Sample records for wind generations llc

  1. EA-1726: Kahuku Wind Power, LLC Wind Power Generation Facility...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    6: Kahuku Wind Power, LLC Wind Power Generation Facility, O'ahu, HI EA-1726: Kahuku Wind Power, LLC Wind Power Generation Facility, O'ahu, HI May 3, 2010 EA-1726: Final...

  2. EA-1726: Kahuku Wind Power, LLC Wind Power Generation Facility, O'ahu, HI

    Broader source: Energy.gov (indexed) [DOE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742Energy China U.S.ContaminationJuly 2011D APPENDIXKahuku Wind Power, LLC, Construction of the|

  3. EA-1970: Fishermen's Energy LLC Offshore Wind Demonstration Project...

    Office of Environmental Management (EM)

    to Fishermen's Atlantic City Windfarm, LLC to construct and operate up to six wind turbine generators, for an offshore wind demonstration project, approximately 2.8 nautical...

  4. Just Wind LLC | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are being directedAnnual Siteof Energy 2,AUDIT REPORTEnergyFarmsPower Co LtdTN LLC JumpJilinWind LLC Place:

  5. Wind Works LLC | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov YouKizildere IRaghuraji Agro IndustriesTown ofNationwideWTEDBird,Wilsonville, Oregon: EnergyWindCooperativesWind Works LLC

  6. Franklin County Wind LLC | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are being directedAnnualPropertyd8c-a9ae-f8521cbb8489Information HydroFontana,datasetWind Farm JumpPhaseIslandsLLC

  7. Invenergy Wind LLC | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are8COaBulkTransmissionSitingProcess.pdfGetecGtelInterias Solar Energy Jump to:IESInterval Data Systems IncIncWind LLC

  8. Prairie Wind Energy LLC | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov YouKizildere I Geothermal PwerPerkins County, Nebraska: EnergyPiratiniEdwards,PoseyPoudrePowersPrairie Wind Energy LLC

  9. Minuteman Wind LLC | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are beingZealand Jump to: navigation, searchOfRose BendMiasole IncMinuteman Wind LLC Jump to: navigation, search Name:

  10. EA-1970: Fishermen’s Energy LLC Offshore Wind Demonstration Project, offshore Atlantic City, New Jersey

    Broader source: Energy.gov [DOE]

    DOE is proposing to provide funding to Fishermen’s Atlantic City Windfarm, LLC to construct and operate up to six wind turbine generators, for an offshore wind demonstration project, approximately 2.8 nautical miles off the coast of Atlantic City, NJ. The proposed action includes a cable crossing from the turbines to an on-shore existing substation.

  11. Talkin’ Bout Wind Generation

    Broader source: Energy.gov [DOE]

    The amount of electricity generated by the wind industry started to grow back around 1999, and since 2007 has been increasing at a rapid pace.

  12. Southwest Wind Consulting LLC | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov YouKizildere IRaghuraji Agro Industries Pvt LtdShawangunk,Southeast Colorado Power AssnInformationConsulting, LLC

  13. Ohio Green Wind, LLC | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are being directedAnnual Siteof Energy 2,AUDIT REPORTEnergyFarmsPowerKaitianOstsee Wind AG Jump to:Ohio Green Wind,

  14. Steve Kropper WindPole Ventures, LLC

    E-Print Network [OSTI]

    cover 85% all wind 22 year license Ownership/control over data $15k capex per tower (new tower cost% margin. capex $15k per tower ($8k hardware + $7k labor) Annual revenue $20m from 580 towers 2.5 clients

  15. Magic Wind LLC | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are being directedAnnual Siteof Energy 2,AUDIT REPORTEnergyFarmsPower CoLongxing Wind PowerMCFMVV Energie AG

  16. Padoma Wind Power LLC | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are being directedAnnual Siteof Energy 2,AUDIT REPORTEnergyFarmsPowerKaitianOstsee WindEnergy InformationPadoma

  17. Scandia Wind Southwest LLC | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are being directedAnnual Siteof Energy 2,AUDITCalifornia Sector: WindRiegotec InternacionalhasAS Jump to:Scandia

  18. Wind Smart LLC | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are being directedAnnual Siteof Energy 2,AUDITCaliforniaWeifang Swisselectronic Co LtdLtd Place:ArcadiaWind-Smart

  19. Wind Management LLC | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are beingZealand Jump to:Ezfeedflag JumpID-fTriWildcat 1 Wind Project Jump to:Wilson Hot SpringNevada:Data

  20. Havoco Wind Energy LLC | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are beingZealand Jump to: navigation, search OpenEI ReferenceJumpEnergyStrategy |Hatchet Ridge Wind Farm JumpHavoco

  1. CPV Wind Ventures LLC | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are being directedAnnual Siteof Energy 2,AUDIT REPORT Americium/CuriumAguaBBBWind-BrizaHKC Wind PowerCIMxCMNA

  2. Bluewater Wind LLC | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are beingZealand Jump to:EzfeedflagBiomass ConversionsSouthby 2022 |BleckleyMotion EnergyBluestem Electric Coop IncWind

  3. Freedom Wind Energy LLC | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are8COaBulkTransmissionSitingProcess.pdf Jump1946865°, -86.0529604° Show MapFredericksburg Place:Freedom Wind Energy

  4. Iowa Wind LLC | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are being directedAnnual SiteofEvaluatingGroup | OpenHunanInformation sourceInvensys BuildingIowa LakesIowa Wind

  5. WindPole Ventures LLC | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov YouKizildere IRaghuraji Agro IndustriesTown ofNationwideWTEDBird,Wilsonville, Oregon:WindPole Ventures LLC Jump to:

  6. TradeWind Energy LLC | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov YouKizildere IRaghuraji Agro IndustriesTown of Ladoga, Indiana (Utility Company) JumpTradeWind Energy LLC Jump to:

  7. Metro Wind LLC Wind Farm | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are beingZealand Jump to: navigation, searchOfRose Bend <StevensMcClellan,II JumpMepsolarMesilla,MethanetoMetricWind

  8. Generating Assets LLC | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are being directedAnnualPropertyd8c-a9ae-f8521cbb8489InformationFrenchtown,Jump to: navigation, searchEnergyLLC

  9. Contracting for wind generation

    E-Print Network [OSTI]

    Newbery, David

    The UK Government proposes offering long-term Feed-in-Tariffs (FiTs) to low-carbon generation to reduce risk and encourage new entrants. Their preference is for a Contract-for-Difference (CfD) or a premium FiT (pFiT) for all generation regardless...

  10. Class Generation for Numerical Wind Atlases

    E-Print Network [OSTI]

    Class Generation for Numerical Wind Atlases Risø National Laboratory Wind Energy Department and The Technical University of Denmark Informatics and Mathematical Modelling Department Nicholas J. Cutler s000144 Constructing a Numerical Wind Atlas 5 2.1 Introduction

  11. National Grid Generation, LLC | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are being directedAnnual SiteofEvaluatingGroup |JilinLuOpen Energy Information NationalNational Grid Generation,

  12. Use of Slip Ring Induction Generator for Wind Power Generation

    E-Print Network [OSTI]

    K Y Patil; D S Chavan

    Wind energy is now firmly established as a mature technology for electricity generation. There are different types of generators that can be used for wind energy generation, among which Slip ring Induction generator proves to be more advantageous. To analyse application of Slip ring Induction generator for wind power generation, an experimental model is developed and results are studied. As power generation from natural sources is the need today and variable speed wind energy is ample in amount in India, it is necessary to study more beneficial options for wind energy generating techniques. From this need a model is developed by using Slip ring Induction generator which is a type of Asynchronous generator.

  13. Exelon Generation Company, LLC Order No. EA-249 I. BACKGROUND

    Office of Environmental Management (EM)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 1112011AT&T,OfficeEnd of Year 2010Salt |Exelon Generation Company, LLC Order No. EA-249 I.

  14. Towards Smart Integration of Wind Generation.

    E-Print Network [OSTI]

    Paris-Sud XI, Université de

    Towards Smart Integration of Wind Generation. G. Giebela , P. Meiboma , P. Pinsonb , and G for the management of electricity grids with large-scale wind generation and to get a better handle on extreme events that integrate the full information on the expected wind generation. In order to demonstrate the value

  15. Advanced Wind Turbine Program Next Generation Turbine Development Project: June 17, 1997--April 30, 2005

    SciTech Connect (OSTI)

    GE Wind Energy, LLC

    2006-05-01T23:59:59.000Z

    This document reports the technical results of the Next Generation Turbine Development Project conducted by GE Wind Energy LLC. This project is jointly funded by GE and the U.S. Department of Energy's National Renewable Energy Laboratory.The goal of this project is for DOE to assist the U.S. wind industry in exploring new concepts and applications of cutting-edge technology in pursuit of the specific objective of developing a wind turbine that can generate electricity at a levelized cost of energy of $0.025/kWh at sites with an average wind speed of 15 mph (at 10 m height).

  16. Wind Generation Feasibility Study in Bethel, AK

    SciTech Connect (OSTI)

    Tom Humphrey, YKHC; Lance Kincaid, EMCOR Energy & Technologies

    2004-07-31T23:59:59.000Z

    This report studies the wind resources in the Yukon-Kuskokwim Health Corporation (YKHC) region, located in southwestern Alaska, and the applicability of wind generation technologies to YKHC facilities.

  17. JW Great Lakes Wind LLC | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are being directedAnnual Siteof Energy 2,AUDIT REPORTEnergyFarmsPower Co LtdTN LLC Jump to:Pty

  18. New Superconducting Magnet Will Lead to Next Generation of Wind...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    New Superconducting Magnet Will Lead to Next Generation of Wind Turbine Generators New Superconducting Magnet Will Lead to Next Generation of Wind Turbine Generators September 12,...

  19. Previous Wind Power Announcements (generation/wind)

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level:Energy: Grid Integration Redefining What's Possible forPortsmouth/Paducah ProjectPRE-AWARDenergyEnergytransmission-rates Sign In About |Wind

  20. Wind Turbines of Ohio LLC | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov YouKizildere IRaghuraji Agro IndustriesTown ofNationwideWTEDBird,Wilsonville, Oregon: EnergyWindCooperatives JumptoWind

  1. Wind Energy Systems Technology LLC | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are beingZealand Jump to:Ezfeedflag JumpID-fTriWildcat 1 Wind Project Jump to:Wilson Hot SpringNevada:Data andWind

  2. October 11, 2011 Wind Generation

    E-Print Network [OSTI]

    Ford, Andrew

    ;#12;#12;#12;#12;#12;RPS: Renewable Portfolio Standard · Renewable: solar, biomass, geothermal, hydro, wind · 75% expected

  3. Dual-speed wind turbine generation

    SciTech Connect (OSTI)

    Muljadi, E.; Butterfield, C.P. [National Renewable Energy Lab., Golden, CO (United States)] [National Renewable Energy Lab., Golden, CO (United States); Handman, D. [Flowind Corp., San Rafael, CA (United States)] [Flowind Corp., San Rafael, CA (United States)

    1996-10-01T23:59:59.000Z

    Induction generator has been used since the early development of utility-scale wind turbine generation. An induction generator is the generator of choice because of its ruggedness and low cost. With an induction generator, the operating speed of the wind turbine is limited to a narrow range (almost constant speed). Dual- speed operation can be accomplished by using an induction generator with two different sets of winding configurations or by using a dual output drive train to drive two induction generators with two different rated speeds. With single-speed operation, the wind turbine operates at different power coefficients (Cp) as the wind speed varies. Operation at maximum Cp can occur only at a single wind speed. However, if the wind speed.varies across a wider range, the operating Cp will vary significantly. Dual-speed operation has the advantage of enabling the wind turbine to operate at near maximum Cp over a wider range of wind speeds. Thus, annual energy production can be increased. The dual-speed mode may generate less energy than a variable-speed mode; nevertheless, it offers an alternative which captures more energy than single-speed operation. In this paper, dual-speed operation of a wind turbine is investigated. Annual energy production is compared between single-speed and dual-speed operation. One type of control algorithm for dual-speed operation is proposed. Some results from a dynamic simulation will be presented to show how the control algorithm works as the wind turbine is exposed to varying wind speeds.

  4. South Trent Wind Farm LLC | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are being directedAnnual Siteof Energy 2,AUDITCalifornia Sector:Shrenik Industries JumpSohampoolSouth Trent Wind

  5. Sunshine Arizona Wind Energy LLC | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov YouKizildere IRaghuraji Agro Industries PvtStratosolar Jump to: navigation,SunElectraSunnyside,SunrepsSunsetArizona Wind

  6. Lake Country Wind Energy LLC | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are being directedAnnual SiteofEvaluatingGroup |Jilin Zhongdiantou NewKorea PartsLLNLLaizhou Luneng Wind Power Jump

  7. Student Competition Prepares the Next Generation of Wind Energy...

    Broader source: Energy.gov (indexed) [DOE]

    Competition Prepares the Next Generation of Wind Energy Entrepreneurs Student Competition Prepares the Next Generation of Wind Energy Entrepreneurs April 11, 2013 - 11:32am Addthis...

  8. Wind Power (pbl/generation)

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level:Energy: Grid Integration Redefining What'sis Taking Over OurThe Iron SpinPrincetonUsingWhat is abig world of tinyWind Industry SoarsWind

  9. Power System Modeling of 20percent Wind-Generated Electricity by 2030

    E-Print Network [OSTI]

    Hand, Maureen

    2008-01-01T23:59:59.000Z

    transmission to deliver wind generation to load centers. Toof integrating variable wind generation into the electricityfrom wind. Annual wind energy generation was specified in

  10. Analysis of Wind Power Generation of Texas 

    E-Print Network [OSTI]

    Liu, Z.; Haberl, J.; Subbarao, K.; Baltazar, J. C.

    2007-01-01T23:59:59.000Z

    1 ? Energy Systems Laboratory, Texas A&M University Page 1 ANALYSIS OF WIND POWER GENERATION OF TEXAS April 2007 Zi ?Betty? Liu, Ph.D., Jeff Haberl, Ph.D., P.E., Kris Subbarao, Ph.D., P.E., Juan-Carlos Baltazar, Ph.D. Energy Systems Laboratory... from Jul 2002 to Jan 2003 Degradation Analysis - On average, no degradation observed for nine wind farms analyzed over 4-year period. Application of Method 1 to New Site- Sweetwater I Wind Farm ? Energy Systems Laboratory, Texas A&M University Page 3...

  11. Next-Generation Wind Technology | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    and reliability of next-generation wind technologies while lowering the cost of wind energy. The program's research efforts have helped to increase the average capacity...

  12. Advanced Distributed Generation LLC ADG | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are being directedAnnual Siteof Energy 2,AUDITCaliforniaWeifangwiki HomeASNAddGlobe Jump to:AdvancedAdvancedLLC ADG

  13. 2008 WIND TECHNOLOGIES MARKET REPORT

    E-Print Network [OSTI]

    Bolinger, Mark

    2010-01-01T23:59:59.000Z

    States. Specifically, Bluewater Wind and Delmarva PowerLLC Babcock & Brown Acquisition Bluewater Wind Good Energies

  14. Power and Frequency Control as it Relates to Wind-Powered Generation

    E-Print Network [OSTI]

    Lacommare, Kristina S H

    2011-01-01T23:59:59.000Z

    scale additions of wind generation. The objectives of thisof large amounts of wind generation confronts the grid withhave been important as wind generation has gone from being a

  15. Empirical Analysis of the Variability of Wind Generation in India: Implications for Grid Integration

    E-Print Network [OSTI]

    Phadke, Amol

    2014-01-01T23:59:59.000Z

    sharing the load and wind generation data. We thank Sushil2008. “Analysis of Wind Generation Impact on ERCOT Ancillaryof the Variability of Wind Generation in India: Implications

  16. Pitch-controlled variable-speed wind turbine generation

    SciTech Connect (OSTI)

    Muljadi, E.; Butterfield, C.P.

    2000-03-01T23:59:59.000Z

    Wind energy is a viable option to complement other types of pollution-free generation. In the early development of wind energy, the majority of wind turbines were operated at constant speed. Recently, the number of variable-speed wind turbines installed in wind farms has increased and more wind turbine manufacturers are making variable-speed wind turbines. This paper covers the operation of variable-speed wind turbines with pitch control. The system the authors considered is controlled to generate maximum energy while minimizing loads. The maximization of energy was only carried out on a static basis and only drive train loads were considered as a constraint. In medium wind speeds, the generator and power converter control the wind turbine to capture maximum energy from the wind. In the high wind speed region, the wind turbine is controlled to maintain the aerodynamic power produced by the wind turbine. Two methods to adjust the aerodynamic power were investigated: pitch control and generator load control, both of which are employed to control the operation of the wind turbine. The analysis and simulation shows that the wind turbine can be operated at its optimum energy capture while minimizing the load on the wind turbine for a wide range of wind speeds.

  17. Coupling Wind Generation with Controllable Load and Storage

    E-Print Network [OSTI]

    Coupling Wind Generation with Controllable Load and Storage: A Time-Series Application of the Super Electric Energy System #12;Coupling Wind Generation with Controllable Load and Storage: A Time Wind Generation with Controllable Load and Storage: A Time-Series Application of the SuperOPF." (PSERC

  18. RIS-M-2411 A NOTE ON WIND GENERATOR INTERACTION

    E-Print Network [OSTI]

    #12;~ y . RISÃ?-M-2411 A NOTE ON WIND GENERATOR INTERACTION N.O. Jensen Abstract. A simple model for the wake behind a wind generator is given. The model is compared to some full scale experimen- tal results. The model is then used in an example where the production from a circular cluster of 10 wind generators

  19. Methods and apparatus for cooling wind turbine generators

    DOE Patents [OSTI]

    Salamah, Samir A. (Niskayuna, NY); Gadre, Aniruddha Dattatraya (Rexford, NY); Garg, Jivtesh (Schenectady, NY); Bagepalli, Bharat Sampathkumaran (Niskayuna, NY); Jansen, Patrick Lee (Alplaus, NY); Carl, Jr., Ralph James (Clifton Park, NY)

    2008-10-28T23:59:59.000Z

    A wind turbine generator includes a stator having a core and a plurality of stator windings circumferentially spaced about a generator longitudinal axis. A rotor is rotatable about the generator longitudinal axis, and the rotor includes a plurality of magnetic elements coupled to the rotor and cooperating with the stator windings. The magnetic elements are configured to generate a magnetic field and the stator windings are configured to interact with the magnetic field to generate a voltage in the stator windings. A heat pipe assembly thermally engaging one of the stator and the rotor to dissipate heat generated in the stator or rotor.

  20. Effects of Temporal Wind Patterns on the Value of Wind-Generated Electricity in California and the Northwest

    E-Print Network [OSTI]

    Wiser, Ryan H

    2008-01-01T23:59:59.000Z

    and S. Bretz, "Wind Generation in the Future Competitiveenergy sources, wind power generation I. I NTRODUCTION Windwind alone. Index Terms—energy resources, power generation

  1. Washington University Can the Sound Generated by Modern Wind Turbines

    E-Print Network [OSTI]

    Salt, Alec N.

    Washington University Can the Sound Generated by Modern Wind Turbines Affect the Health of Those turbines haveWind turbines have been getting biggerbeen getting bigger and bigger....and bigger.... Lars Needs Wind turbines are "green" and areWind turbines are "green" and are contributing to our energy

  2. Effects of Temporal Wind Patterns on the Value of Wind-Generated Electricity in California and the Northwest

    E-Print Network [OSTI]

    Wiser, Ryan H

    2008-01-01T23:59:59.000Z

    approach to locating wind farms in the UK," RenewableV. G. Rau, "Optimum siting of wind turbine generators," IEEEoptimal planning for wind energy conver- sion systems over

  3. Power System Modeling of 20percent Wind-Generated Electricity by 2030

    E-Print Network [OSTI]

    Hand, Maureen

    2008-01-01T23:59:59.000Z

    Contribution to U.S. Electricity Supply. National Renewable20% of the nation's electricity from wind technology byTERMS wind-generated electricity; wind energy; 20% wind

  4. Dynamic simulation of dual-speed wind turbine generation

    SciTech Connect (OSTI)

    Muljadi, E.; Butterfield, C.P.

    1996-10-01T23:59:59.000Z

    Induction generators have been used since the early development of utility-scale wind turbine generation. An induction generator is the generator of choice because of its ruggedness, and low cost. With an induction generator, the operating speed of the wind turbine is limited to a narrow range (almost constant speed). Dual- speed operation can be accomplished by using an induction generator with two different sets of winding configurations or by using two induction generators with two different rated speeds. With single- speed operation, the wind turbine operates at different power coefficients (Cp) as the wind speed varies. The operation at maximum Cp can occur only at a single wind speed. However, if the wind speed varies across a wider range, the operating Cp will vary significantly. Dual-speed operation has the advantage of enabling the wind turbine to operate at near maximum Cp over a wider range of wind-speeds. Thus, annual energy production can be increased. The dual-speed mode may generate less energy than a variable-speed mode; nevertheless, it offers an alternative to capture more energy than single-speed operation. In this paper, dual-speed operation of a wind turbine will be investigated. One type of control algorithm for dual- speed operation is proposed. Results from a dynamic simulation will be presented to show how the control algorithm works and how power, current and torque of the system vary as the wind turbine is exposed to varying wind speeds.

  5. Low frequency noise from MW wind turbines --mechanisms of generation

    E-Print Network [OSTI]

    Low frequency noise from MW wind turbines -- mechanisms of generation and its modeling Helge MW wind turbines -- mechanisms of generation and its modeling Department: Department of Wind Energy turbine has been simulated with a noise prediction model from NASA in US. Running the model

  6. Improved Superconducting Wire for Wind Generators: Superconducting Wires for Direct-Drive Wind Generators

    SciTech Connect (OSTI)

    None

    2012-01-01T23:59:59.000Z

    REACT Project: Brookhaven National Laboratory will develop a low-cost superconducting wire that could be used in high-power wind generators. Superconducting wire currently transports 600 times more electric current than a similarly sized copper wire, but is significantly more expensive. Brookhaven National Laboratory will develop a high-performance superconducting wire that can handle significantly more electrical current, and will demonstrate an advanced manufacturing process that has the potential to yield a several-fold reduction in wire costs while using a using negligible amount of rare earth material. This design has the potential to make a wind turbine generator lighter, more powerful, and more efficient, particularly for offshore applications.

  7. Wind Energy in Indian Country: Turning to Wind for the Seventh Generation

    E-Print Network [OSTI]

    Kammen, Daniel M.

    Wind Energy in Indian Country: Turning to Wind for the Seventh Generation by Andrew D. Mills: ___________________________________________ Jane Stahlhut Date #12;Wind Energy in Indian Country A.D. Mills Abstract - ii - Abstract Utility-scale wind projects are increasingly being developed in rural areas of the United States. In the West

  8. Wind Turbine Generator System Acoustic Noise Test Report for the Gaia Wind 11-kW Wind Turbine

    SciTech Connect (OSTI)

    Huskey, A.

    2011-11-01T23:59:59.000Z

    This report details the acoustic noise test conducted on the Gaia-Wind 11-kW wind turbine at the National Wind Technology Center. The test turbine is a two- bladed, downwind wind turbine with a rated power of 11 kW. The test turbine was tested in accordance with the International Electrotechnical Commission standard, IEC 61400-11 Ed 2.1 2006-11 Wind Turbine Generator Systems -- Part 11 Acoustic Noise Measurement Techniques.

  9. Wind turbine/generator set and method of making same

    DOE Patents [OSTI]

    Bevington, Christopher M.; Bywaters, Garrett L.; Coleman, Clint C.; Costin, Daniel P.; Danforth, William L.; Lynch, Jonathan A.; Rolland, Robert H.

    2013-06-04T23:59:59.000Z

    A wind turbine comprising an electrical generator that includes a rotor assembly. A wind rotor that includes a wind rotor hub is directly coupled to the rotor assembly via a simplified connection. The wind rotor and generator rotor assembly are rotatably mounted on a central spindle via a bearing assembly. The wind rotor hub includes an opening having a diameter larger than the outside diameter of the central spindle adjacent the bearing assembly so as to allow access to the bearing assembly from a cavity inside the wind rotor hub. The spindle is attached to a turret supported by a tower. Each of the spindle, turret and tower has an interior cavity that permits personnel to traverse therethrough to the cavity of the wind rotor hub. The wind turbine further includes a frictional braking system for slowing, stopping or keeping stopped the rotation of the wind rotor and rotor assembly.

  10. Wind shear climatology for large wind turbine generators

    SciTech Connect (OSTI)

    Elliott, D.L.; Wendell, L.L.; Heflick, S.K.

    1982-10-01T23:59:59.000Z

    Climatological wind shear analyses relevant to the design and operation of multimegawatt wind turbines are provided. Insight is provided for relating the wind experienced by a rotating blade in a shear flow to the analysis results. A simple analysis of the wind experienced by a rotating blade for three types of wind shear profiles under steady-state conditions is presented in graphical form. Comparisons of the magnitude and frequency of the variations in 1) the wind sensed by a single blade element, 2) the sum, and 3) the difference of the winds sensed by opposite blade elements show strong sensitivity to profile shape. These three items represent forcing functions that can be related to 1) flatwise bending moment, 2) torque on the shaft, and 3) teeter angle. A computer model was constructed to simulate rotational sampling of 10-s sampled winds from a tall tower for three different types of large wind turbines. Time series produced by the model indicated that the forcing functions on a rotating blade vary according to the shear profile encountered during each revolution as opposed to a profile derived from average wind conditions, e.g., hourly average winds. An analysis scheme was developed to establish a climatology of wind shear profiles derived from 10-s sampled winds and hourly average winds measured over a one-year period at several levels on a tall tower. Because of the sensitivity of the forcing function variability to profile shape, the analyses performed and presented are in the form of joint frequency distributions of velocity differences of the the top-to-hub versus the hub-to-bottom portion of disks of rotation for the three turbine configurations.

  11. The effects of energy storage properties and forecast accuracy on mitigating variability in wind power generation

    E-Print Network [OSTI]

    Jaworsky, Christina A

    2013-01-01T23:59:59.000Z

    Electricity generation from wind power is increasing worldwide. Wind power can offset traditional fossil fuel generators which is beneficial to the environment. However, wind generation is unpredictable. Wind speeds have ...

  12. ARE660 Wind Generator: Low Wind Speed Technology for Small Turbine Development

    SciTech Connect (OSTI)

    Robert W. Preus; DOE Project Officer - Keith Bennett

    2008-04-23T23:59:59.000Z

    This project is for the design of a wind turbine that can generate most or all of the net energy required for homes and small businesses in moderately windy areas. The purpose is to expand the current market for residential wind generators by providing cost effective power in a lower wind regime than current technology has made available, as well as reduce noise and improve reliability and safety. Robert W. Preus’ experience designing and/or maintaining residential wind generators of many configurations helped identify the need for an improved experience of safety for the consumer. Current small wind products have unreliable or no method of stopping the wind generator in fault or high wind conditions. Consumers and their neighbors do not want to hear their wind generators. In addition, with current technology, only sites with unusually high wind speeds provide payback times that are acceptable for the on-grid user. Abundant Renewable Energy’s (ARE) basic original concept for the ARE660 was a combination of a stall controlled variable speed small wind generator and automatic fail safe furling for shutdown. The stall control for a small wind generator is not novel, but has not been developed for a variable speed application with a permanent magnet alternator (PMA). The fail safe furling approach for shutdown has not been used to our knowledge.

  13. Floating Offshore Wind Technology Generating Resources Advisory Committee

    E-Print Network [OSTI]

    Floating Offshore Wind Technology Jeff King Generating Resources Advisory Committee May 28, 2014 1 to site) Potential interconnection to future offshore PNWCA intertie 4 #12;5 Ave wind speed >= 10 m. (2010) Large-scale Offshore Wind Power in the United States National Renewable Energy Laboratory. (2012

  14. Generation of large-scale winds in horizontally anisotropic convection

    E-Print Network [OSTI]

    von Hardenberg, J; Provenzale, A; Spiegel, E A

    2015-01-01T23:59:59.000Z

    We simulate three-dimensional, horizontally periodic Rayleigh-B\\'enard convection between free-slip horizontal plates, rotating about a horizontal axis. When both the temperature difference between the plates and the rotation rate are sufficiently large, a strong horizontal wind is generated that is perpendicular to both the rotation vector and the gravity vector. The wind is turbulent, large-scale, and vertically sheared. Horizontal anisotropy, engendered here by rotation, appears necessary for such wind generation. Most of the kinetic energy of the flow resides in the wind, and the vertical turbulent heat flux is much lower on average than when there is no wind.

  15. National-Scale Wind Resource Assessment for Power Generation (Presentation)

    SciTech Connect (OSTI)

    Baring-Gould, E. I.

    2013-08-01T23:59:59.000Z

    This presentation describes the current standards for conducting a national-scale wind resource assessment for power generation, along with the risk/benefit considerations to be considered when beginning a wind resource assessment. The presentation describes changes in turbine technology and viable wind deployment due to more modern turbine technology and taller towers and shows how the Philippines national wind resource assessment evolved over time to reflect changes that arise from updated technologies and taller towers.

  16. Wind Turbine Generator System Safety and Function Test Report for the Ventera VT10 Wind Turbine

    SciTech Connect (OSTI)

    Smith, J.; Huskey, A.; Jager, D.; Hur, J.

    2012-11-01T23:59:59.000Z

    This report summarizes the results of a safety and function test that NREL conducted on the Ventera VT10 wind turbine. This test was conducted in accordance with the International Electrotechnical Commissions' (IEC) standard, Wind Turbine Generator System Part 2: Design requirements for small wind turbines, IEC 61400-2 Ed.2.0, 2006-03.

  17. Wind Turbine Generator System Safety and Function Test Report for the Entegrity EW50 Wind Turbine

    SciTech Connect (OSTI)

    Smith, J.; Huskey, A.; Jager, D.; Hur, J.

    2012-11-01T23:59:59.000Z

    This report summarizes the results of a safety and function test that NREL conducted on the Entegrity EW50 wind turbine. This test was conducted in accordance with the International Electrotechnical Commissions' (IEC) standard, Wind Turbine Generator System Part 2: Design requirements for small wind turbines, IEC 61400-2 Ed.2.0, 2006-03.

  18. Analysis of Wind Power Generation of Texas

    E-Print Network [OSTI]

    Liu, Z.; Haberl, J.; Subbarao, K.; Baltazar, J. C.

    from Jul 2002 to Jan 2003 Degradation Analysis - On average, no degradation observed for nine wind farms analyzed over 4-year period. Application of Method 1 to New Site- Sweetwater I Wind Farm ? Energy Systems Laboratory, Texas A&M University Page 3...&M University Page 10 Weather Data: NOAA- ABI 1999 and 2005 Hourly Wind Speed NOAA -ABI Hourly Wind Speed -1999 0 10 20 30 40 Jan-99 Feb-99 M ar-99 Apr-99 M ay-99 Jun-99 Jul-99 Aug-99 Sep-99 Oct-99 Nov-99 Dec-99 W in d Spe ed [m ph ] NOAA -ABI Hourly Wind...

  19. Analyzing the Effects of Temporal Wind Patterns on the Value of Wind-Generated Electricity at Different Sites in California and the Northwest

    E-Print Network [OSTI]

    Fripp, Matthias; Wiser, Ryan

    2006-01-01T23:59:59.000Z

    Energy Facilities. ” American Wind Energy Association (AWEA)Analyzing the Effects of Temporal Wind Patterns onthe Value of Wind-Generated Electricity References TrueWind

  20. Criterion for Generation of Winds from Magnetized Accretion Disks

    E-Print Network [OSTI]

    Osamu Kaburaki

    2001-08-29T23:59:59.000Z

    An analytic model is proposed for non-radiating accretion flows accompanied by up or down winds in a global magnetic field. Physical quantities in this model solution are written in variable-separated forms, and their radial parts are simple power law functions including one parameter for wind strength. Several, mathematically equivalent but physically different expressions of the criterion for wind generation are obtained. It is suggested also that the generation of wind is a consequence of the intervention of some mechanism that redistributes the locally available gravitational energy, and that the Bernoulli sum can be a good indicator of the existence of such mechanisms.

  1. Dynamic Simulation Studies of the Frequency Response of the Three U.S. Interconnections with Increased Wind Generation

    E-Print Network [OSTI]

    Mackin, Peter

    2011-01-01T23:59:59.000Z

    with Increased Wind Generation 9. Siemens Power Technologieswith Increased Wind Generation Acknowledgments The workall three levels of wind generation, all frequency nadirs

  2. Dynamic Simulation Studies of the Frequency Response of the Three U.S. Interconnections with Increased Wind Generation

    E-Print Network [OSTI]

    Mackin, Peter

    2011-01-01T23:59:59.000Z

    Performance of Wind Power Generation Working Group. ” IECwith Increased Wind Generation 9. Siemens Power Technologiesit Relates to Wind-Powered Generation. LBNL-XXXX. Berkeley:

  3. Dynamic Simulation Studies of the Frequency Response of the Three U.S. Interconnections with Increased Wind Generation

    E-Print Network [OSTI]

    Mackin, Peter

    2011-01-01T23:59:59.000Z

    North America Dynamic Wind Generator Modeling Update, Basedperformed by the WECC Wind Generator Modeling Group and theTo model the interactions between wind generators and the

  4. Dynamic Simulation Studies of the Frequency Response of the Three U.S. Interconnections with Increased Wind Generation

    E-Print Network [OSTI]

    Mackin, Peter

    2011-01-01T23:59:59.000Z

    2009. “North America Dynamic Wind Generator Modeling Update,work performed by the WECC Wind Generator Modeling Group andIEEE Dynamic Performance of Wind Power Generation Working

  5. Incorporating Wind Generation in Cap and Trade Programs

    SciTech Connect (OSTI)

    Bluestein, J.; Salerno, E.; Bird, L.; Vimmerstedt, L.

    2006-07-01T23:59:59.000Z

    Cap and trade programs are increasingly being used to reduce emissions from electricity generation in the United States. Cap and trade programs primarily target emitting generators, but programs have also included renewable generators, such as wind generators. States cite several reasons why they have considered the policy option of including renewable generators in cap and trade programs: to provide an incentive for lower-emitting generation, to achieve emissions reductions in non-capped pollutants, and to gain local economic benefits associated with renewable energy projects. The U.S. Environmental Protection Agency also notes these rationales for considering this policy alternative, and the National Association of Regulatory Commissioners (NARUC) passed a resolution supporting the inclusion of renewable energy in cap and trade programs. This report explores why states consider this policy option, what participation could mean for wind generators, and how wind generation can most effectively be included in state, federal, and regional cap and trade programs.

  6. Power and Frequency Control as it Relates to Wind-Powered Generation

    E-Print Network [OSTI]

    Lacommare, Kristina S H

    2011-01-01T23:59:59.000Z

    Control as it Relates to Wind- Powered Generation AppendixControl as it Relates to Wind-Powered Generation JohnControl as it Relates to Wind-Powered Generation LBNL-XXXXX

  7. Wind Generation on Winnebago Tribal Lands

    SciTech Connect (OSTI)

    Multiple

    2009-09-30T23:59:59.000Z

    The Winnebago Wind Energy Study evaluated facility-scale, community-scale and commercial-scale wind development on Winnebago Tribal lands in northeastern Nebraska. The Winnebago Tribe of Nebraska has been pursuing wind development in various forms for nearly ten years. Wind monitoring utilizing loaned met towers from NREL took place during two different periods. From April 2001 to April 2002, a 20-meter met tower monitored wind data at the WinnaVegas Casino on the far eastern edge of the Winnebago reservation in Iowa. In late 2006, a 50-meter tower was installed, and subsequently monitored wind data at the WinnaVegas site from late 2006 through late 2008. Significant challenges with the NREL wind monitoring equipment limited the availability of valid data, but based on the available data, average wind speeds between 13.6 – 14.3 miles were indicated, reflecting a 2+/3- wind class. Based on the anticipated cost of energy produced by a WinnaVegas wind turbine, and the utility policies and rates in place at this time, a WinnaVegas wind project did not appear to make economic sense. However, if substantial grant funding were available for energy equipment at the casino site, and if either Woodbury REC backup rates were lower, or NIPCO was willing to pay more for wind power, a WinnaVegas wind project could be feasible. With funding remaining in the DOE-funded project budget,a number of other possible wind project locations on the Winnebago reservation were considered. in early 2009, a NPPD-owned met tower was installed at a site identified in the study pursuant to a verbal agreement with NPPD which provided for power from any ultimately developed project on the Western Winnebago site to be sold to NPPD. Results from the first seven months of wind monitoring at the Western Winnebago site were as expected at just over 7 meters per second at 50-meter tower height, reflecting Class 4 wind speeds, adequate for commercial development. If wind data collected in the remaining months of the twelve-month collection period is consistent with that collected in the first seven months, the Western Winnebago site may present an interesting opportunity for Winnebago. Given the distance to nearby substations, and high cost of interconnection at higher voltage transmission lines, Winnebago would likely need to be part of a larger project in order to reduce power costs to more attractive levels. Another alternative would be to pursue grant funding for a portion of development or equipment costs, which would also help reduce the cost of power produced. The NREL tower from the WinnaVegas site was taken down in late 2008, re-instrumented and installation attempted on the Thunderway site south of the Winnebago community. Based on projected wind speeds, current equipment costs, and the project’s proximity to substations for possible interconnection, a Thunderway community-scale wind project could also be feasible.

  8. Sizing Storage and Wind Generation Capacities in Remote Power Systems

    E-Print Network [OSTI]

    Victoria, University of

    Sizing Storage and Wind Generation Capacities in Remote Power Systems by Andy Gassner B Capacities in Remote Power Systems by Andy Gassner B.Sc., University of Wisconsin ­ Madison, 2003 Supervisory and small power systems. However, the variability due to the stochastic nature of the wind resource

  9. Community Wind: Once Again Pushing the Envelope of Project Finance

    E-Print Network [OSTI]

    bolinger, Mark A.

    2011-01-01T23:59:59.000Z

    Ormand (Oregon Trail Wind Farm, LLC). 2010. PersonalOrmand Hilderbrand (Oregon Trail Wind Farm, LLC); Joaquin17 4.5 PáTu Wind Farm,

  10. WindTurbineGenerator Introduction of the Renewable Micro-Grid Test-Bed

    E-Print Network [OSTI]

    Johnson, Eric E.

    Simulator Wind Turbine: PMSM, 3kW, 8.3A Wind Generator: PMSM, 3kW, 8.3A 3 AC/DC Converter & DC/AC Inverter Wind Turbine: Torque or Speed Control Wind Generator: PQ Control Cubicle #4: Energy Storage Generator #1 3kW, 8.3A Wind Turbine #1 3kW, 8.3A Wind Turbine #2 3kW Wind Generator #2 3kW RS232

  11. Xcel Energy Wind and Biomass Generation Mandate

    Broader source: Energy.gov [DOE]

    Minnesota law (Minn. Stat. § 216B.2423) requires Xcel Energy to build or contract for 225 megawatts (MW) of installed wind-energy capacity in the state by December 31, 1998, and to build or...

  12. ERCOT's Dynamic Model of Wind Turbine Generators: Preprint

    SciTech Connect (OSTI)

    Muljadi, E.; Butterfield, C. P.; Conto, J.; Donoho, K.

    2005-08-01T23:59:59.000Z

    By the end of 2003, the total installed wind farm capacity in the Electric Reliability Council of Texas (ERCOT) system was approximately 1 gigawatt (GW) and the total in the United States was about 5 GW. As the number of wind turbines installed throughout the United States increases, there is a greater need for dynamic wind turbine generator models that can properly model entire power systems for different types of analysis. This paper describes the ERCOT dynamic models and simulations of a simple network with different types of wind turbine models currently available.

  13. Floating offshore wind farms : demand planning & logistical challenges of electricity generation

    E-Print Network [OSTI]

    Nnadili, Christopher Dozie, 1978-

    2009-01-01T23:59:59.000Z

    Floating offshore wind farms are likely to become the next paradigm in electricity generation from wind energy mainly because of the near constant high wind speeds in an offshore environment as opposed to the erratic wind ...

  14. 2010 Wind Technologies Market Report

    E-Print Network [OSTI]

    Wiser, Ryan

    2012-01-01T23:59:59.000Z

    space constraints. Ohio: The Lake Erie Energy DevelopmentGreat Lakes Ohio Wind, and Great Lakes Wind Energy LLC. In

  15. Effects of Temporal Wind Patterns on the Value of Wind-GeneratedElectricity at Different Sites in California and the Northwest

    SciTech Connect (OSTI)

    Fripp, Matthias; Wiser, Ryan

    2006-08-04T23:59:59.000Z

    Wind power production varies on a diurnal and seasonal basis. In this paper, we use wind speed data from three different sources to assess the effects of wind timing on the value of electric power from potential wind farm locations in California and the Northwestern United States. By ''value'', we refer to either the contribution of wind power to meeting the electric system's peak loads, or the financial value of wind power in electricity markets. Sites for wind power projects are often screened or compared based on the annual average power production that would be expected from wind turbines at each site (Baban and Parry 2001; Brower et al. 2004; Jangamshetti and Rau 2001; Nielsen et al. 2002; Roy 2002; Schwartz 1999). However, at many locations, variations in wind speeds during the day and year are correlated with variations in the electric power system's load and wholesale market prices (Burton et al. 2001; Carlin 1983; Kennedy and Rogers 2003; Man Bae and Devine 1978; Sezgen et al. 1998); this correlation may raise or lower the value of wind power generated at each location. A number of previous reports address this issue somewhat indirectly by studying the contribution of individual wind power sites to the reliability or economic operation of the electric grid, using hourly wind speed data (Fleten et al.; Kahn 1991; Kirby et al. 2003; Milligan 2002; van Wijk et al. 1992). However, we have not identified any previous study that examines the effect of variations in wind timing across a broad geographical area on wholesale market value or capacity contribution of those different wind power sites. We have done so, to determine whether it is important to consider wind-timing when planning wind power development, and to try to identify locations where timing would have a more positive or negative effect. The research reported in this paper seeks to answer three specific questions: (1) How large of an effect can the temporal variation of wind power have on the value of wind in different wind resource areas? (2) Which locations are affected most positively or negatively by the seasonal and diurnal timing of wind speeds? (3) How compatible are wind resources in California and the Northwest (Washington, Oregon, Idaho, Montana and Wyoming) with wholesale power prices and loads in either region? The latter question is motivated by the fact that wind power projects in the Northwest could sell their output into California (and vice versa), and that California has an aggressive renewable energy policy that may ultimately yield such imports. We also assess whether modeled wind data from TrueWind Solutions, LLC, can help answer such questions, by comparing results found using the TrueWind data to those found using anemometers or wind farm power production data. This paper summarizes results that are presented in more detail in a recent report from Lawrence Berkeley National Laboratory (Fripp and Wiser 2006). The full report is available at http://eetd.lbl.gov/EA/EMP/re-pubs.html.

  16. Next Generation Short-Term Forecasting of Wind Power Overview of the ANEMOS Project.

    E-Print Network [OSTI]

    Boyer, Edmond

    of difficulties to the power system operation. This is due to the fluctuating nature of wind generation to the management of wind generation. Accurate and reliable forecasting systems of the wind production are widely

  17. Property Tax Exemption for Wind Generators (Oklahoma)

    Broader source: Energy.gov [DOE]

    The state of Oklahoma offers a five year ad valorem property tax exemption for certain windpower generators.

  18. Wind turbine generator with improved operating subassemblies

    DOE Patents [OSTI]

    Cheney, Jr., Marvin C. (24 Stonepost Rd., Glastonbury, CT 06033)

    1985-01-01T23:59:59.000Z

    A wind turbine includes a yaw spring return assembly to return the nacelle from a position to which it has been rotated by yawing forces, thus preventing excessive twisting of the power cables and control cables. It also includes negative coning restrainers to limit the bending of the flexible arms of the rotor towards the tower, and stop means on the rotor shaft to orient the blades in a vertical position during periods when the unit is upwind when the wind commences. A pendulum pitch control mechanism is improved by orienting the pivot axis for the pendulum arm at an angle to the longitudinal axis of its support arm, and excessive creep is of the synthetic resin flexible beam support for the blades is prevented by a restraining cable which limits the extent of pivoting of the pendulum during normal operation but which will permit further pivoting under abnormal conditions to cause the rotor to stall.

  19. An Automatic Load Sharing Approach for a DFIG Based Wind Generator in a Microgrid

    E-Print Network [OSTI]

    Pota, Himanshu Roy

    An Automatic Load Sharing Approach for a DFIG Based Wind Generator in a Microgrid M. A. Barik and H generator. An automatic load sharing approach for a doubly-fed induction generator (DFIG) based wind wind velocity. The load demand for the wind generator is determined based on the variation of its

  20. Synchrophasor Applications for Wind Power Generation

    SciTech Connect (OSTI)

    Muljadi, E.; Zhang, Y. C.; Allen, A.; Singh, M.; Gevorgian, V.; Wan, Y. H.

    2014-02-01T23:59:59.000Z

    The U.S. power industry is undertaking several initiatives that will improve the operations of the electric power grid. One of those is the implementation of wide-area measurements using phasor measurement units to dynamically monitor the operations and status of the network and provide advanced situational awareness and stability assessment. The overviews of synchrophasors and stability analyses in this report are intended to present the potential future applications of synchrophasors for power system operations under high penetrations of wind and other renewable energy sources.

  1. Variable speed wind turbine generator with zero-sequence filter

    DOE Patents [OSTI]

    Muljadi, E.

    1998-08-25T23:59:59.000Z

    A variable speed wind turbine generator system to convert mechanical power into electrical power or energy and to recover the electrical power or energy in the form of three phase alternating current and return the power or energy to a utility or other load with single phase sinusoidal waveform at sixty (60) hertz and unity power factor includes an excitation controller for generating three phase commanded current, a generator, and a zero sequence filter. Each commanded current signal includes two components: a positive sequence variable frequency current signal to provide the balanced three phase excitation currents required in the stator windings of the generator to generate the rotating magnetic field needed to recover an optimum level of real power from the generator; and a zero frequency sixty (60) hertz current signal to allow the real power generated by the generator to be supplied to the utility. The positive sequence current signals are balanced three phase signals and are prevented from entering the utility by the zero sequence filter. The zero sequence current signals have zero phase displacement from each other and are prevented from entering the generator by the star connected stator windings. The zero sequence filter allows the zero sequence current signals to pass through to deliver power to the utility. 14 figs.

  2. Variable speed wind turbine generator with zero-sequence filter

    DOE Patents [OSTI]

    Muljadi, Eduard (Golden, CO)

    1998-01-01T23:59:59.000Z

    A variable speed wind turbine generator system to convert mechanical power into electrical power or energy and to recover the electrical power or energy in the form of three phase alternating current and return the power or energy to a utility or other load with single phase sinusoidal waveform at sixty (60) hertz and unity power factor includes an excitation controller for generating three phase commanded current, a generator, and a zero sequence filter. Each commanded current signal includes two components: a positive sequence variable frequency current signal to provide the balanced three phase excitation currents required in the stator windings of the generator to generate the rotating magnetic field needed to recover an optimum level of real power from the generator; and a zero frequency sixty (60) hertz current signal to allow the real power generated by the generator to be supplied to the utility. The positive sequence current signals are balanced three phase signals and are prevented from entering the utility by the zero sequence filter. The zero sequence current signals have zero phase displacement from each other and are prevented from entering the generator by the star connected stator windings. The zero sequence filter allows the zero sequence current signals to pass through to deliver power to the utility.

  3. Variable Speed Wind Turbine Generator with Zero-sequence Filter

    DOE Patents [OSTI]

    Muljadi, Eduard (Golden, CO)

    1998-08-25T23:59:59.000Z

    A variable speed wind turbine generator system to convert mechanical power into electrical power or energy and to recover the electrical power or energy in the form of three phase alternating current and return the power or energy to a utility or other load with single phase sinusoidal waveform at sixty (60) hertz and unity power factor includes an excitation controller for generating three phase commanded current, a generator, and a zero sequence filter. Each commanded current signal includes two components: a positive sequence variable frequency current signal to provide the balanced three phase excitation currents required in the stator windings of the generator to generate the rotating magnetic field needed to recover an optimum level of real power from the generator; and a zero frequency sixty (60) hertz current signal to allow the real power generated by the generator to be supplied to the utility. The positive sequence current signals are balanced three phase signals and are prevented from entering the utility by the zero sequence filter. The zero sequence current signals have zero phase displacement from each other and are prevented from entering the generator by the star connected stator windings. The zero sequence filter allows the zero sequence current signals to pass through to deliver power to the utility.

  4. The importance of combined cycle generating plants in integrating large levels of wind power generation

    SciTech Connect (OSTI)

    Puga, J. Nicolas

    2010-08-15T23:59:59.000Z

    Integration of high wind penetration levels will require fast-ramping combined cycle and steam cycles that, due to higher operating costs, will require proper pricing of ancillary services or other forms of compensation to remain viable. Several technical and policy recommendations are presented to help realign the generation mix to properly integrate the wind. (author)

  5. Wind turbine generators having wind assisted cooling systems and cooling methods

    DOE Patents [OSTI]

    Bagepalli, Bharat (Niskayuna, NY); Barnes, Gary R. (Delanson, NY); Gadre, Aniruddha D. (Rexford, NY); Jansen, Patrick L. (Scotia, NY); Bouchard, Jr., Charles G. (Schenectady, NY); Jarczynski, Emil D. (Scotia, NY); Garg, Jivtesh (Cambridge, MA)

    2008-09-23T23:59:59.000Z

    A wind generator includes: a nacelle; a hub carried by the nacelle and including at least a pair of wind turbine blades; and an electricity producing generator including a stator and a rotor carried by the nacelle. The rotor is connected to the hub and rotatable in response to wind acting on the blades to rotate the rotor relative to the stator to generate electricity. A cooling system is carried by the nacelle and includes at least one ambient air inlet port opening through a surface of the nacelle downstream of the hub and blades, and a duct for flowing air from the inlet port in a generally upstream direction toward the hub and in cooling relation to the stator.

  6. The role of hydroelectric generation in electric power systems with large scale wind generation

    E-Print Network [OSTI]

    Hagerty, John Michael

    2012-01-01T23:59:59.000Z

    An increasing awareness of the operational challenges created by intermittent generation of electricity from policy-mandated renewable resources, such as wind and solar, has led to increased scrutiny of the public policies ...

  7. Managing Wind-based Electricity Generation and Storage

    E-Print Network [OSTI]

    Sadeh, Norman M.

    not exacerbate the global warming problem. However, renewable energy is inherently intermittent and variableManaging Wind-based Electricity Generation and Storage by Yangfang Zhou Submitted to the Tepper, and to meet increasing electricity demand without harming the environment. Two of the most promising solutions

  8. Managing Wind-based Electricity Generation and Storage

    E-Print Network [OSTI]

    and solar energy--is free, abundant, and most importantly, does not exacerbate the global warming problemManaging Wind-based Electricity Generation and Storage by Yangfang Zhou Submitted to the Tepper.S. strive to reduce reliance on the import of fossil fuels, and to meet increasing electricity demand

  9. Decentralized Control to Augment LVRT Capability of Wind Generators with STATCOM/ESS

    E-Print Network [OSTI]

    Pota, Himanshu Roy

    Decentralized Control to Augment LVRT Capability of Wind Generators with STATCOM/ESS M. J. Hossain drop at the wind generator terminal. Because of the voltage dip, the output electrical power of the induction generators, which could cause a large inrush current in the wind generators. M. J. Hossain, H. R

  10. Optimization of a Small Passive Wind Turbine Generator with Multiobjective Genetic Algorithms

    E-Print Network [OSTI]

    Paris-Sud XI, Université de

    : Multiobjective Optimization, Genetic Algorithms, Wind Energy, Vertical Axis Wind Turbine hal-00763673,version1 #12;2.2. The Wind Turbine Characteristics A Savonius Vertical Axis Wind Turbine of radius R = 0.5 mOptimization of a Small Passive Wind Turbine Generator with Multiobjective Genetic Algorithms A

  11. Self-excited induction generator for variable-speed wind turbine generation

    SciTech Connect (OSTI)

    Muljadi, E.; Gregory, B. [National Renewable Energy Lab., Golden, CO (United States)] [National Renewable Energy Lab., Golden, CO (United States); Broad, D. [Colorado State Univ., Fort Collins, CO (United States). Dept. of Electrical Engineering] [Colorado State Univ., Fort Collins, CO (United States). Dept. of Electrical Engineering

    1996-10-01T23:59:59.000Z

    When an induction generator is connected to a utility bus, the voltage and frequency at the terminal of the generator are the same as the voltage and frequency of the utility. The reactive power needed by the induction generator is supplied by the utility and the real power is returned to the utility. The rotor speed varies within a very limited range, and the reactive power requirement must be transported through a long line feeder, thus creating additional transmission losses. The energy captured by a wind turbine can be increased if the rotor speed can be adjusted to follow wind speed variations. For small applications such as battery charging or water pumping, a stand alone operation can be implemented without the need to maintain the output frequency output of the generator. A self- excited induction generator is a good candidate for a stand alone operation where the wind turbine is operated at variable speed. Thus the performance of the wind turbine can be unproved. In this paper, we examine a self-excited induction generator operated in a stand alone mode. A potential application for battery charging is given. The output power of the generator will be controlled to improve the performance of the wind turbine.

  12. The State of the Art of Generators for Wind Energy Conversion Systems

    E-Print Network [OSTI]

    Paris-Sud XI, Université de

    243 1 The State of the Art of Generators for Wind Energy Conversion Systems Y. Amirat, M. E. H. Benbouzid, B. Bensaker, R. Wamkeue and H. Mangel Abstract--Wind Energy Conversion Systems (WECS) have become of the studied generators is provided in Fig. 2. II. WIND ENERGY BACKGROUND A. Wind Power Conversion

  13. LANDFORMS GENERATED BY WIND EROSION OF NAVAJO SANDSTONE OUTCROPS AT THE WAVE (COLORADO PLATEAU, UTAH / ARIZONA BORDER)

    E-Print Network [OSTI]

    Nebraska-Lincoln, University of

    LANDFORMS GENERATED BY WIND EROSION OF NAVAJO SANDSTONE OUTCROPS AT THE WAVE (COLORADO PLATEAU that are undercut by wind abrasion. In the photos above and to the left, note the microbially darkened rock surface Bedforms: Direct Evidence for Eolian Abrasion Arizona Utah wind wind wind wind wind wind The Wave "The Wave

  14. Analyzing the Effects of Temporal Wind Patterns on the Value of Wind-Generated Electricity at Different Sites in California and the Northwest

    E-Print Network [OSTI]

    Fripp, Matthias; Wiser, Ryan

    2006-01-01T23:59:59.000Z

    the Value of Wind-Generated Electricity References TrueWindValuing the Time-Varying Electricity Production of Solarthe Value of Wind-Generated Electricity References Gipe, P.

  15. EA-1857: Wind Turbine Power Generation Complex at Idaho National Laboratory

    Broader source: Energy.gov [DOE]

    This EA would evaluate the environmental impacts of the proposed wind turbine power generation complex at Idaho National Laboratory, Idaho.

  16. Reconnection outflow generated turbulence in the solar wind

    E-Print Network [OSTI]

    Vörös, Z; Semenov, V S; Zaqarashvili, T V; Bruno, R; Khodachenko, M

    2014-01-01T23:59:59.000Z

    Petschek-type time-dependent reconnection (TDR) and quasi-stationary reconnection (QSR) models are considered to understand reconnection outflow structures and the features of the associated locally generated turbulence in the solar wind. We show that the outflow structures, such as discontinuites, Kelvin-Helmholtz (KH) unstable flux tubes or continuous space filling flows cannot be distinguished from one-point WIND measurements. In both models the reconnection outflows can generate more or less spatially extended turbulent boundary layers (TBDs). The structure of an unique extended reconnection outflow is investigated in detail. The analysis of spectral scalings and break locations show that reconnection outflows can control the local field and plasma conditions which may play in favor of one or another turbulent dissipation mechanisms with their characteristic scales and wavenumbers.

  17. Wind Turbine Bearing Failure Detection Using Generator Stator Current Homopolar Component

    E-Print Network [OSTI]

    Paris-Sud XI, Université de

    Wind Turbine Bearing Failure Detection Using Generator Stator Current Homopolar Component Ensemble Empirical Mode Decomposition (EEMD) as a tool for failure detection in wind turbine generators for stationary and non stationary cases. Index Terms-Wind turbine, induction generator, bearing failure, ensemble

  18. Testing Small Wind Turbine Generators: Design of a Driving Dynamometer Stephen Rehmeyer Pepe

    E-Print Network [OSTI]

    Kammen, Daniel M.

    Testing Small Wind Turbine Generators: Design of a Driving Dynamometer by Stephen Rehmeyer Pepe Sc, Berkeley Spring 2007 #12;Testing Small Wind Turbine Generators: Design of a Driving Dynamometer Copyright c 2007 by Stephen Rehmeyer Pepe #12;Abstract Testing Small Wind Turbine Generators: Design of a Driving

  19. EEMD-based wind turbine bearing failure detection using the generator stator current homopolar component

    E-Print Network [OSTI]

    Boyer, Edmond

    EEMD-based wind turbine bearing failure detection using the generator stator current homopolar turbine generators for stationary and non stationary cases. Keyword: Wind turbine, induction generator on the installed equipment because they are hardly accessible or even inaccessible [1]. 1.1. Wind turbine failure

  20. Method for changing removable bearing for a wind turbine generator

    DOE Patents [OSTI]

    Bagepalli, Bharat Sampathkumaran (Niskayuna, NY); Jansen, Patrick Lee (Scotia, NY); Gadre, Aniruddha Dattatraya (Rexford, NY)

    2008-04-22T23:59:59.000Z

    A wind generator having removable change-out bearings includes a rotor and a stator, locking bolts configured to lock the rotor and stator, a removable bearing sub-assembly having at least one shrunk-on bearing installed, and removable mounting bolts configured to engage the bearing sub-assembly and to allow the removable bearing sub-assembly to be removed when the removable mounting bolts are removed.

  1. Removable bearing arrangement for a wind turbine generator

    DOE Patents [OSTI]

    Bagepalli, Bharat Sampathkumaran; Jansen, Patrick Lee; Gadre, Aniruddha Dattatraya

    2010-06-15T23:59:59.000Z

    A wind generator having removable change-out bearings includes a rotor and a stator, locking bolts configured to lock the rotor and stator, a removable bearing sub-assembly having at least one shrunk-on bearing installed, and removable mounting bolts configured to engage the bearing sub-assembly and to allow the removable bearing sub-assembly to be removed when the removable mounting bolts are removed.

  2. Comparative study on fault responses of synchronous generators and wind turbine generators using transient stability index based on

    E-Print Network [OSTI]

    Pota, Himanshu Roy

    Comparative study on fault responses of synchronous generators and wind turbine generators using voltage sag and the slip on fault responses with the TSI between synchronous generators and wind turbine with the second order classical model of the generator and constant impedance load model. Under the structure

  3. Sensorless Adaptive Output Feedback Control of Wind Energy Systems with PMS Generators

    E-Print Network [OSTI]

    Boyer, Edmond

    1 Sensorless Adaptive Output Feedback Control of Wind Energy Systems with PMS Generators A. El the problem of controlling wind energy conversion (WEC) systems involving permanent magnet synchronous is to maximize wind energy extraction which cannot be achieved without letting the wind turbine rotor operate

  4. Effects of Temporal Wind Patterns on the Value of Wind-Generated Electricity at Different Sites in California and the Northwest

    E-Print Network [OSTI]

    Fripp, Matthias; Wiser, Ryan

    2006-01-01T23:59:59.000Z

    et al. (1998). Wind Generation in the Future Competitivegeneration system, as well as computational resources that would make it prohibitive for estimating the capacity value of wind

  5. Wind Generation in the Future Competitive California Power Market

    SciTech Connect (OSTI)

    Sezgen, O.; Marnay, C.; Bretz, S.

    1998-03-01T23:59:59.000Z

    The goal of this work is to develop improved methods for assessing the viability of wind generation in competitive electricity markets. The viability of a limited number of possible wind sites is assessed using a geographic information system (GIS) to determine the cost of development, and Elfin, an electric utility production costing and capacity expansion model, to estimate the possible revenues and profits of wind farms at the sites. This approach improves on a simple profitability calculation by using a site-specific development cost calculation and by taking the effect of time varying market prices on revenues into account. The first component of the work is to develop data characterizing wind resources suitable for use in production costing and capacity expansion models, such as Elfin, that are capable of simulating competitive electricity markets. An improved representation of California wind resources is built, using information collected by the California Energy Commission (CE C) in previous site evaluations, and by using a GIS approach to estimating development costs at 36 specific sites. These sites, which have been identified as favorable for wind development, are placed on Digital Elevation Maps (DEMs) and development costs are calculated based on distances to roads and transmission lines. GIS is also used to develop the potential capacity at each site by making use of the physical characteristics of the terrain, such as ridge lengths. In the second part of the effort, using a previously developed algorithm for simulating competitive entry to the California electricity market, the Elfin model is used to gauge the viability of wind farms at the 36 sites. The results of this exercise are forecasts of profitable development levels at each site and the effects of these developments on the electricity system as a whole. Under best guess assumptions, including prohibition of new nuclear and coal capacity, moderate increase in gas prices and some decline in renewable capital costs, about 7.35 GW of the 10 GW potential capacity at the 36 specific sites is profitably developed and 62 TWh of electricity produced per annum by the year 2030. Most of the development happens during the earlier years of the forecast. Sensitivity of these results to future gas price scenarios is also presented. This study also demonstrates that an analysis based on a simple levelized profitability calculation approach does not sufficiently capture the implications of time varying prices in a competitive market.

  6. The State of the Art of Generators for Wind Energy Conversion Systems

    E-Print Network [OSTI]

    Boyer, Edmond

    The State of the Art of Generators for Wind Energy Conversion Systems Yassine Amirat, Mohamed Benbouzid, Bachir Bensaker and René Wamkeue Abstract--Wind Energy Conversion Systems (WECS) have become. I. INTRODUCTION Wind energy conversion is the fastest-growing source of new electric generation

  7. Control strategy of a variable speed wind turbine with multipole permanent magnet synchronous generator

    E-Print Network [OSTI]

    values. Keywords: permanent magnet synchronous generator, variable speed wind turbine, direct driven wind). A multipole synchronous generator connected to a power converter can operate at low speeds, so that a gear canControl strategy of a variable speed wind turbine with multipole permanent magnet synchronous

  8. SHORT TERM PREDICTIONS FOR THE POWER OUTPUT OF ENSEMBLES OF WIND TURBINES AND PV-GENERATORS

    E-Print Network [OSTI]

    Heinemann, Detlev

    SHORT TERM PREDICTIONS FOR THE POWER OUTPUT OF ENSEMBLES OF WIND TURBINES AND PV-GENERATORS Hans the state of the art of power predictios for wind and solar power plants.with a time horizon of several market there is a need for a forecast of the power production of wind and solar generators with time

  9. Zhejiang Windey Wind Generating Engineering | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are being directedAnnualProperty Edit withTianlinPapersWindey Wind Generating Engineering Jump to: navigation, search

  10. Property:PotentialOffshoreWindGeneration | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov YouKizildere I GeothermalPotentialBiopowerSolidGeneration Jump to:PotentialOffshoreWindCapacity Jump to: navigation,

  11. Property:PotentialOnshoreWindGeneration | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov YouKizildere I GeothermalPotentialBiopowerSolidGeneration Jump to:PotentialOffshoreWindCapacity

  12. The role of wind generation in European power sector decarbonization : a general equilibrium analysis

    E-Print Network [OSTI]

    Karkatsouli, Ioanna

    2013-01-01T23:59:59.000Z

    Wind generation has been growing fast, with onshore wind having a 27% average annual growth rate over the past decade. Motivated by this growth, a comprehensive analysis of both the economic and engineering implications ...

  13. Quantifying the system balancing cost when wind energy is incorporated into electricity generation system 

    E-Print Network [OSTI]

    Issaeva, Natalia

    2009-01-01T23:59:59.000Z

    Incorporation of wind energy into the electricity generation system requires a detailed analysis of wind speed in order to minimize system balancing cost and avoid a significant mismatch between supply and demand. Power ...

  14. Final Environmental Assessment, Burleigh County Wind Energy Center

    Broader source: Energy.gov (indexed) [DOE]

    Assessment Environmental Assessment Environmental Assessment Burleigh County Wind Energy Center Burleigh County, North Dakota Final Burleigh County Wind, LLC BASIN...

  15. Annual Report on U.S. Wind Power Installation, Cost, and Performance Trends: 2006

    E-Print Network [OSTI]

    2008-01-01T23:59:59.000Z

    Western Wind, and Midwest Wind Energy. Table 4. Merger andHorizon) Noble Power CPV Wind Catamount Western Wind EnergyCoastal Wind Energy LLC Tierra Energy, LLC Renewable

  16. Abstract--Wind power generation is growing rapidly. However, maintaining the wind turbine connection to grid is a real

    E-Print Network [OSTI]

    Pota, Himanshu Roy

    by the year 2020 [2]. Wind turbines can operate either with a fixed speed or a variable speed. In the case and then as fluctuations in the electrical power on the grid. The variable-speed turbine operation offers several major acoustical [3]. Among variable speed constant-frequency wind turbines, the doubly fed induction generator

  17. Wind shear for large wind turbine generators at selected tall tower sites

    SciTech Connect (OSTI)

    Elliott, D.L.

    1984-04-01T23:59:59.000Z

    The objective of the study described in this report is to examine the nature of wind shear profiles and their variability over the height of large horizontal-axis wind turbines and to provide information on wind shear relevant to the design and opertion of large wind turbines. Wind turbine fatigue life and power quality are related through the forcing functions on the blade to the shapes of the wind shear profiles and their fluctuations over the disk of rotation.

  18. RECIPIENT:City of Ann Arbor PROJECT TITLE: Ann Arbor Wind Generator

    Broader source: Energy.gov (indexed) [DOE]

    Ann Arbor PROJECT TITLE: Ann Arbor Wind Generator " ) STATE: MI Funding Opportunity Announcement Number ProcurementInstrument Number NEPA Control Number CID Number DE-EE0000447...

  19. Relationship Between Wind Generation and Balancing Energy Market Prices in ERCOT: 2007-2009

    SciTech Connect (OSTI)

    Nicholson, E.; Rogers, J.; Porter, K.

    2010-11-01T23:59:59.000Z

    This paper attempts to measure the average marginal effects of wind generation on the balancing-energy market price in ERCOT with the help of econometric analysis.

  20. Advanced Coal Wind Hybrid: Economic Analysis

    E-Print Network [OSTI]

    Phadke, Amol

    2008-01-01T23:59:59.000Z

    Wind Generation2006. “ Integrating Wind Generation into Utility Systems”.Stand-Alone Wind Generation . 60

  1. University of Delaware Technical Analysis for On-Site Wind Generation

    E-Print Network [OSTI]

    Firestone, Jeremy

    University of Delaware Technical Analysis for On-Site Wind Generation Lewes Campus Summary overview of the detailed feasibility study performed for an on-site wind turbine development Sustainable Energy Developments, Inc. (SED) performed a technical assessment for an on-site wind turbine

  2. Modelling and Analysis of Variable Speed Wind Turbines with Induction Generator during Grid

    E-Print Network [OSTI]

    Hansen, René Rydhof

    Modelling and Analysis of Variable Speed Wind Turbines with Induction Generator during Grid Fault to the grid connection of wind turbines. The second chapter elucidates recent thinking in the area of grid Risø National Laboratory Vestas Wind Systems A/S #12;#12;I Modelling and Analysis of Variable Speed

  3. IMPACTS TO BIRDS CAUSED BY WIND ENERGY GENERATION 4.1 INTRODUCTION

    E-Print Network [OSTI]

    77 CHAPTER 4 IMPACTS TO BIRDS CAUSED BY WIND ENERGY GENERATION 4.1 INTRODUCTION Bird mortality studies reporting on wind energy facilities elsewhere regularly report that bird mortality in the APWRA reports of bird mortality at wind energy facilities, and we extracted from those reports the mortality

  4. Economic Modeling of Intermittency in Wind Power Generation Alan Yung Chen Cheng

    E-Print Network [OSTI]

    the total cost from energy from wind more expensive. Because the model explicitly accounts for the impacts intermittent sources to the system in addition to the cost of generating wind energy This model the past decade wind energy has steadily emerged as a potential source for large-scale, low carbon energy

  5. A next-generation modeling capability assesses wind turbine array fluid dynamics and aeroelastic simulations

    E-Print Network [OSTI]

    A next-generation modeling capability assesses wind turbine array fluid dynamics and aeroelastic simulations Characterizing and optimizing overall performance of wind plants composed of large numbers at the National Renewable Energy Laboratory (NREL) are coupling physical models of the atmosphere and wind

  6. Abstract--This paper presents a comparative stability analysis of conventional synchronous generators and wind farms based on

    E-Print Network [OSTI]

    Cañizares, Claudio A.

    on system stability of replacing conventional generation by DFIG-based wind generation on the IEEE 14-bus the penetration of wind generation is high, it is important to keep these generators on line as much as possible]-[6], different models of DFIG-based wind generator farms are discussed and simulations are performed. The tuning

  7. Candidate wind turbine generator site: annual data summary, January 1981-December 1981

    SciTech Connect (OSTI)

    Sandusky, W.F.; Buck, J.W.; Renne, D.S.; Hadley, D.L.; Abbey, O.B.

    1982-07-01T23:59:59.000Z

    Summarized hourly meteorological data for 34 candidate and wind turbine generator sites for calendar year 1981 are presented. These data are collected for the purpose of evaluating the wind energy potential at these sites and are used to assist in selection of potential sites for installation and testing of large wind turbines in electric utility systems. For each site, wind speed, direction, and distribution data are given in eight tables. Use of information from these tables, with information about specific wind turbines, should allow the user to estimate the potential for wind energy production at each site.

  8. A doubly-fed permanent magnet generator for wind turbines

    E-Print Network [OSTI]

    Thomas, Andrew J. (Andrew Joseph), 1981-

    2004-01-01T23:59:59.000Z

    Optimum extraction of energy from a wind turbine requires that turbine speed vary with wind speed. Existing solutions to produce constant-frequency electrical output under windspeed variations are undesirable due to ...

  9. Maximum power tracking control scheme for wind generator systems

    E-Print Network [OSTI]

    Mena Lopez, Hugo Eduardo

    2008-10-10T23:59:59.000Z

    The purpose of this work is to develop a maximum power tracking control strategy for variable speed wind turbine systems. Modern wind turbine control systems are slow, and they depend on the design parameters of the turbine and use wind and/or rotor...

  10. Maximum power tracking control scheme for wind generator systems

    E-Print Network [OSTI]

    Mena, Hugo Eduardo

    2009-05-15T23:59:59.000Z

    The purpose of this work is to develop a maximum power tracking control strategy for variable speed wind turbine systems. Modern wind turbine control systems are slow, and they depend on the design parameters of the turbine and use wind and/or rotor...

  11. Designing Micro Wind Turbines for Portable Power Generation Francois Hogan

    E-Print Network [OSTI]

    Barthelat, Francois

    to the design of a wind turbine rotor. Number of blades The number of blades does not have a significant impact on the efficiency of a wind turbine. We have chosen a two blade design because of ease of fabrication in order) (2) · This two blade micro wind turbine meets the optimal specifications to ensure good efficiency

  12. Maximum power tracking control scheme for wind generator systems 

    E-Print Network [OSTI]

    Mena, Hugo Eduardo

    2009-05-15T23:59:59.000Z

    The purpose of this work is to develop a maximum power tracking control strategy for variable speed wind turbine systems. Modern wind turbine control systems are slow, and they depend on the design parameters of the turbine and use wind and/or rotor...

  13. Maximum power tracking control scheme for wind generator systems 

    E-Print Network [OSTI]

    Mena Lopez, Hugo Eduardo

    2008-10-10T23:59:59.000Z

    The purpose of this work is to develop a maximum power tracking control strategy for variable speed wind turbine systems. Modern wind turbine control systems are slow, and they depend on the design parameters of the turbine and use wind and/or rotor...

  14. Structural optimisation of permanent magnet direct drive generators for 5MW wind turbines 

    E-Print Network [OSTI]

    Zavvos, Aristeidis

    2013-11-28T23:59:59.000Z

    This thesis focuses on permanent magnet "direct drive" electrical generators for wind turbines with large power output. A variety of such generator topologies is reviewed, tested and optimised in an attempt to increase ...

  15. A stochastic framework for uncertainty analysis in electric power transmission systems with wind generation

    E-Print Network [OSTI]

    Paris-Sud XI, Université de

    of generating units, the transfer of electric power over networks of transmission lines and, finally1 A stochastic framework for uncertainty analysis in electric power transmission systems with wind an electric transmission network with wind power generation and their impact on its reliability. A stochastic

  16. AIR-FLOW STRUCTURE IN THE VERY CLOSE VICINITY OF WIND GENERATED WATER-WAVES

    E-Print Network [OSTI]

    Paris-Sud XI, Université de

    the static pressure, / , the slope of the water waves, the air kinematic viscosity. Wave characteristics wereAIR-FLOW STRUCTURE IN THE VERY CLOSE VICINITY OF WIND GENERATED WATER-WAVES Hubert Branger1 the structure of the air flow in the very close vicinity of the water-surface above wind-generated waves. We

  17. Reactive power management of distribution networks with wind generation for improving voltage stability

    E-Print Network [OSTI]

    Pota, Himanshu Roy

    -loadability Reactive power margin Wind turbine a b s t r a c t This paper proposes static and dynamic VAR planningReactive power management of distribution networks with wind generation for improving voltage February 2013 Available online Keywords: Composite load Distributed generation D-STATCOM Q

  18. Analyzing Effects of Turbulence on Power Generation Using Wind Plant Monitoring Data: Preprint

    SciTech Connect (OSTI)

    Zhang, J.; Chowdhury, S.; Hodge, B. M.

    2014-01-01T23:59:59.000Z

    In this paper, a methodology is developed to analyze how ambient and wake turbulence affects the power generation of a single wind turbine within an array of turbines. Using monitoring data from a wind power plant, we selected two sets of wind and power data for turbines on the edge of the wind plant that resemble (i) an out-of-wake scenario (i.e., when the turbine directly faces incoming winds) and (ii) an in-wake scenario (i.e., when the turbine is under the wake of other turbines). For each set of data, two surrogate models were then developed to represent the turbine power generation (i) as a function of the wind speed; and (ii) as a function of the wind speed and turbulence intensity. Support vector regression was adopted for the development of the surrogate models. Three types of uncertainties in the turbine power generation were also investigated: (i) the uncertainty in power generation with respect to the published/reported power curve, (ii) the uncertainty in power generation with respect to the estimated power response that accounts for only mean wind speed; and (iii) the uncertainty in power generation with respect to the estimated power response that accounts for both mean wind speed and turbulence intensity. Results show that (i) under the same wind conditions, the turbine generates different power between the in-wake and out-of-wake scenarios, (ii) a turbine generally produces more power under the in-wake scenario than under the out-of-wake scenario, (iii) the power generation is sensitive to turbulence intensity even when the wind speed is greater than the turbine rated speed, and (iv) there is relatively more uncertainty in the power generation under the in-wake scenario than under the out-of-wake scenario.

  19. Evaluation of Global Onshore Wind Energy Potential and Generation Costs

    SciTech Connect (OSTI)

    Zhou, Yuyu; Luckow, Patrick; Smith, Steven J.; Clarke, Leon E.

    2012-06-20T23:59:59.000Z

    In this study, we develop an updated global estimate of onshore wind energy potential using reanalysis wind speed data, along with updated wind turbine technology performance and cost assumptions as well as explicit consideration of transmission distance in the calculation of transmission costs. We find that wind has the potential to supply a significant portion of world energy needs, although this potential varies substantially by region as well as with assumptions such as on what types of land can be used to site wind farms. Total global wind potential under central assumptions is estimated to be approximately 89 petawatt hours per year at less than 9 cents/kWh with substantial regional variations. One limitation of global wind analyses is that the resolution of current global wind speed reanalysis data can result in an underestimate of high wind areas. A sensitivity analysis of eight key parameters is presented. Wind potential is sensitive to a number of input parameters, particularly those related to land suitability and turbine density as well as cost and financing assumptions which have important policy implications. Transmission cost has a relatively small impact on total wind costs, changing the potential at a given cost by 20-30%. As a result of sensitivities studied here we suggest that further research intended to inform wind supply curve development focus not purely on physical science, such as better resolved wind maps, but also on these less well-defined factors, such as land-suitability, that will also have an impact on the long-term role of wind power.

  20. IEEE TRANSACTIONS ON POWER SYSTEMS, VOL. 27, NO. 1, FEBRUARY 2012 465 Dynamics of Type-3 Wind Turbine Generator Models

    E-Print Network [OSTI]

    Hiskens, Ian A.

    Turbine Generator Models Ian A. Hiskens, Fellow, IEEE Abstract--The influence of wind turbine generators, singular systems, small disturbance analysis, switching deadlock, wind turbine generator modeling. I. INTRODUCTION THE dynamic behavior of wind turbine generators (WTGs) is quite different to that of synchronous

  1. 2/1/2014 Miniature Windmill generating wind energy-wordlessTech http://wordlesstech.com/2014/01/14/miniature-windmill-generating-wind-energy/ 1/3

    E-Print Network [OSTI]

    Chiao, Jung-Chih

    and affordable Better rates. Better service. Better Planet! 1Like ShareShareShareMore Wind Generator Motor comparestores.net Find Lowest Prices of August 2014. Home Wind Generators Up to 55% Off Follow us Search

  2. Wind for Schools: Developing Education Programs to Train the Next Generation of the Wind Energy Workforce

    SciTech Connect (OSTI)

    Baring-Gould, I.; Flowers, L.; Kelly, M.; Barnett, L.; Miles, J.

    2009-08-01T23:59:59.000Z

    This paper provides an overview of the Wind for Schools project elements, including a description of host and collegiate school curricula developed for wind energy and the status of the current projects. The paper also provides focused information on how schools, regions, or countries can become involved or implement similar projects to expand the social acceptance and understanding of wind energy.

  3. Community Wind: Once Again Pushing the Envelope of Project Finance

    E-Print Network [OSTI]

    bolinger, Mark A.

    2011-01-01T23:59:59.000Z

    Ormand (Oregon Trail Wind Farm, LLC). 2010. PersonalOrganization Harnesses Wind Energy. ” Novogradac Journal ofMark Bolinger. 2010. 2009 Wind Technologies Market Report.

  4. Northern Wind Farm

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    facilities to accommodate the interconnection. The EA also includes a review of the potential environmental impacts of Northern Wind, LLC, constructing, operating, and...

  5. Empirical Analysis of the Variability of Wind Generation in India: Implications for Grid Integration

    SciTech Connect (OSTI)

    Phadke, Amol; Abhyankar, NIkit; Rao, Poorvi

    2014-06-17T23:59:59.000Z

    We analyze variability in load and wind generation in India to assess its implications for grid integration of large scale wind projects using actual wind generation and load data from two states in India, Karnataka and Tamil Nadu. We compare the largest variations in load and net load (load ?wind, i.e., load after integrating wind) that the generation fleet has to meet. In Tamil Nadu, where wind capacity is about 53percent of the peak demand, we find that the additional variation added due to wind over the current variation in load is modest; if wind penetration reaches 15percent and 30percent by energy, the additional hourly variation is less than 0.5percent and 4.5percent of the peak demand respectively for 99percent of the time. For wind penetration of 15percent by energy, Tamil Nadu system is found to be capable of meeting the additional ramping requirement for 98.8percent of the time. Potential higher uncertainty in net load compared to load is found to have limited impact on ramping capability requirements of the system if coal plants can me ramped down to 50percent of their capacity. Load and wind aggregation in Tamil Nadu and Karnataka is found to lower the variation by at least 20percent indicating the benefits geographic diversification. These findings suggest modest additional flexible capacity requirements and costs for absorbing variation in wind power and indicate that the potential capacity support (if wind does not generate enough during peak periods) may be the issue that has more bearing on the economics of integrating wind

  6. Viability of Small Wind Distributed Generation for Farmers Who Irrigate (Poster)

    SciTech Connect (OSTI)

    Meadows, B.; Forsyth, T.; Johnson, S.; Healow, D.

    2010-05-01T23:59:59.000Z

    About 14% of U.S. farms are irrigated, representing 55 million acres of irrigated land. Irrigation on these farms is a major energy user in the United States, accounting for one-third of water withdrawals and 137 billion gallons per day. More than half of the Irrigation systems use electric energy. Wind energy can be a good choice for meeting irrigation energy needs. Nine of the top 10 irrigation states (California, Texas, Idaho, Arkansas, Colorado, Nebraska, Arizona, Kansas, Washington, and Oregon) have good to excellent wind resources. Many rural areas have sufficient wind speeds to make wind an attractive alternative, and farms and ranches can often install a wind energy system without impacting their ability to plant crops and graze livestock. Additionally, the rising and uncertain future costs of diesel, natural gas, and even electricity increase the potential effectiveness for wind energy and its predictable and competitive cost. In general, wind-powered electric generation systems generate more energy in the winter months than in the summer months when most crops need the water. Therefore, those states that have a supportive net metering policy can dramatically impact the viability of an onsite wind turbine. This poster presentation highlights case studies that show favorable and unfavorable policies that impact the growth of small wind in this important sector and demonstrate how net metering policies affect the viability of distributed wind generation for farmers who irrigate.

  7. 2/1/2014 Miniature Windmill generating wind energy| MyScienceAcademy http://myscienceacademy.org/2014/01/16/miniature-windmill-generating-wind-energy/ 1/3

    E-Print Network [OSTI]

    Chiao, Jung-Chih

    2/1/2014 Miniature Windmill generating wind energy| MyScienceAcademy http://myscienceacademy.org/2014/01/16/miniature-windmill-generating-wind-energy/ 1/3 91Like 0 Tweet 1 MINIATURE WINDMILLGENERATING WINDENERGY Researchers have designed a micro-windmill that generates wind energy. This may become

  8. Economic assessment of small-scale electricity generation from wind

    E-Print Network [OSTI]

    McAllister, Kristen Dawn

    2007-09-17T23:59:59.000Z

    10 kW wind turbine on a 30m tower was installed and five different scenarios were calculated for both locations. Wind speeds for both locations were collected and analyzed to find the closest fitting distribution to incorporate the appropriate risk...

  9. Proof-of-Concept Manufacturing and Testing of Composite Wind Generator Blades Made by HCBMP (High Compression Bladder Molded Prepreg)

    SciTech Connect (OSTI)

    William C. Leighty; DOE Project Officer - Keith Bennett

    2005-10-04T23:59:59.000Z

    Proof-of-Concept Manufacturing and Testing of Composite Wind Generator Blades Made by HCBMP (High Compression Bladder Molded Prepreg)

  10. Analyzing the Effects of Temporal Wind Patterns on the Value ofWind-Generated Electricity at Different Sites in California and theNorthwest

    SciTech Connect (OSTI)

    Fripp, Matthias; Wiser, Ryan

    2006-05-31T23:59:59.000Z

    Wind power production varies on a diurnal and seasonal basis. In this report, we use wind speed data modeled by TrueWind Solutions, LLC (now AWS Truewind) to assess the effects of wind timing on the value of electric power from potential wind farm locations in California and the Northwest. (Data from this dataset are referred to as ''TrueWind data'' throughout this report.) The intra-annual wind speed variations reported in the TrueWind datasets have not previously been used in published work, however, so we also compare them to a collection of anemometer wind speed measurements and to a limited set of actual wind farm production data. The research reported in this paper seeks to answer three specific questions: (1) How large of an effect can the temporal variation of wind power have on the value of wind in different wind resource areas? (2) Which locations are affected most positively or negatively by the seasonal and diurnal timing of wind speeds? (3) How compatible are wind resources in the Northwest and California with wholesale power prices and loads in either region? The latter question is motivated by the fact that wind power projects in the Northwest could sell their output into California (and vice versa), and that California has an aggressive renewable energy policy that may ultimately yield such imports. Based on our research, we reach three key conclusions. (1) Temporal patterns have a moderate impact on the wholesale market value of wind power and a larger impact on the capacity factor during peak hours. The best-timed wind power sites have a wholesale market value that is up to 4 percent higher than the average market price, while the worst-timed sites have a market value that is up to 11 percent below the average market price. The best-timed wind sites could produce as much as 30-40 percent more power during peak hours than they do on average during the year, while the worst timed sites may produce 30-60 percent less power during peak hours. (2) Northwestern markets appear to be well served by Northwestern wind and poorly served by California wind; results are less clear for California markets. Both the modeled TrueWind data and the anemometer data indicate that many Northwestern wind sites are reasonably well-matched to the Northwest's historically winter-peaking wholesale electricity prices and loads, while most California sites are poorly matched to these prices and loads. However, the TrueWind data indicate that most California and Northwestern wind sites are poorly matched to California's summer-afternoon-peaking prices and loads, while the anemometer data suggest that many of these same sites are well matched to California's wholesale prices and loads. (3) TrueWind and anemometer data agree about wind speeds in most times and places, but disagree about California's summer afternoon wind speeds: The TrueWind data indicate that wind speeds at sites in California's coastal mountains and some Northwestern locations dip deeply during summer days and stay low through much of the afternoon. In contrast, the anemometer data indicate that winds at these sites begin to rise during the afternoon and are relatively strong when power is needed most. At other times and locations, the two datasets show good agreement. This disagreement may be due in part to time-varying wind shear between the anemometer heights (20-25m) and the TrueWind reference height (50m or 70m), but may also be due to modeling errors or data collection inconsistencies.

  11. Importance of wind conditions, fetch, and water levels on wave-generated shear stresses in shallow intertidal basins

    E-Print Network [OSTI]

    Fagherazzi, Sergio

    Importance of wind conditions, fetch, and water levels on wave-generated shear stresses in shallow, and wind direction on water depth, fetch, and the resulting wave-generated shear stresses. We identify four. Wiberg (2009), Importance of wind conditions, fetch, and water levels on wave-generated shear stresses

  12. Sensorless Control of Doubly-Fed Induction Generator-Based Wind urbines using a High-Order Sliding Mode Observer

    E-Print Network [OSTI]

    Brest, Université de

    ­ This paper deals with the sensorless control of a doubly-fed induction generator based wind turbine reaching time, robustness and unmodeled dynamics (generator and turbine). Simulations using the wind of the proposed sensorless control strategy. Keywords: Wind turbine, doubly-fed induction generator, sensorless

  13. Robust STATCOM Control for the Enhancement of Fault Ride-Through Capability of Fixed Speed Wind Generators

    E-Print Network [OSTI]

    Pota, Himanshu Roy

    -slip relationships as well as through simulations. The wind generator is a highly nonlinear system, which is modelled power generation. This type of wind generator always consumes reactive power from the grid. WhenRobust STATCOM Control for the Enhancement of Fault Ride-Through Capability of Fixed Speed Wind

  14. Low-Cost Superconducting Wire for Wind Generators: High Performance, Low Cost Superconducting Wires and Coils for High Power Wind Generators

    SciTech Connect (OSTI)

    None

    2012-01-01T23:59:59.000Z

    REACT Project: The University of Houston will develop a low-cost, high-current superconducting wire that could be used in high-power wind generators. Superconducting wire currently transports 600 times more electric current than a similarly sized copper wire, but is significantly more expensive. The University of Houston’s innovation is based on engineering nanoscale defects in the superconducting film. This could quadruple the current relative to today’s superconducting wires, supporting the same amount of current using 25% of the material. This would make wind generators lighter, more powerful and more efficient. The design could result in a several-fold reduction in wire costs and enable their commercial viability of high-power wind generators for use in offshore applications.

  15. Astraeus Wind Modifies Manufacturing in Michigan

    Broader source: Energy.gov [DOE]

    Astraeus Wind LLC. wants to experiment with new materials to strengthen the wind blades and assemble them a faster, more efficient manner.

  16. A Methodology to Assess the Value of Integrated Hydropower and Wind Generation

    E-Print Network [OSTI]

    the necessary balancing reserves for wind. Hydropower's flexibility and capacity are limited, however, by non-power resources that can adjust their output rapidly to keep power supply in balance with demand. HydropowerA Methodology to Assess the Value of Integrated Hydropower and Wind Generation by Mitch A. Clement

  17. Impacts of Large-Scale Wind Generators Penetration on the Voltage Stability of Power Systems

    E-Print Network [OSTI]

    Pota, Himanshu Roy

    development of wind energy tech- nology and the current world-wide status of grid-connected as well as standImpacts of Large-Scale Wind Generators Penetration on the Voltage Stability of Power Systems M. J systems and their dynamic behaviours to identify critical issues that limit the large-scale integration

  18. Power System Modeling of 20percent Wind-Generated Electricity by 2030

    E-Print Network [OSTI]

    Hand, Maureen

    2008-01-01T23:59:59.000Z

    Price Reduction Offsetting demand for natural gas in the electricity sector by increasing wind energy’price reductions, and water savings. Index Terms—power system modeling, wind energywind energy to offset coal- and natural gas-based electricity generation analyzed here include decreased natural gas prices,

  19. EFFECT OF PITCH CONTROL AND POWER CONDITIONING ON POWER QUALITY OF VARIABLE SPEED WIND TURBINE GENERATORS

    E-Print Network [OSTI]

    EFFECT OF PITCH CONTROL AND POWER CONDITIONING ON POWER QUALITY OF VARIABLE SPEED WIND TURBINE), Curtin University of Technology, WA Abstract: Variable speed wind turbine generators provide the opportunity to capture more power than fixed speed turbines. However the variable speed machine output can

  20. On Impedance Spectroscopy Contribution to Failure Diagnosis in Wind Turbine Generators

    E-Print Network [OSTI]

    Boyer, Edmond

    On Impedance Spectroscopy Contribution to Failure Diagnosis in Wind Turbine Generators Mohamed Becherif1 , El Houssin El Bouchikhi2 and Mohamed Benbouzid2 Abstract ­ Wind turbines proliferation turbines. Indeed, impedance spectroscopy is already used for the diagnosis of batteries, fuel cells

  1. Economic modeling of intermittency in wind power generation

    E-Print Network [OSTI]

    Cheng, Alan Yung Chen

    2005-01-01T23:59:59.000Z

    The electricity sector is a major source of carbon dioxide emissions that contribute to global climate change. Over the past decade wind energy has steadily emerged as a potential source for large-scale, low carbon energy. ...

  2. Superconducting generators for large off shore wind turbines 

    E-Print Network [OSTI]

    Keysan, Ozan

    2014-06-30T23:59:59.000Z

    This thesis describes four novel superconducting machine concepts, in the pursuit of finding a suitable design for large offshore wind turbines. The designs should be reliable, modular and light-weight. The main novelty ...

  3. DOE Offers Conditional Commitment to Cape Wind Offshore Wind...

    Broader source: Energy.gov (indexed) [DOE]

    step toward issuing a 150 million loan guarantee to support the construction of the Cape Wind offshore wind project with a conditional commitment to Cape Wind Associates, LLC. The...

  4. If I generate 20 percent of my national electricity from wind...

    Open Energy Info (EERE)

    generate 20 percent of my national electricity from wind and solar - what does it do to my GDP and Trade Balance ? Home I think that the economics of fossil fuesl are well...

  5. Application Filing Requirements for Wind-Powered Electric Generation Facilities (Ohio)

    Broader source: Energy.gov [DOE]

    Chapter 4906-17 of the Ohio Administrative Code states the Application Filing Requirements for wind-powered electric generating facilities in Ohio. The information requested in this rule shall be...

  6. Analysis of Alternative Extensions of the Existing Production Tax Credit for Wind Generators

    Reports and Publications (EIA)

    2007-01-01T23:59:59.000Z

    Requestor: Ms. Janice Mays, Chief Counsel, Committee on Ways & Means, U.S. House of Representatives This is a letter response requesting analysis of alternative extensions of the existing production tax credit (PTC) that would apply to wind generators only.

  7. Preliminary design and viability consideration of external, shroud-based stators in wind turbine generators

    E-Print Network [OSTI]

    Shoemaker-Trejo, Nathaniel (Nathaniel Joseph)

    2012-01-01T23:59:59.000Z

    Horizontal-axis wind turbine designs often included gearboxes or large direct-drive generators to compensate for the low peripheral speeds of the turbine hub. To take advantage of high blade tip speeds, an alternative ...

  8. Making the Economic Case for Small-Scale Distributed Wind -- A Screening for Distributed Generation Wind Opportunities: Preprint

    SciTech Connect (OSTI)

    Kandt, A.; Brown, E.; Dominick, J.; Jurotich, T.

    2007-06-01T23:59:59.000Z

    This study was an offshoot of a previous assessment, which examined the potential for large-scale, greater than 50 MW, wind development on occupied federal agency lands. The study did not find significant commercial wind development opportunities, primarily because of poor wind resource on available and appropriately sized land areas or land use or aesthetic concerns. The few sites that could accommodate a large wind farm failed to have transmission lines in optimum locations required to generate power at competitive wholesale prices. The study did identify a promising but less common distributed generation (DG) development option. This follow-up study documents the NREL/Global Energy Concepts team efforts to identify economic DG wind projects at a select group of occupied federal sites. It employs a screening strategy based on project economics that go beyond quantity of windy land to include state and utility incentives as well as the value of avoided power purchases. It attempts to account for the extra costs and difficulties associated with small projects through the use of project scenarios that are more compatible with federal facilities and existing land uses. These benefits and barriers of DG are discussed, and the screening methodology and results are included. The report concludes with generalizations about the screening method and recommendations for improvement and other potential applications for this methodology.

  9. Wind Turbine Generator System Duration Test Report for the Gaia-Wind 11 kW Wind Turbine

    SciTech Connect (OSTI)

    Huskey, A.; Bowen, A.; Jager, D.

    2010-09-01T23:59:59.000Z

    This test was conducted as part of the U.S. Department of Energy's (DOE) Independent Testing project. This project was established to help reduce the barriers of wind energy expansion by providing independent testing results for small turbines. In total, five turbines are being tested at the National Renewable Energy Laboratory's (NRELs) National Wind Technology Center (NWTC) as a part of this project. Duration testing is one of up to five tests that may be performed on the turbines, including power performance, safety and function, noise, and power quality tests. The results of the testing will provide the manufacturers with reports that may be used for small wind turbine certification. The test equipment includes a Gaia-Wind 11 kW wind turbine mounted on an 18 m monopole tower. Gaia-Wind Ltd. manufactured the turbine in Denmark, although the company is based in Scotland. The system was installed by the NWTC Site Operations group with guidance and assistance from Gaia-Wind.

  10. The maximum potential to generate wind power in the contiguous United States is more than three times

    E-Print Network [OSTI]

    The maximum potential to generate wind power in the contiguous United States is more than three) study. The new analysis is based on the latest computer models and examines the wind potential at wind responsible for the increased wind potential in the study. Developed in collaboration with renewable energy

  11. Operational-Condition-Independent Criteria Dedicated to Monitoring Wind Turbine Generators: Preprint

    SciTech Connect (OSTI)

    Yang, W.; Sheng, S.; Court, R.

    2012-08-01T23:59:59.000Z

    To date the existing wind turbine condition monitoring technologies and commercially available systems have not been fully accepted for improving wind turbine availability and reducing their operation and maintenance costs. One of the main reasons is that wind turbines are subject to constantly varying loads and operate at variable rotational speeds. As a consequence, the influences of turbine faults and the effects of varying load and speed are coupled together in wind turbine condition monitoring signals. So, there is an urgent need to either introduce some operational condition de-coupling procedures into the current wind turbine condition monitoring techniques or develop a new operational condition independent wind turbine condition monitoring technique to maintain high turbine availability and achieve the expected economic benefits from wind. The purpose of this paper is to develop such a technique. In the paper, three operational condition independent criteria are developed dedicated for monitoring the operation and health condition of wind turbine generators. All proposed criteria have been tested through both simulated and practical experiments. The experiments have shown that these criteria provide a solution for detecting both mechanical and electrical faults occurring in wind turbine generators.

  12. Wind Energy Management System EMS Integration Project: Incorporating Wind Generation and Load Forecast Uncertainties into Power Grid Operations

    SciTech Connect (OSTI)

    Makarov, Yuri V.; Huang, Zhenyu; Etingov, Pavel V.; Ma, Jian; Guttromson, Ross T.; Subbarao, Krishnappa; Chakrabarti, Bhujanga B.

    2010-01-01T23:59:59.000Z

    The power system balancing process, which includes the scheduling, real time dispatch (load following) and regulation processes, is traditionally based on deterministic models. Since the conventional generation needs time to be committed and dispatched to a desired megawatt level, the scheduling and load following processes use load and wind and solar power production forecasts to achieve future balance between the conventional generation and energy storage on the one side, and system load, intermittent resources (such as wind and solar generation), and scheduled interchange on the other side. Although in real life the forecasting procedures imply some uncertainty around the load and wind/solar forecasts (caused by forecast errors), only their mean values are actually used in the generation dispatch and commitment procedures. Since the actual load and intermittent generation can deviate from their forecasts, it becomes increasingly unclear (especially, with the increasing penetration of renewable resources) whether the system would be actually able to meet the conventional generation requirements within the look-ahead horizon, what the additional balancing efforts would be needed as we get closer to the real time, and what additional costs would be incurred by those needs. To improve the system control performance characteristics, maintain system reliability, and minimize expenses related to the system balancing functions, it becomes necessary to incorporate the predicted uncertainty ranges into the scheduling, load following, and, in some extent, into the regulation processes. It is also important to address the uncertainty problem comprehensively by including all sources of uncertainty (load, intermittent generation, generators’ forced outages, etc.) into consideration. All aspects of uncertainty such as the imbalance size (which is the same as capacity needed to mitigate the imbalance) and generation ramping requirement must be taken into account. The latter unique features make this work a significant step forward toward the objective of incorporating of wind, solar, load, and other uncertainties into power system operations. Currently, uncertainties associated with wind and load forecasts, as well as uncertainties associated with random generator outages and unexpected disconnection of supply lines, are not taken into account in power grid operation. Thus, operators have little means to weigh the likelihood and magnitude of upcoming events of power imbalance. In this project, funded by the U.S. Department of Energy (DOE), a framework has been developed for incorporating uncertainties associated with wind and load forecast errors, unpredicted ramps, and forced generation disconnections into the energy management system (EMS) as well as generation dispatch and commitment applications. A new approach to evaluate the uncertainty ranges for the required generation performance envelope including balancing capacity, ramping capability, and ramp duration has been proposed. The approach includes three stages: forecast and actual data acquisition, statistical analysis of retrospective information, and prediction of future grid balancing requirements for specified time horizons and confidence levels. Assessment of the capacity and ramping requirements is performed using a specially developed probabilistic algorithm based on a histogram analysis, incorporating all sources of uncertainties of both continuous (wind and load forecast errors) and discrete (forced generator outages and start-up failures) nature. A new method called the “flying brick” technique has been developed to evaluate the look-ahead required generation performance envelope for the worst case scenario within a user-specified confidence level. A self-validation algorithm has been developed to validate the accuracy of the confidence intervals.

  13. Capacity Value of PV and Wind Generation in the NV Energy System

    SciTech Connect (OSTI)

    Lu, Shuai; Diao, Ruisheng; Samaan, Nader A.; Etingov, Pavel V.

    2014-03-21T23:59:59.000Z

    Calculation of photovoltaic (PV) and wind power capacity values is important for estimating additional load that can be served by new PV or wind installations in the electrical power system. It also is the basis for assigning capacity credit payments in systems with markets. Because of variability in solar and wind resources, PV and wind generation contribute to power system resource adequacy differently from conventional generation. Many different approaches to calculating PV and wind generation capacity values have been used by utilities and transmission operators. Using the NV Energy system as a study case, this report applies peak-period capacity factor (PPCF) and effective load carrying capability (ELCC) methods to calculate capacity values for renewable energy sources. We show the connection between the PPCF and ELCC methods in the process of deriving a simplified approach that approximates the ELCC method. This simplified approach does not require generation fleet data and provides the theoretical basis for a quick check on capacity value results of PV and wind generation. The diminishing return of capacity benefit as renewable generation increases is conveniently explained using the simplified capacity value approach.

  14. Wind Turbine Generator System Duration Test Report for the Mariah Power Windspire Wind Turbine

    SciTech Connect (OSTI)

    Huskey, A.; Bowen, A.; Jager, D.

    2010-05-01T23:59:59.000Z

    This test was conducted as part of the U.S. Department of Energy's (DOE) Independent Testing project to help reduce the barriers of wind energy expansion by providing independent testing results for small turbines. In total, five turbines are being tested at the National Wind Technology Center (NWTC) as a part of the first round of this project. Duration testing is one of up to five tests that may be performed on the turbines. Other tests include power performance, safety and function, noise, and power quality tests. NWTC testing results provide manufacturers with reports that may be used to meet part of small wind turbine certification requirements. This duration test report focuses on the Mariah Power Windspire wind turbine.

  15. Sandia National Laboratories: Wind

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Wind Grid System Planning for Wind: Wind Generator Modeling On June 11, 2014, in Wind generation continues to dominate the interconnection queues and the need for generic,...

  16. Qingdao Hengfeng Wind Power Generator Co Ltd | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are being directedAnnual Siteof Energy 2,AUDITCalifornia Sector: Wind energy Product: WindProrener SAQingdao

  17. Economic assessment of small-scale electricity generation from wind 

    E-Print Network [OSTI]

    McAllister, Kristen Dawn

    2007-09-17T23:59:59.000Z

    Analysis was done to determine if small-scale wind energy could be economically feasible on a cotton farm with 1,200 irrigated acres, a house, and a barn. Lubbock and Midland were locations chosen for this model farm and the twenty-year analysis. A...

  18. Wind Resource Assessment in Europe Using Emergy

    E-Print Network [OSTI]

    Paudel, Subodh; Santarelli, Massimo; Martin, Viktoria; Lacarriere, Bruno; Le Corre, Olivier

    2014-01-01T23:59:59.000Z

    mance characteristics of wind generator. The wind speed atcharacteristics of the wind generator. When wind speed is

  19. Wind Energy Management System Integration Project Incorporating Wind Generation and Load Forecast Uncertainties into Power Grid Operations

    SciTech Connect (OSTI)

    Makarov, Yuri V.; Huang, Zhenyu; Etingov, Pavel V.; Ma, Jian; Guttromson, Ross T.; Subbarao, Krishnappa; Chakrabarti, Bhujanga B.

    2010-09-01T23:59:59.000Z

    The power system balancing process, which includes the scheduling, real time dispatch (load following) and regulation processes, is traditionally based on deterministic models. Since the conventional generation needs time to be committed and dispatched to a desired megawatt level, the scheduling and load following processes use load and wind power production forecasts to achieve future balance between the conventional generation and energy storage on the one side, and system load, intermittent resources (such as wind and solar generation) and scheduled interchange on the other side. Although in real life the forecasting procedures imply some uncertainty around the load and wind forecasts (caused by forecast errors), only their mean values are actually used in the generation dispatch and commitment procedures. Since the actual load and intermittent generation can deviate from their forecasts, it becomes increasingly unclear (especially, with the increasing penetration of renewable resources) whether the system would be actually able to meet the conventional generation requirements within the look-ahead horizon, what the additional balancing efforts would be needed as we get closer to the real time, and what additional costs would be incurred by those needs. In order to improve the system control performance characteristics, maintain system reliability, and minimize expenses related to the system balancing functions, it becomes necessary to incorporate the predicted uncertainty ranges into the scheduling, load following, and, in some extent, into the regulation processes. It is also important to address the uncertainty problem comprehensively, by including all sources of uncertainty (load, intermittent generation, generators’ forced outages, etc.) into consideration. All aspects of uncertainty such as the imbalance size (which is the same as capacity needed to mitigate the imbalance) and generation ramping requirement must be taken into account. The latter unique features make this work a significant step forward toward the objective of incorporating of wind, solar, load, and other uncertainties into power system operations. In this report, a new methodology to predict the uncertainty ranges for the required balancing capacity, ramping capability and ramp duration is presented. Uncertainties created by system load forecast errors, wind and solar forecast errors, generation forced outages are taken into account. The uncertainty ranges are evaluated for different confidence levels of having the actual generation requirements within the corresponding limits. The methodology helps to identify system balancing reserve requirement based on a desired system performance levels, identify system “breaking points”, where the generation system becomes unable to follow the generation requirement curve with the user-specified probability level, and determine the time remaining to these potential events. The approach includes three stages: statistical and actual data acquisition, statistical analysis of retrospective information, and prediction of future grid balancing requirements for specified time horizons and confidence intervals. Assessment of the capacity and ramping requirements is performed using a specially developed probabilistic algorithm based on a histogram analysis incorporating all sources of uncertainty and parameters of a continuous (wind forecast and load forecast errors) and discrete (forced generator outages and failures to start up) nature. Preliminary simulations using California Independent System Operator (California ISO) real life data have shown the effectiveness of the proposed approach. A tool developed based on the new methodology described in this report will be integrated with the California ISO systems. Contractual work is currently in place to integrate the tool with the AREVA EMS system.

  20. Variable speed operation of generators with rotor-speed feedback in wind power applications

    SciTech Connect (OSTI)

    Muljadi, E.; Butterfield, C.P.; Migliore, P.

    1995-11-01T23:59:59.000Z

    The use of induction generators in wind power applications has been common since the early development of the wind industry. Most of these generators operate at fixed frequency and are connected directly to the utility grid. Unfortunately, this mode of operation limits the rotor speed to a specific rpm. Variable-speed operation is preferred in order to facilitate maximum energy capture over a wide range of wind speeds. This paper explores variable-speed operating strategies for wind turbine applications. The objectives are to maximize energy production, provide controlled start-up and reduce torque loading. This paper focuses on optimizing the energy captured by operating at maximum aerodynamic efficiency at any wind speed. The control strategy we analyze uses rotor speed and generator power as the feedback signals. In the normal operating region, rotor speed is used to compute a target power that corresponds to optimum operation. With power as the control objective, the power converter and generator are controlled to track the target power at any rpm. Thus, the torque-speed characteristic of the generator is shaped to optimize the energy capture. The target power is continuously updated at any rpm. in extreme areas of the operating envelope, during start-up, shutdown, generator overload, or overspeed, different strategies driven by other system considerations must be used.

  1. Variable speed operation of generators with rotor-speed feedback in wind power applications

    SciTech Connect (OSTI)

    Muljadi, E.; Butterfield, C.P.; Migliore, P. [National Renewable Energy Lab., Golden, CO (United States). Wind Technology Div.

    1996-10-01T23:59:59.000Z

    The use of induction generators in wind power applications has been common since the early development of the wind industry. Most of these generators operate at fixed frequency and are connected directly to the utility grid. Unfortunately, this mode of operation limits the rotor speed to a specific rpm. Variable-speed operation is preferred in order to facilitate maximum energy capture over a wide range of wind speeds. This paper explores variable-speed operating strategies for wind turbine applications. The objectives are to maximize energy production, provide controlled start-up and reduce torque loading. This paper focuses on optimizing the energy captured by operating at maximum aerodynamic efficiency at any wind speed. The control strategy analyzed uses rotor speed and generator power as the feedback signals. In the normal operating region, rotor speed is used to compute a target power that corresponds to optimum operation. With power as the control objective, the power converter and generator are controlled to track the target power at any rpm. Thus, the torque-speed characteristic of the generator is shaped to optimize the energy capture. The target power is continuously updated at any rpm. In extreme areas of the operating envelope, during start-up, shutdown, generator overload, or overspeed, different strategies driven by other system considerations must be used.

  2. Variable speed operation of generators with rotor-speed feedback in wind power applications

    SciTech Connect (OSTI)

    Muljadi, E.; Butterfield, C.P.; Migliore, P. [National Renewable Energy Lab., Golden, CO (United States)

    1996-11-01T23:59:59.000Z

    The use of induction generators in wind power applications has been common since the early development of the wind industry. Most of these generators operate at fixed frequency and are connected directly to the utility grid. Unfortunately, this mode of operation limits the rotor speed to a specific rpm. Variable speed operation is preferred in order to facilitate maximum energy capture over a wide range of wind speeds. This paper explores variable speed operating strategies for wind turbine applications. The objectives are to maximize energy production, provide controlled start-up, and reduce torque loading. This paper focuses on optimizing the energy captured by operating at maximum aerodynamic efficiency at any wind speed. The control strategy the authors analyze uses rotor speed and generator power as the feedback signals. In the normal operating region, rotor speed is used to compute a target power that corresponds to optimum operation. With power as the control objective, the power converter and generator are controlled to track the target power at any rpm. Thus, the torque-speed characteristic of the generator is shaped to optimize the energy capture. The target power is continuously updated at any rpm. In extreme areas of the operating envelope, during start-up, shutdown, generator overload, or overspeed, different strategies driven by other system considerations must be used.

  3. Wind Turbine Generator System Acoustic Noise Test Report for the ARE 442 Wind Turbine

    SciTech Connect (OSTI)

    Huskey, A.; van Dam, J.

    2010-11-01T23:59:59.000Z

    This test was conducted on the ARE 442 as part of the U.S. Department of Energy's (DOE's) Independent Testing project. This project was established to help reduce the barriers of wind energy expansion by providing independent testing results for small turbines. In total, five turbines are being tested at the National Wind Technology Center (NWTC) as a part of this project. Acoustic noise testing is one of up to five tests that may be performed on the turbines, including duration, safety and function, power performance, and power quality tests. The acoustic noise test was conducted to the IEC 61400-11 Edition 2.1.

  4. Laboratory implementation of variable-speed wind turbine generation

    SciTech Connect (OSTI)

    Zinger, D.S. [Northern Illinois University, DeKalb, IL (United States)] [Northern Illinois University, DeKalb, IL (United States); Miller, A.A. [Univ. of Idaho, Moscow, ID (United States)] [Univ. of Idaho, Moscow, ID (United States); Muljadi, E.; Butterfield, C.P.; Robinson, M.C. [National Renewable Energy Lab., Golden, CO (United States)] [National Renewable Energy Lab., Golden, CO (United States)

    1996-07-01T23:59:59.000Z

    To improve the performance of wind turbines, various control schemes such as variable speed operation have been proposed. Testing of these control algorithms on a full scale system is very expensive. To test these systems simulation, we developed programs and small scale laboratory experiments. We used this system to verify a control method that attempts to keep the turbine operating at its peak power coefficient. Both the simulations and the experiments verified the principle of operation of this control scheme.

  5. EIS-0006: Wind Turbine Generator System, Block Island, Rhode Island

    Broader source: Energy.gov [DOE]

    The U.S. Department of Energy prepared this EIS to evaluate the environmental impacts of installing and operating a large experimental wind turbine, designated the MOD-OA, which is proposed to be installed on a knoll in Rhode Island's New Meadow Hill Swamp, integrated with the adjacent Block Island Power Company power plant and operated to supply electricity to the existing utility network.

  6. Wind/PV Generation for Frequency Regulation and Oscillation Damping in the Eastern Interconnection

    SciTech Connect (OSTI)

    Liu, Yong [The University of Tennessee, Knoxville; Gracia, Jose R [ORNL; Hadley, Stanton W [ORNL; Liu, Yilu [ORNL

    2013-12-01T23:59:59.000Z

    This report presents the control of renewable energy sources, including the variable-speed wind generators and solar photovoltaic (PV) generators, for frequency regulation and inter-area oscillation damping in the U.S. Eastern Interconnection (EI). In this report, based on the user-defined wind/PV generator electrical control model and the 16,000-bus Eastern Interconnection dynamic model, the additional controllers for frequency regulation and inter-area oscillation damping are developed and incorporated and the potential contributions of renewable energy sources to the EI system frequency regulation and inter-area oscillation damping are evaluated.

  7. Multiple Timescale Dispatch and Scheduling for Stochastic Reliability in Smart Grids with Wind Generation Integration

    E-Print Network [OSTI]

    He, Miao; Zhang, Junshan

    2010-01-01T23:59:59.000Z

    Integrating volatile renewable energy resources into the bulk power grid is challenging, due to the reliability requirement that at each instant the load and generation in the system remain balanced. In this study, we tackle this challenge for smart grid with integrated wind generation, by leveraging multi-timescale dispatch and scheduling. Specifically, we consider smart grids with two classes of energy users - traditional energy users and opportunistic energy users (e.g., smart meters or smart appliances), and investigate pricing and dispatch at two timescales, via day-ahead scheduling and realtime scheduling. In day-ahead scheduling, with the statistical information on wind generation and energy demands, we characterize the optimal procurement of the energy supply and the day-ahead retail price for the traditional energy users; in realtime scheduling, with the realization of wind generation and the load of traditional energy users, we optimize real-time prices to manage the opportunistic energy users so as...

  8. Effects of Temporal Wind Patterns on the Value of Wind-Generated Electricity in California and the Northwest

    E-Print Network [OSTI]

    Wiser, Ryan H

    2008-01-01T23:59:59.000Z

    approach to locating wind farms in the UK," Renewablepower production at existing wind farms. Each of these is anpower from potential wind farm locations in California and

  9. Power System Modeling of 20percent Wind-Generated Electricity by 2030

    SciTech Connect (OSTI)

    Bolinger, Mark A; Hand, Maureen; Blair, Nate; Bolinger, Mark; Wiser, Ryan; Hern, Tracy; Miller, Bart; O'Connell, R.

    2008-06-09T23:59:59.000Z

    The Wind Energy Deployment System model was used to estimate the costs and benefits associated with producing 20% of the nation's electricity from wind technology by 2030. This generation capacity expansion model selects from electricity generation technologies that include pulverized coal plants, combined cycle natural gas plants, combustion turbine natural gas plants, nuclear plants, and wind technology to meet projected demand in future years. Technology cost and performance projections, as well as transmission operation and expansion costs, are assumed. This study demonstrates that producing 20% of the nation's projected electricity demand in 2030 from wind technology is technically feasible, not cost-prohibitive, and provides benefits in the forms of carbon emission reductions, natural gas price reductions, and water savings.

  10. Wind turbine/generator set having a stator cooling system located between stator frame and active coils

    DOE Patents [OSTI]

    Bevington, Christopher M.; Bywaters, Garrett L.; Coleman, Clint C.; Costin, Daniel P.; Danforth, William L.; Lynch, Jonathan A.; Rolland, Robert H.

    2012-11-13T23:59:59.000Z

    A wind turbine comprising an electrical generator that includes a rotor assembly. A wind rotor that includes a wind rotor hub is directly coupled to the rotor assembly via a simplified connection. The wind rotor and generator rotor assembly are rotatably mounted on a central spindle via a bearing assembly. The wind rotor hub includes an opening having a diameter larger than the outside diameter of the central spindle adjacent the bearing assembly so as to allow access to the bearing assembly from a cavity inside the wind rotor hub. The spindle is attached to a turret supported by a tower. Each of the spindle, turret and tower has an interior cavity that permits personnel to traverse therethrough to the cavity of the wind rotor hub. The wind turbine further includes a frictional braking system for slowing, stopping or keeping stopped the rotation of the wind rotor and rotor assembly.

  11. Effects of turbulence on power generation for variable-speed wind turbines

    SciTech Connect (OSTI)

    Muljadi, E.; Butterfield, C.P.; Buhl, M.L. Jr.

    1996-11-01T23:59:59.000Z

    One of the primary advantages of variable-speed wind turbines over fixed-speed turbines should be improved aerodynamic efficiency. With variable-speed generation, in order to maintain a constant ratio of wind speed to tip speed, the wind turbine changes rotor speed as the wind speed changes. In this paper we compare a stall-controlled, variable-speed wind turbine to a fixed-speed turbine. The focus of this paper is to investigate the effects of variable speed on energy capture and its ability to control peak power. We also show the impact of turbulence on energy capture in moderate winds. In this report, we use a dynamic simulator to apply different winds to a wind turbine model. This model incorporates typical inertial and aerodynamic performance characteristics. From this study we found a control strategy that makes it possible to operate a stall-controlled turbine using variable speed to optimize energy capture and to control peak power. We also found that turbulence does not have a significant impact on energy capture.

  12. Loranger Power Generation Wind Farm | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are beingZealand Jump to: navigation, searchOf KilaueaInformation Other4Q07) Wind Farm Jump1 Jump to:

  13. Assessment of Wind/Solar Co-located Generation in Texas

    SciTech Connect (OSTI)

    Steven M. Wiese

    2009-07-20T23:59:59.000Z

    This paper evaluates the opportunity to load co-located wind and solar generation capacity onto a constrained transmission system while engendering only minimal losses. It quantifies the economic and energy opportunities and costs associated with pursuing this strategy in two Texas locations �¢���� one in west Texas and the other in south Texas. The study builds upon previous work published by the American Solar Energy Society (ASES) which illuminated the potential benefits of negative correlation of wind and solar generation in some locations by quantifying the economic and energy losses which would arise from deployment of solar generation in areas with existing wind generation and constrained transmission capacity. Clean Energy Associates (CEA) obtained and incorporated wind and solar resource data and the Electric Reliability Council of Texas (ERCOT)) load and price data into a model which evaluates varying levels of solar thermal, solar photovoltaic (PV) and wind capacity against an assumed transmission capacity limit at each of the two locations.

  14. Variance Analysis of Wind and Natural Gas Generation under Different Market Structures: Some Observations

    SciTech Connect (OSTI)

    Bush, B.; Jenkin, T.; Lipowicz, D.; Arent, D. J.; Cooke, R.

    2012-01-01T23:59:59.000Z

    Does large scale penetration of renewable generation such as wind and solar power pose economic and operational burdens on the electricity system? A number of studies have pointed to the potential benefits of renewable generation as a hedge against the volatility and potential escalation of fossil fuel prices. Research also suggests that the lack of correlation of renewable energy costs with fossil fuel prices means that adding large amounts of wind or solar generation may also reduce the volatility of system-wide electricity costs. Such variance reduction of system costs may be of significant value to consumers due to risk aversion. The analysis in this report recognizes that the potential value of risk mitigation associated with wind generation and natural gas generation may depend on whether one considers the consumer's perspective or the investor's perspective and whether the market is regulated or deregulated. We analyze the risk and return trade-offs for wind and natural gas generation for deregulated markets based on hourly prices and load over a 10-year period using historical data in the PJM Interconnection (PJM) from 1999 to 2008. Similar analysis is then simulated and evaluated for regulated markets under certain assumptions.

  15. Learning About Wind Turbine Technology, Motors and Generators...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Subscribe to all future posts Who Steven Wik What Energy Electrical Machines Generators Smart Grid Why Building Subscribe You Might Also Like MunichinteriorV 10 Years ON: From...

  16. Abstract--In doubly fed induction generator (DFIG) based wind energy conversion systems (WECS), the DFIG is interfaced to the

    E-Print Network [OSTI]

    Pota, Himanshu Roy

    Abstract--In doubly fed induction generator (DFIG) based wind energy conversion systems (WECS of wind energy is growing rapidly and it is expected to provide ten percent of the global electricity a popular candidate in the wind energy conversion systems (WECS) due to its advantages [2-5]. When compared

  17. Abstract--The use of doubly fed induction generators (DFIGs) in large wind energy conversion systems (WECS) has

    E-Print Network [OSTI]

    Pota, Himanshu Roy

    1 Abstract--The use of doubly fed induction generators (DFIGs) in large wind energy conversion-Through, STATCOM, LVRT, VSC, RSC, GSC, Grid codes. I. INTRODUCTION HE use of wind energy is growing rapidly candidate in the wind energy conversion systems (WECS) due to its advantages [2- 5]. When compared to fixed

  18. SiC's Potential Impact on the Design of Wind Generation System , Leon M. Tolbert1,2

    E-Print Network [OSTI]

    Tolbert, Leon M.

    SiC's Potential Impact on the Design of Wind Generation System Hui Zhang1 , Leon M. Tolbert1 National Laboratory Knoxville, TN 37932 Abstract -- The potential impact of SiC devices on a wind temperatures and frequencies. A conclusion is drawn that the SiC converters can improve the wind system

  19. Impacts of Wind and Solar on Fossil-Fueled Generators: Preprint

    SciTech Connect (OSTI)

    Lew, D.; Brinkman, G.; Kumar, N.; Besuner, P.; Agan, D.; Lefton, S.

    2012-08-01T23:59:59.000Z

    High penetrations of wind and solar power will impact the operations of the remaining generators on the power system. Regional integration studies have shown that wind and solar may cause fossil-fueled generators to cycle on and off and ramp down to part load more frequently and potentially more rapidly. Increased cycling, deeper load following, and rapid ramping may result in wear-and-tear impacts on fossil-fueled generators that lead to increased capital and maintenance costs, increased equivalent forced outage rates, and degraded performance over time. Heat rates and emissions from fossil-fueled generators may be higher during cycling and ramping than during steady-state operation. Many wind and solar integration studies have not taken these increased cost and emissions impacts into account because data have not been available. This analysis considers the cost and emissions impacts of cycling and ramping of fossil-fueled generation to refine assessments of wind and solar impacts on the power system.

  20. Geek-Up[04.01.2011]: Charting Wind, Thermal, Hydro Generation

    Broader source: Energy.gov [DOE]

    Check out Bonneville Power Administration’s new near real-time energy monitoring – it displays the output of all wind, thermal and hydro generation in the agency’s balancing authority against its load. Updated every five minutes, it’s a great resource for universities, research laboratories and other utilities.

  1. autonomous bdfig-wind generator: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    autonomous bdfig-wind generator First Page Previous Page 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 Next Page Last Page Topic Index 1 Autonomous Induction...

  2. University of Delaware Technical Analysis for On-Site Wind Generation

    E-Print Network [OSTI]

    Firestone, Jeremy

    . The information and analyses presented herein is based on wind development best practices, commercially available Generation At the University of Delaware iii DISCLAIMER This report is presented in response to the contract-1 12 Month Electricity Usage Data 21 Figure 3-2 Average Demand by Month 21 Figure 3-3 PPCA Charge

  3. Wind Turbines Condition Monitoring and Fault Diagnosis Using Generator Current Amplitude

    E-Print Network [OSTI]

    Paris-Sud XI, Université de

    stator current data collection and attempts to highlight the use of Hilbert transformation for failure the processing of available measurements. For the failure diagnosis problem, in addition, to identify the element, generator bearing failure, stator and rotor winding; insulation failures, inter-turn short circuits

  4. Investigation of self-excited induction generators for wind turbine applications

    SciTech Connect (OSTI)

    Muljadi, E.; Butterfield, C.P.; Sallan, J.; Sanz, M.

    2000-02-28T23:59:59.000Z

    The use of squirrel-cage induction machines in wind generation is widely accepted as a generator of choice. The squirrel-cage induction machine is simple, reliable, cheap, lightweight, and requires very little maintenance. Generally, the induction generator is connected to the utility at constant frequency. With a constant frequency operation, the induction generator operates at practically constant speed (small range of slip). The wind turbine operates in optimum efficiency only within a small range of wind speed variation. The variable-speed operation allows an increase in energy captured and reduces both the torque peaks in the drive train and the power fluctuations sent to the utility. In variable-speed operation, an induction generator needs an interface to convert the variable frequency output of the generator to the fixed frequency at the utility. This interface can be simplified by using a self-excited generator because a simple diode bridge is required to perform the ac/dc conversion. The subsequent dc/ac conversion can be performed using different techniques. The use of a thyristor bridge is readily available for large power conversion and has a lower cost and higher reliability. The firing angle of the inverter bridge can be controlled to track the optimum power curve of the wind turbine. With only diodes and thyristors used in power conversion, the system can be scaled up to a very high voltage and high power applications. This paper analyzes the operation of such a system applied to a 1/3-hp self-excited induction generator. It includes the simulations and tests performed for the different excitation configurations.

  5. Designing of Hybrid Power Generation System using Wind energy- Photovoltaic Solar energy- Solar energy with Nanoantenna

    E-Print Network [OSTI]

    All the natural wastage energies are used for production of Electricity. Thus, the Electrical Power or Electricity is available with a minimum cost and pollution free to anywhere in the world at all times. This process reveals a unique step in electricity generation and availability from natural resources without hampering the ecological balance. This paper describes a new and evolving Electrical Power Generation System by integrating simultaneously photovoltaic Solar Energy, solar Energy with Nano-antenna, Wind Energy and non conventional energy sources. We can have an uninterrupted power supply irrespective of the natural condition without any sort of environmental pollution. Moreover this process yields the least production cost for electricity generation. Utilization of lightning energy for generation of electricity reveals a new step. The set-up consists of combination of photo-voltaic solar-cell array & Nano-anteena array, a mast mounted wind generator, lead-acid storage batteries, an inverter unit to convert DC power to AC power, electrical lighting loads and electrical heating loads, several fuse and junction boxes and associated wiring, and test instruments for measuring voltages, currents, power factors, and harmonic contamination data throughout the system. This hybrid solar-wind power generating system will extensively use in the Industries and also in external use like home appliance.

  6. Effects of Temporal Wind Patterns on the Value of Wind-Generated Electricity in California and the Northwest

    E-Print Network [OSTI]

    Wiser, Ryan H

    2008-01-01T23:59:59.000Z

    Modeling Utility-Scale Wind Power Plants Part 2: Capac- ityas the capacity factor of the wind power plant during the 10Wind Plant Integration: Costs, Status, and Issues," IEEE Power &

  7. Effects of Temporal Wind Patterns on the Value of Wind-Generated Electricity in California and the Northwest

    E-Print Network [OSTI]

    Wiser, Ryan H

    2008-01-01T23:59:59.000Z

    of electric power from potential wind farm locations inergy 1.5 MW wind turbine to calculate the potential powerpotential difference in wholesale market value between better- correlated and poorly correlated wind

  8. Using Electric Vehicles to Mitigate Imbalance Requirements Associated with an Increased Penetration of Wind Generation

    SciTech Connect (OSTI)

    Tuffner, Francis K.; Kintner-Meyer, Michael CW

    2011-10-10T23:59:59.000Z

    The integration of variable renewable generation sources continues to be a significant area of focus for power system planning. Renewable portfolio standards and initiatives to reduce the dependency on foreign energy sources drive much of the deployment. Unfortunately, renewable energy generation sources like wind and solar tend to be highly variable in nature. To counter the energy imbalance caused by this variability, wind generation often requires additional balancing resources to compensate for the variability in the electricity production. With the expected electrification of transportation, electric vehicles may offer a new load resource for meeting all, or part, of the imbalance created by the renewable generation. This paper investigates a regulation-services-based battery charging method on a population of plug-in hybrid electric vehicles to meet the power imbalance requirements associated with the introduction of 11 GW of additional wind generation into the Northwest Power Pool. It quantifies the number of vehicles required to meet the imbalance requirements under various charging assumptions.

  9. Development of a Direct Drive Permanent Magnet Generator for Small Wind Turbines

    SciTech Connect (OSTI)

    Chertok, Allan; Hablanian, David; McTaggart, Paul; DOE Project Officer - Keith Bennett

    2004-11-16T23:59:59.000Z

    In this program, TIAX performed the conceptual design and analysis of an innovative, modular, direct-drive permanent magnet generator (PMG) for use in small wind turbines that range in power rating from 25 kW to 100 kW. TIAX adapted an approach that has been successfully demonstrated in high volume consumer products such as direct-drive washing machines and portable generators. An electromagnetic model was created and the modular PMG design was compared to an illustrative non-modular design. The resulting projections show that the modular design can achieve significant reductions in size, weight, and manufacturing cost without compromising efficiency. Reducing generator size and weight can also lower the size and weight of other wind turbine components and hence their manufacturing cost.

  10. European Wind Energy Conference & Exhibition EWEC 2003, Madrid, Spain. Forecasting of Regional Wind Generation by a Dynamic

    E-Print Network [OSTI]

    Paris-Sud XI, Université de

    European Wind Energy Conference & Exhibition EWEC 2003, Madrid, Spain. Forecasting of Regional Wind. Abstract-Short-term wind power forecasting is recognized nowadays as a major requirement for a secure and economic integration of wind power in a power system. In the case of large-scale integration, end users

  11. 2010 Wind Technologies Market Report

    E-Print Network [OSTI]

    Wiser, Ryan

    2012-01-01T23:59:59.000Z

    wind turbine components (specifically, generators, bladeschangers. ” Wind turbine components such as blades, towers,17%). Wind turbine component exports (towers, blades,

  12. 2009 Wind Technologies Market Report

    E-Print Network [OSTI]

    Wiser, Ryan

    2010-01-01T23:59:59.000Z

    the Impact of Significant Wind Generation Facilities on BulkOperations Impacts of Wind Generation Integration Study.Impacts of Integrating Wind Generation into Idaho Power's

  13. 2011 Wind Technologies Market Report

    E-Print Network [OSTI]

    Bolinger, Mark

    2013-01-01T23:59:59.000Z

    Operations Impacts of Wind Generation Integration Study.Impacts of Integrating Wind Generation into Idaho Power's2008. Analysis of Wind Generation Impact on ERCOT Ancillary

  14. 2008 WIND TECHNOLOGIES MARKET REPORT

    E-Print Network [OSTI]

    Bolinger, Mark

    2010-01-01T23:59:59.000Z

    the Impact of Significant Wind Generation Facilities on BulkOperations Impacts of Wind Generation Integration Study.Impacts of Integrating Wind Generation into Idaho Power's

  15. 2010 Wind Technologies Market Report

    E-Print Network [OSTI]

    Wiser, Ryan

    2012-01-01T23:59:59.000Z

    Operations Impacts of Wind Generation Integration Study.Impacts of Integrating Wind Generation into Idaho Power'sthe Impact of Significant Wind Generation Facilities on Bulk

  16. 2010 Wind Technologies Market Report

    E-Print Network [OSTI]

    Wiser, Ryan

    2012-01-01T23:59:59.000Z

    Market Report vii potential wind energy generation withinthat nearly 8% of potential wind energy generation withinAreas, in GWh (and % of potential wind generation) Electric

  17. Response from PJM Interconnection LLC and Pepco to Department...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    PJM Interconnection LLC and Pepco to Department of Energy Request for Information Concerning the Potential Need for Potomac River Station Generation Response from PJM...

  18. Power and Frequency Control as it Relates to Wind-Powered Generation

    E-Print Network [OSTI]

    Lacommare, Kristina S H

    2011-01-01T23:59:59.000Z

    of large amounts of wind power production might requirewill be satisfactory as wind power provides an increasing64   7.2   Wind Power in Relation to System

  19. Effects of Temporal Wind Patterns on the Value of Wind-Generated Electricity in California and the Northwest

    SciTech Connect (OSTI)

    Wiser, Ryan H; Wiser, Ryan H; Fripp, Matthias

    2008-05-01T23:59:59.000Z

    Wind power production is variable, but also has diurnal and seasonal patterns. These patterns differ between sites, potentially making electric power from some wind sites more valuable for meeting customer loads or selling in wholesale power markets. This paper investigates whether the timing of wind significantly affects the value of electricity from sites in California and the Northwestern United States. We use both measured and modeled wind data and estimate the time-varying value of wind power with both financial and load-based metrics. We find that the potential difference in wholesale market value between better-correlated and poorly correlated wind sites is modest, on the order of 5-10 percent. A load-based metric, power production during the top 10 percent of peak load hours, varies more strongly between sites, suggesting that the capacity value of different wind projects could vary by as much as 50 percent based on the timing of wind alone.

  20. Effects of Temporal Wind Patterns on the Value of Wind-Generated Electricity in California and the Northwest

    E-Print Network [OSTI]

    Wiser, Ryan H

    2008-01-01T23:59:59.000Z

    Wind Farm Production: We used hourly power production data from the Altamont, Tehachapi and San GorgonioSan Gorgonio resource areas, we also show the effects calculated using the total output from all wind farms

  1. Rapid generation of high-frequency internal waves beneath a wind and wave forced oceanic surface mixed layer

    E-Print Network [OSTI]

    Smith, Jerome A.

    mixed-layer energy [D'Asaro et al., 1995]. In this study we show that, even under weak wind and waveRapid generation of high-frequency internal waves beneath a wind and wave forced oceanic surface Received 7 March 2008; revised 9 May 2008; accepted 2 June 2008; published 8 July 2008. [1] High

  2. Power and Frequency Control as it Relates to Wind-Powered Generation

    SciTech Connect (OSTI)

    Lacommare, Kristina S H

    2010-12-20T23:59:59.000Z

    This report is a part of an investigation of the ability of the U.S. power system to accommodate large scale additions of wind generation. The objectives of this report are to describe principles by which large multi-area power systems are controlled and to anticipate how the introduction of large amounts of wind power production might require control protocols to be changed. The operation of a power system is described in terms of primary and secondary control actions. Primary control is fast, autonomous, and provides the first-line corrective action in disturbances; secondary control takes place on a follow-up time scale and manages the deployment of resources to ensure reliable and economic operation. This report anticipates that the present fundamental primary and secondary control protocols will be satisfactory as wind power provides an increasing fraction of the total production, provided that appropriate attention is paid to the timing of primary control response, to short term wind forecasting, and to management of reserves for control action.

  3. Comparative Assessment of Direct Drive High Temperature Superconducting Generators in Multi-Megawatt Class Wind Turbines

    SciTech Connect (OSTI)

    Maples, B.; Hand, M.; Musial, W.

    2010-10-01T23:59:59.000Z

    This paper summarizes the work completed under the CRADA between NREL and American Superconductor (AMSC). The CRADA combined NREL and AMSC resources to benchmark high temperature superconducting direct drive (HTSDD) generator technology by integrating the technologies into a conceptual wind turbine design, and comparing the design to geared drive and permanent magnet direct drive (PMDD) wind turbine configurations. Analysis was accomplished by upgrading the NREL Wind Turbine Design Cost and Scaling Model to represent geared and PMDD turbines at machine ratings up to 10 MW and then comparing cost and mass figures of AMSC's HTSDD wind turbine designs to theoretical geared and PMDD turbine designs at 3.1, 6, and 10 MW sizes. Based on the cost and performance data supplied by AMSC, HTSDD technology has good potential to compete successfully as an alternative technology to PMDD and geared technology turbines in the multi megawatt classes. In addition, data suggests the economics of HTSDD turbines improve with increasing size, although several uncertainties remain for all machines in the 6 to 10 MW class.

  4. Power System Modeling of 20percent Wind-Generated Electricity by 2030

    E-Print Network [OSTI]

    Hand, Maureen

    2008-01-01T23:59:59.000Z

    Assumptions Land-Based Wind Technology Cost $1730/kW in 2005Shallow Offshore Wind Technology Cost Wind Technologyare modeled by WinDS, the costs of building transmission

  5. Dynamic Simulation Studies of the Frequency Response of the Three U.S. Interconnections with Increased Wind Generation

    E-Print Network [OSTI]

    Mackin, Peter

    2011-01-01T23:59:59.000Z

    on work performed by the WECC Wind Generator Modeling GroupModeling Approach in the WECC. ” IEEE Transactions on PowerNational Laboratory. 11. WECC. 2008. WECC Standard BAL-002-

  6. Sowing the Seeds for a Bountiful Harvest: Shaping the Rules and Creating the Tools for Wisconsin's Next Generation of Wind Farms

    SciTech Connect (OSTI)

    Vickerman, Michael Jay

    2012-03-29T23:59:59.000Z

    Project objectives are twofold: (1) to engage wind industry stakeholders to participate in formulating uniform permitting standards applicable to commercial wind energy installations; and (2) to create and maintain an online Wisconsin Wind Information Center to enable policymakers and the public to increaser their knowledge of and support for wind generation in Wisconsin.

  7. Abstract--A bi-objective optimization model of power and power changes generated by a wind turbine is discussed in this

    E-Print Network [OSTI]

    Kusiak, Andrew

    operating a variable-speed wind turbine with pitch control to maximize power while minimizing the loads prediction, power ramp rate, data mining, wind turbine operation strategy, generator torque, blade pitch1 Abstract--A bi-objective optimization model of power and power changes generated by a wind

  8. Control of a wind park with doubly fed induction generators in support of power system stability in case of grid faults

    E-Print Network [OSTI]

    Control of a wind park with doubly fed induction generators in support of power system stability, 64283 Darmstadt, Germany * Risø National Laboratory, Wind Energy Department, P.O. Box 49, DK-4000@re.tu-darmstadt.de Abstract The paper presents a control strategy for wind parks based on the doubly fed induction generator

  9. Effects of Temporal Wind Patterns on the Value of Wind-Generated Electricity in California and the Northwest

    E-Print Network [OSTI]

    Wiser, Ryan H

    2008-01-01T23:59:59.000Z

    value of re- newable electricity; and customer surveys ofCalifornia or Northwestern electricity demand. This may bebetween wind speed and electricity demand," Solar Energy,

  10. Fourth Annual Progress Report on the Electrofluid Dynamic Wind Generator: Final Report for the Period 1 April 1979 - 31 August 1980

    SciTech Connect (OSTI)

    Minardi, J. E.; Lawson, M. O.; Wattendorf, F. L.

    1981-08-01T23:59:59.000Z

    Conventional wind energy systems are limited in wind turbine diameter by allowable rotor stresses at power levels of several megawatts. In contrast, the Electrofluid Dynamic (EFD) wind driven generator has no fundamental limits on cross sectional area. It is a direct energy conversion device which employs unipolar charged particles transported by the wind against a retarding voltage gradient to a high potential. As no moving parts are exposed to the wind, extremely large power units may be feasible.

  11. Energy 101: Wind Turbines

    ScienceCinema (OSTI)

    None

    2013-05-29T23:59:59.000Z

    See how wind turbines generate clean electricity from the power of the wind. Highlighted are the various parts and mechanisms of a modern wind turbine.

  12. Energy 101: Wind Turbines

    SciTech Connect (OSTI)

    None

    2011-01-01T23:59:59.000Z

    See how wind turbines generate clean electricity from the power of the wind. Highlighted are the various parts and mechanisms of a modern wind turbine.

  13. Power and Frequency Control as it Relates to Wind-Powered Generation

    E-Print Network [OSTI]

    Lacommare, Kristina S H

    2011-01-01T23:59:59.000Z

    per hour in both balancing areas Wind power ramps down atper hour in both balancing areas Wind power ramps down atbalancing area 2 Power and Frequency Control as it Relates to Wind-

  14. Operational behavior of a double-fed permanent magnet generator for wind turbines

    E-Print Network [OSTI]

    Reddy, Sivananda Kumjula

    2005-01-01T23:59:59.000Z

    Greater efficiency in wind turbine systems is achieved by allowing the rotor to change its rate of rotation as the wind speed changes. The wind turbine system is decoupled from the utility grid and a variable speed operation ...

  15. Power System Modeling of 20percent Wind-Generated Electricity by 2030

    E-Print Network [OSTI]

    Hand, Maureen

    2008-01-01T23:59:59.000Z

    Long-Term Market Penetration of Wind in the United States. ”2003. U.S. Department of Energy (2008). 20% Wind Energy by2030: Increasing Wind Energy’s Contribution to U.S.

  16. Empirical Analysis of the Variability of Wind Generation in India: Implications for Grid Integration

    E-Print Network [OSTI]

    Phadke, Amol

    2014-01-01T23:59:59.000Z

    and V. Neimane. 2005. 4000 MW Wind Power in Sweden-Impact onand Michael Milligan. 2009. “Wind Energy and Power SystemOperations: A Review of Wind Integration Studies to Date. ”

  17. Power System Modeling of 20percent Wind-Generated Electricity by 2030

    E-Print Network [OSTI]

    Hand, Maureen

    2008-01-01T23:59:59.000Z

    demand in future years. Technology cost and performanceAssumptions Land-Based Wind Technology Cost $1730/kW in 2005Shallow Offshore Wind Technology Cost Wind Technology

  18. Power System Modeling of 20percent Wind-Generated Electricity by 2030

    E-Print Network [OSTI]

    Hand, Maureen

    2008-01-01T23:59:59.000Z

    curve for wind energy: energy costs including connection toavailable to transport wind energy, the cost of feeder linesWind Energy Deployment System model used to estimate the costs

  19. Power System Modeling of 20percent Wind-Generated Electricity by 2030

    E-Print Network [OSTI]

    Hand, Maureen

    2008-01-01T23:59:59.000Z

    more than 600 GW of potential wind capacity is available forafter 2006 (No New Wind) to quantify the potential costs andThe potential benefits associated with using wind energy to

  20. Protection from ground faults in the stator winding of generators at power plants in the Siberian networks

    SciTech Connect (OSTI)

    Vainshtein, R. A., E-mail: vra@tpu.ru [Tomsk Polytechnical University (Russian Federation); Lapin, V. I. [ODU Sibiri (Integrated Dispatcher Control for Siberia), branch of JSC 'SO EES' (Russian Federation); Naumov, A. M.; Doronin, A. V. [JSC NPP 'EKRA' (Russian Federation); Yudin, S. M. [Tomsk Polytechnical University (Russian Federation)

    2010-05-15T23:59:59.000Z

    The experience of many years of experience in developing and utilization of ground fault protection in the stator winding of generators in the Siberian networks is generalized. The main method of protection is to apply a direct current or an alternating current with a frequency of 25 Hz to the primary circuits of the stator. A direct current is applied to turbo generators operating in a unit with a transformer without a resistive coupling to the external grid or to other generators. Applying a 25 Hz control current is appropriate for power generation systems with compensation of a capacitive short circuit current to ground. This method forms the basis for protection of generators operating on busbars, hydroelectric generators with a neutral grounded through an arc-suppression reactor, including in consolidated units with generators operating in parallel on a single low-voltage transformer winding.

  1. AXI LLC | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are being directedAnnualProperty Edit withTianlinPapersWindey Wind6:00-06:00 U.S.ratios inAS 42.05,AXI LLC Jump to:

  2. Terrabon LLC | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov YouKizildere IRaghuraji Agro Industries PvtStratosolar JumpTennessee/Wind Resources < TennesseeTerrabon LLC Jump to:

  3. Fluctuations of offshore wind generation -Statistical modelling , L.E.A. Christensen, H. Madsen

    E-Print Network [OSTI]

    of power fluctuations at large offshore wind farms has a significant impact on the control and management of their parameters. Simulation results are given for the case of the Horns Rev and Nysted offshore wind farms. An overview of offshore wind energy in Europe is given in [1]. Such large offshore wind farms concentrate

  4. The Political Economy of Wind Power in China

    E-Print Network [OSTI]

    Swanson, Ryan Landon

    2011-01-01T23:59:59.000Z

    some or all of the wind generation. ? 118 Because Chinahas grown faster than wind generation, wind-generatedhtm. ?Analysis of UK Wind Power Generation: November 2008 to

  5. Use of Solar and Wind as a Physical Hedge against Price Variability within a Generation Portfolio

    SciTech Connect (OSTI)

    Jenkin, T.; Diakov, V.; Drury, E.; Bush, B.; Denholm, P.; Milford, J.; Arent, D.; Margolis, R.; Byrne, R.

    2013-08-01T23:59:59.000Z

    This study provides a framework to explore the potential use and incremental value of small- to large-scale penetration of solar and wind technologies as a physical hedge against the risk and uncertainty of electricity cost on multi-year to multi-decade timescales. Earlier studies characterizing the impacts of adding renewable energy (RE) to portfolios of electricity generators often used a levelized cost of energy or simplified net cash flow approach. In this study, we expand on previous work by demonstrating the use of an 8760 hourly production cost model (PLEXOS) to analyze the incremental impact of solar and wind penetration under a wide range of penetration scenarios for a region in the Western U.S. We do not attempt to 'optimize' the portfolio in any of these cases. Rather we consider different RE penetration scenarios, that might for example result from the implementation of a Renewable Portfolio Standard (RPS) to explore the dynamics, risk mitigation characteristics and incremental value that RE might add to the system. We also compare the use of RE to alternative mechanisms, such as the use of financial or physical supply contracts to mitigate risk and uncertainty, including consideration of their effectiveness and availability over a variety of timeframes.

  6. Wind Power Siting: Public Acceptance and Land Use

    Wind Powering America (EERE)

    by the Alliance for Sustainable Energy, LLC. Wind Power Siting: Public Acceptance and Land Use Suzanne Tegen WINDExchange Webinar June 17, 2015 2 Overview * Current NREL Research *...

  7. Wind Power Price Trends in the United States

    E-Print Network [OSTI]

    Bolinger, Mark

    2010-01-01T23:59:59.000Z

    the true cost of wind generation (which would be at least $and wind’s competitive position among generation resources.

  8. WIND ENERGY Wind Energ. (2014)

    E-Print Network [OSTI]

    2014-01-01T23:59:59.000Z

    in the near wake. In conclusion, WiTTS performs satisfactorily in the rotor region of wind turbine wakes under neutral stability. Copyright © 2014 John Wiley & Sons, Ltd. KEYWORDS wind turbine wake; wake model; self in wind farms along several rows and columns. Because wind turbines generate wakes that propagate downwind

  9. Analyzing the Effects of Temporal Wind Patterns on the Value of Wind-Generated Electricity at Different Sites in California and the Northwest

    E-Print Network [OSTI]

    Fripp, Matthias; Wiser, Ryan

    2006-01-01T23:59:59.000Z

    from operating wind farms in the Altamont, San Gorgonio anddata from wind farms in Altamont, Tehachapi and San Gorgoniofrom wind farms in the Altamont, Tehachapi and San Gorgonio

  10. Effects of Temporal Wind Patterns on the Value of Wind-Generated Electricity at Different Sites in California and the Northwest

    E-Print Network [OSTI]

    Fripp, Matthias; Wiser, Ryan

    2006-01-01T23:59:59.000Z

    1992). “Capacity credit of wind power in the Netherlands. ”modeling as a tool for wind resource assessment andBurton, T. , et al. (2001). Wind Energy Handbook, John

  11. Effects of Temporal Wind Patterns on the Value of Wind-Generated Electricity at Different Sites in California and the Northwest

    E-Print Network [OSTI]

    Fripp, Matthias; Wiser, Ryan

    2006-01-01T23:59:59.000Z

    towers or operational wind farms are needed to resolveapproach to locating wind farms in the UK. ” Renewablepower from potential wind farm locations in California and

  12. Analyzing the Effects of Temporal Wind Patterns on the Value of Wind-Generated Electricity at Different Sites in California and the Northwest

    E-Print Network [OSTI]

    Fripp, Matthias; Wiser, Ryan

    2006-01-01T23:59:59.000Z

    7 2.2.3 Wind Farm Production1. Rated Capacity of Wind Farms for which Monthly Productionpower from potential wind farm locations in California and

  13. Analyzing the Effects of Temporal Wind Patterns on the Value of Wind-Generated Electricity at Different Sites in California and the Northwest

    E-Print Network [OSTI]

    Fripp, Matthias; Wiser, Ryan

    2006-01-01T23:59:59.000Z

    Schwartz. 1993. Wind Energy Potential in the United States .for estimates of wind power potential. ” Journal of Appliedof electric power from potential wind farm locations in

  14. Effects of Temporal Wind Patterns on the Value of Wind-Generated Electricity at Different Sites in California and the Northwest

    E-Print Network [OSTI]

    Fripp, Matthias; Wiser, Ryan

    2006-01-01T23:59:59.000Z

    of electric power from potential wind farm locations infactor across different potential wind sites are about sevenreflects the potential effects of temporal wind patterns on

  15. Stochastic Real-Time Scheduling of Wind-thermal Generation Units ...

    E-Print Network [OSTI]

    2014-11-11T23:59:59.000Z

    time t (MW) wps,t. Percent of wind farm capacity available at scenario s and time t .... speeds at foreseen onshore and offshore wind farms locations is proposed.

  16. Power System Modeling of 20% Wind-Generated Electricity by 2030: Preprint

    SciTech Connect (OSTI)

    Hand, M.; Blair, N.; Bolinger, M.; Wiser, R.; O'Connell, R.; Hern, T.; Miller, B.

    2008-06-01T23:59:59.000Z

    This paper shows the results of the Wind Energy Deployment System model used to estimate the costs and benefits associated with producing 20% of the nation's electricity from wind technology by 2030.

  17. Effects of Temporal Wind Patterns on the Value of Wind-Generated Electricity at Different Sites in California and the Northwest

    E-Print Network [OSTI]

    Fripp, Matthias; Wiser, Ryan

    2006-01-01T23:59:59.000Z

    Modeling Utility-Scale Wind Power Plants Part 2: Capacitycapacity factor of the wind power plant during the top 10

  18. Dynamic Simulation Studies of the Frequency Response of the Three U.S. Interconnections with Increased Wind Generation

    SciTech Connect (OSTI)

    Mackin, Peter; Daschmans, R.; Williams, B.; Haney, B.; Hung, R.; Ellis, J.

    2010-12-20T23:59:59.000Z

    Utility Systems Efficiencies, Inc. was tasked by Lawrence Berkeley National Laboratory (LBNL) to conduct dynamic simulation studies of the three U.S. interconnections (Eastern, Western, and Texas). The simulations were prepared in support of LBNL's project for the Federal Energy Regulatory Commission to study frequency-response-related issues that must be addressed to operate the power system reliably with large amounts of variable renewable generation. The objective of the simulation studies of each interconnection was to assess the effects of different amounts of wind generation on frequency behavior of each interconnection following a sudden loss of generation. The scenarios created to study these effects considered an operating circumstance in which system load is at or close to its minimum. The event studied was the sudden loss of the largest amount of generation recorded within each interconnection. The simulations calculated the impact of this event on interconnection frequency for three levels of wind generation. In addition to varying the amount of wind generation, the simulations varied the amount of operating reserves between a high level representative of current operating practices and a low level representative of the minimum required by present operating rules.

  19. Wind Turbinie Generator System Power Performance Test Report for the Mariah Windspire 1-kW Wind Turbine

    SciTech Connect (OSTI)

    Huskey, A.; Bowen, A.; Jager, D.

    2009-12-01T23:59:59.000Z

    This report summarizes the results of a power performance test that NREL conducted on the Mariah Windspire 1-kW wind turbine. During this test, two configurations were tested on the same turbine. In the first configuration, the turbine inverter was optimized for power production. In the second configuration, the turbine inverter was set for normal power production. In both configurations, the inverter experienced failures and the tests were not finished.

  20. Wind Generation Feasibility Study for Sac & Fox Tribe of the Mississippi in Iowa (Meskwaki Nation)

    SciTech Connect (OSTI)

    Lasley, Larry C. [Sac & Fox Tribe of the Mississippi in Iowa

    2013-03-19T23:59:59.000Z

    1.2 Overview The Meskwaki Nation will obtain an anemometer tower. Install the tower at the site that has been pre-qualified as the site most likely to produce maximum electric power from the wind. It will collect meteorological data from the tower�s sensors for a one year period, as required for due diligence to identify the site as appropriate for the installation of a wind turbine to provide electric power for the community. Have the collected data analyzed by a meteorologist and a professionally certified wind engineer to produce the reports of expected power generation at the site, for the specific wind turbine(s) under consideration for installation. 1.2.1 Goals of the Tribe The feasibility study reports, including technical and business analyses will be used to obtain contracts and financing required to develop and implement a wind turbine project on the Meskwaki Settlement. Our goal is to produce two (2) mega watts of power and to reduce the cost for electricity currently being paid by the Meskwaki Casino. 1.2.2 Project Objectives Meet the energy needs of the community with clean energy. Bring renewable energy to the settlement in a responsible, affordable manner. Maximize both the economic and the spiritual benefits to the tribe from energy independence. Integrate the Tribe�s energy policies with its economic development goals. Contribute to achieving the Tribe�s long-term goals of self-determination and sovereignty. 1.2.3 Project Location The precise location proposed for the tower is at the following coordinates: 92 Degrees, 38 Minutes, 46.008 Seconds West Longitude 41 Degrees, 59 Minutes, 45.311 Seconds North Latitude. A circle of radius 50.64 meters, enclosing and area of 1.98 acres in PLSS Township T83N, Range R15W, in Iowa. In relative directions, the site is 1,650 feet due west of the intersection of Highway 30 and 305th Street in Tama, Iowa, as approached from the direction of Toledo, Iowa. It is bounded on the north by Highway 30 and on the south by 305th Street, a street which runs along a meandering west-south-west heading from this intersection with Highway 30. In relation to Settlement landmarks, it is 300 meters west of the Meskwaki water tower found in front of the Meskwaki Public Works Department, and is due north of the athletic playing fields of the Meskwaki Settlement School. The accompanying maps (in the Site Resource Maps File) use a red pushpin marker to indicate the exact location, both in the overview frames and in the close-up frame. 1.2.4 Long Term Energy Vision The Meskwaki Tribe is committed to becoming energy self-sufficient, improving the economic condition of the tribe, and maintaining Tribal Values of closeness with Grandmother Earth. The details of the Tribe�s long-term vision continues to evolve. A long term vision exists of: 1) a successful assessment program; 2) a successful first wind turbine project reducing the Tribe�s cost of electricity; 3) creation of a Meskwaki Tribal Power Utility/Coop under the auspices of the new tribal Corporation, as we implement a master plan for economic and business development; 4), and opening the doors for additional wind turbines/renewable energy sources on the community. The additional turbines could lead directly to energy self-sufficiency, or might be the one leg of a multi-leg approach using multiple forms of renewable energy to achieve self-sufficiency. We envision current and future assessment projects providing the data needed to qualify enough renewable energy projects to provide complete coverage for the entire Meskwaki Settlement, including meeting future economic development projects� energy needs. While choosing not to engage in excessive optimism, we can imagine that in the future the Iowa rate-setting bodies will mandate that grid operators pay fair rates (tariffs) to renewable suppliers. We will be ready to expand renewable production of electricity for export, when that time comes. The final report includes the Wind

  1. Record of Decision for the Electrical Interconnection of the Windy Point Wind Energy Project.

    SciTech Connect (OSTI)

    United States. Bonneville Power Administration.

    2006-11-01T23:59:59.000Z

    The Bonneville Power Administration (BPA) has decided to offer contract terms for interconnection of 250 megawatts (MW) of power to be generated by the proposed Windy Point Wind Energy Project (Wind Project) into the Federal Columbia River Transmission System (FCRTS). Windy Point Partners, LLC (WPP) propose to construct and operate the proposed Wind Project and has requested interconnection to the FCRTS. The Wind Project will be interconnected at BPA's Rock Creek Substation, which is under construction in Klickitat County, Washington. The Rock Creek Substation will provide transmission access for the Wind Project to BPA's Wautoma-John Day No.1 500-kilovolt (kV) transmission line. BPA's decision to offer terms to interconnect the Wind Project is consistent with BPA's Business Plan Final Environmental Impact Statement (BP EIS) (DOE/EIS-0183, June 1995), and the Business Plan Record of Decision (BP ROD, August 15, 1995). This decision thus is tiered to the BP ROD.

  2. Wind Power: How Much, How Soon, and At What Cost?

    E-Print Network [OSTI]

    Wiser, Ryan H

    2010-01-01T23:59:59.000Z

    end of 2007 Projected Wind Generation as %of Electricityand costs on wind generation that other generation sourcesconsidered, over 600 GW of wind generation potential still

  3. National Wind Technology Center (Fact Sheet), National Wind Technology...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    NATIONAL WIND TECHNOLOGY CENTER www.nrel.govwind Wind energy is one of the fastest growing electricity generation sources in the world. NREL's National Wind Technology Center...

  4. Wind Energy Center Edgeley/Kulm Project, North Dakota

    Broader source: Energy.gov (indexed) [DOE]

    Environmental Assessment Wind Energy Center EdgeleyKulm Project North Dakota North Dakota Wind, LLC FPL Energy DOEEA-1465 April 2003 Summary S - 1 Final EA SUMMARY The proposed...

  5. Power System Modeling of 20percent Wind-Generated Electricity by 2030

    E-Print Network [OSTI]

    Hand, Maureen

    2008-01-01T23:59:59.000Z

    and corresponding direct electricity sector costs, includingand avoids electricity-sector water consumption. At the sameNew Wind Fig. 5. Electricity sector capacity by technology

  6. 2011 Wind Technologies Market Report

    E-Print Network [OSTI]

    Bolinger, Mark

    2013-01-01T23:59:59.000Z

    wind turbine components (specifically, generators, bladeschangers. ” Wind turbine components such as blades, towers,Canada (8%). Wind turbine component exports (towers, blades,

  7. 2011 Wind Technologies Market Report

    E-Print Network [OSTI]

    Bolinger, Mark

    2013-01-01T23:59:59.000Z

    studies show that wind energy integration costs are below $do not represent wind energy generation costs. This sectioncomponent of the overall cost of wind energy, but can vary

  8. 2008 WIND TECHNOLOGIES MARKET REPORT

    E-Print Network [OSTI]

    Bolinger, Mark

    2010-01-01T23:59:59.000Z

    do not represent wind energy generation costs. Based on thisproduction-cost reduction value of wind energy, without anwith wind energy. Generally, these costs are associated with

  9. 2009 Wind Technologies Market Report

    E-Print Network [OSTI]

    Wiser, Ryan

    2010-01-01T23:59:59.000Z

    capacity), with 17% of all potential wind energy generationthat roughly 17% of potential wind energy generation withinexample, roughly 1% of potential wind energy output in 2009

  10. Energy Department Offers Conditional Commitment to Cape Wind...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Cape Wind Offshore Wind Generation Project Energy Department Offers Conditional Commitment to Cape Wind Offshore Wind Generation Project July 1, 2014 - 9:23am Addthis News Media...

  11. Power System Modeling of 20percent Wind-Generated Electricity by 2030

    E-Print Network [OSTI]

    Hand, Maureen

    2008-01-01T23:59:59.000Z

    of about 80 GW of coal-based generation technologyand reduces coal-based electricity generation by 18%.to offset coal- and natural gas-based electricity generation

  12. Power and Frequency Control as it Relates to Wind-Powered Generation

    E-Print Network [OSTI]

    Lacommare, Kristina S H

    2011-01-01T23:59:59.000Z

    Undrill. 1975. "Automatic Generation Control", IEEE Tutorialfraction of generation providing response grid. The adjustment of generation, minute-by- minute, in

  13. Power and Frequency Control as it Relates to Wind-Powered Generation

    E-Print Network [OSTI]

    Lacommare, Kristina S H

    2011-01-01T23:59:59.000Z

    5   2.2   Balancing Areas and Generating Plantvariations of load and generating plant output closely so as1. Balancing Areas and Generating Plant Types Simulations

  14. A KINETIC MODEL OF SOLAR WIND GENERATION BY OBLIQUE ION-CYCLOTRON WAVES

    SciTech Connect (OSTI)

    Isenberg, Philip A.; Vasquez, Bernard J. [Institute for the Study of Earth, Oceans and Space and Department of Physics, University of New Hampshire, Durham, NH 03824 (United States)

    2011-04-20T23:59:59.000Z

    The fast solar wind is generated by extended perpendicular ion heating in coronal holes, but the kinetic mechanism responsible for this heating has not been determined. One long-standing possibility is the resonant-cyclotron dissipation of ion-cyclotron waves, replenished from a turbulent cascade of interacting counter-propagating Alfven waves. We present results of a kinetic model for proton heating by the quasilinear resonant-cyclotron wave-particle interaction in a coronal hole. The resonant wave spectrum is taken as a power law in wavenumber, uniformly distributed in propagation direction between 0 deg. and 60 deg. with respect to the large-scale radial magnetic field. We obtain the steady-state solution of the kinetic guiding-center equation for the proton distribution in an expanding coronal hole, including the effects of large-scale forces of gravity, charge-separation electric field, Alfven wave ponderomotive force, and mirror force, along with the small-scale scattering from the wave dissipation. We find that plausible wave intensities can yield reasonable flow speeds and temperatures in the heliocentric radial range between 2 and 6 solar radii. We address the claim in earlier work that dissipation of parallel-propagating ion-cyclotron waves cannot provide enough acceleration and show that claim to be incorrect. We find that the combined action of the large-scale forces and the resonant-cyclotron scattering produces proton distribution functions with a characteristic structure: compressed in the sunward half of velocity space with a high-density shell separate from the origin, and relatively expanded in the anti-sunward half of velocity space. We suggest that qualitatively similar proton distributions would result from the kinetic evolution of any sufficiently effective perpendicular heating mechanism operating in an expanding coronal hole.

  15. An Observational Summary of Convective Storm-generated Winds NOAA/NESDIS/STAR

    E-Print Network [OSTI]

    Kuligowski, Bob

    ), GOES sounding profile over Patuxent River, MD at 2100 UTC (top right), GOES imager product at 2232 UTC River Buoy near Dahlgren, Virginia (left) compared to a hypothetical microburst wind speed trace (right

  16. avispa-iie wind generator: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Plant in Iran will be studied, in this article, focus is made mostly on computerized simulation of power plant sites for optimized configuration of wind farm turbines by using...

  17. Physical modeling of wind turbine generators in a small scale analog system

    E-Print Network [OSTI]

    Wang, Xuntuo

    2014-01-01T23:59:59.000Z

    This project represents the physical modeling and experimental test of a Doubly-fed Induction Machine (DFIM), in order to substantially analyze the characteristic behaviors of wind turbines and its use in the micro-grid ...

  18. Topic 5: Power System Operation and Planning for Enhanced Wind Generation Penetration

    SciTech Connect (OSTI)

    Vittal, Vijay; Heydt, Gerald T; Ayyanar, Raja; McCalley, James D; Ajjarapu, V; Aliprantis, Dionysios

    2012-08-31T23:59:59.000Z

    This project dealt with the development of a range of educational resources dealing with wind energy and wind energy integration in the electric grid. These resources were developed for a variety of audiences including; a) high school student, b) undergraduate electrical engineering students, c) graduate electrical engineering students, and d) practicing engineers in industry. All the developed material is available publicly and the courses developed are being taught at the two participating universities, Arizona State University and Iowa State University.

  19. Analysis of the value of battery storage with wind and photovoltaic generation to the Sacramento Municipal Utility District

    SciTech Connect (OSTI)

    Zaininger, H.W. [Zaininger Engineering Co., Inc., Roseville, CA (United States)

    1998-08-01T23:59:59.000Z

    This report describes the results of an analysis to determine the economic and operational value of battery storage to wind and photovoltaic (PV) generation technologies to the Sacramento Municipal Utility District (SMUD) system. The analysis approach consisted of performing a benefit-cost economic assessment using established SMUD financial parameters, system expansion plans, and current system operating procedures. This report presents the results of the analysis. Section 2 describes expected wind and PV plant performance. Section 3 describes expected benefits to SMUD associated with employing battery storage. Section 4 presents preliminary benefit-cost results for battery storage added at the Solano wind plant and the Hedge PV plant. Section 5 presents conclusions and recommendations resulting from this analysis. The results of this analysis should be reviewed subject to the following caveat. The assumptions and data used in developing these results were based on reports available from and interaction with appropriate SMUD operating, planning, and design personnel in 1994 and early 1995 and are compatible with financial assumptions and system expansion plans as of that time. Assumptions and SMUD expansion plans have changed since then. In particular, SMUD did not install the additional 45 MW of wind that was planned for 1996. Current SMUD expansion plans and assumptions should be obtained from appropriate SMUD personnel.

  20. Design Team:Owners Team: Solaris Group, LLC

    E-Print Network [OSTI]

    Solaris Port of Benton NORTH #12;Climate and Design Maximize East/West Solar Orientation · Reduce ThermalDesign Team:Owners Team: Solaris Group, LLC a management company TRI-CITIES RESEARCH DISTRICT Prevailing Winds for Passive Site Cooling · Deter Winter Gusts · Protection via Walkway Screens and Canopies

  1. Analysis of the Impact of Balancing Area Cooperation on the Operation of the Western Interconnection with Wind and Solar Generation (Presentation)

    SciTech Connect (OSTI)

    Milligan, M.; Lew, D.; Jordan, G.; Piwko, R.; Kirby, B.; King, J.; Beuning, S.

    2011-05-01T23:59:59.000Z

    This presentation describes the analysis of the impact of balancing area cooperation on the operation of the Western Interconnection with wind and solar generation, including a discussion of operating reserves, ramping, production simulation, and conclusions.

  2. Design and Test of DC Voltage Link Conversion System and Brushless Doubly-Fed Induction Generator for Variable-Speed Wind Energy Applications: August 1999--May 2003

    SciTech Connect (OSTI)

    Lipo, T.A.; Panda, D.; Zarko, D.

    2005-11-01T23:59:59.000Z

    This report describes four low-cost alternative power converters for processing the power developed by a doubly fed wound-rotor induction generator for wind energy conversion systems.

  3. Department of Mechanical and Nuclear Engineering Spring 2011 Wind Tunnel Automation Project

    E-Print Network [OSTI]

    Demirel, Melik C.

    PENNSTATE Department of Mechanical and Nuclear Engineering Spring 2011 Wind Tunnel Automation Project Phase II - Automated Bike Turret Mount Overview SYNERGE LLC is a consulting company working

  4. RELIABILITY OF WIND POWER FROM DISPERSED SITES: A PRELIMINARY ASSESSMENT

    E-Print Network [OSTI]

    Kahn, E.

    2011-01-01T23:59:59.000Z

    to expect that wind generation will be sufficiently reliableload for the case with wind generation measured at the LOLPcan be displaced by wind generation. tions form the basis

  5. Community Wind: Once Again Pushing the Envelope of Project Finance

    E-Print Network [OSTI]

    bolinger, Mark A.

    2011-01-01T23:59:59.000Z

    the amount of available wind generation, the shortfall iswhen the amount of wind generation exceeds the Cooperative’sto maximize its wind generation), and is further reduced by

  6. Computational Needs for the Next Generation Electric Grid Proceedings

    E-Print Network [OSTI]

    Birman, Kenneth

    2012-01-01T23:59:59.000Z

    Scale  Integration  of  Wind  Generation Including Network Scale  Integration  of  Wind  Generation Including Network with Large  Penetration of Wind Generation: Wind energy is 

  7. Optimal sizing study of hybrid wind/PV/diesel power generation unit

    SciTech Connect (OSTI)

    Belfkira, Rachid; Zhang, Lu; Barakat, Georges [Groupe de Recherche en Electrotechnique et Automatique du Havre, University of Le Havre, 25 rue Philippe Lebon, BP 1123, 76063 Le Havre (France)

    2011-01-15T23:59:59.000Z

    In this paper, a methodology of sizing optimization of a stand-alone hybrid wind/PV/diesel energy system is presented. This approach makes use of a deterministic algorithm to suggest, among a list of commercially available system devices, the optimal number and type of units ensuring that the total cost of the system is minimized while guaranteeing the availability of the energy. The collection of 6 months of data of wind speed, solar radiation and ambient temperature recorded for every hour of the day were used. The mathematical modeling of the main elements of the hybrid wind/PV/diesel system is exposed showing the more relevant sizing variables. A deterministic algorithm is used to minimize the total cost of the system while guaranteeing the satisfaction of the load demand. A comparison between the total cost of the hybrid wind/PV/diesel energy system with batteries and the hybrid wind/PV/diesel energy system without batteries is presented. The reached results demonstrate the practical utility of the used sizing methodology and show the influence of the battery storage on the total cost of the hybrid system. (author)

  8. RELIABILITY OF WIND POWER FROM DISPERSED SITES: A PRELIMINARY ASSESSMENT

    E-Print Network [OSTI]

    Kahn, E.

    2011-01-01T23:59:59.000Z

    PG&E 4:00 p.m. Summer Wind Generator Model Wind Array ELCCexpect from an array of wind generators spread over a largean array of dispersed wind generators will be. wind speed

  9. Hybrid Electro-Mechanical Simulation Tool for Wind Turbine Generators: Preprint

    SciTech Connect (OSTI)

    Singh, M.; Muljadi, E.; Jonkman, J.

    2013-05-01T23:59:59.000Z

    This paper describes the use of MATLAB/Simulink to simulate the electrical and grid-related aspects of a WTG and the FAST aero-elastic wind turbine code to simulate the aerodynamic and mechanical aspects of the WTG. The combination of the two enables studies involving both electrical and mechanical aspects of the WTG.

  10. Economic and technical impacts of wind variability and intermittency on long-term generation expansion planning

    E-Print Network [OSTI]

    Paristech 2009 Submitted to the Engineering Systems Division in partial fulfillment of the requirements to the Engineering Systems Division on May 6, 2011 in partial fulfillment of the requirements for the Degree of the U.S. I aggregate an hourly dataset of load and wind resource in eleven regions in order to capture

  11. Effects of Temporal Wind Patterns on the Value of Wind-Generated Electricity at Different Sites in California and the Northwest

    E-Print Network [OSTI]

    Fripp, Matthias; Wiser, Ryan

    2006-01-01T23:59:59.000Z

    Wind Farm Production: We used historical hourly power production data from the Altamont, Tehachapi and San GorgonioSan Gorgonio resource areas, we also show the effects calculated using the total output from all wind farms

  12. Foresight Wind Energy LLC | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are being directedAnnualPropertyd8c-a9ae-f8521cbb8489Information HydroFontana, California:Group Jump to:Ford

  13. Wave Wind LLC | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov YouKizildere IRaghuraji Agro IndustriesTown ofNationwideWTED Jump to: navigation,AreaWatson, NewWauseon,Wave Place: Sun

  14. Cielo Wind Power LLC | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are beingZealand JumpConceptual Model, click here.TelluricPower InternationalChuichu,

  15. Evergreen Wind Power LLC | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are beingZealand JumpConceptual Model,DOEHazelPennsylvania: Energy Resources(RECP)Coolers Jump to:New

  16. Idaho Winds LLC | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are being directedAnnual Siteof Energy 2,AUDIT REPORTEnergyFarms AHefeiHydroenergy Company Ltd Jump

  17. Independence Wind LLC | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are being directedAnnual Siteof Energy 2,AUDIT REPORTEnergyFarms AHefeiHydroenergy CompanyJump to: navigation,

  18. Wind Power Associates LLC | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are being directedAnnual Siteof Energy 2,AUDITCaliforniaWeifang Swisselectronic Co LtdLtd Place:Arcadia Jump

  19. Wind Revolutions LLC | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are being directedAnnual Siteof Energy 2,AUDITCaliforniaWeifang Swisselectronic Co LtdLtd Place:Arcadia

  20. Krayn Wind LLC | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov YouKizildere I Geothermal Pwer Plant Jump to: navigation, search GEOTHERMALTexas: EnergyKosovo:Krannich Solartechnik

  1. AEP Wind Energy LLC | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are being directedAnnual Siteof Energy 2,AUDIT REPORT Americium/Curium Vitrification4th Day EnergyADAPT

  2. Affinity Wind LLC | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are being directedAnnual Siteof Energy 2,AUDIT REPORT Americium/Curium Vitrification4thColoradoAeropower

  3. Cape Wind Associates LLC | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are being directedAnnual Siteof Energy 2,AUDIT REPORT Americium/CuriumAguaBBBWind-BrizaHKCInformationAssociates

  4. Granite Wind LLC | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are8COaBulkTransmissionSitingProcess.pdfGetec AG Contracting JumpGove County,Texas:

  5. Midwest Wind Energy LLC | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov YouKizildere I Geothermal Pwer Plant JumpMarysville, Ohio:Menomonee| OpenMickeyDelaware: EnergyMidnightProducersLLCMidwest

  6. Midwest Wind Finance LLC | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov YouKizildere I Geothermal Pwer Plant JumpMarysville, Ohio:Menomonee| OpenMickeyDelaware:

  7. Langford Wind Power LLC | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are being directedAnnual SiteofEvaluatingGroup |Jilin Zhongdiantou NewKorea PartsLLNLLaizhouLandEnergy

  8. Crownbutte Wind Power LLC | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are being directedAnnualProperty EditCalifornia:PowerCER.pngRoofs and Heat Islands2007)CriterionCrossroads

  9. US Wind Force LLC | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are being directedAnnualProperty Edit withTianlin Baxin HydropowerTrinityTurnbullGlobal Map-Annex 1EIAUS| Open

  10. Generation and diagnostics of atmospheric pressure CO{sub 2} plasma by laser driven plasma wind tunnel

    SciTech Connect (OSTI)

    Matsui, Makoto; Yamagiwa, Yoshiki [Department of Mechanical Engineering, Shizuoka University, 3-5-4 Johoku, Naka, Hamamatsu, 432-8561 Shizuoka (Japan); Tanaka, Kensaku; Arakawa, Yoshihiro [Department of Aeronautics and Astronautics, University of Tokyo, 7-3-1 Hongo, Bunkyo, 113-0033 Tokyo (Japan); Nomura, Satoshi; Komurasaki, Kimiya [Department of Advanced Energy, University of Tokyo, 5-1-5 Kashiwanoha, Kashiwa, 277-8583 Chiba (Japan)

    2012-08-01T23:59:59.000Z

    Atmospheric pressure CO{sub 2} plasma was generated by a laser driven plasma wind tunnel. At an ambient pressure of 0.38 MPa, a stable plasma was maintained by a laser power of 1000 W for more than 20 min. The translational temperature was measured using laser absorption spectroscopy with the atomic oxygen line at 777.19 nm. The measured absorption profiles were analyzed by a Voigt function considering Doppler, Stark, and pressure-broadening effects. Under the assumption of thermochemical equilibrium, all broadening effects were consistent with each other. The measured temperature ranged from 8500 K to 8900 K.

  11. LappinTech LLC | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov YouKizildere I Geothermal Pwer Plant Jump to:Landowners and Wind Energy Development Jump to:Wave PowerLaos:LappinTech LLC

  12. Lite Trough LLC | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov YouKizildere I Geothermal Pwer Plant Jump to:Landowners and WindLightingLinthicum, Maryland:source HistoryLite Trough LLC

  13. Joe Mescan Windmill LLC | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are being directedAnnual Siteof Energy 2,AUDIT REPORTEnergyFarmsPower Co LtdTN LLC JumpJilin HuayiJilin WindJoe

  14. MCF Advisors LLC | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are being directedAnnual Siteof Energy 2,AUDIT REPORTEnergyFarmsPower CoLongxing Wind PowerMCF Advisors LLC Jump

  15. Norvento USA LLC | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are beingZealand Jump to: navigation, searchOfRoseConcerns Jumpsource History ViewTexas: EnergyWind PowerUSA LLC Jump

  16. Clyde Industrial, LLC | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are being directedAnnual Siteof Energy 2,AUDIT REPORTEnergy Offshore Place:Wind EnergyCieloClyde Industrial, LLC

  17. 2011 Wind Technologies Market Report

    E-Print Network [OSTI]

    Bolinger, Mark

    2013-01-01T23:59:59.000Z

    shows that 8.5% of potential wind energy generation withinin GWh (and as a % of potential wind generation) Electricreport also laid out a potential wind power deployment path

  18. Langmuir wave-packet generation from an electron beam propagating in the inhomogeneous solar wind

    SciTech Connect (OSTI)

    Zaslavsky, A.; Maksimovic, M. [LESIA, 5 Place Jules Janssen, 92195 Meudon (France); Volokitin, A. S. [IZMIRAN, Troitsk, Moscow Region (Russian Federation); Krasnoselskikh, V. V. [LPCEE, CNRS Orleans (France); Bale, S. D. [SSL, University of California, Berkerley (United States)

    2010-03-25T23:59:59.000Z

    Recent in-situ observations by the TDS instrument equipping the STEREO spacecraft revealed that large amplitude spatially localized Langmuir waves are frequent in the solar wind, and correlated with the presence of suprathermal electron beams during type III events or close to the electron foreshock. We briefly present the new theoretical model used to perform the study of these localized electrostatic waves, and show first results of simulations of the destabilization of Langmuir waves by a beam propagating in the inhomogeneous solar wind. The main results are that the destabilized waves are mainly focalized near the minima of the density profiles, and that the nonlinear interaction of the waves with the resonant particles enhances this focalization compared to a situation in which the only propagation effects are taken into account.

  19. Wind Power Price Trends in the United States: Struggling to Remain Competitive in the Face of Strong Growth

    E-Print Network [OSTI]

    Bolinger, Mark A

    2009-01-01T23:59:59.000Z

    timeframe. Projected Wind Generation as % of Electricityrepresent the cost of wind generation. Wind Power Price (time-variability of wind generation is often such that its

  20. Comparing Statewide Economic Impacts of New Generation from Wind, Coal, and Natural Gas in Arizona, Colorado, and Michigan: Preprint

    SciTech Connect (OSTI)

    Tegen, S.

    2005-08-01T23:59:59.000Z

    With increasing concerns about energy independence, job outsourcing, and risks of global climate change, it is important for policy makers to understand all impacts from their decisions about energy resources. This paper assesses one aspect of the impacts: direct economic effects. The paper compares impacts to states from equivalent new electrical generation from wind, natural gas, and coal. Economic impacts include materials and labor for construction, operations, maintenance, fuel extraction, and fuel transport, as well as project financing, property tax, and landowner revenues. We examine spending on plant construction during construction years, in addition to all other operational expenditures over a 20-year span. Initial results indicate that adding new wind power can be more economically effective than adding new gas or coal power, and that a higher percentage of dollars spent on coal and gas will leave the state. For this report, we interviewed industry representatives and energy experts, in addition to consulting government documents, models, and existing literature. The methodology for this research can be adapted to other contexts for determining economic effects of new power generation in other states and regions.

  1. Comparing Statewide Economic Impacts of New Generation from Wind, Coal, and Natural Gas in Arizona, Colorado, and Michigan

    SciTech Connect (OSTI)

    Tegen, S.

    2006-05-01T23:59:59.000Z

    With increasing concerns about energy independence, job outsourcing, and risks of global climate change, it is important for policy makers to understand all impacts from their decisions about energy resources. This paper assesses one aspect of the impacts: direct economic effects. The paper compares impacts to states from equivalent new electrical generation from wind, natural gas, and coal. Economic impacts include materials and labor for construction, operations, maintenance, fuel extraction, and fuel transport, as well as project financing, property tax, and landowner revenues. We examine spending on plant construction during construction years, in addition to all other operational expenditures over a 20-year span. Initial results indicate that adding new wind power can be more economically effective than adding new gas or coal power and that a higher percentage of dollars spent on coal and gas will leave the state. For this report, we interviewed industry representatives and energy experts, in addition to consulting government documents, models, and existing literature. The methodology for this research can be adapted to other contexts for determining economic effects of new power generation in other states and regions.

  2. 2009 Wind Technologies Market Report

    E-Print Network [OSTI]

    Wiser, Ryan

    2010-01-01T23:59:59.000Z

    generating sets. Wind turbine blades, hubs, generators,wind turbine components that include towers (trade category is “towers and lattice masts”), generators (“AC generators from 750 to 10,000 kVA”), blades

  3. Power System Modeling of 20percent Wind-Generated Electricity by 2030

    E-Print Network [OSTI]

    Hand, Maureen

    2008-01-01T23:59:59.000Z

    generation by 18%. Natural gas combustion turbine capacitycombined cycle natural gas plants, combustion turbinenuclear plants, combustion turbine natural gas plants, and

  4. Power System Modeling of 20percent Wind-Generated Electricity by 2030

    E-Print Network [OSTI]

    Hand, Maureen

    2008-01-01T23:59:59.000Z

    generation by 18%. Natural gas combustion turbine capacitycycle natural gas plants, combustion turbine natural gasnuclear plants, combustion turbine natural gas plants, and

  5. Generation Interconnection Policies and Wind Power: A Discussion of Issues, Problems, and Potential Solutions

    SciTech Connect (OSTI)

    Porter, K.; Fink, S.; Mudd, C.; DeCesaro, J.

    2009-01-01T23:59:59.000Z

    This report describes the adoption and implementation of FERC Order 2003 and the reasons for the sharp rise in generation interconnection filings in recent years.

  6. Advanced Coal Wind Hybrid: Economic Analysis

    E-Print Network [OSTI]

    Phadke, Amol

    2008-01-01T23:59:59.000Z

    Wind Integration Costs ..adequacy costs. Wind generation costs are also significantlyvalue. 3. We add wind integration cost to the levelized cost

  7. Advanced Coal Wind Hybrid: Economic Analysis

    E-Print Network [OSTI]

    Phadke, Amol

    2008-01-01T23:59:59.000Z

    Coal Wind Hybrid: Economic Analysis additional cost of fuelWind Hybrid: Economic Analysis Levelized Generation CostCoal Wind Hybrid: Economic Analysis Notes: All Cost are in

  8. Helping Policymakers Evaluate Distributed Wind Options | Department...

    Energy Savers [EERE]

    distributed wind-wind turbines installed at homes, farms, and busi-nesses. Distributed wind allows Americans to generate their own clean electricity and cut their energy bills,...

  9. Wind and solar power electric generation to see strong growth over the next two years

    Gasoline and Diesel Fuel Update (EIA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for On-Highway4,1,50022,3,,,,6,1,9,1,50022,3,,,,6,1,Decade Year-0E (2001)gasoline prices4 Oil demand expected2Wind and solar

  10. If I generate 20 percent of my national electricity from wind and solar -

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are beingZealand Jump to: navigation, search OpenEIHesperia,IDGWP Wind Farm Jump to:ILabPointIdahoIdealabwhat does it

  11. Grid-Connected Renewable Energy Generation Toolkit-Wind | Open Energy

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are being directedAnnual SiteofEvaluating AGeothermal/ExplorationGoods | OpenInformation BestInformation Wind

  12. Analyzing the Effects of Temporal Wind Patterns on the Value of Wind-Generated Electricity at Different Sites in California and the Northwest

    E-Print Network [OSTI]

    Fripp, Matthias; Wiser, Ryan

    2006-01-01T23:59:59.000Z

    Cost Analysis, Phase 1. CWEC-2003-06. Davis, California: California Windanalysis of the effect of wind timing and variability on the system integration costs

  13. Non-Stationary Spectral Estimation for Wind Turbine Induction Generator Faults Detection

    E-Print Network [OSTI]

    Paris-Sud XI, Université de

    - or indirect-drive, fixed- or variable-speed turbine generators, advanced signal processing tools are required on the generator stator current. The detection algorithm uses a recursive maximum likelihood estimator to track, induction machine, faults de- tection, stator current, spectral estimation, maximum likelihood estimator. I

  14. Final Map Draft Comparison Report WIND ENERGY RESOURCE MODELING AND MEASUREMENT PROJECT

    E-Print Network [OSTI]

    SOLUTIONS, LLC (now AWS Truewind LLC) 255 FULLER ROAD, SUITE 274 ALBANY, NEW YORK Michael Brower PrincipalII Final Map Draft Comparison Report #12;WIND ENERGY RESOURCE MODELING AND MEASUREMENT PROJECT Tel: 978-749-9591 Fax: 978-749-9713 mbrower@awstruewind.com August 10, 2004 #12;2 WIND ENERGY RESOURCE

  15. Dynamic modelling of generation capacity investment in electricity markets with high wind penetration 

    E-Print Network [OSTI]

    Eager, Daniel

    2012-06-25T23:59:59.000Z

    The ability of liberalised electricity markets to trigger investment in the generation capacity required to maintain an acceptable level of security of supply risk has been - and will continue to be - a topic of much ...

  16. Simulation for Wind Turbine Generators -- With FAST and MATLAB-Simulink Modules

    SciTech Connect (OSTI)

    Singh, M.; Muljadi, E.; Jonkman, J.; Gevorgian, V.; Girsang, I.; Dhupia, J.

    2014-04-01T23:59:59.000Z

    This report presents the work done to develop generator and gearbox models in the Matrix Laboratory (MATLAB) environment and couple them to the National Renewable Energy Laboratory's Fatigue, Aerodynamics, Structures, and Turbulence (FAST) program. The goal of this project was to interface the superior aerodynamic and mechanical models of FAST to the excellent electrical generator models found in various Simulink libraries and applications. The scope was limited to Type 1, Type 2, and Type 3 generators and fairly basic gear-train models. Future work will include models of Type 4 generators and more-advanced gear-train models with increased degrees of freedom. As described in this study, implementation of the developed drivetrain model enables the software tool to be used in many ways. Several case studies are presented as examples of the many types of studies that can be performed using this tool.

  17. Power System Modeling of 20percent Wind-Generated Electricity by 2030

    E-Print Network [OSTI]

    Hand, Maureen

    2008-01-01T23:59:59.000Z

    flat through Coal plant capital cost ($2120/kW in 2005)costs and performance for other generation technologies such as pulverized coal plants,Coal plant performance improves by about 5% between 2005 and 2030 Nuclear plant capital cost (

  18. EIS-0428: Mississippi Gasification, LLC, Industrial Gasification...

    Broader source: Energy.gov (indexed) [DOE]

    8: Mississippi Gasification, LLC, Industrial Gasification Facility in Moss Point, MS EIS-0428: Mississippi Gasification, LLC, Industrial Gasification Facility in Moss Point, MS...

  19. EIS-0429: Indiana Gasification, LLC, Industrial Gasification...

    Office of Environmental Management (EM)

    9: Indiana Gasification, LLC, Industrial Gasification Facility in Rockport, IN and CO2 Pipeline EIS-0429: Indiana Gasification, LLC, Industrial Gasification Facility in Rockport,...

  20. Kahuku Wind Power (First Wind) | Department of Energy

    Office of Environmental Management (EM)

    The project employs the integration of Clipper LibertyTM wind turbine generators and a control system to more efficiently integrate wind power with the utility's power grid....

  1. 2/16/2014 Can You Charge Your Mobile With Wind Turbine? -TechTxr http://www.techtxr.com/can-charge-mobile-wind-turbine/ 1/7

    E-Print Network [OSTI]

    Chiao, Jung-Chih

    maximum functionality. Home Wind Generators comparestores.net Looking for Wind Turbines? Compare Latest Turbine? | February 9, 2014 Wind Energy Wind Mill Wind Power Wind Mobile About Wind Power Wind Generator Mobile Generator Mobile Building #12;2/16/2014 Can You Charge Your Mobile With Wind Turbine

  2. EIS-0470: U.S. Department of Energy Loan Guarantee for the Cape Wind Energy Project on the Outer Continental Shelf off Massachusetts, Nantucket Sound

    Broader source: Energy.gov [DOE]

    The DOE Loan Programs Office is proposing to offer a loan guarantee to Cape Wind Associates, LLC for the construction and start-up of the Cape Wind Energy Project in Nantucket Sound, offshore of Massachusetts. The proposed Cape Wind Energy Project would consist of up to 130, 3.6-MW turbine generators, in an area of roughly 25-square miles, and would include 12.5 miles of 115-kilovolt submarine transmission cable and an electric service platform. To inform DOE's decision regarding a loan guarantee, DOE adopted the Department of the Interior’s 2009 Final Cape Wind Energy Project EIS, in combination with two Cape Wind Environmental Assessments dated May 2010 and April 2011 (per 40 CFR 1506.4), as a DOE Final EIS (DOE/EIS-0470). The adequacy of the Department of the Interior final EIS adopted by DOE is the subject of a judicial action. This project is inactive.

  3. NREL is a national laboratory of the U.S. Department of Energy, Office of Energy Efficiency & Renewable Energy, operated by the Alliance for Sustainable Energy, LLC.

    E-Print Network [OSTI]

    the operational impact of up to 35% energy penetration of wind, photovoltaics (PVs), and concentrating solar power & Renewable Energy, operated by the Alliance for Sustainable Energy, LLC. Contract No. DE-AC36-08GO28308 How for Sustainable Energy, LLC. National Renewable Energy Laboratory 1617 Cole Boulevard Golden, Colorado 80401 303

  4. Spectral Signature of Wind Generation From The Post-Shock Region in GRS1915+105 Accretion Disk

    E-Print Network [OSTI]

    Sandip K. Chakrabarti; Sivakumar G. Manickam; Anuj K. Nandi; A. R. Rao

    2000-12-28T23:59:59.000Z

    Accretion and outflows are common in systems which include black holes. Especially important is the case of the well known micro-quasar GRS1915+105 in our own galaxy, where super-luminal outflows are detected. We present a few observation which are suggestive of an outflow which is generated very close to the black hole, within a few tens of Schwarzschild radii. In the presence of mass loss (e.g., an outflowing wind), the electron density of matter within the centrifugal pressure supported region (which generates hard X-rays) goes down and it is easier to cool these electrons by soft photons coming from the Keplerian disk. If, on the other hand, the post-shock region gains mass from outside, the spectra would be harder. These properties of spectral `softening' of the low state and `hardening' of the high state have been detected in several days of RXTE data of GRS1915+105 which we present here.

  5. Wind Power Development in the United States: Current Progress, Future Trends

    E-Print Network [OSTI]

    Wiser, Ryan H

    2009-01-01T23:59:59.000Z

    high levels of wind generation. Figure 5. Installed Windis that the increased wind generation offsets both coal andmuch higher levels of wind power generation than currently

  6. Comment on "Air Emissions Due to Wind and Solar Power" and Supporting Information

    E-Print Network [OSTI]

    Mills, Andrew D.

    2011-01-01T23:59:59.000Z

    Consulting, Analysis of Wind Generation Impact on ERCOTE. ; O’Malley, M. Wind generation, power system operation,E. ; O’Malley, M. Wind generation, power system operation,

  7. Analysis of Wind Power and Load Data at Multiple Time Scales

    E-Print Network [OSTI]

    Coughlin, Katie

    2011-01-01T23:59:59.000Z

    2008. Analysis of Wind Generation Impact on ERCOT Ancillarythe integration of wind generation. Analysis of Wind Powerwind is far more similar to load than to conventional generation

  8. The Cost of Transmission for Wind Energy: A Review of Transmission Planning Studies

    E-Print Network [OSTI]

    Mills, Andrew D.

    2009-01-01T23:59:59.000Z

    in Systems with Wind Generation. DTI Centre for DistributedCost Resource Plan Wind Generation. Xcel Energy http://the Development of Wind Powered Generation in Southwestern

  9. Understanding Wind Turbine Price Trends in the U.S. Over the Past Decade

    E-Print Network [OSTI]

    Bolinger, Mark

    2013-01-01T23:59:59.000Z

    in a lower cost of wind generation. Acknowledgments The worklevelized cost of wind generation (which is further affectedlevelized cost of wind generation (due to the latter also

  10. Power Control and Optimization of Photovoltaic and Wind Energy Conversion Systems /

    E-Print Network [OSTI]

    Ghaffari, Azad

    2013-01-01T23:59:59.000Z

    Because High Altitude Wind Generators (HAWGs) could movecables, realizing a wind generator that is largely lighterSystems High altitude wind generators will have a relatively

  11. Wind energy conversion system

    DOE Patents [OSTI]

    Longrigg, Paul (Golden, CO)

    1987-01-01T23:59:59.000Z

    The wind energy conversion system includes a wind machine having a propeller connected to a generator of electric power, the propeller rotating the generator in response to force of an incident wind. The generator converts the power of the wind to electric power for use by an electric load. Circuitry for varying the duty factor of the generator output power is connected between the generator and the load to thereby alter a loading of the generator and the propeller by the electric load. Wind speed is sensed electro-optically to provide data of wind speed upwind of the propeller, to thereby permit tip speed ratio circuitry to operate the power control circuitry and thereby optimize the tip speed ratio by varying the loading of the propeller. Accordingly, the efficiency of the wind energy conversion system is maximized.

  12. Abengoa Bioenergy Biomass of Kansas LLC | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Abengoa Bioenergy Biomass of Kansas LLC Abengoa Bioenergy Biomass of Kansas LLC Abengoa Bioenergy Biomass of Kansas LLC Location: Hugoton, KS Eligibility: 1705 Snapshot In...

  13. Gone with the Wind - The Potential Tragedy of the Common Wind

    E-Print Network [OSTI]

    Lifshitz-Goldberg, Yaei

    2010-01-01T23:59:59.000Z

    1980s the in- stalled wind-generation capacity in the Unitedand land uses. A wind generation project could potentiallysystem. See Impact of Wind Power Generation in Ireland on

  14. The Inside of a Wind Turbine

    Office of Energy Efficiency and Renewable Energy (EERE)

    Wind turbines harness the power of the wind and use it to generate electricity. Simply stated, a wind turbine works the opposite of a fan. Instead of using electricity to make wind, like a fan,...

  15. Residential Wind Power

    E-Print Network [OSTI]

    Willis, Gary

    2011-12-16T23:59:59.000Z

    This research study will explore the use of residential wind power and associated engineering and environmental issues. There is various wind power generating devices available to the consumer. The study will discuss the dependencies of human...

  16. Klondike III/Biglow Canyon Wind Integration Project; Final Environmental Impact Statement, September 2006.

    SciTech Connect (OSTI)

    United States. Bonneville Power Administration

    2006-09-01T23:59:59.000Z

    BPA has been asked by PPM Energy, Inc. to interconnect 300 megawatts (MW) of electricity generated from the proposed Klondike III Wind Project to the Federal Columbia River Transmission System. Orion Energy LLC has also asked BPA to interconnect 400 MW of electricity from its proposed Biglow Canyon Wind Farm, located north and east of the proposed Klondike III Wind Project. (Portland General Electric recently bought the rights to develop the proposed Biglow Canyon Wind Farm from Orion Energy, LLC.) Both wind projects received Site Certificates from the Oregon Energy Facility Siting Council on June 30, 2006. To interconnect these projects, BPA would need to build and operate a 230-kV double-circuit transmission line about 12 miles long, expand one substation and build one new substation. The wind projects would require wind turbines, substation(s), access roads, and other facilities. Two routes for the transmission line are being considered. Both begin at PPM's Klondike Schoolhouse Substation then travel north (Proposed Action) or north and westerly (Middle Alternative) to a new BPA 230-kV substation next to BPA's existing John Day 500-kV Substation. BPA is also considering a No Action Alternative in which BPA would not build the transmission line and would not interconnect the wind projects. The proposed BPA and wind projects would be located on private land, mainly used for agriculture. If BPA decides to interconnect the wind projects, construction of the BPA transmission line and substation(s) could commence as early as the winter of 2006-07. Both wind projects would operate for much of each year for at least 20 years. The proposed projects would generally create no or low impacts. Wildlife resources and local visual resources are the only resources to receive an impact rating other than ''none'' or ''low''. The low to moderate impacts to wildlife are from the expected bird and bat mortality and the cumulative impact of this project on wildlife when combined with other proposed wind projects in the region. The low to high impacts to visual resources reflect the effect that the transmission line and the turbine strings from both wind projects would have on viewers in the local area, but this impact diminishes with distance from the project.

  17. Prairie Winds Wind Farm | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are beingZealand Jump to: navigation,Pillar Group BV Jump to: navigation,Power Rental MarketEthanol LLC JumpWinds ND

  18. Sandia National Laboratories: Linde LLC

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    and industrial gas giant Linde LLC have signed an umbrella cooperative R&D agreement (CRADA) that is expected to accelerate the development of low-carbon energy and industrial...

  19. The Cost of Transmission for Wind Energy: A Review of Transmission Planning Studies

    E-Print Network [OSTI]

    Mills, Andrew D.

    2009-01-01T23:59:59.000Z

    focused approach, a new wind generator located near theallow the output of the wind generator to displace the power

  20. Distributed Compression for Condition Monitoring of Wind Farms

    E-Print Network [OSTI]

    Cheng, Samuel

    wind generation is high due to high wind speeds and import of power where the speeds are low. To make

  1. Wind Power Price Trends in the United States

    E-Print Network [OSTI]

    Bolinger, Mark

    2010-01-01T23:59:59.000Z

    49 Figure 5. Installed Wind Project Costs Over Time Capacitynot represent the true cost of wind generation (which wouldinstalled project costs on wind power prices. Specifically,

  2. Advanced Distributed Generation LLC | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are being directedAnnualProperty Edit withTianlinPapersWindeySanta Clara,Addington,Admire,CA 94105Advanced Distributed

  3. Solar Generations LLC | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov YouKizildere IRaghuraji Agro Industries Pvt LtdShawangunk, NewSingapore Jump to: navigation, search Name:

  4. TDX Manley Generating LLC | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are being directedAnnualProperty Edit with formSoutheastern ILSunseeker EnergySuzhouSynergy Biofuels LLCT I PTCTTDX

  5. National Grid Generation, LLC | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov YouKizildere I Geothermal Pwer PlantMunhall, Pennsylvania: EnergyEnergy Information Conference ofAnalyses |

  6. Statement of Interest in a New Project, in response to PPARC call of April 26th FHIRN: A next-generation radio network for exploring the 3-dimensional solar wind

    E-Print Network [OSTI]

    -generation radio network for exploring the 3-dimensional solar wind Future Heliospheric Imaging Radio Network The solar wind is a supersonically-expanding extension of the solar atmosphere into interplanetary space and is the means by which solar disturbances and variability are carried out to the Earth and beyond. The outflow

  7. Wind Turbine Competition Introduction

    E-Print Network [OSTI]

    Wang, Xiaorui "Ray"

    Wind Turbine Competition Introduction: The Society of Hispanic Professional Engineers, SHPE at UTK, wishes to invite you to participate in our first `Wind Turbine' competition as part of Engineer's Week). You will be evaluated by how much power your wind turbine generates at the medium setting of our fan

  8. ANEMOS: Development of a Next Generation Wind Power Forecasting System for the Large-Scale Integration of Onshore &

    E-Print Network [OSTI]

    Paris-Sud XI, Université de

    -NTUA, Greece. * georges.kariniotakis@ensmp.fr, tel:+33-493957501, Ecole des Mines de Paris, Centre d'Energetique 6% to 12% by 2010. Under this target, the problem of integration of RES and namely of wind energy

  9. Energy 101: Wind Turbines - 2014 Update

    SciTech Connect (OSTI)

    None

    2014-05-06T23:59:59.000Z

    See how wind turbines generate clean electricity from the power of wind. The video highlights the basic principles at work in wind turbines, and illustrates how the various components work to capture and convert wind energy to electricity. This updated version also includes information on the Energy Department's efforts to advance offshore wind power. Offshore wind energy footage courtesy of Vestas.

  10. Energy 101: Wind Turbines - 2014 Update

    ScienceCinema (OSTI)

    None

    2014-06-05T23:59:59.000Z

    See how wind turbines generate clean electricity from the power of wind. The video highlights the basic principles at work in wind turbines, and illustrates how the various components work to capture and convert wind energy to electricity. This updated version also includes information on the Energy Department's efforts to advance offshore wind power. Offshore wind energy footage courtesy of Vestas.

  11. Wind Power Career Chat

    SciTech Connect (OSTI)

    Not Available

    2011-01-01T23:59:59.000Z

    This document will teach students about careers in the wind energy industry. Wind energy, both land-based and offshore, is expected to provide thousands of new jobs in the next several decades. Wind energy companies are growing rapidly to meet America's demand for clean, renewable, and domestic energy. These companies need skilled professionals. Wind power careers will require educated people from a variety of areas. Trained and qualified workers manufacture, construct, operate, and manage wind energy facilities. The nation will also need skilled researchers, scientists, and engineers to plan and develop the next generation of wind energy technologies.

  12. Wind power today

    SciTech Connect (OSTI)

    NONE

    1998-04-01T23:59:59.000Z

    This publication highlights initiatives of the US DOE`s Wind Energy Program. 1997 yearly activities are also very briefly summarized. The first article describes a 6-megawatt wind power plant installed in Vermont. Another article summarizes technical advances in wind turbine technology, and describes next-generation utility and small wind turbines in the planning stages. A village power project in Alaska using three 50-kilowatt turbines is described. Very brief summaries of the Federal Wind Energy Program and the National Wind Technology Center are also included in the publication.

  13. FY 2011 Honeywell Federal Manufacturing & Technologies, LLC,...

    National Nuclear Security Administration (NNSA)

    Honeywell Federal Manufacturing & Technologies, LLC, PER Summary | National Nuclear Security Administration Facebook Twitter Youtube Flickr RSS People Mission Managing the...

  14. FY 2009 Honeywell Federal Manufacturing & Technologies, LLC,...

    National Nuclear Security Administration (NNSA)

    Honeywell Federal Manufacturing & Technologies, LLC, PER Summary | National Nuclear Security Administration Facebook Twitter Youtube Flickr RSS People Mission Managing the...

  15. FY 2010 Honeywell Federal Manufacturing & Technologies, LLC,...

    National Nuclear Security Administration (NNSA)

    Honeywell Federal Manufacturing & Technologies, LLC, PER Summary | National Nuclear Security Administration Facebook Twitter Youtube Flickr RSS People Mission Managing the...

  16. FY 2007 Honeywell Federal Manufacturing & Technologies, LLC,...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Honeywell Federal Manufacturing & Technologies, LLC, PER Summary | National Nuclear Security Administration Facebook Twitter Youtube Flickr RSS People Mission Managing the...

  17. FY 2008 Honeywell Federal Manufacturing & Technologies, LLC,...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Honeywell Federal Manufacturing & Technologies, LLC, PER Summary | National Nuclear Security Administration Facebook Twitter Youtube Flickr RSS People Mission Managing the...

  18. FY 2006 Honeywell Federal Manufacturing & Technologies, LLC,...

    National Nuclear Security Administration (NNSA)

    Honeywell Federal Manufacturing & Technologies, LLC, PER Summary | National Nuclear Security Administration Facebook Twitter Youtube Flickr RSS People Mission Managing the...

  19. Reassessing Wind Potential Estimates for India: Economic and Policy Implications

    E-Print Network [OSTI]

    Phadke, Amol

    2012-01-01T23:59:59.000Z

    3.1 Coincidence of Wind Generation with Seasonal Load Shapes3.2 Coincidence of Wind Generation with Diurnal Load Shapessites for an actual wind generation facility or predict its

  20. Reference wind farm selection for regional wind power prediction models

    E-Print Network [OSTI]

    Paris-Sud XI, Université de

    1 Reference wind farm selection for regional wind power prediction models Nils Siebert George.siebert@ensmp.fr, georges.kariniotakis@ensmp.fr Abstract Short-term wind power forecasting is recognized today as a major requirement for a secure and economic integration of wind generation in power systems. This paper deals

  1. Calculating Wind Integration Costs: Separating Wind Energy Value from Integration Cost Impacts

    SciTech Connect (OSTI)

    Milligan, M.; Kirby, B.

    2009-07-01T23:59:59.000Z

    Accurately calculating integration costs is important so that wind generation can be fairly compared with alternative generation technologies.

  2. Searchlight Wind Energy Project FEIS Appendix E

    Office of Environmental Management (EM)

    June 2, 2009 District Las Vegas Field Office Resource Area Activity (program) Proposed Wind Generation SECTION A. PROJECT INFORMATION 1. Project Name Searchlight Wind Project 4....

  3. 3/5/2014 TinyMicro Wind Turbines Generate Electricity| New Energyand Fuel http://newenergyandfuel.com/http:/newenergyandfuel/com/2014/01/16/tiny-micro-wind-turbines-generate-electricity/ 1/12

    E-Print Network [OSTI]

    Chiao, Jung-Chih

    Off Topic Plans Politics Power Units Fuel Cells Hybrid Electric Piezoelectrics Solar Artificial Photosynthesis Solar Panels Space Based Solar Thermal Solar Wind Power Storage Batteries Super Capacitors Thermal.W. Styles Energy Outlook Green Biz Green Car Congress Maria Energia Marketing Green MIT's Technology Review

  4. Modeling Variability and Uncertainty of Photovoltaic Generation: A Hidden State Spatial Statistical Approach

    E-Print Network [OSTI]

    Callaway, Duncan S; Tabone, Michaelangelo D

    2015-01-01T23:59:59.000Z

    Operational im- pacts of wind generation on California poweralong with all solar and wind generation) is different thanincreases in wind and solar generation—see those cited

  5. Mass Market Demand Response and Variable Generation Integration Issues: A Scoping Study

    E-Print Network [OSTI]

    Cappers, Peter

    2012-01-01T23:59:59.000Z

    Pricing on the Usage of Wind Generation. Power Systems, IEEE2008) Analysis of Wind Generation Impact on ERCOT Anclillaryto higher or lower wind generation than scheduled. To manage

  6. Mass Market Demand Response and Variable Generation Integration Issues: A Scoping Study

    E-Print Network [OSTI]

    Cappers, Peter

    2012-01-01T23:59:59.000Z

    S. (2008). Coupling wind generators with deferrable loads.tariff. For example, a wind generator could partner with acharge for or prevent a wind generator from submitting hour-

  7. NREL is a national laboratory of the U.S. Department of Energy, Office of Energy Efficiency & Renewable Energy, operated by the Alliance for Sustainable Energy, LLC.

    E-Print Network [OSTI]

    Protection Agency FAA Federal Aviation Administration FWS Fish and Wildlife Service GWEC Global Wind EnergyNREL is a national laboratory of the U.S. Department of Energy, Office of Energy Efficiency & Renewable Energy, operated by the Alliance for Sustainable Energy, LLC. Contract No. DE-AC36-08GO28308 Wind

  8. NREL is a national laboratory of the U.S. Department of Energy, Office of Energy Efficiency and Renewable Energy, operated by the Alliance for Sustainable Energy, LLC.

    E-Print Network [OSTI]

    to the development of advanced wind energy systems. From the base of a system's tower to the tips of its blades, NRELNREL is a national laboratory of the U.S. Department of Energy, Office of Energy Efficiency and Renewable Energy, operated by the Alliance for Sustainable Energy, LLC. NATIONAL WIND TECHNOLOGY CENTER www

  9. Revenue Maximization of Electricity Generation for a Wind Turbine Integrated with a Compressed Air Energy Storage System

    E-Print Network [OSTI]

    Li, Perry Y.

    Energy Storage System Mohsen Saadat, Farzad A. Shirazi, Perry Y. Li Abstract-- A high-level supervisory controller is developed for a Compressed Air Energy Storage (CAES) system integrated with a wind turbine the effect of storage system sizing on the maximum revenue. I. INTRODUCTION Large-scale cost effective energy

  10. The Cost of Transmission for Wind Energy in the United States: A Review of Transmission Planning Studies.

    E-Print Network [OSTI]

    Wiser, Ryan

    2014-01-01T23:59:59.000Z

    focused approach, a new wind generator located near theallow the output of the wind generator to displace the power

  11. New England Wind Energy Education Project (NEWEEP)

    SciTech Connect (OSTI)

    Grace, Robert C.; Craddock, Kathryn A.; von Allmen, Daniel R.

    2012-04-25T23:59:59.000Z

    Project objective is to develop and disseminate accurate, objective information on critical wind energy issues impacting market acceptance of hundreds of land-based projects and vast off-shore wind developments proposed in the 6-state New England region, thereby accelerating the pace of wind installation from today's 140 MW towards the region's 20% by 2030 goals of 12,500 MW. Methodology: This objective will be accomplished by accumulating, developing, assembling timely, accurate, objective and detailed information representing the 'state of the knowledge' on critical wind energy issues impacting market acceptance, and widely disseminating such information. The target audience includes state agencies and local governments; utilities and grid operators; wind developers; agricultural and environmental groups and other NGOs; research organizations; host communities and the general public, particularly those in communities with planned or operating wind projects. Information will be disseminated through: (a) a series of topic-specific web conference briefings; (b) a one-day NEWEEP conference, back-to-back with a Utility Wind Interest Group one-day regional conference organized for this project; (c) posting briefing and conference materials on the New England Wind Forum (NEWF) web site and featuring the content on NEWF electronic newsletters distributed to an opt-in list of currently over 5000 individuals; (d) through interaction with and participation in Wind Powering America (WPA) state Wind Working Group meetings and WPA's annual All-States Summit, and (e) through the networks of project collaborators. Sustainable Energy Advantage, LLC (lead) and the National Renewable Energy Laboratory will staff the project, directed by an independent Steering Committee composed of a collaborative regional and national network of organizations. Major Participants - the Steering Committee: In addition to the applicants, the initial collaborators committing to form a Steering Committee consists of the Massachusetts Renewable Energy Trust; Maine Public Utilities Commission; New Hampshire office of Energy & Planning, the Connecticut Clean Energy Fund;, ISO New England; Utility Wind Interest Group; University of Massachusetts Wind Energy Center; Renewable Energy New England (a new partnership between the renewable energy industry and environmental public interest groups), and Lawrence Berkeley National Laboratory (conditionally). The Steering Committee will: (1) identify and prioritize topics of greatest interest or concern where detailed, objective and accurate information will advance the dialogue in the region; (2) identify critical outreach venues, influencers and experts; (3) direct and coordinate project staff; (4) assist project staff in planning briefings and conferences described below; (5) identify topics needing additional research or technical assistance and (6) identify and recruit additional steering committee members. Impacts/Benefits/Outcomes: By cutting through the clutter of competing and conflicting information on critical issues, this project is intended to encourage the market's acceptance of appropriately-sited wind energy generation.

  12. Advanced Coal Wind Hybrid: Economic Analysis

    E-Print Network [OSTI]

    Phadke, Amol

    2008-01-01T23:59:59.000Z

    advanced coal-wind hybrid combined cycle power plant naturalwhen the wind generation drops, the power plant needs toa CSP plant, a wind plant produces power during all hours of

  13. Responses of floating wind turbines to wind and wave excitation

    E-Print Network [OSTI]

    Lee, Kwang Hyun

    2005-01-01T23:59:59.000Z

    The use of wind power has recently emerged as a promising alternative to conventional electricity generation. However, space requirements and public pressure to place unsightly wind turbines out of visual range make it ...

  14. Wind Measurement Equipment: Registration (Nebraska)

    Broader source: Energy.gov [DOE]

    All wind measurement equipment associated with the development or study of wind-powered electric generation, whether owned or leased, shall be registered with the Department of Aeronautics if the...

  15. Wind Fins: Novel Lower-Cost Wind Power System

    SciTech Connect (OSTI)

    David C. Morris; Dr. Will D. Swearingen

    2007-10-08T23:59:59.000Z

    This project evaluated the technical feasibility of converting energy from the wind with a novel “wind fin” approach. This patent-pending technology has three major components: (1) a mast, (2) a vertical, hinged wind structure or fin, and (3) a power takeoff system. The wing structure responds to the wind with an oscillating motion, generating power. The overall project goal was to determine the basic technical feasibility of the wind fin technology. Specific objectives were the following: (1) to determine the wind energy-conversion performance of the wind fin and the degree to which its performance could be enhanced through basic design improvements; (2) to determine how best to design the wind fin system to survive extreme winds; (3) to determine the cost-effectiveness of the best wind fin designs compared to state-of-the-art wind turbines; and (4) to develop conclusions about the overall technical feasibility of the wind fin system. Project work involved extensive computer modeling, wind-tunnel testing with small models, and testing of bench-scale models in a wind tunnel and outdoors in the wind. This project determined that the wind fin approach is technically feasible and likely to be commercially viable. Project results suggest that this new technology has the potential to harvest wind energy at approximately half the system cost of wind turbines in the 10kW range. Overall, the project demonstrated that the wind fin technology has the potential to increase the economic viability of small wind-power generation. In addition, it has the potential to eliminate lethality to birds and bats, overcome public objections to the aesthetics of wind-power machines, and significantly expand wind-power’s contribution to the national energy supply.

  16. Freeport LNG Expansion, L.P., FLNG Liquefaction, LLC, FLNG Liquefactio...

    Office of Environmental Management (EM)

    LLC, FLNG Liquefaction 2, LLC and FLNG Liquefaction 3, LLC - 14-005-CIC Freeport LNG Expansion, L.P., FLNG Liquefaction, LLC, FLNG Liquefaction 2, LLC and FLNG Liquefaction...

  17. Use of Frequency Response Metrics to Assess the Planning and Operating Requirements for Reliable Integration of Variable Renewable Generation

    E-Print Network [OSTI]

    Eto, Joseph H.

    2011-01-01T23:59:59.000Z

    of the Impact of Wind Generation on System Frequency2008. Analysis of Wind Generation Impact on ERCOT Ancillarywith Increased Wind Generation. LBNL-XXXX. Berkeley:

  18. Changes in the Economic Value of Variable Generation at High Penetration Levels: A Pilot Case Study of California

    E-Print Network [OSTI]

    Mills, Andrew

    2013-01-01T23:59:59.000Z

    and M. O’Malley. Wind generation, power system operation,9510. GE Energy. Analysis of Wind Generation Impact on ERCOTcarrying capability of wind generation: Initial results with

  19. Use of Frequency Response Metrics to Assess the Planning and Operating Requirements for Reliable Integration of Variable Renewable Generation

    E-Print Network [OSTI]

    Eto, Joseph H.

    2011-01-01T23:59:59.000Z

    North America Dynamic Wind Generator Modeling Update, Basedperformed by the WECC Wind Generator Modeling Group and theand in particular, wind generators are the primary resources

  20. Seneca Creek Associates, LLC Wood Resources International, LLC "Illegal" Logging and Global Wood Markets

    E-Print Network [OSTI]

    Seneca Creek Associates, LLC Wood Resources International, LLC "Illegal" Logging and Global Wood@aol.com; hekstrom@wri-ltd.com October, 2004 #12;Page ES - 1 Illegal Logging and Global Wood Markets: The Competitive, LLC Executive Summary Illegal logging has been high on the agenda, if not directly at the center

  1. Seneca Creek Associates, LLC Wood Resources International, LLC "Illegal" Logging and Global Wood Markets

    E-Print Network [OSTI]

    Seneca Creek Associates, LLC Wood Resources International, LLC SUMMARY "Illegal" Logging and Global Resources International, LLC Illegal Logging and Global Wood Markets: The Competitive Impacts on the U.S. Wood Products Industry1 Summary Study Objectives Illegal logging and illegal forest activities, in one

  2. Doubly Fed Induction Generator in an Offshore Wind Power Plant Operated at Rated V/Hz: Preprint

    SciTech Connect (OSTI)

    Muljadi, E.; Singh, M.; Gevorgian, V.

    2012-06-01T23:59:59.000Z

    This paper introduces the concept of constant Volt/Hz operation of offshore wind power plants. The deployment of offshore WPPs requires power transmission from the plant to the load center inland. Since this power transmission requires submarine cables, there is a need to use High-Voltage Direct Current transmission, which is economical for transmission distances longer than 50 kilometers. In the concept presented here, the onshore substation is operated at 60 Hz synced with the grid, and the offshore substation is operated at variable frequency and voltage, thus allowing the WPP to be operated at constant Volt/Hz.

  3. Department of Energy Cites Brookhaven Science Associates, LLC...

    Energy Savers [EERE]

    Brookhaven Science Associates, LLC for Worker Safety and Health Violations Department of Energy Cites Brookhaven Science Associates, LLC for Worker Safety and Health Violations...

  4. Department of Energy Cites Battelle Energy Alliance, LLC for...

    Energy Savers [EERE]

    Battelle Energy Alliance, LLC for Nuclear Safety and Radiation Protection Violations Department of Energy Cites Battelle Energy Alliance, LLC for Nuclear Safety and Radiation...

  5. amaranth advisors llc: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    could increaseSeneca Creek Associates, LLC Wood Resources International, LLC "Illegal" Logging and Global Wood Markets: The Competitive Impacts on the U.S. Wood Products...

  6. aws truewind llc: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    could increaseSeneca Creek Associates, LLC Wood Resources International, LLC "Illegal" Logging and Global Wood Markets: The Competitive Impacts on the U.S. Wood Products...

  7. Facility Engineering Services Kansas City Plant LLC KCP September...

    Office of Environmental Management (EM)

    Facility Engineering Services KCP, LLC DOE-VPP Onsite Review September 2012 Facility Engineering Services KCP, LLC Report from the Department of Energy Voluntary Protection Program...

  8. Mesquite Solar 1, LLC (Sempra Mesquite) | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    Mesquite Solar 1, LLC (Sempra Mesquite) Location: Maricopa County, AZ Eligibility: 1705 Snapshot In September 2011, the Department of Energy issued Mesquite Solar 1, LLC a 337...

  9. EIS-0412: TX Energy, LLC, Industrial Gasification Facility Near...

    Broader source: Energy.gov (indexed) [DOE]

    2: TX Energy, LLC, Industrial Gasification Facility Near Beaumont, TX EIS-0412: TX Energy, LLC, Industrial Gasification Facility Near Beaumont, TX February 18, 2009 EIS-0412:...

  10. EA-1692: Red River Environmental Products, LLC Activated Carbon...

    Office of Environmental Management (EM)

    2: Red River Environmental Products, LLC Activated Carbon Manufacturing Facility, Red River Parish, LA EA-1692: Red River Environmental Products, LLC Activated Carbon Manufacturing...

  11. Sandia National Laboratories: MOgene Green Chemicals LLC

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    MOgene Green Chemicals LLC Sandia to Partner with MOgene Green Chemicals on ARPA-E REMOTE Project On October 2, 2013, in Energy, News, News & Events, Partnership, Research &...

  12. Annova LNG, LLC- 14-004-CIC

    Broader source: Energy.gov [DOE]

    Application of Annova LNG, LLC to Transfer Control of Long-term Authorization to Export LNG to Free Trade Agreement Nations and Request for Expedited Treatment.

  13. High Wind Penetration Impact on U.S. Wind Manufacturing Capacity and Critical Resources

    SciTech Connect (OSTI)

    Laxson, A.; Hand, M. M.; Blair, N.

    2006-10-01T23:59:59.000Z

    This study used two different models to analyze a number of alternative scenarios of annual wind power capacity expansion to better understand the impacts of high levels of wind generated electricity production on wind energy manufacturing and installation rates.

  14. Dynamics of stellar wind in a Roche potential: implications for (i) outflows & periodicities relevant to astronomical masers, and (ii) generation of baroclinicity

    E-Print Network [OSTI]

    Singh, Nishant K

    2015-01-01T23:59:59.000Z

    We study the dynamics of stellar wind from one of the bodies in the binary system, where the other body interacts only gravitationally. We focus on following three issues: (i) we explore the origin of observed periodic variations in maser intensity; (ii) we address the nature of bipolar molecular outflows; and (iii) we show generation of baroclinicity in the same model setup. From direct numerical simulations and further numerical modelling, we find that the maser intensity along a given line of sight varies periodically due to periodic modulation of material density. This modulation period is of the order of the binary period. Another feature of this model is that the velocity structure of the flow remains unchanged with time in late stages of wind evolution. Therefore the location of the masing spot along the chosen sightline stays at the same spatial location, thus naturally explaining the observational fact. This also gives an appearance of bipolar nature in the standard position-velocity diagram, as has ...

  15. Utility Wind Integration Group Distributed Wind/Solar Interconnection Workshop

    Broader source: Energy.gov [DOE]

    This two-day workshop will answer your questions about interconnecting wind and solar plants and other distributed generation applications to electric distribution systems while providing insight...

  16. WIND ENERGY Wind Energ. (2014)

    E-Print Network [OSTI]

    Peinke, Joachim

    2014-01-01T23:59:59.000Z

    loads from the wind inflow through rotor aerodynamics, drive train and power electronics is stillWIND ENERGY Wind Energ. (2014) Published online in Wiley Online Library (wileyonlinelibrary wind inflow conditions M. R. Luhur, J. Peinke, J. Schneemann and M. Wächter ForWind-Center for Wind

  17. Impact of Wind Power Plants on Voltage and Transient Stability of Power Systems

    SciTech Connect (OSTI)

    Muljadi, E.; Nguyen, Tony B.; Pai, M. A.

    2008-09-30T23:59:59.000Z

    A standard three-machine, nine-bus wind power system is studied and augmented by a radially connected wind power plant that contains 22 wind turbine generators.

  18. DOE-DOI Strategy Seeks to Harness U.S. Offshore Wind Energy Potential...

    Broader source: Energy.gov (indexed) [DOE]

    offshore wind power in U.S. waters, a major step in harnessing the nation's offshore wind potential. Generating electricity from offshore wind yields multiple benefits for the...

  19. Commercial Wind Energy Property Valuation

    Broader source: Energy.gov [DOE]

    Prior to 2007, wind energy devices generating electricity for commercial sale were assessed differently depending on where they were located. Some counties valued the entire turbine structure ...

  20. RESEARCH ARTICLE Dynamic wind loads and wake characteristics of a wind turbine

    E-Print Network [OSTI]

    Hu, Hui

    installed in onshore or/and offshore wind farms in order to meet the 20% electricity generation goal. WindRESEARCH ARTICLE Dynamic wind loads and wake characteristics of a wind turbine model in an atmospheric boundary layer wind Hui Hu · Zifeng Yang · Partha Sarkar Received: 16 August 2011 / Revised: 1

  1. Wind Agreements (Nebraska)

    Broader source: Energy.gov [DOE]

    These regulations address leases or lease options securing land for the study or production of wind-generated energy. The regulations describe agreement terms, compliance, and a prohibition on land...

  2. Vertical axis wind turbines

    DOE Patents [OSTI]

    Krivcov, Vladimir (Miass, RU); Krivospitski, Vladimir (Miass, RU); Maksimov, Vasili (Miass, RU); Halstead, Richard (Rohnert Park, CA); Grahov, Jurij (Miass, RU)

    2011-03-08T23:59:59.000Z

    A vertical axis wind turbine is described. The wind turbine can include a top ring, a middle ring and a lower ring, wherein a plurality of vertical airfoils are disposed between the rings. For example, three vertical airfoils can be attached between the upper ring and the middle ring. In addition, three more vertical airfoils can be attached between the lower ring and the middle ring. When wind contacts the vertically arranged airfoils the rings begin to spin. By connecting the rings to a center pole which spins an alternator, electricity can be generated from wind.

  3. Wyoming Wind Power Project (generation/wind)

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level:Energy: Grid Integration Redefining What'sis Taking Over OurThe Iron SpinPrincetonUsingWhat isJoin theanniversary

  4. An economic analysis of the production of hydrogen from wind-generated electricity for use in transport

    E-Print Network [OSTI]

    Paris-Sud XI, Université de

    in transport applications Paper published in : Energy Policy, vol. 39, n° 5, May 2011, pp. 2957-2965 Authors P in the framework of the HyFrance 3 project concerns hydrogen for transport applications. Different technical-generation biofuels production which present contrasted hydrogen use characteristics. This analysis reveals

  5. EIS-0418: PrairieWinds Project, South Dakota

    Broader source: Energy.gov [DOE]

    This EIS analyzes DOE's decision to approve the interconnection request from PrairieWinds for their South Dakota PrairieWinds Project, a 151.5-megawatt (MW) nameplate capacity wind powered generation facility, including 101 General Electric 1.5-MW wind turbine generators, electrical collector lines, collector substation, transmission line, communications system, and wind turbine service access roads.

  6. GWE LLC | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are being directedAnnualPropertyd8c-a9ae-f8521cbb8489InformationFrenchtown, NewG2 EnergyGISGSA JumpGTP ARRAGWE LLC

  7. Genesys LLC | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are being directedAnnualPropertyd8c-a9ae-f8521cbb8489InformationFrenchtown,Jump to: navigation,Holding CoLLC

  8. Wader LLC | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov YouKizildere IRaghuraji Agro IndustriesTown ofNationwide Permit webpage Jump to:Wachapreague, Virginia:Hampton,Wader LLC

  9. Segway LLC | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov YouKizildere IRaghuraji Agro Industries Pvt Ltd JumpInformationScotts Corners, NewSeeger Engineering AGSegway LLC Jump

  10. Fibrominn LLC | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are beingZealand JumpConceptual Model,DOEHazelPennsylvania:57427°,Ferry County, Washington: EnergyFibrominn LLC Jump

  11. Fibrowatt LLC | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are beingZealand JumpConceptual Model,DOEHazelPennsylvania:57427°,Ferry County, Washington: EnergyFibrominn LLC

  12. IBIS LLC | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are8COaBulkTransmissionSitingProcess.pdfGetecGtel JumpCounty, Texas: EnergyHy9Moat ofEnergy52 -IBIS LLC Jump to:

  13. Phycal LLC | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov YouKizildere I Geothermal PwerPerkins County, Nebraska: Energy Resources JumpPfhotonikaPhoenicia,Phycal LLC Jump to:

  14. Renewafuel LLC | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are beingZealand Jump to:Ezfeedflag JumpID-f < RAPID‎ | RoadmapRenewable Energyobtained fromRenewafuel LLC Jump

  15. Smallfoot, LLC | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are beingZealand Jump to:Ezfeedflag JumpID-f < RAPID‎ |RippeyInformation SlimSlough Heat andSmallFoot LLC

  16. HCE LLC | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are8COaBulkTransmissionSitingProcess.pdfGetec AG| Open EnergyGuntersville ElectricControlon State - LandScanHCE LLC

  17. OPC LLC | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov YouKizildere I Geothermal Pwer PlantMunhall,Missouri: EnergyExcellence SeedNunn, Colorado:CablesOECD-AOPC LLC Jump to:

  18. Switch LLC | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov YouKizildere IRaghuraji Agro Industries PvtStratosolar Jump to:Holdings Co08.0 - Warehouses 73.0 -SwiftSwissvale,Switch LLC

  19. TIAX LLC | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov YouKizildere IRaghuraji Agro Industries PvtStratosolar Jump to:Holdings Co08.0 -TEEMP Jump to:TIAX LLC Jump to: navigation,

  20. Liqcrytech LLC | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are being directedAnnual SiteofEvaluatingGroup |Jilin ZhongdiantouLichuan CityLiqcrytech LLC Jump to: navigation,

  1. Tao LLC | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are being directedAnnualProperty Edit with formSoutheastern ILSunseekerTallahatchie Valley E PEnergyTao LLC Jump to:

  2. BSST LLC | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are beingZealand Jump to:EzfeedflagBiomass Conversions Inc JumpIM 2011-003 Jump to: JumpBPL Global JumpBSST LLC Jump

  3. Alte LLC | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are being directedAnnual Siteof Energy 2,AUDITCaliforniaWeifangwikiAgouraAlbatech srl JumpSolar,AlphabetAlte LLC

  4. Economic and Technical Feasibility Study of Utility-Scale Wind Generation for the New York Buffalo River and South Buffalo Brownfield Opportunity Areas

    SciTech Connect (OSTI)

    Roberts, J. O.; Mosey, G.

    2014-04-01T23:59:59.000Z

    Through the RE-Powering America's Land initiative, the economic and technical feasibility of utilizing contaminated lands in the Buffalo, New York, area for utility-scale wind development is explored. The study found that there is available land, electrical infrastructure, wind resource, and local interest to support a commercial wind project; however, economies of scale and local electrical markets may need further investigation before significant investment is made into developing a wind project at the Buffalo Reuse Authority site.

  5. Annual Report on U.S. Wind Power Installation, Cost, and Performance Trends: 2006

    E-Print Network [OSTI]

    2008-01-01T23:59:59.000Z

    50 kW. Here we present wind generation as a percentage oftotal electricity consumption. Wind generation on this basistime-variability of wind generation is often such that its

  6. EA-1970: Fishermen's Energy LLC Offshore Wind Demonstration Project,

    Broader source: Energy.gov (indexed) [DOE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742Energy China U.S.ContaminationJuly 2011DDelphiFEA-2013.pdfBasedThe U.S.

  7. EverPower Wind LLC | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are beingZealand JumpConceptual Model,DOEHazelPennsylvania: Energy Resources(RECP)Coolers Jump to:New York, New York

  8. Highland New Wind Development LLC | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are being directedAnnual Siteof Energy 2,AUDIT REPORTEnergyFarms AHefei SungrowHelukabel GmbHHigher Power EnergyNew

  9. Wind Energy Systems Technologies LLC WEST | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are being directedAnnual Siteof Energy 2,AUDITCaliforniaWeifang Swisselectronic Co LtdLtd Place: Edinburgh,WEST

  10. World Wind and Water Energy LLC | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are being directedAnnual Siteof Energy 2,AUDITCaliforniaWeifang Swisselectronic CoWindward

  11. Loess Hills Wind Energy LLC | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are beingZealand Jump to: navigation, searchOf KilaueaInformation Other AlternativePark,CedarPower

  12. Acciona Wind Energy USA LLC | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are being directedAnnual Siteof Energy 2,AUDIT REPORT Americium/Curium Vitrification4th DayANVAblampAWEPL Jump

  13. Bear Creek Wind Partners LLC | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are being directedAnnual Siteof Energy 2,AUDIT REPORT Americium/CuriumAguaBBB

  14. Empire State Wind Energy LLC | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are being directedAnnual Siteof Energy 2,AUDIT REPORTEnergy OffshoreDeveloper - QEcostreamElecdeyEletrowindEmpire

  15. Naturener USA LLC formerly Great Plains Wind Energy | Open Energy

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are beingZealand Jump to: navigation, searchOfRoseConcerns Jump to: navigation, search

  16. American Wind Power Hydrogen LLC | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are being directedAnnualProperty EditCalifornia: Energy Resources Jump to:Almo,Transmission Systems Inc Jump to:Power

  17. Rock River LLC Wind Farm | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov YouKizildere IRaghuraji Agro Industries Pvt Ltd Jump to: navigation,MazeOhio:Ohio: Energy ResourcesRock Lab Analysisin

  18. Deepwater Wind Formerly Winergy LLC | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are being directedAnnualPropertyd8c-a9ae-f8521cbb8489 No revision hasda62829c05b NoCounty, Nevada | OpenDeepi

  19. Operating Reserve Reductions from a Proposed Energy Imbalance Market with Wind and Solar Generation in the Western Interconnection

    SciTech Connect (OSTI)

    King, J.; Kirby, B.; Milligan, M.; Beuning, S.

    2012-05-01T23:59:59.000Z

    This paper considers several alternative forms of an energy imbalance market (EIM) proposed in the nonmarket areas of the Western Interconnection. The proposed EIM includes two changes in operating practices that independently reduce variability and increase access to responsive resources: balancing authority cooperation and sub-hourly dispatch. As the penetration of variable generation increases on the power system, additional interest in coordination would likely occur. Several alternative approaches could be used, but consideration of any form of coordinated unit commitment is beyond the scope of this analysis. This report examines the benefits of several possible EIM implementations--both separately and in concert.

  20. The impact of wind uncertainty on the strategic valuation of ...

    E-Print Network [OSTI]

    2015-01-14T23:59:59.000Z

    Abstract The intermittent nature of wind energy generation has introduced ... has the potential to alleviate the intermittency problem posed by wind gener-.

  1. Manzanita Wind Energy Feasibility Study

    SciTech Connect (OSTI)

    Trisha Frank

    2004-09-30T23:59:59.000Z

    The Manzanita Indian Reservation is located in southeastern San Diego County, California. The Tribe has long recognized that the Reservation has an abundant wind resource that could be commercially utilized to its benefit. Manzanita has explored the wind resource potential on tribal land and developed a business plan by means of this wind energy feasibility project, which enables Manzanita to make informed decisions when considering the benefits and risks of encouraging large-scale wind power development on their lands. Technical consultant to the project has been SeaWest Consulting, LLC, an established wind power consulting company. The technical scope of the project covered the full range of feasibility assessment activities from site selection through completion of a business plan for implementation. The primary objectives of this feasibility study were to: (1) document the quality and suitability of the Manzanita Reservation as a site for installation and long-term operation of a commercially viable utility-scale wind power project; and, (2) develop a comprehensive and financeable business plan.

  2. ISSN 1745-9648 Storing Wind for a Rainy Day

    E-Print Network [OSTI]

    Feigon, Brooke

    generators, with no correlation with wind generation. We estimate the cost of volatility in Denmark's wind generation. We estimate the cost of volatility in Denmark's wind output to equal between 4% and 8% of itsISSN 1745-9648 Storing Wind for a Rainy Day What kind of electricity does Denmark export? Richard

  3. EA-1955: Campbell County Wind Project, Pollock, South Dakota

    Broader source: Energy.gov [DOE]

    DOE’s Western Area Power Administration (Western) is preparing an EA to analyze the potential environmental impacts of a proposal to interconnect, via a proposed new substation, a proposed Dakota Plains Energy, LLC, 99-megawatt wind farm near Pollock, South Dakota, to Western’s existing transmission line at that location.

  4. EA-1955: Campbell County Wind Farm, Campbell County, South Dakota

    Broader source: Energy.gov [DOE]

    DOE’s Western Area Power Administration (Western) is preparing an EA to analyze the potential environmental impacts of a proposal to interconnect, via a proposed new substation, a proposed Dakota Plains Energy, LLC, 99-megawatt wind farm near Pollock, South Dakota, to Western’s existing transmission line at that location.

  5. VARIABLE SPEED WIND TURBINE

    E-Print Network [OSTI]

    Chatinderpal Singh

    Wind energy is currently the fastest-growing renewable source of energy in India; India is a key market for the wind industry, presenting substantial opportunities for both the international and domestic players. In India the research is carried out on wind energy utilization on big ways.There are still many unsolved challenges in expanding wind power, and there are numerous problems of interest to systems and control researchers. In this paper we study the pitch control mechanism of wind turbine. The pitch control system is one of the most widely used control techniques to regulate the output power of a wind turbine generator. The pitch angle is controlled to keep the generator power at rated power by reducing the angle of the blades. By regulating, the angle of stalling, fast torque changes from the wind will be reutilized. It also describes the design of the pitch controller and discusses the response of the pitch-controlled system to wind velocity variations. The pitch control system is found to have a large output power variation and a large settling time.

  6. MEASURING IMPACTS TO BIRDS CAUSED BY WIND TURBINES MEASURING IMPACTS TO BIRDS CAUSED BY WIND TURBINES

    E-Print Network [OSTI]

    within and among wind energy generating facilities. The standard measurement of mortality currently being little meaning to those lacking experience with bird mortality at wind energy generating facilities. More and each sweeps a much larger area of the sky. We propose that bird mortality at wind energy generating

  7. Commonwealth Wind Commercial Wind Program

    Broader source: Energy.gov [DOE]

    Through the Commonwealth Wind Incentive Program – Commercial Wind Initiative the Massachusetts Clean Energy Center (MassCEC) offers site assessment grants of services, feasibility study grants, a...

  8. QER- Comment of Skibo Systems LLC

    Broader source: Energy.gov [DOE]

    Paul M. Klemencic, Skibo Systems LLC: Comments regarding the current state of all major energy markets, addressing customer costs and needs, infrastructure, market controls and optimization, and build out of green energy sources.

  9. Howe Group LLC | Open Energy Information

    Open Energy Info (EERE)

    Name: Howe Group LLC Place: Santa Fe, New Mexico Phone Number: +1 505 216 5119 Website: net http:www.hd-group. net Coordinates: 35.6869752, -105.937799 Show Map Loading...

  10. Bell Nursery USA, LLC Internship Position Description

    E-Print Network [OSTI]

    Bell Nursery USA, LLC Internship Position Description Internship Program Goal as a grower. Grower/Internship position : It is our goal at Bell to provide a rewarding and educational experience to the student/intern. The internship position

  11. Distributed Wind Energy in Idaho

    SciTech Connect (OSTI)

    Gardner, John; Ferguson, James; Ahmed-Zaid, Said; Johnson, Kathryn; Haynes, Todd; Bennett, Keith

    2009-01-31T23:59:59.000Z

    Project Objective: This project is a research and development program aimed at furthering distributed wind technology. In particular, this project addresses some of the barriers to distributed wind energy utilization in Idaho. Background: At its core, the technological challenge inherent in Wind Energy is the transformation of a highly variable form of energy to one which is compatible with the commercial power grid or another useful application. A major economic barrier to the success of distributed wind technology is the relatively high capital investment (and related long payback periods) associated with wind turbines. This project will carry out fundamental research and technology development to address both the technological and economic barriers. � Active drive train control holds the potential to improve the overall efficiency of a turbine system by allowing variable speed turbine operation while ensuring a tight control of generator shaft speed, thus greatly simplifying power conditioning. � Recent blade aerodynamic advancements have been focused on large, utility-scale wind turbine generators (WTGs) as opposed to smaller WTGs designed for distributed generation. Because of Reynolds Number considerations, blade designs do not scale well. Blades which are aerodynamically optimized for distributed-scale WTGs can potentially reduce the cost of electricity by increasing shaft-torque in a given wind speed. � Grid-connected electric generators typically operate at a fixed speed. If a generator were able to economically operate at multiple speeds, it could potentially convert more of the wind�s energy to electricity, thus reducing the cost of electricity. This research directly supports the stated goal of the Wind and Hydropower Technologies Program for Distributed Wind Energy Technology: By 2007, reduce the cost of electricity from distributed wind systems to 10 to 15 cents/kWh in Class 3 wind resources, the same level that is currently achievable in Class 5 winds.

  12. Reassessing Wind Potential Estimates for India: Economic and Policy Implications

    E-Print Network [OSTI]

    Phadke, Amol

    2012-01-01T23:59:59.000Z

    of variability of wind generation and costs related toLaxson (2006). Wind Turbine Design Cost and Scaling Model.MW installed worldwide. 6 Wind energy costs in India are

  13. Fully coupled dynamic analysis of a floating wind turbine system

    E-Print Network [OSTI]

    Withee, Jon E

    2004-01-01T23:59:59.000Z

    The use of wind power is in a period of rapid growth worldwide and wind energy systems have emerged as a promising technology for utilizing offshore wind resources for the large scale generation of electricity. Drawing ...

  14. Data Analytics Methods in Wind Turbine Design and Operations

    E-Print Network [OSTI]

    Lee, Giwhyun

    2013-05-22T23:59:59.000Z

    This dissertation develops sophisticated data analytic methods to analyze structural loads on, and power generation of, wind turbines. Wind turbines, which convert the kinetic energy in wind into electrical power, are operated within stochastic...

  15. Data Analytics Methods in Wind Turbine Design and Operations 

    E-Print Network [OSTI]

    Lee, Giwhyun

    2013-05-22T23:59:59.000Z

    This dissertation develops sophisticated data analytic methods to analyze structural loads on, and power generation of, wind turbines. Wind turbines, which convert the kinetic energy in wind into electrical power, are operated within stochastic...

  16. NREL is a national laboratory of the U.S. Department of Energy, Office of Energy Efficiency & Renewable Energy, operated by the Alliance for Sustainable Energy, LLC.

    E-Print Network [OSTI]

    . Many wind and solar integration studies have not taken these increased cost and emissions impactsNREL is a national laboratory of the U.S. Department of Energy, Office of Energy Efficiency & Renewable Energy, operated by the Alliance for Sustainable Energy, LLC. Contract No. DE-AC36-08GO28308

  17. Airborne Wind Turbine

    SciTech Connect (OSTI)

    None

    2010-09-01T23:59:59.000Z

    Broad Funding Opportunity Announcement Project: Makani Power is developing an Airborne Wind Turbine (AWT) that eliminates 90% of the mass of a conventional wind turbine and accesses a stronger, more consistent wind at altitudes of near 1,000 feet. At these altitudes, 85% of the country can offer viable wind resources compared to only 15% accessible with current technology. Additionally, the Makani Power wing can be economically deployed in deep offshore waters, opening up a resource which is 4 times greater than the entire U.S. electrical generation capacity. Makani Power has demonstrated the core technology, including autonomous launch, land, and power generation with an 8 meter wingspan, 20 kW prototype. At commercial scale, Makani Power aims to develop a 600 kW, 28 meter wingspan product capable of delivering energy at an unsubsidized cost competitive with coal, the current benchmark for low-cost power.

  18. 2013 Wind Technologies Market Report

    SciTech Connect (OSTI)

    Wiser, R.; Bolinger, M.; Barbose, G.; Darghouth, N.; Hoen, B.; Mills, A.; Weaver, S.; Porter, K.; Buckley, M.; Oteri, F.; Tegen, S.

    2014-08-01T23:59:59.000Z

    This annual report provides a detailed overview of developments and trends in the U.S. wind power market, with a particular focus on 2013. This 2013 edition updates data presented in previous editions while highlighting key trends and important new developments. The report includes an overview of key installation-related trends; trends in wind power capacity growth; how that growth compares to other countries and generation sources; the amount and percentage of wind energy in individual states; the status of offshore wind power development and the quantity of proposed wind power capacity in various interconnection queues in the United States.

  19. How Does a Wind Turbine Work?

    Office of Energy Efficiency and Renewable Energy (EERE)

    Wind turbines operate on a simple principle. The energy in the wind turns two or three propeller-like blades around a rotor. The rotor is connected to the main shaft, which spins a generator to...

  20. Nebraska Statewide Wind Integration Study: Executive Summary

    SciTech Connect (OSTI)

    EnerNex Corporation, Knoxville, Tennessee; Ventyx, Atlanta, Georgia; Nebraska Power Association, Lincoln, Nebraska

    2010-03-01T23:59:59.000Z

    Wind generation resources in Nebraska will play an increasingly important role in the environmental and energy security solutions for the state and the nation. In this context, the Nebraska Power Association conducted a state-wide wind integration study.