Powered by Deep Web Technologies
Note: This page contains sample records for the topic "wind energy potential" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


1

Wind energy potential in the United States  

SciTech Connect

Estimates of the electricity that could potentially be generated by wind power and of the land area available for wind energy development have been calculated for the contiguous United States. The estimates are based on published wind resource data and exclude windy lands that are not suitable for development as a result of environmental and land-use considerations. Despite these exclusions, the potential electric power from wind energy is surprisingly large. Good wind areas, which cover 6% of the contiguous US land area, have the potential to supply more than one and a half times the current electricity consumption of the United States. Technology under development today will be capable of producing electricity economically from good wind sites in many regions of the country.

Elliott, D.L.; Schwartz, M.N.

1993-06-01T23:59:59.000Z

2

Wind Energy Potential in SE New Mexico  

NLE Websites -- All DOE Office Websites (Extended Search)

click to return to the Renewable Energy page click to return to the Renewable Energy page Return to Renewable Energy Page Wind Energy in Southeast New Mexico Several Ongoing and New Wind Power Projects are Contributing to Making Renewable Energy Sources an Important Economic and Environmental Mainstay of the Region As the accompanying map of New Mexico shows, the best wind power generation potential near WIPP is along the Delaware Mountain ridge line of the southern Guadalupe Mountains, about 50-60 miles southwest. The numeric grid values indicate wind potential, with a range from 1 (poor) to 7 (superb). Just inside Texas in the southern Guadalupe Mountains, the Delaware Mountain Wind Power Facility in Culbertson County, Texas currently generates over 30 MW, and could be expanded to a 250 MW station.

3

Canadian Wind Energy Atlas Potential Website | Open Energy Information  

Open Energy Info (EERE)

Canadian Wind Energy Atlas Potential Website Canadian Wind Energy Atlas Potential Website Jump to: navigation, search Tool Summary LAUNCH TOOL Name: Canadian Wind Energy Atlas Potential Website Focus Area: Renewable Energy Topics: Opportunity Assessment & Screening Website: www.windatlas.ca/en/index.php Equivalent URI: cleanenergysolutions.org/content/canadian-wind-energy-atlas-potential- Language: English Policies: Deployment Programs DeploymentPrograms: Technical Assistance Environment Canada's Wind Energy Atlas website aims at developing new meteorological tools to be used by Canada's wind energy industry. It offers the possibility to browse through the results of the numerical simulations that were run on all of Canada in order to determine its wind energy potential. Consultants and the general public will find valuable data about

4

On spatial estimation of wind energy potential in Malaysia  

Science Conference Proceedings (OSTI)

Statistical distribution for describing the wind speed at a particular location provides information about the wind energy potential which is available. In this paper, five different statistical distributions are fitted to the data of average hourly ... Keywords: inverse distance weighting method, kriging, semivariogram, spatial estimation, wind energy, wind speed distribution

Nurulkamal Masseran; Ahmad Mahir Razali; Kamarulzaman Ibrahim; Wan Zawiah Wan Zin; Azami Zaharim

2011-07-01T23:59:59.000Z

5

Estimation of wind characteristics at potential wind energy conversion sites  

DOE Green Energy (OSTI)

A practical method has been developed and applied to the problem of determining wind characteristics at candidate wind energy conversion sites where there are no available historical data. The method uses a mass consistent wind flow model (called COMPLEX) to interpolate between stations where wind data are available. The COMPLEX model incorporates the effects of terrain features and airflow. The key to the practical application of COMPLEX to the derivation of wind statistics is the model's linearity. This allows the input data sets to be resolved into orthogonal components along the set of eigenvectors of the covariance matrix. The solution for each eigenvector is determined with COMPLEX; the hourly interpolated winds are then formed from linear combinations of these solutions. The procedure requires: acquisition and merger of wind data from three to five stations, application of COMPLEX to each of the seven to 11 (depending on the number of stations for which wind data are available) eigenvectors, reconstruction of the hourly interpolated winds at the site from the eigenvector solutions, and finally, estimating the wind characteristics from the simulated hourly values. The report describes the methodology and the underlying theory. Possible improvements to the procedure are also discussed.

Not Available

1979-10-01T23:59:59.000Z

6

Estimation of wind characteristics at potential wind energy conversion sites  

SciTech Connect

A practical method has been developed and applied to the problem of determining wind characteristics at candidate wind energy conversion sites where there are no available historical data. The method uses a mass consistent wind flow model (called COMPLEX) to interpolate between stations where wind data are available. The COMPLEX model incorporates the effects of terrain features and airflow. The key to the practical application of COMPLEX to the derivation of wind statistics is the model's linearity. This allows the input data sets to be resolved into orthogonal components along the set of eigenvectors of the covariance matrix. The solution for each eigenvector is determined with COMPLEX; the hourly interpolated winds are then formed from linear combinations of these solutions. The procedure requires: acquisition and merger of wind data from three to five stations, application of COMPLEX to each of the seven to 11 (depending on the number of stations for which wind data are available) eigenvectors, reconstruction of the hourly interpolated winds at the site from the eigenvector solutions, and finally, estimating the wind characteristics from the simulated hourly values. The report describes the methodology and the underlying theory. Possible improvements to the procedure are also discussed.

1979-10-01T23:59:59.000Z

7

Property:PotentialOffshoreWindGeneration | Open Energy Information  

Open Energy Info (EERE)

PotentialOffshoreWindGeneration PotentialOffshoreWindGeneration Jump to: navigation, search Property Name PotentialOffshoreWindGeneration Property Type Quantity Description The estimated potential energy generation from Offshore Wind for a particular place. Use this type to express a quantity of energy. The default unit for energy on OpenEI is the Kilowatt hour (kWh), which is 3,600,000 Joules. http://en.wikipedia.org/wiki/Unit_of_energy It's possible types are Watt hours - 1000 Wh, Watt hour, Watthour Kilowatt hours - 1 kWh, Kilowatt hour, Kilowatthour Megawatt hours - 0.001 MWh, Megawatt hour, Megawatthour Gigawatt hours - 0.000001 GWh, Gigawatt hour, Gigawatthour Joules - 3600000 J, Joules, joules Pages using the property "PotentialOffshoreWindGeneration" Showing 25 pages using this property. (previous 25) (next 25)

8

Property:PotentialOnshoreWindGeneration | Open Energy Information  

Open Energy Info (EERE)

PotentialOnshoreWindGeneration PotentialOnshoreWindGeneration Jump to: navigation, search Property Name PotentialOnshoreWindGeneration Property Type Quantity Description The area of potential onshore wind in a place. Use this type to express a quantity of energy. The default unit for energy on OpenEI is the Kilowatt hour (kWh), which is 3,600,000 Joules. http://en.wikipedia.org/wiki/Unit_of_energy It's possible types are Watt hours - 1000 Wh, Watt hour, Watthour Kilowatt hours - 1 kWh, Kilowatt hour, Kilowatthour Megawatt hours - 0.001 MWh, Megawatt hour, Megawatthour Gigawatt hours - 0.000001 GWh, Gigawatt hour, Gigawatthour Joules - 3600000 J, Joules, joules Pages using the property "PotentialOnshoreWindGeneration" Showing 25 pages using this property. (previous 25) (next 25)

9

Evaluation of Global Onshore Wind Energy Potential and Generation Costs  

SciTech Connect

In this study, we develop an updated global estimate of onshore wind energy potential using reanalysis wind speed data, along with updated wind turbine technology performance and cost assumptions as well as explicit consideration of transmission distance in the calculation of transmission costs. We find that wind has the potential to supply a significant portion of world energy needs, although this potential varies substantially by region as well as with assumptions such as on what types of land can be used to site wind farms. Total global wind potential under central assumptions is estimated to be approximately 89 petawatt hours per year at less than 9 cents/kWh with substantial regional variations. One limitation of global wind analyses is that the resolution of current global wind speed reanalysis data can result in an underestimate of high wind areas. A sensitivity analysis of eight key parameters is presented. Wind potential is sensitive to a number of input parameters, particularly those related to land suitability and turbine density as well as cost and financing assumptions which have important policy implications. Transmission cost has a relatively small impact on total wind costs, changing the potential at a given cost by 20-30%. As a result of sensitivities studied here we suggest that further research intended to inform wind supply curve development focus not purely on physical science, such as better resolved wind maps, but also on these less well-defined factors, such as land-suitability, that will also have an impact on the long-term role of wind power.

Zhou, Yuyu; Luckow, Patrick; Smith, Steven J.; Clarke, Leon E.

2012-06-20T23:59:59.000Z

10

Property:PotentialOnshoreWindCapacity | Open Energy Information  

Open Energy Info (EERE)

PotentialOnshoreWindCapacity PotentialOnshoreWindCapacity Jump to: navigation, search Property Name PotentialOnshoreWindCapacity Property Type Quantity Description The nameplate capacity technical potential from Onshore Wind for a particular place. Use this property to express potential electric energy generation, such as Nameplate Capacity. The default unit is megawatts (MW). For spatial capacity, use property Volume. Acceptable units (and their conversions) are: 1 MW,MWe,megawatt,Megawatt,MegaWatt,MEGAWATT,megawatts,Megawatt,MegaWatts,MEGAWATT,MEGAWATTS 1000 kW,kWe,KW,kilowatt,KiloWatt,KILOWATT,kilowatts,KiloWatts,KILOWATT,KILOWATTS 1000000 W,We,watt,watts,Watt,Watts,WATT,WATTS 1000000000 mW,milliwatt,milliwatts,MILLIWATT,MILLIWATTS 0.001 GW,gigawatt,gigawatts,Gigawatt,Gigawatts,GigaWatt,GigaWatts,GIGAWATT,GIGAWATTS

11

Property:PotentialOffshoreWindCapacity | Open Energy Information  

Open Energy Info (EERE)

PotentialOffshoreWindCapacity PotentialOffshoreWindCapacity Jump to: navigation, search Property Name PotentialOffshoreWindCapacity Property Type Quantity Description The nameplate capacity technical potential from Offshore Wind for a particular place. Use this property to express potential electric energy generation, such as Nameplate Capacity. The default unit is megawatts (MW). For spatial capacity, use property Volume. Acceptable units (and their conversions) are: 1 MW,MWe,megawatt,Megawatt,MegaWatt,MEGAWATT,megawatts,Megawatt,MegaWatts,MEGAWATT,MEGAWATTS 1000 kW,kWe,KW,kilowatt,KiloWatt,KILOWATT,kilowatts,KiloWatts,KILOWATT,KILOWATTS 1000000 W,We,watt,watts,Watt,Watts,WATT,WATTS 1000000000 mW,milliwatt,milliwatts,MILLIWATT,MILLIWATTS 0.001 GW,gigawatt,gigawatts,Gigawatt,Gigawatts,GigaWatt,GigaWatts,GIGAWATT,GIGAWATTS

12

Preliminary evaluation of wind energy potential: Cook Inlet area, Alaska  

DOE Green Energy (OSTI)

This report summarizes work on a project performed under contract to the Alaska Power Administration (APA). The objective of this research was to make a preliminary assessment of the wind energy potential for interconnection with the Cook Inlet area electric power transmission and distribution systems, to identify the most likely candidate regions (25 to 100 square miles each) for energy potential, and to recommend a monitoring program sufficient to quantify the potential.

Hiester, T.R.

1980-06-01T23:59:59.000Z

13

Fitting of Weibull distribution to study wind energy potential in Kuala Terengganu, Malaysia  

Science Conference Proceedings (OSTI)

A feasibility study on the wind energy potential of Kuala Terengganu, Malaysia was carried out. The most commonly used distribution to fit wind speed data is the Weibull distribution. This distribution was applied to wind speed data for the year 2008. ... Keywords: beaufort scale, weibull distribution, wind data, wind distribution pattern, wind energy potential

A. M. Razali; M. S. Sapuan; K. Ibrahim; A. R. Ismail; A. Zaharim; K. Sopian

2009-12-01T23:59:59.000Z

14

The estimate of the wind energy potential and insolation  

E-Print Network (OSTI)

The concise letter points out that the estimates of the global potential of wind power exceeds the amount of kinetic energy in the relevant layer of atmosphere by far more than an order of magnitude. Originally submitted to the Letters section of the Proceedings of the National Academy of Sciences in August 2009.

Aoki, Kenichiro

2009-01-01T23:59:59.000Z

15

Power in the wind. [Techniques for estimation of wind potential energy  

SciTech Connect

Techniques are described which can be used by engineers, technicians and homeowners for the estimation of potential energy in wind and in particular wind machines. They are suitable for onsite calculations with the use of nothing more than a pocket calculator. (JMT)

Gipe, P.

1981-04-01T23:59:59.000Z

16

Practical method for estimating wind characteristics at potential wind-energy-conversion sites  

DOE Green Energy (OSTI)

Terrain features and variations in the depth of the atmospheric boundary layer produce local variations in wind, and these variations are not depicted well by standard weather reports. A method is developed to compute local winds for use in estimating the wind energy available at any potential site for a wind turbine. The method uses the terrain heights for an area surrounding the site and a series of wind and pressure reports from the nearest four or five national Weather Service stations. An initial estimate of the winds in the atmospheric boundary layer is made, then these winds are adjusted to satisfy the continuity equation. In this manner the flow is made to reflect the influences of the terrain and the shape of the boundary-layer top. This report describes in detail the methodology and results, and provides descriptions of the computer programs, instructions for using them, and complete program listings.

Endlich, R. M.; Ludwig, F. L.; Bhumralkar, C. M.; Estoque, M. A.

1980-08-01T23:59:59.000Z

17

Wind Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

FUPWG Meeting FUPWG Meeting NREL is a national laboratory of the U.S. Department of Energy Office of Energy Efficiency and Renewable Energy operated by the Alliance for Sustainable Energy, LLC Robi Robichaud November 18, 2009 Topics Introduction Review of the Current Wind Market Drivers for Wind Development Siting g Issues Wind Resource Assessment Wind Characteristics Wind Power Potential Basic Wind Turbine Theory Basic Wind Turbine Theory Types of Wind Turbines Facts About Wind Siting Facts About Wind Siting Wind Performance 1. United States: MW 1 9 8 2 1 9 8 3 1 9 8 4 1 9 8 5 1 9 8 6 1 9 8 7 1 9 8 8 1 9 8 9 1 9 9 0 1 9 9 1 1 9 9 2 1 9 9 3 1 9 9 4 1 9 9 5 1 9 9 6 1 9 9 7 1 9 9 8 1 9 9 9 2 0 0 0 2 0 0 1 2 0 0 2 2 0 0 3 2 0 0 4 2 0 0 5 2 0 0 6 2 0 0 7 2 0 0 8 Current Status of the Wind Industry Total Global Installed Wind Capacity Total Global Installed Wind Capacity Total Global Installed Wind Capacity

18

Regional Changes in Wind Energy Potential over Europe Using Regional Climate Model Ensemble Projections  

Science Conference Proceedings (OSTI)

The impact of climate change on wind power generation potentials over Europe is investigated by considering ensemble projections from two regional climate models (RCMs) driven by a global climate model (GCM). Wind energy density and its ...

Hanna Hueging; Rabea Haas; Kai Born; Daniela Jacob; Joaquim G. Pinto

2013-04-01T23:59:59.000Z

19

NREL Study Finds U.S. Wind Energy Potential Triples Previous...  

NLE Websites -- All DOE Office Websites (Extended Search)

maximum potential to generate wind power in the contiguous United States is more than three times greater than previously estimated, according to a National Renewable Energy...

20

Monitoring and Determination of Wind Energy Potential by Web Based Wireless Network  

Science Conference Proceedings (OSTI)

In this paper, we develop a web based interface which performs a wireless communication with ZigBee protocol for monitoring wind energy potential and also gathering custom reports for determination of the interested wind field. A custom printed circuit ... Keywords: wind energy, wireless network, web based control

Onur Keskin; ISmet Ates; Ziya Haktan Karadeniz; Alpaslan Turgut; Zeki KiRal

2012-12-01T23:59:59.000Z

Note: This page contains sample records for the topic "wind energy potential" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


21

Property:PotentialOffshoreWindArea | Open Energy Information  

Open Energy Info (EERE)

PotentialOffshoreWindArea PotentialOffshoreWindArea Jump to: navigation, search Property Name PotentialOffshoreWindArea Property Type Quantity Description The area of potential offshore wind in a place. Use this type to express a quantity of two-dimensional space. The default unit is the square meter (m²). http://en.wikipedia.org/wiki/Area Acceptable units (and their conversions) are: Square Meters - 1 m²,m2,m^2,square meter,square meters,Square Meter,Square Meters,Sq. Meters,SQUARE METERS Square Kilometers - 0.000001 km²,km2,km^2,square kilometer,square kilometers,square km,square Kilometers,SQUARE KILOMETERS Square Miles - 0.000000386 mi²,mi2,mi^2,mile²,square mile,square miles,square mi,Square Miles,SQUARE MILES Square Feet - 10.7639 ft²,ft2,ft^2,square feet,square foot,FT²,FT2,FT^2,Square Feet, Square Foot

22

Property:PotentialOnshoreWindArea | Open Energy Information  

Open Energy Info (EERE)

PotentialOnshoreWindArea PotentialOnshoreWindArea Jump to: navigation, search Property Name PotentialOnshoreWindArea Property Type Quantity Description The area of potential onshore wind in a place. Use this type to express a quantity of two-dimensional space. The default unit is the square meter (m²). http://en.wikipedia.org/wiki/Area Acceptable units (and their conversions) are: Square Meters - 1 m²,m2,m^2,square meter,square meters,Square Meter,Square Meters,Sq. Meters,SQUARE METERS Square Kilometers - 0.000001 km²,km2,km^2,square kilometer,square kilometers,square km,square Kilometers,SQUARE KILOMETERS Square Miles - 0.000000386 mi²,mi2,mi^2,mile²,square mile,square miles,square mi,Square Miles,SQUARE MILES Square Feet - 10.7639 ft²,ft2,ft^2,square feet,square foot,FT²,FT2,FT^2,Square Feet, Square Foot

23

Assessment of Offshore Wind Energy Potential in the United States (Poster)  

DOE Green Energy (OSTI)

The development of an offshore wind resource database is one of the first steps necessary to understand the magnitude of the resource and to plan the distribution and development of future offshore wind power facilities. The U.S. Department of Energy supported the production of offshore wind resource maps and potential estimates for much of the United States. This presentation discusses NREL's 2010 offshore wind resources report; current U.S., regional, and state offshore maps; methodology for the wind mapping and validation; wind potential estimates; the Geographic Information Systems database; and future work and conclusions.

Elliott, D.; Schwartz, M.; Haymes, S.; Heimiller, D.; Musial, W.

2011-05-01T23:59:59.000Z

24

Electric Energy Conservation and Production Project: Vpolume 3: Wind energy potential  

Science Conference Proceedings (OSTI)

A final report has been prepared under the Electric Energy Conservation and Production Project, conducted by the Blackfeet Indian Tribe and its consultants, Black Hawk Associates, Inc. The report addresses two major issues - the heavy reliance on electricity by residents of the Blackfeet Reservation, and the opportunities for electricity production from wind energy resources on the Reservation. The findings of this report (1) help provide a basis for comprehensive energy management planning on the Reservation, (2) analyze the potential for minimizing electricity demand and maximizing the efficiency of electrical end-uses through appropriate conservation measures, (3) assess the potential of wind energy resources located on the Reservation, and (4) identify and assess the technical, financial, legal, institutional, and regulatory issues involved in wind energy development within the Blackfeet Reservation.

Not Available

1984-02-01T23:59:59.000Z

25

NREL Study Finds U.S. Wind Energy Potential Triples Previous Estimates (Fact Sheet)  

DOE Green Energy (OSTI)

The maximum potential to generate wind power in the contiguous United States is more than three times greater than previously estimated, according to a National Renewable Energy Laboratory (NREL) study. The new analysis is based on the latest computer models and examines the wind potential at wind turbine hub heights of 80 meters and 100 meters. These hub heights, which reflect current and future models of wind turbines, are higher than those used in previous national estimates and are mainly responsible for the increased wind potential in the study.

Not Available

2011-02-01T23:59:59.000Z

26

Coastal zone wind energy. Part III: a procedure to determine the wind power potential of the coastal zone  

DOE Green Energy (OSTI)

A stepwise procedure is presented for determining the seasonal and/or annual mean potential wind power density for any location on the East and Gulf coasts of the United States. The steps include reference to the dominant wind regimes and mean power densities already obtained to estimate the wind power potential of the location under consideration; methods to calculate the potential wind power distributions and steps to be taken to locate the best site in the area of interest. The method can be best applied where the atmospheric systems which produce most of the wind energy at the surface are relatively persistent. The method is least successful in areas where the wind field is highly variable. Application of the complete method requires the use of an existing two- or three-dimensional mesoscale numerical model.

Garstang, M.; Pielke, R.; Snow, J.W.

1982-03-01T23:59:59.000Z

27

S. C. Pryor R. J. Barthelmie E. Kjellstro m Potential climate change impact on wind energy resources in northern  

E-Print Network (OSTI)

S. C. Pryor ? R. J. Barthelmie ? E. Kjellstro¨ m Potential climate change impact on wind energy of climate change on the feasibility and pre- dictability of renewable energy sources including wind energy on near-surface flow and hence wind energy density across northern Europe. It is shown that: Simulated

Pryor, Sara C.

28

Estimation of wind characteristics at potential wind energy conversion sites. Volume 2. Appendices  

DOE Green Energy (OSTI)

Data are presented concerning climatology development methodology programs; dual station wind correlation analyses; and the candidate site wind climatologies.

Howard, S. M.; Chen, P. C.

1978-03-01T23:59:59.000Z

29

Indian Wind Energy Outlook 2009  

E-Print Network (OSTI)

1. ?The status of wind energy in India ? 4 Indian power sector?????????????????????????????????????????????????????????????????????????5 Renewable Energy in India ?????????????????????????????????????????????????????????????5 Wind potential???????????????????????????????????????????????????????????????????????????????? ? 7

unknown authors

2009-01-01T23:59:59.000Z

30

80 and 100 Meter Wind Energy Resource Potential for the United States (Poster)  

SciTech Connect

Accurate information about the wind potential in each state is required for federal and state policy initiatives that will expand the use of wind energy in the United States. The National Renewable Energy Laboratory (NREL) and AWS Truewind have collaborated to produce the first comprehensive new state-level assessment of wind resource potential since 1993. The estimates are based on high-resolution maps of predicted mean annual wind speeds for the contiguous 48 states developed by AWS Truewind. These maps, at spatial resolution of 200 meters and heights of 60 to 100 meters, were created with a mesoscale-microscale modeling technique and adjusted to reduce errors through a bias-correction procedure involving data from more than 1,000 measurement masts. NREL used the capacity factor maps to estimate the wind energy potential capacity in megawatts for each state by capacity factor ranges. The purpose of this presentation is to (1) inform state and federal policy makers, regulators, developers, and other stakeholders on the availability of the new wind potential information that may influence development, (2) inform the audience of how the new information was derived, and (3) educate the audience on how the information should be interpreted in developing state and federal policy initiatives.

Elliott, D.; Schwartz, M.; Haymes, S.; Heimiller, D.; Scott, G.; Flowers, L.; Brower, M.; Hale, E.; Phelps, B.

2010-05-01T23:59:59.000Z

31

An assessment of the available windy land area and wind energy potential in the contiguous United States  

DOE Green Energy (OSTI)

Estimates of land areas with various levels of wind energy resource and resultant wind energy potential have been developed for each state in the contiguous United States. The estimates are based on published wind resource data and account for the exclusion of some windy lands as a result of environmental and land-use considerations. Despite these exclusions, the amount of wind resource estimated over the contiguous United States is surprisingly large and has the potential to supply a substantial fraction of the nation's energy needs, even with the use of today's wind turbine technology. Although this study shows that, after exclusions, only about 0.6% of the land area in the contiguous United States is characterized by high wind resource (comparable to that found in windy areas of California where wind energy is being cost-effectively developed), the wind electric potential that could be extracted with today's technology from these areas across the United States is equivalent to about 20% of the current US electric consumption. Future advances in wind turbine technology will further enhance the potential of wind energy. As advances in turbine technology allow areas of moderate wind resource to be developed, more than a tenfold increase in the wind energy potential is possible. These areas, which cover large sections of the Great Plains and are widely distributed throughout many other sections of the country, have the potential of producing more than three times the nation's current electric consumption. 9 refs., 12 figs., 13 tabs.

Elliott, D.L.; Wendell, L.L.; Gower, G.L.

1991-08-01T23:59:59.000Z

32

A Feasibility Study to Evaluate Wind Energy Potential on the Navajo Nation  

SciTech Connect

The project, A Feasibility Study to Evaluate Wind Energy Potential on the Navajo Nation, is funded under a solicitation issued by the U.S. Department of Energy Tribal Energy Program. Funding provided by the grant allowed the Navajo Nation to measure wind potential at two sites, one located within the boundaries of the Navajo Nation and the other off-reservation during the project period (September 5, 2005 - September 30, 2009). The recipient for the grant award is the Navajo Tribal Utility Authority (NTUA). The grant allowed the Navajo Nation and NTUA manage the wind feasibility from initial site selection through the decision-making process to commit to a site for wind generation development. The grant activities help to develop human capacity at NTUA and help NTUA to engage in renewable energy generation activities, including not only wind but also solar and biomass. The final report also includes information about development activities regarding the sited included in the grant-funded feasibility study.

Terry Battiest

2012-11-30T23:59:59.000Z

33

Energy Basics: Wind Energy Resources  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Energy Basics Renewable Energy Printable Version Share this resource Biomass Geothermal Hydrogen Hydropower Ocean Solar Wind Wind Turbines Wind Resources Wind Energy...

34

Energy Basics: Wind Energy Technologies  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Energy Basics Renewable Energy Printable Version Share this resource Biomass Geothermal Hydrogen Hydropower Ocean Solar Wind Wind Turbines Wind Resources Wind Energy...

35

Review of remote-sensor potential for wind-energy studies  

DOE Green Energy (OSTI)

This report evaluates a number of remote-sensing systems such as radars, lidars, and acoustic echo sounders which are potential alternatives to the cup- and propeller anemometers routinely used in wind energy siting. The high costs and demanding operational requirements of these sensors currently preclude their use in the early stages of a multi-phase wind energy siting strategy such as that recently articulated by Hiester and Pennell (1981). Instead, these systems can be used most effectively in the lattermost stages of the siting process - what Hiester and Pennell (1981) refer to as the site development phase, necessary only for the siting of large wind-energy conversion systems (WECS) or WECS clusters. Even for this particular application only four techniques appear to be operational now; that is, if used properly, these techniques should provide the data sets currently considered adequate for wind-energy siting purposes. They are, in rough order of increasing expense and operating demands: optical transverse wind sensors; acoustic Doppler sounders; time-of-flight and continuous wave (CW) Doppler lidar; and frequency-modulated, continuous wave (FM-CW) Doppler radar.

Hooke, W.H.

1981-03-01T23:59:59.000Z

36

WIND ENERGY Wind Energ. (2012)  

E-Print Network (OSTI)

WIND ENERGY Wind Energ. (2012) Published online in Wiley Online Library (wileyonlinelibrary since energy production depends non-linearly on wind speed (U ), and wind speed observa- tions for the assessment of future long-term wind supply A. M. R. Bakker1 , B. J. J. M. Van den Hurk1 and J. P. Coelingh2 1

Haak, Hein

37

Energy Basics: Wind Turbines  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Energy Basics Renewable Energy Printable Version Share this resource Biomass Geothermal Hydrogen Hydropower Ocean Solar Wind Wind Turbines Wind Resources Wind Turbines...

38

Wind Energy Leasing Handbook  

E-Print Network (OSTI)

Wind Energy Leasing Handbook Wind Energy Leasing Handbook E-1033 Oklahoma Cooperative Extension?..................................................................................................................... 31 What do wind developers consider in locating wind energy projects?............................................................................................ 37 How do companies and individuals invest in wind energy projects?....................................................................

Balasundaram, Balabhaskar "Baski"

39

Energy Basics: Wind Energy Technologies  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Photo of a hilly field, with six visible wind turbines spinning in the wind. Wind energy technologies use the energy in wind for practical purposes such as generating...

40

New Wind Energy Resource Potential Estimates for the United States (Presentation)  

DOE Green Energy (OSTI)

This presentation provides an overview of the wind energy resource mapping efforts conducted at NREL and by Truepower.

Elliott, D.; Schwartz, M.; Haymes, S.; Heimiller, D.; Scott, G.; Brower, M.; Hale, E.; Phelps, B.

2011-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "wind energy potential" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


41

Sage-Grouse and Wind Energy: Biology, Habits, and Potential Effects from Development  

DOE Green Energy (OSTI)

Proposed development of domestic energy resources, including wind energy, is expected to impact the sagebrush steppe ecosystem in the western United States. The greater sage-grouse relies on habitats within this ecosystem for survival, yet very little is known about how wind energy development may affect sage-grouse. The purpose of this report is to inform organizations of the impacts wind energy development could have on greater sage-grouse populations and identify information needed to fill gaps in knowledge.

Becker, James M.; Tagestad, Jerry D.; Duberstein, Corey A.; Downs, Janelle L.

2009-07-15T23:59:59.000Z

42

Stakeholder Engagement and Outreach: Wind Resource Potential  

Wind Powering America (EERE)

Wind Resource Potential Offshore Maps Community-Scale Maps Residential-Scale Maps Anemometer Loan Programs & Data Wind Resource Potential State Wind Resource Potential Tables Find state wind resource potential tables in three versions: Microsoft Excel 2007, 2003, and Adobe Acrobat PDF. 30% Capacity Factor at 80-Meters Microsoft 2007 Microsoft 2003 Adobe Acrobat PDF Additional 80- and 100-Meter Wind Resource Potential Tables Microsoft 2007 Microsoft 2003 Adobe Acrobat PDF The National Renewable Energy Laboratory (NREL) estimated the windy land area and wind energy potential for each state using AWS Truepower's gross capacity factor data. This provides the most up to date estimate of how wind energy can support state and national energy needs. The table lists the estimates of windy land area with a gross capacity of

43

Reassessing Wind Potential Estimates for India: Economic and Policy Implications  

E-Print Network (OSTI)

of Potential for Wind Farms in India, Renewable Energy (Report http://ies.lbl.gov/India_Wind_Potential Disclaimeron-shore wind potential in India at three different hub-

Phadke, Amol

2012-01-01T23:59:59.000Z

44

NREL Triples Previous Estimates of U.S. Wind Power Potential (Fact Sheet), The Spectrum of Clean Energy Innovation, NREL (National Renewable Energy Laboratory)  

NLE Websites -- All DOE Office Websites (Extended Search)

Triples Previous Estimates of Triples Previous Estimates of U.S. Wind Power Potential The National Renewable Energy Laboratory (NREL) recently released new estimates of the U.S. potential for wind-generated electricity, using advanced wind mapping and validation techniques that triple previous estimates of the size of the nation's wind resources. The new study, conducted by NREL and AWS TruePower, finds that the contiguous 48 states have the potential to generate up to 37 million gigawatt-hours annually. In comparison, the total U.S. electricity generation from all sources was roughly 4 million gigawatt-hours in 2009. Detailed state-by-state estimates of wind energy potential for the United States show the estimated average wind speeds at an 80-meter height. The wind resource maps and estimates

45

Reassessing Wind Potential Estimates for India: Economic and Policy Implications  

E-Print Network (OSTI)

planning, policies, and programs, wind energy can be a coreof Wind Integration in the Tamil Nadu Grid. Energy PolicyEnergy Technologies Division Reassessing Wind Potential Estimates for India: Economic and Policy

Phadke, Amol

2012-01-01T23:59:59.000Z

46

Wind Energy Status and Future Wind Engineering Challenges: Preprint  

DOE Green Energy (OSTI)

This paper describes the current status of wind energy technology, the potential for future wind energy development and the science and engineering challenges that must be overcome for the technology to meet its potential.

Thresher, R.; Schreck, S.; Robinson, M.; Veers, P.

2008-08-01T23:59:59.000Z

47

Wind characteristics for agricultural wind energy applications  

SciTech Connect

Wind energy utilization in agriculture can provide a potentially significant savings in fuel oil consumption and ultimately a cost savings to the farmer. A knowledge of the wind characteristics within a region and at a location can contribute greatly to a more efficient and cost-effective use of this resource. Current research indicates that the important wind characteristics include mean annual wind speed and the frequency distribution of the wind, seasonal and diurnal variations in wind speed and direction, and the turbulent and gustiness characteristics of the wind. Further research is underway to provide a better definition of the total wind resource available, improved methods for siting WECS and an improved understanding of the environment to which the WECS respond.

Renne, D. S.

1979-01-01T23:59:59.000Z

48

Fluctuations in the interplanetary electric potential and energy coupling between the solar-wind and the magnetosphere  

E-Print Network (OSTI)

We utilize solar rotation average geomagnetic index ap and various solar wind plasma and field parameters for four solar cycles 20-23. We perform analysis to search for a best possible coupling function at 27-day time resolution. Regression analysis using these data at different phases of solar activity (increasing including maximum/decreasing including minimum) led us to suggest that the time variation of interplanetary electric potential is a better coupling function for solar wind-magnetosphere coupling. We suspect that a faster rate of change in interplanetary electric potential at the magnetopause might enhance the reconnection rate and energy transfer from the solar wind into the magnetosphere. The possible mechanism that involves the interplanetary potential fluctuations in influencing the solar wind-magnetosphere coupling is being investigated.

Badruddin,

2013-01-01T23:59:59.000Z

49

NREL Energy Models Examine the Potential for Wind and Solar Grid Integration (Fact Sheet)  

DOE Green Energy (OSTI)

As renewable energy generating sources, such as wind turbines and solar power systems, reach high levels of penetration in parts of the United States, the National Renewable Energy Laboratory (NREL) is helping the utility industry to peer into the future. Using software modeling tools that the lab developed, NREL is examining the future operation of the electrical grid as renewable energy continues to grow.

Not Available

2013-11-01T23:59:59.000Z

50

Wind Energy Technologies  

Energy.gov (U.S. Department of Energy (DOE))

Wind energy technologies use the energy in wind for practical purposes such as generating electricity, charging batteries, pumping water, and grinding grain.

51

Wind energy | Open Energy Information  

Open Energy Info (EERE)

(Redirected from Wind) (Redirected from Wind) Jump to: navigation, search Wind energy is a form of solar energy.[1] Wind energy (or wind power) describes the process by which wind is used to generate electricity. Wind turbines convert the kinetic energy in the wind into mechanical power. A generator can convert mechanical power into electricity[2]. Mechanical power can also be utilized directly for specific tasks such as pumping water. The US DOE developed a short wind power animation that provides an overview of how a wind turbine works and describes the wind resources in the United States. Contents 1 Wind Energy Basics 1.1 Equation for Wind Power 2 DOE Wind Programs and Information 3 Worldwide Installed Capacity 3.1 United States Installed Capacity 4 Wind Farm Development 4.1 Land Requirements

52

German Wind Energy Association | Open Energy Information  

Open Energy Info (EERE)

Wind Energy Association Place Osnabrck, Germany Zip 49074 Sector Wind energy Product Assocation for the promotion of wind energy in Germany. References German Wind Energy...

53

Wind energy bibliography  

DOE Green Energy (OSTI)

This bibliography is designed to help the reader search for information on wind energy. The bibliography is intended to help several audiences, including engineers and scientists who may be unfamiliar with a particular aspect of wind energy, university researchers who are interested in this field, manufacturers who want to learn more about specific wind topics, and librarians who provide information to their clients. Topics covered range from the history of wind energy use to advanced wind turbine design. References for wind energy economics, the wind energy resource, and environmental and institutional issues related to wind energy are also included.

None

1995-05-01T23:59:59.000Z

54

The Wind Energy Outlook Scenarios 1 India Wind Energy  

E-Print Network (OSTI)

1 ?Status of wind energy in India ????????????????????6 Wind energy in India????????????????????????????????????????????????????????????????????????????????????7 Wind power resource assessment?????????????????????????????????????????????????????????6 Wind power installations by state?????????????????????????????????????????????????????????8

unknown authors

2012-01-01T23:59:59.000Z

55

Coastal zone wind energy. Part II: Validation of the coastal zone wind power potential. A summary of the field experiment  

DOE Green Energy (OSTI)

Procedures have been developed to determine the wind power potential of the coastal region from Maine to Texas. The procedures are based upon a climatological analysis and a mesoscale numerical model. The results of this procedure are encouraging but need to be tested. In January to February 1980 a field measurement program was carried out over the Delmarva Peninsula centered on Wallops Island and extending into the Atlantic Ocean and Chesapeake Bay to provide an observational basis on which to test our wind assessment methods. The field experiment is described. Listings of the measurements made by aircraft, tethered balloon, rawinsonde kites, tower mounted anemometry and surface thermometry are given together with sample results. The analysis of these data and the comparison between them and the model predicted fields are presented.

Garstang, M.; Pielke, R.A.; Snow, J.W.

1980-06-01T23:59:59.000Z

56

Analysis of Loads and Wind Energy Potential for Remote Power Stations in Alaska University of Massachusetts Amherst  

E-Print Network (OSTI)

Analysis of Loads and Wind Energy Potential for Remote Power Stations in Alaska Mia Devine Electric Use (kWh/year) 2,173,400 1,032,800 2,520,500 Average Load 300 kW 140 kW 280 kW Peak Load 600 k load profile. Villages usuall

Massachusetts at Amherst, University of

57

Energy Basics: Wind Power Animation  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Energy Basics Renewable Energy Printable Version Share this resource Biomass Geothermal Hydrogen Hydropower Ocean Solar Wind Wind Turbines Wind Resources Wind Power...

58

Han Wind Energy Corporation | Open Energy Information  

Open Energy Info (EERE)

Han Wind Energy Corporation Jump to: navigation, search Name Han Wind Energy Corporation Place Beijing, Beijing Municipality, China Zip 100027 Sector Wind energy Product Han Wind...

59

Solar Wind | Open Energy Information  

Open Energy Info (EERE)

Wind Jump to: navigation, search Name Solar Wind Place Krasnodar, Romania Zip 350000 Sector Solar, Wind energy Product Russia-based PV product manufacturer. Solar Wind manufactures...

60

Wind Energy Resources  

Energy.gov (U.S. Department of Energy (DOE))

Wind energy can be produced anywhere in the world where the wind blows with a strong and consistent force. Windier locations produce more energy, which lowers the cost of producing electricity....

Note: This page contains sample records for the topic "wind energy potential" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


61

Wind Energy Benefits  

DOE Green Energy (OSTI)

Wind energy provides many benefits, including economic and environmental. This two-sided fact sheet succinctly outlines the top ten wind energy benefits and is especially well suited for general audiences.

Not Available

2005-04-01T23:59:59.000Z

62

Wind Energy Resource Atlas of the Philippines  

DOE Green Energy (OSTI)

This report contains the results of a wind resource analysis and mapping study for the Philippine archipelago. The study's objective was to identify potential wind resource areas and quantify the value of those resources within those areas. The wind resource maps and other wind resource characteristic information will be used to identify prospective areas for wind-energy applications.

Elliott, D.; Schwartz, M.; George, R.; Haymes, S.; Heimiller, D.; Scott, G.; McCarthy, E.

2001-03-06T23:59:59.000Z

63

Wind energy information guide  

DOE Green Energy (OSTI)

This book is divided into nine chapters. Chapters 1--8 provide background and annotated references on wind energy research, development, and commercialization. Chapter 9 lists additional sources of printed information and relevant organizations. Four indices provide alphabetical access to authors, organizations, computer models and design tools, and subjects. A list of abbreviations and acronyms is also included. Chapter topics include: introduction; economics of using wind energy; wind energy resources; wind turbine design, development, and testing; applications; environmental issues of wind power; institutional issues; and wind energy systems development.

NONE

1996-04-01T23:59:59.000Z

64

Wind | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Wind Wind Wind America is home to one of the largest and fastest growing wind markets in the world. Watch the video to learn more about the latest trends in the U.S. wind power market and join us this Thursday, August 8 at 3 pm ET for a Google+ Hangout on wind energy in America. The United States is home to one of the largest and fastest growing wind markets in the world. To stay competitive in this sector, the Energy Department invests in wind projects, both on land and offshore, to advance technology innovations, create job opportunities and boost economic growth. Moving forward, the U.S. wind industry remains a critical part of the Energy Department's all-of-the-above energy strategy to cut carbon pollution, diversify our energy economy and bring the next-generation of

65

Energy Basics: Wind Energy Resources  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Resources Wind energy can be produced anywhere in the world where the wind blows with a strong and consistent force. Windier locations produce more energy, which lowers the cost of...

66

Wind Energy Technologies | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Wind Energy Technologies Wind Energy Technologies August 15, 2013 - 4:10pm Addthis Photo of a hilly field, with six visible wind turbines spinning in the wind. Wind energy...

67

Distributed Wind Energy in Idaho  

SciTech Connect

Project Objective: This project is a research and development program aimed at furthering distributed wind technology. In particular, this project addresses some of the barriers to distributed wind energy utilization in Idaho. Background: At its core, the technological challenge inherent in Wind Energy is the transformation of a highly variable form of energy to one which is compatible with the commercial power grid or another useful application. A major economic barrier to the success of distributed wind technology is the relatively high capital investment (and related long payback periods) associated with wind turbines. This project will carry out fundamental research and technology development to address both the technological and economic barriers. â?¢ Active drive train control holds the potential to improve the overall efficiency of a turbine system by allowing variable speed turbine operation while ensuring a tight control of generator shaft speed, thus greatly simplifying power conditioning. â?¢ Recent blade aerodynamic advancements have been focused on large, utility-scale wind turbine generators (WTGs) as opposed to smaller WTGs designed for distributed generation. Because of Reynolds Number considerations, blade designs do not scale well. Blades which are aerodynamically optimized for distributed-scale WTGs can potentially reduce the cost of electricity by increasing shaft-torque in a given wind speed. â?¢ Grid-connected electric generators typically operate at a fixed speed. If a generator were able to economically operate at multiple speeds, it could potentially convert more of the windâ??s energy to electricity, thus reducing the cost of electricity. This research directly supports the stated goal of the Wind and Hydropower Technologies Program for Distributed Wind Energy Technology: By 2007, reduce the cost of electricity from distributed wind systems to 10 to 15 cents/kWh in Class 3 wind resources, the same level that is currently achievable in Class 5 winds.

Gardner, John; Ferguson, James; Ahmed-Zaid, Said; Johnson, Kathryn; Haynes, Todd; Bennett, Keith

2009-01-31T23:59:59.000Z

68

WIND ENERGY Wind Energ. 2013; 16:7790  

E-Print Network (OSTI)

marine energy systems to supply part of the global energy demand. However, there are many advances be achieved by using the existing knowledge and experience from offshore and wind energy industry energy industry lags far behind the wind energy industry, it has the potential to become a role player

Papalambros, Panos

69

Wind energy information directory  

DOE Green Energy (OSTI)

Wind Energy Information has been prepared to provide researchers, designers, manufacturers, distributors, dealers, and users of wind energy conversion systems with easy access to technical information. This directory lists organizations and publications which have the main objective of promoting the use of wind energy conversion systems, some organizations that can respond to requests for information on wind energy or make referrals to other sources of information, and some publications that occasionally include information on wind energy. The bibliography contains references to information for both the neophyte and the expert.

None

1979-10-01T23:59:59.000Z

70

Foresight Wind Energy LLC | Open Energy Information  

Open Energy Info (EERE)

Foresight Wind Energy LLC Jump to: navigation, search Name Foresight Wind Energy LLC Place San Francisco, California Zip 94105 Sector Wind energy Product San Francisco-based...

71

Berrendo Wind Energy | Open Energy Information  

Open Energy Info (EERE)

Berrendo Wind Energy Jump to: navigation, search Name Berrendo Wind Energy Place Boulder, Colorado Zip 80304 Sector Wind energy Product Colorado-based firm developing utility scale...

72

Astraeus Wind Energy Inc | Open Energy Information  

Open Energy Info (EERE)

Astraeus Wind Energy Inc Jump to: navigation, search Name Astraeus Wind Energy Inc Place Eaton Rapids, Michigan Sector Wind energy Product Michigan-based manufacturer of large...

73

Offshore Wind Potential Tables  

Wind Powering America (EERE)

Offshore wind resource by state and wind speed interval within 50 nm of shore. Offshore wind resource by state and wind speed interval within 50 nm of shore. Wind Speed at 90 m (m/s) 7.0 - 7.5 7.5 - 8.0 8.0 - 8.5 8.5 - 9.0 9.0 - 9.5 9.5 - 10.0 >10.0 Total >7.0 State Area km 2 (MW) Area km 2 (MW) Area km 2 (MW) Area km 2 (MW) Area km 2 (MW) Area km 2 (MW) Area km 2 (MW) Area km 2 (MW) California 11,439 (57,195) 24,864 (124,318) 23,059 (115,296) 22,852 (114,258) 13,185 (65,924) 15,231 (76,153) 6,926 (34,629) 117,555 (587,773) Connecticut 530 (2,652) 702 (3,508) 40 (201) 0 (0) 0 (0) 0 (0) 0 (0) 1,272 (6,360) Delaware 223 (1,116) 724 (3,618) 1,062 (5,310) 931 (4,657) 0 (0) 0 (0) 0 (0) 2,940 (14,701) Georgia 3,820 (19,102) 7,741 (38,706) 523 (2,617) 0 (0) 0 (0) 0 (0) 0 (0) 12,085 (60,425) Hawaii 18,873 (94,363) 42,298 (211,492)

74

Energy Basics: Wind Turbines  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Photo of a crane lifting the blades onto a wind turbine that reads 'U.S. Department of Energy, NREL.' You can learn more about horizontal axis turbines from the EERE Wind Program's...

75

Seasonal variability of wind electric potential in the United States  

DOE Green Energy (OSTI)

Seasonal wind electric potential has been estimated for the contiguous United States based on the methods previously used to estimate the annual average wind electric potential. National maps show estimates of the seasonal wind electric potential averaged over the state as a whole, and gridded maps show the distribution of the seasonal wind electric potential within a state. The seasons of winter and spring have highest wind electric potential for most windy areas in the United States. Summer is the season with the least potential for most of the contiguous United States. Wind electric potential patterns in autumn generally resemble the annual average potential map. Excellent matches between seasonal wind electric potential and electric energy use occur during winter for the northern parts of the nation. California has a good match between summer wind potential and electric use.

Schwartz, M.N.; Elliott, D.L.; Gower, G.L.

1993-07-01T23:59:59.000Z

76

Wind turbulence characterization for wind energy development  

DOE Green Energy (OSTI)

As part of its support of the US Department of Energy's (DOE's) Federal Wind Energy Program, the Pacific Northwest Laboratory (PNL) has initiated an effort to work jointly with the wind energy community to characterize wind turbulence in a variety of complex terrains at existing or potential sites of wind turbine installation. Five turbulence characterization systems were assembled and installed at four sites in the Tehachapi Pass in California, and one in the Green Mountains near Manchester, Vermont. Data processing and analyses techniques were developed to allow observational analyses of the turbulent structure; this analysis complements the more traditional statistical and spectral analyses. Preliminary results of the observational analyses, in the rotating framework or a wind turbine blade, show that the turbulence at a site can have two major components: (1) engulfing eddies larger than the rotor, and (2) fluctuating shear due to eddies smaller than the rotor disk. Comparison of the time series depicting these quantities at two sites showed that the turbulence intensity (the commonly used descriptor of turbulence) did not adequately characterize the turbulence at these sites. 9 refs., 10 figs.,

Wendell, L.L.; Gower, G.L.; Morris, V.R.; Tomich, S.D.

1991-09-01T23:59:59.000Z

77

Wind Energy Permitting Standards | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Wind Energy Permitting Standards Wind Energy Permitting Standards < Back Eligibility Commercial Construction Industrial InstallerContractor Savings Category Wind Buying & Making...

78

Gridded state maps of wind electric potential  

DOE Green Energy (OSTI)

Estimates of wind electric potential and available windy land area in the contiguous United States, calculated in 1991, have been revised by incorporating actual data on the distribution of environmental exclusion areas where wind energy development would be prohibited or severely restricted. The new gridded data base with actual environmental exclusion areas, in combination with a 'moderate' land-use scenario, is the basis for developing the first gridded maps of available windy land and wind electric potential. Gridded maps for the 48 contiguous states show the estimated windy land area and electric potential for each grid cell (1/40 latitude by 1/30 longitude). These new maps show the distribution of the estimated wind electric potential and available windy land within an individual state, unlike previous national maps that only show estimates of the total wind electric potential for the state as a whole. While changes for some individual states are fairly large (in percentage), on a national basis, the estimated windy land area and wind electric potential are only about 1% to 2% higher than estimated in 1991.

Schwartz, M.N.; Elliott, D.L.; Gower, G.L.

1992-10-01T23:59:59.000Z

79

High Winds Wind Farm | Open Energy Information  

Open Energy Info (EERE)

Winds Wind Farm Winds Wind Farm Jump to: navigation, search Name High Winds Wind Farm Facility High Winds Sector Wind energy Facility Type Commercial Scale Wind Facility Status In Service Owner NextEra Energy Resources Developer NextEra Energy Resources Energy Purchaser PPM Energy Inc Location Solano County CA Coordinates 38.124844°, -121.764915° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":38.124844,"lon":-121.764915,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

80

Wind Energy Myths  

DOE Green Energy (OSTI)

This two-sided fact sheet succinctly outlines and counters the top misconceptions about wind energy. It is well suited for general audiences.

Not Available

2005-05-01T23:59:59.000Z

Note: This page contains sample records for the topic "wind energy potential" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


81

WindEnergyPEIS  

NLE Websites -- All DOE Office Websites (Extended Search)

all or parts of the States of Iowa, Minnesota, Montana, Nebraska, North Dakota, and South Dakota. The draft PEIS assesses environmental impacts associated with wind energy...

82

Energy in the Wind  

NLE Websites -- All DOE Office Websites (Extended Search)

Provi and BP Energy in the Wind - Exploring Basic Electrical Concepts by Modeling Wind Turbines Curriculum: Wind Power (simple machines, aerodynamics, weather/climatology, leverage, mechanics, atmospheric pressure, and energy resources/transformations) Grade Level: High School Small groups: 2 students Time: Introductory packet will take 2-3 periods. Scientific investigation will take 2-3 periods. (45-50 minute periods) Summary: Students explore basic electrical concepts. Students are introduced to electrical concepts by using a hand held generator utilizing a multimeter, modeling, and designing a wind turbine in a wind tunnel (modifications are given if a wind tunnel is not available). Students investigate how wind nergy is used as a renewable energy resource. e

83

Port Clair Wind Energy | Open Energy Information  

Open Energy Info (EERE)

Port Clair Wind Energy Jump to: navigation, search Name Port Clair Wind Energy Place United Kingdom Sector Wind energy Product Company setup to develop the 35MW Port Clair wind...

84

Bird Movements and Behaviors in the Gulf Coast Region: Relation to Potential Wind-Energy Developments  

DOE Green Energy (OSTI)

The purpose of this paper is to discuss the possible impacts of wind development to birds along the lower Gulf Coast, including both proposed near-shore and offshore developments. The report summarizes wind resources in Texas, discusses timing and magnitude of bird migration as it relates to wind development, reviews research that has been conducted throughout the world on near- and offshore developments, and provides recommendations for research that will help guide wind development that minimizes negative impacts to birds and other wildlife resources.

Morrison, M. L.

2006-06-01T23:59:59.000Z

85

Wind energy | Open Energy Information  

Open Energy Info (EERE)

energy in the wind into mechanical power. A generator can convert mechanical power into electricity2. Mechanical power can also be utilized directly for specific tasks such as...

86

Wind energy conversion system  

DOE Patents (OSTI)

The wind energy conversion system includes a wind machine having a propeller connected to a generator of electric power, the propeller rotating the generator in response to force of an incident wind. The generator converts the power of the wind to electric power for use by an electric load. Circuitry for varying the duty factor of the generator output power is connected between the generator and the load to thereby alter a loading of the generator and the propeller by the electric load. Wind speed is sensed electro-optically to provide data of wind speed upwind of the propeller, to thereby permit tip speed ratio circuitry to operate the power control circuitry and thereby optimize the tip speed ratio by varying the loading of the propeller. Accordingly, the efficiency of the wind energy conversion system is maximized.

Longrigg, Paul (Golden, CO)

1987-01-01T23:59:59.000Z

87

Wind Energy Update  

Wind Powering America (EERE)

by the Alliance for Sustainable Energy, LLC. by the Alliance for Sustainable Energy, LLC. Wind Energy Update Wind Powering America January 2012 NATIONAL RENEWABLE ENERGY LABORATORY Evolution of Commercial Wind Technology NATIONAL RENEWABLE ENERGY LABORATORY Small (≤100 kW) Homes Farms Remote Applications (e.g. water pumping, telecom sites, icemaking) Midscale (100-1000 kW) Village Power Hybrid Systems Distributed Power Large, Land-based (1-3 MW) Utility-scale wind farms Large Distributed Power Sizes and Applications Large, Offshore (3-7 MW) Utility-scale wind farms, shallow coastal waters No U.S. installations NATIONAL RENEWABLE ENERGY LABORATORY Capacity & Cost Trends As of January 2012 (AWEA) 0 5000 10000 15000 20000 25000 30000 35000 40000 45000 50000 $- $200 $400 $600 $800 $1,000 $1,200

88

Wind | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Wind Wind Wind EERE plays a key role in advancing America's "all of the above" energy strategy, leading a large network of researchers and other partners to deliver innovative technologies that will make renewable electricity generation cost-competitive with traditional sources of energy. EERE plays a key role in advancing America's "all of the above" energy strategy, leading a large network of researchers and other partners to deliver innovative technologies that will make renewable electricity generation cost-competitive with traditional sources of energy. Image of a wind turbine against a partly cloudy sky. The U.S. Department of Energy (DOE) leads national efforts to improve the performance, lower the costs, and accelerate the deployment of wind energy technologies-both on

89

Wind energy applications guide  

DOE Green Energy (OSTI)

The brochure is an introduction to various wind power applications for locations with underdeveloped transmission systems, from remote water pumping to village electrification. It includes an introductory section on wind energy, including wind power basics and system components and then provides examples of applications, including water pumping, stand-alone systems for home and business, systems for community centers, schools, and health clinics, and examples in the industrial area. There is also a page of contacts, plus two specific example applications for a wind-diesel system for a remote station in Antarctica and one on wind-diesel village electrification in Russia.

anon.

2001-01-01T23:59:59.000Z

90

Wind Energy 101.  

DOE Green Energy (OSTI)

This presentation on wind energy discusses: (1) current industry status; (2) turbine technologies; (3) assessment and siting; and (4) grid integration. There are no fundamental technical barriers to the integration of 20% wind energy into the nation's electrical system, but there needs to be a continuing evolution of transmission planning and system operation policy and market development for this to be most economically achieved.

Karlson, Benjamin; Orwig, Kirsten (NREL)

2010-12-01T23:59:59.000Z

91

Wind energy systems information user study  

DOE Green Energy (OSTI)

This report describes the results of a series of telephone interviews with potential users of information on wind energy conversion. These interviews, part of a larger study covering nine different solar technologies, attempted to identify: the type of information each distinctive group of information users needed, and the best way of getting information to that group. Groups studied include: wind energy conversion system researchers; wind energy conversion system manufacturer representatives; wind energy conversion system distributors; wind turbine engineers; utility representatives; educators; county agents and extension service agents; and wind turbine owners.

Belew, W.W.; Wood, B.L.; Marle, T.L.; Reinhardt, C.L.

1981-01-01T23:59:59.000Z

92

Module Handbook Specialisation Wind Energy  

E-Print Network (OSTI)

of wind energy External costs Future price trends 3. Environmental Issues Environmental benefits of WT and Externalities Clculation methods Current plant costs Wind energy prices The value Module Handbook Specialisation Wind Energy 2nd Semester for the Master Programme

Habel, Annegret

93

Wind Energy Assessment using a Wind Turbine with Dynamic Yaw Control.  

E-Print Network (OSTI)

??The goal of this project was to analyze the wind energy potential over Lake Michigan. For this purpose, a dynamic model of a utility-scale wind (more)

Pervez, Md Nahid

2013-01-01T23:59:59.000Z

94

Diablo Winds Wind Farm | Open Energy Information  

Open Energy Info (EERE)

Diablo Winds Wind Farm Diablo Winds Wind Farm Facility Diablo Winds Wind Farm Sector Wind energy Facility Type Commercial Scale Wind Facility Status In Service Owner NextEra Energy Resources Developer NextEra Energy Resources Energy Purchaser Pacific Gas & Electric Co Location Altamont Pass CA Coordinates 37.7347°, -121.652° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":37.7347,"lon":-121.652,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

95

Energy Basics: Wind Power Animation  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

EERE: Energy Basics Wind Power Animation This animation discusses the advantages of wind power, the workings of a wind turbine, and wind resources in the United States. It also...

96

Wind Blog | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Wind Blog Wind Blog RSS September 26, 2013 Wind Farm Brings Clean, Affordable Energy to Alaskan Cooperative How can we make it easier for more communities to use wind power?...

97

Wind Energy Resources | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

determine whether the wind resource in a particular area is adequate for wind power. Addthis Related Articles Glossary of Energy Related Terms Hydropower Technologies Wind Turbines...

98

Cambrian Wind Energy | Open Energy Information  

Open Energy Info (EERE)

London, Greater London, United Kingdom Zip W1U 6RP Sector Renewable Energy, Wind energy Product UK wind energy company acquired by Falck Renewables Ltd, the wind energy subsidiary...

99

Wind Energy Technologies Available for Licensing - Energy ...  

Wind Energy Technologies Available for Licensing U.S. Department of Energy (DOE) laboratories and participating research institutions have wind energy ...

100

EIA Energy Kids - Wind - Energy Information Administration  

U.S. Energy Information Administration (EIA)

Wind is a clean source of energy, and overall, the use of wind for energy has fewer environmental impacts than using many other energy sources.

Note: This page contains sample records for the topic "wind energy potential" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


101

Wind Energy Technologies - Energy Innovation Portal  

Wind Energy Technology Marketing Summaries Here youll find marketing summaries of wind energy technologies available for licensing from U.S. Department of Energy ...

102

Wind Vision Wind Farm | Open Energy Information  

Open Energy Info (EERE)

Wind Farm Wind Farm Jump to: navigation, search Name Wind Vision Wind Farm Facility Wind Vision Sector Wind energy Facility Type Commercial Scale Wind Facility Status In Service Owner Wind Vision Developer Wind Vision Location St. Ansgar IA Coordinates 43.348224°, -92.888816° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":43.348224,"lon":-92.888816,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

103

Wind Energy Teachers Guide  

DOE Green Energy (OSTI)

This guide, created by the American Wind Association, with support from the U.S. Department of Energy, is a learning tool about wind energy targeted toward grades K-12. The guide provides teacher information, ideas for sparking children's and students' interest, suggestions for activities to undertake in and outside the classroom, and research tools for both teachers and students. Also included is an additional resources section.

anon.

2003-01-01T23:59:59.000Z

104

Vintage DOE: Wind | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Vintage DOE: Wind Vintage DOE: Wind Vintage DOE: Wind February 4, 2011 - 12:17pm Addthis Ginny Simmons Ginny Simmons Former Managing Editor for Energy.gov, Office of Public Affairs We're digging through the Department of Energy's video archives and pulling out some of our favorites to share on the Energy Blog. The below clip, from 1980, outlines the beginnings of the Department's focus on wind as a critical clean energy source. Of course, we've made a lot of advances in wind energy in the last 30 years. By mid-2010, wind power plants in the United States provided enough wind electricity to power nearly 10 million households, creating good jobs and avoiding nearly 62 million tons of carbon emissions - the equivalent of taking 10.5 million cars off the road. And the rapid growth of America's wind industry underscores the potential

105

Wind Energy Resource Basics | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Energy Resource Basics Wind Energy Resource Basics July 30, 2013 - 3:11pm Addthis Wind energy can be produced anywhere in the world where the wind blows with a strong and...

106

Wind Energy and Spatial Technology  

E-Print Network (OSTI)

2/3/2011 1 Wind Energy and Spatial Technology Lori Pelech Why Wind Energy? A clean, renewable 2,600 tons of carbon emissions annually ­ The economy · Approximately 85,000 wind energy workers (existing transmission lines)? #12;2/3/2011 3 US Energy Transmission Grid US Wind Map #12;2/3/2011 4

Schweik, Charles M.

107

Energy Basics: Wind Power Animation (Text Version)  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Energy Basics Renewable Energy Printable Version Share this resource Biomass Geothermal Hydrogen Hydropower Ocean Solar Wind Wind Turbines Wind Resources Wind Power...

108

Blyth Offshore Wind Ltd | Open Energy Information  

Open Energy Info (EERE)

Blyth Offshore Wind Ltd Jump to: navigation, search Name Blyth Offshore Wind Ltd Place United Kingdom Sector Renewable Energy, Wind energy Product Blyth Offshore Wind Limited,...

109

Wind Power | Open Energy Information  

Open Energy Info (EERE)

Wind Power Wind Power Jump to: navigation, search Wind Power WIndfarm.Sunset.jpg Wind power is a form of solar energy.[1] Wind is caused by the uneven heating of the atmosphere by the sun, variations in the earth's surface, and rotation of the earth. Mountains, bodies of water, and vegetation all influence wind flow patterns[2], [3]. Wind energy (or wind power) describes the process by which wind is used to generate electricity. Wind turbines convert the energy in wind to electricity by rotating propeller-like blades around a rotor. The rotor turns the drive shaft, which turns an electric generator.[2] Three key factors affect the amount of energy a turbine can harness from the wind: wind speed, air density, and swept area.[4] Mechanical power can also be utilized directly for specific tasks such as

110

West Winds Wind Farm | Open Energy Information  

Open Energy Info (EERE)

West Winds Wind Farm West Winds Wind Farm Facility West Winds Sector Wind energy Facility Type Commercial Scale Wind Facility Status In Service Owner Caithness Developer SeaWest Energy Purchaser Southern California Edison/PacifiCorp Location San Gorgonio CA Coordinates 33.9095°, -116.734° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":33.9095,"lon":-116.734,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

111

Lake Country Wind Energy LLC | Open Energy Information  

Open Energy Info (EERE)

Country Wind Energy LLC Jump to: navigation, search Name Lake Country Wind Energy LLC Place Minnesota Zip 56209 Sector Renewable Energy, Wind energy Product Minnesota-based wind...

112

Wind Energy Technologies - Energy Innovation Portal  

Wind Energy Technology Marketing Summaries Here youll find marketing summaries of wind energy technologies available for licensing from U.S. ...

113

China Wind Energy Association | Open Energy Information  

Open Energy Info (EERE)

China Wind Energy Association Place Beijing, Beijing Municipality, China Zip 100013 Sector Wind energy Product A non-profit industrial association devoted to promote the...

114

Cisco Wind Energy Wind Farm | Open Energy Information  

Open Energy Info (EERE)

Cisco Wind Energy Wind Farm Cisco Wind Energy Wind Farm Jump to: navigation, search Name Cisco Wind Energy Wind Farm Facility Cisco Wind Energy Sector Wind energy Facility Type Commercial Scale Wind Facility Status In Service Owner John Deere Wind Energy Developer Community Energy Purchaser Northern States Power Location Brewster MN Coordinates 43.696164°, -95.467078° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":43.696164,"lon":-95.467078,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

115

Wind energy, offers considerable promise: the wind itself is free,  

E-Print Network (OSTI)

Wind energy, offers considerable promise: the wind itself is free, wind power is clean. One of these sources, wind energy, offers considerable promise: the wind itself is free, wind power is clean, and it is virtually inexhaustible. In recent years, research on wind energy has accelerated

Langendoen, Koen

116

Reassessing Wind Potential Estimates for India: Economic and Policy Implications  

DOE Green Energy (OSTI)

We assess developable on-shore wind potential in India at three different hub-heights and under two sensitivity scenarios one with no farmland included, the other with all farmland included. Under the no farmland included case, the total wind potential in India ranges from 748 GW at 80m hub-height to 976 GW at 120m hub-height. Under the all farmland included case, the potential with a minimum capacity factor of 20 percent ranges from 984 GW to 1,549 GW. High quality wind energy sites, at 80m hub-height with a minimum capacity factor of 25 percent, have a potential between 253 GW (no farmland included) and 306 GW (all farmland included). Our estimates are more than 15 times the current official estimate of wind energy potential in India (estimated at 50m hub height) and are about one tenth of the official estimate of the wind energy potential in the US.

Phadke, Amol; Bharvirkar, Ranjit; Khangura, Jagmeet

2011-09-15T23:59:59.000Z

117

Wind News | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Wind News Wind News Wind News RSS February 7, 2011 Salazar, Chu Announce Major Offshore Wind Initiatives Strategic plan, $50 million in R&D funding, identified Wind Energy Areas will speed offshore wind energy development December 16, 2010 Department of Energy Finalizes Loan Guarantee to Support World's Largest Wind Project 845-Megawatt Wind Facility Will Create Hundreds of Jobs and Avoid Over 1.2 Million Tons of Carbon Dioxide Annually October 29, 2010 Statement by Energy Secretary Steven Chu on Today's Grand Opening of the Nordex Manufacturing Facility in Jonesboro, Arkansas Recovery Act investment creates jobs, helps lay the foundation for a clean energy economy September 13, 2010 DOE Announces More than $5 Million to Support Wind Energy Development Funds to Enhance Short-Term Wind Forecasting and Accelerate Midsize Wind

118

Wind Resource Map: Mexico | Open Energy Information  

Open Energy Info (EERE)

Wind Resource Map: Mexico Wind Resource Map: Mexico Jump to: navigation, search Tool Summary LAUNCH TOOL Name: Wind Resource Map: Mexico Focus Area: Renewable Energy Topics: Potentials & Scenarios Website: www.altestore.com/howto/Reference-Materials/Wind-Resource-Map-Mexico/a Equivalent URI: cleanenergysolutions.org/content/wind-resource-map-mexico,http://clean Language: English Policies: Deployment Programs DeploymentPrograms: Technical Assistance This is on-shore wind resource map for rural power applications in Mexico. The map can be used to aid in appropriate siting of wind power installations. Please note that the wind speed classes are taken at 30 m (100 feet [ft]), instead of the usual 10 m (33 ft). Each wind power class should span two power densities. For example, Wind Power Class = 3

119

Wind World | Open Energy Information  

Open Energy Info (EERE)

World Jump to: navigation, search Name Wind World Place Denmark Sector Wind energy Product WindWorld was a turbine manufacturer that was purchased by NEG Micon in 1998. NEG Micon...

120

Wind Turbines | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Turbines Wind Turbines July 30, 2013 - 2:58pm Addthis Energy 101: Wind Turbines Basics This video explains the basics of how wind turbines operate to produce clean power from an...

Note: This page contains sample records for the topic "wind energy potential" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


121

Minster Wind | Open Energy Information  

Open Energy Info (EERE)

Minster Wind Jump to: navigation, search Name Minster Wind Address 240 W. Fifth St Place Minster, Ohio Zip 45865 Sector Services, Wind energy Website http:www.minster.comwindwi...

122

Wind Report | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Wind Report Wind Report Wind Report Watch as our clean energy experts answer your questions about the U.S. wind industry -- one of the largest and fastest growing wind markets in the world. Related Links Top 8 Things You Didn't Know About Distributed Wind Small-Scale Distributed Wind: Northern Power Systems 100 kW turbine at the top of Burke Mountain in East Burke, Vermont. | Photo courtesy of Northern Power Systems. Test your energy knowledge by learning interesting facts about distributed wind. Charting the Future of Energy Storage As we continue to incorporate more renewable energy into the grid, technologies that store energy like batteries will be key to providing a continuous flow of clean energy even when the wind isn't blowing and the sun doesn't shine. Wind Industry Soars to New Heights

123

Commercial Wind Energy Property Valuation | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Commercial Wind Energy Property Valuation Commercial Wind Energy Property Valuation < Back Eligibility Commercial Industrial Utility Savings Category Wind Buying & Making...

124

Wind Powering America: Wind Energy Videos  

DOE Data Explorer (OSTI)

Wind Powering America is a nationwide initiative designed to increase the use of wind energy across the United States by working with regional stakeholders. A list of videos developed by and for the program includes interviews, short news clips, and documentary-like programs.

125

California offshore wind energy potential Michael J. Dvorak a,*, Cristina L. Archer b  

E-Print Network (OSTI)

Measuremetns in a Single Row of Low Aspect Ratio Pin-Fins," International Gas Turbine and Aeroengine Congress of Multi-Phase Particle Deposition on Endwall Film-Cooling," International Gas Turbine and Aeroengine: Experimental and Numerical Studies in Gas Turbine Heat Transfer ­ Funding support from the Department of Energy

Jacobson, Mark

126

Tribal Renewable Energy Curriculum Foundational Course: Wind...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Wind Tribal Renewable Energy Curriculum Foundational Course: Wind Watch the DOE Office of Indian Energy foundational course webinar on wind renewable energy by clicking on the .swf...

127

Wind energy mission analysis. Final report. [USA  

DOE Green Energy (OSTI)

The development of wind energy systems in the U.S. is discussed under the following headings: baseline power systems; assessment of wind potential; identification of high potential applications; electric utilities; residential application; paper industry application; agriculture application; and remote community applications.

Not Available

1977-02-18T23:59:59.000Z

128

AEP Wind Energy LLC | Open Energy Information  

Open Energy Info (EERE)

Wind Energy LLC Wind Energy LLC Jump to: navigation, search Name AEP Wind Energy LLC Place Dallas, Texas Zip 75266 1064 Sector Wind energy Product AEP Wind Energy LLC is a project developer in the wind industry. It is an affiliate of American Electric Power. References AEP Wind Energy LLC[1] LinkedIn Connections CrunchBase Profile No CrunchBase profile. Create one now! This article is a stub. You can help OpenEI by expanding it. AEP Wind Energy LLC is a company located in Dallas, Texas . References ↑ "AEP Wind Energy LLC" Retrieved from "http://en.openei.org/w/index.php?title=AEP_Wind_Energy_LLC&oldid=341822" Categories: Clean Energy Organizations Companies Organizations Stubs What links here Related changes Special pages Printable version Permanent link

129

Wave Wind LLC | Open Energy Information  

Open Energy Info (EERE)

Wave Wind LLC Place Sun Prairie, Wisconsin Zip 53590 Sector Services, Wind energy Product Wisconsin-based wind developer and construction services provider. References Wave Wind...

130

Heilongjiang Lishu Wind Power | Open Energy Information  

Open Energy Info (EERE)

Lishu Wind Power Jump to: navigation, search Name Heilongjiang Lishu Wind Power Place Heilongjiang Province, China Sector Wind energy Product China-based wind project developer...

131

Crownbutte Wind Power LLC | Open Energy Information  

Open Energy Info (EERE)

Crownbutte Wind Power LLC Jump to: navigation, search Name Crownbutte Wind Power LLC Place Mandan, North Dakota Zip 58554 Sector Wind energy Product North Dakota wind power company...

132

Daqing Longjiang Wind Power | Open Energy Information  

Open Energy Info (EERE)

Longjiang Wind Power Jump to: navigation, search Name Daqing Longjiang Wind Power Place Daqing, Heilongjiang Province, China Zip 163316 Sector Wind energy Product Local wind...

133

Gansu Xinhui Wind Power | Open Energy Information  

Open Energy Info (EERE)

Xinhui Wind Power Jump to: navigation, search Name Gansu Xinhui Wind Power Place China Sector Wind energy Product China-based joint venture engaged in developing wind projects....

134

Wind Resource Assessment Overview | Open Energy Information  

Open Energy Info (EERE)

Wind Resource Assessment Overview Wind Resource Assessment Overview Jump to: navigation, search Maps.jpg The first step in developing a wind project is to locate and quantify the wind resource. The magnitude of the wind and the characteristics of the resource are the largest factors in determining a potential site's economic and technical viability. There are three basic steps to identifying and characterizing the wind resource: prospecting, validating, and micrositing. The process of locating sites for wind energy development is similar to exploration for other resources, such as minerals and petroleum. Thus, the term prospecting is often used to describe the identification and preliminary evaluation of a wind resource area. Prospecting includes identifying potentially windy sites within a fairly large region - such

135

Impact of Electric Industry Structure on High Wind Penetration Potential  

NLE Websites -- All DOE Office Websites (Extended Search)

273 273 July 2009 Impact of Electric Industry Structure on High Wind Penetration Potential M. Milligan and B. Kirby National Renewable Energy Laboratory R. Gramlich and M. Goggin American Wind Energy Association National Renewable Energy Laboratory 1617 Cole Boulevard, Golden, Colorado 80401-3393 303-275-3000 * www.nrel.gov NREL is a national laboratory of the U.S. Department of Energy Office of Energy Efficiency and Renewable Energy Operated by the Alliance for Sustainable Energy, LLC Contract No. DE-AC36-08-GO28308 Technical Report NREL/TP-550-46273 July 2009 Impact of Electric Industry Structure on High Wind Penetration Potential M. Milligan and B. Kirby National Renewable Energy Laboratory R. Gramlich and M. Goggin American Wind Energy Association

136

Wind Energy Technology Basics | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Wind Energy Technology Basics Wind Energy Technology Basics Wind Energy Technology Basics August 15, 2013 - 4:10pm Addthis Photo of a hilly field, with six visible wind turbines spinning in the wind. Wind energy technologies use the energy in wind for practical purposes such as generating electricity, charging batteries, pumping water, and grinding grain. Most wind energy technologies can be used as stand-alone applications, connected to a utility power grid, or even combined with a photovoltaic system. For utility-scale sources of wind energy, a large number of turbines are usually built close together to form a wind farm that provides grid power. Several electricity providers use wind farms to supply power to their customers. Stand-alone turbines are typically used for water pumping or

137

Wind Energy Atlas of Brazil | Open Energy Information  

Open Energy Info (EERE)

Energy Atlas of Brazil Energy Atlas of Brazil Jump to: navigation, search Tool Summary LAUNCH TOOL Name: Wind Energy Atlas of Brazil Focus Area: Renewable Energy Topics: Potentials & Scenarios Website: 130.226.17.201/extra/web_docs/windmaps/Brazil_wind_map.pdf Equivalent URI: cleanenergysolutions.org/content/wind-energy-atlas-brazil,http://clean Language: English Policies: Deployment Programs DeploymentPrograms: Technical Assistance The maps provided in this resource result from a surface wind modelling tool called MesoMap that estimates the wind potential over the Brazilian territory by simulating the atmosphere dynamics of the wind regime and the related meteorological variables from validated atmosphere pressure-data samples. References Retrieved from "http://en.openei.org/w/index.php?title=Wind_Energy_Atlas_of_Brazil&oldid=514616

138

Definition: Wind energy | Open Energy Information  

Open Energy Info (EERE)

Wikipedia Wikipedia Definition Related Terms Wind turbine, Solar energy, power, energy, electricity generation, turbine References http:www.eia.govkids...

139

Wind Energy Systems Exemption | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Systems Exemption Wind Energy Systems Exemption Eligibility Commercial Industrial Utility Savings For Wind Buying & Making Electricity Maximum Rebate None Program Information Start...

140

United States Wind Resource Potential Chart  

Wind Powering America (EERE)

18,000 18,000 Rated Capacity Above Indicated CF (GW) United States - Wind Resource Potential Cumulative Rated Capacity vs. Gross Capacity Factor (CF) 80 m The estimates show the potential gigawatts of rated capacity that could be installed on land above a given gross capacity factor (without losses) at 80-m and 100-m heights above ground. Areas greater than 30% at 80 m are generally considered to have suitable wind resource for potential wind development with today's advanced wind turbine technology. AWS Truewind, LLC developed the wind resource data for windNavigator® (http://navigator.awstruewind.com) with a spatial resolution of 200 m. NREL filtered the wind potential estimates to

Note: This page contains sample records for the topic "wind energy potential" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


141

Wind Power in China | Open Energy Information  

Open Energy Info (EERE)

in China in China Jump to: navigation, search This article is a stub. You can help OpenEI by expanding it. Contents 1 Summary 2 Estimate Potential 3 Current Projects 4 China Manufacturers 4.1 Wind Companies in Wind Power in China 5 China's Wind Goals 6 References Summary Installed wind capacity: approximately 30 GW by end of 2010 (est), added 13.8 GW in 2009 Installed wind capacity doubled each year, Min Deqing China_2050_Wind_Technology_Roadmap Estimate Potential Offshore wind energy generation potential in China estimate to be 11,000 terawatt-hours (TWh) similar to that of the North Sea in western Europe.[1][2] Current Projects 7 large projects or "megabases" (2010) [3] Inner Mongolia approximately 4.3 GW capacity in 2010 (66 projects; 40 more planned)[4] 1.25 GW offshore project in Guangdong

142

Wind Energy Sales Tax Exemption  

Energy.gov (U.S. Department of Energy (DOE))

Wind-energy conversion systems used as electric-power sources are exempt from Minnesota's sales tax. Materials used to manufacture, install, construct, repair or replace wind-energy systems also...

143

Manzanita Wind Energy Feasibility Study  

DOE Green Energy (OSTI)

The Manzanita Indian Reservation is located in southeastern San Diego County, California. The Tribe has long recognized that the Reservation has an abundant wind resource that could be commercially utilized to its benefit. Manzanita has explored the wind resource potential on tribal land and developed a business plan by means of this wind energy feasibility project, which enables Manzanita to make informed decisions when considering the benefits and risks of encouraging large-scale wind power development on their lands. Technical consultant to the project has been SeaWest Consulting, LLC, an established wind power consulting company. The technical scope of the project covered the full range of feasibility assessment activities from site selection through completion of a business plan for implementation. The primary objectives of this feasibility study were to: (1) document the quality and suitability of the Manzanita Reservation as a site for installation and long-term operation of a commercially viable utility-scale wind power project; and, (2) develop a comprehensive and financeable business plan.

Trisha Frank

2004-09-30T23:59:59.000Z

144

Wind Energy Information Guide 2004  

DOE Green Energy (OSTI)

The guide provides a list of contact information and Web site addresses for resources that provide a range of general and technical information about wind energy, including general information, wind and renewable energy, university programs and research institutes, international wind energy associations and others.

anon.

2004-01-01T23:59:59.000Z

145

Wind Energy In America: Ventower Industries | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Wind Manufacturing Saving Energy and Resources Revolutionizing Manufacturing INFOGRAPHIC: Wind Energy in America National Wind Technology Center - Colorado America's Wind Testing...

146

Cowal Wind Energy Ltd | Open Energy Information  

Open Energy Info (EERE)

Cowal Wind Energy Ltd Cowal Wind Energy Ltd Jump to: navigation, search Name Cowal Wind Energy Ltd Place Flintshire, Wales, United Kingdom Zip CH7 4EW Sector Wind energy Product Wind Farm developer with its office in north Wales. References Cowal Wind Energy Ltd[1] LinkedIn Connections CrunchBase Profile No CrunchBase profile. Create one now! This article is a stub. You can help OpenEI by expanding it. Cowal Wind Energy Ltd is a company located in Flintshire, Wales, United Kingdom . References ↑ "Cowal Wind Energy Ltd" Retrieved from "http://en.openei.org/w/index.php?title=Cowal_Wind_Energy_Ltd&oldid=343949" Categories: Clean Energy Organizations Companies Organizations Stubs What links here Related changes Special pages Printable version Permanent link Browse properties

147

Energy 101: Wind Turbines | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Wind Turbines Wind Turbines Energy 101: Wind Turbines Addthis Description See how wind turbines generate clean electricity from the power of the wind. Highlighted are the various parts and mechanisms of a modern wind turbine. Duration 2:16 Topic Tax Credits, Rebates, Savings Wind Energy Economy Credit Energy Department Video MR. : We've all seen those creaky old windmills on farms, and although they may seem about as low-tech as you can get, those old windmills are the predecessors for new modern wind turbines that generate electricity. The same wind that used to pump water for cattle is now turning giant wind turbines to power cities and homes. OK, have a look at this wind farm in the California desert, a hot desert next to tall mountains - an ideal place for a lot of wind.

148

Experiments with Wind to Produce Energy  

NLE Websites -- All DOE Office Websites (Extended Search)

Nat EXPERIMENTS WITH WIND TO PRODUCE ENERGY Curriculum: Wind Power (simple machines, weatherclimatology, aerodynamics, leverage, mechanics, atmospheric pressure, and energy...

149

2008 Wind Energy Projects, Wind Powering America (Poster)  

SciTech Connect

The Wind Powering America program produces a poster at the end of every calendar year that depicts new U.S. wind energy projects. The 2008 poster includes the following projects: Stetson Wind Farm in Maine; Dutch Hill Wind Farm in New York; Grand Ridge Wind Energy Center in Illinois; Hooper Bay, Alaska; Forestburg, South Dakota; Elbow Creek Wind Project in Texas; Glacier Wind Farm in Montana; Wray, Colorado; Smoky Hills Wind Farm in Kansas; Forbes Park Wind Project in Massachusetts; Spanish Fork, Utah; Goodland Wind Farm in Indiana; and the Tatanka Wind Energy Project on the border of North Dakota and South Dakota.

2009-01-01T23:59:59.000Z

150

Alta Wind Energy Center | Open Energy Information  

Open Energy Info (EERE)

Alta Wind Energy Center Alta Wind Energy Center Address 10315 Oak Creek Road Place Mojave, California Zip 93501 Sector Wind energy Phone number 1-877-4WI-ND88 (1-877-494-6388) Website http://altawindenergycenter.co Region Southern CA Area References Alta Wind Energy Center[1] LinkedIn Connections CrunchBase Profile No CrunchBase profile. Create one now! The Alta Wind Energy Center (AWEC) is located in the heart of one of the most proven wind resources in the United States - the Tehachapi-Mojave Wind Resource Area. Terra-Gen is developing the AWEC, California's largest wind energy project, adjacent to existing wind projects between the towns of Mojave and Tehachapi. Due to a welcoming community and the participation of a diverse group of landowners (private and public, local and non-local,

151

Duke Energy Notrees Wind Storage Demonstration Project  

Science Conference Proceedings (OSTI)

This EPRI technical update is an interim report summarizing the status of Duke Energys Notrees Wind Storage Demonstration Project, which involves integrating a 36-MW battery energy storage system (BESS) from Xtreme Power with the 152.6-MW Notrees Wind Farm. Xtreme Powers solid lead-acid battery represents one of an emerging number of energy storage devices endowed with the potential to serve multiple ...

2012-12-12T23:59:59.000Z

152

Offshore Wind Accelerator | Open Energy Information  

Open Energy Info (EERE)

Sector Wind energy Product Research and development initiative aimed at cutting the cost of offshore wind energy. References Offshore Wind Accelerator1 LinkedIn Connections...

153

Beaufort Wind Ltd | Open Energy Information  

Open Energy Info (EERE)

Kingdom Sector Renewable Energy, Wind energy Product UK-based operator of a portfolio of wind farms that were originally developed by npower renewables. References Beaufort Wind...

154

European Wind Atlas: Offshore | Open Energy Information  

Open Energy Info (EERE)

European Wind Atlas: Offshore European Wind Atlas: Offshore Jump to: navigation, search Tool Summary LAUNCH TOOL Name: European Wind Atlas: Offshore Focus Area: Renewable Energy Topics: Potentials & Scenarios Website: www.windatlas.dk/Europe/oceanmap.html Equivalent URI: cleanenergysolutions.org/content/european-wind-atlas-offshore,http://c Language: English Policies: Deployment Programs DeploymentPrograms: Technical Assistance This is a European offshore wind resources over open sea map developed by Riso National Laboratory in 1989. The map shows the so-called generalised wind climate over Europe, also sometimes referred to as the regional wind climate or simply the wind atlas. In such a map, the influences of local topography have been removed and only the variations on the large scale are

155

European Wind Atlas: Onshore | Open Energy Information  

Open Energy Info (EERE)

European Wind Atlas: Onshore European Wind Atlas: Onshore Jump to: navigation, search Tool Summary LAUNCH TOOL Name: European Wind Atlas: Onshore Focus Area: Renewable Energy Topics: Potentials & Scenarios Website: www.windatlas.dk/Europe/landmap.html Equivalent URI: cleanenergysolutions.org/content/european-wind-atlas-onshore,http://cl Language: English Policies: Deployment Programs DeploymentPrograms: Technical Assistance This is a European on-shore wind resources at 50 meters of altitude map, developed by Riso National Laboratory in 1989. The map shows the so-called generalised wind climate over Europe, also sometimes referred to as the regional wind climate or simply the wind atlas. In such a map, the influences of local topography have been removed and only the variations on

156

Prairie Winds Wind Farm | Open Energy Information  

Open Energy Info (EERE)

Prairie Winds Wind Farm Prairie Winds Wind Farm Facility Prairie Winds Sector Wind energy Facility Type Commercial Scale Wind Facility Status In Service Owner Basin Electric Power Coop/Central Power Electric Coop Developer Basin Electric Power Coop/Central Power Electric Coop Energy Purchaser Basin Electric Power Coop/Central Power Electric Coop Location Near Minot ND Coordinates 48.022927°, -101.291435° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":48.022927,"lon":-101.291435,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

157

Offshore Wind Resource Global Wind Potential Supply Curves by...  

Open Energy Info (EERE)

Offshore Wind Resource Global Wind Potential Supply Curves by Country, Class, and Depth (quantities in GW)
2012-07-12T22:51:45Z 2012-07-13T20:49:20Z I am submitting data from...

158

Wind Blog | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

August 6, 2013 August 6, 2013 Our latest Infographic highlights key findings from the 2012 Wind Technologies Market Report. | Infographic by Sarah Gerrity. America's Wind Industry Reaches Record Highs Sharing key findings from two new Energy Department reports that highlight the record growth of America's wind industry. August 5, 2013 Wind Industry Soars to New Heights Watch the video as Jose Zayas, Director of the Wind and Water Power Technologies Office, highlights the latest wind industry trends in the 2012 Wind Technologies Market Report. August 16, 2012 Wind Energy In America: Supporting Our Manufacturers Profiling success stories of the American wind industry. August 14, 2012 A Banner Year for the U.S. Wind Industry

159

Wind Easements | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Wind Easements Wind Easements Wind Easements < Back Eligibility Agricultural Fed. Government Institutional Local Government Nonprofit Residential Schools State Government Tribal Government Savings Category Wind Buying & Making Electricity Program Info State North Dakota Program Type Solar/Wind Access Policy North Dakota allows property owners to grant an easement that ensures adequate exposure of a wind-energy system to the wind. The easement runs with the land benefited and burdened, and terminates upon the conditions stated in the easement. The statutes authorizing the creation of wind easements include several provisions to protect property owners. For example, a wind easement may not make the property owner liable for any property tax associated with the wind-energy system or other equipment

160

Future of Wind Energy Technology in the United States  

DOE Green Energy (OSTI)

This paper describes the status of wind energy in the United States as of 2007, its cost, the potential for growth, offshore development, and potential technology improvements.

Thresher, R.; Robinson, M.; Veers, P.

2008-10-01T23:59:59.000Z

Note: This page contains sample records for the topic "wind energy potential" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


161

NREL: Wind Research - Xcel Energy Small Wind Funding Available...  

NLE Websites -- All DOE Office Websites (Extended Search)

Xcel Energy Small Wind Funding Available in Minnesota, Wisconsin February 25, 2013 Xcel Energy is releasing a new round of funding through a request for proposals. Small wind...

162

EIS-0469: Proposed Wilton IV Wind Energy Center Project, Burleigh...  

NLE Websites -- All DOE Office Websites (Extended Search)

is evaluating the potential environmental impacts of interconnecting NextEra Energy Resources proposed Wilton IV Wind Energy Center Project, near Bismarck, North Dakota, to...

163

Energy 101: Wind Turbines | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Wind Turbines Wind Turbines Energy 101: Wind Turbines Addthis Below is the text version for the Energy 101: Wind Turbines video. The video opens with "Energy 101: Wind Turbines." This is followed by wooden windmills on farms. We've all seen those creaky, old windmills on farms. And although they may seem about as low-tech as you can get, those old windmills are the predecessors for new, modern wind turbines that generat electricity. The video pans through shots of large windmills and wind farms of different sizes, situated on cultivated plains and hills. The same wind that used to pump water for cattle is now turning giant wind turbines to power cities and homes. OK, have a look at this wind farm in the California desert. A hot desert, next to tall mountains. An ideal place for a lot of wind.

164

Wind energy curriculum development at GWU  

DOE Green Energy (OSTI)

A wind energy curriculum has been developed at the George Washington University, School of Engineering and Applied Science. Surveys of student interest and potential employers expectations were conducted. Wind industry desires a combination of mechanical engineering training with electrical engineering training. The curriculum topics and syllabus were tested in several graduate/undergraduate elective courses. The developed curriculum was then submitted for consideration.

Hsu, Stephen M [GWU

2013-06-08T23:59:59.000Z

165

The Solar Wind Energy Flux  

E-Print Network (OSTI)

The solar-wind energy flux measured near the ecliptic is known to be independent of the solar-wind speed. Using plasma data from Helios, Ulysses, and Wind covering a large range of latitudes and time, we show that the solar-wind energy flux is independent of the solar-wind speed and latitude within 10%, and that this quantity varies weakly over the solar cycle. In other words the energy flux appears as a global solar constant. We also show that the very high speed solar-wind (VSW > 700 km/s) has the same mean energy flux as the slower wind (VSW solar-wind speed and density, which formalizes the anti-correlation between these quantities.

Chat, G Le; Meyer-Vernet, N

2012-01-01T23:59:59.000Z

166

20% Wind Energy by 2030  

DOE Green Energy (OSTI)

This analysis explores one clearly defined scenario for providing 20% of our nations electricity demand with wind energy by 2030 and contrasts it to a scenario of no new wind power capacity.

Not Available

2008-07-01T23:59:59.000Z

167

Wind energy: Program overview, FY 1992  

DOE Green Energy (OSTI)

The DOE Wind Energy Program assists utilities and industry in developing advanced wind turbine technology to be economically competitive as an energy source in the marketplace and in developing new markets and applications for wind systems. This program overview describes the commercial development of wind power, wind turbine development, utility programs, industry programs, wind resources, applied research in wind energy, and the program structure.

Not Available

1993-06-01T23:59:59.000Z

168

Mountain Wind | Open Energy Information  

Open Energy Info (EERE)

Mountain Wind Mountain Wind Jump to: navigation, search Mountain Wind is a wind farm located in Uinta County, Wyoming. It consists of 67 turbines and has a total capacity of 140.7 MW. It is owned by Edison Mission Group.[1] Based on assertions that the site is near Fort Bridger, its approximate coordinates are 41.318716°, -110.386418°.[2] References ↑ http://www.wsgs.uwyo.edu/Topics/EnergyResources/wind.aspx ↑ http://www.res-americas.com/wind-farms/operational-/mountain-wind-i-wind-farm.aspx Retrieved from "http://en.openei.org/w/index.php?title=Mountain_Wind&oldid=132229" Category: Wind Farms What links here Related changes Special pages Printable version Permanent link Browse properties 429 Throttled (bot load) Error 429 Throttled (bot load) Throttled (bot load)

169

Wind turbine | Open Energy Information  

Open Energy Info (EERE)

turbine turbine Jump to: navigation, search Dictionary.png Wind turbine: A machine that converts wind energy to mechanical energy; typically connected to a generator to produce electricity. Other definitions:Wikipedia Reegle Contents 1 Types of Wind Turbines 1.1 Vertical Axis Wind Turbines 1.2 Horizontal Axis Wind Turbines 2 Wind Turbine Sizes 3 Components of a Wind Turbine 4 References Types of Wind Turbines There are two basic wind turbine designs: those with a vertical axis (sometimes referred to as VAWTs) and those with a horizontal axis (sometimes referred to as HAWTs). There are several manufacturers of vertical axis turbines, but they have not penetrated the "utility scale" (100 kW capacity and larger) market to the same degree as horizontal axis turbines.[1]

170

from Wind Energy Development  

E-Print Network (OSTI)

These comments are submitted on behalf of the Clean Energy State Alliance (CESA) (electronically and by mail). CESA is a non-profit, multi-state coalition of state clean energy funds and programs working together to develop and promote clean energy technologies. CESA seeks to identify and address barriers to the development and growth of viable renewable energy resources in the United States. The California Energy Commission is a member of CESA. CESA offers its assistance and resources to the Commission and staff in the guidelines development process. CESA has substantial experience and expertise on the avian protection and wind siting issues that the Commission will consider in this Docket. Most notably, CESA is working actively with the United States Fish & Wildlife Service (USFWS), the Minerals Management Service, and several states (Pennsylvania, New York, Vermont, and others) to develop reasonable and effective approaches to addressing the impacts of wind projects on avian species. Many of the issues that the Commission will consider in this Docket are also being addressed by other states and federal agencies. CESA is available to provide relevant information and approaches that these other agencies and guidance development processes are employing, developing, and/or evaluating.

Dockets Office Ms; Dear Commissioners

2006-01-01T23:59:59.000Z

171

Idaho Winds LLC | Open Energy Information  

Open Energy Info (EERE)

Idaho Winds, LLC Place Idaho Sector Wind energy Product Wholly-owned subsidiary of PowerworksPacific Winds, operating wind farms in Idaho. References Idaho Winds, LLC1 LinkedIn...

172

Cow Branch Wind Energy Center Wind Farm | Open Energy Information  

Open Energy Info (EERE)

Cow Branch Wind Energy Center Wind Farm Cow Branch Wind Energy Center Wind Farm Jump to: navigation, search Name Cow Branch Wind Energy Center Wind Farm Facility Cow Branch Wind Energy Center Sector Wind energy Facility Type Commercial Scale Wind Facility Status In Service Owner Wind Capital Group/John Deere Capital Developer Wind Capital Group/John Deere Capital Energy Purchaser Associated Electric Cooperative Location Atchison County MO Coordinates 40.423897°, -95.477781° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":40.423897,"lon":-95.477781,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

173

Analyses of Wind Energy Impact on WFEC System Operations  

SciTech Connect

Western Farmers Electric Cooperative (WFEC) is a generation and transmission Cooperative in Oklahoma. At the end of 2003 it added 74 megawatts (MW) of wind energy to its energy portfolio by purchasing the output of the Blue Canyon Wind Power Project located north of Lawton, Oklahoma. The wind energy has the potential to provide about 6% of WFEC's peak summer energy demand. During periods of high winds and low loads, wind energy may represent 14% of the control area load. Conversely during periods of calm wind, wind energy cannot be counted upon to provide any energy to WFEC's system. This report analyzes system and wind energy data recorded by the WFEC control area energy management system (EMS) and evaluates the effects of wind energy on system operations.

Wan, Y.; Liao, J. R.

2005-08-01T23:59:59.000Z

174

Wind Farm | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Wind Farm Wind Farm Wind Farm The wind farm in Greensburg, Kansas, was completed in spring 2010, and consists of ten 1.25 megawatt (MW) wind turbines that supply enough electricity to power every house, business, and municipal building in Greensburg. Technical assistance provided by the U.S. Department of Energy and the National Renewable Energy Laboratory was influential in helping Greensburg and its partners build the wind farm. The town uses only about 1/4 to 1/3 of the power generated to reach its "100% renewable energy, 100% of the time" goal. Excess power is placed back on the grid and offered as renewable energy credits for other Kansas Power Pool and Native Energy customers. The Greenburg Wind Farm continues to have an impact, inspiring Sunflower

175

Steel Winds | Open Energy Information  

Open Energy Info (EERE)

Steel Winds Steel Winds Facility Steel Winds Wind Farm Sector Wind energy Facility Type Commercial Scale Wind Facility Status In Service Owner UPC Wind/BQ Energy Developer UPC Wind/BQ Energy Location Near Lackawanna NY Coordinates 42.81724°, -78.867542° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":42.81724,"lon":-78.867542,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

176

GL Wind | Open Energy Information  

Open Energy Info (EERE)

GL Wind GL Wind Jump to: navigation, search Name GL Wind Facility GL Wind Sector Wind energy Facility Type Commercial Scale Wind Facility Status In Service Owner GL Wind Developer Juhl Wind Energy Purchaser Xcel Energy Location Lewiston MN Coordinates 43.99800118°, -91.85827732° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":43.99800118,"lon":-91.85827732,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

177

U.S. State Wind Resource Potential | OpenEI  

Open Energy Info (EERE)

State Wind Resource Potential State Wind Resource Potential Dataset Summary Description Estimates for each of the 50 states and the entire United States showing the windy land area with a gross capacity factor (without losses) of 30% and greater at 80-m height above ground and the wind energy potential from development of the "available" windy land area after exclusions. The "Installed Capacity" shows the potential megawatts (MW) of rated capacity that could be installed on the available windy land area, and the "Annual Generation" shows annual wind energy generation in gigawatt-hours (GWh) that could be produced from the installed capacity. AWS Truewind, LLC developed the wind resource data for windNavigator® with a spatial resolution of 200 m. NREL produced the estimates of windy land area and windy energy potential, including filtering the estimates to exclude areas unlikely to be developed such as wilderness areas, parks, urban areas, and water features (see the "Wind Resource Exclusion Table" sheet within the Excel file for more detail).

178

Chiranjjeevi Wind Energy Limited CWEL | Open Energy Information  

Open Energy Info (EERE)

Chiranjjeevi Wind Energy Limited CWEL Jump to: navigation, search Name Chiranjjeevi Wind Energy Limited (CWEL) Place Pollachi, Tamil Nadu, India Zip 642 002 Sector Wind energy...

179

Spanish Wind Energy Association AEE | Open Energy Information  

Open Energy Info (EERE)

AEE Jump to: navigation, search Name Spanish Wind Energy Association (AEE) Place Madrid, Spain Zip 28006 Sector Wind energy Product Spain's association of wind-energy related...

180

Wind energy manual  

E-Print Network (OSTI)

Objectives: The course introduces principles of wind power production, design of wind turbines, location and design of wind farms, control of turbines and wind farms, predictive modeling, diagnostics, operations and maintenance, condition monitoring, health monitoring and of turbine components and systems, wind farm performance optimization, and integration of wind power with a grid. The modeling and analysis aspect of the topics discussed in the class will be illustrated with examples and case studies. Textbook: References:

A. Vieira; Da Rosa; Fundamentals Renewable; Energy Processes; San Diego; Jacob Kirpes; Small Wind

2013-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "wind energy potential" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


181

Environmental Energy Technologies Division Energy Analysis Department Community Wind Power  

E-Print Network (OSTI)

Environmental Energy Technologies Division · Energy Analysis Department Community Wind Power projects * standard US commercial wind development #12;Environmental Energy Technologies Division · Energy % Community- Owned Community- Owned Wind Capacity (MW) Total Wind Capacity (MW) #12;Environmental Energy

182

Wind Energy Transmission | Open Energy Information  

Open Energy Info (EERE)

Wind Energy Transmission Wind Energy Transmission Jump to: navigation, search Just a few years ago, 5% wind energy penetration in the United States was a lofty goal. In Europe, however, some countries have already reached wind energy penetrations of 10% or higher in a short period of time. The growth of domestic wind generation over the past decade has sharpened the focus on two questions: Can the electrical grid accommodate very high amounts of wind energy without jeopardizing security or degrading reliability? And, given that the nation's current transmission infrastructure is already constraining further development of wind generation in some regions, how could significantly larger amounts of wind energy be developed? The answers to these questions could hold the keys to determining how much of a role

183

Siting Wind Energy | Open Energy Information  

Open Energy Info (EERE)

Siting Wind Energy Siting Wind Energy Jump to: navigation, search Wind turbines at the Forward Wind Energy Center in Fond du Lac and Dodge Counties, Wisconsin. Photo from Ruth Baranowski/NREL, NREL 21207 The following resources provide information about siting wind energy projects. Some are specific to a state or region but may still contain information applicable to other areas. Wind project siting tools, such as calculators and databases, can be found here. Resources American Wind Energy Association. (Updated 2011). Siting, Health, and the Environment. Accessed August 13, 2013. This fact sheet provides an overview of siting myths and facts. Environmental Law Institute. Siting Wind Energy Facilities: What Do Local Elected Officials Need to Know?. Accessed November 29, 2013.

184

Auwahi Wind | Open Energy Information  

Open Energy Info (EERE)

Auwahi Wind Auwahi Wind Jump to: navigation, search Name Auwahi Wind Facility Auwahi Wind Sector Wind energy Facility Type Commercial Scale Wind Facility Status In Service Owner BP Wind Energy / Sempra Energy Developer Sempra Generation Energy Purchaser Maui Electric Co Location Maui HI Coordinates 20.596379°, -156.318304° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":20.596379,"lon":-156.318304,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

185

Wind | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Assessment and Characterization Defining, measuring, and forecasting land-based and offshore wind resources Environmental Impacts and Siting of Wind Projects Avoiding,...

186

Wind News | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

News News Wind News RSS October 23, 2013 New Report Shows Trend Toward Larger Offshore Wind Systems, with 11 Advanced Stage Projects Proposed in U.S. Waters The Energy Department today released a new report showing progress for the U.S. offshore wind energy market in 2012. August 13, 2013 Largest Federally-Owned Wind Farm Breaks Ground at U.S. Weapons Facility Supports Obama Administration Goal to Power Federal Agencies with 20 Percent Clean Energy by 2020 August 6, 2013 Reports Show Record High U.S. Wind Energy Production and Manufacturing The Energy Department released two new reports today showcasing record growth across the U.S. wind market, supporting an increase in America's share of clean, renewable energy and tens of thousands of jobs nationwide. According to these reports, the United States continues to be one of the

187

NREL: Learning - Student Resources on Wind Energy  

NLE Websites -- All DOE Office Websites (Extended Search)

Wind Energy Photo of a girl and a boy standing beneath a large wind turbine. Students can learn about wind energy by visiting a wind farm. The following resources will help you...

188

Palouse Wind | Open Energy Information  

Open Energy Info (EERE)

Palouse Wind Palouse Wind Jump to: navigation, search Name Palouse Wind Facility Palouse Wind Sector Wind energy Facility Type Commercial Scale Wind Facility Status In Service Owner First Wind Developer First Wind Energy Purchaser Avista Location Naff Ridge Coordinates 47.1572222°, -117.3325° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":47.1572222,"lon":-117.3325,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

189

Sheffield Wind | Open Energy Information  

Open Energy Info (EERE)

Wind Wind Jump to: navigation, search Name Sheffield Wind Facility Sheffield Wind Sector Wind energy Facility Type Commercial Scale Wind Facility Status In Service Owner First Wind Developer First Wind Energy Purchaser Burlington Electric Department / Vermont Electric Cooperative Inc. / Washington Electric Cooperative Inc. Location Northern Caledonia County VT Coordinates 44.662191°, -72.103879° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":44.662191,"lon":-72.103879,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

190

Kawailoa Wind | Open Energy Information  

Open Energy Info (EERE)

Kawailoa Wind Kawailoa Wind Jump to: navigation, search Name Kawailoa Wind Facility Kawailoa Wind Sector Wind energy Facility Type Commercial Scale Wind Facility Status In Service Owner First Wind Developer First Wind Energy Purchaser Hawaii Electric Co Location Haleiwa HI Coordinates 21.62376064°, -158.063736° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":21.62376064,"lon":-158.063736,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

191

Kahuku Wind | Open Energy Information  

Open Energy Info (EERE)

Kahuku Wind Kahuku Wind Jump to: navigation, search Name Kahuku Wind Facility Kahuku Wind Sector Wind energy Facility Type Commercial Scale Wind Facility Status In Service Owner First Wind Developer First Wind Energy Purchaser Hawaiian Electric Co Inc Location Adjacent to Kahuku HI Coordinates 21.684095°, -157.982372° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":21.684095,"lon":-157.982372,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

192

Rollins Wind | Open Energy Information  

Open Energy Info (EERE)

Rollins Wind Rollins Wind Jump to: navigation, search Name Rollins Wind Facility Rollins Wind Sector Wind energy Facility Type Commercial Scale Wind Facility Status In Service Owner First Wind Developer First Wind Energy Purchaser Maine Public Utilities Commission / Central Maine Power / Bangor Hydro Electric Location East of Lincoln ME Coordinates 45.412708°, -68.370867° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":45.412708,"lon":-68.370867,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

193

Rhaglen Ynni Gwynt Wind Energy Programme  

E-Print Network (OSTI)

Rhaglen Ynni Gwynt Wind Energy Programme Rhaglen Ynni Gwynt Wind Energy Programme Calculations supporting indicative figures used for the Wind Energy Programme Wind Energy (page) The energy to make,000,000 = 162.73 Therefore 4.5kWh/d/p = approximately 163 cups of tea per day per person Wind Energy Programme

194

Gamesa Wind to Market | Open Energy Information  

Open Energy Info (EERE)

Market Jump to: navigation, search Name Gamesa Wind to Market Place Spain Sector Wind energy Product Represents the interests of wind project owner clients in the Spanish...

195

Wasatch Wind Inc | Open Energy Information  

Open Energy Info (EERE)

City, Utah Zip 44032 Sector Wind energy Product Wasatch Wind is a project developer of wind farms in the Intermountain region specializing in co-ownership with locally...

196

Westwind Wind Turbines | Open Energy Information  

Open Energy Info (EERE)

Westwind Wind Turbines Jump to: navigation, search Name Westwind Wind Turbines Place Northern Ireland, United Kingdom Zip BT29 4TF Sector Wind energy Product Northern Ireland based...

197

Offshore Ostsee Wind AG | Open Energy Information  

Open Energy Info (EERE)

Ostsee Wind AG Jump to: navigation, search Name Offshore Ostsee Wind AG Place Brgerende, Mecklenburg-Western Pomerania, Germany Zip 18211 Sector Wind energy Product Joint...

198

Norfolk Offshore Wind NOW | Open Energy Information  

Open Energy Info (EERE)

Norfolk Offshore Wind NOW Jump to: navigation, search Name Norfolk Offshore Wind (NOW) Place United Kingdom Sector Wind energy Product Formed to develop the 100MW Cromer offshore...

199

Wind Management LLC | Open Energy Information  

Open Energy Info (EERE)

Management LLC Jump to: navigation, search Name Wind Management LLC Place South Yarmouth, Massachusetts Zip 2664 Sector Wind energy Product Massachussets wind project development...

200

Sonne Wind Beteiligungen AG | Open Energy Information  

Open Energy Info (EERE)

search Name Sonne+Wind Beteiligungen AG Place Berlin, Germany Zip 10715 Sector Efficiency, Solar, Wind energy Product Berlin-based VC firm focusing on wind, solar and...

Note: This page contains sample records for the topic "wind energy potential" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


201

Danish Wind Industry Association | Open Energy Information  

Open Energy Info (EERE)

Jump to: navigation, search Name Danish Wind Industry Association Place Copenhagen V, Denmark Zip DK-1552 Sector Wind energy Product The Danish Wind Industry Association (DWIA) is...

202

Asia Wind Group Ltd | Open Energy Information  

Open Energy Info (EERE)

Group Ltd Place Beijing Municipality, China Zip 100085 Sector Wind energy Product Investment company focused on the wind sector in Asia. References Asia Wind Group Ltd1...

203

Wind Prospect Developments Ltd | Open Energy Information  

Open Energy Info (EERE)

Developments Ltd Jump to: navigation, search Name Wind Prospect Developments Ltd Place United Kingdom Zip BS8 1HG Sector Wind energy Product Wind Prospect Developments Limited was...

204

Guohua Hulunbeier Wind Power | Open Energy Information  

Open Energy Info (EERE)

Hulunbeier Wind Power Jump to: navigation, search Name Guohua (Hulunbeier) Wind Power Place Hulunbeier, Inner Mongolia Autonomous Region, China Zip 21300 Sector Wind energy Product...

205

Guohua Qiqihaer Wind Power | Open Energy Information  

Open Energy Info (EERE)

Qiqihaer Wind Power Jump to: navigation, search Name Guohua (Qiqihaer) Wind Power Place Qiqihaer, Heilongjiang Province, China Zip 161005 Sector Wind energy Product Guohua...

206

Wind Power Ltd | Open Energy Information  

Open Energy Info (EERE)

Power Ltd Place Wickam Market, United Kingdom Sector Wind energy Product Conducting research into alternative, large scale wind turbine design. References Wind Power Ltd1...

207

Wind Power Associates LLC | Open Energy Information  

Open Energy Info (EERE)

Associates LLC Jump to: navigation, search Name Wind Power Associates LLC Place Goldendale, Washington State Sector Wind energy Product Wind farm developer and operater....

208

Wind Park Solutions Arcadia | Open Energy Information  

Open Energy Info (EERE)

Arcadia Jump to: navigation, search Name Wind Park Solutions Arcadia Place Big Sandy, Montana Sector Wind energy Product JV between Wind Park Solutions America and Arcadia...

209

Wind Energy Technologies Available for Licensing - Energy ...  

Site Map; Printable Version; Share this resource. Send a link to Wind Energy Technologies Available for Licensing - Energy Innovation Portalto someone by E-mail

210

Suzlon Wind Energy Corp | Open Energy Information  

Open Energy Info (EERE)

Corp Jump to: navigation, search Name Suzlon Wind Energy Corp Place Chicago, Illinois Zip 60631 Product Regional office of turbine manufacturer, Suzlon Energy. References Suzlon...

211

Baseline Wind Energy Facility | Open Energy Information  

Open Energy Info (EERE)

Baseline Wind Energy Facility Baseline Wind Energy Facility Jump to: navigation, search Name Baseline Wind Energy Facility Facility Baseline Wind Energy Facility Sector Wind energy Facility Type Commercial Scale Wind Facility Status Proposed Owner First Wind Developer First Wind Location Gilliam County OR Coordinates 45.626863°, -120.162885° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":45.626863,"lon":-120.162885,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

212

Assessing Desert Tortoise Survival and Reproduction at a Wind Energy  

E-Print Network (OSTI)

Assessing Desert Tortoise Survival and Reproduction at a Wind Energy Facility Near Palm Springs of their habitat are characterized by significant wind and solar energy potential. As a result, the species in the Mojave and Sonoran Deserts have preexisting wind energy facilities dating back over 25 years. One

213

LIDAR Applications to Wind-Energy Technology Assessment  

Science Conference Proceedings (OSTI)

LIDAR (Light Detection And Ranging) is an emerging technology in the wind industry that has the potential to improve preconstruction wind project development as well as increase reliability and performance of operating projects. Realizing this potential will reduce the cost of wind-power generation. Several LIDAR models have been developed for the wind-energy industry in the past decade as ground-based and nacelle-mounted wind measurement systems. Cost-benefit analyses were conducted for the application ...

2011-11-21T23:59:59.000Z

214

Commercial Wind Energy Property Valuation  

Energy.gov (U.S. Department of Energy (DOE))

Prior to 2007, wind energy devices generating electricity for commercial sale were assessed differently depending on where they were located. Some counties valued the entire turbine structure ...

215

Danielson Wind | Open Energy Information  

Open Energy Info (EERE)

Danielson Wind Danielson Wind Jump to: navigation, search Name Danielson Wind Facility Danielson Wind Sector Wind energy Facility Type Commercial Scale Wind Facility Status In Service Developer Juhl Wind Energy Purchaser Xcel Energy Location Near Atwater in Meeker County MN Coordinates 45.066913°, -94.738026° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":45.066913,"lon":-94.738026,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

216

Traer Wind | Open Energy Information  

Open Energy Info (EERE)

Traer Wind Traer Wind Jump to: navigation, search Name Traer Wind Facility Traer Wind Sector Wind energy Facility Type Community Wind Facility Status In Service Owner Norsemen Wind Energy LLC Developer Clark Thompson Energy Purchaser Traer Municipal Electric Utility Location Traer IA Coordinates 42.15242792°, -92.46557236° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":42.15242792,"lon":-92.46557236,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

217

Wiota Wind | Open Energy Information  

Open Energy Info (EERE)

Wiota Wind Wiota Wind Jump to: navigation, search Name Wiota Wind Facility Wiota Wind Sector Wind energy Facility Type Community Wind Facility Status In Service Owner Wiota Wind Energy LLC Energy Purchaser Farmers Electric Cooperative Coordinates 41.39149137°, -94.87689972° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":41.39149137,"lon":-94.87689972,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

218

Fairhaven Wind | Open Energy Information  

Open Energy Info (EERE)

Wind Wind Jump to: navigation, search Name Fairhaven Wind Facility Fairhaven Wind Sector Wind energy Facility Type Community Wind Facility Status In Service Owner Solaya Energy / Palmer Capital / CTI Energy Developer Solaya Energy Energy Purchaser Town of Fairhaven Location Fairhaven MA Coordinates 41.63885963°, -70.87331772° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":41.63885963,"lon":-70.87331772,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

219

Lake Winds | Open Energy Information  

Open Energy Info (EERE)

Winds Winds Jump to: navigation, search Name Lake Winds Facility Lake Winds Sector Wind energy Facility Type Commercial Scale Wind Facility Status In Service Owner Consumers Energy Developer Consumers Energy Energy Purchaser Consumers Energy Location Ludington MI Coordinates 43.83972728°, -86.38154984° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":43.83972728,"lon":-86.38154984,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

220

Distributed Wind | Open Energy Information  

Open Energy Info (EERE)

Distributed Wind Distributed Wind Jump to: navigation, search Distributed wind energy systems provide clean, renewable power for on-site use and help relieve pressure on the power grid while providing jobs and contributing to energy security for homes, farms, schools, factories, private and public facilities, distribution utilities, and remote locations.[1] Resources Clean Energy States Alliance. (2010). State-Based Financing Tools to Support Distributed and Community Wind Projects. Accessed September 27, 2013. This guide reviews the financing role that states, and specifically state clean energy funds, have played and can play in supporting community and distributed wind projects. Clean Energy States Alliance. (May 2010). Supporting Onsite Distributed Wind Generation Projects. Accessed September 27, 2013.

Note: This page contains sample records for the topic "wind energy potential" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


221

Commonwealth Wind Commercial Wind Program | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

and business planning) Through the Commonwealth Wind Incentive Program - Commercial Wind Initiative the Massachusetts Clean Energy Center (MassCEC) offers site assessment...

222

Wind Webinar Presentation Slides | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Presentation Slides Wind Webinar Presentation Slides Download presentation slides from the DOE Office of Indian Energy webinar on wind renewable energy. DOE Office of Indian Energy...

223

Infinity Wind Power Inc | Open Energy Information  

Open Energy Info (EERE)

energy project developer assisting landowners to participate in the renewable energy industry, and more specifically, with wind energy projects. References Infinity Wind Power,...

224

Searchlight Wind Energy Project FEIS Appendix F  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

F F Page | F 22B Appendix F: Literature Review of Socioeconomic Effects of Wind Project and Transmission Lines Searchlight Wind Energy Project FEIS Appendix F Page | 1 Prepared for" The Bureau of Land Management For the Searchlight Wind Energy Project Prepared by Bootstrap Solutions 752 E. Braemere Road Boise, ID 83702 Literature on Property Value Impacts of Wind Projects The economic effects of wind energy projects have been well documented. Several studies that have evaluated potential property value impacts are highlighted below (organized chronologically). No clear inference can be drawn from these studies and available research as the analyses vary in terms of rigor; methodology (e.g., survey sampling, statistical analysis, and expert opinion); size, location and site

225

Wind energy mission analysis. Executive summary. [USA  

DOE Green Energy (OSTI)

The principal objectives of this study were (1) to assess the potential for wind energy conversion systems on a national scale, (2) identify high-potential applications for WECS, (3) define functional, performance, operational, and cost goals for WECS, (4) evaluate the impact of the wide-scale deployment of WECS on energy users, and (5) identify the institutional and non-technical problems associated with the acceptance of wind energy systems. The study concentrated on broad applications of WECS over large geographic areas encompassing the entire United States. Emphasis was placed on identifying and exploring high-aggregate energy users who have significant potential to utilize wind energy in place of other alternatives.

Not Available

1977-02-18T23:59:59.000Z

226

EU Energy Wind Limited | Open Energy Information  

Open Energy Info (EERE)

company will be concentrating initially on bringing an innovative composite wind tower to market. References EU Energy (Wind) Limited1 LinkedIn Connections CrunchBase Profile No...

227

NREL: Learning - Wind Energy Basics: How Wind Turbines Work  

NLE Websites -- All DOE Office Websites (Extended Search)

Wind Energy Basics: How Wind Turbines Work Wind Energy Basics: How Wind Turbines Work We have been harnessing the wind's energy for hundreds of years. From old Holland to farms in the United States, windmills have been used for pumping water or grinding grain. Today, the windmill's modern equivalent-a wind turbine-can use the wind's energy to generate electricity. Wind turbines, like windmills, are mounted on a tower to capture the most energy. At 100 feet (30 meters) or more aboveground, they can take advantage of the faster and less turbulent wind. Turbines catch the wind's energy with their propeller-like blades. Usually, two or three blades are mounted on a shaft to form a rotor. A blade acts much like an airplane wing. When the wind blows, a pocket of low-pressure air forms on the downwind side of the blade. The low-pressure

228

Wind Energy Myths | Open Energy Information  

Open Energy Info (EERE)

Wind Energy Myths Wind Energy Myths Jump to: navigation, search Glacier Wind Project is located 10 miles west of Shelby, Montana, 2 miles south of Ethridge, in Glacier and Toole Counties, and is the largest wind farm in Montana. This project is comprised of 71 machines in phase 1 and 69 machines in phase 2 for a total of 140 Acciona AW-1500, capable of producing 210 MW at full capacity. Photo from Todd Spink, NREL 16521 U.S. Department of Energy. (July 10, 2011). Myths and Benefits of Wind Energy Wind Powering America hosted this webinar featuring speakers Ian Baring-Gould (National Renewable Energy Laboratory), Ed DeMeo, and Ben Hoen (Lawrence Berkeley National Laboratory). References Retrieved from "http://en.openei.org/w/index.php?title=Wind_Energy_Myths&oldid=700129"

229

Greenhouse gas and air pollutant emission reduction potentials of renewable energy - case studies on photovoltaic and wind power introduction considering interactions among technologies in Taiwan  

SciTech Connect

To achieve higher energy security and lower emission of greenhouse gases (GHGs) and pollutants, the development of renewable energy has attracted much attention in Taiwan. In addition to its contribution to the enhancement of reliable indigenous resources, the introduction of renewable energy such as photovoltaic (PV) and wind power systems reduces the emission of GHGs and air pollutants by substituting a part of the carbon- and pollutant-intensive power with power generated by methods that are cleaner and less carbon-intensive. To evaluate the reduction potentials, consequential changes in the operation of different types of existing power plants have to be taken into account. In this study, a linear mathematical programming model is constructed to simulate a power mix for a given power demand in a power market sharing a cost-minimization objective. By applying the model, the emission reduction potentials of capacity extension case studies, including the enhancement of PV and wind power introduction at different scales, were assessed. In particular, the consequences of power mix changes in carbon dioxide, nitrogen oxides, sulfur oxides, and particulates were discussed. Seasonally varying power demand levels, solar irradiation, and wind strength were taken into account. In this study, we have found that the synergetic reduction of carbon dioxide emission induced by PV and wind power introduction occurs under a certain level of additional installed capacity. Investigation of a greater variety of case studies on scenario development with emerging power sources becomes possible by applying the model developed in this study. 15 refs., 8 figs., 11 tabs.

Yu-Ming Kuo; Yasuhiro Fukushima [National Cheng Kung University, Tainan City (Taiwan). Department of Environmental Engineering

2009-03-15T23:59:59.000Z

230

Gone with the Wind - The Potential Tragedy of the Common Wind  

E-Print Network (OSTI)

clean, renewable alternative for energy production. Wind isrenewable and clean energy. Future Development In addition to land-based wind energy production,

Lifshitz-Goldberg, Yaei

2010-01-01T23:59:59.000Z

231

Scituate Wind | Open Energy Information  

Open Energy Info (EERE)

Scituate Wind Scituate Wind Jump to: navigation, search Name Scituate Wind Facility Scituate Wind Sector Wind energy Facility Type Community Wind Facility Status In Service Owner Solaya Energy / Palmer Capital Developer Solaya Energy Energy Purchaser Town of Scituate Location Scituate MA Coordinates 42.17592749°, -70.72780252° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":42.17592749,"lon":-70.72780252,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

232

Wind Energy Ordinances (Fact Sheet)  

SciTech Connect

Due to increasing energy demands in the United States and more installed wind projects, rural communities and local governments with limited or no experience with wind energy now have the opportunity to become involved in this industry. Communities with good wind resources may be approached by entities with plans to develop the resource. Although these opportunities can create new revenue in the form of construction jobs and land lease payments, they also create a new responsibility on the part of local governments to create ordinances to regulate wind turbine installations. Ordinances are laws, often found within municipal codes that provide various degrees of control to local governments. These laws cover issues such as zoning, traffic, consumer protection, and building codes. Wind energy ordinances reflect local needs and wants regarding wind turbines within county or city lines and aid the development of safe facilities that will be embraced by the community. Since 2008 when the National Renewable Energy Laboratory released a report on existing wind energy ordinances, many more ordinances have been established throughout the United States, and this trend is likely to continue in the near future as the wind energy industry grows. This fact sheet provides an overview of elements found in typical wind energy ordinances to educate state and local government officials, as well as policy makers.

2010-08-01T23:59:59.000Z

233

Reassessing Wind Potential Estimates for India: Economic and...  

NLE Websites -- All DOE Office Websites (Extended Search)

Reassessing Wind Potential Estimates for India: Economic and Policy Implications Title Reassessing Wind Potential Estimates for India: Economic and Policy Implications Publication...

234

Greenfield Wind | Open Energy Information  

Open Energy Info (EERE)

Wind Wind Jump to: navigation, search Name Greenfield Wind Facility Greenfield Wind Sector Wind energy Facility Type Community Wind Facility Status In Service Owner Greenfield Wind Power LLC (community owned) Energy Purchaser City of Greenfield - excess to Central Iowa Power Cooperative Location Greenfield IA Coordinates 41.29064139°, -94.48559761° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":41.29064139,"lon":-94.48559761,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

235

Mountaineer Wind Energy Center | Open Energy Information  

Open Energy Info (EERE)

Mountaineer Wind Energy Center Mountaineer Wind Energy Center Jump to: navigation, search Name Mountaineer Wind Energy Center Facility Mountaineer Wind Energy Center Sector Wind energy Facility Type Commercial Scale Wind Facility Status In Service Owner NextEra Energy Resources Developer Atlantic Renewable Energy Energy Purchaser Exelon Location Thomas WV Coordinates 39.163081°, -79.554516° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":39.163081,"lon":-79.554516,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

236

Wind Resource Atlas of Oaxaca | Open Energy Information  

Open Energy Info (EERE)

Resource Atlas of Oaxaca Resource Atlas of Oaxaca Jump to: navigation, search Tool Summary LAUNCH TOOL Name: Wind Resource Atlas of Oaxaca Focus Area: Renewable Energy Topics: Potentials & Scenarios Website: www.nrel.gov/wind/pdfs/34519.pdf Equivalent URI: cleanenergysolutions.org/content/wind-resource-atlas-oaxaca,http://cle Language: English Policies: Deployment Programs DeploymentPrograms: Technical Assistance This wind resource atlas identifies wind characteristics and distribution of wind resources in Oaxaca, Mexico, at a wind power density of 50 meters above ground. The detailed wind resource maps contained in the atlas facilitate the identification of prospective areas for use of wind energy technologies for utility-scale power generation, village power, and off-grid wind energy applications. The wind maps were created using a

237

Reassessing Wind Potential Estimates for India: Economic and Policy Implications  

E-Print Network (OSTI)

We estimate the cost of wind energy and compare it withMW installed worldwide. 6 Wind energy costs in India areof levelized cost were estimated (See Figure 7: Wind Energy

Phadke, Amol

2012-01-01T23:59:59.000Z

238

Federal Energy Management Program: Wind Energy Resources and...  

NLE Websites -- All DOE Office Websites (Extended Search)

Wind Energy Resources and Technologies Photo of multiple wind turbines stand on green space in front of a mountain backdrop. The Department of Energy tests wind turbine...

239

INFOGRAPHIC: Wind Energy in America | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

INFOGRAPHIC: Wind Energy in America INFOGRAPHIC: Wind Energy in America Addthis 1 of 6 This infographic details key findings from the 2011 Wind Market Report. | Infographic by...

240

Community Wind Toolkit | Open Energy Information  

Open Energy Info (EERE)

Wind Toolkit Wind Toolkit Jump to: navigation, search "Community wind" refers to a class of wind energy ownership structures. Projects are considered "community" projects when they are at least partially owned by individuals or businesses in the state and local area surrounding the wind power project. The community element of these projects can be defined narrowly so that ownership is concentrated in the county or region where the project is built, or it may be defined broadly so that project investors are from the state where the project is sited. Furthermore, the extent of local ownership may range from a small minority share to full ownership by persons in the immediate area surrounding the wind project site. Potential project owners include local farmers,

Note: This page contains sample records for the topic "wind energy potential" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


241

Wind Energy Act (Maine) | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Wind Energy Act (Maine) Wind Energy Act (Maine) Wind Energy Act (Maine) < Back Eligibility Developer Utility Agricultural Commercial Construction Fed. Government Fuel Distributor General Public/Consumer Industrial Installer/Contractor Institutional Investor-Owned Utility Local Government Low-Income Residential Multi-Family Residential Municipal/Public Utility Nonprofit Residential Retail Supplier Rural Electric Cooperative Schools State/Provincial Govt Systems Integrator Transportation Tribal Government Savings Category Wind Buying & Making Electricity Program Info State Maine Program Type Solar/Wind Access Policy Siting and Permitting The Maine Wind Energy Act is a summary of legislative findings that indicate the state's strong interest in promoting the development of wind energy and establish the state's desire to ease the regulatory process for

242

Energy 101: Wind Turbines | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Wind Turbines Wind Turbines Energy 101: Wind Turbines July 30, 2010 - 10:47am Addthis John Schueler John Schueler Former New Media Specialist, Office of Public Affairs On Tuesday, the Department announced a $117 million loan guarantee through for the Kahuku Wind Power Project in Hawaii. That's a major step forward for clean energy in the region, as it's expected to supply clean electricity to roughly 7,700 households per year, and it also invites a deceptively simple question: how exactly do wind turbines generate electricity? One thing you might not realize is that wind is actually a form of solar energy. This is because wind is produced by the sun heating Earth's atmosphere, the rotation of the earth, and the earth's surface irregularities. Wind turbines are the rotary devices that convert the

243

Wind Energy Technologies  

Science Conference Proceedings (OSTI)

... Avg Wind Speed 7.5 m/s 8.74 m/s GE 2.x turbine family ... 1 to 48 Hour Wind Forecasting ... Danish Transmission Grid w/ Interconnects & Offshore Sites ...

2012-08-31T23:59:59.000Z

244

Searsburg Wind Energy Facility | Open Energy Information  

Open Energy Info (EERE)

Searsburg Wind Energy Facility Searsburg Wind Energy Facility Jump to: navigation, search Name Searsburg Wind Energy Facility Facility Searsburg Wind Energy Facility Sector Wind energy Facility Type Commercial Scale Wind Facility Status In Service Owner EnXco Developer GE Energy Energy Purchaser Green Mountain Power Location Searsburg VT Coordinates 42.861356°, -72.964445° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":42.861356,"lon":-72.964445,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

245

We Energy Wind Farm | Open Energy Information  

Open Energy Info (EERE)

We Energy Wind Farm We Energy Wind Farm Jump to: navigation, search Name We Energy Wind Farm Facility We Energy Wind Farm Sector Wind energy Facility Type Commercial Scale Wind Facility Status In Service Energy Purchaser WE Energies Location South of Fond du Lac WI Coordinates 43.657512°, -88.439004° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":43.657512,"lon":-88.439004,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

246

Maiden Winds | Open Energy Information  

Open Energy Info (EERE)

Maiden Winds Maiden Winds Jump to: navigation, search Name Maiden Winds Facility Maiden Winds Sector Wind energy Facility Type Commercial Scale Wind Facility Status In Service Owner Edison Mission Group owns majority Developer Dan Juhl Energy Purchaser Xcel Energy Location West Pipestone MN Coordinates 44.000815°, -96.340445° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":44.000815,"lon":-96.340445,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

247

Wind Walkers | Open Energy Information  

Open Energy Info (EERE)

Walkers Walkers Jump to: navigation, search Name Wind Walkers Facility Wind Walkers Sector Wind energy Facility Type Commercial Scale Wind Facility Status In Service Owner 5045 Wind Partners Developer 5045 Wind Partners Energy Purchaser Alliant Energy Location Waukon IA Coordinates 43.2655101°, -91.4863848° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":43.2655101,"lon":-91.4863848,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

248

Michigan Wind II Wind Farm | Open Energy Information  

Open Energy Info (EERE)

Wind II Wind Farm Wind II Wind Farm Jump to: navigation, search Name Michigan Wind II Wind Farm Facility Michigan Wind II Wind Farm Sector Wind energy Facility Type Commercial Scale Wind Facility Status In Service Owner Exelon Wind Developer Exelon Wind Energy Purchaser Consumers Energy Location Minden City MI Coordinates 43.6572421°, -82.7681278° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":43.6572421,"lon":-82.7681278,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

249

Wind Energy Ordinances | Open Energy Information  

Open Energy Info (EERE)

Wind Energy Ordinances Wind Energy Ordinances Jump to: navigation, search Photo from First Wind, NREL 17545 Due to increasing energy demands in the United States and more installed wind projects, rural communities and local governments with limited or no experience with wind energy now have the opportunity to become involved in this industry. Communities with good wind resources may be approached by entities with plans to develop the resource. Although these opportunities can create new revenue in the form of construction jobs and land lease payments, they also create a new responsibility on the part of local governments to create ordinances to regulate wind turbine installations. Ordinances are laws, often found within municipal codes that provide various degrees of control to local governments. These laws cover issues

250

ABO Wind AG | Open Energy Information  

Open Energy Info (EERE)

ABO Wind AG Place Hessen, Germany Zip 65193 Sector Bioenergy, Wind energy Product German developer of wind and bioenergy generation assets. ABO Wind has no direct holding in any...

251

AeroWind Inc | Open Energy Information  

Open Energy Info (EERE)

Inc Jump to: navigation, search Name AeroWind Inc. Place Potsdam, New York Sector Wind energy Product Wind turbines manufacturer. References AeroWind Inc.1 LinkedIn...

252

Howden Wind Turbines Ltd | Open Energy Information  

Open Energy Info (EERE)

Howden Wind Turbines Ltd Jump to: navigation, search Name Howden Wind Turbines Ltd Place United Kingdom Sector Wind energy Product Howden was a manufacturer of wind turbines in the...

253

Vish Wind Infrastructure Ltd | Open Energy Information  

Open Energy Info (EERE)

Vish Wind Infrastructure Ltd Jump to: navigation, search Name Vish Wind Infrastructure Ltd Place India Sector Wind energy Product Plans to set up 4.6GW of wind power projects in...

254

Definition: Commercial Scale Wind | Open Energy Information  

Open Energy Info (EERE)

Scale Wind Commercial scale wind refers to wind energy projects greater than 100 kW. The electricity that is generated is sold.1 Also Known As Utility-Scale Wind Related Terms...

255

Cielo Wind Power LLC | Open Energy Information  

Open Energy Info (EERE)

Cielo Wind Power LLC Jump to: navigation, search Name Cielo Wind Power LLC Place Austin, Texas Zip 78701 2459 Sector Wind energy Product Currently the largest wind power developer...

256

Devon Wind Power Ltd | Open Energy Information  

Open Energy Info (EERE)

Devon Wind Power Ltd Jump to: navigation, search Name Devon Wind Power Ltd Place Exeter, United Kingdom Zip EX1 1TL Sector Wind energy Product Wind project developer - has proposed...

257

Wales Wind Energy Project | Open Energy Information  

Open Energy Info (EERE)

Wind Energy Project Wind Energy Project Jump to: navigation, search Name Wales Wind Energy Project Facility Wales Wind Energy Project Sector Wind energy Facility Type Small Scale Wind Facility Status In Service Owner Alaska Village Electric Coop Developer Kotzebue Electric Assoc. Energy Purchaser Alaska Village Electric Coop Location Wales AK Coordinates 65.6113°, -168.091° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":65.6113,"lon":-168.091,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

258

POWER4 Amstel Wind Energy | Open Energy Information  

Open Energy Info (EERE)

POWER4 Amstel Wind Energy Jump to: navigation, search Name POWER4 Amstel Wind Energy Place Bangalore, Karnataka, India Zip 560034 Sector Wind energy Product Bangalore-based wind...

259

Reassessing Wind Potential Estimates for India: Economic and Policy Implications  

E-Print Network (OSTI)

Assessment of Potential for Wind Farms in India, RenewableNetworks for Offshore Wind Farms, Bremen, Germany, 14-15Assessment of Potential for Wind Farms in India, Renewable

Phadke, Amol

2012-01-01T23:59:59.000Z

260

Bravo Wind | Open Energy Information  

Open Energy Info (EERE)

Wind Wind Jump to: navigation, search Name Bravo Wind Facility Bravo Wind Sector Wind energy Facility Type Commercial Scale Wind Facility Status Proposed Developer Bravo Wind LLC Location Cassia County ID Coordinates 42.460351°, -113.474564° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":42.460351,"lon":-113.474564,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

Note: This page contains sample records for the topic "wind energy potential" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


261

Gone with the Wind - The Potential Tragedy of the Common Wind  

E-Print Network (OSTI)

Encourage Utilization of Wind Energy Resources, 27 TiEMiP.supra note 44, at 92; Wind Energy, Ri--NEWABLE ENEzRGY PoL'yformerly named British Wind Energy Association), http://

Lifshitz-Goldberg, Yaei

2010-01-01T23:59:59.000Z

262

Potential for Development of Solar and Wind Resource in Bhutan  

DOE Green Energy (OSTI)

With support from the U.S. Agency for International Development (USAID), the U.S. Department of Energy's National Renewable Energy Laboratory (NREL) produced maps and data of the wind and solar resources in Bhutan. The solar resource data show that Bhutan has an adequate resource for flat-plate collectors, with annual average values of global horizontal solar radiation ranging from 4.0 to 5.5 kWh/m2-day (4.0 to 5.5 peak sun hours per day). The information provided in this report may be of use to energy planners in Bhutan involved in developing energy policy or planning wind and solar projects, and to energy analysts around the world interested in gaining an understanding of Bhutan's wind and solar energy potential.

Gilman, P.; Cowlin, S.; Heimiller, D.

2009-09-01T23:59:59.000Z

263

Wind Energy Resource Atlas of Armenia  

DOE Green Energy (OSTI)

This wind energy resource atlas identifies the wind characteristics and distribution of the wind resource in the country of Armenia. The detailed wind resource maps and other information contained in the atlas facilitate the identification of prospective areas for use of wind energy technologies for utility-scale power generation and off-grid wind energy applications. The maps portray the wind resource with high-resolution (1-km2) grids of wind power density at 50-m above ground. The wind maps were created at the National Renewable Energy Laboratory (NREL) using a computerized wind mapping system that uses Geographic Information System (GIS) software.

Elliott, D.; Schwartz, M.; Scott, G.; Haymes, S.; Heimiller, D.; George, R.

2003-07-01T23:59:59.000Z

264

Galactic Wind | Open Energy Information  

Open Energy Info (EERE)

Galactic Wind Galactic Wind Jump to: navigation, search Name Galactic Wind Facility Galactic Wind Sector Wind energy Facility Type Commercial Scale Wind Facility Status In Service Owner Epic Systems Developer Epic Systems Energy Purchaser Epic Systems Location Waunakee WI Coordinates 43.17297°, -89.560688° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":43.17297,"lon":-89.560688,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

265

Manzana Winds | Open Energy Information  

Open Energy Info (EERE)

Manzana Winds Manzana Winds Jump to: navigation, search Name Manzana Winds Facility Manzana Winds Sector Wind energy Facility Type Commercial Scale Wind Facility Status In Service Owner Iberdrola Renewables Developer Iberdrola Renewables Energy Purchaser San Diego Gas and Electric / City of Santa Clara Silicon Valley Power Location Mojave CA Coordinates 34.932662°, -118.46105° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":34.932662,"lon":-118.46105,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

266

Harbor Wind | Open Energy Information  

Open Energy Info (EERE)

Harbor Wind Harbor Wind Facility Harbor Wind Sector Wind energy Facility Type Commercial Scale Wind Facility Status In Service Owner Harbor Wind LLC Developer Revolution Energy Location Corpus Christi TX Coordinates 27.83061326°, -97.43418217° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":27.83061326,"lon":-97.43418217,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

267

Garnet Wind | Open Energy Information  

Open Energy Info (EERE)

Garnet Wind Garnet Wind Jump to: navigation, search Name Garnet Wind Facility Garnet Wind Sector Wind energy Facility Type Commercial Scale Wind Facility Status In Service Owner Azusa Light & Water Developer Azusa Light & Water Energy Purchaser Azusa Light & Water Location Palm Springs CA Coordinates 33.918267°, -116.701076° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":33.918267,"lon":-116.701076,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

268

Willmar Wind | Open Energy Information  

Open Energy Info (EERE)

Wind Wind Jump to: navigation, search Name Willmar Wind Facility Willmar Wind Sector Wind energy Facility Type Commercial Scale Wind Facility Status In Service Owner Willmar Municipal Utilities Developer Willmar Municipal Utilities Energy Purchaser Willmar Municipal Utilities Location Willmar MN Coordinates 45.158659°, -95.007498° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":45.158659,"lon":-95.007498,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

269

Technical Report - Cuba Wind Energy Resource Assessment  

Open Energy Info (EERE)

Cuba Wind Energy Resource Assessment (Abstract):This document describes the development of detailed high-resolution (1 km2) wind energy resource maps for...

270

Technical Report - China Wind Energy Resource Assessment  

Open Energy Info (EERE)

China Wind Energy Resource Assessment (Abstract):This document describes the development of detailed high-resolution (1 km2) wind energy resource maps for...

271

Technical Report - Ghana Wind Energy Resource Assessment  

Open Energy Info (EERE)

Ghana Wind Energy Resource Assessment (Abstract):This document describes the development of detailed high-resolution (1 km2) wind energy resource maps for...

272

WIND ENERGY PROGRAM - Home - Energy Innovation Portal  

Wind Energy Program Investment Philosophy Since the 80s, DOE has used cost-shared partnerships to work with businesses DOE partnership has encouraged development ...

273

EA-1903: Kansas State University Zond Wind Energy Project, Manhattan,  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

3: Kansas State University Zond Wind Energy Project, 3: Kansas State University Zond Wind Energy Project, Manhattan, Kansas EA-1903: Kansas State University Zond Wind Energy Project, Manhattan, Kansas SUMMARY This EA evaluates the potential environmental impacts of a proposal to use Congressional Directed funds to develop the Great Plains Wind Energy Consortium aimed at increasing the penetration of wind energy via distributed wind power generation throughout the region. PUBLIC COMMENT OPPORTUNITIES None available at this time. DOCUMENTS AVAILABLE FOR DOWNLOAD October 21, 2013 EA-1903: Notice of Extension Kansas State University Zond Wind Energy Project, Manhattan, Kansas September 11, 2013 EA-1903: Draft Environmental Assessment Kansas State University Zond Wind Energy Project, Manhattan, Kansas September 11, 2013

274

Bayonne Wind Energy Project | Open Energy Information  

Open Energy Info (EERE)

Bayonne Wind Energy Project Bayonne Wind Energy Project Jump to: navigation, search Name Bayonne Wind Energy Project Facility Bayonne Wind Energy Project Sector Wind energy Facility Type Community Wind Facility Status In Service Owner Bayonne Municipal Utility Authority Developer Bayonne Municipal Utility Authority Location Bayonne NJ Coordinates 40.65277771°, -74.11774993° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":40.65277771,"lon":-74.11774993,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

275

Dunlap Wind Energy Project | Open Energy Information  

Open Energy Info (EERE)

Dunlap Wind Energy Project Dunlap Wind Energy Project Jump to: navigation, search Name Dunlap Wind Energy Project Facility Dunlap Wind Energy Project Sector Wind energy Facility Type Commercial Scale Wind Facility Status In Service Owner PacifiCorp Developer PacifiCorp Location North of Medicine Bow in Carbon County WY Coordinates 42.013591°, -106.21419° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":42.013591,"lon":-106.21419,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

276

Offshore Wind Energy | Open Energy Information  

Open Energy Info (EERE)

Page Page Edit History Facebook icon Twitter icon » Offshore Wind Energy Jump to: navigation, search The Middelgrunden Wind Farm was established as a collaboration between Middelgrunden Wind Turbine Cooperative and Copenhagen Energy, each installing 10 2-MW Bonus wind turbines. The farm is located off the coast of Denmark, east of the northern tip of Amager. Photo from H.C. Sorensen, NREL 17856 Offshore wind energy is a clean, domestic, renewable resource that can help the United States meet its critical energy, environmental, and economic challenges. By generating electricity from offshore wind turbines, the nation can reduce its greenhouse gas emissions, diversify its energy supply, provide cost-competitive electricity to key coastal regions, and help revitalize key sectors of its economy, including manufacturing.

277

Havoco Wind Energy LLC | Open Energy Information  

Open Energy Info (EERE)

Havoco Wind Energy LLC Havoco Wind Energy LLC Jump to: navigation, search Name Havoco Wind Energy LLC Place Dallas, Texas Zip 75206 Sector Wind energy Product Wind developer of Altamont Pass wind farms. Subsidiary of G3 Energy, the Babcock and Brown subsidiary. Coordinates 32.778155°, -96.795404° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":32.778155,"lon":-96.795404,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

278

Federal Energy Management Program: Wind Energy Resources and Technologies  

NLE Websites -- All DOE Office Websites (Extended Search)

Wind Energy Wind Energy Resources and Technologies to someone by E-mail Share Federal Energy Management Program: Wind Energy Resources and Technologies on Facebook Tweet about Federal Energy Management Program: Wind Energy Resources and Technologies on Twitter Bookmark Federal Energy Management Program: Wind Energy Resources and Technologies on Google Bookmark Federal Energy Management Program: Wind Energy Resources and Technologies on Delicious Rank Federal Energy Management Program: Wind Energy Resources and Technologies on Digg Find More places to share Federal Energy Management Program: Wind Energy Resources and Technologies on AddThis.com... Energy-Efficient Products Technology Deployment Renewable Energy Federal Requirements Renewable Resources & Technologies Solar

279

Alaska/Wind Resources | Open Energy Information  

Open Energy Info (EERE)

Alaska/Wind Resources Alaska/Wind Resources < Alaska Jump to: navigation, search Print PDF Print Full Version WIND ENERGY STAKEHOLDER ENGAGEMENT & OUTREACHSmall Wind Guidebook Home OpenEI Home >> Wind >> Small Wind Guidebook >> Alaska Wind Resources WindTurbine-icon.png Small Wind Guidebook * Introduction * First, How Can I Make My Home More Energy Efficient? * Is Wind Energy Practical for Me? * What Size Wind Turbine Do I Need? * What Are the Basic Parts of a Small Wind Electric System? * What Do Wind Systems Cost? * Where Can I Find Installation and Maintenance Support? * How Much Energy Will My System Generate? * Is There Enough Wind on My Site? * How Do I Choose the Best Site for My Wind Turbine? * Can I Connect My System to the Utility Grid? * Can I Go Off-Grid?

280

Wyoming/Wind Resources | Open Energy Information  

Open Energy Info (EERE)

Wyoming/Wind Resources Wyoming/Wind Resources < Wyoming Jump to: navigation, search Print PDF Print Full Version WIND ENERGY STAKEHOLDER ENGAGEMENT & OUTREACHSmall Wind Guidebook Home OpenEI Home >> Wind >> Small Wind Guidebook >> Wyoming Wind Resources WindTurbine-icon.png Small Wind Guidebook * Introduction * First, How Can I Make My Home More Energy Efficient? * Is Wind Energy Practical for Me? * What Size Wind Turbine Do I Need? * What Are the Basic Parts of a Small Wind Electric System? * What Do Wind Systems Cost? * Where Can I Find Installation and Maintenance Support? * How Much Energy Will My System Generate? * Is There Enough Wind on My Site? * How Do I Choose the Best Site for My Wind Turbine? * Can I Connect My System to the Utility Grid? * Can I Go Off-Grid?

Note: This page contains sample records for the topic "wind energy potential" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


281

Nevada/Wind Resources | Open Energy Information  

Open Energy Info (EERE)

Nevada/Wind Resources Nevada/Wind Resources < Nevada Jump to: navigation, search Print PDF Print Full Version WIND ENERGY STAKEHOLDER ENGAGEMENT & OUTREACHSmall Wind Guidebook Home OpenEI Home >> Wind >> Small Wind Guidebook >> Nevada Wind Resources WindTurbine-icon.png Small Wind Guidebook * Introduction * First, How Can I Make My Home More Energy Efficient? * Is Wind Energy Practical for Me? * What Size Wind Turbine Do I Need? * What Are the Basic Parts of a Small Wind Electric System? * What Do Wind Systems Cost? * Where Can I Find Installation and Maintenance Support? * How Much Energy Will My System Generate? * Is There Enough Wind on My Site? * How Do I Choose the Best Site for My Wind Turbine? * Can I Connect My System to the Utility Grid? * Can I Go Off-Grid?

282

Kansas/Wind Resources | Open Energy Information  

Open Energy Info (EERE)

Kansas/Wind Resources Kansas/Wind Resources < Kansas Jump to: navigation, search Print PDF Print Full Version WIND ENERGY STAKEHOLDER ENGAGEMENT & OUTREACHSmall Wind Guidebook Home OpenEI Home >> Wind >> Small Wind Guidebook >> Kansas Wind Resources WindTurbine-icon.png Small Wind Guidebook * Introduction * First, How Can I Make My Home More Energy Efficient? * Is Wind Energy Practical for Me? * What Size Wind Turbine Do I Need? * What Are the Basic Parts of a Small Wind Electric System? * What Do Wind Systems Cost? * Where Can I Find Installation and Maintenance Support? * How Much Energy Will My System Generate? * Is There Enough Wind on My Site? * How Do I Choose the Best Site for My Wind Turbine? * Can I Connect My System to the Utility Grid? * Can I Go Off-Grid?

283

Nebraska/Wind Resources | Open Energy Information  

Open Energy Info (EERE)

Nebraska/Wind Resources Nebraska/Wind Resources < Nebraska Jump to: navigation, search Print PDF Print Full Version WIND ENERGY STAKEHOLDER ENGAGEMENT & OUTREACHSmall Wind Guidebook Home OpenEI Home >> Wind >> Small Wind Guidebook >> Nebraska Wind Resources WindTurbine-icon.png Small Wind Guidebook * Introduction * First, How Can I Make My Home More Energy Efficient? * Is Wind Energy Practical for Me? * What Size Wind Turbine Do I Need? * What Are the Basic Parts of a Small Wind Electric System? * What Do Wind Systems Cost? * Where Can I Find Installation and Maintenance Support? * How Much Energy Will My System Generate? * Is There Enough Wind on My Site? * How Do I Choose the Best Site for My Wind Turbine? * Can I Connect My System to the Utility Grid? * Can I Go Off-Grid?

284

Alabama/Wind Resources | Open Energy Information  

Open Energy Info (EERE)

Alabama/Wind Resources Alabama/Wind Resources < Alabama Jump to: navigation, search Print PDF Print Full Version WIND ENERGY STAKEHOLDER ENGAGEMENT & OUTREACHSmall Wind Guidebook Home OpenEI Home >> Wind >> Small Wind Guidebook >> Alabama Wind Resources WindTurbine-icon.png Small Wind Guidebook * Introduction * First, How Can I Make My Home More Energy Efficient? * Is Wind Energy Practical for Me? * What Size Wind Turbine Do I Need? * What Are the Basic Parts of a Small Wind Electric System? * What Do Wind Systems Cost? * Where Can I Find Installation and Maintenance Support? * How Much Energy Will My System Generate? * Is There Enough Wind on My Site? * How Do I Choose the Best Site for My Wind Turbine? * Can I Connect My System to the Utility Grid? * Can I Go Off-Grid?

285

Florida/Wind Resources | Open Energy Information  

Open Energy Info (EERE)

Florida/Wind Resources Florida/Wind Resources < Florida Jump to: navigation, search Print PDF Print Full Version WIND ENERGY STAKEHOLDER ENGAGEMENT & OUTREACHSmall Wind Guidebook Home OpenEI Home >> Wind >> Small Wind Guidebook >> Florida Wind Resources WindTurbine-icon.png Small Wind Guidebook * Introduction * First, How Can I Make My Home More Energy Efficient? * Is Wind Energy Practical for Me? * What Size Wind Turbine Do I Need? * What Are the Basic Parts of a Small Wind Electric System? * What Do Wind Systems Cost? * Where Can I Find Installation and Maintenance Support? * How Much Energy Will My System Generate? * Is There Enough Wind on My Site? * How Do I Choose the Best Site for My Wind Turbine? * Can I Connect My System to the Utility Grid? * Can I Go Off-Grid?

286

Vermont/Wind Resources | Open Energy Information  

Open Energy Info (EERE)

Vermont/Wind Resources Vermont/Wind Resources < Vermont Jump to: navigation, search Print PDF Print Full Version WIND ENERGY STAKEHOLDER ENGAGEMENT & OUTREACHSmall Wind Guidebook Home OpenEI Home >> Wind >> Small Wind Guidebook >> Vermont Wind Resources WindTurbine-icon.png Small Wind Guidebook * Introduction * First, How Can I Make My Home More Energy Efficient? * Is Wind Energy Practical for Me? * What Size Wind Turbine Do I Need? * What Are the Basic Parts of a Small Wind Electric System? * What Do Wind Systems Cost? * Where Can I Find Installation and Maintenance Support? * How Much Energy Will My System Generate? * Is There Enough Wind on My Site? * How Do I Choose the Best Site for My Wind Turbine? * Can I Connect My System to the Utility Grid? * Can I Go Off-Grid?

287

Wisconsin/Wind Resources | Open Energy Information  

Open Energy Info (EERE)

Wisconsin/Wind Resources Wisconsin/Wind Resources < Wisconsin Jump to: navigation, search Print PDF Print Full Version WIND ENERGY STAKEHOLDER ENGAGEMENT & OUTREACHSmall Wind Guidebook Home OpenEI Home >> Wind >> Small Wind Guidebook >> Wisconsin Wind Resources WindTurbine-icon.png Small Wind Guidebook * Introduction * First, How Can I Make My Home More Energy Efficient? * Is Wind Energy Practical for Me? * What Size Wind Turbine Do I Need? * What Are the Basic Parts of a Small Wind Electric System? * What Do Wind Systems Cost? * Where Can I Find Installation and Maintenance Support? * How Much Energy Will My System Generate? * Is There Enough Wind on My Site? * How Do I Choose the Best Site for My Wind Turbine? * Can I Connect My System to the Utility Grid? * Can I Go Off-Grid?

288

Idaho/Wind Resources | Open Energy Information  

Open Energy Info (EERE)

Idaho/Wind Resources Idaho/Wind Resources < Idaho Jump to: navigation, search Print PDF Print Full Version WIND ENERGY STAKEHOLDER ENGAGEMENT & OUTREACHSmall Wind Guidebook Home OpenEI Home >> Wind >> Small Wind Guidebook >> Idaho Wind Resources WindTurbine-icon.png Small Wind Guidebook * Introduction * First, How Can I Make My Home More Energy Efficient? * Is Wind Energy Practical for Me? * What Size Wind Turbine Do I Need? * What Are the Basic Parts of a Small Wind Electric System? * What Do Wind Systems Cost? * Where Can I Find Installation and Maintenance Support? * How Much Energy Will My System Generate? * Is There Enough Wind on My Site? * How Do I Choose the Best Site for My Wind Turbine? * Can I Connect My System to the Utility Grid? * Can I Go Off-Grid?

289

Missouri/Wind Resources | Open Energy Information  

Open Energy Info (EERE)

Missouri/Wind Resources Missouri/Wind Resources < Missouri Jump to: navigation, search Print PDF Print Full Version WIND ENERGY STAKEHOLDER ENGAGEMENT & OUTREACHSmall Wind Guidebook Home OpenEI Home >> Wind >> Small Wind Guidebook >> Missouri Wind Resources WindTurbine-icon.png Small Wind Guidebook * Introduction * First, How Can I Make My Home More Energy Efficient? * Is Wind Energy Practical for Me? * What Size Wind Turbine Do I Need? * What Are the Basic Parts of a Small Wind Electric System? * What Do Wind Systems Cost? * Where Can I Find Installation and Maintenance Support? * How Much Energy Will My System Generate? * Is There Enough Wind on My Site? * How Do I Choose the Best Site for My Wind Turbine? * Can I Connect My System to the Utility Grid? * Can I Go Off-Grid?

290

Iowa/Wind Resources | Open Energy Information  

Open Energy Info (EERE)

Iowa/Wind Resources Iowa/Wind Resources < Iowa Jump to: navigation, search Print PDF Print Full Version WIND ENERGY STAKEHOLDER ENGAGEMENT & OUTREACHSmall Wind Guidebook Home OpenEI Home >> Wind >> Small Wind Guidebook >> Iowa Wind Resources WindTurbine-icon.png Small Wind Guidebook * Introduction * First, How Can I Make My Home More Energy Efficient? * Is Wind Energy Practical for Me? * What Size Wind Turbine Do I Need? * What Are the Basic Parts of a Small Wind Electric System? * What Do Wind Systems Cost? * Where Can I Find Installation and Maintenance Support? * How Much Energy Will My System Generate? * Is There Enough Wind on My Site? * How Do I Choose the Best Site for My Wind Turbine? * Can I Connect My System to the Utility Grid? * Can I Go Off-Grid?

291

Maryland/Wind Resources | Open Energy Information  

Open Energy Info (EERE)

Maryland/Wind Resources Maryland/Wind Resources < Maryland Jump to: navigation, search Print PDF Print Full Version WIND ENERGY STAKEHOLDER ENGAGEMENT & OUTREACHSmall Wind Guidebook Home OpenEI Home >> Wind >> Small Wind Guidebook >> Maryland Wind Resources WindTurbine-icon.png Small Wind Guidebook * Introduction * First, How Can I Make My Home More Energy Efficient? * Is Wind Energy Practical for Me? * What Size Wind Turbine Do I Need? * What Are the Basic Parts of a Small Wind Electric System? * What Do Wind Systems Cost? * Where Can I Find Installation and Maintenance Support? * How Much Energy Will My System Generate? * Is There Enough Wind on My Site? * How Do I Choose the Best Site for My Wind Turbine? * Can I Connect My System to the Utility Grid? * Can I Go Off-Grid?

292

Massachusetts/Wind Resources | Open Energy Information  

Open Energy Info (EERE)

Massachusetts/Wind Resources Massachusetts/Wind Resources < Massachusetts Jump to: navigation, search Print PDF Print Full Version WIND ENERGY STAKEHOLDER ENGAGEMENT & OUTREACHSmall Wind Guidebook Home OpenEI Home >> Wind >> Small Wind Guidebook >> Massachusetts Wind Resources WindTurbine-icon.png Small Wind Guidebook * Introduction * First, How Can I Make My Home More Energy Efficient? * Is Wind Energy Practical for Me? * What Size Wind Turbine Do I Need? * What Are the Basic Parts of a Small Wind Electric System? * What Do Wind Systems Cost? * Where Can I Find Installation and Maintenance Support? * How Much Energy Will My System Generate? * Is There Enough Wind on My Site? * How Do I Choose the Best Site for My Wind Turbine? * Can I Connect My System to the Utility Grid?

293

Minnesota/Wind Resources | Open Energy Information  

Open Energy Info (EERE)

Minnesota/Wind Resources Minnesota/Wind Resources < Minnesota Jump to: navigation, search Print PDF Print Full Version WIND ENERGY STAKEHOLDER ENGAGEMENT & OUTREACHSmall Wind Guidebook Home OpenEI Home >> Wind >> Small Wind Guidebook >> Minnesota Wind Resources WindTurbine-icon.png Small Wind Guidebook * Introduction * First, How Can I Make My Home More Energy Efficient? * Is Wind Energy Practical for Me? * What Size Wind Turbine Do I Need? * What Are the Basic Parts of a Small Wind Electric System? * What Do Wind Systems Cost? * Where Can I Find Installation and Maintenance Support? * How Much Energy Will My System Generate? * Is There Enough Wind on My Site? * How Do I Choose the Best Site for My Wind Turbine? * Can I Connect My System to the Utility Grid? * Can I Go Off-Grid?

294

Pennsylvania/Wind Resources | Open Energy Information  

Open Energy Info (EERE)

Pennsylvania/Wind Resources Pennsylvania/Wind Resources < Pennsylvania Jump to: navigation, search Print PDF Print Full Version WIND ENERGY STAKEHOLDER ENGAGEMENT & OUTREACHSmall Wind Guidebook Home OpenEI Home >> Wind >> Small Wind Guidebook >> Pennsylvania Wind Resources WindTurbine-icon.png Small Wind Guidebook * Introduction * First, How Can I Make My Home More Energy Efficient? * Is Wind Energy Practical for Me? * What Size Wind Turbine Do I Need? * What Are the Basic Parts of a Small Wind Electric System? * What Do Wind Systems Cost? * Where Can I Find Installation and Maintenance Support? * How Much Energy Will My System Generate? * Is There Enough Wind on My Site? * How Do I Choose the Best Site for My Wind Turbine? * Can I Connect My System to the Utility Grid?

295

Hawaii/Wind Resources | Open Energy Information  

Open Energy Info (EERE)

Hawaii/Wind Resources Hawaii/Wind Resources < Hawaii Jump to: navigation, search Print PDF Print Full Version WIND ENERGY STAKEHOLDER ENGAGEMENT & OUTREACHSmall Wind Guidebook Home OpenEI Home >> Wind >> Small Wind Guidebook >> Hawaii Wind Resources WindTurbine-icon.png Small Wind Guidebook * Introduction * First, How Can I Make My Home More Energy Efficient? * Is Wind Energy Practical for Me? * What Size Wind Turbine Do I Need? * What Are the Basic Parts of a Small Wind Electric System? * What Do Wind Systems Cost? * Where Can I Find Installation and Maintenance Support? * How Much Energy Will My System Generate? * Is There Enough Wind on My Site? * How Do I Choose the Best Site for My Wind Turbine? * Can I Connect My System to the Utility Grid? * Can I Go Off-Grid?

296

Washington/Wind Resources | Open Energy Information  

Open Energy Info (EERE)

Washington/Wind Resources Washington/Wind Resources < Washington Jump to: navigation, search Print PDF Print Full Version WIND ENERGY STAKEHOLDER ENGAGEMENT & OUTREACHSmall Wind Guidebook Home OpenEI Home >> Wind >> Small Wind Guidebook >> Washington Wind Resources WindTurbine-icon.png Small Wind Guidebook * Introduction * First, How Can I Make My Home More Energy Efficient? * Is Wind Energy Practical for Me? * What Size Wind Turbine Do I Need? * What Are the Basic Parts of a Small Wind Electric System? * What Do Wind Systems Cost? * Where Can I Find Installation and Maintenance Support? * How Much Energy Will My System Generate? * Is There Enough Wind on My Site? * How Do I Choose the Best Site for My Wind Turbine? * Can I Connect My System to the Utility Grid?

297

Louisiana/Wind Resources | Open Energy Information  

Open Energy Info (EERE)

Louisiana/Wind Resources Louisiana/Wind Resources < Louisiana Jump to: navigation, search Print PDF Print Full Version WIND ENERGY STAKEHOLDER ENGAGEMENT & OUTREACHSmall Wind Guidebook Home OpenEI Home >> Wind >> Small Wind Guidebook >> Louisiana Wind Resources WindTurbine-icon.png Small Wind Guidebook * Introduction * First, How Can I Make My Home More Energy Efficient? * Is Wind Energy Practical for Me? * What Size Wind Turbine Do I Need? * What Are the Basic Parts of a Small Wind Electric System? * What Do Wind Systems Cost? * Where Can I Find Installation and Maintenance Support? * How Much Energy Will My System Generate? * Is There Enough Wind on My Site? * How Do I Choose the Best Site for My Wind Turbine? * Can I Connect My System to the Utility Grid? * Can I Go Off-Grid?

298

Oregon/Wind Resources | Open Energy Information  

Open Energy Info (EERE)

Oregon/Wind Resources Oregon/Wind Resources < Oregon Jump to: navigation, search Print PDF Print Full Version WIND ENERGY STAKEHOLDER ENGAGEMENT & OUTREACHSmall Wind Guidebook Home OpenEI Home >> Wind >> Small Wind Guidebook >> Oregon Wind Resources WindTurbine-icon.png Small Wind Guidebook * Introduction * First, How Can I Make My Home More Energy Efficient? * Is Wind Energy Practical for Me? * What Size Wind Turbine Do I Need? * What Are the Basic Parts of a Small Wind Electric System? * What Do Wind Systems Cost? * Where Can I Find Installation and Maintenance Support? * How Much Energy Will My System Generate? * Is There Enough Wind on My Site? * How Do I Choose the Best Site for My Wind Turbine? * Can I Connect My System to the Utility Grid? * Can I Go Off-Grid?

299

Kentucky/Wind Resources | Open Energy Information  

Open Energy Info (EERE)

Kentucky/Wind Resources Kentucky/Wind Resources < Kentucky Jump to: navigation, search Print PDF Print Full Version WIND ENERGY STAKEHOLDER ENGAGEMENT & OUTREACHSmall Wind Guidebook Home OpenEI Home >> Wind >> Small Wind Guidebook >> Kentucky Wind Resources WindTurbine-icon.png Small Wind Guidebook * Introduction * First, How Can I Make My Home More Energy Efficient? * Is Wind Energy Practical for Me? * What Size Wind Turbine Do I Need? * What Are the Basic Parts of a Small Wind Electric System? * What Do Wind Systems Cost? * Where Can I Find Installation and Maintenance Support? * How Much Energy Will My System Generate? * Is There Enough Wind on My Site? * How Do I Choose the Best Site for My Wind Turbine? * Can I Connect My System to the Utility Grid? * Can I Go Off-Grid?

300

Wind Energy Resource Atlas of Oaxaca  

DOE Green Energy (OSTI)

The Oaxaca Wind Resource Atlas, produced by the National Renewable Energy Laboratory's (NREL's) wind resource group, is the result of an extensive mapping study for the Mexican State of Oaxaca. This atlas identifies the wind characteristics and distribution of the wind resource in Oaxaca. The detailed wind resource maps and other information contained in the atlas facilitate the identification of prospective areas for use of wind energy technologies, both for utility-scale power generation and off-grid wind energy applications.

Elliott, D.; Schwartz, M.; Scott, G.; Haymes, S.; Heimiller, D.; George, R.

2003-08-01T23:59:59.000Z

Note: This page contains sample records for the topic "wind energy potential" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


301

Weatherford Wind Energy Center | Open Energy Information  

Open Energy Info (EERE)

Weatherford Wind Energy Center Weatherford Wind Energy Center Facility Weatherford Wind Energy Center Sector Wind energy Facility Type Commercial Scale Wind Facility Status In Service Owner NextEra Energy Resources Developer NextEra Energy Resources Energy Purchaser American Electric Power Location Weatherford OK Coordinates 35.559414°, -98.742992° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":35.559414,"lon":-98.742992,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

302

Minco Wind Energy Center | Open Energy Information  

Open Energy Info (EERE)

Wind Energy Center Wind Energy Center Facility Minco Wind Energy Center Sector Wind energy Facility Type Commercial Scale Wind Facility Status In Service Owner NextEra Energy Resources Developer NextEra Energy Resources Energy Purchaser Public Service Company of Oklahoma Location South of Minco OK Coordinates 35.294204°, -97.926081° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":35.294204,"lon":-97.926081,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

303

Oliver Wind Energy Center | Open Energy Information  

Open Energy Info (EERE)

Wind Energy Center Wind Energy Center Facility Oliver Wind Energy Center Sector Wind energy Facility Type Commercial Scale Wind Facility Status In Service Owner NextEra Energy Resources Developer NextEra Energy Resources Energy Purchaser Minnesota Power Location Oliver County ND Coordinates 47.180446°, -101.225116° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":47.180446,"lon":-101.225116,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

304

Mogul Energy Wind Farm | Open Energy Information  

Open Energy Info (EERE)

Mogul Energy Wind Farm Mogul Energy Wind Farm Jump to: navigation, search Name Mogul Energy Wind Farm Facility Mogul Energy Sector Wind energy Facility Type Commercial Scale Wind Facility Status In Service Developer Mogul Energy Energy Purchaser Southern California Edison Co Location Tehachapi CA Coordinates 35.07665°, -118.25529° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":35.07665,"lon":-118.25529,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

305

Rhaglen Ynni Gwynt Wind Energy Programme  

E-Print Network (OSTI)

Rhaglen Ynni Gwynt Wind Energy Programme 1 WEP Internet Calculations Explained | 20/02/2013 Calculations supporting indicative figures used for the Wind Energy Programme Wind Energy (page) "The energy.2 Therefore 4.5kWh/d/p = approximately 160 cups of tea per day per person. Wind Energy Programme (page

306

Siting Handbook WIND ENERGY SITING HANDBOOK  

E-Print Network (OSTI)

This Wind Energy Siting Handbook (the "Handbook") presents general information about regulatory and environmental issues associated with the development and siting of wind energy projects in the United States. It is intended to be a general guidance document providing technical information and tools for identifying potential issues that may arise with wind energy projects. The Handbook contains links to resources on the Internet. Those links are provided solely as aids to assist you in locating other Internet resources that may be of interest. They are not intended to state or imply that AWEA or the Contributors endorse, approve, sponsor, or are affiliated or associated with those linked sites. The Handbook is not intended as a comprehensive discussion of all wind energy project issues and should be used in conjunction with other available resources. The Handbook also is not intended as legal or environmental advice or as a best practices manual, nor should it be considered as such. Because the Handbook is only a general guidance document, independent legal counsel and/or environmental consulting services should be obtained to further explore any wind energy siting issue, matter, or project. In reviewing all or any part of the Handbook, you acknowledge and understand that the Handbook is only a general guidance document and does not constitute a best practices manual, legal or environmental advice, or a legal or other relationship with the American Wind Energy Association ("AWEA") or any of the persons or entities

unknown authors

2008-01-01T23:59:59.000Z

307

European Wind Atlas: France | Open Energy Information  

Open Energy Info (EERE)

European Wind Atlas: France European Wind Atlas: France Jump to: navigation, search Tool Summary LAUNCH TOOL Name: European Wind Atlas: France Focus Area: Renewable Energy Topics: Potentials & Scenarios Website: 130.226.17.201/extra/web_docs/windmaps/france.jpg Equivalent URI: cleanenergysolutions.org/content/european-wind-atlas-france,http://cle Language: English Policies: Deployment Programs DeploymentPrograms: Technical Assistance This wind resource map shows resources at 50 meters above ground level for four different topographic conditions, including sheltered terrain, open plain, coastal and hills and ridges. The greatest resources appear to be near the Mediterranean Sea coast, and the second greatest resources are near the English Channel and northern Atlantic coast.

308

Wind Energy & Manufacturing | Open Energy Information  

Open Energy Info (EERE)

Wind Energy & Manufacturing Wind Energy & Manufacturing Jump to: navigation, search Blades manufactured at Gamesa's factory in Ebensburg, Pennsylvania, await delivery for development of wind farms across the country in the United States. Photo from Gamesa, NREL 16001 Wind power creates new high-paying jobs in a wide variety of industries. This includes direct jobs installing, operating, and maintaining wind turbines, as well as jobs at manufacturing facilities that produce wind turbines, blades, electronic components, gearboxes, generators, towers, and other equipment. Indirect jobs in the industries that support these activities are also created.[1] In 2012, 72% of the wind turbine equipment (including towers, blades, and gears) installed in the United States during the year was made in

309

Wind Easements | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Wind Easements Wind Easements Wind Easements < Back Eligibility Agricultural Fed. Government Institutional Local Government Nonprofit Residential Schools State Government Tribal Government Savings Category Wind Buying & Making Electricity Program Info State South Dakota Program Type Solar/Wind Access Policy Provider S.D. Energy Management Office Any South Dakota property owner may grant a wind easement with the same effect as a conveyance of an interest in real property. Easements must be established in writing, and must be filed, recorded and indexed in the office of the register of deeds of the county in which they are granted. The maximum term of an easement is 50 years. Any payments associated with an easement must be made on an annual basis to the owner of the real property. An easement must include the following information:

310

Royal Wind | Open Energy Information  

Open Energy Info (EERE)

Wind Wind Jump to: navigation, search Name Royal Wind Place Denver, Colorado Sector Wind energy Product Vertical Wind Turbines Year founded 2008 Website http://www.RoyalWindTurbines.c Coordinates 39.7391536°, -104.9847034° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":39.7391536,"lon":-104.9847034,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

311

Altech Energy Wind Farm | Open Energy Information  

Open Energy Info (EERE)

Altech Energy Wind Farm Altech Energy Wind Farm Jump to: navigation, search Name Altech Energy Wind Farm Facility Altech Energy Ltd Sector Wind energy Facility Type Commercial Scale Wind Facility Status In Service Owner SeaWest Developer SeaWest Energy Purchaser Pacific Gas & Electric Co Location Altamont Pass CA Coordinates 37.7347°, -121.652° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":37.7347,"lon":-121.652,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

312

Aleutian Pribilof Islands Wind Energy Feasibility Study  

DOE Green Energy (OSTI)

Under this project, the Aleutian Pribilof Islands Association (APIA) conducted wind feasibility studies for Adak, False Pass, Nikolski, Sand Point and St. George. The DOE funds were also be used to continue APIA's role as project coordinator, to expand the communication network quality between all participants and with other wind interest groups in the state and to provide continued education and training opportunities for regional participants. This DOE project began 09/01/2005. We completed the economic and technical feasibility studies for Adak. These were funded by the Alaska Energy Authority. Both wind and hydro appear to be viable renewable energy options for Adak. In False Pass the wind resource is generally good but the site has high turbulence. This would require special care with turbine selection and operations. False Pass may be more suitable for a tidal project. APIA is funded to complete a False Pass tidal feasibility study in 2012. Nikolski has superb potential for wind power development with Class 7 wind power density, moderate wind shear, bi-directional winds and low turbulence. APIA secured nearly $1M from the United States Department of Agriculture Rural Utilities Service Assistance to Rural Communities with Extremely High Energy Costs to install a 65kW wind turbine. The measured average power density and wind speed at Sand Point measured at 20m (66ft), are 424 W/m2 and 6.7 m/s (14.9 mph) respectively. Two 500kW Vestas turbines were installed and when fully integrated in 2012 are expected to provide a cost effective and clean source of electricity, reduce overall diesel fuel consumption estimated at 130,000 gallons/year and decrease air emissions associated with the consumption of diesel fuel. St. George Island has a Class 7 wind resource, which is superior for wind power development. The current strategy, led by Alaska Energy Authority, is to upgrade the St. George electrical distribution system and power plant. Avian studies in Nikolski and Sand Point have allowed for proper wind turbine siting without killing birds, especially endangered species and bald eagles. APIA continues coordinating and looking for funding opportunities for regional renewable energy projects. An important goal for APIA has been, and will continue to be, to involve community members with renewable energy projects and energy conservation efforts.

Bruce A. Wright

2012-03-27T23:59:59.000Z

313

Michigan Wind I Wind Farm | Open Energy Information  

Open Energy Info (EERE)

Wind I Wind Farm Wind I Wind Farm Jump to: navigation, search Name Michigan Wind I Wind Farm Facility Michigan Wind I Sector Wind energy Facility Type Commercial Scale Wind Facility Status In Service Owner John Deere Wind Developer Noble Environmental Power Energy Purchaser Consumers Energy Location Huron County MI Coordinates 43.7099°, -82.9388° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":43.7099,"lon":-82.9388,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

314

Impact of Electric Industry Structure on High Wind Penetration Potential  

DOE Green Energy (OSTI)

This paper attempts to evaluate which balancing area (BA) characteristics best accommodate wind energy.

Milligan, M.; Kirby, B.; Gramlich, R.; Goggin, M.

2009-07-01T23:59:59.000Z

315

Stateline Wind Energy Project | Open Energy Information  

Open Energy Info (EERE)

Energy Project Energy Project Jump to: navigation, search Name Stateline Wind Energy Project Facility Stateline Wind Energy Project Sector Wind energy Facility Type Commercial Scale Wind Facility Status In Service Owner NextEra Energy Resources Developer NextEra Energy Resources Energy Purchaser PPM Energy Inc Location Walla Walla County Coordinates 46.012769°, -118.751528° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":46.012769,"lon":-118.751528,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

316

Montana/Wind Resources | Open Energy Information  

Open Energy Info (EERE)

Page Page Edit History Facebook icon Twitter icon » Montana/Wind Resources < Montana Jump to: navigation, search Print PDF Print Full Version WIND ENERGY STAKEHOLDER ENGAGEMENT & OUTREACHSmall Wind Guidebook Home OpenEI Home >> Wind >> Small Wind Guidebook >> Montana Wind Resources WindTurbine-icon.png Small Wind Guidebook * Introduction * First, How Can I Make My Home More Energy Efficient? * Is Wind Energy Practical for Me? * What Size Wind Turbine Do I Need? * What Are the Basic Parts of a Small Wind Electric System? * What Do Wind Systems Cost? * Where Can I Find Installation and Maintenance Support? * How Much Energy Will My System Generate? * Is There Enough Wind on My Site? * How Do I Choose the Best Site for My Wind Turbine? * Can I Connect My System to the Utility Grid?

317

Ohio/Wind Resources | Open Energy Information  

Open Energy Info (EERE)

Page Page Edit History Facebook icon Twitter icon » Ohio/Wind Resources < Ohio Jump to: navigation, search Print PDF Print Full Version WIND ENERGY STAKEHOLDER ENGAGEMENT & OUTREACHSmall Wind Guidebook Home OpenEI Home >> Wind >> Small Wind Guidebook >> Ohio Wind Resources WindTurbine-icon.png Small Wind Guidebook * Introduction * First, How Can I Make My Home More Energy Efficient? * Is Wind Energy Practical for Me? * What Size Wind Turbine Do I Need? * What Are the Basic Parts of a Small Wind Electric System? * What Do Wind Systems Cost? * Where Can I Find Installation and Maintenance Support? * How Much Energy Will My System Generate? * Is There Enough Wind on My Site? * How Do I Choose the Best Site for My Wind Turbine? * Can I Connect My System to the Utility Grid?

318

Small Wind Guidebook | Open Energy Information  

Open Energy Info (EERE)

Small Wind Guidebook Small Wind Guidebook Jump to: navigation, search Print PDF Print Full Version WIND ENERGY STAKEHOLDER ENGAGEMENT & OUTREACHSmall Wind Guidebook Home OpenEI Home >> Wind >> Small Wind Guidebook WindTurbine-icon.png Small Wind Guidebook * Introduction * First, How Can I Make My Home More Energy Efficient? * Is Wind Energy Practical for Me? * What Size Wind Turbine Do I Need? * What Are the Basic Parts of a Small Wind Electric System? * What Do Wind Systems Cost? * Where Can I Find Installation and Maintenance Support? * How Much Energy Will My System Generate? * Is There Enough Wind on My Site? * How Do I Choose the Best Site for My Wind Turbine? * Can I Connect My System to the Utility Grid? * Can I Go Off-Grid? * State Information Portal * Glossary of Terms

319

Gone with the Wind - The Potential Tragedy of the Common Wind  

E-Print Network (OSTI)

42 In fact, the price of wind energy is decreas- ing at aprice of wind en- ergy is competitive with other forms of energyother energy production technologies: 43 the price for wind

Lifshitz-Goldberg, Yaei

2010-01-01T23:59:59.000Z

320

Lime Wind | Open Energy Information  

Open Energy Info (EERE)

Lime Wind Lime Wind Facility Lime Wind Sector Wind energy Facility Type Commercial Scale Wind Facility Status In Service Owner Joseph Millworks Inc Developer Joseph Millworks Inc Energy Purchaser Idaho Power Location Huntington OR Coordinates 44.406667°, -117.310278° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":44.406667,"lon":-117.310278,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

Note: This page contains sample records for the topic "wind energy potential" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


321

Pacific Wind | Open Energy Information  

Open Energy Info (EERE)

Wind Wind Facility Pacific Wind Sector Wind energy Facility Type Commercial Scale Wind Facility Status In Service Owner enXco Developer EnXco Energy Purchaser San Diego Gas & Electric Location Rosamond CA Coordinates 34.94448806°, -118.3886719° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":34.94448806,"lon":-118.3886719,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

322

BP Wind | Open Energy Information  

Open Energy Info (EERE)

Wind Wind Jump to: navigation, search Name BP Wind Place Houston, Texas Zip 77002-2700 Sector Wind energy Product Department of BP Alternative Energy that deals with BP's interest in wind power. Coordinates 29.76045°, -95.369784° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":29.76045,"lon":-95.369784,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

323

Energy from Offshore Wind: Preprint  

DOE Green Energy (OSTI)

This paper provides an overview of the nascent offshore wind energy industry including a status of the commercial offshore industry and the technologies that will be needed for full market development.

Musial, W.; Butterfield, S.; Ram, B.

2006-02-01T23:59:59.000Z

324

Wind energy systems: program summary  

Science Conference Proceedings (OSTI)

The Federal Wind Energy Program (FWEP) was initiated to provide focus, direction and funds for the development of wind power. Each year a summary is prepared to provide the American public with an overview of government sponsored activities in the FWEP. This program summary describes each of the Department of Energy's (DOE) current wind energy projects initiated or renewed during FY 1979 (October 1, 1978 through September 30, 1979) and reflects their status as of April 30, 1980. The summary highlights on-going research, development and demonstration efforts and serves as a record of progress towards the program objectives. It also provides: the program's general management structure; review of last year's achievements; forecast of expected future trends; documentation of the projects conducted during FY 1979; and list of key wind energy publications.

None

1980-05-01T23:59:59.000Z

325

Wind Energy Resource Assessment of the Caribbean and Central America  

DOE Green Energy (OSTI)

A wind energy resource assessment of the Caribbean and Central America has identified many areas with good to outstanding wind resource potential for wind turbine applications. Annual average wind resource maps and summary tables have been developed for 35 island/country areas throughout the Caribbean and Central America region. The wind resource maps highlight the locations of major resource areas and provide estimates of the wind energy resource potential for typical well-exposed sites in these areas. The average energy in the wind flowing in the layer near the ground is expressed as a wind power class: the greater the average wind energy, the higher the wind power class. The summary tables that are included with each of the 35 island/country wind energy maps provide information on the frequency distribution of the wind speeds (expressed as estimates of the Weibull shape factor, k) and seasonal variations in the wind resource for the major wind resource areas identified on the maps. A new wind power class legend has been developed for relating the wind power classes to values of mean wind power density, mean wind speed, and Weibull k. Guidelines are presented on how to adjust these values to various heights above ground for different roughness and terrain characteristics. Information evaluated in preparing the assessment included existing meteorological data from airports and other weather stations, and from ships and buoys in offshore and coastal areas. In addition, new data from recent measurement sites established for wind energy siting studies were obtained for a few areas of the Caribbean. Other types of information evaluated in the assessment were climatological data and maps on winds aloft, surface pressure, air flow, and topography. The various data were screened and evaluated for their usefulness in preparing the wind resource assessment. Much of the surface data from airports and other land-based weather stations were determined to be from sheltered sites and were thus not very useful in assessing the wind resource at locations that are well exposed to the winds. Ship data were determined to be the most useful for estimating the large-scale wind flow and assessing the spatial distribution of the wind resource throughout the region. Techniques were developed for analyzing and correcting ship wind data and extrapolating these data to coastal and inland areas by considering terrain influences on the large-scale wind flow. In areas where extrapolation of ship wind data was not entirely feasible, such as interior areas of Central America, other techniques were developed for estimating the wind flow and distribution of the wind resource. Through the application of the various innovative techniques developed for assessing the wind resource throughout the Caribbean and Central America region, many areas with potentially good to outstanding wind resource were identified that had not been previously recognized. In areas where existing site data were available from exposed locations, the measured wind resource was compared with the estimated wind resource that was derived using the assessment techniques. In most cases, there was good agreement between the measured wind resource and the estimated wind resource. This assessment project supported activities being pursued by the U.S. Committee for Renewable Energy Commerce and Trade (CORECT), the U.S. government's interagency program to assist in overseas marketing and promote renewable energy exports. An overall goal of the program is to improve U.S. competitiveness in the world renewable energy market. The Caribbean and Central America assessment, which is the first of several possible follow-on international wind energy resource assessments, provides valuable information needed by the U.S. wind energy industry to identify suitable wind resource areas and concentrate their efforts on these areas.

DL Elliott; CI Aspliden; GL Gower; CG Holladay, MN Schwartz

1987-04-01T23:59:59.000Z

326

New England Wind Forum: New England Wind Energy Education Project  

Wind Powering America (EERE)

Webinars Webinars Conference Historic Wind Development in New England State Activities Projects in New England Building Wind Energy in New England Newsletter Perspectives Events Quick Links to States CT MA ME NH RI VT Bookmark and Share New England Wind Energy Education Project The New England Wind Energy Education Project (NEWEEP) is designed to complement the New England Wind Forum website and newsletter as a comprehensive source of objective information on wind energy issues in the New England region. The project, funded by the U.S. Department of Energy's (DOE's) former Wind Powering America Initiative under a 2-year grant, began as an eight-part webinar series and a conference. The NEWEEP webinar series provides the public with objective information to allow informed decisions about proposed wind energy projects throughout the New England region.

327

Vantage Wind Energy Center | Open Energy Information  

Open Energy Info (EERE)

Vantage Wind Energy Center Vantage Wind Energy Center Facility Vantage Wind Energy Center Sector Wind energy Facility Type Commercial Scale Wind Facility Status In Service Owner Invenergy Developer Invenergy Energy Purchaser Pacific Gas & Electric Co Location East of Ellensburg between Vantage Highway and I90 Coordinates 46.965336°, -120.245204° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":46.965336,"lon":-120.245204,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

328

Wind Energy 101 | Open Energy Information  

Open Energy Info (EERE)

Energy 101 Energy 101 Jump to: navigation, search The 63-MW Dry Lake Wind Power Project in Arizona is the first utility-scale power project. The Salt River Project is purchasing 100% of the power from the Phase I of this project for the next 20 years. Photo from Iberdrola Renewables, NREL 16692 Wind is a form of solar energy and is a result of the uneven heating of the atmosphere by the sun, the irregularities of the earth's surface, and the rotation of the earth. Wind flow patterns and speeds vary greatly across the United States and are modified by bodies of water, vegetation, and differences in terrain. Humans use this wind flow, or motion energy, for many purposes: sailing, flying a kite, and even generating electricity.[1] The following links provide more information about wind energy basics.

329

Philippines Wind Energy Resource Atlas Development  

DOE Green Energy (OSTI)

This paper describes the creation of a comprehensive wind energy resource atlas for the Philippines. The atlas was created to facilitate the rapid identification of good wind resource areas and understanding of the salient wind characteristics. Detailed wind resource maps were generated for the entire country using an advanced wind mapping technique and innovative assessment methods recently developed at the National Renewable Energy Laboratory.

Elliott, D.

2000-11-29T23:59:59.000Z

330

Technology Overview Fundamentals of Wind Energy (Presentation)  

SciTech Connect

A presentation that describes the technology, costs and trends, and future development of wind energy technologies.

Butterfield, S.

2005-05-01T23:59:59.000Z

331

Paul S. Veers Wind Energy Technology Department  

E-Print Network (OSTI)

Paul S. Veers Wind Energy Technology Department Sandia National Laboratories Thursday, April 8th 3 Y WIND ENERGY SEMINAR SERIES Wind energy is a growing electricity source around the world, providing. The rapid expansion of wind is largely due to its relative similarity in levelized cost of energy to fossil

Ginzel, Matthew

332

Offshore Wind Energy Update  

Wind Powering America (EERE)

wind farms are already operating in 10 countries. Almost 1,700 turbines are in the water. We're probably beyond 5,000 megawatts in nameplate right now and that's just going to...

333

Wind Course in Utah Takes Off | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Wind Course in Utah Takes Off Wind Course in Utah Takes Off Wind Course in Utah Takes Off April 15, 2010 - 6:19pm Addthis Two women inspired by a school assignment that blossomed into a 200-megawatt wind farm in Milford, Utah, have developed a training program to help people launch wind projects. After hearing how shop teacher Andy Swapp and his eighth-grade students attracted the attention of a wind energy company with the wind potential data they collected from Andy's farm, Sara Baldwin and Bonnie Christiansen started to wonder. If everyday people like Andy and his students can facilitate the development of a wind park with 97 turbines, maybe other people in Utah could too. "We realized that we have great folks working on wind energy," says Sara, a senior policy and regulatory associate of Utah Clean Energy, a

334

Community Renewable Energy Success Stories: Wind Energy in Urban...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Stories: Wind Energy in Urban Environments Webinar (text version) Community Renewable Energy Success Stories: Wind Energy in Urban Environments Webinar (text version) Below is the...

335

1. Sector Description Wind Energy  

E-Print Network (OSTI)

Wind power is todays most rapidly growing renewable power source. In the United States, new wind farms were the second-largest source of new power generation in 2005, after new natural gas power plants. In 2005, 2,431 megawatts (MW) of new capacity were installed in 22 states, increasing total wind generating capacity by more than a third to 9,149 MW, or enough to power 2.3 million average American households. Wind energy is a clean, domestic, renewable resource. It often displaces electricity that would otherwise have been produced by natural gas, thus helping to reduce gas demand and limit gas price hikes (DOE 2006a). It also can serve as a partial replacement for the electricity produced by the aging U.S. coal-fired power plant fleet. In the future, surplus wind power can be used for desalination and hydrogen production, and may be stored as hydrogen for use in fuel cells or gas turbines to generate electricity, leveling supply when winds are variable. Last February, the President said that wind energy could provide as much as 20 % of our electricity demands, up from less than 1 % today. Dozens of states have passed renewable portfolio standards setting goals similar to that stated by the President, giving broad-based public support for development of wind resources.

unknown authors

2006-01-01T23:59:59.000Z

336

New England Wind Forum: Building Wind Energy in New England  

Wind Powering America (EERE)

Projects in New England Building Wind Energy in New England Wind Resource Wind Power Technology Economics Markets Siting Policy Technical Challenges Issues Small Wind Large Wind Newsletter Perspectives Events Quick Links to States CT MA ME NH RI VT Bookmark and Share Building Wind Energy in New England Many factors influence the ability to develop wind power in the New England region. A viable project requires the right site and the right technology for the application. It must provide suitable revenue or economic value to justify investment in this capital-intensive but zero-fuel technology. Policy initiatives are in place throughout the region to support the expansion of wind power's role in the regional supply mix. However, issues affecting public acceptance of wind projects in host communities must be addressed. Information on topics affecting wind power development in New England can be found by using the navigation to the left.

337

Modeling the National Potential for Offshore Wind: Preprint  

SciTech Connect

The Wind Deployment System (WinDS) model was created to assess the potential penetration of offshore wind in the United States under different technology development, cost, and policy scenarios.

Short, W.; Sullivan, P.

2007-06-01T23:59:59.000Z

338

Stetson Wind Expansion Wind Farm | Open Energy Information  

Open Energy Info (EERE)

Stetson Wind Expansion Wind Farm Stetson Wind Expansion Wind Farm Jump to: navigation, search Name Stetson Wind Expansion Wind Farm Facility Stetson Wind Expansion Sector Wind energy Facility Type Commercial Scale Wind Facility Status In Service Owner First Wind Developer First Wind Location Washington County ME Coordinates 45.595833°, -67.928628° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":45.595833,"lon":-67.928628,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

339

How Much Energy Is Transferred from the Winds to the Thermocline on ENSO Time Scales?  

E-Print Network (OSTI)

How Much Energy Is Transferred from the Winds to the Thermocline on ENSO Time Scales? JACLYN N the winds (via wind power) and changes in the storage of available potential energy in the tropical ocean~o is characterized by a decrease in wind power that leads to a decrease in available potential energy, and hence

340

Wind Energy Myths; Wind Powering America Fact Sheet Series  

NLE Websites -- All DOE Office Websites (Extended Search)

wind energy provided the lowest cost of any new generation resource submitted to an Xcel Energy solicitation bidding process (except for one small hydro plant). The commission...

Note: This page contains sample records for the topic "wind energy potential" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


341

Gary Wind Energy Project | Open Energy Information  

Open Energy Info (EERE)

Gary Wind Energy Project Gary Wind Energy Project Jump to: navigation, search Name Gary Wind Energy Project Facility Gary Wind Energy Project Sector Wind energy Facility Type Small Scale Wind Facility Status In Service Owner Energy Maintenance Services-Distributed Energy Services Developer Energy Maintenance Services-Distributed Energy Services Energy Purchaser Energy Maintenance Services-Distributed Energy Services Location Gary SD Coordinates 44.7906°, -96.4546° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":44.7906,"lon":-96.4546,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

342

New England Wind Forum: New England Wind Energy Education Project  

Wind Powering America (EERE)

New England Wind Energy Education Project Conference and Workshop New England Wind Energy Education Project Conference and Workshop The New England Wind Energy Education Project (NEWEEP) held its one-day Conference and Workshop on June 7, 2011 in Marlborough, Massachusetts. The conference and workshop focused on presenting objective information relevant to issues of importance to individuals affected by wind energy proposals throughout New England. The conference was featured on the website of the Department of Energy's former Wind Powering America initiative: NEWEEP Convenes Conference and Workshop to Advance Social Acceptance of Well-Sited Wind Projects in New England: A Wind Powering America Success Story. Session I: Opening Plenary: Welcoming Remarks and Overview of New England Wind Project Development Activity

343

Wyoming Wind Energy Center | Open Energy Information  

Open Energy Info (EERE)

Center Center Jump to: navigation, search Name Wyoming Wind Energy Center Facility Wyoming Wind Energy Center Sector Wind energy Facility Type Commercial Scale Wind Facility Status In Service Owner NextEra Energy Resources Developer Orion Energy Energy Purchaser PPM Energy Inc Location Evanston WY Coordinates 41.304414°, -110.793904° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":41.304414,"lon":-110.793904,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

344

Future for Offshore Wind Energy in the United States: Preprint  

DOE Green Energy (OSTI)

Until recently, the offshore wind energy potential in the United States was ignored because vast onshore wind resources have the potential to fulfill the electrical energy needs for the entire country. However, the challenge of transmitting the electricity to the large load centers may limit wind grid penetration for land-based turbines. Offshore wind turbines can generate power much closer to higher value coastal load centers. Reduced transmission constraints, steadier and more energetic winds, and recent European success, have made offshore wind energy more attractive for the United States. However, U.S. waters are generally deeper than those on the European coast, and will require new technology. This paper presents an overview of U.S. coastal resources, explores promising deepwater wind technology, and predicts long-term cost-of-energy (COE) trends. COE estimates are based on generic 5-MW wind turbines in a hypothetical 500-MW wind power plant. Technology improvements and volume production are expected to lower costs to meet the U.S. Department of Energy target range of $0.06/kWh for deployment of deepwater offshore wind turbines by 2015, and $0.05/kWh by 2012 for shallow water. Offshore wind systems can diversify the U.S. electric energy supply and provide a new market for wind energy that is complementary to onshore development.

Musial, W.; Butterfield, S.

2004-06-01T23:59:59.000Z

345

Wisconsin Wind Resources | Open Energy Information  

Open Energy Info (EERE)

Wind Resources Wind Resources Jump to: navigation, search Print PDF WIND ENERGY STAKEHOLDER ENGAGEMENT & OUTREACHSmall Wind Guidebook Home WindTurbine-icon.png Small Wind Guidebook * Introduction * First, How Can I Make My Home More Energy Efficient? * Is Wind Energy Practical for Me? * What Size Wind Turbine Do I Need? * What Are the Basic Parts of a Small Wind Electric System? * What Do Wind Systems Cost? * Where Can I Find Installation and Maintenance Support? * How Much Energy Will My System Generate? * Is There Enough Wind on My Site? * How Do I Choose the Best Site for My Wind Turbine? * Can I Connect My System to the Utility Grid? * Can I Go Off-Grid? * State Information Portal * Glossary of Terms * For More Information Wisconsin Wind Resources WisconsinMap.jpg Retrieved from

346

HTH Wind Energy Inc | Open Energy Information  

Open Energy Info (EERE)

HTH Wind Energy Inc HTH Wind Energy Inc Jump to: navigation, search Name HTH Wind Energy Inc Place Casper, Wyoming Zip 82636 Sector Biomass, Wind energy Product Casper-based developer of wind and biomass projects. Coordinates 42.850095°, -106.327734° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":42.850095,"lon":-106.327734,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

347

Pathfinder Renewable Wind Energy | Open Energy Information  

Open Energy Info (EERE)

Pathfinder Renewable Wind Energy Pathfinder Renewable Wind Energy Jump to: navigation, search Name Pathfinder Renewable Wind Energy Place Casper, Wyoming Zip 82601 Sector Wind energy Product Wyoming-based wind project developer. Coordinates 42.850095°, -106.327734° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":42.850095,"lon":-106.327734,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

348

JD Wind 4 Wind Farm | Open Energy Information  

Open Energy Info (EERE)

4 Wind Farm 4 Wind Farm Jump to: navigation, search Name JD Wind 4 Wind Farm Facility JD Wind 4 Sector Wind energy Facility Type Commercial Scale Wind Facility Status In Service Owner John Deere Wind Developer DWS/John Deere Wind Energy Purchaser Xcel Energy Location Hansford County TX Coordinates 36.398384°, -101.376997° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":36.398384,"lon":-101.376997,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

349

Tecsis Wind | Open Energy Information  

Open Energy Info (EERE)

Tecsis Wind Tecsis Wind Jump to: navigation, search Name Tecsis Wind Place Sorocaba, Sao Paulo, Brazil Zip 18087-220 Sector Wind energy Product Wind blade producer located in Sorocaba, in the state of Sao Paulo. Coordinates -23.506059°, -47.455959° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":-23.506059,"lon":-47.455959,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

350

Cape Wind | Open Energy Information  

Open Energy Info (EERE)

Wind Wind Jump to: navigation, search Name Cape Wind Address 75 Arlington Street Place Boston, Massachusetts Zip 02116 Sector Wind energy Product Developing America's first offshore wind farm Website http://www.capewind.org/ Coordinates 42.3511372°, -71.0703224° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":42.3511372,"lon":-71.0703224,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

351

Deepwater Wind | Open Energy Information  

Open Energy Info (EERE)

Deepwater Wind Deepwater Wind Name Deepwater Wind Address 36-42 Newark Street Suite 402 Place Hoboken, New Jersey Zip 07030 Sector Wind energy Product offshore wind Phone number 201.850.1717 Website http://dwwind.com/ Coordinates 40.7366674°, -74.0295985° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":40.7366674,"lon":-74.0295985,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

352

Horn Wind | Open Energy Information  

Open Energy Info (EERE)

Wind Wind Jump to: navigation, search Name Horn Wind Place Windthorst, Texas Zip 76389 Sector Wind energy Product Texas-based company that develops community-based industrial wind farms. Coordinates 33.576395°, -98.437329° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":33.576395,"lon":-98.437329,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

353

Vertax Wind | Open Energy Information  

Open Energy Info (EERE)

Vertax Wind Vertax Wind Jump to: navigation, search Name Vertax Wind Place Surrey, United Kingdom Zip RH2 7LD Sector Wind energy Product Vertax is a British company that develops vertical axis wind turbines Coordinates 48.231575°, -101.134114° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":48.231575,"lon":-101.134114,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

354

Wind Energy Forecasting Technology Update: 2004  

Science Conference Proceedings (OSTI)

This report describes the status of wind energy forecasting technology for predicting wind speed and energy generation of wind energy facilities short-term (minutes to hours), intermediate-term (hours to days), and long-term (months to years) average wind speed and energy generation. The information should be useful to companies that are evaluating or planning to incorporate wind energy forecasting into their operations.

2005-04-26T23:59:59.000Z

355

Fuel Cells, Hydrogen Storage, Ferroelectrics, Wind Energy  

Science Conference Proceedings (OSTI)

Mar 15, 2012 ... Energy Nanomaterials: Fuel Cells, Hydrogen Storage, Ferroelectrics, Wind Energy Sponsored by: The Minerals, Metals and Materials Society,...

356

Nass Wind SAS | Open Energy Information  

Open Energy Info (EERE)

renewable energy holding company, primary involved in the French onshore and offshore wind market as project developers. References Nass & Wind SAS1 LinkedIn...

357

Upstream Measurements of Wind Profiles with Doppler Lidar for Improved Wind Energy Integration  

DOE Green Energy (OSTI)

New upstream measurements of wind profiles over the altitude range of wind turbines will be produced using a scanning Doppler lidar. These long range high quality measurements will provide improved wind power forecasts for wind energy integration into the power grid. The main goal of the project is to develop the optimal Doppler lidar operating parameters and data processing algorithms for improved wind energy integration by enhancing the wind power forecasts in the 30 to 60 minute time frame, especially for the large wind power ramps. Currently, there is very little upstream data at large wind farms, especially accurate wind profiles over the full height of the turbine blades. The potential of scanning Doppler lidar will be determined by rigorous computer modeling and evaluation of actual Doppler lidar data from the WindTracer system produced by Lockheed Martin Coherent Technologies, Inc. of Louisville, Colorado. Various data products will be investigated for input into numerical weather prediction models and statistically based nowcasting algorithms. Successful implementation of the proposed research will provide the required information for a full cost benefit analysis of the improved forecasts of wind power for energy integration as well as the added benefit of high quality wind and turbulence information for optimal control of the wind turbines at large wind farms.

Rodney Frehlich

2012-10-30T23:59:59.000Z

358

Definition: Wind power | Open Energy Information  

Open Energy Info (EERE)

Wind power Wind power Jump to: navigation, search Dictionary.png Wind power The amount of power available to a wind turbine depends on: air density, wind speed and the swept area of the rotor. While the power is proportional to air density and swept area, it varies with the cube of wind speed, so small changes in wind speed can have a relatively large impact on wind power.[1] View on Wikipedia Wikipedia Definition Wind power is the conversion of wind energy into a useful form of energy, such as using wind turbines to make electrical power, windmills for mechanical power, windpumps for water pumping or drainage, or sails to propel ships. Large wind farms consist of hundreds of individual wind turbines which are connected to the electric power transmission network. Offshore wind is steadier and stronger than on land, and offshore farms

359

WREF 2012: THE PAST AND FUTURE COST OF WIND ENERGY  

E-Print Network (OSTI)

Renewable Energy Outlook 2030 Energy Watch Group GlobalTargets for 2020 and 2030. Brussels, Belgium: European Wind2008). 20% Wind Energy by 2030: Increasing Wind Energy's

Wiser, Ryan

2013-01-01T23:59:59.000Z

360

Studying Wind Energy/Bird Interactions: A Guidance Document  

DOE Green Energy (OSTI)

This guidance document is a product of the Avian Subcommittee of the National Wind Coordinating Committee (NWCC). The NWCC was formed to better understand and promote responsible, credible, and comparable avian/wind energy interaction studies. Bird mortality is a concern and wind power is a potential clean and green source of electricity, making study of wind energy/bird interactions essential. This document provides an overview for regulators and stakeholders concerned with wind energy/bird interactions, as well as a more technical discussion of the basic concepts and tools for studying such interactions.

Anderson, R. [California Energy Commission (US); Morrison, M. [California State Univ., Sacramento, CA (US); Sinclair, K. [Dept. of Energy/National Renewable Energy Lab. (US); Strickland, D. [WEST, Inc. (US)

1999-12-01T23:59:59.000Z

Note: This page contains sample records for the topic "wind energy potential" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


361

Development in wind energy technology: an update  

Science Conference Proceedings (OSTI)

This paper presents an overview of the development in wind energy technology. Growth in wind technology and components of wind energy conversion systems are provided. Ratings, and system size are included for various applications in addition to power ... Keywords: development, power electronics converters, technology, wind energy

Faeka M. H. Khater

2012-04-01T23:59:59.000Z

362

Cost of Offshore Wind Energy Charlene Nalubega  

E-Print Network (OSTI)

Cost of Offshore Wind Energy water as well as on land based wind farms. The specific offshore wind energy case under consideration kilowatt Hour will be determined. Wind Energy has been around for a very long time. It started as out

Mountziaris, T. J.

363

Venture Wind I Wind Farm | Open Energy Information  

Open Energy Info (EERE)

Wind I Wind Farm Wind I Wind Farm Jump to: navigation, search Name Venture Wind I Wind Farm Facility Venture Wind I Sector Wind energy Facility Type Commercial Scale Wind Facility Status In Service Owner SeaWest Developer SeaWest Energy Purchaser Pacific Gas & Electric Co Location Altamont Pass CA Coordinates 37.7347°, -121.652° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":37.7347,"lon":-121.652,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

364

JD Wind 10 Wind Farm | Open Energy Information  

Open Energy Info (EERE)

10 Wind Farm 10 Wind Farm Jump to: navigation, search Name JD Wind 10 Wind Farm Facility JD Wind 10 Sector Wind energy Facility Type Commercial Scale Wind Facility Status In Service Owner DWS/John Deere Wind Developer DWS/John Deere Wind Energy Purchaser Southwestern Public Service Location TX Coordinates 35.808304°, -101.994807° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":35.808304,"lon":-101.994807,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

365

Wind Energy Permitting Standards (North Carolina)  

Energy.gov (U.S. Department of Energy (DOE))

North Carolina has statewide permitting requirements for wind energy facilities. Any wind turbine or collection of wind turbines located within a half mile of each other with a collective rated...

366

PNE UK Wind | Open Energy Information  

Open Energy Info (EERE)

UK Wind Place United Kingdom Sector Wind energy Product UK-based joint venture looking to develop a 300MW portfolio of wind farm projects across England, Scotland and Wales....

367

PNE WIND UK | Open Energy Information  

Open Energy Info (EERE)

venture between PNE Wind and New Energy Development Ltd for the development of 300MW of wind farms in the UK and Ireland. References PNE WIND UK1 LinkedIn Connections...

368

Definition: Small Scale Wind | Open Energy Information  

Open Energy Info (EERE)

Small scale wind projects are typically defined as projects with capacity ratings of 1 - 100 kW.1 View on Wikipedia Wikipedia Definition Related Terms wind power, wind energy,...

369

Offshore Wind Power | Open Energy Information  

Open Energy Info (EERE)

Power Jump to: navigation, search Name Offshore Wind Power Place St Albans, United Kingdom Zip AL1 3AW Sector Wind energy Product Formed to develop offshore wind farms around the...

370

Utah/Wind Resources | Open Energy Information  

Open Energy Info (EERE)

source source History View New Pages Recent Changes All Special Pages Semantic Search/Querying Get Involved Help Apps Datasets Community Login | Sign Up Search Page Edit History Facebook icon Twitter icon » Utah/Wind Resources < Utah Jump to: navigation, search Print PDF Print Full Version WIND ENERGY STAKEHOLDER ENGAGEMENT & OUTREACHSmall Wind Guidebook Home OpenEI Home >> Wind >> Small Wind Guidebook >> Utah Wind Resources WindTurbine-icon.png Small Wind Guidebook * Introduction * First, How Can I Make My Home More Energy Efficient? * Is Wind Energy Practical for Me? * What Size Wind Turbine Do I Need? * What Are the Basic Parts of a Small Wind Electric System? * What Do Wind Systems Cost? * Where Can I Find Installation and Maintenance Support? * How Much Energy Will My System Generate?

371

Atlantic Wind Solar Inc | Open Energy Information  

Open Energy Info (EERE)

distributed wind and solar systems along with wind and solar-hyrbid energy systems in Canada, the US and the Bahamas. References Atlantic Wind & Solar Inc.1 LinkedIn Connections...

372

Indian Centre for Wind Energy Technology C WET | Open Energy...  

Open Energy Info (EERE)

Centre for Wind Energy Technology C WET Jump to: navigation, search Name Indian Centre for Wind Energy Technology (C-WET) Place Chennai, India Zip 601 302 Sector Wind energy...

373

Jilin Huayi Wind Energy Development Co Ltd | Open Energy Information  

Open Energy Info (EERE)

Huayi Wind Energy Development Co Ltd Jump to: navigation, search Name Jilin Huayi Wind Energy Development Co Ltd Place Jilin Province, China Sector Wind energy Product China-based...

374

AWEA Wind Energy Regional Summit: Northeast | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

AWEA Wind Energy Regional Summit: Northeast AWEA Wind Energy Regional Summit: Northeast March 25, 2014 8:00AM EDT to March 26, 2014 5:00PM EDT Portland, Maine The AWEA Wind Energy...

375

World Wind and Water Energy LLC | Open Energy Information  

Open Energy Info (EERE)

World Wind and Water Energy LLC Jump to: navigation, search Name World Wind and Water Energy LLC Place Delaware Sector Wind energy Product Delaware-based company focused on...

376

RS India Wind Energy Pvt Ltd | Open Energy Information  

Open Energy Info (EERE)

RS India Wind Energy Pvt Ltd Jump to: navigation, search Name RS India Wind Energy Pvt Ltd Place New Delhi, Delhi (NCT), India Zip 110001 Sector Renewable Energy, Solar, Wind...

377

Google+ Hangout on Wind Energy in America | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Google+ Hangout on Wind Energy in America Google+ Hangout on Wind Energy in America Our special Google+ Hangout on Wind Energy in America will begin at 3 pm ET. If you don't see...

378

British Wind Energy Association BWEA | Open Energy Information  

Open Energy Info (EERE)

British Wind Energy Association (BWEA) Place London, United Kingdom Zip N1 0PW Sector Wind energy Product The British Wind Energy Association is the trade and professional body for...

379

Wind Energy | OpenEI  

Open Energy Info (EERE)

Energy Energy Dataset Summary Description Reduction of global greenhouse gas emission to arrest global warming requires minimizing the use of fossil fuels. To achieve this a large scale use of renewable energies must be made over the globe for production of electrical and thermal energy. Success of wind and solar energy projects require detailed and precise information on the resources. For most developing countries adequate information on the resources are not available. Source Renewable Energy Research Centre, University of Dhaka Date Released February 19th, 2007 (7 years ago) Date Updated Unknown Keywords Feasibility Study resource assessment Solar Energy SWERA Bangladesh Wind Energy Data application/pdf icon swera_bangladesh_fullreport.pdf (pdf, 2.7 MiB)

380

Wind Project Siting Tools | Open Energy Information  

Open Energy Info (EERE)

source source History View New Pages Recent Changes All Special Pages Semantic Search/Querying Get Involved Help Apps Datasets Community Login | Sign Up Search Page Edit History Facebook icon Twitter icon » Wind Project Siting Tools Jump to: navigation, search Photo from Alstom 2010, NREL 18207 The following tools are helpful for anyone planning a wind project. Resources Cadmus Group. (2012). Distributed Wind Site Analysis Tool. Accessed March 29, 2013. The Distributed Wind Site Analysis Tool is an online tool for conducting detailed site assessments for single-turbine projects, from residential to community scale. Eastern Interconnection States' Planning Council. (2013). EISPC EZ Mapping Tool. Accessed August 13, 2013. This free online mapping tool helps to identify potential clean energy

Note: This page contains sample records for the topic "wind energy potential" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


381

Wind Energy Career Development Program  

Science Conference Proceedings (OSTI)

Saint Francis University has developed curriculum in engineering and in business that is meeting the needs of students and employers (Task 1) as well as integrating wind energy throughout the curriculum. Through a variety of approaches, the University engaged in public outreach and education that reached over 2,000 people annually (Task 2). We have demonstrated, through the success of these programs, that students are eager to prepare for emerging jobs in alternative energy, that employers are willing to assist in developing employees who understand the broader business and policy context of the industry, and that people want to learn about wind energy.

Gwen Andersen

2012-03-29T23:59:59.000Z

382

Highmore Wind Energy Project | Open Energy Information  

Open Energy Info (EERE)

Highmore Wind Energy Project Highmore Wind Energy Project Jump to: navigation, search Name Highmore Wind Energy Project Facility Highmore Wind Energy Project Sector Wind energy Facility Type Commercial Scale Wind Facility Status In Service Owner NextEra Energy Resources Developer NextEra Energy Resources Energy Purchaser Basin Electric Location South of Highmore SD Coordinates 44.380689°, -99.441683° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":44.380689,"lon":-99.441683,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

383

Definition: Wind turbine | Open Energy Information  

Open Energy Info (EERE)

turbine turbine Jump to: navigation, search Dictionary.png Wind turbine A machine that converts wind energy to mechanical energy; typically connected to a generator to produce electricity.[1][2] View on Wikipedia Wikipedia Definition A wind turbine is a device that converts kinetic energy from the wind, also called wind energy, into mechanical energy in a process known as wind power. If the mechanical energy is used to produce electricity, the device may be called a wind turbine or wind power plant. If the mechanical energy is used to drive machinery, such as for grinding grain or pumping water, the device is called a windmill or wind pump. Similarly, it may be referred to as a wind charger when used for charging batteries. The result of over a millennium of windmill development and modern engineering,

384

Vermont Wind Measurement Company Still Strong | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Vermont Wind Measurement Company Still Strong Vermont Wind Measurement Company Still Strong Vermont Wind Measurement Company Still Strong April 9, 2010 - 3:16pm Addthis NRG's new building utilizes solar power, but their products measure wind potential. | Photo courtesy NRG Systems NRG's new building utilizes solar power, but their products measure wind potential. | Photo courtesy NRG Systems Joshua DeLung NRG Systems, of Hinesburg, Vt., has made products to help its customers measure and understand the potential of wind energy since 1982. Now, because of additional opportunities the Recovery Act has created for renewable energy companies, small businesses such as NRG Systems are poised to grow with the increased demand for proven wind measurement and turbine control equipment. NRG Systems' customers are primarily developers, utilities and research

385

Vermont Wind Measurement Company Still Strong | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Vermont Wind Measurement Company Still Strong Vermont Wind Measurement Company Still Strong Vermont Wind Measurement Company Still Strong April 9, 2010 - 3:16pm Addthis NRG's new building utilizes solar power, but their products measure wind potential. | Photo courtesy NRG Systems NRG's new building utilizes solar power, but their products measure wind potential. | Photo courtesy NRG Systems Joshua DeLung NRG Systems, of Hinesburg, Vt., has made products to help its customers measure and understand the potential of wind energy since 1982. Now, because of additional opportunities the Recovery Act has created for renewable energy companies, small businesses such as NRG Systems are poised to grow with the increased demand for proven wind measurement and turbine control equipment. NRG Systems' customers are primarily developers, utilities and research

386

Advantages and Challenges of Wind Energy  

Energy.gov (U.S. Department of Energy (DOE))

Wind energy offers many advantages, which explains why it's the fastest-growing energy source in the world. Research efforts are aimed at addressing the challenges to greater use of wind energy.

387

DOE Science Showcase - Wind Power | OSTI, US Dept of Energy, Office of  

Office of Scientific and Technical Information (OSTI)

Science Showcase - Wind Power Science Showcase - Wind Power Wind Powering America is a nationwide initiative of the U.S. Department of Energy's Wind Program designed to educate, engage, and enable critical stakeholders to make informed decisions about how wind energy contributes to the U.S. electricity supply. Wind Power Research Results in DOE Databases IEA Wind Task 26: The Past and Future Cost of Wind Energy, Work Package 2, Energy Citations Database NREL Triples Previous Estimates of U.S. Wind Power Potential, Energy Citations Database Dynamic Models for Wind Turbines and Wind Power Plants, DOE Information Bridge 2012 ARPA-E Energy Innovation Summit: Profiling General Compression: A River of Wind, ScienceCinema, multimedia Solar and Wind Energy Resource Assessment (SWERA) Data from the

388

European Wind Energy Association | Open Energy Information  

Open Energy Info (EERE)

European Wind Energy Association European Wind Energy Association Jump to: navigation, search Logo: European Wind Energy Association Name European Wind Energy Association Address Rue d'Arlon 80 B-1040 Place Brussels, Belgium Phone number +32 2 213 1811 Website http://www.ewea.org/index.php Coordinates 50.8415917°, 4.3733281° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":50.8415917,"lon":4.3733281,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

389

Howard Wind Energy Project | Open Energy Information  

Open Energy Info (EERE)

Project Project Jump to: navigation, search Name Howard Wind Energy Project Facility Howard Wind Energy Project Sector Wind energy Facility Type Community Wind Facility Status In Service Owner City of Howard Developer City of Howard Energy Purchaser City of Howard Location Howard SD Coordinates 44.0076°, -97.5267° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":44.0076,"lon":-97.5267,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

390

Geronimo Wind Energy | Open Energy Information  

Open Energy Info (EERE)

Geronimo Wind Energy Geronimo Wind Energy Place Edina, Minnesota Zip 55436 Sector Wind energy Product Based in Minnesota, this wind energy developer focuses on small to mid sized projects. Coordinates 40.168935°, -92.175109° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":40.168935,"lon":-92.175109,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

391

Spearville Wind Energy Facility | Open Energy Information  

Open Energy Info (EERE)

Facility Facility Jump to: navigation, search Name Spearville Wind Energy Facility Facility Spearville Wind Energy Facility Sector Wind energy Facility Type Commercial Scale Wind Facility Status In Service Owner Kansas City Power & Light Developer EnXco Energy Purchaser Kansas City Power & Light Location Northeast of Dodge City KS Coordinates 37.851699°, -99.78025° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":37.851699,"lon":-99.78025,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

392

Wind Energy Benefits | Open Energy Information  

Open Energy Info (EERE)

Datasets Community Login | Sign Up Search Page Edit History Facebook icon Twitter icon Wind Energy Benefits Jump to: navigation, search Photo from Todd Spink, NREL 14821 U.S....

393

Texas/Wind Resources | Open Energy Information  

Open Energy Info (EERE)

source source History View New Pages Recent Changes All Special Pages Semantic Search/Querying Get Involved Help Apps Datasets Community Login | Sign Up Search Page Edit History Facebook icon Twitter icon » Texas/Wind Resources < Texas Jump to: navigation, search Print PDF Print Full Version WIND ENERGY STAKEHOLDER ENGAGEMENT & OUTREACHSmall Wind Guidebook Home OpenEI Home >> Wind >> Small Wind Guidebook >> Texas Wind Resources WindTurbine-icon.png Small Wind Guidebook * Introduction * First, How Can I Make My Home More Energy Efficient? * Is Wind Energy Practical for Me? * What Size Wind Turbine Do I Need? * What Are the Basic Parts of a Small Wind Electric System? * What Do Wind Systems Cost? * Where Can I Find Installation and Maintenance Support?

394

Illinois/Wind Resources | Open Energy Information  

Open Energy Info (EERE)

source source History View New Pages Recent Changes All Special Pages Semantic Search/Querying Get Involved Help Apps Datasets Community Login | Sign Up Search Page Edit History Facebook icon Twitter icon » Illinois/Wind Resources < Illinois Jump to: navigation, search Print PDF Print Full Version WIND ENERGY STAKEHOLDER ENGAGEMENT & OUTREACHSmall Wind Guidebook Home OpenEI Home >> Wind >> Small Wind Guidebook >> Illinois Wind Resources WindTurbine-icon.png Small Wind Guidebook * Introduction * First, How Can I Make My Home More Energy Efficient? * Is Wind Energy Practical for Me? * What Size Wind Turbine Do I Need? * What Are the Basic Parts of a Small Wind Electric System? * What Do Wind Systems Cost? * Where Can I Find Installation and Maintenance Support?

395

Arizona/Wind Resources | Open Energy Information  

Open Energy Info (EERE)

source source History View New Pages Recent Changes All Special Pages Semantic Search/Querying Get Involved Help Apps Datasets Community Login | Sign Up Search Page Edit History Facebook icon Twitter icon » Arizona/Wind Resources < Arizona Jump to: navigation, search Print PDF Print Full Version WIND ENERGY STAKEHOLDER ENGAGEMENT & OUTREACHSmall Wind Guidebook Home OpenEI Home >> Wind >> Small Wind Guidebook >> Arizona Wind Resources WindTurbine-icon.png Small Wind Guidebook * Introduction * First, How Can I Make My Home More Energy Efficient? * Is Wind Energy Practical for Me? * What Size Wind Turbine Do I Need? * What Are the Basic Parts of a Small Wind Electric System? * What Do Wind Systems Cost? * Where Can I Find Installation and Maintenance Support?

396

California/Wind Resources | Open Energy Information  

Open Energy Info (EERE)

source source History View New Pages Recent Changes All Special Pages Semantic Search/Querying Get Involved Help Apps Datasets Community Login | Sign Up Search Page Edit History Facebook icon Twitter icon » California/Wind Resources < California Jump to: navigation, search Print PDF Print Full Version WIND ENERGY STAKEHOLDER ENGAGEMENT & OUTREACHSmall Wind Guidebook Home OpenEI Home >> Wind >> Small Wind Guidebook >> California Wind Resources WindTurbine-icon.png Small Wind Guidebook * Introduction * First, How Can I Make My Home More Energy Efficient? * Is Wind Energy Practical for Me? * What Size Wind Turbine Do I Need? * What Are the Basic Parts of a Small Wind Electric System? * What Do Wind Systems Cost? * Where Can I Find Installation and Maintenance Support?

397

Connecticut/Wind Resources | Open Energy Information  

Open Energy Info (EERE)

source source History View New Pages Recent Changes All Special Pages Semantic Search/Querying Get Involved Help Apps Datasets Community Login | Sign Up Search Page Edit History Facebook icon Twitter icon » Connecticut/Wind Resources < Connecticut Jump to: navigation, search Print PDF Print Full Version WIND ENERGY STAKEHOLDER ENGAGEMENT & OUTREACHSmall Wind Guidebook Home OpenEI Home >> Wind >> Small Wind Guidebook >> Connecticut Wind Resources WindTurbine-icon.png Small Wind Guidebook * Introduction * First, How Can I Make My Home More Energy Efficient? * Is Wind Energy Practical for Me? * What Size Wind Turbine Do I Need? * What Are the Basic Parts of a Small Wind Electric System? * What Do Wind Systems Cost? * Where Can I Find Installation and Maintenance Support?

398

Oklahoma/Wind Resources | Open Energy Information  

Open Energy Info (EERE)

source source History View New Pages Recent Changes All Special Pages Semantic Search/Querying Get Involved Help Apps Datasets Community Login | Sign Up Search Page Edit History Facebook icon Twitter icon » Oklahoma/Wind Resources < Oklahoma Jump to: navigation, search Print PDF Print Full Version WIND ENERGY STAKEHOLDER ENGAGEMENT & OUTREACHSmall Wind Guidebook Home OpenEI Home >> Wind >> Small Wind Guidebook >> Oklahoma Wind Resources WindTurbine-icon.png Small Wind Guidebook * Introduction * First, How Can I Make My Home More Energy Efficient? * Is Wind Energy Practical for Me? * What Size Wind Turbine Do I Need? * What Are the Basic Parts of a Small Wind Electric System? * What Do Wind Systems Cost? * Where Can I Find Installation and Maintenance Support?

399

Michigan/Wind Resources | Open Energy Information  

Open Energy Info (EERE)

source source History View New Pages Recent Changes All Special Pages Semantic Search/Querying Get Involved Help Apps Datasets Community Login | Sign Up Search Page Edit History Facebook icon Twitter icon » Michigan/Wind Resources < Michigan Jump to: navigation, search Print PDF Print Full Version WIND ENERGY STAKEHOLDER ENGAGEMENT & OUTREACHSmall Wind Guidebook Home OpenEI Home >> Wind >> Small Wind Guidebook >> Michigan Wind Resources WindTurbine-icon.png Small Wind Guidebook * Introduction * First, How Can I Make My Home More Energy Efficient? * Is Wind Energy Practical for Me? * What Size Wind Turbine Do I Need? * What Are the Basic Parts of a Small Wind Electric System? * What Do Wind Systems Cost? * Where Can I Find Installation and Maintenance Support?

400

Indiana/Wind Resources | Open Energy Information  

Open Energy Info (EERE)

source source History View New Pages Recent Changes All Special Pages Semantic Search/Querying Get Involved Help Apps Datasets Community Login | Sign Up Search Page Edit History Facebook icon Twitter icon » Indiana/Wind Resources < Indiana Jump to: navigation, search Print PDF Print Full Version WIND ENERGY STAKEHOLDER ENGAGEMENT & OUTREACHSmall Wind Guidebook Home OpenEI Home >> Wind >> Small Wind Guidebook >> Indiana Wind Resources WindTurbine-icon.png Small Wind Guidebook * Introduction * First, How Can I Make My Home More Energy Efficient? * Is Wind Energy Practical for Me? * What Size Wind Turbine Do I Need? * What Are the Basic Parts of a Small Wind Electric System? * What Do Wind Systems Cost? * Where Can I Find Installation and Maintenance Support?

Note: This page contains sample records for the topic "wind energy potential" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


401

Maine/Wind Resources | Open Energy Information  

Open Energy Info (EERE)

source source History View New Pages Recent Changes All Special Pages Semantic Search/Querying Get Involved Help Apps Datasets Community Login | Sign Up Search Page Edit History Facebook icon Twitter icon » Maine/Wind Resources < Maine Jump to: navigation, search Print PDF Print Full Version WIND ENERGY STAKEHOLDER ENGAGEMENT & OUTREACHSmall Wind Guidebook Home OpenEI Home >> Wind >> Small Wind Guidebook >> Maine Wind Resources WindTurbine-icon.png Small Wind Guidebook * Introduction * First, How Can I Make My Home More Energy Efficient? * Is Wind Energy Practical for Me? * What Size Wind Turbine Do I Need? * What Are the Basic Parts of a Small Wind Electric System? * What Do Wind Systems Cost? * Where Can I Find Installation and Maintenance Support?

402

Mississippi/Wind Resources | Open Energy Information  

Open Energy Info (EERE)

source source History View New Pages Recent Changes All Special Pages Semantic Search/Querying Get Involved Help Apps Datasets Community Login | Sign Up Search Page Edit History Facebook icon Twitter icon » Mississippi/Wind Resources < Mississippi Jump to: navigation, search Print PDF Print Full Version WIND ENERGY STAKEHOLDER ENGAGEMENT & OUTREACHSmall Wind Guidebook Home OpenEI Home >> Wind >> Small Wind Guidebook >> Mississippi Wind Resources WindTurbine-icon.png Small Wind Guidebook * Introduction * First, How Can I Make My Home More Energy Efficient? * Is Wind Energy Practical for Me? * What Size Wind Turbine Do I Need? * What Are the Basic Parts of a Small Wind Electric System? * What Do Wind Systems Cost? * Where Can I Find Installation and Maintenance Support?

403

Tennessee/Wind Resources | Open Energy Information  

Open Energy Info (EERE)

source source History View New Pages Recent Changes All Special Pages Semantic Search/Querying Get Involved Help Apps Datasets Community Login | Sign Up Search Page Edit History Facebook icon Twitter icon » Tennessee/Wind Resources < Tennessee Jump to: navigation, search Print PDF Print Full Version WIND ENERGY STAKEHOLDER ENGAGEMENT & OUTREACHSmall Wind Guidebook Home OpenEI Home >> Wind >> Small Wind Guidebook >> Tennessee Wind Resources WindTurbine-icon.png Small Wind Guidebook * Introduction * First, How Can I Make My Home More Energy Efficient? * Is Wind Energy Practical for Me? * What Size Wind Turbine Do I Need? * What Are the Basic Parts of a Small Wind Electric System? * What Do Wind Systems Cost? * Where Can I Find Installation and Maintenance Support?

404

Virginia/Wind Resources | Open Energy Information  

Open Energy Info (EERE)

source source History View New Pages Recent Changes All Special Pages Semantic Search/Querying Get Involved Help Apps Datasets Community Login | Sign Up Search Page Edit History Facebook icon Twitter icon » Virginia/Wind Resources < Virginia Jump to: navigation, search Print PDF Print Full Version WIND ENERGY STAKEHOLDER ENGAGEMENT & OUTREACHSmall Wind Guidebook Home OpenEI Home >> Wind >> Small Wind Guidebook >> Virginia Wind Resources WindTurbine-icon.png Small Wind Guidebook * Introduction * First, How Can I Make My Home More Energy Efficient? * Is Wind Energy Practical for Me? * What Size Wind Turbine Do I Need? * What Are the Basic Parts of a Small Wind Electric System? * What Do Wind Systems Cost? * Where Can I Find Installation and Maintenance Support?

405

Georgia/Wind Resources | Open Energy Information  

Open Energy Info (EERE)

source source History View New Pages Recent Changes All Special Pages Semantic Search/Querying Get Involved Help Apps Datasets Community Login | Sign Up Search Page Edit History Facebook icon Twitter icon » Georgia/Wind Resources < Georgia Jump to: navigation, search Print PDF Print Full Version WIND ENERGY STAKEHOLDER ENGAGEMENT & OUTREACHSmall Wind Guidebook Home OpenEI Home >> Wind >> Small Wind Guidebook >> Georgia Wind Resources WindTurbine-icon.png Small Wind Guidebook * Introduction * First, How Can I Make My Home More Energy Efficient? * Is Wind Energy Practical for Me? * What Size Wind Turbine Do I Need? * What Are the Basic Parts of a Small Wind Electric System? * What Do Wind Systems Cost? * Where Can I Find Installation and Maintenance Support?

406

Delaware/Wind Resources | Open Energy Information  

Open Energy Info (EERE)

source source History View New Pages Recent Changes All Special Pages Semantic Search/Querying Get Involved Help Apps Datasets Community Login | Sign Up Search Page Edit History Facebook icon Twitter icon » Delaware/Wind Resources < Delaware Jump to: navigation, search Print PDF Print Full Version WIND ENERGY STAKEHOLDER ENGAGEMENT & OUTREACHSmall Wind Guidebook Home OpenEI Home >> Wind >> Small Wind Guidebook >> Delaware Wind Resources WindTurbine-icon.png Small Wind Guidebook * Introduction * First, How Can I Make My Home More Energy Efficient? * Is Wind Energy Practical for Me? * What Size Wind Turbine Do I Need? * What Are the Basic Parts of a Small Wind Electric System? * What Do Wind Systems Cost? * Where Can I Find Installation and Maintenance Support?

407

Colorado/Wind Resources | Open Energy Information  

Open Energy Info (EERE)

source source History View New Pages Recent Changes All Special Pages Semantic Search/Querying Get Involved Help Apps Datasets Community Login | Sign Up Search Page Edit History Facebook icon Twitter icon » Colorado/Wind Resources < Colorado Jump to: navigation, search Print PDF Print Full Version WIND ENERGY STAKEHOLDER ENGAGEMENT & OUTREACHSmall Wind Guidebook Home OpenEI Home >> Wind >> Small Wind Guidebook >> Colorado Wind Resources WindTurbine-icon.png Small Wind Guidebook * Introduction * First, How Can I Make My Home More Energy Efficient? * Is Wind Energy Practical for Me? * What Size Wind Turbine Do I Need? * What Are the Basic Parts of a Small Wind Electric System? * What Do Wind Systems Cost? * Where Can I Find Installation and Maintenance Support?

408

Arkansas/Wind Resources | Open Energy Information  

Open Energy Info (EERE)

source source History View New Pages Recent Changes All Special Pages Semantic Search/Querying Get Involved Help Apps Datasets Community Login | Sign Up Search Page Edit History Facebook icon Twitter icon » Arkansas/Wind Resources < Arkansas Jump to: navigation, search Print PDF Print Full Version WIND ENERGY STAKEHOLDER ENGAGEMENT & OUTREACHSmall Wind Guidebook Home OpenEI Home >> Wind >> Small Wind Guidebook >> Arkansas Wind Resources WindTurbine-icon.png Small Wind Guidebook * Introduction * First, How Can I Make My Home More Energy Efficient? * Is Wind Energy Practical for Me? * What Size Wind Turbine Do I Need? * What Are the Basic Parts of a Small Wind Electric System? * What Do Wind Systems Cost? * Where Can I Find Installation and Maintenance Support?

409

Pages that link to "Idaho Wind Energy" | Open Energy Information  

Open Energy Info (EERE)

Edit History Share this page on Facebook icon Twitter icon Pages that link to "Idaho Wind Energy" Idaho Wind Energy Jump to: navigation, search What links here Page:...

410

Changes related to "Idaho Wind Energy" | Open Energy Information  

Open Energy Info (EERE)

Special page Share this page on Facebook icon Twitter icon Changes related to "Idaho Wind Energy" Idaho Wind Energy Jump to: navigation, search This is a list of...

411

INFOGRAPHIC: Wind Energy in America | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Saving Energy and Resources Revolutionizing Manufacturing National Wind Technology Center - Colorado America's Wind Testing Facilities Beyond Solyndra: How the Energy Department's...

412

Solar and Wind Energy Rebate Program | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Solar and Wind Energy Rebate Program Solar and Wind Energy Rebate Program Eligibility Commercial Fed. Government Industrial Local Government Nonprofit Residential Schools State...

413

INFOGRAPHIC: Wind Energy in America | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Homes David Arakawa (ORNL) Secretarial Achievement Awards American Wind Manufacturing Wind Energy In America: Ventower Industries Saving Energy and Resources Revolutionizing...

414

Wind Energy America Inc Formerly Dotronix Inc | Open Energy Informatio...  

Open Energy Info (EERE)

Dotronix Inc Jump to: navigation, search Name Wind Energy America Inc (Formerly Dotronix Inc.) Place Eden Prairie, Minnesota Zip 55344 Sector Wind energy Product Minnesota-based...

415

NREL: Wind Research - Wind Energy and Public Health: Research...  

NLE Websites -- All DOE Office Websites (Extended Search)

literature and identify any known or potential health risks associated with exposure to wind turbines. The panel consisted of eight members from three major fields: Medicine:...

416

Demand Side Management for Wind Power Integration in Microgrid Using Dynamic Potential Game Theory  

E-Print Network (OSTI)

Demand Side Management for Wind Power Integration in Microgrid Using Dynamic Potential Game Theory the intermittency in wind power generation. Our focus is on an isolated microgrid with one wind turbine, one fast supply and demand in an isolated microgrid [2], which is an important concept for renewable energy

Huang, Jianwei

417

2011 Grants for Offshore Wind Power | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Wind Manufacturing Facilities Wind Manufacturing Facilities Testing America's Wind Turbines Testing America's Wind Turbines U.S. Hydropower Potential from Existing Non-powered Dams...

418

Commonwealth Wind Commercial Wind Program | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Commercial Wind Program Commercial Wind Program Commonwealth Wind Commercial Wind Program < Back Eligibility Agricultural Commercial Construction Fed. Government Industrial Institutional Local Government Multi-Family Residential Municipal Utility Nonprofit Rural Electric Cooperative Schools State Government Tribal Government Savings Category Wind Buying & Making Electricity Maximum Rebate Public Entities: $100,000 Non-Public Entities: $67,000 Program Info Funding Source Massachusetts Renewable Energy Trust Start Date 05/2011 Expiration Date 08/01/2013 State Massachusetts Program Type State Grant Program Rebate Amount Varies depending on applicant type (public vs. non-public) and grant type (site assessment, feasibility study, onsite wind monitoring, acoustic studies, and business planning)

419

National Wind | Open Energy Information  

Open Energy Info (EERE)

National Wind National Wind Place Minneapolis, Minnesota Zip 55402 Sector Wind energy Product Wind project developer in the upper Midwest and Plains states. Coordinates 44.979035°, -93.264929° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":44.979035,"lon":-93.264929,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

420

Jasper Wind | Open Energy Information  

Open Energy Info (EERE)

Jasper Wind Jasper Wind Place Athens, Greece Sector Solar, Wind energy Product Athens-based wind and solar project developer. Coordinates 37.97615°, 23.736415° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":37.97615,"lon":23.736415,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

Note: This page contains sample records for the topic "wind energy potential" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


421

Ainsworth Wind Energy Facility | Open Energy Information  

Open Energy Info (EERE)

Ainsworth Wind Energy Facility Ainsworth Wind Energy Facility Jump to: navigation, search Name Ainsworth Wind Energy Facility Facility Ainsworth Wind Energy Facility Sector Wind energy Facility Type Commercial Scale Wind Facility Status In Service Owner Nebraska Public Power District and consortium of public utilities Developer Nebraska Public Power District and consortium of public utilities Energy Purchaser Nebraska Public Power District and consortium of public utilities Location Ainsworth NE Coordinates 42.460023°, -99.876037° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":42.460023,"lon":-99.876037,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

422

TradeWind Energy LLC | Open Energy Information  

Open Energy Info (EERE)

TradeWind Energy LLC TradeWind Energy LLC Jump to: navigation, search Name TradeWind Energy LLC Place Lenexa, Kansas Zip 66214 Sector Renewable Energy, Wind energy Product TradeWind Energy is a developer of renewable energy in Kansas and the surrounding midwestern states. It develops large-scale wind energy projects. Enel North America is a strategic partner for TradeWind and has taken an equity stake in the company. References TradeWind Energy LLC[1] LinkedIn Connections CrunchBase Profile No CrunchBase profile. Create one now! This article is a stub. You can help OpenEI by expanding it. TradeWind Energy LLC is a company located in Lenexa, Kansas . References ↑ "TradeWind Energy LLC" Retrieved from "http://en.openei.org/w/index.php?title=TradeWind_Energy_LLC&oldid=352361

423

Wethersfield Wind Power Wind Farm | Open Energy Information  

Open Energy Info (EERE)

Wethersfield Wind Power Wind Farm Wethersfield Wind Power Wind Farm Facility Wethersfield Wind Power Sector Wind energy Facility Type Commercial Scale Wind Facility Status In Service Owner Enel North America Developer Western NY Wind Power Partners Energy Purchaser Niagara Mohawk Location WY County NY Coordinates 42.667741°, -78.219803° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":42.667741,"lon":-78.219803,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

424

Shenyang Huachuang Wind Energy Corporation HCWE aka China Creative...  

Open Energy Info (EERE)

Huachuang Wind Energy Corporation HCWE aka China Creative Wind Energy Co Ltd Jump to: navigation, search Name Shenyang Huachuang Wind Energy Corporation (HCWE) (aka China Creative...

425

WREF 2012: THE PAST AND FUTURE COST OF WIND ENERGY  

E-Print Network (OSTI)

2009). Technology Roadmap Wind Energy. Paris, France:EWEA. (2011). Pure Power Wind Energy Targets for 2020 andBelgium: European Wind Energy Association (19) Electric

Wiser, Ryan

2013-01-01T23:59:59.000Z

426

Value Capture in the Global Wind Energy Industry  

E-Print Network (OSTI)

investigations/wind-energy-funds-going-overseas/ Dedrick,America. GWEC (Global Wind Energy Council) (2010). Globaland investment flows in the wind energy industry. Peterson

Dedrick, Jason; Kraemer, Kenneth L.

2011-01-01T23:59:59.000Z

427

Microsoft Word - Horizon Wind Energy Comments.docx | Department...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Horizon Wind Energy Comments.docx Microsoft Word - Horizon Wind Energy Comments.docx Microsoft Word - Horizon Wind Energy Comments.docx More Documents & Publications Before the...

428

Microsoft Word - Horizon Wind Energy Comments.docx | Department...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Word - Horizon Wind Energy Comments.docx Microsoft Word - Horizon Wind Energy Comments.docx Microsoft Word - Horizon Wind Energy Comments.docx More Documents & Publications Before...

429

GE Wind Energy Germany | Open Energy Information  

Open Energy Info (EERE)

Jump to: navigation, search Jump to: navigation, search Name GE Wind Energy Germany Place Salzbergen, Germany Zip 48499 Sector Wind energy Product Germany-based, division of GE Wind Energy wind turbine manufacturer and supplier. Coordinates 52.323136°, 7.347278° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":52.323136,"lon":7.347278,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

430

Navajo Wind Energy | Open Energy Information  

Open Energy Info (EERE)

Wind Energy Wind Energy Place Atlanta, Georgia Zip 30318 Sector Wind energy Product Atalanta-based but China-focused wind project developer. Coordinates 33.748315°, -84.391109° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":33.748315,"lon":-84.391109,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

431

Global Wind Energy Council | Open Energy Information  

Open Energy Info (EERE)

Global Wind Energy Council Global Wind Energy Council Name Global Wind Energy Council Address Wind Power House Rue d'Arlon 80 Place Brussels, Belgium Phone number +32 2 213 1897 Website http://www.gwec.net/ Coordinates 50.8415917°, 4.3733281° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":50.8415917,"lon":4.3733281,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

432

Illinois Wind Energy | Open Energy Information  

Open Energy Info (EERE)

Illinois Wind Energy Illinois Wind Energy Place Chicago, Illinois Zip IL 60606 Sector Wind energy Product Developer of wind power generating facilities in Illinois. Coordinates 41.88415°, -87.632409° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":41.88415,"lon":-87.632409,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

433

Prairie Wind Energy LLC | Open Energy Information  

Open Energy Info (EERE)

Wind Energy LLC Wind Energy LLC Place Lamar, Colorado Zip 81052 Sector Wind energy Product Developer and owner of Prairie wind farm. Coordinates 34.17099°, -80.064784° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":34.17099,"lon":-80.064784,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

434

Freedom Wind Energy LLC | Open Energy Information  

Open Energy Info (EERE)

Freedom Wind Energy LLC Freedom Wind Energy LLC Place Tampa, Florida Zip 33623 Sector Wind energy Product Develops and manages wind farms in north eastern USA. Coordinates 27.94653°, -82.459269° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":27.94653,"lon":-82.459269,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

435

Wind Energy Community Acceptance | Open Energy Information  

Open Energy Info (EERE)

source source History View New Pages Recent Changes All Special Pages Semantic Search/Querying Get Involved Help Apps Datasets Community Login | Sign Up Search Page Edit History Facebook icon Twitter icon » Wind Energy Community Acceptance Jump to: navigation, search In 2012 in Lamar, Colorado, Bob Emick (center, back to camera and Greg Emich (right in cowboy hat) talk about the 98 1.5-megawatt wind turbines on their ranch. Photo by Dennis Schroeder, NREL 21768 The following resources address community acceptance topics. Baring-Gould, I. (June 5, 2012). Social Acceptance of Wind Energy: Managing and Evaluating Its Market Impacts. National Renewable Energy Laboratory. Accessed August 14, 2013. This presentation offers background information on social acceptance issues, results of surveys conducted by the New England Wind Forum at a

436

Apex Wind Energy Inc | Open Energy Information  

Open Energy Info (EERE)

Wind Energy Inc. Wind Energy Inc. Place Charlottesville, Virginia Zip 22902 Sector Wind energy Product Virginia-based wind farm project developer. Coordinates 38.03213°, -78.477529° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":38.03213,"lon":-78.477529,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

437

Xinjiang Wind Energy Company | Open Energy Information  

Open Energy Info (EERE)

Xinjiang Wind Energy Company Xinjiang Wind Energy Company Place Urumqi, Xinjiang Autonomous Region, China Zip 830000 Sector Wind energy Product Backed up by Xinjiang Windpower Research Institute, the company is a professional developer of wind farms. Coordinates 43.7952°, 87.580177° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":43.7952,"lon":87.580177,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

438

AMEC Wind Energy | Open Energy Information  

Open Energy Info (EERE)

AMEC Wind Energy AMEC Wind Energy Place Cheshire, England, United Kingdom Zip WA16 8QZ Sector Wind energy Product A UK-based commercial wind farm developer. Coordinates 44.18318°, -123.304654° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":44.18318,"lon":-123.304654,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

439

Wind Manufacturing Facilities | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Testing America's Wind Turbines Testing America's Wind Turbines U.S. Hydropower Potential from Existing Non-powered Dams U.S. Hydropower Potential from Existing Non-powered Dams...

440

Wind News and Blog | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Wind News and Blog Wind News and Blog Wind News and Blog Blog Energy Deputy Secretary Daniel Poneman speaks at the Clemson University Wind Turbine Drivetrain Testing Facility dedication in South Carolina. | Photo courtesy of Clemson University Two Facilities, One Goal: Advancing America's Wind Industry November 27, 2013 1:35 PM Two state-of-the-art wind turbine drivetrain test facilities are now open for business: the Clemson University Wind Turbine Drivetrain Testing Facility in South Carolina and a National Renewable Energy Laboratory dynamometer at the National Wind Technology Center in Colorado. Read The Full Story Deputy Assistant Secretary for Renewable Energy Steven Chalk speaks during the American Wind Energy Association WINDPOWER Offshore conference in Providence, Rhode Island. | Photo courtesy of American Wind Energy Association

Note: This page contains sample records for the topic "wind energy potential" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


441

Wind Energy Benefits, Wind Powering America (WPA) (Fact Sheet)  

DOE Green Energy (OSTI)

This fact sheet outlines the top 10 benefits of wind energy, including cost, water savings, job creation, indigenous resource, and low operating costs.

Not Available

2011-04-01T23:59:59.000Z

442

GE Wind Energy | Open Energy Information  

Open Energy Info (EERE)

Wind Energy Wind Energy Jump to: navigation, search Name GE Wind Energy Place Atlanta, Georgia Zip GA 30339 Sector Wind energy Product GE's wind energy division, formed as a result of the purchase of almost all of Enron Wind Corporation's assets. Provides power plant design, engineering and site selection, as well as operation and maintenance. Coordinates 33.748315°, -84.391109° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":33.748315,"lon":-84.391109,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

443

Jilin Tongli Wind Power Co Ltd | Open Energy Information  

Open Energy Info (EERE)

Jilin Province, China Sector Wind energy Product Jilin-based company focused on wind power generation and development of wind projects. References Jilin Tongli Wind Power Co...

444

Guodian Linghai Wind Power Co Ltd | Open Energy Information  

Open Energy Info (EERE)

Linghai Wind Power Co Ltd Jump to: navigation, search Name Guodian Linghai Wind Power Co Ltd Place China Sector Wind energy Product Wind power project developer. References Guodian...

445

Liaoning Kangping Jinshan Wind Power Co Ltd | Open Energy Information  

Open Energy Info (EERE)

Kangping Jinshan Wind Power Co Ltd Jump to: navigation, search Name Liaoning Kangping Jinshan Wind Power Co Ltd Place Liaoning Province, China Sector Wind energy Product Wind farm...

446

JD Wind 6 Wind Farm | Open Energy Information  

Open Energy Info (EERE)

6 Wind Farm 6 Wind Farm Facility JD Wind 6 Sector Wind energy Facility Type Commercial Scale Wind Facility Status In Service Owner John Deere Wind Developer DWS/John Deere Wind Energy Purchaser Xcel Energy Location Sherman County TX Coordinates 36.466801°, -101.813446° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":36.466801,"lon":-101.813446,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

447

JD Wind 1 Wind Farm | Open Energy Information  

Open Energy Info (EERE)

Wind Farm Wind Farm Facility JD Wind 1 Sector Wind energy Facility Type Commercial Scale Wind Facility Status In Service Owner DWS/John Deere Wind Developer DWS/John Deere Wind Energy Purchaser Xcel Energy Location Hansford County TX Coordinates 36.398384°, -101.376997° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":36.398384,"lon":-101.376997,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

448

JD Wind 2 Wind Farm | Open Energy Information  

Open Energy Info (EERE)

2 Wind Farm 2 Wind Farm Facility JD Wind 2 Sector Wind energy Facility Type Commercial Scale Wind Facility Status In Service Owner DWS/John Deere Wind Developer DWS/John Deere Wind Energy Purchaser Xcel Energy Location TX/OK panhandle TX Coordinates 36.398384°, -101.376997° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":36.398384,"lon":-101.376997,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

449

JD Wind 3 Wind Farm | Open Energy Information  

Open Energy Info (EERE)

3 Wind Farm 3 Wind Farm Facility JD Wind 3 Sector Wind energy Facility Type Commercial Scale Wind Facility Status In Service Owner DWS/John Deere Wind Developer DWS/John Deere Wind Energy Purchaser Xcel Energy Location TX/OK panhandle TX Coordinates 36.398384°, -101.376997° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":36.398384,"lon":-101.376997,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

450

JD Wind 7 Wind Farm | Open Energy Information  

Open Energy Info (EERE)

7 Wind Farm 7 Wind Farm Facility JD Wind 7 Sector Wind energy Facility Type Commercial Scale Wind Facility Status In Service Owner John Deere Wind Developer DWS/John Deere Wind Energy Purchaser Xcel Energy Location TX Coordinates 35.808304°, -101.994807° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":35.808304,"lon":-101.994807,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

451

Minnesota Wind Share Wind Farm | Open Energy Information  

Open Energy Info (EERE)

Share Wind Farm Share Wind Farm Jump to: navigation, search Name Minnesota Wind Share Wind Farm Facility Minnesota Wind Share Sector Wind energy Facility Type Commercial Scale Wind Facility Status In Service Owner Various Developer Project Resources Corp. Energy Purchaser Xcel Energy Location Lake Wilson MN Coordinates 43.996°, -95.9532° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":43.996,"lon":-95.9532,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

452

SERI Advanced and Innovative Wind-Energy-Concepts Program  

SciTech Connect

In 1978 the Solar Energy Research Institute (SERI) was given the responsibility of managing the Advanced and Innovative Wind Energy Concepts (AIWEC) Task by the US Department of Energy (DOE). The objective of this program has been to determine the technical and economic potential of advanced wind energy concepts. Assessment and R and D efforts in the AIWEC program have included theoretical performance analyses, wind tunnel testing, and/or costing studies. Concepts demonstrating sufficient potential undergo prototype testing in a Proof-of-Concept research phase. Several concepts, such as the Dynamic Inducer, the Diffuser Augmented wind Turbine, the Electrofluid Dynamic Wind-Driven Generator, the Passive Cyclic Pitch concept, and higher performance airfoil configurations for vertical axis wind turbines, have recently made significant progress. The latter has currently reached the Proof-of-Concept phase. The present paper provides an overview of the technical progress and current status of these concepts.

Mitchell, R.L.; Jacobs, E.W.

1983-06-01T23:59:59.000Z

453

Wind energy: legal issues and institutional barriers  

DOE Green Energy (OSTI)

Before the potential of wind energy can be realized, large-scale commercialization will have to occur. Standing in the way of commercial development are various institutional and legal barriers. These include (1) possible conflicts with existing zoning and other land-use planning schemes, (2) the question of guaranteeing access to the wind, (3) possible tort and environmental law issues raised by WECS operation, and (4) the critical problem of creating financial incentives. The implications of each of these issues and solutions where practicable are presented.

Coit, L.

1979-06-01T23:59:59.000Z

454

America's Wind Testing Facilities | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Saving Energy and Resources Revolutionizing Manufacturing INFOGRAPHIC: Wind Energy in America Beyond Solyndra: How the Energy Department's Loans are Accelerating America's...

455

Rosebud Sioux Wind Energy Project  

DOE Green Energy (OSTI)

In 1998, through the vision of the late Alex Little Soldier Lunderman (1928-2000) and through the efforts of the Rosebud Sioux Tribal Utilities Commission, and with assistance from Intertribal Council on Utility Policy (COUP), and Distributed Generation, Inc (DISGEN). The Rosebud Sioux Tribe applied and was awarded in 1999 a DOE Cooperative Grant to build a commercial 750 Kw wind turbine, along with a 50/50 funding grant from the Department of Energy and a low interest loan from the Rural Utilities Service, United States Department of Agriculture, the Rosebud Sioux Tribe commissioned a single 750 kilowatt NEG Micon wind turbine in March of 2003 near the Rosebud Casino. The Rosebud Sioux Wind Energy Project (Little Soldier Akicita Cikala) Turbine stands as a testament to the vision of a man and the Sicangu Oyate.

Tony Rogers

2008-04-30T23:59:59.000Z

456

Wind Energy Corporation | Open Energy Information  

Open Energy Info (EERE)

Corporation Corporation Place Elizabethtown, Kentucky Zip 42701 Sector Wind energy Product Kentucky-based wind harvesting firm conducting micro-wind research to gather detailed wind speed and gust data enabling applications to find sites for farms. In addition they bring to the market wind sail designs for turbines for clients. Coordinates 40.152603°, -76.606718° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":40.152603,"lon":-76.606718,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

457

Wildlife and Wind Energy | Open Energy Information  

Open Energy Info (EERE)

source source History View New Pages Recent Changes All Special Pages Semantic Search/Querying Get Involved Help Apps Datasets Community Login | Sign Up Search Page Edit History Facebook icon Twitter icon » Wildlife and Wind Energy Jump to: navigation, search Sage grouse sitting in grassland. Photo from LuRay Parker, NREL 17429 Birds and bats are occasionally killed in collisions with wind turbines. Like any form of development, wind projects can also negatively impact wildlife by altering habitat. However, although the wind industry receives a lot of attention for avian impacts, research shows that nuclear and fossil-fueled plants have a greater impact. The Avian and Wildlife Costs of Fossil Fuels and Nuclear Power report quantifies those impacts. The study estimates that wind farms are responsible for roughly 0.27 avian fatalities

458

Simulation Of Energy Storage In A System With Integrated Wind Yannick Degeilh, Justine Descloux, George Gross  

E-Print Network (OSTI)

Simulation Of Energy Storage In A System With Integrated Wind Resources Yannick Degeilh, Justine is key to providing the means of better harnessing wind energy potential. This paper proposes Wind is a clean and renewable source of energy with zero fuel costs. However, wind generation outputs

Gross, George

459

Indian Wind Energy Association InWEA | Open Energy Information  

Open Energy Info (EERE)

InWEA Jump to: navigation, search Name Indian Wind Energy Association (InWEA) Place New Delhi, Delhi (NCT), India Zip 110016 Sector Wind energy Product Delhi-based wind industry...

460

Projected Impact of Federal Policies on U.S. Wind Market Potential: Preprint  

DOE Green Energy (OSTI)

This report discusses the potential for solar-powered agricultural irrigation pumps in the San Joaquin Valley and how these applications could improve the region's air This paper presents results from the Wind Deployment Systems Model (WinDS) for several potential energy policy cases. WinDS is a multiregional, multitime-period, Geographic Information System (GIS), and linear programming model of capacity expansion in the electric sector of the United States. WinDS is designed to address the principal market issues related to the penetration of wind energy technologies into the electric sector. These principal market issues include access to and cost of transmission, and the intermittency of wind power. WinDS has been used to model the impact of various policy initiatives, including a wind production tax credit (PTC) and a renewable portfolio standard (RPS).

Short, W.; Blair, N.; Heimiller, D.

2004-03-01T23:59:59.000Z

Note: This page contains sample records for the topic "wind energy potential" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


461

Brazos Wind Ranch Wind Farm | Open Energy Information  

Open Energy Info (EERE)

Wind Ranch Wind Farm Wind Ranch Wind Farm Jump to: navigation, search Name Brazos Wind Ranch Wind Farm Facility Brazos Wind Ranch Sector Wind energy Facility Type Commercial Scale Wind Facility Status In Service Owner Shell Wind Energy/Mitsui Developer Cielo Wind Power/Orion Energy Energy Purchaser Green Mountain Power/ TXU Location Near Fluvanna TX Coordinates 32.94914°, -101.144357° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":32.94914,"lon":-101.144357,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

462

CREST Wind | Open Energy Information  

Open Energy Info (EERE)

CREST Wind CREST Wind Jump to: navigation, search Tool Summary LAUNCH TOOL Name: CREST Wind Agency/Company /Organization: Sustainable Energy Advantage Partner: NREL Sector: Energy Focus Area: Wind Topics: Finance Resource Type: Software/modeling tools User Interface: Spreadsheet Website: financere.nrel.gov/finance/webfm_send/42/NREL_CREST_Wind_version1.1_Pr Country: United States RelatedTo: CREST Solar, CREST Geothermal Cost: Free UN Region: Northern America Coordinates: 37.09024°, -95.712891° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":37.09024,"lon":-95.712891,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

463

Wind Webinar Text Version | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Text Version Wind Webinar Text Version Download the text version of the audio from the DOE Office of Indian Energy webinar on wind renewable energy. Text Version of the DOE Office...

464

Solar and Wind Rights | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

2011, the legislature enacted a bill (Public Act 97-0105) which added a provision for wind energy. A homeowners's association or similar entity may restrict wind energy devices...

465

Shenyang Huachuang Wind Energy Corporation HCWE aka China Creative Wind  

Open Energy Info (EERE)

Huachuang Wind Energy Corporation HCWE aka China Creative Wind Huachuang Wind Energy Corporation HCWE aka China Creative Wind Energy Co Ltd Jump to: navigation, search Name Shenyang Huachuang Wind Energy Corporation (HCWE) (aka China Creative Wind Energy Co Ltd) Place Shenyang, Liaoning Province, China Sector Wind energy Product A company engaged in 1.5MW wind turbine manufacturing. It is also known as China Creative Wind Energy Co Ltd. Coordinates 41.788509°, 123.40612° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":41.788509,"lon":123.40612,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

466

Potential Climatic Impacts and Reliability of Large-Scale Offshore Wind Farms  

E-Print Network (OSTI)

The vast availability of wind power has fueled substantial interest in this renewable energy source as a potential near-zero greenhouse gas emission technology for meeting future world energy needs while addressing the ...

Wang, Chien

467

Plan for the Wind Power Device to Make the Best of Earth Wind Energy  

Science Conference Proceedings (OSTI)

To make the best of wind energy resources on the earth surface, the plan for a new type of wind power device, named Multiple wind wheel Wind power Device, MWD in short, was put forward. MWD composes steel tower, trusses, generator, long axis, wind turbines ... Keywords: clean renewable sources, wind energy, wind power, wind turbine

Bingwen Zhang; Yingjin Zhang

2010-06-01T23:59:59.000Z

468

JD Wind 8 Wind Farm | Open Energy Information  

Open Energy Info (EERE)

8 Wind Farm 8 Wind Farm Facility JD Wind 8 Sector Wind energy Facility Type Commercial Scale Wind Facility Status In Service Owner DWS/John Deere Wind Developer DWS/John Deere Wind Energy Purchaser Southwestern Public Service Location TX Coordinates 35.808304°, -101.994807° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":35.808304,"lon":-101.994807,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

469

Venture Wind II Wind Farm | Open Energy Information  

Open Energy Info (EERE)

Venture Wind II Wind Farm Venture Wind II Wind Farm Facility Venture Wind II Sector Wind energy Facility Type Commercial Scale Wind Facility Status In Service Owner SeaWest Developer Seawest Energy Purchaser Pacific Gas & Electric Co Location Altamont Pass CA Coordinates 37.7347°, -121.652° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":37.7347,"lon":-121.652,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

470

JD Wind 11 Wind Farm | Open Energy Information  

Open Energy Info (EERE)

1 Wind Farm 1 Wind Farm Facility JD Wind 11 Sector Wind energy Facility Type Commercial Scale Wind Facility Status In Service Owner DWS/John Deere Wind Developer DWS/John Deere Wind Energy Purchaser Southwestern Public Service Location TX Coordinates 35.808304°, -101.994807° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":35.808304,"lon":-101.994807,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}