Powered by Deep Web Technologies
Note: This page contains sample records for the topic "wind energy forecasts" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


1

Modeling of Uncertainty in Wind Energy Forecast  

E-Print Network (OSTI)

regression and splines are combined to model the prediction error from Tunø Knob wind power plant. This data of the thesis is quantile regression and splines in the context of wind power modeling. Lyngby, February 2006Modeling of Uncertainty in Wind Energy Forecast Jan Kloppenborg Møller Kongens Lyngby 2006 IMM-2006

2

ANL Wind Power Forecasting and Electricity Markets | Open Energy  

Open Energy Info (EERE)

ANL Wind Power Forecasting and Electricity Markets ANL Wind Power Forecasting and Electricity Markets Jump to: navigation, search Logo: Wind Power Forecasting and Electricity Markets Name Wind Power Forecasting and Electricity Markets Agency/Company /Organization Argonne National Laboratory Partner Institute for Systems and Computer Engineering of Porto (INESC Porto) in Portugal, Midwest Independent System Operator and Horizon Wind Energy LLC, funded by U.S. Department of Energy Sector Energy Focus Area Wind Topics Pathways analysis, Technology characterizations Resource Type Software/modeling tools Website http://www.dis.anl.gov/project References Argonne National Laboratory: Wind Power Forecasting and Electricity Markets[1] Abstract To improve wind power forecasting and its use in power system and electricity market operations Argonne National Laboratory has assembled a team of experts in wind power forecasting, electricity market modeling, wind farm development, and power system operations.

3

Today's Forecast: Improved Wind Predictions | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Today's Forecast: Improved Wind Predictions Today's Forecast: Improved Wind Predictions Today's Forecast: Improved Wind Predictions July 20, 2011 - 6:30pm Addthis Stan Calvert Wind Systems Integration Team Lead, Wind & Water Power Program What does this project do? It will increase the accuracy of weather forecast models for predicting substantial changes in winds at heights important for wind energy up to six hours in advance, allowing grid operators to predict expected wind power production. Accurate weather forecasts are critical for making energy sources -- including wind and solar -- dependable and predictable. These forecasts also play an important role in reducing the cost of renewable energy by allowing electricity grid operators to make timely decisions on what reserve generation they need to operate their systems.

4

Today's Forecast: Improved Wind Predictions | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Today's Forecast: Improved Wind Predictions Today's Forecast: Improved Wind Predictions Today's Forecast: Improved Wind Predictions July 20, 2011 - 6:30pm Addthis Stan Calvert Wind Systems Integration Team Lead, Wind & Water Power Program What does this project do? It will increase the accuracy of weather forecast models for predicting substantial changes in winds at heights important for wind energy up to six hours in advance, allowing grid operators to predict expected wind power production. Accurate weather forecasts are critical for making energy sources -- including wind and solar -- dependable and predictable. These forecasts also play an important role in reducing the cost of renewable energy by allowing electricity grid operators to make timely decisions on what reserve generation they need to operate their systems.

5

Calibrated Probabilistic Forecasting at the Stateline Wind Energy Center  

E-Print Network (OSTI)

Calibrated Probabilistic Forecasting at the Stateline Wind Energy Center: The Regime at wind energy sites are becoming paramount. Regime-switching space-time (RST) models merge meteorological forecast regimes at the wind energy site and fits a conditional predictive model for each regime

Washington at Seattle, University of

6

Review of Wind Energy Forecasting Methods for Modeling Ramping Events  

SciTech Connect

Tall onshore wind turbines, with hub heights between 80 m and 100 m, can extract large amounts of energy from the atmosphere since they generally encounter higher wind speeds, but they face challenges given the complexity of boundary layer flows. This complexity of the lowest layers of the atmosphere, where wind turbines reside, has made conventional modeling efforts less than ideal. To meet the nation's goal of increasing wind power into the U.S. electrical grid, the accuracy of wind power forecasts must be improved. In this report, the Lawrence Livermore National Laboratory, in collaboration with the University of Colorado at Boulder, University of California at Berkeley, and Colorado School of Mines, evaluates innovative approaches to forecasting sudden changes in wind speed or 'ramping events' at an onshore, multimegawatt wind farm. The forecast simulations are compared to observations of wind speed and direction from tall meteorological towers and a remote-sensing Sound Detection and Ranging (SODAR) instrument. Ramping events, i.e., sudden increases or decreases in wind speed and hence, power generated by a turbine, are especially problematic for wind farm operators. Sudden changes in wind speed or direction can lead to large power generation differences across a wind farm and are very difficult to predict with current forecasting tools. Here, we quantify the ability of three models, mesoscale WRF, WRF-LES, and PF.WRF, which vary in sophistication and required user expertise, to predict three ramping events at a North American wind farm.

Wharton, S; Lundquist, J K; Marjanovic, N; Williams, J L; Rhodes, M; Chow, T K; Maxwell, R

2011-03-28T23:59:59.000Z

7

Wind Forecasting Improvement Project | Department of Energy  

NLE Websites -- All DOE Office Websites (Extended Search)

3, 2011 - 12:12pm Addthis This is an excerpt from the Third Quarter 2011 edition of the Wind Program R&D Newsletter. In July, the Department of Energy launched a 6 million...

8

European Wind Energy Conference -Brussels, Belgium, April 2008 Data mining for wind power forecasting  

E-Print Network (OSTI)

European Wind Energy Conference - Brussels, Belgium, April 2008 Data mining for wind power-term forecasting of wind energy produc- tion up to 2-3 days ahead is recognized as a major contribution the improvement of predic- tion systems performance is recognised as one of the priorities in wind energy research

Paris-Sud XI, Université de

9

Wind Power Forecasting  

Science Journals Connector (OSTI)

The National Center for Atmospheric Research (NCAR) has configured a Wind Power Forecasting System for Xcel Energy that integrates high resolution and ensemble...

Sue Ellen Haupt; William P. Mahoney; Keith Parks

2014-01-01T23:59:59.000Z

10

Energy Department Announces $2.5 Million to Improve Wind Forecasting...  

Energy Savers (EERE)

better forecasts, wind energy plant operators and industry professionals can ensure wind turbines operate closer to maximum capacity, leading to lower energy costs for consumers....

11

European Wind Energy Conference & Exhibition EWEC 2003, Madrid, Spain. Forecasting of Regional Wind Generation by a Dynamic  

E-Print Network (OSTI)

European Wind Energy Conference & Exhibition EWEC 2003, Madrid, Spain. Forecasting of Regional Wind forecasting. I. INTRODUCTION HE actual large-scale integration of wind energy in several European countries enhance the position of wind energy compared to other dispatchable forms of generation. Predicting

Paris-Sud XI, Université de

12

Calibrated Probabilistic Forecasting at the Stateline Wind Energy Center: The Regime-Switching  

E-Print Network (OSTI)

Calibrated Probabilistic Forecasting at the Stateline Wind Energy Center: The Regime at a wind energy site and fits a conditional predictive model for each regime. Geographically dispersed was applied to 2-hour-ahead forecasts of hourly average wind speed near the Stateline wind energy center

Genton, Marc G.

13

NCAR WRF-based data assimilation and forecasting systems for wind energy applications power  

E-Print Network (OSTI)

NCAR WRF-based data assimilation and forecasting systems for wind energy applications power Yuewei of these modeling technologies w.r.t. wind energy applications. Then I'll discuss wind farm

Kim, Guebuem

14

Wind Power Forecasting  

NLE Websites -- All DOE Office Websites (Extended Search)

Retrospective Reports 2011 Smart Grid Wind Integration Wind Integration Initiatives Wind Power Forecasting Wind Projects Email List Self Supplied Balancing Reserves Dynamic...

15

The Wind Forecast Improvement Project (WFIP): A Public/Private Partnership for Improving Short Term Wind Energy Forecasts and Quantifying the Benefits of Utility Operations  

Energy.gov (U.S. Department of Energy (DOE))

The Wind Forecast Improvement Project (WFIP) is a U. S. Department of Energy (DOE) sponsored research project whose overarching goals are to improve the accuracy of short-term wind energy forecasts, and to demonstrate the economic value of these improvements.

16

MPC for Wind Power Gradients --Utilizing Forecasts, Rotor Inertia, and Central Energy Storage  

E-Print Network (OSTI)

MPC for Wind Power Gradients -- Utilizing Forecasts, Rotor Inertia, and Central Energy Storage iterations. We demonstrate our method in simulations with various wind scenarios and prices for energy. INTRODUCTION Today, wind power is the most important renewable energy source. For the years to come, many

17

Wind Speeds at Heights Crucial for Wind Energy: Measurements and Verification of Forecasts  

Science Journals Connector (OSTI)

Wind speed measurements from one year from meteorological towers and wind turbines at heights between 20 and 250 m for various European sites are analyzed and are compared with operational short-term forecasts of the global ECMWF model. The ...

Susanne Drechsel; Georg J. Mayr; Jakob W. Messner; Reto Stauffer

2012-09-01T23:59:59.000Z

18

The Wind Forecast Improvement Project (WFIP): A Public/Private...  

Energy Savers (EERE)

Improvement Project (WFIP): A PublicPrivate Partnership for Improving Short Term Wind Energy Forecasts and Quantifying the Benefits of Utility Operations The Wind Forecast...

19

Wind Speed Forecasting for Power System Operation  

E-Print Network (OSTI)

In order to support large-scale integration of wind power into current electric energy system, accurate wind speed forecasting is essential, because the high variation and limited predictability of wind pose profound challenges to the power system...

Zhu, Xinxin

2013-07-22T23:59:59.000Z

20

Forecasting wind speed financial return  

E-Print Network (OSTI)

The prediction of wind speed is very important when dealing with the production of energy through wind turbines. In this paper, we show a new nonparametric model, based on semi-Markov chains, to predict wind speed. Particularly we use an indexed semi-Markov model that has been shown to be able to reproduce accurately the statistical behavior of wind speed. The model is used to forecast, one step ahead, wind speed. In order to check the validity of the model we show, as indicator of goodness, the root mean square error and mean absolute error between real data and predicted ones. We also compare our forecasting results with those of a persistence model. At last, we show an application of the model to predict financial indicators like the Internal Rate of Return, Duration and Convexity.

D'Amico, Guglielmo; Prattico, Flavio

2013-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "wind energy forecasts" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


21

New Forecasting Tools Enhance Wind Energy Integration In Idaho...  

Energy Savers (EERE)

mix and what types of other resources-such as quick-start gas- fired units or demand response-will be needed should wind conditions change during the day, as they typically...

22

The Wind Forecast Improvement Project (WFIP): A Public/Private Partnership for Improving Short Term Wind Energy Forecasts and Quantifying the Benefits of Utility Operations the Northern Study Area.  

SciTech Connect

This report contains the results from research aimed at improving short-range (0-6 hour) hub-height wind forecasts in the NOAA weather forecast models through additional data assimilation and model physics improvements for use in wind energy forecasting. Additional meteorological observing platforms including wind profilers, sodars, and surface stations were deployed for this study by NOAA and DOE, and additional meteorological data at or near wind turbine hub height were provided by South Dakota State University and WindLogics/NextEra Energy Resources over a large geographical area in the U.S. Northern Plains for assimilation into NOAA research weather forecast models. The resulting improvements in wind energy forecasts based on the research weather forecast models (with the additional data assimilation and model physics improvements) were examined in many different ways and compared with wind energy forecasts based on the current operational weather forecast models to quantify the forecast improvements important to power grid system operators and wind plant owners/operators participating in energy markets. Two operational weather forecast models (OP_RUC, OP_RAP) and two research weather forecast models (ESRL_RAP, HRRR) were used as the base wind forecasts for generating several different wind power forecasts for the NextEra Energy wind plants in the study area. Power forecasts were generated from the wind forecasts in a variety of ways, from very simple to quite sophisticated, as they might be used by a wide range of both general users and commercial wind energy forecast vendors. The error characteristics of each of these types of forecasts were examined and quantified using bulk error statistics for both the local wind plant and the system aggregate forecasts. The wind power forecast accuracy was also evaluated separately for high-impact wind energy ramp events. The overall bulk error statistics calculated over the first six hours of the forecasts at both the individual wind plant and at the system-wide aggregate level over the one year study period showed that the research weather model-based power forecasts (all types) had lower overall error rates than the current operational weather model-based power forecasts, both at the individual wind plant level and at the system aggregate level. The bulk error statistics of the various model-based power forecasts were also calculated by season and model runtime/forecast hour as power system operations are more sensitive to wind energy forecast errors during certain times of year and certain times of day. The results showed that there were significant differences in seasonal forecast errors between the various model-based power forecasts. The results from the analysis of the various wind power forecast errors by model runtime and forecast hour showed that the forecast errors were largest during the times of day that have increased significance to power system operators (the overnight hours and the morning/evening boundary layer transition periods), but the research weather model-based power forecasts showed improvement over the operational weather model-based power forecasts at these times. A comprehensive analysis of wind energy forecast errors for the various model-based power forecasts was presented for a suite of wind energy ramp definitions. The results compiled over the year-long study period showed that the power forecasts based on the research models (ESRL_RAP, HRRR) more accurately predict wind energy ramp events than the current operational forecast models, both at the system aggregate level and at the local wind plant level. At the system level, the ESRL_RAP-based forecasts most accurately predict both the total number of ramp events and the occurrence of the events themselves, but the HRRR-based forecasts more accurately predict the ramp rate. At the individual site level, the HRRR-based forecasts most accurately predicted the actual ramp occurrence, the total number of ramps and the ramp rates (40-60% improvement in ramp rates over the coarser resolution forecast

Finley, Cathy [WindLogics

2014-04-30T23:59:59.000Z

23

The Wind Forecast Improvement Project (WFIP): A Public/Private Partnership for Improving Short Term Wind Energy Forecasts and Quantifying the Benefits of Utility Operations the Southern Study Area  

SciTech Connect

This Final Report presents a comprehensive description, findings, and conclusions for the Wind Forecast Improvement Project (WFIP)--Southern Study Area (SSA) work led by AWS Truepower (AWST). This multi-year effort, sponsored by the Department of Energy (DOE) and National Oceanographic and Atmospheric Administration (NOAA), focused on improving short-term (15-minute 6 hour) wind power production forecasts through the deployment of an enhanced observation network of surface and remote sensing instrumentation and the use of a state-of-the-art forecast modeling system. Key findings from the SSA modeling and forecast effort include: 1. The AWST WFIP modeling system produced an overall 10 20% improvement in wind power production forecasts over the existing Baseline system, especially during the first three forecast hours; 2. Improvements in ramp forecast skill, particularly for larger up and down ramps; 3. The AWST WFIP data denial experiments showed mixed results in the forecasts incorporating the experimental network instrumentation; however, ramp forecasts showed significant benefit from the additional observations, indicating that the enhanced observations were key to the model systems ability to capture phenomena responsible for producing large short-term excursions in power production; 4. The OU CAPS ARPS simulations showed that the additional WFIP instrument data had a small impact on their 3-km forecasts that lasted for the first 5-6 hours, and increasing the vertical model resolution in the boundary layer had a greater impact, also in the first 5 hours; and 5. The TTU simulations were inconclusive as to which assimilation scheme (3DVAR versus EnKF) provided better forecasts, and the additional observations resulted in some improvement to the forecasts in the first 1 3 hours.

Freedman, Jeffrey M.; Manobianco, John; Schroeder, John; Ancell, Brian; Brewster, Keith; Basu, Sukanta; Banunarayanan, Venkat; Hodge, Bri-Mathias; Flores, Isabel

2014-04-30T23:59:59.000Z

24

Wind Forecast Improvement Project Southern Study Area Final Report...  

Office of Environmental Management (EM)

Wind Forecast Improvement Project Southern Study Area Final Report Wind Forecast Improvement Project Southern Study Area Final Report Wind Forecast Improvement Project Southern...

25

EWEC 2006, Athens, The Anemos Wind Power Forecasting Platform Technology The Anemos Wind Power Forecasting Platform Technology -  

E-Print Network (OSTI)

EWEC 2006, Athens, The Anemos Wind Power Forecasting Platform Technology 1 The Anemos Wind Power a professional, flexible platform for operating wind power prediction models, laying the main focus on state models from all over Europe are able to work on this platform. Keywords: wind energy, wind power

Boyer, Edmond

26

Development and Deployment of an Advanced Wind Forecasting Technique  

E-Print Network (OSTI)

findings. Part 2 addresses how operators of wind power plants and power systems can incorporate advanced the output of advanced wind energy forecasts into decision support models for wind power plant and power in Porto) Power Systems Unit Porto, Portugal Industry Partners Horizon Wind Energy, LLC Midwest Independent

Kemner, Ken

27

New Concepts in Wind Power Forecasting Models  

E-Print Network (OSTI)

New Concepts in Wind Power Forecasting Models Vladimiro Miranda, Ricardo Bessa, João Gama, Guenter to the training of mappers such as neural networks to perform wind power prediction as a function of wind for more accurate short term wind power forecasting models has led to solid and impressive development

Kemner, Ken

28

A Multiscale Wind and Power Forecast System for Wind Farms  

Science Journals Connector (OSTI)

Abstract A large scale introduction of wind energy in power sector causes a number of challenges for electricity market and wind farm operators who will have to deal with the variability and uncertainty in the wind power generation in their scheduling and trading decisions. Numerical wind power forecasting has been identified as an important tool to address the increasing variability and uncertainty and to more efficiently operate power systems with large wind power penetration. It has been observed that even when the wind magnitude and direction recorded at a wind mast are the same, the corresponding energy productions can vary significantly. In this work we try to introduce improvements by developing a more accurate wind forecast system for a complex terrain. The system has been operational for eight months for the Bessaker Wind Farm located in the middle part of Norway in a very complex terrain. Operational power curves have also been derived from data analysis. Although the methodology explained has been developed for an onshore wind farm, it can very well be utilized in an offshore context also.

Adil Rasheed; Jakob Kristoffer Sld; Trond Kvamsdal

2014-01-01T23:59:59.000Z

29

Forecasting Solar Wind Speeds  

E-Print Network (OSTI)

By explicitly taking into account effects of Alfven waves, I derive from a simple energetics argument a fundamental relation which predicts solar wind (SW) speeds in the vicinity of the earth from physical properties on the sun. Kojima et al. recently found from their observations that a ratio of surface magnetic field strength to an expansion factor of open magnetic flux tubes is a good indicator of the SW speed. I show by using the derived relation that this nice correlation is an evidence of the Alfven wave which accelerates SW in expanding flux tubes. The observations further require that fluctuation amplitudes of magnetic field lines at the surface should be almost universal in different coronal holes, which needs to be tested by future observations.

Takeru K. Suzuki

2006-02-03T23:59:59.000Z

30

Funding Opportunity Announcement for Wind Forecasting Improvement...  

Office of Environmental Management (EM)

to improved forecasts, system operators and industry professionals can ensure that wind turbines will operate at their maximum potential. Data collected during this field...

31

Upcoming Funding Opportunity for Wind Forecasting Improvement...  

Office of Environmental Management (EM)

to improved forecasts, system operators and industry professionals can ensure that wind turbines will operate at their maximum potential. Data collected during this field...

32

QUIKSCAT MEASUREMENTS AND ECMWF WIND FORECASTS  

E-Print Network (OSTI)

. (2004) this forecast error was encountered when assimilating satellite measurements of zonal wind speeds between satellite measurements and meteorological forecasts of near-surface ocean winds. This type of covariance enters in assimilation techniques such as Kalman filtering. In all, six residual fields

Malmberg, Anders

33

QUIKSCAT MEASUREMENTS AND ECMWF WIND FORECASTS  

E-Print Network (OSTI)

. (2004) this forecast error was encountered when assimilating satellite measurements of zonal wind speeds between satellite measurements and meteorological forecasts of near­surface ocean winds. This type of covariance enters in assimilation techniques such as Kalman filtering. In all, six residual fields

Malmberg, Anders

34

ANL Software Improves Wind Power Forecasting | Department of...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

principal investigator for the project. For wind power point forecasting, ARGUS PRIMA trains a neural network using data from weather forecasts, observations, and actual wind...

35

PSO (FU 2101) Ensemble-forecasts for wind power  

E-Print Network (OSTI)

PSO (FU 2101) Ensemble-forecasts for wind power Analysis of the Results of an On-line Wind Power Ensemble- forecasts for wind power (FU2101) a demo-application producing quantile forecasts of wind power correct) quantile forecasts of the wind power production are generated by the application. However

36

The effects of energy storage properties and forecast accuracy on mitigating variability in wind power generation  

E-Print Network (OSTI)

Electricity generation from wind power is increasing worldwide. Wind power can offset traditional fossil fuel generators which is beneficial to the environment. However, wind generation is unpredictable. Wind speeds have ...

Jaworsky, Christina A

2013-01-01T23:59:59.000Z

37

wind energy  

National Nuclear Security Administration (NNSA)

5%2A en Pantex to Become Wind Energy Research Center http:nnsa.energy.govfieldofficesnponpopressreleasespantex-become-wind-energy-research-center

38

Energy Demand Forecasting  

Science Journals Connector (OSTI)

This chapter presents alternative approaches used in forecasting energy demand and discusses their pros and cons. It... Chaps. 3 and 4 ...

S. C. Bhattacharyya

2011-01-01T23:59:59.000Z

39

Optimal combined wind power forecasts using exogeneous variables  

E-Print Network (OSTI)

Optimal combined wind power forecasts using exogeneous variables Fannar ¨Orn Thordarson Kongens of the thesis is combined wind power forecasts using informations from meteorological forecasts. Lyngby, January

40

Forecasting Uncertainty Related to Ramps of Wind Power Production  

E-Print Network (OSTI)

Forecasting Uncertainty Related to Ramps of Wind Power Production Arthur Bossavy, Robin Girard - The continuous improvement of the accuracy of wind power forecasts is motivated by the increasing wind power study. Key words : wind power forecast, ramps, phase er- rors, forecasts ensemble. 1 Introduction Most

Boyer, Edmond

Note: This page contains sample records for the topic "wind energy forecasts" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


41

Distribution of Wind Power Forecasting Errors from Operational Systems (Presentation)  

SciTech Connect

This presentation offers new data and statistical analysis of wind power forecasting errors in operational systems.

Hodge, B. M.; Ela, E.; Milligan, M.

2011-10-01T23:59:59.000Z

42

Use of wind power forecasting in operational decisions.  

SciTech Connect

The rapid expansion of wind power gives rise to a number of challenges for power system operators and electricity market participants. The key operational challenge is to efficiently handle the uncertainty and variability of wind power when balancing supply and demand in ths system. In this report, we analyze how wind power forecasting can serve as an efficient tool toward this end. We discuss the current status of wind power forecasting in U.S. electricity markets and develop several methodologies and modeling tools for the use of wind power forecasting in operational decisions, from the perspectives of the system operator as well as the wind power producer. In particular, we focus on the use of probabilistic forecasts in operational decisions. Driven by increasing prices for fossil fuels and concerns about greenhouse gas (GHG) emissions, wind power, as a renewable and clean source of energy, is rapidly being introduced into the existing electricity supply portfolio in many parts of the world. The U.S. Department of Energy (DOE) has analyzed a scenario in which wind power meets 20% of the U.S. electricity demand by 2030, which means that the U.S. wind power capacity would have to reach more than 300 gigawatts (GW). The European Union is pursuing a target of 20/20/20, which aims to reduce greenhouse gas (GHG) emissions by 20%, increase the amount of renewable energy to 20% of the energy supply, and improve energy efficiency by 20% by 2020 as compared to 1990. Meanwhile, China is the leading country in terms of installed wind capacity, and had 45 GW of installed wind power capacity out of about 200 GW on a global level at the end of 2010. The rapid increase in the penetration of wind power into power systems introduces more variability and uncertainty in the electricity generation portfolio, and these factors are the key challenges when it comes to integrating wind power into the electric power grid. Wind power forecasting (WPF) is an important tool to help efficiently address this challenge, and significant efforts have been invested in developing more accurate wind power forecasts. In this report, we document our work on the use of wind power forecasting in operational decisions.

Botterud, A.; Zhi, Z.; Wang, J.; Bessa, R.J.; Keko, H.; Mendes, J.; Sumaili, J.; Miranda, V. (Decision and Information Sciences); (INESC Porto)

2011-11-29T23:59:59.000Z

43

Managing Wind Power Forecast Uncertainty in Electric Grids.  

E-Print Network (OSTI)

??Electricity generated from wind power is both variable and uncertain. Wind forecasts provide valuable information for wind farm management, but they are not perfect. Chapter (more)

Mauch, Brandon Keith

2012-01-01T23:59:59.000Z

44

PSO (FU 2101) Ensemble-forecasts for wind power  

E-Print Network (OSTI)

PSO (FU 2101) Ensemble-forecasts for wind power Wind Power Ensemble Forecasting Using Wind Speed the problems of (i) transforming the meteorological ensembles to wind power ensembles and, (ii) correcting) data. However, quite often the actual wind power production is outside the range of ensemble forecast

45

Value of Improved Wind Power Forecasting in the Western Interconnection (Poster)  

SciTech Connect

Wind power forecasting is a necessary and important technology for incorporating wind power into the unit commitment and dispatch process. It is expected to become increasingly important with higher renewable energy penetration rates and progress toward the smart grid. There is consensus that wind power forecasting can help utility operations with increasing wind power penetration; however, there is far from a consensus about the economic value of improved forecasts. This work explores the value of improved wind power forecasting in the Western Interconnection of the United States.

Hodge, B.

2013-12-01T23:59:59.000Z

46

Forecastability as a Design Criterion in Wind Resource Assessment: Preprint  

SciTech Connect

This paper proposes a methodology to include the wind power forecasting ability, or 'forecastability,' of a site as a design criterion in wind resource assessment and wind power plant design stages. The Unrestricted Wind Farm Layout Optimization (UWFLO) methodology is adopted to maximize the capacity factor of a wind power plant. The 1-hour-ahead persistence wind power forecasting method is used to characterize the forecastability of a potential wind power plant, thereby partially quantifying the integration cost. A trade-off between the maximum capacity factor and the forecastability is investigated.

Zhang, J.; Hodge, B. M.

2014-04-01T23:59:59.000Z

47

Accuracy of near real time updates in wind power forecasting  

E-Print Network (OSTI)

· advantage: no NWP data necessary ­ very actual shortest term forecasts possible · wind power inputAccuracy of near real time updates in wind power forecasting with regard to different weather October 2007 #12;EMS/ECAM 2007 ­ Nadja Saleck Outline · Study site · Wind power forecasting - method

Heinemann, Detlev

48

Probabilistic Forecasts of Wind Speed: Ensemble Model Output Statistics  

E-Print Network (OSTI)

. Over the past two decades, ensembles of numerical weather prediction (NWP) models have been developed and phrases: Continuous ranked probability score; Density forecast; Ensem- ble system; Numerical weather prediction; Heteroskedastic censored regression; Tobit model; Wind energy. 1 #12;1 Introduction Accurate

Washington at Seattle, University of

49

Wind Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

FUPWG Meeting FUPWG Meeting NREL is a national laboratory of the U.S. Department of Energy Office of Energy Efficiency and Renewable Energy operated by the Alliance for Sustainable Energy, LLC Robi Robichaud November 18, 2009 Topics Introduction Review of the Current Wind Market Drivers for Wind Development Siting g Issues Wind Resource Assessment Wind Characteristics Wind Power Potential Basic Wind Turbine Theory Basic Wind Turbine Theory Types of Wind Turbines Facts About Wind Siting Facts About Wind Siting Wind Performance 1. United States: MW 1 9 8 2 1 9 8 3 1 9 8 4 1 9 8 5 1 9 8 6 1 9 8 7 1 9 8 8 1 9 8 9 1 9 9 0 1 9 9 1 1 9 9 2 1 9 9 3 1 9 9 4 1 9 9 5 1 9 9 6 1 9 9 7 1 9 9 8 1 9 9 9 2 0 0 0 2 0 0 1 2 0 0 2 2 0 0 3 2 0 0 4 2 0 0 5 2 0 0 6 2 0 0 7 2 0 0 8 Current Status of the Wind Industry Total Global Installed Wind Capacity Total Global Installed Wind Capacity Total Global Installed Wind Capacity

50

Solar Wind Forecasting with Coronal Holes  

E-Print Network (OSTI)

An empirical model for forecasting solar wind speed related geomagnetic events is presented here. The model is based on the estimated location and size of solar coronal holes. This method differs from models that are based on photospheric magnetograms (e.g., Wang-Sheeley model) to estimate the open field line configuration. Rather than requiring the use of a full magnetic synoptic map, the method presented here can be used to forecast solar wind velocities and magnetic polarity from a single coronal hole image, along with a single magnetic full-disk image. The coronal hole parameters used in this study are estimated with Kitt Peak Vacuum Telescope He I 1083 nm spectrograms and photospheric magnetograms. Solar wind and coronal hole data for the period between May 1992 and September 2003 are investigated. The new model is found to be accurate to within 10% of observed solar wind measurements for its best one-month periods, and it has a linear correlation coefficient of ~0.38 for the full 11 years studied. Using a single estimated coronal hole map, the model can forecast the Earth directed solar wind velocity up to 8.5 days in advance. In addition, this method can be used with any source of coronal hole area and location data.

S. Robbins; C. J. Henney; J. W. Harvey

2007-01-09T23:59:59.000Z

51

Forecast Energy | Open Energy Information  

Open Energy Info (EERE)

Forecast Energy Forecast Energy Jump to: navigation, search Name Forecast Energy Address 2320 Marinship Way, Suite 300 Place Sausalito, California Zip 94965 Sector Services Product Intelligent Monitoring and Forecasting Services Year founded 2010 Number of employees 11-50 Company Type For profit Website http://www.forecastenergy.net Coordinates 37.865647°, -122.496315° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":37.865647,"lon":-122.496315,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

52

Wind News | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Wind News Wind News Wind News RSS February 7, 2011 Salazar, Chu Announce Major Offshore Wind Initiatives Strategic plan, $50 million in R&D funding, identified Wind Energy Areas will speed offshore wind energy development December 16, 2010 Department of Energy Finalizes Loan Guarantee to Support World's Largest Wind Project 845-Megawatt Wind Facility Will Create Hundreds of Jobs and Avoid Over 1.2 Million Tons of Carbon Dioxide Annually October 29, 2010 Statement by Energy Secretary Steven Chu on Today's Grand Opening of the Nordex Manufacturing Facility in Jonesboro, Arkansas Recovery Act investment creates jobs, helps lay the foundation for a clean energy economy September 13, 2010 DOE Announces More than $5 Million to Support Wind Energy Development Funds to Enhance Short-Term Wind Forecasting and Accelerate Midsize Wind

53

Investigation of model parameters for high-resolution wind energy forecasting: Case studies over simple and complex terrain  

Science Journals Connector (OSTI)

Abstract Wind power forecasting, turbine micrositing, and turbine design require high-resolution simulations of atmospheric flow. Case studies at two West Coast North American wind farms, one with simple and one with complex terrain, are explored using the Weather Research and Forecasting (WRF) model. Both synoptically and locally driven events that include some ramping are considered. The performance of the model with different grid nesting configurations, turbulence closures, and grid resolutions is investigated through comparisons with observation data. For the simple terrain site, no significant improvement in the simulation results is found when using higher resolution. In contrast, for the complex terrain site, there is significant improvement when using higher resolution, but only during the locally driven event. This suggests the possibility that computational resources could be spared under certain conditions, for example when the topography is adequately resolved at coarser resolutions. Physical parameters such as soil moisture have a very large effect, but mostly for the locally forced events for both simple and complex terrain. The effect of the PBL scheme choice varies significantly depending on the meteorological forcing and terrain. On average, prognostic TKE equation schemes perform better than non-local eddy viscosity schemes.

Nikola Marjanovic; Sonia Wharton; Fotini K. Chow

2014-01-01T23:59:59.000Z

54

Wind power forecast error smoothing within a wind farm  

Science Journals Connector (OSTI)

Smoothing of wind power forecast errors is well-known for large areas. Comparable effects within a wind farm are investigated in this paper. A Neural Network was taken to predict the power output of a wind farm in north-western Germany comprising 17 turbines. A comparison was done between an algorithm that fits mean wind and mean power data of the wind farm and a second algorithm that fits wind and power data individually for each turbine. The evaluation of root mean square errors (RMSE) shows that relative small smoothing effects occur. However, it can be shown for this wind farm that individual calculations have the advantage that only a few turbines are needed to give better results than the use of mean data. Furthermore different results occurred if predicted wind speeds are directly fitted to observed wind power or if predicted wind speeds are first fitted to observed wind speeds and then applied to a power curve. The first approach gives slightly better RMSE values, the bias improves considerably.

Nadja Saleck; Lueder von Bremen

2007-01-01T23:59:59.000Z

55

Wind power forecasting in U.S. electricity markets.  

SciTech Connect

Wind power forecasting is becoming an important tool in electricity markets, but the use of these forecasts in market operations and among market participants is still at an early stage. The authors discuss the current use of wind power forecasting in U.S. ISO/RTO markets, and offer recommendations for how to make efficient use of the information in state-of-the-art forecasts.

Botterud, A.; Wang, J.; Miranda, V.; Bessa, R. J.; Decision and Information Sciences; INESC Porto

2010-04-01T23:59:59.000Z

56

Wind power forecasting in U.S. Electricity markets  

SciTech Connect

Wind power forecasting is becoming an important tool in electricity markets, but the use of these forecasts in market operations and among market participants is still at an early stage. The authors discuss the current use of wind power forecasting in U.S. ISO/RTO markets, and offer recommendations for how to make efficient use of the information in state-of-the-art forecasts. (author)

Botterud, Audun; Wang, Jianhui; Miranda, Vladimiro; Bessa, Ricardo J.

2010-04-15T23:59:59.000Z

57

Solar Energy Market Forecast | Open Energy Information  

Open Energy Info (EERE)

Solar Energy Market Forecast Solar Energy Market Forecast Jump to: navigation, search Tool Summary LAUNCH TOOL Name: Solar Energy Market Forecast Agency/Company /Organization: United States Department of Energy Sector: Energy Focus Area: Solar Topics: Market analysis, Technology characterizations Resource Type: Publications Website: giffords.house.gov/DOE%20Perspective%20on%20Solar%20Market%20Evolution References: Solar Energy Market Forecast[1] Summary " Energy markets / forecasts DOE Solar America Initiative overview Capital market investments in solar Solar photovoltaic (PV) sector overview PV prices and costs PV market evolution Market evolution considerations Balance of system costs Silicon 'normalization' Solar system value drivers Solar market forecast Additional resources"

58

Investigating the Correlation Between Wind and Solar Power Forecast Errors in the Western Interconnection: Preprint  

SciTech Connect

Wind and solar power generations differ from conventional energy generation because of the variable and uncertain nature of their power output. This variability and uncertainty can have significant impacts on grid operations. Thus, short-term forecasting of wind and solar generation is uniquely helpful for power system operations to balance supply and demand in an electricity system. This paper investigates the correlation between wind and solar power forecasting errors.

Zhang, J.; Hodge, B. M.; Florita, A.

2013-05-01T23:59:59.000Z

59

WIND ENERGY Wind Energ. (2014)  

E-Print Network (OSTI)

WIND ENERGY Wind Energ. (2014) Published online in Wiley Online Library (wileyonlinelibrary Correspondence M. Wächter, ForWind-Center for Wind Energy Research, Institute of Physics, Carl Von Ossietzky on the operation of wind energy converters (WECs) imposing different risks especially in terms of highly dynamic

Peinke, Joachim

60

Ramp Forecasting Performance from Improved Short-Term Wind Power Forecasting: Preprint  

SciTech Connect

The variable and uncertain nature of wind generation presents a new concern to power system operators. One of the biggest concerns associated with integrating a large amount of wind power into the grid is the ability to handle large ramps in wind power output. Large ramps can significantly influence system economics and reliability, on which power system operators place primary emphasis. The Wind Forecasting Improvement Project (WFIP) was performed to improve wind power forecasts and determine the value of these improvements to grid operators. This paper evaluates the performance of improved short-term wind power ramp forecasting. The study is performed for the Electric Reliability Council of Texas (ERCOT) by comparing the experimental WFIP forecast to the current short-term wind power forecast (STWPF). Four types of significant wind power ramps are employed in the study; these are based on the power change magnitude, direction, and duration. The swinging door algorithm is adopted to extract ramp events from actual and forecasted wind power time series. The results show that the experimental short-term wind power forecasts improve the accuracy of the wind power ramp forecasting, especially during the summer.

Zhang, J.; Florita, A.; Hodge, B. M.; Freedman, J.

2014-05-01T23:59:59.000Z

Note: This page contains sample records for the topic "wind energy forecasts" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


61

Wind Energy | Department of Energy  

Office of Environmental Management (EM)

Wind Energy Wind Energy Below are resources for Tribes on wind energy technologies. 2012 Market Report on Wind Technologies in Distributed Applications Includes a breakdown of...

62

Wind Power Forecasting: State-of-the-Art 2009  

E-Print Network (OSTI)

Wind Power Forecasting: State-of-the-Art 2009 ANL/DIS-10-1 Decision and Information Sciences about Argonne and its pioneering science and technology programs, see www.anl.gov. #12;Wind Power

Kemner, Ken

63

Application of an Improved SVM Algorithm for Wind Speed Forecasting  

Science Journals Connector (OSTI)

An improved Support Vector Machine (SVM) algorithm is used to forecast wind in Doubly Fed Induction Generator (DFIG) wind power system without aerodromometer. The ... Validation (CV) method. Finally, 3.6MW DFIG w...

Huaqiang Zhang; Xinsheng Wang; Yinxiao Wu

2011-01-01T23:59:59.000Z

64

Powering Up With Space-Time Wind Forecasting Amanda S. HERING and Marc G. GENTON  

E-Print Network (OSTI)

Powering Up With Space-Time Wind Forecasting Amanda S. HERING and Marc G. GENTON The technology to harvest electricity from wind energy is now advanced enough to make entire cities powered by it a reality be more realistically assessed with a loss measure that depends upon the power curve relating wind speed

Genton, Marc G.

65

Annual Energy Outlook Forecast Evaluation  

Gasoline and Diesel Fuel Update (EIA)

Annual Energy Outlook Forecast Evaluation Annual Energy Outlook Forecast Evaluation Annual Energy Outlook Forecast Evaluation by Susan H. Holte In this paper, the Office of Integrated Analysis and Forecasting (OIAF) of the Energy Information Administration (EIA) evaluates the projections published in the Annual Energy Outlook (AEO), (1) by comparing the projections from the Annual Energy Outlook 1982 through the Annual Energy Outlook 2001 with actual historical values. A set of major consumption, production, net import, price, economic, and carbon dioxide emissions variables are included in the evaluation, updating similar papers from previous years. These evaluations also present the reasons and rationales for significant differences. The Office of Integrated Analysis and Forecasting has been providing an

66

Annual Energy Outlook Forecast Evaluation  

Gasoline and Diesel Fuel Update (EIA)

by Esmeralda Sánchez The Office of Integrated Analysis and Forecasting has produced an annual evaluation of the accuracy of the Annual Energy Outlook (AEO) since 1996. Each year, the forecast evaluation expands on the prior year by adding the projections from the most recent AEO and the most recent historical year of data. The Forecast Evaluation examines the accuracy of AEO forecasts dating back to AEO82 by calculating the average absolute forecast errors for each of the major variables for AEO82 through AEO2003. The average absolute forecast error, which for the purpose of this report will also be referred to simply as "average error" or "forecast error", is computed as the simple mean, or average, of all the absolute values of the percent errors,

67

Unit commitment with wind power generation: integrating wind forecast uncertainty and stochastic programming.  

SciTech Connect

We present a computational framework for integrating the state-of-the-art Weather Research and Forecasting (WRF) model in stochastic unit commitment/energy dispatch formulations that account for wind power uncertainty. We first enhance the WRF model with adjoint sensitivity analysis capabilities and a sampling technique implemented in a distributed-memory parallel computing architecture. We use these capabilities through an ensemble approach to model the uncertainty of the forecast errors. The wind power realizations are exploited through a closed-loop stochastic unit commitment/energy dispatch formulation. We discuss computational issues arising in the implementation of the framework. In addition, we validate the framework using real wind speed data obtained from a set of meteorological stations. We also build a simulated power system to demonstrate the developments.

Constantinescu, E. M.; Zavala, V. M.; Rocklin, M.; Lee, S.; Anitescu, M. (Mathematics and Computer Science); (Univ. of Chicago); (New York Univ.)

2009-10-09T23:59:59.000Z

68

Annual Energy Outlook Forecast Evaluation  

Gasoline and Diesel Fuel Update (EIA)

by Esmeralda Sanchez by Esmeralda Sanchez Errata -(7/14/04) The Office of Integrated Analysis and Forecasting has produced an annual evaluation of the accuracy of the Annual Energy Outlook (AEO) since 1996. Each year, the forecast evaluation expands on the prior year by adding the projections from the most recent AEO and the most recent historical year of data. The Forecast Evaluation examines the accuracy of AEO forecasts dating back to AEO82 by calculating the average absolute forecast errors for each of the major variables for AEO82 through AEO2003. The average absolute forecast error, which for the purpose of this report will also be referred to simply as "average error" or "forecast error", is computed as the simple mean, or average, of all the absolute values of the percent errors, expressed as the percentage difference between the Reference Case projection and actual historic value, shown for every AEO and for each year in the forecast horizon (for a given variable). The historical data are typically taken from the Annual Energy Review (AER). The last column of Table 1 provides a summary of the most recent average absolute forecast errors. The calculation of the forecast error is shown in more detail in Tables 2 through 18. Because data for coal prices to electric generating plants were not available from the AER, data from the Monthly Energy Review (MER), July 2003 were used.

69

Wind Energy Leasing Handbook  

E-Print Network (OSTI)

Wind Energy Leasing Handbook Wind Energy Leasing Handbook E-1033 Oklahoma Cooperative Extension?..................................................................................................................... 31 What do wind developers consider in locating wind energy projects?............................................................................................ 37 How do companies and individuals invest in wind energy projects?....................................................................

Balasundaram, Balabhaskar "Baski"

70

Wind energy  

Science Journals Connector (OSTI)

Wind energy is rapidly growing. In 2006 the installed generating capacity in the world increased by 25%, a growth rate which has more or less been sustained during the last decade. And there is no reason to believe that this growth will slow significantly in the coming years. For example, the United Kingdom's goal for installed wind turbines by 2020 is 33GW up from 2GW in 2006, an average annual growth rate of 22% over that period. More than half of all turbines are installed in Europe, but United States, India and lately China are also rapidly growing markets. The cradle of modern wind energy was set by innovative blacksmiths in rural Denmark. Now the wind provides more than 20% of the electrical power in Denmark, the industry has professionalized and has close ties with public research at universities. This focus issue is concerned with research in wind energy. The main purposes of research in wind energy are to: decrease the cost of power generated by the wind; increase the reliability and predictability of the energy source; investigate and reduce the adverse environmental impact of massive deployment of wind turbines; build research based educations for wind energy engineers. This focus issue contains contributions from several fields of research. Decreased costs cover a very wide range of activities from aerodynamics of the wind turbine blades, optimal site selection for the turbines, optimization of the electrical grid and power market for a fluctuating source, more efficient electrical generators and gears, and new materials and production techniques for turbine manufacturing. The United Kingdom recently started the construction of the London Array, a 1GW off-shore wind farm east of London consisting of several hundred turbines. To design such a farm optimally it is necessary to understand the chaotic and very turbulent flow downwind from a turbine, which decreases the power production and increases the mechanical loads on other nearby turbines. Also addressed within the issue is how much conventional power production can be replaced by the ceaseless wind, with the question of how Greece's target of 29% renewables by 2020 is to be met efficiently. Other topics include an innovative way to determine the power curve of a turbine experimentally more accurately, the use of fluid dynamics tools to investigate the implications of placing vortex generators on wind turbine blades (thereby possibly improving their efficiency) and a study of the perception of wind turbine noise. It turns out that a small but significant fraction of wind turbine neighbours feel that turbine generated noise impairs their ability to rest. The annoyance is correlated with a negative attitude towards the visual impact on the landscape, but what is cause and effect is too early to say. As mentioned there is a rush for wind turbines in many countries. However, this positive development for the global climate is currently limited by practical barriers. One bottleneck is the difficulties for the sub-suppliers of gears and other parts to meet the demand. Another is the difficulties to meet the demand for engineers specialized in wind. For that reason the Technical University of Denmark (DTU) recently launched the world's first Wind Energy Masters Program. Here and elsewhere in the world of wind education and research we should really speed up now, as our chances of contributing to emission free energy production and a healthier global climate have never been better. Focus on Wind Energy Contents The articles below represent the first accepted contributions and further additions will appear in the near future. Wind turbineslow level noise sources interfering with restoration? EjaPedersen andKerstin PerssonWaye On the effect of spatial dispersion of wind power plants on the wind energy capacity credit in Greece GeorgeCaralis, YiannisPerivolaris, KonstantinosRados andArthourosZervos Large-eddy simulation of spectral coherence in a wind turbine wake AJimenez, ACrespo, EMigoya andJGarcia How to improve the estimation of

Jakob Mann; Jens Nrkr Srensen; Poul-Erik Morthorst

2008-01-01T23:59:59.000Z

71

Annual Energy Outlook Forecast Evaluation  

Gasoline and Diesel Fuel Update (EIA)

Title of Paper Annual Energy Outlook Forecast Evaluation Title of Paper Annual Energy Outlook Forecast Evaluation by Susan H. Holte OIAF has been providing an evaluation of the forecasts in the Annual Energy Outlook (AEO) annually since 1996. Each year, the forecast evaluation expands on that of the prior year by adding the most recent AEO and the most recent historical year of data. However, the underlying reasons for deviations between the projections and realized history tend to be the same from one evaluation to the next. The most significant conclusions are: Natural gas has generally been the fuel with the least accurate forecasts of consumption, production, and prices. Natural gas was the last fossil fuel to be deregulated following the strong regulation of energy markets in the 1970s and early 1980s. Even after deregulation, the behavior

72

Annual Energy Outlook Forecast Evaluation - Tables  

Gasoline and Diesel Fuel Update (EIA)

Annual Energy Outlook Forecast Evaluation Table 2. Total Energy Consumption, Actual vs. Forecasts Table 3. Total Petroleum Consumption, Actual vs. Forecasts Table 4. Total Natural Gas Consumption, Actual vs. Forecasts Table 5. Total Coal Consumption, Actual vs. Forecasts Table 6. Total Electricity Sales, Actual vs. Forecasts Table 7. Crude Oil Production, Actual vs. Forecasts Table 8. Natural Gas Production, Actual vs. Forecasts Table 9. Coal Production, Actual vs. Forecasts Table 10. Net Petroleum Imports, Actual vs. Forecasts Table 11. Net Natural Gas Imports, Actual vs. Forecasts Table 12. Net Coal Exports, Actual vs. Forecasts Table 13. World Oil Prices, Actual vs. Forecasts Table 14. Natural Gas Wellhead Prices, Actual vs. Forecasts Table 15. Coal Prices to Electric Utilities, Actual vs. Forecasts

73

A new hybrid model optimized by an intelligent optimization algorithm for wind speed forecasting  

Science Journals Connector (OSTI)

Abstract Forecasting the wind speed is indispensable in wind-related engineering studies and is important in the management of wind farms. As a technique essential for the future of clean energy systems, reducing the forecasting errors related to wind speed has always been an important research subject. In this paper, an optimized hybrid method based on the Autoregressive Integrated Moving Average (ARIMA) and Kalman filter is proposed to forecast the daily mean wind speed in western China. This approach employs Particle Swarm Optimization (PSO) as an intelligent optimization algorithm to optimize the parameters of the ARIMA model, which develops a hybrid model that is best adapted to the data set, increasing the fitting accuracy and avoiding over-fitting. The proposed method is subsequently examined on the wind farms of western China, where the proposed hybrid model is shown to perform effectively and steadily.

Zhongyue Su; Jianzhou Wang; Haiyan Lu; Ge Zhao

2014-01-01T23:59:59.000Z

74

Optimal Bidding Strategies for Wind Power Producers with Meteorological Forecasts  

E-Print Network (OSTI)

Optimal Bidding Strategies for Wind Power Producers with Meteorological Forecasts Antonio that the inherent variability in wind power generation and the related difficulty in predicting future generation profiles, raise major challenges to wind power integration into the electricity grid. In this work we study

Giannitrapani, Antonello

75

Energy Department Forecasts Geothermal Achievements in 2015 ...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Forecasts Geothermal Achievements in 2015 Energy Department Forecasts Geothermal Achievements in 2015 The 40th annual Stanford Geothermal Workshop in January featured speakers in...

76

Advanced Hydraulic Wind Energy  

Science Journals Connector (OSTI)

The Jet Propulsion Laboratory, California Institute of Technology, has developed a novel advanced hydraulic wind energy design, which has up to 23% performance improvement over conventional wind turbine and conventional hydraulic wind energy systems ... Keywords: wind, tide, energy, power, hydraulic

Jack A. Jones; Allan Bruce; Adrienne S. Lam

2013-04-01T23:59:59.000Z

77

Study and implementation of mesoscale weather forecasting models in the wind industry.  

E-Print Network (OSTI)

?? As the wind industry is developing, it is asking for more reliable short-term wind forecasts to better manage the wind farms operations and electricity (more)

Jourdier, Bndicte

2012-01-01T23:59:59.000Z

78

Sandia National Laboratories: wind energy  

NLE Websites -- All DOE Office Websites (Extended Search)

Wind Energy Manufacturing Lab Helps Engineers Improve Wind Power On November 15, 2011, in Energy, News, Partnership, Renewable Energy, Wind Energy Researchers at the Wind Energy...

79

Seasonal Forecasting of Extreme Wind and Precipitation Frequencies in Europe  

E-Print Network (OSTI)

Seasonal Forecasting of Extreme Wind and Precipitation Frequencies in Europe Matthew J. Swann;Abstract Flood and wind damage to property and livelihoods resulting from extreme precipitation events variability of these extreme events can be closely related to the large-scale atmospheric circulation

Feigon, Brooke

80

Matter & Energy Wind Energy  

E-Print Network (OSTI)

See Also: Matter & Energy Wind Energy Energy Technology Physics Nuclear Energy Petroleum 27, 2012) -- Energy flowing from large-scale to small-scale places may be prevented from flowing, indicating that there are energy flows from large to small scale in confined space. Indeed, under a specific

Shepelyansky, Dima

Note: This page contains sample records for the topic "wind energy forecasts" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


81

Wind energy  

Science Journals Connector (OSTI)

...is approximately 4.5-6.01 for onshore wind farms. The price for offshore wind farms is estimated to be 50% higher. For comparison...visually intrusive. The visual impact of offshore wind farms quickly diminishes with distance and 10km...

2007-01-01T23:59:59.000Z

82

Annual Energy Outlook Forecast Evaluation  

Gasoline and Diesel Fuel Update (EIA)

by by Esmeralda Sanchez The Office of Integrated Analysis and Forecasting has been providing an evaluation of the forecasts in the Annual Energy Outlook (AEO) annually since 1996. Each year, the forecast evaluation expands on that of the prior year by adding the most recent AEO and the most recent historical year of data. However, the underlying reasons for deviations between the projections and realized history tend to be the same from one evaluation to the next. The most significant conclusions are: * Over the last two decades, there have been many significant changes in laws, policies, and regulations that could not have been anticipated and were not assumed in the projections prior to their implementation. Many of these actions have had significant impacts on energy supply, demand, and prices; however, the

83

Energy demand forecasting: industry practices and challenges  

Science Journals Connector (OSTI)

Accurate forecasting of energy demand plays a key role for utility companies, network operators, producers and suppliers of energy. Demand forecasts are utilized for unit commitment, market bidding, network operation and maintenance, integration of renewable ... Keywords: analytics, energy demand forecasting, machine learning, renewable energy sources, smart grids, smart meters

Mathieu Sinn

2014-06-01T23:59:59.000Z

84

Next Generation Short-Term Forecasting of Wind Power Overview of the ANEMOS Project.  

E-Print Network (OSTI)

1 Next Generation Short-Term Forecasting of Wind Power ­ Overview of the ANEMOS Project. G outperform current state-of-the-art methods, for onshore and offshore wind power forecasting. Advanced forecasts for the power system management and market integration of wind power. Keywords: Wind power, short

Boyer, Edmond

85

Short-term wind forecast for the safety management of complex areas during hazardous wind events  

Science Journals Connector (OSTI)

Abstract This paper describes the short-term wind forecast system realised in the framework of the European Project Wind and Ports: The forecast of wind for the management and safety of port areas. The project?s aim is to contribute improving the safety and accessibility to the harbour areas of the largest ports in the Northern Tyrrhenian Sea, which are frequently exposed to hazardous winds, in order to minimise the risks for users, structures, transport means, stored goods and boats within the ports. The short-term wind forecast system is based on a mixed statistical-numerical procedure, trained by means of local wind measurements and implemented into an operational chain for the real-time prediction of the maximum expected wind velocity corresponding to three forecast horizons (30, 60 and 90min) and three non-exceeding probabilities (90%, 95%, and 99%). The local wind measurements used to train the forecast algorithms have been recorded from the 15 ultra-sonic anemometers installed in the Ports of Savona, La Spezia, and Livorno. This wind-monitoring network is used also to carry out the short-term forecast system a posteriori verification and validation.

M. Burlando; M. Pizzo; M.P. Repetto; G. Solari; P. De Gaetano; M. Tizzi

2014-01-01T23:59:59.000Z

86

Annual Energy Outlook Forecast Evaluation  

Gasoline and Diesel Fuel Update (EIA)

Analysis Papers > Annual Energy Outlook Forecast Evaluation Analysis Papers > Annual Energy Outlook Forecast Evaluation Release Date: February 2005 Next Release Date: February 2006 Printer-friendly version Annual Energy Outlook Forecast Evaluation* Table 1.Comparison of Absolute Percent Errors for Present and Current AEO Forecast Evaluations Printer Friendly Version Average Absolute Percent Error Variable AEO82 to AEO99 AEO82 to AEO2000 AEO82 to AEO2001 AEO82 to AEO2002 AEO82 to AEO2003 AEO82 to AEO2004 Consumption Total Energy Consumption 1.9 2.0 2.1 2.1 2.1 2.1 Total Petroleum Consumption 2.9 3.0 3.1 3.1 3.0 2.9 Total Natural Gas Consumption 7.3 7.1 7.1 6.7 6.4 6.5 Total Coal Consumption 3.1 3.3 3.5 3.6 3.7 3.8 Total Electricity Sales 1.9 2.0 2.3 2.3 2.3 2.4 Production Crude Oil Production 4.5 4.5 4.5 4.5 4.6 4.7

87

WINDExchange: Wind Energy Ordinances  

Wind Powering America (EERE)

Wind Energy Ordinances Federal, state, and local regulations govern many aspects of wind energy development. The exact nature of the project and its location will largely drive the...

88

A comparison between a hydro-wind plant and wind speed forecasting using ARIMA models  

Science Journals Connector (OSTI)

In this paper we will present a comparison between two options for harnessing wind power. We will first analyze the behaviour of a wind farm that goes to the electricity market having previously made a forecast of wind speed while accepting the deviation penalties that these may incur. Second we will study the possibility of the wind farm not going to the market individually but as part of a hydro-wind plant.

2014-01-01T23:59:59.000Z

89

Wind and Load Forecast Error Model for Multiple Geographically Distributed Forecasts  

SciTech Connect

The impact of wind and load forecast errors on power grid operations is frequently evaluated by conducting multi-variant studies, where these errors are simulated repeatedly as random processes based on their known statistical characteristics. To generate these errors correctly, we need to reflect their distributions (which do not necessarily follow a known distribution law), standard deviations, auto- and cross-correlations. For instance, load and wind forecast errors can be closely correlated in different zones of the system. This paper introduces a new methodology for generating multiple cross-correlated random processes to simulate forecast error curves based on a transition probability matrix computed from an empirical error distribution function. The matrix will be used to generate new error time series with statistical features similar to observed errors. We present the derivation of the method and present some experimental results by generating new error forecasts together with their statistics.

Makarov, Yuri V.; Reyes Spindola, Jorge F.; Samaan, Nader A.; Diao, Ruisheng; Hafen, Ryan P.

2010-11-02T23:59:59.000Z

90

Annual Energy Outlook Forecast Evaluation  

Gasoline and Diesel Fuel Update (EIA)

Evaluation Evaluation Annual Energy Outlook Forecast Evaluation by Esmeralda Sanchez The Office of Integrated Analysis and Forecasting has been providing an evaluation of the forecasts in the Annual Energy Outlook (AEO) annually since 1996. Each year, the forecast evaluation expands on that of the prior year by adding the most recent AEO and the most recent historical year of data. However, the underlying reasons for deviations between the projections and realized history tend to be the same from one evaluation to the next. The most significant conclusions are: Over the last two decades, there have been many significant changes in laws, policies, and regulations that could not have been anticipated and were not assumed in the projections prior to their implementation. Many of these actions have had significant impacts on energy supply, demand, and prices; however, the impacts were not incorporated in the AEO projections until their enactment or effective dates in accordance with EIA's requirement to remain policy neutral and include only current laws and regulations in the AEO reference case projections.

91

Wind energy systems: program summary  

SciTech Connect

The Federal Wind Energy Program (FWEP) was initiated to provide focus, direction and funds for the development of wind power. Each year a summary is prepared to provide the American public with an overview of government sponsored activities in the FWEP. This program summary describes each of the Department of Energy's (DOE) current wind energy projects initiated or renewed during FY 1979 (October 1, 1978 through September 30, 1979) and reflects their status as of April 30, 1980. The summary highlights on-going research, development and demonstration efforts and serves as a record of progress towards the program objectives. It also provides: the program's general management structure; review of last year's achievements; forecast of expected future trends; documentation of the projects conducted during FY 1979; and list of key wind energy publications.

None

1980-05-01T23:59:59.000Z

92

Wind energy | Open Energy Information  

Open Energy Info (EERE)

(Redirected from Wind) (Redirected from Wind) Jump to: navigation, search Wind energy is a form of solar energy.[1] Wind energy (or wind power) describes the process by which wind is used to generate electricity. Wind turbines convert the kinetic energy in the wind into mechanical power. A generator can convert mechanical power into electricity[2]. Mechanical power can also be utilized directly for specific tasks such as pumping water. The US DOE developed a short wind power animation that provides an overview of how a wind turbine works and describes the wind resources in the United States. Contents 1 Wind Energy Basics 1.1 Equation for Wind Power 2 DOE Wind Programs and Information 3 Worldwide Installed Capacity 3.1 United States Installed Capacity 4 Wind Farm Development 4.1 Land Requirements

93

Impacts of Improved Day-Ahead Wind Forecasts on Power Grid Operations: September 2011  

SciTech Connect

This study analyzed the potential benefits of improving the accuracy (reducing the error) of day-ahead wind forecasts on power system operations, assuming that wind forecasts were used for day ahead security constrained unit commitment.

Piwko, R.; Jordan, G.

2011-11-01T23:59:59.000Z

94

A WRF Ensemble for Improved Wind Speed Forecasts at Turbine Height  

Science Journals Connector (OSTI)

The Weather Research and Forecasting Model (WRF) with 10-km horizontal grid spacing was used to explore improvements in wind speed forecasts at a typical wind turbine hub height (80 m). An ensemble consisting of WRF model simulations with ...

Adam J. Deppe; William A. Gallus Jr.; Eugene S. Takle

2013-02-01T23:59:59.000Z

95

Wind energy bibliography  

SciTech Connect

This bibliography is designed to help the reader search for information on wind energy. The bibliography is intended to help several audiences, including engineers and scientists who may be unfamiliar with a particular aspect of wind energy, university researchers who are interested in this field, manufacturers who want to learn more about specific wind topics, and librarians who provide information to their clients. Topics covered range from the history of wind energy use to advanced wind turbine design. References for wind energy economics, the wind energy resource, and environmental and institutional issues related to wind energy are also included.

None

1995-05-01T23:59:59.000Z

96

Central Wind Power Forecasting Programs in North America by Regional Transmission Organizations and Electric Utilities  

SciTech Connect

The report addresses the implementation of central wind power forecasting by electric utilities and regional transmission organizations in North America.

Porter, K.; Rogers, J.

2009-12-01T23:59:59.000Z

97

Intra-hour wind power variability assessment using the conditional range metric : quantification, forecasting and applications.  

E-Print Network (OSTI)

??The research presented herein concentrates on the quantification, assessment and forecasting of intra-hour wind power variability. Wind power is intrinsically variable and, due to the (more)

Boutsika, Thekla

2013-01-01T23:59:59.000Z

98

Upcoming Funding Opportunity for Wind Forecasting Improvement Project in Complex Terrain  

Energy.gov (U.S. Department of Energy (DOE))

The DOE Wind Program has issued a Notice of Intent for a funding opportunity, tentatively titled Wind Forecasting Improvement Project in Complex Terrain.

99

Short-term Wind Power Forecasting Using Advanced Statistical T.S. Nielsen1  

E-Print Network (OSTI)

Short-term Wind Power Forecasting Using Advanced Statistical Methods T.S. Nielsen1 , H. Madsen1 , H considered in the ANEMOS project for short-term fore- casting of wind power. The total procedure typically in for prediction of wind power or wind speed, estimating the uncertainty of the wind power forecast, and finally

Paris-Sud XI, Université de

100

Wind speed forecasting at different time scales: a non parametric approach  

E-Print Network (OSTI)

The prediction of wind speed is one of the most important aspects when dealing with renewable energy. In this paper we show a new nonparametric model, based on semi-Markov chains, to predict wind speed. Particularly we use an indexed semi-Markov model, that reproduces accurately the statistical behavior of wind speed, to forecast wind speed one step ahead for different time scales and for very long time horizon maintaining the goodness of prediction. In order to check the main features of the model we show, as indicator of goodness, the root mean square error between real data and predicted ones and we compare our forecasting results with those of a persistence model.

D'Amico, Guglielmo; Prattico, Flavio

2013-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "wind energy forecasts" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


101

Sandia National Laboratories: Wind Energy  

NLE Websites -- All DOE Office Websites (Extended Search)

specialprogramsslide5 windplantoptslide4 rotorinnovationslide3 offshorewindslide2 Materialsslide1 Wind Energy Wind Plant Optimization Materials,...

102

The Energy Demand Forecasting System of the National Energy Board  

Science Journals Connector (OSTI)

This paper presents the National Energy Boards long term energy demand forecasting model in its present state of ... results of recent research at the NEB. Energy demand forecasts developed with the aid of this....

R. A. Preece; L. B. Harsanyi; H. M. Webster

1980-01-01T23:59:59.000Z

103

Wind Energy Resource Basics | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Renewable Energy Wind Wind Energy Resource Basics Wind Energy Resource Basics July 30, 2013 - 3:11pm Addthis Wind energy can be produced anywhere in the world where the wind...

104

The Value of Wind Power Forecasting  

NLE Websites -- All DOE Office Websites (Extended Search)

Preprint Debra Lew and Michael Milligan National Renewable Energy Laboratory Gary Jordan and Richard Piwko GE Energy Presented at the 91 st American Meteorological Society...

105

Wind Energy Benefits, Wind Powering America (WPA) (Fact Sheet...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Energy Benefits, Wind Powering America (WPA) (Fact Sheet), Wind And Water Power Program (WWPP) Wind Energy Benefits, Wind Powering America (WPA) (Fact Sheet), Wind And Water Power...

106

Wind energy information guide  

SciTech Connect

This book is divided into nine chapters. Chapters 1--8 provide background and annotated references on wind energy research, development, and commercialization. Chapter 9 lists additional sources of printed information and relevant organizations. Four indices provide alphabetical access to authors, organizations, computer models and design tools, and subjects. A list of abbreviations and acronyms is also included. Chapter topics include: introduction; economics of using wind energy; wind energy resources; wind turbine design, development, and testing; applications; environmental issues of wind power; institutional issues; and wind energy systems development.

NONE

1996-04-01T23:59:59.000Z

107

Wind | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Wind Wind Wind America is home to one of the largest and fastest growing wind markets in the world. Watch the video to learn more about the latest trends in the U.S. wind power market and join us this Thursday, August 8 at 3 pm ET for a Google+ Hangout on wind energy in America. The United States is home to one of the largest and fastest growing wind markets in the world. To stay competitive in this sector, the Energy Department invests in wind projects, both on land and offshore, to advance technology innovations, create job opportunities and boost economic growth. Moving forward, the U.S. wind industry remains a critical part of the Energy Department's all-of-the-above energy strategy to cut carbon pollution, diversify our energy economy and bring the next-generation of

108

Offshore wind energy systems  

Science Journals Connector (OSTI)

Wind energy systems deployed in the shallow but windy waters of the southern North Sea have the potential to provide more than 20% of UK electricity needs. With existing experience of windmills, and of aircraft and offshore structures, such wind energy systems could be developed within a relatively short timescale. A preliminary assessment of the economics of offshore wind energy systems is encouraging.

P Musgrove

1978-01-01T23:59:59.000Z

109

NREL: Wind Research - Wind Energy Videos  

NLE Websites -- All DOE Office Websites (Extended Search)

Wind Energy Videos The National Wind Technology Center (NWTC) is pleased to offer video presentations of its world-class capabilities, facilities, research areas, and personnel. As...

110

Microsoft Word - Argonne_WindPowerForecasting_Report_Final_Nov...  

Office of Scientific and Technical Information (OSTI)

of Texas ESB Electricity Supply Board (Ireland) EU European Union EWEA European Wind Energy Association FIR-NN finite-impulse response neural network FIS Fuzzy Inference...

111

Wind Energy Markets, 2. edition  

SciTech Connect

The report provides an overview of the global market for wind energy, including a concise look at wind energy development in key markets including installations, government incentives, and market trends. Topics covered include: an overview of wind energy including the history of wind energy production and the current market for wind energy; key business drivers of the wind energy market; barriers to the growth of wind energy; key wind energy trends and recent developments; the economics of wind energy, including cost, revenue, and government subsidy components; regional and national analyses of major wind energy markets; and, profiles of key wind turbine manufacturers.

NONE

2007-11-15T23:59:59.000Z

112

EIA - Forecasts and Analysis of Energy Data  

Gasoline and Diesel Fuel Update (EIA)

H Tables H Tables Appendix H Comparisons With Other Forecasts, and Performance of Past IEO Forecasts for 1990, 1995, and 2000 Forecast Comparisons Three organizations provide forecasts comparable with those in the International Energy Outlook 2005 (IEO2005). The International Energy Agency (IEA) provides “business as usual” projections to the year 2030 in its World Energy Outlook 2004; Petroleum Economics, Ltd. (PEL) publishes world energy forecasts to 2025; and Petroleum Industry Research Associates (PIRA) provides projections to 2015. For this comparison, 2002 is used as the base year for all the forecasts, and the comparisons extend to 2025. Although IEA’s forecast extends to 2030, it does not publish a projection for 2025. In addition to forecasts from other organizations, the IEO2005 projections are also compared with those in last year’s report (IEO2004). Because 2002 data were not available when IEO2004 forecasts were prepared, the growth rates from IEO2004 are computed from 2001.

113

Analysis and forecasting of wind velocity in chetumal, quintana roo, using the single exponential smoothing method  

Science Journals Connector (OSTI)

In this paper the analysis and forecasting of wind velocities in Chetumal, Quintana Roo, Mexico is presented. Measurements were made by the Instituto de Investigaciones Elctricas (IIE) during two years, from 2004 to 2005. This location exemplifies the wind energy generation potential in the Caribbean coast of Mexico that could be employed in the hotel industry in the next decade. The wind speed and wind direction were measured at 10m above ground level. Sensors with high accuracy and a low starting threshold were used. The wind velocity was recorded using a data acquisition system supplied by a 10W photovoltaic panel. The wind speed values were measured with a frequency of 1Hz and the average wind speed was recorded considering regular intervals of 10min. First a statistical analysis of the time series was made in the first part of the paper through conventional and robust measures. Also the forecasting of the last day of measurements was made utilizing the single exponential smoothing method (SES). The results showed a very good accuracy of the data with this technique for an ? value of 0.9. Finally the SES method was compared with the artificial neural network (ANN) method showing the former better results.

E. Cadenas; O.A. Jaramillo; W. Rivera

2010-01-01T23:59:59.000Z

114

Foresight Wind Energy LLC | Open Energy Information  

Open Energy Info (EERE)

Foresight Wind Energy LLC Jump to: navigation, search Name: Foresight Wind Energy LLC Place: San Francisco, California Zip: 94105 Sector: Wind energy Product: San Francisco-based...

115

Han Wind Energy Corporation | Open Energy Information  

Open Energy Info (EERE)

Han Wind Energy Corporation Jump to: navigation, search Name: Han Wind Energy Corporation Place: Beijing, Beijing Municipality, China Zip: 100027 Sector: Wind energy Product: Han...

116

Berrendo Wind Energy | Open Energy Information  

Open Energy Info (EERE)

Berrendo Wind Energy Jump to: navigation, search Name: Berrendo Wind Energy Place: Boulder, Colorado Zip: 80304 Sector: Wind energy Product: Colorado-based firm developing utility...

117

Building Energy Software Tools Directory: Energy Usage Forecasts  

NLE Websites -- All DOE Office Websites (Extended Search)

Energy Usage Forecasts Energy Usage Forecasts Energy Usage Forecasts Quick and easy web-based tool that provides free 14-day ahead energy usage forecasts based on the degree day forecasts for 1,200 stations in the U.S. and Canada. The user enters the daily non-weather base load and the usage per degree day weather factor; the tool applies the degree day forecast and displays the total energy usage forecast. Helpful FAQs explain the process and describe various options for the calculation of the base load and weather factor. Historical degree day reports and 14-day ahead degree day forecasts are available from the same site. Keywords degree days, historical weather, mean daily temperature, load calculation, energy simulation Validation/Testing Degree day data provided by AccuWeather.com, updated daily at 0700.

118

Central Wind Forecasting Programs in North America by Regional Transmission Organizations and Electric Utilities: Revised Edition  

SciTech Connect

The report and accompanying table addresses the implementation of central wind power forecasting by electric utilities and regional transmission organizations in North America. The first part of the table focuses on electric utilities and regional transmission organizations that have central wind power forecasting in place; the second part focuses on electric utilities and regional transmission organizations that plan to adopt central wind power forecasting in 2010. This is an update of the December 2009 report, NREL/SR-550-46763.

Rogers, J.; Porter, K.

2011-03-01T23:59:59.000Z

119

energy data + forecasting | OpenEI Community  

Open Energy Info (EERE)

energy data + forecasting energy data + forecasting Home FRED Description: Free Energy Database Tool on OpenEI This is an open source platform for assisting energy decision makers and policy makers in formulating policies and energy plans based on easy to use forecasting tools, visualizations, sankey diagrams, and open data. The platform will live on OpenEI and this community was established to initiate discussion around continuous development of this tool, integrating it with new datasets, and connecting with the community of users who will want to contribute data to the tool and use the tool for planning purposes. Links: FRED beta demo energy data + forecasting Syndicate content 429 Throttled (bot load) Error 429 Throttled (bot load) Throttled (bot load) Guru Meditation: XID: 2084382122

120

Module Handbook Specialisation Wind Energy  

E-Print Network (OSTI)

of Wind Turbines Module name: Wind potential, Aerodynamics & Loading of Wind Turbines Section Classes Evaluation of Wind Energy Potential Wind turbine Aerodynamics Static and dynamic Loading of Wind turbines Wind turbine Aerodynamics Static and dynamic Loading of Wind turbines Credit points 8 CP

Habel, Annegret

Note: This page contains sample records for the topic "wind energy forecasts" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


121

A WRF Ensemble for Improved Wind Speed Forecasts at Turbine Height ADAM J. DEPPE AND WILLIAM A. GALLUS JR.  

E-Print Network (OSTI)

A WRF Ensemble for Improved Wind Speed Forecasts at Turbine Height ADAM J. DEPPE AND WILLIAM A in wind speed forecasts at a typical wind turbine hub height (80 m). An ensemble consisting of WRF model ensemble members for forecasting wind speed. A second configuration using three random perturbations

McCalley, James D.

122

Astraeus Wind Energy Inc | Open Energy Information  

Open Energy Info (EERE)

Sector: Wind energy Product: Michigan-based manufacturer of large scale, advanced composite wind blades and hub-related components. References: Astraeus Wind Energy Inc1 This...

123

Wind energy analysis system .  

E-Print Network (OSTI)

??One of the most important steps to be taken before a site is to be selected for the extraction of wind energy is the analysis (more)

Koegelenberg, Johan

2014-01-01T23:59:59.000Z

124

Wind Energy Myths  

SciTech Connect

This two-sided fact sheet succinctly outlines and counters the top misconceptions about wind energy. It is well suited for general audiences.

Not Available

2005-05-01T23:59:59.000Z

125

Annual Energy Outlook Forecast Evaluation 2005  

Gasoline and Diesel Fuel Update (EIA)

Forecast Evaluation 2005 Forecast Evaluation 2005 Annual Energy Outlook Forecast Evaluation 2005 Annual Energy Outlook Forecast Evaluation 2005 * Then Energy Information Administration (EIA) produces projections of energy supply and demand each year in the Annual Energy Outlook (AEO). The projections in the AEO are not statements of what will happen but of what might happen, given the assumptions and methodologies used. The projections are business-as-usual trend projections, given known technology, technological and demographic trends, and current laws and regulations. Thus, they provide a policy-neutral reference case that can be used to analyze policy initiatives. EIA does not propose or advocate future legislative and regulatory changes. All laws are assumed to remain as currently enacted; however, the impacts of emerging regulatory changes, when defined, are reflected.

126

Energy in the Wind  

NLE Websites -- All DOE Office Websites (Extended Search)

Provi and BP Energy in the Wind - Exploring Basic Electrical Concepts by Modeling Wind Turbines Curriculum: Wind Power (simple machines, aerodynamics, weather/climatology, leverage, mechanics, atmospheric pressure, and energy resources/transformations) Grade Level: High School Small groups: 2 students Time: Introductory packet will take 2-3 periods. Scientific investigation will take 2-3 periods. (45-50 minute periods) Summary: Students explore basic electrical concepts. Students are introduced to electrical concepts by using a hand held generator utilizing a multimeter, modeling, and designing a wind turbine in a wind tunnel (modifications are given if a wind tunnel is not available). Students investigate how wind nergy is used as a renewable energy resource. e

127

High Winds Wind Farm | Open Energy Information  

Open Energy Info (EERE)

Winds Wind Farm Winds Wind Farm Jump to: navigation, search Name High Winds Wind Farm Facility High Winds Sector Wind energy Facility Type Commercial Scale Wind Facility Status In Service Owner NextEra Energy Resources Developer NextEra Energy Resources Energy Purchaser PPM Energy Inc Location Solano County CA Coordinates 38.124844°, -121.764915° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":38.124844,"lon":-121.764915,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

128

An Exploration of Wind Energy & Wind Turbines | Department of...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

An Exploration of Wind Energy & Wind Turbines An Exploration of Wind Energy & Wind Turbines Below is information about the student activitylesson plan from your search. Grades...

129

20% Wind Energy by 2030 - Chapter 2: Wind Turbine Technology...  

Office of Environmental Management (EM)

20% Wind Energy by 2030: Increasing Wind Energy's Contribution to U.S. Electricity Supply U.S. Offshore Wind Manufacturing and Supply Chain Development Wind Program Accomplishments...

130

Collegiate Wind Competition Engages Tomorrow's Wind Energy Innovators...  

Office of Environmental Management (EM)

Collegiate Wind Competition Engages Tomorrow's Wind Energy Innovators Collegiate Wind Competition Engages Tomorrow's Wind Energy Innovators January 6, 2014 - 10:00am Addthis 2014...

131

Sandia National Laboratories: Solar Energy Forecasting and Resource...  

NLE Websites -- All DOE Office Websites (Extended Search)

Energy, Modeling & Analysis, News, News & Events, Partnership, Photovoltaic, Renewable Energy, Solar, Systems Analysis The book, Solar Energy Forecasting and Resource...

132

Managing Wind Power Forecast Uncertainty in Electric Brandon Keith Mauch  

E-Print Network (OSTI)

and faculty. There were many people who helped me during my doctoral studies. First, I want to thank my co-advisors for wind farm management, but they are not perfect. Chapter 2 presents a model of a wind farm with compressed air energy storage (CAES) participating freely in the day-ahead electricity market without

133

BBO-based small autonomous hybrid power system optimization incorporating wind speed and solar radiation forecasting  

Science Journals Connector (OSTI)

Abstract Rising carbon emission or carbon footprint imposes grave concern over the earth?s climatic condition, as it results in increasing average global temperature. Renewable energy sources seem to be the favorable solution in this regard. It can reduce the overall energy consumption rate globally. However, the renewable sources are intermittent in nature with very high initial installation price. Off-grid Small Autonomous Hybrid Power Systems (SAHPS) are good alternative for generating electricity locally in remote areas, where the transmission and distribution of electrical energy generated from conventional sources are otherwise complex, difficult and costly. In optimizing SAHPS, weather data over past several years are generally the main input, which include wind speed and solar radiation. The weather resources used in this optimization process have unsystematic variations based on the atmospheric and seasonal phenomenon and it also varies from year to year. While using past data in the analysis of SAHPS performance, it was assumed that the same pattern will be followed in the next year, which in reality is very unlikely to happen. In this paper, we use BBO optimization algorithm for SAHPS optimal component sizing by minimizing the cost of energy. We have also analysed the effect of using forecast weather data instead of past data on the SAHPS performance. ANNs, which are trained with back-propagation training algorithm, are used for wind speed and solar radiation forecasting. A case study was used for demonstrating the performance of BBO optimization algorithm along with forecasting effects. The simulation results clearly showed the advantages of utilizing wind speed and solar radiation forecasting in a SAHPS optimization problem.

R.A. Gupta; Rajesh Kumar; Ajay Kumar Bansal

2015-01-01T23:59:59.000Z

134

Annual Energy Outlook Forecast Evaluation - Tables  

Gasoline and Diesel Fuel Update (EIA)

Analysis Papers > Annual Energy Outlook Forecast Evaluation>Tables Analysis Papers > Annual Energy Outlook Forecast Evaluation>Tables Annual Energy Outlook Forecast Evaluation Download Adobe Acrobat Reader Printer friendly version on our site are provided in Adobe Acrobat Spreadsheets are provided in Excel Actual vs. Forecasts Formats Table 2. Total Energy Consumption Excel, PDF Table 3. Total Petroleum Consumption Excel, PDF Table 4. Total Natural Gas Consumption Excel, PDF Table 5. Total Coal Consumption Excel, PDF Table 6. Total Electricity Sales Excel, PDF Table 7. Crude Oil Production Excel, PDF Table 8. Natural Gas Production Excel, PDF Table 9. Coal Production Excel, PDF Table 10. Net Petroleum Imports Excel, PDF Table 11. Net Natural Gas Imports Excel, PDF Table 12. World Oil Prices Excel, PDF Table 13. Natural Gas Wellhead Prices

135

Annual Energy Outlook Forecast Evaluation - Tables  

Gasoline and Diesel Fuel Update (EIA)

Modeling and Analysis Papers> Annual Energy Outlook Forecast Evaluation>Tables Modeling and Analysis Papers> Annual Energy Outlook Forecast Evaluation>Tables Annual Energy Outlook Forecast Evaluation Actual vs. Forecasts Available formats Excel (.xls) for printable spreadsheet data (Microsoft Excel required) MS Excel Viewer PDF (Acrobat Reader required Download Acrobat Reader ) Adobe Acrobat Reader Logo Table 2. Total Energy Consumption Excel, PDF Table 3. Total Petroleum Consumption Excel, PDF Table 4. Total Natural Gas Consumption Excel, PDF Table 5. Total Coal Consumption Excel, PDF Table 6. Total Electricity Sales Excel, PDF Table 7. Crude Oil Production Excel, PDF Table 8. Natural Gas Production Excel, PDF Table 9. Coal Production Excel, PDF Table 10. Net Petroleum Imports Excel, PDF Table 11. Net Natural Gas Imports Excel, PDF

136

Energy from the wind  

Science Journals Connector (OSTI)

The large?scale generation of electrical power by wind turbine fields is discussed. It is shown that the maximum power which can be extracted by a wind turbine is 16/27 or 59.3% of the power available in the wind. An estimate is made of the total electrical power which could be generated in the United States by utilizing wind energy. The material in this paper was presented by the authors in a one?semester course on energy science. It could also be used in an introductory physics class as an illustration of elementary fluid mechanics concepts and of the basic principles of energy and momentum conservation.

David G. Pelka; Robert T. Park; Runbir Singh

1978-01-01T23:59:59.000Z

137

Wind energy conversion system  

DOE Patents (OSTI)

The wind energy conversion system includes a wind machine having a propeller connected to a generator of electric power, the propeller rotating the generator in response to force of an incident wind. The generator converts the power of the wind to electric power for use by an electric load. Circuitry for varying the duty factor of the generator output power is connected between the generator and the load to thereby alter a loading of the generator and the propeller by the electric load. Wind speed is sensed electro-optically to provide data of wind speed upwind of the propeller, to thereby permit tip speed ratio circuitry to operate the power control circuitry and thereby optimize the tip speed ratio by varying the loading of the propeller. Accordingly, the efficiency of the wind energy conversion system is maximized.

Longrigg, Paul (Golden, CO)

1987-01-01T23:59:59.000Z

138

Wind Energy Update  

Wind Powering America (EERE)

by the Alliance for Sustainable Energy, LLC. by the Alliance for Sustainable Energy, LLC. Wind Energy Update Wind Powering America January 2012 NATIONAL RENEWABLE ENERGY LABORATORY Evolution of Commercial Wind Technology NATIONAL RENEWABLE ENERGY LABORATORY Small (≤100 kW) Homes Farms Remote Applications (e.g. water pumping, telecom sites, icemaking) Midscale (100-1000 kW) Village Power Hybrid Systems Distributed Power Large, Land-based (1-3 MW) Utility-scale wind farms Large Distributed Power Sizes and Applications Large, Offshore (3-7 MW) Utility-scale wind farms, shallow coastal waters No U.S. installations NATIONAL RENEWABLE ENERGY LABORATORY Capacity & Cost Trends As of January 2012 (AWEA) 0 5000 10000 15000 20000 25000 30000 35000 40000 45000 50000 $- $200 $400 $600 $800 $1,000 $1,200

139

Wind | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Wind Wind Wind EERE plays a key role in advancing America's "all of the above" energy strategy, leading a large network of researchers and other partners to deliver innovative technologies that will make renewable electricity generation cost-competitive with traditional sources of energy. EERE plays a key role in advancing America's "all of the above" energy strategy, leading a large network of researchers and other partners to deliver innovative technologies that will make renewable electricity generation cost-competitive with traditional sources of energy. Image of a wind turbine against a partly cloudy sky. The U.S. Department of Energy (DOE) leads national efforts to improve the performance, lower the costs, and accelerate the deployment of wind energy technologies-both on

140

20% Wind Energy by 2030: Increasing Wind Energy's Contribution...  

Office of Environmental Management (EM)

: Increasing Wind Energy's Contribution to U.S. Electricity Supply 20% Wind Energy by 2030: Increasing Wind Energy's Contribution to U.S. Electricity Supply Here you will find the...

Note: This page contains sample records for the topic "wind energy forecasts" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


141

American Wind Energy Association Wind Energy Finance and Investment...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Wind Energy Finance and Investment Seminar American Wind Energy Association Wind Energy Finance and Investment Seminar October 20, 2014 8:00AM EDT to October 21, 2014 5:00PM EDT...

142

Annual Energy Outlook Forecast Evaluation 2004  

Gasoline and Diesel Fuel Update (EIA)

2004 2004 * The Office of Integrated Analysis and Forecasting of the Energy Information Administration (EIA) has produced annual evaluations of the accuracy of the Annual Energy Outlook (AEO) since 1996. Each year, the forecast evaluation expands on the prior year by adding the projections from the most recent AEO and replacing the historical year of data with the most recent. The forecast evaluation examines the accuracy of AEO forecasts dating back to AEO82 by calculating the average absolute percent errors for several of the major variables for AEO82 through AEO2004. (There is no report titled Annual Energy Outlook 1988 due to a change in the naming convention of the AEOs.) The average absolute percent error is the simple mean of the absolute values of the percentage difference between the Reference Case projection and the

143

American Wind Energy Association Wind Energy Finance and Investment Seminar  

Energy.gov (U.S. Department of Energy (DOE))

The American Wind Energy Association Wind Energy Finance and Investment Seminar will be attended by representatives in the financial sector, businesses, bankers, government and other nonprofit...

144

20% Wind Energy by 2030: Increasing Wind Energy's Contribution...  

Office of Environmental Management (EM)

Summary) 20% Wind Energy by 2030: Increasing Wind Energy's Contribution to U.S. Electricity Supply (Executive Summary) Executive summary of a report on the requirements needed...

145

Diablo Winds Wind Farm | Open Energy Information  

Open Energy Info (EERE)

Diablo Winds Wind Farm Diablo Winds Wind Farm Facility Diablo Winds Wind Farm Sector Wind energy Facility Type Commercial Scale Wind Facility Status In Service Owner NextEra Energy Resources Developer NextEra Energy Resources Energy Purchaser Pacific Gas & Electric Co Location Altamont Pass CA Coordinates 37.7347°, -121.652° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":37.7347,"lon":-121.652,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

146

Annual Energy Outlook 2001 - Forecast Comparisons  

Gasoline and Diesel Fuel Update (EIA)

Forecast Comparisons Forecast Comparisons Economic Growth World Oil Prices Total Energy Consumption Residential and Commercial Sectors Industrial Sector Transportation Sector Electricity Natural Gas Petroleum Coal Three other organizations—Standard & Poor’s DRI (DRI), the WEFA Group (WEFA), and the Gas Research Institute (GRI) [95]—also produce comprehensive energy projections with a time horizon similar to that of AEO2001. The most recent projections from those organizations (DRI, Spring/Summer 2000; WEFA, 1st Quarter 2000; GRI, January 2000), as well as other forecasts that concentrate on petroleum, natural gas, and international oil markets, are compared here with the AEO2001 projections. Economic Growth Differences in long-run economic forecasts can be traced primarily to

147

Forecasting energy markets using support vector machines  

Science Journals Connector (OSTI)

Abstract In this paper we investigate the efficiency of a support vector machine (SVM)-based forecasting model for the next-day directional change of electricity prices. We first adjust the best autoregressive SVM model and then we enhance it with various related variables. The system is tested on the daily Phelix index of the German and Austrian control area of the European Energy Exchange (???) wholesale electricity market. The forecast accuracy we achieved is 76.12% over a 200day period.

Theophilos Papadimitriou; Periklis Gogas; Efthimios Stathakis

2014-01-01T23:59:59.000Z

148

Wind Energy Resources and Technologies  

Energy.gov (U.S. Department of Energy (DOE))

This page provides a brief overview of wind energy resources and technologies supplemented by specific information to apply wind energy within the Federal sector.

149

Cambrian Wind Energy | Open Energy Information  

Open Energy Info (EERE)

Place: London, Greater London, United Kingdom Zip: W1U 6RP Sector: Renewable Energy, Wind energy Product: UK wind energy company acquired by Falck Renewables Ltd, the wind energy...

150

Wind Vision Wind Farm | Open Energy Information  

Open Energy Info (EERE)

Wind Farm Wind Farm Jump to: navigation, search Name Wind Vision Wind Farm Facility Wind Vision Sector Wind energy Facility Type Commercial Scale Wind Facility Status In Service Owner Wind Vision Developer Wind Vision Location St. Ansgar IA Coordinates 43.348224°, -92.888816° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":43.348224,"lon":-92.888816,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

151

Wind energy conversion system  

SciTech Connect

This patent describes a wind energy conversion system comprising: a propeller rotatable by force of wind; a generator of electricity mechanically coupled to the propeller for converting power of the wind to electric power for use by an electric load; means coupled between the generator and the electric load for varying the electric power drawn by the electric load to alter the electric loading of the generator; means for electro-optically sensing the speed of the wind at a location upwind from the propeller; and means coupled between the sensing means and the power varying means for operating the power varying means to adjust the electric load of the generator in accordance with a sensed value of wind speed to thereby obtain a desired ratio of wind speed to the speed of a tip of a blade of the propeller.

Longrigg, P.

1987-03-17T23:59:59.000Z

152

Sandia National Laboratories: wind energy  

NLE Websites -- All DOE Office Websites (Extended Search)

uses the blade information to generate input files for other tools: The ANSYS ... Wind Energy Staff On March 24, 2011, in Wind Energy On November 10, 2010, in Wind Plant...

153

Offshore Wind Projects | Department of Energy  

Office of Environmental Management (EM)

Offshore Wind Projects Offshore Wind Projects This report covers the Wind and Water Power Program's offshore wind energy projects from fiscal years 2006 to 2014. Offshore Wind...

154

Forecasting Energy Demand Using Fuzzy Seasonal Time Series  

Science Journals Connector (OSTI)

Demand side energy management has become an important issue for energy management. In order to support energy planning and policy decisions forecasting the future demand is very important. Thus, forecasting the f...

?Irem Ual Sar?; Basar ztaysi

2012-01-01T23:59:59.000Z

155

Annual Energy Outlook Forecast Evaluation - Tables  

Gasoline and Diesel Fuel Update (EIA)

Annual Energy Outlook Forecast Evaluation Annual Energy Outlook Forecast Evaluation Actual vs. Forecasts Available formats Excel (.xls) for printable spreadsheet data (Microsoft Excel required) PDF (Acrobat Reader required) Table 2. Total Energy Consumption HTML, Excel, PDF Table 3. Total Petroleum Consumption HTML, Excel, PDF Table 4. Total Natural Gas Consumption HTML, Excel, PDF Table 5. Total Coal Consumption HTML, Excel, PDF Table 6. Total Electricity Sales HTML, Excel, PDF Table 7. Crude Oil Production HTML, Excel, PDF Table 8. Natural Gas Production HTML, Excel, PDF Table 9. Coal Production HTML, Excel, PDF Table 10. Net Petroleum Imports HTML, Excel, PDF Table 11. Net Natural Gas Imports HTML, Excel, PDF Table 12. Net Coal Exports HTML, Excel, PDF Table 13. World Oil Prices HTML, Excel, PDF

156

Annual Energy Outlook Forecast Evaluation - Table 1. Forecast Evaluations:  

Gasoline and Diesel Fuel Update (EIA)

Average Absolute Percent Errors from AEO Forecast Evaluations: Average Absolute Percent Errors from AEO Forecast Evaluations: 1996 to 2000 Average Absolute Percent Error Average Absolute Percent Error Average Absolute Percent Error Average Absolute Percent Error Average Absolute Percent Error Variable 1996 Evaluation: AEO82 to AEO93 1997 Evaluation: AEO82 to AEO97 1998 Evaluation: AEO82 to AEO98 1999 Evaluation: AEO82 to AEO99 2000 Evaluation: AEO82 to AEO2000 Consumption Total Energy Consumption 1.8 1.6 1.7 1.7 1.8 Total Petroleum Consumption 3.2 2.8 2.9 2.8 2.9 Total Natural Gas Consumption 6.0 5.8 5.7 5.6 5.6 Total Coal Consumption 2.9 2.7 3.0 3.2 3.3 Total Electricity Sales 1.8 1.6 1.7 1.8 2.0 Production Crude Oil Production 5.1 4.2 4.3 4.5 4.5

157

Wind Energy and Spatial Technology  

E-Print Network (OSTI)

2/3/2011 1 Wind Energy and Spatial Technology Lori Pelech Why Wind Energy? A clean, renewable 2,600 tons of carbon emissions annually ­ The economy · Approximately 85,000 wind energy workers (existing transmission lines)? #12;2/3/2011 3 US Energy Transmission Grid US Wind Map #12;2/3/2011 4

Schweik, Charles M.

158

Evaluation of Advanced Wind Power Forecasting Models Results of the Anemos Project  

E-Print Network (OSTI)

1 Evaluation of Advanced Wind Power Forecasting Models ­ Results of the Anemos Project I. Martí1.kariniotakis@ensmp.fr Abstract An outstanding question posed today by end-users like power system operators, wind power producers or traders is what performance can be expected by state-of-the-art wind power prediction models. This paper

Paris-Sud XI, Université de

159

Global and multi-scale features of solar wind-magnetosphere coupling: From modeling to forecasting  

E-Print Network (OSTI)

and substorms; 2784 Magnetospheric Physics: Solar wind/magnetosphere interactions; 3210 Mathematical Geophysics in the solar wind-magnetosphere interaction, de- veloping first principles models that encompass allGlobal and multi-scale features of solar wind-magnetosphere coupling: From modeling to forecasting

Sitnov, Mikhail I.

160

West Winds Wind Farm | Open Energy Information  

Open Energy Info (EERE)

West Winds Wind Farm West Winds Wind Farm Facility West Winds Sector Wind energy Facility Type Commercial Scale Wind Facility Status In Service Owner Caithness Developer SeaWest Energy Purchaser Southern California Edison/PacifiCorp Location San Gorgonio CA Coordinates 33.9095°, -116.734° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":33.9095,"lon":-116.734,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

Note: This page contains sample records for the topic "wind energy forecasts" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


161

Wind Power | Open Energy Information  

Open Energy Info (EERE)

Wind Power Wind Power Jump to: navigation, search Wind Power WIndfarm.Sunset.jpg Wind power is a form of solar energy.[1] Wind is caused by the uneven heating of the atmosphere by the sun, variations in the earth's surface, and rotation of the earth. Mountains, bodies of water, and vegetation all influence wind flow patterns[2], [3]. Wind energy (or wind power) describes the process by which wind is used to generate electricity. Wind turbines convert the energy in wind to electricity by rotating propeller-like blades around a rotor. The rotor turns the drive shaft, which turns an electric generator.[2] Three key factors affect the amount of energy a turbine can harness from the wind: wind speed, air density, and swept area.[4] Mechanical power can also be utilized directly for specific tasks such as

162

Sandia National Laboratories: wind energy  

NLE Websites -- All DOE Office Websites (Extended Search)

More Energy with Less Weight On May 18, 2011, in Energy, News, Renewable Energy, Wind Energy The following is from an article published in WindStats Newsletter Vol. 19, No. 4. The...

163

An Optimized Autoregressive Forecast Error Generator for Wind and Load Uncertainty Study  

SciTech Connect

This paper presents a first-order autoregressive algorithm to generate real-time (RT), hour-ahead (HA), and day-ahead (DA) wind and load forecast errors. The methodology aims at producing random wind and load forecast time series reflecting the autocorrelation and cross-correlation of historical forecast data sets. Five statistical characteristics are considered: the means, standard deviations, autocorrelations, and cross-correlations. A stochastic optimization routine is developed to minimize the differences between the statistical characteristics of the generated time series and the targeted ones. An optimal set of parameters are obtained and used to produce the RT, HA, and DA forecasts in due order of succession. This method, although implemented as the first-order regressive random forecast error generator, can be extended to higher-order. Results show that the methodology produces random series with desired statistics derived from real data sets provided by the California Independent System Operator (CAISO). The wind and load forecast error generator is currently used in wind integration studies to generate wind and load inputs for stochastic planning processes. Our future studies will focus on reflecting the diurnal and seasonal differences of the wind and load statistics and implementing them in the random forecast generator.

De Mello, Phillip; Lu, Ning; Makarov, Yuri V.

2011-01-17T23:59:59.000Z

164

Blyth Offshore Wind Ltd | Open Energy Information  

Open Energy Info (EERE)

Blyth Offshore Wind Ltd Jump to: navigation, search Name: Blyth Offshore Wind Ltd Place: United Kingdom Sector: Renewable Energy, Wind energy Product: Blyth Offshore Wind Limited,...

165

EIA - Forecasts and Analysis of Energy Data  

Gasoline and Diesel Fuel Update (EIA)

Highlights Highlights World energy consumption is projected to increase by 57 percent from 2002 to 2025. Much of the growth in worldwide energy use in the IEO2005 reference case forecast is expected in the countries with emerging economies. Figure 1. World Marketed Energy Consumptiion by Region, 1970-2025. Need help, contact the National Energy Information Center at 202-586-8800. Figure Data In the International Energy Outlook 2005 (IEO2005) reference case, world marketed energy consumption is projected to increase on average by 2.0 percent per year over the 23-year forecast horizon from 2002 to 2025—slightly lower than the 2.2-percent average annual growth rate from 1970 to 2002. Worldwide, total energy use is projected to grow from 412 quadrillion British thermal units (Btu) in 2002 to 553 quadrillion Btu in

166

EU Energy Wind Limited | Open Energy Information  

Open Energy Info (EERE)

energy Product: The company will be concentrating initially on bringing an innovative composite wind tower to market. References: EU Energy (Wind) Limited1 This article is a...

167

China Wind Energy Association | Open Energy Information  

Open Energy Info (EERE)

Name: China Wind Energy Association Place: Beijing, Beijing Municipality, China Zip: 100013 Sector: Wind energy Product: A non-profit industrial association devoted to promote the...

168

CALIFORNIA ENERGY DEMAND 2008-2018 STAFF REVISED FORECAST  

E-Print Network (OSTI)

CALIFORNIA ENERGY COMMISSION CALIFORNIA ENERGY DEMAND 2008-2018 STAFF REVISED FORECAST. Mitch Tian prepared the peak demand forecast. Ted Dang prepared the historic energy consumption data in California and for climate zones within those areas. The staff California Energy Demand 2008-2018 forecast

169

AUTOMATION OF ENERGY DEMAND FORECASTING Sanzad Siddique, B.S.  

E-Print Network (OSTI)

AUTOMATION OF ENERGY DEMAND FORECASTING by Sanzad Siddique, B.S. A Thesis submitted to the Faculty OF ENERGY DEMAND FORECASTING Sanzad Siddique, B.S. Marquette University, 2013 Automation of energy demand of the energy demand forecasting are achieved by integrating nonlinear transformations within the models

Povinelli, Richard J.

170

European Wind Energy Conference Exhibition  

NLE Websites -- All DOE Office Websites (Extended Search)

European Wind Energy Conference & Exhibition 2009 Parc Chanot, Marseille, France 16-19 March 2009 ACTIVE AERODYNAMIC BLADE CONTROL DESIGN FOR LOAD REDUCTION ON LARGE WIND TURBINES...

171

Solar Wind | Open Energy Information  

Open Energy Info (EERE)

Place: Krasnodar, Romania Zip: 350000 Sector: Solar, Wind energy Product: Russia-based PV product manufacturer. Solar Wind manufactures solar modules and cells. References: Solar...

172

Wind is Energy (17 activities)  

K-12 Energy Lesson Plans and Activities Web site (EERE)

A nonfiction test to be read with primary student with basic information about wind as an energy source and hands-on, wind-related activities including

173

Log-normal distribution based EMOS models for probabilistic wind speed forecasting  

E-Print Network (OSTI)

Ensembles of forecasts are obtained from multiple runs of numerical weather forecasting models with different initial conditions and typically employed to account for forecast uncertainties. However, biases and dispersion errors often occur in forecast ensembles, they are usually under-dispersive and uncalibrated and require statistical post-processing. We present an Ensemble Model Output Statistics (EMOS) method for calibration of wind speed forecasts based on the log-normal (LN) distribution, and we also show a regime-switching extension of the model which combines the previously studied truncated normal (TN) distribution with the LN. Both presented models are applied to wind speed forecasts of the eight-member University of Washington mesoscale ensemble, of the fifty-member ECMWF ensemble and of the eleven-member ALADIN-HUNEPS ensemble of the Hungarian Meteorological Service, and their predictive performances are compared to those of the TN and general extreme value (GEV) distribution based EMOS methods an...

Baran, Sndor

2014-01-01T23:59:59.000Z

174

Cisco Wind Energy Wind Farm | Open Energy Information  

Open Energy Info (EERE)

Cisco Wind Energy Wind Farm Cisco Wind Energy Wind Farm Jump to: navigation, search Name Cisco Wind Energy Wind Farm Facility Cisco Wind Energy Sector Wind energy Facility Type Commercial Scale Wind Facility Status In Service Owner John Deere Wind Energy Developer Community Energy Purchaser Northern States Power Location Brewster MN Coordinates 43.696164°, -95.467078° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":43.696164,"lon":-95.467078,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

175

Performance Indicators of Wind Energy Production  

E-Print Network (OSTI)

Modeling wind speed is one of the key element when dealing with the production of energy through wind turbines. A good model can be used for forecasting, site evaluation, turbines design and many other purposes. In this work we are interested in the analysis of the future financial cash flows generated by selling the electrical energy produced. We apply an indexed semi-Markov model of wind speed that has been shown, in previous investigation, to reproduce accurately the statistical behavior of wind speed. The model is applied to the evaluation of financial indicators like the Internal Rate of Return, semi-Elasticity and relative Convexity that are widely used for the assessment of the profitability of an investment and for the measurement and analysis of interest rate risk. We compare the computation of these indicators for real and synthetic data. Moreover, we propose a new indicator that can be used to compare the degree of utilization of different power plants.

D'Amico, G; Prattico, F

2015-01-01T23:59:59.000Z

176

Improving an Accuracy of ANN-Based Mesoscale-Microscale Coupling Model by Data Categorization: With Application to Wind Forecast for Offshore and Complex Terrain Onshore Wind Farms  

Science Journals Connector (OSTI)

The ANN-based mesoscale-microscale coupling model forecasts wind speed and wind direction with high accuracy for wind parks located in complex terrain onshore, yet some weather regimes remains unresolved and f...

Alla Sapronova; Catherine Meissner

2014-01-01T23:59:59.000Z

177

Wind energy offers considerable promise; the wind itself is free,  

E-Print Network (OSTI)

Wind energy offers considerable promise; the wind itself is free, wind power is clean. One of these sources, wind energy, offers considerable promise; the wind itself is free, wind power is clean, and it is virtually inexhaustible. In recent years, research on wind energy has accelerated

Langendoen, Koen

178

Sandia National Laboratories: wind energy  

NLE Websites -- All DOE Office Websites (Extended Search)

iNEMI Renewable Energy Workshop On May 18, 2011, in Energy, News, Renewable Energy, Wind Energy, Workshops The International Electronics Manufacturing Initiative (iNEMI) held a...

179

Probability Distributions and Threshold Selection for Monte CarloType Tropical Cyclone Wind Speed Forecasts  

Science Journals Connector (OSTI)

Probabilistic wind speed forecasts for tropical cyclones from Monte Carlotype simulations are assessed within a theoretical framework for a simple unbiased Gaussian system that is based on feature size and location error that mimic tropical ...

Michael E. Splitt; Steven M. Lazarus; Sarah Collins; Denis N. Botambekov; William P. Roeder

2014-10-01T23:59:59.000Z

180

Weather forecast-based optimization of integrated energy systems.  

SciTech Connect

In this work, we establish an on-line optimization framework to exploit detailed weather forecast information in the operation of integrated energy systems, such as buildings and photovoltaic/wind hybrid systems. We first discuss how the use of traditional reactive operation strategies that neglect the future evolution of the ambient conditions can translate in high operating costs. To overcome this problem, we propose the use of a supervisory dynamic optimization strategy that can lead to more proactive and cost-effective operations. The strategy is based on the solution of a receding-horizon stochastic dynamic optimization problem. This permits the direct incorporation of economic objectives, statistical forecast information, and operational constraints. To obtain the weather forecast information, we employ a state-of-the-art forecasting model initialized with real meteorological data. The statistical ambient information is obtained from a set of realizations generated by the weather model executed in an operational setting. We present proof-of-concept simulation studies to demonstrate that the proposed framework can lead to significant savings (more than 18% reduction) in operating costs.

Zavala, V. M.; Constantinescu, E. M.; Krause, T.; Anitescu, M.

2009-03-01T23:59:59.000Z

Note: This page contains sample records for the topic "wind energy forecasts" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


181

Bias Correction and Bayesian Model Averaging for Ensemble Forecasts of Surface Wind Direction  

E-Print Network (OSTI)

from numerical weather prediction models, which is based on a state-of-the-art circular-processing techniques for forecasts from numerical weather prediction models tend to become ineffective or inapplicableBias Correction and Bayesian Model Averaging for Ensemble Forecasts of Surface Wind Direction Le

Washington at Seattle, University of

182

Development of short-term forecast quality for new offshore wind farms  

Science Journals Connector (OSTI)

As the rapid wind power build-out continues, a large number of new wind farms will come online but forecasters and forecasting algorithms have little experience with them. This is a problem for statistical short term forecasts, which must be trained on a long record of historical power production exactly what is missing for a new farm. Focus of the study was to analyse development of the offshore wind power forecast (WPF) quality from beginning of operation up to one year of operational experience. This paper represents a case study using data of the first German offshore wind farm "alpha ventus" and first German commercial offshore wind farm "Baltic1". The work was carried out with measured data from meteorological measurement mast FINO1, measured power from wind farms and numerical weather prediction (NWP) from the German Weather Service (DWD). This study facilitates to decide the length of needed time series and selection of forecast method to get a reliable WPF on a weekly time axis. Weekly development of WPF quality for day-ahead WPF via different models is presented. The models are physical model; physical model extended with a statistical correction (MOS) and artificial neural network (ANN) as a pure statistical model. Selforganizing map (SOM) is investigated for a better understanding of uncertainties of forecast error.

M Kurt; B Lange

2014-01-01T23:59:59.000Z

183

Wind Report | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Wind Report Wind Report Wind Report Watch as our clean energy experts answer your questions about the U.S. wind industry -- one of the largest and fastest growing wind markets in the world. Related Links Top 8 Things You Didn't Know About Distributed Wind Small-Scale Distributed Wind: Northern Power Systems 100 kW turbine at the top of Burke Mountain in East Burke, Vermont. | Photo courtesy of Northern Power Systems. Test your energy knowledge by learning interesting facts about distributed wind. Charting the Future of Energy Storage As we continue to incorporate more renewable energy into the grid, technologies that store energy like batteries will be key to providing a continuous flow of clean energy even when the wind isn't blowing and the sun doesn't shine. Wind Industry Soars to New Heights

184

OpenEI Community - energy data + forecasting  

Open Energy Info (EERE)

FRED FRED http://en.openei.org/community/group/fred Description: Free Energy Database Tool on OpenEI This is an open source platform for assisting energy decision makers and policy makers in formulating policies and energy plans based on easy to use forecasting tools, visualizations, sankey diagrams, and open data. The platform will live on OpenEI and this community was established to initiate discussion around continuous development of this tool, integrating it with new datasets, and connecting with the community of users who will want to contribute data to the tool and use the tool for planning purposes. energy data + forecasting Fri, 22 Jun 2012 15:30:20 +0000 Dbrodt 34

185

The Solar Wind Energy Flux  

Science Journals Connector (OSTI)

The solar-wind energy flux measured near the Ecliptic is known...Helios, Ulysses, and Wind...covering a large range of latitudes and time, we show that the solar-wind energy flux is independent of the solar-wind....

G. Le Chat; K. Issautier; N. Meyer-Vernet

2012-07-01T23:59:59.000Z

186

Women of Wind Energy Honor Wind Program Researchers | Department...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Women of Wind Energy Honor Wind Program Researchers Women of Wind Energy Honor Wind Program Researchers August 1, 2013 - 2:54pm Addthis This is an excerpt from the Second Quarter...

187

20% Wind Energy by 2030: Increasing Wind Energy's Contribution...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

20% Wind Energy by 2030 Increasing Wind Energy's Contribution to U.S. Electricity Supply DOEGO-102008-2578 * December 2008 More information is available on the web at:...

188

Shaping Tomorrow's Wind Energy Leaders | Department of Energy  

NLE Websites -- All DOE Office Websites (Extended Search)

Shaping Tomorrow's Wind Energy Leaders Shaping Tomorrow's Wind Energy Leaders Addthis Duration 2:22 Topic Wind Science Education...

189

AEP Wind Energy LLC | Open Energy Information  

Open Energy Info (EERE)

Wind Energy LLC Wind Energy LLC Jump to: navigation, search Name AEP Wind Energy LLC Place Dallas, Texas Zip 75266 1064 Sector Wind energy Product AEP Wind Energy LLC is a project developer in the wind industry. It is an affiliate of American Electric Power. References AEP Wind Energy LLC[1] LinkedIn Connections CrunchBase Profile No CrunchBase profile. Create one now! This article is a stub. You can help OpenEI by expanding it. AEP Wind Energy LLC is a company located in Dallas, Texas . References ↑ "AEP Wind Energy LLC" Retrieved from "http://en.openei.org/w/index.php?title=AEP_Wind_Energy_LLC&oldid=341822" Categories: Clean Energy Organizations Companies Organizations Stubs What links here Related changes Special pages Printable version Permanent link

190

The use of real-time off-site observations as a methodology for increasing forecast skill in prediction of large wind power ramps one or more hours ahead of their impact on a wind plant.  

SciTech Connect

ABSTRACT Application of Real-Time Offsite Measurements in Improved Short-Term Wind Ramp Prediction Skill Improved forecasting performance immediately preceding wind ramp events is of preeminent concern to most wind energy companies, system operators, and balancing authorities. The value of near real-time hub height-level wind data and more general meteorological measurements to short-term wind power forecasting is well understood. For some sites, access to onsite measured wind data - even historical - can reduce forecast error in the short-range to medium-range horizons by as much as 50%. Unfortunately, valuable free-stream wind measurements at tall tower are not typically available at most wind plants, thereby forcing wind forecasters to rely upon wind measurements below hub height and/or turbine nacelle anemometry. Free-stream measurements can be appropriately scaled to hub-height levels, using existing empirically-derived relationships that account for surface roughness and turbulence. But there is large uncertainty in these relationships for a given time of day and state of the boundary layer. Alternatively, forecasts can rely entirely on turbine anemometry measurements, though such measurements are themselves subject to wake effects that are not stationary. The void in free-stream hub-height level measurements of wind can be filled by remote sensing (e.g., sodar, lidar, and radar). However, the expense of such equipment may not be sustainable. There is a growing market for traditional anemometry on tall tower networks, maintained by third parties to the forecasting process (i.e., independent of forecasters and the forecast users). This study examines the value of offsite tall-tower data from the WINDataNOW Technology network for short-horizon wind power predictions at a wind farm in northern Montana. The presentation shall describe successful physical and statistical techniques for its application and the practicality of its application in an operational setting. It shall be demonstrated that when used properly, the real-time offsite measurements materially improve wind ramp capture and prediction statistics, when compared to traditional wind forecasting techniques and to a simple persistence model.

Martin Wilde, Principal Investigator

2012-12-31T23:59:59.000Z

191

OWEMES -Offshore Wind And Other Marine Renewable Energies In Mediterranean And European Seas Civitavecchia (Italy), 20th  

E-Print Network (OSTI)

OWEMES - Offshore Wind And Other Marine Renewable Energies In Mediterranean And European Seas Civitavecchia (Italy), 20th -22th April 2006 How to avoid Biases in Offshore Wind Power Forecasting Lueder von, adaptive system, Neural Network, single site forecast, systematic error Abstract Large-scale offshore wind

Heinemann, Detlev

192

SPRING 2014 wind energy's impact  

E-Print Network (OSTI)

SPRING 2014 wind energy's impact on birds, bats......... 2-3 school news........... 4-5 alumni news measurable benefits reaped by the use of wind energy. But, it is a fact: all energy sources, alternative Interactions with Offshore Wind Energy Facilities," involves the design, deployment and testing

Tullos, Desiree

193

Sandia National Laboratories: wind energy  

NLE Websites -- All DOE Office Websites (Extended Search)

Dutch University MOU Signing On May 18, 2011, in Energy, News, Renewable Energy, Wind Energy singlepic id632 w320 h240 floatrightINTERNATIONAL COLLABORATIONS - Sid Gutierrez,...

194

Wind Energy Technology Basics | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Wind Energy Technology Basics Wind Energy Technology Basics Wind Energy Technology Basics August 15, 2013 - 4:10pm Addthis Photo of a hilly field, with six visible wind turbines spinning in the wind. Wind energy technologies use the energy in wind for practical purposes such as generating electricity, charging batteries, pumping water, and grinding grain. Most wind energy technologies can be used as stand-alone applications, connected to a utility power grid, or even combined with a photovoltaic system. For utility-scale sources of wind energy, a large number of turbines are usually built close together to form a wind farm that provides grid power. Several electricity providers use wind farms to supply power to their customers. Stand-alone turbines are typically used for water pumping or

195

Probabilistic Wind Resource Assessment and Power Predictions  

E-Print Network (OSTI)

Probabilistic Wind Resource Assessment and Power Predictions Luca Delle Monache (lucadm Accurate wind resource assessment and power forecasts and reliable quanXficaXon of their uncertainty Mo5va5on · Power forecast: o Increase wind energy penetra

Firestone, Jeremy

196

Howden Wind Turbines Ltd | Open Energy Information  

Open Energy Info (EERE)

Howden Wind Turbines Ltd Jump to: navigation, search Name: Howden Wind Turbines Ltd Place: United Kingdom Sector: Wind energy Product: Howden was a manufacturer of wind turbines in...

197

ABO Wind AG | Open Energy Information  

Open Energy Info (EERE)

AG Place: Hessen, Germany Zip: 65193 Sector: Bioenergy, Wind energy Product: German developer of wind and bioenergy generation assets. ABO Wind has no direct holding in any wind...

198

TS Wind Power Developers | Open Energy Information  

Open Energy Info (EERE)

TS Wind Power Developers Jump to: navigation, search Name: TS Wind Power Developers Place: Satara, Maharashtra, India Sector: Wind energy Product: Setting up 30MW wind farm in...

199

Daqing Longjiang Wind Power | Open Energy Information  

Open Energy Info (EERE)

Longjiang Wind Power Jump to: navigation, search Name: Daqing Longjiang Wind Power Place: Daqing, Heilongjiang Province, China Zip: 163316 Sector: Wind energy Product: Local wind...

200

Heilongjiang Lishu Wind Power | Open Energy Information  

Open Energy Info (EERE)

Lishu Wind Power Jump to: navigation, search Name: Heilongjiang Lishu Wind Power Place: Heilongjiang Province, China Sector: Wind energy Product: China-based wind project developer...

Note: This page contains sample records for the topic "wind energy forecasts" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


201

Short-term Forecasting of Offshore Wind Farm Production Developments of the Anemos Project  

E-Print Network (OSTI)

Short-term Forecasting of Offshore Wind Farm Production ­ Developments of the Anemos Project J.a.brownsword@rl.ac.uk 6 Overspeed GmBH & Co.KG, 26129 Oldenburg, Germany Email: h.p.waldl@overspeed.de Key words: Offshore to the large dimensions of offshore wind farms, their electricity production must be known well in advance

Paris-Sud XI, Université de

202

Wind Energy Basics | Department of Energy  

Energy Savers (EERE)

with the United States increasing its wind power capacity 30% year over year. Wind turbines, as they are now called, collect and convert the kinetic energy that wind produces...

203

EIA - Forecasts and Analysis of Energy Data  

Gasoline and Diesel Fuel Update (EIA)

Energy Consumption by End-Use Sector Energy Consumption by End-Use Sector In the IEO2005 projections, end-use energy consumption in the residential, commercial, industrial, and transportation sectors varies widely among regions and from country to country. One way of looking at the future of world energy markets is to consider trends in energy consumption at the end-use sector level. With the exception of the transportation sector, which is almost universally dominated by petroleum products at present, the mix of energy use in the residential, commercial, and industrial sectors can vary widely from country to country, depending on a combination of regional factors, such as the availability of energy resources, the level of economic development, and political, social, and demographic factors. This chapter outlines the International Energy Outlook 2005 (IEO2005) forecast for regional energy consumption by end-use sector.

204

Energy 101: Wind Turbines  

ScienceCinema (OSTI)

See how wind turbines generate clean electricity from the power of the wind. Highlighted are the various parts and mechanisms of a modern wind turbine.

None

2013-05-29T23:59:59.000Z

205

Energy 101: Wind Turbines  

SciTech Connect

See how wind turbines generate clean electricity from the power of the wind. Highlighted are the various parts and mechanisms of a modern wind turbine.

None

2011-01-01T23:59:59.000Z

206

NREL: Energy Analysis - Energy Forecasting and Modeling Staff  

NLE Websites -- All DOE Office Websites (Extended Search)

Energy Forecasting and Modeling Energy Forecasting and Modeling The following includes summary bios of staff expertise and interests in analysis relating to energy economics, energy system planning, risk and uncertainty modeling, and energy infrastructure planning. Team Lead: Nate Blair Administrative Support: Geraly Amador Clayton Barrows Greg Brinkman Brian W Bush Stuart Cohen Carolyn Davidson Paul Denholm Victor Diakov Aron Dobos Easan Drury Kelly Eurek Janine Freeman Marissa Hummon Jennie Jorganson Jordan Macknick Trieu Mai David Mulcahy David Palchak Ben Sigrin Daniel Steinberg Patrick Sullivan Aaron Townsend Laura Vimmerstedt Andrew Weekley Owen Zinaman Photo of Clayton Barrows. Clayton Barrows Postdoctoral Researcher Areas of expertise Power system modeling Primary research interests Power and energy systems

207

Cowal Wind Energy Ltd | Open Energy Information  

Open Energy Info (EERE)

Cowal Wind Energy Ltd Cowal Wind Energy Ltd Jump to: navigation, search Name Cowal Wind Energy Ltd Place Flintshire, Wales, United Kingdom Zip CH7 4EW Sector Wind energy Product Wind Farm developer with its office in north Wales. References Cowal Wind Energy Ltd[1] LinkedIn Connections CrunchBase Profile No CrunchBase profile. Create one now! This article is a stub. You can help OpenEI by expanding it. Cowal Wind Energy Ltd is a company located in Flintshire, Wales, United Kingdom . References ↑ "Cowal Wind Energy Ltd" Retrieved from "http://en.openei.org/w/index.php?title=Cowal_Wind_Energy_Ltd&oldid=343949" Categories: Clean Energy Organizations Companies Organizations Stubs What links here Related changes Special pages Printable version Permanent link Browse properties

208

Sandia National Laboratories: Wind Energy Staff  

NLE Websites -- All DOE Office Websites (Extended Search)

EnergyWind Energy Staff Wind Energy Staff Photo of Jonathan (Jon) Berg Jonathan (Jon) Berg Mechanical Engineer 06121Wind Energy Technologies Jon Berg is an engineer in the Wind...

209

Energy 101: Wind Turbines | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Wind Turbines Wind Turbines Energy 101: Wind Turbines Addthis Description See how wind turbines generate clean electricity from the power of the wind. Highlighted are the various parts and mechanisms of a modern wind turbine. Duration 2:16 Topic Tax Credits, Rebates, Savings Wind Energy Economy Credit Energy Department Video MR. : We've all seen those creaky old windmills on farms, and although they may seem about as low-tech as you can get, those old windmills are the predecessors for new modern wind turbines that generate electricity. The same wind that used to pump water for cattle is now turning giant wind turbines to power cities and homes. OK, have a look at this wind farm in the California desert, a hot desert next to tall mountains - an ideal place for a lot of wind.

210

Prairie Winds Wind Farm | Open Energy Information  

Open Energy Info (EERE)

Prairie Winds Wind Farm Prairie Winds Wind Farm Facility Prairie Winds Sector Wind energy Facility Type Commercial Scale Wind Facility Status In Service Owner Basin Electric Power Coop/Central Power Electric Coop Developer Basin Electric Power Coop/Central Power Electric Coop Energy Purchaser Basin Electric Power Coop/Central Power Electric Coop Location Near Minot ND Coordinates 48.022927°, -101.291435° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":48.022927,"lon":-101.291435,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

211

Alta Wind Energy Center | Open Energy Information  

Open Energy Info (EERE)

Alta Wind Energy Center Alta Wind Energy Center Address 10315 Oak Creek Road Place Mojave, California Zip 93501 Sector Wind energy Phone number 1-877-4WI-ND88 (1-877-494-6388) Website http://altawindenergycenter.co Region Southern CA Area References Alta Wind Energy Center[1] LinkedIn Connections CrunchBase Profile No CrunchBase profile. Create one now! The Alta Wind Energy Center (AWEC) is located in the heart of one of the most proven wind resources in the United States - the Tehachapi-Mojave Wind Resource Area. Terra-Gen is developing the AWEC, California's largest wind energy project, adjacent to existing wind projects between the towns of Mojave and Tehachapi. Due to a welcoming community and the participation of a diverse group of landowners (private and public, local and non-local,

212

2008 Wind Energy Projects, Wind Powering America (Poster)  

SciTech Connect

The Wind Powering America program produces a poster at the end of every calendar year that depicts new U.S. wind energy projects. The 2008 poster includes the following projects: Stetson Wind Farm in Maine; Dutch Hill Wind Farm in New York; Grand Ridge Wind Energy Center in Illinois; Hooper Bay, Alaska; Forestburg, South Dakota; Elbow Creek Wind Project in Texas; Glacier Wind Farm in Montana; Wray, Colorado; Smoky Hills Wind Farm in Kansas; Forbes Park Wind Project in Massachusetts; Spanish Fork, Utah; Goodland Wind Farm in Indiana; and the Tatanka Wind Energy Project on the border of North Dakota and South Dakota.

Not Available

2009-01-01T23:59:59.000Z

213

Annual Energy Outlook 1998 Forecasts - Preface  

Gasoline and Diesel Fuel Update (EIA)

1998 With Projections to 2020 1998 With Projections to 2020 Annual Energy Outlook 1999 Report will be Available on December 9, 1998 Preface The Annual Energy Outlook 1998 (AEO98) presents midterm forecasts of energy supply, demand, and prices through 2020 prepared by the Energy Information Administration (EIA). The projections are based on results from EIA's National Energy Modeling System (NEMS). The report begins with an “Overview” summarizing the AEO98 reference case. The next section, “Legislation and Regulations,” describes the assumptions made with regard to laws that affect energy markets and discusses evolving legislative and regulatory issues. “Issues in Focus” discusses three current energy issues—electricity restructuring, renewable portfolio standards, and carbon emissions. It is followed by the analysis

214

Experiments with Wind to Produce Energy  

NLE Websites -- All DOE Office Websites (Extended Search)

Nat EXPERIMENTS WITH WIND TO PRODUCE ENERGY Curriculum: Wind Power (simple machines, weatherclimatology, aerodynamics, leverage, mechanics, atmospheric pressure, and energy...

215

Infinity Wind Power Inc | Open Energy Information  

Open Energy Info (EERE)

Inc Jump to: navigation, search Name: Infinity Wind Power, Inc. Place: Santa Barbara, California Zip: 93105 Sector: Renewable Energy, Wind energy Product: California-based wind...

216

Offshore Wind Accelerator | Open Energy Information  

Open Energy Info (EERE)

Offshore Wind Accelerator Place: United Kingdom Sector: Wind energy Product: Research and development initiative aimed at cutting the cost of offshore wind energy. References:...

217

Wind Success Stories | Department of Energy  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Wind Success Stories Wind Success Stories RSS The Office of Energy Efficiency and Renewable Energy's (EERE) successes in developing clean, affordable, and reliable domestic wind...

218

Wind Easements | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Wind Easements Wind Easements Wind Easements < Back Eligibility Agricultural Fed. Government Institutional Local Government Nonprofit Residential Schools State Government Tribal Government Savings Category Wind Buying & Making Electricity Program Info State North Dakota Program Type Solar/Wind Access Policy North Dakota allows property owners to grant an easement that ensures adequate exposure of a wind-energy system to the wind. The easement runs with the land benefited and burdened, and terminates upon the conditions stated in the easement. The statutes authorizing the creation of wind easements include several provisions to protect property owners. For example, a wind easement may not make the property owner liable for any property tax associated with the wind-energy system or other equipment

219

Wind Blog | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

August 6, 2013 August 6, 2013 Our latest Infographic highlights key findings from the 2012 Wind Technologies Market Report. | Infographic by Sarah Gerrity. America's Wind Industry Reaches Record Highs Sharing key findings from two new Energy Department reports that highlight the record growth of America's wind industry. August 5, 2013 Wind Industry Soars to New Heights Watch the video as Jose Zayas, Director of the Wind and Water Power Technologies Office, highlights the latest wind industry trends in the 2012 Wind Technologies Market Report. August 16, 2012 Wind Energy In America: Supporting Our Manufacturers Profiling success stories of the American wind industry. August 14, 2012 A Banner Year for the U.S. Wind Industry

220

On the effect of spatial dispersion of wind power plants on the wind energy capacity credit  

Science Journals Connector (OSTI)

Wind energy is now a mature technology and can be considered as a significant contributor in reducing CO2 emissions and protecting the environment. To meet the wind energy national targets, effective implementation of massive wind power installed capacity in the power supply system is required. Additionally, capacity credit is an important issue for an unstable power supply system as in Greece. To achieve high and reliable wind energy penetration levels into the system, the effect of spatial dispersion of wind energy installations within a very wide area (e.g.national level) on the power capacity credit should be accounted for. In the present paper, a methodology for estimating the effect of spatial dispersion of wind farm installations on the capacity credit is presented and applied for the power supply system of Greece. The method is based on probability theory and makes use of wind forecasting models to represent the wind energy potential over any candidate area for future wind farm installations in the country. Representative wind power development scenarios are studied and evaluated. Results show that the spatial dispersion of wind power plants contributes beneficially to the wind capacity credit.

George Caralis; Yiannis Perivolaris; Konstantinos Rados; Arthouros Zervos

2008-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "wind energy forecasts" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


221

Version:April 2014 Wind Energy EFA  

E-Print Network (OSTI)

Version:April 2014 Wind Energy EFA Wind energy has become a major source of clean energy. Wind backgrounds and knowledge of wind energy fundamentals are needed to fill these jobs. The Wind Energy EFA prepares students for a career in wind energy, and allows for completing all requirements

Kusiak, Andrew

222

EIA - Forecasts and Analysis of Energy Data  

Gasoline and Diesel Fuel Update (EIA)

Contacts Contacts The International Energy Outlook is prepared by the Energy Information Administration (EIA). General questions concerning the contents of the report should be referred to John J. Conti (john.conti@eia.doe.gov, 202-586-2222), Director, Office of Integrated Analysis and Forecasting. Specific questions about the report should be referred to Linda E. Doman (202/586-1041) or the following analysts: World Energy and Economic Outlook Linda Doman (linda.doman@eia.doe.gov, 202-586-1041) Macroeconomic Assumptions Nasir Khilji (nasir.khilji@eia.doe.gov, 202-586-1294) Energy Consumption by End-Use Sector Residential Energy Use John Cymbalsky (john.cymbalsky@eia.doe.gov, 202-586-4815) Commercial Energy Use Erin Boedecker (erin.boedecker@eia.doe.gov, 202-586-4791)

223

Energy 101: Wind Turbines | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Wind Turbines Wind Turbines Energy 101: Wind Turbines Addthis Below is the text version for the Energy 101: Wind Turbines video. The video opens with "Energy 101: Wind Turbines." This is followed by wooden windmills on farms. We've all seen those creaky, old windmills on farms. And although they may seem about as low-tech as you can get, those old windmills are the predecessors for new, modern wind turbines that generat electricity. The video pans through shots of large windmills and wind farms of different sizes, situated on cultivated plains and hills. The same wind that used to pump water for cattle is now turning giant wind turbines to power cities and homes. OK, have a look at this wind farm in the California desert. A hot desert, next to tall mountains. An ideal place for a lot of wind.

224

Temporal and spatial variability of wind resources in the United States as derived from the Climate Forecast System Reanalysis  

Science Journals Connector (OSTI)

This study examines the spatial and temporal variability of wind speed at 80 m above ground (the average hub height of most modern wind turbines) in the contiguous United States using Climate Forecast System Reanalysis (CFSR) data from 1979 to ...

Lejiang Yu; Shiyuan Zhong; Xindi Bian; Warren E. Heilman

225

Wind Speed Forecasting Using a Hybrid Neural-Evolutive Approach  

Science Journals Connector (OSTI)

The design of models for time series prediction has found a solid foundation on statistics. Recently, artificial neural networks have been a good choice as approximators to model and forecast time series. Designing a neural network that provides a good ...

Juan J. Flores; Roberto Loaeza; Hctor Rodrguez; Erasmo Cadenas

2009-11-01T23:59:59.000Z

226

Wind Events | Department of Energy  

Energy Savers (EERE)

Below is an industry calendar with meetings, conferences, and webinars of interest to the wind energy technology communities. AWEA Wind Project O&M and Safety Seminar February 2,...

227

Forecasting the Market Penetration of Energy Conservation Technologies: The Decision Criteria for Choosing a Forecasting Model  

E-Print Network (OSTI)

An important determinant of our energy future is the rate at which energy conservation technologies, once developed, are put into use. At Synergic Resources Corporation, we have adapted and applied a methodology to forecast the use of conservation...

Lang, K.

1982-01-01T23:59:59.000Z

228

Building Energy Software Tools Directory: Degree Day Forecasts  

NLE Websites -- All DOE Office Websites (Extended Search)

Forecasts Forecasts Degree Day Forecasts example chart Quick and easy web-based tool that provides free 14-day ahead degree day forecasts for 1,200 stations in the U.S. and Canada. Degree Day Forecasts charts show this year, last year and three-year average. Historical degree day charts and energy usage forecasts are available from the same site. Keywords degree days, historical weather, mean daily temperature Validation/Testing Degree day data provided by AccuWeather.com, updated daily at 0700. Expertise Required No special expertise required. Simple to use. Users Over 1,000 weekly users. Audience Anyone who needs degree day forecasts (next 14 days) for the U.S. and Canada. Input Select a weather station (1,200 available) and balance point temperature. Output Charts show (1) degree day (heating and cooling) forecasts for the next 14

229

DOE Announces More than $5 Million to Support Wind Energy Development |  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

More than $5 Million to Support Wind Energy More than $5 Million to Support Wind Energy Development DOE Announces More than $5 Million to Support Wind Energy Development September 13, 2010 - 12:00am Addthis Washington, DC - U.S. Energy Secretary Steven Chu announced today that the Department of Energy is awarding more than $5 million to support U.S. wind energy development. Two projects receiving a total of $3.4 million over two years will improve short-term wind forecasting, which will accelerate the use of wind power in electricity transmission networks by allowing utilities and grid operators to more accurately forecast when and where electricity will be generated from wind power. Three additional projects are receiving a total of more than $1.8 million to boost the speed and scale of midsize wind turbine technology development and deployment.

230

Mountain Wind | Open Energy Information  

Open Energy Info (EERE)

Mountain Wind Mountain Wind Jump to: navigation, search Mountain Wind is a wind farm located in Uinta County, Wyoming. It consists of 67 turbines and has a total capacity of 140.7 MW. It is owned by Edison Mission Group.[1] Based on assertions that the site is near Fort Bridger, its approximate coordinates are 41.318716°, -110.386418°.[2] References ↑ http://www.wsgs.uwyo.edu/Topics/EnergyResources/wind.aspx ↑ http://www.res-americas.com/wind-farms/operational-/mountain-wind-i-wind-farm.aspx Retrieved from "http://en.openei.org/w/index.php?title=Mountain_Wind&oldid=132229" Category: Wind Farms What links here Related changes Special pages Printable version Permanent link Browse properties 429 Throttled (bot load) Error 429 Throttled (bot load) Throttled (bot load)

231

Wind energy: Program overview, FY 1992  

SciTech Connect

The DOE Wind Energy Program assists utilities and industry in developing advanced wind turbine technology to be economically competitive as an energy source in the marketplace and in developing new markets and applications for wind systems. This program overview describes the commercial development of wind power, wind turbine development, utility programs, industry programs, wind resources, applied research in wind energy, and the program structure.

Not Available

1993-06-01T23:59:59.000Z

232

Wind turbine | Open Energy Information  

Open Energy Info (EERE)

turbine turbine Jump to: navigation, search Dictionary.png Wind turbine: A machine that converts wind energy to mechanical energy; typically connected to a generator to produce electricity. Other definitions:Wikipedia Reegle Contents 1 Types of Wind Turbines 1.1 Vertical Axis Wind Turbines 1.2 Horizontal Axis Wind Turbines 2 Wind Turbine Sizes 3 Components of a Wind Turbine 4 References Types of Wind Turbines There are two basic wind turbine designs: those with a vertical axis (sometimes referred to as VAWTs) and those with a horizontal axis (sometimes referred to as HAWTs). There are several manufacturers of vertical axis turbines, but they have not penetrated the "utility scale" (100 kW capacity and larger) market to the same degree as horizontal axis turbines.[1]

233

Environmental impact of wind energy  

Science Journals Connector (OSTI)

One purpose of wind turbines is to provide pollution-free electric power at a reasonable price in an environmentally sound way. In this focus issue the latest research on the environmental impact of wind farms is presented. Offshore wind farms affect the marine fauna in both positive and negative ways. For example, some farms are safe havens for porpoises while other farms show fewer harbor porpoises even after ten years. Atmospheric computer experiments are carried out to investigate the possible impact and resource of future massive installations of wind turbines. The following questions are treated. What is the global capacity for energy production by the wind? Will the added turbulence and reduced wind speeds generated by massive wind farms cool or heat the surface? Can wind farms affect precipitation? It is also shown through life-cycle analysis how wind energy can reduce the atmospheric emission of eight air pollutants. Finally, noise generation and its impact on humans are studied.

J Mann; J Teilmann

2013-01-01T23:59:59.000Z

234

Cow Branch Wind Energy Center Wind Farm | Open Energy Information  

Open Energy Info (EERE)

Cow Branch Wind Energy Center Wind Farm Cow Branch Wind Energy Center Wind Farm Jump to: navigation, search Name Cow Branch Wind Energy Center Wind Farm Facility Cow Branch Wind Energy Center Sector Wind energy Facility Type Commercial Scale Wind Facility Status In Service Owner Wind Capital Group/John Deere Capital Developer Wind Capital Group/John Deere Capital Energy Purchaser Associated Electric Cooperative Location Atchison County MO Coordinates 40.423897°, -95.477781° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":40.423897,"lon":-95.477781,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

235

Wind Farm | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Wind Farm Wind Farm Wind Farm The wind farm in Greensburg, Kansas, was completed in spring 2010, and consists of ten 1.25 megawatt (MW) wind turbines that supply enough electricity to power every house, business, and municipal building in Greensburg. Technical assistance provided by the U.S. Department of Energy and the National Renewable Energy Laboratory was influential in helping Greensburg and its partners build the wind farm. The town uses only about 1/4 to 1/3 of the power generated to reach its "100% renewable energy, 100% of the time" goal. Excess power is placed back on the grid and offered as renewable energy credits for other Kansas Power Pool and Native Energy customers. The Greenburg Wind Farm continues to have an impact, inspiring Sunflower

236

Steel Winds | Open Energy Information  

Open Energy Info (EERE)

Steel Winds Steel Winds Facility Steel Winds Wind Farm Sector Wind energy Facility Type Commercial Scale Wind Facility Status In Service Owner UPC Wind/BQ Energy Developer UPC Wind/BQ Energy Location Near Lackawanna NY Coordinates 42.81724°, -78.867542° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":42.81724,"lon":-78.867542,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

237

GL Wind | Open Energy Information  

Open Energy Info (EERE)

GL Wind GL Wind Jump to: navigation, search Name GL Wind Facility GL Wind Sector Wind energy Facility Type Commercial Scale Wind Facility Status In Service Owner GL Wind Developer Juhl Wind Energy Purchaser Xcel Energy Location Lewiston MN Coordinates 43.99800118°, -91.85827732° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":43.99800118,"lon":-91.85827732,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

238

EIA - Forecasts and Analysis of Energy Data  

Gasoline and Diesel Fuel Update (EIA)

Natural Gas Natural Gas Natural gas is the fastest growing primary energy source in the IEO2005 forecast. Consumption of natural gas is projected to increase by nearly 70 percent between 2002 and 2025, with the most robust growth in demand expected among the emerging economies. Figure 34. World Natural Gas Consumption, 1980-2025 (Trillion Cubic Feet). Need help, contact the National Energy Information Center on 202-586-8800. Figure Data Figure 35. Natural Gas Consumption by Region, 1980-2025 (Trillion Cubic Feet). Need help, contact the National Energy Information Center at 202-586-8800. Figure Data Figure 36. Increase in Natural Gas Consumption by Region and Country, 2002-2025. Need help, contact the National Energy Information Center at 202-586-8800. Figure Data

239

Integrating agricultural pest biocontrol into forecasts of energy biomass production  

E-Print Network (OSTI)

Analysis Integrating agricultural pest biocontrol into forecasts of energy biomass production T pollution, greenhouse gas emissions, and soil erosion (Nash, 2007; Searchinger et al., 2008). On the other

Gratton, Claudio

240

LARGE SCALE WIND CLIMATOLOGICAL EXAMINATIONS OF WIND ENERGY UTILIZATION  

E-Print Network (OSTI)

The aim of this article is to describe the particular field of climatology which analyzes air movement characteristics regarding utilization of wind for energy generation. The article describes features of wind energy potential available in Hungary compared to wind conditions in other areas of the northern quarter sphere in order to assist the wind energy use development in Hungary. Information on wind climate gives a solid basis for financial and economic decisions of stakeholders in the field of wind energy utilization.

Andrea Kircsi

Note: This page contains sample records for the topic "wind energy forecasts" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


241

Wind Energy Transmission | Open Energy Information  

Open Energy Info (EERE)

Wind Energy Transmission Wind Energy Transmission Jump to: navigation, search Just a few years ago, 5% wind energy penetration in the United States was a lofty goal. In Europe, however, some countries have already reached wind energy penetrations of 10% or higher in a short period of time. The growth of domestic wind generation over the past decade has sharpened the focus on two questions: Can the electrical grid accommodate very high amounts of wind energy without jeopardizing security or degrading reliability? And, given that the nation's current transmission infrastructure is already constraining further development of wind generation in some regions, how could significantly larger amounts of wind energy be developed? The answers to these questions could hold the keys to determining how much of a role

242

Siting Wind Energy | Open Energy Information  

Open Energy Info (EERE)

Siting Wind Energy Siting Wind Energy Jump to: navigation, search Wind turbines at the Forward Wind Energy Center in Fond du Lac and Dodge Counties, Wisconsin. Photo from Ruth Baranowski/NREL, NREL 21207 The following resources provide information about siting wind energy projects. Some are specific to a state or region but may still contain information applicable to other areas. Wind project siting tools, such as calculators and databases, can be found here. Resources American Wind Energy Association. (Updated 2011). Siting, Health, and the Environment. Accessed August 13, 2013. This fact sheet provides an overview of siting myths and facts. Environmental Law Institute. Siting Wind Energy Facilities: What Do Local Elected Officials Need to Know?. Accessed November 29, 2013.

243

Auwahi Wind | Open Energy Information  

Open Energy Info (EERE)

Auwahi Wind Auwahi Wind Jump to: navigation, search Name Auwahi Wind Facility Auwahi Wind Sector Wind energy Facility Type Commercial Scale Wind Facility Status In Service Owner BP Wind Energy / Sempra Energy Developer Sempra Generation Energy Purchaser Maui Electric Co Location Maui HI Coordinates 20.596379°, -156.318304° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":20.596379,"lon":-156.318304,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

244

Jilin Huayi Wind Energy Development Co Ltd | Open Energy Information  

Open Energy Info (EERE)

Energy Development Co Ltd Jump to: navigation, search Name: Jilin Huayi Wind Energy Development Co Ltd Place: Jilin Province, China Sector: Wind energy Product: China-based wind...

245

Yongsheng National Energy Wind Power Co | Open Energy Information  

Open Energy Info (EERE)

Yongsheng National Energy Wind Power Co Jump to: navigation, search Name: Yongsheng National Energy Wind Power Co Place: Inner Mongolia Autonomous Region, China Sector: Wind energy...

246

Spanish Wind Energy Association AEE | Open Energy Information  

Open Energy Info (EERE)

AEE Jump to: navigation, search Name: Spanish Wind Energy Association (AEE) Place: Madrid, Spain Zip: 28006 Sector: Wind energy Product: Spain's association of wind-energy related...

247

WIND ENERGY POLICIES IN TURKEY  

E-Print Network (OSTI)

Energy is a strategic parameter, which demonstrates the development of a country. In Turkey, energy and energy politics are mainly based on the supply due to the inadequate fossil fuel resources. In the beginning of the 21 st century, due to the increase in the price of fossil fuels and environmental burdens, many countries showed renewed interest in alternative energy resources. Climate change and environmental problems caused by greenhouse gas emissions showed the importance of renewable energy resources and especially wind energy. The major reason for the interest in wind energy technologies out of many renewable energy resources is the bulk availability of this resource without any cost. In Turkey, the major solution to the dependency on foreign energy resources is: domestic production, development, and operation of renewable energy resources. However, in order to make these investments, suitable conditions and strategies must be generated. In order to accelerate the wind energy investments in Turkey: (i) the problems related to the interconnectivity of the wind power systems to the grid must be solved (ii) the guaranteed purchase price of the wind energy must be updated (iii) and the construction/operation of wind power plants must be subsidised by government initiatives. In this study, the politics related to wind energy is extensively reviewed and the possible suggestions/solutions related to the acceleration of wind energy production and investments in Turkey are given.

S?tk? Gner; Irem Firtina; Mehmet Meliko?lu; Ayhan Albostan

248

Annual Energy Outlook with Projections to 2025-Forecast Comparisons  

Gasoline and Diesel Fuel Update (EIA)

Forecast Comparisons Forecast Comparisons Annual Energy Outlook 2004 with Projections to 2025 Forecast Comparisons Index (click to jump links) Economic Growth World Oil Prices Total Energy Consumption Electricity Natural Gas Petroleum Coal The AEO2004 forecast period extends through 2025. One other organization—Global Insight, Incorporated (GII)—produces a comprehensive energy projection with a similar time horizon. Several others provide forecasts that address one or more aspects of energy markets over different time horizons. Recent projections from GII and others are compared here with the AEO2004 projections. Economic Growth Printer Friendly Version Average annual percentage growth Forecast 2002-2008 2002-2013 2002-2025 AEO2003 3.2 3.3 3.1 AEO2004 Reference 3.3 3.2 3.0

249

Wind News | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

News News Wind News RSS October 23, 2013 New Report Shows Trend Toward Larger Offshore Wind Systems, with 11 Advanced Stage Projects Proposed in U.S. Waters The Energy Department today released a new report showing progress for the U.S. offshore wind energy market in 2012. August 13, 2013 Largest Federally-Owned Wind Farm Breaks Ground at U.S. Weapons Facility Supports Obama Administration Goal to Power Federal Agencies with 20 Percent Clean Energy by 2020 August 6, 2013 Reports Show Record High U.S. Wind Energy Production and Manufacturing The Energy Department released two new reports today showcasing record growth across the U.S. wind market, supporting an increase in America's share of clean, renewable energy and tens of thousands of jobs nationwide. According to these reports, the United States continues to be one of the

250

EIA - Forecasts and Analysis of Energy Data  

Gasoline and Diesel Fuel Update (EIA)

Electricity Electricity Electricity consumption nearly doubles in the IEO2005 projection period. The emerging economies of Asia are expected to lead the increase in world electricity use. Figure 58. World Net Electricity Consumption, 2002-2025 (Billion Kilowatthours). Need help, contact the National Energy Information Center at 202-586-8800. Figure Data Figure 59. World Net Electricity Consumption by Region, 2002-2025 (Billion Kilowatthours). Need help, contact the National Energy Information Center at 202-586-8800. Figure Data The International Energy Outlook 2005 (IEO2005) reference case projects that world net electricity consumption will nearly double over the next two decades.10 Over the forecast period, world electricity demand is projected to grow at an average rate of 2.6 percent per year, from 14,275 billion

251

Sheffield Wind | Open Energy Information  

Open Energy Info (EERE)

Wind Wind Jump to: navigation, search Name Sheffield Wind Facility Sheffield Wind Sector Wind energy Facility Type Commercial Scale Wind Facility Status In Service Owner First Wind Developer First Wind Energy Purchaser Burlington Electric Department / Vermont Electric Cooperative Inc. / Washington Electric Cooperative Inc. Location Northern Caledonia County VT Coordinates 44.662191°, -72.103879° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":44.662191,"lon":-72.103879,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

252

Kawailoa Wind | Open Energy Information  

Open Energy Info (EERE)

Kawailoa Wind Kawailoa Wind Jump to: navigation, search Name Kawailoa Wind Facility Kawailoa Wind Sector Wind energy Facility Type Commercial Scale Wind Facility Status In Service Owner First Wind Developer First Wind Energy Purchaser Hawaii Electric Co Location Haleiwa HI Coordinates 21.62376064°, -158.063736° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":21.62376064,"lon":-158.063736,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

253

Kahuku Wind | Open Energy Information  

Open Energy Info (EERE)

Kahuku Wind Kahuku Wind Jump to: navigation, search Name Kahuku Wind Facility Kahuku Wind Sector Wind energy Facility Type Commercial Scale Wind Facility Status In Service Owner First Wind Developer First Wind Energy Purchaser Hawaiian Electric Co Inc Location Adjacent to Kahuku HI Coordinates 21.684095°, -157.982372° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":21.684095,"lon":-157.982372,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

254

Rollins Wind | Open Energy Information  

Open Energy Info (EERE)

Rollins Wind Rollins Wind Jump to: navigation, search Name Rollins Wind Facility Rollins Wind Sector Wind energy Facility Type Commercial Scale Wind Facility Status In Service Owner First Wind Developer First Wind Energy Purchaser Maine Public Utilities Commission / Central Maine Power / Bangor Hydro Electric Location East of Lincoln ME Coordinates 45.412708°, -68.370867° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":45.412708,"lon":-68.370867,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

255

Palouse Wind | Open Energy Information  

Open Energy Info (EERE)

Palouse Wind Palouse Wind Jump to: navigation, search Name Palouse Wind Facility Palouse Wind Sector Wind energy Facility Type Commercial Scale Wind Facility Status In Service Owner First Wind Developer First Wind Energy Purchaser Avista Location Naff Ridge Coordinates 47.1572222°, -117.3325° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":47.1572222,"lon":-117.3325,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

256

Environmental impact of wind energy  

Science Journals Connector (OSTI)

Since the beginning of industrialization, energy consumption has increased far more rapidly than the number of people on the planet. It is known that the consumption of energy is amazingly high and the fossil based resources may not be able to provide energy for the whole world as these resources will be used up in the near future. Hence, renewable energy expected to play an important role in handling the demand of the energy required along with environmental pollution prevention. The impacts of the wind energy on the environment are important to be studied before any wind firm construction or a decision is made. Although many countries showing great interest towards renewable or green energy generation, negative perception of wind energy is increasingly evident that may prevent the installation of the wind energy in some countries. This paper compiled latest literatures in terms of thesis (MS and PhD), journal articles, conference proceedings, reports, books, and web materials about the environmental impacts of wind energy. This paper also includes the comparative study of wind energy, problems, solutions and suggestion as a result of the implementation of wind turbine. Positive and negative impacts of wind energy have been broadly explained as well. It has been found that this source of energy will reduce environmental pollution and water consumption. However, it has noise pollution, visual interference and negative impacts on wildlife.

R. Saidur; N.A. Rahim; M.R. Islam; K.H. Solangi

2011-01-01T23:59:59.000Z

257

NREL: Learning - Student Resources on Wind Energy  

NLE Websites -- All DOE Office Websites (Extended Search)

Wind Energy Photo of a girl and a boy standing beneath a large wind turbine. Students can learn about wind energy by visiting a wind farm. The following resources can provide you...

258

Baseline Wind Energy Facility | Open Energy Information  

Open Energy Info (EERE)

Baseline Wind Energy Facility Baseline Wind Energy Facility Jump to: navigation, search Name Baseline Wind Energy Facility Facility Baseline Wind Energy Facility Sector Wind energy Facility Type Commercial Scale Wind Facility Status Proposed Owner First Wind Developer First Wind Location Gilliam County OR Coordinates 45.626863°, -120.162885° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":45.626863,"lon":-120.162885,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

259

Rhaglen Ynni Gwynt Wind Energy Programme  

E-Print Network (OSTI)

Rhaglen Ynni Gwynt Wind Energy Programme Rhaglen Ynni Gwynt Wind Energy Programme Calculations supporting indicative figures used for the Wind Energy Programme Wind Energy (page) The energy to make,000,000 = 162.73 Therefore 4.5kWh/d/p = approximately 163 cups of tea per day per person Wind Energy Programme

260

Sinovel Wind Co Ltd | Open Energy Information  

Open Energy Info (EERE)

Name: Sinovel Wind Co Ltd Place: Beijing Municipality, China Zip: 100872 Sector: Wind energy Product: Develops, manufactures and markets wind power generating equipment....

Note: This page contains sample records for the topic "wind energy forecasts" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


261

Westwind Wind Turbines | Open Energy Information  

Open Energy Info (EERE)

Jump to: navigation, search Name: Westwind Wind Turbines Place: Northern Ireland, United Kingdom Zip: BT29 4TF Sector: Wind energy Product: Northern Ireland based small scale wind...

262

Offshore Ostsee Wind AG | Open Energy Information  

Open Energy Info (EERE)

Name: Offshore Ostsee Wind AG Place: Brgerende, Mecklenburg-Western Pomerania, Germany Zip: 18211 Sector: Wind energy Product: Joint venture formed to exploit offshore wind...

263

Guohua Qiqihaer Wind Power | Open Energy Information  

Open Energy Info (EERE)

Qiqihaer Wind Power Jump to: navigation, search Name: Guohua (Qiqihaer) Wind Power Place: Qiqihaer, Heilongjiang Province, China Zip: 161005 Sector: Wind energy Product: Guohua...

264

Wind Power Associates LLC | Open Energy Information  

Open Energy Info (EERE)

Associates LLC Jump to: navigation, search Name: Wind Power Associates LLC Place: Goldendale, Washington State Sector: Wind energy Product: Wind farm developer and operater....

265

Wave Wind LLC | Open Energy Information  

Open Energy Info (EERE)

Wave Wind LLC Place: Sun Prairie, Wisconsin Zip: 53590 Sector: Services, Wind energy Product: Wisconsin-based wind developer and construction services provider. References: Wave...

266

Sandia National Laboratories: Offshore Wind Energy Simulation...  

NLE Websites -- All DOE Office Websites (Extended Search)

Offshore Wind Energy Simulation Toolkit Sandia Vertical-Axis Wind-Turbine Research Presented at Science of Making Torque from Wind Conference On July 8, 2014, in Computational...

267

Sonne Wind Beteiligungen AG | Open Energy Information  

Open Energy Info (EERE)

Sonne Wind Beteiligungen AG Jump to: navigation, search Name: Sonne+Wind Beteiligungen AG Place: Berlin, Germany Zip: 10715 Sector: Efficiency, Solar, Wind energy Product:...

268

Scandia Wind Southwest LLC | Open Energy Information  

Open Energy Info (EERE)

navigation, search Name: Scandia Wind Southwest LLC Place: Bovina, Texas Sector: Wind energy Product: Scandia Wind Southwest, LLC is based in Parmer County, Bovina, Texas....

269

Wind Energy Benefits (Fact Sheet)  

SciTech Connect

This fact sheet outlines the top 10 benefits of wind energy, including cost, water savings, job creation, indigenous resource, and low operating costs.

Not Available

2015-01-01T23:59:59.000Z

270

Exploring Wind Energy (12 activities)  

Energy.gov (U.S. Department of Energy (DOE))

Hands-on activities that provide a comprehensive understanding of the scientific, economic, environmental, technological, and societal aspects of wind energy to secondary students

271

Wind Gallery | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

(shown here), concrete, or steel lattice. Supports the structure of the turbine. Because wind speed increases with height, taller towers enable turbines to capture more energy and...

272

Sandia National Laboratories: wind energy  

NLE Websites -- All DOE Office Websites (Extended Search)

wind energy Partnership Opportunities On May 21, 2013, in Resources: Steps to Commercialization Sandia's Technology Partnership website Partnerships for Business, Industry and...

273

Traer Wind | Open Energy Information  

Open Energy Info (EERE)

Traer Wind Traer Wind Jump to: navigation, search Name Traer Wind Facility Traer Wind Sector Wind energy Facility Type Community Wind Facility Status In Service Owner Norsemen Wind Energy LLC Developer Clark Thompson Energy Purchaser Traer Municipal Electric Utility Location Traer IA Coordinates 42.15242792°, -92.46557236° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":42.15242792,"lon":-92.46557236,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

274

Wiota Wind | Open Energy Information  

Open Energy Info (EERE)

Wiota Wind Wiota Wind Jump to: navigation, search Name Wiota Wind Facility Wiota Wind Sector Wind energy Facility Type Community Wind Facility Status In Service Owner Wiota Wind Energy LLC Energy Purchaser Farmers Electric Cooperative Coordinates 41.39149137°, -94.87689972° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":41.39149137,"lon":-94.87689972,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

275

Danielson Wind | Open Energy Information  

Open Energy Info (EERE)

Danielson Wind Danielson Wind Jump to: navigation, search Name Danielson Wind Facility Danielson Wind Sector Wind energy Facility Type Commercial Scale Wind Facility Status In Service Developer Juhl Wind Energy Purchaser Xcel Energy Location Near Atwater in Meeker County MN Coordinates 45.066913°, -94.738026° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":45.066913,"lon":-94.738026,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

276

Lake Winds | Open Energy Information  

Open Energy Info (EERE)

Winds Winds Jump to: navigation, search Name Lake Winds Facility Lake Winds Sector Wind energy Facility Type Commercial Scale Wind Facility Status In Service Owner Consumers Energy Developer Consumers Energy Energy Purchaser Consumers Energy Location Ludington MI Coordinates 43.83972728°, -86.38154984° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":43.83972728,"lon":-86.38154984,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

277

Fairhaven Wind | Open Energy Information  

Open Energy Info (EERE)

Wind Wind Jump to: navigation, search Name Fairhaven Wind Facility Fairhaven Wind Sector Wind energy Facility Type Community Wind Facility Status In Service Owner Solaya Energy / Palmer Capital / CTI Energy Developer Solaya Energy Energy Purchaser Town of Fairhaven Location Fairhaven MA Coordinates 41.63885963°, -70.87331772° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":41.63885963,"lon":-70.87331772,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

278

Distributed Wind | Open Energy Information  

Open Energy Info (EERE)

Distributed Wind Distributed Wind Jump to: navigation, search Distributed wind energy systems provide clean, renewable power for on-site use and help relieve pressure on the power grid while providing jobs and contributing to energy security for homes, farms, schools, factories, private and public facilities, distribution utilities, and remote locations.[1] Resources Clean Energy States Alliance. (2010). State-Based Financing Tools to Support Distributed and Community Wind Projects. Accessed September 27, 2013. This guide reviews the financing role that states, and specifically state clean energy funds, have played and can play in supporting community and distributed wind projects. Clean Energy States Alliance. (May 2010). Supporting Onsite Distributed Wind Generation Projects. Accessed September 27, 2013.

279

Wind Energy EFA Wind energy has become a major source of clean energy. Wind energy is expected to grow over the next  

E-Print Network (OSTI)

Wind Energy EFA Wind energy has become a major source of clean energy. Wind energy is expected of wind energy fundamentals are needed to fill these jobs. The Wind Energy EFA prepares students for a career in wind energy, and allows for completing all requirements for the Certificate in Wind Energy

Kusiak, Andrew

280

Sandia National Laboratories: reduce wind energy costs  

NLE Websites -- All DOE Office Websites (Extended Search)

wind energy costs DOE Completes Construction of State-of-the-Art Wind Plant Performance Facility On April 17, 2013, in Energy, Events, News & Events, Partnership, Renewable Energy,...

Note: This page contains sample records for the topic "wind energy forecasts" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


281

Wind Energy Myths | Open Energy Information  

Open Energy Info (EERE)

Wind Energy Myths Wind Energy Myths Jump to: navigation, search Glacier Wind Project is located 10 miles west of Shelby, Montana, 2 miles south of Ethridge, in Glacier and Toole Counties, and is the largest wind farm in Montana. This project is comprised of 71 machines in phase 1 and 69 machines in phase 2 for a total of 140 Acciona AW-1500, capable of producing 210 MW at full capacity. Photo from Todd Spink, NREL 16521 U.S. Department of Energy. (July 10, 2011). Myths and Benefits of Wind Energy Wind Powering America hosted this webinar featuring speakers Ian Baring-Gould (National Renewable Energy Laboratory), Ed DeMeo, and Ben Hoen (Lawrence Berkeley National Laboratory). References Retrieved from "http://en.openei.org/w/index.php?title=Wind_Energy_Myths&oldid=700129"

282

Energy 101: Wind Turbines - 2014 Update  

ScienceCinema (OSTI)

See how wind turbines generate clean electricity from the power of wind. The video highlights the basic principles at work in wind turbines, and illustrates how the various components work to capture and convert wind energy to electricity. This updated version also includes information on the Energy Department's efforts to advance offshore wind power. Offshore wind energy footage courtesy of Vestas.

None

2014-06-05T23:59:59.000Z

283

Energy 101: Wind Turbines - 2014 Update  

SciTech Connect

See how wind turbines generate clean electricity from the power of wind. The video highlights the basic principles at work in wind turbines, and illustrates how the various components work to capture and convert wind energy to electricity. This updated version also includes information on the Energy Department's efforts to advance offshore wind power. Offshore wind energy footage courtesy of Vestas.

None

2014-05-06T23:59:59.000Z

284

Verification of Mesoscale NWP Forecasts of Abrupt Cold Frontal Wind Changes  

Science Journals Connector (OSTI)

During a wildfire, a sharp wind change can lead to an abrupt increase in fire activity and change the rate of spread, endangering firefighters working on what had been the flank of the fire. In southeastern Australia, routine forecast of cold-...

Yimin Ma; Xinmei Huang; Graham A. Mills; Kevin Parkyn

2010-02-01T23:59:59.000Z

285

Improved forecasts of extreme weather events by future space borne Doppler wind lidar  

E-Print Network (OSTI)

sensitive areas. To answer these questions simulation experiments with state-of-the-art numerical weather prediction (NWP) models have proved great value to test future meteorological observing systems a prioriImproved forecasts of extreme weather events by future space borne Doppler wind lidar Gert

Marseille, Gert-Jan

286

WIND ENERGY Wind Energ. 2013; 00:112  

E-Print Network (OSTI)

WIND ENERGY Wind Energ. 2013; 00:1­12 DOI: 10.1002/we RESEARCH ARTICLE Model predictive control in wind speed, ensuring certain power gradients, with an insignificant loss in energy production rejection, model predictive control, convex optimization, wind power control, energy storage, power output

287

Scituate Wind | Open Energy Information  

Open Energy Info (EERE)

Scituate Wind Scituate Wind Jump to: navigation, search Name Scituate Wind Facility Scituate Wind Sector Wind energy Facility Type Community Wind Facility Status In Service Owner Solaya Energy / Palmer Capital Developer Solaya Energy Energy Purchaser Town of Scituate Location Scituate MA Coordinates 42.17592749°, -70.72780252° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":42.17592749,"lon":-70.72780252,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

288

NREL: Learning - Wind Energy Basics: How Wind Turbines Work  

NLE Websites -- All DOE Office Websites (Extended Search)

Wind Energy Basics: How Wind Turbines Work Wind Energy Basics: How Wind Turbines Work We have been harnessing the wind's energy for hundreds of years. From old Holland to farms in the United States, windmills have been used for pumping water or grinding grain. Today, the windmill's modern equivalent-a wind turbine-can use the wind's energy to generate electricity. Wind turbines, like windmills, are mounted on a tower to capture the most energy. At 100 feet (30 meters) or more aboveground, they can take advantage of the faster and less turbulent wind. Turbines catch the wind's energy with their propeller-like blades. Usually, two or three blades are mounted on a shaft to form a rotor. A blade acts much like an airplane wing. When the wind blows, a pocket of low-pressure air forms on the downwind side of the blade. The low-pressure

289

AWEA Wind Energy Fall Symposium | Department of Energy  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

AWEA Wind Energy Fall Symposium AWEA Wind Energy Fall Symposium November 18, 2014 6:00AM PST to November 20, 2014 3:00PM PST The AWEA Wind Energy Fall Symposium gathers wind energy...

290

NREL: Wind Research - Get to Know a Wind Energy Expert  

NLE Websites -- All DOE Office Websites (Extended Search)

Get to Know a Wind Energy Expert The Evolution of a Wind Expert A professional headshot photo of Maureen Hand Maureen Hand Maureen Hand knows wind. Growing up in Glenrock, Wyoming,...

291

Greenfield Wind | Open Energy Information  

Open Energy Info (EERE)

Wind Wind Jump to: navigation, search Name Greenfield Wind Facility Greenfield Wind Sector Wind energy Facility Type Community Wind Facility Status In Service Owner Greenfield Wind Power LLC (community owned) Energy Purchaser City of Greenfield - excess to Central Iowa Power Cooperative Location Greenfield IA Coordinates 41.29064139°, -94.48559761° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":41.29064139,"lon":-94.48559761,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

292

Mountaineer Wind Energy Center | Open Energy Information  

Open Energy Info (EERE)

Mountaineer Wind Energy Center Mountaineer Wind Energy Center Jump to: navigation, search Name Mountaineer Wind Energy Center Facility Mountaineer Wind Energy Center Sector Wind energy Facility Type Commercial Scale Wind Facility Status In Service Owner NextEra Energy Resources Developer Atlantic Renewable Energy Energy Purchaser Exelon Location Thomas WV Coordinates 39.163081°, -79.554516° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":39.163081,"lon":-79.554516,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

293

Time Series Models to Simulate and Forecast Wind Speed and Wind Power  

Science Journals Connector (OSTI)

A general approach for modeling wind speed and wind power is described. Because wind power is a function of wind speed, the methodology is based on the development of a model of wind speed. Values of wind power are estimated by applying the ...

Barbara G. Brown; Richard W. Katz; Allan H. Murphy

1984-08-01T23:59:59.000Z

294

Wind Energy Act (Maine) | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Wind Energy Act (Maine) Wind Energy Act (Maine) Wind Energy Act (Maine) < Back Eligibility Developer Utility Agricultural Commercial Construction Fed. Government Fuel Distributor General Public/Consumer Industrial Installer/Contractor Institutional Investor-Owned Utility Local Government Low-Income Residential Multi-Family Residential Municipal/Public Utility Nonprofit Residential Retail Supplier Rural Electric Cooperative Schools State/Provincial Govt Systems Integrator Transportation Tribal Government Savings Category Wind Buying & Making Electricity Program Info State Maine Program Type Solar/Wind Access Policy Siting and Permitting The Maine Wind Energy Act is a summary of legislative findings that indicate the state's strong interest in promoting the development of wind energy and establish the state's desire to ease the regulatory process for

295

PROGRESS OF WIND ENERGY TECHNOLOGY  

E-Print Network (OSTI)

This paper provides an overview of the progress of wind energy technology, along with the current status of wind power worldwide. Over the period of 2000-2012 grid-connected installed wind power has increased by a factor of more than 16. Due to the fast growth in wind market, wind turbine technology has developed different design approaches during this period. In addition to this, issues such as power grid integration, environmental impact, and economics are studied and discussed briefly in this paper, as well.

Bar?? zerdem

296

Energy 101: Wind Turbines | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Wind Turbines Wind Turbines Energy 101: Wind Turbines July 30, 2010 - 10:47am Addthis John Schueler John Schueler Former New Media Specialist, Office of Public Affairs On Tuesday, the Department announced a $117 million loan guarantee through for the Kahuku Wind Power Project in Hawaii. That's a major step forward for clean energy in the region, as it's expected to supply clean electricity to roughly 7,700 households per year, and it also invites a deceptively simple question: how exactly do wind turbines generate electricity? One thing you might not realize is that wind is actually a form of solar energy. This is because wind is produced by the sun heating Earth's atmosphere, the rotation of the earth, and the earth's surface irregularities. Wind turbines are the rotary devices that convert the

297

Distributed Wind Energy in Idaho  

SciTech Connect

Project Objective: This project is a research and development program aimed at furthering distributed wind technology. In particular, this project addresses some of the barriers to distributed wind energy utilization in Idaho. Background: At its core, the technological challenge inherent in Wind Energy is the transformation of a highly variable form of energy to one which is compatible with the commercial power grid or another useful application. A major economic barrier to the success of distributed wind technology is the relatively high capital investment (and related long payback periods) associated with wind turbines. This project will carry out fundamental research and technology development to address both the technological and economic barriers. â?¢ Active drive train control holds the potential to improve the overall efficiency of a turbine system by allowing variable speed turbine operation while ensuring a tight control of generator shaft speed, thus greatly simplifying power conditioning. â?¢ Recent blade aerodynamic advancements have been focused on large, utility-scale wind turbine generators (WTGs) as opposed to smaller WTGs designed for distributed generation. Because of Reynolds Number considerations, blade designs do not scale well. Blades which are aerodynamically optimized for distributed-scale WTGs can potentially reduce the cost of electricity by increasing shaft-torque in a given wind speed. â?¢ Grid-connected electric generators typically operate at a fixed speed. If a generator were able to economically operate at multiple speeds, it could potentially convert more of the windâ??s energy to electricity, thus reducing the cost of electricity. This research directly supports the stated goal of the Wind and Hydropower Technologies Program for Distributed Wind Energy Technology: By 2007, reduce the cost of electricity from distributed wind systems to 10 to 15 cents/kWh in Class 3 wind resources, the same level that is currently achievable in Class 5 winds.

Gardner, John; Ferguson, James; Ahmed-Zaid, Said; Johnson, Kathryn; Haynes, Todd; Bennett, Keith

2009-01-31T23:59:59.000Z

298

Indian Centre for Wind Energy Technology C WET | Open Energy...  

Open Energy Info (EERE)

WET Jump to: navigation, search Name: Indian Centre for Wind Energy Technology (C-WET) Place: Chennai, India Zip: 601 302 Sector: Wind energy Product: Government backed wind...

299

INFOGRAPHIC: Wind Energy in America | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

INFOGRAPHIC: Wind Energy in America INFOGRAPHIC: Wind Energy in America Addthis 1 of 6 This infographic details key findings from the 2011 Wind Market Report. | Infographic by...

300

Wind Energy In America: Ventower Industries | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Wind Energy In America: Ventower Industries Wind Energy In America: Ventower Industries Addthis 1 of 3 Finished wind tower sections await load-out at Ventower Industries,...

Note: This page contains sample records for the topic "wind energy forecasts" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


301

Wind Power Forecasting Error Distributions over Multiple Timescales: Preprint  

SciTech Connect

In this paper, we examine the shape of the persistence model error distribution for ten different wind plants in the ERCOT system over multiple timescales. Comparisons are made between the experimental distribution shape and that of the normal distribution.

Hodge, B. M.; Milligan, M.

2011-03-01T23:59:59.000Z

302

Maiden Winds | Open Energy Information  

Open Energy Info (EERE)

Maiden Winds Maiden Winds Jump to: navigation, search Name Maiden Winds Facility Maiden Winds Sector Wind energy Facility Type Commercial Scale Wind Facility Status In Service Owner Edison Mission Group owns majority Developer Dan Juhl Energy Purchaser Xcel Energy Location West Pipestone MN Coordinates 44.000815°, -96.340445° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":44.000815,"lon":-96.340445,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

303

Wind Walkers | Open Energy Information  

Open Energy Info (EERE)

Walkers Walkers Jump to: navigation, search Name Wind Walkers Facility Wind Walkers Sector Wind energy Facility Type Commercial Scale Wind Facility Status In Service Owner 5045 Wind Partners Developer 5045 Wind Partners Energy Purchaser Alliant Energy Location Waukon IA Coordinates 43.2655101°, -91.4863848° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":43.2655101,"lon":-91.4863848,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

304

Wind Energy R&D Opportunity: Energy Department Announces $125...  

Energy Savers (EERE)

Wind Energy R&D Opportunity: Energy Department Announces 125 Million for Transformational Energy Projects Wind Energy R&D Opportunity: Energy Department Announces 125 Million for...

305

Searsburg Wind Energy Facility | Open Energy Information  

Open Energy Info (EERE)

Searsburg Wind Energy Facility Searsburg Wind Energy Facility Jump to: navigation, search Name Searsburg Wind Energy Facility Facility Searsburg Wind Energy Facility Sector Wind energy Facility Type Commercial Scale Wind Facility Status In Service Owner EnXco Developer GE Energy Energy Purchaser Green Mountain Power Location Searsburg VT Coordinates 42.861356°, -72.964445° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":42.861356,"lon":-72.964445,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

306

We Energy Wind Farm | Open Energy Information  

Open Energy Info (EERE)

We Energy Wind Farm We Energy Wind Farm Jump to: navigation, search Name We Energy Wind Farm Facility We Energy Wind Farm Sector Wind energy Facility Type Commercial Scale Wind Facility Status In Service Energy Purchaser WE Energies Location South of Fond du Lac WI Coordinates 43.657512°, -88.439004° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":43.657512,"lon":-88.439004,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

307

Michigan Wind II Wind Farm | Open Energy Information  

Open Energy Info (EERE)

Wind II Wind Farm Wind II Wind Farm Jump to: navigation, search Name Michigan Wind II Wind Farm Facility Michigan Wind II Wind Farm Sector Wind energy Facility Type Commercial Scale Wind Facility Status In Service Owner Exelon Wind Developer Exelon Wind Energy Purchaser Consumers Energy Location Minden City MI Coordinates 43.6572421°, -82.7681278° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":43.6572421,"lon":-82.7681278,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

308

Wind Energy Ordinances | Open Energy Information  

Open Energy Info (EERE)

Wind Energy Ordinances Wind Energy Ordinances Jump to: navigation, search Photo from First Wind, NREL 17545 Due to increasing energy demands in the United States and more installed wind projects, rural communities and local governments with limited or no experience with wind energy now have the opportunity to become involved in this industry. Communities with good wind resources may be approached by entities with plans to develop the resource. Although these opportunities can create new revenue in the form of construction jobs and land lease payments, they also create a new responsibility on the part of local governments to create ordinances to regulate wind turbine installations. Ordinances are laws, often found within municipal codes that provide various degrees of control to local governments. These laws cover issues

309

Wales Wind Energy Project | Open Energy Information  

Open Energy Info (EERE)

Wind Energy Project Wind Energy Project Jump to: navigation, search Name Wales Wind Energy Project Facility Wales Wind Energy Project Sector Wind energy Facility Type Small Scale Wind Facility Status In Service Owner Alaska Village Electric Coop Developer Kotzebue Electric Assoc. Energy Purchaser Alaska Village Electric Coop Location Wales AK Coordinates 65.6113°, -168.091° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":65.6113,"lon":-168.091,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

310

Bravo Wind | Open Energy Information  

Open Energy Info (EERE)

Wind Wind Jump to: navigation, search Name Bravo Wind Facility Bravo Wind Sector Wind energy Facility Type Commercial Scale Wind Facility Status Proposed Developer Bravo Wind LLC Location Cassia County ID Coordinates 42.460351°, -113.474564° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":42.460351,"lon":-113.474564,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

311

AeroWind Inc | Open Energy Information  

Open Energy Info (EERE)

AeroWind Inc. Place: Potsdam, New York Sector: Wind energy Product: Wind turbines manufacturer. References: AeroWind Inc.1 This article is a stub. You can help OpenEI by...

312

2012 Wind Report | Department of Energy  

NLE Websites -- All DOE Office Websites (Extended Search)

2 Wind Report 2012 Wind Report Watch as our clean energy experts answer your questions about the U.S. wind industry -- one of the largest and fastest growing wind markets in the...

313

Compensation Packages Wind Energy Easements  

E-Print Network (OSTI)

to provide rural landowners with information about the wind industry, which was just beginning to emerge in the Midwest and Great Plains. In particular, we focused on land leases and wind energy easements because such agreements provided the primary means for farmers to participate in wind energy development. Since then, the U.S. wind industry has grown dramatically, with commercial-scale installations in more than 30 states and the expectation of a record year for new installations in 2005. As wind energy development has spread, the knowledge base among landowners and rural communities has grown, and options for local participation have increased substantially. With more options and information sources on wind basics available, we believed this was the right time for Windustry to revisit our work on what continues to be the principal means for landowners to participate in wind development: land leases and wind energy easements. This work addresses the ever more sophisticated questions landowners have raised about hosting wind turbines, and also begins to define good practices for developers as many new companies, large and small, enter the industry. Our primary goals are:

Lease Agreement

314

Harbor Wind | Open Energy Information  

Open Energy Info (EERE)

Harbor Wind Harbor Wind Facility Harbor Wind Sector Wind energy Facility Type Commercial Scale Wind Facility Status In Service Owner Harbor Wind LLC Developer Revolution Energy Location Corpus Christi TX Coordinates 27.83061326°, -97.43418217° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":27.83061326,"lon":-97.43418217,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

315

Garnet Wind | Open Energy Information  

Open Energy Info (EERE)

Garnet Wind Garnet Wind Jump to: navigation, search Name Garnet Wind Facility Garnet Wind Sector Wind energy Facility Type Commercial Scale Wind Facility Status In Service Owner Azusa Light & Water Developer Azusa Light & Water Energy Purchaser Azusa Light & Water Location Palm Springs CA Coordinates 33.918267°, -116.701076° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":33.918267,"lon":-116.701076,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

316

Willmar Wind | Open Energy Information  

Open Energy Info (EERE)

Wind Wind Jump to: navigation, search Name Willmar Wind Facility Willmar Wind Sector Wind energy Facility Type Commercial Scale Wind Facility Status In Service Owner Willmar Municipal Utilities Developer Willmar Municipal Utilities Energy Purchaser Willmar Municipal Utilities Location Willmar MN Coordinates 45.158659°, -95.007498° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":45.158659,"lon":-95.007498,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

317

Galactic Wind | Open Energy Information  

Open Energy Info (EERE)

Galactic Wind Galactic Wind Jump to: navigation, search Name Galactic Wind Facility Galactic Wind Sector Wind energy Facility Type Commercial Scale Wind Facility Status In Service Owner Epic Systems Developer Epic Systems Energy Purchaser Epic Systems Location Waunakee WI Coordinates 43.17297°, -89.560688° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":43.17297,"lon":-89.560688,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

318

Manzana Winds | Open Energy Information  

Open Energy Info (EERE)

Manzana Winds Manzana Winds Jump to: navigation, search Name Manzana Winds Facility Manzana Winds Sector Wind energy Facility Type Commercial Scale Wind Facility Status In Service Owner Iberdrola Renewables Developer Iberdrola Renewables Energy Purchaser San Diego Gas and Electric / City of Santa Clara Silicon Valley Power Location Mojave CA Coordinates 34.932662°, -118.46105° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":34.932662,"lon":-118.46105,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

319

Annual Energy Outlook Forecast Evaluation - Tables  

Gasoline and Diesel Fuel Update (EIA)

Table 1. Comparison of Absolute Percent Errors for Present and Current AEO Forecast Evaluations Table 1. Comparison of Absolute Percent Errors for Present and Current AEO Forecast Evaluations Average Absolute Percent Error Variable AEO82 to AEO98 AEO82 to AEO99 AEO82 to AEO2000 AEO82 to AEO2001 AEO82 to AEO2002 AEO82 to AEO2003 Consumption Total Energy Consumption 1.7 1.7 1.8 1.9 1.9 2.1 Total Petroleum Consumption 2.9 2.8 2.9 3.0 2.9 2.9 Total Natural Gas Consumption 5.7 5.6 5.6 5.5 5.5 6.5 Total Coal Consumption 3.0 3.2 3.3 3.5 3.6 3.7 Total Electricity Sales 1.7 1.8 1.9 2.4 2.5 2.4 Production Crude Oil Production 4.3 4.5 4.5 4.5 4.5 4.7 Natural Gas Production 4.8 4.7 4.6 4.6 4.4 4.4 Coal Production 3.6 3.6 3.5 3.7 3.6 3.8 Imports and Exports Net Petroleum Imports 9.5 8.8 8.4 7.9 7.4 7.5 Net Natural Gas Imports 16.7 16.0 15.9 15.8 15.8 15.4

320

Energy Forecasting Framework and Emissions Consensus Tool (EFFECT) | Open  

Open Energy Info (EERE)

Energy Forecasting Framework and Emissions Consensus Tool (EFFECT) Energy Forecasting Framework and Emissions Consensus Tool (EFFECT) Jump to: navigation, search LEDSGP green logo.png FIND MORE DIA TOOLS This tool is part of the Development Impacts Assessment (DIA) Toolkit from the LEDS Global Partnership. Tool Summary LAUNCH TOOL Name: Energy Forecasting Framework and Emissions Consensus Tool (EFFECT) Agency/Company /Organization: Energy Sector Management Assistance Program of the World Bank Sector: Energy Focus Area: Non-renewable Energy Topics: Baseline projection, Co-benefits assessment, GHG inventory Resource Type: Software/modeling tools User Interface: Spreadsheet Complexity/Ease of Use: Simple Website: www.esmap.org/esmap/EFFECT Cost: Free Equivalent URI: www.esmap.org/esmap/EFFECT Energy Forecasting Framework and Emissions Consensus Tool (EFFECT) Screenshot

Note: This page contains sample records for the topic "wind energy forecasts" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


321

Application of Ensemble Sensitivity Analysis to Observation Targeting for Short-term Wind Speed Forecasting  

SciTech Connect

The operators of electrical grids, sometimes referred to as Balancing Authorities (BA), typically make critical decisions on how to most reliably and economically balance electrical load and generation in time frames ranging from a few minutes to six hours ahead. At higher levels of wind power generation, there is an increasing need to improve the accuracy of 0- to 6-hour ahead wind power forecasts. Forecasts on this time scale have typically been strongly dependent on short-term trends indicated by the time series of power production and meteorological data from a wind farm. Additional input information is often available from the output of Numerical Weather Prediction (NWP) models and occasionally from off-site meteorological towers in the region surrounding the wind generation facility. A widely proposed approach to improve short-term forecasts is the deployment of off-site meteorological towers at locations upstream from the wind generation facility in order to sense approaching wind perturbations. While conceptually appealing, it turns out that, in practice, it is often very difficult to derive significant benefit in forecast performance from this approach. The difficulty is rooted in the fact that the type, scale, and amplitude of the processes controlling wind variability at a site change from day to day if not from hour to hour. Thus, a location that provides some useful forecast information for one time may not be a useful predictor a few hours later. Indeed, some processes that cause significant changes in wind power production operate predominantly in the vertical direction and thus cannot be monitored by employing a network of sensors at off-site locations. Hence, it is very challenging to determine the type of sensors and deployment locations to get the most benefit for a specific short-term forecast application. Two tools recently developed in the meteorological research community have the potential to help determine the locations and parameters to measure in order to get the maximum positive impact on forecast performance for a particular site and short-term look-ahead period. Both tools rely on the use of NWP models to assess the sensitivity of a forecast for a particular location to measurements made at a prior time (i.e. the look-ahead period) at points surrounding the target location. The fundamental hypothesis is that points and variables with high sensitivity are good candidates for measurements since information at those points are likely to have the most impact on the forecast for the desired parameter, location and look-ahead period. One approach is called the adjoint method (Errico and Vukicevic, 1992; Errico, 1997) and the other newer approach is known as Ensemble Sensitivity Analysis (ESA; Ancell and Hakim 2007; Torn and Hakim 2008). Both approaches have been tested on large-scale atmospheric prediction problems (e.g. forecasting pressure or precipitation over a relatively large region 24 hours ahead) but neither has been applied to mesoscale space-time scales of winds or any other variables near the surface of the earth. A number of factors suggest that ESA is better suited for short-term wind forecasting applications. One of the most significant advantages of this approach is that it is not necessary to linearize the mathematical representation of the processes in the underlying atmospheric model as required by the adjoint approach. Such a linearization may be especially problematic for the application of short-term forecasting of boundary layer winds in complex terrain since non-linear shifts in the structure of boundary layer due to atmospheric stability changes are a critical part of the wind power production forecast problem. The specific objective of work described in this paper is to test the ESA as a tool to identify measurement locations and variables that have the greatest positive impact on the accuracy of wind forecasts in the 0- to 6-hour look-ahead periods for the wind generation area of California's Tehachapi Pass during the warm (high generation) season. The paper is organized

Zack, J; Natenberg, E; Young, S; Manobianco, J; Kamath, C

2010-02-21T23:59:59.000Z

322

Wind Energy Resource Atlas of Armenia  

SciTech Connect

This wind energy resource atlas identifies the wind characteristics and distribution of the wind resource in the country of Armenia. The detailed wind resource maps and other information contained in the atlas facilitate the identification of prospective areas for use of wind energy technologies for utility-scale power generation and off-grid wind energy applications. The maps portray the wind resource with high-resolution (1-km2) grids of wind power density at 50-m above ground. The wind maps were created at the National Renewable Energy Laboratory (NREL) using a computerized wind mapping system that uses Geographic Information System (GIS) software.

Elliott, D.; Schwartz, M.; Scott, G.; Haymes, S.; Heimiller, D.; George, R.

2003-07-01T23:59:59.000Z

323

Bayonne Wind Energy Project | Open Energy Information  

Open Energy Info (EERE)

Bayonne Wind Energy Project Bayonne Wind Energy Project Jump to: navigation, search Name Bayonne Wind Energy Project Facility Bayonne Wind Energy Project Sector Wind energy Facility Type Community Wind Facility Status In Service Owner Bayonne Municipal Utility Authority Developer Bayonne Municipal Utility Authority Location Bayonne NJ Coordinates 40.65277771°, -74.11774993° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":40.65277771,"lon":-74.11774993,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

324

Dunlap Wind Energy Project | Open Energy Information  

Open Energy Info (EERE)

Dunlap Wind Energy Project Dunlap Wind Energy Project Jump to: navigation, search Name Dunlap Wind Energy Project Facility Dunlap Wind Energy Project Sector Wind energy Facility Type Commercial Scale Wind Facility Status In Service Owner PacifiCorp Developer PacifiCorp Location North of Medicine Bow in Carbon County WY Coordinates 42.013591°, -106.21419° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":42.013591,"lon":-106.21419,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

325

Offshore Wind Energy | Open Energy Information  

Open Energy Info (EERE)

Page Page Edit History Facebook icon Twitter icon » Offshore Wind Energy Jump to: navigation, search The Middelgrunden Wind Farm was established as a collaboration between Middelgrunden Wind Turbine Cooperative and Copenhagen Energy, each installing 10 2-MW Bonus wind turbines. The farm is located off the coast of Denmark, east of the northern tip of Amager. Photo from H.C. Sorensen, NREL 17856 Offshore wind energy is a clean, domestic, renewable resource that can help the United States meet its critical energy, environmental, and economic challenges. By generating electricity from offshore wind turbines, the nation can reduce its greenhouse gas emissions, diversify its energy supply, provide cost-competitive electricity to key coastal regions, and help revitalize key sectors of its economy, including manufacturing.

326

Havoco Wind Energy LLC | Open Energy Information  

Open Energy Info (EERE)

Havoco Wind Energy LLC Havoco Wind Energy LLC Jump to: navigation, search Name Havoco Wind Energy LLC Place Dallas, Texas Zip 75206 Sector Wind energy Product Wind developer of Altamont Pass wind farms. Subsidiary of G3 Energy, the Babcock and Brown subsidiary. Coordinates 32.778155°, -96.795404° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":32.778155,"lon":-96.795404,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

327

Comparison of the solar wind energy input to the magnetosphere measured by Wind and Interball-1  

Science Journals Connector (OSTI)

Timely solar wind measurements are indispensable for space weather forecasts and magnetospheric studies, but solar wind variations detected by a distant spacecraft might be different from those actually hitting Earth's magnetosphere. To determine how important these differences can be for geophysical applications, we compared energy input to the magnetosphere which was simultaneously measured by the Wind and Interball-1 spacecraft at various distances from the Earth. The percentage of equal (with differences less than 15%) measurements was found to increase from 30% at energies associated with small substorms to 100% for storm-level energies. The degree of the spacecraft separation along the X GSE coordinate and in the YZ GSE plane appeared to be of minor importance within the limits of Wind and Interball-1 orbits.

A.A Petrukovich; S.I Klimov; A Lazarus; R.P Lepping

2001-01-01T23:59:59.000Z

328

WINDExchange: Wind Energy Curricula and Teaching Materials  

Wind Powering America (EERE)

Wind Energy Curricula and Teaching Materials This is a list of wind energy curricula and teaching materials for elementary, middle school, and high school students, in alphabetical...

329

WP2 IEA Wind Task 26:The Past and Future Cost of Wind Energy  

E-Print Network (OSTI)

Energy Efficiency and Renewable Energy, Wind and HydropowerSpeed Sites. European Wind Energy Association. Marseille,Innovation and the price of wind energy in the US. Energy

Lantz, Eric

2014-01-01T23:59:59.000Z

330

Weatherford Wind Energy Center | Open Energy Information  

Open Energy Info (EERE)

Weatherford Wind Energy Center Weatherford Wind Energy Center Facility Weatherford Wind Energy Center Sector Wind energy Facility Type Commercial Scale Wind Facility Status In Service Owner NextEra Energy Resources Developer NextEra Energy Resources Energy Purchaser American Electric Power Location Weatherford OK Coordinates 35.559414°, -98.742992° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":35.559414,"lon":-98.742992,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

331

Minco Wind Energy Center | Open Energy Information  

Open Energy Info (EERE)

Wind Energy Center Wind Energy Center Facility Minco Wind Energy Center Sector Wind energy Facility Type Commercial Scale Wind Facility Status In Service Owner NextEra Energy Resources Developer NextEra Energy Resources Energy Purchaser Public Service Company of Oklahoma Location South of Minco OK Coordinates 35.294204°, -97.926081° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":35.294204,"lon":-97.926081,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

332

Oliver Wind Energy Center | Open Energy Information  

Open Energy Info (EERE)

Wind Energy Center Wind Energy Center Facility Oliver Wind Energy Center Sector Wind energy Facility Type Commercial Scale Wind Facility Status In Service Owner NextEra Energy Resources Developer NextEra Energy Resources Energy Purchaser Minnesota Power Location Oliver County ND Coordinates 47.180446°, -101.225116° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":47.180446,"lon":-101.225116,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

333

Mogul Energy Wind Farm | Open Energy Information  

Open Energy Info (EERE)

Mogul Energy Wind Farm Mogul Energy Wind Farm Jump to: navigation, search Name Mogul Energy Wind Farm Facility Mogul Energy Sector Wind energy Facility Type Commercial Scale Wind Facility Status In Service Developer Mogul Energy Energy Purchaser Southern California Edison Co Location Tehachapi CA Coordinates 35.07665°, -118.25529° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":35.07665,"lon":-118.25529,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

334

Federal Energy Management Program: Wind Energy Resources and Technologies  

NLE Websites -- All DOE Office Websites (Extended Search)

Wind Energy Wind Energy Resources and Technologies to someone by E-mail Share Federal Energy Management Program: Wind Energy Resources and Technologies on Facebook Tweet about Federal Energy Management Program: Wind Energy Resources and Technologies on Twitter Bookmark Federal Energy Management Program: Wind Energy Resources and Technologies on Google Bookmark Federal Energy Management Program: Wind Energy Resources and Technologies on Delicious Rank Federal Energy Management Program: Wind Energy Resources and Technologies on Digg Find More places to share Federal Energy Management Program: Wind Energy Resources and Technologies on AddThis.com... Energy-Efficient Products Technology Deployment Renewable Energy Federal Requirements Renewable Resources & Technologies Solar

335

Energy Department Announces New Regional Approach to Wind Energy...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Energy Department Announces New Regional Approach to Wind Energy Information Energy Department Announces New Regional Approach to Wind Energy Information June 12, 2014 - 2:34pm...

336

Community Renewable Energy Success Stories: Wind Energy in Urban...  

Office of Environmental Management (EM)

Community Renewable Energy Success Stories: Wind Energy in Urban Environments Webinar (text version) Community Renewable Energy Success Stories: Wind Energy in Urban Environments...

337

Nebraska/Wind Resources | Open Energy Information  

Open Energy Info (EERE)

Nebraska/Wind Resources Nebraska/Wind Resources < Nebraska Jump to: navigation, search Print PDF Print Full Version WIND ENERGY STAKEHOLDER ENGAGEMENT & OUTREACHSmall Wind Guidebook Home OpenEI Home >> Wind >> Small Wind Guidebook >> Nebraska Wind Resources WindTurbine-icon.png Small Wind Guidebook * Introduction * First, How Can I Make My Home More Energy Efficient? * Is Wind Energy Practical for Me? * What Size Wind Turbine Do I Need? * What Are the Basic Parts of a Small Wind Electric System? * What Do Wind Systems Cost? * Where Can I Find Installation and Maintenance Support? * How Much Energy Will My System Generate? * Is There Enough Wind on My Site? * How Do I Choose the Best Site for My Wind Turbine? * Can I Connect My System to the Utility Grid? * Can I Go Off-Grid?

338

Alabama/Wind Resources | Open Energy Information  

Open Energy Info (EERE)

Alabama/Wind Resources Alabama/Wind Resources < Alabama Jump to: navigation, search Print PDF Print Full Version WIND ENERGY STAKEHOLDER ENGAGEMENT & OUTREACHSmall Wind Guidebook Home OpenEI Home >> Wind >> Small Wind Guidebook >> Alabama Wind Resources WindTurbine-icon.png Small Wind Guidebook * Introduction * First, How Can I Make My Home More Energy Efficient? * Is Wind Energy Practical for Me? * What Size Wind Turbine Do I Need? * What Are the Basic Parts of a Small Wind Electric System? * What Do Wind Systems Cost? * Where Can I Find Installation and Maintenance Support? * How Much Energy Will My System Generate? * Is There Enough Wind on My Site? * How Do I Choose the Best Site for My Wind Turbine? * Can I Connect My System to the Utility Grid? * Can I Go Off-Grid?

339

Florida/Wind Resources | Open Energy Information  

Open Energy Info (EERE)

Florida/Wind Resources Florida/Wind Resources < Florida Jump to: navigation, search Print PDF Print Full Version WIND ENERGY STAKEHOLDER ENGAGEMENT & OUTREACHSmall Wind Guidebook Home OpenEI Home >> Wind >> Small Wind Guidebook >> Florida Wind Resources WindTurbine-icon.png Small Wind Guidebook * Introduction * First, How Can I Make My Home More Energy Efficient? * Is Wind Energy Practical for Me? * What Size Wind Turbine Do I Need? * What Are the Basic Parts of a Small Wind Electric System? * What Do Wind Systems Cost? * Where Can I Find Installation and Maintenance Support? * How Much Energy Will My System Generate? * Is There Enough Wind on My Site? * How Do I Choose the Best Site for My Wind Turbine? * Can I Connect My System to the Utility Grid? * Can I Go Off-Grid?

340

Vermont/Wind Resources | Open Energy Information  

Open Energy Info (EERE)

Vermont/Wind Resources Vermont/Wind Resources < Vermont Jump to: navigation, search Print PDF Print Full Version WIND ENERGY STAKEHOLDER ENGAGEMENT & OUTREACHSmall Wind Guidebook Home OpenEI Home >> Wind >> Small Wind Guidebook >> Vermont Wind Resources WindTurbine-icon.png Small Wind Guidebook * Introduction * First, How Can I Make My Home More Energy Efficient? * Is Wind Energy Practical for Me? * What Size Wind Turbine Do I Need? * What Are the Basic Parts of a Small Wind Electric System? * What Do Wind Systems Cost? * Where Can I Find Installation and Maintenance Support? * How Much Energy Will My System Generate? * Is There Enough Wind on My Site? * How Do I Choose the Best Site for My Wind Turbine? * Can I Connect My System to the Utility Grid? * Can I Go Off-Grid?

Note: This page contains sample records for the topic "wind energy forecasts" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


341

Wisconsin/Wind Resources | Open Energy Information  

Open Energy Info (EERE)

Wisconsin/Wind Resources Wisconsin/Wind Resources < Wisconsin Jump to: navigation, search Print PDF Print Full Version WIND ENERGY STAKEHOLDER ENGAGEMENT & OUTREACHSmall Wind Guidebook Home OpenEI Home >> Wind >> Small Wind Guidebook >> Wisconsin Wind Resources WindTurbine-icon.png Small Wind Guidebook * Introduction * First, How Can I Make My Home More Energy Efficient? * Is Wind Energy Practical for Me? * What Size Wind Turbine Do I Need? * What Are the Basic Parts of a Small Wind Electric System? * What Do Wind Systems Cost? * Where Can I Find Installation and Maintenance Support? * How Much Energy Will My System Generate? * Is There Enough Wind on My Site? * How Do I Choose the Best Site for My Wind Turbine? * Can I Connect My System to the Utility Grid? * Can I Go Off-Grid?

342

Idaho/Wind Resources | Open Energy Information  

Open Energy Info (EERE)

Idaho/Wind Resources Idaho/Wind Resources < Idaho Jump to: navigation, search Print PDF Print Full Version WIND ENERGY STAKEHOLDER ENGAGEMENT & OUTREACHSmall Wind Guidebook Home OpenEI Home >> Wind >> Small Wind Guidebook >> Idaho Wind Resources WindTurbine-icon.png Small Wind Guidebook * Introduction * First, How Can I Make My Home More Energy Efficient? * Is Wind Energy Practical for Me? * What Size Wind Turbine Do I Need? * What Are the Basic Parts of a Small Wind Electric System? * What Do Wind Systems Cost? * Where Can I Find Installation and Maintenance Support? * How Much Energy Will My System Generate? * Is There Enough Wind on My Site? * How Do I Choose the Best Site for My Wind Turbine? * Can I Connect My System to the Utility Grid? * Can I Go Off-Grid?

343

Missouri/Wind Resources | Open Energy Information  

Open Energy Info (EERE)

Missouri/Wind Resources Missouri/Wind Resources < Missouri Jump to: navigation, search Print PDF Print Full Version WIND ENERGY STAKEHOLDER ENGAGEMENT & OUTREACHSmall Wind Guidebook Home OpenEI Home >> Wind >> Small Wind Guidebook >> Missouri Wind Resources WindTurbine-icon.png Small Wind Guidebook * Introduction * First, How Can I Make My Home More Energy Efficient? * Is Wind Energy Practical for Me? * What Size Wind Turbine Do I Need? * What Are the Basic Parts of a Small Wind Electric System? * What Do Wind Systems Cost? * Where Can I Find Installation and Maintenance Support? * How Much Energy Will My System Generate? * Is There Enough Wind on My Site? * How Do I Choose the Best Site for My Wind Turbine? * Can I Connect My System to the Utility Grid? * Can I Go Off-Grid?

344

Iowa/Wind Resources | Open Energy Information  

Open Energy Info (EERE)

Iowa/Wind Resources Iowa/Wind Resources < Iowa Jump to: navigation, search Print PDF Print Full Version WIND ENERGY STAKEHOLDER ENGAGEMENT & OUTREACHSmall Wind Guidebook Home OpenEI Home >> Wind >> Small Wind Guidebook >> Iowa Wind Resources WindTurbine-icon.png Small Wind Guidebook * Introduction * First, How Can I Make My Home More Energy Efficient? * Is Wind Energy Practical for Me? * What Size Wind Turbine Do I Need? * What Are the Basic Parts of a Small Wind Electric System? * What Do Wind Systems Cost? * Where Can I Find Installation and Maintenance Support? * How Much Energy Will My System Generate? * Is There Enough Wind on My Site? * How Do I Choose the Best Site for My Wind Turbine? * Can I Connect My System to the Utility Grid? * Can I Go Off-Grid?

345

Maryland/Wind Resources | Open Energy Information  

Open Energy Info (EERE)

Maryland/Wind Resources Maryland/Wind Resources < Maryland Jump to: navigation, search Print PDF Print Full Version WIND ENERGY STAKEHOLDER ENGAGEMENT & OUTREACHSmall Wind Guidebook Home OpenEI Home >> Wind >> Small Wind Guidebook >> Maryland Wind Resources WindTurbine-icon.png Small Wind Guidebook * Introduction * First, How Can I Make My Home More Energy Efficient? * Is Wind Energy Practical for Me? * What Size Wind Turbine Do I Need? * What Are the Basic Parts of a Small Wind Electric System? * What Do Wind Systems Cost? * Where Can I Find Installation and Maintenance Support? * How Much Energy Will My System Generate? * Is There Enough Wind on My Site? * How Do I Choose the Best Site for My Wind Turbine? * Can I Connect My System to the Utility Grid? * Can I Go Off-Grid?

346

Massachusetts/Wind Resources | Open Energy Information  

Open Energy Info (EERE)

Massachusetts/Wind Resources Massachusetts/Wind Resources < Massachusetts Jump to: navigation, search Print PDF Print Full Version WIND ENERGY STAKEHOLDER ENGAGEMENT & OUTREACHSmall Wind Guidebook Home OpenEI Home >> Wind >> Small Wind Guidebook >> Massachusetts Wind Resources WindTurbine-icon.png Small Wind Guidebook * Introduction * First, How Can I Make My Home More Energy Efficient? * Is Wind Energy Practical for Me? * What Size Wind Turbine Do I Need? * What Are the Basic Parts of a Small Wind Electric System? * What Do Wind Systems Cost? * Where Can I Find Installation and Maintenance Support? * How Much Energy Will My System Generate? * Is There Enough Wind on My Site? * How Do I Choose the Best Site for My Wind Turbine? * Can I Connect My System to the Utility Grid?

347

Minnesota/Wind Resources | Open Energy Information  

Open Energy Info (EERE)

Minnesota/Wind Resources Minnesota/Wind Resources < Minnesota Jump to: navigation, search Print PDF Print Full Version WIND ENERGY STAKEHOLDER ENGAGEMENT & OUTREACHSmall Wind Guidebook Home OpenEI Home >> Wind >> Small Wind Guidebook >> Minnesota Wind Resources WindTurbine-icon.png Small Wind Guidebook * Introduction * First, How Can I Make My Home More Energy Efficient? * Is Wind Energy Practical for Me? * What Size Wind Turbine Do I Need? * What Are the Basic Parts of a Small Wind Electric System? * What Do Wind Systems Cost? * Where Can I Find Installation and Maintenance Support? * How Much Energy Will My System Generate? * Is There Enough Wind on My Site? * How Do I Choose the Best Site for My Wind Turbine? * Can I Connect My System to the Utility Grid? * Can I Go Off-Grid?

348

Pennsylvania/Wind Resources | Open Energy Information  

Open Energy Info (EERE)

Pennsylvania/Wind Resources Pennsylvania/Wind Resources < Pennsylvania Jump to: navigation, search Print PDF Print Full Version WIND ENERGY STAKEHOLDER ENGAGEMENT & OUTREACHSmall Wind Guidebook Home OpenEI Home >> Wind >> Small Wind Guidebook >> Pennsylvania Wind Resources WindTurbine-icon.png Small Wind Guidebook * Introduction * First, How Can I Make My Home More Energy Efficient? * Is Wind Energy Practical for Me? * What Size Wind Turbine Do I Need? * What Are the Basic Parts of a Small Wind Electric System? * What Do Wind Systems Cost? * Where Can I Find Installation and Maintenance Support? * How Much Energy Will My System Generate? * Is There Enough Wind on My Site? * How Do I Choose the Best Site for My Wind Turbine? * Can I Connect My System to the Utility Grid?

349

Hawaii/Wind Resources | Open Energy Information  

Open Energy Info (EERE)

Hawaii/Wind Resources Hawaii/Wind Resources < Hawaii Jump to: navigation, search Print PDF Print Full Version WIND ENERGY STAKEHOLDER ENGAGEMENT & OUTREACHSmall Wind Guidebook Home OpenEI Home >> Wind >> Small Wind Guidebook >> Hawaii Wind Resources WindTurbine-icon.png Small Wind Guidebook * Introduction * First, How Can I Make My Home More Energy Efficient? * Is Wind Energy Practical for Me? * What Size Wind Turbine Do I Need? * What Are the Basic Parts of a Small Wind Electric System? * What Do Wind Systems Cost? * Where Can I Find Installation and Maintenance Support? * How Much Energy Will My System Generate? * Is There Enough Wind on My Site? * How Do I Choose the Best Site for My Wind Turbine? * Can I Connect My System to the Utility Grid? * Can I Go Off-Grid?

350

Alaska/Wind Resources | Open Energy Information  

Open Energy Info (EERE)

Alaska/Wind Resources Alaska/Wind Resources < Alaska Jump to: navigation, search Print PDF Print Full Version WIND ENERGY STAKEHOLDER ENGAGEMENT & OUTREACHSmall Wind Guidebook Home OpenEI Home >> Wind >> Small Wind Guidebook >> Alaska Wind Resources WindTurbine-icon.png Small Wind Guidebook * Introduction * First, How Can I Make My Home More Energy Efficient? * Is Wind Energy Practical for Me? * What Size Wind Turbine Do I Need? * What Are the Basic Parts of a Small Wind Electric System? * What Do Wind Systems Cost? * Where Can I Find Installation and Maintenance Support? * How Much Energy Will My System Generate? * Is There Enough Wind on My Site? * How Do I Choose the Best Site for My Wind Turbine? * Can I Connect My System to the Utility Grid? * Can I Go Off-Grid?

351

Wyoming/Wind Resources | Open Energy Information  

Open Energy Info (EERE)

Wyoming/Wind Resources Wyoming/Wind Resources < Wyoming Jump to: navigation, search Print PDF Print Full Version WIND ENERGY STAKEHOLDER ENGAGEMENT & OUTREACHSmall Wind Guidebook Home OpenEI Home >> Wind >> Small Wind Guidebook >> Wyoming Wind Resources WindTurbine-icon.png Small Wind Guidebook * Introduction * First, How Can I Make My Home More Energy Efficient? * Is Wind Energy Practical for Me? * What Size Wind Turbine Do I Need? * What Are the Basic Parts of a Small Wind Electric System? * What Do Wind Systems Cost? * Where Can I Find Installation and Maintenance Support? * How Much Energy Will My System Generate? * Is There Enough Wind on My Site? * How Do I Choose the Best Site for My Wind Turbine? * Can I Connect My System to the Utility Grid? * Can I Go Off-Grid?

352

Nevada/Wind Resources | Open Energy Information  

Open Energy Info (EERE)

Nevada/Wind Resources Nevada/Wind Resources < Nevada Jump to: navigation, search Print PDF Print Full Version WIND ENERGY STAKEHOLDER ENGAGEMENT & OUTREACHSmall Wind Guidebook Home OpenEI Home >> Wind >> Small Wind Guidebook >> Nevada Wind Resources WindTurbine-icon.png Small Wind Guidebook * Introduction * First, How Can I Make My Home More Energy Efficient? * Is Wind Energy Practical for Me? * What Size Wind Turbine Do I Need? * What Are the Basic Parts of a Small Wind Electric System? * What Do Wind Systems Cost? * Where Can I Find Installation and Maintenance Support? * How Much Energy Will My System Generate? * Is There Enough Wind on My Site? * How Do I Choose the Best Site for My Wind Turbine? * Can I Connect My System to the Utility Grid? * Can I Go Off-Grid?

353

Kansas/Wind Resources | Open Energy Information  

Open Energy Info (EERE)

Kansas/Wind Resources Kansas/Wind Resources < Kansas Jump to: navigation, search Print PDF Print Full Version WIND ENERGY STAKEHOLDER ENGAGEMENT & OUTREACHSmall Wind Guidebook Home OpenEI Home >> Wind >> Small Wind Guidebook >> Kansas Wind Resources WindTurbine-icon.png Small Wind Guidebook * Introduction * First, How Can I Make My Home More Energy Efficient? * Is Wind Energy Practical for Me? * What Size Wind Turbine Do I Need? * What Are the Basic Parts of a Small Wind Electric System? * What Do Wind Systems Cost? * Where Can I Find Installation and Maintenance Support? * How Much Energy Will My System Generate? * Is There Enough Wind on My Site? * How Do I Choose the Best Site for My Wind Turbine? * Can I Connect My System to the Utility Grid? * Can I Go Off-Grid?

354

Washington/Wind Resources | Open Energy Information  

Open Energy Info (EERE)

Washington/Wind Resources Washington/Wind Resources < Washington Jump to: navigation, search Print PDF Print Full Version WIND ENERGY STAKEHOLDER ENGAGEMENT & OUTREACHSmall Wind Guidebook Home OpenEI Home >> Wind >> Small Wind Guidebook >> Washington Wind Resources WindTurbine-icon.png Small Wind Guidebook * Introduction * First, How Can I Make My Home More Energy Efficient? * Is Wind Energy Practical for Me? * What Size Wind Turbine Do I Need? * What Are the Basic Parts of a Small Wind Electric System? * What Do Wind Systems Cost? * Where Can I Find Installation and Maintenance Support? * How Much Energy Will My System Generate? * Is There Enough Wind on My Site? * How Do I Choose the Best Site for My Wind Turbine? * Can I Connect My System to the Utility Grid?

355

Louisiana/Wind Resources | Open Energy Information  

Open Energy Info (EERE)

Louisiana/Wind Resources Louisiana/Wind Resources < Louisiana Jump to: navigation, search Print PDF Print Full Version WIND ENERGY STAKEHOLDER ENGAGEMENT & OUTREACHSmall Wind Guidebook Home OpenEI Home >> Wind >> Small Wind Guidebook >> Louisiana Wind Resources WindTurbine-icon.png Small Wind Guidebook * Introduction * First, How Can I Make My Home More Energy Efficient? * Is Wind Energy Practical for Me? * What Size Wind Turbine Do I Need? * What Are the Basic Parts of a Small Wind Electric System? * What Do Wind Systems Cost? * Where Can I Find Installation and Maintenance Support? * How Much Energy Will My System Generate? * Is There Enough Wind on My Site? * How Do I Choose the Best Site for My Wind Turbine? * Can I Connect My System to the Utility Grid? * Can I Go Off-Grid?

356

Oregon/Wind Resources | Open Energy Information  

Open Energy Info (EERE)

Oregon/Wind Resources Oregon/Wind Resources < Oregon Jump to: navigation, search Print PDF Print Full Version WIND ENERGY STAKEHOLDER ENGAGEMENT & OUTREACHSmall Wind Guidebook Home OpenEI Home >> Wind >> Small Wind Guidebook >> Oregon Wind Resources WindTurbine-icon.png Small Wind Guidebook * Introduction * First, How Can I Make My Home More Energy Efficient? * Is Wind Energy Practical for Me? * What Size Wind Turbine Do I Need? * What Are the Basic Parts of a Small Wind Electric System? * What Do Wind Systems Cost? * Where Can I Find Installation and Maintenance Support? * How Much Energy Will My System Generate? * Is There Enough Wind on My Site? * How Do I Choose the Best Site for My Wind Turbine? * Can I Connect My System to the Utility Grid? * Can I Go Off-Grid?

357

Kentucky/Wind Resources | Open Energy Information  

Open Energy Info (EERE)

Kentucky/Wind Resources Kentucky/Wind Resources < Kentucky Jump to: navigation, search Print PDF Print Full Version WIND ENERGY STAKEHOLDER ENGAGEMENT & OUTREACHSmall Wind Guidebook Home OpenEI Home >> Wind >> Small Wind Guidebook >> Kentucky Wind Resources WindTurbine-icon.png Small Wind Guidebook * Introduction * First, How Can I Make My Home More Energy Efficient? * Is Wind Energy Practical for Me? * What Size Wind Turbine Do I Need? * What Are the Basic Parts of a Small Wind Electric System? * What Do Wind Systems Cost? * Where Can I Find Installation and Maintenance Support? * How Much Energy Will My System Generate? * Is There Enough Wind on My Site? * How Do I Choose the Best Site for My Wind Turbine? * Can I Connect My System to the Utility Grid? * Can I Go Off-Grid?

358

Wind Energy Status and Future Wind Engineering Challenges: Preprint  

SciTech Connect

This paper describes the current status of wind energy technology, the potential for future wind energy development and the science and engineering challenges that must be overcome for the technology to meet its potential.

Thresher, R.; Schreck, S.; Robinson, M.; Veers, P.

2008-08-01T23:59:59.000Z

359

Wind Energy & Manufacturing | Open Energy Information  

Open Energy Info (EERE)

Wind Energy & Manufacturing Wind Energy & Manufacturing Jump to: navigation, search Blades manufactured at Gamesa's factory in Ebensburg, Pennsylvania, await delivery for development of wind farms across the country in the United States. Photo from Gamesa, NREL 16001 Wind power creates new high-paying jobs in a wide variety of industries. This includes direct jobs installing, operating, and maintaining wind turbines, as well as jobs at manufacturing facilities that produce wind turbines, blades, electronic components, gearboxes, generators, towers, and other equipment. Indirect jobs in the industries that support these activities are also created.[1] In 2012, 72% of the wind turbine equipment (including towers, blades, and gears) installed in the United States during the year was made in

360

Wind Easements | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Wind Easements Wind Easements Wind Easements < Back Eligibility Agricultural Fed. Government Institutional Local Government Nonprofit Residential Schools State Government Tribal Government Savings Category Wind Buying & Making Electricity Program Info State South Dakota Program Type Solar/Wind Access Policy Provider S.D. Energy Management Office Any South Dakota property owner may grant a wind easement with the same effect as a conveyance of an interest in real property. Easements must be established in writing, and must be filed, recorded and indexed in the office of the register of deeds of the county in which they are granted. The maximum term of an easement is 50 years. Any payments associated with an easement must be made on an annual basis to the owner of the real property. An easement must include the following information:

Note: This page contains sample records for the topic "wind energy forecasts" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


361

Royal Wind | Open Energy Information  

Open Energy Info (EERE)

Wind Wind Jump to: navigation, search Name Royal Wind Place Denver, Colorado Sector Wind energy Product Vertical Wind Turbines Year founded 2008 Website http://www.RoyalWindTurbines.c Coordinates 39.7391536°, -104.9847034° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":39.7391536,"lon":-104.9847034,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

362

Arnold Schwarzenegger California Wind Energy  

E-Print Network (OSTI)

Albany, New York Contract No. 500-03-006 Prepared For: Public Interest Energy Research (PIER) ProgramArnold Schwarzenegger Governor California Wind Energy Resource Modeling and Measurement Prepared For: California Energy Commission Public Interest Energy Research Program Prepared By: AWS Truewind

363

Altech Energy Wind Farm | Open Energy Information  

Open Energy Info (EERE)

Altech Energy Wind Farm Altech Energy Wind Farm Jump to: navigation, search Name Altech Energy Wind Farm Facility Altech Energy Ltd Sector Wind energy Facility Type Commercial Scale Wind Facility Status In Service Owner SeaWest Developer SeaWest Energy Purchaser Pacific Gas & Electric Co Location Altamont Pass CA Coordinates 37.7347°, -121.652° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":37.7347,"lon":-121.652,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

364

Rhaglen Ynni Gwynt Wind Energy Programme  

E-Print Network (OSTI)

Rhaglen Ynni Gwynt Wind Energy Programme 1 WEP Internet Calculations Explained | 20/02/2013 Calculations supporting indicative figures used for the Wind Energy Programme Wind Energy (page) "The energy.2 Therefore 4.5kWh/d/p = approximately 160 cups of tea per day per person. Wind Energy Programme (page

365

Stateline Wind Energy Project | Open Energy Information  

Open Energy Info (EERE)

Energy Project Energy Project Jump to: navigation, search Name Stateline Wind Energy Project Facility Stateline Wind Energy Project Sector Wind energy Facility Type Commercial Scale Wind Facility Status In Service Owner NextEra Energy Resources Developer NextEra Energy Resources Energy Purchaser PPM Energy Inc Location Walla Walla County Coordinates 46.012769°, -118.751528° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":46.012769,"lon":-118.751528,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

366

Michigan Wind I Wind Farm | Open Energy Information  

Open Energy Info (EERE)

Wind I Wind Farm Wind I Wind Farm Jump to: navigation, search Name Michigan Wind I Wind Farm Facility Michigan Wind I Sector Wind energy Facility Type Commercial Scale Wind Facility Status In Service Owner John Deere Wind Developer Noble Environmental Power Energy Purchaser Consumers Energy Location Huron County MI Coordinates 43.7099°, -82.9388° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":43.7099,"lon":-82.9388,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

367

The Future of Offshore Wind Energy  

E-Print Network (OSTI)

1 The Future of Offshore Wind Energy #12;2 #12;3 Offshore Wind Works · Offshore wind parks: 28 in 10 countries · Operational since 1991 · Current installed capacity: 1,250 MW · Offshore wind parks in the waters around Europe #12;4 US Offshore Wind Projects Proposed Atlantic Ocean Gulf of Mexico Cape Wind

Firestone, Jeremy

368

An Examination of the Uncertainty in Interpolated Winds and Its Effect on the Validation and Intercomparison of Forecast Models  

Science Journals Connector (OSTI)

Meteorological models need to be compared to long-term, routinely collected meteorological data. Whenever numerical forecast models are validated and compared, verification winds are normally interpolated to individual model grid points. To be ...

J. Scott Greene; W. Ethan Cook; David Knapp; Patrick Haines

2002-03-01T23:59:59.000Z

369

Lime Wind | Open Energy Information  

Open Energy Info (EERE)

Lime Wind Lime Wind Facility Lime Wind Sector Wind energy Facility Type Commercial Scale Wind Facility Status In Service Owner Joseph Millworks Inc Developer Joseph Millworks Inc Energy Purchaser Idaho Power Location Huntington OR Coordinates 44.406667°, -117.310278° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":44.406667,"lon":-117.310278,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

370

Pacific Wind | Open Energy Information  

Open Energy Info (EERE)

Wind Wind Facility Pacific Wind Sector Wind energy Facility Type Commercial Scale Wind Facility Status In Service Owner enXco Developer EnXco Energy Purchaser San Diego Gas & Electric Location Rosamond CA Coordinates 34.94448806°, -118.3886719° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":34.94448806,"lon":-118.3886719,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

371

BP Wind | Open Energy Information  

Open Energy Info (EERE)

Wind Wind Jump to: navigation, search Name BP Wind Place Houston, Texas Zip 77002-2700 Sector Wind energy Product Department of BP Alternative Energy that deals with BP's interest in wind power. Coordinates 29.76045°, -95.369784° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":29.76045,"lon":-95.369784,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

372

Wind Energy at NREL's National Wind Technology Center  

ScienceCinema (OSTI)

It is a pure, plentiful natural resource. Right now wind is in high demand and it holds the potential to transform the way we power our homes and businesses. NREL is at the forefront of wind energy research and development. NREL's National Wind Technology Center (NWTC) is a world-class facility dedicated to accelerating and deploying wind technology.

None

2013-05-29T23:59:59.000Z

373

Saturation wind power potential and its implications for wind energy  

Science Journals Connector (OSTI)

...and natural gas produce electricity...As such, wind turbines reduce direct...power, part I: Technologies, energy resources...arrays of wind turbines . J Wind Eng Ind...Yamada T (1982) Development of a turbulence...biofuel soot and gases, and methane...a single wind turbine intersects...

Mark Z. Jacobson; Cristina L. Archer

2012-01-01T23:59:59.000Z

374

Montana/Wind Resources | Open Energy Information  

Open Energy Info (EERE)

Page Page Edit History Facebook icon Twitter icon » Montana/Wind Resources < Montana Jump to: navigation, search Print PDF Print Full Version WIND ENERGY STAKEHOLDER ENGAGEMENT & OUTREACHSmall Wind Guidebook Home OpenEI Home >> Wind >> Small Wind Guidebook >> Montana Wind Resources WindTurbine-icon.png Small Wind Guidebook * Introduction * First, How Can I Make My Home More Energy Efficient? * Is Wind Energy Practical for Me? * What Size Wind Turbine Do I Need? * What Are the Basic Parts of a Small Wind Electric System? * What Do Wind Systems Cost? * Where Can I Find Installation and Maintenance Support? * How Much Energy Will My System Generate? * Is There Enough Wind on My Site? * How Do I Choose the Best Site for My Wind Turbine? * Can I Connect My System to the Utility Grid?

375

Ohio/Wind Resources | Open Energy Information  

Open Energy Info (EERE)

Page Page Edit History Facebook icon Twitter icon » Ohio/Wind Resources < Ohio Jump to: navigation, search Print PDF Print Full Version WIND ENERGY STAKEHOLDER ENGAGEMENT & OUTREACHSmall Wind Guidebook Home OpenEI Home >> Wind >> Small Wind Guidebook >> Ohio Wind Resources WindTurbine-icon.png Small Wind Guidebook * Introduction * First, How Can I Make My Home More Energy Efficient? * Is Wind Energy Practical for Me? * What Size Wind Turbine Do I Need? * What Are the Basic Parts of a Small Wind Electric System? * What Do Wind Systems Cost? * Where Can I Find Installation and Maintenance Support? * How Much Energy Will My System Generate? * Is There Enough Wind on My Site? * How Do I Choose the Best Site for My Wind Turbine? * Can I Connect My System to the Utility Grid?

376

Small Wind Guidebook | Open Energy Information  

Open Energy Info (EERE)

Small Wind Guidebook Small Wind Guidebook Jump to: navigation, search Print PDF Print Full Version WIND ENERGY STAKEHOLDER ENGAGEMENT & OUTREACHSmall Wind Guidebook Home OpenEI Home >> Wind >> Small Wind Guidebook WindTurbine-icon.png Small Wind Guidebook * Introduction * First, How Can I Make My Home More Energy Efficient? * Is Wind Energy Practical for Me? * What Size Wind Turbine Do I Need? * What Are the Basic Parts of a Small Wind Electric System? * What Do Wind Systems Cost? * Where Can I Find Installation and Maintenance Support? * How Much Energy Will My System Generate? * Is There Enough Wind on My Site? * How Do I Choose the Best Site for My Wind Turbine? * Can I Connect My System to the Utility Grid? * Can I Go Off-Grid? * State Information Portal * Glossary of Terms

377

Vantage Wind Energy Center | Open Energy Information  

Open Energy Info (EERE)

Vantage Wind Energy Center Vantage Wind Energy Center Facility Vantage Wind Energy Center Sector Wind energy Facility Type Commercial Scale Wind Facility Status In Service Owner Invenergy Developer Invenergy Energy Purchaser Pacific Gas & Electric Co Location East of Ellensburg between Vantage Highway and I90 Coordinates 46.965336°, -120.245204° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":46.965336,"lon":-120.245204,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

378

Wind Energy 101 | Open Energy Information  

Open Energy Info (EERE)

Energy 101 Energy 101 Jump to: navigation, search The 63-MW Dry Lake Wind Power Project in Arizona is the first utility-scale power project. The Salt River Project is purchasing 100% of the power from the Phase I of this project for the next 20 years. Photo from Iberdrola Renewables, NREL 16692 Wind is a form of solar energy and is a result of the uneven heating of the atmosphere by the sun, the irregularities of the earth's surface, and the rotation of the earth. Wind flow patterns and speeds vary greatly across the United States and are modified by bodies of water, vegetation, and differences in terrain. Humans use this wind flow, or motion energy, for many purposes: sailing, flying a kite, and even generating electricity.[1] The following links provide more information about wind energy basics.

379

New England Wind Forum: New England Wind Energy Education Project  

Wind Powering America (EERE)

Webinars Webinars Conference Historic Wind Development in New England State Activities Projects in New England Building Wind Energy in New England Newsletter Perspectives Events Quick Links to States CT MA ME NH RI VT Bookmark and Share New England Wind Energy Education Project The New England Wind Energy Education Project (NEWEEP) is designed to complement the New England Wind Forum website and newsletter as a comprehensive source of objective information on wind energy issues in the New England region. The project, funded by the U.S. Department of Energy's (DOE's) former Wind Powering America Initiative under a 2-year grant, began as an eight-part webinar series and a conference. The NEWEEP webinar series provides the public with objective information to allow informed decisions about proposed wind energy projects throughout the New England region.

380

WP2 IEA Wind Task 26:The Past and Future Cost of Wind Energy  

E-Print Network (OSTI)

Speed Sites. European Wind Energy Association. Marseille,Innovation and the price of wind energy in the US. EnergyThe Economics of Wind Energy. Renewable and Sustainable

Lantz, Eric

2014-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "wind energy forecasts" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


381

A model for Long-term Industrial Energy Forecasting (LIEF)  

SciTech Connect

The purpose of this report is to establish the content and structural validity of the Long-term Industrial Energy Forecasting (LIEF) model, and to provide estimates for the model's parameters. The model is intended to provide decision makers with a relatively simple, yet credible tool to forecast the impacts of policies which affect long-term energy demand in the manufacturing sector. Particular strengths of this model are its relative simplicity which facilitates both ease of use and understanding of results, and the inclusion of relevant causal relationships which provide useful policy handles. The modeling approach of LIEF is intermediate between top-down econometric modeling and bottom-up technology models. It relies on the following simple concept, that trends in aggregate energy demand are dependent upon the factors: (1) trends in total production; (2) sectoral or structural shift, that is, changes in the mix of industrial output from energy-intensive to energy non-intensive sectors; and (3) changes in real energy intensity due to technical change and energy-price effects as measured by the amount of energy used per unit of manufacturing output (KBtu per constant $ of output). The manufacturing sector is first disaggregated according to their historic output growth rates, energy intensities and recycling opportunities. Exogenous, macroeconomic forecasts of individual subsector growth rates and energy prices can then be combined with endogenous forecasts of real energy intensity trends to yield forecasts of overall energy demand. 75 refs.

Ross, M. (Lawrence Berkeley Lab., CA (United States) Michigan Univ., Ann Arbor, MI (United States). Dept. of Physics Argonne National Lab., IL (United States). Environmental Assessment and Information Sciences Div.); Hwang, R. (Lawrence Berkeley Lab., CA (United States))

1992-02-01T23:59:59.000Z

382

A model for Long-term Industrial Energy Forecasting (LIEF)  

SciTech Connect

The purpose of this report is to establish the content and structural validity of the Long-term Industrial Energy Forecasting (LIEF) model, and to provide estimates for the model`s parameters. The model is intended to provide decision makers with a relatively simple, yet credible tool to forecast the impacts of policies which affect long-term energy demand in the manufacturing sector. Particular strengths of this model are its relative simplicity which facilitates both ease of use and understanding of results, and the inclusion of relevant causal relationships which provide useful policy handles. The modeling approach of LIEF is intermediate between top-down econometric modeling and bottom-up technology models. It relies on the following simple concept, that trends in aggregate energy demand are dependent upon the factors: (1) trends in total production; (2) sectoral or structural shift, that is, changes in the mix of industrial output from energy-intensive to energy non-intensive sectors; and (3) changes in real energy intensity due to technical change and energy-price effects as measured by the amount of energy used per unit of manufacturing output (KBtu per constant $ of output). The manufacturing sector is first disaggregated according to their historic output growth rates, energy intensities and recycling opportunities. Exogenous, macroeconomic forecasts of individual subsector growth rates and energy prices can then be combined with endogenous forecasts of real energy intensity trends to yield forecasts of overall energy demand. 75 refs.

Ross, M. [Lawrence Berkeley Lab., CA (United States)]|[Michigan Univ., Ann Arbor, MI (United States). Dept. of Physics]|[Argonne National Lab., IL (United States). Environmental Assessment and Information Sciences Div.; Hwang, R. [Lawrence Berkeley Lab., CA (United States)

1992-02-01T23:59:59.000Z

383

High Resolution Atmospheric Modeling for Wind Energy Applications  

SciTech Connect

The ability of the WRF atmospheric model to forecast wind speed over the Nysted wind park was investigated as a function of time. It was found that in the time period we considered (August 1-19, 2008), the model is able to predict wind speeds reasonably accurately for 48 hours ahead, but that its forecast skill deteriorates rapidly after 48 hours. In addition, a preliminary analysis was carried out to investigate the impact of vertical grid resolution on the forecast skill. Our preliminary finding is that increasing vertical grid resolution does not have a significant impact on the forecast skill of the WRF model over Nysted wind park during the period we considered. Additional simulations during this period, as well as during other time periods, will be run in order to validate the results presented here. Wind speed is a difficult parameter to forecast due the interaction of large and small length scale forcing. To accurately forecast the wind speed at a given location, the model must correctly forecast the movement and strength of synoptic systems, as well as the local influence of topography / land use on the wind speed. For example, small deviations in the forecast track or strength of a large-scale low pressure system can result in significant forecast errors for local wind speeds. The purpose of this study is to provide a preliminary baseline of a high-resolution limited area model forecast performance against observations from the Nysted wind park. Validating the numerical weather prediction model performance for past forecasts will give a reasonable measure of expected forecast skill over the Nysted wind park. Also, since the Nysted Wind Park is over water and some distance from the influence of terrain, the impact of high vertical grid spacing for wind speed forecast skill will also be investigated.

Simpson, M; Bulaevskaya, V; Glascoe, L; Singer, M

2010-03-18T23:59:59.000Z

384

Gary Wind Energy Project | Open Energy Information  

Open Energy Info (EERE)

Gary Wind Energy Project Gary Wind Energy Project Jump to: navigation, search Name Gary Wind Energy Project Facility Gary Wind Energy Project Sector Wind energy Facility Type Small Scale Wind Facility Status In Service Owner Energy Maintenance Services-Distributed Energy Services Developer Energy Maintenance Services-Distributed Energy Services Energy Purchaser Energy Maintenance Services-Distributed Energy Services Location Gary SD Coordinates 44.7906°, -96.4546° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":44.7906,"lon":-96.4546,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

385

New England Wind Forum: Building Wind Energy in New England  

Wind Powering America (EERE)

Projects in New England Building Wind Energy in New England Wind Resource Wind Power Technology Economics Markets Siting Policy Technical Challenges Issues Small Wind Large Wind Newsletter Perspectives Events Quick Links to States CT MA ME NH RI VT Bookmark and Share Building Wind Energy in New England Many factors influence the ability to develop wind power in the New England region. A viable project requires the right site and the right technology for the application. It must provide suitable revenue or economic value to justify investment in this capital-intensive but zero-fuel technology. Policy initiatives are in place throughout the region to support the expansion of wind power's role in the regional supply mix. However, issues affecting public acceptance of wind projects in host communities must be addressed. Information on topics affecting wind power development in New England can be found by using the navigation to the left.

386

Stetson Wind Expansion Wind Farm | Open Energy Information  

Open Energy Info (EERE)

Stetson Wind Expansion Wind Farm Stetson Wind Expansion Wind Farm Jump to: navigation, search Name Stetson Wind Expansion Wind Farm Facility Stetson Wind Expansion Sector Wind energy Facility Type Commercial Scale Wind Facility Status In Service Owner First Wind Developer First Wind Location Washington County ME Coordinates 45.595833°, -67.928628° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":45.595833,"lon":-67.928628,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

387

Wyoming Wind Energy Center | Open Energy Information  

Open Energy Info (EERE)

Center Center Jump to: navigation, search Name Wyoming Wind Energy Center Facility Wyoming Wind Energy Center Sector Wind energy Facility Type Commercial Scale Wind Facility Status In Service Owner NextEra Energy Resources Developer Orion Energy Energy Purchaser PPM Energy Inc Location Evanston WY Coordinates 41.304414°, -110.793904° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":41.304414,"lon":-110.793904,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

388

Pathfinder Renewable Wind Energy | Open Energy Information  

Open Energy Info (EERE)

Pathfinder Renewable Wind Energy Pathfinder Renewable Wind Energy Jump to: navigation, search Name Pathfinder Renewable Wind Energy Place Casper, Wyoming Zip 82601 Sector Wind energy Product Wyoming-based wind project developer. Coordinates 42.850095°, -106.327734° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":42.850095,"lon":-106.327734,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

389

HTH Wind Energy Inc | Open Energy Information  

Open Energy Info (EERE)

HTH Wind Energy Inc HTH Wind Energy Inc Jump to: navigation, search Name HTH Wind Energy Inc Place Casper, Wyoming Zip 82636 Sector Biomass, Wind energy Product Casper-based developer of wind and biomass projects. Coordinates 42.850095°, -106.327734° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":42.850095,"lon":-106.327734,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

390

INFOGRAPHIC: Wind Energy in America | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

INFOGRAPHIC: Wind Energy in America INFOGRAPHIC: Wind Energy in America August 14, 2012 - 9:21am Addthis This infographic details key findings from the Energy Departments

391

New England Wind Forum: New England Wind Energy Education Project  

Wind Powering America (EERE)

New England Wind Energy Education Project Conference and Workshop New England Wind Energy Education Project Conference and Workshop The New England Wind Energy Education Project (NEWEEP) held its one-day Conference and Workshop on June 7, 2011 in Marlborough, Massachusetts. The conference and workshop focused on presenting objective information relevant to issues of importance to individuals affected by wind energy proposals throughout New England. The conference was featured on the website of the Department of Energy's former Wind Powering America initiative: NEWEEP Convenes Conference and Workshop to Advance Social Acceptance of Well-Sited Wind Projects in New England: A Wind Powering America Success Story. Session I: Opening Plenary: Welcoming Remarks and Overview of New England Wind Project Development Activity

392

JD Wind 4 Wind Farm | Open Energy Information  

Open Energy Info (EERE)

4 Wind Farm 4 Wind Farm Jump to: navigation, search Name JD Wind 4 Wind Farm Facility JD Wind 4 Sector Wind energy Facility Type Commercial Scale Wind Facility Status In Service Owner John Deere Wind Developer DWS/John Deere Wind Energy Purchaser Xcel Energy Location Hansford County TX Coordinates 36.398384°, -101.376997° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":36.398384,"lon":-101.376997,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

393

Wisconsin Wind Resources | Open Energy Information  

Open Energy Info (EERE)

Wind Resources Wind Resources Jump to: navigation, search Print PDF WIND ENERGY STAKEHOLDER ENGAGEMENT & OUTREACHSmall Wind Guidebook Home WindTurbine-icon.png Small Wind Guidebook * Introduction * First, How Can I Make My Home More Energy Efficient? * Is Wind Energy Practical for Me? * What Size Wind Turbine Do I Need? * What Are the Basic Parts of a Small Wind Electric System? * What Do Wind Systems Cost? * Where Can I Find Installation and Maintenance Support? * How Much Energy Will My System Generate? * Is There Enough Wind on My Site? * How Do I Choose the Best Site for My Wind Turbine? * Can I Connect My System to the Utility Grid? * Can I Go Off-Grid? * State Information Portal * Glossary of Terms * For More Information Wisconsin Wind Resources WisconsinMap.jpg Retrieved from

394

Deepwater Wind | Open Energy Information  

Open Energy Info (EERE)

Deepwater Wind Deepwater Wind Name Deepwater Wind Address 36-42 Newark Street Suite 402 Place Hoboken, New Jersey Zip 07030 Sector Wind energy Product offshore wind Phone number 201.850.1717 Website http://dwwind.com/ Coordinates 40.7366674°, -74.0295985° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":40.7366674,"lon":-74.0295985,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

395

Horn Wind | Open Energy Information  

Open Energy Info (EERE)

Wind Wind Jump to: navigation, search Name Horn Wind Place Windthorst, Texas Zip 76389 Sector Wind energy Product Texas-based company that develops community-based industrial wind farms. Coordinates 33.576395°, -98.437329° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":33.576395,"lon":-98.437329,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

396

Tecsis Wind | Open Energy Information  

Open Energy Info (EERE)

Tecsis Wind Tecsis Wind Jump to: navigation, search Name Tecsis Wind Place Sorocaba, Sao Paulo, Brazil Zip 18087-220 Sector Wind energy Product Wind blade producer located in Sorocaba, in the state of Sao Paulo. Coordinates -23.506059°, -47.455959° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":-23.506059,"lon":-47.455959,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

397

Cape Wind | Open Energy Information  

Open Energy Info (EERE)

Wind Wind Jump to: navigation, search Name Cape Wind Address 75 Arlington Street Place Boston, Massachusetts Zip 02116 Sector Wind energy Product Developing America's first offshore wind farm Website http://www.capewind.org/ Coordinates 42.3511372°, -71.0703224° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":42.3511372,"lon":-71.0703224,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

398

Vertax Wind | Open Energy Information  

Open Energy Info (EERE)

Vertax Wind Vertax Wind Jump to: navigation, search Name Vertax Wind Place Surrey, United Kingdom Zip RH2 7LD Sector Wind energy Product Vertax is a British company that develops vertical axis wind turbines Coordinates 48.231575°, -101.134114° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":48.231575,"lon":-101.134114,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

399

Support Structures of Wind Energy Converters  

Science Journals Connector (OSTI)

The wind energy market is one of the most promising markets of renewable energies. Besides biomass, photovoltaic, geothermal, and ocean energy especially the offshore wind energy will deliver the biggest part ...

Peter Schaumann; Cord Bker; Anne Bechtel

2011-01-01T23:59:59.000Z

400

SOLAR IRRADIANCE FORECASTING FOR THE MANAGEMENT OF SOLAR ENERGY SYSTEMS  

E-Print Network (OSTI)

SOLAR IRRADIANCE FORECASTING FOR THE MANAGEMENT OF SOLAR ENERGY SYSTEMS Detlev Heinemann Oldenburg.girodo@uni-oldenburg.de ABSTRACT Solar energy is expected to contribute major shares of the future global energy supply. Due to its and solar energy conversion processes has to account for this behaviour in respective operating strategies

Heinemann, Detlev

Note: This page contains sample records for the topic "wind energy forecasts" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


401

Cielo Wind Power LLC | Open Energy Information  

Open Energy Info (EERE)

Austin, Texas Zip: 78701 2459 Sector: Wind energy Product: Currently the largest wind power developer in the US Southwest, with developments equaling approximately 600...

402

Collegiate Wind Competition | Open Energy Information  

Open Energy Info (EERE)

college students from multiple disciplines to design and construct a lightweight wind turbine. The students will investigate innovative wind energy concepts; gain...

403

Energy 101: Wind Turbines- 2014 Update  

Office of Energy Efficiency and Renewable Energy (EERE)

The video highlights the basic principles at work in wind turbines, and illustrates how the various components work to capture and convert wind energy to electricity.

404

EIA - Forecasts and Analysis of Energy Data  

Gasoline and Diesel Fuel Update (EIA)

Oil Markets Oil Markets IEO2005 projects that world crude oil prices in real 2003 dollars will decline from their current level by 2010, then rise gradually through 2025. In the International Energy Outlook 2005 (IEO2005) reference case, world demand for crude oil grows from 78 million barrels per day in 2002 to 103 million barrels per day in 2015 and to just over 119 million barrels per day in 2025. Much of the growth in oil consumption is projected for the emerging Asian nations, where strong economic growth results in a robust increase in oil demand. Emerging Asia (including China and India) accounts for 45 percent of the total world increase in oil use over the forecast period in the IEO2005 reference case. The projected increase in world oil demand would require an increment to world production capability of more than 42 million barrels per day relative to the 2002 crude oil production capacity of 80.0 million barrels per day. Producers in the Organization of Petroleum Exporting Countries (OPEC) are expected to be the major source of production increases. In addition, non-OPEC supply is expected to remain highly competitive, with major increments to supply coming from offshore resources, especially in the Caspian Basin, Latin America, and deepwater West Africa. The estimates of incremental production are based on current proved reserves and a country-by-country assessment of ultimately recoverable petroleum. In the IEO2005 oil price cases, the substantial investment capital required to produce the incremental volumes is assumed to exist, and the investors are expected to receive at least a 10-percent return on investment.

405

Definition: Wind power | Open Energy Information  

Open Energy Info (EERE)

Wind power Wind power Jump to: navigation, search Dictionary.png Wind power The amount of power available to a wind turbine depends on: air density, wind speed and the swept area of the rotor. While the power is proportional to air density and swept area, it varies with the cube of wind speed, so small changes in wind speed can have a relatively large impact on wind power.[1] View on Wikipedia Wikipedia Definition Wind power is the conversion of wind energy into a useful form of energy, such as using wind turbines to make electrical power, windmills for mechanical power, windpumps for water pumping or drainage, or sails to propel ships. Large wind farms consist of hundreds of individual wind turbines which are connected to the electric power transmission network. Offshore wind is steadier and stronger than on land, and offshore farms

406

Annual Energy Outlook with Projections to 2025 - Forecast Comparisons  

Gasoline and Diesel Fuel Update (EIA)

Forecast Comparisons Forecast Comparisons Annual Energy Outlook 2005 Forecast Comparisons Table 32. Forecasts of annual average economic growth, 2003-2025 Printer Friendly Version Average annual percentage growth Forecast 2003-2009 2003-2014 2003-2025 AEO2004 3.5 3.2 3.0 AEO2005 Reference 3.4 3.3 3.1 Low growth 2.9 2.8 2.5 High growth 4.1 3.9 3.6 GII 3.4 3.2 3.1 OMB 3.6 NA NA CBO 3.5 3.1 NA OEF 3.5 3.5 NA Only one other organization—Global Insight, Incorporated (GII)—produces a comprehensive energy projection with a time horizon similar to that of AEO2005. Other organizations address one or more aspects of the energy markets. The most recent projection from GII, as well as other forecasts that concentrate on economic growth, international oil prices, energy

407

Development in wind energy technology: an update  

Science Journals Connector (OSTI)

This paper presents an overview of the development in wind energy technology. Growth in wind technology and components of wind energy conversion systems are provided. Ratings, and system size are included for various applications in addition to power ... Keywords: development, power electronics converters, technology, wind energy

Faeka M. H. Khater

2012-04-01T23:59:59.000Z

408

JD Wind 10 Wind Farm | Open Energy Information  

Open Energy Info (EERE)

10 Wind Farm 10 Wind Farm Jump to: navigation, search Name JD Wind 10 Wind Farm Facility JD Wind 10 Sector Wind energy Facility Type Commercial Scale Wind Facility Status In Service Owner DWS/John Deere Wind Developer DWS/John Deere Wind Energy Purchaser Southwestern Public Service Location TX Coordinates 35.808304°, -101.994807° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":35.808304,"lon":-101.994807,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

409

Venture Wind I Wind Farm | Open Energy Information  

Open Energy Info (EERE)

Wind I Wind Farm Wind I Wind Farm Jump to: navigation, search Name Venture Wind I Wind Farm Facility Venture Wind I Sector Wind energy Facility Type Commercial Scale Wind Facility Status In Service Owner SeaWest Developer SeaWest Energy Purchaser Pacific Gas & Electric Co Location Altamont Pass CA Coordinates 37.7347°, -121.652° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":37.7347,"lon":-121.652,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

410

Wind Energy | OpenEI  

Open Energy Info (EERE)

Energy Energy Dataset Summary Description Reduction of global greenhouse gas emission to arrest global warming requires minimizing the use of fossil fuels. To achieve this a large scale use of renewable energies must be made over the globe for production of electrical and thermal energy. Success of wind and solar energy projects require detailed and precise information on the resources. For most developing countries adequate information on the resources are not available. Source Renewable Energy Research Centre, University of Dhaka Date Released February 19th, 2007 (7 years ago) Date Updated Unknown Keywords Feasibility Study resource assessment Solar Energy SWERA Bangladesh Wind Energy Data application/pdf icon swera_bangladesh_fullreport.pdf (pdf, 2.7 MiB)

411

Wind Farm Capital | Open Energy Information  

Open Energy Info (EERE)

Wind Farm Capital Place: Connecticut Sector: Wind energy Product: US-based company that buys wind leases from farmers and landowners, providing an upfront lump sum in exchange for...

412

Satellite Remote Sensing in Offshore Wind Energy  

Science Journals Connector (OSTI)

Satellite remote sensing of ocean surface winds are presented with focus on wind energy applications. The history on operational and research-based satellite ocean wind mapping is briefly described for passive mi...

Charlotte Bay Hasager; Merete Badger; Poul Astrup

2013-01-01T23:59:59.000Z

413

Utah/Wind Resources | Open Energy Information  

Open Energy Info (EERE)

source source History View New Pages Recent Changes All Special Pages Semantic Search/Querying Get Involved Help Apps Datasets Community Login | Sign Up Search Page Edit History Facebook icon Twitter icon » Utah/Wind Resources < Utah Jump to: navigation, search Print PDF Print Full Version WIND ENERGY STAKEHOLDER ENGAGEMENT & OUTREACHSmall Wind Guidebook Home OpenEI Home >> Wind >> Small Wind Guidebook >> Utah Wind Resources WindTurbine-icon.png Small Wind Guidebook * Introduction * First, How Can I Make My Home More Energy Efficient? * Is Wind Energy Practical for Me? * What Size Wind Turbine Do I Need? * What Are the Basic Parts of a Small Wind Electric System? * What Do Wind Systems Cost? * Where Can I Find Installation and Maintenance Support? * How Much Energy Will My System Generate?

414

Highmore Wind Energy Project | Open Energy Information  

Open Energy Info (EERE)

Highmore Wind Energy Project Highmore Wind Energy Project Jump to: navigation, search Name Highmore Wind Energy Project Facility Highmore Wind Energy Project Sector Wind energy Facility Type Commercial Scale Wind Facility Status In Service Owner NextEra Energy Resources Developer NextEra Energy Resources Energy Purchaser Basin Electric Location South of Highmore SD Coordinates 44.380689°, -99.441683° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":44.380689,"lon":-99.441683,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

415

WP2 IEA Wind Task 26:The Past and Future Cost of Wind Energy  

E-Print Network (OSTI)

Delivered Wind Energy Costs Have Declined Substantially BNEFTable ES-1. Potential Sources of Future Wind Energy Costvii Table 1. Potential Sources of Future Wind Energy Cost

Lantz, Eric

2014-01-01T23:59:59.000Z

416

Women of Wind Energy Leadership Forum | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Women of Wind Energy Leadership Forum Women of Wind Energy Leadership Forum November 18, 2014 8:00AM to 5:00PM PST San Diego, California The 2014 Women of Wind Energy Leadership...

417

20% Wind Energy by 2030 - Chapter 6: Wind Power Markets Summary...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

6: Wind Power Markets Summary Slides 20% Wind Energy by 2030 - Chapter 6: Wind Power Markets Summary Slides Summary slides overviewing wind power markets, growth, applications, and...

418

Definition: Wind turbine | Open Energy Information  

Open Energy Info (EERE)

turbine turbine Jump to: navigation, search Dictionary.png Wind turbine A machine that converts wind energy to mechanical energy; typically connected to a generator to produce electricity.[1][2] View on Wikipedia Wikipedia Definition A wind turbine is a device that converts kinetic energy from the wind, also called wind energy, into mechanical energy in a process known as wind power. If the mechanical energy is used to produce electricity, the device may be called a wind turbine or wind power plant. If the mechanical energy is used to drive machinery, such as for grinding grain or pumping water, the device is called a windmill or wind pump. Similarly, it may be referred to as a wind charger when used for charging batteries. The result of over a millennium of windmill development and modern engineering,

419

Short-Term Solar Energy Forecasting Using Wireless Sensor Networks  

E-Print Network (OSTI)

Short-Term Solar Energy Forecasting Using Wireless Sensor Networks Stefan Achleitner, Tao Liu an advantage for output power prediction. Solar Energy Prediction System Our prediction model is based variability of more then 100 kW per minute. For practical usage of solar energy, predicting times of high

Cerpa, Alberto E.

420

Leveraging Weather Forecasts in Renewable Energy Navin Sharmaa,  

E-Print Network (OSTI)

Leveraging Weather Forecasts in Renewable Energy Systems Navin Sharmaa, , Jeremy Gummesonb , David, Binghamton, NY 13902 Abstract Systems that harvest environmental energy must carefully regulate their us- age to satisfy their demand. Regulating energy usage is challenging if a system's demands are not elastic, since

Shenoy, Prashant

Note: This page contains sample records for the topic "wind energy forecasts" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


421

Cloudy Computing: Leveraging Weather Forecasts in Energy Harvesting Sensor Systems  

E-Print Network (OSTI)

Cloudy Computing: Leveraging Weather Forecasts in Energy Harvesting Sensor Systems Navin Sharma,gummeson,irwin,shenoy}@cs.umass.edu Abstract--To sustain perpetual operation, systems that harvest environmental energy must carefully regulate their usage to satisfy their demand. Regulating energy usage is challenging if a system's demands

Shenoy, Prashant

422

Howard Wind Energy Project | Open Energy Information  

Open Energy Info (EERE)

Project Project Jump to: navigation, search Name Howard Wind Energy Project Facility Howard Wind Energy Project Sector Wind energy Facility Type Community Wind Facility Status In Service Owner City of Howard Developer City of Howard Energy Purchaser City of Howard Location Howard SD Coordinates 44.0076°, -97.5267° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":44.0076,"lon":-97.5267,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

423

Geronimo Wind Energy | Open Energy Information  

Open Energy Info (EERE)

Geronimo Wind Energy Geronimo Wind Energy Place Edina, Minnesota Zip 55436 Sector Wind energy Product Based in Minnesota, this wind energy developer focuses on small to mid sized projects. Coordinates 40.168935°, -92.175109° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":40.168935,"lon":-92.175109,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

424

Spearville Wind Energy Facility | Open Energy Information  

Open Energy Info (EERE)

Facility Facility Jump to: navigation, search Name Spearville Wind Energy Facility Facility Spearville Wind Energy Facility Sector Wind energy Facility Type Commercial Scale Wind Facility Status In Service Owner Kansas City Power & Light Developer EnXco Energy Purchaser Kansas City Power & Light Location Northeast of Dodge City KS Coordinates 37.851699°, -99.78025° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":37.851699,"lon":-99.78025,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

425

European Wind Energy Association | Open Energy Information  

Open Energy Info (EERE)

European Wind Energy Association European Wind Energy Association Jump to: navigation, search Logo: European Wind Energy Association Name European Wind Energy Association Address Rue d'Arlon 80 B-1040 Place Brussels, Belgium Phone number +32 2 213 1811 Website http://www.ewea.org/index.php Coordinates 50.8415917°, 4.3733281° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":50.8415917,"lon":4.3733281,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

426

Space-time forecasting and evaluation of wind speed with statistical tests for comparing accuracy of spatial predictions  

E-Print Network (OSTI)

). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36 11 Comparing the predictive distributions for the models when the TDD model produces the best forecast (top panel) and when the BST model produces the best forecast (bottom panel). The small vertical line on the x-axis of each plot represents... of wind to benefit humans is not a new concept. Historically, wind- mills have been used to pump water from wells or to grind grain for centuries. But fast- forwarding into the 21st century, ?windmills? are being used to generate electricity. Wind turbines...

Hering, Amanda S.

2010-10-12T23:59:59.000Z

427

2015 Wind Energy Systems Engineering Workshop  

Energy.gov (U.S. Department of Energy (DOE))

The National Renewable Energy Laboratory is partnering with the Technical University of Denmarks Department of Wind Energy to co-host the third biennial Wind Energy Systems Engineering Workshop...

428

Energy Department Announces Distributed Wind Competitiveness...  

Energy Savers (EERE)

for projects led by Pika Energy, Northern Power Systems, Endurance Wind Power, and Urban Green Energy that will help drive down the cost of small and medium-sized wind energy...

429

Advantages and Challenges of Wind Energy  

K-12 Energy Lesson Plans and Activities Web site (EERE)

Wind energy offers many advantages, which explains why it's the fastest-growing energy source in the world. Research efforts are aimed at addressing the challenges to greater use of wind energy.

430

3 Wind energy conversion  

Science Journals Connector (OSTI)

This document is part of Subvolume C 'Renewable Energy' of Volume 3 'Energy Technologies' of Landolt-Brnstein Group VIII 'Advanced Materials and Technologies'.

H.-J. Wagner

2006-01-01T23:59:59.000Z

431

Expert energy management of a micro-grid considering wind energy uncertainty  

Science Journals Connector (OSTI)

Abstract Recently, the use of wind generation has rapidly increased in micro-grids. Due to the fluctuation of wind power, it is difficult to schedule wind turbines (WTs) with other distributed energy resources (DERs). In this paper, we propose an expert energy management system (EEMS) for optimal operation of \\{WTs\\} and other \\{DERs\\} in an interconnected micro-grid. The main purpose of the proposed EEMS is to find the optimal set points of \\{DERs\\} and storage devices, in such a way that the total operation cost and the net emission are simultaneously minimized. The EEMS consists of wind power forecasting module, smart energy storage system (ESS) module and optimization module. For optimal scheduling of WTs, the power forecasting module determines the possible available capacity of wind generation in the micro-grid. To do this, first, an artificial neural network (ANN) is used to forecast wind speed. Then, the obtaining results are used considering forecasting uncertainty by the probabilistic concept of confidence interval. To reduce the fluctuations of wind power generation and improve the micro-grid performances, a smart energy storage system (ESS) module is used. For optimal management of the ESS, the comprehensive mathematical model with practical constraints is extracted. Finally, an efficient modified Bacterial Foraging Optimization (MBFO) module is proposed to solve the multi-objective problem. An interactive fuzzy satisfying method is also used to simulate the trade-off between the conflicting objectives (cost and emission). To evaluate the proposed algorithm, the EEMS is applied to a typical micro-grid which consists of various DERs, smart ESS and electrical loads. The results show that the EEMS can effectively coordinate the power generation of \\{DERs\\} and ESS with respect to economic and environmental considerations.

Mehdi Motevasel; Ali Reza Seifi

2014-01-01T23:59:59.000Z

432

National Wind | Open Energy Information  

Open Energy Info (EERE)

National Wind National Wind Place Minneapolis, Minnesota Zip 55402 Sector Wind energy Product Wind project developer in the upper Midwest and Plains states. Coordinates 44.979035°, -93.264929° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":44.979035,"lon":-93.264929,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

433

Jasper Wind | Open Energy Information  

Open Energy Info (EERE)

Jasper Wind Jasper Wind Place Athens, Greece Sector Solar, Wind energy Product Athens-based wind and solar project developer. Coordinates 37.97615°, 23.736415° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":37.97615,"lon":23.736415,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

434

Oklahoma/Wind Resources | Open Energy Information  

Open Energy Info (EERE)

source source History View New Pages Recent Changes All Special Pages Semantic Search/Querying Get Involved Help Apps Datasets Community Login | Sign Up Search Page Edit History Facebook icon Twitter icon » Oklahoma/Wind Resources < Oklahoma Jump to: navigation, search Print PDF Print Full Version WIND ENERGY STAKEHOLDER ENGAGEMENT & OUTREACHSmall Wind Guidebook Home OpenEI Home >> Wind >> Small Wind Guidebook >> Oklahoma Wind Resources WindTurbine-icon.png Small Wind Guidebook * Introduction * First, How Can I Make My Home More Energy Efficient? * Is Wind Energy Practical for Me? * What Size Wind Turbine Do I Need? * What Are the Basic Parts of a Small Wind Electric System? * What Do Wind Systems Cost? * Where Can I Find Installation and Maintenance Support?

435

Michigan/Wind Resources | Open Energy Information  

Open Energy Info (EERE)

source source History View New Pages Recent Changes All Special Pages Semantic Search/Querying Get Involved Help Apps Datasets Community Login | Sign Up Search Page Edit History Facebook icon Twitter icon » Michigan/Wind Resources < Michigan Jump to: navigation, search Print PDF Print Full Version WIND ENERGY STAKEHOLDER ENGAGEMENT & OUTREACHSmall Wind Guidebook Home OpenEI Home >> Wind >> Small Wind Guidebook >> Michigan Wind Resources WindTurbine-icon.png Small Wind Guidebook * Introduction * First, How Can I Make My Home More Energy Efficient? * Is Wind Energy Practical for Me? * What Size Wind Turbine Do I Need? * What Are the Basic Parts of a Small Wind Electric System? * What Do Wind Systems Cost? * Where Can I Find Installation and Maintenance Support?

436

Indiana/Wind Resources | Open Energy Information  

Open Energy Info (EERE)

source source History View New Pages Recent Changes All Special Pages Semantic Search/Querying Get Involved Help Apps Datasets Community Login | Sign Up Search Page Edit History Facebook icon Twitter icon » Indiana/Wind Resources < Indiana Jump to: navigation, search Print PDF Print Full Version WIND ENERGY STAKEHOLDER ENGAGEMENT & OUTREACHSmall Wind Guidebook Home OpenEI Home >> Wind >> Small Wind Guidebook >> Indiana Wind Resources WindTurbine-icon.png Small Wind Guidebook * Introduction * First, How Can I Make My Home More Energy Efficient? * Is Wind Energy Practical for Me? * What Size Wind Turbine Do I Need? * What Are the Basic Parts of a Small Wind Electric System? * What Do Wind Systems Cost? * Where Can I Find Installation and Maintenance Support?

437

Maine/Wind Resources | Open Energy Information  

Open Energy Info (EERE)

source source History View New Pages Recent Changes All Special Pages Semantic Search/Querying Get Involved Help Apps Datasets Community Login | Sign Up Search Page Edit History Facebook icon Twitter icon » Maine/Wind Resources < Maine Jump to: navigation, search Print PDF Print Full Version WIND ENERGY STAKEHOLDER ENGAGEMENT & OUTREACHSmall Wind Guidebook Home OpenEI Home >> Wind >> Small Wind Guidebook >> Maine Wind Resources WindTurbine-icon.png Small Wind Guidebook * Introduction * First, How Can I Make My Home More Energy Efficient? * Is Wind Energy Practical for Me? * What Size Wind Turbine Do I Need? * What Are the Basic Parts of a Small Wind Electric System? * What Do Wind Systems Cost? * Where Can I Find Installation and Maintenance Support?

438

Mississippi/Wind Resources | Open Energy Information  

Open Energy Info (EERE)

source source History View New Pages Recent Changes All Special Pages Semantic Search/Querying Get Involved Help Apps Datasets Community Login | Sign Up Search Page Edit History Facebook icon Twitter icon » Mississippi/Wind Resources < Mississippi Jump to: navigation, search Print PDF Print Full Version WIND ENERGY STAKEHOLDER ENGAGEMENT & OUTREACHSmall Wind Guidebook Home OpenEI Home >> Wind >> Small Wind Guidebook >> Mississippi Wind Resources WindTurbine-icon.png Small Wind Guidebook * Introduction * First, How Can I Make My Home More Energy Efficient? * Is Wind Energy Practical for Me? * What Size Wind Turbine Do I Need? * What Are the Basic Parts of a Small Wind Electric System? * What Do Wind Systems Cost? * Where Can I Find Installation and Maintenance Support?

439

Tennessee/Wind Resources | Open Energy Information  

Open Energy Info (EERE)

source source History View New Pages Recent Changes All Special Pages Semantic Search/Querying Get Involved Help Apps Datasets Community Login | Sign Up Search Page Edit History Facebook icon Twitter icon » Tennessee/Wind Resources < Tennessee Jump to: navigation, search Print PDF Print Full Version WIND ENERGY STAKEHOLDER ENGAGEMENT & OUTREACHSmall Wind Guidebook Home OpenEI Home >> Wind >> Small Wind Guidebook >> Tennessee Wind Resources WindTurbine-icon.png Small Wind Guidebook * Introduction * First, How Can I Make My Home More Energy Efficient? * Is Wind Energy Practical for Me? * What Size Wind Turbine Do I Need? * What Are the Basic Parts of a Small Wind Electric System? * What Do Wind Systems Cost? * Where Can I Find Installation and Maintenance Support?

440

Virginia/Wind Resources | Open Energy Information  

Open Energy Info (EERE)

source source History View New Pages Recent Changes All Special Pages Semantic Search/Querying Get Involved Help Apps Datasets Community Login | Sign Up Search Page Edit History Facebook icon Twitter icon » Virginia/Wind Resources < Virginia Jump to: navigation, search Print PDF Print Full Version WIND ENERGY STAKEHOLDER ENGAGEMENT & OUTREACHSmall Wind Guidebook Home OpenEI Home >> Wind >> Small Wind Guidebook >> Virginia Wind Resources WindTurbine-icon.png Small Wind Guidebook * Introduction * First, How Can I Make My Home More Energy Efficient? * Is Wind Energy Practical for Me? * What Size Wind Turbine Do I Need? * What Are the Basic Parts of a Small Wind Electric System? * What Do Wind Systems Cost? * Where Can I Find Installation and Maintenance Support?

Note: This page contains sample records for the topic "wind energy forecasts" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


441

Texas/Wind Resources | Open Energy Information  

Open Energy Info (EERE)

source source History View New Pages Recent Changes All Special Pages Semantic Search/Querying Get Involved Help Apps Datasets Community Login | Sign Up Search Page Edit History Facebook icon Twitter icon » Texas/Wind Resources < Texas Jump to: navigation, search Print PDF Print Full Version WIND ENERGY STAKEHOLDER ENGAGEMENT & OUTREACHSmall Wind Guidebook Home OpenEI Home >> Wind >> Small Wind Guidebook >> Texas Wind Resources WindTurbine-icon.png Small Wind Guidebook * Introduction * First, How Can I Make My Home More Energy Efficient? * Is Wind Energy Practical for Me? * What Size Wind Turbine Do I Need? * What Are the Basic Parts of a Small Wind Electric System? * What Do Wind Systems Cost? * Where Can I Find Installation and Maintenance Support?

442

Illinois/Wind Resources | Open Energy Information  

Open Energy Info (EERE)

source source History View New Pages Recent Changes All Special Pages Semantic Search/Querying Get Involved Help Apps Datasets Community Login | Sign Up Search Page Edit History Facebook icon Twitter icon » Illinois/Wind Resources < Illinois Jump to: navigation, search Print PDF Print Full Version WIND ENERGY STAKEHOLDER ENGAGEMENT & OUTREACHSmall Wind Guidebook Home OpenEI Home >> Wind >> Small Wind Guidebook >> Illinois Wind Resources WindTurbine-icon.png Small Wind Guidebook * Introduction * First, How Can I Make My Home More Energy Efficient? * Is Wind Energy Practical for Me? * What Size Wind Turbine Do I Need? * What Are the Basic Parts of a Small Wind Electric System? * What Do Wind Systems Cost? * Where Can I Find Installation and Maintenance Support?

443

Arizona/Wind Resources | Open Energy Information  

Open Energy Info (EERE)

source source History View New Pages Recent Changes All Special Pages Semantic Search/Querying Get Involved Help Apps Datasets Community Login | Sign Up Search Page Edit History Facebook icon Twitter icon » Arizona/Wind Resources < Arizona Jump to: navigation, search Print PDF Print Full Version WIND ENERGY STAKEHOLDER ENGAGEMENT & OUTREACHSmall Wind Guidebook Home OpenEI Home >> Wind >> Small Wind Guidebook >> Arizona Wind Resources WindTurbine-icon.png Small Wind Guidebook * Introduction * First, How Can I Make My Home More Energy Efficient? * Is Wind Energy Practical for Me? * What Size Wind Turbine Do I Need? * What Are the Basic Parts of a Small Wind Electric System? * What Do Wind Systems Cost? * Where Can I Find Installation and Maintenance Support?

444

California/Wind Resources | Open Energy Information  

Open Energy Info (EERE)

source source History View New Pages Recent Changes All Special Pages Semantic Search/Querying Get Involved Help Apps Datasets Community Login | Sign Up Search Page Edit History Facebook icon Twitter icon » California/Wind Resources < California Jump to: navigation, search Print PDF Print Full Version WIND ENERGY STAKEHOLDER ENGAGEMENT & OUTREACHSmall Wind Guidebook Home OpenEI Home >> Wind >> Small Wind Guidebook >> California Wind Resources WindTurbine-icon.png Small Wind Guidebook * Introduction * First, How Can I Make My Home More Energy Efficient? * Is Wind Energy Practical for Me? * What Size Wind Turbine Do I Need? * What Are the Basic Parts of a Small Wind Electric System? * What Do Wind Systems Cost? * Where Can I Find Installation and Maintenance Support?

445

Connecticut/Wind Resources | Open Energy Information  

Open Energy Info (EERE)

source source History View New Pages Recent Changes All Special Pages Semantic Search/Querying Get Involved Help Apps Datasets Community Login | Sign Up Search Page Edit History Facebook icon Twitter icon » Connecticut/Wind Resources < Connecticut Jump to: navigation, search Print PDF Print Full Version WIND ENERGY STAKEHOLDER ENGAGEMENT & OUTREACHSmall Wind Guidebook Home OpenEI Home >> Wind >> Small Wind Guidebook >> Connecticut Wind Resources WindTurbine-icon.png Small Wind Guidebook * Introduction * First, How Can I Make My Home More Energy Efficient? * Is Wind Energy Practical for Me? * What Size Wind Turbine Do I Need? * What Are the Basic Parts of a Small Wind Electric System? * What Do Wind Systems Cost? * Where Can I Find Installation and Maintenance Support?

446

Georgia/Wind Resources | Open Energy Information  

Open Energy Info (EERE)

source source History View New Pages Recent Changes All Special Pages Semantic Search/Querying Get Involved Help Apps Datasets Community Login | Sign Up Search Page Edit History Facebook icon Twitter icon » Georgia/Wind Resources < Georgia Jump to: navigation, search Print PDF Print Full Version WIND ENERGY STAKEHOLDER ENGAGEMENT & OUTREACHSmall Wind Guidebook Home OpenEI Home >> Wind >> Small Wind Guidebook >> Georgia Wind Resources WindTurbine-icon.png Small Wind Guidebook * Introduction * First, How Can I Make My Home More Energy Efficient? * Is Wind Energy Practical for Me? * What Size Wind Turbine Do I Need? * What Are the Basic Parts of a Small Wind Electric System? * What Do Wind Systems Cost? * Where Can I Find Installation and Maintenance Support?

447

Delaware/Wind Resources | Open Energy Information  

Open Energy Info (EERE)

source source History View New Pages Recent Changes All Special Pages Semantic Search/Querying Get Involved Help Apps Datasets Community Login | Sign Up Search Page Edit History Facebook icon Twitter icon » Delaware/Wind Resources < Delaware Jump to: navigation, search Print PDF Print Full Version WIND ENERGY STAKEHOLDER ENGAGEMENT & OUTREACHSmall Wind Guidebook Home OpenEI Home >> Wind >> Small Wind Guidebook >> Delaware Wind Resources WindTurbine-icon.png Small Wind Guidebook * Introduction * First, How Can I Make My Home More Energy Efficient? * Is Wind Energy Practical for Me? * What Size Wind Turbine Do I Need? * What Are the Basic Parts of a Small Wind Electric System? * What Do Wind Systems Cost? * Where Can I Find Installation and Maintenance Support?

448

Colorado/Wind Resources | Open Energy Information  

Open Energy Info (EERE)

source source History View New Pages Recent Changes All Special Pages Semantic Search/Querying Get Involved Help Apps Datasets Community Login | Sign Up Search Page Edit History Facebook icon Twitter icon » Colorado/Wind Resources < Colorado Jump to: navigation, search Print PDF Print Full Version WIND ENERGY STAKEHOLDER ENGAGEMENT & OUTREACHSmall Wind Guidebook Home OpenEI Home >> Wind >> Small Wind Guidebook >> Colorado Wind Resources WindTurbine-icon.png Small Wind Guidebook * Introduction * First, How Can I Make My Home More Energy Efficient? * Is Wind Energy Practical for Me? * What Size Wind Turbine Do I Need? * What Are the Basic Parts of a Small Wind Electric System? * What Do Wind Systems Cost? * Where Can I Find Installation and Maintenance Support?

449

Arkansas/Wind Resources | Open Energy Information  

Open Energy Info (EERE)

source source History View New Pages Recent Changes All Special Pages Semantic Search/Querying Get Involved Help Apps Datasets Community Login | Sign Up Search Page Edit History Facebook icon Twitter icon » Arkansas/Wind Resources < Arkansas Jump to: navigation, search Print PDF Print Full Version WIND ENERGY STAKEHOLDER ENGAGEMENT & OUTREACHSmall Wind Guidebook Home OpenEI Home >> Wind >> Small Wind Guidebook >> Arkansas Wind Resources WindTurbine-icon.png Small Wind Guidebook * Introduction * First, How Can I Make My Home More Energy Efficient? * Is Wind Energy Practical for Me? * What Size Wind Turbine Do I Need? * What Are the Basic Parts of a Small Wind Electric System? * What Do Wind Systems Cost? * Where Can I Find Installation and Maintenance Support?

450

Commonwealth Wind Commercial Wind Program | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Commercial Wind Program Commercial Wind Program Commonwealth Wind Commercial Wind Program < Back Eligibility Agricultural Commercial Construction Fed. Government Industrial Institutional Local Government Multi-Family Residential Municipal Utility Nonprofit Rural Electric Cooperative Schools State Government Tribal Government Savings Category Wind Buying & Making Electricity Maximum Rebate Public Entities: $100,000 Non-Public Entities: $67,000 Program Info Funding Source Massachusetts Renewable Energy Trust Start Date 05/2011 Expiration Date 08/01/2013 State Massachusetts Program Type State Grant Program Rebate Amount Varies depending on applicant type (public vs. non-public) and grant type (site assessment, feasibility study, onsite wind monitoring, acoustic studies, and business planning)

451

Ainsworth Wind Energy Facility | Open Energy Information  

Open Energy Info (EERE)

Ainsworth Wind Energy Facility Ainsworth Wind Energy Facility Jump to: navigation, search Name Ainsworth Wind Energy Facility Facility Ainsworth Wind Energy Facility Sector Wind energy Facility Type Commercial Scale Wind Facility Status In Service Owner Nebraska Public Power District and consortium of public utilities Developer Nebraska Public Power District and consortium of public utilities Energy Purchaser Nebraska Public Power District and consortium of public utilities Location Ainsworth NE Coordinates 42.460023°, -99.876037° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":42.460023,"lon":-99.876037,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

452

Wind Energy America Inc Formerly Dotronix Inc | Open Energy Informatio...  

Open Energy Info (EERE)

Wind Energy America Inc Formerly Dotronix Inc Jump to: navigation, search Name: Wind Energy America Inc (Formerly Dotronix Inc.) Place: Eden Prairie, Minnesota Zip: 55344 Sector:...

453

Wethersfield Wind Power Wind Farm | Open Energy Information  

Open Energy Info (EERE)

Wethersfield Wind Power Wind Farm Wethersfield Wind Power Wind Farm Facility Wethersfield Wind Power Sector Wind energy Facility Type Commercial Scale Wind Facility Status In Service Owner Enel North America Developer Western NY Wind Power Partners Energy Purchaser Niagara Mohawk Location WY County NY Coordinates 42.667741°, -78.219803° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":42.667741,"lon":-78.219803,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

454

Illinois Wind Energy | Open Energy Information  

Open Energy Info (EERE)

Illinois Wind Energy Illinois Wind Energy Place Chicago, Illinois Zip IL 60606 Sector Wind energy Product Developer of wind power generating facilities in Illinois. Coordinates 41.88415°, -87.632409° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":41.88415,"lon":-87.632409,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

455

Prairie Wind Energy LLC | Open Energy Information  

Open Energy Info (EERE)

Wind Energy LLC Wind Energy LLC Place Lamar, Colorado Zip 81052 Sector Wind energy Product Developer and owner of Prairie wind farm. Coordinates 34.17099°, -80.064784° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":34.17099,"lon":-80.064784,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

456

Freedom Wind Energy LLC | Open Energy Information  

Open Energy Info (EERE)

Freedom Wind Energy LLC Freedom Wind Energy LLC Place Tampa, Florida Zip 33623 Sector Wind energy Product Develops and manages wind farms in north eastern USA. Coordinates 27.94653°, -82.459269° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":27.94653,"lon":-82.459269,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

457

Wind Energy Community Acceptance | Open Energy Information  

Open Energy Info (EERE)

source source History View New Pages Recent Changes All Special Pages Semantic Search/Querying Get Involved Help Apps Datasets Community Login | Sign Up Search Page Edit History Facebook icon Twitter icon » Wind Energy Community Acceptance Jump to: navigation, search In 2012 in Lamar, Colorado, Bob Emick (center, back to camera and Greg Emich (right in cowboy hat) talk about the 98 1.5-megawatt wind turbines on their ranch. Photo by Dennis Schroeder, NREL 21768 The following resources address community acceptance topics. Baring-Gould, I. (June 5, 2012). Social Acceptance of Wind Energy: Managing and Evaluating Its Market Impacts. National Renewable Energy Laboratory. Accessed August 14, 2013. This presentation offers background information on social acceptance issues, results of surveys conducted by the New England Wind Forum at a

458

Apex Wind Energy Inc | Open Energy Information  

Open Energy Info (EERE)

Wind Energy Inc. Wind Energy Inc. Place Charlottesville, Virginia Zip 22902 Sector Wind energy Product Virginia-based wind farm project developer. Coordinates 38.03213°, -78.477529° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":38.03213,"lon":-78.477529,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

459

Xinjiang Wind Energy Company | Open Energy Information  

Open Energy Info (EERE)

Xinjiang Wind Energy Company Xinjiang Wind Energy Company Place Urumqi, Xinjiang Autonomous Region, China Zip 830000 Sector Wind energy Product Backed up by Xinjiang Windpower Research Institute, the company is a professional developer of wind farms. Coordinates 43.7952°, 87.580177° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":43.7952,"lon":87.580177,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

460

AMEC Wind Energy | Open Energy Information  

Open Energy Info (EERE)

AMEC Wind Energy AMEC Wind Energy Place Cheshire, England, United Kingdom Zip WA16 8QZ Sector Wind energy Product A UK-based commercial wind farm developer. Coordinates 44.18318°, -123.304654° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":44.18318,"lon":-123.304654,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

Note: This page contains sample records for the topic "wind energy forecasts" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


461

GE Wind Energy Germany | Open Energy Information  

Open Energy Info (EERE)

Jump to: navigation, search Jump to: navigation, search Name GE Wind Energy Germany Place Salzbergen, Germany Zip 48499 Sector Wind energy Product Germany-based, division of GE Wind Energy wind turbine manufacturer and supplier. Coordinates 52.323136°, 7.347278° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":52.323136,"lon":7.347278,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

462

Navajo Wind Energy | Open Energy Information  

Open Energy Info (EERE)

Wind Energy Wind Energy Place Atlanta, Georgia Zip 30318 Sector Wind energy Product Atalanta-based but China-focused wind project developer. Coordinates 33.748315°, -84.391109° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":33.748315,"lon":-84.391109,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

463

Global Wind Energy Council | Open Energy Information  

Open Energy Info (EERE)

Global Wind Energy Council Global Wind Energy Council Name Global Wind Energy Council Address Wind Power House Rue d'Arlon 80 Place Brussels, Belgium Phone number +32 2 213 1897 Website http://www.gwec.net/ Coordinates 50.8415917°, 4.3733281° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":50.8415917,"lon":4.3733281,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

464

TradeWind Energy LLC | Open Energy Information  

Open Energy Info (EERE)

TradeWind Energy LLC TradeWind Energy LLC Jump to: navigation, search Name TradeWind Energy LLC Place Lenexa, Kansas Zip 66214 Sector Renewable Energy, Wind energy Product TradeWind Energy is a developer of renewable energy in Kansas and the surrounding midwestern states. It develops large-scale wind energy projects. Enel North America is a strategic partner for TradeWind and has taken an equity stake in the company. References TradeWind Energy LLC[1] LinkedIn Connections CrunchBase Profile No CrunchBase profile. Create one now! This article is a stub. You can help OpenEI by expanding it. TradeWind Energy LLC is a company located in Lenexa, Kansas . References ↑ "TradeWind Energy LLC" Retrieved from "http://en.openei.org/w/index.php?title=TradeWind_Energy_LLC&oldid=352361

465

Mesoscale Simulations of a Wind Ramping Event for Wind Energy Prediction  

SciTech Connect

Ramping events, or rapid changes of wind speed and wind direction over a short period of time, present challenges to power grid operators in regions with significant penetrations of wind energy in the power grid portfolio. Improved predictions of wind power availability require adequate predictions of the timing of ramping events. For the ramping event investigated here, the Weather Research and Forecasting (WRF) model was run at three horizontal resolutions in 'mesoscale' mode: 8100m, 2700m, and 900m. Two Planetary Boundary Layer (PBL) schemes, the Yonsei University (YSU) and Mellor-Yamada-Janjic (MYJ) schemes, were run at each resolution as well. Simulations were not 'tuned' with nuanced choices of vertical resolution or tuning parameters so that these simulations may be considered 'out-of-the-box' tests of a numerical weather prediction code. Simulations are compared with sodar observations during a wind ramping event at a 'West Coast North America' wind farm. Despite differences in the boundary-layer schemes, no significant differences were observed in the abilities of the schemes to capture the timing of the ramping event. As collaborators have identified, the boundary conditions of these simulations probably dominate the physics of the simulations. They suggest that future investigations into characterization of ramping events employ ensembles of simulations, and that the ensembles include variations of boundary conditions. Furthermore, the failure of these simulations to capture not only the timing of the ramping event but the shape of the wind profile during the ramping event (regardless of its timing) indicates that the set-up and execution of such simulations for wind power forecasting requires skill and tuning of the simulations for a specific site.

Rhodes, M; Lundquist, J K

2011-09-21T23:59:59.000Z

466

Collegiate Wind Competition Engages Tomorrow's Wind Energy Innovators  

Energy.gov (U.S. Department of Energy (DOE))

A new competition is channeling undergraduate ingenuity into small-scale wind energy solutions. The inaugural DOE Collegiate Wind Competition challenges 10 teams of undergraduate students to design and construct a lightweight, transportable wind turbine to power small electronic devices. The 2014 DOE Collegiate Wind Competition will be held May 57 in Las Vegas, Nevada, at the Mandalay Bay Convention Center concurrently with the AWEA WINDPOWER 2014 Conference & Exhibition.

467

GE Wind Energy | Open Energy Information  

Open Energy Info (EERE)

Wind Energy Wind Energy Jump to: navigation, search Name GE Wind Energy Place Atlanta, Georgia Zip GA 30339 Sector Wind energy Product GE's wind energy division, formed as a result of the purchase of almost all of Enron Wind Corporation's assets. Provides power plant design, engineering and site selection, as well as operation and maintenance. Coordinates 33.748315°, -84.391109° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":33.748315,"lon":-84.391109,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

468

Rosebud Sioux Wind Energy Project  

SciTech Connect

In 1998, through the vision of the late Alex Little Soldier Lunderman (1928-2000) and through the efforts of the Rosebud Sioux Tribal Utilities Commission, and with assistance from Intertribal Council on Utility Policy (COUP), and Distributed Generation, Inc (DISGEN). The Rosebud Sioux Tribe applied and was awarded in 1999 a DOE Cooperative Grant to build a commercial 750 Kw wind turbine, along with a 50/50 funding grant from the Department of Energy and a low interest loan from the Rural Utilities Service, United States Department of Agriculture, the Rosebud Sioux Tribe commissioned a single 750 kilowatt NEG Micon wind turbine in March of 2003 near the Rosebud Casino. The Rosebud Sioux Wind Energy Project (Little Soldier Akicita Cikala) Turbine stands as a testament to the vision of a man and the Sicangu Oyate.

Tony Rogers

2008-04-30T23:59:59.000Z

469

An experiment on wind energy  

Science Journals Connector (OSTI)

We discuss an experiment on wind energy performed with home-made apparatus. The experiment reproduces a laboratory windmill, which can pump water from a lower level to a higher one. By measuring the gain of the gravitational potential energy of the pumped water, one can determine the power extracted from the wind. The activity was carried out with high-school students, in the framework of the Italian National Plan for Scientific DegreesPhysics. The proposed experiment allows teachers to discuss renewable energy sources with students whose knowledge of physics is limited to mechanics. It gives students the possibility to gain experience with energy and to increase their awareness of this renewable energy source.

Vincenzo Lombardo; Emilio Fiordilino; Aurelio Agliolo Gallitto; Pasquale Aglieco

2012-01-01T23:59:59.000Z

470

JD Wind 1 Wind Farm | Open Energy Information  

Open Energy Info (EERE)

Wind Farm Wind Farm Facility JD Wind 1 Sector Wind energy Facility Type Commercial Scale Wind Facility Status In Service Owner DWS/John Deere Wind Developer DWS/John Deere Wind Energy Purchaser Xcel Energy Location Hansford County TX Coordinates 36.398384°, -101.376997° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":36.398384,"lon":-101.376997,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

471

JD Wind 2 Wind Farm | Open Energy Information  

Open Energy Info (EERE)

2 Wind Farm 2 Wind Farm Facility JD Wind 2 Sector Wind energy Facility Type Commercial Scale Wind Facility Status In Service Owner DWS/John Deere Wind Developer DWS/John Deere Wind Energy Purchaser Xcel Energy Location TX/OK panhandle TX Coordinates 36.398384°, -101.376997° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":36.398384,"lon":-101.376997,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

472

JD Wind 3 Wind Farm | Open Energy Information  

Open Energy Info (EERE)

3 Wind Farm 3 Wind Farm Facility JD Wind 3 Sector Wind energy Facility Type Commercial Scale Wind Facility Status In Service Owner DWS/John Deere Wind Developer DWS/John Deere Wind Energy Purchaser Xcel Energy Location TX/OK panhandle TX Coordinates 36.398384°, -101.376997° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":36.398384,"lon":-101.376997,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

473

JD Wind 7 Wind Farm | Open Energy Information  

Open Energy Info (EERE)

7 Wind Farm 7 Wind Farm Facility JD Wind 7 Sector Wind energy Facility Type Commercial Scale Wind Facility Status In Service Owner John Deere Wind Developer DWS/John Deere Wind Energy Purchaser Xcel Energy Location TX Coordinates 35.808304°, -101.994807° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":35.808304,"lon":-101.994807,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

474

JD Wind 6 Wind Farm | Open Energy Information  

Open Energy Info (EERE)

6 Wind Farm 6 Wind Farm Facility JD Wind 6 Sector Wind energy Facility Type Commercial Scale Wind Facility Status In Service Owner John Deere Wind Developer DWS/John Deere Wind Energy Purchaser Xcel Energy Location Sherman County TX Coordinates 36.466801°, -101.813446° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":36.466801,"lon":-101.813446,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

475

Minnesota Wind Share Wind Farm | Open Energy Information  

Open Energy Info (EERE)

Share Wind Farm Share Wind Farm Jump to: navigation, search Name Minnesota Wind Share Wind Farm Facility Minnesota Wind Share Sector Wind energy Facility Type Commercial Scale Wind Facility Status In Service Owner Various Developer Project Resources Corp. Energy Purchaser Xcel Energy Location Lake Wilson MN Coordinates 43.996°, -95.9532° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":43.996,"lon":-95.9532,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

476

Wind News and Blog | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Wind News and Blog Wind News and Blog Wind News and Blog Blog Energy Deputy Secretary Daniel Poneman speaks at the Clemson University Wind Turbine Drivetrain Testing Facility dedication in South Carolina. | Photo courtesy of Clemson University Two Facilities, One Goal: Advancing America's Wind Industry November 27, 2013 1:35 PM Two state-of-the-art wind turbine drivetrain test facilities are now open for business: the Clemson University Wind Turbine Drivetrain Testing Facility in South Carolina and a National Renewable Energy Laboratory dynamometer at the National Wind Technology Center in Colorado. Read The Full Story Deputy Assistant Secretary for Renewable Energy Steven Chalk speaks during the American Wind Energy Association WINDPOWER Offshore conference in Providence, Rhode Island. | Photo courtesy of American Wind Energy Association

477

Manzanita Wind Energy Feasibility Study  

SciTech Connect

The Manzanita Indian Reservation is located in southeastern San Diego County, California. The Tribe has long recognized that the Reservation has an abundant wind resource that could be commercially utilized to its benefit. Manzanita has explored the wind resource potential on tribal land and developed a business plan by means of this wind energy feasibility project, which enables Manzanita to make informed decisions when considering the benefits and risks of encouraging large-scale wind power development on their lands. Technical consultant to the project has been SeaWest Consulting, LLC, an established wind power consulting company. The technical scope of the project covered the full range of feasibility assessment activities from site selection through completion of a business plan for implementation. The primary objectives of this feasibility study were to: (1) document the quality and suitability of the Manzanita Reservation as a site for installation and long-term operation of a commercially viable utility-scale wind power project; and, (2) develop a comprehensive and financeable business plan.

Trisha Frank

2004-09-30T23:59:59.000Z

478

Wildlife and Wind Energy | Open Energy Information  

Open Energy Info (EERE)

source source History View New Pages Recent Changes All Special Pages Semantic Search/Querying Get Involved Help Apps Datasets Community Login | Sign Up Search Page Edit History Facebook icon Twit