Powered by Deep Web Technologies
Note: This page contains sample records for the topic "wind energy resource" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


1

Energy Basics: Wind Energy Resources  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Energy Basics Renewable Energy Printable Version Share this resource Biomass Geothermal Hydrogen Hydropower Ocean Solar Wind Wind Turbines Wind Resources Wind Energy...

2

Energy Basics: Wind Energy Resources  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Resources Wind energy can be produced anywhere in the world where the wind blows with a strong and consistent force. Windier locations produce more energy, which lowers the cost of...

3

Wind Energy Resource Basics | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Energy Resource Basics Wind Energy Resource Basics July 30, 2013 - 3:11pm Addthis Wind energy can be produced anywhere in the world where the wind blows with a strong and...

4

Wind Energy Resources | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

determine whether the wind resource in a particular area is adequate for wind power. Addthis Related Articles Glossary of Energy Related Terms Hydropower Technologies Wind Turbines...

5

Wind Energy Resources  

Energy.gov (U.S. Department of Energy (DOE))

Wind energy can be produced anywhere in the world where the wind blows with a strong and consistent force. Windier locations produce more energy, which lowers the cost of producing electricity....

6

Technical Report - Cuba Wind Energy Resource Assessment  

Open Energy Info (EERE)

Cuba Wind Energy Resource Assessment (Abstract):This document describes the development of detailed high-resolution (1 km2) wind energy resource maps for...

7

Technical Report - China Wind Energy Resource Assessment  

Open Energy Info (EERE)

China Wind Energy Resource Assessment (Abstract):This document describes the development of detailed high-resolution (1 km2) wind energy resource maps for...

8

Technical Report - Ghana Wind Energy Resource Assessment  

Open Energy Info (EERE)

Ghana Wind Energy Resource Assessment (Abstract):This document describes the development of detailed high-resolution (1 km2) wind energy resource maps for...

9

Wind Energy Resource Atlas of the Philippines  

DOE Green Energy (OSTI)

This report contains the results of a wind resource analysis and mapping study for the Philippine archipelago. The study's objective was to identify potential wind resource areas and quantify the value of those resources within those areas. The wind resource maps and other wind resource characteristic information will be used to identify prospective areas for wind-energy applications.

Elliott, D.; Schwartz, M.; George, R.; Haymes, S.; Heimiller, D.; Scott, G.; McCarthy, E.

2001-03-06T23:59:59.000Z

10

Wind Energy Resource Atlas of Oaxaca  

DOE Green Energy (OSTI)

The Oaxaca Wind Resource Atlas, produced by the National Renewable Energy Laboratory's (NREL's) wind resource group, is the result of an extensive mapping study for the Mexican State of Oaxaca. This atlas identifies the wind characteristics and distribution of the wind resource in Oaxaca. The detailed wind resource maps and other information contained in the atlas facilitate the identification of prospective areas for use of wind energy technologies, both for utility-scale power generation and off-grid wind energy applications.

Elliott, D.; Schwartz, M.; Scott, G.; Haymes, S.; Heimiller, D.; George, R.

2003-08-01T23:59:59.000Z

11

NREL: Learning - Student Resources on Wind Energy  

NLE Websites -- All DOE Office Websites (Extended Search)

Wind Energy Photo of a girl and a boy standing beneath a large wind turbine. Students can learn about wind energy by visiting a wind farm. The following resources will help you...

12

Wind Energy Resource Atlas of Armenia  

DOE Green Energy (OSTI)

This wind energy resource atlas identifies the wind characteristics and distribution of the wind resource in the country of Armenia. The detailed wind resource maps and other information contained in the atlas facilitate the identification of prospective areas for use of wind energy technologies for utility-scale power generation and off-grid wind energy applications. The maps portray the wind resource with high-resolution (1-km2) grids of wind power density at 50-m above ground. The wind maps were created at the National Renewable Energy Laboratory (NREL) using a computerized wind mapping system that uses Geographic Information System (GIS) software.

Elliott, D.; Schwartz, M.; Scott, G.; Haymes, S.; Heimiller, D.; George, R.

2003-07-01T23:59:59.000Z

13

Philippines Wind Energy Resource Atlas Development  

DOE Green Energy (OSTI)

This paper describes the creation of a comprehensive wind energy resource atlas for the Philippines. The atlas was created to facilitate the rapid identification of good wind resource areas and understanding of the salient wind characteristics. Detailed wind resource maps were generated for the entire country using an advanced wind mapping technique and innovative assessment methods recently developed at the National Renewable Energy Laboratory.

Elliott, D.

2000-11-29T23:59:59.000Z

14

Federal Energy Management Program: Wind Energy Resources and Technologies  

NLE Websites -- All DOE Office Websites (Extended Search)

Wind Energy Wind Energy Resources and Technologies to someone by E-mail Share Federal Energy Management Program: Wind Energy Resources and Technologies on Facebook Tweet about Federal Energy Management Program: Wind Energy Resources and Technologies on Twitter Bookmark Federal Energy Management Program: Wind Energy Resources and Technologies on Google Bookmark Federal Energy Management Program: Wind Energy Resources and Technologies on Delicious Rank Federal Energy Management Program: Wind Energy Resources and Technologies on Digg Find More places to share Federal Energy Management Program: Wind Energy Resources and Technologies on AddThis.com... Energy-Efficient Products Technology Deployment Renewable Energy Federal Requirements Renewable Resources & Technologies Solar

15

Alaska/Wind Resources | Open Energy Information  

Open Energy Info (EERE)

Alaska/Wind Resources Alaska/Wind Resources < Alaska Jump to: navigation, search Print PDF Print Full Version WIND ENERGY STAKEHOLDER ENGAGEMENT & OUTREACHSmall Wind Guidebook Home OpenEI Home >> Wind >> Small Wind Guidebook >> Alaska Wind Resources WindTurbine-icon.png Small Wind Guidebook * Introduction * First, How Can I Make My Home More Energy Efficient? * Is Wind Energy Practical for Me? * What Size Wind Turbine Do I Need? * What Are the Basic Parts of a Small Wind Electric System? * What Do Wind Systems Cost? * Where Can I Find Installation and Maintenance Support? * How Much Energy Will My System Generate? * Is There Enough Wind on My Site? * How Do I Choose the Best Site for My Wind Turbine? * Can I Connect My System to the Utility Grid? * Can I Go Off-Grid?

16

Wyoming/Wind Resources | Open Energy Information  

Open Energy Info (EERE)

Wyoming/Wind Resources Wyoming/Wind Resources < Wyoming Jump to: navigation, search Print PDF Print Full Version WIND ENERGY STAKEHOLDER ENGAGEMENT & OUTREACHSmall Wind Guidebook Home OpenEI Home >> Wind >> Small Wind Guidebook >> Wyoming Wind Resources WindTurbine-icon.png Small Wind Guidebook * Introduction * First, How Can I Make My Home More Energy Efficient? * Is Wind Energy Practical for Me? * What Size Wind Turbine Do I Need? * What Are the Basic Parts of a Small Wind Electric System? * What Do Wind Systems Cost? * Where Can I Find Installation and Maintenance Support? * How Much Energy Will My System Generate? * Is There Enough Wind on My Site? * How Do I Choose the Best Site for My Wind Turbine? * Can I Connect My System to the Utility Grid? * Can I Go Off-Grid?

17

Nevada/Wind Resources | Open Energy Information  

Open Energy Info (EERE)

Nevada/Wind Resources Nevada/Wind Resources < Nevada Jump to: navigation, search Print PDF Print Full Version WIND ENERGY STAKEHOLDER ENGAGEMENT & OUTREACHSmall Wind Guidebook Home OpenEI Home >> Wind >> Small Wind Guidebook >> Nevada Wind Resources WindTurbine-icon.png Small Wind Guidebook * Introduction * First, How Can I Make My Home More Energy Efficient? * Is Wind Energy Practical for Me? * What Size Wind Turbine Do I Need? * What Are the Basic Parts of a Small Wind Electric System? * What Do Wind Systems Cost? * Where Can I Find Installation and Maintenance Support? * How Much Energy Will My System Generate? * Is There Enough Wind on My Site? * How Do I Choose the Best Site for My Wind Turbine? * Can I Connect My System to the Utility Grid? * Can I Go Off-Grid?

18

Kansas/Wind Resources | Open Energy Information  

Open Energy Info (EERE)

Kansas/Wind Resources Kansas/Wind Resources < Kansas Jump to: navigation, search Print PDF Print Full Version WIND ENERGY STAKEHOLDER ENGAGEMENT & OUTREACHSmall Wind Guidebook Home OpenEI Home >> Wind >> Small Wind Guidebook >> Kansas Wind Resources WindTurbine-icon.png Small Wind Guidebook * Introduction * First, How Can I Make My Home More Energy Efficient? * Is Wind Energy Practical for Me? * What Size Wind Turbine Do I Need? * What Are the Basic Parts of a Small Wind Electric System? * What Do Wind Systems Cost? * Where Can I Find Installation and Maintenance Support? * How Much Energy Will My System Generate? * Is There Enough Wind on My Site? * How Do I Choose the Best Site for My Wind Turbine? * Can I Connect My System to the Utility Grid? * Can I Go Off-Grid?

19

Washington/Wind Resources | Open Energy Information  

Open Energy Info (EERE)

Washington/Wind Resources Washington/Wind Resources < Washington Jump to: navigation, search Print PDF Print Full Version WIND ENERGY STAKEHOLDER ENGAGEMENT & OUTREACHSmall Wind Guidebook Home OpenEI Home >> Wind >> Small Wind Guidebook >> Washington Wind Resources WindTurbine-icon.png Small Wind Guidebook * Introduction * First, How Can I Make My Home More Energy Efficient? * Is Wind Energy Practical for Me? * What Size Wind Turbine Do I Need? * What Are the Basic Parts of a Small Wind Electric System? * What Do Wind Systems Cost? * Where Can I Find Installation and Maintenance Support? * How Much Energy Will My System Generate? * Is There Enough Wind on My Site? * How Do I Choose the Best Site for My Wind Turbine? * Can I Connect My System to the Utility Grid?

20

Louisiana/Wind Resources | Open Energy Information  

Open Energy Info (EERE)

Louisiana/Wind Resources Louisiana/Wind Resources < Louisiana Jump to: navigation, search Print PDF Print Full Version WIND ENERGY STAKEHOLDER ENGAGEMENT & OUTREACHSmall Wind Guidebook Home OpenEI Home >> Wind >> Small Wind Guidebook >> Louisiana Wind Resources WindTurbine-icon.png Small Wind Guidebook * Introduction * First, How Can I Make My Home More Energy Efficient? * Is Wind Energy Practical for Me? * What Size Wind Turbine Do I Need? * What Are the Basic Parts of a Small Wind Electric System? * What Do Wind Systems Cost? * Where Can I Find Installation and Maintenance Support? * How Much Energy Will My System Generate? * Is There Enough Wind on My Site? * How Do I Choose the Best Site for My Wind Turbine? * Can I Connect My System to the Utility Grid? * Can I Go Off-Grid?

Note: This page contains sample records for the topic "wind energy resource" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


21

Oregon/Wind Resources | Open Energy Information  

Open Energy Info (EERE)

Oregon/Wind Resources Oregon/Wind Resources < Oregon Jump to: navigation, search Print PDF Print Full Version WIND ENERGY STAKEHOLDER ENGAGEMENT & OUTREACHSmall Wind Guidebook Home OpenEI Home >> Wind >> Small Wind Guidebook >> Oregon Wind Resources WindTurbine-icon.png Small Wind Guidebook * Introduction * First, How Can I Make My Home More Energy Efficient? * Is Wind Energy Practical for Me? * What Size Wind Turbine Do I Need? * What Are the Basic Parts of a Small Wind Electric System? * What Do Wind Systems Cost? * Where Can I Find Installation and Maintenance Support? * How Much Energy Will My System Generate? * Is There Enough Wind on My Site? * How Do I Choose the Best Site for My Wind Turbine? * Can I Connect My System to the Utility Grid? * Can I Go Off-Grid?

22

Kentucky/Wind Resources | Open Energy Information  

Open Energy Info (EERE)

Kentucky/Wind Resources Kentucky/Wind Resources < Kentucky Jump to: navigation, search Print PDF Print Full Version WIND ENERGY STAKEHOLDER ENGAGEMENT & OUTREACHSmall Wind Guidebook Home OpenEI Home >> Wind >> Small Wind Guidebook >> Kentucky Wind Resources WindTurbine-icon.png Small Wind Guidebook * Introduction * First, How Can I Make My Home More Energy Efficient? * Is Wind Energy Practical for Me? * What Size Wind Turbine Do I Need? * What Are the Basic Parts of a Small Wind Electric System? * What Do Wind Systems Cost? * Where Can I Find Installation and Maintenance Support? * How Much Energy Will My System Generate? * Is There Enough Wind on My Site? * How Do I Choose the Best Site for My Wind Turbine? * Can I Connect My System to the Utility Grid? * Can I Go Off-Grid?

23

Nebraska/Wind Resources | Open Energy Information  

Open Energy Info (EERE)

Nebraska/Wind Resources Nebraska/Wind Resources < Nebraska Jump to: navigation, search Print PDF Print Full Version WIND ENERGY STAKEHOLDER ENGAGEMENT & OUTREACHSmall Wind Guidebook Home OpenEI Home >> Wind >> Small Wind Guidebook >> Nebraska Wind Resources WindTurbine-icon.png Small Wind Guidebook * Introduction * First, How Can I Make My Home More Energy Efficient? * Is Wind Energy Practical for Me? * What Size Wind Turbine Do I Need? * What Are the Basic Parts of a Small Wind Electric System? * What Do Wind Systems Cost? * Where Can I Find Installation and Maintenance Support? * How Much Energy Will My System Generate? * Is There Enough Wind on My Site? * How Do I Choose the Best Site for My Wind Turbine? * Can I Connect My System to the Utility Grid? * Can I Go Off-Grid?

24

Alabama/Wind Resources | Open Energy Information  

Open Energy Info (EERE)

Alabama/Wind Resources Alabama/Wind Resources < Alabama Jump to: navigation, search Print PDF Print Full Version WIND ENERGY STAKEHOLDER ENGAGEMENT & OUTREACHSmall Wind Guidebook Home OpenEI Home >> Wind >> Small Wind Guidebook >> Alabama Wind Resources WindTurbine-icon.png Small Wind Guidebook * Introduction * First, How Can I Make My Home More Energy Efficient? * Is Wind Energy Practical for Me? * What Size Wind Turbine Do I Need? * What Are the Basic Parts of a Small Wind Electric System? * What Do Wind Systems Cost? * Where Can I Find Installation and Maintenance Support? * How Much Energy Will My System Generate? * Is There Enough Wind on My Site? * How Do I Choose the Best Site for My Wind Turbine? * Can I Connect My System to the Utility Grid? * Can I Go Off-Grid?

25

Florida/Wind Resources | Open Energy Information  

Open Energy Info (EERE)

Florida/Wind Resources Florida/Wind Resources < Florida Jump to: navigation, search Print PDF Print Full Version WIND ENERGY STAKEHOLDER ENGAGEMENT & OUTREACHSmall Wind Guidebook Home OpenEI Home >> Wind >> Small Wind Guidebook >> Florida Wind Resources WindTurbine-icon.png Small Wind Guidebook * Introduction * First, How Can I Make My Home More Energy Efficient? * Is Wind Energy Practical for Me? * What Size Wind Turbine Do I Need? * What Are the Basic Parts of a Small Wind Electric System? * What Do Wind Systems Cost? * Where Can I Find Installation and Maintenance Support? * How Much Energy Will My System Generate? * Is There Enough Wind on My Site? * How Do I Choose the Best Site for My Wind Turbine? * Can I Connect My System to the Utility Grid? * Can I Go Off-Grid?

26

Vermont/Wind Resources | Open Energy Information  

Open Energy Info (EERE)

Vermont/Wind Resources Vermont/Wind Resources < Vermont Jump to: navigation, search Print PDF Print Full Version WIND ENERGY STAKEHOLDER ENGAGEMENT & OUTREACHSmall Wind Guidebook Home OpenEI Home >> Wind >> Small Wind Guidebook >> Vermont Wind Resources WindTurbine-icon.png Small Wind Guidebook * Introduction * First, How Can I Make My Home More Energy Efficient? * Is Wind Energy Practical for Me? * What Size Wind Turbine Do I Need? * What Are the Basic Parts of a Small Wind Electric System? * What Do Wind Systems Cost? * Where Can I Find Installation and Maintenance Support? * How Much Energy Will My System Generate? * Is There Enough Wind on My Site? * How Do I Choose the Best Site for My Wind Turbine? * Can I Connect My System to the Utility Grid? * Can I Go Off-Grid?

27

Wisconsin/Wind Resources | Open Energy Information  

Open Energy Info (EERE)

Wisconsin/Wind Resources Wisconsin/Wind Resources < Wisconsin Jump to: navigation, search Print PDF Print Full Version WIND ENERGY STAKEHOLDER ENGAGEMENT & OUTREACHSmall Wind Guidebook Home OpenEI Home >> Wind >> Small Wind Guidebook >> Wisconsin Wind Resources WindTurbine-icon.png Small Wind Guidebook * Introduction * First, How Can I Make My Home More Energy Efficient? * Is Wind Energy Practical for Me? * What Size Wind Turbine Do I Need? * What Are the Basic Parts of a Small Wind Electric System? * What Do Wind Systems Cost? * Where Can I Find Installation and Maintenance Support? * How Much Energy Will My System Generate? * Is There Enough Wind on My Site? * How Do I Choose the Best Site for My Wind Turbine? * Can I Connect My System to the Utility Grid? * Can I Go Off-Grid?

28

Idaho/Wind Resources | Open Energy Information  

Open Energy Info (EERE)

Idaho/Wind Resources Idaho/Wind Resources < Idaho Jump to: navigation, search Print PDF Print Full Version WIND ENERGY STAKEHOLDER ENGAGEMENT & OUTREACHSmall Wind Guidebook Home OpenEI Home >> Wind >> Small Wind Guidebook >> Idaho Wind Resources WindTurbine-icon.png Small Wind Guidebook * Introduction * First, How Can I Make My Home More Energy Efficient? * Is Wind Energy Practical for Me? * What Size Wind Turbine Do I Need? * What Are the Basic Parts of a Small Wind Electric System? * What Do Wind Systems Cost? * Where Can I Find Installation and Maintenance Support? * How Much Energy Will My System Generate? * Is There Enough Wind on My Site? * How Do I Choose the Best Site for My Wind Turbine? * Can I Connect My System to the Utility Grid? * Can I Go Off-Grid?

29

Missouri/Wind Resources | Open Energy Information  

Open Energy Info (EERE)

Missouri/Wind Resources Missouri/Wind Resources < Missouri Jump to: navigation, search Print PDF Print Full Version WIND ENERGY STAKEHOLDER ENGAGEMENT & OUTREACHSmall Wind Guidebook Home OpenEI Home >> Wind >> Small Wind Guidebook >> Missouri Wind Resources WindTurbine-icon.png Small Wind Guidebook * Introduction * First, How Can I Make My Home More Energy Efficient? * Is Wind Energy Practical for Me? * What Size Wind Turbine Do I Need? * What Are the Basic Parts of a Small Wind Electric System? * What Do Wind Systems Cost? * Where Can I Find Installation and Maintenance Support? * How Much Energy Will My System Generate? * Is There Enough Wind on My Site? * How Do I Choose the Best Site for My Wind Turbine? * Can I Connect My System to the Utility Grid? * Can I Go Off-Grid?

30

Iowa/Wind Resources | Open Energy Information  

Open Energy Info (EERE)

Iowa/Wind Resources Iowa/Wind Resources < Iowa Jump to: navigation, search Print PDF Print Full Version WIND ENERGY STAKEHOLDER ENGAGEMENT & OUTREACHSmall Wind Guidebook Home OpenEI Home >> Wind >> Small Wind Guidebook >> Iowa Wind Resources WindTurbine-icon.png Small Wind Guidebook * Introduction * First, How Can I Make My Home More Energy Efficient? * Is Wind Energy Practical for Me? * What Size Wind Turbine Do I Need? * What Are the Basic Parts of a Small Wind Electric System? * What Do Wind Systems Cost? * Where Can I Find Installation and Maintenance Support? * How Much Energy Will My System Generate? * Is There Enough Wind on My Site? * How Do I Choose the Best Site for My Wind Turbine? * Can I Connect My System to the Utility Grid? * Can I Go Off-Grid?

31

Maryland/Wind Resources | Open Energy Information  

Open Energy Info (EERE)

Maryland/Wind Resources Maryland/Wind Resources < Maryland Jump to: navigation, search Print PDF Print Full Version WIND ENERGY STAKEHOLDER ENGAGEMENT & OUTREACHSmall Wind Guidebook Home OpenEI Home >> Wind >> Small Wind Guidebook >> Maryland Wind Resources WindTurbine-icon.png Small Wind Guidebook * Introduction * First, How Can I Make My Home More Energy Efficient? * Is Wind Energy Practical for Me? * What Size Wind Turbine Do I Need? * What Are the Basic Parts of a Small Wind Electric System? * What Do Wind Systems Cost? * Where Can I Find Installation and Maintenance Support? * How Much Energy Will My System Generate? * Is There Enough Wind on My Site? * How Do I Choose the Best Site for My Wind Turbine? * Can I Connect My System to the Utility Grid? * Can I Go Off-Grid?

32

Massachusetts/Wind Resources | Open Energy Information  

Open Energy Info (EERE)

Massachusetts/Wind Resources Massachusetts/Wind Resources < Massachusetts Jump to: navigation, search Print PDF Print Full Version WIND ENERGY STAKEHOLDER ENGAGEMENT & OUTREACHSmall Wind Guidebook Home OpenEI Home >> Wind >> Small Wind Guidebook >> Massachusetts Wind Resources WindTurbine-icon.png Small Wind Guidebook * Introduction * First, How Can I Make My Home More Energy Efficient? * Is Wind Energy Practical for Me? * What Size Wind Turbine Do I Need? * What Are the Basic Parts of a Small Wind Electric System? * What Do Wind Systems Cost? * Where Can I Find Installation and Maintenance Support? * How Much Energy Will My System Generate? * Is There Enough Wind on My Site? * How Do I Choose the Best Site for My Wind Turbine? * Can I Connect My System to the Utility Grid?

33

Minnesota/Wind Resources | Open Energy Information  

Open Energy Info (EERE)

Minnesota/Wind Resources Minnesota/Wind Resources < Minnesota Jump to: navigation, search Print PDF Print Full Version WIND ENERGY STAKEHOLDER ENGAGEMENT & OUTREACHSmall Wind Guidebook Home OpenEI Home >> Wind >> Small Wind Guidebook >> Minnesota Wind Resources WindTurbine-icon.png Small Wind Guidebook * Introduction * First, How Can I Make My Home More Energy Efficient? * Is Wind Energy Practical for Me? * What Size Wind Turbine Do I Need? * What Are the Basic Parts of a Small Wind Electric System? * What Do Wind Systems Cost? * Where Can I Find Installation and Maintenance Support? * How Much Energy Will My System Generate? * Is There Enough Wind on My Site? * How Do I Choose the Best Site for My Wind Turbine? * Can I Connect My System to the Utility Grid? * Can I Go Off-Grid?

34

Pennsylvania/Wind Resources | Open Energy Information  

Open Energy Info (EERE)

Pennsylvania/Wind Resources Pennsylvania/Wind Resources < Pennsylvania Jump to: navigation, search Print PDF Print Full Version WIND ENERGY STAKEHOLDER ENGAGEMENT & OUTREACHSmall Wind Guidebook Home OpenEI Home >> Wind >> Small Wind Guidebook >> Pennsylvania Wind Resources WindTurbine-icon.png Small Wind Guidebook * Introduction * First, How Can I Make My Home More Energy Efficient? * Is Wind Energy Practical for Me? * What Size Wind Turbine Do I Need? * What Are the Basic Parts of a Small Wind Electric System? * What Do Wind Systems Cost? * Where Can I Find Installation and Maintenance Support? * How Much Energy Will My System Generate? * Is There Enough Wind on My Site? * How Do I Choose the Best Site for My Wind Turbine? * Can I Connect My System to the Utility Grid?

35

Hawaii/Wind Resources | Open Energy Information  

Open Energy Info (EERE)

Hawaii/Wind Resources Hawaii/Wind Resources < Hawaii Jump to: navigation, search Print PDF Print Full Version WIND ENERGY STAKEHOLDER ENGAGEMENT & OUTREACHSmall Wind Guidebook Home OpenEI Home >> Wind >> Small Wind Guidebook >> Hawaii Wind Resources WindTurbine-icon.png Small Wind Guidebook * Introduction * First, How Can I Make My Home More Energy Efficient? * Is Wind Energy Practical for Me? * What Size Wind Turbine Do I Need? * What Are the Basic Parts of a Small Wind Electric System? * What Do Wind Systems Cost? * Where Can I Find Installation and Maintenance Support? * How Much Energy Will My System Generate? * Is There Enough Wind on My Site? * How Do I Choose the Best Site for My Wind Turbine? * Can I Connect My System to the Utility Grid? * Can I Go Off-Grid?

36

Wisconsin Wind Resources | Open Energy Information  

Open Energy Info (EERE)

Wind Resources Wind Resources Jump to: navigation, search Print PDF WIND ENERGY STAKEHOLDER ENGAGEMENT & OUTREACHSmall Wind Guidebook Home WindTurbine-icon.png Small Wind Guidebook * Introduction * First, How Can I Make My Home More Energy Efficient? * Is Wind Energy Practical for Me? * What Size Wind Turbine Do I Need? * What Are the Basic Parts of a Small Wind Electric System? * What Do Wind Systems Cost? * Where Can I Find Installation and Maintenance Support? * How Much Energy Will My System Generate? * Is There Enough Wind on My Site? * How Do I Choose the Best Site for My Wind Turbine? * Can I Connect My System to the Utility Grid? * Can I Go Off-Grid? * State Information Portal * Glossary of Terms * For More Information Wisconsin Wind Resources WisconsinMap.jpg Retrieved from

37

Federal Energy Management Program: Wind Energy Resources and...  

NLE Websites -- All DOE Office Websites (Extended Search)

Wind Energy Resources and Technologies Photo of multiple wind turbines stand on green space in front of a mountain backdrop. The Department of Energy tests wind turbine...

38

Ohio/Wind Resources | Open Energy Information  

Open Energy Info (EERE)

Page Page Edit History Facebook icon Twitter icon » Ohio/Wind Resources < Ohio Jump to: navigation, search Print PDF Print Full Version WIND ENERGY STAKEHOLDER ENGAGEMENT & OUTREACHSmall Wind Guidebook Home OpenEI Home >> Wind >> Small Wind Guidebook >> Ohio Wind Resources WindTurbine-icon.png Small Wind Guidebook * Introduction * First, How Can I Make My Home More Energy Efficient? * Is Wind Energy Practical for Me? * What Size Wind Turbine Do I Need? * What Are the Basic Parts of a Small Wind Electric System? * What Do Wind Systems Cost? * Where Can I Find Installation and Maintenance Support? * How Much Energy Will My System Generate? * Is There Enough Wind on My Site? * How Do I Choose the Best Site for My Wind Turbine? * Can I Connect My System to the Utility Grid?

39

Montana/Wind Resources | Open Energy Information  

Open Energy Info (EERE)

Page Page Edit History Facebook icon Twitter icon » Montana/Wind Resources < Montana Jump to: navigation, search Print PDF Print Full Version WIND ENERGY STAKEHOLDER ENGAGEMENT & OUTREACHSmall Wind Guidebook Home OpenEI Home >> Wind >> Small Wind Guidebook >> Montana Wind Resources WindTurbine-icon.png Small Wind Guidebook * Introduction * First, How Can I Make My Home More Energy Efficient? * Is Wind Energy Practical for Me? * What Size Wind Turbine Do I Need? * What Are the Basic Parts of a Small Wind Electric System? * What Do Wind Systems Cost? * Where Can I Find Installation and Maintenance Support? * How Much Energy Will My System Generate? * Is There Enough Wind on My Site? * How Do I Choose the Best Site for My Wind Turbine? * Can I Connect My System to the Utility Grid?

40

Wind Resource Map: Mexico | Open Energy Information  

Open Energy Info (EERE)

Wind Resource Map: Mexico Wind Resource Map: Mexico Jump to: navigation, search Tool Summary LAUNCH TOOL Name: Wind Resource Map: Mexico Focus Area: Renewable Energy Topics: Potentials & Scenarios Website: www.altestore.com/howto/Reference-Materials/Wind-Resource-Map-Mexico/a Equivalent URI: cleanenergysolutions.org/content/wind-resource-map-mexico,http://clean Language: English Policies: Deployment Programs DeploymentPrograms: Technical Assistance This is on-shore wind resource map for rural power applications in Mexico. The map can be used to aid in appropriate siting of wind power installations. Please note that the wind speed classes are taken at 30 m (100 feet [ft]), instead of the usual 10 m (33 ft). Each wind power class should span two power densities. For example, Wind Power Class = 3

Note: This page contains sample records for the topic "wind energy resource" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


41

Solar and Wind Energy Resource Assessment Programme's Renewable...  

Open Energy Info (EERE)

Solar and Wind Energy Resource Assessment Programme's Renewable Energy Resource Explorer Jump to: navigation, search Tool Summary LAUNCH TOOL Name: Solar and Wind Energy Resource...

42

Utah/Wind Resources | Open Energy Information  

Open Energy Info (EERE)

source source History View New Pages Recent Changes All Special Pages Semantic Search/Querying Get Involved Help Apps Datasets Community Login | Sign Up Search Page Edit History Facebook icon Twitter icon » Utah/Wind Resources < Utah Jump to: navigation, search Print PDF Print Full Version WIND ENERGY STAKEHOLDER ENGAGEMENT & OUTREACHSmall Wind Guidebook Home OpenEI Home >> Wind >> Small Wind Guidebook >> Utah Wind Resources WindTurbine-icon.png Small Wind Guidebook * Introduction * First, How Can I Make My Home More Energy Efficient? * Is Wind Energy Practical for Me? * What Size Wind Turbine Do I Need? * What Are the Basic Parts of a Small Wind Electric System? * What Do Wind Systems Cost? * Where Can I Find Installation and Maintenance Support? * How Much Energy Will My System Generate?

43

Texas/Wind Resources | Open Energy Information  

Open Energy Info (EERE)

source source History View New Pages Recent Changes All Special Pages Semantic Search/Querying Get Involved Help Apps Datasets Community Login | Sign Up Search Page Edit History Facebook icon Twitter icon » Texas/Wind Resources < Texas Jump to: navigation, search Print PDF Print Full Version WIND ENERGY STAKEHOLDER ENGAGEMENT & OUTREACHSmall Wind Guidebook Home OpenEI Home >> Wind >> Small Wind Guidebook >> Texas Wind Resources WindTurbine-icon.png Small Wind Guidebook * Introduction * First, How Can I Make My Home More Energy Efficient? * Is Wind Energy Practical for Me? * What Size Wind Turbine Do I Need? * What Are the Basic Parts of a Small Wind Electric System? * What Do Wind Systems Cost? * Where Can I Find Installation and Maintenance Support?

44

Illinois/Wind Resources | Open Energy Information  

Open Energy Info (EERE)

source source History View New Pages Recent Changes All Special Pages Semantic Search/Querying Get Involved Help Apps Datasets Community Login | Sign Up Search Page Edit History Facebook icon Twitter icon » Illinois/Wind Resources < Illinois Jump to: navigation, search Print PDF Print Full Version WIND ENERGY STAKEHOLDER ENGAGEMENT & OUTREACHSmall Wind Guidebook Home OpenEI Home >> Wind >> Small Wind Guidebook >> Illinois Wind Resources WindTurbine-icon.png Small Wind Guidebook * Introduction * First, How Can I Make My Home More Energy Efficient? * Is Wind Energy Practical for Me? * What Size Wind Turbine Do I Need? * What Are the Basic Parts of a Small Wind Electric System? * What Do Wind Systems Cost? * Where Can I Find Installation and Maintenance Support?

45

Arizona/Wind Resources | Open Energy Information  

Open Energy Info (EERE)

source source History View New Pages Recent Changes All Special Pages Semantic Search/Querying Get Involved Help Apps Datasets Community Login | Sign Up Search Page Edit History Facebook icon Twitter icon » Arizona/Wind Resources < Arizona Jump to: navigation, search Print PDF Print Full Version WIND ENERGY STAKEHOLDER ENGAGEMENT & OUTREACHSmall Wind Guidebook Home OpenEI Home >> Wind >> Small Wind Guidebook >> Arizona Wind Resources WindTurbine-icon.png Small Wind Guidebook * Introduction * First, How Can I Make My Home More Energy Efficient? * Is Wind Energy Practical for Me? * What Size Wind Turbine Do I Need? * What Are the Basic Parts of a Small Wind Electric System? * What Do Wind Systems Cost? * Where Can I Find Installation and Maintenance Support?

46

California/Wind Resources | Open Energy Information  

Open Energy Info (EERE)

source source History View New Pages Recent Changes All Special Pages Semantic Search/Querying Get Involved Help Apps Datasets Community Login | Sign Up Search Page Edit History Facebook icon Twitter icon » California/Wind Resources < California Jump to: navigation, search Print PDF Print Full Version WIND ENERGY STAKEHOLDER ENGAGEMENT & OUTREACHSmall Wind Guidebook Home OpenEI Home >> Wind >> Small Wind Guidebook >> California Wind Resources WindTurbine-icon.png Small Wind Guidebook * Introduction * First, How Can I Make My Home More Energy Efficient? * Is Wind Energy Practical for Me? * What Size Wind Turbine Do I Need? * What Are the Basic Parts of a Small Wind Electric System? * What Do Wind Systems Cost? * Where Can I Find Installation and Maintenance Support?

47

Connecticut/Wind Resources | Open Energy Information  

Open Energy Info (EERE)

source source History View New Pages Recent Changes All Special Pages Semantic Search/Querying Get Involved Help Apps Datasets Community Login | Sign Up Search Page Edit History Facebook icon Twitter icon » Connecticut/Wind Resources < Connecticut Jump to: navigation, search Print PDF Print Full Version WIND ENERGY STAKEHOLDER ENGAGEMENT & OUTREACHSmall Wind Guidebook Home OpenEI Home >> Wind >> Small Wind Guidebook >> Connecticut Wind Resources WindTurbine-icon.png Small Wind Guidebook * Introduction * First, How Can I Make My Home More Energy Efficient? * Is Wind Energy Practical for Me? * What Size Wind Turbine Do I Need? * What Are the Basic Parts of a Small Wind Electric System? * What Do Wind Systems Cost? * Where Can I Find Installation and Maintenance Support?

48

Georgia/Wind Resources | Open Energy Information  

Open Energy Info (EERE)

source source History View New Pages Recent Changes All Special Pages Semantic Search/Querying Get Involved Help Apps Datasets Community Login | Sign Up Search Page Edit History Facebook icon Twitter icon » Georgia/Wind Resources < Georgia Jump to: navigation, search Print PDF Print Full Version WIND ENERGY STAKEHOLDER ENGAGEMENT & OUTREACHSmall Wind Guidebook Home OpenEI Home >> Wind >> Small Wind Guidebook >> Georgia Wind Resources WindTurbine-icon.png Small Wind Guidebook * Introduction * First, How Can I Make My Home More Energy Efficient? * Is Wind Energy Practical for Me? * What Size Wind Turbine Do I Need? * What Are the Basic Parts of a Small Wind Electric System? * What Do Wind Systems Cost? * Where Can I Find Installation and Maintenance Support?

49

Delaware/Wind Resources | Open Energy Information  

Open Energy Info (EERE)

source source History View New Pages Recent Changes All Special Pages Semantic Search/Querying Get Involved Help Apps Datasets Community Login | Sign Up Search Page Edit History Facebook icon Twitter icon » Delaware/Wind Resources < Delaware Jump to: navigation, search Print PDF Print Full Version WIND ENERGY STAKEHOLDER ENGAGEMENT & OUTREACHSmall Wind Guidebook Home OpenEI Home >> Wind >> Small Wind Guidebook >> Delaware Wind Resources WindTurbine-icon.png Small Wind Guidebook * Introduction * First, How Can I Make My Home More Energy Efficient? * Is Wind Energy Practical for Me? * What Size Wind Turbine Do I Need? * What Are the Basic Parts of a Small Wind Electric System? * What Do Wind Systems Cost? * Where Can I Find Installation and Maintenance Support?

50

Colorado/Wind Resources | Open Energy Information  

Open Energy Info (EERE)

source source History View New Pages Recent Changes All Special Pages Semantic Search/Querying Get Involved Help Apps Datasets Community Login | Sign Up Search Page Edit History Facebook icon Twitter icon » Colorado/Wind Resources < Colorado Jump to: navigation, search Print PDF Print Full Version WIND ENERGY STAKEHOLDER ENGAGEMENT & OUTREACHSmall Wind Guidebook Home OpenEI Home >> Wind >> Small Wind Guidebook >> Colorado Wind Resources WindTurbine-icon.png Small Wind Guidebook * Introduction * First, How Can I Make My Home More Energy Efficient? * Is Wind Energy Practical for Me? * What Size Wind Turbine Do I Need? * What Are the Basic Parts of a Small Wind Electric System? * What Do Wind Systems Cost? * Where Can I Find Installation and Maintenance Support?

51

Arkansas/Wind Resources | Open Energy Information  

Open Energy Info (EERE)

source source History View New Pages Recent Changes All Special Pages Semantic Search/Querying Get Involved Help Apps Datasets Community Login | Sign Up Search Page Edit History Facebook icon Twitter icon » Arkansas/Wind Resources < Arkansas Jump to: navigation, search Print PDF Print Full Version WIND ENERGY STAKEHOLDER ENGAGEMENT & OUTREACHSmall Wind Guidebook Home OpenEI Home >> Wind >> Small Wind Guidebook >> Arkansas Wind Resources WindTurbine-icon.png Small Wind Guidebook * Introduction * First, How Can I Make My Home More Energy Efficient? * Is Wind Energy Practical for Me? * What Size Wind Turbine Do I Need? * What Are the Basic Parts of a Small Wind Electric System? * What Do Wind Systems Cost? * Where Can I Find Installation and Maintenance Support?

52

Oklahoma/Wind Resources | Open Energy Information  

Open Energy Info (EERE)

source source History View New Pages Recent Changes All Special Pages Semantic Search/Querying Get Involved Help Apps Datasets Community Login | Sign Up Search Page Edit History Facebook icon Twitter icon » Oklahoma/Wind Resources < Oklahoma Jump to: navigation, search Print PDF Print Full Version WIND ENERGY STAKEHOLDER ENGAGEMENT & OUTREACHSmall Wind Guidebook Home OpenEI Home >> Wind >> Small Wind Guidebook >> Oklahoma Wind Resources WindTurbine-icon.png Small Wind Guidebook * Introduction * First, How Can I Make My Home More Energy Efficient? * Is Wind Energy Practical for Me? * What Size Wind Turbine Do I Need? * What Are the Basic Parts of a Small Wind Electric System? * What Do Wind Systems Cost? * Where Can I Find Installation and Maintenance Support?

53

Michigan/Wind Resources | Open Energy Information  

Open Energy Info (EERE)

source source History View New Pages Recent Changes All Special Pages Semantic Search/Querying Get Involved Help Apps Datasets Community Login | Sign Up Search Page Edit History Facebook icon Twitter icon » Michigan/Wind Resources < Michigan Jump to: navigation, search Print PDF Print Full Version WIND ENERGY STAKEHOLDER ENGAGEMENT & OUTREACHSmall Wind Guidebook Home OpenEI Home >> Wind >> Small Wind Guidebook >> Michigan Wind Resources WindTurbine-icon.png Small Wind Guidebook * Introduction * First, How Can I Make My Home More Energy Efficient? * Is Wind Energy Practical for Me? * What Size Wind Turbine Do I Need? * What Are the Basic Parts of a Small Wind Electric System? * What Do Wind Systems Cost? * Where Can I Find Installation and Maintenance Support?

54

Indiana/Wind Resources | Open Energy Information  

Open Energy Info (EERE)

source source History View New Pages Recent Changes All Special Pages Semantic Search/Querying Get Involved Help Apps Datasets Community Login | Sign Up Search Page Edit History Facebook icon Twitter icon » Indiana/Wind Resources < Indiana Jump to: navigation, search Print PDF Print Full Version WIND ENERGY STAKEHOLDER ENGAGEMENT & OUTREACHSmall Wind Guidebook Home OpenEI Home >> Wind >> Small Wind Guidebook >> Indiana Wind Resources WindTurbine-icon.png Small Wind Guidebook * Introduction * First, How Can I Make My Home More Energy Efficient? * Is Wind Energy Practical for Me? * What Size Wind Turbine Do I Need? * What Are the Basic Parts of a Small Wind Electric System? * What Do Wind Systems Cost? * Where Can I Find Installation and Maintenance Support?

55

Maine/Wind Resources | Open Energy Information  

Open Energy Info (EERE)

source source History View New Pages Recent Changes All Special Pages Semantic Search/Querying Get Involved Help Apps Datasets Community Login | Sign Up Search Page Edit History Facebook icon Twitter icon » Maine/Wind Resources < Maine Jump to: navigation, search Print PDF Print Full Version WIND ENERGY STAKEHOLDER ENGAGEMENT & OUTREACHSmall Wind Guidebook Home OpenEI Home >> Wind >> Small Wind Guidebook >> Maine Wind Resources WindTurbine-icon.png Small Wind Guidebook * Introduction * First, How Can I Make My Home More Energy Efficient? * Is Wind Energy Practical for Me? * What Size Wind Turbine Do I Need? * What Are the Basic Parts of a Small Wind Electric System? * What Do Wind Systems Cost? * Where Can I Find Installation and Maintenance Support?

56

Mississippi/Wind Resources | Open Energy Information  

Open Energy Info (EERE)

source source History View New Pages Recent Changes All Special Pages Semantic Search/Querying Get Involved Help Apps Datasets Community Login | Sign Up Search Page Edit History Facebook icon Twitter icon » Mississippi/Wind Resources < Mississippi Jump to: navigation, search Print PDF Print Full Version WIND ENERGY STAKEHOLDER ENGAGEMENT & OUTREACHSmall Wind Guidebook Home OpenEI Home >> Wind >> Small Wind Guidebook >> Mississippi Wind Resources WindTurbine-icon.png Small Wind Guidebook * Introduction * First, How Can I Make My Home More Energy Efficient? * Is Wind Energy Practical for Me? * What Size Wind Turbine Do I Need? * What Are the Basic Parts of a Small Wind Electric System? * What Do Wind Systems Cost? * Where Can I Find Installation and Maintenance Support?

57

Tennessee/Wind Resources | Open Energy Information  

Open Energy Info (EERE)

source source History View New Pages Recent Changes All Special Pages Semantic Search/Querying Get Involved Help Apps Datasets Community Login | Sign Up Search Page Edit History Facebook icon Twitter icon » Tennessee/Wind Resources < Tennessee Jump to: navigation, search Print PDF Print Full Version WIND ENERGY STAKEHOLDER ENGAGEMENT & OUTREACHSmall Wind Guidebook Home OpenEI Home >> Wind >> Small Wind Guidebook >> Tennessee Wind Resources WindTurbine-icon.png Small Wind Guidebook * Introduction * First, How Can I Make My Home More Energy Efficient? * Is Wind Energy Practical for Me? * What Size Wind Turbine Do I Need? * What Are the Basic Parts of a Small Wind Electric System? * What Do Wind Systems Cost? * Where Can I Find Installation and Maintenance Support?

58

Virginia/Wind Resources | Open Energy Information  

Open Energy Info (EERE)

source source History View New Pages Recent Changes All Special Pages Semantic Search/Querying Get Involved Help Apps Datasets Community Login | Sign Up Search Page Edit History Facebook icon Twitter icon » Virginia/Wind Resources < Virginia Jump to: navigation, search Print PDF Print Full Version WIND ENERGY STAKEHOLDER ENGAGEMENT & OUTREACHSmall Wind Guidebook Home OpenEI Home >> Wind >> Small Wind Guidebook >> Virginia Wind Resources WindTurbine-icon.png Small Wind Guidebook * Introduction * First, How Can I Make My Home More Energy Efficient? * Is Wind Energy Practical for Me? * What Size Wind Turbine Do I Need? * What Are the Basic Parts of a Small Wind Electric System? * What Do Wind Systems Cost? * Where Can I Find Installation and Maintenance Support?

59

Wind Resource Assessment Overview | Open Energy Information  

Open Energy Info (EERE)

Wind Resource Assessment Overview Wind Resource Assessment Overview Jump to: navigation, search Maps.jpg The first step in developing a wind project is to locate and quantify the wind resource. The magnitude of the wind and the characteristics of the resource are the largest factors in determining a potential site's economic and technical viability. There are three basic steps to identifying and characterizing the wind resource: prospecting, validating, and micrositing. The process of locating sites for wind energy development is similar to exploration for other resources, such as minerals and petroleum. Thus, the term prospecting is often used to describe the identification and preliminary evaluation of a wind resource area. Prospecting includes identifying potentially windy sites within a fairly large region - such

60

Wind Energy Resource Atlas of Southeast China  

DOE Green Energy (OSTI)

This wind energy resource atlas identifies the wind characteristics and distribution of the wind resource in two regions of southeast China. The first region is the coastal area stretching from northern Fujian south to eastern Guangdong and extending approximately 100 km inland. The second region is centered on the Poyang Lake area in northern Jiangxi. This region also includes parts of two other provinces-Anhui and Hubei-and extends from near Anqing in Anhui south to near Nanchang in Jiangxi. The detailed wind resource maps and other information contained in the atlas facilitate the identification of prospective areas for use of wind energy technologies, both for utility-scale power generation and off-grid wind energy applications. We created the high-resolution (1-km2) maps in 1998 using a computerized wind resource mapping system developed at the National Renewable Energy Laboratory (NREL). The mapping system uses software known as a Geographical Information System (GIS).

Elliott, D.; Schwartz, M.; Scott, G.; Haymes, S.; Heimiller, D.; George, R.

2002-11-01T23:59:59.000Z

Note: This page contains sample records for the topic "wind energy resource" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


61

Puerto Rico wind energy resource assessment project  

Science Conference Proceedings (OSTI)

The Puerto Rico Office of Energy initiated a Wind Energy Resource Assessment Project in September 1982 to gather reliable, quantitative data on the wind resource of Puerto Rico for making decisions on the deployment of single, small wind energy conversion systems throughout the Island and on the viability of installing wind turbine clusters and windfarms interconnected with the Puerto Rico Electric Power Authority grid. The project consists of four main activities: the collection and analysis of existing wind energy data for the Island, the installation and monitoring of five wind measurement stations, the development of a software model to incorporate and analyze these wind measurement data, simulate wind turbine performance, and assess the cost-benefit of conceptual wind energy conversion systems, and the completion of studies to identify institutional factors and industry financial incentives that would affect the deployment of wind energy conversion systems in Puerto Rico. The Wind Energy System Performance Model consists of three separate models; the Wind Resource Assessment Model, the Wind Turbine Performance Model and the Wind System Cost Model. The turbine performance model and the system cost model are interactive so that data such as turbine output power and a load demand profile can be passed between them to facilitate sensitivity studies. All the individual models are user-friendly to allow easy parameter input. They can be run separately or in sequence.

Scott, R.D.; Borgo, P.

1983-12-01T23:59:59.000Z

62

Calwind Resources Wind Farm | Open Energy Information  

Open Energy Info (EERE)

Resources Wind Farm Resources Wind Farm Jump to: navigation, search Name Calwind Resources Wind Farm Facility Calwind Resources Sector Wind energy Facility Type Commercial Scale Wind Facility Status In Service Developer CalWind Resources Energy Purchaser Southern California Edison Co Location Tehachapi CA Coordinates 35.07665°, -118.25529° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":35.07665,"lon":-118.25529,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

63

Technical Report - Central America Wind Energy Resource Assessment  

Open Energy Info (EERE)

Central America Wind Energy Resource Assessment (Abstract):This document describes the development of detailed high-resolution (1 km2) wind energy resource maps...

64

Wind Energy Resource Atlas of Sri Lanka and the Maldives  

DOE Green Energy (OSTI)

The Wind Energy Resource Atlas of Sri Lanka and the Maldives, produced by the National Renewable Energy Laboratory's (NREL's) wind resource group identifies the wind characteristics and distribution of the wind resource in Sri Lanka and the Maldives. The detailed wind resource maps and other information contained in the atlas facilitate the identification of prospective areas for use of wind energy technologies, both for utility-scale power generation and off-grid wind energy applications.

Elliott, D.; Schwartz, M.; Scott, G.; Haymes, S.; Heimiller, D.; George, R.

2003-08-01T23:59:59.000Z

65

Wind Energy Resources and Technologies | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Wind Energy Resources and Technologies Wind Energy Resources and Technologies Wind Energy Resources and Technologies October 7, 2013 - 9:23am Addthis Photo of two wind turbines standing on a mountain in front of a cloudy blue sky. The Department of Energy tests wind turbine technologies and deployment applications at the National Wind Technology Center. This page provides a brief overview of wind energy resources and technologies supplemented by specific information to apply wind energy within the Federal sector. Overview Federal agencies can harvest wind energy to generate electricity or mechanical power (e.g., windmills for water pumping). To generate electricity, wind rotates large blades on a turbine, which spin an internal shaft connected to a generator. The generator produces electricity, the

66

Wind Energy Resources and Technologies | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Wind Energy Resources and Technologies Wind Energy Resources and Technologies Wind Energy Resources and Technologies October 7, 2013 - 9:23am Addthis Photo of two wind turbines standing on a mountain in front of a cloudy blue sky. The Department of Energy tests wind turbine technologies and deployment applications at the National Wind Technology Center. This page provides a brief overview of wind energy resources and technologies supplemented by specific information to apply wind energy within the Federal sector. Overview Federal agencies can harvest wind energy to generate electricity or mechanical power (e.g., windmills for water pumping). To generate electricity, wind rotates large blades on a turbine, which spin an internal shaft connected to a generator. The generator produces electricity, the

67

(The Spanish version of Wind Energy Resource Atlas of Oaxaca)  

DOE Green Energy (OSTI)

The Oaxaca Wind Resource Atlas, produced by the National Renewable Energy Laboratory's (NREL's) wind resource group, is the result of an extensive mapping study for the Mexican State of Oaxaca. This atlas identifies the wind characteristics and distribution of the wind resource in Oaxaca. The detailed wind resource maps and other information contained in the atlas facilitate the identification of prospective areas for use of wind energy technologies, both for utility-scale power generation and off-grid wind energy applications.

Elliott, D.; Schwartz, M.; Scott, G.; Haymes, S.; Heimiller, D.; George, R.

2004-04-01T23:59:59.000Z

68

Solar and Wind Energy Resource Assessment Programme's Renewable Energy  

Open Energy Info (EERE)

Solar and Wind Energy Resource Assessment Programme's Renewable Energy Solar and Wind Energy Resource Assessment Programme's Renewable Energy Resource Explorer Jump to: navigation, search Tool Summary LAUNCH TOOL Name: Solar and Wind Energy Resource Assessment Programme's Renewable Energy Resource Explorer Focus Area: Solar Topics: Opportunity Assessment & Screening Website: en.openei.org/apps/SWERA/ Equivalent URI: cleanenergysolutions.org/content/solar-and-wind-energy-resource-assess Language: English Policies: Deployment Programs DeploymentPrograms: Technical Assistance The Solar and Wind Energy Resource Assessment (SWERA) programme's Renewable Energy Resource Explorer (RREX) is a Web-based map viewer that displays data from SWERA, the United Nations Environment Programme (UNEP) renewable resource assessment program. The viewer allows users to select any location

69

NREL-International Wind Resource Maps | Open Energy Information  

Open Energy Info (EERE)

International Wind Resource Maps International Wind Resource Maps Jump to: navigation, search Tool Summary Name: NREL-International Wind Resource Maps Agency/Company /Organization: National Renewable Energy Laboratory Sector: Energy Focus Area: Wind Topics: Resource assessment Website: www.nrel.gov/wind/international_wind_resources.html NREL-International Wind Resource Maps Screenshot References: International Wind Resource Maps [1] Logo: NREL-International Wind Resource Maps This resource provides access to NREL-developed wind resource maps and atlases for several countries. NREL's wind mapping projects have been supported by the U.S. Department of Energy, U.S. Agency for International Development, and United Nations International Programme. "NREL is helping to develop high-resolution projections of wind resources

70

Wind Energy Resource Atlas of Armenia (CD-ROM)  

DOE Green Energy (OSTI)

This wind energy resource atlas identifies the wind characteristics and distribution of the wind resource in the country of Armenia. The detailed wind resource maps and other information contained in the atlas facilitate the identification of prospective areas for use of wind energy technologies for utility-scale power generation and off-grid wind energy applications. The maps portray the wind resource with high-resolution (1-km2) grids of wind power density at 50-m above ground. The wind maps were created at the National Renewable Energy Laboratory (NREL) using a computerized wind mapping system that uses Geographic Information System (GIS) software.

Elliott, D.; Schwartz, M.; Scott, G.; Haymes, S.; Heimiller, D.; George, R.

2003-07-01T23:59:59.000Z

71

Technical Report - Sri Lanka and the Maldives Wind Energy Resource  

Open Energy Info (EERE)

Sri Lanka and the Maldives Wind Energy Resource Assessment (Abstract):This document describes the development of detailed high-resolution (1 km2) wind energy...

72

NREL-Wind Resource Assessment Handbook | Open Energy Information  

Open Energy Info (EERE)

Wind Resource Assessment Handbook Wind Resource Assessment Handbook Jump to: navigation, search Tool Summary LAUNCH TOOL Name: NREL-Wind Resource Assessment Handbook Agency/Company /Organization: National Renewable Energy Laboratory Sector: Energy Focus Area: Wind Topics: Resource assessment Resource Type: Guide/manual, Training materials Website: www.nrel.gov/docs/legosti/fy97/22223.pdf NREL-Wind Resource Assessment Handbook Screenshot References: Wind Resource Assessment Handbook[1] Logo: NREL-Wind Resource Assessment Handbook This handbook presents industry-accepted guidelines for planning and conducting a wind resource measurement program to support a wind energy feasibility initiative. About "This handbook presents industry-accepted guidelines for planning and conducting a wind resource measurement program to support a wind energy

73

Wind energy resource atlas. Volume 10. Alaska region  

DOE Green Energy (OSTI)

This atlas of the wind energy resource is composed of introductory and background information, a regional summary of the wind resource, and assessments of the wind resource in each subregion of Alaska. Background is presented on how the wind resource is assessed and on how the results of the assessment should be interpreted. A description of the wind resource on a state scale is given. The results of the wind energy assessments for each subregion are assembled into an overview and summary of the various features of the Alaska wind energy resource. An outline to the descriptions of the wind resource given for each subregion is included. Assessments for individual subregions are presented as separate chapters. The subregion wind energy resources are described in greater detail than is the Alaska wind energy resource, and features of selected stations are discussed. This preface outlines the use and interpretation of the information found in the subregion chapters.

Wise, J.L.; Wentink, T. Jr.; Becker, R. Jr.; Comiskey, A.L.; Elliott, D.L.; Barchet, W.R.; George, R.L.

1980-12-01T23:59:59.000Z

74

Wind energy resource atlas. Volume 9. The Southwest Region  

DOE Green Energy (OSTI)

This atlas of the wind energy resource is composed of introductory and background information, a regional summary of the wind resource, and assessments of the wind resource in Nevada and California. Background on how the wind resource is assessed and on how the results of the assessment should be interpreted is presented. A description of the wind resource on a regional scale is then given. The results of the wind energy assessments for each state are assembled into an overview and summary of the various features of the regional wind energy resource. An introduction and outline to the descriptions of the wind resource given for each state are given. Assessments for individual states are presented as separate chapters. The state wind energy resources are described in greater detail than is the regional wind energy resource, and features of selected stations are discussed.

Simon, R.L.; Norman, G.T.; Elliott, D.L.; Barchet, W.R.; George, R.L.

1980-11-01T23:59:59.000Z

75

Wind energy resource atlas. Volume 4. The Northeast region  

DOE Green Energy (OSTI)

This atlas of the wind energy resource is composed of introductory and background information, a regional summary of the wind resource, and assessments of the wind resource in each state of the region. Background is presented on how the wind resource is assessed and on how the results of the assessment should be interpreted. A description of the wind resource on a regional scale is then given. The results of the wind energy assessments for each state are assembled in this chapter into an overview and summary of the various features of the regional wind energy resource. An introduction and outline are provided for in the descriptions of the wind resource given for each state. Assessments for individual states are presented. The state wind energy resources are described in greater detail than is the regional wind energy resource, and features of selected stations are discussed. This preface outlines the use and interpretation of the information found in the state chapters.

Pickering, K.E.; Vilardo, J.M.; Schakenbach, J.T.; Elliott, D.L.; Barchet, W.R.; George, R.L.

1980-09-01T23:59:59.000Z

76

Solar and Wind Energy Resource Assessment (SWERA) | Open Energy Information  

Open Energy Info (EERE)

Energy Resource Assessment (SWERA) Energy Resource Assessment (SWERA) Jump to: navigation, search SWERA logo.png Solar and Wind Energy Resource Assessment (SWERA) Interactive Web PortalPowered by OpenEI Getting Started Data Sets Analysis Tools About SWERA Tool Summary LAUNCH TOOL Name: Solar and Wind Energy Resource Assessment Agency/Company /Organization: United Nations Environment Programme Partner: National Renewable Energy Laboratory, German Aerospace Center (DLR), Risoe National Laboratory for Sustainable Energy, Brazil's National Institute for Space Research (INPE), State University of New York (SUNY), Technical University of Denmark (DTU), United Nations Environment Programme (UNEP), National Aeronautics and Space Administration, Global Environment Facility (GEF) Sector: Energy Focus Area: Solar, Wind

77

Wind Resource Assessment | Open Energy Information  

Open Energy Info (EERE)

Assessment Assessment Jump to: navigation, search Maps Central America 50m Wind Power China Chifeng 50m Wind Power China Enshi 50m Wind Power China Fuzhou 50m Wind Power China Guangzhou 50m Wind Power China Haikou 50m Wind Power China Hangzhou 50m Wind Power China Hohhot 50m Wind Power China Jiamusi 50m Wind Power China Manzhouli 50m Wind Power China Nanchang 50m Wind Power China Qingdao 50m Wind Power China Qiqihar 50m Wind Power China Shenyang 50m Wind Power China Tianjin 50m Wind Power China Yinchuan 50m Wind Power East China Map Reference NREL-30m-US-Wind NREL-50m-Alaska-Wind-Map NREL-50m-Alaska-Wind-Map NREL-Alaska-50m-Wind-Resource NREL-Arizona-50m-Wind-Resource NREL-Arkansas-50m-Wind-Resource NREL-Atlantic-Coast-90m-Offshore-Wind-Resource NREL-CA-90mwindspeed-off NREL-CT-90mwindspeed-off

78

Wind Energy Resource Atlas of the Dominican Republic  

DOE Green Energy (OSTI)

The Wind Energy Resource Atlas of the Dominican Republic identifies the wind characteristics and the distribution of the wind resource in this country. This major project is the first of its kind undertaken for the Dominican Republic. The information contained in the atlas is necessary to facilitate the use of wind energy technologies, both for utility-scale power generation and off-grid wind energy applications. A computerized wind mapping system developed by NREL generated detailed wind resource maps for the entire country. This technique uses Geographic Information Systems (GIS) to produce high-resolution (1-square kilometer) annual average wind resource maps.

Elliott, D.; Schwartz, M.; George, R.; Haymes, S.; Heimiller, D.; Scott, G.; Kline, J.

2001-10-01T23:59:59.000Z

79

West Virginia/Wind Resources | Open Energy Information  

Open Energy Info (EERE)

West Virginia/Wind Resources West Virginia/Wind Resources < West Virginia Jump to: navigation, search Print PDF Print Full Version WIND ENERGY STAKEHOLDER ENGAGEMENT & OUTREACHSmall Wind Guidebook Home OpenEI Home >> Wind >> Small Wind Guidebook >> West Virginia Wind Resources WindTurbine-icon.png Small Wind Guidebook * Introduction * First, How Can I Make My Home More Energy Efficient? * Is Wind Energy Practical for Me? * What Size Wind Turbine Do I Need? * What Are the Basic Parts of a Small Wind Electric System? * What Do Wind Systems Cost? * Where Can I Find Installation and Maintenance Support? * How Much Energy Will My System Generate? * Is There Enough Wind on My Site? * How Do I Choose the Best Site for My Wind Turbine? * Can I Connect My System to the Utility Grid?

80

North Dakota/Wind Resources | Open Energy Information  

Open Energy Info (EERE)

North Dakota/Wind Resources North Dakota/Wind Resources < North Dakota Jump to: navigation, search Print PDF Print Full Version WIND ENERGY STAKEHOLDER ENGAGEMENT & OUTREACHSmall Wind Guidebook Home OpenEI Home >> Wind >> Small Wind Guidebook >> North Dakota Wind Resources WindTurbine-icon.png Small Wind Guidebook * Introduction * First, How Can I Make My Home More Energy Efficient? * Is Wind Energy Practical for Me? * What Size Wind Turbine Do I Need? * What Are the Basic Parts of a Small Wind Electric System? * What Do Wind Systems Cost? * Where Can I Find Installation and Maintenance Support? * How Much Energy Will My System Generate? * Is There Enough Wind on My Site? * How Do I Choose the Best Site for My Wind Turbine? * Can I Connect My System to the Utility Grid?

Note: This page contains sample records for the topic "wind energy resource" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


81

South Dakota/Wind Resources | Open Energy Information  

Open Energy Info (EERE)

South Dakota/Wind Resources South Dakota/Wind Resources < South Dakota Jump to: navigation, search Print PDF Print Full Version WIND ENERGY STAKEHOLDER ENGAGEMENT & OUTREACHSmall Wind Guidebook Home OpenEI Home >> Wind >> Small Wind Guidebook >> South Dakota Wind Resources WindTurbine-icon.png Small Wind Guidebook * Introduction * First, How Can I Make My Home More Energy Efficient? * Is Wind Energy Practical for Me? * What Size Wind Turbine Do I Need? * What Are the Basic Parts of a Small Wind Electric System? * What Do Wind Systems Cost? * Where Can I Find Installation and Maintenance Support? * How Much Energy Will My System Generate? * Is There Enough Wind on My Site? * How Do I Choose the Best Site for My Wind Turbine? * Can I Connect My System to the Utility Grid?

82

New Jersey/Wind Resources | Open Energy Information  

Open Energy Info (EERE)

New Jersey/Wind Resources New Jersey/Wind Resources < New Jersey Jump to: navigation, search Print PDF Print Full Version WIND ENERGY STAKEHOLDER ENGAGEMENT & OUTREACHSmall Wind Guidebook Home OpenEI Home >> Wind >> Small Wind Guidebook >> New Jersey Wind Resources WindTurbine-icon.png Small Wind Guidebook * Introduction * First, How Can I Make My Home More Energy Efficient? * Is Wind Energy Practical for Me? * What Size Wind Turbine Do I Need? * What Are the Basic Parts of a Small Wind Electric System? * What Do Wind Systems Cost? * Where Can I Find Installation and Maintenance Support? * How Much Energy Will My System Generate? * Is There Enough Wind on My Site? * How Do I Choose the Best Site for My Wind Turbine? * Can I Connect My System to the Utility Grid?

83

Rhode Island/Wind Resources | Open Energy Information  

Open Energy Info (EERE)

Rhode Island/Wind Resources Rhode Island/Wind Resources < Rhode Island Jump to: navigation, search Print PDF Print Full Version WIND ENERGY STAKEHOLDER ENGAGEMENT & OUTREACHSmall Wind Guidebook Home OpenEI Home >> Wind >> Small Wind Guidebook >> Rhode Island Wind Resources WindTurbine-icon.png Small Wind Guidebook * Introduction * First, How Can I Make My Home More Energy Efficient? * Is Wind Energy Practical for Me? * What Size Wind Turbine Do I Need? * What Are the Basic Parts of a Small Wind Electric System? * What Do Wind Systems Cost? * Where Can I Find Installation and Maintenance Support? * How Much Energy Will My System Generate? * Is There Enough Wind on My Site? * How Do I Choose the Best Site for My Wind Turbine? * Can I Connect My System to the Utility Grid?

84

South Carolina/Wind Resources | Open Energy Information  

Open Energy Info (EERE)

South Carolina/Wind Resources South Carolina/Wind Resources < South Carolina Jump to: navigation, search Print PDF Print Full Version WIND ENERGY STAKEHOLDER ENGAGEMENT & OUTREACHSmall Wind Guidebook Home OpenEI Home >> Wind >> Small Wind Guidebook >> South Carolina Wind Resources WindTurbine-icon.png Small Wind Guidebook * Introduction * First, How Can I Make My Home More Energy Efficient? * Is Wind Energy Practical for Me? * What Size Wind Turbine Do I Need? * What Are the Basic Parts of a Small Wind Electric System? * What Do Wind Systems Cost? * Where Can I Find Installation and Maintenance Support? * How Much Energy Will My System Generate? * Is There Enough Wind on My Site? * How Do I Choose the Best Site for My Wind Turbine? * Can I Connect My System to the Utility Grid?

85

New York/Wind Resources | Open Energy Information  

Open Energy Info (EERE)

New York/Wind Resources New York/Wind Resources < New York Jump to: navigation, search Print PDF Print Full Version WIND ENERGY STAKEHOLDER ENGAGEMENT & OUTREACHSmall Wind Guidebook Home OpenEI Home >> Wind >> Small Wind Guidebook >> New York Wind Resources WindTurbine-icon.png Small Wind Guidebook * Introduction * First, How Can I Make My Home More Energy Efficient? * Is Wind Energy Practical for Me? * What Size Wind Turbine Do I Need? * What Are the Basic Parts of a Small Wind Electric System? * What Do Wind Systems Cost? * Where Can I Find Installation and Maintenance Support? * How Much Energy Will My System Generate? * Is There Enough Wind on My Site? * How Do I Choose the Best Site for My Wind Turbine? * Can I Connect My System to the Utility Grid? * Can I Go Off-Grid?

86

Wind Resource Atlas of Oaxaca | Open Energy Information  

Open Energy Info (EERE)

Resource Atlas of Oaxaca Resource Atlas of Oaxaca Jump to: navigation, search Tool Summary LAUNCH TOOL Name: Wind Resource Atlas of Oaxaca Focus Area: Renewable Energy Topics: Potentials & Scenarios Website: www.nrel.gov/wind/pdfs/34519.pdf Equivalent URI: cleanenergysolutions.org/content/wind-resource-atlas-oaxaca,http://cle Language: English Policies: Deployment Programs DeploymentPrograms: Technical Assistance This wind resource atlas identifies wind characteristics and distribution of wind resources in Oaxaca, Mexico, at a wind power density of 50 meters above ground. The detailed wind resource maps contained in the atlas facilitate the identification of prospective areas for use of wind energy technologies for utility-scale power generation, village power, and off-grid wind energy applications. The wind maps were created using a

87

Wind energy resource atlas. Volume 5: the East Central Region  

DOE Green Energy (OSTI)

This atlas of the wind energy resource is composed of introductory and background information, a regional summary of the wind resource, and assessments of the wind resource in each state of the region. Background is presented on how the wind resource is assessed and on how the results of the assessment should be interpreted. A description of the wind resource on a regional scale is then given. The results of the wind energy assessments for each state are assembled into an overview and summary of the various features of the regional wind energy resource. Assessments for individual states are presented as separate chapters. The state wind energy resources are described in greater detail than is the regional wind energy resource, and features of selected stations are discussed. This preface outlines the use and interpretation of the information found in the state chapters. States include Delaware, Maryland, Kentucky, North Carolina, Tennessee, Virginia, and West Virginia.

Brode, R.; Stoner, R.; Elliott, D.L.; Barchet, W.R.; George, R.L.

1980-01-01T23:59:59.000Z

88

Wind Energy Resource Atlas of Armenia  

NLE Websites -- All DOE Office Websites (Extended Search)

Elliott, M. Schwartz, G. Scott, S. Haymes, D. Heimiller, R. George Elliott, M. Schwartz, G. Scott, S. Haymes, D. Heimiller, R. George National Renewable Energy Laboratory Wind Energy Resource Atlas of Armenia July 2003 * NREL/TP-500-33544 Wind Energy Resource Atlas of Armenia D. Elliott M. Schwartz G. Scott S. Haymes, D. Heimiller R. George Prepared under Task No. WF7C0202 NOTICE This report was prepared as an account of work sponsored by an agency of the United States government. Neither the United States government nor any agency thereof, nor any of their employees, makes any warranty, express or implied, or assumes any legal liability or responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or represents that its use would not infringe privately owned rights. Reference herein to any specific commercial

89

Solar and Wind Energy Resource Assessment (SWERA)  

Open Energy Info (EERE)

Wiki Page Wiki Page Solar and Wind Energy Resource Assessment A United Nations Environment Programme facilitated effort. Getting Started Data Sets Analysis Tools About SWERA Loading.. Country Name Analyze Layer Data in OpenCarto View Country Profile in OpenEI Latitude Longitude Homer XML Get HOMER Data What am I seeing? This visualization shows international solar DNI, wind and climate resources. Click on one of the layer buttons below to view the resource layer. For more detailed information on each country, select the country by clicking it on the map below and then select 'View in OpenCarto' or 'View Country Page in OpenEI' to explore more data for that country. For HOMER, select a point to populate the latitude/longitude or provide your own, then press the button to send this information to HOMER.

90

New Mexico/Wind Resources | Open Energy Information  

Open Energy Info (EERE)

Page Page Edit History Facebook icon Twitter icon » New Mexico/Wind Resources < New Mexico Jump to: navigation, search Print PDF Print Full Version WIND ENERGY STAKEHOLDER ENGAGEMENT & OUTREACHSmall Wind Guidebook Home OpenEI Home >> Wind >> Small Wind Guidebook >> New Mexico Wind Resources WindTurbine-icon.png Small Wind Guidebook * Introduction * First, How Can I Make My Home More Energy Efficient? * Is Wind Energy Practical for Me? * What Size Wind Turbine Do I Need? * What Are the Basic Parts of a Small Wind Electric System? * What Do Wind Systems Cost? * Where Can I Find Installation and Maintenance Support? * How Much Energy Will My System Generate? * Is There Enough Wind on My Site? * How Do I Choose the Best Site for My Wind Turbine?

91

Georgia/Wind Resources/Full Version | Open Energy Information  

Open Energy Info (EERE)

Georgia/Wind Resources/Full Version Georgia/Wind Resources/Full Version < Georgia‎ | Wind Resources Jump to: navigation, search Print PDF Georgia Wind Resources GeorgiaMap.jpg More information about these 30-m height wind resource maps is available on the Wind Powering America website. Introduction Can I use wind energy to power my home? This question is being asked across the country as more people look for a hedge against increasing electricity rates and a way to harvest their local wind resources. Small wind electric systems can make a significant contribution to our nation's energy needs. Although wind turbines large enough to provide a significant portion of the electricity needed by the average U.S. home generally require 1 acre of property or more, approximately 21 million U.S. homes are built on 1-acre

92

California/Wind Resources/Full Version | Open Energy Information  

Open Energy Info (EERE)

California/Wind Resources/Full Version California/Wind Resources/Full Version < California‎ | Wind Resources Jump to: navigation, search Print PDF California Wind Resources CaliforniaMap.jpg More information about these 30-m height wind resource maps is available on the Wind Powering America website. Introduction Can I use wind energy to power my home? This question is being asked across the country as more people look for a hedge against increasing electricity rates and a way to harvest their local wind resources. Small wind electric systems can make a significant contribution to our nation's energy needs. Although wind turbines large enough to provide a significant portion of the electricity needed by the average U.S. home generally require 1 acre of property or more, approximately 21 million U.S. homes are built on 1-acre

93

Kansas/Wind Resources/Full Version | Open Energy Information  

Open Energy Info (EERE)

Kansas/Wind Resources/Full Version Kansas/Wind Resources/Full Version < Kansas‎ | Wind Resources Jump to: navigation, search Print PDF Kansas Wind Resources KansasMap.jpg More information about these 30-m height wind resource maps is available on the Wind Powering America website. Introduction Can I use wind energy to power my home? This question is being asked across the country as more people look for a hedge against increasing electricity rates and a way to harvest their local wind resources. Small wind electric systems can make a significant contribution to our nation's energy needs. Although wind turbines large enough to provide a significant portion of the electricity needed by the average U.S. home generally require 1 acre of property or more, approximately 21 million U.S. homes are built on 1-acre

94

Wisconsin/Wind Resources/Full Version | Open Energy Information  

Open Energy Info (EERE)

Wisconsin/Wind Resources/Full Version Wisconsin/Wind Resources/Full Version < Wisconsin‎ | Wind Resources Jump to: navigation, search Print PDF Wisconsin Wind Resources WisconsinMap.jpg More information about these 30-m height wind resource maps is available on the Wind Powering America website. Introduction Can I use wind energy to power my home? This question is being asked across the country as more people look for a hedge against increasing electricity rates and a way to harvest their local wind resources. Small wind electric systems can make a significant contribution to our nation's energy needs. Although wind turbines large enough to provide a significant portion of the electricity needed by the average U.S. home generally require 1 acre of property or more, approximately 21 million U.S. homes are built on 1-acre

95

Nebraska/Wind Resources/Full Version | Open Energy Information  

Open Energy Info (EERE)

Nebraska/Wind Resources/Full Version Nebraska/Wind Resources/Full Version < Nebraska‎ | Wind Resources Jump to: navigation, search Print PDF Nebraska Wind Resources NebraskaMap.jpg More information about these 30-m height wind resource maps is available on the Wind Powering America website. Introduction Can I use wind energy to power my home? This question is being asked across the country as more people look for a hedge against increasing electricity rates and a way to harvest their local wind resources. Small wind electric systems can make a significant contribution to our nation's energy needs. Although wind turbines large enough to provide a significant portion of the electricity needed by the average U.S. home generally require 1 acre of property or more, approximately 21 million U.S. homes are built on 1-acre

96

Oklahoma/Wind Resources/Full Version | Open Energy Information  

Open Energy Info (EERE)

Oklahoma/Wind Resources/Full Version Oklahoma/Wind Resources/Full Version < Oklahoma‎ | Wind Resources Jump to: navigation, search Print PDF Oklahoma Wind Resources OklahomaMap.jpg More information about these 30-m height wind resource maps is available on the Wind Powering America website. Introduction Can I use wind energy to power my home? This question is being asked across the country as more people look for a hedge against increasing electricity rates and a way to harvest their local wind resources. Small wind electric systems can make a significant contribution to our nation's energy needs. Although wind turbines large enough to provide a significant portion of the electricity needed by the average U.S. home generally require 1 acre of property or more, approximately 21 million U.S. homes are built on 1-acre

97

Maryland/Wind Resources/Full Version | Open Energy Information  

Open Energy Info (EERE)

Maryland/Wind Resources/Full Version Maryland/Wind Resources/Full Version < Maryland‎ | Wind Resources Jump to: navigation, search Print PDF Maryland Wind Resources MarylandMap.jpg More information about these 30-m height wind resource maps is available on the Wind Powering America website. Introduction Can I use wind energy to power my home? This question is being asked across the country as more people look for a hedge against increasing electricity rates and a way to harvest their local wind resources. Small wind electric systems can make a significant contribution to our nation's energy needs. Although wind turbines large enough to provide a significant portion of the electricity needed by the average U.S. home generally require 1 acre of property or more, approximately 21 million U.S. homes are built on 1-acre

98

Indiana/Wind Resources/Full Version | Open Energy Information  

Open Energy Info (EERE)

Indiana/Wind Resources/Full Version Indiana/Wind Resources/Full Version < Indiana‎ | Wind Resources Jump to: navigation, search Print PDF Indiana Wind Resources IndianaMap.jpg More information about these 30-m height wind resource maps is available on the Wind Powering America website. Introduction Can I use wind energy to power my home? This question is being asked across the country as more people look for a hedge against increasing electricity rates and a way to harvest their local wind resources. Small wind electric systems can make a significant contribution to our nation's energy needs. Although wind turbines large enough to provide a significant portion of the electricity needed by the average U.S. home generally require 1 acre of property or more, approximately 21 million U.S. homes are built on 1-acre

99

Illinois/Wind Resources/Full Version | Open Energy Information  

Open Energy Info (EERE)

Illinois/Wind Resources/Full Version Illinois/Wind Resources/Full Version < Illinois‎ | Wind Resources Jump to: navigation, search Print PDF Illinois Wind Resources IllinoisMap.jpg More information about these 30-m height wind resource maps is available on the Wind Powering America website. Introduction Can I use wind energy to power my home? This question is being asked across the country as more people look for a hedge against increasing electricity rates and a way to harvest their local wind resources. Small wind electric systems can make a significant contribution to our nation's energy needs. Although wind turbines large enough to provide a significant portion of the electricity needed by the average U.S. home generally require 1 acre of property or more, approximately 21 million U.S. homes are built on 1-acre

100

Michigan/Wind Resources/Full Version | Open Energy Information  

Open Energy Info (EERE)

Michigan/Wind Resources/Full Version Michigan/Wind Resources/Full Version < Michigan‎ | Wind Resources Jump to: navigation, search Print PDF Michigan Wind Resources MichiganMap.jpg More information about these 30-m height wind resource maps is available on the Wind Powering America website. Introduction Can I use wind energy to power my home? This question is being asked across the country as more people look for a hedge against increasing electricity rates and a way to harvest their local wind resources. Small wind electric systems can make a significant contribution to our nation's energy needs. Although wind turbines large enough to provide a significant portion of the electricity needed by the average U.S. home generally require 1 acre of property or more, approximately 21 million U.S. homes are built on 1-acre

Note: This page contains sample records for the topic "wind energy resource" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


101

Texas/Wind Resources/Full Version | Open Energy Information  

Open Energy Info (EERE)

Texas/Wind Resources/Full Version Texas/Wind Resources/Full Version < Texas‎ | Wind Resources Jump to: navigation, search Print PDF Texas Wind Resources TexasMap.jpg More information about these 30-m height wind resource maps is available on the Wind Powering America website. Introduction Can I use wind energy to power my home? This question is being asked across the country as more people look for a hedge against increasing electricity rates and a way to harvest their local wind resources. Small wind electric systems can make a significant contribution to our nation's energy needs. Although wind turbines large enough to provide a significant portion of the electricity needed by the average U.S. home generally require 1 acre of property or more, approximately 21 million U.S. homes are built on 1-acre

102

Wyoming/Wind Resources/Full Version | Open Energy Information  

Open Energy Info (EERE)

Wyoming/Wind Resources/Full Version Wyoming/Wind Resources/Full Version < Wyoming‎ | Wind Resources Jump to: navigation, search Print PDF Wyoming Wind Resources WyomingMap.jpg More information about these 30-m height wind resource maps is available on the Wind Powering America website. Introduction Can I use wind energy to power my home? This question is being asked across the country as more people look for a hedge against increasing electricity rates and a way to harvest their local wind resources. Small wind electric systems can make a significant contribution to our nation's energy needs. Although wind turbines large enough to provide a significant portion of the electricity needed by the average U.S. home generally require 1 acre of property or more, approximately 21 million U.S. homes are built on 1-acre

103

Mississippi/Wind Resources/Full Version | Open Energy Information  

Open Energy Info (EERE)

Mississippi/Wind Resources/Full Version Mississippi/Wind Resources/Full Version < Mississippi‎ | Wind Resources Jump to: navigation, search Print PDF Mississippi Wind Resources MississippiMap.jpg More information about these 30-m height wind resource maps is available on the Wind Powering America website. Introduction Can I use wind energy to power my home? This question is being asked across the country as more people look for a hedge against increasing electricity rates and a way to harvest their local wind resources. Small wind electric systems can make a significant contribution to our nation's energy needs. Although wind turbines large enough to provide a significant portion of the electricity needed by the average U.S. home generally require 1 acre of property or more, approximately 21 million U.S. homes are built on 1-acre

104

Washington/Wind Resources/Full Version | Open Energy Information  

Open Energy Info (EERE)

Washington/Wind Resources/Full Version Washington/Wind Resources/Full Version < Washington‎ | Wind Resources Jump to: navigation, search Print PDF Washington Wind Resources WashingtonMap.jpg More information about these 30-m height wind resource maps is available on the Wind Powering America website. Introduction Can I use wind energy to power my home? This question is being asked across the country as more people look for a hedge against increasing electricity rates and a way to harvest their local wind resources. Small wind electric systems can make a significant contribution to our nation's energy needs. Although wind turbines large enough to provide a significant portion of the electricity needed by the average U.S. home generally require 1 acre of property or more, approximately 21 million U.S. homes are built on 1-acre

105

Vermont/Wind Resources/Full Version | Open Energy Information  

Open Energy Info (EERE)

Vermont/Wind Resources/Full Version Vermont/Wind Resources/Full Version < Vermont‎ | Wind Resources Jump to: navigation, search Print PDF Vermont Wind Resources VermontMap.jpg More information about these 30-m height wind resource maps is available on the Wind Powering America website. Introduction Can I use wind energy to power my home? This question is being asked across the country as more people look for a hedge against increasing electricity rates and a way to harvest their local wind resources. Small wind electric systems can make a significant contribution to our nation's energy needs. Although wind turbines large enough to provide a significant portion of the electricity needed by the average U.S. home generally require 1 acre of property or more, approximately 21 million U.S. homes are built on 1-acre

106

Missouri/Wind Resources/Full Version | Open Energy Information  

Open Energy Info (EERE)

Missouri/Wind Resources/Full Version Missouri/Wind Resources/Full Version < Missouri‎ | Wind Resources Jump to: navigation, search Print PDF Missouri Wind Resources MissouriMap.jpg More information about these 30-m height wind resource maps is available on the Wind Powering America website. Introduction Can I use wind energy to power my home? This question is being asked across the country as more people look for a hedge against increasing electricity rates and a way to harvest their local wind resources. Small wind electric systems can make a significant contribution to our nation's energy needs. Although wind turbines large enough to provide a significant portion of the electricity needed by the average U.S. home generally require 1 acre of property or more, approximately 21 million U.S. homes are built on 1-acre

107

Idaho/Wind Resources/Full Version | Open Energy Information  

Open Energy Info (EERE)

Idaho/Wind Resources/Full Version Idaho/Wind Resources/Full Version < Idaho‎ | Wind Resources Jump to: navigation, search Print PDF Idaho Wind Resources IdahoMap.jpg More information about these 30-m height wind resource maps is available on the Wind Powering America website. Introduction Can I use wind energy to power my home? This question is being asked across the country as more people look for a hedge against increasing electricity rates and a way to harvest their local wind resources. Small wind electric systems can make a significant contribution to our nation's energy needs. Although wind turbines large enough to provide a significant portion of the electricity needed by the average U.S. home generally require 1 acre of property or more, approximately 21 million U.S. homes are built on 1-acre

108

Louisiana/Wind Resources/Full Version | Open Energy Information  

Open Energy Info (EERE)

Louisiana/Wind Resources/Full Version Louisiana/Wind Resources/Full Version < Louisiana‎ | Wind Resources Jump to: navigation, search Print PDF Louisiana Wind Resources LouisianaMap.jpg More information about these 30-m height wind resource maps is available on the Wind Powering America website. Introduction Can I use wind energy to power my home? This question is being asked across the country as more people look for a hedge against increasing electricity rates and a way to harvest their local wind resources. Small wind electric systems can make a significant contribution to our nation's energy needs. Although wind turbines large enough to provide a significant portion of the electricity needed by the average U.S. home generally require 1 acre of property or more, approximately 21 million U.S. homes are built on 1-acre

109

Massachusetts/Wind Resources/Full Version | Open Energy Information  

Open Energy Info (EERE)

Massachusetts/Wind Resources/Full Version Massachusetts/Wind Resources/Full Version < Massachusetts‎ | Wind Resources Jump to: navigation, search Print PDF Massachusetts Wind Resources MassachusettsMap.jpg More information about these 30-m height wind resource maps is available on the Wind Powering America website. Introduction Can I use wind energy to power my home? This question is being asked across the country as more people look for a hedge against increasing electricity rates and a way to harvest their local wind resources. Small wind electric systems can make a significant contribution to our nation's energy needs. Although wind turbines large enough to provide a significant portion of the electricity needed by the average U.S. home generally require 1 acre of property or more, approximately 21 million U.S. homes are built on 1-acre

110

Connecticut/Wind Resources/Full Version | Open Energy Information  

Open Energy Info (EERE)

Connecticut/Wind Resources/Full Version Connecticut/Wind Resources/Full Version < Connecticut‎ | Wind Resources Jump to: navigation, search Print PDF Connecticut Wind Resources ConneticutMap.jpg More information about these 30-m height wind resource maps is available on the Wind Powering America website. Introduction Can I use wind energy to power my home? This question is being asked across the country as more people look for a hedge against increasing electricity rates and a way to harvest their local wind resources. Small wind electric systems can make a significant contribution to our nation's energy needs. Although wind turbines large enough to provide a significant portion of the electricity needed by the average U.S. home generally require 1 acre of property or more, approximately 21 million U.S. homes are built on 1-acre

111

Tennessee/Wind Resources/Full Version | Open Energy Information  

Open Energy Info (EERE)

Tennessee/Wind Resources/Full Version Tennessee/Wind Resources/Full Version < Tennessee‎ | Wind Resources Jump to: navigation, search Print PDF Tennessee Wind Resources Tennessee.jpg More information about these 30-m height wind resource maps is available on the Wind Powering America website. Introduction Can I use wind energy to power my home? This question is being asked across the country as more people look for a hedge against increasing electricity rates and a way to harvest their local wind resources. Small wind electric systems can make a significant contribution to our nation's energy needs. Although wind turbines large enough to provide a significant portion of the electricity needed by the average U.S. home generally require 1 acre of property or more, approximately 21 million U.S. homes are built on 1-acre

112

Pennsylvania/Wind Resources/Full Version | Open Energy Information  

Open Energy Info (EERE)

Pennsylvania/Wind Resources/Full Version Pennsylvania/Wind Resources/Full Version < Pennsylvania‎ | Wind Resources Jump to: navigation, search Print PDF Pennsylvania Wind Resources PennsylvaniaMap.jpg More information about these 30-m height wind resource maps is available on the Wind Powering America website. Introduction Can I use wind energy to power my home? This question is being asked across the country as more people look for a hedge against increasing electricity rates and a way to harvest their local wind resources. Small wind electric systems can make a significant contribution to our nation's energy needs. Although wind turbines large enough to provide a significant portion of the electricity needed by the average U.S. home generally require 1 acre of property or more, approximately 21 million U.S. homes are built on 1-acre

113

Virginia/Wind Resources/Full Version | Open Energy Information  

Open Energy Info (EERE)

Virginia/Wind Resources/Full Version Virginia/Wind Resources/Full Version < Virginia‎ | Wind Resources Jump to: navigation, search Print PDF Virginia Wind Resources VirginiaMap.jpg More information about these 30-m height wind resource maps is available on the Wind Powering America website. Introduction Can I use wind energy to power my home? This question is being asked across the country as more people look for a hedge against increasing electricity rates and a way to harvest their local wind resources. Small wind electric systems can make a significant contribution to our nation's energy needs. Although wind turbines large enough to provide a significant portion of the electricity needed by the average U.S. home generally require 1 acre of property or more, approximately 21 million U.S. homes are built on 1-acre

114

Kentucky/Wind Resources/Full Version | Open Energy Information  

Open Energy Info (EERE)

Kentucky/Wind Resources/Full Version Kentucky/Wind Resources/Full Version < Kentucky‎ | Wind Resources Jump to: navigation, search Print PDF Kentucky Wind Resources KentuckyMap.jpg More information about these 30-m height wind resource maps is available on the Wind Powering America website. Introduction Can I use wind energy to power my home? This question is being asked across the country as more people look for a hedge against increasing electricity rates and a way to harvest their local wind resources. Small wind electric systems can make a significant contribution to our nation's energy needs. Although wind turbines large enough to provide a significant portion of the electricity needed by the average U.S. home generally require 1 acre of property or more, approximately 21 million U.S. homes are built on 1-acre

115

Utah/Wind Resources/Full Version | Open Energy Information  

Open Energy Info (EERE)

Utah/Wind Resources/Full Version Utah/Wind Resources/Full Version < Utah‎ | Wind Resources Jump to: navigation, search Print PDF Utah Wind Resources UtahMap.jpg More information about these 30-m height wind resource maps is available on the Wind Powering America website. Introduction Can I use wind energy to power my home? This question is being asked across the country as more people look for a hedge against increasing electricity rates and a way to harvest their local wind resources. Small wind electric systems can make a significant contribution to our nation's energy needs. Although wind turbines large enough to provide a significant portion of the electricity needed by the average U.S. home generally require 1 acre of property or more, approximately 21 million U.S. homes are built on 1-acre

116

Hawaii/Wind Resources/Full Version | Open Energy Information  

Open Energy Info (EERE)

Hawaii/Wind Resources/Full Version Hawaii/Wind Resources/Full Version < Hawaii‎ | Wind Resources Jump to: navigation, search Print PDF Hawaii Wind Resources HawaiiMap.jpg More information about these 30-m height wind resource maps is available on the Wind Powering America website. Introduction Can I use wind energy to power my home? This question is being asked across the country as more people look for a hedge against increasing electricity rates and a way to harvest their local wind resources. Small wind electric systems can make a significant contribution to our nation's energy needs. Although wind turbines large enough to provide a significant portion of the electricity needed by the average U.S. home generally require 1 acre of property or more, approximately 21 million U.S. homes are built on 1-acre

117

Wind Energy Resources for Teachers | Open Energy Information  

Open Energy Info (EERE)

Resources for Teachers Resources for Teachers Jump to: navigation, search Photo from the South Dakota Wind Applications Center, NREL 18283 The following links lead to curricula and classroom resources for teachers who want to incorporate wind energy into their lesson plans. 4-H Group Wind Curriculum Developed The Power of the Wind, which consists of one Youth Guide and one Facilitator's Guide. The activities involve young people in the engineering design process as they learn about the wind and its uses. The site also offers videos. Boise State University Compiled a list of resources for educators, including lesson plans created using the Idaho State and Common Core Standards. California Energy Commission Developed a set of educational materials called "Energy Quest" that

118

Solar and Wind Energy Resource Assessment (SWERA) - Bangladesh...  

Open Energy Info (EERE)

made over the globe for production of electrical and thermal energy. Success of wind and solar energy projects require detailed and precise information on the resources. For most...

119

Wind Energy Resource Assessment of the Caribbean and Central America  

DOE Green Energy (OSTI)

A wind energy resource assessment of the Caribbean and Central America has identified many areas with good to outstanding wind resource potential for wind turbine applications. Annual average wind resource maps and summary tables have been developed for 35 island/country areas throughout the Caribbean and Central America region. The wind resource maps highlight the locations of major resource areas and provide estimates of the wind energy resource potential for typical well-exposed sites in these areas. The average energy in the wind flowing in the layer near the ground is expressed as a wind power class: the greater the average wind energy, the higher the wind power class. The summary tables that are included with each of the 35 island/country wind energy maps provide information on the frequency distribution of the wind speeds (expressed as estimates of the Weibull shape factor, k) and seasonal variations in the wind resource for the major wind resource areas identified on the maps. A new wind power class legend has been developed for relating the wind power classes to values of mean wind power density, mean wind speed, and Weibull k. Guidelines are presented on how to adjust these values to various heights above ground for different roughness and terrain characteristics. Information evaluated in preparing the assessment included existing meteorological data from airports and other weather stations, and from ships and buoys in offshore and coastal areas. In addition, new data from recent measurement sites established for wind energy siting studies were obtained for a few areas of the Caribbean. Other types of information evaluated in the assessment were climatological data and maps on winds aloft, surface pressure, air flow, and topography. The various data were screened and evaluated for their usefulness in preparing the wind resource assessment. Much of the surface data from airports and other land-based weather stations were determined to be from sheltered sites and were thus not very useful in assessing the wind resource at locations that are well exposed to the winds. Ship data were determined to be the most useful for estimating the large-scale wind flow and assessing the spatial distribution of the wind resource throughout the region. Techniques were developed for analyzing and correcting ship wind data and extrapolating these data to coastal and inland areas by considering terrain influences on the large-scale wind flow. In areas where extrapolation of ship wind data was not entirely feasible, such as interior areas of Central America, other techniques were developed for estimating the wind flow and distribution of the wind resource. Through the application of the various innovative techniques developed for assessing the wind resource throughout the Caribbean and Central America region, many areas with potentially good to outstanding wind resource were identified that had not been previously recognized. In areas where existing site data were available from exposed locations, the measured wind resource was compared with the estimated wind resource that was derived using the assessment techniques. In most cases, there was good agreement between the measured wind resource and the estimated wind resource. This assessment project supported activities being pursued by the U.S. Committee for Renewable Energy Commerce and Trade (CORECT), the U.S. government's interagency program to assist in overseas marketing and promote renewable energy exports. An overall goal of the program is to improve U.S. competitiveness in the world renewable energy market. The Caribbean and Central America assessment, which is the first of several possible follow-on international wind energy resource assessments, provides valuable information needed by the U.S. wind energy industry to identify suitable wind resource areas and concentrate their efforts on these areas.

DL Elliott; CI Aspliden; GL Gower; CG Holladay, MN Schwartz

1987-04-01T23:59:59.000Z

120

Wind Energy Resource Atlas of the United States  

DOE Data Explorer (OSTI)

This atlas, containing more than 72 maps, estimates wind energy resource for the United States and its terrorities. Early wind resource atlases created for the Federal Wind Energy Program were based on date collected before 1979. Since then, hundreds of new sites have been instrumented specifically for wind energy assessment purposes, and many of these have been located in areas thought to have high wind resource but where data were previously not available or were very limited [copied from http://rredc.nrel.gov/wind/pubs/atlas/chp1.html].

Note: This page contains sample records for the topic "wind energy resource" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


121

Arkansas/Wind Resources/Full Version | Open Energy Information  

Open Energy Info (EERE)

source source History View New Pages Recent Changes All Special Pages Semantic Search/Querying Get Involved Help Apps Datasets Community Login | Sign Up Search Page Edit History Facebook icon Twitter icon » Arkansas/Wind Resources/Full Version < Arkansas‎ | Wind Resources Jump to: navigation, search Print PDF Arkansas Wind Resources ArkansasMap.jpg More information about these 30-m height wind resource maps is available on the Wind Powering America website. Introduction Can I use wind energy to power my home? This question is being asked across the country as more people look for a hedge against increasing electricity rates and a way to harvest their local wind resources. Small wind electric systems can make a significant contribution to our nation's energy needs. Although wind turbines large enough to provide a significant portion of the

122

Alabama/Wind Resources/Full Version | Open Energy Information  

Open Energy Info (EERE)

source source History View New Pages Recent Changes All Special Pages Semantic Search/Querying Get Involved Help Apps Datasets Community Login | Sign Up Search Page Edit History Facebook icon Twitter icon » Alabama/Wind Resources/Full Version < Alabama‎ | Wind Resources Jump to: navigation, search Print PDF Alabama Wind Resources AlabamaMap.jpg More information about these 30-m height wind resource maps is available on the Wind Powering America website. Introduction Can I use wind energy to power my home? This question is being asked across the country as more people look for a hedge against increasing electricity rates and a way to harvest their local wind resources. Small wind electric systems can make a significant contribution to our nation's energy needs. Although wind turbines large enough to provide a significant portion of the

123

Delaware/Wind Resources/Full Version | Open Energy Information  

Open Energy Info (EERE)

source source History View New Pages Recent Changes All Special Pages Semantic Search/Querying Get Involved Help Apps Datasets Community Login | Sign Up Search Page Edit History Facebook icon Twitter icon » Delaware/Wind Resources/Full Version < Delaware‎ | Wind Resources Jump to: navigation, search Print PDF Delaware Wind Resources DelawareMap.jpg More information about these 30-m height wind resource maps is available on the Wind Powering America website. Introduction Can I use wind energy to power my home? This question is being asked across the country as more people look for a hedge against increasing electricity rates and a way to harvest their local wind resources. Small wind electric systems can make a significant contribution to our nation's energy needs. Although wind turbines large enough to provide a significant portion of the

124

Florida/Wind Resources/Full Version | Open Energy Information  

Open Energy Info (EERE)

source source History View New Pages Recent Changes All Special Pages Semantic Search/Querying Get Involved Help Apps Datasets Community Login | Sign Up Search Page Edit History Facebook icon Twitter icon » Florida/Wind Resources/Full Version < Florida‎ | Wind Resources Jump to: navigation, search Print PDF Florida Wind Resources FloridaMap.jpg More information about these 30-m height wind resource maps is available on the Wind Powering America website. Introduction Can I use wind energy to power my home? This question is being asked across the country as more people look for a hedge against increasing electricity rates and a way to harvest their local wind resources. Small wind electric systems can make a significant contribution to our nation's energy needs. Although wind turbines large enough to provide a significant portion of the

125

Oregon/Wind Resources/Full Version | Open Energy Information  

Open Energy Info (EERE)

source source History View New Pages Recent Changes All Special Pages Semantic Search/Querying Get Involved Help Apps Datasets Community Login | Sign Up Search Page Edit History Facebook icon Twitter icon » Oregon/Wind Resources/Full Version < Oregon‎ | Wind Resources Jump to: navigation, search Print PDF Oregon Wind Resources OregonMap.jpg More information about these 30-m height wind resource maps is available on the Wind Powering America website. Introduction Can I use wind energy to power my home? This question is being asked across the country as more people look for a hedge against increasing electricity rates and a way to harvest their local wind resources. Small wind electric systems can make a significant contribution to our nation's energy needs. Although wind turbines large enough to provide a significant portion of the

126

Maine/Wind Resources/Full Version | Open Energy Information  

Open Energy Info (EERE)

source source History View New Pages Recent Changes All Special Pages Semantic Search/Querying Get Involved Help Apps Datasets Community Login | Sign Up Search Page Edit History Facebook icon Twitter icon » Maine/Wind Resources/Full Version < Maine‎ | Wind Resources Jump to: navigation, search Print PDF Maine Wind Resources MaineMap.jpg More information about these 30-m height wind resource maps is available on the Wind Powering America website. Introduction Can I use wind energy to power my home? This question is being asked across the country as more people look for a hedge against increasing electricity rates and a way to harvest their local wind resources. Small wind electric systems can make a significant contribution to our nation's energy needs. Although wind turbines large enough to provide a significant portion of the

127

Nevada/Wind Resources/Full Version | Open Energy Information  

Open Energy Info (EERE)

source source History View New Pages Recent Changes All Special Pages Semantic Search/Querying Get Involved Help Apps Datasets Community Login | Sign Up Search Page Edit History Facebook icon Twitter icon » Nevada/Wind Resources/Full Version < Nevada‎ | Wind Resources Jump to: navigation, search Print PDF Nevada Wind Resources NevadaMap.jpg More information about these 30-m height wind resource maps is available on the Wind Powering America website. Introduction Can I use wind energy to power my home? This question is being asked across the country as more people look for a hedge against increasing electricity rates and a way to harvest their local wind resources. Small wind electric systems can make a significant contribution to our nation's energy needs. Although wind turbines large enough to provide a significant portion of the

128

New Hampshire/Wind Resources | Open Energy Information  

Open Energy Info (EERE)

source source History View New Pages Recent Changes All Special Pages Semantic Search/Querying Get Involved Help Apps Datasets Community Login | Sign Up Search Page Edit History Facebook icon Twitter icon » New Hampshire/Wind Resources < New Hampshire Jump to: navigation, search Print PDF Print Full Version WIND ENERGY STAKEHOLDER ENGAGEMENT & OUTREACHSmall Wind Guidebook Home OpenEI Home >> Wind >> Small Wind Guidebook >> New Hampshire Wind Resources WindTurbine-icon.png Small Wind Guidebook * Introduction * First, How Can I Make My Home More Energy Efficient? * Is Wind Energy Practical for Me? * What Size Wind Turbine Do I Need? * What Are the Basic Parts of a Small Wind Electric System? * What Do Wind Systems Cost? * Where Can I Find Installation and Maintenance Support?

129

North Carolina/Wind Resources | Open Energy Information  

Open Energy Info (EERE)

source source History View New Pages Recent Changes All Special Pages Semantic Search/Querying Get Involved Help Apps Datasets Community Login | Sign Up Search Page Edit History Facebook icon Twitter icon » North Carolina/Wind Resources < North Carolina Jump to: navigation, search Print PDF Print Full Version WIND ENERGY STAKEHOLDER ENGAGEMENT & OUTREACHSmall Wind Guidebook Home OpenEI Home >> Wind >> Small Wind Guidebook >> North Carolina Wind Resources WindTurbine-icon.png Small Wind Guidebook * Introduction * First, How Can I Make My Home More Energy Efficient? * Is Wind Energy Practical for Me? * What Size Wind Turbine Do I Need? * What Are the Basic Parts of a Small Wind Electric System? * What Do Wind Systems Cost? * Where Can I Find Installation and Maintenance Support?

130

Assessment of Offshore Wind Energy Resources for the United States  

NLE Websites -- All DOE Office Websites (Extended Search)

Technical Report NRELTP-500-45889 June 2010 Assessment of Offshore Wind Energy Resources for the United States Marc Schwartz, Donna Heimiller, Steve Haymes, and Walt Musial...

131

Mexico-NREL Wind Resource Assessments | Open Energy Information  

Open Energy Info (EERE)

Wind Resource Assessments Wind Resource Assessments Jump to: navigation, search Logo: Mexico-NREL Initiatives Name Mexico-NREL Initiatives Agency/Company /Organization National Renewable Energy Laboratory Sector Energy Focus Area Wind Topics Background analysis Resource Type Dataset, Maps, Software/modeling tools Website http://www.nrel.gov/internatio Country Mexico Central America References NREL International Program Overview [1] Abstract Currently NREL is working with Mexico to develop wind resource assessments including wind maps for Tamuilipas and & Baja California (10/10) and to prepare wind development scenarios for these regions. Currently NREL is working with Mexico to develop wind resource assessments including wind maps for Tamuilipas and & Baja California (10/10) and to

132

Solar and Wind Energy Resource Assessment (SWERA) | Open Energy Information  

Open Energy Info (EERE)

Page Page Edit with form History Facebook icon Twitter icon » Solar and Wind Energy Resource Assessment (SWERA) (Redirected from SWERA) Jump to: navigation, search SWERA logo.png Solar and Wind Energy Resource Assessment (SWERA) Interactive Web PortalPowered by OpenEI Getting Started Data Sets Analysis Tools About SWERA Tool Summary LAUNCH TOOL Name: Solar and Wind Energy Resource Assessment Agency/Company /Organization: United Nations Environment Programme Partner: National Renewable Energy Laboratory, German Aerospace Center (DLR), Risoe National Laboratory for Sustainable Energy, Brazil's National Institute for Space Research (INPE), State University of New York (SUNY), Technical University of Denmark (DTU), United Nations Environment Programme (UNEP), National Aeronautics and Space Administration, Global Environment Facility (GEF)

133

Wind Energy Resource Atlas of Southeast China (CD-ROM)  

DOE Green Energy (OSTI)

This wind energy resource atlas identifies the wind characteristics and distribution of the wind resource in two regions of southeast China. The first region is the coastal area stretching from northern Fujian south to eastern Guangdong and extending approximately 100 km inland. The second region is centered on the Poyang Lake area in northern Jiangxi. This region also includes parts of two other provinces-Anhui and Hubei-and extends from near Anqing in Anhui south to near Nanchang in Jiangxi. The detailed wind resource maps and other information contained in the atlas facilitate the identification of prospective areas for use of wind energy technologies, both for utility-scale power generation and off-grid wind energy applications. We created the high-resolution (1-km2) maps in 1998 using a computerized wind resource mapping system developed at the National Renewable Energy Laboratory (NREL). The mapping system uses software known as a Geographical Information System (GIS).

Elliott, D.; Schwartz, M.; Scott, G.; Haymes, S.; Heimiller, D.; George, R.

2002-11-01T23:59:59.000Z

134

SWERA/Wind Resource Information | Open Energy Information  

Open Energy Info (EERE)

source source History View New Pages Recent Changes All Special Pages Semantic Search/Querying Get Involved Help Apps Datasets Community Login | Sign Up Search Page Edit History Facebook icon Twitter icon » SWERA/Wind Resource Information < SWERA Jump to: navigation, search SWERA logo.png Solar and Wind Energy Resource Assessment (SWERA) Interactive Web PortalPowered by OpenEI Getting Started Data Sets Analysis Tools About SWERA Wind Resource Information SWERA wind products provide estimates of how much wind resource is available at potential development sites. SWERA wind resources are depicted as average wind speed (meters per second) or wind power density (watts per square meter) at a specified height above the ground (nominally 50 m). These are derived from models and satellite and global weather observations

135

Wind resource evaluation at the Caltech Field Laboratory for Optimized Wind Energy (FLOWE)  

E-Print Network (OSTI)

Wind resource evaluation at the Caltech Field Laboratory for Optimized Wind Energy (FLOWE) Quinn;Caltech Field Laboratory for Optimized Wind Energy (reduced visual signature) #12;Field Study Results 6 continuous hours existing wind farms Planform Kinetic Energy Flux = U (W m-2) mean power above cut

136

Category:State Wind Resources | Open Energy Information  

Open Energy Info (EERE)

source source History View New Pages Recent Changes All Special Pages Semantic Search/Querying Get Involved Help Apps Datasets Community Login | Sign Up Search Category Edit History Facebook icon Twitter icon » Category:State Wind Resources Jump to: navigation, search Category containing State Wind Resources Pages in category "State Wind Resources" The following 100 pages are in this category, out of 100 total. A Alabama/Wind Resources Alabama/Wind Resources/Full Version Alaska/Wind Resources Alaska/Wind Resources/Full Version Arizona/Wind Resources Arizona/Wind Resources/Full Version Arkansas/Wind Resources Arkansas/Wind Resources/Full Version C California/Wind Resources California/Wind Resources/Full Version Colorado/Wind Resources Colorado/Wind Resources/Full Version

137

Energy Basics: Wind Energy Technologies  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Energy Basics Renewable Energy Printable Version Share this resource Biomass Geothermal Hydrogen Hydropower Ocean Solar Wind Wind Turbines Wind Resources Wind Energy...

138

Wind resource assessment and wind energy system cost analysis: Fort Huachuca, Arizona  

DOE Green Energy (OSTI)

The objective of this joint DOE and National Renewable Energy Laboratory (NREL) Strategic Environmental Research and Development Program (SERDP) project is to determine whether wind turbines can reduce costs by providing power to US military facilities in high wind areas. In support of this objective, one year of data on the wind resources at several Fort Huachuca sites was collected. The wind resource data were analyzed and used as input to an economic study for a wind energy installation at Fort Huachuca. The results of this wind energy feasibility study are presented in the report.

Olsen, T.L. [Tim Olsen Consulting, Denver, CO (United States); McKenna, E. [National Renewable Energy Lab., Golden, CO (United States)

1997-12-01T23:59:59.000Z

139

Energy Basics: Wind Turbines  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Energy Basics Renewable Energy Printable Version Share this resource Biomass Geothermal Hydrogen Hydropower Ocean Solar Wind Wind Turbines Wind Resources Wind Turbines...

140

Figure 4.16 Offshore Wind Resources - U.S. Energy Information ...  

U.S. Energy Information Administration (EIA)

Figure 4.16 Offshore Wind Resources U.S. Energy Information Administration / Annual Energy Review 2011 123 Notes: Data are annual average wind speed at 90 meters.

Note: This page contains sample records for the topic "wind energy resource" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


141

Wind Resource Maps (Postcard)  

DOE Green Energy (OSTI)

The U.S. Department of Energy's Wind Powering America initiative provides high-resolution wind maps and estimates of the wind resource potential that would be possible from development of the available windy land areas after excluding areas unlikely to be developed. This postcard is a marketing piece that stakeholders can provide to interested parties; it will guide them to Wind Powering America's online wind energy resource maps.

Not Available

2011-07-01T23:59:59.000Z

142

Assessment of Offshore Wind Energy Resources for the United States  

Wind Powering America (EERE)

Technical Report Technical Report NREL/TP-500-45889 June 2010 Assessment of Offshore Wind Energy Resources for the United States Marc Schwartz, Donna Heimiller, Steve Haymes, and Walt Musial National Renewable Energy Laboratory 1617 Cole Boulevard, Golden, Colorado 80401-3393 303-275-3000 * www.nrel.gov NREL is a national laboratory of the U.S. Department of Energy Office of Energy Efficiency and Renewable Energy Operated by the Alliance for Sustainable Energy, LLC Contract No. DE-AC36-08-GO28308 Technical Report NREL/TP-500-45889 June 2010 Assessment of Offshore Wind Energy Resources for the United States Marc Schwartz, Donna Heimiller, Steve Haymes, and Walt Musial Prepared under Task No. WE10.1211 NOTICE This report was prepared as an account of work sponsored by an agency of the United States government.

143

Changes related to "Idaho/Wind Resources" | Open Energy Information  

Open Energy Info (EERE)

Special page Share this page on Facebook icon Twitter icon Changes related to "IdahoWind Resources" IdahoWind Resources Jump to: navigation, search This is a list of...

144

New Wind Energy Resource Potential Estimates for the United States (Presentation)  

DOE Green Energy (OSTI)

This presentation provides an overview of the wind energy resource mapping efforts conducted at NREL and by Truepower.

Elliott, D.; Schwartz, M.; Haymes, S.; Heimiller, D.; Scott, G.; Brower, M.; Hale, E.; Phelps, B.

2011-01-01T23:59:59.000Z

145

Energy Basics: Wind Power Animation  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Energy Basics Renewable Energy Printable Version Share this resource Biomass Geothermal Hydrogen Hydropower Ocean Solar Wind Wind Turbines Wind Resources Wind Power...

146

NREL: Wind Research - Wind Resource Assessment  

NLE Websites -- All DOE Office Websites (Extended Search)

Wind Resource Assessment Wind Resource Assessment A map of the United States is color-coded to indicate the high winds at 80 meters. This map shows the wind resource at 80 meters for both land-based and offshore wind resources in the United States. Correct estimation of the energy available in the wind can make or break the economics of wind plant development. Wind mapping and validation techniques developed at the National Wind Technology Center (NWTC) along with collaborations with U.S. companies have produced high-resolution maps of the United States that provide wind plant developers with accurate estimates of the wind resource potential. State Wind Maps International Wind Resource Maps Dynamic Maps, GIS Data, and Analysis Tools Due to the existence of special use airspace (SUA) (i.e., military airspace

147

DOE provides detailed onshore wind resource map - Today in Energy ...  

U.S. Energy Information Administration (EIA)

Energy Information Administration ... solar, wind, geothermal, ... Puerto Rico and the U.S. Virgin Islands do not have 80-meter wind maps available but have 50-meter ...

148

West Virginia/Wind Resources/Full Version | Open Energy Information  

Open Energy Info (EERE)

West Virginia/Wind Resources/Full Version West Virginia/Wind Resources/Full Version < West Virginia‎ | Wind Resources Jump to: navigation, search Print PDF West Virginia Wind Resources WestVirginiaMap.jpg More information about these 30-m height wind resource maps is available on the Wind Powering America website. Introduction Can I use wind energy to power my home? This question is being asked across the country as more people look for a hedge against increasing electricity rates and a way to harvest their local wind resources. Small wind electric systems can make a significant contribution to our nation's energy needs. Although wind turbines large enough to provide a significant portion of the electricity needed by the average U.S. home generally require 1 acre of property or more, approximately 21 million U.S. homes are built on 1-acre

149

New Jersey/Wind Resources/Full Version | Open Energy Information  

Open Energy Info (EERE)

New Jersey/Wind Resources/Full Version New Jersey/Wind Resources/Full Version < New Jersey‎ | Wind Resources Jump to: navigation, search Print PDF New Jersey Wind Resources NewJerseyMap.jpg More information about these 30-m height wind resource maps is available on the Wind Powering America website. Introduction Can I use wind energy to power my home? This question is being asked across the country as more people look for a hedge against increasing electricity rates and a way to harvest their local wind resources. Small wind electric systems can make a significant contribution to our nation's energy needs. Although wind turbines large enough to provide a significant portion of the electricity needed by the average U.S. home generally require 1 acre of property or more, approximately 21 million U.S. homes are built on 1-acre

150

South Carolina/Wind Resources/Full Version | Open Energy Information  

Open Energy Info (EERE)

South Carolina/Wind Resources/Full Version South Carolina/Wind Resources/Full Version < South Carolina‎ | Wind Resources Jump to: navigation, search Print PDF South Carolina Wind Resources SouthCarolinaMap.jpg More information about these 30-m height wind resource maps is available on the Wind Powering America website. Introduction Can I use wind energy to power my home? This question is being asked across the country as more people look for a hedge against increasing electricity rates and a way to harvest their local wind resources. Small wind electric systems can make a significant contribution to our nation's energy needs. Although wind turbines large enough to provide a significant portion of the electricity needed by the average U.S. home generally require 1 acre of property or more, approximately 21 million U.S. homes are built on 1-acre

151

South Dakota/Wind Resources/Full Version | Open Energy Information  

Open Energy Info (EERE)

South Dakota/Wind Resources/Full Version South Dakota/Wind Resources/Full Version < South Dakota‎ | Wind Resources Jump to: navigation, search Print PDF South Dakota Wind Resources SouthDakotaMap.jpg More information about these 30-m height wind resource maps is available on the Wind Powering America website. Introduction Can I use wind energy to power my home? This question is being asked across the country as more people look for a hedge against increasing electricity rates and a way to harvest their local wind resources. Small wind electric systems can make a significant contribution to our nation's energy needs. Although wind turbines large enough to provide a significant portion of the electricity needed by the average U.S. home generally require 1 acre of property or more, approximately 21 million U.S. homes are built on 1-acre

152

Rhode Island/Wind Resources/Full Version | Open Energy Information  

Open Energy Info (EERE)

Rhode Island/Wind Resources/Full Version Rhode Island/Wind Resources/Full Version < Rhode Island‎ | Wind Resources Jump to: navigation, search Print PDF Rhode Island Wind Resources RhodeIslandMap.jpg More information about these 30-m height wind resource maps is available on the Wind Powering America website. Introduction Can I use wind energy to power my home? This question is being asked across the country as more people look for a hedge against increasing electricity rates and a way to harvest their local wind resources. Small wind electric systems can make a significant contribution to our nation's energy needs. Although wind turbines large enough to provide a significant portion of the electricity needed by the average U.S. home generally require 1 acre of property or more, approximately 21 million U.S. homes are built on 1-acre

153

Remapping of the Wind Energy Resource in the Midwestern United States: Preprint  

DOE Green Energy (OSTI)

A recent increase in interest and development of wind energy in the Midwestern United States has focused the need for updating wind resource maps of this area. The wind resource assessment group at the National Renewable Energy Lab., a U.S. Department of Energy (DOE) laboratory, has produced updated high-resolution (1-km) wind resource maps for several states in this region. This abstract describes the computerized tools and methodology used by NREL to create the higher resolution maps.

Schwartz, M.; Elliot, D.

2001-12-19T23:59:59.000Z

154

Final Map Draft Comparison Report WIND ENERGY RESOURCE MODELING AND MEASUREMENT PROJECT  

E-Print Network (OSTI)

II Final Map Draft Comparison Report #12;WIND ENERGY RESOURCE MODELING AND MEASUREMENT PROJECT Tel: 978-749-9591 Fax: 978-749-9713 mbrower@awstruewind.com August 10, 2004 #12;2 WIND ENERGY RESOURCE issues. 1 Background In Task 2 of the project, five promising areas of the state for wind energy

155

The Association of Large-Scale Climate Variability and Teleconnections on Wind Energy Resource  

E-Print Network (OSTI)

The Association of Large-Scale Climate Variability and Teleconnections on Wind Energy Resource over on Wind Energy Resource over Europe and its Intermittency Pascal Kriesche* and Adam Schlosser* Abstract In times of increasing importance of wind power in the world's energy mix, this study focuses on a better

156

Mongolia wind resource assessment project  

DOE Green Energy (OSTI)

The development of detailed, regional wind-resource distributions and other pertinent wind resource characteristics (e.g., assessment maps and reliable estimates of seasonal, diurnal, and directional) is an important step in planning and accelerating the deployment of wind energy systems. This paper summarizes the approach and methods being used to conduct a wind energy resource assessment of Mongolia. The primary goals of this project are to develop a comprehensive wind energy resource atlas of Mongolia and to establish a wind measurement program in specific regions of Mongolia to identify prospective sites for wind energy projects and to help validate some of the wind resource estimates. The Mongolian wind resource atlas will include detailed, computerized wind power maps and other valuable wind resource characteristic information for the different regions of Mongolia.

Elliott, D.; Chadraa, B.; Natsagdorj, L.

1998-09-07T23:59:59.000Z

157

Recent wind resource characterization activities at the National Renewable Energy Laboratory  

DOE Green Energy (OSTI)

The wind resource characterization team at the National Renewable Energy Laboratory (NREL) is working to improve the characterization of the wind resource in many key regions of the world. Tasks undertaken in the past year include: updates to the comprehensive meteorological and geographic data bases used in resource assessments in the US and abroad; development and validation of an automated wind resource mapping procedure; support in producing wind forecasting tools useful to utilities involved in wind energy generation; continued support for recently established wind measurement and assessment programs in the US.

Elliott, D.L.; Schwartz, M.N.

1997-07-01T23:59:59.000Z

158

Wind energy resource atlas. Volume 3. Great Lakes Region  

DOE Green Energy (OSTI)

The Great Lakes Region atlas assimilates six collections of wind resource data, one for the region and one for each of the five states that compose the Great Lakes region: Illinois, Indiana, Michigan, Ohio, Wisconsin. At the state level, features of the climate, topography, and wind resource are discussed in greater detail than in the regional discussion and the data locations on which the assessment is based are mapped. Variations over several time scales in the wind resource at selected stations in each state are shown on graphs of monthly average and interannual wind speed and power, and of hourly average wind speed for each season. Other graphs present speed, direction, and duration frequencies of the wind at these locations.

Paton, D.L.; Bass, A.; Smith, D.G.; Elliott, D.L.; Barchet, W.R.; George, R.L.

1981-02-01T23:59:59.000Z

159

Wind energy resource atlas. Volume 2. The North Central Region  

SciTech Connect

The North Central atlas assimilates six collections of wind resource data: one for the region and one for each of the five states that compose the North Central region (Iowa, Minnesota, Nebraska, North Dakota, and South Dakota). At the state level, features of the climate, topography and wind resource are discussed in greater detail than is provided in the regional discussion, and that data locations on which the assessment is based are mapped. Variations, over several time scales, in the wind resource at selected stations in each state are shown on graphs of monthly average and international wind speed and power, and hourly average wind speed for each season. Other graphs present speed direction and duration frequencies of the wind at these locations.

Freeman, D.L.; Hadley, D.L.; Elliott, D.L.; Barchet, W.R.; George, R.L.

1981-02-01T23:59:59.000Z

160

Wind energy resource atlas. Volume 7. The south central region  

DOE Green Energy (OSTI)

This atlas of the south central region combines seven collections of wind resource data: one for the region, and one for each of the six states (Arkansas, Kansas, Louisiana, Missouri, Oklahoma, and Texas). At the state level, features of the climate, topography, and wind resource are discussed in greater detail than that provided in the regional discussion, and the data locations on which the assessment is based are mapped. Variations, over several time scales, in the wind resource at selected stations in each state are shown on graphs of monthly average and interannual wind speed and power, and hourly average wind speed for each season. Other graphs present speed, direction, and duration frequencies of the wind at these locations.

Edwards, R.L.; Graves, L.F.; Sprankle, A.C.; Elliott, D.L.; Barchet, W.R.; George, R.L.

1981-03-01T23:59:59.000Z

Note: This page contains sample records for the topic "wind energy resource" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


161

New England Wind Forum: New England Wind Resources  

Wind Powering America (EERE)

New England Wind Forum About the New England Wind Forum New England Wind Energy Education Project Historic Wind Development in New England State Activities Projects in New England Building Wind Energy in New England Wind Resources Wind Power Technology Economics Markets Siting Policy Technical Challenges Issues Small Wind Large Wind Newsletter Perspectives Events Quick Links to States CT MA ME NH RI VT Bookmark and Share New England Wind Resources Go to the Vermont wind resource map. Go to the New Hampshire wind resource map. Go to the Maine wind resource map. Go to the Massachusetts wind resource map. Go to the Connecticut wind resource map. Go to the Rhode Island wind resource map. New England Wind Resource Maps Wind resources maps of Connecticut, Massachusetts, Maine, New Hampshire, Rhode Island, and Vermont.

162

Solar and Wind Energy Resource Assessment - Kenya Country Report  

Open Energy Info (EERE)

- Kenya Country Report (Abstract):The Kenya Country Report describes the energy situation in Kenys and identifies solar and wind energy opportunities.
...

163

Wind for Schools Portal Educational Resources | Open Energy Information  

Open Energy Info (EERE)

source source History View New Pages Recent Changes All Special Pages Semantic Search/Querying Get Involved Help Apps Datasets Community Login | Sign Up Search Page Edit History Facebook icon Twitter icon » Wind for Schools Portal Educational Resources Jump to: navigation, search Wind for Schools Portal Home Comparison Motion Chart Educational Resources Educational Resources University Trade School High School Middle School Elementary School Other Resources To add a new entry, you can upload a new file. In the summary field, type in the following text to add the file to this page: [[Category:Wind for Schools LEVEL Curricula]] Where LEVEL is one of: University Trade School High School Middle School Elementary School Or assign the upload to: [[Category:Wind_for_Schools_Portal_Other_Resources]]

164

UNEP/DTIE Solar and Wind Energy Resource Assessment (SWERA) Project  

Open Energy Info (EERE)

b>This project will provide solar and wind resource data and geographic information assessment tools to public and private sector executives who are involved in energy...

165

Fort Carson Wind Resource Assessment  

DOE Green Energy (OSTI)

This report focuses on the wind resource assessment, the estimated energy production of wind turbines, and economic potential of a wind turbine project on a ridge in the southeastern portion of the Fort Carson Army base.

Robichaud, R.

2012-10-01T23:59:59.000Z

166

The Wind Energy Outlook Scenarios 1 India Wind Energy  

E-Print Network (OSTI)

1 ?Status of wind energy in India ????????????????????6 Wind energy in India????????????????????????????????????????????????????????????????????????????????????7 Wind power resource assessment?????????????????????????????????????????????????????????6 Wind power installations by state?????????????????????????????????????????????????????????8

unknown authors

2012-01-01T23:59:59.000Z

167

New Mexico/Wind Resources/Full Version | Open Energy Information  

Open Energy Info (EERE)

source source History View New Pages Recent Changes All Special Pages Semantic Search/Querying Get Involved Help Apps Datasets Community Login | Sign Up Search Page Edit History Facebook icon Twitter icon » New Mexico/Wind Resources/Full Version < New Mexico‎ | Wind Resources Jump to: navigation, search Print PDF New Mexico Wind Resources NewMexicoMap.jpg More information about these 30-m height wind resource maps is available on the Wind Powering America website. Introduction Can I use wind energy to power my home? This question is being asked across the country as more people look for a hedge against increasing electricity rates and a way to harvest their local wind resources. Small wind electric systems can make a significant contribution to our nation's energy needs.

168

North Dakota/Wind Resources/Full Version | Open Energy Information  

Open Energy Info (EERE)

source source History View New Pages Recent Changes All Special Pages Semantic Search/Querying Get Involved Help Apps Datasets Community Login | Sign Up Search Page Edit History Facebook icon Twitter icon » North Dakota/Wind Resources/Full Version < North Dakota‎ | Wind Resources Jump to: navigation, search Print PDF North Dakota Wind Resources NorthDakotaMap.jpg More information about these 30-m height wind resource maps is available on the Wind Powering America website. Introduction Can I use wind energy to power my home? This question is being asked across the country as more people look for a hedge against increasing electricity rates and a way to harvest their local wind resources. Small wind electric systems can make a significant contribution to our nation's energy needs.

169

A PRODUCTION SIMULATION TOOL FOR SYSTEMS WITH INTEGRATED WIND ENERGY RESOURCES  

E-Print Network (OSTI)

A PRODUCTION SIMULATION TOOL FOR SYSTEMS WITH INTEGRATED WIND ENERGY RESOURCES BY NICOLAS BENOIT the energy output of a wind farm in a single location and of those in multiple locations. In this way, we for such planning tools. The incorporation of the wind energy model requires the extension of the widely used

Gross, George

170

Technical Report - Cuba Wind Energy Resource Assessment | OpenEI  

Open Energy Info (EERE)

Cuba Wind Energy Resource Assessment Cuba Wind Energy Resource Assessment Dataset Summary Description (Abstract): This document describes the development of detailed high-resolution (1 km2) wind energy resource maps for Cuba. (Purpose): To provide information on the wind resource potential within Cuba. Source NREL Date Released August 21st, 2006 (8 years ago) Date Updated August 21st, 2006 (8 years ago) Keywords Cuba documentation GIS NREL SWERA UNEP wind Data application/pdf icon Download Report (pdf, 54.3 KiB) Quality Metrics Level of Review Some Review Comment Temporal and Spatial Coverage Frequency Time Period 2006 License License Other or unspecified, see optional comment below Comment Restrictions to use (Use Constraints): This GIS data was developed by the National Renewable Energy Laboratory ("NREL"), which is operated by the Midwest Research Institute for the U.S. Department of Energy ("DOE"). The user is granted the right, without any fee or cost, to use, copy, modify, alter, enhance and distribute this data for any purpose whatsoever, provided that this entire notice appears in all copies of the data. Further, the user of this data agrees to credit NREL in any publications or software that incorporate or use the data. Access to and use of the GIS data shall further impose the following obligations on the User. The names DOE/NREL may not be used in any advertising or publicity to endorse or promote any product or commercial entity using or incorporating the GIS data unless specific written authorization is obtained from DOE/NREL. The User also understands that DOE/NREL shall not be obligated to provide updates, support, consulting, training or assistance of any kind whatsoever with regard to the use of the GIS data. THE GIS DATA IS PROVIDED "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL DOE/NREL BE LIABLE FOR ANY SPECIAL, INDIRECT OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES WHATSOEVER, INCLUDING BUT NOT LIMITED TO CLAIMS ASSOCIATED WITH THE LOSS OF DATA OR PROFITS, WHICH MAY RESULT FROM AN ACTION IN CONTRACT, NEGLIGENCE OR OTHER TORTIOUS CLAIM THAT ARISES OUT OF OR IN CONNECTION WITH THE ACCESS OR USE OF THE GIS DATA. The User acknowledges that access to the GIS data is subject to U.S. Export laws and regulations and any use or transfer of the GIS data must be authorized under those regulations. The User shall not use, distribute, transfer, or transmit GIS data or any products incorporating the GIS data except in compliance with U.S. export regulations. If requested by DOE/NREL, the User agrees to sign written assurances and other export-related documentation as may be required to comply with U.S. export regulations.

171

Technical Report - Ghana Wind Energy Resource Assessment | OpenEI  

Open Energy Info (EERE)

Ghana Wind Energy Resource Assessment Ghana Wind Energy Resource Assessment Dataset Summary Description (Abstract): This document describes the development of detailed high-resolution (1 km2) wind energy resource maps for Ghana. (Purpose): To provide information on the wind resource potential within Ghana. Source NREL Date Released August 21st, 2006 (8 years ago) Date Updated August 21st, 2006 (8 years ago) Keywords documentation GEF Ghana GIS NREL SWERA UNEP wind Data application/pdf icon Download Report (pdf, 54.3 KiB) Quality Metrics Level of Review Some Review Comment Temporal and Spatial Coverage Frequency Time Period 2006 License License Open Data Commons Public Domain Dedication and Licence (PDDL) Comment Restrictions to use (Use Constraints): This GIS data was developed by the National Renewable Energy Laboratory ("NREL"), which is operated by the Midwest Research Institute for the U.S. Department of Energy ("DOE"). The user is granted the right, without any fee or cost, to use, copy, modify, alter, enhance and distribute this data for any purpose whatsoever, provided that this entire notice appears in all copies of the data. Further, the user of this data agrees to credit NREL in any publications or software that incorporate or use the data. Access to and use of the GIS data shall further impose the following obligations on the User. The names DOE/NREL may not be used in any advertising or publicity to endorse or promote any product or commercial entity using or incorporating the GIS data unless specific written authorization is obtained from DOE/NREL. The User also understands that DOE/NREL shall not be obligated to provide updates, support, consulting, training or assistance of any kind whatsoever with regard to the use of the GIS data. THE GIS DATA IS PROVIDED "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL DOE/NREL BE LIABLE FOR ANY SPECIAL, INDIRECT OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES WHATSOEVER, INCLUDING BUT NOT LIMITED TO CLAIMS ASSOCIATED WITH THE LOSS OF DATA OR PROFITS, WHICH MAY RESULT FROM AN ACTION IN CONTRACT, NEGLIGENCE OR OTHER TORTIOUS CLAIM THAT ARISES OUT OF OR IN CONNECTION WITH THE ACCESS OR USE OF THE GIS DATA. The User acknowledges that access to the GIS data is subject to U.S. Export laws and regulations and any use or transfer of the GIS data must be authorized under those regulations. The User shall not use, distribute, transfer, or transmit GIS data or any products incorporating the GIS data except in compliance with U.S. export regulations. If requested by DOE/NREL, the User agrees to sign written assurances and other export-related documentation as may be required to comply with U.S. export regulations.

172

Technical Report - Sri Lanka and the Maldives Wind Energy Resource  

Open Energy Info (EERE)

Sri Lanka and the Maldives Wind Energy Resource Sri Lanka and the Maldives Wind Energy Resource Assessment Dataset Summary Description (Abstract): This document describes the development of detailed high-resolution (1 km2) wind energy resource maps for Sri Lanka and the Maldives. (Purpose): To provide information on the wind resource potential within Sri Lanka and the Maldives. Source NREL Date Released August 21st, 2006 (8 years ago) Date Updated August 21st, 2006 (8 years ago) Keywords documentation GEF GIS Maldives NREL Sri Lanka SWERA UNEP wind Data application/pdf icon Download Report (pdf, 30.1 MiB) Quality Metrics Level of Review Some Review Comment Temporal and Spatial Coverage Frequency Time Period 2006 License License Open Data Commons Public Domain Dedication and Licence (PDDL) Comment Restrictions to use (Use Constraints): This GIS data was developed by the National Renewable Energy Laboratory ("NREL"), which is operated by the Midwest Research Institute for the U.S. Department of Energy ("DOE"). The user is granted the right, without any fee or cost, to use, copy, modify, alter, enhance and distribute this data for any purpose whatsoever, provided that this entire notice appears in all copies of the data. Further, the user of this data agrees to credit NREL in any publications or software that incorporate or use the data. Access to and use of the GIS data shall further impose the following obligations on the User. The names DOE/NREL may not be used in any advertising or publicity to endorse or promote any product or commercial entity using or incorporating the GIS data unless specific written authorization is obtained from DOE/NREL. The User also understands that DOE/NREL shall not be obligated to provide updates, support, consulting, training or assistance of any kind whatsoever with regard to the use of the GIS data. THE GIS DATA IS PROVIDED "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL DOE/NREL BE LIABLE FOR ANY SPECIAL, INDIRECT OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES WHATSOEVER, INCLUDING BUT NOT LIMITED TO CLAIMS ASSOCIATED WITH THE LOSS OF DATA OR PROFITS, WHICH MAY RESULT FROM AN ACTION IN CONTRACT, NEGLIGENCE OR OTHER TORTIOUS CLAIM THAT ARISES OUT OF OR IN CONNECTION WITH THE ACCESS OR USE OF THE GIS DATA. The User acknowledges that access to the GIS data is subject to U.S. Export laws and regulations and any use or transfer of the GIS data must be authorized under those regulations. The User shall not use, distribute, transfer, or transmit GIS data or any products incorporating the GIS data except in compliance with U.S. export regulations. If requested by DOE/NREL, the User agrees to sign written assurances and other export-related documentation as may be required to comply with U.S. export regulations.

173

Technical Report - China Wind Energy Resource Assessment | OpenEI  

Open Energy Info (EERE)

China Wind Energy Resource Assessment China Wind Energy Resource Assessment Dataset Summary Description (Abstract): This document describes the development of detailed high-resolution (1 km2) wind energy resource maps for China. (Purpose): To provide information on the wind resource potential within China. Source NREL Date Released August 21st, 2006 (8 years ago) Date Updated August 21st, 2006 (8 years ago) Keywords China documentation GIS NREL SWERA UNEP wind Data application/pdf icon Download Report (pdf, 124.1 KiB) Quality Metrics Level of Review Some Review Comment Temporal and Spatial Coverage Frequency Time Period 2006 License License Other or unspecified, see optional comment below Comment Restrictions to use (Use Constraints): This GIS data was developed by the National Renewable Energy Laboratory ("NREL"), which is operated by the Midwest Research Institute for the U.S. Department of Energy ("DOE"). The user is granted the right, without any fee or cost, to use, copy, modify, alter, enhance and distribute this data for any purpose whatsoever, provided that this entire notice appears in all copies of the data. Further, the user of this data agrees to credit NREL in any publications or software that incorporate or use the data. Access to and use of the GIS data shall further impose the following obligations on the User. The names DOE/NREL may not be used in any advertising or publicity to endorse or promote any product or commercial entity using or incorporating the GIS data unless specific written authorization is obtained from DOE/NREL. The User also understands that DOE/NREL shall not be obligated to provide updates, support, consulting, training or assistance of any kind whatsoever with regard to the use of the GIS data. THE GIS DATA IS PROVIDED "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL DOE/NREL BE LIABLE FOR ANY SPECIAL, INDIRECT OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES WHATSOEVER, INCLUDING BUT NOT LIMITED TO CLAIMS ASSOCIATED WITH THE LOSS OF DATA OR PROFITS, WHICH MAY RESULT FROM AN ACTION IN CONTRACT, NEGLIGENCE OR OTHER TORTIOUS CLAIM THAT ARISES OUT OF OR IN CONNECTION WITH THE ACCESS OR USE OF THE GIS DATA. The User acknowledges that access to the GIS data is subject to U.S. Export laws and regulations and any use or transfer of the GIS data must be authorized under those regulations. The User shall not use, distribute, transfer, or transmit GIS data or any products incorporating the GIS data except in compliance with U.S. export regulations. If requested by DOE/NREL, the User agrees to sign written assurances and other export-related documentation as may be required to comply with U.S. export regulations.

174

Wind Energy Resource Atlas of the Dominican Republic  

NLE Websites -- All DOE Office Websites (Extended Search)

October 2001 * NREL/TP-500-27602 October 2001 * NREL/TP-500-27602 Wind Energy Resource Atlas of the Dominican Republic D. Elliott M. Schwartz R. George S. Haymes D. Heimiller G. Scott National Renewable Energy Laboratory J. Kline RAM Associates Prepared under Task Nos. WER11050 and DO059999 NOTICE This report was prepared as an account of work sponsored by an agency of the United States government. Neither the United States government nor any agency thereof, nor any of their employees, makes any warranty, express or implied, or assumes any legal liability or responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or represents that its use would not infringe privately owned rights. Reference herein to any specific commercial

175

Wind for Schools Portal Developer Resources | Open Energy Information  

Open Energy Info (EERE)

Developer Resources Developer Resources Jump to: navigation, search Wind for Schools Portal Home Comparison Motion Chart Educational Resources Data, APIs and Visualizations - introduction for aspiring developers Are you looking to get raw data from Wind for Schools Portal? Or perhaps you'd like to modify an existing visualization? This page shows details on how to query data and modify or create your own visualizations. All of the Wind for Schools Portal data is open. Because it is updated real-time, it is unique, interesting data that you can download, analyze and visualize. Data Wind data is aggregated daily to Google Fusion Tables. This data is such that SQL-like queries can be made against it and a visualization created. Generate an API key for your usage at Google API console. This API

176

NREL: Wind Research - Offshore Wind Resource Characterization  

NLE Websites -- All DOE Office Websites (Extended Search)

Offshore Wind Resource Characterization Offshore Wind Resource Characterization Map of the United States, showing the wind potential of offshore areas across the country. Enlarge image US offshore wind speed estimates at 90-m height NREL scientists and engineers are leading efforts in resource mapping, remote sensor measurement and development, and forecasting that are essential for the development of offshore wind. Resource Mapping For more than 15 years, NREL's meteorologists, engineers, and Geographic Information System experts have led the production of wind resource characterization maps and reports used by policy makers, private industry, and other government organizations to inform and accelerate the development of wind energy in the United States. Offshore wind resource data and mapping has strategic uses. As with terrestrial developments, traditional

177

Wind Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

FUPWG Meeting FUPWG Meeting NREL is a national laboratory of the U.S. Department of Energy Office of Energy Efficiency and Renewable Energy operated by the Alliance for Sustainable Energy, LLC Robi Robichaud November 18, 2009 Topics Introduction Review of the Current Wind Market Drivers for Wind Development Siting g Issues Wind Resource Assessment Wind Characteristics Wind Power Potential Basic Wind Turbine Theory Basic Wind Turbine Theory Types of Wind Turbines Facts About Wind Siting Facts About Wind Siting Wind Performance 1. United States: MW 1 9 8 2 1 9 8 3 1 9 8 4 1 9 8 5 1 9 8 6 1 9 8 7 1 9 8 8 1 9 8 9 1 9 9 0 1 9 9 1 1 9 9 2 1 9 9 3 1 9 9 4 1 9 9 5 1 9 9 6 1 9 9 7 1 9 9 8 1 9 9 9 2 0 0 0 2 0 0 1 2 0 0 2 2 0 0 3 2 0 0 4 2 0 0 5 2 0 0 6 2 0 0 7 2 0 0 8 Current Status of the Wind Industry Total Global Installed Wind Capacity Total Global Installed Wind Capacity Total Global Installed Wind Capacity

178

China Resources Wind Power Development Co Ltd Hua Run | Open Energy  

Open Energy Info (EERE)

Hua Run Hua Run Jump to: navigation, search Name China Resources Wind Power Development Co Ltd (Hua Run) Place Shantou, Guangdong Province, China Zip 515041 Sector Wind energy Product A company engages in developing wind power project. References China Resources Wind Power Development Co Ltd (Hua Run)[1] LinkedIn Connections CrunchBase Profile No CrunchBase profile. Create one now! This article is a stub. You can help OpenEI by expanding it. China Resources Wind Power Development Co Ltd (Hua Run) is a company located in Shantou, Guangdong Province, China . References ↑ "China Resources Wind Power Development Co Ltd (Hua Run)" Retrieved from "http://en.openei.org/w/index.php?title=China_Resources_Wind_Power_Development_Co_Ltd_Hua_Run&oldid=343528

179

Energy Basics: Wind Power Animation (Text Version)  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Energy Basics Renewable Energy Printable Version Share this resource Biomass Geothermal Hydrogen Hydropower Ocean Solar Wind Wind Turbines Wind Resources Wind Power...

180

Technical Report - Central America Wind Energy Resource Assessment | OpenEI  

Open Energy Info (EERE)

Central America Wind Energy Resource Assessment Central America Wind Energy Resource Assessment Dataset Summary Description (Abstract): This document describes the development of detailed high-resolution (1 km2) wind energy resource maps for the region of Central America that includes the countries of Belize, El Salvador, Guatemala, Honduras, and Nicaragua. (Purpose): To provide information on the wind resource potential within the following countries in Central America: Belize, El Salvador, Guatemala, Honduras, and Nicaragua. Source NREL Date Released August 21st, 2006 (8 years ago) Date Updated August 21st, 2006 (8 years ago) Keywords Central America documentation GEF NREL SWERA UNEP wind Data application/pdf icon Download Report (pdf, 60.9 KiB) Quality Metrics Level of Review Some Review Comment Temporal and Spatial Coverage

Note: This page contains sample records for the topic "wind energy resource" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


181

Techniques for assessing the wind energy resource in the North Central region  

SciTech Connect

The US Department of Energy has sponsored the development of regional wind energy resource atlases for twelve regions of the United States. The North Central Region, which consists of North Dakota, South Dakota, Nebraska, Minnesota, and Iowa, was one of the regions for which an atlas was assembled. This report is a description of observational and analytical techniques used in the development of the North Central region's wind energy resource atlas.

Freeman, D.L.

1981-03-01T23:59:59.000Z

182

Assessment of Offshore Wind Energy Resources for the United States  

SciTech Connect

This report summarizes the offshore wind resource potential for the contiguous United States and Hawaii as of May 2009. The development of this assessment has evolved over multiple stages as new regional meso-scale assessments became available, new validation data was obtained, and better modeling capabilities were implemented. It is expected that further updates to the current assessment will be made in future reports.

Schwartz, M.; Heimiller, D.; Haymes, S.; Musial, W.

2010-06-01T23:59:59.000Z

183

File:Sri Lanka Wind Resource Map.pdf | Open Energy Information  

Open Energy Info (EERE)

Sri Lanka Wind Resource Map.pdf Sri Lanka Wind Resource Map.pdf Jump to: navigation, search File File history File usage Sri Lanka Wind Resource Map Size of this preview: 463 × 599 pixels. Other resolution: 464 × 600 pixels. Full resolution ‎(1,275 × 1,650 pixels, file size: 1.85 MB, MIME type: application/pdf) This map was produced by NREL with technical assistance from TrueWind Solutions and with funding from the U.S. Agency for International Development. Description Sri Lanka Wind Resource Map Sources National Renewable Energy Laboratory Authors Donna Heimiller Related Technologies Wind Creation Date 2004-06 Extent International Countries Sri Lanka UN Region Southern Asia File history Click on a date/time to view the file as it appeared at that time. Date/Time Thumbnail Dimensions User Comment

184

Quantifying emissions reductions from New England offshore wind energy resources  

E-Print Network (OSTI)

Access to straightforward yet robust tools to quantify the impact of renewable energy resources on air emissions from fossil fuel power plants is important to governments aiming to improve air quality and reduce greenhouse ...

Berlinski, Michael Peter

2006-01-01T23:59:59.000Z

185

Assessment of the Southern New England Offshore Wind Energy Resource James F. Manwell, Anthony Rogers, Jon G. McGowan  

E-Print Network (OSTI)

1 Assessment of the Southern New England Offshore Wind Energy Resource James F. Manwell, Anthony of the wind energy resource off the coast of southern New England. This work is being undertaken to determine the potential for the near term development of offshore wind energy projects in that region. The work summarized

Massachusetts at Amherst, University of

186

NREL: Renewable Resource Data Center - Wind Resource Information  

NLE Websites -- All DOE Office Websites (Extended Search)

Wind Resource Information Wind Resource Information Photo of five wind turbines at the Nine Canyon Wind Project. The Nine Canyon Wind Project in Benton County, Washington, includes 37 wind turbines and 48 MW of capacity. Detailed wind resource information can be found on NREL's Wind Research Web site. This site provides access to state and international wind resource maps. Wind Integration Datasets are provided to help energy professionals perform wind integration studies and estimate power production from hypothetical wind plants. In addition, RReDC offers Meteorological Field Measurements at Potential and Actual Wind Turbine Sites and a Wind Energy Resource Atlas of the United States. Wind resource maps are also available from the NREL Dynamic Maps, GIS Data, and Analysis Tools Web site.

187

Indiana 50 M Wind Resource  

NLE Websites -- All DOE Office Websites (Extended Search)

Indiana 50 M Wind Resource Indiana 50 M Wind Resource Metadata also available as Metadata: Identification_Information Data_Quality_Information Spatial_Data_Organization_Information Spatial_Reference_Information Entity_and_Attribute_Information Distribution_Information Metadata_Reference_Information Identification_Information: Citation: Citation_Information: Originator: AWS TrueWind/NREL Publication_Date: March, 2004 Title: Indiana 50 M Wind Resource Geospatial_Data_Presentation_Form: vector digital data Other_Citation_Details: The wind power resource estimates were produced by AWS TrueWind using their MesoMap system and historical weather data under contract to Wind Powering America/NREL. This map has been validated with available surface data by NREL and wind energy meteorological consultants.

188

Ohio 50 m Wind Resource  

NLE Websites -- All DOE Office Websites (Extended Search)

Ohio 50 m Wind Resource Ohio 50 m Wind Resource Metadata also available as Metadata: Identification_Information Data_Quality_Information Spatial_Data_Organization_Information Spatial_Reference_Information Entity_and_Attribute_Information Distribution_Information Metadata_Reference_Information Identification_Information: Citation: Citation_Information: Originator: AWS TrueWind/NREL Publication_Date: May, 2004 Title: Ohio 50 m Wind Resource Geospatial_Data_Presentation_Form: vector digital data Other_Citation_Details: The wind power resource estimates were produced by AWS TrueWind using their MesoMap system and historical weather data under contract to Wind Powering America/NREL. This map has been validated with available surface data by NREL and wind energy meteorological consultants. Online_Linkage:

189

Missouri 50 m Wind Resource  

NLE Websites -- All DOE Office Websites (Extended Search)

50 m Wind Resource 50 m Wind Resource Metadata also available as Metadata: Identification_Information Data_Quality_Information Spatial_Data_Organization_Information Spatial_Reference_Information Entity_and_Attribute_Information Distribution_Information Metadata_Reference_Information Identification_Information: Citation: Citation_Information: Originator: AWS TrueWind/NREL Publication_Date: November, 2004 Title: Missouri 50 m Wind Resource Geospatial_Data_Presentation_Form: vector digital data Other_Citation_Details: The wind power resource estimates were produced by AWS TrueWind using their MesoMap system and historical weather data under contract to Wind Powering America/NREL. This map has been validated with available surface data by NREL and wind energy meteorological consultants.

190

U.S. Department of Energy Workshop Report - Research Needs for Wind Resource Characterization  

DOE Green Energy (OSTI)

This workshop brought the different atmospheric and wind technology specialists together to evaluate research needs for wind resource characterization.

Schreck, S.; Lundquist, J.; Shaw, W.

2008-06-01T23:59:59.000Z

191

Mexico Wind Resource Assessment Project  

Science Conference Proceedings (OSTI)

A preliminary wind energy resource assessment of Mexico that produced wind resource maps for both utility-scale and rural applications was undertaken as part of the Mexico-U.S. Renewable Energy Cooperation Program. This activity has provided valuable information needed to facilitate the commercialization of small wind turbines and windfarms in Mexico and to lay the groundwork for subsequent wind resource activities. A surface meteorological data set of hourly data in digital form was utilized to prepare a more detailed and accurate wind resource assessment of Mexico than otherwise would have been possible. Software was developed to perform the first ever detailed analysis of the wind characteristics data for over 150 stations in Mexico. The hourly data set was augmented with information from weather balloons (upper-air data), ship wind data from coastal areas, and summarized wind data from sources in Mexico. The various data were carefully evaluated for their usefulness in preparing the wind resource assessment. The preliminary assessment has identified many areas of good-to-excellent wind resource potential and shows that the wind resource in Mexico is considerably greater than shown in previous surveys.

Schwartz, M.N.; Elliott, D.L.

1995-05-01T23:59:59.000Z

192

Wind Resource Estimation and Mapping at the National Renewable Energy Laboratory  

DOE Green Energy (OSTI)

The National Renewable Energy Laboratory (NREL) has developed an automated technique for wind resource mapping to aid in the acceleration of wind energy deployment. The new automated mapping system was developed with the following two primary goals: (1) to produce a more consistent and detailed analysis of the wind resource for a variety of physiographic settings, particularly in areas of complex terrain; and (2) to generate high quality map products on a timely basis. Using computer mapping techniques reduces the time it takes to produce a wind map that reflects a consistent analysis of the distribution of the wind resource throughout the region of interest. NREL's mapping system uses commercially available geographic information system software packages. Regional wind resource maps using this new system have been produced for areas of the United States, Mexico, Chile, Indonesia (1), and China. Countrywide wind resource assessments are under way for the Philippines, the Dominican Re public, and Mongolia. Regional assessments in Argentina and Russia are scheduled to begin soon.

Schwartz, M.

1999-04-07T23:59:59.000Z

193

Wind Energy Resource Atlas. Volume 11. Hawaii and Pacific Islands Region  

DOE Green Energy (OSTI)

This atlas of the wind energy resource is composed of introductory and background information, and assessments of the wind resource in each division of the region. Background on how the wind resource is assessed and on how the results of the assessment should be inerpreted is presented. An introduction and outline to the descriptions of the wind resource for each division are provided. Assessments for individual divisions are presented as separate chapters. Much of the information in the division chapters is given in graphic or tabular form. The sequences for each chapter are similar, but some presentations used for Hawaii are inappropriate or impractical for presentation with the Pacific Islands. Hawaii chapter figure and tables are cited below and appropriate Pacific Islands figure and table numbers are included in brackets ().

Schroeder, T.A.; Hori, A.M.; Elliott, D.L.; Barchet, W.R.; George, R.L.

1981-02-01T23:59:59.000Z

194

UNEP/DTIE Solar and Wind Energy Resource Assessment (SWERA) Project  

Open Energy Info (EERE)

UNEP/DTIE Solar and Wind Energy Resource Assessment (SWERA) Project UNEP/DTIE Solar and Wind Energy Resource Assessment (SWERA) Project Document Dataset Summary Description (Abstract): This project will provide solar and wind resource data and geographic information assessment tools to public and private sector executives who are involved in energy market development. It will demonstrate the use of these instruments in investment and policy decision making and build local capacities for their continuous use. The project will enable private investors and public policy makers to assess the technical, economic and environmental potential for large-scale investments in technologies that enable the exploitation of two increasingly important sources of renewable energy. During this pilot project, tools for analysis and use of resource information will be developed, a global tx_metadatatool and review mechanism will be initiated, regional/national solar and wind resource maps generated and national assessment demonstrations performed. The overall goal is to promote the integration of wind and solar alternatives in national and regional energy planning and sector restructuring as well as related policy making. The project will enable informed decision making and enhance the ability of participating governments to attract increased investor interest in renewable energy. Thirteen countries will be directly involved in the pilot stage of the project. Global and regional maps will be available to all developing countries.

195

DOE provides detailed onshore wind resource map - Today in Energy ...  

U.S. Energy Information Administration (EIA)

... electric power plant emissions. Highlights ... Puerto Rico and the U.S. Virgin Islands do not have 80-meter wind maps available but have 50-meter wind maps.

196

NRELs Wind Powering America Team Helps Indiana Develop Wind Resources (Fact Sheet), Innovation: The Spectrum of Clean Energy Innovation, NREL (National Renewable Energy Laboratory)  

NLE Websites -- All DOE Office Websites (Extended Search)

NREL's Wind Powering NREL's Wind Powering America Team Helps Indiana Develop Wind Resources How does a state advance, in just five years, from having no wind power to having more than 1000 megawatts (MW) of installed capacity? The Wind Powering America (WPA) initiative, based at the National Renewable Energy Laboratory (NREL), employs a state-focused approach that has helped accelerate wind energy deployment in many states. One such state is Indiana, which is now home to the largest wind plant east of the Mississippi. Since 1999, WPA has helped advance technology acceptance and wind energy deployment across the United States through the formation of state wind working groups (WWGs). The WWGs facilitate workshops, manage anemometer loan programs, conduct outreach, and

197

The Association of Large-Scale Climate Variability and Teleconnections on Wind Energy Resource over Europe and its Intermittency  

E-Print Network (OSTI)

In times of increasing importance of wind power in the worlds energy mix, this study focuses on a better understanding of the influences of large-scale climate variability on wind power resource over Europe. The impact ...

Kriesche, Pascal

198

Wind energy bibliography  

DOE Green Energy (OSTI)

This bibliography is designed to help the reader search for information on wind energy. The bibliography is intended to help several audiences, including engineers and scientists who may be unfamiliar with a particular aspect of wind energy, university researchers who are interested in this field, manufacturers who want to learn more about specific wind topics, and librarians who provide information to their clients. Topics covered range from the history of wind energy use to advanced wind turbine design. References for wind energy economics, the wind energy resource, and environmental and institutional issues related to wind energy are also included.

None

1995-05-01T23:59:59.000Z

199

Wind energy | Open Energy Information  

Open Energy Info (EERE)

(Redirected from Wind) (Redirected from Wind) Jump to: navigation, search Wind energy is a form of solar energy.[1] Wind energy (or wind power) describes the process by which wind is used to generate electricity. Wind turbines convert the kinetic energy in the wind into mechanical power. A generator can convert mechanical power into electricity[2]. Mechanical power can also be utilized directly for specific tasks such as pumping water. The US DOE developed a short wind power animation that provides an overview of how a wind turbine works and describes the wind resources in the United States. Contents 1 Wind Energy Basics 1.1 Equation for Wind Power 2 DOE Wind Programs and Information 3 Worldwide Installed Capacity 3.1 United States Installed Capacity 4 Wind Farm Development 4.1 Land Requirements

200

NREL: Wind Research - International Wind Resource Maps  

NLE Websites -- All DOE Office Websites (Extended Search)

Wind Resource Maps NREL is helping to develop high-resolution projections of wind resources worldwide. This allows for more accurate siting of wind turbines and has led to the...

Note: This page contains sample records for the topic "wind energy resource" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


201

TMCC WIND RESOURCE ASSESSMENT  

DOE Green Energy (OSTI)

North Dakota has an outstanding resource--providing more available wind for development than any other state. According to U.S. Department of Energy (DOE) studies, North Dakota alone has enough energy from good wind areas, those of wind power Class 4 and higher, to supply 36% of the 1990 electricity consumption of the entire lower 48 states. At present, no more than a handful of wind turbines in the 60- to 100-kilowatt (kW) range are operating in the state. The first two utility-scale turbines were installed in North Dakota as part of a green pricing program, one in early 2002 and the second in July 2002. Both turbines are 900-kW wind turbines. Two more wind turbines are scheduled for installation by another utility later in 2002. Several reasons are evident for the lack of wind development. One primary reason is that North Dakota has more lignite coal than any other state. A number of relatively new minemouth power plants are operating in the state, resulting in an abundance of low-cost electricity. In 1998, North Dakota generated approximately 8.2 million megawatt-hours (MWh) of electricity, largely from coal-fired plants. Sales to North Dakota consumers totaled only 4.5 million MWh. In addition, the average retail cost of electricity in North Dakota was 5.7 cents per kWh in 1998. As a result of this surplus and the relatively low retail cost of service, North Dakota is a net exporter of electricity, selling approximately 50% to 60% of the electricity produced in North Dakota to markets outside the state. Keeping in mind that new electrical generation will be considered an export commodity to be sold outside the state, the transmission grid that serves to export electricity from North Dakota is at or close to its ability to serve new capacity. The markets for these resources are outside the state, and transmission access to the markets is a necessary condition for any large project. At the present time, technical assessments of the transmission network indicate that the ability to add and carry wind capacity outside of the state is limited. Identifying markets, securing long-term contracts, and obtaining a transmission path to export the power are all major steps that must be taken to develop new projects in North Dakota.

Turtle Mountain Community College

2003-12-30T23:59:59.000Z

202

Wind Energy In America: Ventower Industries | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Wind Manufacturing Saving Energy and Resources Revolutionizing Manufacturing INFOGRAPHIC: Wind Energy in America National Wind Technology Center - Colorado America's Wind Testing...

203

Control Strategies for Distributed Energy Resources to Maximize the Use of Wind Power in Rural Microgrids  

Science Conference Proceedings (OSTI)

The focus of this paper is to design control strategies for distributed energy resources (DERs) to maximize the use of wind power in a rural microgrid. In such a system, it may be economical to harness wind power to reduce the consumption of fossil fuels for electricity production. In this work, we develop control strategies for DERs, including diesel generators, energy storage and demand response, to achieve high penetration of wind energy in a rural microgrid. Combinations of centralized (direct control) and decentralized (autonomous response) control strategies are investigated. Detailed dynamic models for a rural microgrid are built to conduct simulations. The system response to large disturbances and frequency regulation are tested. It is shown that optimal control coordination of DERs can be achieved to maintain system frequency while maximizing wind power usage and reducing the wear and tear on fossil fueled generators.

Lu, Shuai; Elizondo, Marcelo A.; Samaan, Nader A.; Kalsi, Karanjit; Mayhorn, Ebony T.; Diao, Ruisheng; Jin, Chunlian; Zhang, Yu

2011-10-10T23:59:59.000Z

204

Wind Energy Resource Estimation of the Upper Atmosphere over Southern Africa  

Science Conference Proceedings (OSTI)

On the basis of daily ECMWF data over the period 1982?89, the mean seasonal and mean annual wind energy resource fields on the isobaric surfaces 1000, 850, 700, 500, 300, 200, and 100 hPa, within the latitude?longitudinal zone 0?50S and 0?45E,...

Fedor F. Bryukhan; Roseanne D. Diab

1995-11-01T23:59:59.000Z

205

Energy Basics: Wind Power Animation  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

EERE: Energy Basics Wind Power Animation This animation discusses the advantages of wind power, the workings of a wind turbine, and wind resources in the United States. It also...

206

VAR Support from Distributed Wind Energy Resources: Preprint  

DOE Green Energy (OSTI)

As the size and quantity of wind farms and other distributed generation facilities increase, especially in relation to local grids, the importance of a reactive power compensator or VAR support from these facilities becomes more significant. Poorly done, it can result in cycling or inadequate VAR support, and the local grid could experience excessive voltage regulation and, ultimately, instability. Improved wind turbine and distributed generation power control technologies are creating VAR support capabilities that can be used to enhance the voltage regulation and stability of local grids. Locating VAR support near the point of consumption, reducing step size, and making the control active all improve the performance of the grid. This paper presents and discusses alternatives for improving the integration of VAR support from distributed generation facilities such as wind farms. We also examine the relative effectiveness of distributed VAR support on the local grid and how it can b e integrated with the VAR support of the grid operator.

Romanowitz, H.; Muljadi, E.; Butterfield, C. P.; Yinger, R.

2004-07-01T23:59:59.000Z

207

Pages that link to "Idaho/Wind Resources" | Open Energy Information  

Open Energy Info (EERE)

Edit History Share this page on Facebook icon Twitter icon Pages that link to "IdahoWind Resources" IdahoWind Resources Jump to: navigation, search What links here...

208

Wind resource analysis. Annual report  

SciTech Connect

FY78 results of the Wind Resource Analyses task of the ERAB are described. Initial steps were taken to acquire modern atmosphere models of near-surface wind flow and primary data sets used in previous studies of national and regional wind resources. Because numerous assumptions are necessary to interpret available data in terms of wind energy potential, conclusions of previous studies differ considerably. These data analyses may be improved by future SERI research. State-of-the-art atmosphere models are a necessary component of the SERI wind resource analyses capacity. However, these methods also need to be tested and verified in diverse applications. The primary data sets and principal features of the models are discussed.

Hardy, D. M.

1978-12-01T23:59:59.000Z

209

Wind Energy Assessment and Visualization Laboratory Extra-Tall Tower Wind Resource Assessment: Icing Rules and Trends in the Data.  

E-Print Network (OSTI)

??This study describes the results of the measurement campaign for the Wind Energy Assessment and Visualization Laboratory (WEAV) wind feasibility study in Athens, OH. A (more)

Harris, James C.

2012-01-01T23:59:59.000Z

210

Wind Energy Resource Atlas of Armenia (CD-ROM)  

NLE Websites -- All DOE Office Websites (Extended Search)

Resource Atlas of Armenia (CD-ROM) http:www.nrel.govdocsfy03osti33877CD.zip (ZIP 31.9 MB) NRELCD-500-33877 July 2003 Instructions: The URL above links to a zipped archive...

211

80 and 100 Meter Wind Energy Resource Potential for the United States (Poster)  

SciTech Connect

Accurate information about the wind potential in each state is required for federal and state policy initiatives that will expand the use of wind energy in the United States. The National Renewable Energy Laboratory (NREL) and AWS Truewind have collaborated to produce the first comprehensive new state-level assessment of wind resource potential since 1993. The estimates are based on high-resolution maps of predicted mean annual wind speeds for the contiguous 48 states developed by AWS Truewind. These maps, at spatial resolution of 200 meters and heights of 60 to 100 meters, were created with a mesoscale-microscale modeling technique and adjusted to reduce errors through a bias-correction procedure involving data from more than 1,000 measurement masts. NREL used the capacity factor maps to estimate the wind energy potential capacity in megawatts for each state by capacity factor ranges. The purpose of this presentation is to (1) inform state and federal policy makers, regulators, developers, and other stakeholders on the availability of the new wind potential information that may influence development, (2) inform the audience of how the new information was derived, and (3) educate the audience on how the information should be interpreted in developing state and federal policy initiatives.

Elliott, D.; Schwartz, M.; Haymes, S.; Heimiller, D.; Scott, G.; Flowers, L.; Brower, M.; Hale, E.; Phelps, B.

2010-05-01T23:59:59.000Z

212

Iowa/Wind Resources/Full Version | Open Energy Information  

Open Energy Info (EERE)

Assistance Network Geothermal Incentives and Policies International Clean Energy Analysis Low Emission Development Strategies Oil & Gas Smart Grid Solar U.S. OpenLabs...

213

Ohio/Wind Resources/Full Version | Open Energy Information  

Open Energy Info (EERE)

Assistance Network Geothermal Incentives and Policies International Clean Energy Analysis Low Emission Development Strategies Oil & Gas Smart Grid Solar U.S. OpenLabs...

214

Minnesota/Wind Resources/Full Version | Open Energy Information  

Open Energy Info (EERE)

Assistance Network Geothermal Incentives and Policies International Clean Energy Analysis Low Emission Development Strategies Oil & Gas Smart Grid Solar U.S. OpenLabs...

215

Montana/Wind Resources/Full Version | Open Energy Information  

Open Energy Info (EERE)

Assistance Network Geothermal Incentives and Policies International Clean Energy Analysis Low Emission Development Strategies Oil & Gas Smart Grid Solar U.S. OpenLabs...

216

Colorado/Wind Resources/Full Version | Open Energy Information  

Open Energy Info (EERE)

area of increased turbulence, which can shorten the life of the turbine and reduce energy production. Additional costs related to mitigating these concerns can lead to increased...

217

Arizona/Wind Resources/Full Version | Open Energy Information  

Open Energy Info (EERE)

area of increased turbulence, which can shorten the life of the turbine and reduce energy production. Additional costs related to mitigating these concerns can lead to increased...

218

Alaska/Wind Resources/Full Version | Open Energy Information  

Open Energy Info (EERE)

area of increased turbulence, which can shorten the life of the turbine and reduce energy production. Additional costs related to mitigating these concerns can lead to increased...

219

Stakeholder Engagement and Outreach: Wind Resource Potential  

Wind Powering America (EERE)

Wind Resource Potential Offshore Maps Community-Scale Maps Residential-Scale Maps Anemometer Loan Programs & Data Wind Resource Potential State Wind Resource Potential Tables Find state wind resource potential tables in three versions: Microsoft Excel 2007, 2003, and Adobe Acrobat PDF. 30% Capacity Factor at 80-Meters Microsoft 2007 Microsoft 2003 Adobe Acrobat PDF Additional 80- and 100-Meter Wind Resource Potential Tables Microsoft 2007 Microsoft 2003 Adobe Acrobat PDF The National Renewable Energy Laboratory (NREL) estimated the windy land area and wind energy potential for each state using AWS Truepower's gross capacity factor data. This provides the most up to date estimate of how wind energy can support state and national energy needs. The table lists the estimates of windy land area with a gross capacity of

220

Wind Resources in Alaska | OpenEI  

Open Energy Info (EERE)

Resources in Alaska Resources in Alaska Dataset Summary Description Wind resource data for Alaska and southeast Alaska, both high resolution wind resource maps and gridded wind parameters. The two high resolution wind maps are comprised of a grid of cells each containing a single value of average wind speed (m/s) at a hub height of 30, 50, 70, and 100 meters and wind power density (W/m^2) at a hub height of 50 meters for a 40,000 square meter area. The additional gridded wind parameter data includes data for points spaced 2 kilometers apart, and include: predicted wind speed frequency distribution as well as speed and energy in 16 directions (the information needed to produce a wind rose image at a given point). Data included here as .kml files (for viewing in Google Earth). GIS shape files available for the gridded wind parameters datasets from AEDI (http://akenergyinventory.org/data.shtml).

Note: This page contains sample records for the topic "wind energy resource" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


221

Wind energy information guide  

DOE Green Energy (OSTI)

This book is divided into nine chapters. Chapters 1--8 provide background and annotated references on wind energy research, development, and commercialization. Chapter 9 lists additional sources of printed information and relevant organizations. Four indices provide alphabetical access to authors, organizations, computer models and design tools, and subjects. A list of abbreviations and acronyms is also included. Chapter topics include: introduction; economics of using wind energy; wind energy resources; wind turbine design, development, and testing; applications; environmental issues of wind power; institutional issues; and wind energy systems development.

NONE

1996-04-01T23:59:59.000Z

222

High Winds Wind Farm | Open Energy Information  

Open Energy Info (EERE)

Winds Wind Farm Winds Wind Farm Jump to: navigation, search Name High Winds Wind Farm Facility High Winds Sector Wind energy Facility Type Commercial Scale Wind Facility Status In Service Owner NextEra Energy Resources Developer NextEra Energy Resources Energy Purchaser PPM Energy Inc Location Solano County CA Coordinates 38.124844°, -121.764915° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":38.124844,"lon":-121.764915,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

223

NREL: Wind Research - Site Wind Resource Characteristics  

NLE Websites -- All DOE Office Websites (Extended Search)

Site Wind Resource Characteristics Site Wind Resource Characteristics A graphic showing the location of National Wind Technology Center and its wind power class 2. Click on the image to view a larger version. Enlarge image This graphic shows the wind power class at the National Wind Technology Center. You can download a printable copy. The National Wind Technology Center (NWTC) is on the Great Plains just miles from the Rocky Mountains. The site is flat and covered with short grasses. The terrain and lack of obstructions make the site highly suitable for testing wind turbines. Take a tour of the NWTC and its facilities to better understand its location and layout. Another prime feature of the NWTC is the strong directionality of the wind - most of the strong winds come within a few degrees of 285°. West of

224

United States areal wind resource assessment  

SciTech Connect

Estimates of the electricity that could potentially be generated by wind power and of the land area available for wind energy development have been calculated for the contiguous United States, in support of the US Department of Energy`s National Energy Strategy. These estimates were based on the wind resource data published in a national resource atlas. Estimates of the wind resource in this atlas are expressed in wind power classes ranging from class 1 to class 7, with each class representing a range of mean wind power density or equivalent mean speed at specified heights above the ground (Table 1) . Areas designatedclass 4 or greater are suitable for most wind turbine applications. Power class 3 areas are suitable for wind energy development using tall (50-m hub height) turbines. Class 2 areas are marginal and class 1 areas unsuitable for wind energy development. A map of the areal (percentage of land area) distribution of the wind resource digitized in grid cells (1/4{degrees} latitude by 1/3{degrees} longitude) shows that exposed areas with moderate to high wind resource (class 3 and greater) are dispersed throughout much of the contiguous United States.

Schwartz, M.N.; Elliott, D.L.

1993-03-01T23:59:59.000Z

225

Solar and Wind Energy Resource Assessment (SWERA) - Bangladesh | OpenEI  

Open Energy Info (EERE)

(SWERA) - Bangladesh (SWERA) - Bangladesh Dataset Summary Description Reduction of global greenhouse gas emission to arrest global warming requires minimizing the use of fossil fuels. To achieve this a large scale use of renewable energies must be made over the globe for production of electrical and thermal energy. Success of wind and solar energy projects require detailed and precise information on the resources. For most developing countries adequate information on the resources are not available.UNEP supported by GEF has started a program to assess solar and wind resources for a number of countries including Bangladesh, China, Brazil, Nepal and Sri Lanka in the initial program.World resources of oil, gas and coal are limited and there is a global concern about this but for Bangladesh the situation appears to be extremely unhappy as per capita reserve of fossil fuels is only 1/50th to 1/100th of world per capita. A close look at Bangladesh energy scenario is presented before going to an overview of the results of resource assessments for wind and solar energy under the SWERA Program carried out for Bangladesh withRERC as the local partner. Data and maps for Bangladesh are available in the SWERA website. Details of assessment techniques and results will be presented in the following sections together with the possible applications of the resources.A spin-off from the SWERA Project is development of manpower trained at home and abroad in WAsP techniques, RETScreen and HOMER analyses and the capability development for using GIS Toolkit.NREL, RISOE and DLR produced modeled maps and data sets for Bangladesh and NREL developed the GIS Toolkit. RERC measured and collected ground data and standardized the maps and data sets.Mr. Tom Hamlin of UNEP who has been the project manager for SWERA activities always extended his helping hands to RERC which enabled the completion of the project.TERI has played a vital role as the Regional Coordinator.

226

The impact of climate change on the U.S. wind energy resource  

DOE Green Energy (OSTI)

I propose to use the new North American Regional Climate Change Assessment Program climate projections to estimate the change of the wind power resource under various carbon dioxide loading scenarios and for a range of climate models. We will compare our assessment with both our assessment based on the IPCC AR4 model runs, to explore the extent to which improved model resolution changes the prediction for the wind power resource, and with present day estimates from reanalysis and scatterometer winds.

Daniel Kirk-Davidoff; Daniel Barrie

2013-03-19T23:59:59.000Z

227

United States areal wind resource assessment  

SciTech Connect

Estimates of the electricity that could potentially be generated by wind power and of the land area available for wind energy development have been calculated for the contiguous United States, in support of the US Department of Energy's National Energy Strategy. These estimates were based on the wind resource data published in a national resource atlas. Estimates of the wind resource in this atlas are expressed in wind power classes ranging from class 1 to class 7, with each class representing a range of mean wind power density or equivalent mean speed at specified heights above the ground (Table 1) . Areas designatedclass 4 or greater are suitable for most wind turbine applications. Power class 3 areas are suitable for wind energy development using tall (50-m hub height) turbines. Class 2 areas are marginal and class 1 areas unsuitable for wind energy development. A map of the areal (percentage of land area) distribution of the wind resource digitized in grid cells (1/4[degrees] latitude by 1/3[degrees] longitude) shows that exposed areas with moderate to high wind resource (class 3 and greater) are dispersed throughout much of the contiguous United States.

Schwartz, M.N.; Elliott, D.L.

1993-03-01T23:59:59.000Z

228

Energy in the Wind  

NLE Websites -- All DOE Office Websites (Extended Search)

Provi and BP Energy in the Wind - Exploring Basic Electrical Concepts by Modeling Wind Turbines Curriculum: Wind Power (simple machines, aerodynamics, weather/climatology, leverage, mechanics, atmospheric pressure, and energy resources/transformations) Grade Level: High School Small groups: 2 students Time: Introductory packet will take 2-3 periods. Scientific investigation will take 2-3 periods. (45-50 minute periods) Summary: Students explore basic electrical concepts. Students are introduced to electrical concepts by using a hand held generator utilizing a multimeter, modeling, and designing a wind turbine in a wind tunnel (modifications are given if a wind tunnel is not available). Students investigate how wind nergy is used as a renewable energy resource. e

229

The Use of Reanalysis Data for Wind Resource Assessment at the National Renewable Energy Laboratory  

DOE Green Energy (OSTI)

An important component of the National Renewable Energy Laboratory wind resource assessment methodology is the use of available upper-air data to construct detailed vertical profiles for a study region. Currently, the most useful upper-air data for this type of analysis are archived observations from approximately 1800 rawinsonde and pilot balloon stations worldwide. However, significant uncertainty exists in the accuracy of the constructed profiles for many regions. The United States Reanalysis Data Set, recently created by the National Center for Atmospheric Research and the National Centers for Environmental Prediction, has the potential to improve the quality of the vertical profiles. The initial evaluation of the usefulness of the Reanalysis data for wind resource assessment consisted of contrasting reanalysis-derived vertical profiles of the wind characteristics to those generated from upper-air observations for comparable locations. The results indicate that, while reanalysis data can be substituted for upper-air observation data in the assessment methodology for areas of the world where observation data are limited, enough discrepancies with observation data have been noticed to warrant further studies.

Schwartz, M.; George, R.; Elliott, D.

1999-04-07T23:59:59.000Z

230

Diablo Winds Wind Farm | Open Energy Information  

Open Energy Info (EERE)

Diablo Winds Wind Farm Diablo Winds Wind Farm Facility Diablo Winds Wind Farm Sector Wind energy Facility Type Commercial Scale Wind Facility Status In Service Owner NextEra Energy Resources Developer NextEra Energy Resources Energy Purchaser Pacific Gas & Electric Co Location Altamont Pass CA Coordinates 37.7347°, -121.652° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":37.7347,"lon":-121.652,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

231

Wind energy resource atlas. Volume 12. Puerto Rico and US Virgin Islands  

DOE Green Energy (OSTI)

The Puerto Rico/US Virgin Island atlas assimilates three collections of wind resource data: one for the region as a whole and one each for both the Commonwealth of Puerto Rico and the US Virgin Islands. For the two subregions, features of the climate, topography and wind resource are discussed in greater detail than is provided in the regional discussion, and the data locations on which the assessment is based are mapped. Variations, over several time scales, in the wind resource at selected stations in both subregions are shown on graphs of monthly average and interannual wind speed and power, and hourly average wind speed for each season. Other graphs present speed, direction and duration frequencies of the wind at these locations.

Wegley, H.L.; Elliott, D.L.; Barchet, W.R.; George, R.L.

1981-01-01T23:59:59.000Z

232

Wind energy resource atlas. Volume 8. The southern Rocky Mountain region  

DOE Green Energy (OSTI)

The Southern Rocky Mountain atlas assimilates five collections of wind resource data: one for the region and one for each of the four states that compose the Southern Rocky Mountain region (Arizona, Colorado, New Mexico, and Utah). At the state level, features of the climate, topography and wind resource are discussed in greater detail than is provided in the regional discussion, and the data locations on which the assessment is based are mapped. Variations, over several time scales, in the wind resource at selected stations in each state are shown on graphs of monthly average and interannual wind speed and power, and hourly average wind speed for each season. Other graphs present speed, direction, and duration frequencies of the wind at these locations.

Andersen, S.R.; Freeman, D.L.; Hadley, D.L.; Elliott, D.L.; Barchet, W.R.; George, R.L.

1981-03-01T23:59:59.000Z

233

Wind energy: Program overview, FY 1992  

DOE Green Energy (OSTI)

The DOE Wind Energy Program assists utilities and industry in developing advanced wind turbine technology to be economically competitive as an energy source in the marketplace and in developing new markets and applications for wind systems. This program overview describes the commercial development of wind power, wind turbine development, utility programs, industry programs, wind resources, applied research in wind energy, and the program structure.

Not Available

1993-06-01T23:59:59.000Z

234

The integration of climatic data sets for wind resource assessment  

DOE Green Energy (OSTI)

One barrier to wind energy development, in many regions of the world, is the lack of reliable information about the spacial distribution of the wind energy resource. The goal of the U.S. Department of Energy (DOE) Wind Energy Program`s wind resource assessment group is to improve the characterization of the wind resource in many of these regions in support of U.S. wind energy industry. NREL provides wind resource assessments for our clients in the form of reports, atlases, and wind resource maps. The assessments estimate the level of the wind resource, at wind turbine hub heights (typically 30m to 50m above ground level), for locations exposed to the prevailing winds.

Schwartz, M.N.; Elliott, D.L.

1997-09-01T23:59:59.000Z

235

The impact of climate change on the U.S. wind energy resource  

SciTech Connect

The growing need for low-carbon emitting electricity sources has resulted in rapid growth in the wind power industry. The size and steadiness of the offshore wind resource has attracted growing investment in the planning of offshore wind turbine installations. Decisions about the location and character of wind farms should be made with an eye not only to present but also future wind resource, which may change as increasing carbon dioxide forces reductions in the poleward temperature gradient, and thus potentially in the mean tropospheric westerly winds. I propose to use the new North American Regional Climate Change Assessment Program climate projections to estimate the change of the wind power resource under various carbon dioxide loading scenarios and for a range of climate models. We will compare our assessment with both our assessment based on the IPCC AR4 model runs, to explore the extent to which improved model resolution changes the prediction for the wind power resource, and with present day estimates from reanalysis and scatterometer winds.

Daniel Kirk-Davidoff; Daniel Barrie

2013-03-19T23:59:59.000Z

236

WIND ENERGY Wind Energ. (2012)  

E-Print Network (OSTI)

WIND ENERGY Wind Energ. (2012) Published online in Wiley Online Library (wileyonlinelibrary since energy production depends non-linearly on wind speed (U ), and wind speed observa- tions for the assessment of future long-term wind supply A. M. R. Bakker1 , B. J. J. M. Van den Hurk1 and J. P. Coelingh2 1

Haak, Hein

237

Wind Energy Technologies Available for Licensing - Energy ...  

Site Map; Printable Version; Share this resource. Send a link to Wind Energy Technologies Available for Licensing - Energy Innovation Portalto someone by E-mail

238

Wind Energy Leasing Handbook  

E-Print Network (OSTI)

Wind Energy Leasing Handbook Wind Energy Leasing Handbook E-1033 Oklahoma Cooperative Extension?..................................................................................................................... 31 What do wind developers consider in locating wind energy projects?............................................................................................ 37 How do companies and individuals invest in wind energy projects?....................................................................

Balasundaram, Balabhaskar "Baski"

239

Wind Resource Atlas of Oaxaca (CD-ROM)  

DOE Green Energy (OSTI)

The CD version of the Oaxaca Wind Resource Atlas, produced by the National Renewable Energy Laboratory's (NREL's) wind resource group, is the result of an extensive mapping study for the Mexican State of Oaxaca. This atlas identifies the wind characteristics and distribution of the wind resource in Oaxaca. The detailed wind resource maps and other information contained in the atlas facilitate the identification of prospective areas for use of wind energy technologies, both for utility-scale power generation and off-grid wind energy applications.

Elliott, D.; Schwartz, M.; Scott, G.; Haymes, S.; Heimiller, D.; George, R.

2003-08-01T23:59:59.000Z

240

Energy Basics: Wind Energy Technologies  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Photo of a hilly field, with six visible wind turbines spinning in the wind. Wind energy technologies use the energy in wind for practical purposes such as generating...

Note: This page contains sample records for the topic "wind energy resource" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


241

Wind characteristics for agricultural wind energy applications  

SciTech Connect

Wind energy utilization in agriculture can provide a potentially significant savings in fuel oil consumption and ultimately a cost savings to the farmer. A knowledge of the wind characteristics within a region and at a location can contribute greatly to a more efficient and cost-effective use of this resource. Current research indicates that the important wind characteristics include mean annual wind speed and the frequency distribution of the wind, seasonal and diurnal variations in wind speed and direction, and the turbulent and gustiness characteristics of the wind. Further research is underway to provide a better definition of the total wind resource available, improved methods for siting WECS and an improved understanding of the environment to which the WECS respond.

Renne, D. S.

1979-01-01T23:59:59.000Z

242

Wind Energy Information Guide 2004  

DOE Green Energy (OSTI)

The guide provides a list of contact information and Web site addresses for resources that provide a range of general and technical information about wind energy, including general information, wind and renewable energy, university programs and research institutes, international wind energy associations and others.

anon.

2004-01-01T23:59:59.000Z

243

NREL: Wind Research - Wind Applications Center Valuable Resource...  

NLE Websites -- All DOE Office Websites (Extended Search)

Wind Applications Center Valuable Resource for Wind for Schools Partners March 14, 2013 Audio with Jerry Hudgins, Nebraska Wind Applications Center Director and Joel Jacobs,...

244

INFOGRAPHIC: Wind Energy in America | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Saving Energy and Resources Revolutionizing Manufacturing National Wind Technology Center - Colorado America's Wind Testing Facilities Beyond Solyndra: How the Energy Department's...

245

INFOGRAPHIC: Wind Energy in America | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Homes David Arakawa (ORNL) Secretarial Achievement Awards American Wind Manufacturing Wind Energy In America: Ventower Industries Saving Energy and Resources Revolutionizing...

246

Alta Wind Energy Center | Open Energy Information  

Open Energy Info (EERE)

Alta Wind Energy Center Alta Wind Energy Center Address 10315 Oak Creek Road Place Mojave, California Zip 93501 Sector Wind energy Phone number 1-877-4WI-ND88 (1-877-494-6388) Website http://altawindenergycenter.co Region Southern CA Area References Alta Wind Energy Center[1] LinkedIn Connections CrunchBase Profile No CrunchBase profile. Create one now! The Alta Wind Energy Center (AWEC) is located in the heart of one of the most proven wind resources in the United States - the Tehachapi-Mojave Wind Resource Area. Terra-Gen is developing the AWEC, California's largest wind energy project, adjacent to existing wind projects between the towns of Mojave and Tehachapi. Due to a welcoming community and the participation of a diverse group of landowners (private and public, local and non-local,

247

Wind Energy Teachers Guide  

DOE Green Energy (OSTI)

This guide, created by the American Wind Association, with support from the U.S. Department of Energy, is a learning tool about wind energy targeted toward grades K-12. The guide provides teacher information, ideas for sparking children's and students' interest, suggestions for activities to undertake in and outside the classroom, and research tools for both teachers and students. Also included is an additional resources section.

anon.

2003-01-01T23:59:59.000Z

248

Wind resource assessment with a mesoscale non-hydrostatic model  

E-Print Network (OSTI)

Wind resource assessment with a mesoscale non- hydrostatic model Vincent Guénard, Center for Energy is developed for assessing the wind resource and its uncertainty. The work focuses on an existing wind farm mast measurements. The wind speed and turbulence fields are discussed. It is shown that the k

Paris-Sud XI, Université de

249

Offshore Wind Resource | OpenEI  

Open Energy Info (EERE)

Offshore Wind Resource Offshore Wind Resource Dataset Summary Description Global Wind Potential Supply Curves by Country, Class, and Depth (quantities in GW) Source National Renewable Energy Laboratory Date Released July 12th, 2012 (2 years ago) Date Updated July 12th, 2012 (2 years ago) Keywords offshore resource offshore wind renewable energy potential Data application/vnd.openxmlformats-officedocument.spreadsheetml.sheet icon offshore_resource_100_vs2.xlsx (xlsx, 41.7 KiB) Quality Metrics Level of Review Peer Reviewed Comment Temporal and Spatial Coverage Frequency Time Period License License Open Data Commons Public Domain Dedication and Licence (PDDL) Comment Rate this dataset Usefulness of the metadata Average vote Your vote Usefulness of the dataset Average vote Your vote Ease of access

250

Wind Energy Myths; Wind Powering America Fact Sheet Series  

NLE Websites -- All DOE Office Websites (Extended Search)

wind energy provided the lowest cost of any new generation resource submitted to an Xcel Energy solicitation bidding process (except for one small hydro plant). The commission...

251

Analysis of Spatiotemporal Balancing between Wind and Solar Energy Resources in the Southern Iberian Peninsula  

Science Conference Proceedings (OSTI)

Electricity from wind and, to a lesser extent, solar energy is intermittent and not controllable. Unlike conventional power generation, therefore, this electricity is not suitable to supply base-load electric power. In the future, with greater ...

F. J. Santos-Alamillos; D. Pozo-Vzquez; J. A. Ruiz-Arias; V. Lara-Fanego; J. Tovar-Pescador

2012-11-01T23:59:59.000Z

252

Solar and Wind Energy Resource Assessment - Kenya Country Report | OpenEI  

Open Energy Info (EERE)

- Kenya Country Report - Kenya Country Report Dataset Summary Description (Abstract): The Kenya Country Report describes the energy situation in Kenys and identifies solar and wind energy opportunities. (Purpose): To influence investment decisions by promoting and supporting renewable energy by overcoming informational barriers in solar and wind energy financing. Source Daniel Theuri - SWERA National Team Date Released November 23rd, 2008 (6 years ago) Date Updated Unknown Keywords documentation Kenya renewable energy solar SWERA UNEP wind Data application/pdf icon Download Report (pdf, 9.3 MiB) Quality Metrics Level of Review Some Review Comment Temporal and Spatial Coverage Frequency Time Period 2008 License License Open Data Commons Public Domain Dedication and Licence (PDDL) Comment

253

Wind Atlas for Egypt A national database for wind resource assessment and  

E-Print Network (OSTI)

Wind Atlas for Egypt A national database for wind resource assessment and wind power planning Niels G. Mortensen Wind Energy Department Risø National Laboratory MENAREC 3, Cairo, Egypt 12 June 2006 #12;Acknowledgements The "Wind Atlas for Egypt" is the result of a comprehensive team effort! · New

254

America's Wind Testing Facilities | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Saving Energy and Resources Revolutionizing Manufacturing INFOGRAPHIC: Wind Energy in America Beyond Solyndra: How the Energy Department's Loans are Accelerating America's...

255

NANA Wind Resource Assessment Program Final Report  

DOE Green Energy (OSTI)

NANA Regional Corporation (NRC) of northwest Alaska is located in an area with abundant wind energy resources. In 2007, NRC was awarded grant DE-FG36-07GO17076 by the US Department of Energy's Tribal Energy Program for funding a Wind Resource Assessment Project (WRAP) for the NANA region. The NANA region, including Kotzebue Electric Association (KEA) and Alaska Village Electric Cooperative (AVEC) have been national leaders at developing, designing, building, and operating wind-diesel hybrid systems in Kotzebue (starting in 1996) and Selawik (2002). Promising sites for the development of new wind energy projects in the region have been identified by the WRAP, including Buckland, Deering, and the Kivalina/Red Dog Mine Port Area. Ambler, Shungnak, Kobuk, Kiana, Noorvik & Noatak were determined to have poor wind resources at sites in or very near each community. However, all five of these communities may have better wind resources atop hills or at sites with slightly higher elevations several miles away.

Jay Hermanson

2010-09-23T23:59:59.000Z

256

Wind | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Assessment and Characterization Defining, measuring, and forecasting land-based and offshore wind resources Environmental Impacts and Siting of Wind Projects Avoiding,...

257

Siting Wind Energy | Open Energy Information  

Open Energy Info (EERE)

Siting Wind Energy Siting Wind Energy Jump to: navigation, search Wind turbines at the Forward Wind Energy Center in Fond du Lac and Dodge Counties, Wisconsin. Photo from Ruth Baranowski/NREL, NREL 21207 The following resources provide information about siting wind energy projects. Some are specific to a state or region but may still contain information applicable to other areas. Wind project siting tools, such as calculators and databases, can be found here. Resources American Wind Energy Association. (Updated 2011). Siting, Health, and the Environment. Accessed August 13, 2013. This fact sheet provides an overview of siting myths and facts. Environmental Law Institute. Siting Wind Energy Facilities: What Do Local Elected Officials Need to Know?. Accessed November 29, 2013.

258

NREL: Education Programs - Wind Applications Center Valuable Resource for  

NLE Websites -- All DOE Office Websites (Extended Search)

Applications Center Valuable Resource for Wind for Schools Partners Applications Center Valuable Resource for Wind for Schools Partners March 14, 2013 Audio with Jerry Hudgins, Nebraska Wind Applications Center Director and Joel Jacobs, Nebraska Wind Applications Center Associate Director (MP3 3.6 MB). Download Windows Media Player. Time: 00:03:58. The Wind for Schools Program was launched in 2006 by the U.S. Department of Energy, Wind Powering America, and the National Renewable Energy Laboratory. Six states were chosen as priorities for the program, and one of those states was Nebraska. The University of Nebraska-Lincoln houses the Wind Applications Center, which is the resource for K-12 partner schools in the program in Nebraska. Wind Applications Center Director Jerry Hudgins says wind is a fantastic resource in Nebraska, lending itself to renewable energy generation,

259

Stakeholder Engagement and Outreach: Wind Resource Maps and Anemometer Loan  

Wind Powering America (EERE)

Maps & Data Maps & Data Printable Version Bookmark and Share Utility-Scale Land-Based Maps Offshore Maps Community-Scale Maps Residential-Scale Maps Anemometer Loan Programs & Data Wind Resource Maps and Anemometer Loan Program Data The Stakeholder Engagement and Outreach initiative provides wind maps and validation to help states and regions build capacity to support and accelerate wind energy deployment. Read about the available wind maps for utility-, community-, and residential-scale wind development. A wind resource map of the United States showing land-based with offshore resources. The Energy Department, the National Renewable Energy Laboratory, and AWS Truepower provide the wind resource map that shows land-based with offshore resources. This map is the first to provide wind developers and policy

260

Plan for the Wind Power Device to Make the Best of Earth Wind Energy  

Science Conference Proceedings (OSTI)

To make the best of wind energy resources on the earth surface, the plan for a new type of wind power device, named Multiple wind wheel Wind power Device, MWD in short, was put forward. MWD composes steel tower, trusses, generator, long axis, wind turbines ... Keywords: clean renewable sources, wind energy, wind power, wind turbine

Bingwen Zhang; Yingjin Zhang

2010-06-01T23:59:59.000Z

Note: This page contains sample records for the topic "wind energy resource" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


261

Wind Resource Estimation and Mapping at the National Renewable Energy Laboratory  

NLE Websites -- All DOE Office Websites (Extended Search)

Resource Estimation and Resource Estimation and Mapping at the National Renewable Energy Laboratory April 1999 * NREL/CP-500-26245 M. Schwartz Presented at the ASES Solar '99 Conference Portland, Maine June 12-16, 1999 National Renewable Energy Laboratory 1617 Cole Boulevard Golden, Colorado 80401-3393 NREL is a U.S. Department of Energy Laboratory Operated by Midwest Research Institute * * * * Battelle * * * * Bechtel

262

Improved Offshore Wind Resource Assessment in Global Climate...  

NLE Websites -- All DOE Office Websites (Extended Search)

Alliance for Sustainable Energy, LLC. Contract No. DE-AC36-08GO28308 Improved Offshore Wind Resource Assessment in Global Climate Stabilization Scenarios Douglas Arent National...

263

Wind Resource and Feasibility Assessment Report for the Lummi Reservation  

SciTech Connect

This report summarizes the wind resource on the Lummi Indian Reservation (Washington State) and presents the methodology, assumptions, and final results of the wind energy development feasibility assessment, which included an assessment of biological impacts and noise impacts.

DNV Renewables (USA) Inc.; J.C. Brennan & Associates, Inc.; Hamer Environmental L.P.

2012-08-31T23:59:59.000Z

264

Wind resource mapping of the state of Vermont  

DOE Green Energy (OSTI)

This paper summarizes the results of a wind mapping project and a validation study for the state of Vermont. The computerized wind resource mapping technique used for this project was developed at the National Renewable Energy Laboratory (NREL). The technique uses Geographic Information System (GIS) software and produces high resolution (1km{sup 2}) wind resource maps.

Elliott, D.; Schwartz, M.; Nierenberg, R.

2000-12-13T23:59:59.000Z

265

Wind Energy Benefits, Wind Powering America (WPA) (Fact Sheet)  

DOE Green Energy (OSTI)

This fact sheet outlines the top 10 benefits of wind energy, including cost, water savings, job creation, indigenous resource, and low operating costs.

Not Available

2011-04-01T23:59:59.000Z

266

Wind power resource assessment in complex urban environments  

E-Print Network (OSTI)

in availability of small-scale wind turbines for dense urban environments highlight the need for detailed wind installation of a small wind turbine. The procedure of resource assessment includes estimation of the average wind power available for energy production on campus and identification of optimal location for turbine

267

New Facility to Shed Light on Offshore Wind Resource (Fact Sheet), Highlights in Research & Development, NREL (National Renewable Energy Laboratory)  

NLE Websites -- All DOE Office Websites (Extended Search)

As a pre-existing structure in a location with As a pre-existing structure in a location with excellent offshore wind resources, the Chesapeake Light Tower provides a cost-effective alternative to building a new platform large enough to support an 80- to 100-meter-tall meteorological tower. Photo by Rick Driscoll, NREL 25660 Chesapeake Light Tower facility will gather key data for unlocking the nation's vast offshore wind resource. According to the National Offshore Wind Strategy published by the U.S. Department of Energy (DOE) in 2011, the nation's offshore wind resource could supply 54 gigawatts of generat- ing capacity by 2030. However, to tap into that potential, more data on the nature of offshore wind resources and the ocean environment is needed. An opportunity to address this need was cre-

268

American Wind Manufacturing | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

1 Million Weatherized American Homes David Arakawa (ORNL) Secretarial Achievement Awards Wind Energy In America: Ventower Industries Saving Energy and Resources Revolutionizing...

269

Mountain Wind | Open Energy Information  

Open Energy Info (EERE)

Mountain Wind Mountain Wind Jump to: navigation, search Mountain Wind is a wind farm located in Uinta County, Wyoming. It consists of 67 turbines and has a total capacity of 140.7 MW. It is owned by Edison Mission Group.[1] Based on assertions that the site is near Fort Bridger, its approximate coordinates are 41.318716°, -110.386418°.[2] References ↑ http://www.wsgs.uwyo.edu/Topics/EnergyResources/wind.aspx ↑ http://www.res-americas.com/wind-farms/operational-/mountain-wind-i-wind-farm.aspx Retrieved from "http://en.openei.org/w/index.php?title=Mountain_Wind&oldid=132229" Category: Wind Farms What links here Related changes Special pages Printable version Permanent link Browse properties 429 Throttled (bot load) Error 429 Throttled (bot load) Throttled (bot load)

270

Energy Basics: Biomass Resources  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Share this resource Biomass Biofuels Biopower Bio-Based Products Biomass Resources Geothermal Hydrogen Hydropower Ocean Solar Wind Biomass Resources Biomass resources include any...

271

Operational Impacts of Wind Energy Resources in the Bonneville Power Administration Control Area - Phase I Report  

SciTech Connect

This report presents a methodology developed to study the future impact of wind on BPA power system load following and regulation requirements. The methodology uses historical data and stochastic processes to simulate the load balancing processes in the BPA power system, by mimicking the actual power system operations. Therefore, the results are close to reality, yet the study based on this methodology is convenient to conduct. Compared with the proposed methodology, existing methodologies for doing similar analysis include dispatch model simulation and standard deviation evaluation on load and wind data. Dispatch model simulation is constrained by the design of the dispatch program, and standard deviation evaluation is artificial in separating the load following and regulation requirements, both of which usually do not reflect actual operational practice. The methodology used in this study provides not only capacity requirement information, it also analyzes the ramp rate requirements for system load following and regulation processes. The ramp rate data can be used to evaluate generator response/maneuverability requirements, which is another necessary capability of the generation fleet for the smooth integration of wind energy. The study results are presented in an innovative way such that the increased generation capacity or ramp requirements are compared for two different years, across 24 hours a day. Therefore, the impact of different levels of wind energy on generation requirements at different times can be easily visualized.

Makarov, Yuri V.; Lu, Shuai

2008-07-15T23:59:59.000Z

272

S. C. Pryor R. J. Barthelmie E. Kjellstro m Potential climate change impact on wind energy resources in northern  

E-Print Network (OSTI)

S. C. Pryor ? R. J. Barthelmie ? E. Kjellstro¨ m Potential climate change impact on wind energy of climate change on the feasibility and pre- dictability of renewable energy sources including wind energy on near-surface flow and hence wind energy density across northern Europe. It is shown that: Simulated

Pryor, Sara C.

273

Wind Energy Technologies  

Energy.gov (U.S. Department of Energy (DOE))

Wind energy technologies use the energy in wind for practical purposes such as generating electricity, charging batteries, pumping water, and grinding grain.

274

Wind resources and wind farm wake effects offshore observed from satellite  

E-Print Network (OSTI)

Wind resources and wind farm wake effects offshore observed from satellite Charlotte Bay Hasager, Wind Energy Department, Roskilde, Denmark Charlotte.hasager@risoe.dk, poul.astrup@risoe.dk, merete.bruun.Christiansen@risoe.dk, morten.Nielsen@risoe.dk, r.barthelmie@risoe.dk Abstract: Satellite observations of ocean wind speed

275

Wind Energy Ordinances | Open Energy Information  

Open Energy Info (EERE)

Wind Energy Ordinances Wind Energy Ordinances Jump to: navigation, search Photo from First Wind, NREL 17545 Due to increasing energy demands in the United States and more installed wind projects, rural communities and local governments with limited or no experience with wind energy now have the opportunity to become involved in this industry. Communities with good wind resources may be approached by entities with plans to develop the resource. Although these opportunities can create new revenue in the form of construction jobs and land lease payments, they also create a new responsibility on the part of local governments to create ordinances to regulate wind turbine installations. Ordinances are laws, often found within municipal codes that provide various degrees of control to local governments. These laws cover issues

276

German Wind Energy Association | Open Energy Information  

Open Energy Info (EERE)

Wind Energy Association Place Osnabrck, Germany Zip 49074 Sector Wind energy Product Assocation for the promotion of wind energy in Germany. References German Wind Energy...

277

Wind Resource Mapping for United States Offshore Areas: Preprint  

DOE Green Energy (OSTI)

The U.S. Department of Energy's (DOE) National Renewable Energy Laboratory (NREL) is producing validated wind resource maps for priority offshore regions of the United States. This report describes the methodology used to validate the maps and to build a Geographic Information Systems (GIS) database to classify the offshore wind resource by state, water depth, distance from shore, and administrative unit.

Elliott, D.; Schwartz, M.

2006-06-01T23:59:59.000Z

278

Validation of New Wind Resource Maps: Preprint  

DOE Green Energy (OSTI)

The National Renewable Energy Laboratory (NREL) recently led a project to validate updated state wind resource maps for the northwestern United States produced by a private U.S. company, TrueWind Solutions (TWS). The independent validation project was a cooperative activity among NREL, TWS, and meteorological consultants. It became clear that using a numerical modeling approach for wind resource mapping was rapidly gaining ground as a preferred technique and if the trend continues, it will soon become the most widely used technique around the world. The numerical modeling approach is a relatively fast application compared to older mapping methods and, in theory, should be quite accurate because it directly estimates the magnitude of boundary-layer processes that affect the wind resource of a particular location. Numerical modeling output combined with high-resolution terrain data can produce useful wind resource information at a resolution of 1 km or lower. However, because the use of the numerical modeling approach is new (last 3-5 years) and relatively unproven, meteorological consultants question the accuracy of the approach.

Elliott, D.; Schwartz, M.

2002-05-01T23:59:59.000Z

279

Wind Powering America Fact Sheet Series 1 Wind energy is more expensive than conventional energy.  

E-Print Network (OSTI)

Wind Powering America Fact Sheet Series 1 Wind energy is more expensive than conventional energy, the commission determined that wind energy provided the lowest cost of any new generation resource submitted a reduction in payments by electricity customers of $305 million in one year.2 2 Wind energy requires

Massachusetts at Amherst, University of

280

Solar and Wind Energy Resource Assessment (SWERA) Data from the National Renewable Energy Library and the United Nations Environment Program (UNEP)  

DOE Data Explorer (OSTI)

The SWERA Programme provides easy access to credible renewable energy data to stimulate investment in, and development of, renewable energy technologies. The Solar and Wind Energy Resource Assessment (SWERA) started in 2001 to advance the large-scale use of renewable energy technologies by increasing the availability and accessibility of high-quality solar and wind resource information. SWERA began as a pilot project with funding from the Global Environment Facility (GEF) and managed by the United Nations Environment Programme's (UNEP) Division of Technology, Industry and Economics (DTIE) in collaboration with more than 25 partners around the world. With the success of the project in 13 pilot countries SWERA expanded in 2006 into a full programme. Its expanded mission is to provide high quality information on renewable energy resources for countries and regions around the world, along with the tools needed to apply these data in ways that facilitate renewable energy policies and investments.[from the SWERA Guide at http://swera.unep.net/index.php?id=sweraguide_chp1] DOE and, in particular, the National Renewable Energy Laboratory, has been a functioning partner from the beginning. NREL was part of the original technical team involved in mapping, database, and GIS activities. Solar, wind, and meteorological data for selected countries can be accessed through a variety of different tools and interfaces.

Note: This page contains sample records for the topic "wind energy resource" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


281

Support Resources Inc | Open Energy Information  

Open Energy Info (EERE)

Resources, Inc Place Malibu, California Zip 90265 Sector Renewable Energy, Services, Wind energy Product Management Consulting Services specializing in renewable energy project...

282

Distributed Wind | Open Energy Information  

Open Energy Info (EERE)

Distributed Wind Distributed Wind Jump to: navigation, search Distributed wind energy systems provide clean, renewable power for on-site use and help relieve pressure on the power grid while providing jobs and contributing to energy security for homes, farms, schools, factories, private and public facilities, distribution utilities, and remote locations.[1] Resources Clean Energy States Alliance. (2010). State-Based Financing Tools to Support Distributed and Community Wind Projects. Accessed September 27, 2013. This guide reviews the financing role that states, and specifically state clean energy funds, have played and can play in supporting community and distributed wind projects. Clean Energy States Alliance. (May 2010). Supporting Onsite Distributed Wind Generation Projects. Accessed September 27, 2013.

283

Wind Energy Ordinances (Fact Sheet)  

SciTech Connect

Due to increasing energy demands in the United States and more installed wind projects, rural communities and local governments with limited or no experience with wind energy now have the opportunity to become involved in this industry. Communities with good wind resources may be approached by entities with plans to develop the resource. Although these opportunities can create new revenue in the form of construction jobs and land lease payments, they also create a new responsibility on the part of local governments to create ordinances to regulate wind turbine installations. Ordinances are laws, often found within municipal codes that provide various degrees of control to local governments. These laws cover issues such as zoning, traffic, consumer protection, and building codes. Wind energy ordinances reflect local needs and wants regarding wind turbines within county or city lines and aid the development of safe facilities that will be embraced by the community. Since 2008 when the National Renewable Energy Laboratory released a report on existing wind energy ordinances, many more ordinances have been established throughout the United States, and this trend is likely to continue in the near future as the wind energy industry grows. This fact sheet provides an overview of elements found in typical wind energy ordinances to educate state and local government officials, as well as policy makers.

2010-08-01T23:59:59.000Z

284

Han Wind Energy Corporation | Open Energy Information  

Open Energy Info (EERE)

Han Wind Energy Corporation Jump to: navigation, search Name Han Wind Energy Corporation Place Beijing, Beijing Municipality, China Zip 100027 Sector Wind energy Product Han Wind...

285

Weatherford Wind Energy Center | Open Energy Information  

Open Energy Info (EERE)

Weatherford Wind Energy Center Weatherford Wind Energy Center Facility Weatherford Wind Energy Center Sector Wind energy Facility Type Commercial Scale Wind Facility Status In Service Owner NextEra Energy Resources Developer NextEra Energy Resources Energy Purchaser American Electric Power Location Weatherford OK Coordinates 35.559414°, -98.742992° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":35.559414,"lon":-98.742992,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

286

Minco Wind Energy Center | Open Energy Information  

Open Energy Info (EERE)

Wind Energy Center Wind Energy Center Facility Minco Wind Energy Center Sector Wind energy Facility Type Commercial Scale Wind Facility Status In Service Owner NextEra Energy Resources Developer NextEra Energy Resources Energy Purchaser Public Service Company of Oklahoma Location South of Minco OK Coordinates 35.294204°, -97.926081° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":35.294204,"lon":-97.926081,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

287

Oliver Wind Energy Center | Open Energy Information  

Open Energy Info (EERE)

Wind Energy Center Wind Energy Center Facility Oliver Wind Energy Center Sector Wind energy Facility Type Commercial Scale Wind Facility Status In Service Owner NextEra Energy Resources Developer NextEra Energy Resources Energy Purchaser Minnesota Power Location Oliver County ND Coordinates 47.180446°, -101.225116° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":47.180446,"lon":-101.225116,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

288

Modeling access to wind resources in the United States  

DOE Green Energy (OSTI)

To project the US potential to meet future electricity demands with wind energy, estimates of available wind resource and costs to access that resource are critical. The US Department of Energy (DOE) Energy Information Administration (EIA) annually estimates the US market penetration of wind in its Annual Energy Outlook series. For these estimates, the EIA uses wind resource data developed by the Pacific Northwest National Laboratory for each region of the country. However, the EIA multiplies the cost of windpower by several factors, some as large as 3, to account for resource quality, market factors associated with accessing the resource, electric grid impacts, and rapid growth in the wind industry. This paper examines the rationale behind these additional costs and suggests alternatives.

Short, W.D.

1999-10-20T23:59:59.000Z

289

Update of wind resource assessment activities at NREL  

DOE Green Energy (OSTI)

The goal of the wind resource assessment activity at the National Renewable Energy Laboratory (NREL) is to improve the characterization of the wind resource for regions where there are market opportunities for U.S. wind energy technology. A variety of wind resource assessment activities have recently been undertaken at NREL in support of this effort. The major tasks during the past year include aiding the establishment of new wind measurement programs in the United States, the development of updated comprehensive meteorological and geographical data bases to be used for resource assessments in the United States and abroad, and designing progressive wind resource mapping tools to facilitate products used in support of emerging markets.

Elliott, D L; Schwartz, M N

1996-07-01T23:59:59.000Z

290

Mountaineer Wind Energy Center | Open Energy Information  

Open Energy Info (EERE)

Mountaineer Wind Energy Center Mountaineer Wind Energy Center Jump to: navigation, search Name Mountaineer Wind Energy Center Facility Mountaineer Wind Energy Center Sector Wind energy Facility Type Commercial Scale Wind Facility Status In Service Owner NextEra Energy Resources Developer Atlantic Renewable Energy Energy Purchaser Exelon Location Thomas WV Coordinates 39.163081°, -79.554516° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":39.163081,"lon":-79.554516,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

291

Pages that link to "Property:ProgramResources" | Open Energy...  

Open Energy Info (EERE)

Wind Energy Resource Assessment (SWERA) ( links) Power Technologies Energy Data Book ( links) Geospatial Toolkit ( links) Long range Energy Alternatives...

292

Stateline Wind Energy Project | Open Energy Information  

Open Energy Info (EERE)

Energy Project Energy Project Jump to: navigation, search Name Stateline Wind Energy Project Facility Stateline Wind Energy Project Sector Wind energy Facility Type Commercial Scale Wind Facility Status In Service Owner NextEra Energy Resources Developer NextEra Energy Resources Energy Purchaser PPM Energy Inc Location Walla Walla County Coordinates 46.012769°, -118.751528° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":46.012769,"lon":-118.751528,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

293

United States Wind Resource Map: Annual Average Wind Speed at...  

Wind Powering America (EERE)

and atmospheric effects may cause the wind speed to depart from the map estimates. Expert advice should be sought in placing wind turbines and estimating their energy production....

294

Development of Regional Wind Resource and Wind Plant Output Datasets...  

NLE Websites -- All DOE Office Websites (Extended Search)

50-47676 March 2010 Development of Regional Wind Resource and Wind Plant Output Datasets Final Subcontract Report 15 October 2007 - 15 March 2009 3TIER Seattle, Washington National...

295

Wind Resource Assessment Report: Mille Lacs Indian Reservation, Minnesota  

DOE Green Energy (OSTI)

The U.S. Environmental Protection Agency (EPA) launched the RE-Powering America's Land initiative to encourage development of renewable energy on potentially contaminated land and mine sites. EPA collaborated with the U.S. Department of Energy's (DOE's) National Renewable Energy Laboratory (NREL) and the Mille Lacs Band of Chippewa Indians to evaluate the wind resource and examine the feasibility of a wind project at a contaminated site located on the Mille Lacs Indian Reservation in Minnesota. The wind monitoring effort involved the installation of a 60-m met tower and the collection of 18 months of wind data at multiple heights above the ground. This report focuses on the wind resource assessment, the estimated energy production of wind turbines, and an assessment of the economic feasibility of a potential wind project sited this site.

Jimenez, A. C.

2013-12-01T23:59:59.000Z

296

Solar Wind | Open Energy Information  

Open Energy Info (EERE)

Wind Jump to: navigation, search Name Solar Wind Place Krasnodar, Romania Zip 350000 Sector Solar, Wind energy Product Russia-based PV product manufacturer. Solar Wind manufactures...

297

Offshore Wind Resource......................................................  

E-Print Network (OSTI)

Operated by the Alliance for Sustainable Energy, LLC Contract No. DE-AC36-08-GO28308NOTICE This report was prepared as an account of work sponsored by an agency of the United States government. Neither the United States government nor any agency thereof, nor any of their employees, makes any warranty, express or implied, or assumes any legal liability or responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or represents that its use would not infringe privately owned rights. Reference herein to any specific commercial product, process, or service by trade name, trademark, manufacturer, or otherwise does not necessarily constitute or imply its endorsement, recommendation, or favoring by the United States government or any agency thereof. The views and opinions of authors expressed herein do not necessarily state or reflect those of the United States government or any agency thereof. Available electronically at

United States; Marc Schwartz; Donna Heimiller; Walt Musial

2010-01-01T23:59:59.000Z

298

New England Wind Forum: Building Wind Energy in New England  

Wind Powering America (EERE)

Projects in New England Building Wind Energy in New England Wind Resource Wind Power Technology Economics Markets Siting Policy Technical Challenges Issues Small Wind Large Wind Newsletter Perspectives Events Quick Links to States CT MA ME NH RI VT Bookmark and Share Building Wind Energy in New England Many factors influence the ability to develop wind power in the New England region. A viable project requires the right site and the right technology for the application. It must provide suitable revenue or economic value to justify investment in this capital-intensive but zero-fuel technology. Policy initiatives are in place throughout the region to support the expansion of wind power's role in the regional supply mix. However, issues affecting public acceptance of wind projects in host communities must be addressed. Information on topics affecting wind power development in New England can be found by using the navigation to the left.

299

Offshore Wind Energy | Open Energy Information  

Open Energy Info (EERE)

Page Page Edit History Facebook icon Twitter icon » Offshore Wind Energy Jump to: navigation, search The Middelgrunden Wind Farm was established as a collaboration between Middelgrunden Wind Turbine Cooperative and Copenhagen Energy, each installing 10 2-MW Bonus wind turbines. The farm is located off the coast of Denmark, east of the northern tip of Amager. Photo from H.C. Sorensen, NREL 17856 Offshore wind energy is a clean, domestic, renewable resource that can help the United States meet its critical energy, environmental, and economic challenges. By generating electricity from offshore wind turbines, the nation can reduce its greenhouse gas emissions, diversify its energy supply, provide cost-competitive electricity to key coastal regions, and help revitalize key sectors of its economy, including manufacturing.

300

Wind energy prediction and monitoring with neural computation  

Science Conference Proceedings (OSTI)

Wind energy has an important part to play as renewable energy resource in a sustainable world. For a reliable integration of wind energy high-dimensional wind time-series have to be analyzed. Fault analysis and prediction are an important aspect in this ... Keywords: Dimension reduction, Self-organizing feature maps, Support vector regression, Time-series monitoring, Wind energy, Wind prediction

Oliver Kramer; Fabian Gieseke; Benjamin Satzger

2013-06-01T23:59:59.000Z

Note: This page contains sample records for the topic "wind energy resource" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


301

from Wind Energy Development  

E-Print Network (OSTI)

These comments are submitted on behalf of the Clean Energy State Alliance (CESA) (electronically and by mail). CESA is a non-profit, multi-state coalition of state clean energy funds and programs working together to develop and promote clean energy technologies. CESA seeks to identify and address barriers to the development and growth of viable renewable energy resources in the United States. The California Energy Commission is a member of CESA. CESA offers its assistance and resources to the Commission and staff in the guidelines development process. CESA has substantial experience and expertise on the avian protection and wind siting issues that the Commission will consider in this Docket. Most notably, CESA is working actively with the United States Fish & Wildlife Service (USFWS), the Minerals Management Service, and several states (Pennsylvania, New York, Vermont, and others) to develop reasonable and effective approaches to addressing the impacts of wind projects on avian species. Many of the issues that the Commission will consider in this Docket are also being addressed by other states and federal agencies. CESA is available to provide relevant information and approaches that these other agencies and guidance development processes are employing, developing, and/or evaluating.

Dockets Office Ms; Dear Commissioners

2006-01-01T23:59:59.000Z

302

Wind Energy | OpenEI  

Open Energy Info (EERE)

Energy Energy Dataset Summary Description Reduction of global greenhouse gas emission to arrest global warming requires minimizing the use of fossil fuels. To achieve this a large scale use of renewable energies must be made over the globe for production of electrical and thermal energy. Success of wind and solar energy projects require detailed and precise information on the resources. For most developing countries adequate information on the resources are not available. Source Renewable Energy Research Centre, University of Dhaka Date Released February 19th, 2007 (7 years ago) Date Updated Unknown Keywords Feasibility Study resource assessment Solar Energy SWERA Bangladesh Wind Energy Data application/pdf icon swera_bangladesh_fullreport.pdf (pdf, 2.7 MiB)

303

Wind Energy Benefits  

DOE Green Energy (OSTI)

Wind energy provides many benefits, including economic and environmental. This two-sided fact sheet succinctly outlines the top ten wind energy benefits and is especially well suited for general audiences.

Not Available

2005-04-01T23:59:59.000Z

304

Meteorological and topographical indicators of wind energy for regional assessments  

SciTech Connect

Techniques using meteorological and topographical indicators of wind energy, developed by PNL and applied to the Northwest wind resource assessment, improved the reliability of the analysis of the geographical distribution of wind energy. The identification and application of these indicators led to an improved understanding of the conditions associated with high and low wind energy. Furthermore, these indicators are especially useful in complex terrain and wind-data-sparse areas for obtaining a somewhat realistic estimate of the wind energy resource.

Elliott, D. L.

1979-12-01T23:59:59.000Z

305

Wind | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Wind Wind Wind America is home to one of the largest and fastest growing wind markets in the world. Watch the video to learn more about the latest trends in the U.S. wind power market and join us this Thursday, August 8 at 3 pm ET for a Google+ Hangout on wind energy in America. The United States is home to one of the largest and fastest growing wind markets in the world. To stay competitive in this sector, the Energy Department invests in wind projects, both on land and offshore, to advance technology innovations, create job opportunities and boost economic growth. Moving forward, the U.S. wind industry remains a critical part of the Energy Department's all-of-the-above energy strategy to cut carbon pollution, diversify our energy economy and bring the next-generation of

306

Grid Connected Wind Power in China: Renewable Energy in China  

DOE Green Energy (OSTI)

Fact sheet describes China's use of wind energy, policy and market development programs, financing, research and development, and information resources.

Not Available

2004-04-01T23:59:59.000Z

307

Distributed Wind Energy in Idaho  

SciTech Connect

Project Objective: This project is a research and development program aimed at furthering distributed wind technology. In particular, this project addresses some of the barriers to distributed wind energy utilization in Idaho. Background: At its core, the technological challenge inherent in Wind Energy is the transformation of a highly variable form of energy to one which is compatible with the commercial power grid or another useful application. A major economic barrier to the success of distributed wind technology is the relatively high capital investment (and related long payback periods) associated with wind turbines. This project will carry out fundamental research and technology development to address both the technological and economic barriers. â?¢ Active drive train control holds the potential to improve the overall efficiency of a turbine system by allowing variable speed turbine operation while ensuring a tight control of generator shaft speed, thus greatly simplifying power conditioning. â?¢ Recent blade aerodynamic advancements have been focused on large, utility-scale wind turbine generators (WTGs) as opposed to smaller WTGs designed for distributed generation. Because of Reynolds Number considerations, blade designs do not scale well. Blades which are aerodynamically optimized for distributed-scale WTGs can potentially reduce the cost of electricity by increasing shaft-torque in a given wind speed. â?¢ Grid-connected electric generators typically operate at a fixed speed. If a generator were able to economically operate at multiple speeds, it could potentially convert more of the windâ??s energy to electricity, thus reducing the cost of electricity. This research directly supports the stated goal of the Wind and Hydropower Technologies Program for Distributed Wind Energy Technology: By 2007, reduce the cost of electricity from distributed wind systems to 10 to 15 cents/kWh in Class 3 wind resources, the same level that is currently achievable in Class 5 winds.

Gardner, John; Ferguson, James; Ahmed-Zaid, Said; Johnson, Kathryn; Haynes, Todd; Bennett, Keith

2009-01-31T23:59:59.000Z

308

NREL: Wind Research - U.S. Department of Energy Wind Program...  

NLE Websites -- All DOE Office Websites (Extended Search)

U.S. Department of Energy Wind Program Initiates Regional Resource Centers October 30, 2013 The U.S. Department of Energy's (DOE's) National Renewable Energy Laboratory (NREL)...

309

Wind Energy Technologies | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Wind Energy Technologies Wind Energy Technologies August 15, 2013 - 4:10pm Addthis Photo of a hilly field, with six visible wind turbines spinning in the wind. Wind energy...

310

Foresight Wind Energy LLC | Open Energy Information  

Open Energy Info (EERE)

Foresight Wind Energy LLC Jump to: navigation, search Name Foresight Wind Energy LLC Place San Francisco, California Zip 94105 Sector Wind energy Product San Francisco-based...

311

Berrendo Wind Energy | Open Energy Information  

Open Energy Info (EERE)

Berrendo Wind Energy Jump to: navigation, search Name Berrendo Wind Energy Place Boulder, Colorado Zip 80304 Sector Wind energy Product Colorado-based firm developing utility scale...

312

Astraeus Wind Energy Inc | Open Energy Information  

Open Energy Info (EERE)

Astraeus Wind Energy Inc Jump to: navigation, search Name Astraeus Wind Energy Inc Place Eaton Rapids, Michigan Sector Wind energy Product Michigan-based manufacturer of large...

313

Wind energy information directory  

DOE Green Energy (OSTI)

Wind Energy Information has been prepared to provide researchers, designers, manufacturers, distributors, dealers, and users of wind energy conversion systems with easy access to technical information. This directory lists organizations and publications which have the main objective of promoting the use of wind energy conversion systems, some organizations that can respond to requests for information on wind energy or make referrals to other sources of information, and some publications that occasionally include information on wind energy. The bibliography contains references to information for both the neophyte and the expert.

None

1979-10-01T23:59:59.000Z

314

Wind Energy Forecasting Technology Update: 2006  

Science Conference Proceedings (OSTI)

The worldwide installed wind generation capacity increased by 25 and reached almost 60,000 MW worldwide during 2005. As wind capacity continues to grow and large regional concentrations of wind generation emerge, utilities and regional transmission organizations will increasingly need accurate same-day and next-day forecasts of wind energy generation to dispatch system generation and transmission resource and anticipate rapid changes of wind generation.

2006-12-05T23:59:59.000Z

315

Wind Energy Forecasting Technology Update: 2005  

Science Conference Proceedings (OSTI)

The worldwide installed wind generation capacity increased by 25 and reached almost 60,000 MW worldwide during 2005. As wind capacity continues to grow and large regional concentrations of wind generation emerge, utilities and regional transmission organizations will increasingly need accurate same-day and next-day forecasts of wind energy generation to dispatch system generation and transmission resource and anticipate rapid changes of wind generation. The project objective is to summarize the results o...

2006-03-31T23:59:59.000Z

316

Renewable Energy Resources Inc | Open Energy Information  

Open Energy Info (EERE)

Renewable Energy Resources, Inc. Renewable Energy Resources, Inc. Place Las Vegas, Nevada Sector Hydro, Renewable Energy, Solar, Wind energy Product Renewable Energy is a privately-held consultancy with proprietary technology in the solar, wind and hydro fields. References Renewable Energy Resources, Inc.[1] LinkedIn Connections CrunchBase Profile No CrunchBase profile. Create one now! This article is a stub. You can help OpenEI by expanding it. Renewable Energy Resources, Inc. is a company located in Las Vegas, Nevada . References ↑ "Renewable Energy Resources, Inc." rated format, with renewable energy as its base, insuring a successful project throughout construction and commissioning. |Number of employees= |Coordinates= |References=Renewable Energy Resources, Inc.[1] }}

317

Wind Resource Mapping for United States Offshore Areas: Preprint  

SciTech Connect

The U.S. Department of Energy's (DOE) National Renewable Energy Laboratory (NREL) is producing validated wind resource maps for priority offshore regions of the United States. This report describes the methodology used to validate the maps and to build a Geographic Information Systems (GIS) database to classify the offshore wind resource by state, water depth, distance from shore, and administrative unit.

Elliott, D.; Schwartz, M.

2006-06-01T23:59:59.000Z

318

New England Wind Forum: Resources and Tools  

Wind Powering America (EERE)

Resources and Tools Resources and Tools The following provides resources for large energy users considering purchases of wind or other renewable energy. World Resources Institute. (2004). "Next Generation Green Power Products for Corporate Markets in North America." This installment of WRI's Corporate Guide to Green Power Markets focuses on the most effective, and cost-effective, ways for large electricity consumers to buy green power. These include purchases of nationally sourced RECs and two forms of long-term contracts with renewable generators that can be used to stabilize corporate energy costs or serve as a hedge against volatile electricity rates. The Green Power Market Development Group (GPMDG) A collaboration of 12 leading corporations and the World Resources Institute dedicated to building corporate markets for 1,000 MW of new, cost-competitive green power by 2010. The group includes Alcoa Inc., Delphi Corporation, Dow, DuPont, FedEx Kinko's, General Motors, IBM, Interface, Johnson & Johnson, NatureWorks LLC, Pitney Bowes, and Staples. The GPMDG has developed analytical tools, guidelines for writing a solicitation, sample REC contracts, and corporate case studies, available on their Web site to facilitate corporate purchases of renewable energy.

319

1. Sector Description Wind Energy  

E-Print Network (OSTI)

Wind power is todays most rapidly growing renewable power source. In the United States, new wind farms were the second-largest source of new power generation in 2005, after new natural gas power plants. In 2005, 2,431 megawatts (MW) of new capacity were installed in 22 states, increasing total wind generating capacity by more than a third to 9,149 MW, or enough to power 2.3 million average American households. Wind energy is a clean, domestic, renewable resource. It often displaces electricity that would otherwise have been produced by natural gas, thus helping to reduce gas demand and limit gas price hikes (DOE 2006a). It also can serve as a partial replacement for the electricity produced by the aging U.S. coal-fired power plant fleet. In the future, surplus wind power can be used for desalination and hydrogen production, and may be stored as hydrogen for use in fuel cells or gas turbines to generate electricity, leveling supply when winds are variable. Last February, the President said that wind energy could provide as much as 20 % of our electricity demands, up from less than 1 % today. Dozens of states have passed renewable portfolio standards setting goals similar to that stated by the President, giving broad-based public support for development of wind resources.

unknown authors

2006-01-01T23:59:59.000Z

320

Energy Basics: Wind Turbines  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Photo of a crane lifting the blades onto a wind turbine that reads 'U.S. Department of Energy, NREL.' You can learn more about horizontal axis turbines from the EERE Wind Program's...

Note: This page contains sample records for the topic "wind energy resource" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


321

Solar and Wind Energy Resource Assessment in Nepal | OpenEI  

Open Energy Info (EERE)

in Nepal in Nepal Dataset Summary Description (Abstract): Global Horizontal Solar Irradiance is developed based on a linear regression model that has been developed to correlate the theoretical and ground measured solar irradiance on the basis of available ground measured Global Horizontal Solar Irradiance at three locations: a) Syangboche (Solukhumbu) b) Pulchowk (Lalitpur) and c) Prakashpur (Sunsari). These locations represent the three different geographical regions: Mountain, Hill and Plain. The model is used for converting the theoretical Global Horizontal Solar Irradiance to actual solar irradiance in 15 meteorological stations spread throughout the country. Interpolating the data obtained at these stations, a map has been developed using ArcView GIS software. The existing methodology for projecting wind speedat 2m height from DHM meteorological station data to 10m height, shows a deviated figures. In other to develop wind map, valid methodology is required which can project the low height wind speed to higher heights. The projected data (Thini and Thakmarpha) when

322

Wyoming Wind Energy Center | Open Energy Information  

Open Energy Info (EERE)

Center Center Jump to: navigation, search Name Wyoming Wind Energy Center Facility Wyoming Wind Energy Center Sector Wind energy Facility Type Commercial Scale Wind Facility Status In Service Owner NextEra Energy Resources Developer Orion Energy Energy Purchaser PPM Energy Inc Location Evanston WY Coordinates 41.304414°, -110.793904° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":41.304414,"lon":-110.793904,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

323

International Workshop on Small Scale Wind Energy for Developing Countries  

Open Energy Info (EERE)

Scale Wind Energy for Developing Countries Scale Wind Energy for Developing Countries Jump to: navigation, search Name International Workshop on Small Scale Wind Energy for Developing Countries Agency/Company /Organization Risoe DTU Sector Energy Focus Area Renewable Energy, Wind Topics Implementation, Technology characterizations Resource Type Workshop, Training materials, Lessons learned/best practices Website http://www.risoe.dtu.dk/~/medi References International Workshop on Small Scale Wind Energy for Developing Countries[1] Background "The workshop covers the following main themes: Wind energy technologies, their perspectives and applications in developing countries. Reliability of wind turbines, lifetime and strength of wind turbine components. Low cost and natural materials for wind turbines.

324

United States Wind Resource Potential Chart  

Wind Powering America (EERE)

18,000 18,000 Rated Capacity Above Indicated CF (GW) United States - Wind Resource Potential Cumulative Rated Capacity vs. Gross Capacity Factor (CF) 80 m The estimates show the potential gigawatts of rated capacity that could be installed on land above a given gross capacity factor (without losses) at 80-m and 100-m heights above ground. Areas greater than 30% at 80 m are generally considered to have suitable wind resource for potential wind development with today's advanced wind turbine technology. AWS Truewind, LLC developed the wind resource data for windNavigator® (http://navigator.awstruewind.com) with a spatial resolution of 200 m. NREL filtered the wind potential estimates to

325

Community Wind Development Handbook | Open Energy Information  

Open Energy Info (EERE)

Community Wind Development Handbook Community Wind Development Handbook Jump to: navigation, search Tool Summary Name: Community Wind Development Handbook Agency/Company /Organization: Windustry Partner: AURI AG Innovations, The Minnesota Project, MC&PC, Clean Energy Resource Teams, Southwest Initiative Foundation Sector: Energy Focus Area: Wind, Economic Development Phase: Evaluate Options, Develop Goals, Prepare a Plan, Create Early Successes Resource Type: Guide/manual User Interface: Other Website: www.auri.org/research/Community%20Wind%20Handbook.pdf Cost: Free References: Community Wind Development Handbook[1] Provides developers practical knowledge of what to expect when developing commercial-scale community wind energy projects in the range of 2 to 50 Megawatts. Overview The Community Wind Development Handbook "is designed to give developers of

326

Wind Energy Permitting Standards | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Wind Energy Permitting Standards Wind Energy Permitting Standards < Back Eligibility Commercial Construction Industrial InstallerContractor Savings Category Wind Buying & Making...

327

Minnesota Wind Share Wind Farm | Open Energy Information  

Open Energy Info (EERE)

Share Wind Farm Share Wind Farm Jump to: navigation, search Name Minnesota Wind Share Wind Farm Facility Minnesota Wind Share Sector Wind energy Facility Type Commercial Scale Wind Facility Status In Service Owner Various Developer Project Resources Corp. Energy Purchaser Xcel Energy Location Lake Wilson MN Coordinates 43.996°, -95.9532° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":43.996,"lon":-95.9532,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

328

Highmore Wind Energy Project | Open Energy Information  

Open Energy Info (EERE)

Highmore Wind Energy Project Highmore Wind Energy Project Jump to: navigation, search Name Highmore Wind Energy Project Facility Highmore Wind Energy Project Sector Wind energy Facility Type Commercial Scale Wind Facility Status In Service Owner NextEra Energy Resources Developer NextEra Energy Resources Energy Purchaser Basin Electric Location South of Highmore SD Coordinates 44.380689°, -99.441683° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":44.380689,"lon":-99.441683,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

329

North Dakota Wind II Wind Farm | Open Energy Information  

Open Energy Info (EERE)

II Wind Farm II Wind Farm Facility North Dakota Wind II Sector Wind energy Facility Type Commercial Scale Wind Facility Status In Service Owner NextEra Energy Resources Developer NextEra Energy Resources Energy Purchaser Otter Tail Power Coop. Location Edgeley/Kulm ND Coordinates 46.292787°, -98.881638° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":46.292787,"lon":-98.881638,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

330

North Dakota Wind I Wind Farm | Open Energy Information  

Open Energy Info (EERE)

I Wind Farm I Wind Farm Facility North Dakota Wind I Sector Wind energy Facility Type Commercial Scale Wind Facility Status In Service Owner NextEra Energy Resources Developer NextEra Energy Resources Energy Purchaser Basin Electric Location Edgeley/Kulm ND Coordinates 46.319182°, -98.890818° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":46.319182,"lon":-98.890818,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

331

Wind Energy Myths  

DOE Green Energy (OSTI)

This two-sided fact sheet succinctly outlines and counters the top misconceptions about wind energy. It is well suited for general audiences.

Not Available

2005-05-01T23:59:59.000Z

332

WindEnergyPEIS  

NLE Websites -- All DOE Office Websites (Extended Search)

all or parts of the States of Iowa, Minnesota, Montana, Nebraska, North Dakota, and South Dakota. The draft PEIS assesses environmental impacts associated with wind energy...

333

The Economics of Wind Energy | Open Energy Information  

Open Energy Info (EERE)

Economics of Wind Energy Economics of Wind Energy Jump to: navigation, search Tool Summary LAUNCH TOOL Name: The Economics of Wind Energy Agency/Company /Organization: European Wind Energy Association Sector: Energy Focus Area: Renewable Energy, Wind Topics: Market analysis Resource Type: Publications Website: www.ewea.org/fileadmin/ewea_documents/documents/publications/reports/E The Economics of Wind Energy Screenshot References: The Economics of Wind Energy [1] Overview "This report provides a systematic framework for the economic dimension of wind energy and of the energy policy debate when comparing different power generation technologies. A second contribution is to put fuel price risk directly into the analysis of the optimal choice of energy sources for power generation."

334

Port Clair Wind Energy | Open Energy Information  

Open Energy Info (EERE)

Port Clair Wind Energy Jump to: navigation, search Name Port Clair Wind Energy Place United Kingdom Sector Wind energy Product Company setup to develop the 35MW Port Clair wind...

335

Potential for Development of Solar and Wind Resource in Bhutan  

DOE Green Energy (OSTI)

With support from the U.S. Agency for International Development (USAID), the U.S. Department of Energy's National Renewable Energy Laboratory (NREL) produced maps and data of the wind and solar resources in Bhutan. The solar resource data show that Bhutan has an adequate resource for flat-plate collectors, with annual average values of global horizontal solar radiation ranging from 4.0 to 5.5 kWh/m2-day (4.0 to 5.5 peak sun hours per day). The information provided in this report may be of use to energy planners in Bhutan involved in developing energy policy or planning wind and solar projects, and to energy analysts around the world interested in gaining an understanding of Bhutan's wind and solar energy potential.

Gilman, P.; Cowlin, S.; Heimiller, D.

2009-09-01T23:59:59.000Z

336

Small Wind Electric Systems | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Small Wind Electric Systems Small Wind Electric Systems Small Wind Electric Systems July 15, 2012 - 5:22pm Addthis Wind power is the fastest growing source of energy in the world -- efficient, cost effective, and non-polluting. What does this mean for me? Small wind electric systems can be one of the most efficient ways of producing electricity for your home. Wind energy is a fast growing market, because it is effective and cost efficient. If you have enough wind resource in your area and the situation is right, small wind electric systems are one of the most cost-effective home-based renewable energy systems -- with zero emissions and pollution. Small wind electric systems can: Lower your electricity bills by 50%-90% Help you avoid the high costs of having utility power lines extended

337

NREL: Wind Research - Shedding Light on Offshore Wind Resources  

NLE Websites -- All DOE Office Websites (Extended Search)

Shedding Light on Offshore Wind Resources March 22, 2013 View of the Chesapeake Bay light tower in the water. The Chesapeake Bay light tower is located approximately 13 miles from...

338

Offshore Wind Resource Global Wind Potential Supply Curves by...  

Open Energy Info (EERE)

Offshore Wind Resource Global Wind Potential Supply Curves by Country, Class, and Depth (quantities in GW)
2012-07-12T22:51:45Z 2012-07-13T20:49:20Z I am submitting data from...

339

Searchlight Wind Energy Project FEIS Appendix C  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

C C Page | C 19B Appendix C: BLM Wind Energy Development Program Policies and BMPs A-1 ATTACHMENT A BLM WIND ENERGY DEVELOPMENT PROGRAM POLICIES AND BEST MANAGEMENT PRACTICES (BMPS) A-2 ATTACHMENT A BLM WIND ENERGY DEVELOPMENT PROGRAM POLICIES AND BEST MANAGEMENT PRACTICES (BMPS) The BLM's Wind Energy Development Program will establish a number of policies and BMPs, provided below, regarding the development of wind energy resources on BLM- administered public lands. The policies and BMPs will be applicable to all wind energy development projects on BLM-administered public lands. The policies address the administration of wind energy development activities, and the BMPs identify required mitigation measures that would need to be incorporated into project-specific Plans of Development (PODs)

340

Energy Basics: Geothermal Resources  

NLE Websites -- All DOE Office Websites (Extended Search)

Energy Basics Renewable Energy Printable Version Share this resource Biomass Geothermal Direct Use Electricity Production Geothermal Resources Hydrogen Hydropower Ocean...

Note: This page contains sample records for the topic "wind energy resource" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


341

Energy Basics: Hydropower Resources  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Energy Basics Renewable Energy Printable Version Share this resource Biomass Geothermal Hydrogen Hydropower Large-Scale Hydropower Microhydropower Hydropower Resources...

342

Wind energy conversion system  

DOE Patents (OSTI)

The wind energy conversion system includes a wind machine having a propeller connected to a generator of electric power, the propeller rotating the generator in response to force of an incident wind. The generator converts the power of the wind to electric power for use by an electric load. Circuitry for varying the duty factor of the generator output power is connected between the generator and the load to thereby alter a loading of the generator and the propeller by the electric load. Wind speed is sensed electro-optically to provide data of wind speed upwind of the propeller, to thereby permit tip speed ratio circuitry to operate the power control circuitry and thereby optimize the tip speed ratio by varying the loading of the propeller. Accordingly, the efficiency of the wind energy conversion system is maximized.

Longrigg, Paul (Golden, CO)

1987-01-01T23:59:59.000Z

343

Wind Energy Data and Information Gateway (WENDI) | Open Energy Information  

Open Energy Info (EERE)

Wind Energy Data and Information Gateway (WENDI) Wind Energy Data and Information Gateway (WENDI) Jump to: navigation, search Tool Summary LAUNCH TOOL Name: Wind Energy Data and Information Gateway (WENDI) Agency/Company /Organization: United States Department of Energy, Oak Ridge National Laboratory Sector: Energy Focus Area: Wind Topics: Market analysis, Resource assessment, Technology characterizations Resource Type: Dataset, Maps Website: windenergy.ornl.gov/ References: Wind Energy Data and Information Gateway (WENDI)[1] Logo: Wind Energy Data and Information Gateway (WENDI) The WENDI Gateway is an integrated system for the archival, discovery, access, integration, and delivery of wind energy-related data and information. NOTE The WENDI Gateway has been discontinued due to an absence of funding. Oak

344

Wind Energy Economic Development and Impacts | Open Energy Information  

Open Energy Info (EERE)

Wind Energy Economic Development and Impacts Wind Energy Economic Development and Impacts Jump to: navigation, search Wind turbine blades wind their way by train through Denver. Photo by Dennis Schroeder, NREL 20894 Meeting 20% of the nation's electricity demand with wind energy will lead to benefits to rural landowners and towns, the manufacturing sector, and infrastructure across America.[1] The following provide more information about wind energy and economic development: Resources European Wind Energy Association. Economic Benefits of Wind This page outlines the economic benefits of wind energy in Europe. National Renewable Energy Laboratory. (March 2013). Economic Development from New Generation and Transmission in Wyoming and Colorado. Accessed November 29, 2013. This fact sheet summarizes a recent analysis, commissioned by the Wyoming

345

Wind Energy Update  

Wind Powering America (EERE)

by the Alliance for Sustainable Energy, LLC. by the Alliance for Sustainable Energy, LLC. Wind Energy Update Wind Powering America January 2012 NATIONAL RENEWABLE ENERGY LABORATORY Evolution of Commercial Wind Technology NATIONAL RENEWABLE ENERGY LABORATORY Small (≤100 kW) Homes Farms Remote Applications (e.g. water pumping, telecom sites, icemaking) Midscale (100-1000 kW) Village Power Hybrid Systems Distributed Power Large, Land-based (1-3 MW) Utility-scale wind farms Large Distributed Power Sizes and Applications Large, Offshore (3-7 MW) Utility-scale wind farms, shallow coastal waters No U.S. installations NATIONAL RENEWABLE ENERGY LABORATORY Capacity & Cost Trends As of January 2012 (AWEA) 0 5000 10000 15000 20000 25000 30000 35000 40000 45000 50000 $- $200 $400 $600 $800 $1,000 $1,200

346

Wind | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Wind Wind Wind EERE plays a key role in advancing America's "all of the above" energy strategy, leading a large network of researchers and other partners to deliver innovative technologies that will make renewable electricity generation cost-competitive with traditional sources of energy. EERE plays a key role in advancing America's "all of the above" energy strategy, leading a large network of researchers and other partners to deliver innovative technologies that will make renewable electricity generation cost-competitive with traditional sources of energy. Image of a wind turbine against a partly cloudy sky. The U.S. Department of Energy (DOE) leads national efforts to improve the performance, lower the costs, and accelerate the deployment of wind energy technologies-both on

347

Wind energy | Open Energy Information  

Open Energy Info (EERE)

energy in the wind into mechanical power. A generator can convert mechanical power into electricity2. Mechanical power can also be utilized directly for specific tasks such as...

348

Wind energy applications guide  

DOE Green Energy (OSTI)

The brochure is an introduction to various wind power applications for locations with underdeveloped transmission systems, from remote water pumping to village electrification. It includes an introductory section on wind energy, including wind power basics and system components and then provides examples of applications, including water pumping, stand-alone systems for home and business, systems for community centers, schools, and health clinics, and examples in the industrial area. There is also a page of contacts, plus two specific example applications for a wind-diesel system for a remote station in Antarctica and one on wind-diesel village electrification in Russia.

anon.

2001-01-01T23:59:59.000Z

349

New Hampshire/Wind Resources/Full Version | Open Energy Information  

Open Energy Info (EERE)

Assistance Network Geothermal Incentives and Policies International Clean Energy Analysis Low Emission Development Strategies Oil & Gas Smart Grid Solar U.S. OpenLabs...

350

New York/Wind Resources/Full Version | Open Energy Information  

Open Energy Info (EERE)

Assistance Network Geothermal Incentives and Policies International Clean Energy Analysis Low Emission Development Strategies Oil & Gas Smart Grid Solar U.S. OpenLabs...

351

North Carolina/Wind Resources/Full Version | Open Energy Information  

Open Energy Info (EERE)

area of increased turbulence, which can shorten the life of the turbine and reduce energy production. Additional costs related to mitigating these concerns can lead to increased...

352

Stateline Wind Project | Open Energy Information  

Open Energy Info (EERE)

Stateline Wind Project Stateline Wind Project Jump to: navigation, search Name Stateline Wind Project Facility Stateline Wind Project Sector Wind energy Facility Type Commercial Scale Wind Facility Status In Service Owner NextEra Energy Resources Developer NextEra Energy Resources Energy Purchaser PPM Energy Inc Location Umatilla County OR Coordinates 45.99956°, -118.73457° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":45.99956,"lon":-118.73457,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

353

U.S. State Wind Resource Potential | OpenEI  

Open Energy Info (EERE)

State Wind Resource Potential State Wind Resource Potential Dataset Summary Description Estimates for each of the 50 states and the entire United States showing the windy land area with a gross capacity factor (without losses) of 30% and greater at 80-m height above ground and the wind energy potential from development of the "available" windy land area after exclusions. The "Installed Capacity" shows the potential megawatts (MW) of rated capacity that could be installed on the available windy land area, and the "Annual Generation" shows annual wind energy generation in gigawatt-hours (GWh) that could be produced from the installed capacity. AWS Truewind, LLC developed the wind resource data for windNavigator® with a spatial resolution of 200 m. NREL produced the estimates of windy land area and windy energy potential, including filtering the estimates to exclude areas unlikely to be developed such as wilderness areas, parks, urban areas, and water features (see the "Wind Resource Exclusion Table" sheet within the Excel file for more detail).

354

Wind Energy 101.  

DOE Green Energy (OSTI)

This presentation on wind energy discusses: (1) current industry status; (2) turbine technologies; (3) assessment and siting; and (4) grid integration. There are no fundamental technical barriers to the integration of 20% wind energy into the nation's electrical system, but there needs to be a continuing evolution of transmission planning and system operation policy and market development for this to be most economically achieved.

Karlson, Benjamin; Orwig, Kirsten (NREL)

2010-12-01T23:59:59.000Z

355

Module Handbook Specialisation Wind Energy  

E-Print Network (OSTI)

of wind energy External costs Future price trends 3. Environmental Issues Environmental benefits of WT and Externalities Clculation methods Current plant costs Wind energy prices The value Module Handbook Specialisation Wind Energy 2nd Semester for the Master Programme

Habel, Annegret

356

Wind Blog | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Wind Blog Wind Blog RSS September 26, 2013 Wind Farm Brings Clean, Affordable Energy to Alaskan Cooperative How can we make it easier for more communities to use wind power?...

357

Session: What can we learn from developed wind resource areas  

DOE Green Energy (OSTI)

This session at the Wind Energy and Birds/Bats workshop was composed of two parts intended to examine what existing science tells us about wind turbine impacts at existing wind project sites. Part one dealt with the Altamont Wind Resource area, one of the older wind projects in the US, with a paper presented by Carl Thelander titled ''Bird Fatalities in the Altamont Pass Wind Resource Area: A Case Study, Part 1''. Questions addressed by the presenter included: how is avian habitat affected at Altamont and do birds avoid turbine sites; are birds being attracted to turbine strings; what factors contribute to direct impacts on birds by wind turbines at Altamont; how do use, behavior, avoidance and other factors affect risk to avian species, and particularly impacts those species listed as threatened, endangered, or of conservation concern, and other state listed species. The second part dealt with direct impacts to birds at new generation wind plants outside of California, examining such is sues as mortality, avoidance, direct habitat impacts from terrestrial wind projects, species and numbers killed per turbine rates/MW generated, impacts to listed threatened and endangered species, to USFWS Birds of Conservation Concern, and to state listed species. This session focused on newer wind project sites with a paper titled ''Bird Fatality and Risk at New Generation Wind Projects'' by Wally Erickson. Each paper was followed by a discussion/question and answer period.

Thelander, Carl; Erickson, Wally

2004-09-01T23:59:59.000Z

358

EIS-0469: Proposed Wilton IV Wind Energy Center Project, Burleigh...  

NLE Websites -- All DOE Office Websites (Extended Search)

is evaluating the potential environmental impacts of interconnecting NextEra Energy Resources proposed Wilton IV Wind Energy Center Project, near Bismarck, North Dakota, to...

359

Haxtun Wind Project | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Haxtun Wind Project Haxtun Wind Project Haxtun Wind Project November 13, 2013 - 10:45am Addthis The Haxtun Wind project in Phillips County, Colorado, is a community-owned 30 megawatt wind farm. The U.S. Department of Energy provided more than $2.5 million in funding for this Community Renewable Energy Deployment (CommRE) project. Wind Farm Phillips County is located in northeastern Colorado. The Haxtun Wind CommRE project will consist of up to 20 turbines located on more than 9,200 acres just south of the town of Haxtun, Colorado, and will tie into the grid at the existing Haxtun substation with few additional improvements needed. To ensure success, the Haxtun Wind project needs to be located on a site with a good wind resource, accessible transmission, a supportive community,

360

United States: Energy Resources | Open Energy Information  

Open Energy Info (EERE)

United States: Energy Resources United States: Energy Resources Jump to: navigation, search Click on a state to view that state's page. Country Profile Name United States Population Unavailable GDP Unavailable Energy Consumption 99.53 Quadrillion Btu 2-letter ISO code US 3-letter ISO code USA Numeric ISO code 840 UN Region[1] Northern America OpenEI Resources Energy Maps 1143 view Tools 94 view Programs 25 view Energy Organizations 8947 view Research Institutions 128 view References CIA World Factbook, Appendix D[2] Energy Resources Resource Value Units Rank Period Source Wind Potential 2,237,435 Area(km²) Class 3-7 Wind at 50m 3 1990 NREL Solar Potential 24,557,081,451 MWh/year 6 2008 NREL Coal Reserves 260,551.00 Million Short Tons 1 2008 EIA Natural Gas Reserves 6,928,000,000,000 Cubic Meters (cu m) 6 2010 CIA World Factbook

Note: This page contains sample records for the topic "wind energy resource" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


361

United States: Energy Resources | Open Energy Information  

Open Energy Info (EERE)

United States: Energy Resources United States: Energy Resources (Redirected from United States of America) Jump to: navigation, search Click on a state to view that state's page. Country Profile Name United States Population Unavailable GDP Unavailable Energy Consumption 99.53 Quadrillion Btu 2-letter ISO code US 3-letter ISO code USA Numeric ISO code 840 UN Region[1] Northern America OpenEI Resources Energy Maps 1143 view Tools 94 view Programs 25 view Energy Organizations 8947 view Research Institutions 128 view References CIA World Factbook, Appendix D[2] Energy Resources Resource Value Units Rank Period Source Wind Potential 2,237,435 Area(km²) Class 3-7 Wind at 50m 3 1990 NREL Solar Potential 24,557,081,451 MWh/year 6 2008 NREL Coal Reserves 260,551.00 Million Short Tons 1 2008 EIA

362

United States: Energy Resources | Open Energy Information  

Open Energy Info (EERE)

United States: Energy Resources United States: Energy Resources (Redirected from USA) Jump to: navigation, search Click on a state to view that state's page. Country Profile Name United States Population Unavailable GDP Unavailable Energy Consumption 99.53 Quadrillion Btu 2-letter ISO code US 3-letter ISO code USA Numeric ISO code 840 UN Region[1] Northern America OpenEI Resources Energy Maps 1143 view Tools 94 view Programs 25 view Energy Organizations 8947 view Research Institutions 128 view References CIA World Factbook, Appendix D[2] Energy Resources Resource Value Units Rank Period Source Wind Potential 2,237,435 Area(km²) Class 3-7 Wind at 50m 3 1990 NREL Solar Potential 24,557,081,451 MWh/year 6 2008 NREL Coal Reserves 260,551.00 Million Short Tons 1 2008 EIA

363

Wind Energy Community Acceptance | Open Energy Information  

Open Energy Info (EERE)

source source History View New Pages Recent Changes All Special Pages Semantic Search/Querying Get Involved Help Apps Datasets Community Login | Sign Up Search Page Edit History Facebook icon Twitter icon » Wind Energy Community Acceptance Jump to: navigation, search In 2012 in Lamar, Colorado, Bob Emick (center, back to camera and Greg Emich (right in cowboy hat) talk about the 98 1.5-megawatt wind turbines on their ranch. Photo by Dennis Schroeder, NREL 21768 The following resources address community acceptance topics. Baring-Gould, I. (June 5, 2012). Social Acceptance of Wind Energy: Managing and Evaluating Its Market Impacts. National Renewable Energy Laboratory. Accessed August 14, 2013. This presentation offers background information on social acceptance issues, results of surveys conducted by the New England Wind Forum at a

364

Indian Wind Energy Outlook 2009  

E-Print Network (OSTI)

1. ?The status of wind energy in India ? 4 Indian power sector?????????????????????????????????????????????????????????????????????????5 Renewable Energy in India ?????????????????????????????????????????????????????????????5 Wind potential???????????????????????????????????????????????????????????????????????????????? ? 7

unknown authors

2009-01-01T23:59:59.000Z

365

NREL GIS Data: Indiana High Resolution Wind Resource | OpenEI  

Open Energy Info (EERE)

Indiana High Resolution Wind Resource Indiana High Resolution Wind Resource Dataset Summary Description Abstract: Annual average wind resource potential for the state of Indiana at a 50 meter height. Purpose: Provide information on the wind resource development potential within the state of Indiana. Supplemental_Information: This data set has been validated by NREL and wind energy meteorological consultants. However, the data is not suitable for micro-siting potential development projects. This shapefile was generated from a raster dataset with a 200 m resolution, in a UTM zone 16 datum WGS 84 projection system. Other_Citation_Details: The wind power resource estimates were produced by AWS TrueWind using their MesoMap system and historical weather data under contract to Wind Powering America/NREL. This map has been validated with available surface data by NREL and wind energy meteorological consultants.

366

NREL GIS Data: Hawaii High Resolution Wind Resource | OpenEI  

Open Energy Info (EERE)

Wind Resource Wind Resource Dataset Summary Description Abstract: Annual average wind resource potential for the state of Hawaii at a 50 meter height. Purpose: Provide information on the wind resource development potential within the state of Hawaii. Supplemental_Information: This data set has been validated by NREL and wind energy meteorological consultants. However, the data is not suitable for micro-siting potential development projects. This shapefile was generated from a raster dataset with a 200 m resolution, in a UTM zone 4, datum WGS 84 projection system. Other_Citation_Details: The wind power resource estimates were produced by TrueWind Solutions using their MesoMap system and historical weather data under contract to Wind Powering America/NREL. This map has been validated with available surface data by NREL and wind energy meteorological consultants.

367

Federal Wind Energy Assistance through NREL (Fact Sheet)  

DOE Green Energy (OSTI)

NREL assists with wind resource assessment and development activities initiated by federal agencies to facilitate distributed renewable energy projects at federal agency sites. This brief outlines the process for requesting NREL assistance with federal wind energy projects.

Not Available

2009-09-01T23:59:59.000Z

368

Tuscola Bay Wind | Open Energy Information  

Open Energy Info (EERE)

Tuscola Bay Wind Tuscola Bay Wind Jump to: navigation, search Name Tuscola Bay Wind Facility Tuscola Bay Wind Sector Wind energy Facility Type Commercial Scale Wind Facility Status In Service Owner NextEra Energy Resources Developer NextEra Energy Resources Energy Purchaser Detroit Edison Location Fairgrove MI Coordinates 43.52596°, -83.653106° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":43.52596,"lon":-83.653106,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

369

Montezuma Winds II | Open Energy Information  

Open Energy Info (EERE)

Winds II Winds II Jump to: navigation, search Name Montezuma Winds II Facility Montezuma Winds II Sector Wind energy Facility Type Commercial Scale Wind Facility Status In Service Owner NextEra Energy Resources Developer NextEra Energy Resources Energy Purchaser Pacific Gas & Electric Co Location Rio Vista CA Coordinates 38.16867552°, -121.8061924° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":38.16867552,"lon":-121.8061924,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

370

National Wind Assessments formerly Romuld Wind Consulting | Open Energy  

Open Energy Info (EERE)

Assessments formerly Romuld Wind Consulting Assessments formerly Romuld Wind Consulting Jump to: navigation, search Name National Wind Assessments (formerly Romuld Wind Consulting) Place Minneapolis, Minnesota Zip 55416 Sector Wind energy Product Wind resource assessment consultant acquired by National Wind in October 2007. Coordinates 44.979035°, -93.264929° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":44.979035,"lon":-93.264929,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

371

Improved diagnostic model for estimating wind energy  

DOE Green Energy (OSTI)

Because wind data are available only at scattered locations, a quantitative method is needed to estimate the wind resource at specific sites where wind energy generation may be economically feasible. This report describes a computer model that makes such estimates. The model uses standard weather reports and terrain heights in deriving wind estimates; the method of computation has been changed from what has been used previously. The performance of the current model is compared with that of the earlier version at three sites; estimates of wind energy at four new sites are also presented.

Endlich, R.M.; Lee, J.D.

1983-03-01T23:59:59.000Z

372

Manzanita Wind Energy Feasibility Study  

DOE Green Energy (OSTI)

The Manzanita Indian Reservation is located in southeastern San Diego County, California. The Tribe has long recognized that the Reservation has an abundant wind resource that could be commercially utilized to its benefit. Manzanita has explored the wind resource potential on tribal land and developed a business plan by means of this wind energy feasibility project, which enables Manzanita to make informed decisions when considering the benefits and risks of encouraging large-scale wind power development on their lands. Technical consultant to the project has been SeaWest Consulting, LLC, an established wind power consulting company. The technical scope of the project covered the full range of feasibility assessment activities from site selection through completion of a business plan for implementation. The primary objectives of this feasibility study were to: (1) document the quality and suitability of the Manzanita Reservation as a site for installation and long-term operation of a commercially viable utility-scale wind power project; and, (2) develop a comprehensive and financeable business plan.

Trisha Frank

2004-09-30T23:59:59.000Z

373

Cambrian Wind Energy | Open Energy Information  

Open Energy Info (EERE)

London, Greater London, United Kingdom Zip W1U 6RP Sector Renewable Energy, Wind energy Product UK wind energy company acquired by Falck Renewables Ltd, the wind energy subsidiary...

374

Wind Energy Technologies Available for Licensing - Energy ...  

Wind Energy Technologies Available for Licensing U.S. Department of Energy (DOE) laboratories and participating research institutions have wind energy ...

375

EIA Energy Kids - Wind - Energy Information Administration  

U.S. Energy Information Administration (EIA)

Wind is a clean source of energy, and overall, the use of wind for energy has fewer environmental impacts than using many other energy sources.

376

Wind Energy Technologies - Energy Innovation Portal  

Wind Energy Technology Marketing Summaries Here youll find marketing summaries of wind energy technologies available for licensing from U.S. Department of Energy ...

377

Wind Vision Wind Farm | Open Energy Information  

Open Energy Info (EERE)

Wind Farm Wind Farm Jump to: navigation, search Name Wind Vision Wind Farm Facility Wind Vision Sector Wind energy Facility Type Commercial Scale Wind Facility Status In Service Owner Wind Vision Developer Wind Vision Location St. Ansgar IA Coordinates 43.348224°, -92.888816° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":43.348224,"lon":-92.888816,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

378

Wind Turbine Basics | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Wind Turbine Basics Wind Turbine Basics Wind Turbine Basics July 30, 2013 - 2:58pm Addthis Energy 101: Wind Turbines Basics This video explains the basics of how wind turbines operate to produce clean power from an abundant, renewable resource-the wind. Text Version Wind turbine assembly Although all wind turbines operate on similar principles, several varieties are in use today. These include horizontal axis turbines and vertical axis turbines. Horizontal Axis Turbines Horizontal axis turbines are the most common turbine configuration used today. They consist of a tall tower, atop which sits a fan-like rotor that faces into or away from the wind, a generator, a controller, and other components. Most horizontal axis turbines built today are two- or three-bladed. Horizontal axis turbines sit high atop towers to take advantage of the

379

NYSERDA-Wind Energy Toolkit | Open Energy Information  

Open Energy Info (EERE)

form form View source History View New Pages Recent Changes All Special Pages Semantic Search/Querying Get Involved Help Apps Datasets Community Login | Sign Up Search Page Edit with form History Facebook icon Twitter icon » NYSERDA-Wind Energy Toolkit Jump to: navigation, search Tool Summary Name: NYSERDA-Wind Energy Toolkit Agency/Company /Organization: New York State Energy Research and Development Authority Sector: Energy Focus Area: Renewable Energy, Wind Topics: Resource assessment, Technology characterizations Website: www.powernaturally.org/Programs/Wind/Wind%20Energy%20Toolkit.pdf Cost: Free NYSERDA-Wind Energy Toolkit Screenshot References: NYSERDA[1] "The Wind Energy Toolkit was developed for the New York State Energy Research & Development Authority (NYSERDA) by AWS Truewind, LLC, to provide

380

Category:Small Wind Guidebook | Open Energy Information  

Open Energy Info (EERE)

Guidebook Guidebook Jump to: navigation, search Print PDF Book of this Category Pages in category "Small Wind Guidebook" The following 119 pages are in this category, out of 119 total. A Alabama/Wind Resources Alabama/Wind Resources/Full Version Alaska/Wind Resources Alaska/Wind Resources/Full Version Arizona/Wind Resources Arizona/Wind Resources/Full Version Arkansas/Wind Resources Arkansas/Wind Resources/Full Version C California/Wind Resources California/Wind Resources/Full Version Colorado/Wind Resources Colorado/Wind Resources/Full Version Connecticut/Wind Resources Connecticut/Wind Resources/Full Version D Delaware/Wind Resources Delaware/Wind Resources/Full Version F Florida/Wind Resources Florida/Wind Resources/Full Version G Georgia/Wind Resources Georgia/Wind Resources/Full Version

Note: This page contains sample records for the topic "wind energy resource" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


381

United States Wind Resource Map: Annual Average Wind Speed at...  

Wind Powering America (EERE)

80 m 01-APR-2011 2.1.1 Wind Speed ms >10.5 10.0 9.5 9.0 8.5 8.0 7.5 7.0 6.5 6.0 5.5 5.0 4.5 4.0 < 4.0 Source: Wind resource estimates developed by AWS Truepower, LLC for...

382

Blyth Offshore Wind Ltd | Open Energy Information  

Open Energy Info (EERE)

Blyth Offshore Wind Ltd Jump to: navigation, search Name Blyth Offshore Wind Ltd Place United Kingdom Sector Renewable Energy, Wind energy Product Blyth Offshore Wind Limited,...

383

Improved Offshore Wind Resource Assessment in Global Climate Stabilization Scenarios  

SciTech Connect

This paper introduces a technique for digesting geospatial wind-speed data into areally defined -- country-level, in this case -- wind resource supply curves. We combined gridded wind-vector data for ocean areas with bathymetry maps, country exclusive economic zones, wind turbine power curves, and other datasets and relevant parameters to build supply curves that estimate a country's offshore wind resource defined by resource quality, depth, and distance-from-shore. We include a single set of supply curves -- for a particular assumption set -- and study some implications of including it in a global energy model. We also discuss the importance of downscaling gridded wind vector data to capturing the full resource potential, especially over land areas with complex terrain. This paper includes motivation and background for a statistical downscaling methodology to account for terrain effects with a low computational burden. Finally, we use this forum to sketch a framework for building synthetic electric networks to estimate transmission accessibility of renewable resource sites in remote areas.

Arent, D.; Sullivan, P.; Heimiller, D.; Lopez, A.; Eurek, K.; Badger, J.; Jorgensen, H. E.; Kelly, M.; Clarke, L.; Luckow, P.

2012-10-01T23:59:59.000Z

384

Improved Offshore Wind Resource Assessment in Global Climate Stabilization Scenarios  

DOE Green Energy (OSTI)

This paper introduces a technique for digesting geospatial wind-speed data into areally defined -- country-level, in this case -- wind resource supply curves. We combined gridded wind-vector data for ocean areas with bathymetry maps, country exclusive economic zones, wind turbine power curves, and other datasets and relevant parameters to build supply curves that estimate a country's offshore wind resource defined by resource quality, depth, and distance-from-shore. We include a single set of supply curves -- for a particular assumption set -- and study some implications of including it in a global energy model. We also discuss the importance of downscaling gridded wind vector data to capturing the full resource potential, especially over land areas with complex terrain. This paper includes motivation and background for a statistical downscaling methodology to account for terrain effects with a low computational burden. Finally, we use this forum to sketch a framework for building synthetic electric networks to estimate transmission accessibility of renewable resource sites in remote areas.

Arent, D.; Sullivan, P.; Heimiller, D.; Lopez, A.; Eurek, K.; Badger, J.; Jorgensen, H. E.; Kelly, M.; Clarke, L.; Luckow, P.

2012-10-01T23:59:59.000Z

385

European Wind Atlas: France | Open Energy Information  

Open Energy Info (EERE)

European Wind Atlas: France European Wind Atlas: France Jump to: navigation, search Tool Summary LAUNCH TOOL Name: European Wind Atlas: France Focus Area: Renewable Energy Topics: Potentials & Scenarios Website: 130.226.17.201/extra/web_docs/windmaps/france.jpg Equivalent URI: cleanenergysolutions.org/content/european-wind-atlas-france,http://cle Language: English Policies: Deployment Programs DeploymentPrograms: Technical Assistance This wind resource map shows resources at 50 meters above ground level for four different topographic conditions, including sheltered terrain, open plain, coastal and hills and ridges. The greatest resources appear to be near the Mediterranean Sea coast, and the second greatest resources are near the English Channel and northern Atlantic coast.

386

Wind Energy and Spatial Technology  

E-Print Network (OSTI)

2/3/2011 1 Wind Energy and Spatial Technology Lori Pelech Why Wind Energy? A clean, renewable 2,600 tons of carbon emissions annually ­ The economy · Approximately 85,000 wind energy workers (existing transmission lines)? #12;2/3/2011 3 US Energy Transmission Grid US Wind Map #12;2/3/2011 4

Schweik, Charles M.

387

Wind Energy Education and Training Programs (Postcard)  

SciTech Connect

As the United States dramatically expands wind energy deployment, the industry is challenged with developing a skilled workforce to support it. The Wind Powering America website features a map of wind energy education and training program locations at community colleges, universities, and other institutions in the United States. The map includes links to contacts and program details. This postcard is a marketing piece that stakeholders can provide to interested parties; it will guide them to this online resource for wind energy education and training programs episodes.

Not Available

2012-07-01T23:59:59.000Z

388

Indiana 50 M Wind Resource  

NLE Websites -- All DOE Office Websites (Extended Search)

using their MesoMap system and historical weather data under contract to Wind Powering AmericaNREL. This map has been validated with available surface data by NREL and...

389

Missouri 50 m Wind Resource  

NLE Websites -- All DOE Office Websites (Extended Search)

using their MesoMap system and historical weather data under contract to Wind Powering AmericaNREL. This map has been validated with available surface data by NREL and...

390

Ohio 50 m Wind Resource  

NLE Websites -- All DOE Office Websites (Extended Search)

using their MesoMap system and historical weather data under contract to Wind Powering AmericaNREL. This map has been validated with available surface data by NREL and...

391

Wind Energy for Rural Economic Development  

DOE Green Energy (OSTI)

The wind industry contributes to the economies of 46 states, and the outlook for regional economic growth from wind energy is heartening. Wind energy projects provide new jobs, a new source of revenue to farmers and ranchers, and an increased local tax base for rural communities. And wind energy is homegrown energy that helps secure our energy future during uncertain times while reducing pollution emissions and preserving our precious water resources. In fact, achieving the goals of the U.S. Department of Energy's Wind Powering America initiative during the next 20 years will create$60 billion in capital investment in rural America, provide$1.2 billion in new income for farmers and rural landowners, and create 80,000 new jobs. Wind energy is the fastest-growing energy source in the world, and rural communities are poised to reap the benefits. This brochure provides rural stakeholders with information about wind energy projects and rural economic development, including case studies an d resources for those interested in bringing wind energy to their communities.

Not Available

2004-08-01T23:59:59.000Z

392

Wind Power | Open Energy Information  

Open Energy Info (EERE)

Wind Power Wind Power Jump to: navigation, search Wind Power WIndfarm.Sunset.jpg Wind power is a form of solar energy.[1] Wind is caused by the uneven heating of the atmosphere by the sun, variations in the earth's surface, and rotation of the earth. Mountains, bodies of water, and vegetation all influence wind flow patterns[2], [3]. Wind energy (or wind power) describes the process by which wind is used to generate electricity. Wind turbines convert the energy in wind to electricity by rotating propeller-like blades around a rotor. The rotor turns the drive shaft, which turns an electric generator.[2] Three key factors affect the amount of energy a turbine can harness from the wind: wind speed, air density, and swept area.[4] Mechanical power can also be utilized directly for specific tasks such as

393

Lake Country Wind Energy LLC | Open Energy Information  

Open Energy Info (EERE)

Country Wind Energy LLC Jump to: navigation, search Name Lake Country Wind Energy LLC Place Minnesota Zip 56209 Sector Renewable Energy, Wind energy Product Minnesota-based wind...

394

West Winds Wind Farm | Open Energy Information  

Open Energy Info (EERE)

West Winds Wind Farm West Winds Wind Farm Facility West Winds Sector Wind energy Facility Type Commercial Scale Wind Facility Status In Service Owner Caithness Developer SeaWest Energy Purchaser Southern California Edison/PacifiCorp Location San Gorgonio CA Coordinates 33.9095°, -116.734° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":33.9095,"lon":-116.734,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

395

Baldwin Wind Farm | Open Energy Information  

Open Energy Info (EERE)

Baldwin Wind Farm Baldwin Wind Farm Facility Baldwin Wind Farm Sector Wind energy Facility Type Commercial Scale Wind Facility Status In Service Owner NextEra Energy Resources Developer NextEra Energy Resources Energy Purchaser Basin Electric Location Burleigh County near Wilton ND Coordinates 47.059561°, -100.776° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":47.059561,"lon":-100.776,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

396

Wind powering America: America's wind power...a natural resource  

DOE Green Energy (OSTI)

The Wind Powering America Initiative is a regionally-based effort to increase the use of clean wind energy in the United States over the next two decades. The purpose of this brochure is to provide a brief description of the initiative, its goals, benefits, and strategy as well as a list of contacts for those interested in obtaining more information.

NONE

2000-04-04T23:59:59.000Z

397

Wind Powering America: America's Wind Power...A Natural Resource  

DOE Green Energy (OSTI)

The Wind Powering America Initiative is a regionally-based effort to increase the use of clean wind energy in the United States over the next two decades. The purpose of this brochure is to provide a brief description of the initiative, its goals, benefits, and strategy as well as a list of contacts for those interested in obtaining more information.

Dougherty, P.

2001-05-23T23:59:59.000Z

398

Energy Efficiency Resource Standard | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Efficiency Resource Standard Efficiency Resource Standard Energy Efficiency Resource Standard < Back Eligibility Investor-Owned Utility Utility Savings Category Other Bioenergy Buying & Making Electricity Solar Heating & Cooling Water Heating Wind Program Info State Wisconsin Program Type Energy Efficiency Resource Standard Provider Public Service Commission of Wisconsin In March 2006, Wisconsin enacted Act 141 (2005), which requires the commission to revise goals, priorities, and measurable targets for energy efficiency programs every 4 years. An order issued by the Public Service Commission (PSC) in November 2010 set annual percentage targets for electricity and natural gas reductions for the first 4-year planning period (2011-2014). Funding is provided by ratepayers to the utilities' statewide

399

Wind energy, offers considerable promise: the wind itself is free,  

E-Print Network (OSTI)

Wind energy, offers considerable promise: the wind itself is free, wind power is clean. One of these sources, wind energy, offers considerable promise: the wind itself is free, wind power is clean, and it is virtually inexhaustible. In recent years, research on wind energy has accelerated

Langendoen, Koen

400

Wind Energy Technologies - Energy Innovation Portal  

Wind Energy Technology Marketing Summaries Here youll find marketing summaries of wind energy technologies available for licensing from U.S. ...

Note: This page contains sample records for the topic "wind energy resource" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


401

China Wind Energy Association | Open Energy Information  

Open Energy Info (EERE)

China Wind Energy Association Place Beijing, Beijing Municipality, China Zip 100013 Sector Wind energy Product A non-profit industrial association devoted to promote the...

402

Austin Energy Wins DOE Wind Power Award | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Austin Energy Wins DOE Wind Power Award Austin Energy Wins DOE Wind Power Award Austin Energy Wins DOE Wind Power Award October 25, 2005 - 12:30pm Addthis WASHINGTON, DC-The U.S. Department of Energy (DOE) today announced that Austin Energy, the city-owned utility of Austin, Texas, is receiving the 2005 Wind Power Pioneer Award. The utility was cited for its leadership, demonstrated success and innovation in its wind power program. The award, sponsored by DOE's Wind Powering America program, was presented today at the American Public Power Association's 2005 Customer Connections Conference in Kansas City, Mo. Austin Energy was one of eleven public power utilities nominated this year. "We congratulate Austin Energy for its innovation and commitment to wind power and other renewable resources," said Douglas L. Faulkner, Acting

403

Austin Energy Wins DOE Wind Power Award | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Austin Energy Wins DOE Wind Power Award Austin Energy Wins DOE Wind Power Award Austin Energy Wins DOE Wind Power Award October 25, 2005 - 12:30pm Addthis WASHINGTON, DC-The U.S. Department of Energy (DOE) today announced that Austin Energy, the city-owned utility of Austin, Texas, is receiving the 2005 Wind Power Pioneer Award. The utility was cited for its leadership, demonstrated success and innovation in its wind power program. The award, sponsored by DOE's Wind Powering America program, was presented today at the American Public Power Association's 2005 Customer Connections Conference in Kansas City, Mo. Austin Energy was one of eleven public power utilities nominated this year. "We congratulate Austin Energy for its innovation and commitment to wind power and other renewable resources," said Douglas L. Faulkner, Acting

404

Cisco Wind Energy Wind Farm | Open Energy Information  

Open Energy Info (EERE)

Cisco Wind Energy Wind Farm Cisco Wind Energy Wind Farm Jump to: navigation, search Name Cisco Wind Energy Wind Farm Facility Cisco Wind Energy Sector Wind energy Facility Type Commercial Scale Wind Facility Status In Service Owner John Deere Wind Energy Developer Community Energy Purchaser Northern States Power Location Brewster MN Coordinates 43.696164°, -95.467078° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":43.696164,"lon":-95.467078,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

405

Energy Basics: Ocean Resources  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Energy Basics Renewable Energy Printable Version Share this resource Biomass Geothermal Hydrogen Hydropower Ocean Ocean Thermal Energy Conversion Tidal Energy Wave Energy...

406

Wind News | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Wind News Wind News Wind News RSS February 7, 2011 Salazar, Chu Announce Major Offshore Wind Initiatives Strategic plan, $50 million in R&D funding, identified Wind Energy Areas will speed offshore wind energy development December 16, 2010 Department of Energy Finalizes Loan Guarantee to Support World's Largest Wind Project 845-Megawatt Wind Facility Will Create Hundreds of Jobs and Avoid Over 1.2 Million Tons of Carbon Dioxide Annually October 29, 2010 Statement by Energy Secretary Steven Chu on Today's Grand Opening of the Nordex Manufacturing Facility in Jonesboro, Arkansas Recovery Act investment creates jobs, helps lay the foundation for a clean energy economy September 13, 2010 DOE Announces More than $5 Million to Support Wind Energy Development Funds to Enhance Short-Term Wind Forecasting and Accelerate Midsize Wind

407

ERCOT Wind Scraper | Open Energy Information  

Open Energy Info (EERE)

Page Page Edit with form History Facebook icon Twitter icon » ERCOT Wind Scraper Jump to: navigation, search Tool Summary Name: ERCOT Wind Scraper Agency/Company /Organization: Prof. Mack Grady, Baylor University Sector: Energy Focus Area: Wind Resource Type: Software/modeling tools User Interface: Desktop Application Website: web.ecs.baylor.edu/faculty/grady/ OpenEI Keyword(s): Community Generated ERCOT Wind Scraper Screenshot References: W. Mack Grady[1] ERCOT Wind Scraper retrieves, displays, and logs minute-by-minute system generation, load, and wind generation from ERCOT's public web site. ERCOT Wind Scraper retrieves, displays, and logs minute-by-minute system generation, load, and wind generation from ERCOT's public web site. Instructions are included in a zipped file along with the program.

408

European Wind Atlas: Offshore | Open Energy Information  

Open Energy Info (EERE)

European Wind Atlas: Offshore European Wind Atlas: Offshore Jump to: navigation, search Tool Summary LAUNCH TOOL Name: European Wind Atlas: Offshore Focus Area: Renewable Energy Topics: Potentials & Scenarios Website: www.windatlas.dk/Europe/oceanmap.html Equivalent URI: cleanenergysolutions.org/content/european-wind-atlas-offshore,http://c Language: English Policies: Deployment Programs DeploymentPrograms: Technical Assistance This is a European offshore wind resources over open sea map developed by Riso National Laboratory in 1989. The map shows the so-called generalised wind climate over Europe, also sometimes referred to as the regional wind climate or simply the wind atlas. In such a map, the influences of local topography have been removed and only the variations on the large scale are

409

European Wind Atlas: Onshore | Open Energy Information  

Open Energy Info (EERE)

European Wind Atlas: Onshore European Wind Atlas: Onshore Jump to: navigation, search Tool Summary LAUNCH TOOL Name: European Wind Atlas: Onshore Focus Area: Renewable Energy Topics: Potentials & Scenarios Website: www.windatlas.dk/Europe/landmap.html Equivalent URI: cleanenergysolutions.org/content/european-wind-atlas-onshore,http://cl Language: English Policies: Deployment Programs DeploymentPrograms: Technical Assistance This is a European on-shore wind resources at 50 meters of altitude map, developed by Riso National Laboratory in 1989. The map shows the so-called generalised wind climate over Europe, also sometimes referred to as the regional wind climate or simply the wind atlas. In such a map, the influences of local topography have been removed and only the variations on

410

Wind World | Open Energy Information  

Open Energy Info (EERE)

World Jump to: navigation, search Name Wind World Place Denmark Sector Wind energy Product WindWorld was a turbine manufacturer that was purchased by NEG Micon in 1998. NEG Micon...

411

Wind Turbines | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Turbines Wind Turbines July 30, 2013 - 2:58pm Addthis Energy 101: Wind Turbines Basics This video explains the basics of how wind turbines operate to produce clean power from an...

412

Minster Wind | Open Energy Information  

Open Energy Info (EERE)

Minster Wind Jump to: navigation, search Name Minster Wind Address 240 W. Fifth St Place Minster, Ohio Zip 45865 Sector Services, Wind energy Website http:www.minster.comwindwi...

413

Green Mountain Wind Farm | Open Energy Information  

Open Energy Info (EERE)

Green Mountain Wind Farm Green Mountain Wind Farm Facility Green Mountain Wind Farm Sector Wind energy Facility Type Commercial Scale Wind Facility Status In Service Owner NextEra Energy Resources Developer National Wind Power Energy Purchaser Green Mountain Energy Company Location Somerset County PA Coordinates 39.850753°, -79.066629° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":39.850753,"lon":-79.066629,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

414

Somerset Wind Power Project | Open Energy Information  

Open Energy Info (EERE)

Wind Power Project Wind Power Project Jump to: navigation, search Name Somerset Wind Power Project Facility Somerset Wind Power Project Sector Wind energy Facility Type Commercial Scale Wind Facility Status In Service Owner NextEra Energy Resources Developer Atlantic Renewable Energy Energy Purchaser Exelon Location Somerset County PA Coordinates 39.979794°, -79.009216° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":39.979794,"lon":-79.009216,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

415

Waymart Wind Farm | Open Energy Information  

Open Energy Info (EERE)

Waymart Wind Farm Waymart Wind Farm Jump to: navigation, search Name Waymart Wind Farm Facility Waymart Wind Farm Sector Wind energy Facility Type Commercial Scale Wind Facility Status In Service Owner NextEra Energy Resources Developer Atlantic Renewable Energy Energy Purchaser Exelon Location Wayne County PA Coordinates 41.555385°, -75.451205° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":41.555385,"lon":-75.451205,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

416

Solar and Wind Energy Utilization and Project Development Scenarios  

Open Energy Info (EERE)

Utilization and Project Development Scenarios

(Abstract):Solar and wind energy resources in Ethiopia have not been given due attention in the past. Some of...

417

CREST Wind | Open Energy Information  

Open Energy Info (EERE)

CREST Wind CREST Wind Jump to: navigation, search Tool Summary LAUNCH TOOL Name: CREST Wind Agency/Company /Organization: Sustainable Energy Advantage Partner: NREL Sector: Energy Focus Area: Wind Topics: Finance Resource Type: Software/modeling tools User Interface: Spreadsheet Website: financere.nrel.gov/finance/webfm_send/42/NREL_CREST_Wind_version1.1_Pr Country: United States RelatedTo: CREST Solar, CREST Geothermal Cost: Free UN Region: Northern America Coordinates: 37.09024°, -95.712891° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":37.09024,"lon":-95.712891,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

418

Wind Energy Atlas of Brazil | Open Energy Information  

Open Energy Info (EERE)

Energy Atlas of Brazil Energy Atlas of Brazil Jump to: navigation, search Tool Summary LAUNCH TOOL Name: Wind Energy Atlas of Brazil Focus Area: Renewable Energy Topics: Potentials & Scenarios Website: 130.226.17.201/extra/web_docs/windmaps/Brazil_wind_map.pdf Equivalent URI: cleanenergysolutions.org/content/wind-energy-atlas-brazil,http://clean Language: English Policies: Deployment Programs DeploymentPrograms: Technical Assistance The maps provided in this resource result from a surface wind modelling tool called MesoMap that estimates the wind potential over the Brazilian territory by simulating the atmosphere dynamics of the wind regime and the related meteorological variables from validated atmosphere pressure-data samples. References Retrieved from "http://en.openei.org/w/index.php?title=Wind_Energy_Atlas_of_Brazil&oldid=514616

419

DOE provides detailed offshore wind resource maps - Today in ...  

U.S. Energy Information Administration (EIA)

Includes hydropower, solar, wind, geothermal, biomass and ethanol. ... Wind energy potential is broken down by wind speed, water depth, and distance from shore.

420

Wind Energy (Revision). Federal Energy Management Program: Renewable Energy Technologies for Federal Facilities (Fact sheet)  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

From Coast to Coast, Wind Turbines Are Generating Electricity From Coast to Coast, Wind Turbines Are Generating Electricity Wind is caused by the earth's r o t a h and by air-pressure differences from uneven heating of the earth's surface. The energy of the wind is widely dis- tributed geographically and relatively concentrated, and it has a long history o f use as an energy source. In general, wind-energy resources are best along coastlines, at elevated sites in hilly ter- rain, and in the Great Plains, although usable wind resources are available in every state. The U.S. Department of Energy W E ) has compiled anatlas contain- ing wind-resource maps for the entire world. These reports--available through the National Renewable Energy Laboratory-pre vide wind data that help to predict the performance of wind turbines at virtually

Note: This page contains sample records for the topic "wind energy resource" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


421

Landowners and Wind Energy Development | Open Energy Information  

Open Energy Info (EERE)

Landowners and Wind Energy Development Landowners and Wind Energy Development Jump to: navigation, search Photo from Cielo Wind Power Corporation, NREL 10558 Many people will benefit from the clean air and economic growth brought about by wind power development, but farmers and other rural landowners may benefit the most. The best wind resources tend to be located in rural areas and on farmland in the Great Plains states. Wind power can provide a new cash crop for farmers and ranchers. Large wind turbines use only about one quarter-acre of land, including access roads, so farmers can continue to plant crops and graze livestock right up to the base of the turbines. One of the easiest and most attractive ways for farmers and other landowners to benefit from wind power is to allow wind developers to

422

Oklahoma Wind Energy Center - A | Open Energy Information  

Open Energy Info (EERE)

Oklahoma Wind Energy Center - A Oklahoma Wind Energy Center - A Facility Oklahoma Wind Energy Center - A Sector Wind energy Facility Type Commercial Scale Wind Facility Status In Service Owner NextEra Energy Resources Developer NextEra Energy Resources Energy Purchaser Oklahoma Muncipal Power Authority Location Woodward OK Coordinates 36.6051°, -99.327829° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":36.6051,"lon":-99.327829,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

423

Elk City Wind Energy Center | Open Energy Information  

Open Energy Info (EERE)

Wind Energy Center Wind Energy Center Facility Elk City Wind Energy Center Sector Wind energy Facility Type Commercial Scale Wind Facility Status In Service Owner NextEra Energy Resources Developer NextEra Energy Resources Energy Purchaser Public Service Company of Oklahoma Location Roger Mills and Beckham Counties OK Coordinates 35.472664°, -99.442602° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":35.472664,"lon":-99.442602,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

424

Crystal Lake - GE Energy Wind Farm | Open Energy Information  

Open Energy Info (EERE)

GE Energy Wind Farm GE Energy Wind Farm Jump to: navigation, search Name Crystal Lake - GE Energy Wind Farm Facility Crystal Lake - GE Energy Sector Wind energy Facility Type Commercial Scale Wind Facility Status In Service Owner NextEra Energy Resources Developer NextEra Energy Resources Location IA Coordinates 43.194201°, -93.860521° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":43.194201,"lon":-93.860521,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

425

Capricorn Ridge (GE Energy) Wind Farm | Open Energy Information  

Open Energy Info (EERE)

Energy) Wind Farm Energy) Wind Farm Jump to: navigation, search Name Capricorn Ridge (GE Energy) Wind Farm Facility Capricorn Ridge (GE Energy) Sector Wind energy Facility Type Commercial Scale Wind Facility Status In Service Owner NextEra Energy Resources Developer NextEra Energy Resources Location TX Coordinates 31.838061°, -100.923965° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":31.838061,"lon":-100.923965,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

426

Wilton Wind Energy Center II II | Open Energy Information  

Open Energy Info (EERE)

Wilton Wind Energy Center II II Wilton Wind Energy Center II II Facility Wilton Wind Energy Center II Sector Wind energy Facility Type Commercial Scale Wind Facility Status In Service Owner NextEra Energy Resources Developer NextEra Energy Resources Energy Purchaser Basin Electric Location Burleigh County ND Coordinates 47.142638°, -100.730567° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":47.142638,"lon":-100.730567,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

427

Commercial Wind Energy Property Valuation | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Commercial Wind Energy Property Valuation Commercial Wind Energy Property Valuation < Back Eligibility Commercial Industrial Utility Savings Category Wind Buying & Making...

428

International Energy Agency Technology Roadmap for Wind Energy | Open  

Open Energy Info (EERE)

Technology Roadmap for Wind Energy Technology Roadmap for Wind Energy Jump to: navigation, search Name International Energy Agency Technology Roadmap for Wind Energy Agency/Company /Organization International Energy Agency Sector Energy Focus Area Renewable Energy, Wind Topics Market analysis, Technology characterizations Resource Type Guide/manual Website http://www.iea.org/Papers/2009 References Technology Roadmap for Wind Energy[1] Summary "To achieve this ambitious goal, the IEA has undertaken an effort to develop a series of global technology roadmaps covering 19 technologies, under international guidance and in close consultation with industry. These technologies are evenly divided among demand side and supply side technologies. This wind roadmap is one of the initial roadmaps being

429

Wind Report | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Wind Report Wind Report Wind Report Watch as our clean energy experts answer your questions about the U.S. wind industry -- one of the largest and fastest growing wind markets in the world. Related Links Top 8 Things You Didn't Know About Distributed Wind Small-Scale Distributed Wind: Northern Power Systems 100 kW turbine at the top of Burke Mountain in East Burke, Vermont. | Photo courtesy of Northern Power Systems. Test your energy knowledge by learning interesting facts about distributed wind. Charting the Future of Energy Storage As we continue to incorporate more renewable energy into the grid, technologies that store energy like batteries will be key to providing a continuous flow of clean energy even when the wind isn't blowing and the sun doesn't shine. Wind Industry Soars to New Heights

430

Wind Power Partners '94 Wind Farm | Open Energy Information  

Open Energy Info (EERE)

4 Wind Farm 4 Wind Farm Jump to: navigation, search Name Wind Power Partners '94 Wind Farm Facility Wind Power Partners '94 Sector Wind energy Facility Type Commercial Scale Wind Facility Status In Service Owner NextEra Energy Resources Developer Kenetech Wind Power Energy Purchaser Lower Colorado River Authority Location Culberson County TX Coordinates 31.3508°, -104.443° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":31.3508,"lon":-104.443,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

431

Wind Project Permitting | Open Energy Information  

Open Energy Info (EERE)

Project Permitting Project Permitting Jump to: navigation, search Invenergy is the developer of the 129-MW Forward Wind Energy Center project near Fond du Lac, Wisconsin, that came online in 2008. Photo by Ruth Baranowski, NREL 16412 As with other energy facility permitting processes, the goal of the wind project permitting process is to reach decisions that are timely, minimize challenges, and ensure compliance with laws and regulations that provide for necessary environmental protection.[1] Resources National Wind Coordinating Committee. (2002). Permitting of Wind Energy Facilities. Accessed August 28, 2013. This handbook is written for individuals and groups involved in evaluating wind projects: decision-makers and agency staff at all levels of government, wind developers, interested parties and the public.

432

Tribal Renewable Energy Curriculum Foundational Course: Wind...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Wind Tribal Renewable Energy Curriculum Foundational Course: Wind Watch the DOE Office of Indian Energy foundational course webinar on wind renewable energy by clicking on the .swf...

433

Wave Wind LLC | Open Energy Information  

Open Energy Info (EERE)

Wave Wind LLC Place Sun Prairie, Wisconsin Zip 53590 Sector Services, Wind energy Product Wisconsin-based wind developer and construction services provider. References Wave Wind...

434

Heilongjiang Lishu Wind Power | Open Energy Information  

Open Energy Info (EERE)

Lishu Wind Power Jump to: navigation, search Name Heilongjiang Lishu Wind Power Place Heilongjiang Province, China Sector Wind energy Product China-based wind project developer...

435

Crownbutte Wind Power LLC | Open Energy Information  

Open Energy Info (EERE)

Crownbutte Wind Power LLC Jump to: navigation, search Name Crownbutte Wind Power LLC Place Mandan, North Dakota Zip 58554 Sector Wind energy Product North Dakota wind power company...

436

Daqing Longjiang Wind Power | Open Energy Information  

Open Energy Info (EERE)

Longjiang Wind Power Jump to: navigation, search Name Daqing Longjiang Wind Power Place Daqing, Heilongjiang Province, China Zip 163316 Sector Wind energy Product Local wind...

437

Gansu Xinhui Wind Power | Open Energy Information  

Open Energy Info (EERE)

Xinhui Wind Power Jump to: navigation, search Name Gansu Xinhui Wind Power Place China Sector Wind energy Product China-based joint venture engaged in developing wind projects....

438

Wind Powering America: Wind Energy Videos  

DOE Data Explorer (OSTI)

Wind Powering America is a nationwide initiative designed to increase the use of wind energy across the United States by working with regional stakeholders. A list of videos developed by and for the program includes interviews, short news clips, and documentary-like programs.

439

US areal wind resource estimates considering environmental and land-use exclusions  

DOE Green Energy (OSTI)

In support of the US Department of Energy's National Energy Strategy initiative, estimates of the land area with various levels of wind energy resource have been developed for each state in the contiguous United States. The estimates are based on published wind resource data and account for the exclusion of some land owing to environmental of land-use considerations. These exclusions assume that 100% of the environmentally sensitive land and various percentages of land designated as urban, agricultural or range would be unavailable for wind energy development. Despite these exclusions, the amount of wind resource thus estimated is surprisingly large. For example, estimates of available wind resource and resultant wind electric potential from advanced turbine technology show that a group of 12 states in the midsection of the country could produce more than three times the nation's 1987 electric energy consumption. 1 ref., 7 figs., 1 tab.

Elliott, D.L.; Wendell, L.L.; Gower, G.L.

1990-09-01T23:59:59.000Z

440

US areal wind resource estimates considering environmental and land-use exclusions  

SciTech Connect

In support of the US Department of Energy's National Energy Strategy initiative, estimates of the land area with various levels of wind energy resource have been developed for each state in the contiguous United States. The estimates are based on published wind resource data and account for the exclusion of some land owing to environmental of land-use considerations. These exclusions assume that 100% of the environmentally sensitive land and various percentages of land designated as urban, agricultural or range would be unavailable for wind energy development. Despite these exclusions, the amount of wind resource thus estimated is surprisingly large. For example, estimates of available wind resource and resultant wind electric potential from advanced turbine technology show that a group of 12 states in the midsection of the country could produce more than three times the nation's 1987 electric energy consumption. 1 ref., 7 figs., 1 tab.

Elliott, D.L.; Wendell, L.L.; Gower, G.L.

1990-09-01T23:59:59.000Z

Note: This page contains sample records for the topic "wind energy resource" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


441

Student Educational Resources - STEM | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Student Educational Resources - STEM Student Educational Resources - STEM Student Educational Resources - STEM At Berkeley Lab, the Workforce Development & Education Office provides hands-on workshops, lab visits, outreach to the community, and mentored internships for students and faculty in order to inspire and prepare the next generation of scientists, engineers, and technicians. The Department of Energy Office of Energy Efficiency and Renewable Energy has a searchable library of K-12 Lesson Plans & Activities. EERE Wind Office: Learn how wind turbines works with widget/animation. They also have a set of other wind energy basics multimedia, and a wind 101 video. EERE Solar Office: Resources for teaching about solar including videos, graphics and animations. Energy 101 videos are short videos on a variety of energy related topics.

442

HMH Energy Resources | Open Energy Information  

Open Energy Info (EERE)

HMH Energy Resources HMH Energy Resources Jump to: navigation, search Name HMH Energy Resources Place Larkspur, California Zip CA 94939 Sector Services, Wind energy Product Provides services to consumers and developers of energy generation projects. Involved in the Elk River Wind Farm. Coordinates 39.224121°, -104.885906° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":39.224121,"lon":-104.885906,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}