy is expected to provide 20% of the U.S. electricity needs. As the number of wind turbines continues to grow, the need for effective condition monitoring and fault detection (CMFD) systems becomes increasingly important [3]. Online CMFD is an effective means of not only improving the reliability, capacity factor, and lifetime, but it also reduces the downtime, energy loss, and operation and maintenance (O&M) of wind turbines. The goal of this project is to develop novel online nonintrusive CMFD technologies for wind turbines. The proposed technologies use only the current measurements that have been used by the control and protection system of a wind turbine generator (WTG); no additional sensors or data acquisition devices are needed. Current signals are reliable and easily accessible from the ground without intruding on the wind turbine generators (WTGs) that are situated on high towers and installed in remote areas. Therefore, current-based CMFD techniques have great economic benefits and the potential to be adopted by the wind energy industry. Specifically, the following objectives and results have been achieved in this project: (1) Analyzed the effects of faults in a WTG on the generator currents of the WTG operating at variable rotating speed conditions from the perspective of amplitude and frequency modulations of the current measurements; (2) Developed effective amplitude and frequency demodulation methods for appropriate signal conditioning of the current measurements to improve the accuracy and reliability of wind turbine CMFD; (3) Developed a 1P-invariant power spectrum density (PSD) method for effective signature extraction of wind turbine faults with characteristic frequencies in the current or current demodulated signals, where 1P stands for the shaft rotating frequency of a WTG; (4) Developed a wavelet filter for effective signature extraction of wind turbine faults without characteristic frequencies in the current or current demodulated signals; (5) Developed an effective adaptive noise cancellation method as an alternative to the wavelet filter method for signature extraction of wind turbine faults without characteristic frequencies in the current or current demodulated signals; (6) Developed a statistical analysis-based impulse detection method for effective fault signature extraction and evaluation of WTGs based on the 1P-invariant PSD of the current or current demodulated signals; (7) Validated the proposed current-based wind turbine CMFD technologies through extensive computer simulations and experiments for small direct-drive WTGs without gearboxes; and (8) Showed, through extensive experiments for small direct-drive WTGs, that the performance of the proposed current-based wind turbine CMFD technologies is comparable to traditional vibration-based methods. The proposed technologies have been successfully applied for detection of major failures in blades, shafts, bearings, and generators of small direct-drive WTGs. The proposed technologies can be easily integrated into existing wind turbine control, protection, and monitoring systems and can be implemented remotely from the wind turbines being monitored. The proposed technologies provide an alternative to vibration-sensor-based CMFD. This will reduce the cost and hardware complexity of wind turbine CMFD systems. The proposed technologies can also be combined with vibration-sensor-based methods to improve the accuracy and reliability of wind turbine CMFD systems. When there are problems with sensors, the proposed technologies will ensure proper CMFD for the wind turbines, including their sensing systems. In conclusion, the proposed technologies offer an effective means to achieve condition-based smart maintenance for wind turbines and have a gre

Wei Qiao

2012-05-29T23:59:59.000Z

483

Understanding Trends in Wind Turbine Prices Over the Past Decade  

E-Print Network [OSTI]

Innovation and the price of wind energy in the US. ” Energythe impact of energy price changes on wind turbine prices.Costs 3.6 Energy Prices Life-cycle analyses of wind projects

Bolinger, Mark

2012-01-01T23:59:59.000Z

484

Wind Power Price Trends in the United States  

E-Print Network [OSTI]

price of power from new U.S. wind projects higher in 2009.should eventually help wind power regain the downward pricein Modern Energy Review] Wind Power Price Trends in the

Bolinger, Mark

2010-01-01T23:59:59.000Z

485

Offshore Wind Turbines: Some Technical Challenges  

E-Print Network [OSTI]

1 Offshore Wind Turbines: Some Technical Challenges Prof. Guy Houlsby FREng Oxford University House engineers concerned with installation of offshore wind turbines. The author is Professor of Civil of foundations for offshore structures. He also has a strong interest in the development of the fundamental

Houlsby, Guy T.

486

Bird Mortaility at the Altamont Pass Wind Resource Area: March 1998--September 2001  

SciTech Connect (OSTI)

Over the past 15 years, research has shown that wind turbines in the Altamont Pass Wind Resource Area (APWRA) kill many birds, including raptors, which are protected by the Migratory Bird Treaty Act (MBTA), the Bald and Golden Eagle Protection Act, and/or state and federal Endangered Species Acts. Early research in the APWRA on avian mortality mainly attempted to identify the extent of the problem. In 1998, however, the National Renewable Energy Laboratory (NREL) initiated research to address the causal relationships between wind turbines and bird mortality. NREL funded a project by BioResource Consultants to perform this research directed at identifying and addressing the causes of mortality of various bird species from wind turbines in the APWRA.With 580 megawatts (MW) of installed wind turbine generating capacity in the APWRA, wind turbines there provide up to 1 billion kilowatt-hours (kWh) of emissions-free electricity annually. By identifying and implementing new methods and technologies to reduce or resolve bird mortality in the APWRA, power producers may be able to increase wind turbine electricity production at the site and apply similar mortality-reduction methods at other sites around the state and country.

Smallwood, K. S.; Thelander, C. G.

2005-09-01T23:59:59.000Z

487

Final Report DE-EE0005380: Assessment of Offshore Wind Farm Effects on Sea Surface, Subsurface and Airborne Electronic Systems  

SciTech Connect (OSTI)

Offshore wind energy is a valuable resource that can provide a significant boost to the US renewable energy portfolio. A current constraint to the development of offshore wind farms is the potential for interference to be caused by large wind farms on existing electronic and acoustical equipment such as radar and sonar systems for surveillance, navigation and communications. The US Department of Energy funded this study as an objective assessment of possible interference to various types of equipment operating in the marine environment where offshore wind farms could be installed. The objective of this project was to conduct a baseline evaluation of electromagnetic and acoustical challenges to sea surface, subsurface and airborne electronic systems presented by offshore wind farms. To accomplish this goal, the following tasks were carried out: (1) survey electronic systems that can potentially be impacted by large offshore wind farms, and identify impact assessment studies and research and development activities both within and outside the US, (2) engage key stakeholders to identify their possible concerns and operating requirements, (3) conduct first-principle modeling on the interactions of electromagnetic signals with, and the radiation of underwater acoustic signals from, offshore wind farms to evaluate the effect of such interactions on electronic systems, and (4) provide impact assessments, recommend mitigation methods, prioritize future research directions, and disseminate project findings. This report provides a detailed description of the methodologies used to carry out the study, key findings of the study, and a list of recommendations derived based the findings.

Ling, Hao [The University of Texas at Austin] [The University of Texas at Austin; Hamilton, Mark F. [The University of Texas at Austin Applied Research Laboratories] [The University of Texas at Austin Applied Research Laboratories; Bhalla, Rajan [Science Applications International Corporation] [Science Applications International Corporation; Brown, Walter E. [The University of Texas at Austin Applied Research Laboratories] [The University of Texas at Austin Applied Research Laboratories; Hay, Todd A. [The University of Texas at Austin Applied Research Laboratories] [The University of Texas at Austin Applied Research Laboratories; Whitelonis, Nicholas J. [The University of Texas at Austin] [The University of Texas at Austin; Yang, Shang-Te [The University of Texas at Austin] [The University of Texas at Austin; Naqvi, Aale R. [The University of Texas at Austin] [The University of Texas at Austin

2013-09-30T23:59:59.000Z

488

Offshore Wind Energy Market Overview (Presentation)  

SciTech Connect (OSTI)

This presentation describes the current international market conditions regarding offshore wind, including the breakdown of installation costs, how to reduce costs, and the physical siting considerations considered when planning offshore wind construction. The presentation offers several examples of international existing and planned offshore wind farm sites and compares existing international offshore resources with U.S. resources. The presentation covers future offshore wind trends and cites some challenges that the United States must overcome before it will be able to fully develop offshore wind sites.

Baring-Gould, I.

2013-07-01T23:59:59.000Z

489

Illinois Wind Workers Group  

SciTech Connect (OSTI)

The Illinois Wind Working Group (IWWG) was founded in 2006 with about 15 members. It has grown to over 200 members today representing all aspects of the wind industry across the State of Illinois. In 2008, the IWWG developed a strategic plan to give direction to the group and its activities. The strategic plan identifies ways to address critical market barriers to the further penetration of wind. The key to addressing these market barriers is public education and outreach. Since Illinois has a restructured electricity market, utilities no longer have a strong control over the addition of new capacity within the state. Instead, market acceptance depends on willing landowners to lease land and willing county officials to site wind farms. Many times these groups are uninformed about the benefits of wind energy and unfamiliar with the process. Therefore, many of the project objectives focus on conferences, forum, databases and research that will allow these stakeholders to make well-educated decisions.

David G. Loomis

2012-05-28T23:59:59.000Z

490

2010 Cost of Wind Energy Review  

SciTech Connect (OSTI)

This document provides a detailed description of NREL's levelized cost of wind energy equation, assumptions and results in 2010, including historical cost trends and future projections for land-based and offshore utility-scale wind.

Tegen, S.; Hand, M.; Maples, B.; Lantz, E.; Schwabe, P.; Smith, A.

2012-04-01T23:59:59.000Z

491

Building the Basic PVC Wind Turbine  

Broader source: Energy.gov (indexed) [DOE]

Energy Smart CD- Building PVC Turbine 8 Some Blade Building Tips KidWind model wind turbines are designed for use in science classes, or as a hobby or science fair project....

492

Energy Department Announces Distributed Wind Competitiveness...  

Energy Savers [EERE]

for projects led by Pika Energy, Northern Power Systems, Endurance Wind Power, and Urban Green Energy that will help drive down the cost of small and medium-sized wind energy...

493

Draft Industry Preview- Wind Vision Brochure  

Broader source: Energy.gov [DOE]

This brochure contains highlights from DOE’s Wind Vision study. Facts, figures, and projections are subject to change pending the release of the full Wind Vision report in early 2015.

494

Wind Electrolysis - Hydrogen Cost Optimization (Presentation)  

SciTech Connect (OSTI)

This presentation is about the Wind-to-Hydrogen Project at NREL, part of the Renewable Electrolysis task and the examination of a grid-tied, co-located wind electrolysis hydrogen production facility.

Saur, G.

2011-02-01T23:59:59.000Z

495

Real-time POD-CFD Wind-Load Calculator for PV Systems  

SciTech Connect (OSTI)

The primary objective of this project is to create an accurate web-based real-time wind-load calculator. This is of paramount importance for (1) the rapid and accurate assessments of the uplift and downforce loads on a PV mounting system, (2) identifying viable solutions from available mounting systems, and therefore helping reduce the cost of mounting hardware and installation. Wind loading calculations for structures are currently performed according to the American Society of Civil Engineers/ Structural Engineering Institute Standard ASCE/SEI 7; the values in this standard were calculated from simplified models that do not necessarily take into account relevant characteristics such as those from full 3D effects, end effects, turbulence generation and dissipation, as well as minor effects derived from shear forces on installation brackets and other accessories. This standard does not include provisions that address the special requirements of rooftop PV systems, and attempts to apply this standard may lead to significant design errors as wind loads are incorrectly estimated. Therefore, an accurate calculator would be of paramount importance for the preliminary assessments of the uplift and downforce loads on a PV mounting system, identifying viable solutions from available mounting systems, and therefore helping reduce the cost of the mounting system and installation. The challenge is that although a full-fledged three-dimensional computational fluid dynamics (CFD) analysis would properly and accurately capture the complete physical effects of air flow over PV systems, it would be impractical for this tool, which is intended to be a real-time web-based calculator. CFD routinely requires enormous computation times to arrive at solutions that can be deemed accurate and grid-independent even in powerful and massively parallel computer platforms. This work is expected not only to accelerate solar deployment nationwide, but also help reach the SunShot Initiative goals of reducing the total installed cost of solar energy systems by 75%. The largest percentage of the total installed cost of solar energy system is associated with balance of system cost, with up to 40% going to “soft” costs; which include customer acquisition, financing, contracting, permitting, interconnection, inspection, installation, performance, operations, and maintenance. The calculator that is being developed will provide wind loads in real-time for any solar system designs and suggest the proper installation configuration and hardware; and therefore, it is anticipated to reduce system design, installation and permitting costs.

Huayamave, Victor [Centecorp; Divo, Eduardo [Centecorp; Ceballos, Andres [Centecorp; Barriento, Carolina [Centecorp; Stephen, Barkaszi [FSEC; Hubert, Seigneur [FSEC

2014-03-21T23:59:59.000Z

496

Solar, Wind, Hydropower: Home Renewable Energy Installations | Department  

Energy Savers [EERE]

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious RankCombustion |Energy UsageAUDITVehicles »ExchangeDepartmentResolveFuture | DepartmentSo Simple ItHeatingof

497

PNNL Reports Distributed Wind Installations Down, Exports Up in 2013 |  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE:Year in3.pdfEnergyDepartment ofOil's Impact on OurSempriusEnergy PARTDepartment of

498

New England Breeze Solar and Wind Installers | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Office of Inspector GeneralDepartmentAUDIT REPORTOpenWende New Energy CoFirst Second PowerNautica

499

Installing and Maintaining a Small Wind Electric System | Department of  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmospheric Optical Depth7-1D: Vegetation ProposedUsingFunInfrared Land Surface Emissivity inFermilabWhich1the researchEnergy

500

Community Wind Handbook/Find an Installer | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Office of Inspector GeneralDepartmentAUDITOhioOglesby,Sullivan,Information FeedColombia:|Calculate SimpleFind an